xref: /linux/kernel/bpf/verifier.c (revision dbcedec3a31119d7594baacc743300d127c99c56)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
199 
200 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
204 static int ref_set_non_owning(struct bpf_verifier_env *env,
205 			      struct bpf_reg_state *reg);
206 static void specialize_kfunc(struct bpf_verifier_env *env,
207 			     u32 func_id, u16 offset, unsigned long *addr);
208 static bool is_trusted_reg(const struct bpf_reg_state *reg);
209 
210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
211 {
212 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
213 }
214 
215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
216 {
217 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
218 }
219 
220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
221 			      const struct bpf_map *map, bool unpriv)
222 {
223 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
224 	unpriv |= bpf_map_ptr_unpriv(aux);
225 	aux->map_ptr_state = (unsigned long)map |
226 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
227 }
228 
229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
230 {
231 	return aux->map_key_state & BPF_MAP_KEY_POISON;
232 }
233 
234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
235 {
236 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
237 }
238 
239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
240 {
241 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
242 }
243 
244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
245 {
246 	bool poisoned = bpf_map_key_poisoned(aux);
247 
248 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
249 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
250 }
251 
252 static bool bpf_helper_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == 0;
256 }
257 
258 static bool bpf_pseudo_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_CALL;
262 }
263 
264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
265 {
266 	return insn->code == (BPF_JMP | BPF_CALL) &&
267 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
268 }
269 
270 struct bpf_call_arg_meta {
271 	struct bpf_map *map_ptr;
272 	bool raw_mode;
273 	bool pkt_access;
274 	u8 release_regno;
275 	int regno;
276 	int access_size;
277 	int mem_size;
278 	u64 msize_max_value;
279 	int ref_obj_id;
280 	int dynptr_id;
281 	int map_uid;
282 	int func_id;
283 	struct btf *btf;
284 	u32 btf_id;
285 	struct btf *ret_btf;
286 	u32 ret_btf_id;
287 	u32 subprogno;
288 	struct btf_field *kptr_field;
289 };
290 
291 struct bpf_kfunc_call_arg_meta {
292 	/* In parameters */
293 	struct btf *btf;
294 	u32 func_id;
295 	u32 kfunc_flags;
296 	const struct btf_type *func_proto;
297 	const char *func_name;
298 	/* Out parameters */
299 	u32 ref_obj_id;
300 	u8 release_regno;
301 	bool r0_rdonly;
302 	u32 ret_btf_id;
303 	u64 r0_size;
304 	u32 subprogno;
305 	struct {
306 		u64 value;
307 		bool found;
308 	} arg_constant;
309 
310 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
311 	 * generally to pass info about user-defined local kptr types to later
312 	 * verification logic
313 	 *   bpf_obj_drop/bpf_percpu_obj_drop
314 	 *     Record the local kptr type to be drop'd
315 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
316 	 *     Record the local kptr type to be refcount_incr'd and use
317 	 *     arg_owning_ref to determine whether refcount_acquire should be
318 	 *     fallible
319 	 */
320 	struct btf *arg_btf;
321 	u32 arg_btf_id;
322 	bool arg_owning_ref;
323 
324 	struct {
325 		struct btf_field *field;
326 	} arg_list_head;
327 	struct {
328 		struct btf_field *field;
329 	} arg_rbtree_root;
330 	struct {
331 		enum bpf_dynptr_type type;
332 		u32 id;
333 		u32 ref_obj_id;
334 	} initialized_dynptr;
335 	struct {
336 		u8 spi;
337 		u8 frameno;
338 	} iter;
339 	u64 mem_size;
340 };
341 
342 struct btf *btf_vmlinux;
343 
344 static const char *btf_type_name(const struct btf *btf, u32 id)
345 {
346 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
347 }
348 
349 static DEFINE_MUTEX(bpf_verifier_lock);
350 static DEFINE_MUTEX(bpf_percpu_ma_lock);
351 
352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
353 {
354 	struct bpf_verifier_env *env = private_data;
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(&env->log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(&env->log, fmt, args);
362 	va_end(args);
363 }
364 
365 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
366 				   struct bpf_reg_state *reg,
367 				   struct bpf_retval_range range, const char *ctx,
368 				   const char *reg_name)
369 {
370 	bool unknown = true;
371 
372 	verbose(env, "%s the register %s has", ctx, reg_name);
373 	if (reg->smin_value > S64_MIN) {
374 		verbose(env, " smin=%lld", reg->smin_value);
375 		unknown = false;
376 	}
377 	if (reg->smax_value < S64_MAX) {
378 		verbose(env, " smax=%lld", reg->smax_value);
379 		unknown = false;
380 	}
381 	if (unknown)
382 		verbose(env, " unknown scalar value");
383 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
384 }
385 
386 static bool type_may_be_null(u32 type)
387 {
388 	return type & PTR_MAYBE_NULL;
389 }
390 
391 static bool reg_not_null(const struct bpf_reg_state *reg)
392 {
393 	enum bpf_reg_type type;
394 
395 	type = reg->type;
396 	if (type_may_be_null(type))
397 		return false;
398 
399 	type = base_type(type);
400 	return type == PTR_TO_SOCKET ||
401 		type == PTR_TO_TCP_SOCK ||
402 		type == PTR_TO_MAP_VALUE ||
403 		type == PTR_TO_MAP_KEY ||
404 		type == PTR_TO_SOCK_COMMON ||
405 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
406 		type == PTR_TO_MEM;
407 }
408 
409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
410 {
411 	struct btf_record *rec = NULL;
412 	struct btf_struct_meta *meta;
413 
414 	if (reg->type == PTR_TO_MAP_VALUE) {
415 		rec = reg->map_ptr->record;
416 	} else if (type_is_ptr_alloc_obj(reg->type)) {
417 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
418 		if (meta)
419 			rec = meta->record;
420 	}
421 	return rec;
422 }
423 
424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
425 {
426 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
427 
428 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
429 }
430 
431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
432 {
433 	struct bpf_func_info *info;
434 
435 	if (!env->prog->aux->func_info)
436 		return "";
437 
438 	info = &env->prog->aux->func_info[subprog];
439 	return btf_type_name(env->prog->aux->btf, info->type_id);
440 }
441 
442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
443 {
444 	struct bpf_subprog_info *info = subprog_info(env, subprog);
445 
446 	info->is_cb = true;
447 	info->is_async_cb = true;
448 	info->is_exception_cb = true;
449 }
450 
451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	return subprog_info(env, subprog)->is_exception_cb;
454 }
455 
456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
457 {
458 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
459 }
460 
461 static bool type_is_rdonly_mem(u32 type)
462 {
463 	return type & MEM_RDONLY;
464 }
465 
466 static bool is_acquire_function(enum bpf_func_id func_id,
467 				const struct bpf_map *map)
468 {
469 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
470 
471 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
472 	    func_id == BPF_FUNC_sk_lookup_udp ||
473 	    func_id == BPF_FUNC_skc_lookup_tcp ||
474 	    func_id == BPF_FUNC_ringbuf_reserve ||
475 	    func_id == BPF_FUNC_kptr_xchg)
476 		return true;
477 
478 	if (func_id == BPF_FUNC_map_lookup_elem &&
479 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 	     map_type == BPF_MAP_TYPE_SOCKHASH))
481 		return true;
482 
483 	return false;
484 }
485 
486 static bool is_ptr_cast_function(enum bpf_func_id func_id)
487 {
488 	return func_id == BPF_FUNC_tcp_sock ||
489 		func_id == BPF_FUNC_sk_fullsock ||
490 		func_id == BPF_FUNC_skc_to_tcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
492 		func_id == BPF_FUNC_skc_to_udp6_sock ||
493 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
494 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
496 }
497 
498 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
499 {
500 	return func_id == BPF_FUNC_dynptr_data;
501 }
502 
503 static bool is_sync_callback_calling_kfunc(u32 btf_id);
504 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
505 
506 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
507 {
508 	return func_id == BPF_FUNC_for_each_map_elem ||
509 	       func_id == BPF_FUNC_find_vma ||
510 	       func_id == BPF_FUNC_loop ||
511 	       func_id == BPF_FUNC_user_ringbuf_drain;
512 }
513 
514 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
515 {
516 	return func_id == BPF_FUNC_timer_set_callback;
517 }
518 
519 static bool is_callback_calling_function(enum bpf_func_id func_id)
520 {
521 	return is_sync_callback_calling_function(func_id) ||
522 	       is_async_callback_calling_function(func_id);
523 }
524 
525 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
526 {
527 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
528 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
529 }
530 
531 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
532 {
533 	return bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm);
534 }
535 
536 static bool is_may_goto_insn(struct bpf_insn *insn)
537 {
538 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
539 }
540 
541 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
542 {
543 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
544 }
545 
546 static bool is_storage_get_function(enum bpf_func_id func_id)
547 {
548 	return func_id == BPF_FUNC_sk_storage_get ||
549 	       func_id == BPF_FUNC_inode_storage_get ||
550 	       func_id == BPF_FUNC_task_storage_get ||
551 	       func_id == BPF_FUNC_cgrp_storage_get;
552 }
553 
554 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
555 					const struct bpf_map *map)
556 {
557 	int ref_obj_uses = 0;
558 
559 	if (is_ptr_cast_function(func_id))
560 		ref_obj_uses++;
561 	if (is_acquire_function(func_id, map))
562 		ref_obj_uses++;
563 	if (is_dynptr_ref_function(func_id))
564 		ref_obj_uses++;
565 
566 	return ref_obj_uses > 1;
567 }
568 
569 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
570 {
571 	return BPF_CLASS(insn->code) == BPF_STX &&
572 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
573 	       insn->imm == BPF_CMPXCHG;
574 }
575 
576 static int __get_spi(s32 off)
577 {
578 	return (-off - 1) / BPF_REG_SIZE;
579 }
580 
581 static struct bpf_func_state *func(struct bpf_verifier_env *env,
582 				   const struct bpf_reg_state *reg)
583 {
584 	struct bpf_verifier_state *cur = env->cur_state;
585 
586 	return cur->frame[reg->frameno];
587 }
588 
589 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
590 {
591        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
592 
593        /* We need to check that slots between [spi - nr_slots + 1, spi] are
594 	* within [0, allocated_stack).
595 	*
596 	* Please note that the spi grows downwards. For example, a dynptr
597 	* takes the size of two stack slots; the first slot will be at
598 	* spi and the second slot will be at spi - 1.
599 	*/
600        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
601 }
602 
603 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
604 			          const char *obj_kind, int nr_slots)
605 {
606 	int off, spi;
607 
608 	if (!tnum_is_const(reg->var_off)) {
609 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
610 		return -EINVAL;
611 	}
612 
613 	off = reg->off + reg->var_off.value;
614 	if (off % BPF_REG_SIZE) {
615 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
616 		return -EINVAL;
617 	}
618 
619 	spi = __get_spi(off);
620 	if (spi + 1 < nr_slots) {
621 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
622 		return -EINVAL;
623 	}
624 
625 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
626 		return -ERANGE;
627 	return spi;
628 }
629 
630 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
631 {
632 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
633 }
634 
635 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
636 {
637 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
638 }
639 
640 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
641 {
642 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
643 	case DYNPTR_TYPE_LOCAL:
644 		return BPF_DYNPTR_TYPE_LOCAL;
645 	case DYNPTR_TYPE_RINGBUF:
646 		return BPF_DYNPTR_TYPE_RINGBUF;
647 	case DYNPTR_TYPE_SKB:
648 		return BPF_DYNPTR_TYPE_SKB;
649 	case DYNPTR_TYPE_XDP:
650 		return BPF_DYNPTR_TYPE_XDP;
651 	default:
652 		return BPF_DYNPTR_TYPE_INVALID;
653 	}
654 }
655 
656 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
657 {
658 	switch (type) {
659 	case BPF_DYNPTR_TYPE_LOCAL:
660 		return DYNPTR_TYPE_LOCAL;
661 	case BPF_DYNPTR_TYPE_RINGBUF:
662 		return DYNPTR_TYPE_RINGBUF;
663 	case BPF_DYNPTR_TYPE_SKB:
664 		return DYNPTR_TYPE_SKB;
665 	case BPF_DYNPTR_TYPE_XDP:
666 		return DYNPTR_TYPE_XDP;
667 	default:
668 		return 0;
669 	}
670 }
671 
672 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
673 {
674 	return type == BPF_DYNPTR_TYPE_RINGBUF;
675 }
676 
677 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
678 			      enum bpf_dynptr_type type,
679 			      bool first_slot, int dynptr_id);
680 
681 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
682 				struct bpf_reg_state *reg);
683 
684 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
685 				   struct bpf_reg_state *sreg1,
686 				   struct bpf_reg_state *sreg2,
687 				   enum bpf_dynptr_type type)
688 {
689 	int id = ++env->id_gen;
690 
691 	__mark_dynptr_reg(sreg1, type, true, id);
692 	__mark_dynptr_reg(sreg2, type, false, id);
693 }
694 
695 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
696 			       struct bpf_reg_state *reg,
697 			       enum bpf_dynptr_type type)
698 {
699 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
700 }
701 
702 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
703 				        struct bpf_func_state *state, int spi);
704 
705 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
706 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
707 {
708 	struct bpf_func_state *state = func(env, reg);
709 	enum bpf_dynptr_type type;
710 	int spi, i, err;
711 
712 	spi = dynptr_get_spi(env, reg);
713 	if (spi < 0)
714 		return spi;
715 
716 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
717 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
718 	 * to ensure that for the following example:
719 	 *	[d1][d1][d2][d2]
720 	 * spi    3   2   1   0
721 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
722 	 * case they do belong to same dynptr, second call won't see slot_type
723 	 * as STACK_DYNPTR and will simply skip destruction.
724 	 */
725 	err = destroy_if_dynptr_stack_slot(env, state, spi);
726 	if (err)
727 		return err;
728 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
729 	if (err)
730 		return err;
731 
732 	for (i = 0; i < BPF_REG_SIZE; i++) {
733 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
734 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
735 	}
736 
737 	type = arg_to_dynptr_type(arg_type);
738 	if (type == BPF_DYNPTR_TYPE_INVALID)
739 		return -EINVAL;
740 
741 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
742 			       &state->stack[spi - 1].spilled_ptr, type);
743 
744 	if (dynptr_type_refcounted(type)) {
745 		/* The id is used to track proper releasing */
746 		int id;
747 
748 		if (clone_ref_obj_id)
749 			id = clone_ref_obj_id;
750 		else
751 			id = acquire_reference_state(env, insn_idx);
752 
753 		if (id < 0)
754 			return id;
755 
756 		state->stack[spi].spilled_ptr.ref_obj_id = id;
757 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
758 	}
759 
760 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
761 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
762 
763 	return 0;
764 }
765 
766 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
767 {
768 	int i;
769 
770 	for (i = 0; i < BPF_REG_SIZE; i++) {
771 		state->stack[spi].slot_type[i] = STACK_INVALID;
772 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
773 	}
774 
775 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
776 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
777 
778 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
779 	 *
780 	 * While we don't allow reading STACK_INVALID, it is still possible to
781 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
782 	 * helpers or insns can do partial read of that part without failing,
783 	 * but check_stack_range_initialized, check_stack_read_var_off, and
784 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
785 	 * the slot conservatively. Hence we need to prevent those liveness
786 	 * marking walks.
787 	 *
788 	 * This was not a problem before because STACK_INVALID is only set by
789 	 * default (where the default reg state has its reg->parent as NULL), or
790 	 * in clean_live_states after REG_LIVE_DONE (at which point
791 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
792 	 * verifier state exploration (like we did above). Hence, for our case
793 	 * parentage chain will still be live (i.e. reg->parent may be
794 	 * non-NULL), while earlier reg->parent was NULL, so we need
795 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
796 	 * done later on reads or by mark_dynptr_read as well to unnecessary
797 	 * mark registers in verifier state.
798 	 */
799 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
800 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
801 }
802 
803 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
804 {
805 	struct bpf_func_state *state = func(env, reg);
806 	int spi, ref_obj_id, i;
807 
808 	spi = dynptr_get_spi(env, reg);
809 	if (spi < 0)
810 		return spi;
811 
812 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
813 		invalidate_dynptr(env, state, spi);
814 		return 0;
815 	}
816 
817 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
818 
819 	/* If the dynptr has a ref_obj_id, then we need to invalidate
820 	 * two things:
821 	 *
822 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
823 	 * 2) Any slices derived from this dynptr.
824 	 */
825 
826 	/* Invalidate any slices associated with this dynptr */
827 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
828 
829 	/* Invalidate any dynptr clones */
830 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
831 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
832 			continue;
833 
834 		/* it should always be the case that if the ref obj id
835 		 * matches then the stack slot also belongs to a
836 		 * dynptr
837 		 */
838 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
839 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
840 			return -EFAULT;
841 		}
842 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
843 			invalidate_dynptr(env, state, i);
844 	}
845 
846 	return 0;
847 }
848 
849 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
850 			       struct bpf_reg_state *reg);
851 
852 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
853 {
854 	if (!env->allow_ptr_leaks)
855 		__mark_reg_not_init(env, reg);
856 	else
857 		__mark_reg_unknown(env, reg);
858 }
859 
860 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
861 				        struct bpf_func_state *state, int spi)
862 {
863 	struct bpf_func_state *fstate;
864 	struct bpf_reg_state *dreg;
865 	int i, dynptr_id;
866 
867 	/* We always ensure that STACK_DYNPTR is never set partially,
868 	 * hence just checking for slot_type[0] is enough. This is
869 	 * different for STACK_SPILL, where it may be only set for
870 	 * 1 byte, so code has to use is_spilled_reg.
871 	 */
872 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
873 		return 0;
874 
875 	/* Reposition spi to first slot */
876 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
877 		spi = spi + 1;
878 
879 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
880 		verbose(env, "cannot overwrite referenced dynptr\n");
881 		return -EINVAL;
882 	}
883 
884 	mark_stack_slot_scratched(env, spi);
885 	mark_stack_slot_scratched(env, spi - 1);
886 
887 	/* Writing partially to one dynptr stack slot destroys both. */
888 	for (i = 0; i < BPF_REG_SIZE; i++) {
889 		state->stack[spi].slot_type[i] = STACK_INVALID;
890 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
891 	}
892 
893 	dynptr_id = state->stack[spi].spilled_ptr.id;
894 	/* Invalidate any slices associated with this dynptr */
895 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
896 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
897 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
898 			continue;
899 		if (dreg->dynptr_id == dynptr_id)
900 			mark_reg_invalid(env, dreg);
901 	}));
902 
903 	/* Do not release reference state, we are destroying dynptr on stack,
904 	 * not using some helper to release it. Just reset register.
905 	 */
906 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
907 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
908 
909 	/* Same reason as unmark_stack_slots_dynptr above */
910 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
911 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
912 
913 	return 0;
914 }
915 
916 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
917 {
918 	int spi;
919 
920 	if (reg->type == CONST_PTR_TO_DYNPTR)
921 		return false;
922 
923 	spi = dynptr_get_spi(env, reg);
924 
925 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
926 	 * error because this just means the stack state hasn't been updated yet.
927 	 * We will do check_mem_access to check and update stack bounds later.
928 	 */
929 	if (spi < 0 && spi != -ERANGE)
930 		return false;
931 
932 	/* We don't need to check if the stack slots are marked by previous
933 	 * dynptr initializations because we allow overwriting existing unreferenced
934 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
935 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
936 	 * touching are completely destructed before we reinitialize them for a new
937 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
938 	 * instead of delaying it until the end where the user will get "Unreleased
939 	 * reference" error.
940 	 */
941 	return true;
942 }
943 
944 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
945 {
946 	struct bpf_func_state *state = func(env, reg);
947 	int i, spi;
948 
949 	/* This already represents first slot of initialized bpf_dynptr.
950 	 *
951 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
952 	 * check_func_arg_reg_off's logic, so we don't need to check its
953 	 * offset and alignment.
954 	 */
955 	if (reg->type == CONST_PTR_TO_DYNPTR)
956 		return true;
957 
958 	spi = dynptr_get_spi(env, reg);
959 	if (spi < 0)
960 		return false;
961 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
962 		return false;
963 
964 	for (i = 0; i < BPF_REG_SIZE; i++) {
965 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
966 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
967 			return false;
968 	}
969 
970 	return true;
971 }
972 
973 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
974 				    enum bpf_arg_type arg_type)
975 {
976 	struct bpf_func_state *state = func(env, reg);
977 	enum bpf_dynptr_type dynptr_type;
978 	int spi;
979 
980 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
981 	if (arg_type == ARG_PTR_TO_DYNPTR)
982 		return true;
983 
984 	dynptr_type = arg_to_dynptr_type(arg_type);
985 	if (reg->type == CONST_PTR_TO_DYNPTR) {
986 		return reg->dynptr.type == dynptr_type;
987 	} else {
988 		spi = dynptr_get_spi(env, reg);
989 		if (spi < 0)
990 			return false;
991 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
992 	}
993 }
994 
995 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
996 
997 static bool in_rcu_cs(struct bpf_verifier_env *env);
998 
999 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1000 
1001 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1002 				 struct bpf_kfunc_call_arg_meta *meta,
1003 				 struct bpf_reg_state *reg, int insn_idx,
1004 				 struct btf *btf, u32 btf_id, int nr_slots)
1005 {
1006 	struct bpf_func_state *state = func(env, reg);
1007 	int spi, i, j, id;
1008 
1009 	spi = iter_get_spi(env, reg, nr_slots);
1010 	if (spi < 0)
1011 		return spi;
1012 
1013 	id = acquire_reference_state(env, insn_idx);
1014 	if (id < 0)
1015 		return id;
1016 
1017 	for (i = 0; i < nr_slots; i++) {
1018 		struct bpf_stack_state *slot = &state->stack[spi - i];
1019 		struct bpf_reg_state *st = &slot->spilled_ptr;
1020 
1021 		__mark_reg_known_zero(st);
1022 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1023 		if (is_kfunc_rcu_protected(meta)) {
1024 			if (in_rcu_cs(env))
1025 				st->type |= MEM_RCU;
1026 			else
1027 				st->type |= PTR_UNTRUSTED;
1028 		}
1029 		st->live |= REG_LIVE_WRITTEN;
1030 		st->ref_obj_id = i == 0 ? id : 0;
1031 		st->iter.btf = btf;
1032 		st->iter.btf_id = btf_id;
1033 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1034 		st->iter.depth = 0;
1035 
1036 		for (j = 0; j < BPF_REG_SIZE; j++)
1037 			slot->slot_type[j] = STACK_ITER;
1038 
1039 		mark_stack_slot_scratched(env, spi - i);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1046 				   struct bpf_reg_state *reg, int nr_slots)
1047 {
1048 	struct bpf_func_state *state = func(env, reg);
1049 	int spi, i, j;
1050 
1051 	spi = iter_get_spi(env, reg, nr_slots);
1052 	if (spi < 0)
1053 		return spi;
1054 
1055 	for (i = 0; i < nr_slots; i++) {
1056 		struct bpf_stack_state *slot = &state->stack[spi - i];
1057 		struct bpf_reg_state *st = &slot->spilled_ptr;
1058 
1059 		if (i == 0)
1060 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1061 
1062 		__mark_reg_not_init(env, st);
1063 
1064 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1065 		st->live |= REG_LIVE_WRITTEN;
1066 
1067 		for (j = 0; j < BPF_REG_SIZE; j++)
1068 			slot->slot_type[j] = STACK_INVALID;
1069 
1070 		mark_stack_slot_scratched(env, spi - i);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1077 				     struct bpf_reg_state *reg, int nr_slots)
1078 {
1079 	struct bpf_func_state *state = func(env, reg);
1080 	int spi, i, j;
1081 
1082 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1083 	 * will do check_mem_access to check and update stack bounds later, so
1084 	 * return true for that case.
1085 	 */
1086 	spi = iter_get_spi(env, reg, nr_slots);
1087 	if (spi == -ERANGE)
1088 		return true;
1089 	if (spi < 0)
1090 		return false;
1091 
1092 	for (i = 0; i < nr_slots; i++) {
1093 		struct bpf_stack_state *slot = &state->stack[spi - i];
1094 
1095 		for (j = 0; j < BPF_REG_SIZE; j++)
1096 			if (slot->slot_type[j] == STACK_ITER)
1097 				return false;
1098 	}
1099 
1100 	return true;
1101 }
1102 
1103 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1104 				   struct btf *btf, u32 btf_id, int nr_slots)
1105 {
1106 	struct bpf_func_state *state = func(env, reg);
1107 	int spi, i, j;
1108 
1109 	spi = iter_get_spi(env, reg, nr_slots);
1110 	if (spi < 0)
1111 		return -EINVAL;
1112 
1113 	for (i = 0; i < nr_slots; i++) {
1114 		struct bpf_stack_state *slot = &state->stack[spi - i];
1115 		struct bpf_reg_state *st = &slot->spilled_ptr;
1116 
1117 		if (st->type & PTR_UNTRUSTED)
1118 			return -EPROTO;
1119 		/* only main (first) slot has ref_obj_id set */
1120 		if (i == 0 && !st->ref_obj_id)
1121 			return -EINVAL;
1122 		if (i != 0 && st->ref_obj_id)
1123 			return -EINVAL;
1124 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1125 			return -EINVAL;
1126 
1127 		for (j = 0; j < BPF_REG_SIZE; j++)
1128 			if (slot->slot_type[j] != STACK_ITER)
1129 				return -EINVAL;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /* Check if given stack slot is "special":
1136  *   - spilled register state (STACK_SPILL);
1137  *   - dynptr state (STACK_DYNPTR);
1138  *   - iter state (STACK_ITER).
1139  */
1140 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1141 {
1142 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1143 
1144 	switch (type) {
1145 	case STACK_SPILL:
1146 	case STACK_DYNPTR:
1147 	case STACK_ITER:
1148 		return true;
1149 	case STACK_INVALID:
1150 	case STACK_MISC:
1151 	case STACK_ZERO:
1152 		return false;
1153 	default:
1154 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1155 		return true;
1156 	}
1157 }
1158 
1159 /* The reg state of a pointer or a bounded scalar was saved when
1160  * it was spilled to the stack.
1161  */
1162 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1163 {
1164 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1165 }
1166 
1167 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1168 {
1169 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1170 	       stack->spilled_ptr.type == SCALAR_VALUE;
1171 }
1172 
1173 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1174 {
1175 	return stack->slot_type[0] == STACK_SPILL &&
1176 	       stack->spilled_ptr.type == SCALAR_VALUE;
1177 }
1178 
1179 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1180  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1181  * more precise STACK_ZERO.
1182  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1183  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1184  */
1185 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1186 {
1187 	if (*stype == STACK_ZERO)
1188 		return;
1189 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1190 		return;
1191 	*stype = STACK_MISC;
1192 }
1193 
1194 static void scrub_spilled_slot(u8 *stype)
1195 {
1196 	if (*stype != STACK_INVALID)
1197 		*stype = STACK_MISC;
1198 }
1199 
1200 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1201  * small to hold src. This is different from krealloc since we don't want to preserve
1202  * the contents of dst.
1203  *
1204  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1205  * not be allocated.
1206  */
1207 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1208 {
1209 	size_t alloc_bytes;
1210 	void *orig = dst;
1211 	size_t bytes;
1212 
1213 	if (ZERO_OR_NULL_PTR(src))
1214 		goto out;
1215 
1216 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1217 		return NULL;
1218 
1219 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1220 	dst = krealloc(orig, alloc_bytes, flags);
1221 	if (!dst) {
1222 		kfree(orig);
1223 		return NULL;
1224 	}
1225 
1226 	memcpy(dst, src, bytes);
1227 out:
1228 	return dst ? dst : ZERO_SIZE_PTR;
1229 }
1230 
1231 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1232  * small to hold new_n items. new items are zeroed out if the array grows.
1233  *
1234  * Contrary to krealloc_array, does not free arr if new_n is zero.
1235  */
1236 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1237 {
1238 	size_t alloc_size;
1239 	void *new_arr;
1240 
1241 	if (!new_n || old_n == new_n)
1242 		goto out;
1243 
1244 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1245 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1246 	if (!new_arr) {
1247 		kfree(arr);
1248 		return NULL;
1249 	}
1250 	arr = new_arr;
1251 
1252 	if (new_n > old_n)
1253 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1254 
1255 out:
1256 	return arr ? arr : ZERO_SIZE_PTR;
1257 }
1258 
1259 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1260 {
1261 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1262 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1263 	if (!dst->refs)
1264 		return -ENOMEM;
1265 
1266 	dst->acquired_refs = src->acquired_refs;
1267 	return 0;
1268 }
1269 
1270 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1271 {
1272 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1273 
1274 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1275 				GFP_KERNEL);
1276 	if (!dst->stack)
1277 		return -ENOMEM;
1278 
1279 	dst->allocated_stack = src->allocated_stack;
1280 	return 0;
1281 }
1282 
1283 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1284 {
1285 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1286 				    sizeof(struct bpf_reference_state));
1287 	if (!state->refs)
1288 		return -ENOMEM;
1289 
1290 	state->acquired_refs = n;
1291 	return 0;
1292 }
1293 
1294 /* Possibly update state->allocated_stack to be at least size bytes. Also
1295  * possibly update the function's high-water mark in its bpf_subprog_info.
1296  */
1297 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1298 {
1299 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1300 
1301 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1302 	size = round_up(size, BPF_REG_SIZE);
1303 	n = size / BPF_REG_SIZE;
1304 
1305 	if (old_n >= n)
1306 		return 0;
1307 
1308 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1309 	if (!state->stack)
1310 		return -ENOMEM;
1311 
1312 	state->allocated_stack = size;
1313 
1314 	/* update known max for given subprogram */
1315 	if (env->subprog_info[state->subprogno].stack_depth < size)
1316 		env->subprog_info[state->subprogno].stack_depth = size;
1317 
1318 	return 0;
1319 }
1320 
1321 /* Acquire a pointer id from the env and update the state->refs to include
1322  * this new pointer reference.
1323  * On success, returns a valid pointer id to associate with the register
1324  * On failure, returns a negative errno.
1325  */
1326 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1327 {
1328 	struct bpf_func_state *state = cur_func(env);
1329 	int new_ofs = state->acquired_refs;
1330 	int id, err;
1331 
1332 	err = resize_reference_state(state, state->acquired_refs + 1);
1333 	if (err)
1334 		return err;
1335 	id = ++env->id_gen;
1336 	state->refs[new_ofs].id = id;
1337 	state->refs[new_ofs].insn_idx = insn_idx;
1338 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1339 
1340 	return id;
1341 }
1342 
1343 /* release function corresponding to acquire_reference_state(). Idempotent. */
1344 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1345 {
1346 	int i, last_idx;
1347 
1348 	last_idx = state->acquired_refs - 1;
1349 	for (i = 0; i < state->acquired_refs; i++) {
1350 		if (state->refs[i].id == ptr_id) {
1351 			/* Cannot release caller references in callbacks */
1352 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1353 				return -EINVAL;
1354 			if (last_idx && i != last_idx)
1355 				memcpy(&state->refs[i], &state->refs[last_idx],
1356 				       sizeof(*state->refs));
1357 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1358 			state->acquired_refs--;
1359 			return 0;
1360 		}
1361 	}
1362 	return -EINVAL;
1363 }
1364 
1365 static void free_func_state(struct bpf_func_state *state)
1366 {
1367 	if (!state)
1368 		return;
1369 	kfree(state->refs);
1370 	kfree(state->stack);
1371 	kfree(state);
1372 }
1373 
1374 static void clear_jmp_history(struct bpf_verifier_state *state)
1375 {
1376 	kfree(state->jmp_history);
1377 	state->jmp_history = NULL;
1378 	state->jmp_history_cnt = 0;
1379 }
1380 
1381 static void free_verifier_state(struct bpf_verifier_state *state,
1382 				bool free_self)
1383 {
1384 	int i;
1385 
1386 	for (i = 0; i <= state->curframe; i++) {
1387 		free_func_state(state->frame[i]);
1388 		state->frame[i] = NULL;
1389 	}
1390 	clear_jmp_history(state);
1391 	if (free_self)
1392 		kfree(state);
1393 }
1394 
1395 /* copy verifier state from src to dst growing dst stack space
1396  * when necessary to accommodate larger src stack
1397  */
1398 static int copy_func_state(struct bpf_func_state *dst,
1399 			   const struct bpf_func_state *src)
1400 {
1401 	int err;
1402 
1403 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1404 	err = copy_reference_state(dst, src);
1405 	if (err)
1406 		return err;
1407 	return copy_stack_state(dst, src);
1408 }
1409 
1410 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1411 			       const struct bpf_verifier_state *src)
1412 {
1413 	struct bpf_func_state *dst;
1414 	int i, err;
1415 
1416 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1417 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1418 					  GFP_USER);
1419 	if (!dst_state->jmp_history)
1420 		return -ENOMEM;
1421 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1422 
1423 	/* if dst has more stack frames then src frame, free them, this is also
1424 	 * necessary in case of exceptional exits using bpf_throw.
1425 	 */
1426 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1427 		free_func_state(dst_state->frame[i]);
1428 		dst_state->frame[i] = NULL;
1429 	}
1430 	dst_state->speculative = src->speculative;
1431 	dst_state->active_rcu_lock = src->active_rcu_lock;
1432 	dst_state->curframe = src->curframe;
1433 	dst_state->active_lock.ptr = src->active_lock.ptr;
1434 	dst_state->active_lock.id = src->active_lock.id;
1435 	dst_state->branches = src->branches;
1436 	dst_state->parent = src->parent;
1437 	dst_state->first_insn_idx = src->first_insn_idx;
1438 	dst_state->last_insn_idx = src->last_insn_idx;
1439 	dst_state->dfs_depth = src->dfs_depth;
1440 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1441 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1442 	dst_state->may_goto_depth = src->may_goto_depth;
1443 	for (i = 0; i <= src->curframe; i++) {
1444 		dst = dst_state->frame[i];
1445 		if (!dst) {
1446 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1447 			if (!dst)
1448 				return -ENOMEM;
1449 			dst_state->frame[i] = dst;
1450 		}
1451 		err = copy_func_state(dst, src->frame[i]);
1452 		if (err)
1453 			return err;
1454 	}
1455 	return 0;
1456 }
1457 
1458 static u32 state_htab_size(struct bpf_verifier_env *env)
1459 {
1460 	return env->prog->len;
1461 }
1462 
1463 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1464 {
1465 	struct bpf_verifier_state *cur = env->cur_state;
1466 	struct bpf_func_state *state = cur->frame[cur->curframe];
1467 
1468 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1469 }
1470 
1471 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1472 {
1473 	int fr;
1474 
1475 	if (a->curframe != b->curframe)
1476 		return false;
1477 
1478 	for (fr = a->curframe; fr >= 0; fr--)
1479 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1480 			return false;
1481 
1482 	return true;
1483 }
1484 
1485 /* Open coded iterators allow back-edges in the state graph in order to
1486  * check unbounded loops that iterators.
1487  *
1488  * In is_state_visited() it is necessary to know if explored states are
1489  * part of some loops in order to decide whether non-exact states
1490  * comparison could be used:
1491  * - non-exact states comparison establishes sub-state relation and uses
1492  *   read and precision marks to do so, these marks are propagated from
1493  *   children states and thus are not guaranteed to be final in a loop;
1494  * - exact states comparison just checks if current and explored states
1495  *   are identical (and thus form a back-edge).
1496  *
1497  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1498  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1499  * algorithm for loop structure detection and gives an overview of
1500  * relevant terminology. It also has helpful illustrations.
1501  *
1502  * [1] https://api.semanticscholar.org/CorpusID:15784067
1503  *
1504  * We use a similar algorithm but because loop nested structure is
1505  * irrelevant for verifier ours is significantly simpler and resembles
1506  * strongly connected components algorithm from Sedgewick's textbook.
1507  *
1508  * Define topmost loop entry as a first node of the loop traversed in a
1509  * depth first search starting from initial state. The goal of the loop
1510  * tracking algorithm is to associate topmost loop entries with states
1511  * derived from these entries.
1512  *
1513  * For each step in the DFS states traversal algorithm needs to identify
1514  * the following situations:
1515  *
1516  *          initial                     initial                   initial
1517  *            |                           |                         |
1518  *            V                           V                         V
1519  *           ...                         ...           .---------> hdr
1520  *            |                           |            |            |
1521  *            V                           V            |            V
1522  *           cur                     .-> succ          |    .------...
1523  *            |                      |    |            |    |       |
1524  *            V                      |    V            |    V       V
1525  *           succ                    '-- cur           |   ...     ...
1526  *                                                     |    |       |
1527  *                                                     |    V       V
1528  *                                                     |   succ <- cur
1529  *                                                     |    |
1530  *                                                     |    V
1531  *                                                     |   ...
1532  *                                                     |    |
1533  *                                                     '----'
1534  *
1535  *  (A) successor state of cur   (B) successor state of cur or it's entry
1536  *      not yet traversed            are in current DFS path, thus cur and succ
1537  *                                   are members of the same outermost loop
1538  *
1539  *                      initial                  initial
1540  *                        |                        |
1541  *                        V                        V
1542  *                       ...                      ...
1543  *                        |                        |
1544  *                        V                        V
1545  *                .------...               .------...
1546  *                |       |                |       |
1547  *                V       V                V       V
1548  *           .-> hdr     ...              ...     ...
1549  *           |    |       |                |       |
1550  *           |    V       V                V       V
1551  *           |   succ <- cur              succ <- cur
1552  *           |    |                        |
1553  *           |    V                        V
1554  *           |   ...                      ...
1555  *           |    |                        |
1556  *           '----'                       exit
1557  *
1558  * (C) successor state of cur is a part of some loop but this loop
1559  *     does not include cur or successor state is not in a loop at all.
1560  *
1561  * Algorithm could be described as the following python code:
1562  *
1563  *     traversed = set()   # Set of traversed nodes
1564  *     entries = {}        # Mapping from node to loop entry
1565  *     depths = {}         # Depth level assigned to graph node
1566  *     path = set()        # Current DFS path
1567  *
1568  *     # Find outermost loop entry known for n
1569  *     def get_loop_entry(n):
1570  *         h = entries.get(n, None)
1571  *         while h in entries and entries[h] != h:
1572  *             h = entries[h]
1573  *         return h
1574  *
1575  *     # Update n's loop entry if h's outermost entry comes
1576  *     # before n's outermost entry in current DFS path.
1577  *     def update_loop_entry(n, h):
1578  *         n1 = get_loop_entry(n) or n
1579  *         h1 = get_loop_entry(h) or h
1580  *         if h1 in path and depths[h1] <= depths[n1]:
1581  *             entries[n] = h1
1582  *
1583  *     def dfs(n, depth):
1584  *         traversed.add(n)
1585  *         path.add(n)
1586  *         depths[n] = depth
1587  *         for succ in G.successors(n):
1588  *             if succ not in traversed:
1589  *                 # Case A: explore succ and update cur's loop entry
1590  *                 #         only if succ's entry is in current DFS path.
1591  *                 dfs(succ, depth + 1)
1592  *                 h = get_loop_entry(succ)
1593  *                 update_loop_entry(n, h)
1594  *             else:
1595  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1596  *                 update_loop_entry(n, succ)
1597  *         path.remove(n)
1598  *
1599  * To adapt this algorithm for use with verifier:
1600  * - use st->branch == 0 as a signal that DFS of succ had been finished
1601  *   and cur's loop entry has to be updated (case A), handle this in
1602  *   update_branch_counts();
1603  * - use st->branch > 0 as a signal that st is in the current DFS path;
1604  * - handle cases B and C in is_state_visited();
1605  * - update topmost loop entry for intermediate states in get_loop_entry().
1606  */
1607 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1608 {
1609 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1610 
1611 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1612 		topmost = topmost->loop_entry;
1613 	/* Update loop entries for intermediate states to avoid this
1614 	 * traversal in future get_loop_entry() calls.
1615 	 */
1616 	while (st && st->loop_entry != topmost) {
1617 		old = st->loop_entry;
1618 		st->loop_entry = topmost;
1619 		st = old;
1620 	}
1621 	return topmost;
1622 }
1623 
1624 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1625 {
1626 	struct bpf_verifier_state *cur1, *hdr1;
1627 
1628 	cur1 = get_loop_entry(cur) ?: cur;
1629 	hdr1 = get_loop_entry(hdr) ?: hdr;
1630 	/* The head1->branches check decides between cases B and C in
1631 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1632 	 * head's topmost loop entry is not in current DFS path,
1633 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1634 	 * no need to update cur->loop_entry.
1635 	 */
1636 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1637 		cur->loop_entry = hdr;
1638 		hdr->used_as_loop_entry = true;
1639 	}
1640 }
1641 
1642 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1643 {
1644 	while (st) {
1645 		u32 br = --st->branches;
1646 
1647 		/* br == 0 signals that DFS exploration for 'st' is finished,
1648 		 * thus it is necessary to update parent's loop entry if it
1649 		 * turned out that st is a part of some loop.
1650 		 * This is a part of 'case A' in get_loop_entry() comment.
1651 		 */
1652 		if (br == 0 && st->parent && st->loop_entry)
1653 			update_loop_entry(st->parent, st->loop_entry);
1654 
1655 		/* WARN_ON(br > 1) technically makes sense here,
1656 		 * but see comment in push_stack(), hence:
1657 		 */
1658 		WARN_ONCE((int)br < 0,
1659 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1660 			  br);
1661 		if (br)
1662 			break;
1663 		st = st->parent;
1664 	}
1665 }
1666 
1667 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1668 		     int *insn_idx, bool pop_log)
1669 {
1670 	struct bpf_verifier_state *cur = env->cur_state;
1671 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1672 	int err;
1673 
1674 	if (env->head == NULL)
1675 		return -ENOENT;
1676 
1677 	if (cur) {
1678 		err = copy_verifier_state(cur, &head->st);
1679 		if (err)
1680 			return err;
1681 	}
1682 	if (pop_log)
1683 		bpf_vlog_reset(&env->log, head->log_pos);
1684 	if (insn_idx)
1685 		*insn_idx = head->insn_idx;
1686 	if (prev_insn_idx)
1687 		*prev_insn_idx = head->prev_insn_idx;
1688 	elem = head->next;
1689 	free_verifier_state(&head->st, false);
1690 	kfree(head);
1691 	env->head = elem;
1692 	env->stack_size--;
1693 	return 0;
1694 }
1695 
1696 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1697 					     int insn_idx, int prev_insn_idx,
1698 					     bool speculative)
1699 {
1700 	struct bpf_verifier_state *cur = env->cur_state;
1701 	struct bpf_verifier_stack_elem *elem;
1702 	int err;
1703 
1704 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1705 	if (!elem)
1706 		goto err;
1707 
1708 	elem->insn_idx = insn_idx;
1709 	elem->prev_insn_idx = prev_insn_idx;
1710 	elem->next = env->head;
1711 	elem->log_pos = env->log.end_pos;
1712 	env->head = elem;
1713 	env->stack_size++;
1714 	err = copy_verifier_state(&elem->st, cur);
1715 	if (err)
1716 		goto err;
1717 	elem->st.speculative |= speculative;
1718 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1719 		verbose(env, "The sequence of %d jumps is too complex.\n",
1720 			env->stack_size);
1721 		goto err;
1722 	}
1723 	if (elem->st.parent) {
1724 		++elem->st.parent->branches;
1725 		/* WARN_ON(branches > 2) technically makes sense here,
1726 		 * but
1727 		 * 1. speculative states will bump 'branches' for non-branch
1728 		 * instructions
1729 		 * 2. is_state_visited() heuristics may decide not to create
1730 		 * a new state for a sequence of branches and all such current
1731 		 * and cloned states will be pointing to a single parent state
1732 		 * which might have large 'branches' count.
1733 		 */
1734 	}
1735 	return &elem->st;
1736 err:
1737 	free_verifier_state(env->cur_state, true);
1738 	env->cur_state = NULL;
1739 	/* pop all elements and return */
1740 	while (!pop_stack(env, NULL, NULL, false));
1741 	return NULL;
1742 }
1743 
1744 #define CALLER_SAVED_REGS 6
1745 static const int caller_saved[CALLER_SAVED_REGS] = {
1746 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1747 };
1748 
1749 /* This helper doesn't clear reg->id */
1750 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1751 {
1752 	reg->var_off = tnum_const(imm);
1753 	reg->smin_value = (s64)imm;
1754 	reg->smax_value = (s64)imm;
1755 	reg->umin_value = imm;
1756 	reg->umax_value = imm;
1757 
1758 	reg->s32_min_value = (s32)imm;
1759 	reg->s32_max_value = (s32)imm;
1760 	reg->u32_min_value = (u32)imm;
1761 	reg->u32_max_value = (u32)imm;
1762 }
1763 
1764 /* Mark the unknown part of a register (variable offset or scalar value) as
1765  * known to have the value @imm.
1766  */
1767 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1768 {
1769 	/* Clear off and union(map_ptr, range) */
1770 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1771 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1772 	reg->id = 0;
1773 	reg->ref_obj_id = 0;
1774 	___mark_reg_known(reg, imm);
1775 }
1776 
1777 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1778 {
1779 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1780 	reg->s32_min_value = (s32)imm;
1781 	reg->s32_max_value = (s32)imm;
1782 	reg->u32_min_value = (u32)imm;
1783 	reg->u32_max_value = (u32)imm;
1784 }
1785 
1786 /* Mark the 'variable offset' part of a register as zero.  This should be
1787  * used only on registers holding a pointer type.
1788  */
1789 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1790 {
1791 	__mark_reg_known(reg, 0);
1792 }
1793 
1794 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1795 {
1796 	__mark_reg_known(reg, 0);
1797 	reg->type = SCALAR_VALUE;
1798 	/* all scalars are assumed imprecise initially (unless unprivileged,
1799 	 * in which case everything is forced to be precise)
1800 	 */
1801 	reg->precise = !env->bpf_capable;
1802 }
1803 
1804 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1805 				struct bpf_reg_state *regs, u32 regno)
1806 {
1807 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1808 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1809 		/* Something bad happened, let's kill all regs */
1810 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1811 			__mark_reg_not_init(env, regs + regno);
1812 		return;
1813 	}
1814 	__mark_reg_known_zero(regs + regno);
1815 }
1816 
1817 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1818 			      bool first_slot, int dynptr_id)
1819 {
1820 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1821 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1822 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1823 	 */
1824 	__mark_reg_known_zero(reg);
1825 	reg->type = CONST_PTR_TO_DYNPTR;
1826 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1827 	reg->id = dynptr_id;
1828 	reg->dynptr.type = type;
1829 	reg->dynptr.first_slot = first_slot;
1830 }
1831 
1832 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1833 {
1834 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1835 		const struct bpf_map *map = reg->map_ptr;
1836 
1837 		if (map->inner_map_meta) {
1838 			reg->type = CONST_PTR_TO_MAP;
1839 			reg->map_ptr = map->inner_map_meta;
1840 			/* transfer reg's id which is unique for every map_lookup_elem
1841 			 * as UID of the inner map.
1842 			 */
1843 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1844 				reg->map_uid = reg->id;
1845 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1846 			reg->type = PTR_TO_XDP_SOCK;
1847 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1848 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1849 			reg->type = PTR_TO_SOCKET;
1850 		} else {
1851 			reg->type = PTR_TO_MAP_VALUE;
1852 		}
1853 		return;
1854 	}
1855 
1856 	reg->type &= ~PTR_MAYBE_NULL;
1857 }
1858 
1859 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1860 				struct btf_field_graph_root *ds_head)
1861 {
1862 	__mark_reg_known_zero(&regs[regno]);
1863 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1864 	regs[regno].btf = ds_head->btf;
1865 	regs[regno].btf_id = ds_head->value_btf_id;
1866 	regs[regno].off = ds_head->node_offset;
1867 }
1868 
1869 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1870 {
1871 	return type_is_pkt_pointer(reg->type);
1872 }
1873 
1874 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1875 {
1876 	return reg_is_pkt_pointer(reg) ||
1877 	       reg->type == PTR_TO_PACKET_END;
1878 }
1879 
1880 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1881 {
1882 	return base_type(reg->type) == PTR_TO_MEM &&
1883 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1884 }
1885 
1886 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1887 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1888 				    enum bpf_reg_type which)
1889 {
1890 	/* The register can already have a range from prior markings.
1891 	 * This is fine as long as it hasn't been advanced from its
1892 	 * origin.
1893 	 */
1894 	return reg->type == which &&
1895 	       reg->id == 0 &&
1896 	       reg->off == 0 &&
1897 	       tnum_equals_const(reg->var_off, 0);
1898 }
1899 
1900 /* Reset the min/max bounds of a register */
1901 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1902 {
1903 	reg->smin_value = S64_MIN;
1904 	reg->smax_value = S64_MAX;
1905 	reg->umin_value = 0;
1906 	reg->umax_value = U64_MAX;
1907 
1908 	reg->s32_min_value = S32_MIN;
1909 	reg->s32_max_value = S32_MAX;
1910 	reg->u32_min_value = 0;
1911 	reg->u32_max_value = U32_MAX;
1912 }
1913 
1914 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1915 {
1916 	reg->smin_value = S64_MIN;
1917 	reg->smax_value = S64_MAX;
1918 	reg->umin_value = 0;
1919 	reg->umax_value = U64_MAX;
1920 }
1921 
1922 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1923 {
1924 	reg->s32_min_value = S32_MIN;
1925 	reg->s32_max_value = S32_MAX;
1926 	reg->u32_min_value = 0;
1927 	reg->u32_max_value = U32_MAX;
1928 }
1929 
1930 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1931 {
1932 	struct tnum var32_off = tnum_subreg(reg->var_off);
1933 
1934 	/* min signed is max(sign bit) | min(other bits) */
1935 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1936 			var32_off.value | (var32_off.mask & S32_MIN));
1937 	/* max signed is min(sign bit) | max(other bits) */
1938 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1939 			var32_off.value | (var32_off.mask & S32_MAX));
1940 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1941 	reg->u32_max_value = min(reg->u32_max_value,
1942 				 (u32)(var32_off.value | var32_off.mask));
1943 }
1944 
1945 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1946 {
1947 	/* min signed is max(sign bit) | min(other bits) */
1948 	reg->smin_value = max_t(s64, reg->smin_value,
1949 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1950 	/* max signed is min(sign bit) | max(other bits) */
1951 	reg->smax_value = min_t(s64, reg->smax_value,
1952 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1953 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1954 	reg->umax_value = min(reg->umax_value,
1955 			      reg->var_off.value | reg->var_off.mask);
1956 }
1957 
1958 static void __update_reg_bounds(struct bpf_reg_state *reg)
1959 {
1960 	__update_reg32_bounds(reg);
1961 	__update_reg64_bounds(reg);
1962 }
1963 
1964 /* Uses signed min/max values to inform unsigned, and vice-versa */
1965 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1966 {
1967 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1968 	 * bits to improve our u32/s32 boundaries.
1969 	 *
1970 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1971 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1972 	 * [10, 20] range. But this property holds for any 64-bit range as
1973 	 * long as upper 32 bits in that entire range of values stay the same.
1974 	 *
1975 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1976 	 * in decimal) has the same upper 32 bits throughout all the values in
1977 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1978 	 * range.
1979 	 *
1980 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1981 	 * following the rules outlined below about u64/s64 correspondence
1982 	 * (which equally applies to u32 vs s32 correspondence). In general it
1983 	 * depends on actual hexadecimal values of 32-bit range. They can form
1984 	 * only valid u32, or only valid s32 ranges in some cases.
1985 	 *
1986 	 * So we use all these insights to derive bounds for subregisters here.
1987 	 */
1988 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1989 		/* u64 to u32 casting preserves validity of low 32 bits as
1990 		 * a range, if upper 32 bits are the same
1991 		 */
1992 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1993 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
1994 
1995 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
1996 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
1997 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
1998 		}
1999 	}
2000 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2001 		/* low 32 bits should form a proper u32 range */
2002 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2003 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2004 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2005 		}
2006 		/* low 32 bits should form a proper s32 range */
2007 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2008 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2009 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2010 		}
2011 	}
2012 	/* Special case where upper bits form a small sequence of two
2013 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2014 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2015 	 * going from negative numbers to positive numbers. E.g., let's say we
2016 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2017 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2018 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2019 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2020 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2021 	 * upper 32 bits. As a random example, s64 range
2022 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2023 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2024 	 */
2025 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2026 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2027 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2028 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2029 	}
2030 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2031 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2032 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2033 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2034 	}
2035 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2036 	 * try to learn from that
2037 	 */
2038 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2039 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2040 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2041 	}
2042 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2043 	 * are the same, so combine.  This works even in the negative case, e.g.
2044 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2045 	 */
2046 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2047 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2048 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2049 	}
2050 }
2051 
2052 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2053 {
2054 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2055 	 * try to learn from that. Let's do a bit of ASCII art to see when
2056 	 * this is happening. Let's take u64 range first:
2057 	 *
2058 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2059 	 * |-------------------------------|--------------------------------|
2060 	 *
2061 	 * Valid u64 range is formed when umin and umax are anywhere in the
2062 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2063 	 * straightforward. Let's see how s64 range maps onto the same range
2064 	 * of values, annotated below the line for comparison:
2065 	 *
2066 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2067 	 * |-------------------------------|--------------------------------|
2068 	 * 0                        S64_MAX S64_MIN                        -1
2069 	 *
2070 	 * So s64 values basically start in the middle and they are logically
2071 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2072 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2073 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2074 	 * more visually as mapped to sign-agnostic range of hex values.
2075 	 *
2076 	 *  u64 start                                               u64 end
2077 	 *  _______________________________________________________________
2078 	 * /                                                               \
2079 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2080 	 * |-------------------------------|--------------------------------|
2081 	 * 0                        S64_MAX S64_MIN                        -1
2082 	 *                                / \
2083 	 * >------------------------------   ------------------------------->
2084 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2085 	 *
2086 	 * What this means is that, in general, we can't always derive
2087 	 * something new about u64 from any random s64 range, and vice versa.
2088 	 *
2089 	 * But we can do that in two particular cases. One is when entire
2090 	 * u64/s64 range is *entirely* contained within left half of the above
2091 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2092 	 *
2093 	 * |-------------------------------|--------------------------------|
2094 	 *     ^                   ^            ^                 ^
2095 	 *     A                   B            C                 D
2096 	 *
2097 	 * [A, B] and [C, D] are contained entirely in their respective halves
2098 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2099 	 * will be non-negative both as u64 and s64 (and in fact it will be
2100 	 * identical ranges no matter the signedness). [C, D] treated as s64
2101 	 * will be a range of negative values, while in u64 it will be
2102 	 * non-negative range of values larger than 0x8000000000000000.
2103 	 *
2104 	 * Now, any other range here can't be represented in both u64 and s64
2105 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2106 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2107 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2108 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2109 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2110 	 * ranges as u64. Currently reg_state can't represent two segments per
2111 	 * numeric domain, so in such situations we can only derive maximal
2112 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2113 	 *
2114 	 * So we use these facts to derive umin/umax from smin/smax and vice
2115 	 * versa only if they stay within the same "half". This is equivalent
2116 	 * to checking sign bit: lower half will have sign bit as zero, upper
2117 	 * half have sign bit 1. Below in code we simplify this by just
2118 	 * casting umin/umax as smin/smax and checking if they form valid
2119 	 * range, and vice versa. Those are equivalent checks.
2120 	 */
2121 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2122 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2123 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2124 	}
2125 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2126 	 * are the same, so combine.  This works even in the negative case, e.g.
2127 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2128 	 */
2129 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2130 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2131 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2132 	}
2133 }
2134 
2135 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2136 {
2137 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2138 	 * values on both sides of 64-bit range in hope to have tigher range.
2139 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2140 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2141 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2142 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2143 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2144 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2145 	 * We just need to make sure that derived bounds we are intersecting
2146 	 * with are well-formed ranges in respecitve s64 or u64 domain, just
2147 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2148 	 */
2149 	__u64 new_umin, new_umax;
2150 	__s64 new_smin, new_smax;
2151 
2152 	/* u32 -> u64 tightening, it's always well-formed */
2153 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2154 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2155 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2156 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2157 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2158 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2159 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2160 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2161 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2162 
2163 	/* if s32 can be treated as valid u32 range, we can use it as well */
2164 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2165 		/* s32 -> u64 tightening */
2166 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2167 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2168 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2169 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2170 		/* s32 -> s64 tightening */
2171 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2172 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2173 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2174 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2175 	}
2176 }
2177 
2178 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2179 {
2180 	__reg32_deduce_bounds(reg);
2181 	__reg64_deduce_bounds(reg);
2182 	__reg_deduce_mixed_bounds(reg);
2183 }
2184 
2185 /* Attempts to improve var_off based on unsigned min/max information */
2186 static void __reg_bound_offset(struct bpf_reg_state *reg)
2187 {
2188 	struct tnum var64_off = tnum_intersect(reg->var_off,
2189 					       tnum_range(reg->umin_value,
2190 							  reg->umax_value));
2191 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2192 					       tnum_range(reg->u32_min_value,
2193 							  reg->u32_max_value));
2194 
2195 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2196 }
2197 
2198 static void reg_bounds_sync(struct bpf_reg_state *reg)
2199 {
2200 	/* We might have learned new bounds from the var_off. */
2201 	__update_reg_bounds(reg);
2202 	/* We might have learned something about the sign bit. */
2203 	__reg_deduce_bounds(reg);
2204 	__reg_deduce_bounds(reg);
2205 	/* We might have learned some bits from the bounds. */
2206 	__reg_bound_offset(reg);
2207 	/* Intersecting with the old var_off might have improved our bounds
2208 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2209 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2210 	 */
2211 	__update_reg_bounds(reg);
2212 }
2213 
2214 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2215 				   struct bpf_reg_state *reg, const char *ctx)
2216 {
2217 	const char *msg;
2218 
2219 	if (reg->umin_value > reg->umax_value ||
2220 	    reg->smin_value > reg->smax_value ||
2221 	    reg->u32_min_value > reg->u32_max_value ||
2222 	    reg->s32_min_value > reg->s32_max_value) {
2223 		    msg = "range bounds violation";
2224 		    goto out;
2225 	}
2226 
2227 	if (tnum_is_const(reg->var_off)) {
2228 		u64 uval = reg->var_off.value;
2229 		s64 sval = (s64)uval;
2230 
2231 		if (reg->umin_value != uval || reg->umax_value != uval ||
2232 		    reg->smin_value != sval || reg->smax_value != sval) {
2233 			msg = "const tnum out of sync with range bounds";
2234 			goto out;
2235 		}
2236 	}
2237 
2238 	if (tnum_subreg_is_const(reg->var_off)) {
2239 		u32 uval32 = tnum_subreg(reg->var_off).value;
2240 		s32 sval32 = (s32)uval32;
2241 
2242 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2243 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2244 			msg = "const subreg tnum out of sync with range bounds";
2245 			goto out;
2246 		}
2247 	}
2248 
2249 	return 0;
2250 out:
2251 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2252 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2253 		ctx, msg, reg->umin_value, reg->umax_value,
2254 		reg->smin_value, reg->smax_value,
2255 		reg->u32_min_value, reg->u32_max_value,
2256 		reg->s32_min_value, reg->s32_max_value,
2257 		reg->var_off.value, reg->var_off.mask);
2258 	if (env->test_reg_invariants)
2259 		return -EFAULT;
2260 	__mark_reg_unbounded(reg);
2261 	return 0;
2262 }
2263 
2264 static bool __reg32_bound_s64(s32 a)
2265 {
2266 	return a >= 0 && a <= S32_MAX;
2267 }
2268 
2269 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2270 {
2271 	reg->umin_value = reg->u32_min_value;
2272 	reg->umax_value = reg->u32_max_value;
2273 
2274 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2275 	 * be positive otherwise set to worse case bounds and refine later
2276 	 * from tnum.
2277 	 */
2278 	if (__reg32_bound_s64(reg->s32_min_value) &&
2279 	    __reg32_bound_s64(reg->s32_max_value)) {
2280 		reg->smin_value = reg->s32_min_value;
2281 		reg->smax_value = reg->s32_max_value;
2282 	} else {
2283 		reg->smin_value = 0;
2284 		reg->smax_value = U32_MAX;
2285 	}
2286 }
2287 
2288 /* Mark a register as having a completely unknown (scalar) value. */
2289 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2290 {
2291 	/*
2292 	 * Clear type, off, and union(map_ptr, range) and
2293 	 * padding between 'type' and union
2294 	 */
2295 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2296 	reg->type = SCALAR_VALUE;
2297 	reg->id = 0;
2298 	reg->ref_obj_id = 0;
2299 	reg->var_off = tnum_unknown;
2300 	reg->frameno = 0;
2301 	reg->precise = false;
2302 	__mark_reg_unbounded(reg);
2303 }
2304 
2305 /* Mark a register as having a completely unknown (scalar) value,
2306  * initialize .precise as true when not bpf capable.
2307  */
2308 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2309 			       struct bpf_reg_state *reg)
2310 {
2311 	__mark_reg_unknown_imprecise(reg);
2312 	reg->precise = !env->bpf_capable;
2313 }
2314 
2315 static void mark_reg_unknown(struct bpf_verifier_env *env,
2316 			     struct bpf_reg_state *regs, u32 regno)
2317 {
2318 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2319 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2320 		/* Something bad happened, let's kill all regs except FP */
2321 		for (regno = 0; regno < BPF_REG_FP; regno++)
2322 			__mark_reg_not_init(env, regs + regno);
2323 		return;
2324 	}
2325 	__mark_reg_unknown(env, regs + regno);
2326 }
2327 
2328 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2329 				struct bpf_reg_state *reg)
2330 {
2331 	__mark_reg_unknown(env, reg);
2332 	reg->type = NOT_INIT;
2333 }
2334 
2335 static void mark_reg_not_init(struct bpf_verifier_env *env,
2336 			      struct bpf_reg_state *regs, u32 regno)
2337 {
2338 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2339 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2340 		/* Something bad happened, let's kill all regs except FP */
2341 		for (regno = 0; regno < BPF_REG_FP; regno++)
2342 			__mark_reg_not_init(env, regs + regno);
2343 		return;
2344 	}
2345 	__mark_reg_not_init(env, regs + regno);
2346 }
2347 
2348 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2349 			    struct bpf_reg_state *regs, u32 regno,
2350 			    enum bpf_reg_type reg_type,
2351 			    struct btf *btf, u32 btf_id,
2352 			    enum bpf_type_flag flag)
2353 {
2354 	if (reg_type == SCALAR_VALUE) {
2355 		mark_reg_unknown(env, regs, regno);
2356 		return;
2357 	}
2358 	mark_reg_known_zero(env, regs, regno);
2359 	regs[regno].type = PTR_TO_BTF_ID | flag;
2360 	regs[regno].btf = btf;
2361 	regs[regno].btf_id = btf_id;
2362 }
2363 
2364 #define DEF_NOT_SUBREG	(0)
2365 static void init_reg_state(struct bpf_verifier_env *env,
2366 			   struct bpf_func_state *state)
2367 {
2368 	struct bpf_reg_state *regs = state->regs;
2369 	int i;
2370 
2371 	for (i = 0; i < MAX_BPF_REG; i++) {
2372 		mark_reg_not_init(env, regs, i);
2373 		regs[i].live = REG_LIVE_NONE;
2374 		regs[i].parent = NULL;
2375 		regs[i].subreg_def = DEF_NOT_SUBREG;
2376 	}
2377 
2378 	/* frame pointer */
2379 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2380 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2381 	regs[BPF_REG_FP].frameno = state->frameno;
2382 }
2383 
2384 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2385 {
2386 	return (struct bpf_retval_range){ minval, maxval };
2387 }
2388 
2389 #define BPF_MAIN_FUNC (-1)
2390 static void init_func_state(struct bpf_verifier_env *env,
2391 			    struct bpf_func_state *state,
2392 			    int callsite, int frameno, int subprogno)
2393 {
2394 	state->callsite = callsite;
2395 	state->frameno = frameno;
2396 	state->subprogno = subprogno;
2397 	state->callback_ret_range = retval_range(0, 0);
2398 	init_reg_state(env, state);
2399 	mark_verifier_state_scratched(env);
2400 }
2401 
2402 /* Similar to push_stack(), but for async callbacks */
2403 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2404 						int insn_idx, int prev_insn_idx,
2405 						int subprog)
2406 {
2407 	struct bpf_verifier_stack_elem *elem;
2408 	struct bpf_func_state *frame;
2409 
2410 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2411 	if (!elem)
2412 		goto err;
2413 
2414 	elem->insn_idx = insn_idx;
2415 	elem->prev_insn_idx = prev_insn_idx;
2416 	elem->next = env->head;
2417 	elem->log_pos = env->log.end_pos;
2418 	env->head = elem;
2419 	env->stack_size++;
2420 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2421 		verbose(env,
2422 			"The sequence of %d jumps is too complex for async cb.\n",
2423 			env->stack_size);
2424 		goto err;
2425 	}
2426 	/* Unlike push_stack() do not copy_verifier_state().
2427 	 * The caller state doesn't matter.
2428 	 * This is async callback. It starts in a fresh stack.
2429 	 * Initialize it similar to do_check_common().
2430 	 */
2431 	elem->st.branches = 1;
2432 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2433 	if (!frame)
2434 		goto err;
2435 	init_func_state(env, frame,
2436 			BPF_MAIN_FUNC /* callsite */,
2437 			0 /* frameno within this callchain */,
2438 			subprog /* subprog number within this prog */);
2439 	elem->st.frame[0] = frame;
2440 	return &elem->st;
2441 err:
2442 	free_verifier_state(env->cur_state, true);
2443 	env->cur_state = NULL;
2444 	/* pop all elements and return */
2445 	while (!pop_stack(env, NULL, NULL, false));
2446 	return NULL;
2447 }
2448 
2449 
2450 enum reg_arg_type {
2451 	SRC_OP,		/* register is used as source operand */
2452 	DST_OP,		/* register is used as destination operand */
2453 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2454 };
2455 
2456 static int cmp_subprogs(const void *a, const void *b)
2457 {
2458 	return ((struct bpf_subprog_info *)a)->start -
2459 	       ((struct bpf_subprog_info *)b)->start;
2460 }
2461 
2462 static int find_subprog(struct bpf_verifier_env *env, int off)
2463 {
2464 	struct bpf_subprog_info *p;
2465 
2466 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2467 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2468 	if (!p)
2469 		return -ENOENT;
2470 	return p - env->subprog_info;
2471 
2472 }
2473 
2474 static int add_subprog(struct bpf_verifier_env *env, int off)
2475 {
2476 	int insn_cnt = env->prog->len;
2477 	int ret;
2478 
2479 	if (off >= insn_cnt || off < 0) {
2480 		verbose(env, "call to invalid destination\n");
2481 		return -EINVAL;
2482 	}
2483 	ret = find_subprog(env, off);
2484 	if (ret >= 0)
2485 		return ret;
2486 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2487 		verbose(env, "too many subprograms\n");
2488 		return -E2BIG;
2489 	}
2490 	/* determine subprog starts. The end is one before the next starts */
2491 	env->subprog_info[env->subprog_cnt++].start = off;
2492 	sort(env->subprog_info, env->subprog_cnt,
2493 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2494 	return env->subprog_cnt - 1;
2495 }
2496 
2497 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2498 {
2499 	struct bpf_prog_aux *aux = env->prog->aux;
2500 	struct btf *btf = aux->btf;
2501 	const struct btf_type *t;
2502 	u32 main_btf_id, id;
2503 	const char *name;
2504 	int ret, i;
2505 
2506 	/* Non-zero func_info_cnt implies valid btf */
2507 	if (!aux->func_info_cnt)
2508 		return 0;
2509 	main_btf_id = aux->func_info[0].type_id;
2510 
2511 	t = btf_type_by_id(btf, main_btf_id);
2512 	if (!t) {
2513 		verbose(env, "invalid btf id for main subprog in func_info\n");
2514 		return -EINVAL;
2515 	}
2516 
2517 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2518 	if (IS_ERR(name)) {
2519 		ret = PTR_ERR(name);
2520 		/* If there is no tag present, there is no exception callback */
2521 		if (ret == -ENOENT)
2522 			ret = 0;
2523 		else if (ret == -EEXIST)
2524 			verbose(env, "multiple exception callback tags for main subprog\n");
2525 		return ret;
2526 	}
2527 
2528 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2529 	if (ret < 0) {
2530 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2531 		return ret;
2532 	}
2533 	id = ret;
2534 	t = btf_type_by_id(btf, id);
2535 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2536 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2537 		return -EINVAL;
2538 	}
2539 	ret = 0;
2540 	for (i = 0; i < aux->func_info_cnt; i++) {
2541 		if (aux->func_info[i].type_id != id)
2542 			continue;
2543 		ret = aux->func_info[i].insn_off;
2544 		/* Further func_info and subprog checks will also happen
2545 		 * later, so assume this is the right insn_off for now.
2546 		 */
2547 		if (!ret) {
2548 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2549 			ret = -EINVAL;
2550 		}
2551 	}
2552 	if (!ret) {
2553 		verbose(env, "exception callback type id not found in func_info\n");
2554 		ret = -EINVAL;
2555 	}
2556 	return ret;
2557 }
2558 
2559 #define MAX_KFUNC_DESCS 256
2560 #define MAX_KFUNC_BTFS	256
2561 
2562 struct bpf_kfunc_desc {
2563 	struct btf_func_model func_model;
2564 	u32 func_id;
2565 	s32 imm;
2566 	u16 offset;
2567 	unsigned long addr;
2568 };
2569 
2570 struct bpf_kfunc_btf {
2571 	struct btf *btf;
2572 	struct module *module;
2573 	u16 offset;
2574 };
2575 
2576 struct bpf_kfunc_desc_tab {
2577 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2578 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2579 	 * available, therefore at the end of verification do_misc_fixups()
2580 	 * sorts this by imm and offset.
2581 	 */
2582 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2583 	u32 nr_descs;
2584 };
2585 
2586 struct bpf_kfunc_btf_tab {
2587 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2588 	u32 nr_descs;
2589 };
2590 
2591 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2592 {
2593 	const struct bpf_kfunc_desc *d0 = a;
2594 	const struct bpf_kfunc_desc *d1 = b;
2595 
2596 	/* func_id is not greater than BTF_MAX_TYPE */
2597 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2598 }
2599 
2600 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2601 {
2602 	const struct bpf_kfunc_btf *d0 = a;
2603 	const struct bpf_kfunc_btf *d1 = b;
2604 
2605 	return d0->offset - d1->offset;
2606 }
2607 
2608 static const struct bpf_kfunc_desc *
2609 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2610 {
2611 	struct bpf_kfunc_desc desc = {
2612 		.func_id = func_id,
2613 		.offset = offset,
2614 	};
2615 	struct bpf_kfunc_desc_tab *tab;
2616 
2617 	tab = prog->aux->kfunc_tab;
2618 	return bsearch(&desc, tab->descs, tab->nr_descs,
2619 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2620 }
2621 
2622 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2623 		       u16 btf_fd_idx, u8 **func_addr)
2624 {
2625 	const struct bpf_kfunc_desc *desc;
2626 
2627 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2628 	if (!desc)
2629 		return -EFAULT;
2630 
2631 	*func_addr = (u8 *)desc->addr;
2632 	return 0;
2633 }
2634 
2635 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2636 					 s16 offset)
2637 {
2638 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2639 	struct bpf_kfunc_btf_tab *tab;
2640 	struct bpf_kfunc_btf *b;
2641 	struct module *mod;
2642 	struct btf *btf;
2643 	int btf_fd;
2644 
2645 	tab = env->prog->aux->kfunc_btf_tab;
2646 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2647 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2648 	if (!b) {
2649 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2650 			verbose(env, "too many different module BTFs\n");
2651 			return ERR_PTR(-E2BIG);
2652 		}
2653 
2654 		if (bpfptr_is_null(env->fd_array)) {
2655 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2656 			return ERR_PTR(-EPROTO);
2657 		}
2658 
2659 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2660 					    offset * sizeof(btf_fd),
2661 					    sizeof(btf_fd)))
2662 			return ERR_PTR(-EFAULT);
2663 
2664 		btf = btf_get_by_fd(btf_fd);
2665 		if (IS_ERR(btf)) {
2666 			verbose(env, "invalid module BTF fd specified\n");
2667 			return btf;
2668 		}
2669 
2670 		if (!btf_is_module(btf)) {
2671 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2672 			btf_put(btf);
2673 			return ERR_PTR(-EINVAL);
2674 		}
2675 
2676 		mod = btf_try_get_module(btf);
2677 		if (!mod) {
2678 			btf_put(btf);
2679 			return ERR_PTR(-ENXIO);
2680 		}
2681 
2682 		b = &tab->descs[tab->nr_descs++];
2683 		b->btf = btf;
2684 		b->module = mod;
2685 		b->offset = offset;
2686 
2687 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2688 		     kfunc_btf_cmp_by_off, NULL);
2689 	}
2690 	return b->btf;
2691 }
2692 
2693 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2694 {
2695 	if (!tab)
2696 		return;
2697 
2698 	while (tab->nr_descs--) {
2699 		module_put(tab->descs[tab->nr_descs].module);
2700 		btf_put(tab->descs[tab->nr_descs].btf);
2701 	}
2702 	kfree(tab);
2703 }
2704 
2705 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2706 {
2707 	if (offset) {
2708 		if (offset < 0) {
2709 			/* In the future, this can be allowed to increase limit
2710 			 * of fd index into fd_array, interpreted as u16.
2711 			 */
2712 			verbose(env, "negative offset disallowed for kernel module function call\n");
2713 			return ERR_PTR(-EINVAL);
2714 		}
2715 
2716 		return __find_kfunc_desc_btf(env, offset);
2717 	}
2718 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2719 }
2720 
2721 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2722 {
2723 	const struct btf_type *func, *func_proto;
2724 	struct bpf_kfunc_btf_tab *btf_tab;
2725 	struct bpf_kfunc_desc_tab *tab;
2726 	struct bpf_prog_aux *prog_aux;
2727 	struct bpf_kfunc_desc *desc;
2728 	const char *func_name;
2729 	struct btf *desc_btf;
2730 	unsigned long call_imm;
2731 	unsigned long addr;
2732 	int err;
2733 
2734 	prog_aux = env->prog->aux;
2735 	tab = prog_aux->kfunc_tab;
2736 	btf_tab = prog_aux->kfunc_btf_tab;
2737 	if (!tab) {
2738 		if (!btf_vmlinux) {
2739 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2740 			return -ENOTSUPP;
2741 		}
2742 
2743 		if (!env->prog->jit_requested) {
2744 			verbose(env, "JIT is required for calling kernel function\n");
2745 			return -ENOTSUPP;
2746 		}
2747 
2748 		if (!bpf_jit_supports_kfunc_call()) {
2749 			verbose(env, "JIT does not support calling kernel function\n");
2750 			return -ENOTSUPP;
2751 		}
2752 
2753 		if (!env->prog->gpl_compatible) {
2754 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2755 			return -EINVAL;
2756 		}
2757 
2758 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2759 		if (!tab)
2760 			return -ENOMEM;
2761 		prog_aux->kfunc_tab = tab;
2762 	}
2763 
2764 	/* func_id == 0 is always invalid, but instead of returning an error, be
2765 	 * conservative and wait until the code elimination pass before returning
2766 	 * error, so that invalid calls that get pruned out can be in BPF programs
2767 	 * loaded from userspace.  It is also required that offset be untouched
2768 	 * for such calls.
2769 	 */
2770 	if (!func_id && !offset)
2771 		return 0;
2772 
2773 	if (!btf_tab && offset) {
2774 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2775 		if (!btf_tab)
2776 			return -ENOMEM;
2777 		prog_aux->kfunc_btf_tab = btf_tab;
2778 	}
2779 
2780 	desc_btf = find_kfunc_desc_btf(env, offset);
2781 	if (IS_ERR(desc_btf)) {
2782 		verbose(env, "failed to find BTF for kernel function\n");
2783 		return PTR_ERR(desc_btf);
2784 	}
2785 
2786 	if (find_kfunc_desc(env->prog, func_id, offset))
2787 		return 0;
2788 
2789 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2790 		verbose(env, "too many different kernel function calls\n");
2791 		return -E2BIG;
2792 	}
2793 
2794 	func = btf_type_by_id(desc_btf, func_id);
2795 	if (!func || !btf_type_is_func(func)) {
2796 		verbose(env, "kernel btf_id %u is not a function\n",
2797 			func_id);
2798 		return -EINVAL;
2799 	}
2800 	func_proto = btf_type_by_id(desc_btf, func->type);
2801 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2802 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2803 			func_id);
2804 		return -EINVAL;
2805 	}
2806 
2807 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2808 	addr = kallsyms_lookup_name(func_name);
2809 	if (!addr) {
2810 		verbose(env, "cannot find address for kernel function %s\n",
2811 			func_name);
2812 		return -EINVAL;
2813 	}
2814 	specialize_kfunc(env, func_id, offset, &addr);
2815 
2816 	if (bpf_jit_supports_far_kfunc_call()) {
2817 		call_imm = func_id;
2818 	} else {
2819 		call_imm = BPF_CALL_IMM(addr);
2820 		/* Check whether the relative offset overflows desc->imm */
2821 		if ((unsigned long)(s32)call_imm != call_imm) {
2822 			verbose(env, "address of kernel function %s is out of range\n",
2823 				func_name);
2824 			return -EINVAL;
2825 		}
2826 	}
2827 
2828 	if (bpf_dev_bound_kfunc_id(func_id)) {
2829 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2830 		if (err)
2831 			return err;
2832 	}
2833 
2834 	desc = &tab->descs[tab->nr_descs++];
2835 	desc->func_id = func_id;
2836 	desc->imm = call_imm;
2837 	desc->offset = offset;
2838 	desc->addr = addr;
2839 	err = btf_distill_func_proto(&env->log, desc_btf,
2840 				     func_proto, func_name,
2841 				     &desc->func_model);
2842 	if (!err)
2843 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2844 		     kfunc_desc_cmp_by_id_off, NULL);
2845 	return err;
2846 }
2847 
2848 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2849 {
2850 	const struct bpf_kfunc_desc *d0 = a;
2851 	const struct bpf_kfunc_desc *d1 = b;
2852 
2853 	if (d0->imm != d1->imm)
2854 		return d0->imm < d1->imm ? -1 : 1;
2855 	if (d0->offset != d1->offset)
2856 		return d0->offset < d1->offset ? -1 : 1;
2857 	return 0;
2858 }
2859 
2860 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2861 {
2862 	struct bpf_kfunc_desc_tab *tab;
2863 
2864 	tab = prog->aux->kfunc_tab;
2865 	if (!tab)
2866 		return;
2867 
2868 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2869 	     kfunc_desc_cmp_by_imm_off, NULL);
2870 }
2871 
2872 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2873 {
2874 	return !!prog->aux->kfunc_tab;
2875 }
2876 
2877 const struct btf_func_model *
2878 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2879 			 const struct bpf_insn *insn)
2880 {
2881 	const struct bpf_kfunc_desc desc = {
2882 		.imm = insn->imm,
2883 		.offset = insn->off,
2884 	};
2885 	const struct bpf_kfunc_desc *res;
2886 	struct bpf_kfunc_desc_tab *tab;
2887 
2888 	tab = prog->aux->kfunc_tab;
2889 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2890 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2891 
2892 	return res ? &res->func_model : NULL;
2893 }
2894 
2895 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2896 {
2897 	struct bpf_subprog_info *subprog = env->subprog_info;
2898 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2899 	struct bpf_insn *insn = env->prog->insnsi;
2900 
2901 	/* Add entry function. */
2902 	ret = add_subprog(env, 0);
2903 	if (ret)
2904 		return ret;
2905 
2906 	for (i = 0; i < insn_cnt; i++, insn++) {
2907 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2908 		    !bpf_pseudo_kfunc_call(insn))
2909 			continue;
2910 
2911 		if (!env->bpf_capable) {
2912 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2913 			return -EPERM;
2914 		}
2915 
2916 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2917 			ret = add_subprog(env, i + insn->imm + 1);
2918 		else
2919 			ret = add_kfunc_call(env, insn->imm, insn->off);
2920 
2921 		if (ret < 0)
2922 			return ret;
2923 	}
2924 
2925 	ret = bpf_find_exception_callback_insn_off(env);
2926 	if (ret < 0)
2927 		return ret;
2928 	ex_cb_insn = ret;
2929 
2930 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2931 	 * marked using BTF decl tag to serve as the exception callback.
2932 	 */
2933 	if (ex_cb_insn) {
2934 		ret = add_subprog(env, ex_cb_insn);
2935 		if (ret < 0)
2936 			return ret;
2937 		for (i = 1; i < env->subprog_cnt; i++) {
2938 			if (env->subprog_info[i].start != ex_cb_insn)
2939 				continue;
2940 			env->exception_callback_subprog = i;
2941 			mark_subprog_exc_cb(env, i);
2942 			break;
2943 		}
2944 	}
2945 
2946 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2947 	 * logic. 'subprog_cnt' should not be increased.
2948 	 */
2949 	subprog[env->subprog_cnt].start = insn_cnt;
2950 
2951 	if (env->log.level & BPF_LOG_LEVEL2)
2952 		for (i = 0; i < env->subprog_cnt; i++)
2953 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2954 
2955 	return 0;
2956 }
2957 
2958 static int check_subprogs(struct bpf_verifier_env *env)
2959 {
2960 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2961 	struct bpf_subprog_info *subprog = env->subprog_info;
2962 	struct bpf_insn *insn = env->prog->insnsi;
2963 	int insn_cnt = env->prog->len;
2964 
2965 	/* now check that all jumps are within the same subprog */
2966 	subprog_start = subprog[cur_subprog].start;
2967 	subprog_end = subprog[cur_subprog + 1].start;
2968 	for (i = 0; i < insn_cnt; i++) {
2969 		u8 code = insn[i].code;
2970 
2971 		if (code == (BPF_JMP | BPF_CALL) &&
2972 		    insn[i].src_reg == 0 &&
2973 		    insn[i].imm == BPF_FUNC_tail_call)
2974 			subprog[cur_subprog].has_tail_call = true;
2975 		if (BPF_CLASS(code) == BPF_LD &&
2976 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2977 			subprog[cur_subprog].has_ld_abs = true;
2978 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2979 			goto next;
2980 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2981 			goto next;
2982 		if (code == (BPF_JMP32 | BPF_JA))
2983 			off = i + insn[i].imm + 1;
2984 		else
2985 			off = i + insn[i].off + 1;
2986 		if (off < subprog_start || off >= subprog_end) {
2987 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2988 			return -EINVAL;
2989 		}
2990 next:
2991 		if (i == subprog_end - 1) {
2992 			/* to avoid fall-through from one subprog into another
2993 			 * the last insn of the subprog should be either exit
2994 			 * or unconditional jump back or bpf_throw call
2995 			 */
2996 			if (code != (BPF_JMP | BPF_EXIT) &&
2997 			    code != (BPF_JMP32 | BPF_JA) &&
2998 			    code != (BPF_JMP | BPF_JA)) {
2999 				verbose(env, "last insn is not an exit or jmp\n");
3000 				return -EINVAL;
3001 			}
3002 			subprog_start = subprog_end;
3003 			cur_subprog++;
3004 			if (cur_subprog < env->subprog_cnt)
3005 				subprog_end = subprog[cur_subprog + 1].start;
3006 		}
3007 	}
3008 	return 0;
3009 }
3010 
3011 /* Parentage chain of this register (or stack slot) should take care of all
3012  * issues like callee-saved registers, stack slot allocation time, etc.
3013  */
3014 static int mark_reg_read(struct bpf_verifier_env *env,
3015 			 const struct bpf_reg_state *state,
3016 			 struct bpf_reg_state *parent, u8 flag)
3017 {
3018 	bool writes = parent == state->parent; /* Observe write marks */
3019 	int cnt = 0;
3020 
3021 	while (parent) {
3022 		/* if read wasn't screened by an earlier write ... */
3023 		if (writes && state->live & REG_LIVE_WRITTEN)
3024 			break;
3025 		if (parent->live & REG_LIVE_DONE) {
3026 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3027 				reg_type_str(env, parent->type),
3028 				parent->var_off.value, parent->off);
3029 			return -EFAULT;
3030 		}
3031 		/* The first condition is more likely to be true than the
3032 		 * second, checked it first.
3033 		 */
3034 		if ((parent->live & REG_LIVE_READ) == flag ||
3035 		    parent->live & REG_LIVE_READ64)
3036 			/* The parentage chain never changes and
3037 			 * this parent was already marked as LIVE_READ.
3038 			 * There is no need to keep walking the chain again and
3039 			 * keep re-marking all parents as LIVE_READ.
3040 			 * This case happens when the same register is read
3041 			 * multiple times without writes into it in-between.
3042 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3043 			 * then no need to set the weak REG_LIVE_READ32.
3044 			 */
3045 			break;
3046 		/* ... then we depend on parent's value */
3047 		parent->live |= flag;
3048 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3049 		if (flag == REG_LIVE_READ64)
3050 			parent->live &= ~REG_LIVE_READ32;
3051 		state = parent;
3052 		parent = state->parent;
3053 		writes = true;
3054 		cnt++;
3055 	}
3056 
3057 	if (env->longest_mark_read_walk < cnt)
3058 		env->longest_mark_read_walk = cnt;
3059 	return 0;
3060 }
3061 
3062 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3063 {
3064 	struct bpf_func_state *state = func(env, reg);
3065 	int spi, ret;
3066 
3067 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3068 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3069 	 * check_kfunc_call.
3070 	 */
3071 	if (reg->type == CONST_PTR_TO_DYNPTR)
3072 		return 0;
3073 	spi = dynptr_get_spi(env, reg);
3074 	if (spi < 0)
3075 		return spi;
3076 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3077 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3078 	 * read.
3079 	 */
3080 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3081 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3082 	if (ret)
3083 		return ret;
3084 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3085 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3086 }
3087 
3088 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3089 			  int spi, int nr_slots)
3090 {
3091 	struct bpf_func_state *state = func(env, reg);
3092 	int err, i;
3093 
3094 	for (i = 0; i < nr_slots; i++) {
3095 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3096 
3097 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3098 		if (err)
3099 			return err;
3100 
3101 		mark_stack_slot_scratched(env, spi - i);
3102 	}
3103 
3104 	return 0;
3105 }
3106 
3107 /* This function is supposed to be used by the following 32-bit optimization
3108  * code only. It returns TRUE if the source or destination register operates
3109  * on 64-bit, otherwise return FALSE.
3110  */
3111 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3112 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3113 {
3114 	u8 code, class, op;
3115 
3116 	code = insn->code;
3117 	class = BPF_CLASS(code);
3118 	op = BPF_OP(code);
3119 	if (class == BPF_JMP) {
3120 		/* BPF_EXIT for "main" will reach here. Return TRUE
3121 		 * conservatively.
3122 		 */
3123 		if (op == BPF_EXIT)
3124 			return true;
3125 		if (op == BPF_CALL) {
3126 			/* BPF to BPF call will reach here because of marking
3127 			 * caller saved clobber with DST_OP_NO_MARK for which we
3128 			 * don't care the register def because they are anyway
3129 			 * marked as NOT_INIT already.
3130 			 */
3131 			if (insn->src_reg == BPF_PSEUDO_CALL)
3132 				return false;
3133 			/* Helper call will reach here because of arg type
3134 			 * check, conservatively return TRUE.
3135 			 */
3136 			if (t == SRC_OP)
3137 				return true;
3138 
3139 			return false;
3140 		}
3141 	}
3142 
3143 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3144 		return false;
3145 
3146 	if (class == BPF_ALU64 || class == BPF_JMP ||
3147 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3148 		return true;
3149 
3150 	if (class == BPF_ALU || class == BPF_JMP32)
3151 		return false;
3152 
3153 	if (class == BPF_LDX) {
3154 		if (t != SRC_OP)
3155 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3156 		/* LDX source must be ptr. */
3157 		return true;
3158 	}
3159 
3160 	if (class == BPF_STX) {
3161 		/* BPF_STX (including atomic variants) has multiple source
3162 		 * operands, one of which is a ptr. Check whether the caller is
3163 		 * asking about it.
3164 		 */
3165 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3166 			return true;
3167 		return BPF_SIZE(code) == BPF_DW;
3168 	}
3169 
3170 	if (class == BPF_LD) {
3171 		u8 mode = BPF_MODE(code);
3172 
3173 		/* LD_IMM64 */
3174 		if (mode == BPF_IMM)
3175 			return true;
3176 
3177 		/* Both LD_IND and LD_ABS return 32-bit data. */
3178 		if (t != SRC_OP)
3179 			return  false;
3180 
3181 		/* Implicit ctx ptr. */
3182 		if (regno == BPF_REG_6)
3183 			return true;
3184 
3185 		/* Explicit source could be any width. */
3186 		return true;
3187 	}
3188 
3189 	if (class == BPF_ST)
3190 		/* The only source register for BPF_ST is a ptr. */
3191 		return true;
3192 
3193 	/* Conservatively return true at default. */
3194 	return true;
3195 }
3196 
3197 /* Return the regno defined by the insn, or -1. */
3198 static int insn_def_regno(const struct bpf_insn *insn)
3199 {
3200 	switch (BPF_CLASS(insn->code)) {
3201 	case BPF_JMP:
3202 	case BPF_JMP32:
3203 	case BPF_ST:
3204 		return -1;
3205 	case BPF_STX:
3206 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3207 		    (insn->imm & BPF_FETCH)) {
3208 			if (insn->imm == BPF_CMPXCHG)
3209 				return BPF_REG_0;
3210 			else
3211 				return insn->src_reg;
3212 		} else {
3213 			return -1;
3214 		}
3215 	default:
3216 		return insn->dst_reg;
3217 	}
3218 }
3219 
3220 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3221 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3222 {
3223 	int dst_reg = insn_def_regno(insn);
3224 
3225 	if (dst_reg == -1)
3226 		return false;
3227 
3228 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3229 }
3230 
3231 static void mark_insn_zext(struct bpf_verifier_env *env,
3232 			   struct bpf_reg_state *reg)
3233 {
3234 	s32 def_idx = reg->subreg_def;
3235 
3236 	if (def_idx == DEF_NOT_SUBREG)
3237 		return;
3238 
3239 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3240 	/* The dst will be zero extended, so won't be sub-register anymore. */
3241 	reg->subreg_def = DEF_NOT_SUBREG;
3242 }
3243 
3244 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3245 			   enum reg_arg_type t)
3246 {
3247 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3248 	struct bpf_reg_state *reg;
3249 	bool rw64;
3250 
3251 	if (regno >= MAX_BPF_REG) {
3252 		verbose(env, "R%d is invalid\n", regno);
3253 		return -EINVAL;
3254 	}
3255 
3256 	mark_reg_scratched(env, regno);
3257 
3258 	reg = &regs[regno];
3259 	rw64 = is_reg64(env, insn, regno, reg, t);
3260 	if (t == SRC_OP) {
3261 		/* check whether register used as source operand can be read */
3262 		if (reg->type == NOT_INIT) {
3263 			verbose(env, "R%d !read_ok\n", regno);
3264 			return -EACCES;
3265 		}
3266 		/* We don't need to worry about FP liveness because it's read-only */
3267 		if (regno == BPF_REG_FP)
3268 			return 0;
3269 
3270 		if (rw64)
3271 			mark_insn_zext(env, reg);
3272 
3273 		return mark_reg_read(env, reg, reg->parent,
3274 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3275 	} else {
3276 		/* check whether register used as dest operand can be written to */
3277 		if (regno == BPF_REG_FP) {
3278 			verbose(env, "frame pointer is read only\n");
3279 			return -EACCES;
3280 		}
3281 		reg->live |= REG_LIVE_WRITTEN;
3282 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3283 		if (t == DST_OP)
3284 			mark_reg_unknown(env, regs, regno);
3285 	}
3286 	return 0;
3287 }
3288 
3289 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3290 			 enum reg_arg_type t)
3291 {
3292 	struct bpf_verifier_state *vstate = env->cur_state;
3293 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3294 
3295 	return __check_reg_arg(env, state->regs, regno, t);
3296 }
3297 
3298 static int insn_stack_access_flags(int frameno, int spi)
3299 {
3300 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3301 }
3302 
3303 static int insn_stack_access_spi(int insn_flags)
3304 {
3305 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3306 }
3307 
3308 static int insn_stack_access_frameno(int insn_flags)
3309 {
3310 	return insn_flags & INSN_F_FRAMENO_MASK;
3311 }
3312 
3313 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3314 {
3315 	env->insn_aux_data[idx].jmp_point = true;
3316 }
3317 
3318 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3319 {
3320 	return env->insn_aux_data[insn_idx].jmp_point;
3321 }
3322 
3323 /* for any branch, call, exit record the history of jmps in the given state */
3324 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3325 			    int insn_flags)
3326 {
3327 	u32 cnt = cur->jmp_history_cnt;
3328 	struct bpf_jmp_history_entry *p;
3329 	size_t alloc_size;
3330 
3331 	/* combine instruction flags if we already recorded this instruction */
3332 	if (env->cur_hist_ent) {
3333 		/* atomic instructions push insn_flags twice, for READ and
3334 		 * WRITE sides, but they should agree on stack slot
3335 		 */
3336 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3337 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3338 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3339 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3340 		env->cur_hist_ent->flags |= insn_flags;
3341 		return 0;
3342 	}
3343 
3344 	cnt++;
3345 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3346 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3347 	if (!p)
3348 		return -ENOMEM;
3349 	cur->jmp_history = p;
3350 
3351 	p = &cur->jmp_history[cnt - 1];
3352 	p->idx = env->insn_idx;
3353 	p->prev_idx = env->prev_insn_idx;
3354 	p->flags = insn_flags;
3355 	cur->jmp_history_cnt = cnt;
3356 	env->cur_hist_ent = p;
3357 
3358 	return 0;
3359 }
3360 
3361 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3362 						        u32 hist_end, int insn_idx)
3363 {
3364 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3365 		return &st->jmp_history[hist_end - 1];
3366 	return NULL;
3367 }
3368 
3369 /* Backtrack one insn at a time. If idx is not at the top of recorded
3370  * history then previous instruction came from straight line execution.
3371  * Return -ENOENT if we exhausted all instructions within given state.
3372  *
3373  * It's legal to have a bit of a looping with the same starting and ending
3374  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3375  * instruction index is the same as state's first_idx doesn't mean we are
3376  * done. If there is still some jump history left, we should keep going. We
3377  * need to take into account that we might have a jump history between given
3378  * state's parent and itself, due to checkpointing. In this case, we'll have
3379  * history entry recording a jump from last instruction of parent state and
3380  * first instruction of given state.
3381  */
3382 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3383 			     u32 *history)
3384 {
3385 	u32 cnt = *history;
3386 
3387 	if (i == st->first_insn_idx) {
3388 		if (cnt == 0)
3389 			return -ENOENT;
3390 		if (cnt == 1 && st->jmp_history[0].idx == i)
3391 			return -ENOENT;
3392 	}
3393 
3394 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3395 		i = st->jmp_history[cnt - 1].prev_idx;
3396 		(*history)--;
3397 	} else {
3398 		i--;
3399 	}
3400 	return i;
3401 }
3402 
3403 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3404 {
3405 	const struct btf_type *func;
3406 	struct btf *desc_btf;
3407 
3408 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3409 		return NULL;
3410 
3411 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3412 	if (IS_ERR(desc_btf))
3413 		return "<error>";
3414 
3415 	func = btf_type_by_id(desc_btf, insn->imm);
3416 	return btf_name_by_offset(desc_btf, func->name_off);
3417 }
3418 
3419 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3420 {
3421 	bt->frame = frame;
3422 }
3423 
3424 static inline void bt_reset(struct backtrack_state *bt)
3425 {
3426 	struct bpf_verifier_env *env = bt->env;
3427 
3428 	memset(bt, 0, sizeof(*bt));
3429 	bt->env = env;
3430 }
3431 
3432 static inline u32 bt_empty(struct backtrack_state *bt)
3433 {
3434 	u64 mask = 0;
3435 	int i;
3436 
3437 	for (i = 0; i <= bt->frame; i++)
3438 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3439 
3440 	return mask == 0;
3441 }
3442 
3443 static inline int bt_subprog_enter(struct backtrack_state *bt)
3444 {
3445 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3446 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3447 		WARN_ONCE(1, "verifier backtracking bug");
3448 		return -EFAULT;
3449 	}
3450 	bt->frame++;
3451 	return 0;
3452 }
3453 
3454 static inline int bt_subprog_exit(struct backtrack_state *bt)
3455 {
3456 	if (bt->frame == 0) {
3457 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3458 		WARN_ONCE(1, "verifier backtracking bug");
3459 		return -EFAULT;
3460 	}
3461 	bt->frame--;
3462 	return 0;
3463 }
3464 
3465 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3466 {
3467 	bt->reg_masks[frame] |= 1 << reg;
3468 }
3469 
3470 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3471 {
3472 	bt->reg_masks[frame] &= ~(1 << reg);
3473 }
3474 
3475 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3476 {
3477 	bt_set_frame_reg(bt, bt->frame, reg);
3478 }
3479 
3480 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3481 {
3482 	bt_clear_frame_reg(bt, bt->frame, reg);
3483 }
3484 
3485 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3486 {
3487 	bt->stack_masks[frame] |= 1ull << slot;
3488 }
3489 
3490 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3491 {
3492 	bt->stack_masks[frame] &= ~(1ull << slot);
3493 }
3494 
3495 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3496 {
3497 	return bt->reg_masks[frame];
3498 }
3499 
3500 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3501 {
3502 	return bt->reg_masks[bt->frame];
3503 }
3504 
3505 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3506 {
3507 	return bt->stack_masks[frame];
3508 }
3509 
3510 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3511 {
3512 	return bt->stack_masks[bt->frame];
3513 }
3514 
3515 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3516 {
3517 	return bt->reg_masks[bt->frame] & (1 << reg);
3518 }
3519 
3520 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3521 {
3522 	return bt->stack_masks[frame] & (1ull << slot);
3523 }
3524 
3525 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3526 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3527 {
3528 	DECLARE_BITMAP(mask, 64);
3529 	bool first = true;
3530 	int i, n;
3531 
3532 	buf[0] = '\0';
3533 
3534 	bitmap_from_u64(mask, reg_mask);
3535 	for_each_set_bit(i, mask, 32) {
3536 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3537 		first = false;
3538 		buf += n;
3539 		buf_sz -= n;
3540 		if (buf_sz < 0)
3541 			break;
3542 	}
3543 }
3544 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3545 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3546 {
3547 	DECLARE_BITMAP(mask, 64);
3548 	bool first = true;
3549 	int i, n;
3550 
3551 	buf[0] = '\0';
3552 
3553 	bitmap_from_u64(mask, stack_mask);
3554 	for_each_set_bit(i, mask, 64) {
3555 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3556 		first = false;
3557 		buf += n;
3558 		buf_sz -= n;
3559 		if (buf_sz < 0)
3560 			break;
3561 	}
3562 }
3563 
3564 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3565 
3566 /* For given verifier state backtrack_insn() is called from the last insn to
3567  * the first insn. Its purpose is to compute a bitmask of registers and
3568  * stack slots that needs precision in the parent verifier state.
3569  *
3570  * @idx is an index of the instruction we are currently processing;
3571  * @subseq_idx is an index of the subsequent instruction that:
3572  *   - *would be* executed next, if jump history is viewed in forward order;
3573  *   - *was* processed previously during backtracking.
3574  */
3575 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3576 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3577 {
3578 	const struct bpf_insn_cbs cbs = {
3579 		.cb_call	= disasm_kfunc_name,
3580 		.cb_print	= verbose,
3581 		.private_data	= env,
3582 	};
3583 	struct bpf_insn *insn = env->prog->insnsi + idx;
3584 	u8 class = BPF_CLASS(insn->code);
3585 	u8 opcode = BPF_OP(insn->code);
3586 	u8 mode = BPF_MODE(insn->code);
3587 	u32 dreg = insn->dst_reg;
3588 	u32 sreg = insn->src_reg;
3589 	u32 spi, i, fr;
3590 
3591 	if (insn->code == 0)
3592 		return 0;
3593 	if (env->log.level & BPF_LOG_LEVEL2) {
3594 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3595 		verbose(env, "mark_precise: frame%d: regs=%s ",
3596 			bt->frame, env->tmp_str_buf);
3597 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3598 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3599 		verbose(env, "%d: ", idx);
3600 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3601 	}
3602 
3603 	if (class == BPF_ALU || class == BPF_ALU64) {
3604 		if (!bt_is_reg_set(bt, dreg))
3605 			return 0;
3606 		if (opcode == BPF_END || opcode == BPF_NEG) {
3607 			/* sreg is reserved and unused
3608 			 * dreg still need precision before this insn
3609 			 */
3610 			return 0;
3611 		} else if (opcode == BPF_MOV) {
3612 			if (BPF_SRC(insn->code) == BPF_X) {
3613 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3614 				 * dreg needs precision after this insn
3615 				 * sreg needs precision before this insn
3616 				 */
3617 				bt_clear_reg(bt, dreg);
3618 				bt_set_reg(bt, sreg);
3619 			} else {
3620 				/* dreg = K
3621 				 * dreg needs precision after this insn.
3622 				 * Corresponding register is already marked
3623 				 * as precise=true in this verifier state.
3624 				 * No further markings in parent are necessary
3625 				 */
3626 				bt_clear_reg(bt, dreg);
3627 			}
3628 		} else {
3629 			if (BPF_SRC(insn->code) == BPF_X) {
3630 				/* dreg += sreg
3631 				 * both dreg and sreg need precision
3632 				 * before this insn
3633 				 */
3634 				bt_set_reg(bt, sreg);
3635 			} /* else dreg += K
3636 			   * dreg still needs precision before this insn
3637 			   */
3638 		}
3639 	} else if (class == BPF_LDX) {
3640 		if (!bt_is_reg_set(bt, dreg))
3641 			return 0;
3642 		bt_clear_reg(bt, dreg);
3643 
3644 		/* scalars can only be spilled into stack w/o losing precision.
3645 		 * Load from any other memory can be zero extended.
3646 		 * The desire to keep that precision is already indicated
3647 		 * by 'precise' mark in corresponding register of this state.
3648 		 * No further tracking necessary.
3649 		 */
3650 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3651 			return 0;
3652 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3653 		 * that [fp - off] slot contains scalar that needs to be
3654 		 * tracked with precision
3655 		 */
3656 		spi = insn_stack_access_spi(hist->flags);
3657 		fr = insn_stack_access_frameno(hist->flags);
3658 		bt_set_frame_slot(bt, fr, spi);
3659 	} else if (class == BPF_STX || class == BPF_ST) {
3660 		if (bt_is_reg_set(bt, dreg))
3661 			/* stx & st shouldn't be using _scalar_ dst_reg
3662 			 * to access memory. It means backtracking
3663 			 * encountered a case of pointer subtraction.
3664 			 */
3665 			return -ENOTSUPP;
3666 		/* scalars can only be spilled into stack */
3667 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3668 			return 0;
3669 		spi = insn_stack_access_spi(hist->flags);
3670 		fr = insn_stack_access_frameno(hist->flags);
3671 		if (!bt_is_frame_slot_set(bt, fr, spi))
3672 			return 0;
3673 		bt_clear_frame_slot(bt, fr, spi);
3674 		if (class == BPF_STX)
3675 			bt_set_reg(bt, sreg);
3676 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3677 		if (bpf_pseudo_call(insn)) {
3678 			int subprog_insn_idx, subprog;
3679 
3680 			subprog_insn_idx = idx + insn->imm + 1;
3681 			subprog = find_subprog(env, subprog_insn_idx);
3682 			if (subprog < 0)
3683 				return -EFAULT;
3684 
3685 			if (subprog_is_global(env, subprog)) {
3686 				/* check that jump history doesn't have any
3687 				 * extra instructions from subprog; the next
3688 				 * instruction after call to global subprog
3689 				 * should be literally next instruction in
3690 				 * caller program
3691 				 */
3692 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3693 				/* r1-r5 are invalidated after subprog call,
3694 				 * so for global func call it shouldn't be set
3695 				 * anymore
3696 				 */
3697 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3698 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3699 					WARN_ONCE(1, "verifier backtracking bug");
3700 					return -EFAULT;
3701 				}
3702 				/* global subprog always sets R0 */
3703 				bt_clear_reg(bt, BPF_REG_0);
3704 				return 0;
3705 			} else {
3706 				/* static subprog call instruction, which
3707 				 * means that we are exiting current subprog,
3708 				 * so only r1-r5 could be still requested as
3709 				 * precise, r0 and r6-r10 or any stack slot in
3710 				 * the current frame should be zero by now
3711 				 */
3712 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3713 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3714 					WARN_ONCE(1, "verifier backtracking bug");
3715 					return -EFAULT;
3716 				}
3717 				/* we are now tracking register spills correctly,
3718 				 * so any instance of leftover slots is a bug
3719 				 */
3720 				if (bt_stack_mask(bt) != 0) {
3721 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3722 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3723 					return -EFAULT;
3724 				}
3725 				/* propagate r1-r5 to the caller */
3726 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3727 					if (bt_is_reg_set(bt, i)) {
3728 						bt_clear_reg(bt, i);
3729 						bt_set_frame_reg(bt, bt->frame - 1, i);
3730 					}
3731 				}
3732 				if (bt_subprog_exit(bt))
3733 					return -EFAULT;
3734 				return 0;
3735 			}
3736 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3737 			/* exit from callback subprog to callback-calling helper or
3738 			 * kfunc call. Use idx/subseq_idx check to discern it from
3739 			 * straight line code backtracking.
3740 			 * Unlike the subprog call handling above, we shouldn't
3741 			 * propagate precision of r1-r5 (if any requested), as they are
3742 			 * not actually arguments passed directly to callback subprogs
3743 			 */
3744 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3745 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3746 				WARN_ONCE(1, "verifier backtracking bug");
3747 				return -EFAULT;
3748 			}
3749 			if (bt_stack_mask(bt) != 0) {
3750 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3751 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3752 				return -EFAULT;
3753 			}
3754 			/* clear r1-r5 in callback subprog's mask */
3755 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3756 				bt_clear_reg(bt, i);
3757 			if (bt_subprog_exit(bt))
3758 				return -EFAULT;
3759 			return 0;
3760 		} else if (opcode == BPF_CALL) {
3761 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3762 			 * catch this error later. Make backtracking conservative
3763 			 * with ENOTSUPP.
3764 			 */
3765 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3766 				return -ENOTSUPP;
3767 			/* regular helper call sets R0 */
3768 			bt_clear_reg(bt, BPF_REG_0);
3769 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3770 				/* if backtracing was looking for registers R1-R5
3771 				 * they should have been found already.
3772 				 */
3773 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3774 				WARN_ONCE(1, "verifier backtracking bug");
3775 				return -EFAULT;
3776 			}
3777 		} else if (opcode == BPF_EXIT) {
3778 			bool r0_precise;
3779 
3780 			/* Backtracking to a nested function call, 'idx' is a part of
3781 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3782 			 * In case of a regular function call, instructions giving
3783 			 * precision to registers R1-R5 should have been found already.
3784 			 * In case of a callback, it is ok to have R1-R5 marked for
3785 			 * backtracking, as these registers are set by the function
3786 			 * invoking callback.
3787 			 */
3788 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3789 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3790 					bt_clear_reg(bt, i);
3791 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3792 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3793 				WARN_ONCE(1, "verifier backtracking bug");
3794 				return -EFAULT;
3795 			}
3796 
3797 			/* BPF_EXIT in subprog or callback always returns
3798 			 * right after the call instruction, so by checking
3799 			 * whether the instruction at subseq_idx-1 is subprog
3800 			 * call or not we can distinguish actual exit from
3801 			 * *subprog* from exit from *callback*. In the former
3802 			 * case, we need to propagate r0 precision, if
3803 			 * necessary. In the former we never do that.
3804 			 */
3805 			r0_precise = subseq_idx - 1 >= 0 &&
3806 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3807 				     bt_is_reg_set(bt, BPF_REG_0);
3808 
3809 			bt_clear_reg(bt, BPF_REG_0);
3810 			if (bt_subprog_enter(bt))
3811 				return -EFAULT;
3812 
3813 			if (r0_precise)
3814 				bt_set_reg(bt, BPF_REG_0);
3815 			/* r6-r9 and stack slots will stay set in caller frame
3816 			 * bitmasks until we return back from callee(s)
3817 			 */
3818 			return 0;
3819 		} else if (BPF_SRC(insn->code) == BPF_X) {
3820 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3821 				return 0;
3822 			/* dreg <cond> sreg
3823 			 * Both dreg and sreg need precision before
3824 			 * this insn. If only sreg was marked precise
3825 			 * before it would be equally necessary to
3826 			 * propagate it to dreg.
3827 			 */
3828 			bt_set_reg(bt, dreg);
3829 			bt_set_reg(bt, sreg);
3830 			 /* else dreg <cond> K
3831 			  * Only dreg still needs precision before
3832 			  * this insn, so for the K-based conditional
3833 			  * there is nothing new to be marked.
3834 			  */
3835 		}
3836 	} else if (class == BPF_LD) {
3837 		if (!bt_is_reg_set(bt, dreg))
3838 			return 0;
3839 		bt_clear_reg(bt, dreg);
3840 		/* It's ld_imm64 or ld_abs or ld_ind.
3841 		 * For ld_imm64 no further tracking of precision
3842 		 * into parent is necessary
3843 		 */
3844 		if (mode == BPF_IND || mode == BPF_ABS)
3845 			/* to be analyzed */
3846 			return -ENOTSUPP;
3847 	}
3848 	return 0;
3849 }
3850 
3851 /* the scalar precision tracking algorithm:
3852  * . at the start all registers have precise=false.
3853  * . scalar ranges are tracked as normal through alu and jmp insns.
3854  * . once precise value of the scalar register is used in:
3855  *   .  ptr + scalar alu
3856  *   . if (scalar cond K|scalar)
3857  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3858  *   backtrack through the verifier states and mark all registers and
3859  *   stack slots with spilled constants that these scalar regisers
3860  *   should be precise.
3861  * . during state pruning two registers (or spilled stack slots)
3862  *   are equivalent if both are not precise.
3863  *
3864  * Note the verifier cannot simply walk register parentage chain,
3865  * since many different registers and stack slots could have been
3866  * used to compute single precise scalar.
3867  *
3868  * The approach of starting with precise=true for all registers and then
3869  * backtrack to mark a register as not precise when the verifier detects
3870  * that program doesn't care about specific value (e.g., when helper
3871  * takes register as ARG_ANYTHING parameter) is not safe.
3872  *
3873  * It's ok to walk single parentage chain of the verifier states.
3874  * It's possible that this backtracking will go all the way till 1st insn.
3875  * All other branches will be explored for needing precision later.
3876  *
3877  * The backtracking needs to deal with cases like:
3878  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3879  * r9 -= r8
3880  * r5 = r9
3881  * if r5 > 0x79f goto pc+7
3882  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3883  * r5 += 1
3884  * ...
3885  * call bpf_perf_event_output#25
3886  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3887  *
3888  * and this case:
3889  * r6 = 1
3890  * call foo // uses callee's r6 inside to compute r0
3891  * r0 += r6
3892  * if r0 == 0 goto
3893  *
3894  * to track above reg_mask/stack_mask needs to be independent for each frame.
3895  *
3896  * Also if parent's curframe > frame where backtracking started,
3897  * the verifier need to mark registers in both frames, otherwise callees
3898  * may incorrectly prune callers. This is similar to
3899  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3900  *
3901  * For now backtracking falls back into conservative marking.
3902  */
3903 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3904 				     struct bpf_verifier_state *st)
3905 {
3906 	struct bpf_func_state *func;
3907 	struct bpf_reg_state *reg;
3908 	int i, j;
3909 
3910 	if (env->log.level & BPF_LOG_LEVEL2) {
3911 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3912 			st->curframe);
3913 	}
3914 
3915 	/* big hammer: mark all scalars precise in this path.
3916 	 * pop_stack may still get !precise scalars.
3917 	 * We also skip current state and go straight to first parent state,
3918 	 * because precision markings in current non-checkpointed state are
3919 	 * not needed. See why in the comment in __mark_chain_precision below.
3920 	 */
3921 	for (st = st->parent; st; st = st->parent) {
3922 		for (i = 0; i <= st->curframe; i++) {
3923 			func = st->frame[i];
3924 			for (j = 0; j < BPF_REG_FP; j++) {
3925 				reg = &func->regs[j];
3926 				if (reg->type != SCALAR_VALUE || reg->precise)
3927 					continue;
3928 				reg->precise = true;
3929 				if (env->log.level & BPF_LOG_LEVEL2) {
3930 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3931 						i, j);
3932 				}
3933 			}
3934 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3935 				if (!is_spilled_reg(&func->stack[j]))
3936 					continue;
3937 				reg = &func->stack[j].spilled_ptr;
3938 				if (reg->type != SCALAR_VALUE || reg->precise)
3939 					continue;
3940 				reg->precise = true;
3941 				if (env->log.level & BPF_LOG_LEVEL2) {
3942 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3943 						i, -(j + 1) * 8);
3944 				}
3945 			}
3946 		}
3947 	}
3948 }
3949 
3950 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3951 {
3952 	struct bpf_func_state *func;
3953 	struct bpf_reg_state *reg;
3954 	int i, j;
3955 
3956 	for (i = 0; i <= st->curframe; i++) {
3957 		func = st->frame[i];
3958 		for (j = 0; j < BPF_REG_FP; j++) {
3959 			reg = &func->regs[j];
3960 			if (reg->type != SCALAR_VALUE)
3961 				continue;
3962 			reg->precise = false;
3963 		}
3964 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3965 			if (!is_spilled_reg(&func->stack[j]))
3966 				continue;
3967 			reg = &func->stack[j].spilled_ptr;
3968 			if (reg->type != SCALAR_VALUE)
3969 				continue;
3970 			reg->precise = false;
3971 		}
3972 	}
3973 }
3974 
3975 static bool idset_contains(struct bpf_idset *s, u32 id)
3976 {
3977 	u32 i;
3978 
3979 	for (i = 0; i < s->count; ++i)
3980 		if (s->ids[i] == id)
3981 			return true;
3982 
3983 	return false;
3984 }
3985 
3986 static int idset_push(struct bpf_idset *s, u32 id)
3987 {
3988 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3989 		return -EFAULT;
3990 	s->ids[s->count++] = id;
3991 	return 0;
3992 }
3993 
3994 static void idset_reset(struct bpf_idset *s)
3995 {
3996 	s->count = 0;
3997 }
3998 
3999 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4000  * Mark all registers with these IDs as precise.
4001  */
4002 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4003 {
4004 	struct bpf_idset *precise_ids = &env->idset_scratch;
4005 	struct backtrack_state *bt = &env->bt;
4006 	struct bpf_func_state *func;
4007 	struct bpf_reg_state *reg;
4008 	DECLARE_BITMAP(mask, 64);
4009 	int i, fr;
4010 
4011 	idset_reset(precise_ids);
4012 
4013 	for (fr = bt->frame; fr >= 0; fr--) {
4014 		func = st->frame[fr];
4015 
4016 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4017 		for_each_set_bit(i, mask, 32) {
4018 			reg = &func->regs[i];
4019 			if (!reg->id || reg->type != SCALAR_VALUE)
4020 				continue;
4021 			if (idset_push(precise_ids, reg->id))
4022 				return -EFAULT;
4023 		}
4024 
4025 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4026 		for_each_set_bit(i, mask, 64) {
4027 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4028 				break;
4029 			if (!is_spilled_scalar_reg(&func->stack[i]))
4030 				continue;
4031 			reg = &func->stack[i].spilled_ptr;
4032 			if (!reg->id)
4033 				continue;
4034 			if (idset_push(precise_ids, reg->id))
4035 				return -EFAULT;
4036 		}
4037 	}
4038 
4039 	for (fr = 0; fr <= st->curframe; ++fr) {
4040 		func = st->frame[fr];
4041 
4042 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4043 			reg = &func->regs[i];
4044 			if (!reg->id)
4045 				continue;
4046 			if (!idset_contains(precise_ids, reg->id))
4047 				continue;
4048 			bt_set_frame_reg(bt, fr, i);
4049 		}
4050 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4051 			if (!is_spilled_scalar_reg(&func->stack[i]))
4052 				continue;
4053 			reg = &func->stack[i].spilled_ptr;
4054 			if (!reg->id)
4055 				continue;
4056 			if (!idset_contains(precise_ids, reg->id))
4057 				continue;
4058 			bt_set_frame_slot(bt, fr, i);
4059 		}
4060 	}
4061 
4062 	return 0;
4063 }
4064 
4065 /*
4066  * __mark_chain_precision() backtracks BPF program instruction sequence and
4067  * chain of verifier states making sure that register *regno* (if regno >= 0)
4068  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4069  * SCALARS, as well as any other registers and slots that contribute to
4070  * a tracked state of given registers/stack slots, depending on specific BPF
4071  * assembly instructions (see backtrack_insns() for exact instruction handling
4072  * logic). This backtracking relies on recorded jmp_history and is able to
4073  * traverse entire chain of parent states. This process ends only when all the
4074  * necessary registers/slots and their transitive dependencies are marked as
4075  * precise.
4076  *
4077  * One important and subtle aspect is that precise marks *do not matter* in
4078  * the currently verified state (current state). It is important to understand
4079  * why this is the case.
4080  *
4081  * First, note that current state is the state that is not yet "checkpointed",
4082  * i.e., it is not yet put into env->explored_states, and it has no children
4083  * states as well. It's ephemeral, and can end up either a) being discarded if
4084  * compatible explored state is found at some point or BPF_EXIT instruction is
4085  * reached or b) checkpointed and put into env->explored_states, branching out
4086  * into one or more children states.
4087  *
4088  * In the former case, precise markings in current state are completely
4089  * ignored by state comparison code (see regsafe() for details). Only
4090  * checkpointed ("old") state precise markings are important, and if old
4091  * state's register/slot is precise, regsafe() assumes current state's
4092  * register/slot as precise and checks value ranges exactly and precisely. If
4093  * states turn out to be compatible, current state's necessary precise
4094  * markings and any required parent states' precise markings are enforced
4095  * after the fact with propagate_precision() logic, after the fact. But it's
4096  * important to realize that in this case, even after marking current state
4097  * registers/slots as precise, we immediately discard current state. So what
4098  * actually matters is any of the precise markings propagated into current
4099  * state's parent states, which are always checkpointed (due to b) case above).
4100  * As such, for scenario a) it doesn't matter if current state has precise
4101  * markings set or not.
4102  *
4103  * Now, for the scenario b), checkpointing and forking into child(ren)
4104  * state(s). Note that before current state gets to checkpointing step, any
4105  * processed instruction always assumes precise SCALAR register/slot
4106  * knowledge: if precise value or range is useful to prune jump branch, BPF
4107  * verifier takes this opportunity enthusiastically. Similarly, when
4108  * register's value is used to calculate offset or memory address, exact
4109  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4110  * what we mentioned above about state comparison ignoring precise markings
4111  * during state comparison, BPF verifier ignores and also assumes precise
4112  * markings *at will* during instruction verification process. But as verifier
4113  * assumes precision, it also propagates any precision dependencies across
4114  * parent states, which are not yet finalized, so can be further restricted
4115  * based on new knowledge gained from restrictions enforced by their children
4116  * states. This is so that once those parent states are finalized, i.e., when
4117  * they have no more active children state, state comparison logic in
4118  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4119  * required for correctness.
4120  *
4121  * To build a bit more intuition, note also that once a state is checkpointed,
4122  * the path we took to get to that state is not important. This is crucial
4123  * property for state pruning. When state is checkpointed and finalized at
4124  * some instruction index, it can be correctly and safely used to "short
4125  * circuit" any *compatible* state that reaches exactly the same instruction
4126  * index. I.e., if we jumped to that instruction from a completely different
4127  * code path than original finalized state was derived from, it doesn't
4128  * matter, current state can be discarded because from that instruction
4129  * forward having a compatible state will ensure we will safely reach the
4130  * exit. States describe preconditions for further exploration, but completely
4131  * forget the history of how we got here.
4132  *
4133  * This also means that even if we needed precise SCALAR range to get to
4134  * finalized state, but from that point forward *that same* SCALAR register is
4135  * never used in a precise context (i.e., it's precise value is not needed for
4136  * correctness), it's correct and safe to mark such register as "imprecise"
4137  * (i.e., precise marking set to false). This is what we rely on when we do
4138  * not set precise marking in current state. If no child state requires
4139  * precision for any given SCALAR register, it's safe to dictate that it can
4140  * be imprecise. If any child state does require this register to be precise,
4141  * we'll mark it precise later retroactively during precise markings
4142  * propagation from child state to parent states.
4143  *
4144  * Skipping precise marking setting in current state is a mild version of
4145  * relying on the above observation. But we can utilize this property even
4146  * more aggressively by proactively forgetting any precise marking in the
4147  * current state (which we inherited from the parent state), right before we
4148  * checkpoint it and branch off into new child state. This is done by
4149  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4150  * finalized states which help in short circuiting more future states.
4151  */
4152 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4153 {
4154 	struct backtrack_state *bt = &env->bt;
4155 	struct bpf_verifier_state *st = env->cur_state;
4156 	int first_idx = st->first_insn_idx;
4157 	int last_idx = env->insn_idx;
4158 	int subseq_idx = -1;
4159 	struct bpf_func_state *func;
4160 	struct bpf_reg_state *reg;
4161 	bool skip_first = true;
4162 	int i, fr, err;
4163 
4164 	if (!env->bpf_capable)
4165 		return 0;
4166 
4167 	/* set frame number from which we are starting to backtrack */
4168 	bt_init(bt, env->cur_state->curframe);
4169 
4170 	/* Do sanity checks against current state of register and/or stack
4171 	 * slot, but don't set precise flag in current state, as precision
4172 	 * tracking in the current state is unnecessary.
4173 	 */
4174 	func = st->frame[bt->frame];
4175 	if (regno >= 0) {
4176 		reg = &func->regs[regno];
4177 		if (reg->type != SCALAR_VALUE) {
4178 			WARN_ONCE(1, "backtracing misuse");
4179 			return -EFAULT;
4180 		}
4181 		bt_set_reg(bt, regno);
4182 	}
4183 
4184 	if (bt_empty(bt))
4185 		return 0;
4186 
4187 	for (;;) {
4188 		DECLARE_BITMAP(mask, 64);
4189 		u32 history = st->jmp_history_cnt;
4190 		struct bpf_jmp_history_entry *hist;
4191 
4192 		if (env->log.level & BPF_LOG_LEVEL2) {
4193 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4194 				bt->frame, last_idx, first_idx, subseq_idx);
4195 		}
4196 
4197 		/* If some register with scalar ID is marked as precise,
4198 		 * make sure that all registers sharing this ID are also precise.
4199 		 * This is needed to estimate effect of find_equal_scalars().
4200 		 * Do this at the last instruction of each state,
4201 		 * bpf_reg_state::id fields are valid for these instructions.
4202 		 *
4203 		 * Allows to track precision in situation like below:
4204 		 *
4205 		 *     r2 = unknown value
4206 		 *     ...
4207 		 *   --- state #0 ---
4208 		 *     ...
4209 		 *     r1 = r2                 // r1 and r2 now share the same ID
4210 		 *     ...
4211 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4212 		 *     ...
4213 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4214 		 *     ...
4215 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4216 		 *     r3 = r10
4217 		 *     r3 += r1                // need to mark both r1 and r2
4218 		 */
4219 		if (mark_precise_scalar_ids(env, st))
4220 			return -EFAULT;
4221 
4222 		if (last_idx < 0) {
4223 			/* we are at the entry into subprog, which
4224 			 * is expected for global funcs, but only if
4225 			 * requested precise registers are R1-R5
4226 			 * (which are global func's input arguments)
4227 			 */
4228 			if (st->curframe == 0 &&
4229 			    st->frame[0]->subprogno > 0 &&
4230 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4231 			    bt_stack_mask(bt) == 0 &&
4232 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4233 				bitmap_from_u64(mask, bt_reg_mask(bt));
4234 				for_each_set_bit(i, mask, 32) {
4235 					reg = &st->frame[0]->regs[i];
4236 					bt_clear_reg(bt, i);
4237 					if (reg->type == SCALAR_VALUE)
4238 						reg->precise = true;
4239 				}
4240 				return 0;
4241 			}
4242 
4243 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4244 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4245 			WARN_ONCE(1, "verifier backtracking bug");
4246 			return -EFAULT;
4247 		}
4248 
4249 		for (i = last_idx;;) {
4250 			if (skip_first) {
4251 				err = 0;
4252 				skip_first = false;
4253 			} else {
4254 				hist = get_jmp_hist_entry(st, history, i);
4255 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4256 			}
4257 			if (err == -ENOTSUPP) {
4258 				mark_all_scalars_precise(env, env->cur_state);
4259 				bt_reset(bt);
4260 				return 0;
4261 			} else if (err) {
4262 				return err;
4263 			}
4264 			if (bt_empty(bt))
4265 				/* Found assignment(s) into tracked register in this state.
4266 				 * Since this state is already marked, just return.
4267 				 * Nothing to be tracked further in the parent state.
4268 				 */
4269 				return 0;
4270 			subseq_idx = i;
4271 			i = get_prev_insn_idx(st, i, &history);
4272 			if (i == -ENOENT)
4273 				break;
4274 			if (i >= env->prog->len) {
4275 				/* This can happen if backtracking reached insn 0
4276 				 * and there are still reg_mask or stack_mask
4277 				 * to backtrack.
4278 				 * It means the backtracking missed the spot where
4279 				 * particular register was initialized with a constant.
4280 				 */
4281 				verbose(env, "BUG backtracking idx %d\n", i);
4282 				WARN_ONCE(1, "verifier backtracking bug");
4283 				return -EFAULT;
4284 			}
4285 		}
4286 		st = st->parent;
4287 		if (!st)
4288 			break;
4289 
4290 		for (fr = bt->frame; fr >= 0; fr--) {
4291 			func = st->frame[fr];
4292 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4293 			for_each_set_bit(i, mask, 32) {
4294 				reg = &func->regs[i];
4295 				if (reg->type != SCALAR_VALUE) {
4296 					bt_clear_frame_reg(bt, fr, i);
4297 					continue;
4298 				}
4299 				if (reg->precise)
4300 					bt_clear_frame_reg(bt, fr, i);
4301 				else
4302 					reg->precise = true;
4303 			}
4304 
4305 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4306 			for_each_set_bit(i, mask, 64) {
4307 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4308 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4309 						i, func->allocated_stack / BPF_REG_SIZE);
4310 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4311 					return -EFAULT;
4312 				}
4313 
4314 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4315 					bt_clear_frame_slot(bt, fr, i);
4316 					continue;
4317 				}
4318 				reg = &func->stack[i].spilled_ptr;
4319 				if (reg->precise)
4320 					bt_clear_frame_slot(bt, fr, i);
4321 				else
4322 					reg->precise = true;
4323 			}
4324 			if (env->log.level & BPF_LOG_LEVEL2) {
4325 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4326 					     bt_frame_reg_mask(bt, fr));
4327 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4328 					fr, env->tmp_str_buf);
4329 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4330 					       bt_frame_stack_mask(bt, fr));
4331 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4332 				print_verifier_state(env, func, true);
4333 			}
4334 		}
4335 
4336 		if (bt_empty(bt))
4337 			return 0;
4338 
4339 		subseq_idx = first_idx;
4340 		last_idx = st->last_insn_idx;
4341 		first_idx = st->first_insn_idx;
4342 	}
4343 
4344 	/* if we still have requested precise regs or slots, we missed
4345 	 * something (e.g., stack access through non-r10 register), so
4346 	 * fallback to marking all precise
4347 	 */
4348 	if (!bt_empty(bt)) {
4349 		mark_all_scalars_precise(env, env->cur_state);
4350 		bt_reset(bt);
4351 	}
4352 
4353 	return 0;
4354 }
4355 
4356 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4357 {
4358 	return __mark_chain_precision(env, regno);
4359 }
4360 
4361 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4362  * desired reg and stack masks across all relevant frames
4363  */
4364 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4365 {
4366 	return __mark_chain_precision(env, -1);
4367 }
4368 
4369 static bool is_spillable_regtype(enum bpf_reg_type type)
4370 {
4371 	switch (base_type(type)) {
4372 	case PTR_TO_MAP_VALUE:
4373 	case PTR_TO_STACK:
4374 	case PTR_TO_CTX:
4375 	case PTR_TO_PACKET:
4376 	case PTR_TO_PACKET_META:
4377 	case PTR_TO_PACKET_END:
4378 	case PTR_TO_FLOW_KEYS:
4379 	case CONST_PTR_TO_MAP:
4380 	case PTR_TO_SOCKET:
4381 	case PTR_TO_SOCK_COMMON:
4382 	case PTR_TO_TCP_SOCK:
4383 	case PTR_TO_XDP_SOCK:
4384 	case PTR_TO_BTF_ID:
4385 	case PTR_TO_BUF:
4386 	case PTR_TO_MEM:
4387 	case PTR_TO_FUNC:
4388 	case PTR_TO_MAP_KEY:
4389 	case PTR_TO_ARENA:
4390 		return true;
4391 	default:
4392 		return false;
4393 	}
4394 }
4395 
4396 /* Does this register contain a constant zero? */
4397 static bool register_is_null(struct bpf_reg_state *reg)
4398 {
4399 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4400 }
4401 
4402 /* check if register is a constant scalar value */
4403 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4404 {
4405 	return reg->type == SCALAR_VALUE &&
4406 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4407 }
4408 
4409 /* assuming is_reg_const() is true, return constant value of a register */
4410 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4411 {
4412 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4413 }
4414 
4415 static bool __is_pointer_value(bool allow_ptr_leaks,
4416 			       const struct bpf_reg_state *reg)
4417 {
4418 	if (allow_ptr_leaks)
4419 		return false;
4420 
4421 	return reg->type != SCALAR_VALUE;
4422 }
4423 
4424 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4425 					struct bpf_reg_state *src_reg)
4426 {
4427 	if (src_reg->type == SCALAR_VALUE && !src_reg->id &&
4428 	    !tnum_is_const(src_reg->var_off))
4429 		/* Ensure that src_reg has a valid ID that will be copied to
4430 		 * dst_reg and then will be used by find_equal_scalars() to
4431 		 * propagate min/max range.
4432 		 */
4433 		src_reg->id = ++env->id_gen;
4434 }
4435 
4436 /* Copy src state preserving dst->parent and dst->live fields */
4437 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4438 {
4439 	struct bpf_reg_state *parent = dst->parent;
4440 	enum bpf_reg_liveness live = dst->live;
4441 
4442 	*dst = *src;
4443 	dst->parent = parent;
4444 	dst->live = live;
4445 }
4446 
4447 static void save_register_state(struct bpf_verifier_env *env,
4448 				struct bpf_func_state *state,
4449 				int spi, struct bpf_reg_state *reg,
4450 				int size)
4451 {
4452 	int i;
4453 
4454 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4455 	if (size == BPF_REG_SIZE)
4456 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4457 
4458 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4459 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4460 
4461 	/* size < 8 bytes spill */
4462 	for (; i; i--)
4463 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4464 }
4465 
4466 static bool is_bpf_st_mem(struct bpf_insn *insn)
4467 {
4468 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4469 }
4470 
4471 static int get_reg_width(struct bpf_reg_state *reg)
4472 {
4473 	return fls64(reg->umax_value);
4474 }
4475 
4476 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4477  * stack boundary and alignment are checked in check_mem_access()
4478  */
4479 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4480 				       /* stack frame we're writing to */
4481 				       struct bpf_func_state *state,
4482 				       int off, int size, int value_regno,
4483 				       int insn_idx)
4484 {
4485 	struct bpf_func_state *cur; /* state of the current function */
4486 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4487 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4488 	struct bpf_reg_state *reg = NULL;
4489 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4490 
4491 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4492 	 * so it's aligned access and [off, off + size) are within stack limits
4493 	 */
4494 	if (!env->allow_ptr_leaks &&
4495 	    is_spilled_reg(&state->stack[spi]) &&
4496 	    size != BPF_REG_SIZE) {
4497 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4498 		return -EACCES;
4499 	}
4500 
4501 	cur = env->cur_state->frame[env->cur_state->curframe];
4502 	if (value_regno >= 0)
4503 		reg = &cur->regs[value_regno];
4504 	if (!env->bypass_spec_v4) {
4505 		bool sanitize = reg && is_spillable_regtype(reg->type);
4506 
4507 		for (i = 0; i < size; i++) {
4508 			u8 type = state->stack[spi].slot_type[i];
4509 
4510 			if (type != STACK_MISC && type != STACK_ZERO) {
4511 				sanitize = true;
4512 				break;
4513 			}
4514 		}
4515 
4516 		if (sanitize)
4517 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4518 	}
4519 
4520 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4521 	if (err)
4522 		return err;
4523 
4524 	mark_stack_slot_scratched(env, spi);
4525 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4526 		bool reg_value_fits;
4527 
4528 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4529 		/* Make sure that reg had an ID to build a relation on spill. */
4530 		if (reg_value_fits)
4531 			assign_scalar_id_before_mov(env, reg);
4532 		save_register_state(env, state, spi, reg, size);
4533 		/* Break the relation on a narrowing spill. */
4534 		if (!reg_value_fits)
4535 			state->stack[spi].spilled_ptr.id = 0;
4536 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4537 		   env->bpf_capable) {
4538 		struct bpf_reg_state fake_reg = {};
4539 
4540 		__mark_reg_known(&fake_reg, insn->imm);
4541 		fake_reg.type = SCALAR_VALUE;
4542 		save_register_state(env, state, spi, &fake_reg, size);
4543 	} else if (reg && is_spillable_regtype(reg->type)) {
4544 		/* register containing pointer is being spilled into stack */
4545 		if (size != BPF_REG_SIZE) {
4546 			verbose_linfo(env, insn_idx, "; ");
4547 			verbose(env, "invalid size of register spill\n");
4548 			return -EACCES;
4549 		}
4550 		if (state != cur && reg->type == PTR_TO_STACK) {
4551 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4552 			return -EINVAL;
4553 		}
4554 		save_register_state(env, state, spi, reg, size);
4555 	} else {
4556 		u8 type = STACK_MISC;
4557 
4558 		/* regular write of data into stack destroys any spilled ptr */
4559 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4560 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4561 		if (is_stack_slot_special(&state->stack[spi]))
4562 			for (i = 0; i < BPF_REG_SIZE; i++)
4563 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4564 
4565 		/* only mark the slot as written if all 8 bytes were written
4566 		 * otherwise read propagation may incorrectly stop too soon
4567 		 * when stack slots are partially written.
4568 		 * This heuristic means that read propagation will be
4569 		 * conservative, since it will add reg_live_read marks
4570 		 * to stack slots all the way to first state when programs
4571 		 * writes+reads less than 8 bytes
4572 		 */
4573 		if (size == BPF_REG_SIZE)
4574 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4575 
4576 		/* when we zero initialize stack slots mark them as such */
4577 		if ((reg && register_is_null(reg)) ||
4578 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4579 			/* STACK_ZERO case happened because register spill
4580 			 * wasn't properly aligned at the stack slot boundary,
4581 			 * so it's not a register spill anymore; force
4582 			 * originating register to be precise to make
4583 			 * STACK_ZERO correct for subsequent states
4584 			 */
4585 			err = mark_chain_precision(env, value_regno);
4586 			if (err)
4587 				return err;
4588 			type = STACK_ZERO;
4589 		}
4590 
4591 		/* Mark slots affected by this stack write. */
4592 		for (i = 0; i < size; i++)
4593 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4594 		insn_flags = 0; /* not a register spill */
4595 	}
4596 
4597 	if (insn_flags)
4598 		return push_jmp_history(env, env->cur_state, insn_flags);
4599 	return 0;
4600 }
4601 
4602 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4603  * known to contain a variable offset.
4604  * This function checks whether the write is permitted and conservatively
4605  * tracks the effects of the write, considering that each stack slot in the
4606  * dynamic range is potentially written to.
4607  *
4608  * 'off' includes 'regno->off'.
4609  * 'value_regno' can be -1, meaning that an unknown value is being written to
4610  * the stack.
4611  *
4612  * Spilled pointers in range are not marked as written because we don't know
4613  * what's going to be actually written. This means that read propagation for
4614  * future reads cannot be terminated by this write.
4615  *
4616  * For privileged programs, uninitialized stack slots are considered
4617  * initialized by this write (even though we don't know exactly what offsets
4618  * are going to be written to). The idea is that we don't want the verifier to
4619  * reject future reads that access slots written to through variable offsets.
4620  */
4621 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4622 				     /* func where register points to */
4623 				     struct bpf_func_state *state,
4624 				     int ptr_regno, int off, int size,
4625 				     int value_regno, int insn_idx)
4626 {
4627 	struct bpf_func_state *cur; /* state of the current function */
4628 	int min_off, max_off;
4629 	int i, err;
4630 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4631 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4632 	bool writing_zero = false;
4633 	/* set if the fact that we're writing a zero is used to let any
4634 	 * stack slots remain STACK_ZERO
4635 	 */
4636 	bool zero_used = false;
4637 
4638 	cur = env->cur_state->frame[env->cur_state->curframe];
4639 	ptr_reg = &cur->regs[ptr_regno];
4640 	min_off = ptr_reg->smin_value + off;
4641 	max_off = ptr_reg->smax_value + off + size;
4642 	if (value_regno >= 0)
4643 		value_reg = &cur->regs[value_regno];
4644 	if ((value_reg && register_is_null(value_reg)) ||
4645 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4646 		writing_zero = true;
4647 
4648 	for (i = min_off; i < max_off; i++) {
4649 		int spi;
4650 
4651 		spi = __get_spi(i);
4652 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4653 		if (err)
4654 			return err;
4655 	}
4656 
4657 	/* Variable offset writes destroy any spilled pointers in range. */
4658 	for (i = min_off; i < max_off; i++) {
4659 		u8 new_type, *stype;
4660 		int slot, spi;
4661 
4662 		slot = -i - 1;
4663 		spi = slot / BPF_REG_SIZE;
4664 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4665 		mark_stack_slot_scratched(env, spi);
4666 
4667 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4668 			/* Reject the write if range we may write to has not
4669 			 * been initialized beforehand. If we didn't reject
4670 			 * here, the ptr status would be erased below (even
4671 			 * though not all slots are actually overwritten),
4672 			 * possibly opening the door to leaks.
4673 			 *
4674 			 * We do however catch STACK_INVALID case below, and
4675 			 * only allow reading possibly uninitialized memory
4676 			 * later for CAP_PERFMON, as the write may not happen to
4677 			 * that slot.
4678 			 */
4679 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4680 				insn_idx, i);
4681 			return -EINVAL;
4682 		}
4683 
4684 		/* If writing_zero and the spi slot contains a spill of value 0,
4685 		 * maintain the spill type.
4686 		 */
4687 		if (writing_zero && *stype == STACK_SPILL &&
4688 		    is_spilled_scalar_reg(&state->stack[spi])) {
4689 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4690 
4691 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4692 				zero_used = true;
4693 				continue;
4694 			}
4695 		}
4696 
4697 		/* Erase all other spilled pointers. */
4698 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4699 
4700 		/* Update the slot type. */
4701 		new_type = STACK_MISC;
4702 		if (writing_zero && *stype == STACK_ZERO) {
4703 			new_type = STACK_ZERO;
4704 			zero_used = true;
4705 		}
4706 		/* If the slot is STACK_INVALID, we check whether it's OK to
4707 		 * pretend that it will be initialized by this write. The slot
4708 		 * might not actually be written to, and so if we mark it as
4709 		 * initialized future reads might leak uninitialized memory.
4710 		 * For privileged programs, we will accept such reads to slots
4711 		 * that may or may not be written because, if we're reject
4712 		 * them, the error would be too confusing.
4713 		 */
4714 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4715 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4716 					insn_idx, i);
4717 			return -EINVAL;
4718 		}
4719 		*stype = new_type;
4720 	}
4721 	if (zero_used) {
4722 		/* backtracking doesn't work for STACK_ZERO yet. */
4723 		err = mark_chain_precision(env, value_regno);
4724 		if (err)
4725 			return err;
4726 	}
4727 	return 0;
4728 }
4729 
4730 /* When register 'dst_regno' is assigned some values from stack[min_off,
4731  * max_off), we set the register's type according to the types of the
4732  * respective stack slots. If all the stack values are known to be zeros, then
4733  * so is the destination reg. Otherwise, the register is considered to be
4734  * SCALAR. This function does not deal with register filling; the caller must
4735  * ensure that all spilled registers in the stack range have been marked as
4736  * read.
4737  */
4738 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4739 				/* func where src register points to */
4740 				struct bpf_func_state *ptr_state,
4741 				int min_off, int max_off, int dst_regno)
4742 {
4743 	struct bpf_verifier_state *vstate = env->cur_state;
4744 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4745 	int i, slot, spi;
4746 	u8 *stype;
4747 	int zeros = 0;
4748 
4749 	for (i = min_off; i < max_off; i++) {
4750 		slot = -i - 1;
4751 		spi = slot / BPF_REG_SIZE;
4752 		mark_stack_slot_scratched(env, spi);
4753 		stype = ptr_state->stack[spi].slot_type;
4754 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4755 			break;
4756 		zeros++;
4757 	}
4758 	if (zeros == max_off - min_off) {
4759 		/* Any access_size read into register is zero extended,
4760 		 * so the whole register == const_zero.
4761 		 */
4762 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4763 	} else {
4764 		/* have read misc data from the stack */
4765 		mark_reg_unknown(env, state->regs, dst_regno);
4766 	}
4767 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4768 }
4769 
4770 /* Read the stack at 'off' and put the results into the register indicated by
4771  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4772  * spilled reg.
4773  *
4774  * 'dst_regno' can be -1, meaning that the read value is not going to a
4775  * register.
4776  *
4777  * The access is assumed to be within the current stack bounds.
4778  */
4779 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4780 				      /* func where src register points to */
4781 				      struct bpf_func_state *reg_state,
4782 				      int off, int size, int dst_regno)
4783 {
4784 	struct bpf_verifier_state *vstate = env->cur_state;
4785 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4786 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4787 	struct bpf_reg_state *reg;
4788 	u8 *stype, type;
4789 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4790 
4791 	stype = reg_state->stack[spi].slot_type;
4792 	reg = &reg_state->stack[spi].spilled_ptr;
4793 
4794 	mark_stack_slot_scratched(env, spi);
4795 
4796 	if (is_spilled_reg(&reg_state->stack[spi])) {
4797 		u8 spill_size = 1;
4798 
4799 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4800 			spill_size++;
4801 
4802 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4803 			if (reg->type != SCALAR_VALUE) {
4804 				verbose_linfo(env, env->insn_idx, "; ");
4805 				verbose(env, "invalid size of register fill\n");
4806 				return -EACCES;
4807 			}
4808 
4809 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4810 			if (dst_regno < 0)
4811 				return 0;
4812 
4813 			if (size <= spill_size &&
4814 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
4815 				/* The earlier check_reg_arg() has decided the
4816 				 * subreg_def for this insn.  Save it first.
4817 				 */
4818 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4819 
4820 				copy_register_state(&state->regs[dst_regno], reg);
4821 				state->regs[dst_regno].subreg_def = subreg_def;
4822 
4823 				/* Break the relation on a narrowing fill.
4824 				 * coerce_reg_to_size will adjust the boundaries.
4825 				 */
4826 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
4827 					state->regs[dst_regno].id = 0;
4828 			} else {
4829 				int spill_cnt = 0, zero_cnt = 0;
4830 
4831 				for (i = 0; i < size; i++) {
4832 					type = stype[(slot - i) % BPF_REG_SIZE];
4833 					if (type == STACK_SPILL) {
4834 						spill_cnt++;
4835 						continue;
4836 					}
4837 					if (type == STACK_MISC)
4838 						continue;
4839 					if (type == STACK_ZERO) {
4840 						zero_cnt++;
4841 						continue;
4842 					}
4843 					if (type == STACK_INVALID && env->allow_uninit_stack)
4844 						continue;
4845 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4846 						off, i, size);
4847 					return -EACCES;
4848 				}
4849 
4850 				if (spill_cnt == size &&
4851 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4852 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4853 					/* this IS register fill, so keep insn_flags */
4854 				} else if (zero_cnt == size) {
4855 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4856 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4857 					insn_flags = 0; /* not restoring original register state */
4858 				} else {
4859 					mark_reg_unknown(env, state->regs, dst_regno);
4860 					insn_flags = 0; /* not restoring original register state */
4861 				}
4862 			}
4863 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4864 		} else if (dst_regno >= 0) {
4865 			/* restore register state from stack */
4866 			copy_register_state(&state->regs[dst_regno], reg);
4867 			/* mark reg as written since spilled pointer state likely
4868 			 * has its liveness marks cleared by is_state_visited()
4869 			 * which resets stack/reg liveness for state transitions
4870 			 */
4871 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4872 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4873 			/* If dst_regno==-1, the caller is asking us whether
4874 			 * it is acceptable to use this value as a SCALAR_VALUE
4875 			 * (e.g. for XADD).
4876 			 * We must not allow unprivileged callers to do that
4877 			 * with spilled pointers.
4878 			 */
4879 			verbose(env, "leaking pointer from stack off %d\n",
4880 				off);
4881 			return -EACCES;
4882 		}
4883 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4884 	} else {
4885 		for (i = 0; i < size; i++) {
4886 			type = stype[(slot - i) % BPF_REG_SIZE];
4887 			if (type == STACK_MISC)
4888 				continue;
4889 			if (type == STACK_ZERO)
4890 				continue;
4891 			if (type == STACK_INVALID && env->allow_uninit_stack)
4892 				continue;
4893 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4894 				off, i, size);
4895 			return -EACCES;
4896 		}
4897 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4898 		if (dst_regno >= 0)
4899 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4900 		insn_flags = 0; /* we are not restoring spilled register */
4901 	}
4902 	if (insn_flags)
4903 		return push_jmp_history(env, env->cur_state, insn_flags);
4904 	return 0;
4905 }
4906 
4907 enum bpf_access_src {
4908 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4909 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4910 };
4911 
4912 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4913 					 int regno, int off, int access_size,
4914 					 bool zero_size_allowed,
4915 					 enum bpf_access_src type,
4916 					 struct bpf_call_arg_meta *meta);
4917 
4918 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4919 {
4920 	return cur_regs(env) + regno;
4921 }
4922 
4923 /* Read the stack at 'ptr_regno + off' and put the result into the register
4924  * 'dst_regno'.
4925  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4926  * but not its variable offset.
4927  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4928  *
4929  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4930  * filling registers (i.e. reads of spilled register cannot be detected when
4931  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4932  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4933  * offset; for a fixed offset check_stack_read_fixed_off should be used
4934  * instead.
4935  */
4936 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4937 				    int ptr_regno, int off, int size, int dst_regno)
4938 {
4939 	/* The state of the source register. */
4940 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4941 	struct bpf_func_state *ptr_state = func(env, reg);
4942 	int err;
4943 	int min_off, max_off;
4944 
4945 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4946 	 */
4947 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4948 					    false, ACCESS_DIRECT, NULL);
4949 	if (err)
4950 		return err;
4951 
4952 	min_off = reg->smin_value + off;
4953 	max_off = reg->smax_value + off;
4954 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4955 	return 0;
4956 }
4957 
4958 /* check_stack_read dispatches to check_stack_read_fixed_off or
4959  * check_stack_read_var_off.
4960  *
4961  * The caller must ensure that the offset falls within the allocated stack
4962  * bounds.
4963  *
4964  * 'dst_regno' is a register which will receive the value from the stack. It
4965  * can be -1, meaning that the read value is not going to a register.
4966  */
4967 static int check_stack_read(struct bpf_verifier_env *env,
4968 			    int ptr_regno, int off, int size,
4969 			    int dst_regno)
4970 {
4971 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4972 	struct bpf_func_state *state = func(env, reg);
4973 	int err;
4974 	/* Some accesses are only permitted with a static offset. */
4975 	bool var_off = !tnum_is_const(reg->var_off);
4976 
4977 	/* The offset is required to be static when reads don't go to a
4978 	 * register, in order to not leak pointers (see
4979 	 * check_stack_read_fixed_off).
4980 	 */
4981 	if (dst_regno < 0 && var_off) {
4982 		char tn_buf[48];
4983 
4984 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4985 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4986 			tn_buf, off, size);
4987 		return -EACCES;
4988 	}
4989 	/* Variable offset is prohibited for unprivileged mode for simplicity
4990 	 * since it requires corresponding support in Spectre masking for stack
4991 	 * ALU. See also retrieve_ptr_limit(). The check in
4992 	 * check_stack_access_for_ptr_arithmetic() called by
4993 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4994 	 * with variable offsets, therefore no check is required here. Further,
4995 	 * just checking it here would be insufficient as speculative stack
4996 	 * writes could still lead to unsafe speculative behaviour.
4997 	 */
4998 	if (!var_off) {
4999 		off += reg->var_off.value;
5000 		err = check_stack_read_fixed_off(env, state, off, size,
5001 						 dst_regno);
5002 	} else {
5003 		/* Variable offset stack reads need more conservative handling
5004 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5005 		 * branch.
5006 		 */
5007 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5008 					       dst_regno);
5009 	}
5010 	return err;
5011 }
5012 
5013 
5014 /* check_stack_write dispatches to check_stack_write_fixed_off or
5015  * check_stack_write_var_off.
5016  *
5017  * 'ptr_regno' is the register used as a pointer into the stack.
5018  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5019  * 'value_regno' is the register whose value we're writing to the stack. It can
5020  * be -1, meaning that we're not writing from a register.
5021  *
5022  * The caller must ensure that the offset falls within the maximum stack size.
5023  */
5024 static int check_stack_write(struct bpf_verifier_env *env,
5025 			     int ptr_regno, int off, int size,
5026 			     int value_regno, int insn_idx)
5027 {
5028 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5029 	struct bpf_func_state *state = func(env, reg);
5030 	int err;
5031 
5032 	if (tnum_is_const(reg->var_off)) {
5033 		off += reg->var_off.value;
5034 		err = check_stack_write_fixed_off(env, state, off, size,
5035 						  value_regno, insn_idx);
5036 	} else {
5037 		/* Variable offset stack reads need more conservative handling
5038 		 * than fixed offset ones.
5039 		 */
5040 		err = check_stack_write_var_off(env, state,
5041 						ptr_regno, off, size,
5042 						value_regno, insn_idx);
5043 	}
5044 	return err;
5045 }
5046 
5047 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5048 				 int off, int size, enum bpf_access_type type)
5049 {
5050 	struct bpf_reg_state *regs = cur_regs(env);
5051 	struct bpf_map *map = regs[regno].map_ptr;
5052 	u32 cap = bpf_map_flags_to_cap(map);
5053 
5054 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5055 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5056 			map->value_size, off, size);
5057 		return -EACCES;
5058 	}
5059 
5060 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5061 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5062 			map->value_size, off, size);
5063 		return -EACCES;
5064 	}
5065 
5066 	return 0;
5067 }
5068 
5069 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5070 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5071 			      int off, int size, u32 mem_size,
5072 			      bool zero_size_allowed)
5073 {
5074 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5075 	struct bpf_reg_state *reg;
5076 
5077 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5078 		return 0;
5079 
5080 	reg = &cur_regs(env)[regno];
5081 	switch (reg->type) {
5082 	case PTR_TO_MAP_KEY:
5083 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5084 			mem_size, off, size);
5085 		break;
5086 	case PTR_TO_MAP_VALUE:
5087 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5088 			mem_size, off, size);
5089 		break;
5090 	case PTR_TO_PACKET:
5091 	case PTR_TO_PACKET_META:
5092 	case PTR_TO_PACKET_END:
5093 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5094 			off, size, regno, reg->id, off, mem_size);
5095 		break;
5096 	case PTR_TO_MEM:
5097 	default:
5098 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5099 			mem_size, off, size);
5100 	}
5101 
5102 	return -EACCES;
5103 }
5104 
5105 /* check read/write into a memory region with possible variable offset */
5106 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5107 				   int off, int size, u32 mem_size,
5108 				   bool zero_size_allowed)
5109 {
5110 	struct bpf_verifier_state *vstate = env->cur_state;
5111 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5112 	struct bpf_reg_state *reg = &state->regs[regno];
5113 	int err;
5114 
5115 	/* We may have adjusted the register pointing to memory region, so we
5116 	 * need to try adding each of min_value and max_value to off
5117 	 * to make sure our theoretical access will be safe.
5118 	 *
5119 	 * The minimum value is only important with signed
5120 	 * comparisons where we can't assume the floor of a
5121 	 * value is 0.  If we are using signed variables for our
5122 	 * index'es we need to make sure that whatever we use
5123 	 * will have a set floor within our range.
5124 	 */
5125 	if (reg->smin_value < 0 &&
5126 	    (reg->smin_value == S64_MIN ||
5127 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5128 	      reg->smin_value + off < 0)) {
5129 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5130 			regno);
5131 		return -EACCES;
5132 	}
5133 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5134 				 mem_size, zero_size_allowed);
5135 	if (err) {
5136 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5137 			regno);
5138 		return err;
5139 	}
5140 
5141 	/* If we haven't set a max value then we need to bail since we can't be
5142 	 * sure we won't do bad things.
5143 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5144 	 */
5145 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5146 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5147 			regno);
5148 		return -EACCES;
5149 	}
5150 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5151 				 mem_size, zero_size_allowed);
5152 	if (err) {
5153 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5154 			regno);
5155 		return err;
5156 	}
5157 
5158 	return 0;
5159 }
5160 
5161 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5162 			       const struct bpf_reg_state *reg, int regno,
5163 			       bool fixed_off_ok)
5164 {
5165 	/* Access to this pointer-typed register or passing it to a helper
5166 	 * is only allowed in its original, unmodified form.
5167 	 */
5168 
5169 	if (reg->off < 0) {
5170 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5171 			reg_type_str(env, reg->type), regno, reg->off);
5172 		return -EACCES;
5173 	}
5174 
5175 	if (!fixed_off_ok && reg->off) {
5176 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5177 			reg_type_str(env, reg->type), regno, reg->off);
5178 		return -EACCES;
5179 	}
5180 
5181 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5182 		char tn_buf[48];
5183 
5184 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5185 		verbose(env, "variable %s access var_off=%s disallowed\n",
5186 			reg_type_str(env, reg->type), tn_buf);
5187 		return -EACCES;
5188 	}
5189 
5190 	return 0;
5191 }
5192 
5193 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5194 		             const struct bpf_reg_state *reg, int regno)
5195 {
5196 	return __check_ptr_off_reg(env, reg, regno, false);
5197 }
5198 
5199 static int map_kptr_match_type(struct bpf_verifier_env *env,
5200 			       struct btf_field *kptr_field,
5201 			       struct bpf_reg_state *reg, u32 regno)
5202 {
5203 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5204 	int perm_flags;
5205 	const char *reg_name = "";
5206 
5207 	if (btf_is_kernel(reg->btf)) {
5208 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5209 
5210 		/* Only unreferenced case accepts untrusted pointers */
5211 		if (kptr_field->type == BPF_KPTR_UNREF)
5212 			perm_flags |= PTR_UNTRUSTED;
5213 	} else {
5214 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5215 		if (kptr_field->type == BPF_KPTR_PERCPU)
5216 			perm_flags |= MEM_PERCPU;
5217 	}
5218 
5219 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5220 		goto bad_type;
5221 
5222 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5223 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5224 
5225 	/* For ref_ptr case, release function check should ensure we get one
5226 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5227 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5228 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5229 	 * reg->off and reg->ref_obj_id are not needed here.
5230 	 */
5231 	if (__check_ptr_off_reg(env, reg, regno, true))
5232 		return -EACCES;
5233 
5234 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5235 	 * we also need to take into account the reg->off.
5236 	 *
5237 	 * We want to support cases like:
5238 	 *
5239 	 * struct foo {
5240 	 *         struct bar br;
5241 	 *         struct baz bz;
5242 	 * };
5243 	 *
5244 	 * struct foo *v;
5245 	 * v = func();	      // PTR_TO_BTF_ID
5246 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5247 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5248 	 *                    // first member type of struct after comparison fails
5249 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5250 	 *                    // to match type
5251 	 *
5252 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5253 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5254 	 * the struct to match type against first member of struct, i.e. reject
5255 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5256 	 * strict mode to true for type match.
5257 	 */
5258 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5259 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5260 				  kptr_field->type != BPF_KPTR_UNREF))
5261 		goto bad_type;
5262 	return 0;
5263 bad_type:
5264 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5265 		reg_type_str(env, reg->type), reg_name);
5266 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5267 	if (kptr_field->type == BPF_KPTR_UNREF)
5268 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5269 			targ_name);
5270 	else
5271 		verbose(env, "\n");
5272 	return -EINVAL;
5273 }
5274 
5275 static bool in_sleepable(struct bpf_verifier_env *env)
5276 {
5277 	return env->prog->sleepable;
5278 }
5279 
5280 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5281  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5282  */
5283 static bool in_rcu_cs(struct bpf_verifier_env *env)
5284 {
5285 	return env->cur_state->active_rcu_lock ||
5286 	       env->cur_state->active_lock.ptr ||
5287 	       !in_sleepable(env);
5288 }
5289 
5290 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5291 BTF_SET_START(rcu_protected_types)
5292 BTF_ID(struct, prog_test_ref_kfunc)
5293 #ifdef CONFIG_CGROUPS
5294 BTF_ID(struct, cgroup)
5295 #endif
5296 #ifdef CONFIG_BPF_JIT
5297 BTF_ID(struct, bpf_cpumask)
5298 #endif
5299 BTF_ID(struct, task_struct)
5300 BTF_SET_END(rcu_protected_types)
5301 
5302 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5303 {
5304 	if (!btf_is_kernel(btf))
5305 		return true;
5306 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5307 }
5308 
5309 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5310 {
5311 	struct btf_struct_meta *meta;
5312 
5313 	if (btf_is_kernel(kptr_field->kptr.btf))
5314 		return NULL;
5315 
5316 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5317 				    kptr_field->kptr.btf_id);
5318 
5319 	return meta ? meta->record : NULL;
5320 }
5321 
5322 static bool rcu_safe_kptr(const struct btf_field *field)
5323 {
5324 	const struct btf_field_kptr *kptr = &field->kptr;
5325 
5326 	return field->type == BPF_KPTR_PERCPU ||
5327 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5328 }
5329 
5330 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5331 {
5332 	struct btf_record *rec;
5333 	u32 ret;
5334 
5335 	ret = PTR_MAYBE_NULL;
5336 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5337 		ret |= MEM_RCU;
5338 		if (kptr_field->type == BPF_KPTR_PERCPU)
5339 			ret |= MEM_PERCPU;
5340 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5341 			ret |= MEM_ALLOC;
5342 
5343 		rec = kptr_pointee_btf_record(kptr_field);
5344 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5345 			ret |= NON_OWN_REF;
5346 	} else {
5347 		ret |= PTR_UNTRUSTED;
5348 	}
5349 
5350 	return ret;
5351 }
5352 
5353 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5354 				 int value_regno, int insn_idx,
5355 				 struct btf_field *kptr_field)
5356 {
5357 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5358 	int class = BPF_CLASS(insn->code);
5359 	struct bpf_reg_state *val_reg;
5360 
5361 	/* Things we already checked for in check_map_access and caller:
5362 	 *  - Reject cases where variable offset may touch kptr
5363 	 *  - size of access (must be BPF_DW)
5364 	 *  - tnum_is_const(reg->var_off)
5365 	 *  - kptr_field->offset == off + reg->var_off.value
5366 	 */
5367 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5368 	if (BPF_MODE(insn->code) != BPF_MEM) {
5369 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5370 		return -EACCES;
5371 	}
5372 
5373 	/* We only allow loading referenced kptr, since it will be marked as
5374 	 * untrusted, similar to unreferenced kptr.
5375 	 */
5376 	if (class != BPF_LDX &&
5377 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5378 		verbose(env, "store to referenced kptr disallowed\n");
5379 		return -EACCES;
5380 	}
5381 
5382 	if (class == BPF_LDX) {
5383 		val_reg = reg_state(env, value_regno);
5384 		/* We can simply mark the value_regno receiving the pointer
5385 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5386 		 */
5387 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5388 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5389 		/* For mark_ptr_or_null_reg */
5390 		val_reg->id = ++env->id_gen;
5391 	} else if (class == BPF_STX) {
5392 		val_reg = reg_state(env, value_regno);
5393 		if (!register_is_null(val_reg) &&
5394 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5395 			return -EACCES;
5396 	} else if (class == BPF_ST) {
5397 		if (insn->imm) {
5398 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5399 				kptr_field->offset);
5400 			return -EACCES;
5401 		}
5402 	} else {
5403 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5404 		return -EACCES;
5405 	}
5406 	return 0;
5407 }
5408 
5409 /* check read/write into a map element with possible variable offset */
5410 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5411 			    int off, int size, bool zero_size_allowed,
5412 			    enum bpf_access_src src)
5413 {
5414 	struct bpf_verifier_state *vstate = env->cur_state;
5415 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5416 	struct bpf_reg_state *reg = &state->regs[regno];
5417 	struct bpf_map *map = reg->map_ptr;
5418 	struct btf_record *rec;
5419 	int err, i;
5420 
5421 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5422 				      zero_size_allowed);
5423 	if (err)
5424 		return err;
5425 
5426 	if (IS_ERR_OR_NULL(map->record))
5427 		return 0;
5428 	rec = map->record;
5429 	for (i = 0; i < rec->cnt; i++) {
5430 		struct btf_field *field = &rec->fields[i];
5431 		u32 p = field->offset;
5432 
5433 		/* If any part of a field  can be touched by load/store, reject
5434 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5435 		 * it is sufficient to check x1 < y2 && y1 < x2.
5436 		 */
5437 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5438 		    p < reg->umax_value + off + size) {
5439 			switch (field->type) {
5440 			case BPF_KPTR_UNREF:
5441 			case BPF_KPTR_REF:
5442 			case BPF_KPTR_PERCPU:
5443 				if (src != ACCESS_DIRECT) {
5444 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5445 					return -EACCES;
5446 				}
5447 				if (!tnum_is_const(reg->var_off)) {
5448 					verbose(env, "kptr access cannot have variable offset\n");
5449 					return -EACCES;
5450 				}
5451 				if (p != off + reg->var_off.value) {
5452 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5453 						p, off + reg->var_off.value);
5454 					return -EACCES;
5455 				}
5456 				if (size != bpf_size_to_bytes(BPF_DW)) {
5457 					verbose(env, "kptr access size must be BPF_DW\n");
5458 					return -EACCES;
5459 				}
5460 				break;
5461 			default:
5462 				verbose(env, "%s cannot be accessed directly by load/store\n",
5463 					btf_field_type_name(field->type));
5464 				return -EACCES;
5465 			}
5466 		}
5467 	}
5468 	return 0;
5469 }
5470 
5471 #define MAX_PACKET_OFF 0xffff
5472 
5473 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5474 				       const struct bpf_call_arg_meta *meta,
5475 				       enum bpf_access_type t)
5476 {
5477 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5478 
5479 	switch (prog_type) {
5480 	/* Program types only with direct read access go here! */
5481 	case BPF_PROG_TYPE_LWT_IN:
5482 	case BPF_PROG_TYPE_LWT_OUT:
5483 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5484 	case BPF_PROG_TYPE_SK_REUSEPORT:
5485 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5486 	case BPF_PROG_TYPE_CGROUP_SKB:
5487 		if (t == BPF_WRITE)
5488 			return false;
5489 		fallthrough;
5490 
5491 	/* Program types with direct read + write access go here! */
5492 	case BPF_PROG_TYPE_SCHED_CLS:
5493 	case BPF_PROG_TYPE_SCHED_ACT:
5494 	case BPF_PROG_TYPE_XDP:
5495 	case BPF_PROG_TYPE_LWT_XMIT:
5496 	case BPF_PROG_TYPE_SK_SKB:
5497 	case BPF_PROG_TYPE_SK_MSG:
5498 		if (meta)
5499 			return meta->pkt_access;
5500 
5501 		env->seen_direct_write = true;
5502 		return true;
5503 
5504 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5505 		if (t == BPF_WRITE)
5506 			env->seen_direct_write = true;
5507 
5508 		return true;
5509 
5510 	default:
5511 		return false;
5512 	}
5513 }
5514 
5515 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5516 			       int size, bool zero_size_allowed)
5517 {
5518 	struct bpf_reg_state *regs = cur_regs(env);
5519 	struct bpf_reg_state *reg = &regs[regno];
5520 	int err;
5521 
5522 	/* We may have added a variable offset to the packet pointer; but any
5523 	 * reg->range we have comes after that.  We are only checking the fixed
5524 	 * offset.
5525 	 */
5526 
5527 	/* We don't allow negative numbers, because we aren't tracking enough
5528 	 * detail to prove they're safe.
5529 	 */
5530 	if (reg->smin_value < 0) {
5531 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5532 			regno);
5533 		return -EACCES;
5534 	}
5535 
5536 	err = reg->range < 0 ? -EINVAL :
5537 	      __check_mem_access(env, regno, off, size, reg->range,
5538 				 zero_size_allowed);
5539 	if (err) {
5540 		verbose(env, "R%d offset is outside of the packet\n", regno);
5541 		return err;
5542 	}
5543 
5544 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5545 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5546 	 * otherwise find_good_pkt_pointers would have refused to set range info
5547 	 * that __check_mem_access would have rejected this pkt access.
5548 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5549 	 */
5550 	env->prog->aux->max_pkt_offset =
5551 		max_t(u32, env->prog->aux->max_pkt_offset,
5552 		      off + reg->umax_value + size - 1);
5553 
5554 	return err;
5555 }
5556 
5557 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5558 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5559 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5560 			    struct btf **btf, u32 *btf_id)
5561 {
5562 	struct bpf_insn_access_aux info = {
5563 		.reg_type = *reg_type,
5564 		.log = &env->log,
5565 	};
5566 
5567 	if (env->ops->is_valid_access &&
5568 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5569 		/* A non zero info.ctx_field_size indicates that this field is a
5570 		 * candidate for later verifier transformation to load the whole
5571 		 * field and then apply a mask when accessed with a narrower
5572 		 * access than actual ctx access size. A zero info.ctx_field_size
5573 		 * will only allow for whole field access and rejects any other
5574 		 * type of narrower access.
5575 		 */
5576 		*reg_type = info.reg_type;
5577 
5578 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5579 			*btf = info.btf;
5580 			*btf_id = info.btf_id;
5581 		} else {
5582 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5583 		}
5584 		/* remember the offset of last byte accessed in ctx */
5585 		if (env->prog->aux->max_ctx_offset < off + size)
5586 			env->prog->aux->max_ctx_offset = off + size;
5587 		return 0;
5588 	}
5589 
5590 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5591 	return -EACCES;
5592 }
5593 
5594 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5595 				  int size)
5596 {
5597 	if (size < 0 || off < 0 ||
5598 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5599 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5600 			off, size);
5601 		return -EACCES;
5602 	}
5603 	return 0;
5604 }
5605 
5606 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5607 			     u32 regno, int off, int size,
5608 			     enum bpf_access_type t)
5609 {
5610 	struct bpf_reg_state *regs = cur_regs(env);
5611 	struct bpf_reg_state *reg = &regs[regno];
5612 	struct bpf_insn_access_aux info = {};
5613 	bool valid;
5614 
5615 	if (reg->smin_value < 0) {
5616 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5617 			regno);
5618 		return -EACCES;
5619 	}
5620 
5621 	switch (reg->type) {
5622 	case PTR_TO_SOCK_COMMON:
5623 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5624 		break;
5625 	case PTR_TO_SOCKET:
5626 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5627 		break;
5628 	case PTR_TO_TCP_SOCK:
5629 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5630 		break;
5631 	case PTR_TO_XDP_SOCK:
5632 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5633 		break;
5634 	default:
5635 		valid = false;
5636 	}
5637 
5638 
5639 	if (valid) {
5640 		env->insn_aux_data[insn_idx].ctx_field_size =
5641 			info.ctx_field_size;
5642 		return 0;
5643 	}
5644 
5645 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5646 		regno, reg_type_str(env, reg->type), off, size);
5647 
5648 	return -EACCES;
5649 }
5650 
5651 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5652 {
5653 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5654 }
5655 
5656 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5657 {
5658 	const struct bpf_reg_state *reg = reg_state(env, regno);
5659 
5660 	return reg->type == PTR_TO_CTX;
5661 }
5662 
5663 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5664 {
5665 	const struct bpf_reg_state *reg = reg_state(env, regno);
5666 
5667 	return type_is_sk_pointer(reg->type);
5668 }
5669 
5670 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5671 {
5672 	const struct bpf_reg_state *reg = reg_state(env, regno);
5673 
5674 	return type_is_pkt_pointer(reg->type);
5675 }
5676 
5677 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5678 {
5679 	const struct bpf_reg_state *reg = reg_state(env, regno);
5680 
5681 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5682 	return reg->type == PTR_TO_FLOW_KEYS;
5683 }
5684 
5685 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5686 {
5687 	const struct bpf_reg_state *reg = reg_state(env, regno);
5688 
5689 	return reg->type == PTR_TO_ARENA;
5690 }
5691 
5692 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5693 #ifdef CONFIG_NET
5694 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5695 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5696 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5697 #endif
5698 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5699 };
5700 
5701 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5702 {
5703 	/* A referenced register is always trusted. */
5704 	if (reg->ref_obj_id)
5705 		return true;
5706 
5707 	/* Types listed in the reg2btf_ids are always trusted */
5708 	if (reg2btf_ids[base_type(reg->type)])
5709 		return true;
5710 
5711 	/* If a register is not referenced, it is trusted if it has the
5712 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5713 	 * other type modifiers may be safe, but we elect to take an opt-in
5714 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5715 	 * not.
5716 	 *
5717 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5718 	 * for whether a register is trusted.
5719 	 */
5720 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5721 	       !bpf_type_has_unsafe_modifiers(reg->type);
5722 }
5723 
5724 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5725 {
5726 	return reg->type & MEM_RCU;
5727 }
5728 
5729 static void clear_trusted_flags(enum bpf_type_flag *flag)
5730 {
5731 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5732 }
5733 
5734 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5735 				   const struct bpf_reg_state *reg,
5736 				   int off, int size, bool strict)
5737 {
5738 	struct tnum reg_off;
5739 	int ip_align;
5740 
5741 	/* Byte size accesses are always allowed. */
5742 	if (!strict || size == 1)
5743 		return 0;
5744 
5745 	/* For platforms that do not have a Kconfig enabling
5746 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5747 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5748 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5749 	 * to this code only in strict mode where we want to emulate
5750 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5751 	 * unconditional IP align value of '2'.
5752 	 */
5753 	ip_align = 2;
5754 
5755 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5756 	if (!tnum_is_aligned(reg_off, size)) {
5757 		char tn_buf[48];
5758 
5759 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5760 		verbose(env,
5761 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5762 			ip_align, tn_buf, reg->off, off, size);
5763 		return -EACCES;
5764 	}
5765 
5766 	return 0;
5767 }
5768 
5769 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5770 				       const struct bpf_reg_state *reg,
5771 				       const char *pointer_desc,
5772 				       int off, int size, bool strict)
5773 {
5774 	struct tnum reg_off;
5775 
5776 	/* Byte size accesses are always allowed. */
5777 	if (!strict || size == 1)
5778 		return 0;
5779 
5780 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5781 	if (!tnum_is_aligned(reg_off, size)) {
5782 		char tn_buf[48];
5783 
5784 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5785 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5786 			pointer_desc, tn_buf, reg->off, off, size);
5787 		return -EACCES;
5788 	}
5789 
5790 	return 0;
5791 }
5792 
5793 static int check_ptr_alignment(struct bpf_verifier_env *env,
5794 			       const struct bpf_reg_state *reg, int off,
5795 			       int size, bool strict_alignment_once)
5796 {
5797 	bool strict = env->strict_alignment || strict_alignment_once;
5798 	const char *pointer_desc = "";
5799 
5800 	switch (reg->type) {
5801 	case PTR_TO_PACKET:
5802 	case PTR_TO_PACKET_META:
5803 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5804 		 * right in front, treat it the very same way.
5805 		 */
5806 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5807 	case PTR_TO_FLOW_KEYS:
5808 		pointer_desc = "flow keys ";
5809 		break;
5810 	case PTR_TO_MAP_KEY:
5811 		pointer_desc = "key ";
5812 		break;
5813 	case PTR_TO_MAP_VALUE:
5814 		pointer_desc = "value ";
5815 		break;
5816 	case PTR_TO_CTX:
5817 		pointer_desc = "context ";
5818 		break;
5819 	case PTR_TO_STACK:
5820 		pointer_desc = "stack ";
5821 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5822 		 * and check_stack_read_fixed_off() relies on stack accesses being
5823 		 * aligned.
5824 		 */
5825 		strict = true;
5826 		break;
5827 	case PTR_TO_SOCKET:
5828 		pointer_desc = "sock ";
5829 		break;
5830 	case PTR_TO_SOCK_COMMON:
5831 		pointer_desc = "sock_common ";
5832 		break;
5833 	case PTR_TO_TCP_SOCK:
5834 		pointer_desc = "tcp_sock ";
5835 		break;
5836 	case PTR_TO_XDP_SOCK:
5837 		pointer_desc = "xdp_sock ";
5838 		break;
5839 	case PTR_TO_ARENA:
5840 		return 0;
5841 	default:
5842 		break;
5843 	}
5844 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5845 					   strict);
5846 }
5847 
5848 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
5849 {
5850 	if (env->prog->jit_requested)
5851 		return round_up(stack_depth, 16);
5852 
5853 	/* round up to 32-bytes, since this is granularity
5854 	 * of interpreter stack size
5855 	 */
5856 	return round_up(max_t(u32, stack_depth, 1), 32);
5857 }
5858 
5859 /* starting from main bpf function walk all instructions of the function
5860  * and recursively walk all callees that given function can call.
5861  * Ignore jump and exit insns.
5862  * Since recursion is prevented by check_cfg() this algorithm
5863  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5864  */
5865 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5866 {
5867 	struct bpf_subprog_info *subprog = env->subprog_info;
5868 	struct bpf_insn *insn = env->prog->insnsi;
5869 	int depth = 0, frame = 0, i, subprog_end;
5870 	bool tail_call_reachable = false;
5871 	int ret_insn[MAX_CALL_FRAMES];
5872 	int ret_prog[MAX_CALL_FRAMES];
5873 	int j;
5874 
5875 	i = subprog[idx].start;
5876 process_func:
5877 	/* protect against potential stack overflow that might happen when
5878 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5879 	 * depth for such case down to 256 so that the worst case scenario
5880 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5881 	 * 8k).
5882 	 *
5883 	 * To get the idea what might happen, see an example:
5884 	 * func1 -> sub rsp, 128
5885 	 *  subfunc1 -> sub rsp, 256
5886 	 *  tailcall1 -> add rsp, 256
5887 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5888 	 *   subfunc2 -> sub rsp, 64
5889 	 *   subfunc22 -> sub rsp, 128
5890 	 *   tailcall2 -> add rsp, 128
5891 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5892 	 *
5893 	 * tailcall will unwind the current stack frame but it will not get rid
5894 	 * of caller's stack as shown on the example above.
5895 	 */
5896 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5897 		verbose(env,
5898 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5899 			depth);
5900 		return -EACCES;
5901 	}
5902 	depth += round_up_stack_depth(env, subprog[idx].stack_depth);
5903 	if (depth > MAX_BPF_STACK) {
5904 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5905 			frame + 1, depth);
5906 		return -EACCES;
5907 	}
5908 continue_func:
5909 	subprog_end = subprog[idx + 1].start;
5910 	for (; i < subprog_end; i++) {
5911 		int next_insn, sidx;
5912 
5913 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5914 			bool err = false;
5915 
5916 			if (!is_bpf_throw_kfunc(insn + i))
5917 				continue;
5918 			if (subprog[idx].is_cb)
5919 				err = true;
5920 			for (int c = 0; c < frame && !err; c++) {
5921 				if (subprog[ret_prog[c]].is_cb) {
5922 					err = true;
5923 					break;
5924 				}
5925 			}
5926 			if (!err)
5927 				continue;
5928 			verbose(env,
5929 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5930 				i, idx);
5931 			return -EINVAL;
5932 		}
5933 
5934 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5935 			continue;
5936 		/* remember insn and function to return to */
5937 		ret_insn[frame] = i + 1;
5938 		ret_prog[frame] = idx;
5939 
5940 		/* find the callee */
5941 		next_insn = i + insn[i].imm + 1;
5942 		sidx = find_subprog(env, next_insn);
5943 		if (sidx < 0) {
5944 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5945 				  next_insn);
5946 			return -EFAULT;
5947 		}
5948 		if (subprog[sidx].is_async_cb) {
5949 			if (subprog[sidx].has_tail_call) {
5950 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5951 				return -EFAULT;
5952 			}
5953 			/* async callbacks don't increase bpf prog stack size unless called directly */
5954 			if (!bpf_pseudo_call(insn + i))
5955 				continue;
5956 			if (subprog[sidx].is_exception_cb) {
5957 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5958 				return -EINVAL;
5959 			}
5960 		}
5961 		i = next_insn;
5962 		idx = sidx;
5963 
5964 		if (subprog[idx].has_tail_call)
5965 			tail_call_reachable = true;
5966 
5967 		frame++;
5968 		if (frame >= MAX_CALL_FRAMES) {
5969 			verbose(env, "the call stack of %d frames is too deep !\n",
5970 				frame);
5971 			return -E2BIG;
5972 		}
5973 		goto process_func;
5974 	}
5975 	/* if tail call got detected across bpf2bpf calls then mark each of the
5976 	 * currently present subprog frames as tail call reachable subprogs;
5977 	 * this info will be utilized by JIT so that we will be preserving the
5978 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5979 	 */
5980 	if (tail_call_reachable)
5981 		for (j = 0; j < frame; j++) {
5982 			if (subprog[ret_prog[j]].is_exception_cb) {
5983 				verbose(env, "cannot tail call within exception cb\n");
5984 				return -EINVAL;
5985 			}
5986 			subprog[ret_prog[j]].tail_call_reachable = true;
5987 		}
5988 	if (subprog[0].tail_call_reachable)
5989 		env->prog->aux->tail_call_reachable = true;
5990 
5991 	/* end of for() loop means the last insn of the 'subprog'
5992 	 * was reached. Doesn't matter whether it was JA or EXIT
5993 	 */
5994 	if (frame == 0)
5995 		return 0;
5996 	depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
5997 	frame--;
5998 	i = ret_insn[frame];
5999 	idx = ret_prog[frame];
6000 	goto continue_func;
6001 }
6002 
6003 static int check_max_stack_depth(struct bpf_verifier_env *env)
6004 {
6005 	struct bpf_subprog_info *si = env->subprog_info;
6006 	int ret;
6007 
6008 	for (int i = 0; i < env->subprog_cnt; i++) {
6009 		if (!i || si[i].is_async_cb) {
6010 			ret = check_max_stack_depth_subprog(env, i);
6011 			if (ret < 0)
6012 				return ret;
6013 		}
6014 		continue;
6015 	}
6016 	return 0;
6017 }
6018 
6019 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6020 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6021 				  const struct bpf_insn *insn, int idx)
6022 {
6023 	int start = idx + insn->imm + 1, subprog;
6024 
6025 	subprog = find_subprog(env, start);
6026 	if (subprog < 0) {
6027 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6028 			  start);
6029 		return -EFAULT;
6030 	}
6031 	return env->subprog_info[subprog].stack_depth;
6032 }
6033 #endif
6034 
6035 static int __check_buffer_access(struct bpf_verifier_env *env,
6036 				 const char *buf_info,
6037 				 const struct bpf_reg_state *reg,
6038 				 int regno, int off, int size)
6039 {
6040 	if (off < 0) {
6041 		verbose(env,
6042 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6043 			regno, buf_info, off, size);
6044 		return -EACCES;
6045 	}
6046 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6047 		char tn_buf[48];
6048 
6049 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6050 		verbose(env,
6051 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6052 			regno, off, tn_buf);
6053 		return -EACCES;
6054 	}
6055 
6056 	return 0;
6057 }
6058 
6059 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6060 				  const struct bpf_reg_state *reg,
6061 				  int regno, int off, int size)
6062 {
6063 	int err;
6064 
6065 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6066 	if (err)
6067 		return err;
6068 
6069 	if (off + size > env->prog->aux->max_tp_access)
6070 		env->prog->aux->max_tp_access = off + size;
6071 
6072 	return 0;
6073 }
6074 
6075 static int check_buffer_access(struct bpf_verifier_env *env,
6076 			       const struct bpf_reg_state *reg,
6077 			       int regno, int off, int size,
6078 			       bool zero_size_allowed,
6079 			       u32 *max_access)
6080 {
6081 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6082 	int err;
6083 
6084 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6085 	if (err)
6086 		return err;
6087 
6088 	if (off + size > *max_access)
6089 		*max_access = off + size;
6090 
6091 	return 0;
6092 }
6093 
6094 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6095 static void zext_32_to_64(struct bpf_reg_state *reg)
6096 {
6097 	reg->var_off = tnum_subreg(reg->var_off);
6098 	__reg_assign_32_into_64(reg);
6099 }
6100 
6101 /* truncate register to smaller size (in bytes)
6102  * must be called with size < BPF_REG_SIZE
6103  */
6104 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6105 {
6106 	u64 mask;
6107 
6108 	/* clear high bits in bit representation */
6109 	reg->var_off = tnum_cast(reg->var_off, size);
6110 
6111 	/* fix arithmetic bounds */
6112 	mask = ((u64)1 << (size * 8)) - 1;
6113 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6114 		reg->umin_value &= mask;
6115 		reg->umax_value &= mask;
6116 	} else {
6117 		reg->umin_value = 0;
6118 		reg->umax_value = mask;
6119 	}
6120 	reg->smin_value = reg->umin_value;
6121 	reg->smax_value = reg->umax_value;
6122 
6123 	/* If size is smaller than 32bit register the 32bit register
6124 	 * values are also truncated so we push 64-bit bounds into
6125 	 * 32-bit bounds. Above were truncated < 32-bits already.
6126 	 */
6127 	if (size < 4)
6128 		__mark_reg32_unbounded(reg);
6129 
6130 	reg_bounds_sync(reg);
6131 }
6132 
6133 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6134 {
6135 	if (size == 1) {
6136 		reg->smin_value = reg->s32_min_value = S8_MIN;
6137 		reg->smax_value = reg->s32_max_value = S8_MAX;
6138 	} else if (size == 2) {
6139 		reg->smin_value = reg->s32_min_value = S16_MIN;
6140 		reg->smax_value = reg->s32_max_value = S16_MAX;
6141 	} else {
6142 		/* size == 4 */
6143 		reg->smin_value = reg->s32_min_value = S32_MIN;
6144 		reg->smax_value = reg->s32_max_value = S32_MAX;
6145 	}
6146 	reg->umin_value = reg->u32_min_value = 0;
6147 	reg->umax_value = U64_MAX;
6148 	reg->u32_max_value = U32_MAX;
6149 	reg->var_off = tnum_unknown;
6150 }
6151 
6152 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6153 {
6154 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6155 	u64 top_smax_value, top_smin_value;
6156 	u64 num_bits = size * 8;
6157 
6158 	if (tnum_is_const(reg->var_off)) {
6159 		u64_cval = reg->var_off.value;
6160 		if (size == 1)
6161 			reg->var_off = tnum_const((s8)u64_cval);
6162 		else if (size == 2)
6163 			reg->var_off = tnum_const((s16)u64_cval);
6164 		else
6165 			/* size == 4 */
6166 			reg->var_off = tnum_const((s32)u64_cval);
6167 
6168 		u64_cval = reg->var_off.value;
6169 		reg->smax_value = reg->smin_value = u64_cval;
6170 		reg->umax_value = reg->umin_value = u64_cval;
6171 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6172 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6173 		return;
6174 	}
6175 
6176 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6177 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6178 
6179 	if (top_smax_value != top_smin_value)
6180 		goto out;
6181 
6182 	/* find the s64_min and s64_min after sign extension */
6183 	if (size == 1) {
6184 		init_s64_max = (s8)reg->smax_value;
6185 		init_s64_min = (s8)reg->smin_value;
6186 	} else if (size == 2) {
6187 		init_s64_max = (s16)reg->smax_value;
6188 		init_s64_min = (s16)reg->smin_value;
6189 	} else {
6190 		init_s64_max = (s32)reg->smax_value;
6191 		init_s64_min = (s32)reg->smin_value;
6192 	}
6193 
6194 	s64_max = max(init_s64_max, init_s64_min);
6195 	s64_min = min(init_s64_max, init_s64_min);
6196 
6197 	/* both of s64_max/s64_min positive or negative */
6198 	if ((s64_max >= 0) == (s64_min >= 0)) {
6199 		reg->smin_value = reg->s32_min_value = s64_min;
6200 		reg->smax_value = reg->s32_max_value = s64_max;
6201 		reg->umin_value = reg->u32_min_value = s64_min;
6202 		reg->umax_value = reg->u32_max_value = s64_max;
6203 		reg->var_off = tnum_range(s64_min, s64_max);
6204 		return;
6205 	}
6206 
6207 out:
6208 	set_sext64_default_val(reg, size);
6209 }
6210 
6211 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6212 {
6213 	if (size == 1) {
6214 		reg->s32_min_value = S8_MIN;
6215 		reg->s32_max_value = S8_MAX;
6216 	} else {
6217 		/* size == 2 */
6218 		reg->s32_min_value = S16_MIN;
6219 		reg->s32_max_value = S16_MAX;
6220 	}
6221 	reg->u32_min_value = 0;
6222 	reg->u32_max_value = U32_MAX;
6223 }
6224 
6225 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6226 {
6227 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6228 	u32 top_smax_value, top_smin_value;
6229 	u32 num_bits = size * 8;
6230 
6231 	if (tnum_is_const(reg->var_off)) {
6232 		u32_val = reg->var_off.value;
6233 		if (size == 1)
6234 			reg->var_off = tnum_const((s8)u32_val);
6235 		else
6236 			reg->var_off = tnum_const((s16)u32_val);
6237 
6238 		u32_val = reg->var_off.value;
6239 		reg->s32_min_value = reg->s32_max_value = u32_val;
6240 		reg->u32_min_value = reg->u32_max_value = u32_val;
6241 		return;
6242 	}
6243 
6244 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6245 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6246 
6247 	if (top_smax_value != top_smin_value)
6248 		goto out;
6249 
6250 	/* find the s32_min and s32_min after sign extension */
6251 	if (size == 1) {
6252 		init_s32_max = (s8)reg->s32_max_value;
6253 		init_s32_min = (s8)reg->s32_min_value;
6254 	} else {
6255 		/* size == 2 */
6256 		init_s32_max = (s16)reg->s32_max_value;
6257 		init_s32_min = (s16)reg->s32_min_value;
6258 	}
6259 	s32_max = max(init_s32_max, init_s32_min);
6260 	s32_min = min(init_s32_max, init_s32_min);
6261 
6262 	if ((s32_min >= 0) == (s32_max >= 0)) {
6263 		reg->s32_min_value = s32_min;
6264 		reg->s32_max_value = s32_max;
6265 		reg->u32_min_value = (u32)s32_min;
6266 		reg->u32_max_value = (u32)s32_max;
6267 		return;
6268 	}
6269 
6270 out:
6271 	set_sext32_default_val(reg, size);
6272 }
6273 
6274 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6275 {
6276 	/* A map is considered read-only if the following condition are true:
6277 	 *
6278 	 * 1) BPF program side cannot change any of the map content. The
6279 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6280 	 *    and was set at map creation time.
6281 	 * 2) The map value(s) have been initialized from user space by a
6282 	 *    loader and then "frozen", such that no new map update/delete
6283 	 *    operations from syscall side are possible for the rest of
6284 	 *    the map's lifetime from that point onwards.
6285 	 * 3) Any parallel/pending map update/delete operations from syscall
6286 	 *    side have been completed. Only after that point, it's safe to
6287 	 *    assume that map value(s) are immutable.
6288 	 */
6289 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6290 	       READ_ONCE(map->frozen) &&
6291 	       !bpf_map_write_active(map);
6292 }
6293 
6294 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6295 			       bool is_ldsx)
6296 {
6297 	void *ptr;
6298 	u64 addr;
6299 	int err;
6300 
6301 	err = map->ops->map_direct_value_addr(map, &addr, off);
6302 	if (err)
6303 		return err;
6304 	ptr = (void *)(long)addr + off;
6305 
6306 	switch (size) {
6307 	case sizeof(u8):
6308 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6309 		break;
6310 	case sizeof(u16):
6311 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6312 		break;
6313 	case sizeof(u32):
6314 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6315 		break;
6316 	case sizeof(u64):
6317 		*val = *(u64 *)ptr;
6318 		break;
6319 	default:
6320 		return -EINVAL;
6321 	}
6322 	return 0;
6323 }
6324 
6325 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6326 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6327 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6328 
6329 /*
6330  * Allow list few fields as RCU trusted or full trusted.
6331  * This logic doesn't allow mix tagging and will be removed once GCC supports
6332  * btf_type_tag.
6333  */
6334 
6335 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6336 BTF_TYPE_SAFE_RCU(struct task_struct) {
6337 	const cpumask_t *cpus_ptr;
6338 	struct css_set __rcu *cgroups;
6339 	struct task_struct __rcu *real_parent;
6340 	struct task_struct *group_leader;
6341 };
6342 
6343 BTF_TYPE_SAFE_RCU(struct cgroup) {
6344 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6345 	struct kernfs_node *kn;
6346 };
6347 
6348 BTF_TYPE_SAFE_RCU(struct css_set) {
6349 	struct cgroup *dfl_cgrp;
6350 };
6351 
6352 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6353 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6354 	struct file __rcu *exe_file;
6355 };
6356 
6357 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6358  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6359  */
6360 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6361 	struct sock *sk;
6362 };
6363 
6364 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6365 	struct sock *sk;
6366 };
6367 
6368 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6369 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6370 	struct seq_file *seq;
6371 };
6372 
6373 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6374 	struct bpf_iter_meta *meta;
6375 	struct task_struct *task;
6376 };
6377 
6378 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6379 	struct file *file;
6380 };
6381 
6382 BTF_TYPE_SAFE_TRUSTED(struct file) {
6383 	struct inode *f_inode;
6384 };
6385 
6386 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6387 	/* no negative dentry-s in places where bpf can see it */
6388 	struct inode *d_inode;
6389 };
6390 
6391 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6392 	struct sock *sk;
6393 };
6394 
6395 static bool type_is_rcu(struct bpf_verifier_env *env,
6396 			struct bpf_reg_state *reg,
6397 			const char *field_name, u32 btf_id)
6398 {
6399 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6400 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6401 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6402 
6403 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6404 }
6405 
6406 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6407 				struct bpf_reg_state *reg,
6408 				const char *field_name, u32 btf_id)
6409 {
6410 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6411 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6412 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6413 
6414 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6415 }
6416 
6417 static bool type_is_trusted(struct bpf_verifier_env *env,
6418 			    struct bpf_reg_state *reg,
6419 			    const char *field_name, u32 btf_id)
6420 {
6421 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6422 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6423 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6424 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6425 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6426 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6427 
6428 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6429 }
6430 
6431 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6432 				   struct bpf_reg_state *regs,
6433 				   int regno, int off, int size,
6434 				   enum bpf_access_type atype,
6435 				   int value_regno)
6436 {
6437 	struct bpf_reg_state *reg = regs + regno;
6438 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6439 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6440 	const char *field_name = NULL;
6441 	enum bpf_type_flag flag = 0;
6442 	u32 btf_id = 0;
6443 	int ret;
6444 
6445 	if (!env->allow_ptr_leaks) {
6446 		verbose(env,
6447 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6448 			tname);
6449 		return -EPERM;
6450 	}
6451 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6452 		verbose(env,
6453 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6454 			tname);
6455 		return -EINVAL;
6456 	}
6457 	if (off < 0) {
6458 		verbose(env,
6459 			"R%d is ptr_%s invalid negative access: off=%d\n",
6460 			regno, tname, off);
6461 		return -EACCES;
6462 	}
6463 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6464 		char tn_buf[48];
6465 
6466 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6467 		verbose(env,
6468 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6469 			regno, tname, off, tn_buf);
6470 		return -EACCES;
6471 	}
6472 
6473 	if (reg->type & MEM_USER) {
6474 		verbose(env,
6475 			"R%d is ptr_%s access user memory: off=%d\n",
6476 			regno, tname, off);
6477 		return -EACCES;
6478 	}
6479 
6480 	if (reg->type & MEM_PERCPU) {
6481 		verbose(env,
6482 			"R%d is ptr_%s access percpu memory: off=%d\n",
6483 			regno, tname, off);
6484 		return -EACCES;
6485 	}
6486 
6487 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6488 		if (!btf_is_kernel(reg->btf)) {
6489 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6490 			return -EFAULT;
6491 		}
6492 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6493 	} else {
6494 		/* Writes are permitted with default btf_struct_access for
6495 		 * program allocated objects (which always have ref_obj_id > 0),
6496 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6497 		 */
6498 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6499 			verbose(env, "only read is supported\n");
6500 			return -EACCES;
6501 		}
6502 
6503 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6504 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6505 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6506 			return -EFAULT;
6507 		}
6508 
6509 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6510 	}
6511 
6512 	if (ret < 0)
6513 		return ret;
6514 
6515 	if (ret != PTR_TO_BTF_ID) {
6516 		/* just mark; */
6517 
6518 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6519 		/* If this is an untrusted pointer, all pointers formed by walking it
6520 		 * also inherit the untrusted flag.
6521 		 */
6522 		flag = PTR_UNTRUSTED;
6523 
6524 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6525 		/* By default any pointer obtained from walking a trusted pointer is no
6526 		 * longer trusted, unless the field being accessed has explicitly been
6527 		 * marked as inheriting its parent's state of trust (either full or RCU).
6528 		 * For example:
6529 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6530 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6531 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6532 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6533 		 *
6534 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6535 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6536 		 */
6537 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6538 			flag |= PTR_TRUSTED;
6539 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6540 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6541 				/* ignore __rcu tag and mark it MEM_RCU */
6542 				flag |= MEM_RCU;
6543 			} else if (flag & MEM_RCU ||
6544 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6545 				/* __rcu tagged pointers can be NULL */
6546 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6547 
6548 				/* We always trust them */
6549 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6550 				    flag & PTR_UNTRUSTED)
6551 					flag &= ~PTR_UNTRUSTED;
6552 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6553 				/* keep as-is */
6554 			} else {
6555 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6556 				clear_trusted_flags(&flag);
6557 			}
6558 		} else {
6559 			/*
6560 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6561 			 * aggressively mark as untrusted otherwise such
6562 			 * pointers will be plain PTR_TO_BTF_ID without flags
6563 			 * and will be allowed to be passed into helpers for
6564 			 * compat reasons.
6565 			 */
6566 			flag = PTR_UNTRUSTED;
6567 		}
6568 	} else {
6569 		/* Old compat. Deprecated */
6570 		clear_trusted_flags(&flag);
6571 	}
6572 
6573 	if (atype == BPF_READ && value_regno >= 0)
6574 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6575 
6576 	return 0;
6577 }
6578 
6579 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6580 				   struct bpf_reg_state *regs,
6581 				   int regno, int off, int size,
6582 				   enum bpf_access_type atype,
6583 				   int value_regno)
6584 {
6585 	struct bpf_reg_state *reg = regs + regno;
6586 	struct bpf_map *map = reg->map_ptr;
6587 	struct bpf_reg_state map_reg;
6588 	enum bpf_type_flag flag = 0;
6589 	const struct btf_type *t;
6590 	const char *tname;
6591 	u32 btf_id;
6592 	int ret;
6593 
6594 	if (!btf_vmlinux) {
6595 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6596 		return -ENOTSUPP;
6597 	}
6598 
6599 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6600 		verbose(env, "map_ptr access not supported for map type %d\n",
6601 			map->map_type);
6602 		return -ENOTSUPP;
6603 	}
6604 
6605 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6606 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6607 
6608 	if (!env->allow_ptr_leaks) {
6609 		verbose(env,
6610 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6611 			tname);
6612 		return -EPERM;
6613 	}
6614 
6615 	if (off < 0) {
6616 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6617 			regno, tname, off);
6618 		return -EACCES;
6619 	}
6620 
6621 	if (atype != BPF_READ) {
6622 		verbose(env, "only read from %s is supported\n", tname);
6623 		return -EACCES;
6624 	}
6625 
6626 	/* Simulate access to a PTR_TO_BTF_ID */
6627 	memset(&map_reg, 0, sizeof(map_reg));
6628 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6629 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6630 	if (ret < 0)
6631 		return ret;
6632 
6633 	if (value_regno >= 0)
6634 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6635 
6636 	return 0;
6637 }
6638 
6639 /* Check that the stack access at the given offset is within bounds. The
6640  * maximum valid offset is -1.
6641  *
6642  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6643  * -state->allocated_stack for reads.
6644  */
6645 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6646                                           s64 off,
6647                                           struct bpf_func_state *state,
6648                                           enum bpf_access_type t)
6649 {
6650 	int min_valid_off;
6651 
6652 	if (t == BPF_WRITE || env->allow_uninit_stack)
6653 		min_valid_off = -MAX_BPF_STACK;
6654 	else
6655 		min_valid_off = -state->allocated_stack;
6656 
6657 	if (off < min_valid_off || off > -1)
6658 		return -EACCES;
6659 	return 0;
6660 }
6661 
6662 /* Check that the stack access at 'regno + off' falls within the maximum stack
6663  * bounds.
6664  *
6665  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6666  */
6667 static int check_stack_access_within_bounds(
6668 		struct bpf_verifier_env *env,
6669 		int regno, int off, int access_size,
6670 		enum bpf_access_src src, enum bpf_access_type type)
6671 {
6672 	struct bpf_reg_state *regs = cur_regs(env);
6673 	struct bpf_reg_state *reg = regs + regno;
6674 	struct bpf_func_state *state = func(env, reg);
6675 	s64 min_off, max_off;
6676 	int err;
6677 	char *err_extra;
6678 
6679 	if (src == ACCESS_HELPER)
6680 		/* We don't know if helpers are reading or writing (or both). */
6681 		err_extra = " indirect access to";
6682 	else if (type == BPF_READ)
6683 		err_extra = " read from";
6684 	else
6685 		err_extra = " write to";
6686 
6687 	if (tnum_is_const(reg->var_off)) {
6688 		min_off = (s64)reg->var_off.value + off;
6689 		max_off = min_off + access_size;
6690 	} else {
6691 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6692 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6693 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6694 				err_extra, regno);
6695 			return -EACCES;
6696 		}
6697 		min_off = reg->smin_value + off;
6698 		max_off = reg->smax_value + off + access_size;
6699 	}
6700 
6701 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6702 	if (!err && max_off > 0)
6703 		err = -EINVAL; /* out of stack access into non-negative offsets */
6704 	if (!err && access_size < 0)
6705 		/* access_size should not be negative (or overflow an int); others checks
6706 		 * along the way should have prevented such an access.
6707 		 */
6708 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6709 
6710 	if (err) {
6711 		if (tnum_is_const(reg->var_off)) {
6712 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6713 				err_extra, regno, off, access_size);
6714 		} else {
6715 			char tn_buf[48];
6716 
6717 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6718 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6719 				err_extra, regno, tn_buf, off, access_size);
6720 		}
6721 		return err;
6722 	}
6723 
6724 	/* Note that there is no stack access with offset zero, so the needed stack
6725 	 * size is -min_off, not -min_off+1.
6726 	 */
6727 	return grow_stack_state(env, state, -min_off /* size */);
6728 }
6729 
6730 /* check whether memory at (regno + off) is accessible for t = (read | write)
6731  * if t==write, value_regno is a register which value is stored into memory
6732  * if t==read, value_regno is a register which will receive the value from memory
6733  * if t==write && value_regno==-1, some unknown value is stored into memory
6734  * if t==read && value_regno==-1, don't care what we read from memory
6735  */
6736 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6737 			    int off, int bpf_size, enum bpf_access_type t,
6738 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6739 {
6740 	struct bpf_reg_state *regs = cur_regs(env);
6741 	struct bpf_reg_state *reg = regs + regno;
6742 	int size, err = 0;
6743 
6744 	size = bpf_size_to_bytes(bpf_size);
6745 	if (size < 0)
6746 		return size;
6747 
6748 	/* alignment checks will add in reg->off themselves */
6749 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6750 	if (err)
6751 		return err;
6752 
6753 	/* for access checks, reg->off is just part of off */
6754 	off += reg->off;
6755 
6756 	if (reg->type == PTR_TO_MAP_KEY) {
6757 		if (t == BPF_WRITE) {
6758 			verbose(env, "write to change key R%d not allowed\n", regno);
6759 			return -EACCES;
6760 		}
6761 
6762 		err = check_mem_region_access(env, regno, off, size,
6763 					      reg->map_ptr->key_size, false);
6764 		if (err)
6765 			return err;
6766 		if (value_regno >= 0)
6767 			mark_reg_unknown(env, regs, value_regno);
6768 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6769 		struct btf_field *kptr_field = NULL;
6770 
6771 		if (t == BPF_WRITE && value_regno >= 0 &&
6772 		    is_pointer_value(env, value_regno)) {
6773 			verbose(env, "R%d leaks addr into map\n", value_regno);
6774 			return -EACCES;
6775 		}
6776 		err = check_map_access_type(env, regno, off, size, t);
6777 		if (err)
6778 			return err;
6779 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6780 		if (err)
6781 			return err;
6782 		if (tnum_is_const(reg->var_off))
6783 			kptr_field = btf_record_find(reg->map_ptr->record,
6784 						     off + reg->var_off.value, BPF_KPTR);
6785 		if (kptr_field) {
6786 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6787 		} else if (t == BPF_READ && value_regno >= 0) {
6788 			struct bpf_map *map = reg->map_ptr;
6789 
6790 			/* if map is read-only, track its contents as scalars */
6791 			if (tnum_is_const(reg->var_off) &&
6792 			    bpf_map_is_rdonly(map) &&
6793 			    map->ops->map_direct_value_addr) {
6794 				int map_off = off + reg->var_off.value;
6795 				u64 val = 0;
6796 
6797 				err = bpf_map_direct_read(map, map_off, size,
6798 							  &val, is_ldsx);
6799 				if (err)
6800 					return err;
6801 
6802 				regs[value_regno].type = SCALAR_VALUE;
6803 				__mark_reg_known(&regs[value_regno], val);
6804 			} else {
6805 				mark_reg_unknown(env, regs, value_regno);
6806 			}
6807 		}
6808 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6809 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6810 
6811 		if (type_may_be_null(reg->type)) {
6812 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6813 				reg_type_str(env, reg->type));
6814 			return -EACCES;
6815 		}
6816 
6817 		if (t == BPF_WRITE && rdonly_mem) {
6818 			verbose(env, "R%d cannot write into %s\n",
6819 				regno, reg_type_str(env, reg->type));
6820 			return -EACCES;
6821 		}
6822 
6823 		if (t == BPF_WRITE && value_regno >= 0 &&
6824 		    is_pointer_value(env, value_regno)) {
6825 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6826 			return -EACCES;
6827 		}
6828 
6829 		err = check_mem_region_access(env, regno, off, size,
6830 					      reg->mem_size, false);
6831 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6832 			mark_reg_unknown(env, regs, value_regno);
6833 	} else if (reg->type == PTR_TO_CTX) {
6834 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6835 		struct btf *btf = NULL;
6836 		u32 btf_id = 0;
6837 
6838 		if (t == BPF_WRITE && value_regno >= 0 &&
6839 		    is_pointer_value(env, value_regno)) {
6840 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6841 			return -EACCES;
6842 		}
6843 
6844 		err = check_ptr_off_reg(env, reg, regno);
6845 		if (err < 0)
6846 			return err;
6847 
6848 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6849 				       &btf_id);
6850 		if (err)
6851 			verbose_linfo(env, insn_idx, "; ");
6852 		if (!err && t == BPF_READ && value_regno >= 0) {
6853 			/* ctx access returns either a scalar, or a
6854 			 * PTR_TO_PACKET[_META,_END]. In the latter
6855 			 * case, we know the offset is zero.
6856 			 */
6857 			if (reg_type == SCALAR_VALUE) {
6858 				mark_reg_unknown(env, regs, value_regno);
6859 			} else {
6860 				mark_reg_known_zero(env, regs,
6861 						    value_regno);
6862 				if (type_may_be_null(reg_type))
6863 					regs[value_regno].id = ++env->id_gen;
6864 				/* A load of ctx field could have different
6865 				 * actual load size with the one encoded in the
6866 				 * insn. When the dst is PTR, it is for sure not
6867 				 * a sub-register.
6868 				 */
6869 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6870 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6871 					regs[value_regno].btf = btf;
6872 					regs[value_regno].btf_id = btf_id;
6873 				}
6874 			}
6875 			regs[value_regno].type = reg_type;
6876 		}
6877 
6878 	} else if (reg->type == PTR_TO_STACK) {
6879 		/* Basic bounds checks. */
6880 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6881 		if (err)
6882 			return err;
6883 
6884 		if (t == BPF_READ)
6885 			err = check_stack_read(env, regno, off, size,
6886 					       value_regno);
6887 		else
6888 			err = check_stack_write(env, regno, off, size,
6889 						value_regno, insn_idx);
6890 	} else if (reg_is_pkt_pointer(reg)) {
6891 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6892 			verbose(env, "cannot write into packet\n");
6893 			return -EACCES;
6894 		}
6895 		if (t == BPF_WRITE && value_regno >= 0 &&
6896 		    is_pointer_value(env, value_regno)) {
6897 			verbose(env, "R%d leaks addr into packet\n",
6898 				value_regno);
6899 			return -EACCES;
6900 		}
6901 		err = check_packet_access(env, regno, off, size, false);
6902 		if (!err && t == BPF_READ && value_regno >= 0)
6903 			mark_reg_unknown(env, regs, value_regno);
6904 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6905 		if (t == BPF_WRITE && value_regno >= 0 &&
6906 		    is_pointer_value(env, value_regno)) {
6907 			verbose(env, "R%d leaks addr into flow keys\n",
6908 				value_regno);
6909 			return -EACCES;
6910 		}
6911 
6912 		err = check_flow_keys_access(env, off, size);
6913 		if (!err && t == BPF_READ && value_regno >= 0)
6914 			mark_reg_unknown(env, regs, value_regno);
6915 	} else if (type_is_sk_pointer(reg->type)) {
6916 		if (t == BPF_WRITE) {
6917 			verbose(env, "R%d cannot write into %s\n",
6918 				regno, reg_type_str(env, reg->type));
6919 			return -EACCES;
6920 		}
6921 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6922 		if (!err && value_regno >= 0)
6923 			mark_reg_unknown(env, regs, value_regno);
6924 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6925 		err = check_tp_buffer_access(env, reg, regno, off, size);
6926 		if (!err && t == BPF_READ && value_regno >= 0)
6927 			mark_reg_unknown(env, regs, value_regno);
6928 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6929 		   !type_may_be_null(reg->type)) {
6930 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6931 					      value_regno);
6932 	} else if (reg->type == CONST_PTR_TO_MAP) {
6933 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6934 					      value_regno);
6935 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6936 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6937 		u32 *max_access;
6938 
6939 		if (rdonly_mem) {
6940 			if (t == BPF_WRITE) {
6941 				verbose(env, "R%d cannot write into %s\n",
6942 					regno, reg_type_str(env, reg->type));
6943 				return -EACCES;
6944 			}
6945 			max_access = &env->prog->aux->max_rdonly_access;
6946 		} else {
6947 			max_access = &env->prog->aux->max_rdwr_access;
6948 		}
6949 
6950 		err = check_buffer_access(env, reg, regno, off, size, false,
6951 					  max_access);
6952 
6953 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6954 			mark_reg_unknown(env, regs, value_regno);
6955 	} else if (reg->type == PTR_TO_ARENA) {
6956 		if (t == BPF_READ && value_regno >= 0)
6957 			mark_reg_unknown(env, regs, value_regno);
6958 	} else {
6959 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6960 			reg_type_str(env, reg->type));
6961 		return -EACCES;
6962 	}
6963 
6964 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6965 	    regs[value_regno].type == SCALAR_VALUE) {
6966 		if (!is_ldsx)
6967 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6968 			coerce_reg_to_size(&regs[value_regno], size);
6969 		else
6970 			coerce_reg_to_size_sx(&regs[value_regno], size);
6971 	}
6972 	return err;
6973 }
6974 
6975 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6976 {
6977 	int load_reg;
6978 	int err;
6979 
6980 	switch (insn->imm) {
6981 	case BPF_ADD:
6982 	case BPF_ADD | BPF_FETCH:
6983 	case BPF_AND:
6984 	case BPF_AND | BPF_FETCH:
6985 	case BPF_OR:
6986 	case BPF_OR | BPF_FETCH:
6987 	case BPF_XOR:
6988 	case BPF_XOR | BPF_FETCH:
6989 	case BPF_XCHG:
6990 	case BPF_CMPXCHG:
6991 		break;
6992 	default:
6993 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6994 		return -EINVAL;
6995 	}
6996 
6997 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6998 		verbose(env, "invalid atomic operand size\n");
6999 		return -EINVAL;
7000 	}
7001 
7002 	/* check src1 operand */
7003 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7004 	if (err)
7005 		return err;
7006 
7007 	/* check src2 operand */
7008 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7009 	if (err)
7010 		return err;
7011 
7012 	if (insn->imm == BPF_CMPXCHG) {
7013 		/* Check comparison of R0 with memory location */
7014 		const u32 aux_reg = BPF_REG_0;
7015 
7016 		err = check_reg_arg(env, aux_reg, SRC_OP);
7017 		if (err)
7018 			return err;
7019 
7020 		if (is_pointer_value(env, aux_reg)) {
7021 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7022 			return -EACCES;
7023 		}
7024 	}
7025 
7026 	if (is_pointer_value(env, insn->src_reg)) {
7027 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7028 		return -EACCES;
7029 	}
7030 
7031 	if (is_ctx_reg(env, insn->dst_reg) ||
7032 	    is_pkt_reg(env, insn->dst_reg) ||
7033 	    is_flow_key_reg(env, insn->dst_reg) ||
7034 	    is_sk_reg(env, insn->dst_reg) ||
7035 	    is_arena_reg(env, insn->dst_reg)) {
7036 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7037 			insn->dst_reg,
7038 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7039 		return -EACCES;
7040 	}
7041 
7042 	if (insn->imm & BPF_FETCH) {
7043 		if (insn->imm == BPF_CMPXCHG)
7044 			load_reg = BPF_REG_0;
7045 		else
7046 			load_reg = insn->src_reg;
7047 
7048 		/* check and record load of old value */
7049 		err = check_reg_arg(env, load_reg, DST_OP);
7050 		if (err)
7051 			return err;
7052 	} else {
7053 		/* This instruction accesses a memory location but doesn't
7054 		 * actually load it into a register.
7055 		 */
7056 		load_reg = -1;
7057 	}
7058 
7059 	/* Check whether we can read the memory, with second call for fetch
7060 	 * case to simulate the register fill.
7061 	 */
7062 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7063 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7064 	if (!err && load_reg >= 0)
7065 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7066 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7067 				       true, false);
7068 	if (err)
7069 		return err;
7070 
7071 	/* Check whether we can write into the same memory. */
7072 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7073 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7074 	if (err)
7075 		return err;
7076 	return 0;
7077 }
7078 
7079 /* When register 'regno' is used to read the stack (either directly or through
7080  * a helper function) make sure that it's within stack boundary and, depending
7081  * on the access type and privileges, that all elements of the stack are
7082  * initialized.
7083  *
7084  * 'off' includes 'regno->off', but not its dynamic part (if any).
7085  *
7086  * All registers that have been spilled on the stack in the slots within the
7087  * read offsets are marked as read.
7088  */
7089 static int check_stack_range_initialized(
7090 		struct bpf_verifier_env *env, int regno, int off,
7091 		int access_size, bool zero_size_allowed,
7092 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7093 {
7094 	struct bpf_reg_state *reg = reg_state(env, regno);
7095 	struct bpf_func_state *state = func(env, reg);
7096 	int err, min_off, max_off, i, j, slot, spi;
7097 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7098 	enum bpf_access_type bounds_check_type;
7099 	/* Some accesses can write anything into the stack, others are
7100 	 * read-only.
7101 	 */
7102 	bool clobber = false;
7103 
7104 	if (access_size == 0 && !zero_size_allowed) {
7105 		verbose(env, "invalid zero-sized read\n");
7106 		return -EACCES;
7107 	}
7108 
7109 	if (type == ACCESS_HELPER) {
7110 		/* The bounds checks for writes are more permissive than for
7111 		 * reads. However, if raw_mode is not set, we'll do extra
7112 		 * checks below.
7113 		 */
7114 		bounds_check_type = BPF_WRITE;
7115 		clobber = true;
7116 	} else {
7117 		bounds_check_type = BPF_READ;
7118 	}
7119 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7120 					       type, bounds_check_type);
7121 	if (err)
7122 		return err;
7123 
7124 
7125 	if (tnum_is_const(reg->var_off)) {
7126 		min_off = max_off = reg->var_off.value + off;
7127 	} else {
7128 		/* Variable offset is prohibited for unprivileged mode for
7129 		 * simplicity since it requires corresponding support in
7130 		 * Spectre masking for stack ALU.
7131 		 * See also retrieve_ptr_limit().
7132 		 */
7133 		if (!env->bypass_spec_v1) {
7134 			char tn_buf[48];
7135 
7136 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7137 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7138 				regno, err_extra, tn_buf);
7139 			return -EACCES;
7140 		}
7141 		/* Only initialized buffer on stack is allowed to be accessed
7142 		 * with variable offset. With uninitialized buffer it's hard to
7143 		 * guarantee that whole memory is marked as initialized on
7144 		 * helper return since specific bounds are unknown what may
7145 		 * cause uninitialized stack leaking.
7146 		 */
7147 		if (meta && meta->raw_mode)
7148 			meta = NULL;
7149 
7150 		min_off = reg->smin_value + off;
7151 		max_off = reg->smax_value + off;
7152 	}
7153 
7154 	if (meta && meta->raw_mode) {
7155 		/* Ensure we won't be overwriting dynptrs when simulating byte
7156 		 * by byte access in check_helper_call using meta.access_size.
7157 		 * This would be a problem if we have a helper in the future
7158 		 * which takes:
7159 		 *
7160 		 *	helper(uninit_mem, len, dynptr)
7161 		 *
7162 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7163 		 * may end up writing to dynptr itself when touching memory from
7164 		 * arg 1. This can be relaxed on a case by case basis for known
7165 		 * safe cases, but reject due to the possibilitiy of aliasing by
7166 		 * default.
7167 		 */
7168 		for (i = min_off; i < max_off + access_size; i++) {
7169 			int stack_off = -i - 1;
7170 
7171 			spi = __get_spi(i);
7172 			/* raw_mode may write past allocated_stack */
7173 			if (state->allocated_stack <= stack_off)
7174 				continue;
7175 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7176 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7177 				return -EACCES;
7178 			}
7179 		}
7180 		meta->access_size = access_size;
7181 		meta->regno = regno;
7182 		return 0;
7183 	}
7184 
7185 	for (i = min_off; i < max_off + access_size; i++) {
7186 		u8 *stype;
7187 
7188 		slot = -i - 1;
7189 		spi = slot / BPF_REG_SIZE;
7190 		if (state->allocated_stack <= slot) {
7191 			verbose(env, "verifier bug: allocated_stack too small");
7192 			return -EFAULT;
7193 		}
7194 
7195 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7196 		if (*stype == STACK_MISC)
7197 			goto mark;
7198 		if ((*stype == STACK_ZERO) ||
7199 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7200 			if (clobber) {
7201 				/* helper can write anything into the stack */
7202 				*stype = STACK_MISC;
7203 			}
7204 			goto mark;
7205 		}
7206 
7207 		if (is_spilled_reg(&state->stack[spi]) &&
7208 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7209 		     env->allow_ptr_leaks)) {
7210 			if (clobber) {
7211 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7212 				for (j = 0; j < BPF_REG_SIZE; j++)
7213 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7214 			}
7215 			goto mark;
7216 		}
7217 
7218 		if (tnum_is_const(reg->var_off)) {
7219 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7220 				err_extra, regno, min_off, i - min_off, access_size);
7221 		} else {
7222 			char tn_buf[48];
7223 
7224 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7225 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7226 				err_extra, regno, tn_buf, i - min_off, access_size);
7227 		}
7228 		return -EACCES;
7229 mark:
7230 		/* reading any byte out of 8-byte 'spill_slot' will cause
7231 		 * the whole slot to be marked as 'read'
7232 		 */
7233 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7234 			      state->stack[spi].spilled_ptr.parent,
7235 			      REG_LIVE_READ64);
7236 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7237 		 * be sure that whether stack slot is written to or not. Hence,
7238 		 * we must still conservatively propagate reads upwards even if
7239 		 * helper may write to the entire memory range.
7240 		 */
7241 	}
7242 	return 0;
7243 }
7244 
7245 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7246 				   int access_size, bool zero_size_allowed,
7247 				   struct bpf_call_arg_meta *meta)
7248 {
7249 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7250 	u32 *max_access;
7251 
7252 	switch (base_type(reg->type)) {
7253 	case PTR_TO_PACKET:
7254 	case PTR_TO_PACKET_META:
7255 		return check_packet_access(env, regno, reg->off, access_size,
7256 					   zero_size_allowed);
7257 	case PTR_TO_MAP_KEY:
7258 		if (meta && meta->raw_mode) {
7259 			verbose(env, "R%d cannot write into %s\n", regno,
7260 				reg_type_str(env, reg->type));
7261 			return -EACCES;
7262 		}
7263 		return check_mem_region_access(env, regno, reg->off, access_size,
7264 					       reg->map_ptr->key_size, false);
7265 	case PTR_TO_MAP_VALUE:
7266 		if (check_map_access_type(env, regno, reg->off, access_size,
7267 					  meta && meta->raw_mode ? BPF_WRITE :
7268 					  BPF_READ))
7269 			return -EACCES;
7270 		return check_map_access(env, regno, reg->off, access_size,
7271 					zero_size_allowed, ACCESS_HELPER);
7272 	case PTR_TO_MEM:
7273 		if (type_is_rdonly_mem(reg->type)) {
7274 			if (meta && meta->raw_mode) {
7275 				verbose(env, "R%d cannot write into %s\n", regno,
7276 					reg_type_str(env, reg->type));
7277 				return -EACCES;
7278 			}
7279 		}
7280 		return check_mem_region_access(env, regno, reg->off,
7281 					       access_size, reg->mem_size,
7282 					       zero_size_allowed);
7283 	case PTR_TO_BUF:
7284 		if (type_is_rdonly_mem(reg->type)) {
7285 			if (meta && meta->raw_mode) {
7286 				verbose(env, "R%d cannot write into %s\n", regno,
7287 					reg_type_str(env, reg->type));
7288 				return -EACCES;
7289 			}
7290 
7291 			max_access = &env->prog->aux->max_rdonly_access;
7292 		} else {
7293 			max_access = &env->prog->aux->max_rdwr_access;
7294 		}
7295 		return check_buffer_access(env, reg, regno, reg->off,
7296 					   access_size, zero_size_allowed,
7297 					   max_access);
7298 	case PTR_TO_STACK:
7299 		return check_stack_range_initialized(
7300 				env,
7301 				regno, reg->off, access_size,
7302 				zero_size_allowed, ACCESS_HELPER, meta);
7303 	case PTR_TO_BTF_ID:
7304 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7305 					       access_size, BPF_READ, -1);
7306 	case PTR_TO_CTX:
7307 		/* in case the function doesn't know how to access the context,
7308 		 * (because we are in a program of type SYSCALL for example), we
7309 		 * can not statically check its size.
7310 		 * Dynamically check it now.
7311 		 */
7312 		if (!env->ops->convert_ctx_access) {
7313 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7314 			int offset = access_size - 1;
7315 
7316 			/* Allow zero-byte read from PTR_TO_CTX */
7317 			if (access_size == 0)
7318 				return zero_size_allowed ? 0 : -EACCES;
7319 
7320 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7321 						atype, -1, false, false);
7322 		}
7323 
7324 		fallthrough;
7325 	default: /* scalar_value or invalid ptr */
7326 		/* Allow zero-byte read from NULL, regardless of pointer type */
7327 		if (zero_size_allowed && access_size == 0 &&
7328 		    register_is_null(reg))
7329 			return 0;
7330 
7331 		verbose(env, "R%d type=%s ", regno,
7332 			reg_type_str(env, reg->type));
7333 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7334 		return -EACCES;
7335 	}
7336 }
7337 
7338 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7339  * size.
7340  *
7341  * @regno is the register containing the access size. regno-1 is the register
7342  * containing the pointer.
7343  */
7344 static int check_mem_size_reg(struct bpf_verifier_env *env,
7345 			      struct bpf_reg_state *reg, u32 regno,
7346 			      bool zero_size_allowed,
7347 			      struct bpf_call_arg_meta *meta)
7348 {
7349 	int err;
7350 
7351 	/* This is used to refine r0 return value bounds for helpers
7352 	 * that enforce this value as an upper bound on return values.
7353 	 * See do_refine_retval_range() for helpers that can refine
7354 	 * the return value. C type of helper is u32 so we pull register
7355 	 * bound from umax_value however, if negative verifier errors
7356 	 * out. Only upper bounds can be learned because retval is an
7357 	 * int type and negative retvals are allowed.
7358 	 */
7359 	meta->msize_max_value = reg->umax_value;
7360 
7361 	/* The register is SCALAR_VALUE; the access check
7362 	 * happens using its boundaries.
7363 	 */
7364 	if (!tnum_is_const(reg->var_off))
7365 		/* For unprivileged variable accesses, disable raw
7366 		 * mode so that the program is required to
7367 		 * initialize all the memory that the helper could
7368 		 * just partially fill up.
7369 		 */
7370 		meta = NULL;
7371 
7372 	if (reg->smin_value < 0) {
7373 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7374 			regno);
7375 		return -EACCES;
7376 	}
7377 
7378 	if (reg->umin_value == 0 && !zero_size_allowed) {
7379 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7380 			regno, reg->umin_value, reg->umax_value);
7381 		return -EACCES;
7382 	}
7383 
7384 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7385 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7386 			regno);
7387 		return -EACCES;
7388 	}
7389 	err = check_helper_mem_access(env, regno - 1,
7390 				      reg->umax_value,
7391 				      zero_size_allowed, meta);
7392 	if (!err)
7393 		err = mark_chain_precision(env, regno);
7394 	return err;
7395 }
7396 
7397 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7398 			 u32 regno, u32 mem_size)
7399 {
7400 	bool may_be_null = type_may_be_null(reg->type);
7401 	struct bpf_reg_state saved_reg;
7402 	struct bpf_call_arg_meta meta;
7403 	int err;
7404 
7405 	if (register_is_null(reg))
7406 		return 0;
7407 
7408 	memset(&meta, 0, sizeof(meta));
7409 	/* Assuming that the register contains a value check if the memory
7410 	 * access is safe. Temporarily save and restore the register's state as
7411 	 * the conversion shouldn't be visible to a caller.
7412 	 */
7413 	if (may_be_null) {
7414 		saved_reg = *reg;
7415 		mark_ptr_not_null_reg(reg);
7416 	}
7417 
7418 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7419 	/* Check access for BPF_WRITE */
7420 	meta.raw_mode = true;
7421 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7422 
7423 	if (may_be_null)
7424 		*reg = saved_reg;
7425 
7426 	return err;
7427 }
7428 
7429 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7430 				    u32 regno)
7431 {
7432 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7433 	bool may_be_null = type_may_be_null(mem_reg->type);
7434 	struct bpf_reg_state saved_reg;
7435 	struct bpf_call_arg_meta meta;
7436 	int err;
7437 
7438 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7439 
7440 	memset(&meta, 0, sizeof(meta));
7441 
7442 	if (may_be_null) {
7443 		saved_reg = *mem_reg;
7444 		mark_ptr_not_null_reg(mem_reg);
7445 	}
7446 
7447 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7448 	/* Check access for BPF_WRITE */
7449 	meta.raw_mode = true;
7450 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7451 
7452 	if (may_be_null)
7453 		*mem_reg = saved_reg;
7454 	return err;
7455 }
7456 
7457 /* Implementation details:
7458  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7459  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7460  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7461  * Two separate bpf_obj_new will also have different reg->id.
7462  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7463  * clears reg->id after value_or_null->value transition, since the verifier only
7464  * cares about the range of access to valid map value pointer and doesn't care
7465  * about actual address of the map element.
7466  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7467  * reg->id > 0 after value_or_null->value transition. By doing so
7468  * two bpf_map_lookups will be considered two different pointers that
7469  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7470  * returned from bpf_obj_new.
7471  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7472  * dead-locks.
7473  * Since only one bpf_spin_lock is allowed the checks are simpler than
7474  * reg_is_refcounted() logic. The verifier needs to remember only
7475  * one spin_lock instead of array of acquired_refs.
7476  * cur_state->active_lock remembers which map value element or allocated
7477  * object got locked and clears it after bpf_spin_unlock.
7478  */
7479 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7480 			     bool is_lock)
7481 {
7482 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7483 	struct bpf_verifier_state *cur = env->cur_state;
7484 	bool is_const = tnum_is_const(reg->var_off);
7485 	u64 val = reg->var_off.value;
7486 	struct bpf_map *map = NULL;
7487 	struct btf *btf = NULL;
7488 	struct btf_record *rec;
7489 
7490 	if (!is_const) {
7491 		verbose(env,
7492 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7493 			regno);
7494 		return -EINVAL;
7495 	}
7496 	if (reg->type == PTR_TO_MAP_VALUE) {
7497 		map = reg->map_ptr;
7498 		if (!map->btf) {
7499 			verbose(env,
7500 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7501 				map->name);
7502 			return -EINVAL;
7503 		}
7504 	} else {
7505 		btf = reg->btf;
7506 	}
7507 
7508 	rec = reg_btf_record(reg);
7509 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7510 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7511 			map ? map->name : "kptr");
7512 		return -EINVAL;
7513 	}
7514 	if (rec->spin_lock_off != val + reg->off) {
7515 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7516 			val + reg->off, rec->spin_lock_off);
7517 		return -EINVAL;
7518 	}
7519 	if (is_lock) {
7520 		if (cur->active_lock.ptr) {
7521 			verbose(env,
7522 				"Locking two bpf_spin_locks are not allowed\n");
7523 			return -EINVAL;
7524 		}
7525 		if (map)
7526 			cur->active_lock.ptr = map;
7527 		else
7528 			cur->active_lock.ptr = btf;
7529 		cur->active_lock.id = reg->id;
7530 	} else {
7531 		void *ptr;
7532 
7533 		if (map)
7534 			ptr = map;
7535 		else
7536 			ptr = btf;
7537 
7538 		if (!cur->active_lock.ptr) {
7539 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7540 			return -EINVAL;
7541 		}
7542 		if (cur->active_lock.ptr != ptr ||
7543 		    cur->active_lock.id != reg->id) {
7544 			verbose(env, "bpf_spin_unlock of different lock\n");
7545 			return -EINVAL;
7546 		}
7547 
7548 		invalidate_non_owning_refs(env);
7549 
7550 		cur->active_lock.ptr = NULL;
7551 		cur->active_lock.id = 0;
7552 	}
7553 	return 0;
7554 }
7555 
7556 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7557 			      struct bpf_call_arg_meta *meta)
7558 {
7559 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7560 	bool is_const = tnum_is_const(reg->var_off);
7561 	struct bpf_map *map = reg->map_ptr;
7562 	u64 val = reg->var_off.value;
7563 
7564 	if (!is_const) {
7565 		verbose(env,
7566 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7567 			regno);
7568 		return -EINVAL;
7569 	}
7570 	if (!map->btf) {
7571 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7572 			map->name);
7573 		return -EINVAL;
7574 	}
7575 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7576 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7577 		return -EINVAL;
7578 	}
7579 	if (map->record->timer_off != val + reg->off) {
7580 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7581 			val + reg->off, map->record->timer_off);
7582 		return -EINVAL;
7583 	}
7584 	if (meta->map_ptr) {
7585 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7586 		return -EFAULT;
7587 	}
7588 	meta->map_uid = reg->map_uid;
7589 	meta->map_ptr = map;
7590 	return 0;
7591 }
7592 
7593 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7594 			     struct bpf_call_arg_meta *meta)
7595 {
7596 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7597 	struct bpf_map *map_ptr = reg->map_ptr;
7598 	struct btf_field *kptr_field;
7599 	u32 kptr_off;
7600 
7601 	if (!tnum_is_const(reg->var_off)) {
7602 		verbose(env,
7603 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7604 			regno);
7605 		return -EINVAL;
7606 	}
7607 	if (!map_ptr->btf) {
7608 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7609 			map_ptr->name);
7610 		return -EINVAL;
7611 	}
7612 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7613 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7614 		return -EINVAL;
7615 	}
7616 
7617 	meta->map_ptr = map_ptr;
7618 	kptr_off = reg->off + reg->var_off.value;
7619 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7620 	if (!kptr_field) {
7621 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7622 		return -EACCES;
7623 	}
7624 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7625 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7626 		return -EACCES;
7627 	}
7628 	meta->kptr_field = kptr_field;
7629 	return 0;
7630 }
7631 
7632 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7633  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7634  *
7635  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7636  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7637  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7638  *
7639  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7640  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7641  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7642  * mutate the view of the dynptr and also possibly destroy it. In the latter
7643  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7644  * memory that dynptr points to.
7645  *
7646  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7647  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7648  * readonly dynptr view yet, hence only the first case is tracked and checked.
7649  *
7650  * This is consistent with how C applies the const modifier to a struct object,
7651  * where the pointer itself inside bpf_dynptr becomes const but not what it
7652  * points to.
7653  *
7654  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7655  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7656  */
7657 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7658 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7659 {
7660 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7661 	int err;
7662 
7663 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7664 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7665 	 */
7666 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7667 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7668 		return -EFAULT;
7669 	}
7670 
7671 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7672 	 *		 constructing a mutable bpf_dynptr object.
7673 	 *
7674 	 *		 Currently, this is only possible with PTR_TO_STACK
7675 	 *		 pointing to a region of at least 16 bytes which doesn't
7676 	 *		 contain an existing bpf_dynptr.
7677 	 *
7678 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7679 	 *		 mutated or destroyed. However, the memory it points to
7680 	 *		 may be mutated.
7681 	 *
7682 	 *  None       - Points to a initialized dynptr that can be mutated and
7683 	 *		 destroyed, including mutation of the memory it points
7684 	 *		 to.
7685 	 */
7686 	if (arg_type & MEM_UNINIT) {
7687 		int i;
7688 
7689 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7690 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7691 			return -EINVAL;
7692 		}
7693 
7694 		/* we write BPF_DW bits (8 bytes) at a time */
7695 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7696 			err = check_mem_access(env, insn_idx, regno,
7697 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7698 			if (err)
7699 				return err;
7700 		}
7701 
7702 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7703 	} else /* MEM_RDONLY and None case from above */ {
7704 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7705 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7706 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7707 			return -EINVAL;
7708 		}
7709 
7710 		if (!is_dynptr_reg_valid_init(env, reg)) {
7711 			verbose(env,
7712 				"Expected an initialized dynptr as arg #%d\n",
7713 				regno);
7714 			return -EINVAL;
7715 		}
7716 
7717 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7718 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7719 			verbose(env,
7720 				"Expected a dynptr of type %s as arg #%d\n",
7721 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7722 			return -EINVAL;
7723 		}
7724 
7725 		err = mark_dynptr_read(env, reg);
7726 	}
7727 	return err;
7728 }
7729 
7730 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7731 {
7732 	struct bpf_func_state *state = func(env, reg);
7733 
7734 	return state->stack[spi].spilled_ptr.ref_obj_id;
7735 }
7736 
7737 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7738 {
7739 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7740 }
7741 
7742 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7743 {
7744 	return meta->kfunc_flags & KF_ITER_NEW;
7745 }
7746 
7747 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7748 {
7749 	return meta->kfunc_flags & KF_ITER_NEXT;
7750 }
7751 
7752 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7753 {
7754 	return meta->kfunc_flags & KF_ITER_DESTROY;
7755 }
7756 
7757 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7758 {
7759 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7760 	 * kfunc is iter state pointer
7761 	 */
7762 	return arg == 0 && is_iter_kfunc(meta);
7763 }
7764 
7765 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7766 			    struct bpf_kfunc_call_arg_meta *meta)
7767 {
7768 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7769 	const struct btf_type *t;
7770 	const struct btf_param *arg;
7771 	int spi, err, i, nr_slots;
7772 	u32 btf_id;
7773 
7774 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7775 	arg = &btf_params(meta->func_proto)[0];
7776 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7777 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7778 	nr_slots = t->size / BPF_REG_SIZE;
7779 
7780 	if (is_iter_new_kfunc(meta)) {
7781 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7782 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7783 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7784 				iter_type_str(meta->btf, btf_id), regno);
7785 			return -EINVAL;
7786 		}
7787 
7788 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7789 			err = check_mem_access(env, insn_idx, regno,
7790 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7791 			if (err)
7792 				return err;
7793 		}
7794 
7795 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7796 		if (err)
7797 			return err;
7798 	} else {
7799 		/* iter_next() or iter_destroy() expect initialized iter state*/
7800 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7801 		switch (err) {
7802 		case 0:
7803 			break;
7804 		case -EINVAL:
7805 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7806 				iter_type_str(meta->btf, btf_id), regno);
7807 			return err;
7808 		case -EPROTO:
7809 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7810 			return err;
7811 		default:
7812 			return err;
7813 		}
7814 
7815 		spi = iter_get_spi(env, reg, nr_slots);
7816 		if (spi < 0)
7817 			return spi;
7818 
7819 		err = mark_iter_read(env, reg, spi, nr_slots);
7820 		if (err)
7821 			return err;
7822 
7823 		/* remember meta->iter info for process_iter_next_call() */
7824 		meta->iter.spi = spi;
7825 		meta->iter.frameno = reg->frameno;
7826 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7827 
7828 		if (is_iter_destroy_kfunc(meta)) {
7829 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7830 			if (err)
7831 				return err;
7832 		}
7833 	}
7834 
7835 	return 0;
7836 }
7837 
7838 /* Look for a previous loop entry at insn_idx: nearest parent state
7839  * stopped at insn_idx with callsites matching those in cur->frame.
7840  */
7841 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7842 						  struct bpf_verifier_state *cur,
7843 						  int insn_idx)
7844 {
7845 	struct bpf_verifier_state_list *sl;
7846 	struct bpf_verifier_state *st;
7847 
7848 	/* Explored states are pushed in stack order, most recent states come first */
7849 	sl = *explored_state(env, insn_idx);
7850 	for (; sl; sl = sl->next) {
7851 		/* If st->branches != 0 state is a part of current DFS verification path,
7852 		 * hence cur & st for a loop.
7853 		 */
7854 		st = &sl->state;
7855 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7856 		    st->dfs_depth < cur->dfs_depth)
7857 			return st;
7858 	}
7859 
7860 	return NULL;
7861 }
7862 
7863 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7864 static bool regs_exact(const struct bpf_reg_state *rold,
7865 		       const struct bpf_reg_state *rcur,
7866 		       struct bpf_idmap *idmap);
7867 
7868 static void maybe_widen_reg(struct bpf_verifier_env *env,
7869 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7870 			    struct bpf_idmap *idmap)
7871 {
7872 	if (rold->type != SCALAR_VALUE)
7873 		return;
7874 	if (rold->type != rcur->type)
7875 		return;
7876 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7877 		return;
7878 	__mark_reg_unknown(env, rcur);
7879 }
7880 
7881 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7882 				   struct bpf_verifier_state *old,
7883 				   struct bpf_verifier_state *cur)
7884 {
7885 	struct bpf_func_state *fold, *fcur;
7886 	int i, fr;
7887 
7888 	reset_idmap_scratch(env);
7889 	for (fr = old->curframe; fr >= 0; fr--) {
7890 		fold = old->frame[fr];
7891 		fcur = cur->frame[fr];
7892 
7893 		for (i = 0; i < MAX_BPF_REG; i++)
7894 			maybe_widen_reg(env,
7895 					&fold->regs[i],
7896 					&fcur->regs[i],
7897 					&env->idmap_scratch);
7898 
7899 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7900 			if (!is_spilled_reg(&fold->stack[i]) ||
7901 			    !is_spilled_reg(&fcur->stack[i]))
7902 				continue;
7903 
7904 			maybe_widen_reg(env,
7905 					&fold->stack[i].spilled_ptr,
7906 					&fcur->stack[i].spilled_ptr,
7907 					&env->idmap_scratch);
7908 		}
7909 	}
7910 	return 0;
7911 }
7912 
7913 /* process_iter_next_call() is called when verifier gets to iterator's next
7914  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7915  * to it as just "iter_next()" in comments below.
7916  *
7917  * BPF verifier relies on a crucial contract for any iter_next()
7918  * implementation: it should *eventually* return NULL, and once that happens
7919  * it should keep returning NULL. That is, once iterator exhausts elements to
7920  * iterate, it should never reset or spuriously return new elements.
7921  *
7922  * With the assumption of such contract, process_iter_next_call() simulates
7923  * a fork in the verifier state to validate loop logic correctness and safety
7924  * without having to simulate infinite amount of iterations.
7925  *
7926  * In current state, we first assume that iter_next() returned NULL and
7927  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7928  * conditions we should not form an infinite loop and should eventually reach
7929  * exit.
7930  *
7931  * Besides that, we also fork current state and enqueue it for later
7932  * verification. In a forked state we keep iterator state as ACTIVE
7933  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7934  * also bump iteration depth to prevent erroneous infinite loop detection
7935  * later on (see iter_active_depths_differ() comment for details). In this
7936  * state we assume that we'll eventually loop back to another iter_next()
7937  * calls (it could be in exactly same location or in some other instruction,
7938  * it doesn't matter, we don't make any unnecessary assumptions about this,
7939  * everything revolves around iterator state in a stack slot, not which
7940  * instruction is calling iter_next()). When that happens, we either will come
7941  * to iter_next() with equivalent state and can conclude that next iteration
7942  * will proceed in exactly the same way as we just verified, so it's safe to
7943  * assume that loop converges. If not, we'll go on another iteration
7944  * simulation with a different input state, until all possible starting states
7945  * are validated or we reach maximum number of instructions limit.
7946  *
7947  * This way, we will either exhaustively discover all possible input states
7948  * that iterator loop can start with and eventually will converge, or we'll
7949  * effectively regress into bounded loop simulation logic and either reach
7950  * maximum number of instructions if loop is not provably convergent, or there
7951  * is some statically known limit on number of iterations (e.g., if there is
7952  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7953  *
7954  * Iteration convergence logic in is_state_visited() relies on exact
7955  * states comparison, which ignores read and precision marks.
7956  * This is necessary because read and precision marks are not finalized
7957  * while in the loop. Exact comparison might preclude convergence for
7958  * simple programs like below:
7959  *
7960  *     i = 0;
7961  *     while(iter_next(&it))
7962  *       i++;
7963  *
7964  * At each iteration step i++ would produce a new distinct state and
7965  * eventually instruction processing limit would be reached.
7966  *
7967  * To avoid such behavior speculatively forget (widen) range for
7968  * imprecise scalar registers, if those registers were not precise at the
7969  * end of the previous iteration and do not match exactly.
7970  *
7971  * This is a conservative heuristic that allows to verify wide range of programs,
7972  * however it precludes verification of programs that conjure an
7973  * imprecise value on the first loop iteration and use it as precise on a second.
7974  * For example, the following safe program would fail to verify:
7975  *
7976  *     struct bpf_num_iter it;
7977  *     int arr[10];
7978  *     int i = 0, a = 0;
7979  *     bpf_iter_num_new(&it, 0, 10);
7980  *     while (bpf_iter_num_next(&it)) {
7981  *       if (a == 0) {
7982  *         a = 1;
7983  *         i = 7; // Because i changed verifier would forget
7984  *                // it's range on second loop entry.
7985  *       } else {
7986  *         arr[i] = 42; // This would fail to verify.
7987  *       }
7988  *     }
7989  *     bpf_iter_num_destroy(&it);
7990  */
7991 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7992 				  struct bpf_kfunc_call_arg_meta *meta)
7993 {
7994 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7995 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7996 	struct bpf_reg_state *cur_iter, *queued_iter;
7997 	int iter_frameno = meta->iter.frameno;
7998 	int iter_spi = meta->iter.spi;
7999 
8000 	BTF_TYPE_EMIT(struct bpf_iter);
8001 
8002 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8003 
8004 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8005 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8006 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8007 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8008 		return -EFAULT;
8009 	}
8010 
8011 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8012 		/* Because iter_next() call is a checkpoint is_state_visitied()
8013 		 * should guarantee parent state with same call sites and insn_idx.
8014 		 */
8015 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8016 		    !same_callsites(cur_st->parent, cur_st)) {
8017 			verbose(env, "bug: bad parent state for iter next call");
8018 			return -EFAULT;
8019 		}
8020 		/* Note cur_st->parent in the call below, it is necessary to skip
8021 		 * checkpoint created for cur_st by is_state_visited()
8022 		 * right at this instruction.
8023 		 */
8024 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8025 		/* branch out active iter state */
8026 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8027 		if (!queued_st)
8028 			return -ENOMEM;
8029 
8030 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8031 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8032 		queued_iter->iter.depth++;
8033 		if (prev_st)
8034 			widen_imprecise_scalars(env, prev_st, queued_st);
8035 
8036 		queued_fr = queued_st->frame[queued_st->curframe];
8037 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8038 	}
8039 
8040 	/* switch to DRAINED state, but keep the depth unchanged */
8041 	/* mark current iter state as drained and assume returned NULL */
8042 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8043 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8044 
8045 	return 0;
8046 }
8047 
8048 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8049 {
8050 	return type == ARG_CONST_SIZE ||
8051 	       type == ARG_CONST_SIZE_OR_ZERO;
8052 }
8053 
8054 static bool arg_type_is_release(enum bpf_arg_type type)
8055 {
8056 	return type & OBJ_RELEASE;
8057 }
8058 
8059 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8060 {
8061 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8062 }
8063 
8064 static int int_ptr_type_to_size(enum bpf_arg_type type)
8065 {
8066 	if (type == ARG_PTR_TO_INT)
8067 		return sizeof(u32);
8068 	else if (type == ARG_PTR_TO_LONG)
8069 		return sizeof(u64);
8070 
8071 	return -EINVAL;
8072 }
8073 
8074 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8075 				 const struct bpf_call_arg_meta *meta,
8076 				 enum bpf_arg_type *arg_type)
8077 {
8078 	if (!meta->map_ptr) {
8079 		/* kernel subsystem misconfigured verifier */
8080 		verbose(env, "invalid map_ptr to access map->type\n");
8081 		return -EACCES;
8082 	}
8083 
8084 	switch (meta->map_ptr->map_type) {
8085 	case BPF_MAP_TYPE_SOCKMAP:
8086 	case BPF_MAP_TYPE_SOCKHASH:
8087 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8088 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8089 		} else {
8090 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8091 			return -EINVAL;
8092 		}
8093 		break;
8094 	case BPF_MAP_TYPE_BLOOM_FILTER:
8095 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8096 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8097 		break;
8098 	default:
8099 		break;
8100 	}
8101 	return 0;
8102 }
8103 
8104 struct bpf_reg_types {
8105 	const enum bpf_reg_type types[10];
8106 	u32 *btf_id;
8107 };
8108 
8109 static const struct bpf_reg_types sock_types = {
8110 	.types = {
8111 		PTR_TO_SOCK_COMMON,
8112 		PTR_TO_SOCKET,
8113 		PTR_TO_TCP_SOCK,
8114 		PTR_TO_XDP_SOCK,
8115 	},
8116 };
8117 
8118 #ifdef CONFIG_NET
8119 static const struct bpf_reg_types btf_id_sock_common_types = {
8120 	.types = {
8121 		PTR_TO_SOCK_COMMON,
8122 		PTR_TO_SOCKET,
8123 		PTR_TO_TCP_SOCK,
8124 		PTR_TO_XDP_SOCK,
8125 		PTR_TO_BTF_ID,
8126 		PTR_TO_BTF_ID | PTR_TRUSTED,
8127 	},
8128 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8129 };
8130 #endif
8131 
8132 static const struct bpf_reg_types mem_types = {
8133 	.types = {
8134 		PTR_TO_STACK,
8135 		PTR_TO_PACKET,
8136 		PTR_TO_PACKET_META,
8137 		PTR_TO_MAP_KEY,
8138 		PTR_TO_MAP_VALUE,
8139 		PTR_TO_MEM,
8140 		PTR_TO_MEM | MEM_RINGBUF,
8141 		PTR_TO_BUF,
8142 		PTR_TO_BTF_ID | PTR_TRUSTED,
8143 	},
8144 };
8145 
8146 static const struct bpf_reg_types int_ptr_types = {
8147 	.types = {
8148 		PTR_TO_STACK,
8149 		PTR_TO_PACKET,
8150 		PTR_TO_PACKET_META,
8151 		PTR_TO_MAP_KEY,
8152 		PTR_TO_MAP_VALUE,
8153 	},
8154 };
8155 
8156 static const struct bpf_reg_types spin_lock_types = {
8157 	.types = {
8158 		PTR_TO_MAP_VALUE,
8159 		PTR_TO_BTF_ID | MEM_ALLOC,
8160 	}
8161 };
8162 
8163 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8164 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8165 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8166 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8167 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8168 static const struct bpf_reg_types btf_ptr_types = {
8169 	.types = {
8170 		PTR_TO_BTF_ID,
8171 		PTR_TO_BTF_ID | PTR_TRUSTED,
8172 		PTR_TO_BTF_ID | MEM_RCU,
8173 	},
8174 };
8175 static const struct bpf_reg_types percpu_btf_ptr_types = {
8176 	.types = {
8177 		PTR_TO_BTF_ID | MEM_PERCPU,
8178 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8179 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8180 	}
8181 };
8182 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8183 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8184 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8185 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8186 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8187 static const struct bpf_reg_types dynptr_types = {
8188 	.types = {
8189 		PTR_TO_STACK,
8190 		CONST_PTR_TO_DYNPTR,
8191 	}
8192 };
8193 
8194 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8195 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8196 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8197 	[ARG_CONST_SIZE]		= &scalar_types,
8198 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8199 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8200 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8201 	[ARG_PTR_TO_CTX]		= &context_types,
8202 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8203 #ifdef CONFIG_NET
8204 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8205 #endif
8206 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8207 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8208 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8209 	[ARG_PTR_TO_MEM]		= &mem_types,
8210 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8211 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8212 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8213 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8214 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8215 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8216 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8217 	[ARG_PTR_TO_TIMER]		= &timer_types,
8218 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8219 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8220 };
8221 
8222 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8223 			  enum bpf_arg_type arg_type,
8224 			  const u32 *arg_btf_id,
8225 			  struct bpf_call_arg_meta *meta)
8226 {
8227 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8228 	enum bpf_reg_type expected, type = reg->type;
8229 	const struct bpf_reg_types *compatible;
8230 	int i, j;
8231 
8232 	compatible = compatible_reg_types[base_type(arg_type)];
8233 	if (!compatible) {
8234 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8235 		return -EFAULT;
8236 	}
8237 
8238 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8239 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8240 	 *
8241 	 * Same for MAYBE_NULL:
8242 	 *
8243 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8244 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8245 	 *
8246 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8247 	 *
8248 	 * Therefore we fold these flags depending on the arg_type before comparison.
8249 	 */
8250 	if (arg_type & MEM_RDONLY)
8251 		type &= ~MEM_RDONLY;
8252 	if (arg_type & PTR_MAYBE_NULL)
8253 		type &= ~PTR_MAYBE_NULL;
8254 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8255 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8256 
8257 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8258 		type &= ~MEM_ALLOC;
8259 		type &= ~MEM_PERCPU;
8260 	}
8261 
8262 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8263 		expected = compatible->types[i];
8264 		if (expected == NOT_INIT)
8265 			break;
8266 
8267 		if (type == expected)
8268 			goto found;
8269 	}
8270 
8271 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8272 	for (j = 0; j + 1 < i; j++)
8273 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8274 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8275 	return -EACCES;
8276 
8277 found:
8278 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8279 		return 0;
8280 
8281 	if (compatible == &mem_types) {
8282 		if (!(arg_type & MEM_RDONLY)) {
8283 			verbose(env,
8284 				"%s() may write into memory pointed by R%d type=%s\n",
8285 				func_id_name(meta->func_id),
8286 				regno, reg_type_str(env, reg->type));
8287 			return -EACCES;
8288 		}
8289 		return 0;
8290 	}
8291 
8292 	switch ((int)reg->type) {
8293 	case PTR_TO_BTF_ID:
8294 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8295 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8296 	case PTR_TO_BTF_ID | MEM_RCU:
8297 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8298 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8299 	{
8300 		/* For bpf_sk_release, it needs to match against first member
8301 		 * 'struct sock_common', hence make an exception for it. This
8302 		 * allows bpf_sk_release to work for multiple socket types.
8303 		 */
8304 		bool strict_type_match = arg_type_is_release(arg_type) &&
8305 					 meta->func_id != BPF_FUNC_sk_release;
8306 
8307 		if (type_may_be_null(reg->type) &&
8308 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8309 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8310 			return -EACCES;
8311 		}
8312 
8313 		if (!arg_btf_id) {
8314 			if (!compatible->btf_id) {
8315 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8316 				return -EFAULT;
8317 			}
8318 			arg_btf_id = compatible->btf_id;
8319 		}
8320 
8321 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8322 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8323 				return -EACCES;
8324 		} else {
8325 			if (arg_btf_id == BPF_PTR_POISON) {
8326 				verbose(env, "verifier internal error:");
8327 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8328 					regno);
8329 				return -EACCES;
8330 			}
8331 
8332 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8333 						  btf_vmlinux, *arg_btf_id,
8334 						  strict_type_match)) {
8335 				verbose(env, "R%d is of type %s but %s is expected\n",
8336 					regno, btf_type_name(reg->btf, reg->btf_id),
8337 					btf_type_name(btf_vmlinux, *arg_btf_id));
8338 				return -EACCES;
8339 			}
8340 		}
8341 		break;
8342 	}
8343 	case PTR_TO_BTF_ID | MEM_ALLOC:
8344 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8345 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8346 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8347 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8348 			return -EFAULT;
8349 		}
8350 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8351 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8352 				return -EACCES;
8353 		}
8354 		break;
8355 	case PTR_TO_BTF_ID | MEM_PERCPU:
8356 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8357 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8358 		/* Handled by helper specific checks */
8359 		break;
8360 	default:
8361 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8362 		return -EFAULT;
8363 	}
8364 	return 0;
8365 }
8366 
8367 static struct btf_field *
8368 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8369 {
8370 	struct btf_field *field;
8371 	struct btf_record *rec;
8372 
8373 	rec = reg_btf_record(reg);
8374 	if (!rec)
8375 		return NULL;
8376 
8377 	field = btf_record_find(rec, off, fields);
8378 	if (!field)
8379 		return NULL;
8380 
8381 	return field;
8382 }
8383 
8384 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8385 				  const struct bpf_reg_state *reg, int regno,
8386 				  enum bpf_arg_type arg_type)
8387 {
8388 	u32 type = reg->type;
8389 
8390 	/* When referenced register is passed to release function, its fixed
8391 	 * offset must be 0.
8392 	 *
8393 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8394 	 * meta->release_regno.
8395 	 */
8396 	if (arg_type_is_release(arg_type)) {
8397 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8398 		 * may not directly point to the object being released, but to
8399 		 * dynptr pointing to such object, which might be at some offset
8400 		 * on the stack. In that case, we simply to fallback to the
8401 		 * default handling.
8402 		 */
8403 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8404 			return 0;
8405 
8406 		/* Doing check_ptr_off_reg check for the offset will catch this
8407 		 * because fixed_off_ok is false, but checking here allows us
8408 		 * to give the user a better error message.
8409 		 */
8410 		if (reg->off) {
8411 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8412 				regno);
8413 			return -EINVAL;
8414 		}
8415 		return __check_ptr_off_reg(env, reg, regno, false);
8416 	}
8417 
8418 	switch (type) {
8419 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8420 	case PTR_TO_STACK:
8421 	case PTR_TO_PACKET:
8422 	case PTR_TO_PACKET_META:
8423 	case PTR_TO_MAP_KEY:
8424 	case PTR_TO_MAP_VALUE:
8425 	case PTR_TO_MEM:
8426 	case PTR_TO_MEM | MEM_RDONLY:
8427 	case PTR_TO_MEM | MEM_RINGBUF:
8428 	case PTR_TO_BUF:
8429 	case PTR_TO_BUF | MEM_RDONLY:
8430 	case PTR_TO_ARENA:
8431 	case SCALAR_VALUE:
8432 		return 0;
8433 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8434 	 * fixed offset.
8435 	 */
8436 	case PTR_TO_BTF_ID:
8437 	case PTR_TO_BTF_ID | MEM_ALLOC:
8438 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8439 	case PTR_TO_BTF_ID | MEM_RCU:
8440 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8441 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8442 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8443 		 * its fixed offset must be 0. In the other cases, fixed offset
8444 		 * can be non-zero. This was already checked above. So pass
8445 		 * fixed_off_ok as true to allow fixed offset for all other
8446 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8447 		 * still need to do checks instead of returning.
8448 		 */
8449 		return __check_ptr_off_reg(env, reg, regno, true);
8450 	default:
8451 		return __check_ptr_off_reg(env, reg, regno, false);
8452 	}
8453 }
8454 
8455 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8456 						const struct bpf_func_proto *fn,
8457 						struct bpf_reg_state *regs)
8458 {
8459 	struct bpf_reg_state *state = NULL;
8460 	int i;
8461 
8462 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8463 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8464 			if (state) {
8465 				verbose(env, "verifier internal error: multiple dynptr args\n");
8466 				return NULL;
8467 			}
8468 			state = &regs[BPF_REG_1 + i];
8469 		}
8470 
8471 	if (!state)
8472 		verbose(env, "verifier internal error: no dynptr arg found\n");
8473 
8474 	return state;
8475 }
8476 
8477 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8478 {
8479 	struct bpf_func_state *state = func(env, reg);
8480 	int spi;
8481 
8482 	if (reg->type == CONST_PTR_TO_DYNPTR)
8483 		return reg->id;
8484 	spi = dynptr_get_spi(env, reg);
8485 	if (spi < 0)
8486 		return spi;
8487 	return state->stack[spi].spilled_ptr.id;
8488 }
8489 
8490 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8491 {
8492 	struct bpf_func_state *state = func(env, reg);
8493 	int spi;
8494 
8495 	if (reg->type == CONST_PTR_TO_DYNPTR)
8496 		return reg->ref_obj_id;
8497 	spi = dynptr_get_spi(env, reg);
8498 	if (spi < 0)
8499 		return spi;
8500 	return state->stack[spi].spilled_ptr.ref_obj_id;
8501 }
8502 
8503 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8504 					    struct bpf_reg_state *reg)
8505 {
8506 	struct bpf_func_state *state = func(env, reg);
8507 	int spi;
8508 
8509 	if (reg->type == CONST_PTR_TO_DYNPTR)
8510 		return reg->dynptr.type;
8511 
8512 	spi = __get_spi(reg->off);
8513 	if (spi < 0) {
8514 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8515 		return BPF_DYNPTR_TYPE_INVALID;
8516 	}
8517 
8518 	return state->stack[spi].spilled_ptr.dynptr.type;
8519 }
8520 
8521 static int check_reg_const_str(struct bpf_verifier_env *env,
8522 			       struct bpf_reg_state *reg, u32 regno)
8523 {
8524 	struct bpf_map *map = reg->map_ptr;
8525 	int err;
8526 	int map_off;
8527 	u64 map_addr;
8528 	char *str_ptr;
8529 
8530 	if (reg->type != PTR_TO_MAP_VALUE)
8531 		return -EINVAL;
8532 
8533 	if (!bpf_map_is_rdonly(map)) {
8534 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8535 		return -EACCES;
8536 	}
8537 
8538 	if (!tnum_is_const(reg->var_off)) {
8539 		verbose(env, "R%d is not a constant address'\n", regno);
8540 		return -EACCES;
8541 	}
8542 
8543 	if (!map->ops->map_direct_value_addr) {
8544 		verbose(env, "no direct value access support for this map type\n");
8545 		return -EACCES;
8546 	}
8547 
8548 	err = check_map_access(env, regno, reg->off,
8549 			       map->value_size - reg->off, false,
8550 			       ACCESS_HELPER);
8551 	if (err)
8552 		return err;
8553 
8554 	map_off = reg->off + reg->var_off.value;
8555 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8556 	if (err) {
8557 		verbose(env, "direct value access on string failed\n");
8558 		return err;
8559 	}
8560 
8561 	str_ptr = (char *)(long)(map_addr);
8562 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8563 		verbose(env, "string is not zero-terminated\n");
8564 		return -EINVAL;
8565 	}
8566 	return 0;
8567 }
8568 
8569 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8570 			  struct bpf_call_arg_meta *meta,
8571 			  const struct bpf_func_proto *fn,
8572 			  int insn_idx)
8573 {
8574 	u32 regno = BPF_REG_1 + arg;
8575 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8576 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8577 	enum bpf_reg_type type = reg->type;
8578 	u32 *arg_btf_id = NULL;
8579 	int err = 0;
8580 
8581 	if (arg_type == ARG_DONTCARE)
8582 		return 0;
8583 
8584 	err = check_reg_arg(env, regno, SRC_OP);
8585 	if (err)
8586 		return err;
8587 
8588 	if (arg_type == ARG_ANYTHING) {
8589 		if (is_pointer_value(env, regno)) {
8590 			verbose(env, "R%d leaks addr into helper function\n",
8591 				regno);
8592 			return -EACCES;
8593 		}
8594 		return 0;
8595 	}
8596 
8597 	if (type_is_pkt_pointer(type) &&
8598 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8599 		verbose(env, "helper access to the packet is not allowed\n");
8600 		return -EACCES;
8601 	}
8602 
8603 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8604 		err = resolve_map_arg_type(env, meta, &arg_type);
8605 		if (err)
8606 			return err;
8607 	}
8608 
8609 	if (register_is_null(reg) && type_may_be_null(arg_type))
8610 		/* A NULL register has a SCALAR_VALUE type, so skip
8611 		 * type checking.
8612 		 */
8613 		goto skip_type_check;
8614 
8615 	/* arg_btf_id and arg_size are in a union. */
8616 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8617 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8618 		arg_btf_id = fn->arg_btf_id[arg];
8619 
8620 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8621 	if (err)
8622 		return err;
8623 
8624 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8625 	if (err)
8626 		return err;
8627 
8628 skip_type_check:
8629 	if (arg_type_is_release(arg_type)) {
8630 		if (arg_type_is_dynptr(arg_type)) {
8631 			struct bpf_func_state *state = func(env, reg);
8632 			int spi;
8633 
8634 			/* Only dynptr created on stack can be released, thus
8635 			 * the get_spi and stack state checks for spilled_ptr
8636 			 * should only be done before process_dynptr_func for
8637 			 * PTR_TO_STACK.
8638 			 */
8639 			if (reg->type == PTR_TO_STACK) {
8640 				spi = dynptr_get_spi(env, reg);
8641 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8642 					verbose(env, "arg %d is an unacquired reference\n", regno);
8643 					return -EINVAL;
8644 				}
8645 			} else {
8646 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8647 				return -EINVAL;
8648 			}
8649 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8650 			verbose(env, "R%d must be referenced when passed to release function\n",
8651 				regno);
8652 			return -EINVAL;
8653 		}
8654 		if (meta->release_regno) {
8655 			verbose(env, "verifier internal error: more than one release argument\n");
8656 			return -EFAULT;
8657 		}
8658 		meta->release_regno = regno;
8659 	}
8660 
8661 	if (reg->ref_obj_id) {
8662 		if (meta->ref_obj_id) {
8663 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8664 				regno, reg->ref_obj_id,
8665 				meta->ref_obj_id);
8666 			return -EFAULT;
8667 		}
8668 		meta->ref_obj_id = reg->ref_obj_id;
8669 	}
8670 
8671 	switch (base_type(arg_type)) {
8672 	case ARG_CONST_MAP_PTR:
8673 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8674 		if (meta->map_ptr) {
8675 			/* Use map_uid (which is unique id of inner map) to reject:
8676 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8677 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8678 			 * if (inner_map1 && inner_map2) {
8679 			 *     timer = bpf_map_lookup_elem(inner_map1);
8680 			 *     if (timer)
8681 			 *         // mismatch would have been allowed
8682 			 *         bpf_timer_init(timer, inner_map2);
8683 			 * }
8684 			 *
8685 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8686 			 */
8687 			if (meta->map_ptr != reg->map_ptr ||
8688 			    meta->map_uid != reg->map_uid) {
8689 				verbose(env,
8690 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8691 					meta->map_uid, reg->map_uid);
8692 				return -EINVAL;
8693 			}
8694 		}
8695 		meta->map_ptr = reg->map_ptr;
8696 		meta->map_uid = reg->map_uid;
8697 		break;
8698 	case ARG_PTR_TO_MAP_KEY:
8699 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8700 		 * check that [key, key + map->key_size) are within
8701 		 * stack limits and initialized
8702 		 */
8703 		if (!meta->map_ptr) {
8704 			/* in function declaration map_ptr must come before
8705 			 * map_key, so that it's verified and known before
8706 			 * we have to check map_key here. Otherwise it means
8707 			 * that kernel subsystem misconfigured verifier
8708 			 */
8709 			verbose(env, "invalid map_ptr to access map->key\n");
8710 			return -EACCES;
8711 		}
8712 		err = check_helper_mem_access(env, regno,
8713 					      meta->map_ptr->key_size, false,
8714 					      NULL);
8715 		break;
8716 	case ARG_PTR_TO_MAP_VALUE:
8717 		if (type_may_be_null(arg_type) && register_is_null(reg))
8718 			return 0;
8719 
8720 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8721 		 * check [value, value + map->value_size) validity
8722 		 */
8723 		if (!meta->map_ptr) {
8724 			/* kernel subsystem misconfigured verifier */
8725 			verbose(env, "invalid map_ptr to access map->value\n");
8726 			return -EACCES;
8727 		}
8728 		meta->raw_mode = arg_type & MEM_UNINIT;
8729 		err = check_helper_mem_access(env, regno,
8730 					      meta->map_ptr->value_size, false,
8731 					      meta);
8732 		break;
8733 	case ARG_PTR_TO_PERCPU_BTF_ID:
8734 		if (!reg->btf_id) {
8735 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8736 			return -EACCES;
8737 		}
8738 		meta->ret_btf = reg->btf;
8739 		meta->ret_btf_id = reg->btf_id;
8740 		break;
8741 	case ARG_PTR_TO_SPIN_LOCK:
8742 		if (in_rbtree_lock_required_cb(env)) {
8743 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8744 			return -EACCES;
8745 		}
8746 		if (meta->func_id == BPF_FUNC_spin_lock) {
8747 			err = process_spin_lock(env, regno, true);
8748 			if (err)
8749 				return err;
8750 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8751 			err = process_spin_lock(env, regno, false);
8752 			if (err)
8753 				return err;
8754 		} else {
8755 			verbose(env, "verifier internal error\n");
8756 			return -EFAULT;
8757 		}
8758 		break;
8759 	case ARG_PTR_TO_TIMER:
8760 		err = process_timer_func(env, regno, meta);
8761 		if (err)
8762 			return err;
8763 		break;
8764 	case ARG_PTR_TO_FUNC:
8765 		meta->subprogno = reg->subprogno;
8766 		break;
8767 	case ARG_PTR_TO_MEM:
8768 		/* The access to this pointer is only checked when we hit the
8769 		 * next is_mem_size argument below.
8770 		 */
8771 		meta->raw_mode = arg_type & MEM_UNINIT;
8772 		if (arg_type & MEM_FIXED_SIZE) {
8773 			err = check_helper_mem_access(env, regno,
8774 						      fn->arg_size[arg], false,
8775 						      meta);
8776 		}
8777 		break;
8778 	case ARG_CONST_SIZE:
8779 		err = check_mem_size_reg(env, reg, regno, false, meta);
8780 		break;
8781 	case ARG_CONST_SIZE_OR_ZERO:
8782 		err = check_mem_size_reg(env, reg, regno, true, meta);
8783 		break;
8784 	case ARG_PTR_TO_DYNPTR:
8785 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8786 		if (err)
8787 			return err;
8788 		break;
8789 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8790 		if (!tnum_is_const(reg->var_off)) {
8791 			verbose(env, "R%d is not a known constant'\n",
8792 				regno);
8793 			return -EACCES;
8794 		}
8795 		meta->mem_size = reg->var_off.value;
8796 		err = mark_chain_precision(env, regno);
8797 		if (err)
8798 			return err;
8799 		break;
8800 	case ARG_PTR_TO_INT:
8801 	case ARG_PTR_TO_LONG:
8802 	{
8803 		int size = int_ptr_type_to_size(arg_type);
8804 
8805 		err = check_helper_mem_access(env, regno, size, false, meta);
8806 		if (err)
8807 			return err;
8808 		err = check_ptr_alignment(env, reg, 0, size, true);
8809 		break;
8810 	}
8811 	case ARG_PTR_TO_CONST_STR:
8812 	{
8813 		err = check_reg_const_str(env, reg, regno);
8814 		if (err)
8815 			return err;
8816 		break;
8817 	}
8818 	case ARG_PTR_TO_KPTR:
8819 		err = process_kptr_func(env, regno, meta);
8820 		if (err)
8821 			return err;
8822 		break;
8823 	}
8824 
8825 	return err;
8826 }
8827 
8828 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8829 {
8830 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8831 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8832 
8833 	if (func_id != BPF_FUNC_map_update_elem)
8834 		return false;
8835 
8836 	/* It's not possible to get access to a locked struct sock in these
8837 	 * contexts, so updating is safe.
8838 	 */
8839 	switch (type) {
8840 	case BPF_PROG_TYPE_TRACING:
8841 		if (eatype == BPF_TRACE_ITER)
8842 			return true;
8843 		break;
8844 	case BPF_PROG_TYPE_SOCKET_FILTER:
8845 	case BPF_PROG_TYPE_SCHED_CLS:
8846 	case BPF_PROG_TYPE_SCHED_ACT:
8847 	case BPF_PROG_TYPE_XDP:
8848 	case BPF_PROG_TYPE_SK_REUSEPORT:
8849 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8850 	case BPF_PROG_TYPE_SK_LOOKUP:
8851 		return true;
8852 	default:
8853 		break;
8854 	}
8855 
8856 	verbose(env, "cannot update sockmap in this context\n");
8857 	return false;
8858 }
8859 
8860 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8861 {
8862 	return env->prog->jit_requested &&
8863 	       bpf_jit_supports_subprog_tailcalls();
8864 }
8865 
8866 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8867 					struct bpf_map *map, int func_id)
8868 {
8869 	if (!map)
8870 		return 0;
8871 
8872 	/* We need a two way check, first is from map perspective ... */
8873 	switch (map->map_type) {
8874 	case BPF_MAP_TYPE_PROG_ARRAY:
8875 		if (func_id != BPF_FUNC_tail_call)
8876 			goto error;
8877 		break;
8878 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8879 		if (func_id != BPF_FUNC_perf_event_read &&
8880 		    func_id != BPF_FUNC_perf_event_output &&
8881 		    func_id != BPF_FUNC_skb_output &&
8882 		    func_id != BPF_FUNC_perf_event_read_value &&
8883 		    func_id != BPF_FUNC_xdp_output)
8884 			goto error;
8885 		break;
8886 	case BPF_MAP_TYPE_RINGBUF:
8887 		if (func_id != BPF_FUNC_ringbuf_output &&
8888 		    func_id != BPF_FUNC_ringbuf_reserve &&
8889 		    func_id != BPF_FUNC_ringbuf_query &&
8890 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8891 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8892 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8893 			goto error;
8894 		break;
8895 	case BPF_MAP_TYPE_USER_RINGBUF:
8896 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8897 			goto error;
8898 		break;
8899 	case BPF_MAP_TYPE_STACK_TRACE:
8900 		if (func_id != BPF_FUNC_get_stackid)
8901 			goto error;
8902 		break;
8903 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8904 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8905 		    func_id != BPF_FUNC_current_task_under_cgroup)
8906 			goto error;
8907 		break;
8908 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8909 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8910 		if (func_id != BPF_FUNC_get_local_storage)
8911 			goto error;
8912 		break;
8913 	case BPF_MAP_TYPE_DEVMAP:
8914 	case BPF_MAP_TYPE_DEVMAP_HASH:
8915 		if (func_id != BPF_FUNC_redirect_map &&
8916 		    func_id != BPF_FUNC_map_lookup_elem)
8917 			goto error;
8918 		break;
8919 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8920 	 * appear.
8921 	 */
8922 	case BPF_MAP_TYPE_CPUMAP:
8923 		if (func_id != BPF_FUNC_redirect_map)
8924 			goto error;
8925 		break;
8926 	case BPF_MAP_TYPE_XSKMAP:
8927 		if (func_id != BPF_FUNC_redirect_map &&
8928 		    func_id != BPF_FUNC_map_lookup_elem)
8929 			goto error;
8930 		break;
8931 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8932 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8933 		if (func_id != BPF_FUNC_map_lookup_elem)
8934 			goto error;
8935 		break;
8936 	case BPF_MAP_TYPE_SOCKMAP:
8937 		if (func_id != BPF_FUNC_sk_redirect_map &&
8938 		    func_id != BPF_FUNC_sock_map_update &&
8939 		    func_id != BPF_FUNC_map_delete_elem &&
8940 		    func_id != BPF_FUNC_msg_redirect_map &&
8941 		    func_id != BPF_FUNC_sk_select_reuseport &&
8942 		    func_id != BPF_FUNC_map_lookup_elem &&
8943 		    !may_update_sockmap(env, func_id))
8944 			goto error;
8945 		break;
8946 	case BPF_MAP_TYPE_SOCKHASH:
8947 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8948 		    func_id != BPF_FUNC_sock_hash_update &&
8949 		    func_id != BPF_FUNC_map_delete_elem &&
8950 		    func_id != BPF_FUNC_msg_redirect_hash &&
8951 		    func_id != BPF_FUNC_sk_select_reuseport &&
8952 		    func_id != BPF_FUNC_map_lookup_elem &&
8953 		    !may_update_sockmap(env, func_id))
8954 			goto error;
8955 		break;
8956 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8957 		if (func_id != BPF_FUNC_sk_select_reuseport)
8958 			goto error;
8959 		break;
8960 	case BPF_MAP_TYPE_QUEUE:
8961 	case BPF_MAP_TYPE_STACK:
8962 		if (func_id != BPF_FUNC_map_peek_elem &&
8963 		    func_id != BPF_FUNC_map_pop_elem &&
8964 		    func_id != BPF_FUNC_map_push_elem)
8965 			goto error;
8966 		break;
8967 	case BPF_MAP_TYPE_SK_STORAGE:
8968 		if (func_id != BPF_FUNC_sk_storage_get &&
8969 		    func_id != BPF_FUNC_sk_storage_delete &&
8970 		    func_id != BPF_FUNC_kptr_xchg)
8971 			goto error;
8972 		break;
8973 	case BPF_MAP_TYPE_INODE_STORAGE:
8974 		if (func_id != BPF_FUNC_inode_storage_get &&
8975 		    func_id != BPF_FUNC_inode_storage_delete &&
8976 		    func_id != BPF_FUNC_kptr_xchg)
8977 			goto error;
8978 		break;
8979 	case BPF_MAP_TYPE_TASK_STORAGE:
8980 		if (func_id != BPF_FUNC_task_storage_get &&
8981 		    func_id != BPF_FUNC_task_storage_delete &&
8982 		    func_id != BPF_FUNC_kptr_xchg)
8983 			goto error;
8984 		break;
8985 	case BPF_MAP_TYPE_CGRP_STORAGE:
8986 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8987 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8988 		    func_id != BPF_FUNC_kptr_xchg)
8989 			goto error;
8990 		break;
8991 	case BPF_MAP_TYPE_BLOOM_FILTER:
8992 		if (func_id != BPF_FUNC_map_peek_elem &&
8993 		    func_id != BPF_FUNC_map_push_elem)
8994 			goto error;
8995 		break;
8996 	default:
8997 		break;
8998 	}
8999 
9000 	/* ... and second from the function itself. */
9001 	switch (func_id) {
9002 	case BPF_FUNC_tail_call:
9003 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9004 			goto error;
9005 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9006 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9007 			return -EINVAL;
9008 		}
9009 		break;
9010 	case BPF_FUNC_perf_event_read:
9011 	case BPF_FUNC_perf_event_output:
9012 	case BPF_FUNC_perf_event_read_value:
9013 	case BPF_FUNC_skb_output:
9014 	case BPF_FUNC_xdp_output:
9015 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9016 			goto error;
9017 		break;
9018 	case BPF_FUNC_ringbuf_output:
9019 	case BPF_FUNC_ringbuf_reserve:
9020 	case BPF_FUNC_ringbuf_query:
9021 	case BPF_FUNC_ringbuf_reserve_dynptr:
9022 	case BPF_FUNC_ringbuf_submit_dynptr:
9023 	case BPF_FUNC_ringbuf_discard_dynptr:
9024 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9025 			goto error;
9026 		break;
9027 	case BPF_FUNC_user_ringbuf_drain:
9028 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9029 			goto error;
9030 		break;
9031 	case BPF_FUNC_get_stackid:
9032 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9033 			goto error;
9034 		break;
9035 	case BPF_FUNC_current_task_under_cgroup:
9036 	case BPF_FUNC_skb_under_cgroup:
9037 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9038 			goto error;
9039 		break;
9040 	case BPF_FUNC_redirect_map:
9041 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9042 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9043 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9044 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9045 			goto error;
9046 		break;
9047 	case BPF_FUNC_sk_redirect_map:
9048 	case BPF_FUNC_msg_redirect_map:
9049 	case BPF_FUNC_sock_map_update:
9050 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9051 			goto error;
9052 		break;
9053 	case BPF_FUNC_sk_redirect_hash:
9054 	case BPF_FUNC_msg_redirect_hash:
9055 	case BPF_FUNC_sock_hash_update:
9056 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9057 			goto error;
9058 		break;
9059 	case BPF_FUNC_get_local_storage:
9060 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9061 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9062 			goto error;
9063 		break;
9064 	case BPF_FUNC_sk_select_reuseport:
9065 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9066 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9067 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9068 			goto error;
9069 		break;
9070 	case BPF_FUNC_map_pop_elem:
9071 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9072 		    map->map_type != BPF_MAP_TYPE_STACK)
9073 			goto error;
9074 		break;
9075 	case BPF_FUNC_map_peek_elem:
9076 	case BPF_FUNC_map_push_elem:
9077 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9078 		    map->map_type != BPF_MAP_TYPE_STACK &&
9079 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9080 			goto error;
9081 		break;
9082 	case BPF_FUNC_map_lookup_percpu_elem:
9083 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9084 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9085 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9086 			goto error;
9087 		break;
9088 	case BPF_FUNC_sk_storage_get:
9089 	case BPF_FUNC_sk_storage_delete:
9090 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9091 			goto error;
9092 		break;
9093 	case BPF_FUNC_inode_storage_get:
9094 	case BPF_FUNC_inode_storage_delete:
9095 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9096 			goto error;
9097 		break;
9098 	case BPF_FUNC_task_storage_get:
9099 	case BPF_FUNC_task_storage_delete:
9100 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9101 			goto error;
9102 		break;
9103 	case BPF_FUNC_cgrp_storage_get:
9104 	case BPF_FUNC_cgrp_storage_delete:
9105 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9106 			goto error;
9107 		break;
9108 	default:
9109 		break;
9110 	}
9111 
9112 	return 0;
9113 error:
9114 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9115 		map->map_type, func_id_name(func_id), func_id);
9116 	return -EINVAL;
9117 }
9118 
9119 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9120 {
9121 	int count = 0;
9122 
9123 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9124 		count++;
9125 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9126 		count++;
9127 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9128 		count++;
9129 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9130 		count++;
9131 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9132 		count++;
9133 
9134 	/* We only support one arg being in raw mode at the moment,
9135 	 * which is sufficient for the helper functions we have
9136 	 * right now.
9137 	 */
9138 	return count <= 1;
9139 }
9140 
9141 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9142 {
9143 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9144 	bool has_size = fn->arg_size[arg] != 0;
9145 	bool is_next_size = false;
9146 
9147 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9148 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9149 
9150 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9151 		return is_next_size;
9152 
9153 	return has_size == is_next_size || is_next_size == is_fixed;
9154 }
9155 
9156 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9157 {
9158 	/* bpf_xxx(..., buf, len) call will access 'len'
9159 	 * bytes from memory 'buf'. Both arg types need
9160 	 * to be paired, so make sure there's no buggy
9161 	 * helper function specification.
9162 	 */
9163 	if (arg_type_is_mem_size(fn->arg1_type) ||
9164 	    check_args_pair_invalid(fn, 0) ||
9165 	    check_args_pair_invalid(fn, 1) ||
9166 	    check_args_pair_invalid(fn, 2) ||
9167 	    check_args_pair_invalid(fn, 3) ||
9168 	    check_args_pair_invalid(fn, 4))
9169 		return false;
9170 
9171 	return true;
9172 }
9173 
9174 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9175 {
9176 	int i;
9177 
9178 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9179 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9180 			return !!fn->arg_btf_id[i];
9181 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9182 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9183 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9184 		    /* arg_btf_id and arg_size are in a union. */
9185 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9186 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9187 			return false;
9188 	}
9189 
9190 	return true;
9191 }
9192 
9193 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9194 {
9195 	return check_raw_mode_ok(fn) &&
9196 	       check_arg_pair_ok(fn) &&
9197 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9198 }
9199 
9200 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9201  * are now invalid, so turn them into unknown SCALAR_VALUE.
9202  *
9203  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9204  * since these slices point to packet data.
9205  */
9206 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9207 {
9208 	struct bpf_func_state *state;
9209 	struct bpf_reg_state *reg;
9210 
9211 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9212 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9213 			mark_reg_invalid(env, reg);
9214 	}));
9215 }
9216 
9217 enum {
9218 	AT_PKT_END = -1,
9219 	BEYOND_PKT_END = -2,
9220 };
9221 
9222 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9223 {
9224 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9225 	struct bpf_reg_state *reg = &state->regs[regn];
9226 
9227 	if (reg->type != PTR_TO_PACKET)
9228 		/* PTR_TO_PACKET_META is not supported yet */
9229 		return;
9230 
9231 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9232 	 * How far beyond pkt_end it goes is unknown.
9233 	 * if (!range_open) it's the case of pkt >= pkt_end
9234 	 * if (range_open) it's the case of pkt > pkt_end
9235 	 * hence this pointer is at least 1 byte bigger than pkt_end
9236 	 */
9237 	if (range_open)
9238 		reg->range = BEYOND_PKT_END;
9239 	else
9240 		reg->range = AT_PKT_END;
9241 }
9242 
9243 /* The pointer with the specified id has released its reference to kernel
9244  * resources. Identify all copies of the same pointer and clear the reference.
9245  */
9246 static int release_reference(struct bpf_verifier_env *env,
9247 			     int ref_obj_id)
9248 {
9249 	struct bpf_func_state *state;
9250 	struct bpf_reg_state *reg;
9251 	int err;
9252 
9253 	err = release_reference_state(cur_func(env), ref_obj_id);
9254 	if (err)
9255 		return err;
9256 
9257 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9258 		if (reg->ref_obj_id == ref_obj_id)
9259 			mark_reg_invalid(env, reg);
9260 	}));
9261 
9262 	return 0;
9263 }
9264 
9265 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9266 {
9267 	struct bpf_func_state *unused;
9268 	struct bpf_reg_state *reg;
9269 
9270 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9271 		if (type_is_non_owning_ref(reg->type))
9272 			mark_reg_invalid(env, reg);
9273 	}));
9274 }
9275 
9276 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9277 				    struct bpf_reg_state *regs)
9278 {
9279 	int i;
9280 
9281 	/* after the call registers r0 - r5 were scratched */
9282 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9283 		mark_reg_not_init(env, regs, caller_saved[i]);
9284 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9285 	}
9286 }
9287 
9288 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9289 				   struct bpf_func_state *caller,
9290 				   struct bpf_func_state *callee,
9291 				   int insn_idx);
9292 
9293 static int set_callee_state(struct bpf_verifier_env *env,
9294 			    struct bpf_func_state *caller,
9295 			    struct bpf_func_state *callee, int insn_idx);
9296 
9297 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9298 			    set_callee_state_fn set_callee_state_cb,
9299 			    struct bpf_verifier_state *state)
9300 {
9301 	struct bpf_func_state *caller, *callee;
9302 	int err;
9303 
9304 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9305 		verbose(env, "the call stack of %d frames is too deep\n",
9306 			state->curframe + 2);
9307 		return -E2BIG;
9308 	}
9309 
9310 	if (state->frame[state->curframe + 1]) {
9311 		verbose(env, "verifier bug. Frame %d already allocated\n",
9312 			state->curframe + 1);
9313 		return -EFAULT;
9314 	}
9315 
9316 	caller = state->frame[state->curframe];
9317 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9318 	if (!callee)
9319 		return -ENOMEM;
9320 	state->frame[state->curframe + 1] = callee;
9321 
9322 	/* callee cannot access r0, r6 - r9 for reading and has to write
9323 	 * into its own stack before reading from it.
9324 	 * callee can read/write into caller's stack
9325 	 */
9326 	init_func_state(env, callee,
9327 			/* remember the callsite, it will be used by bpf_exit */
9328 			callsite,
9329 			state->curframe + 1 /* frameno within this callchain */,
9330 			subprog /* subprog number within this prog */);
9331 	/* Transfer references to the callee */
9332 	err = copy_reference_state(callee, caller);
9333 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9334 	if (err)
9335 		goto err_out;
9336 
9337 	/* only increment it after check_reg_arg() finished */
9338 	state->curframe++;
9339 
9340 	return 0;
9341 
9342 err_out:
9343 	free_func_state(callee);
9344 	state->frame[state->curframe + 1] = NULL;
9345 	return err;
9346 }
9347 
9348 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9349 				    const struct btf *btf,
9350 				    struct bpf_reg_state *regs)
9351 {
9352 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9353 	struct bpf_verifier_log *log = &env->log;
9354 	u32 i;
9355 	int ret;
9356 
9357 	ret = btf_prepare_func_args(env, subprog);
9358 	if (ret)
9359 		return ret;
9360 
9361 	/* check that BTF function arguments match actual types that the
9362 	 * verifier sees.
9363 	 */
9364 	for (i = 0; i < sub->arg_cnt; i++) {
9365 		u32 regno = i + 1;
9366 		struct bpf_reg_state *reg = &regs[regno];
9367 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9368 
9369 		if (arg->arg_type == ARG_ANYTHING) {
9370 			if (reg->type != SCALAR_VALUE) {
9371 				bpf_log(log, "R%d is not a scalar\n", regno);
9372 				return -EINVAL;
9373 			}
9374 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9375 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9376 			if (ret < 0)
9377 				return ret;
9378 			/* If function expects ctx type in BTF check that caller
9379 			 * is passing PTR_TO_CTX.
9380 			 */
9381 			if (reg->type != PTR_TO_CTX) {
9382 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9383 				return -EINVAL;
9384 			}
9385 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9386 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9387 			if (ret < 0)
9388 				return ret;
9389 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9390 				return -EINVAL;
9391 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9392 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9393 				return -EINVAL;
9394 			}
9395 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9396 			/*
9397 			 * Can pass any value and the kernel won't crash, but
9398 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9399 			 * else is a bug in the bpf program. Point it out to
9400 			 * the user at the verification time instead of
9401 			 * run-time debug nightmare.
9402 			 */
9403 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9404 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9405 				return -EINVAL;
9406 			}
9407 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9408 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9409 			if (ret)
9410 				return ret;
9411 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9412 			struct bpf_call_arg_meta meta;
9413 			int err;
9414 
9415 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9416 				continue;
9417 
9418 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9419 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9420 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9421 			if (err)
9422 				return err;
9423 		} else {
9424 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9425 				i, arg->arg_type);
9426 			return -EFAULT;
9427 		}
9428 	}
9429 
9430 	return 0;
9431 }
9432 
9433 /* Compare BTF of a function call with given bpf_reg_state.
9434  * Returns:
9435  * EFAULT - there is a verifier bug. Abort verification.
9436  * EINVAL - there is a type mismatch or BTF is not available.
9437  * 0 - BTF matches with what bpf_reg_state expects.
9438  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9439  */
9440 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9441 				  struct bpf_reg_state *regs)
9442 {
9443 	struct bpf_prog *prog = env->prog;
9444 	struct btf *btf = prog->aux->btf;
9445 	u32 btf_id;
9446 	int err;
9447 
9448 	if (!prog->aux->func_info)
9449 		return -EINVAL;
9450 
9451 	btf_id = prog->aux->func_info[subprog].type_id;
9452 	if (!btf_id)
9453 		return -EFAULT;
9454 
9455 	if (prog->aux->func_info_aux[subprog].unreliable)
9456 		return -EINVAL;
9457 
9458 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9459 	/* Compiler optimizations can remove arguments from static functions
9460 	 * or mismatched type can be passed into a global function.
9461 	 * In such cases mark the function as unreliable from BTF point of view.
9462 	 */
9463 	if (err)
9464 		prog->aux->func_info_aux[subprog].unreliable = true;
9465 	return err;
9466 }
9467 
9468 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9469 			      int insn_idx, int subprog,
9470 			      set_callee_state_fn set_callee_state_cb)
9471 {
9472 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9473 	struct bpf_func_state *caller, *callee;
9474 	int err;
9475 
9476 	caller = state->frame[state->curframe];
9477 	err = btf_check_subprog_call(env, subprog, caller->regs);
9478 	if (err == -EFAULT)
9479 		return err;
9480 
9481 	/* set_callee_state is used for direct subprog calls, but we are
9482 	 * interested in validating only BPF helpers that can call subprogs as
9483 	 * callbacks
9484 	 */
9485 	env->subprog_info[subprog].is_cb = true;
9486 	if (bpf_pseudo_kfunc_call(insn) &&
9487 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9488 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9489 			func_id_name(insn->imm), insn->imm);
9490 		return -EFAULT;
9491 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9492 		   !is_callback_calling_function(insn->imm)) { /* helper */
9493 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9494 			func_id_name(insn->imm), insn->imm);
9495 		return -EFAULT;
9496 	}
9497 
9498 	if (is_async_callback_calling_insn(insn)) {
9499 		struct bpf_verifier_state *async_cb;
9500 
9501 		/* there is no real recursion here. timer callbacks are async */
9502 		env->subprog_info[subprog].is_async_cb = true;
9503 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9504 					 insn_idx, subprog);
9505 		if (!async_cb)
9506 			return -EFAULT;
9507 		callee = async_cb->frame[0];
9508 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9509 
9510 		/* Convert bpf_timer_set_callback() args into timer callback args */
9511 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9512 		if (err)
9513 			return err;
9514 
9515 		return 0;
9516 	}
9517 
9518 	/* for callback functions enqueue entry to callback and
9519 	 * proceed with next instruction within current frame.
9520 	 */
9521 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9522 	if (!callback_state)
9523 		return -ENOMEM;
9524 
9525 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9526 			       callback_state);
9527 	if (err)
9528 		return err;
9529 
9530 	callback_state->callback_unroll_depth++;
9531 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9532 	caller->callback_depth = 0;
9533 	return 0;
9534 }
9535 
9536 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9537 			   int *insn_idx)
9538 {
9539 	struct bpf_verifier_state *state = env->cur_state;
9540 	struct bpf_func_state *caller;
9541 	int err, subprog, target_insn;
9542 
9543 	target_insn = *insn_idx + insn->imm + 1;
9544 	subprog = find_subprog(env, target_insn);
9545 	if (subprog < 0) {
9546 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9547 		return -EFAULT;
9548 	}
9549 
9550 	caller = state->frame[state->curframe];
9551 	err = btf_check_subprog_call(env, subprog, caller->regs);
9552 	if (err == -EFAULT)
9553 		return err;
9554 	if (subprog_is_global(env, subprog)) {
9555 		const char *sub_name = subprog_name(env, subprog);
9556 
9557 		/* Only global subprogs cannot be called with a lock held. */
9558 		if (env->cur_state->active_lock.ptr) {
9559 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9560 				     "use static function instead\n");
9561 			return -EINVAL;
9562 		}
9563 
9564 		if (err) {
9565 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9566 				subprog, sub_name);
9567 			return err;
9568 		}
9569 
9570 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9571 			subprog, sub_name);
9572 		/* mark global subprog for verifying after main prog */
9573 		subprog_aux(env, subprog)->called = true;
9574 		clear_caller_saved_regs(env, caller->regs);
9575 
9576 		/* All global functions return a 64-bit SCALAR_VALUE */
9577 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9578 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9579 
9580 		/* continue with next insn after call */
9581 		return 0;
9582 	}
9583 
9584 	/* for regular function entry setup new frame and continue
9585 	 * from that frame.
9586 	 */
9587 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9588 	if (err)
9589 		return err;
9590 
9591 	clear_caller_saved_regs(env, caller->regs);
9592 
9593 	/* and go analyze first insn of the callee */
9594 	*insn_idx = env->subprog_info[subprog].start - 1;
9595 
9596 	if (env->log.level & BPF_LOG_LEVEL) {
9597 		verbose(env, "caller:\n");
9598 		print_verifier_state(env, caller, true);
9599 		verbose(env, "callee:\n");
9600 		print_verifier_state(env, state->frame[state->curframe], true);
9601 	}
9602 
9603 	return 0;
9604 }
9605 
9606 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9607 				   struct bpf_func_state *caller,
9608 				   struct bpf_func_state *callee)
9609 {
9610 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9611 	 *      void *callback_ctx, u64 flags);
9612 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9613 	 *      void *callback_ctx);
9614 	 */
9615 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9616 
9617 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9618 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9619 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9620 
9621 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9622 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9623 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9624 
9625 	/* pointer to stack or null */
9626 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9627 
9628 	/* unused */
9629 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9630 	return 0;
9631 }
9632 
9633 static int set_callee_state(struct bpf_verifier_env *env,
9634 			    struct bpf_func_state *caller,
9635 			    struct bpf_func_state *callee, int insn_idx)
9636 {
9637 	int i;
9638 
9639 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9640 	 * pointers, which connects us up to the liveness chain
9641 	 */
9642 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9643 		callee->regs[i] = caller->regs[i];
9644 	return 0;
9645 }
9646 
9647 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9648 				       struct bpf_func_state *caller,
9649 				       struct bpf_func_state *callee,
9650 				       int insn_idx)
9651 {
9652 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9653 	struct bpf_map *map;
9654 	int err;
9655 
9656 	if (bpf_map_ptr_poisoned(insn_aux)) {
9657 		verbose(env, "tail_call abusing map_ptr\n");
9658 		return -EINVAL;
9659 	}
9660 
9661 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9662 	if (!map->ops->map_set_for_each_callback_args ||
9663 	    !map->ops->map_for_each_callback) {
9664 		verbose(env, "callback function not allowed for map\n");
9665 		return -ENOTSUPP;
9666 	}
9667 
9668 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9669 	if (err)
9670 		return err;
9671 
9672 	callee->in_callback_fn = true;
9673 	callee->callback_ret_range = retval_range(0, 1);
9674 	return 0;
9675 }
9676 
9677 static int set_loop_callback_state(struct bpf_verifier_env *env,
9678 				   struct bpf_func_state *caller,
9679 				   struct bpf_func_state *callee,
9680 				   int insn_idx)
9681 {
9682 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9683 	 *	    u64 flags);
9684 	 * callback_fn(u32 index, void *callback_ctx);
9685 	 */
9686 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9687 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9688 
9689 	/* unused */
9690 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9691 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9692 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9693 
9694 	callee->in_callback_fn = true;
9695 	callee->callback_ret_range = retval_range(0, 1);
9696 	return 0;
9697 }
9698 
9699 static int set_timer_callback_state(struct bpf_verifier_env *env,
9700 				    struct bpf_func_state *caller,
9701 				    struct bpf_func_state *callee,
9702 				    int insn_idx)
9703 {
9704 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9705 
9706 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9707 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9708 	 */
9709 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9710 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9711 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9712 
9713 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9714 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9715 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9716 
9717 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9718 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9719 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9720 
9721 	/* unused */
9722 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9723 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9724 	callee->in_async_callback_fn = true;
9725 	callee->callback_ret_range = retval_range(0, 1);
9726 	return 0;
9727 }
9728 
9729 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9730 				       struct bpf_func_state *caller,
9731 				       struct bpf_func_state *callee,
9732 				       int insn_idx)
9733 {
9734 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9735 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9736 	 * (callback_fn)(struct task_struct *task,
9737 	 *               struct vm_area_struct *vma, void *callback_ctx);
9738 	 */
9739 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9740 
9741 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9742 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9743 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9744 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9745 
9746 	/* pointer to stack or null */
9747 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9748 
9749 	/* unused */
9750 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9751 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9752 	callee->in_callback_fn = true;
9753 	callee->callback_ret_range = retval_range(0, 1);
9754 	return 0;
9755 }
9756 
9757 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9758 					   struct bpf_func_state *caller,
9759 					   struct bpf_func_state *callee,
9760 					   int insn_idx)
9761 {
9762 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9763 	 *			  callback_ctx, u64 flags);
9764 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9765 	 */
9766 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9767 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9768 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9769 
9770 	/* unused */
9771 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9772 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9773 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9774 
9775 	callee->in_callback_fn = true;
9776 	callee->callback_ret_range = retval_range(0, 1);
9777 	return 0;
9778 }
9779 
9780 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9781 					 struct bpf_func_state *caller,
9782 					 struct bpf_func_state *callee,
9783 					 int insn_idx)
9784 {
9785 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9786 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9787 	 *
9788 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9789 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9790 	 * by this point, so look at 'root'
9791 	 */
9792 	struct btf_field *field;
9793 
9794 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9795 				      BPF_RB_ROOT);
9796 	if (!field || !field->graph_root.value_btf_id)
9797 		return -EFAULT;
9798 
9799 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9800 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9801 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9802 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9803 
9804 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9805 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9806 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9807 	callee->in_callback_fn = true;
9808 	callee->callback_ret_range = retval_range(0, 1);
9809 	return 0;
9810 }
9811 
9812 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9813 
9814 /* Are we currently verifying the callback for a rbtree helper that must
9815  * be called with lock held? If so, no need to complain about unreleased
9816  * lock
9817  */
9818 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9819 {
9820 	struct bpf_verifier_state *state = env->cur_state;
9821 	struct bpf_insn *insn = env->prog->insnsi;
9822 	struct bpf_func_state *callee;
9823 	int kfunc_btf_id;
9824 
9825 	if (!state->curframe)
9826 		return false;
9827 
9828 	callee = state->frame[state->curframe];
9829 
9830 	if (!callee->in_callback_fn)
9831 		return false;
9832 
9833 	kfunc_btf_id = insn[callee->callsite].imm;
9834 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9835 }
9836 
9837 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
9838 {
9839 	return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
9840 }
9841 
9842 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9843 {
9844 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9845 	struct bpf_func_state *caller, *callee;
9846 	struct bpf_reg_state *r0;
9847 	bool in_callback_fn;
9848 	int err;
9849 
9850 	callee = state->frame[state->curframe];
9851 	r0 = &callee->regs[BPF_REG_0];
9852 	if (r0->type == PTR_TO_STACK) {
9853 		/* technically it's ok to return caller's stack pointer
9854 		 * (or caller's caller's pointer) back to the caller,
9855 		 * since these pointers are valid. Only current stack
9856 		 * pointer will be invalid as soon as function exits,
9857 		 * but let's be conservative
9858 		 */
9859 		verbose(env, "cannot return stack pointer to the caller\n");
9860 		return -EINVAL;
9861 	}
9862 
9863 	caller = state->frame[state->curframe - 1];
9864 	if (callee->in_callback_fn) {
9865 		if (r0->type != SCALAR_VALUE) {
9866 			verbose(env, "R0 not a scalar value\n");
9867 			return -EACCES;
9868 		}
9869 
9870 		/* we are going to rely on register's precise value */
9871 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9872 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9873 		if (err)
9874 			return err;
9875 
9876 		/* enforce R0 return value range */
9877 		if (!retval_range_within(callee->callback_ret_range, r0)) {
9878 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
9879 					       "At callback return", "R0");
9880 			return -EINVAL;
9881 		}
9882 		if (!calls_callback(env, callee->callsite)) {
9883 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9884 				*insn_idx, callee->callsite);
9885 			return -EFAULT;
9886 		}
9887 	} else {
9888 		/* return to the caller whatever r0 had in the callee */
9889 		caller->regs[BPF_REG_0] = *r0;
9890 	}
9891 
9892 	/* callback_fn frame should have released its own additions to parent's
9893 	 * reference state at this point, or check_reference_leak would
9894 	 * complain, hence it must be the same as the caller. There is no need
9895 	 * to copy it back.
9896 	 */
9897 	if (!callee->in_callback_fn) {
9898 		/* Transfer references to the caller */
9899 		err = copy_reference_state(caller, callee);
9900 		if (err)
9901 			return err;
9902 	}
9903 
9904 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9905 	 * there function call logic would reschedule callback visit. If iteration
9906 	 * converges is_state_visited() would prune that visit eventually.
9907 	 */
9908 	in_callback_fn = callee->in_callback_fn;
9909 	if (in_callback_fn)
9910 		*insn_idx = callee->callsite;
9911 	else
9912 		*insn_idx = callee->callsite + 1;
9913 
9914 	if (env->log.level & BPF_LOG_LEVEL) {
9915 		verbose(env, "returning from callee:\n");
9916 		print_verifier_state(env, callee, true);
9917 		verbose(env, "to caller at %d:\n", *insn_idx);
9918 		print_verifier_state(env, caller, true);
9919 	}
9920 	/* clear everything in the callee. In case of exceptional exits using
9921 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9922 	free_func_state(callee);
9923 	state->frame[state->curframe--] = NULL;
9924 
9925 	/* for callbacks widen imprecise scalars to make programs like below verify:
9926 	 *
9927 	 *   struct ctx { int i; }
9928 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9929 	 *   ...
9930 	 *   struct ctx = { .i = 0; }
9931 	 *   bpf_loop(100, cb, &ctx, 0);
9932 	 *
9933 	 * This is similar to what is done in process_iter_next_call() for open
9934 	 * coded iterators.
9935 	 */
9936 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9937 	if (prev_st) {
9938 		err = widen_imprecise_scalars(env, prev_st, state);
9939 		if (err)
9940 			return err;
9941 	}
9942 	return 0;
9943 }
9944 
9945 static int do_refine_retval_range(struct bpf_verifier_env *env,
9946 				  struct bpf_reg_state *regs, int ret_type,
9947 				  int func_id,
9948 				  struct bpf_call_arg_meta *meta)
9949 {
9950 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9951 
9952 	if (ret_type != RET_INTEGER)
9953 		return 0;
9954 
9955 	switch (func_id) {
9956 	case BPF_FUNC_get_stack:
9957 	case BPF_FUNC_get_task_stack:
9958 	case BPF_FUNC_probe_read_str:
9959 	case BPF_FUNC_probe_read_kernel_str:
9960 	case BPF_FUNC_probe_read_user_str:
9961 		ret_reg->smax_value = meta->msize_max_value;
9962 		ret_reg->s32_max_value = meta->msize_max_value;
9963 		ret_reg->smin_value = -MAX_ERRNO;
9964 		ret_reg->s32_min_value = -MAX_ERRNO;
9965 		reg_bounds_sync(ret_reg);
9966 		break;
9967 	case BPF_FUNC_get_smp_processor_id:
9968 		ret_reg->umax_value = nr_cpu_ids - 1;
9969 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9970 		ret_reg->smax_value = nr_cpu_ids - 1;
9971 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9972 		ret_reg->umin_value = 0;
9973 		ret_reg->u32_min_value = 0;
9974 		ret_reg->smin_value = 0;
9975 		ret_reg->s32_min_value = 0;
9976 		reg_bounds_sync(ret_reg);
9977 		break;
9978 	}
9979 
9980 	return reg_bounds_sanity_check(env, ret_reg, "retval");
9981 }
9982 
9983 static int
9984 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9985 		int func_id, int insn_idx)
9986 {
9987 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9988 	struct bpf_map *map = meta->map_ptr;
9989 
9990 	if (func_id != BPF_FUNC_tail_call &&
9991 	    func_id != BPF_FUNC_map_lookup_elem &&
9992 	    func_id != BPF_FUNC_map_update_elem &&
9993 	    func_id != BPF_FUNC_map_delete_elem &&
9994 	    func_id != BPF_FUNC_map_push_elem &&
9995 	    func_id != BPF_FUNC_map_pop_elem &&
9996 	    func_id != BPF_FUNC_map_peek_elem &&
9997 	    func_id != BPF_FUNC_for_each_map_elem &&
9998 	    func_id != BPF_FUNC_redirect_map &&
9999 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10000 		return 0;
10001 
10002 	if (map == NULL) {
10003 		verbose(env, "kernel subsystem misconfigured verifier\n");
10004 		return -EINVAL;
10005 	}
10006 
10007 	/* In case of read-only, some additional restrictions
10008 	 * need to be applied in order to prevent altering the
10009 	 * state of the map from program side.
10010 	 */
10011 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10012 	    (func_id == BPF_FUNC_map_delete_elem ||
10013 	     func_id == BPF_FUNC_map_update_elem ||
10014 	     func_id == BPF_FUNC_map_push_elem ||
10015 	     func_id == BPF_FUNC_map_pop_elem)) {
10016 		verbose(env, "write into map forbidden\n");
10017 		return -EACCES;
10018 	}
10019 
10020 	if (!BPF_MAP_PTR(aux->map_ptr_state))
10021 		bpf_map_ptr_store(aux, meta->map_ptr,
10022 				  !meta->map_ptr->bypass_spec_v1);
10023 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
10024 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
10025 				  !meta->map_ptr->bypass_spec_v1);
10026 	return 0;
10027 }
10028 
10029 static int
10030 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10031 		int func_id, int insn_idx)
10032 {
10033 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10034 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10035 	struct bpf_map *map = meta->map_ptr;
10036 	u64 val, max;
10037 	int err;
10038 
10039 	if (func_id != BPF_FUNC_tail_call)
10040 		return 0;
10041 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10042 		verbose(env, "kernel subsystem misconfigured verifier\n");
10043 		return -EINVAL;
10044 	}
10045 
10046 	reg = &regs[BPF_REG_3];
10047 	val = reg->var_off.value;
10048 	max = map->max_entries;
10049 
10050 	if (!(is_reg_const(reg, false) && val < max)) {
10051 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10052 		return 0;
10053 	}
10054 
10055 	err = mark_chain_precision(env, BPF_REG_3);
10056 	if (err)
10057 		return err;
10058 	if (bpf_map_key_unseen(aux))
10059 		bpf_map_key_store(aux, val);
10060 	else if (!bpf_map_key_poisoned(aux) &&
10061 		  bpf_map_key_immediate(aux) != val)
10062 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10063 	return 0;
10064 }
10065 
10066 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10067 {
10068 	struct bpf_func_state *state = cur_func(env);
10069 	bool refs_lingering = false;
10070 	int i;
10071 
10072 	if (!exception_exit && state->frameno && !state->in_callback_fn)
10073 		return 0;
10074 
10075 	for (i = 0; i < state->acquired_refs; i++) {
10076 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10077 			continue;
10078 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10079 			state->refs[i].id, state->refs[i].insn_idx);
10080 		refs_lingering = true;
10081 	}
10082 	return refs_lingering ? -EINVAL : 0;
10083 }
10084 
10085 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10086 				   struct bpf_reg_state *regs)
10087 {
10088 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10089 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10090 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10091 	struct bpf_bprintf_data data = {};
10092 	int err, fmt_map_off, num_args;
10093 	u64 fmt_addr;
10094 	char *fmt;
10095 
10096 	/* data must be an array of u64 */
10097 	if (data_len_reg->var_off.value % 8)
10098 		return -EINVAL;
10099 	num_args = data_len_reg->var_off.value / 8;
10100 
10101 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10102 	 * and map_direct_value_addr is set.
10103 	 */
10104 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10105 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10106 						  fmt_map_off);
10107 	if (err) {
10108 		verbose(env, "verifier bug\n");
10109 		return -EFAULT;
10110 	}
10111 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10112 
10113 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10114 	 * can focus on validating the format specifiers.
10115 	 */
10116 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10117 	if (err < 0)
10118 		verbose(env, "Invalid format string\n");
10119 
10120 	return err;
10121 }
10122 
10123 static int check_get_func_ip(struct bpf_verifier_env *env)
10124 {
10125 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10126 	int func_id = BPF_FUNC_get_func_ip;
10127 
10128 	if (type == BPF_PROG_TYPE_TRACING) {
10129 		if (!bpf_prog_has_trampoline(env->prog)) {
10130 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10131 				func_id_name(func_id), func_id);
10132 			return -ENOTSUPP;
10133 		}
10134 		return 0;
10135 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10136 		return 0;
10137 	}
10138 
10139 	verbose(env, "func %s#%d not supported for program type %d\n",
10140 		func_id_name(func_id), func_id, type);
10141 	return -ENOTSUPP;
10142 }
10143 
10144 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10145 {
10146 	return &env->insn_aux_data[env->insn_idx];
10147 }
10148 
10149 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10150 {
10151 	struct bpf_reg_state *regs = cur_regs(env);
10152 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10153 	bool reg_is_null = register_is_null(reg);
10154 
10155 	if (reg_is_null)
10156 		mark_chain_precision(env, BPF_REG_4);
10157 
10158 	return reg_is_null;
10159 }
10160 
10161 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10162 {
10163 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10164 
10165 	if (!state->initialized) {
10166 		state->initialized = 1;
10167 		state->fit_for_inline = loop_flag_is_zero(env);
10168 		state->callback_subprogno = subprogno;
10169 		return;
10170 	}
10171 
10172 	if (!state->fit_for_inline)
10173 		return;
10174 
10175 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10176 				 state->callback_subprogno == subprogno);
10177 }
10178 
10179 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10180 			     int *insn_idx_p)
10181 {
10182 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10183 	bool returns_cpu_specific_alloc_ptr = false;
10184 	const struct bpf_func_proto *fn = NULL;
10185 	enum bpf_return_type ret_type;
10186 	enum bpf_type_flag ret_flag;
10187 	struct bpf_reg_state *regs;
10188 	struct bpf_call_arg_meta meta;
10189 	int insn_idx = *insn_idx_p;
10190 	bool changes_data;
10191 	int i, err, func_id;
10192 
10193 	/* find function prototype */
10194 	func_id = insn->imm;
10195 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10196 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10197 			func_id);
10198 		return -EINVAL;
10199 	}
10200 
10201 	if (env->ops->get_func_proto)
10202 		fn = env->ops->get_func_proto(func_id, env->prog);
10203 	if (!fn) {
10204 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10205 			func_id);
10206 		return -EINVAL;
10207 	}
10208 
10209 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10210 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10211 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10212 		return -EINVAL;
10213 	}
10214 
10215 	if (fn->allowed && !fn->allowed(env->prog)) {
10216 		verbose(env, "helper call is not allowed in probe\n");
10217 		return -EINVAL;
10218 	}
10219 
10220 	if (!in_sleepable(env) && fn->might_sleep) {
10221 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10222 		return -EINVAL;
10223 	}
10224 
10225 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10226 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10227 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10228 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10229 			func_id_name(func_id), func_id);
10230 		return -EINVAL;
10231 	}
10232 
10233 	memset(&meta, 0, sizeof(meta));
10234 	meta.pkt_access = fn->pkt_access;
10235 
10236 	err = check_func_proto(fn, func_id);
10237 	if (err) {
10238 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10239 			func_id_name(func_id), func_id);
10240 		return err;
10241 	}
10242 
10243 	if (env->cur_state->active_rcu_lock) {
10244 		if (fn->might_sleep) {
10245 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10246 				func_id_name(func_id), func_id);
10247 			return -EINVAL;
10248 		}
10249 
10250 		if (in_sleepable(env) && is_storage_get_function(func_id))
10251 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10252 	}
10253 
10254 	meta.func_id = func_id;
10255 	/* check args */
10256 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10257 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10258 		if (err)
10259 			return err;
10260 	}
10261 
10262 	err = record_func_map(env, &meta, func_id, insn_idx);
10263 	if (err)
10264 		return err;
10265 
10266 	err = record_func_key(env, &meta, func_id, insn_idx);
10267 	if (err)
10268 		return err;
10269 
10270 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10271 	 * is inferred from register state.
10272 	 */
10273 	for (i = 0; i < meta.access_size; i++) {
10274 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10275 				       BPF_WRITE, -1, false, false);
10276 		if (err)
10277 			return err;
10278 	}
10279 
10280 	regs = cur_regs(env);
10281 
10282 	if (meta.release_regno) {
10283 		err = -EINVAL;
10284 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10285 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10286 		 * is safe to do directly.
10287 		 */
10288 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10289 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10290 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10291 				return -EFAULT;
10292 			}
10293 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10294 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10295 			u32 ref_obj_id = meta.ref_obj_id;
10296 			bool in_rcu = in_rcu_cs(env);
10297 			struct bpf_func_state *state;
10298 			struct bpf_reg_state *reg;
10299 
10300 			err = release_reference_state(cur_func(env), ref_obj_id);
10301 			if (!err) {
10302 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10303 					if (reg->ref_obj_id == ref_obj_id) {
10304 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10305 							reg->ref_obj_id = 0;
10306 							reg->type &= ~MEM_ALLOC;
10307 							reg->type |= MEM_RCU;
10308 						} else {
10309 							mark_reg_invalid(env, reg);
10310 						}
10311 					}
10312 				}));
10313 			}
10314 		} else if (meta.ref_obj_id) {
10315 			err = release_reference(env, meta.ref_obj_id);
10316 		} else if (register_is_null(&regs[meta.release_regno])) {
10317 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10318 			 * released is NULL, which must be > R0.
10319 			 */
10320 			err = 0;
10321 		}
10322 		if (err) {
10323 			verbose(env, "func %s#%d reference has not been acquired before\n",
10324 				func_id_name(func_id), func_id);
10325 			return err;
10326 		}
10327 	}
10328 
10329 	switch (func_id) {
10330 	case BPF_FUNC_tail_call:
10331 		err = check_reference_leak(env, false);
10332 		if (err) {
10333 			verbose(env, "tail_call would lead to reference leak\n");
10334 			return err;
10335 		}
10336 		break;
10337 	case BPF_FUNC_get_local_storage:
10338 		/* check that flags argument in get_local_storage(map, flags) is 0,
10339 		 * this is required because get_local_storage() can't return an error.
10340 		 */
10341 		if (!register_is_null(&regs[BPF_REG_2])) {
10342 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10343 			return -EINVAL;
10344 		}
10345 		break;
10346 	case BPF_FUNC_for_each_map_elem:
10347 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10348 					 set_map_elem_callback_state);
10349 		break;
10350 	case BPF_FUNC_timer_set_callback:
10351 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10352 					 set_timer_callback_state);
10353 		break;
10354 	case BPF_FUNC_find_vma:
10355 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10356 					 set_find_vma_callback_state);
10357 		break;
10358 	case BPF_FUNC_snprintf:
10359 		err = check_bpf_snprintf_call(env, regs);
10360 		break;
10361 	case BPF_FUNC_loop:
10362 		update_loop_inline_state(env, meta.subprogno);
10363 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10364 		 * is finished, thus mark it precise.
10365 		 */
10366 		err = mark_chain_precision(env, BPF_REG_1);
10367 		if (err)
10368 			return err;
10369 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10370 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10371 						 set_loop_callback_state);
10372 		} else {
10373 			cur_func(env)->callback_depth = 0;
10374 			if (env->log.level & BPF_LOG_LEVEL2)
10375 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10376 					env->cur_state->curframe);
10377 		}
10378 		break;
10379 	case BPF_FUNC_dynptr_from_mem:
10380 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10381 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10382 				reg_type_str(env, regs[BPF_REG_1].type));
10383 			return -EACCES;
10384 		}
10385 		break;
10386 	case BPF_FUNC_set_retval:
10387 		if (prog_type == BPF_PROG_TYPE_LSM &&
10388 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10389 			if (!env->prog->aux->attach_func_proto->type) {
10390 				/* Make sure programs that attach to void
10391 				 * hooks don't try to modify return value.
10392 				 */
10393 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10394 				return -EINVAL;
10395 			}
10396 		}
10397 		break;
10398 	case BPF_FUNC_dynptr_data:
10399 	{
10400 		struct bpf_reg_state *reg;
10401 		int id, ref_obj_id;
10402 
10403 		reg = get_dynptr_arg_reg(env, fn, regs);
10404 		if (!reg)
10405 			return -EFAULT;
10406 
10407 
10408 		if (meta.dynptr_id) {
10409 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10410 			return -EFAULT;
10411 		}
10412 		if (meta.ref_obj_id) {
10413 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10414 			return -EFAULT;
10415 		}
10416 
10417 		id = dynptr_id(env, reg);
10418 		if (id < 0) {
10419 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10420 			return id;
10421 		}
10422 
10423 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10424 		if (ref_obj_id < 0) {
10425 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10426 			return ref_obj_id;
10427 		}
10428 
10429 		meta.dynptr_id = id;
10430 		meta.ref_obj_id = ref_obj_id;
10431 
10432 		break;
10433 	}
10434 	case BPF_FUNC_dynptr_write:
10435 	{
10436 		enum bpf_dynptr_type dynptr_type;
10437 		struct bpf_reg_state *reg;
10438 
10439 		reg = get_dynptr_arg_reg(env, fn, regs);
10440 		if (!reg)
10441 			return -EFAULT;
10442 
10443 		dynptr_type = dynptr_get_type(env, reg);
10444 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10445 			return -EFAULT;
10446 
10447 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10448 			/* this will trigger clear_all_pkt_pointers(), which will
10449 			 * invalidate all dynptr slices associated with the skb
10450 			 */
10451 			changes_data = true;
10452 
10453 		break;
10454 	}
10455 	case BPF_FUNC_per_cpu_ptr:
10456 	case BPF_FUNC_this_cpu_ptr:
10457 	{
10458 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10459 		const struct btf_type *type;
10460 
10461 		if (reg->type & MEM_RCU) {
10462 			type = btf_type_by_id(reg->btf, reg->btf_id);
10463 			if (!type || !btf_type_is_struct(type)) {
10464 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10465 				return -EFAULT;
10466 			}
10467 			returns_cpu_specific_alloc_ptr = true;
10468 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10469 		}
10470 		break;
10471 	}
10472 	case BPF_FUNC_user_ringbuf_drain:
10473 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10474 					 set_user_ringbuf_callback_state);
10475 		break;
10476 	}
10477 
10478 	if (err)
10479 		return err;
10480 
10481 	/* reset caller saved regs */
10482 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10483 		mark_reg_not_init(env, regs, caller_saved[i]);
10484 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10485 	}
10486 
10487 	/* helper call returns 64-bit value. */
10488 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10489 
10490 	/* update return register (already marked as written above) */
10491 	ret_type = fn->ret_type;
10492 	ret_flag = type_flag(ret_type);
10493 
10494 	switch (base_type(ret_type)) {
10495 	case RET_INTEGER:
10496 		/* sets type to SCALAR_VALUE */
10497 		mark_reg_unknown(env, regs, BPF_REG_0);
10498 		break;
10499 	case RET_VOID:
10500 		regs[BPF_REG_0].type = NOT_INIT;
10501 		break;
10502 	case RET_PTR_TO_MAP_VALUE:
10503 		/* There is no offset yet applied, variable or fixed */
10504 		mark_reg_known_zero(env, regs, BPF_REG_0);
10505 		/* remember map_ptr, so that check_map_access()
10506 		 * can check 'value_size' boundary of memory access
10507 		 * to map element returned from bpf_map_lookup_elem()
10508 		 */
10509 		if (meta.map_ptr == NULL) {
10510 			verbose(env,
10511 				"kernel subsystem misconfigured verifier\n");
10512 			return -EINVAL;
10513 		}
10514 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10515 		regs[BPF_REG_0].map_uid = meta.map_uid;
10516 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10517 		if (!type_may_be_null(ret_type) &&
10518 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10519 			regs[BPF_REG_0].id = ++env->id_gen;
10520 		}
10521 		break;
10522 	case RET_PTR_TO_SOCKET:
10523 		mark_reg_known_zero(env, regs, BPF_REG_0);
10524 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10525 		break;
10526 	case RET_PTR_TO_SOCK_COMMON:
10527 		mark_reg_known_zero(env, regs, BPF_REG_0);
10528 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10529 		break;
10530 	case RET_PTR_TO_TCP_SOCK:
10531 		mark_reg_known_zero(env, regs, BPF_REG_0);
10532 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10533 		break;
10534 	case RET_PTR_TO_MEM:
10535 		mark_reg_known_zero(env, regs, BPF_REG_0);
10536 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10537 		regs[BPF_REG_0].mem_size = meta.mem_size;
10538 		break;
10539 	case RET_PTR_TO_MEM_OR_BTF_ID:
10540 	{
10541 		const struct btf_type *t;
10542 
10543 		mark_reg_known_zero(env, regs, BPF_REG_0);
10544 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10545 		if (!btf_type_is_struct(t)) {
10546 			u32 tsize;
10547 			const struct btf_type *ret;
10548 			const char *tname;
10549 
10550 			/* resolve the type size of ksym. */
10551 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10552 			if (IS_ERR(ret)) {
10553 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10554 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10555 					tname, PTR_ERR(ret));
10556 				return -EINVAL;
10557 			}
10558 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10559 			regs[BPF_REG_0].mem_size = tsize;
10560 		} else {
10561 			if (returns_cpu_specific_alloc_ptr) {
10562 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10563 			} else {
10564 				/* MEM_RDONLY may be carried from ret_flag, but it
10565 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10566 				 * it will confuse the check of PTR_TO_BTF_ID in
10567 				 * check_mem_access().
10568 				 */
10569 				ret_flag &= ~MEM_RDONLY;
10570 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10571 			}
10572 
10573 			regs[BPF_REG_0].btf = meta.ret_btf;
10574 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10575 		}
10576 		break;
10577 	}
10578 	case RET_PTR_TO_BTF_ID:
10579 	{
10580 		struct btf *ret_btf;
10581 		int ret_btf_id;
10582 
10583 		mark_reg_known_zero(env, regs, BPF_REG_0);
10584 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10585 		if (func_id == BPF_FUNC_kptr_xchg) {
10586 			ret_btf = meta.kptr_field->kptr.btf;
10587 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10588 			if (!btf_is_kernel(ret_btf)) {
10589 				regs[BPF_REG_0].type |= MEM_ALLOC;
10590 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10591 					regs[BPF_REG_0].type |= MEM_PERCPU;
10592 			}
10593 		} else {
10594 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10595 				verbose(env, "verifier internal error:");
10596 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10597 					func_id_name(func_id));
10598 				return -EINVAL;
10599 			}
10600 			ret_btf = btf_vmlinux;
10601 			ret_btf_id = *fn->ret_btf_id;
10602 		}
10603 		if (ret_btf_id == 0) {
10604 			verbose(env, "invalid return type %u of func %s#%d\n",
10605 				base_type(ret_type), func_id_name(func_id),
10606 				func_id);
10607 			return -EINVAL;
10608 		}
10609 		regs[BPF_REG_0].btf = ret_btf;
10610 		regs[BPF_REG_0].btf_id = ret_btf_id;
10611 		break;
10612 	}
10613 	default:
10614 		verbose(env, "unknown return type %u of func %s#%d\n",
10615 			base_type(ret_type), func_id_name(func_id), func_id);
10616 		return -EINVAL;
10617 	}
10618 
10619 	if (type_may_be_null(regs[BPF_REG_0].type))
10620 		regs[BPF_REG_0].id = ++env->id_gen;
10621 
10622 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10623 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10624 			func_id_name(func_id), func_id);
10625 		return -EFAULT;
10626 	}
10627 
10628 	if (is_dynptr_ref_function(func_id))
10629 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10630 
10631 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10632 		/* For release_reference() */
10633 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10634 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10635 		int id = acquire_reference_state(env, insn_idx);
10636 
10637 		if (id < 0)
10638 			return id;
10639 		/* For mark_ptr_or_null_reg() */
10640 		regs[BPF_REG_0].id = id;
10641 		/* For release_reference() */
10642 		regs[BPF_REG_0].ref_obj_id = id;
10643 	}
10644 
10645 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10646 	if (err)
10647 		return err;
10648 
10649 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10650 	if (err)
10651 		return err;
10652 
10653 	if ((func_id == BPF_FUNC_get_stack ||
10654 	     func_id == BPF_FUNC_get_task_stack) &&
10655 	    !env->prog->has_callchain_buf) {
10656 		const char *err_str;
10657 
10658 #ifdef CONFIG_PERF_EVENTS
10659 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10660 		err_str = "cannot get callchain buffer for func %s#%d\n";
10661 #else
10662 		err = -ENOTSUPP;
10663 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10664 #endif
10665 		if (err) {
10666 			verbose(env, err_str, func_id_name(func_id), func_id);
10667 			return err;
10668 		}
10669 
10670 		env->prog->has_callchain_buf = true;
10671 	}
10672 
10673 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10674 		env->prog->call_get_stack = true;
10675 
10676 	if (func_id == BPF_FUNC_get_func_ip) {
10677 		if (check_get_func_ip(env))
10678 			return -ENOTSUPP;
10679 		env->prog->call_get_func_ip = true;
10680 	}
10681 
10682 	if (changes_data)
10683 		clear_all_pkt_pointers(env);
10684 	return 0;
10685 }
10686 
10687 /* mark_btf_func_reg_size() is used when the reg size is determined by
10688  * the BTF func_proto's return value size and argument.
10689  */
10690 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10691 				   size_t reg_size)
10692 {
10693 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10694 
10695 	if (regno == BPF_REG_0) {
10696 		/* Function return value */
10697 		reg->live |= REG_LIVE_WRITTEN;
10698 		reg->subreg_def = reg_size == sizeof(u64) ?
10699 			DEF_NOT_SUBREG : env->insn_idx + 1;
10700 	} else {
10701 		/* Function argument */
10702 		if (reg_size == sizeof(u64)) {
10703 			mark_insn_zext(env, reg);
10704 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10705 		} else {
10706 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10707 		}
10708 	}
10709 }
10710 
10711 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10712 {
10713 	return meta->kfunc_flags & KF_ACQUIRE;
10714 }
10715 
10716 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10717 {
10718 	return meta->kfunc_flags & KF_RELEASE;
10719 }
10720 
10721 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10722 {
10723 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10724 }
10725 
10726 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10727 {
10728 	return meta->kfunc_flags & KF_SLEEPABLE;
10729 }
10730 
10731 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10732 {
10733 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10734 }
10735 
10736 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10737 {
10738 	return meta->kfunc_flags & KF_RCU;
10739 }
10740 
10741 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10742 {
10743 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10744 }
10745 
10746 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10747 				  const struct btf_param *arg,
10748 				  const struct bpf_reg_state *reg)
10749 {
10750 	const struct btf_type *t;
10751 
10752 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10753 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10754 		return false;
10755 
10756 	return btf_param_match_suffix(btf, arg, "__sz");
10757 }
10758 
10759 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10760 					const struct btf_param *arg,
10761 					const struct bpf_reg_state *reg)
10762 {
10763 	const struct btf_type *t;
10764 
10765 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10766 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10767 		return false;
10768 
10769 	return btf_param_match_suffix(btf, arg, "__szk");
10770 }
10771 
10772 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10773 {
10774 	return btf_param_match_suffix(btf, arg, "__opt");
10775 }
10776 
10777 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10778 {
10779 	return btf_param_match_suffix(btf, arg, "__k");
10780 }
10781 
10782 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10783 {
10784 	return btf_param_match_suffix(btf, arg, "__ign");
10785 }
10786 
10787 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
10788 {
10789 	return btf_param_match_suffix(btf, arg, "__map");
10790 }
10791 
10792 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10793 {
10794 	return btf_param_match_suffix(btf, arg, "__alloc");
10795 }
10796 
10797 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10798 {
10799 	return btf_param_match_suffix(btf, arg, "__uninit");
10800 }
10801 
10802 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10803 {
10804 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
10805 }
10806 
10807 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10808 {
10809 	return btf_param_match_suffix(btf, arg, "__nullable");
10810 }
10811 
10812 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10813 {
10814 	return btf_param_match_suffix(btf, arg, "__str");
10815 }
10816 
10817 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10818 					  const struct btf_param *arg,
10819 					  const char *name)
10820 {
10821 	int len, target_len = strlen(name);
10822 	const char *param_name;
10823 
10824 	param_name = btf_name_by_offset(btf, arg->name_off);
10825 	if (str_is_empty(param_name))
10826 		return false;
10827 	len = strlen(param_name);
10828 	if (len != target_len)
10829 		return false;
10830 	if (strcmp(param_name, name))
10831 		return false;
10832 
10833 	return true;
10834 }
10835 
10836 enum {
10837 	KF_ARG_DYNPTR_ID,
10838 	KF_ARG_LIST_HEAD_ID,
10839 	KF_ARG_LIST_NODE_ID,
10840 	KF_ARG_RB_ROOT_ID,
10841 	KF_ARG_RB_NODE_ID,
10842 };
10843 
10844 BTF_ID_LIST(kf_arg_btf_ids)
10845 BTF_ID(struct, bpf_dynptr_kern)
10846 BTF_ID(struct, bpf_list_head)
10847 BTF_ID(struct, bpf_list_node)
10848 BTF_ID(struct, bpf_rb_root)
10849 BTF_ID(struct, bpf_rb_node)
10850 
10851 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10852 				    const struct btf_param *arg, int type)
10853 {
10854 	const struct btf_type *t;
10855 	u32 res_id;
10856 
10857 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10858 	if (!t)
10859 		return false;
10860 	if (!btf_type_is_ptr(t))
10861 		return false;
10862 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10863 	if (!t)
10864 		return false;
10865 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10866 }
10867 
10868 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10869 {
10870 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10871 }
10872 
10873 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10874 {
10875 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10876 }
10877 
10878 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10879 {
10880 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10881 }
10882 
10883 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10884 {
10885 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10886 }
10887 
10888 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10889 {
10890 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10891 }
10892 
10893 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10894 				  const struct btf_param *arg)
10895 {
10896 	const struct btf_type *t;
10897 
10898 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10899 	if (!t)
10900 		return false;
10901 
10902 	return true;
10903 }
10904 
10905 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10906 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10907 					const struct btf *btf,
10908 					const struct btf_type *t, int rec)
10909 {
10910 	const struct btf_type *member_type;
10911 	const struct btf_member *member;
10912 	u32 i;
10913 
10914 	if (!btf_type_is_struct(t))
10915 		return false;
10916 
10917 	for_each_member(i, t, member) {
10918 		const struct btf_array *array;
10919 
10920 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10921 		if (btf_type_is_struct(member_type)) {
10922 			if (rec >= 3) {
10923 				verbose(env, "max struct nesting depth exceeded\n");
10924 				return false;
10925 			}
10926 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10927 				return false;
10928 			continue;
10929 		}
10930 		if (btf_type_is_array(member_type)) {
10931 			array = btf_array(member_type);
10932 			if (!array->nelems)
10933 				return false;
10934 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10935 			if (!btf_type_is_scalar(member_type))
10936 				return false;
10937 			continue;
10938 		}
10939 		if (!btf_type_is_scalar(member_type))
10940 			return false;
10941 	}
10942 	return true;
10943 }
10944 
10945 enum kfunc_ptr_arg_type {
10946 	KF_ARG_PTR_TO_CTX,
10947 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10948 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10949 	KF_ARG_PTR_TO_DYNPTR,
10950 	KF_ARG_PTR_TO_ITER,
10951 	KF_ARG_PTR_TO_LIST_HEAD,
10952 	KF_ARG_PTR_TO_LIST_NODE,
10953 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10954 	KF_ARG_PTR_TO_MEM,
10955 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10956 	KF_ARG_PTR_TO_CALLBACK,
10957 	KF_ARG_PTR_TO_RB_ROOT,
10958 	KF_ARG_PTR_TO_RB_NODE,
10959 	KF_ARG_PTR_TO_NULL,
10960 	KF_ARG_PTR_TO_CONST_STR,
10961 	KF_ARG_PTR_TO_MAP,
10962 };
10963 
10964 enum special_kfunc_type {
10965 	KF_bpf_obj_new_impl,
10966 	KF_bpf_obj_drop_impl,
10967 	KF_bpf_refcount_acquire_impl,
10968 	KF_bpf_list_push_front_impl,
10969 	KF_bpf_list_push_back_impl,
10970 	KF_bpf_list_pop_front,
10971 	KF_bpf_list_pop_back,
10972 	KF_bpf_cast_to_kern_ctx,
10973 	KF_bpf_rdonly_cast,
10974 	KF_bpf_rcu_read_lock,
10975 	KF_bpf_rcu_read_unlock,
10976 	KF_bpf_rbtree_remove,
10977 	KF_bpf_rbtree_add_impl,
10978 	KF_bpf_rbtree_first,
10979 	KF_bpf_dynptr_from_skb,
10980 	KF_bpf_dynptr_from_xdp,
10981 	KF_bpf_dynptr_slice,
10982 	KF_bpf_dynptr_slice_rdwr,
10983 	KF_bpf_dynptr_clone,
10984 	KF_bpf_percpu_obj_new_impl,
10985 	KF_bpf_percpu_obj_drop_impl,
10986 	KF_bpf_throw,
10987 	KF_bpf_iter_css_task_new,
10988 };
10989 
10990 BTF_SET_START(special_kfunc_set)
10991 BTF_ID(func, bpf_obj_new_impl)
10992 BTF_ID(func, bpf_obj_drop_impl)
10993 BTF_ID(func, bpf_refcount_acquire_impl)
10994 BTF_ID(func, bpf_list_push_front_impl)
10995 BTF_ID(func, bpf_list_push_back_impl)
10996 BTF_ID(func, bpf_list_pop_front)
10997 BTF_ID(func, bpf_list_pop_back)
10998 BTF_ID(func, bpf_cast_to_kern_ctx)
10999 BTF_ID(func, bpf_rdonly_cast)
11000 BTF_ID(func, bpf_rbtree_remove)
11001 BTF_ID(func, bpf_rbtree_add_impl)
11002 BTF_ID(func, bpf_rbtree_first)
11003 BTF_ID(func, bpf_dynptr_from_skb)
11004 BTF_ID(func, bpf_dynptr_from_xdp)
11005 BTF_ID(func, bpf_dynptr_slice)
11006 BTF_ID(func, bpf_dynptr_slice_rdwr)
11007 BTF_ID(func, bpf_dynptr_clone)
11008 BTF_ID(func, bpf_percpu_obj_new_impl)
11009 BTF_ID(func, bpf_percpu_obj_drop_impl)
11010 BTF_ID(func, bpf_throw)
11011 #ifdef CONFIG_CGROUPS
11012 BTF_ID(func, bpf_iter_css_task_new)
11013 #endif
11014 BTF_SET_END(special_kfunc_set)
11015 
11016 BTF_ID_LIST(special_kfunc_list)
11017 BTF_ID(func, bpf_obj_new_impl)
11018 BTF_ID(func, bpf_obj_drop_impl)
11019 BTF_ID(func, bpf_refcount_acquire_impl)
11020 BTF_ID(func, bpf_list_push_front_impl)
11021 BTF_ID(func, bpf_list_push_back_impl)
11022 BTF_ID(func, bpf_list_pop_front)
11023 BTF_ID(func, bpf_list_pop_back)
11024 BTF_ID(func, bpf_cast_to_kern_ctx)
11025 BTF_ID(func, bpf_rdonly_cast)
11026 BTF_ID(func, bpf_rcu_read_lock)
11027 BTF_ID(func, bpf_rcu_read_unlock)
11028 BTF_ID(func, bpf_rbtree_remove)
11029 BTF_ID(func, bpf_rbtree_add_impl)
11030 BTF_ID(func, bpf_rbtree_first)
11031 BTF_ID(func, bpf_dynptr_from_skb)
11032 BTF_ID(func, bpf_dynptr_from_xdp)
11033 BTF_ID(func, bpf_dynptr_slice)
11034 BTF_ID(func, bpf_dynptr_slice_rdwr)
11035 BTF_ID(func, bpf_dynptr_clone)
11036 BTF_ID(func, bpf_percpu_obj_new_impl)
11037 BTF_ID(func, bpf_percpu_obj_drop_impl)
11038 BTF_ID(func, bpf_throw)
11039 #ifdef CONFIG_CGROUPS
11040 BTF_ID(func, bpf_iter_css_task_new)
11041 #else
11042 BTF_ID_UNUSED
11043 #endif
11044 
11045 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11046 {
11047 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11048 	    meta->arg_owning_ref) {
11049 		return false;
11050 	}
11051 
11052 	return meta->kfunc_flags & KF_RET_NULL;
11053 }
11054 
11055 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11056 {
11057 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11058 }
11059 
11060 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11061 {
11062 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11063 }
11064 
11065 static enum kfunc_ptr_arg_type
11066 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11067 		       struct bpf_kfunc_call_arg_meta *meta,
11068 		       const struct btf_type *t, const struct btf_type *ref_t,
11069 		       const char *ref_tname, const struct btf_param *args,
11070 		       int argno, int nargs)
11071 {
11072 	u32 regno = argno + 1;
11073 	struct bpf_reg_state *regs = cur_regs(env);
11074 	struct bpf_reg_state *reg = &regs[regno];
11075 	bool arg_mem_size = false;
11076 
11077 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11078 		return KF_ARG_PTR_TO_CTX;
11079 
11080 	/* In this function, we verify the kfunc's BTF as per the argument type,
11081 	 * leaving the rest of the verification with respect to the register
11082 	 * type to our caller. When a set of conditions hold in the BTF type of
11083 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11084 	 */
11085 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11086 		return KF_ARG_PTR_TO_CTX;
11087 
11088 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11089 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11090 
11091 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11092 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11093 
11094 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11095 		return KF_ARG_PTR_TO_DYNPTR;
11096 
11097 	if (is_kfunc_arg_iter(meta, argno))
11098 		return KF_ARG_PTR_TO_ITER;
11099 
11100 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11101 		return KF_ARG_PTR_TO_LIST_HEAD;
11102 
11103 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11104 		return KF_ARG_PTR_TO_LIST_NODE;
11105 
11106 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11107 		return KF_ARG_PTR_TO_RB_ROOT;
11108 
11109 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11110 		return KF_ARG_PTR_TO_RB_NODE;
11111 
11112 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11113 		return KF_ARG_PTR_TO_CONST_STR;
11114 
11115 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11116 		return KF_ARG_PTR_TO_MAP;
11117 
11118 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11119 		if (!btf_type_is_struct(ref_t)) {
11120 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11121 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11122 			return -EINVAL;
11123 		}
11124 		return KF_ARG_PTR_TO_BTF_ID;
11125 	}
11126 
11127 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11128 		return KF_ARG_PTR_TO_CALLBACK;
11129 
11130 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11131 		return KF_ARG_PTR_TO_NULL;
11132 
11133 	if (argno + 1 < nargs &&
11134 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11135 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11136 		arg_mem_size = true;
11137 
11138 	/* This is the catch all argument type of register types supported by
11139 	 * check_helper_mem_access. However, we only allow when argument type is
11140 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11141 	 * arg_mem_size is true, the pointer can be void *.
11142 	 */
11143 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11144 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11145 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11146 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11147 		return -EINVAL;
11148 	}
11149 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11150 }
11151 
11152 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11153 					struct bpf_reg_state *reg,
11154 					const struct btf_type *ref_t,
11155 					const char *ref_tname, u32 ref_id,
11156 					struct bpf_kfunc_call_arg_meta *meta,
11157 					int argno)
11158 {
11159 	const struct btf_type *reg_ref_t;
11160 	bool strict_type_match = false;
11161 	const struct btf *reg_btf;
11162 	const char *reg_ref_tname;
11163 	u32 reg_ref_id;
11164 
11165 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11166 		reg_btf = reg->btf;
11167 		reg_ref_id = reg->btf_id;
11168 	} else {
11169 		reg_btf = btf_vmlinux;
11170 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11171 	}
11172 
11173 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11174 	 * or releasing a reference, or are no-cast aliases. We do _not_
11175 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11176 	 * as we want to enable BPF programs to pass types that are bitwise
11177 	 * equivalent without forcing them to explicitly cast with something
11178 	 * like bpf_cast_to_kern_ctx().
11179 	 *
11180 	 * For example, say we had a type like the following:
11181 	 *
11182 	 * struct bpf_cpumask {
11183 	 *	cpumask_t cpumask;
11184 	 *	refcount_t usage;
11185 	 * };
11186 	 *
11187 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11188 	 * to a struct cpumask, so it would be safe to pass a struct
11189 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11190 	 *
11191 	 * The philosophy here is similar to how we allow scalars of different
11192 	 * types to be passed to kfuncs as long as the size is the same. The
11193 	 * only difference here is that we're simply allowing
11194 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11195 	 * resolve types.
11196 	 */
11197 	if (is_kfunc_acquire(meta) ||
11198 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11199 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11200 		strict_type_match = true;
11201 
11202 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11203 
11204 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11205 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11206 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11207 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11208 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11209 			btf_type_str(reg_ref_t), reg_ref_tname);
11210 		return -EINVAL;
11211 	}
11212 	return 0;
11213 }
11214 
11215 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11216 {
11217 	struct bpf_verifier_state *state = env->cur_state;
11218 	struct btf_record *rec = reg_btf_record(reg);
11219 
11220 	if (!state->active_lock.ptr) {
11221 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11222 		return -EFAULT;
11223 	}
11224 
11225 	if (type_flag(reg->type) & NON_OWN_REF) {
11226 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11227 		return -EFAULT;
11228 	}
11229 
11230 	reg->type |= NON_OWN_REF;
11231 	if (rec->refcount_off >= 0)
11232 		reg->type |= MEM_RCU;
11233 
11234 	return 0;
11235 }
11236 
11237 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11238 {
11239 	struct bpf_func_state *state, *unused;
11240 	struct bpf_reg_state *reg;
11241 	int i;
11242 
11243 	state = cur_func(env);
11244 
11245 	if (!ref_obj_id) {
11246 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11247 			     "owning -> non-owning conversion\n");
11248 		return -EFAULT;
11249 	}
11250 
11251 	for (i = 0; i < state->acquired_refs; i++) {
11252 		if (state->refs[i].id != ref_obj_id)
11253 			continue;
11254 
11255 		/* Clear ref_obj_id here so release_reference doesn't clobber
11256 		 * the whole reg
11257 		 */
11258 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11259 			if (reg->ref_obj_id == ref_obj_id) {
11260 				reg->ref_obj_id = 0;
11261 				ref_set_non_owning(env, reg);
11262 			}
11263 		}));
11264 		return 0;
11265 	}
11266 
11267 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11268 	return -EFAULT;
11269 }
11270 
11271 /* Implementation details:
11272  *
11273  * Each register points to some region of memory, which we define as an
11274  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11275  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11276  * allocation. The lock and the data it protects are colocated in the same
11277  * memory region.
11278  *
11279  * Hence, everytime a register holds a pointer value pointing to such
11280  * allocation, the verifier preserves a unique reg->id for it.
11281  *
11282  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11283  * bpf_spin_lock is called.
11284  *
11285  * To enable this, lock state in the verifier captures two values:
11286  *	active_lock.ptr = Register's type specific pointer
11287  *	active_lock.id  = A unique ID for each register pointer value
11288  *
11289  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11290  * supported register types.
11291  *
11292  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11293  * allocated objects is the reg->btf pointer.
11294  *
11295  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11296  * can establish the provenance of the map value statically for each distinct
11297  * lookup into such maps. They always contain a single map value hence unique
11298  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11299  *
11300  * So, in case of global variables, they use array maps with max_entries = 1,
11301  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11302  * into the same map value as max_entries is 1, as described above).
11303  *
11304  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11305  * outer map pointer (in verifier context), but each lookup into an inner map
11306  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11307  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11308  * will get different reg->id assigned to each lookup, hence different
11309  * active_lock.id.
11310  *
11311  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11312  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11313  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11314  */
11315 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11316 {
11317 	void *ptr;
11318 	u32 id;
11319 
11320 	switch ((int)reg->type) {
11321 	case PTR_TO_MAP_VALUE:
11322 		ptr = reg->map_ptr;
11323 		break;
11324 	case PTR_TO_BTF_ID | MEM_ALLOC:
11325 		ptr = reg->btf;
11326 		break;
11327 	default:
11328 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11329 		return -EFAULT;
11330 	}
11331 	id = reg->id;
11332 
11333 	if (!env->cur_state->active_lock.ptr)
11334 		return -EINVAL;
11335 	if (env->cur_state->active_lock.ptr != ptr ||
11336 	    env->cur_state->active_lock.id != id) {
11337 		verbose(env, "held lock and object are not in the same allocation\n");
11338 		return -EINVAL;
11339 	}
11340 	return 0;
11341 }
11342 
11343 static bool is_bpf_list_api_kfunc(u32 btf_id)
11344 {
11345 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11346 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11347 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11348 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11349 }
11350 
11351 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11352 {
11353 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11354 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11355 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11356 }
11357 
11358 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11359 {
11360 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11361 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11362 }
11363 
11364 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11365 {
11366 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11367 }
11368 
11369 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11370 {
11371 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11372 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11373 }
11374 
11375 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11376 {
11377 	return is_bpf_rbtree_api_kfunc(btf_id);
11378 }
11379 
11380 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11381 					  enum btf_field_type head_field_type,
11382 					  u32 kfunc_btf_id)
11383 {
11384 	bool ret;
11385 
11386 	switch (head_field_type) {
11387 	case BPF_LIST_HEAD:
11388 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11389 		break;
11390 	case BPF_RB_ROOT:
11391 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11392 		break;
11393 	default:
11394 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11395 			btf_field_type_name(head_field_type));
11396 		return false;
11397 	}
11398 
11399 	if (!ret)
11400 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11401 			btf_field_type_name(head_field_type));
11402 	return ret;
11403 }
11404 
11405 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11406 					  enum btf_field_type node_field_type,
11407 					  u32 kfunc_btf_id)
11408 {
11409 	bool ret;
11410 
11411 	switch (node_field_type) {
11412 	case BPF_LIST_NODE:
11413 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11414 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11415 		break;
11416 	case BPF_RB_NODE:
11417 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11418 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11419 		break;
11420 	default:
11421 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11422 			btf_field_type_name(node_field_type));
11423 		return false;
11424 	}
11425 
11426 	if (!ret)
11427 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11428 			btf_field_type_name(node_field_type));
11429 	return ret;
11430 }
11431 
11432 static int
11433 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11434 				   struct bpf_reg_state *reg, u32 regno,
11435 				   struct bpf_kfunc_call_arg_meta *meta,
11436 				   enum btf_field_type head_field_type,
11437 				   struct btf_field **head_field)
11438 {
11439 	const char *head_type_name;
11440 	struct btf_field *field;
11441 	struct btf_record *rec;
11442 	u32 head_off;
11443 
11444 	if (meta->btf != btf_vmlinux) {
11445 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11446 		return -EFAULT;
11447 	}
11448 
11449 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11450 		return -EFAULT;
11451 
11452 	head_type_name = btf_field_type_name(head_field_type);
11453 	if (!tnum_is_const(reg->var_off)) {
11454 		verbose(env,
11455 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11456 			regno, head_type_name);
11457 		return -EINVAL;
11458 	}
11459 
11460 	rec = reg_btf_record(reg);
11461 	head_off = reg->off + reg->var_off.value;
11462 	field = btf_record_find(rec, head_off, head_field_type);
11463 	if (!field) {
11464 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11465 		return -EINVAL;
11466 	}
11467 
11468 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11469 	if (check_reg_allocation_locked(env, reg)) {
11470 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11471 			rec->spin_lock_off, head_type_name);
11472 		return -EINVAL;
11473 	}
11474 
11475 	if (*head_field) {
11476 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11477 		return -EFAULT;
11478 	}
11479 	*head_field = field;
11480 	return 0;
11481 }
11482 
11483 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11484 					   struct bpf_reg_state *reg, u32 regno,
11485 					   struct bpf_kfunc_call_arg_meta *meta)
11486 {
11487 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11488 							  &meta->arg_list_head.field);
11489 }
11490 
11491 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11492 					     struct bpf_reg_state *reg, u32 regno,
11493 					     struct bpf_kfunc_call_arg_meta *meta)
11494 {
11495 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11496 							  &meta->arg_rbtree_root.field);
11497 }
11498 
11499 static int
11500 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11501 				   struct bpf_reg_state *reg, u32 regno,
11502 				   struct bpf_kfunc_call_arg_meta *meta,
11503 				   enum btf_field_type head_field_type,
11504 				   enum btf_field_type node_field_type,
11505 				   struct btf_field **node_field)
11506 {
11507 	const char *node_type_name;
11508 	const struct btf_type *et, *t;
11509 	struct btf_field *field;
11510 	u32 node_off;
11511 
11512 	if (meta->btf != btf_vmlinux) {
11513 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11514 		return -EFAULT;
11515 	}
11516 
11517 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11518 		return -EFAULT;
11519 
11520 	node_type_name = btf_field_type_name(node_field_type);
11521 	if (!tnum_is_const(reg->var_off)) {
11522 		verbose(env,
11523 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11524 			regno, node_type_name);
11525 		return -EINVAL;
11526 	}
11527 
11528 	node_off = reg->off + reg->var_off.value;
11529 	field = reg_find_field_offset(reg, node_off, node_field_type);
11530 	if (!field || field->offset != node_off) {
11531 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11532 		return -EINVAL;
11533 	}
11534 
11535 	field = *node_field;
11536 
11537 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11538 	t = btf_type_by_id(reg->btf, reg->btf_id);
11539 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11540 				  field->graph_root.value_btf_id, true)) {
11541 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11542 			"in struct %s, but arg is at offset=%d in struct %s\n",
11543 			btf_field_type_name(head_field_type),
11544 			btf_field_type_name(node_field_type),
11545 			field->graph_root.node_offset,
11546 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11547 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11548 		return -EINVAL;
11549 	}
11550 	meta->arg_btf = reg->btf;
11551 	meta->arg_btf_id = reg->btf_id;
11552 
11553 	if (node_off != field->graph_root.node_offset) {
11554 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11555 			node_off, btf_field_type_name(node_field_type),
11556 			field->graph_root.node_offset,
11557 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11558 		return -EINVAL;
11559 	}
11560 
11561 	return 0;
11562 }
11563 
11564 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11565 					   struct bpf_reg_state *reg, u32 regno,
11566 					   struct bpf_kfunc_call_arg_meta *meta)
11567 {
11568 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11569 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11570 						  &meta->arg_list_head.field);
11571 }
11572 
11573 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11574 					     struct bpf_reg_state *reg, u32 regno,
11575 					     struct bpf_kfunc_call_arg_meta *meta)
11576 {
11577 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11578 						  BPF_RB_ROOT, BPF_RB_NODE,
11579 						  &meta->arg_rbtree_root.field);
11580 }
11581 
11582 /*
11583  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11584  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11585  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11586  * them can only be attached to some specific hook points.
11587  */
11588 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11589 {
11590 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11591 
11592 	switch (prog_type) {
11593 	case BPF_PROG_TYPE_LSM:
11594 		return true;
11595 	case BPF_PROG_TYPE_TRACING:
11596 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11597 			return true;
11598 		fallthrough;
11599 	default:
11600 		return in_sleepable(env);
11601 	}
11602 }
11603 
11604 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11605 			    int insn_idx)
11606 {
11607 	const char *func_name = meta->func_name, *ref_tname;
11608 	const struct btf *btf = meta->btf;
11609 	const struct btf_param *args;
11610 	struct btf_record *rec;
11611 	u32 i, nargs;
11612 	int ret;
11613 
11614 	args = (const struct btf_param *)(meta->func_proto + 1);
11615 	nargs = btf_type_vlen(meta->func_proto);
11616 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11617 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11618 			MAX_BPF_FUNC_REG_ARGS);
11619 		return -EINVAL;
11620 	}
11621 
11622 	/* Check that BTF function arguments match actual types that the
11623 	 * verifier sees.
11624 	 */
11625 	for (i = 0; i < nargs; i++) {
11626 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11627 		const struct btf_type *t, *ref_t, *resolve_ret;
11628 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11629 		u32 regno = i + 1, ref_id, type_size;
11630 		bool is_ret_buf_sz = false;
11631 		int kf_arg_type;
11632 
11633 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11634 
11635 		if (is_kfunc_arg_ignore(btf, &args[i]))
11636 			continue;
11637 
11638 		if (btf_type_is_scalar(t)) {
11639 			if (reg->type != SCALAR_VALUE) {
11640 				verbose(env, "R%d is not a scalar\n", regno);
11641 				return -EINVAL;
11642 			}
11643 
11644 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11645 				if (meta->arg_constant.found) {
11646 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11647 					return -EFAULT;
11648 				}
11649 				if (!tnum_is_const(reg->var_off)) {
11650 					verbose(env, "R%d must be a known constant\n", regno);
11651 					return -EINVAL;
11652 				}
11653 				ret = mark_chain_precision(env, regno);
11654 				if (ret < 0)
11655 					return ret;
11656 				meta->arg_constant.found = true;
11657 				meta->arg_constant.value = reg->var_off.value;
11658 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11659 				meta->r0_rdonly = true;
11660 				is_ret_buf_sz = true;
11661 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11662 				is_ret_buf_sz = true;
11663 			}
11664 
11665 			if (is_ret_buf_sz) {
11666 				if (meta->r0_size) {
11667 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11668 					return -EINVAL;
11669 				}
11670 
11671 				if (!tnum_is_const(reg->var_off)) {
11672 					verbose(env, "R%d is not a const\n", regno);
11673 					return -EINVAL;
11674 				}
11675 
11676 				meta->r0_size = reg->var_off.value;
11677 				ret = mark_chain_precision(env, regno);
11678 				if (ret)
11679 					return ret;
11680 			}
11681 			continue;
11682 		}
11683 
11684 		if (!btf_type_is_ptr(t)) {
11685 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11686 			return -EINVAL;
11687 		}
11688 
11689 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11690 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11691 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11692 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11693 			return -EACCES;
11694 		}
11695 
11696 		if (reg->ref_obj_id) {
11697 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11698 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11699 					regno, reg->ref_obj_id,
11700 					meta->ref_obj_id);
11701 				return -EFAULT;
11702 			}
11703 			meta->ref_obj_id = reg->ref_obj_id;
11704 			if (is_kfunc_release(meta))
11705 				meta->release_regno = regno;
11706 		}
11707 
11708 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11709 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11710 
11711 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11712 		if (kf_arg_type < 0)
11713 			return kf_arg_type;
11714 
11715 		switch (kf_arg_type) {
11716 		case KF_ARG_PTR_TO_NULL:
11717 			continue;
11718 		case KF_ARG_PTR_TO_MAP:
11719 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11720 		case KF_ARG_PTR_TO_BTF_ID:
11721 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11722 				break;
11723 
11724 			if (!is_trusted_reg(reg)) {
11725 				if (!is_kfunc_rcu(meta)) {
11726 					verbose(env, "R%d must be referenced or trusted\n", regno);
11727 					return -EINVAL;
11728 				}
11729 				if (!is_rcu_reg(reg)) {
11730 					verbose(env, "R%d must be a rcu pointer\n", regno);
11731 					return -EINVAL;
11732 				}
11733 			}
11734 
11735 			fallthrough;
11736 		case KF_ARG_PTR_TO_CTX:
11737 			/* Trusted arguments have the same offset checks as release arguments */
11738 			arg_type |= OBJ_RELEASE;
11739 			break;
11740 		case KF_ARG_PTR_TO_DYNPTR:
11741 		case KF_ARG_PTR_TO_ITER:
11742 		case KF_ARG_PTR_TO_LIST_HEAD:
11743 		case KF_ARG_PTR_TO_LIST_NODE:
11744 		case KF_ARG_PTR_TO_RB_ROOT:
11745 		case KF_ARG_PTR_TO_RB_NODE:
11746 		case KF_ARG_PTR_TO_MEM:
11747 		case KF_ARG_PTR_TO_MEM_SIZE:
11748 		case KF_ARG_PTR_TO_CALLBACK:
11749 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11750 		case KF_ARG_PTR_TO_CONST_STR:
11751 			/* Trusted by default */
11752 			break;
11753 		default:
11754 			WARN_ON_ONCE(1);
11755 			return -EFAULT;
11756 		}
11757 
11758 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11759 			arg_type |= OBJ_RELEASE;
11760 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11761 		if (ret < 0)
11762 			return ret;
11763 
11764 		switch (kf_arg_type) {
11765 		case KF_ARG_PTR_TO_CTX:
11766 			if (reg->type != PTR_TO_CTX) {
11767 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11768 				return -EINVAL;
11769 			}
11770 
11771 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11772 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11773 				if (ret < 0)
11774 					return -EINVAL;
11775 				meta->ret_btf_id  = ret;
11776 			}
11777 			break;
11778 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11779 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11780 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11781 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11782 					return -EINVAL;
11783 				}
11784 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11785 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11786 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11787 					return -EINVAL;
11788 				}
11789 			} else {
11790 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11791 				return -EINVAL;
11792 			}
11793 			if (!reg->ref_obj_id) {
11794 				verbose(env, "allocated object must be referenced\n");
11795 				return -EINVAL;
11796 			}
11797 			if (meta->btf == btf_vmlinux) {
11798 				meta->arg_btf = reg->btf;
11799 				meta->arg_btf_id = reg->btf_id;
11800 			}
11801 			break;
11802 		case KF_ARG_PTR_TO_DYNPTR:
11803 		{
11804 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11805 			int clone_ref_obj_id = 0;
11806 
11807 			if (reg->type != PTR_TO_STACK &&
11808 			    reg->type != CONST_PTR_TO_DYNPTR) {
11809 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11810 				return -EINVAL;
11811 			}
11812 
11813 			if (reg->type == CONST_PTR_TO_DYNPTR)
11814 				dynptr_arg_type |= MEM_RDONLY;
11815 
11816 			if (is_kfunc_arg_uninit(btf, &args[i]))
11817 				dynptr_arg_type |= MEM_UNINIT;
11818 
11819 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11820 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11821 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11822 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11823 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11824 				   (dynptr_arg_type & MEM_UNINIT)) {
11825 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11826 
11827 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11828 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11829 					return -EFAULT;
11830 				}
11831 
11832 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11833 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11834 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11835 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11836 					return -EFAULT;
11837 				}
11838 			}
11839 
11840 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11841 			if (ret < 0)
11842 				return ret;
11843 
11844 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11845 				int id = dynptr_id(env, reg);
11846 
11847 				if (id < 0) {
11848 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11849 					return id;
11850 				}
11851 				meta->initialized_dynptr.id = id;
11852 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11853 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11854 			}
11855 
11856 			break;
11857 		}
11858 		case KF_ARG_PTR_TO_ITER:
11859 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11860 				if (!check_css_task_iter_allowlist(env)) {
11861 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11862 					return -EINVAL;
11863 				}
11864 			}
11865 			ret = process_iter_arg(env, regno, insn_idx, meta);
11866 			if (ret < 0)
11867 				return ret;
11868 			break;
11869 		case KF_ARG_PTR_TO_LIST_HEAD:
11870 			if (reg->type != PTR_TO_MAP_VALUE &&
11871 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11872 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11873 				return -EINVAL;
11874 			}
11875 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11876 				verbose(env, "allocated object must be referenced\n");
11877 				return -EINVAL;
11878 			}
11879 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11880 			if (ret < 0)
11881 				return ret;
11882 			break;
11883 		case KF_ARG_PTR_TO_RB_ROOT:
11884 			if (reg->type != PTR_TO_MAP_VALUE &&
11885 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11886 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11887 				return -EINVAL;
11888 			}
11889 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11890 				verbose(env, "allocated object must be referenced\n");
11891 				return -EINVAL;
11892 			}
11893 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11894 			if (ret < 0)
11895 				return ret;
11896 			break;
11897 		case KF_ARG_PTR_TO_LIST_NODE:
11898 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11899 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11900 				return -EINVAL;
11901 			}
11902 			if (!reg->ref_obj_id) {
11903 				verbose(env, "allocated object must be referenced\n");
11904 				return -EINVAL;
11905 			}
11906 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11907 			if (ret < 0)
11908 				return ret;
11909 			break;
11910 		case KF_ARG_PTR_TO_RB_NODE:
11911 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11912 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11913 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11914 					return -EINVAL;
11915 				}
11916 				if (in_rbtree_lock_required_cb(env)) {
11917 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11918 					return -EINVAL;
11919 				}
11920 			} else {
11921 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11922 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11923 					return -EINVAL;
11924 				}
11925 				if (!reg->ref_obj_id) {
11926 					verbose(env, "allocated object must be referenced\n");
11927 					return -EINVAL;
11928 				}
11929 			}
11930 
11931 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11932 			if (ret < 0)
11933 				return ret;
11934 			break;
11935 		case KF_ARG_PTR_TO_MAP:
11936 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
11937 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
11938 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
11939 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11940 			fallthrough;
11941 		case KF_ARG_PTR_TO_BTF_ID:
11942 			/* Only base_type is checked, further checks are done here */
11943 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11944 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11945 			    !reg2btf_ids[base_type(reg->type)]) {
11946 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11947 				verbose(env, "expected %s or socket\n",
11948 					reg_type_str(env, base_type(reg->type) |
11949 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11950 				return -EINVAL;
11951 			}
11952 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11953 			if (ret < 0)
11954 				return ret;
11955 			break;
11956 		case KF_ARG_PTR_TO_MEM:
11957 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11958 			if (IS_ERR(resolve_ret)) {
11959 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11960 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11961 				return -EINVAL;
11962 			}
11963 			ret = check_mem_reg(env, reg, regno, type_size);
11964 			if (ret < 0)
11965 				return ret;
11966 			break;
11967 		case KF_ARG_PTR_TO_MEM_SIZE:
11968 		{
11969 			struct bpf_reg_state *buff_reg = &regs[regno];
11970 			const struct btf_param *buff_arg = &args[i];
11971 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11972 			const struct btf_param *size_arg = &args[i + 1];
11973 
11974 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11975 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11976 				if (ret < 0) {
11977 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11978 					return ret;
11979 				}
11980 			}
11981 
11982 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11983 				if (meta->arg_constant.found) {
11984 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11985 					return -EFAULT;
11986 				}
11987 				if (!tnum_is_const(size_reg->var_off)) {
11988 					verbose(env, "R%d must be a known constant\n", regno + 1);
11989 					return -EINVAL;
11990 				}
11991 				meta->arg_constant.found = true;
11992 				meta->arg_constant.value = size_reg->var_off.value;
11993 			}
11994 
11995 			/* Skip next '__sz' or '__szk' argument */
11996 			i++;
11997 			break;
11998 		}
11999 		case KF_ARG_PTR_TO_CALLBACK:
12000 			if (reg->type != PTR_TO_FUNC) {
12001 				verbose(env, "arg%d expected pointer to func\n", i);
12002 				return -EINVAL;
12003 			}
12004 			meta->subprogno = reg->subprogno;
12005 			break;
12006 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12007 			if (!type_is_ptr_alloc_obj(reg->type)) {
12008 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12009 				return -EINVAL;
12010 			}
12011 			if (!type_is_non_owning_ref(reg->type))
12012 				meta->arg_owning_ref = true;
12013 
12014 			rec = reg_btf_record(reg);
12015 			if (!rec) {
12016 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12017 				return -EFAULT;
12018 			}
12019 
12020 			if (rec->refcount_off < 0) {
12021 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12022 				return -EINVAL;
12023 			}
12024 
12025 			meta->arg_btf = reg->btf;
12026 			meta->arg_btf_id = reg->btf_id;
12027 			break;
12028 		case KF_ARG_PTR_TO_CONST_STR:
12029 			if (reg->type != PTR_TO_MAP_VALUE) {
12030 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12031 				return -EINVAL;
12032 			}
12033 			ret = check_reg_const_str(env, reg, regno);
12034 			if (ret)
12035 				return ret;
12036 			break;
12037 		}
12038 	}
12039 
12040 	if (is_kfunc_release(meta) && !meta->release_regno) {
12041 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12042 			func_name);
12043 		return -EINVAL;
12044 	}
12045 
12046 	return 0;
12047 }
12048 
12049 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12050 			    struct bpf_insn *insn,
12051 			    struct bpf_kfunc_call_arg_meta *meta,
12052 			    const char **kfunc_name)
12053 {
12054 	const struct btf_type *func, *func_proto;
12055 	u32 func_id, *kfunc_flags;
12056 	const char *func_name;
12057 	struct btf *desc_btf;
12058 
12059 	if (kfunc_name)
12060 		*kfunc_name = NULL;
12061 
12062 	if (!insn->imm)
12063 		return -EINVAL;
12064 
12065 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12066 	if (IS_ERR(desc_btf))
12067 		return PTR_ERR(desc_btf);
12068 
12069 	func_id = insn->imm;
12070 	func = btf_type_by_id(desc_btf, func_id);
12071 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12072 	if (kfunc_name)
12073 		*kfunc_name = func_name;
12074 	func_proto = btf_type_by_id(desc_btf, func->type);
12075 
12076 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12077 	if (!kfunc_flags) {
12078 		return -EACCES;
12079 	}
12080 
12081 	memset(meta, 0, sizeof(*meta));
12082 	meta->btf = desc_btf;
12083 	meta->func_id = func_id;
12084 	meta->kfunc_flags = *kfunc_flags;
12085 	meta->func_proto = func_proto;
12086 	meta->func_name = func_name;
12087 
12088 	return 0;
12089 }
12090 
12091 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12092 
12093 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12094 			    int *insn_idx_p)
12095 {
12096 	const struct btf_type *t, *ptr_type;
12097 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12098 	struct bpf_reg_state *regs = cur_regs(env);
12099 	const char *func_name, *ptr_type_name;
12100 	bool sleepable, rcu_lock, rcu_unlock;
12101 	struct bpf_kfunc_call_arg_meta meta;
12102 	struct bpf_insn_aux_data *insn_aux;
12103 	int err, insn_idx = *insn_idx_p;
12104 	const struct btf_param *args;
12105 	const struct btf_type *ret_t;
12106 	struct btf *desc_btf;
12107 
12108 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12109 	if (!insn->imm)
12110 		return 0;
12111 
12112 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12113 	if (err == -EACCES && func_name)
12114 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12115 	if (err)
12116 		return err;
12117 	desc_btf = meta.btf;
12118 	insn_aux = &env->insn_aux_data[insn_idx];
12119 
12120 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12121 
12122 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12123 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12124 		return -EACCES;
12125 	}
12126 
12127 	sleepable = is_kfunc_sleepable(&meta);
12128 	if (sleepable && !in_sleepable(env)) {
12129 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12130 		return -EACCES;
12131 	}
12132 
12133 	/* Check the arguments */
12134 	err = check_kfunc_args(env, &meta, insn_idx);
12135 	if (err < 0)
12136 		return err;
12137 
12138 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12139 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12140 					 set_rbtree_add_callback_state);
12141 		if (err) {
12142 			verbose(env, "kfunc %s#%d failed callback verification\n",
12143 				func_name, meta.func_id);
12144 			return err;
12145 		}
12146 	}
12147 
12148 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12149 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12150 
12151 	if (env->cur_state->active_rcu_lock) {
12152 		struct bpf_func_state *state;
12153 		struct bpf_reg_state *reg;
12154 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12155 
12156 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12157 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12158 			return -EACCES;
12159 		}
12160 
12161 		if (rcu_lock) {
12162 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12163 			return -EINVAL;
12164 		} else if (rcu_unlock) {
12165 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12166 				if (reg->type & MEM_RCU) {
12167 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12168 					reg->type |= PTR_UNTRUSTED;
12169 				}
12170 			}));
12171 			env->cur_state->active_rcu_lock = false;
12172 		} else if (sleepable) {
12173 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12174 			return -EACCES;
12175 		}
12176 	} else if (rcu_lock) {
12177 		env->cur_state->active_rcu_lock = true;
12178 	} else if (rcu_unlock) {
12179 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12180 		return -EINVAL;
12181 	}
12182 
12183 	/* In case of release function, we get register number of refcounted
12184 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12185 	 */
12186 	if (meta.release_regno) {
12187 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12188 		if (err) {
12189 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12190 				func_name, meta.func_id);
12191 			return err;
12192 		}
12193 	}
12194 
12195 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12196 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12197 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12198 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12199 		insn_aux->insert_off = regs[BPF_REG_2].off;
12200 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12201 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12202 		if (err) {
12203 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12204 				func_name, meta.func_id);
12205 			return err;
12206 		}
12207 
12208 		err = release_reference(env, release_ref_obj_id);
12209 		if (err) {
12210 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12211 				func_name, meta.func_id);
12212 			return err;
12213 		}
12214 	}
12215 
12216 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12217 		if (!bpf_jit_supports_exceptions()) {
12218 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12219 				func_name, meta.func_id);
12220 			return -ENOTSUPP;
12221 		}
12222 		env->seen_exception = true;
12223 
12224 		/* In the case of the default callback, the cookie value passed
12225 		 * to bpf_throw becomes the return value of the program.
12226 		 */
12227 		if (!env->exception_callback_subprog) {
12228 			err = check_return_code(env, BPF_REG_1, "R1");
12229 			if (err < 0)
12230 				return err;
12231 		}
12232 	}
12233 
12234 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12235 		mark_reg_not_init(env, regs, caller_saved[i]);
12236 
12237 	/* Check return type */
12238 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12239 
12240 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12241 		/* Only exception is bpf_obj_new_impl */
12242 		if (meta.btf != btf_vmlinux ||
12243 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12244 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12245 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12246 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12247 			return -EINVAL;
12248 		}
12249 	}
12250 
12251 	if (btf_type_is_scalar(t)) {
12252 		mark_reg_unknown(env, regs, BPF_REG_0);
12253 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12254 	} else if (btf_type_is_ptr(t)) {
12255 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12256 
12257 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12258 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12259 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12260 				struct btf_struct_meta *struct_meta;
12261 				struct btf *ret_btf;
12262 				u32 ret_btf_id;
12263 
12264 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12265 					return -ENOMEM;
12266 
12267 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12268 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12269 					return -EINVAL;
12270 				}
12271 
12272 				ret_btf = env->prog->aux->btf;
12273 				ret_btf_id = meta.arg_constant.value;
12274 
12275 				/* This may be NULL due to user not supplying a BTF */
12276 				if (!ret_btf) {
12277 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12278 					return -EINVAL;
12279 				}
12280 
12281 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12282 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12283 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12284 					return -EINVAL;
12285 				}
12286 
12287 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12288 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12289 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12290 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12291 						return -EINVAL;
12292 					}
12293 
12294 					if (!bpf_global_percpu_ma_set) {
12295 						mutex_lock(&bpf_percpu_ma_lock);
12296 						if (!bpf_global_percpu_ma_set) {
12297 							/* Charge memory allocated with bpf_global_percpu_ma to
12298 							 * root memcg. The obj_cgroup for root memcg is NULL.
12299 							 */
12300 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12301 							if (!err)
12302 								bpf_global_percpu_ma_set = true;
12303 						}
12304 						mutex_unlock(&bpf_percpu_ma_lock);
12305 						if (err)
12306 							return err;
12307 					}
12308 
12309 					mutex_lock(&bpf_percpu_ma_lock);
12310 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12311 					mutex_unlock(&bpf_percpu_ma_lock);
12312 					if (err)
12313 						return err;
12314 				}
12315 
12316 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12317 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12318 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12319 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12320 						return -EINVAL;
12321 					}
12322 
12323 					if (struct_meta) {
12324 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12325 						return -EINVAL;
12326 					}
12327 				}
12328 
12329 				mark_reg_known_zero(env, regs, BPF_REG_0);
12330 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12331 				regs[BPF_REG_0].btf = ret_btf;
12332 				regs[BPF_REG_0].btf_id = ret_btf_id;
12333 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12334 					regs[BPF_REG_0].type |= MEM_PERCPU;
12335 
12336 				insn_aux->obj_new_size = ret_t->size;
12337 				insn_aux->kptr_struct_meta = struct_meta;
12338 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12339 				mark_reg_known_zero(env, regs, BPF_REG_0);
12340 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12341 				regs[BPF_REG_0].btf = meta.arg_btf;
12342 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12343 
12344 				insn_aux->kptr_struct_meta =
12345 					btf_find_struct_meta(meta.arg_btf,
12346 							     meta.arg_btf_id);
12347 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12348 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12349 				struct btf_field *field = meta.arg_list_head.field;
12350 
12351 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12352 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12353 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12354 				struct btf_field *field = meta.arg_rbtree_root.field;
12355 
12356 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12357 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12358 				mark_reg_known_zero(env, regs, BPF_REG_0);
12359 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12360 				regs[BPF_REG_0].btf = desc_btf;
12361 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12362 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12363 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12364 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12365 					verbose(env,
12366 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12367 					return -EINVAL;
12368 				}
12369 
12370 				mark_reg_known_zero(env, regs, BPF_REG_0);
12371 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12372 				regs[BPF_REG_0].btf = desc_btf;
12373 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12374 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12375 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12376 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12377 
12378 				mark_reg_known_zero(env, regs, BPF_REG_0);
12379 
12380 				if (!meta.arg_constant.found) {
12381 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12382 					return -EFAULT;
12383 				}
12384 
12385 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12386 
12387 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12388 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12389 
12390 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12391 					regs[BPF_REG_0].type |= MEM_RDONLY;
12392 				} else {
12393 					/* this will set env->seen_direct_write to true */
12394 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12395 						verbose(env, "the prog does not allow writes to packet data\n");
12396 						return -EINVAL;
12397 					}
12398 				}
12399 
12400 				if (!meta.initialized_dynptr.id) {
12401 					verbose(env, "verifier internal error: no dynptr id\n");
12402 					return -EFAULT;
12403 				}
12404 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12405 
12406 				/* we don't need to set BPF_REG_0's ref obj id
12407 				 * because packet slices are not refcounted (see
12408 				 * dynptr_type_refcounted)
12409 				 */
12410 			} else {
12411 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12412 					meta.func_name);
12413 				return -EFAULT;
12414 			}
12415 		} else if (btf_type_is_void(ptr_type)) {
12416 			/* kfunc returning 'void *' is equivalent to returning scalar */
12417 			mark_reg_unknown(env, regs, BPF_REG_0);
12418 		} else if (!__btf_type_is_struct(ptr_type)) {
12419 			if (!meta.r0_size) {
12420 				__u32 sz;
12421 
12422 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12423 					meta.r0_size = sz;
12424 					meta.r0_rdonly = true;
12425 				}
12426 			}
12427 			if (!meta.r0_size) {
12428 				ptr_type_name = btf_name_by_offset(desc_btf,
12429 								   ptr_type->name_off);
12430 				verbose(env,
12431 					"kernel function %s returns pointer type %s %s is not supported\n",
12432 					func_name,
12433 					btf_type_str(ptr_type),
12434 					ptr_type_name);
12435 				return -EINVAL;
12436 			}
12437 
12438 			mark_reg_known_zero(env, regs, BPF_REG_0);
12439 			regs[BPF_REG_0].type = PTR_TO_MEM;
12440 			regs[BPF_REG_0].mem_size = meta.r0_size;
12441 
12442 			if (meta.r0_rdonly)
12443 				regs[BPF_REG_0].type |= MEM_RDONLY;
12444 
12445 			/* Ensures we don't access the memory after a release_reference() */
12446 			if (meta.ref_obj_id)
12447 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12448 		} else {
12449 			mark_reg_known_zero(env, regs, BPF_REG_0);
12450 			regs[BPF_REG_0].btf = desc_btf;
12451 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12452 			regs[BPF_REG_0].btf_id = ptr_type_id;
12453 		}
12454 
12455 		if (is_kfunc_ret_null(&meta)) {
12456 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12457 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12458 			regs[BPF_REG_0].id = ++env->id_gen;
12459 		}
12460 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12461 		if (is_kfunc_acquire(&meta)) {
12462 			int id = acquire_reference_state(env, insn_idx);
12463 
12464 			if (id < 0)
12465 				return id;
12466 			if (is_kfunc_ret_null(&meta))
12467 				regs[BPF_REG_0].id = id;
12468 			regs[BPF_REG_0].ref_obj_id = id;
12469 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12470 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12471 		}
12472 
12473 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12474 			regs[BPF_REG_0].id = ++env->id_gen;
12475 	} else if (btf_type_is_void(t)) {
12476 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12477 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12478 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12479 				insn_aux->kptr_struct_meta =
12480 					btf_find_struct_meta(meta.arg_btf,
12481 							     meta.arg_btf_id);
12482 			}
12483 		}
12484 	}
12485 
12486 	nargs = btf_type_vlen(meta.func_proto);
12487 	args = (const struct btf_param *)(meta.func_proto + 1);
12488 	for (i = 0; i < nargs; i++) {
12489 		u32 regno = i + 1;
12490 
12491 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12492 		if (btf_type_is_ptr(t))
12493 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12494 		else
12495 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12496 			mark_btf_func_reg_size(env, regno, t->size);
12497 	}
12498 
12499 	if (is_iter_next_kfunc(&meta)) {
12500 		err = process_iter_next_call(env, insn_idx, &meta);
12501 		if (err)
12502 			return err;
12503 	}
12504 
12505 	return 0;
12506 }
12507 
12508 static bool signed_add_overflows(s64 a, s64 b)
12509 {
12510 	/* Do the add in u64, where overflow is well-defined */
12511 	s64 res = (s64)((u64)a + (u64)b);
12512 
12513 	if (b < 0)
12514 		return res > a;
12515 	return res < a;
12516 }
12517 
12518 static bool signed_add32_overflows(s32 a, s32 b)
12519 {
12520 	/* Do the add in u32, where overflow is well-defined */
12521 	s32 res = (s32)((u32)a + (u32)b);
12522 
12523 	if (b < 0)
12524 		return res > a;
12525 	return res < a;
12526 }
12527 
12528 static bool signed_sub_overflows(s64 a, s64 b)
12529 {
12530 	/* Do the sub in u64, where overflow is well-defined */
12531 	s64 res = (s64)((u64)a - (u64)b);
12532 
12533 	if (b < 0)
12534 		return res < a;
12535 	return res > a;
12536 }
12537 
12538 static bool signed_sub32_overflows(s32 a, s32 b)
12539 {
12540 	/* Do the sub in u32, where overflow is well-defined */
12541 	s32 res = (s32)((u32)a - (u32)b);
12542 
12543 	if (b < 0)
12544 		return res < a;
12545 	return res > a;
12546 }
12547 
12548 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12549 				  const struct bpf_reg_state *reg,
12550 				  enum bpf_reg_type type)
12551 {
12552 	bool known = tnum_is_const(reg->var_off);
12553 	s64 val = reg->var_off.value;
12554 	s64 smin = reg->smin_value;
12555 
12556 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12557 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12558 			reg_type_str(env, type), val);
12559 		return false;
12560 	}
12561 
12562 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12563 		verbose(env, "%s pointer offset %d is not allowed\n",
12564 			reg_type_str(env, type), reg->off);
12565 		return false;
12566 	}
12567 
12568 	if (smin == S64_MIN) {
12569 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12570 			reg_type_str(env, type));
12571 		return false;
12572 	}
12573 
12574 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12575 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12576 			smin, reg_type_str(env, type));
12577 		return false;
12578 	}
12579 
12580 	return true;
12581 }
12582 
12583 enum {
12584 	REASON_BOUNDS	= -1,
12585 	REASON_TYPE	= -2,
12586 	REASON_PATHS	= -3,
12587 	REASON_LIMIT	= -4,
12588 	REASON_STACK	= -5,
12589 };
12590 
12591 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12592 			      u32 *alu_limit, bool mask_to_left)
12593 {
12594 	u32 max = 0, ptr_limit = 0;
12595 
12596 	switch (ptr_reg->type) {
12597 	case PTR_TO_STACK:
12598 		/* Offset 0 is out-of-bounds, but acceptable start for the
12599 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12600 		 * offset where we would need to deal with min/max bounds is
12601 		 * currently prohibited for unprivileged.
12602 		 */
12603 		max = MAX_BPF_STACK + mask_to_left;
12604 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12605 		break;
12606 	case PTR_TO_MAP_VALUE:
12607 		max = ptr_reg->map_ptr->value_size;
12608 		ptr_limit = (mask_to_left ?
12609 			     ptr_reg->smin_value :
12610 			     ptr_reg->umax_value) + ptr_reg->off;
12611 		break;
12612 	default:
12613 		return REASON_TYPE;
12614 	}
12615 
12616 	if (ptr_limit >= max)
12617 		return REASON_LIMIT;
12618 	*alu_limit = ptr_limit;
12619 	return 0;
12620 }
12621 
12622 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12623 				    const struct bpf_insn *insn)
12624 {
12625 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12626 }
12627 
12628 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12629 				       u32 alu_state, u32 alu_limit)
12630 {
12631 	/* If we arrived here from different branches with different
12632 	 * state or limits to sanitize, then this won't work.
12633 	 */
12634 	if (aux->alu_state &&
12635 	    (aux->alu_state != alu_state ||
12636 	     aux->alu_limit != alu_limit))
12637 		return REASON_PATHS;
12638 
12639 	/* Corresponding fixup done in do_misc_fixups(). */
12640 	aux->alu_state = alu_state;
12641 	aux->alu_limit = alu_limit;
12642 	return 0;
12643 }
12644 
12645 static int sanitize_val_alu(struct bpf_verifier_env *env,
12646 			    struct bpf_insn *insn)
12647 {
12648 	struct bpf_insn_aux_data *aux = cur_aux(env);
12649 
12650 	if (can_skip_alu_sanitation(env, insn))
12651 		return 0;
12652 
12653 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12654 }
12655 
12656 static bool sanitize_needed(u8 opcode)
12657 {
12658 	return opcode == BPF_ADD || opcode == BPF_SUB;
12659 }
12660 
12661 struct bpf_sanitize_info {
12662 	struct bpf_insn_aux_data aux;
12663 	bool mask_to_left;
12664 };
12665 
12666 static struct bpf_verifier_state *
12667 sanitize_speculative_path(struct bpf_verifier_env *env,
12668 			  const struct bpf_insn *insn,
12669 			  u32 next_idx, u32 curr_idx)
12670 {
12671 	struct bpf_verifier_state *branch;
12672 	struct bpf_reg_state *regs;
12673 
12674 	branch = push_stack(env, next_idx, curr_idx, true);
12675 	if (branch && insn) {
12676 		regs = branch->frame[branch->curframe]->regs;
12677 		if (BPF_SRC(insn->code) == BPF_K) {
12678 			mark_reg_unknown(env, regs, insn->dst_reg);
12679 		} else if (BPF_SRC(insn->code) == BPF_X) {
12680 			mark_reg_unknown(env, regs, insn->dst_reg);
12681 			mark_reg_unknown(env, regs, insn->src_reg);
12682 		}
12683 	}
12684 	return branch;
12685 }
12686 
12687 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12688 			    struct bpf_insn *insn,
12689 			    const struct bpf_reg_state *ptr_reg,
12690 			    const struct bpf_reg_state *off_reg,
12691 			    struct bpf_reg_state *dst_reg,
12692 			    struct bpf_sanitize_info *info,
12693 			    const bool commit_window)
12694 {
12695 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12696 	struct bpf_verifier_state *vstate = env->cur_state;
12697 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12698 	bool off_is_neg = off_reg->smin_value < 0;
12699 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12700 	u8 opcode = BPF_OP(insn->code);
12701 	u32 alu_state, alu_limit;
12702 	struct bpf_reg_state tmp;
12703 	bool ret;
12704 	int err;
12705 
12706 	if (can_skip_alu_sanitation(env, insn))
12707 		return 0;
12708 
12709 	/* We already marked aux for masking from non-speculative
12710 	 * paths, thus we got here in the first place. We only care
12711 	 * to explore bad access from here.
12712 	 */
12713 	if (vstate->speculative)
12714 		goto do_sim;
12715 
12716 	if (!commit_window) {
12717 		if (!tnum_is_const(off_reg->var_off) &&
12718 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12719 			return REASON_BOUNDS;
12720 
12721 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12722 				     (opcode == BPF_SUB && !off_is_neg);
12723 	}
12724 
12725 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12726 	if (err < 0)
12727 		return err;
12728 
12729 	if (commit_window) {
12730 		/* In commit phase we narrow the masking window based on
12731 		 * the observed pointer move after the simulated operation.
12732 		 */
12733 		alu_state = info->aux.alu_state;
12734 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12735 	} else {
12736 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12737 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12738 		alu_state |= ptr_is_dst_reg ?
12739 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12740 
12741 		/* Limit pruning on unknown scalars to enable deep search for
12742 		 * potential masking differences from other program paths.
12743 		 */
12744 		if (!off_is_imm)
12745 			env->explore_alu_limits = true;
12746 	}
12747 
12748 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12749 	if (err < 0)
12750 		return err;
12751 do_sim:
12752 	/* If we're in commit phase, we're done here given we already
12753 	 * pushed the truncated dst_reg into the speculative verification
12754 	 * stack.
12755 	 *
12756 	 * Also, when register is a known constant, we rewrite register-based
12757 	 * operation to immediate-based, and thus do not need masking (and as
12758 	 * a consequence, do not need to simulate the zero-truncation either).
12759 	 */
12760 	if (commit_window || off_is_imm)
12761 		return 0;
12762 
12763 	/* Simulate and find potential out-of-bounds access under
12764 	 * speculative execution from truncation as a result of
12765 	 * masking when off was not within expected range. If off
12766 	 * sits in dst, then we temporarily need to move ptr there
12767 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12768 	 * for cases where we use K-based arithmetic in one direction
12769 	 * and truncated reg-based in the other in order to explore
12770 	 * bad access.
12771 	 */
12772 	if (!ptr_is_dst_reg) {
12773 		tmp = *dst_reg;
12774 		copy_register_state(dst_reg, ptr_reg);
12775 	}
12776 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12777 					env->insn_idx);
12778 	if (!ptr_is_dst_reg && ret)
12779 		*dst_reg = tmp;
12780 	return !ret ? REASON_STACK : 0;
12781 }
12782 
12783 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12784 {
12785 	struct bpf_verifier_state *vstate = env->cur_state;
12786 
12787 	/* If we simulate paths under speculation, we don't update the
12788 	 * insn as 'seen' such that when we verify unreachable paths in
12789 	 * the non-speculative domain, sanitize_dead_code() can still
12790 	 * rewrite/sanitize them.
12791 	 */
12792 	if (!vstate->speculative)
12793 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12794 }
12795 
12796 static int sanitize_err(struct bpf_verifier_env *env,
12797 			const struct bpf_insn *insn, int reason,
12798 			const struct bpf_reg_state *off_reg,
12799 			const struct bpf_reg_state *dst_reg)
12800 {
12801 	static const char *err = "pointer arithmetic with it prohibited for !root";
12802 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12803 	u32 dst = insn->dst_reg, src = insn->src_reg;
12804 
12805 	switch (reason) {
12806 	case REASON_BOUNDS:
12807 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12808 			off_reg == dst_reg ? dst : src, err);
12809 		break;
12810 	case REASON_TYPE:
12811 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12812 			off_reg == dst_reg ? src : dst, err);
12813 		break;
12814 	case REASON_PATHS:
12815 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12816 			dst, op, err);
12817 		break;
12818 	case REASON_LIMIT:
12819 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12820 			dst, op, err);
12821 		break;
12822 	case REASON_STACK:
12823 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12824 			dst, err);
12825 		break;
12826 	default:
12827 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12828 			reason);
12829 		break;
12830 	}
12831 
12832 	return -EACCES;
12833 }
12834 
12835 /* check that stack access falls within stack limits and that 'reg' doesn't
12836  * have a variable offset.
12837  *
12838  * Variable offset is prohibited for unprivileged mode for simplicity since it
12839  * requires corresponding support in Spectre masking for stack ALU.  See also
12840  * retrieve_ptr_limit().
12841  *
12842  *
12843  * 'off' includes 'reg->off'.
12844  */
12845 static int check_stack_access_for_ptr_arithmetic(
12846 				struct bpf_verifier_env *env,
12847 				int regno,
12848 				const struct bpf_reg_state *reg,
12849 				int off)
12850 {
12851 	if (!tnum_is_const(reg->var_off)) {
12852 		char tn_buf[48];
12853 
12854 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12855 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12856 			regno, tn_buf, off);
12857 		return -EACCES;
12858 	}
12859 
12860 	if (off >= 0 || off < -MAX_BPF_STACK) {
12861 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12862 			"prohibited for !root; off=%d\n", regno, off);
12863 		return -EACCES;
12864 	}
12865 
12866 	return 0;
12867 }
12868 
12869 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12870 				 const struct bpf_insn *insn,
12871 				 const struct bpf_reg_state *dst_reg)
12872 {
12873 	u32 dst = insn->dst_reg;
12874 
12875 	/* For unprivileged we require that resulting offset must be in bounds
12876 	 * in order to be able to sanitize access later on.
12877 	 */
12878 	if (env->bypass_spec_v1)
12879 		return 0;
12880 
12881 	switch (dst_reg->type) {
12882 	case PTR_TO_STACK:
12883 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12884 					dst_reg->off + dst_reg->var_off.value))
12885 			return -EACCES;
12886 		break;
12887 	case PTR_TO_MAP_VALUE:
12888 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12889 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12890 				"prohibited for !root\n", dst);
12891 			return -EACCES;
12892 		}
12893 		break;
12894 	default:
12895 		break;
12896 	}
12897 
12898 	return 0;
12899 }
12900 
12901 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12902  * Caller should also handle BPF_MOV case separately.
12903  * If we return -EACCES, caller may want to try again treating pointer as a
12904  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12905  */
12906 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12907 				   struct bpf_insn *insn,
12908 				   const struct bpf_reg_state *ptr_reg,
12909 				   const struct bpf_reg_state *off_reg)
12910 {
12911 	struct bpf_verifier_state *vstate = env->cur_state;
12912 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12913 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12914 	bool known = tnum_is_const(off_reg->var_off);
12915 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12916 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12917 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12918 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12919 	struct bpf_sanitize_info info = {};
12920 	u8 opcode = BPF_OP(insn->code);
12921 	u32 dst = insn->dst_reg;
12922 	int ret;
12923 
12924 	dst_reg = &regs[dst];
12925 
12926 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12927 	    smin_val > smax_val || umin_val > umax_val) {
12928 		/* Taint dst register if offset had invalid bounds derived from
12929 		 * e.g. dead branches.
12930 		 */
12931 		__mark_reg_unknown(env, dst_reg);
12932 		return 0;
12933 	}
12934 
12935 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12936 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12937 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12938 			__mark_reg_unknown(env, dst_reg);
12939 			return 0;
12940 		}
12941 
12942 		verbose(env,
12943 			"R%d 32-bit pointer arithmetic prohibited\n",
12944 			dst);
12945 		return -EACCES;
12946 	}
12947 
12948 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12949 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12950 			dst, reg_type_str(env, ptr_reg->type));
12951 		return -EACCES;
12952 	}
12953 
12954 	switch (base_type(ptr_reg->type)) {
12955 	case PTR_TO_CTX:
12956 	case PTR_TO_MAP_VALUE:
12957 	case PTR_TO_MAP_KEY:
12958 	case PTR_TO_STACK:
12959 	case PTR_TO_PACKET_META:
12960 	case PTR_TO_PACKET:
12961 	case PTR_TO_TP_BUFFER:
12962 	case PTR_TO_BTF_ID:
12963 	case PTR_TO_MEM:
12964 	case PTR_TO_BUF:
12965 	case PTR_TO_FUNC:
12966 	case CONST_PTR_TO_DYNPTR:
12967 		break;
12968 	case PTR_TO_FLOW_KEYS:
12969 		if (known)
12970 			break;
12971 		fallthrough;
12972 	case CONST_PTR_TO_MAP:
12973 		/* smin_val represents the known value */
12974 		if (known && smin_val == 0 && opcode == BPF_ADD)
12975 			break;
12976 		fallthrough;
12977 	default:
12978 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12979 			dst, reg_type_str(env, ptr_reg->type));
12980 		return -EACCES;
12981 	}
12982 
12983 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12984 	 * The id may be overwritten later if we create a new variable offset.
12985 	 */
12986 	dst_reg->type = ptr_reg->type;
12987 	dst_reg->id = ptr_reg->id;
12988 
12989 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12990 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12991 		return -EINVAL;
12992 
12993 	/* pointer types do not carry 32-bit bounds at the moment. */
12994 	__mark_reg32_unbounded(dst_reg);
12995 
12996 	if (sanitize_needed(opcode)) {
12997 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12998 				       &info, false);
12999 		if (ret < 0)
13000 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13001 	}
13002 
13003 	switch (opcode) {
13004 	case BPF_ADD:
13005 		/* We can take a fixed offset as long as it doesn't overflow
13006 		 * the s32 'off' field
13007 		 */
13008 		if (known && (ptr_reg->off + smin_val ==
13009 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13010 			/* pointer += K.  Accumulate it into fixed offset */
13011 			dst_reg->smin_value = smin_ptr;
13012 			dst_reg->smax_value = smax_ptr;
13013 			dst_reg->umin_value = umin_ptr;
13014 			dst_reg->umax_value = umax_ptr;
13015 			dst_reg->var_off = ptr_reg->var_off;
13016 			dst_reg->off = ptr_reg->off + smin_val;
13017 			dst_reg->raw = ptr_reg->raw;
13018 			break;
13019 		}
13020 		/* A new variable offset is created.  Note that off_reg->off
13021 		 * == 0, since it's a scalar.
13022 		 * dst_reg gets the pointer type and since some positive
13023 		 * integer value was added to the pointer, give it a new 'id'
13024 		 * if it's a PTR_TO_PACKET.
13025 		 * this creates a new 'base' pointer, off_reg (variable) gets
13026 		 * added into the variable offset, and we copy the fixed offset
13027 		 * from ptr_reg.
13028 		 */
13029 		if (signed_add_overflows(smin_ptr, smin_val) ||
13030 		    signed_add_overflows(smax_ptr, smax_val)) {
13031 			dst_reg->smin_value = S64_MIN;
13032 			dst_reg->smax_value = S64_MAX;
13033 		} else {
13034 			dst_reg->smin_value = smin_ptr + smin_val;
13035 			dst_reg->smax_value = smax_ptr + smax_val;
13036 		}
13037 		if (umin_ptr + umin_val < umin_ptr ||
13038 		    umax_ptr + umax_val < umax_ptr) {
13039 			dst_reg->umin_value = 0;
13040 			dst_reg->umax_value = U64_MAX;
13041 		} else {
13042 			dst_reg->umin_value = umin_ptr + umin_val;
13043 			dst_reg->umax_value = umax_ptr + umax_val;
13044 		}
13045 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13046 		dst_reg->off = ptr_reg->off;
13047 		dst_reg->raw = ptr_reg->raw;
13048 		if (reg_is_pkt_pointer(ptr_reg)) {
13049 			dst_reg->id = ++env->id_gen;
13050 			/* something was added to pkt_ptr, set range to zero */
13051 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13052 		}
13053 		break;
13054 	case BPF_SUB:
13055 		if (dst_reg == off_reg) {
13056 			/* scalar -= pointer.  Creates an unknown scalar */
13057 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13058 				dst);
13059 			return -EACCES;
13060 		}
13061 		/* We don't allow subtraction from FP, because (according to
13062 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13063 		 * be able to deal with it.
13064 		 */
13065 		if (ptr_reg->type == PTR_TO_STACK) {
13066 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13067 				dst);
13068 			return -EACCES;
13069 		}
13070 		if (known && (ptr_reg->off - smin_val ==
13071 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13072 			/* pointer -= K.  Subtract it from fixed offset */
13073 			dst_reg->smin_value = smin_ptr;
13074 			dst_reg->smax_value = smax_ptr;
13075 			dst_reg->umin_value = umin_ptr;
13076 			dst_reg->umax_value = umax_ptr;
13077 			dst_reg->var_off = ptr_reg->var_off;
13078 			dst_reg->id = ptr_reg->id;
13079 			dst_reg->off = ptr_reg->off - smin_val;
13080 			dst_reg->raw = ptr_reg->raw;
13081 			break;
13082 		}
13083 		/* A new variable offset is created.  If the subtrahend is known
13084 		 * nonnegative, then any reg->range we had before is still good.
13085 		 */
13086 		if (signed_sub_overflows(smin_ptr, smax_val) ||
13087 		    signed_sub_overflows(smax_ptr, smin_val)) {
13088 			/* Overflow possible, we know nothing */
13089 			dst_reg->smin_value = S64_MIN;
13090 			dst_reg->smax_value = S64_MAX;
13091 		} else {
13092 			dst_reg->smin_value = smin_ptr - smax_val;
13093 			dst_reg->smax_value = smax_ptr - smin_val;
13094 		}
13095 		if (umin_ptr < umax_val) {
13096 			/* Overflow possible, we know nothing */
13097 			dst_reg->umin_value = 0;
13098 			dst_reg->umax_value = U64_MAX;
13099 		} else {
13100 			/* Cannot overflow (as long as bounds are consistent) */
13101 			dst_reg->umin_value = umin_ptr - umax_val;
13102 			dst_reg->umax_value = umax_ptr - umin_val;
13103 		}
13104 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13105 		dst_reg->off = ptr_reg->off;
13106 		dst_reg->raw = ptr_reg->raw;
13107 		if (reg_is_pkt_pointer(ptr_reg)) {
13108 			dst_reg->id = ++env->id_gen;
13109 			/* something was added to pkt_ptr, set range to zero */
13110 			if (smin_val < 0)
13111 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13112 		}
13113 		break;
13114 	case BPF_AND:
13115 	case BPF_OR:
13116 	case BPF_XOR:
13117 		/* bitwise ops on pointers are troublesome, prohibit. */
13118 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13119 			dst, bpf_alu_string[opcode >> 4]);
13120 		return -EACCES;
13121 	default:
13122 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13123 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13124 			dst, bpf_alu_string[opcode >> 4]);
13125 		return -EACCES;
13126 	}
13127 
13128 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13129 		return -EINVAL;
13130 	reg_bounds_sync(dst_reg);
13131 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13132 		return -EACCES;
13133 	if (sanitize_needed(opcode)) {
13134 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13135 				       &info, true);
13136 		if (ret < 0)
13137 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13138 	}
13139 
13140 	return 0;
13141 }
13142 
13143 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13144 				 struct bpf_reg_state *src_reg)
13145 {
13146 	s32 smin_val = src_reg->s32_min_value;
13147 	s32 smax_val = src_reg->s32_max_value;
13148 	u32 umin_val = src_reg->u32_min_value;
13149 	u32 umax_val = src_reg->u32_max_value;
13150 
13151 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
13152 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
13153 		dst_reg->s32_min_value = S32_MIN;
13154 		dst_reg->s32_max_value = S32_MAX;
13155 	} else {
13156 		dst_reg->s32_min_value += smin_val;
13157 		dst_reg->s32_max_value += smax_val;
13158 	}
13159 	if (dst_reg->u32_min_value + umin_val < umin_val ||
13160 	    dst_reg->u32_max_value + umax_val < umax_val) {
13161 		dst_reg->u32_min_value = 0;
13162 		dst_reg->u32_max_value = U32_MAX;
13163 	} else {
13164 		dst_reg->u32_min_value += umin_val;
13165 		dst_reg->u32_max_value += umax_val;
13166 	}
13167 }
13168 
13169 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13170 			       struct bpf_reg_state *src_reg)
13171 {
13172 	s64 smin_val = src_reg->smin_value;
13173 	s64 smax_val = src_reg->smax_value;
13174 	u64 umin_val = src_reg->umin_value;
13175 	u64 umax_val = src_reg->umax_value;
13176 
13177 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
13178 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
13179 		dst_reg->smin_value = S64_MIN;
13180 		dst_reg->smax_value = S64_MAX;
13181 	} else {
13182 		dst_reg->smin_value += smin_val;
13183 		dst_reg->smax_value += smax_val;
13184 	}
13185 	if (dst_reg->umin_value + umin_val < umin_val ||
13186 	    dst_reg->umax_value + umax_val < umax_val) {
13187 		dst_reg->umin_value = 0;
13188 		dst_reg->umax_value = U64_MAX;
13189 	} else {
13190 		dst_reg->umin_value += umin_val;
13191 		dst_reg->umax_value += umax_val;
13192 	}
13193 }
13194 
13195 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13196 				 struct bpf_reg_state *src_reg)
13197 {
13198 	s32 smin_val = src_reg->s32_min_value;
13199 	s32 smax_val = src_reg->s32_max_value;
13200 	u32 umin_val = src_reg->u32_min_value;
13201 	u32 umax_val = src_reg->u32_max_value;
13202 
13203 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13204 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13205 		/* Overflow possible, we know nothing */
13206 		dst_reg->s32_min_value = S32_MIN;
13207 		dst_reg->s32_max_value = S32_MAX;
13208 	} else {
13209 		dst_reg->s32_min_value -= smax_val;
13210 		dst_reg->s32_max_value -= smin_val;
13211 	}
13212 	if (dst_reg->u32_min_value < umax_val) {
13213 		/* Overflow possible, we know nothing */
13214 		dst_reg->u32_min_value = 0;
13215 		dst_reg->u32_max_value = U32_MAX;
13216 	} else {
13217 		/* Cannot overflow (as long as bounds are consistent) */
13218 		dst_reg->u32_min_value -= umax_val;
13219 		dst_reg->u32_max_value -= umin_val;
13220 	}
13221 }
13222 
13223 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13224 			       struct bpf_reg_state *src_reg)
13225 {
13226 	s64 smin_val = src_reg->smin_value;
13227 	s64 smax_val = src_reg->smax_value;
13228 	u64 umin_val = src_reg->umin_value;
13229 	u64 umax_val = src_reg->umax_value;
13230 
13231 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13232 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13233 		/* Overflow possible, we know nothing */
13234 		dst_reg->smin_value = S64_MIN;
13235 		dst_reg->smax_value = S64_MAX;
13236 	} else {
13237 		dst_reg->smin_value -= smax_val;
13238 		dst_reg->smax_value -= smin_val;
13239 	}
13240 	if (dst_reg->umin_value < umax_val) {
13241 		/* Overflow possible, we know nothing */
13242 		dst_reg->umin_value = 0;
13243 		dst_reg->umax_value = U64_MAX;
13244 	} else {
13245 		/* Cannot overflow (as long as bounds are consistent) */
13246 		dst_reg->umin_value -= umax_val;
13247 		dst_reg->umax_value -= umin_val;
13248 	}
13249 }
13250 
13251 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13252 				 struct bpf_reg_state *src_reg)
13253 {
13254 	s32 smin_val = src_reg->s32_min_value;
13255 	u32 umin_val = src_reg->u32_min_value;
13256 	u32 umax_val = src_reg->u32_max_value;
13257 
13258 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13259 		/* Ain't nobody got time to multiply that sign */
13260 		__mark_reg32_unbounded(dst_reg);
13261 		return;
13262 	}
13263 	/* Both values are positive, so we can work with unsigned and
13264 	 * copy the result to signed (unless it exceeds S32_MAX).
13265 	 */
13266 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13267 		/* Potential overflow, we know nothing */
13268 		__mark_reg32_unbounded(dst_reg);
13269 		return;
13270 	}
13271 	dst_reg->u32_min_value *= umin_val;
13272 	dst_reg->u32_max_value *= umax_val;
13273 	if (dst_reg->u32_max_value > S32_MAX) {
13274 		/* Overflow possible, we know nothing */
13275 		dst_reg->s32_min_value = S32_MIN;
13276 		dst_reg->s32_max_value = S32_MAX;
13277 	} else {
13278 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13279 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13280 	}
13281 }
13282 
13283 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13284 			       struct bpf_reg_state *src_reg)
13285 {
13286 	s64 smin_val = src_reg->smin_value;
13287 	u64 umin_val = src_reg->umin_value;
13288 	u64 umax_val = src_reg->umax_value;
13289 
13290 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13291 		/* Ain't nobody got time to multiply that sign */
13292 		__mark_reg64_unbounded(dst_reg);
13293 		return;
13294 	}
13295 	/* Both values are positive, so we can work with unsigned and
13296 	 * copy the result to signed (unless it exceeds S64_MAX).
13297 	 */
13298 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13299 		/* Potential overflow, we know nothing */
13300 		__mark_reg64_unbounded(dst_reg);
13301 		return;
13302 	}
13303 	dst_reg->umin_value *= umin_val;
13304 	dst_reg->umax_value *= umax_val;
13305 	if (dst_reg->umax_value > S64_MAX) {
13306 		/* Overflow possible, we know nothing */
13307 		dst_reg->smin_value = S64_MIN;
13308 		dst_reg->smax_value = S64_MAX;
13309 	} else {
13310 		dst_reg->smin_value = dst_reg->umin_value;
13311 		dst_reg->smax_value = dst_reg->umax_value;
13312 	}
13313 }
13314 
13315 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13316 				 struct bpf_reg_state *src_reg)
13317 {
13318 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13319 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13320 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13321 	s32 smin_val = src_reg->s32_min_value;
13322 	u32 umax_val = src_reg->u32_max_value;
13323 
13324 	if (src_known && dst_known) {
13325 		__mark_reg32_known(dst_reg, var32_off.value);
13326 		return;
13327 	}
13328 
13329 	/* We get our minimum from the var_off, since that's inherently
13330 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13331 	 */
13332 	dst_reg->u32_min_value = var32_off.value;
13333 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13334 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13335 		/* Lose signed bounds when ANDing negative numbers,
13336 		 * ain't nobody got time for that.
13337 		 */
13338 		dst_reg->s32_min_value = S32_MIN;
13339 		dst_reg->s32_max_value = S32_MAX;
13340 	} else {
13341 		/* ANDing two positives gives a positive, so safe to
13342 		 * cast result into s64.
13343 		 */
13344 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13345 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13346 	}
13347 }
13348 
13349 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13350 			       struct bpf_reg_state *src_reg)
13351 {
13352 	bool src_known = tnum_is_const(src_reg->var_off);
13353 	bool dst_known = tnum_is_const(dst_reg->var_off);
13354 	s64 smin_val = src_reg->smin_value;
13355 	u64 umax_val = src_reg->umax_value;
13356 
13357 	if (src_known && dst_known) {
13358 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13359 		return;
13360 	}
13361 
13362 	/* We get our minimum from the var_off, since that's inherently
13363 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13364 	 */
13365 	dst_reg->umin_value = dst_reg->var_off.value;
13366 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13367 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13368 		/* Lose signed bounds when ANDing negative numbers,
13369 		 * ain't nobody got time for that.
13370 		 */
13371 		dst_reg->smin_value = S64_MIN;
13372 		dst_reg->smax_value = S64_MAX;
13373 	} else {
13374 		/* ANDing two positives gives a positive, so safe to
13375 		 * cast result into s64.
13376 		 */
13377 		dst_reg->smin_value = dst_reg->umin_value;
13378 		dst_reg->smax_value = dst_reg->umax_value;
13379 	}
13380 	/* We may learn something more from the var_off */
13381 	__update_reg_bounds(dst_reg);
13382 }
13383 
13384 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13385 				struct bpf_reg_state *src_reg)
13386 {
13387 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13388 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13389 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13390 	s32 smin_val = src_reg->s32_min_value;
13391 	u32 umin_val = src_reg->u32_min_value;
13392 
13393 	if (src_known && dst_known) {
13394 		__mark_reg32_known(dst_reg, var32_off.value);
13395 		return;
13396 	}
13397 
13398 	/* We get our maximum from the var_off, and our minimum is the
13399 	 * maximum of the operands' minima
13400 	 */
13401 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13402 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13403 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13404 		/* Lose signed bounds when ORing negative numbers,
13405 		 * ain't nobody got time for that.
13406 		 */
13407 		dst_reg->s32_min_value = S32_MIN;
13408 		dst_reg->s32_max_value = S32_MAX;
13409 	} else {
13410 		/* ORing two positives gives a positive, so safe to
13411 		 * cast result into s64.
13412 		 */
13413 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13414 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13415 	}
13416 }
13417 
13418 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13419 			      struct bpf_reg_state *src_reg)
13420 {
13421 	bool src_known = tnum_is_const(src_reg->var_off);
13422 	bool dst_known = tnum_is_const(dst_reg->var_off);
13423 	s64 smin_val = src_reg->smin_value;
13424 	u64 umin_val = src_reg->umin_value;
13425 
13426 	if (src_known && dst_known) {
13427 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13428 		return;
13429 	}
13430 
13431 	/* We get our maximum from the var_off, and our minimum is the
13432 	 * maximum of the operands' minima
13433 	 */
13434 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13435 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13436 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13437 		/* Lose signed bounds when ORing negative numbers,
13438 		 * ain't nobody got time for that.
13439 		 */
13440 		dst_reg->smin_value = S64_MIN;
13441 		dst_reg->smax_value = S64_MAX;
13442 	} else {
13443 		/* ORing two positives gives a positive, so safe to
13444 		 * cast result into s64.
13445 		 */
13446 		dst_reg->smin_value = dst_reg->umin_value;
13447 		dst_reg->smax_value = dst_reg->umax_value;
13448 	}
13449 	/* We may learn something more from the var_off */
13450 	__update_reg_bounds(dst_reg);
13451 }
13452 
13453 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13454 				 struct bpf_reg_state *src_reg)
13455 {
13456 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13457 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13458 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13459 	s32 smin_val = src_reg->s32_min_value;
13460 
13461 	if (src_known && dst_known) {
13462 		__mark_reg32_known(dst_reg, var32_off.value);
13463 		return;
13464 	}
13465 
13466 	/* We get both minimum and maximum from the var32_off. */
13467 	dst_reg->u32_min_value = var32_off.value;
13468 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13469 
13470 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13471 		/* XORing two positive sign numbers gives a positive,
13472 		 * so safe to cast u32 result into s32.
13473 		 */
13474 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13475 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13476 	} else {
13477 		dst_reg->s32_min_value = S32_MIN;
13478 		dst_reg->s32_max_value = S32_MAX;
13479 	}
13480 }
13481 
13482 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13483 			       struct bpf_reg_state *src_reg)
13484 {
13485 	bool src_known = tnum_is_const(src_reg->var_off);
13486 	bool dst_known = tnum_is_const(dst_reg->var_off);
13487 	s64 smin_val = src_reg->smin_value;
13488 
13489 	if (src_known && dst_known) {
13490 		/* dst_reg->var_off.value has been updated earlier */
13491 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13492 		return;
13493 	}
13494 
13495 	/* We get both minimum and maximum from the var_off. */
13496 	dst_reg->umin_value = dst_reg->var_off.value;
13497 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13498 
13499 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13500 		/* XORing two positive sign numbers gives a positive,
13501 		 * so safe to cast u64 result into s64.
13502 		 */
13503 		dst_reg->smin_value = dst_reg->umin_value;
13504 		dst_reg->smax_value = dst_reg->umax_value;
13505 	} else {
13506 		dst_reg->smin_value = S64_MIN;
13507 		dst_reg->smax_value = S64_MAX;
13508 	}
13509 
13510 	__update_reg_bounds(dst_reg);
13511 }
13512 
13513 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13514 				   u64 umin_val, u64 umax_val)
13515 {
13516 	/* We lose all sign bit information (except what we can pick
13517 	 * up from var_off)
13518 	 */
13519 	dst_reg->s32_min_value = S32_MIN;
13520 	dst_reg->s32_max_value = S32_MAX;
13521 	/* If we might shift our top bit out, then we know nothing */
13522 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13523 		dst_reg->u32_min_value = 0;
13524 		dst_reg->u32_max_value = U32_MAX;
13525 	} else {
13526 		dst_reg->u32_min_value <<= umin_val;
13527 		dst_reg->u32_max_value <<= umax_val;
13528 	}
13529 }
13530 
13531 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13532 				 struct bpf_reg_state *src_reg)
13533 {
13534 	u32 umax_val = src_reg->u32_max_value;
13535 	u32 umin_val = src_reg->u32_min_value;
13536 	/* u32 alu operation will zext upper bits */
13537 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13538 
13539 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13540 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13541 	/* Not required but being careful mark reg64 bounds as unknown so
13542 	 * that we are forced to pick them up from tnum and zext later and
13543 	 * if some path skips this step we are still safe.
13544 	 */
13545 	__mark_reg64_unbounded(dst_reg);
13546 	__update_reg32_bounds(dst_reg);
13547 }
13548 
13549 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13550 				   u64 umin_val, u64 umax_val)
13551 {
13552 	/* Special case <<32 because it is a common compiler pattern to sign
13553 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13554 	 * positive we know this shift will also be positive so we can track
13555 	 * bounds correctly. Otherwise we lose all sign bit information except
13556 	 * what we can pick up from var_off. Perhaps we can generalize this
13557 	 * later to shifts of any length.
13558 	 */
13559 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13560 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13561 	else
13562 		dst_reg->smax_value = S64_MAX;
13563 
13564 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13565 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13566 	else
13567 		dst_reg->smin_value = S64_MIN;
13568 
13569 	/* If we might shift our top bit out, then we know nothing */
13570 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13571 		dst_reg->umin_value = 0;
13572 		dst_reg->umax_value = U64_MAX;
13573 	} else {
13574 		dst_reg->umin_value <<= umin_val;
13575 		dst_reg->umax_value <<= umax_val;
13576 	}
13577 }
13578 
13579 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13580 			       struct bpf_reg_state *src_reg)
13581 {
13582 	u64 umax_val = src_reg->umax_value;
13583 	u64 umin_val = src_reg->umin_value;
13584 
13585 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13586 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13587 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13588 
13589 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13590 	/* We may learn something more from the var_off */
13591 	__update_reg_bounds(dst_reg);
13592 }
13593 
13594 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13595 				 struct bpf_reg_state *src_reg)
13596 {
13597 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13598 	u32 umax_val = src_reg->u32_max_value;
13599 	u32 umin_val = src_reg->u32_min_value;
13600 
13601 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13602 	 * be negative, then either:
13603 	 * 1) src_reg might be zero, so the sign bit of the result is
13604 	 *    unknown, so we lose our signed bounds
13605 	 * 2) it's known negative, thus the unsigned bounds capture the
13606 	 *    signed bounds
13607 	 * 3) the signed bounds cross zero, so they tell us nothing
13608 	 *    about the result
13609 	 * If the value in dst_reg is known nonnegative, then again the
13610 	 * unsigned bounds capture the signed bounds.
13611 	 * Thus, in all cases it suffices to blow away our signed bounds
13612 	 * and rely on inferring new ones from the unsigned bounds and
13613 	 * var_off of the result.
13614 	 */
13615 	dst_reg->s32_min_value = S32_MIN;
13616 	dst_reg->s32_max_value = S32_MAX;
13617 
13618 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13619 	dst_reg->u32_min_value >>= umax_val;
13620 	dst_reg->u32_max_value >>= umin_val;
13621 
13622 	__mark_reg64_unbounded(dst_reg);
13623 	__update_reg32_bounds(dst_reg);
13624 }
13625 
13626 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13627 			       struct bpf_reg_state *src_reg)
13628 {
13629 	u64 umax_val = src_reg->umax_value;
13630 	u64 umin_val = src_reg->umin_value;
13631 
13632 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13633 	 * be negative, then either:
13634 	 * 1) src_reg might be zero, so the sign bit of the result is
13635 	 *    unknown, so we lose our signed bounds
13636 	 * 2) it's known negative, thus the unsigned bounds capture the
13637 	 *    signed bounds
13638 	 * 3) the signed bounds cross zero, so they tell us nothing
13639 	 *    about the result
13640 	 * If the value in dst_reg is known nonnegative, then again the
13641 	 * unsigned bounds capture the signed bounds.
13642 	 * Thus, in all cases it suffices to blow away our signed bounds
13643 	 * and rely on inferring new ones from the unsigned bounds and
13644 	 * var_off of the result.
13645 	 */
13646 	dst_reg->smin_value = S64_MIN;
13647 	dst_reg->smax_value = S64_MAX;
13648 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13649 	dst_reg->umin_value >>= umax_val;
13650 	dst_reg->umax_value >>= umin_val;
13651 
13652 	/* Its not easy to operate on alu32 bounds here because it depends
13653 	 * on bits being shifted in. Take easy way out and mark unbounded
13654 	 * so we can recalculate later from tnum.
13655 	 */
13656 	__mark_reg32_unbounded(dst_reg);
13657 	__update_reg_bounds(dst_reg);
13658 }
13659 
13660 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13661 				  struct bpf_reg_state *src_reg)
13662 {
13663 	u64 umin_val = src_reg->u32_min_value;
13664 
13665 	/* Upon reaching here, src_known is true and
13666 	 * umax_val is equal to umin_val.
13667 	 */
13668 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13669 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13670 
13671 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13672 
13673 	/* blow away the dst_reg umin_value/umax_value and rely on
13674 	 * dst_reg var_off to refine the result.
13675 	 */
13676 	dst_reg->u32_min_value = 0;
13677 	dst_reg->u32_max_value = U32_MAX;
13678 
13679 	__mark_reg64_unbounded(dst_reg);
13680 	__update_reg32_bounds(dst_reg);
13681 }
13682 
13683 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13684 				struct bpf_reg_state *src_reg)
13685 {
13686 	u64 umin_val = src_reg->umin_value;
13687 
13688 	/* Upon reaching here, src_known is true and umax_val is equal
13689 	 * to umin_val.
13690 	 */
13691 	dst_reg->smin_value >>= umin_val;
13692 	dst_reg->smax_value >>= umin_val;
13693 
13694 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13695 
13696 	/* blow away the dst_reg umin_value/umax_value and rely on
13697 	 * dst_reg var_off to refine the result.
13698 	 */
13699 	dst_reg->umin_value = 0;
13700 	dst_reg->umax_value = U64_MAX;
13701 
13702 	/* Its not easy to operate on alu32 bounds here because it depends
13703 	 * on bits being shifted in from upper 32-bits. Take easy way out
13704 	 * and mark unbounded so we can recalculate later from tnum.
13705 	 */
13706 	__mark_reg32_unbounded(dst_reg);
13707 	__update_reg_bounds(dst_reg);
13708 }
13709 
13710 /* WARNING: This function does calculations on 64-bit values, but the actual
13711  * execution may occur on 32-bit values. Therefore, things like bitshifts
13712  * need extra checks in the 32-bit case.
13713  */
13714 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13715 				      struct bpf_insn *insn,
13716 				      struct bpf_reg_state *dst_reg,
13717 				      struct bpf_reg_state src_reg)
13718 {
13719 	struct bpf_reg_state *regs = cur_regs(env);
13720 	u8 opcode = BPF_OP(insn->code);
13721 	bool src_known;
13722 	s64 smin_val, smax_val;
13723 	u64 umin_val, umax_val;
13724 	s32 s32_min_val, s32_max_val;
13725 	u32 u32_min_val, u32_max_val;
13726 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13727 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13728 	int ret;
13729 
13730 	smin_val = src_reg.smin_value;
13731 	smax_val = src_reg.smax_value;
13732 	umin_val = src_reg.umin_value;
13733 	umax_val = src_reg.umax_value;
13734 
13735 	s32_min_val = src_reg.s32_min_value;
13736 	s32_max_val = src_reg.s32_max_value;
13737 	u32_min_val = src_reg.u32_min_value;
13738 	u32_max_val = src_reg.u32_max_value;
13739 
13740 	if (alu32) {
13741 		src_known = tnum_subreg_is_const(src_reg.var_off);
13742 		if ((src_known &&
13743 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13744 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13745 			/* Taint dst register if offset had invalid bounds
13746 			 * derived from e.g. dead branches.
13747 			 */
13748 			__mark_reg_unknown(env, dst_reg);
13749 			return 0;
13750 		}
13751 	} else {
13752 		src_known = tnum_is_const(src_reg.var_off);
13753 		if ((src_known &&
13754 		     (smin_val != smax_val || umin_val != umax_val)) ||
13755 		    smin_val > smax_val || umin_val > umax_val) {
13756 			/* Taint dst register if offset had invalid bounds
13757 			 * derived from e.g. dead branches.
13758 			 */
13759 			__mark_reg_unknown(env, dst_reg);
13760 			return 0;
13761 		}
13762 	}
13763 
13764 	if (!src_known &&
13765 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13766 		__mark_reg_unknown(env, dst_reg);
13767 		return 0;
13768 	}
13769 
13770 	if (sanitize_needed(opcode)) {
13771 		ret = sanitize_val_alu(env, insn);
13772 		if (ret < 0)
13773 			return sanitize_err(env, insn, ret, NULL, NULL);
13774 	}
13775 
13776 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13777 	 * There are two classes of instructions: The first class we track both
13778 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13779 	 * greatest amount of precision when alu operations are mixed with jmp32
13780 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13781 	 * and BPF_OR. This is possible because these ops have fairly easy to
13782 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13783 	 * See alu32 verifier tests for examples. The second class of
13784 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13785 	 * with regards to tracking sign/unsigned bounds because the bits may
13786 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13787 	 * the reg unbounded in the subreg bound space and use the resulting
13788 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13789 	 */
13790 	switch (opcode) {
13791 	case BPF_ADD:
13792 		scalar32_min_max_add(dst_reg, &src_reg);
13793 		scalar_min_max_add(dst_reg, &src_reg);
13794 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13795 		break;
13796 	case BPF_SUB:
13797 		scalar32_min_max_sub(dst_reg, &src_reg);
13798 		scalar_min_max_sub(dst_reg, &src_reg);
13799 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13800 		break;
13801 	case BPF_MUL:
13802 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13803 		scalar32_min_max_mul(dst_reg, &src_reg);
13804 		scalar_min_max_mul(dst_reg, &src_reg);
13805 		break;
13806 	case BPF_AND:
13807 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13808 		scalar32_min_max_and(dst_reg, &src_reg);
13809 		scalar_min_max_and(dst_reg, &src_reg);
13810 		break;
13811 	case BPF_OR:
13812 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13813 		scalar32_min_max_or(dst_reg, &src_reg);
13814 		scalar_min_max_or(dst_reg, &src_reg);
13815 		break;
13816 	case BPF_XOR:
13817 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13818 		scalar32_min_max_xor(dst_reg, &src_reg);
13819 		scalar_min_max_xor(dst_reg, &src_reg);
13820 		break;
13821 	case BPF_LSH:
13822 		if (umax_val >= insn_bitness) {
13823 			/* Shifts greater than 31 or 63 are undefined.
13824 			 * This includes shifts by a negative number.
13825 			 */
13826 			mark_reg_unknown(env, regs, insn->dst_reg);
13827 			break;
13828 		}
13829 		if (alu32)
13830 			scalar32_min_max_lsh(dst_reg, &src_reg);
13831 		else
13832 			scalar_min_max_lsh(dst_reg, &src_reg);
13833 		break;
13834 	case BPF_RSH:
13835 		if (umax_val >= insn_bitness) {
13836 			/* Shifts greater than 31 or 63 are undefined.
13837 			 * This includes shifts by a negative number.
13838 			 */
13839 			mark_reg_unknown(env, regs, insn->dst_reg);
13840 			break;
13841 		}
13842 		if (alu32)
13843 			scalar32_min_max_rsh(dst_reg, &src_reg);
13844 		else
13845 			scalar_min_max_rsh(dst_reg, &src_reg);
13846 		break;
13847 	case BPF_ARSH:
13848 		if (umax_val >= insn_bitness) {
13849 			/* Shifts greater than 31 or 63 are undefined.
13850 			 * This includes shifts by a negative number.
13851 			 */
13852 			mark_reg_unknown(env, regs, insn->dst_reg);
13853 			break;
13854 		}
13855 		if (alu32)
13856 			scalar32_min_max_arsh(dst_reg, &src_reg);
13857 		else
13858 			scalar_min_max_arsh(dst_reg, &src_reg);
13859 		break;
13860 	default:
13861 		mark_reg_unknown(env, regs, insn->dst_reg);
13862 		break;
13863 	}
13864 
13865 	/* ALU32 ops are zero extended into 64bit register */
13866 	if (alu32)
13867 		zext_32_to_64(dst_reg);
13868 	reg_bounds_sync(dst_reg);
13869 	return 0;
13870 }
13871 
13872 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13873  * and var_off.
13874  */
13875 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13876 				   struct bpf_insn *insn)
13877 {
13878 	struct bpf_verifier_state *vstate = env->cur_state;
13879 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13880 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13881 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13882 	u8 opcode = BPF_OP(insn->code);
13883 	int err;
13884 
13885 	dst_reg = &regs[insn->dst_reg];
13886 	src_reg = NULL;
13887 
13888 	if (dst_reg->type == PTR_TO_ARENA) {
13889 		struct bpf_insn_aux_data *aux = cur_aux(env);
13890 
13891 		if (BPF_CLASS(insn->code) == BPF_ALU64)
13892 			/*
13893 			 * 32-bit operations zero upper bits automatically.
13894 			 * 64-bit operations need to be converted to 32.
13895 			 */
13896 			aux->needs_zext = true;
13897 
13898 		/* Any arithmetic operations are allowed on arena pointers */
13899 		return 0;
13900 	}
13901 
13902 	if (dst_reg->type != SCALAR_VALUE)
13903 		ptr_reg = dst_reg;
13904 	else
13905 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13906 		 * incorrectly propagated into other registers by find_equal_scalars()
13907 		 */
13908 		dst_reg->id = 0;
13909 	if (BPF_SRC(insn->code) == BPF_X) {
13910 		src_reg = &regs[insn->src_reg];
13911 		if (src_reg->type != SCALAR_VALUE) {
13912 			if (dst_reg->type != SCALAR_VALUE) {
13913 				/* Combining two pointers by any ALU op yields
13914 				 * an arbitrary scalar. Disallow all math except
13915 				 * pointer subtraction
13916 				 */
13917 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13918 					mark_reg_unknown(env, regs, insn->dst_reg);
13919 					return 0;
13920 				}
13921 				verbose(env, "R%d pointer %s pointer prohibited\n",
13922 					insn->dst_reg,
13923 					bpf_alu_string[opcode >> 4]);
13924 				return -EACCES;
13925 			} else {
13926 				/* scalar += pointer
13927 				 * This is legal, but we have to reverse our
13928 				 * src/dest handling in computing the range
13929 				 */
13930 				err = mark_chain_precision(env, insn->dst_reg);
13931 				if (err)
13932 					return err;
13933 				return adjust_ptr_min_max_vals(env, insn,
13934 							       src_reg, dst_reg);
13935 			}
13936 		} else if (ptr_reg) {
13937 			/* pointer += scalar */
13938 			err = mark_chain_precision(env, insn->src_reg);
13939 			if (err)
13940 				return err;
13941 			return adjust_ptr_min_max_vals(env, insn,
13942 						       dst_reg, src_reg);
13943 		} else if (dst_reg->precise) {
13944 			/* if dst_reg is precise, src_reg should be precise as well */
13945 			err = mark_chain_precision(env, insn->src_reg);
13946 			if (err)
13947 				return err;
13948 		}
13949 	} else {
13950 		/* Pretend the src is a reg with a known value, since we only
13951 		 * need to be able to read from this state.
13952 		 */
13953 		off_reg.type = SCALAR_VALUE;
13954 		__mark_reg_known(&off_reg, insn->imm);
13955 		src_reg = &off_reg;
13956 		if (ptr_reg) /* pointer += K */
13957 			return adjust_ptr_min_max_vals(env, insn,
13958 						       ptr_reg, src_reg);
13959 	}
13960 
13961 	/* Got here implies adding two SCALAR_VALUEs */
13962 	if (WARN_ON_ONCE(ptr_reg)) {
13963 		print_verifier_state(env, state, true);
13964 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13965 		return -EINVAL;
13966 	}
13967 	if (WARN_ON(!src_reg)) {
13968 		print_verifier_state(env, state, true);
13969 		verbose(env, "verifier internal error: no src_reg\n");
13970 		return -EINVAL;
13971 	}
13972 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13973 }
13974 
13975 /* check validity of 32-bit and 64-bit arithmetic operations */
13976 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13977 {
13978 	struct bpf_reg_state *regs = cur_regs(env);
13979 	u8 opcode = BPF_OP(insn->code);
13980 	int err;
13981 
13982 	if (opcode == BPF_END || opcode == BPF_NEG) {
13983 		if (opcode == BPF_NEG) {
13984 			if (BPF_SRC(insn->code) != BPF_K ||
13985 			    insn->src_reg != BPF_REG_0 ||
13986 			    insn->off != 0 || insn->imm != 0) {
13987 				verbose(env, "BPF_NEG uses reserved fields\n");
13988 				return -EINVAL;
13989 			}
13990 		} else {
13991 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13992 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13993 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13994 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13995 				verbose(env, "BPF_END uses reserved fields\n");
13996 				return -EINVAL;
13997 			}
13998 		}
13999 
14000 		/* check src operand */
14001 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14002 		if (err)
14003 			return err;
14004 
14005 		if (is_pointer_value(env, insn->dst_reg)) {
14006 			verbose(env, "R%d pointer arithmetic prohibited\n",
14007 				insn->dst_reg);
14008 			return -EACCES;
14009 		}
14010 
14011 		/* check dest operand */
14012 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14013 		if (err)
14014 			return err;
14015 
14016 	} else if (opcode == BPF_MOV) {
14017 
14018 		if (BPF_SRC(insn->code) == BPF_X) {
14019 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14020 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14021 				    insn->imm) {
14022 					verbose(env, "BPF_MOV uses reserved fields\n");
14023 					return -EINVAL;
14024 				}
14025 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14026 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14027 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14028 					return -EINVAL;
14029 				}
14030 				if (!env->prog->aux->arena) {
14031 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14032 					return -EINVAL;
14033 				}
14034 			} else {
14035 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14036 				     insn->off != 32) || insn->imm) {
14037 					verbose(env, "BPF_MOV uses reserved fields\n");
14038 					return -EINVAL;
14039 				}
14040 			}
14041 
14042 			/* check src operand */
14043 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14044 			if (err)
14045 				return err;
14046 		} else {
14047 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14048 				verbose(env, "BPF_MOV uses reserved fields\n");
14049 				return -EINVAL;
14050 			}
14051 		}
14052 
14053 		/* check dest operand, mark as required later */
14054 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14055 		if (err)
14056 			return err;
14057 
14058 		if (BPF_SRC(insn->code) == BPF_X) {
14059 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14060 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14061 
14062 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14063 				if (insn->imm) {
14064 					/* off == BPF_ADDR_SPACE_CAST */
14065 					mark_reg_unknown(env, regs, insn->dst_reg);
14066 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14067 						dst_reg->type = PTR_TO_ARENA;
14068 						/* PTR_TO_ARENA is 32-bit */
14069 						dst_reg->subreg_def = env->insn_idx + 1;
14070 					}
14071 				} else if (insn->off == 0) {
14072 					/* case: R1 = R2
14073 					 * copy register state to dest reg
14074 					 */
14075 					assign_scalar_id_before_mov(env, src_reg);
14076 					copy_register_state(dst_reg, src_reg);
14077 					dst_reg->live |= REG_LIVE_WRITTEN;
14078 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14079 				} else {
14080 					/* case: R1 = (s8, s16 s32)R2 */
14081 					if (is_pointer_value(env, insn->src_reg)) {
14082 						verbose(env,
14083 							"R%d sign-extension part of pointer\n",
14084 							insn->src_reg);
14085 						return -EACCES;
14086 					} else if (src_reg->type == SCALAR_VALUE) {
14087 						bool no_sext;
14088 
14089 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14090 						if (no_sext)
14091 							assign_scalar_id_before_mov(env, src_reg);
14092 						copy_register_state(dst_reg, src_reg);
14093 						if (!no_sext)
14094 							dst_reg->id = 0;
14095 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14096 						dst_reg->live |= REG_LIVE_WRITTEN;
14097 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14098 					} else {
14099 						mark_reg_unknown(env, regs, insn->dst_reg);
14100 					}
14101 				}
14102 			} else {
14103 				/* R1 = (u32) R2 */
14104 				if (is_pointer_value(env, insn->src_reg)) {
14105 					verbose(env,
14106 						"R%d partial copy of pointer\n",
14107 						insn->src_reg);
14108 					return -EACCES;
14109 				} else if (src_reg->type == SCALAR_VALUE) {
14110 					if (insn->off == 0) {
14111 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14112 
14113 						if (is_src_reg_u32)
14114 							assign_scalar_id_before_mov(env, src_reg);
14115 						copy_register_state(dst_reg, src_reg);
14116 						/* Make sure ID is cleared if src_reg is not in u32
14117 						 * range otherwise dst_reg min/max could be incorrectly
14118 						 * propagated into src_reg by find_equal_scalars()
14119 						 */
14120 						if (!is_src_reg_u32)
14121 							dst_reg->id = 0;
14122 						dst_reg->live |= REG_LIVE_WRITTEN;
14123 						dst_reg->subreg_def = env->insn_idx + 1;
14124 					} else {
14125 						/* case: W1 = (s8, s16)W2 */
14126 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14127 
14128 						if (no_sext)
14129 							assign_scalar_id_before_mov(env, src_reg);
14130 						copy_register_state(dst_reg, src_reg);
14131 						if (!no_sext)
14132 							dst_reg->id = 0;
14133 						dst_reg->live |= REG_LIVE_WRITTEN;
14134 						dst_reg->subreg_def = env->insn_idx + 1;
14135 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14136 					}
14137 				} else {
14138 					mark_reg_unknown(env, regs,
14139 							 insn->dst_reg);
14140 				}
14141 				zext_32_to_64(dst_reg);
14142 				reg_bounds_sync(dst_reg);
14143 			}
14144 		} else {
14145 			/* case: R = imm
14146 			 * remember the value we stored into this reg
14147 			 */
14148 			/* clear any state __mark_reg_known doesn't set */
14149 			mark_reg_unknown(env, regs, insn->dst_reg);
14150 			regs[insn->dst_reg].type = SCALAR_VALUE;
14151 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14152 				__mark_reg_known(regs + insn->dst_reg,
14153 						 insn->imm);
14154 			} else {
14155 				__mark_reg_known(regs + insn->dst_reg,
14156 						 (u32)insn->imm);
14157 			}
14158 		}
14159 
14160 	} else if (opcode > BPF_END) {
14161 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14162 		return -EINVAL;
14163 
14164 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14165 
14166 		if (BPF_SRC(insn->code) == BPF_X) {
14167 			if (insn->imm != 0 || insn->off > 1 ||
14168 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14169 				verbose(env, "BPF_ALU uses reserved fields\n");
14170 				return -EINVAL;
14171 			}
14172 			/* check src1 operand */
14173 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14174 			if (err)
14175 				return err;
14176 		} else {
14177 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14178 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14179 				verbose(env, "BPF_ALU uses reserved fields\n");
14180 				return -EINVAL;
14181 			}
14182 		}
14183 
14184 		/* check src2 operand */
14185 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14186 		if (err)
14187 			return err;
14188 
14189 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14190 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14191 			verbose(env, "div by zero\n");
14192 			return -EINVAL;
14193 		}
14194 
14195 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14196 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14197 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14198 
14199 			if (insn->imm < 0 || insn->imm >= size) {
14200 				verbose(env, "invalid shift %d\n", insn->imm);
14201 				return -EINVAL;
14202 			}
14203 		}
14204 
14205 		/* check dest operand */
14206 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14207 		err = err ?: adjust_reg_min_max_vals(env, insn);
14208 		if (err)
14209 			return err;
14210 	}
14211 
14212 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14213 }
14214 
14215 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14216 				   struct bpf_reg_state *dst_reg,
14217 				   enum bpf_reg_type type,
14218 				   bool range_right_open)
14219 {
14220 	struct bpf_func_state *state;
14221 	struct bpf_reg_state *reg;
14222 	int new_range;
14223 
14224 	if (dst_reg->off < 0 ||
14225 	    (dst_reg->off == 0 && range_right_open))
14226 		/* This doesn't give us any range */
14227 		return;
14228 
14229 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14230 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14231 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14232 		 * than pkt_end, but that's because it's also less than pkt.
14233 		 */
14234 		return;
14235 
14236 	new_range = dst_reg->off;
14237 	if (range_right_open)
14238 		new_range++;
14239 
14240 	/* Examples for register markings:
14241 	 *
14242 	 * pkt_data in dst register:
14243 	 *
14244 	 *   r2 = r3;
14245 	 *   r2 += 8;
14246 	 *   if (r2 > pkt_end) goto <handle exception>
14247 	 *   <access okay>
14248 	 *
14249 	 *   r2 = r3;
14250 	 *   r2 += 8;
14251 	 *   if (r2 < pkt_end) goto <access okay>
14252 	 *   <handle exception>
14253 	 *
14254 	 *   Where:
14255 	 *     r2 == dst_reg, pkt_end == src_reg
14256 	 *     r2=pkt(id=n,off=8,r=0)
14257 	 *     r3=pkt(id=n,off=0,r=0)
14258 	 *
14259 	 * pkt_data in src register:
14260 	 *
14261 	 *   r2 = r3;
14262 	 *   r2 += 8;
14263 	 *   if (pkt_end >= r2) goto <access okay>
14264 	 *   <handle exception>
14265 	 *
14266 	 *   r2 = r3;
14267 	 *   r2 += 8;
14268 	 *   if (pkt_end <= r2) goto <handle exception>
14269 	 *   <access okay>
14270 	 *
14271 	 *   Where:
14272 	 *     pkt_end == dst_reg, r2 == src_reg
14273 	 *     r2=pkt(id=n,off=8,r=0)
14274 	 *     r3=pkt(id=n,off=0,r=0)
14275 	 *
14276 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14277 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14278 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14279 	 * the check.
14280 	 */
14281 
14282 	/* If our ids match, then we must have the same max_value.  And we
14283 	 * don't care about the other reg's fixed offset, since if it's too big
14284 	 * the range won't allow anything.
14285 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14286 	 */
14287 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14288 		if (reg->type == type && reg->id == dst_reg->id)
14289 			/* keep the maximum range already checked */
14290 			reg->range = max(reg->range, new_range);
14291 	}));
14292 }
14293 
14294 /*
14295  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14296  */
14297 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14298 				  u8 opcode, bool is_jmp32)
14299 {
14300 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14301 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14302 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14303 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14304 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14305 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14306 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14307 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14308 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14309 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14310 
14311 	switch (opcode) {
14312 	case BPF_JEQ:
14313 		/* constants, umin/umax and smin/smax checks would be
14314 		 * redundant in this case because they all should match
14315 		 */
14316 		if (tnum_is_const(t1) && tnum_is_const(t2))
14317 			return t1.value == t2.value;
14318 		/* non-overlapping ranges */
14319 		if (umin1 > umax2 || umax1 < umin2)
14320 			return 0;
14321 		if (smin1 > smax2 || smax1 < smin2)
14322 			return 0;
14323 		if (!is_jmp32) {
14324 			/* if 64-bit ranges are inconclusive, see if we can
14325 			 * utilize 32-bit subrange knowledge to eliminate
14326 			 * branches that can't be taken a priori
14327 			 */
14328 			if (reg1->u32_min_value > reg2->u32_max_value ||
14329 			    reg1->u32_max_value < reg2->u32_min_value)
14330 				return 0;
14331 			if (reg1->s32_min_value > reg2->s32_max_value ||
14332 			    reg1->s32_max_value < reg2->s32_min_value)
14333 				return 0;
14334 		}
14335 		break;
14336 	case BPF_JNE:
14337 		/* constants, umin/umax and smin/smax checks would be
14338 		 * redundant in this case because they all should match
14339 		 */
14340 		if (tnum_is_const(t1) && tnum_is_const(t2))
14341 			return t1.value != t2.value;
14342 		/* non-overlapping ranges */
14343 		if (umin1 > umax2 || umax1 < umin2)
14344 			return 1;
14345 		if (smin1 > smax2 || smax1 < smin2)
14346 			return 1;
14347 		if (!is_jmp32) {
14348 			/* if 64-bit ranges are inconclusive, see if we can
14349 			 * utilize 32-bit subrange knowledge to eliminate
14350 			 * branches that can't be taken a priori
14351 			 */
14352 			if (reg1->u32_min_value > reg2->u32_max_value ||
14353 			    reg1->u32_max_value < reg2->u32_min_value)
14354 				return 1;
14355 			if (reg1->s32_min_value > reg2->s32_max_value ||
14356 			    reg1->s32_max_value < reg2->s32_min_value)
14357 				return 1;
14358 		}
14359 		break;
14360 	case BPF_JSET:
14361 		if (!is_reg_const(reg2, is_jmp32)) {
14362 			swap(reg1, reg2);
14363 			swap(t1, t2);
14364 		}
14365 		if (!is_reg_const(reg2, is_jmp32))
14366 			return -1;
14367 		if ((~t1.mask & t1.value) & t2.value)
14368 			return 1;
14369 		if (!((t1.mask | t1.value) & t2.value))
14370 			return 0;
14371 		break;
14372 	case BPF_JGT:
14373 		if (umin1 > umax2)
14374 			return 1;
14375 		else if (umax1 <= umin2)
14376 			return 0;
14377 		break;
14378 	case BPF_JSGT:
14379 		if (smin1 > smax2)
14380 			return 1;
14381 		else if (smax1 <= smin2)
14382 			return 0;
14383 		break;
14384 	case BPF_JLT:
14385 		if (umax1 < umin2)
14386 			return 1;
14387 		else if (umin1 >= umax2)
14388 			return 0;
14389 		break;
14390 	case BPF_JSLT:
14391 		if (smax1 < smin2)
14392 			return 1;
14393 		else if (smin1 >= smax2)
14394 			return 0;
14395 		break;
14396 	case BPF_JGE:
14397 		if (umin1 >= umax2)
14398 			return 1;
14399 		else if (umax1 < umin2)
14400 			return 0;
14401 		break;
14402 	case BPF_JSGE:
14403 		if (smin1 >= smax2)
14404 			return 1;
14405 		else if (smax1 < smin2)
14406 			return 0;
14407 		break;
14408 	case BPF_JLE:
14409 		if (umax1 <= umin2)
14410 			return 1;
14411 		else if (umin1 > umax2)
14412 			return 0;
14413 		break;
14414 	case BPF_JSLE:
14415 		if (smax1 <= smin2)
14416 			return 1;
14417 		else if (smin1 > smax2)
14418 			return 0;
14419 		break;
14420 	}
14421 
14422 	return -1;
14423 }
14424 
14425 static int flip_opcode(u32 opcode)
14426 {
14427 	/* How can we transform "a <op> b" into "b <op> a"? */
14428 	static const u8 opcode_flip[16] = {
14429 		/* these stay the same */
14430 		[BPF_JEQ  >> 4] = BPF_JEQ,
14431 		[BPF_JNE  >> 4] = BPF_JNE,
14432 		[BPF_JSET >> 4] = BPF_JSET,
14433 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14434 		[BPF_JGE  >> 4] = BPF_JLE,
14435 		[BPF_JGT  >> 4] = BPF_JLT,
14436 		[BPF_JLE  >> 4] = BPF_JGE,
14437 		[BPF_JLT  >> 4] = BPF_JGT,
14438 		[BPF_JSGE >> 4] = BPF_JSLE,
14439 		[BPF_JSGT >> 4] = BPF_JSLT,
14440 		[BPF_JSLE >> 4] = BPF_JSGE,
14441 		[BPF_JSLT >> 4] = BPF_JSGT
14442 	};
14443 	return opcode_flip[opcode >> 4];
14444 }
14445 
14446 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14447 				   struct bpf_reg_state *src_reg,
14448 				   u8 opcode)
14449 {
14450 	struct bpf_reg_state *pkt;
14451 
14452 	if (src_reg->type == PTR_TO_PACKET_END) {
14453 		pkt = dst_reg;
14454 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14455 		pkt = src_reg;
14456 		opcode = flip_opcode(opcode);
14457 	} else {
14458 		return -1;
14459 	}
14460 
14461 	if (pkt->range >= 0)
14462 		return -1;
14463 
14464 	switch (opcode) {
14465 	case BPF_JLE:
14466 		/* pkt <= pkt_end */
14467 		fallthrough;
14468 	case BPF_JGT:
14469 		/* pkt > pkt_end */
14470 		if (pkt->range == BEYOND_PKT_END)
14471 			/* pkt has at last one extra byte beyond pkt_end */
14472 			return opcode == BPF_JGT;
14473 		break;
14474 	case BPF_JLT:
14475 		/* pkt < pkt_end */
14476 		fallthrough;
14477 	case BPF_JGE:
14478 		/* pkt >= pkt_end */
14479 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14480 			return opcode == BPF_JGE;
14481 		break;
14482 	}
14483 	return -1;
14484 }
14485 
14486 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14487  * and return:
14488  *  1 - branch will be taken and "goto target" will be executed
14489  *  0 - branch will not be taken and fall-through to next insn
14490  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14491  *      range [0,10]
14492  */
14493 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14494 			   u8 opcode, bool is_jmp32)
14495 {
14496 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14497 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14498 
14499 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14500 		u64 val;
14501 
14502 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14503 		if (!is_reg_const(reg2, is_jmp32)) {
14504 			opcode = flip_opcode(opcode);
14505 			swap(reg1, reg2);
14506 		}
14507 		/* and ensure that reg2 is a constant */
14508 		if (!is_reg_const(reg2, is_jmp32))
14509 			return -1;
14510 
14511 		if (!reg_not_null(reg1))
14512 			return -1;
14513 
14514 		/* If pointer is valid tests against zero will fail so we can
14515 		 * use this to direct branch taken.
14516 		 */
14517 		val = reg_const_value(reg2, is_jmp32);
14518 		if (val != 0)
14519 			return -1;
14520 
14521 		switch (opcode) {
14522 		case BPF_JEQ:
14523 			return 0;
14524 		case BPF_JNE:
14525 			return 1;
14526 		default:
14527 			return -1;
14528 		}
14529 	}
14530 
14531 	/* now deal with two scalars, but not necessarily constants */
14532 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14533 }
14534 
14535 /* Opcode that corresponds to a *false* branch condition.
14536  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14537  */
14538 static u8 rev_opcode(u8 opcode)
14539 {
14540 	switch (opcode) {
14541 	case BPF_JEQ:		return BPF_JNE;
14542 	case BPF_JNE:		return BPF_JEQ;
14543 	/* JSET doesn't have it's reverse opcode in BPF, so add
14544 	 * BPF_X flag to denote the reverse of that operation
14545 	 */
14546 	case BPF_JSET:		return BPF_JSET | BPF_X;
14547 	case BPF_JSET | BPF_X:	return BPF_JSET;
14548 	case BPF_JGE:		return BPF_JLT;
14549 	case BPF_JGT:		return BPF_JLE;
14550 	case BPF_JLE:		return BPF_JGT;
14551 	case BPF_JLT:		return BPF_JGE;
14552 	case BPF_JSGE:		return BPF_JSLT;
14553 	case BPF_JSGT:		return BPF_JSLE;
14554 	case BPF_JSLE:		return BPF_JSGT;
14555 	case BPF_JSLT:		return BPF_JSGE;
14556 	default:		return 0;
14557 	}
14558 }
14559 
14560 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14561 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14562 				u8 opcode, bool is_jmp32)
14563 {
14564 	struct tnum t;
14565 	u64 val;
14566 
14567 again:
14568 	switch (opcode) {
14569 	case BPF_JEQ:
14570 		if (is_jmp32) {
14571 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14572 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14573 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14574 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14575 			reg2->u32_min_value = reg1->u32_min_value;
14576 			reg2->u32_max_value = reg1->u32_max_value;
14577 			reg2->s32_min_value = reg1->s32_min_value;
14578 			reg2->s32_max_value = reg1->s32_max_value;
14579 
14580 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14581 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14582 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14583 		} else {
14584 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14585 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14586 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14587 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14588 			reg2->umin_value = reg1->umin_value;
14589 			reg2->umax_value = reg1->umax_value;
14590 			reg2->smin_value = reg1->smin_value;
14591 			reg2->smax_value = reg1->smax_value;
14592 
14593 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14594 			reg2->var_off = reg1->var_off;
14595 		}
14596 		break;
14597 	case BPF_JNE:
14598 		if (!is_reg_const(reg2, is_jmp32))
14599 			swap(reg1, reg2);
14600 		if (!is_reg_const(reg2, is_jmp32))
14601 			break;
14602 
14603 		/* try to recompute the bound of reg1 if reg2 is a const and
14604 		 * is exactly the edge of reg1.
14605 		 */
14606 		val = reg_const_value(reg2, is_jmp32);
14607 		if (is_jmp32) {
14608 			/* u32_min_value is not equal to 0xffffffff at this point,
14609 			 * because otherwise u32_max_value is 0xffffffff as well,
14610 			 * in such a case both reg1 and reg2 would be constants,
14611 			 * jump would be predicted and reg_set_min_max() won't
14612 			 * be called.
14613 			 *
14614 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14615 			 * below.
14616 			 */
14617 			if (reg1->u32_min_value == (u32)val)
14618 				reg1->u32_min_value++;
14619 			if (reg1->u32_max_value == (u32)val)
14620 				reg1->u32_max_value--;
14621 			if (reg1->s32_min_value == (s32)val)
14622 				reg1->s32_min_value++;
14623 			if (reg1->s32_max_value == (s32)val)
14624 				reg1->s32_max_value--;
14625 		} else {
14626 			if (reg1->umin_value == (u64)val)
14627 				reg1->umin_value++;
14628 			if (reg1->umax_value == (u64)val)
14629 				reg1->umax_value--;
14630 			if (reg1->smin_value == (s64)val)
14631 				reg1->smin_value++;
14632 			if (reg1->smax_value == (s64)val)
14633 				reg1->smax_value--;
14634 		}
14635 		break;
14636 	case BPF_JSET:
14637 		if (!is_reg_const(reg2, is_jmp32))
14638 			swap(reg1, reg2);
14639 		if (!is_reg_const(reg2, is_jmp32))
14640 			break;
14641 		val = reg_const_value(reg2, is_jmp32);
14642 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14643 		 * requires single bit to learn something useful. E.g., if we
14644 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14645 		 * are actually set? We can learn something definite only if
14646 		 * it's a single-bit value to begin with.
14647 		 *
14648 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14649 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14650 		 * bit 1 is set, which we can readily use in adjustments.
14651 		 */
14652 		if (!is_power_of_2(val))
14653 			break;
14654 		if (is_jmp32) {
14655 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14656 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14657 		} else {
14658 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14659 		}
14660 		break;
14661 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14662 		if (!is_reg_const(reg2, is_jmp32))
14663 			swap(reg1, reg2);
14664 		if (!is_reg_const(reg2, is_jmp32))
14665 			break;
14666 		val = reg_const_value(reg2, is_jmp32);
14667 		if (is_jmp32) {
14668 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14669 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14670 		} else {
14671 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14672 		}
14673 		break;
14674 	case BPF_JLE:
14675 		if (is_jmp32) {
14676 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14677 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14678 		} else {
14679 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14680 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14681 		}
14682 		break;
14683 	case BPF_JLT:
14684 		if (is_jmp32) {
14685 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14686 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14687 		} else {
14688 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14689 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14690 		}
14691 		break;
14692 	case BPF_JSLE:
14693 		if (is_jmp32) {
14694 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14695 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14696 		} else {
14697 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14698 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14699 		}
14700 		break;
14701 	case BPF_JSLT:
14702 		if (is_jmp32) {
14703 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14704 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14705 		} else {
14706 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14707 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14708 		}
14709 		break;
14710 	case BPF_JGE:
14711 	case BPF_JGT:
14712 	case BPF_JSGE:
14713 	case BPF_JSGT:
14714 		/* just reuse LE/LT logic above */
14715 		opcode = flip_opcode(opcode);
14716 		swap(reg1, reg2);
14717 		goto again;
14718 	default:
14719 		return;
14720 	}
14721 }
14722 
14723 /* Adjusts the register min/max values in the case that the dst_reg and
14724  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14725  * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
14726  * Technically we can do similar adjustments for pointers to the same object,
14727  * but we don't support that right now.
14728  */
14729 static int reg_set_min_max(struct bpf_verifier_env *env,
14730 			   struct bpf_reg_state *true_reg1,
14731 			   struct bpf_reg_state *true_reg2,
14732 			   struct bpf_reg_state *false_reg1,
14733 			   struct bpf_reg_state *false_reg2,
14734 			   u8 opcode, bool is_jmp32)
14735 {
14736 	int err;
14737 
14738 	/* If either register is a pointer, we can't learn anything about its
14739 	 * variable offset from the compare (unless they were a pointer into
14740 	 * the same object, but we don't bother with that).
14741 	 */
14742 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14743 		return 0;
14744 
14745 	/* fallthrough (FALSE) branch */
14746 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14747 	reg_bounds_sync(false_reg1);
14748 	reg_bounds_sync(false_reg2);
14749 
14750 	/* jump (TRUE) branch */
14751 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14752 	reg_bounds_sync(true_reg1);
14753 	reg_bounds_sync(true_reg2);
14754 
14755 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14756 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14757 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14758 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14759 	return err;
14760 }
14761 
14762 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14763 				 struct bpf_reg_state *reg, u32 id,
14764 				 bool is_null)
14765 {
14766 	if (type_may_be_null(reg->type) && reg->id == id &&
14767 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14768 		/* Old offset (both fixed and variable parts) should have been
14769 		 * known-zero, because we don't allow pointer arithmetic on
14770 		 * pointers that might be NULL. If we see this happening, don't
14771 		 * convert the register.
14772 		 *
14773 		 * But in some cases, some helpers that return local kptrs
14774 		 * advance offset for the returned pointer. In those cases, it
14775 		 * is fine to expect to see reg->off.
14776 		 */
14777 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14778 			return;
14779 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14780 		    WARN_ON_ONCE(reg->off))
14781 			return;
14782 
14783 		if (is_null) {
14784 			reg->type = SCALAR_VALUE;
14785 			/* We don't need id and ref_obj_id from this point
14786 			 * onwards anymore, thus we should better reset it,
14787 			 * so that state pruning has chances to take effect.
14788 			 */
14789 			reg->id = 0;
14790 			reg->ref_obj_id = 0;
14791 
14792 			return;
14793 		}
14794 
14795 		mark_ptr_not_null_reg(reg);
14796 
14797 		if (!reg_may_point_to_spin_lock(reg)) {
14798 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14799 			 * in release_reference().
14800 			 *
14801 			 * reg->id is still used by spin_lock ptr. Other
14802 			 * than spin_lock ptr type, reg->id can be reset.
14803 			 */
14804 			reg->id = 0;
14805 		}
14806 	}
14807 }
14808 
14809 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14810  * be folded together at some point.
14811  */
14812 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14813 				  bool is_null)
14814 {
14815 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14816 	struct bpf_reg_state *regs = state->regs, *reg;
14817 	u32 ref_obj_id = regs[regno].ref_obj_id;
14818 	u32 id = regs[regno].id;
14819 
14820 	if (ref_obj_id && ref_obj_id == id && is_null)
14821 		/* regs[regno] is in the " == NULL" branch.
14822 		 * No one could have freed the reference state before
14823 		 * doing the NULL check.
14824 		 */
14825 		WARN_ON_ONCE(release_reference_state(state, id));
14826 
14827 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14828 		mark_ptr_or_null_reg(state, reg, id, is_null);
14829 	}));
14830 }
14831 
14832 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14833 				   struct bpf_reg_state *dst_reg,
14834 				   struct bpf_reg_state *src_reg,
14835 				   struct bpf_verifier_state *this_branch,
14836 				   struct bpf_verifier_state *other_branch)
14837 {
14838 	if (BPF_SRC(insn->code) != BPF_X)
14839 		return false;
14840 
14841 	/* Pointers are always 64-bit. */
14842 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14843 		return false;
14844 
14845 	switch (BPF_OP(insn->code)) {
14846 	case BPF_JGT:
14847 		if ((dst_reg->type == PTR_TO_PACKET &&
14848 		     src_reg->type == PTR_TO_PACKET_END) ||
14849 		    (dst_reg->type == PTR_TO_PACKET_META &&
14850 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14851 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14852 			find_good_pkt_pointers(this_branch, dst_reg,
14853 					       dst_reg->type, false);
14854 			mark_pkt_end(other_branch, insn->dst_reg, true);
14855 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14856 			    src_reg->type == PTR_TO_PACKET) ||
14857 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14858 			    src_reg->type == PTR_TO_PACKET_META)) {
14859 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14860 			find_good_pkt_pointers(other_branch, src_reg,
14861 					       src_reg->type, true);
14862 			mark_pkt_end(this_branch, insn->src_reg, false);
14863 		} else {
14864 			return false;
14865 		}
14866 		break;
14867 	case BPF_JLT:
14868 		if ((dst_reg->type == PTR_TO_PACKET &&
14869 		     src_reg->type == PTR_TO_PACKET_END) ||
14870 		    (dst_reg->type == PTR_TO_PACKET_META &&
14871 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14872 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14873 			find_good_pkt_pointers(other_branch, dst_reg,
14874 					       dst_reg->type, true);
14875 			mark_pkt_end(this_branch, insn->dst_reg, false);
14876 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14877 			    src_reg->type == PTR_TO_PACKET) ||
14878 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14879 			    src_reg->type == PTR_TO_PACKET_META)) {
14880 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14881 			find_good_pkt_pointers(this_branch, src_reg,
14882 					       src_reg->type, false);
14883 			mark_pkt_end(other_branch, insn->src_reg, true);
14884 		} else {
14885 			return false;
14886 		}
14887 		break;
14888 	case BPF_JGE:
14889 		if ((dst_reg->type == PTR_TO_PACKET &&
14890 		     src_reg->type == PTR_TO_PACKET_END) ||
14891 		    (dst_reg->type == PTR_TO_PACKET_META &&
14892 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14893 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14894 			find_good_pkt_pointers(this_branch, dst_reg,
14895 					       dst_reg->type, true);
14896 			mark_pkt_end(other_branch, insn->dst_reg, false);
14897 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14898 			    src_reg->type == PTR_TO_PACKET) ||
14899 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14900 			    src_reg->type == PTR_TO_PACKET_META)) {
14901 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14902 			find_good_pkt_pointers(other_branch, src_reg,
14903 					       src_reg->type, false);
14904 			mark_pkt_end(this_branch, insn->src_reg, true);
14905 		} else {
14906 			return false;
14907 		}
14908 		break;
14909 	case BPF_JLE:
14910 		if ((dst_reg->type == PTR_TO_PACKET &&
14911 		     src_reg->type == PTR_TO_PACKET_END) ||
14912 		    (dst_reg->type == PTR_TO_PACKET_META &&
14913 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14914 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14915 			find_good_pkt_pointers(other_branch, dst_reg,
14916 					       dst_reg->type, false);
14917 			mark_pkt_end(this_branch, insn->dst_reg, true);
14918 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14919 			    src_reg->type == PTR_TO_PACKET) ||
14920 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14921 			    src_reg->type == PTR_TO_PACKET_META)) {
14922 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14923 			find_good_pkt_pointers(this_branch, src_reg,
14924 					       src_reg->type, true);
14925 			mark_pkt_end(other_branch, insn->src_reg, false);
14926 		} else {
14927 			return false;
14928 		}
14929 		break;
14930 	default:
14931 		return false;
14932 	}
14933 
14934 	return true;
14935 }
14936 
14937 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14938 			       struct bpf_reg_state *known_reg)
14939 {
14940 	struct bpf_func_state *state;
14941 	struct bpf_reg_state *reg;
14942 
14943 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14944 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14945 			copy_register_state(reg, known_reg);
14946 	}));
14947 }
14948 
14949 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14950 			     struct bpf_insn *insn, int *insn_idx)
14951 {
14952 	struct bpf_verifier_state *this_branch = env->cur_state;
14953 	struct bpf_verifier_state *other_branch;
14954 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14955 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14956 	struct bpf_reg_state *eq_branch_regs;
14957 	struct bpf_reg_state fake_reg = {};
14958 	u8 opcode = BPF_OP(insn->code);
14959 	bool is_jmp32;
14960 	int pred = -1;
14961 	int err;
14962 
14963 	/* Only conditional jumps are expected to reach here. */
14964 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
14965 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14966 		return -EINVAL;
14967 	}
14968 
14969 	if (opcode == BPF_JCOND) {
14970 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
14971 		int idx = *insn_idx;
14972 
14973 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
14974 		    insn->src_reg != BPF_MAY_GOTO ||
14975 		    insn->dst_reg || insn->imm || insn->off == 0) {
14976 			verbose(env, "invalid may_goto off %d imm %d\n",
14977 				insn->off, insn->imm);
14978 			return -EINVAL;
14979 		}
14980 		prev_st = find_prev_entry(env, cur_st->parent, idx);
14981 
14982 		/* branch out 'fallthrough' insn as a new state to explore */
14983 		queued_st = push_stack(env, idx + 1, idx, false);
14984 		if (!queued_st)
14985 			return -ENOMEM;
14986 
14987 		queued_st->may_goto_depth++;
14988 		if (prev_st)
14989 			widen_imprecise_scalars(env, prev_st, queued_st);
14990 		*insn_idx += insn->off;
14991 		return 0;
14992 	}
14993 
14994 	/* check src2 operand */
14995 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14996 	if (err)
14997 		return err;
14998 
14999 	dst_reg = &regs[insn->dst_reg];
15000 	if (BPF_SRC(insn->code) == BPF_X) {
15001 		if (insn->imm != 0) {
15002 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15003 			return -EINVAL;
15004 		}
15005 
15006 		/* check src1 operand */
15007 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15008 		if (err)
15009 			return err;
15010 
15011 		src_reg = &regs[insn->src_reg];
15012 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15013 		    is_pointer_value(env, insn->src_reg)) {
15014 			verbose(env, "R%d pointer comparison prohibited\n",
15015 				insn->src_reg);
15016 			return -EACCES;
15017 		}
15018 	} else {
15019 		if (insn->src_reg != BPF_REG_0) {
15020 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15021 			return -EINVAL;
15022 		}
15023 		src_reg = &fake_reg;
15024 		src_reg->type = SCALAR_VALUE;
15025 		__mark_reg_known(src_reg, insn->imm);
15026 	}
15027 
15028 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15029 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15030 	if (pred >= 0) {
15031 		/* If we get here with a dst_reg pointer type it is because
15032 		 * above is_branch_taken() special cased the 0 comparison.
15033 		 */
15034 		if (!__is_pointer_value(false, dst_reg))
15035 			err = mark_chain_precision(env, insn->dst_reg);
15036 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15037 		    !__is_pointer_value(false, src_reg))
15038 			err = mark_chain_precision(env, insn->src_reg);
15039 		if (err)
15040 			return err;
15041 	}
15042 
15043 	if (pred == 1) {
15044 		/* Only follow the goto, ignore fall-through. If needed, push
15045 		 * the fall-through branch for simulation under speculative
15046 		 * execution.
15047 		 */
15048 		if (!env->bypass_spec_v1 &&
15049 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15050 					       *insn_idx))
15051 			return -EFAULT;
15052 		if (env->log.level & BPF_LOG_LEVEL)
15053 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15054 		*insn_idx += insn->off;
15055 		return 0;
15056 	} else if (pred == 0) {
15057 		/* Only follow the fall-through branch, since that's where the
15058 		 * program will go. If needed, push the goto branch for
15059 		 * simulation under speculative execution.
15060 		 */
15061 		if (!env->bypass_spec_v1 &&
15062 		    !sanitize_speculative_path(env, insn,
15063 					       *insn_idx + insn->off + 1,
15064 					       *insn_idx))
15065 			return -EFAULT;
15066 		if (env->log.level & BPF_LOG_LEVEL)
15067 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15068 		return 0;
15069 	}
15070 
15071 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15072 				  false);
15073 	if (!other_branch)
15074 		return -EFAULT;
15075 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15076 
15077 	if (BPF_SRC(insn->code) == BPF_X) {
15078 		err = reg_set_min_max(env,
15079 				      &other_branch_regs[insn->dst_reg],
15080 				      &other_branch_regs[insn->src_reg],
15081 				      dst_reg, src_reg, opcode, is_jmp32);
15082 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15083 		err = reg_set_min_max(env,
15084 				      &other_branch_regs[insn->dst_reg],
15085 				      src_reg /* fake one */,
15086 				      dst_reg, src_reg /* same fake one */,
15087 				      opcode, is_jmp32);
15088 	}
15089 	if (err)
15090 		return err;
15091 
15092 	if (BPF_SRC(insn->code) == BPF_X &&
15093 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15094 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15095 		find_equal_scalars(this_branch, src_reg);
15096 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
15097 	}
15098 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15099 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15100 		find_equal_scalars(this_branch, dst_reg);
15101 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
15102 	}
15103 
15104 	/* if one pointer register is compared to another pointer
15105 	 * register check if PTR_MAYBE_NULL could be lifted.
15106 	 * E.g. register A - maybe null
15107 	 *      register B - not null
15108 	 * for JNE A, B, ... - A is not null in the false branch;
15109 	 * for JEQ A, B, ... - A is not null in the true branch.
15110 	 *
15111 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15112 	 * not need to be null checked by the BPF program, i.e.,
15113 	 * could be null even without PTR_MAYBE_NULL marking, so
15114 	 * only propagate nullness when neither reg is that type.
15115 	 */
15116 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15117 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15118 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15119 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15120 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15121 		eq_branch_regs = NULL;
15122 		switch (opcode) {
15123 		case BPF_JEQ:
15124 			eq_branch_regs = other_branch_regs;
15125 			break;
15126 		case BPF_JNE:
15127 			eq_branch_regs = regs;
15128 			break;
15129 		default:
15130 			/* do nothing */
15131 			break;
15132 		}
15133 		if (eq_branch_regs) {
15134 			if (type_may_be_null(src_reg->type))
15135 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15136 			else
15137 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15138 		}
15139 	}
15140 
15141 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15142 	 * NOTE: these optimizations below are related with pointer comparison
15143 	 *       which will never be JMP32.
15144 	 */
15145 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15146 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15147 	    type_may_be_null(dst_reg->type)) {
15148 		/* Mark all identical registers in each branch as either
15149 		 * safe or unknown depending R == 0 or R != 0 conditional.
15150 		 */
15151 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15152 				      opcode == BPF_JNE);
15153 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15154 				      opcode == BPF_JEQ);
15155 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15156 					   this_branch, other_branch) &&
15157 		   is_pointer_value(env, insn->dst_reg)) {
15158 		verbose(env, "R%d pointer comparison prohibited\n",
15159 			insn->dst_reg);
15160 		return -EACCES;
15161 	}
15162 	if (env->log.level & BPF_LOG_LEVEL)
15163 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15164 	return 0;
15165 }
15166 
15167 /* verify BPF_LD_IMM64 instruction */
15168 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15169 {
15170 	struct bpf_insn_aux_data *aux = cur_aux(env);
15171 	struct bpf_reg_state *regs = cur_regs(env);
15172 	struct bpf_reg_state *dst_reg;
15173 	struct bpf_map *map;
15174 	int err;
15175 
15176 	if (BPF_SIZE(insn->code) != BPF_DW) {
15177 		verbose(env, "invalid BPF_LD_IMM insn\n");
15178 		return -EINVAL;
15179 	}
15180 	if (insn->off != 0) {
15181 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15182 		return -EINVAL;
15183 	}
15184 
15185 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15186 	if (err)
15187 		return err;
15188 
15189 	dst_reg = &regs[insn->dst_reg];
15190 	if (insn->src_reg == 0) {
15191 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15192 
15193 		dst_reg->type = SCALAR_VALUE;
15194 		__mark_reg_known(&regs[insn->dst_reg], imm);
15195 		return 0;
15196 	}
15197 
15198 	/* All special src_reg cases are listed below. From this point onwards
15199 	 * we either succeed and assign a corresponding dst_reg->type after
15200 	 * zeroing the offset, or fail and reject the program.
15201 	 */
15202 	mark_reg_known_zero(env, regs, insn->dst_reg);
15203 
15204 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15205 		dst_reg->type = aux->btf_var.reg_type;
15206 		switch (base_type(dst_reg->type)) {
15207 		case PTR_TO_MEM:
15208 			dst_reg->mem_size = aux->btf_var.mem_size;
15209 			break;
15210 		case PTR_TO_BTF_ID:
15211 			dst_reg->btf = aux->btf_var.btf;
15212 			dst_reg->btf_id = aux->btf_var.btf_id;
15213 			break;
15214 		default:
15215 			verbose(env, "bpf verifier is misconfigured\n");
15216 			return -EFAULT;
15217 		}
15218 		return 0;
15219 	}
15220 
15221 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15222 		struct bpf_prog_aux *aux = env->prog->aux;
15223 		u32 subprogno = find_subprog(env,
15224 					     env->insn_idx + insn->imm + 1);
15225 
15226 		if (!aux->func_info) {
15227 			verbose(env, "missing btf func_info\n");
15228 			return -EINVAL;
15229 		}
15230 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15231 			verbose(env, "callback function not static\n");
15232 			return -EINVAL;
15233 		}
15234 
15235 		dst_reg->type = PTR_TO_FUNC;
15236 		dst_reg->subprogno = subprogno;
15237 		return 0;
15238 	}
15239 
15240 	map = env->used_maps[aux->map_index];
15241 	dst_reg->map_ptr = map;
15242 
15243 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15244 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15245 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15246 			__mark_reg_unknown(env, dst_reg);
15247 			return 0;
15248 		}
15249 		dst_reg->type = PTR_TO_MAP_VALUE;
15250 		dst_reg->off = aux->map_off;
15251 		WARN_ON_ONCE(map->max_entries != 1);
15252 		/* We want reg->id to be same (0) as map_value is not distinct */
15253 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15254 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15255 		dst_reg->type = CONST_PTR_TO_MAP;
15256 	} else {
15257 		verbose(env, "bpf verifier is misconfigured\n");
15258 		return -EINVAL;
15259 	}
15260 
15261 	return 0;
15262 }
15263 
15264 static bool may_access_skb(enum bpf_prog_type type)
15265 {
15266 	switch (type) {
15267 	case BPF_PROG_TYPE_SOCKET_FILTER:
15268 	case BPF_PROG_TYPE_SCHED_CLS:
15269 	case BPF_PROG_TYPE_SCHED_ACT:
15270 		return true;
15271 	default:
15272 		return false;
15273 	}
15274 }
15275 
15276 /* verify safety of LD_ABS|LD_IND instructions:
15277  * - they can only appear in the programs where ctx == skb
15278  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15279  *   preserve R6-R9, and store return value into R0
15280  *
15281  * Implicit input:
15282  *   ctx == skb == R6 == CTX
15283  *
15284  * Explicit input:
15285  *   SRC == any register
15286  *   IMM == 32-bit immediate
15287  *
15288  * Output:
15289  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15290  */
15291 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15292 {
15293 	struct bpf_reg_state *regs = cur_regs(env);
15294 	static const int ctx_reg = BPF_REG_6;
15295 	u8 mode = BPF_MODE(insn->code);
15296 	int i, err;
15297 
15298 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15299 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15300 		return -EINVAL;
15301 	}
15302 
15303 	if (!env->ops->gen_ld_abs) {
15304 		verbose(env, "bpf verifier is misconfigured\n");
15305 		return -EINVAL;
15306 	}
15307 
15308 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15309 	    BPF_SIZE(insn->code) == BPF_DW ||
15310 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15311 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15312 		return -EINVAL;
15313 	}
15314 
15315 	/* check whether implicit source operand (register R6) is readable */
15316 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15317 	if (err)
15318 		return err;
15319 
15320 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15321 	 * gen_ld_abs() may terminate the program at runtime, leading to
15322 	 * reference leak.
15323 	 */
15324 	err = check_reference_leak(env, false);
15325 	if (err) {
15326 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15327 		return err;
15328 	}
15329 
15330 	if (env->cur_state->active_lock.ptr) {
15331 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15332 		return -EINVAL;
15333 	}
15334 
15335 	if (env->cur_state->active_rcu_lock) {
15336 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15337 		return -EINVAL;
15338 	}
15339 
15340 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15341 		verbose(env,
15342 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15343 		return -EINVAL;
15344 	}
15345 
15346 	if (mode == BPF_IND) {
15347 		/* check explicit source operand */
15348 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15349 		if (err)
15350 			return err;
15351 	}
15352 
15353 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15354 	if (err < 0)
15355 		return err;
15356 
15357 	/* reset caller saved regs to unreadable */
15358 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15359 		mark_reg_not_init(env, regs, caller_saved[i]);
15360 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15361 	}
15362 
15363 	/* mark destination R0 register as readable, since it contains
15364 	 * the value fetched from the packet.
15365 	 * Already marked as written above.
15366 	 */
15367 	mark_reg_unknown(env, regs, BPF_REG_0);
15368 	/* ld_abs load up to 32-bit skb data. */
15369 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15370 	return 0;
15371 }
15372 
15373 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15374 {
15375 	const char *exit_ctx = "At program exit";
15376 	struct tnum enforce_attach_type_range = tnum_unknown;
15377 	const struct bpf_prog *prog = env->prog;
15378 	struct bpf_reg_state *reg;
15379 	struct bpf_retval_range range = retval_range(0, 1);
15380 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15381 	int err;
15382 	struct bpf_func_state *frame = env->cur_state->frame[0];
15383 	const bool is_subprog = frame->subprogno;
15384 
15385 	/* LSM and struct_ops func-ptr's return type could be "void" */
15386 	if (!is_subprog || frame->in_exception_callback_fn) {
15387 		switch (prog_type) {
15388 		case BPF_PROG_TYPE_LSM:
15389 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15390 				/* See below, can be 0 or 0-1 depending on hook. */
15391 				break;
15392 			fallthrough;
15393 		case BPF_PROG_TYPE_STRUCT_OPS:
15394 			if (!prog->aux->attach_func_proto->type)
15395 				return 0;
15396 			break;
15397 		default:
15398 			break;
15399 		}
15400 	}
15401 
15402 	/* eBPF calling convention is such that R0 is used
15403 	 * to return the value from eBPF program.
15404 	 * Make sure that it's readable at this time
15405 	 * of bpf_exit, which means that program wrote
15406 	 * something into it earlier
15407 	 */
15408 	err = check_reg_arg(env, regno, SRC_OP);
15409 	if (err)
15410 		return err;
15411 
15412 	if (is_pointer_value(env, regno)) {
15413 		verbose(env, "R%d leaks addr as return value\n", regno);
15414 		return -EACCES;
15415 	}
15416 
15417 	reg = cur_regs(env) + regno;
15418 
15419 	if (frame->in_async_callback_fn) {
15420 		/* enforce return zero from async callbacks like timer */
15421 		exit_ctx = "At async callback return";
15422 		range = retval_range(0, 0);
15423 		goto enforce_retval;
15424 	}
15425 
15426 	if (is_subprog && !frame->in_exception_callback_fn) {
15427 		if (reg->type != SCALAR_VALUE) {
15428 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15429 				regno, reg_type_str(env, reg->type));
15430 			return -EINVAL;
15431 		}
15432 		return 0;
15433 	}
15434 
15435 	switch (prog_type) {
15436 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15437 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15438 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15439 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15440 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15441 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15442 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15443 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15444 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15445 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15446 			range = retval_range(1, 1);
15447 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15448 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15449 			range = retval_range(0, 3);
15450 		break;
15451 	case BPF_PROG_TYPE_CGROUP_SKB:
15452 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15453 			range = retval_range(0, 3);
15454 			enforce_attach_type_range = tnum_range(2, 3);
15455 		}
15456 		break;
15457 	case BPF_PROG_TYPE_CGROUP_SOCK:
15458 	case BPF_PROG_TYPE_SOCK_OPS:
15459 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15460 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15461 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15462 		break;
15463 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15464 		if (!env->prog->aux->attach_btf_id)
15465 			return 0;
15466 		range = retval_range(0, 0);
15467 		break;
15468 	case BPF_PROG_TYPE_TRACING:
15469 		switch (env->prog->expected_attach_type) {
15470 		case BPF_TRACE_FENTRY:
15471 		case BPF_TRACE_FEXIT:
15472 			range = retval_range(0, 0);
15473 			break;
15474 		case BPF_TRACE_RAW_TP:
15475 		case BPF_MODIFY_RETURN:
15476 			return 0;
15477 		case BPF_TRACE_ITER:
15478 			break;
15479 		default:
15480 			return -ENOTSUPP;
15481 		}
15482 		break;
15483 	case BPF_PROG_TYPE_SK_LOOKUP:
15484 		range = retval_range(SK_DROP, SK_PASS);
15485 		break;
15486 
15487 	case BPF_PROG_TYPE_LSM:
15488 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15489 			/* Regular BPF_PROG_TYPE_LSM programs can return
15490 			 * any value.
15491 			 */
15492 			return 0;
15493 		}
15494 		if (!env->prog->aux->attach_func_proto->type) {
15495 			/* Make sure programs that attach to void
15496 			 * hooks don't try to modify return value.
15497 			 */
15498 			range = retval_range(1, 1);
15499 		}
15500 		break;
15501 
15502 	case BPF_PROG_TYPE_NETFILTER:
15503 		range = retval_range(NF_DROP, NF_ACCEPT);
15504 		break;
15505 	case BPF_PROG_TYPE_EXT:
15506 		/* freplace program can return anything as its return value
15507 		 * depends on the to-be-replaced kernel func or bpf program.
15508 		 */
15509 	default:
15510 		return 0;
15511 	}
15512 
15513 enforce_retval:
15514 	if (reg->type != SCALAR_VALUE) {
15515 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15516 			exit_ctx, regno, reg_type_str(env, reg->type));
15517 		return -EINVAL;
15518 	}
15519 
15520 	err = mark_chain_precision(env, regno);
15521 	if (err)
15522 		return err;
15523 
15524 	if (!retval_range_within(range, reg)) {
15525 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15526 		if (!is_subprog &&
15527 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15528 		    prog_type == BPF_PROG_TYPE_LSM &&
15529 		    !prog->aux->attach_func_proto->type)
15530 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15531 		return -EINVAL;
15532 	}
15533 
15534 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15535 	    tnum_in(enforce_attach_type_range, reg->var_off))
15536 		env->prog->enforce_expected_attach_type = 1;
15537 	return 0;
15538 }
15539 
15540 /* non-recursive DFS pseudo code
15541  * 1  procedure DFS-iterative(G,v):
15542  * 2      label v as discovered
15543  * 3      let S be a stack
15544  * 4      S.push(v)
15545  * 5      while S is not empty
15546  * 6            t <- S.peek()
15547  * 7            if t is what we're looking for:
15548  * 8                return t
15549  * 9            for all edges e in G.adjacentEdges(t) do
15550  * 10               if edge e is already labelled
15551  * 11                   continue with the next edge
15552  * 12               w <- G.adjacentVertex(t,e)
15553  * 13               if vertex w is not discovered and not explored
15554  * 14                   label e as tree-edge
15555  * 15                   label w as discovered
15556  * 16                   S.push(w)
15557  * 17                   continue at 5
15558  * 18               else if vertex w is discovered
15559  * 19                   label e as back-edge
15560  * 20               else
15561  * 21                   // vertex w is explored
15562  * 22                   label e as forward- or cross-edge
15563  * 23           label t as explored
15564  * 24           S.pop()
15565  *
15566  * convention:
15567  * 0x10 - discovered
15568  * 0x11 - discovered and fall-through edge labelled
15569  * 0x12 - discovered and fall-through and branch edges labelled
15570  * 0x20 - explored
15571  */
15572 
15573 enum {
15574 	DISCOVERED = 0x10,
15575 	EXPLORED = 0x20,
15576 	FALLTHROUGH = 1,
15577 	BRANCH = 2,
15578 };
15579 
15580 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15581 {
15582 	env->insn_aux_data[idx].prune_point = true;
15583 }
15584 
15585 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15586 {
15587 	return env->insn_aux_data[insn_idx].prune_point;
15588 }
15589 
15590 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15591 {
15592 	env->insn_aux_data[idx].force_checkpoint = true;
15593 }
15594 
15595 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15596 {
15597 	return env->insn_aux_data[insn_idx].force_checkpoint;
15598 }
15599 
15600 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15601 {
15602 	env->insn_aux_data[idx].calls_callback = true;
15603 }
15604 
15605 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15606 {
15607 	return env->insn_aux_data[insn_idx].calls_callback;
15608 }
15609 
15610 enum {
15611 	DONE_EXPLORING = 0,
15612 	KEEP_EXPLORING = 1,
15613 };
15614 
15615 /* t, w, e - match pseudo-code above:
15616  * t - index of current instruction
15617  * w - next instruction
15618  * e - edge
15619  */
15620 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15621 {
15622 	int *insn_stack = env->cfg.insn_stack;
15623 	int *insn_state = env->cfg.insn_state;
15624 
15625 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15626 		return DONE_EXPLORING;
15627 
15628 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15629 		return DONE_EXPLORING;
15630 
15631 	if (w < 0 || w >= env->prog->len) {
15632 		verbose_linfo(env, t, "%d: ", t);
15633 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15634 		return -EINVAL;
15635 	}
15636 
15637 	if (e == BRANCH) {
15638 		/* mark branch target for state pruning */
15639 		mark_prune_point(env, w);
15640 		mark_jmp_point(env, w);
15641 	}
15642 
15643 	if (insn_state[w] == 0) {
15644 		/* tree-edge */
15645 		insn_state[t] = DISCOVERED | e;
15646 		insn_state[w] = DISCOVERED;
15647 		if (env->cfg.cur_stack >= env->prog->len)
15648 			return -E2BIG;
15649 		insn_stack[env->cfg.cur_stack++] = w;
15650 		return KEEP_EXPLORING;
15651 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15652 		if (env->bpf_capable)
15653 			return DONE_EXPLORING;
15654 		verbose_linfo(env, t, "%d: ", t);
15655 		verbose_linfo(env, w, "%d: ", w);
15656 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15657 		return -EINVAL;
15658 	} else if (insn_state[w] == EXPLORED) {
15659 		/* forward- or cross-edge */
15660 		insn_state[t] = DISCOVERED | e;
15661 	} else {
15662 		verbose(env, "insn state internal bug\n");
15663 		return -EFAULT;
15664 	}
15665 	return DONE_EXPLORING;
15666 }
15667 
15668 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15669 				struct bpf_verifier_env *env,
15670 				bool visit_callee)
15671 {
15672 	int ret, insn_sz;
15673 
15674 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15675 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15676 	if (ret)
15677 		return ret;
15678 
15679 	mark_prune_point(env, t + insn_sz);
15680 	/* when we exit from subprog, we need to record non-linear history */
15681 	mark_jmp_point(env, t + insn_sz);
15682 
15683 	if (visit_callee) {
15684 		mark_prune_point(env, t);
15685 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15686 	}
15687 	return ret;
15688 }
15689 
15690 /* Visits the instruction at index t and returns one of the following:
15691  *  < 0 - an error occurred
15692  *  DONE_EXPLORING - the instruction was fully explored
15693  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15694  */
15695 static int visit_insn(int t, struct bpf_verifier_env *env)
15696 {
15697 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15698 	int ret, off, insn_sz;
15699 
15700 	if (bpf_pseudo_func(insn))
15701 		return visit_func_call_insn(t, insns, env, true);
15702 
15703 	/* All non-branch instructions have a single fall-through edge. */
15704 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15705 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15706 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15707 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15708 	}
15709 
15710 	switch (BPF_OP(insn->code)) {
15711 	case BPF_EXIT:
15712 		return DONE_EXPLORING;
15713 
15714 	case BPF_CALL:
15715 		if (is_async_callback_calling_insn(insn))
15716 			/* Mark this call insn as a prune point to trigger
15717 			 * is_state_visited() check before call itself is
15718 			 * processed by __check_func_call(). Otherwise new
15719 			 * async state will be pushed for further exploration.
15720 			 */
15721 			mark_prune_point(env, t);
15722 		/* For functions that invoke callbacks it is not known how many times
15723 		 * callback would be called. Verifier models callback calling functions
15724 		 * by repeatedly visiting callback bodies and returning to origin call
15725 		 * instruction.
15726 		 * In order to stop such iteration verifier needs to identify when a
15727 		 * state identical some state from a previous iteration is reached.
15728 		 * Check below forces creation of checkpoint before callback calling
15729 		 * instruction to allow search for such identical states.
15730 		 */
15731 		if (is_sync_callback_calling_insn(insn)) {
15732 			mark_calls_callback(env, t);
15733 			mark_force_checkpoint(env, t);
15734 			mark_prune_point(env, t);
15735 			mark_jmp_point(env, t);
15736 		}
15737 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15738 			struct bpf_kfunc_call_arg_meta meta;
15739 
15740 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15741 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15742 				mark_prune_point(env, t);
15743 				/* Checking and saving state checkpoints at iter_next() call
15744 				 * is crucial for fast convergence of open-coded iterator loop
15745 				 * logic, so we need to force it. If we don't do that,
15746 				 * is_state_visited() might skip saving a checkpoint, causing
15747 				 * unnecessarily long sequence of not checkpointed
15748 				 * instructions and jumps, leading to exhaustion of jump
15749 				 * history buffer, and potentially other undesired outcomes.
15750 				 * It is expected that with correct open-coded iterators
15751 				 * convergence will happen quickly, so we don't run a risk of
15752 				 * exhausting memory.
15753 				 */
15754 				mark_force_checkpoint(env, t);
15755 			}
15756 		}
15757 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15758 
15759 	case BPF_JA:
15760 		if (BPF_SRC(insn->code) != BPF_K)
15761 			return -EINVAL;
15762 
15763 		if (BPF_CLASS(insn->code) == BPF_JMP)
15764 			off = insn->off;
15765 		else
15766 			off = insn->imm;
15767 
15768 		/* unconditional jump with single edge */
15769 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15770 		if (ret)
15771 			return ret;
15772 
15773 		mark_prune_point(env, t + off + 1);
15774 		mark_jmp_point(env, t + off + 1);
15775 
15776 		return ret;
15777 
15778 	default:
15779 		/* conditional jump with two edges */
15780 		mark_prune_point(env, t);
15781 		if (is_may_goto_insn(insn))
15782 			mark_force_checkpoint(env, t);
15783 
15784 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15785 		if (ret)
15786 			return ret;
15787 
15788 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15789 	}
15790 }
15791 
15792 /* non-recursive depth-first-search to detect loops in BPF program
15793  * loop == back-edge in directed graph
15794  */
15795 static int check_cfg(struct bpf_verifier_env *env)
15796 {
15797 	int insn_cnt = env->prog->len;
15798 	int *insn_stack, *insn_state;
15799 	int ex_insn_beg, i, ret = 0;
15800 	bool ex_done = false;
15801 
15802 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15803 	if (!insn_state)
15804 		return -ENOMEM;
15805 
15806 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15807 	if (!insn_stack) {
15808 		kvfree(insn_state);
15809 		return -ENOMEM;
15810 	}
15811 
15812 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15813 	insn_stack[0] = 0; /* 0 is the first instruction */
15814 	env->cfg.cur_stack = 1;
15815 
15816 walk_cfg:
15817 	while (env->cfg.cur_stack > 0) {
15818 		int t = insn_stack[env->cfg.cur_stack - 1];
15819 
15820 		ret = visit_insn(t, env);
15821 		switch (ret) {
15822 		case DONE_EXPLORING:
15823 			insn_state[t] = EXPLORED;
15824 			env->cfg.cur_stack--;
15825 			break;
15826 		case KEEP_EXPLORING:
15827 			break;
15828 		default:
15829 			if (ret > 0) {
15830 				verbose(env, "visit_insn internal bug\n");
15831 				ret = -EFAULT;
15832 			}
15833 			goto err_free;
15834 		}
15835 	}
15836 
15837 	if (env->cfg.cur_stack < 0) {
15838 		verbose(env, "pop stack internal bug\n");
15839 		ret = -EFAULT;
15840 		goto err_free;
15841 	}
15842 
15843 	if (env->exception_callback_subprog && !ex_done) {
15844 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15845 
15846 		insn_state[ex_insn_beg] = DISCOVERED;
15847 		insn_stack[0] = ex_insn_beg;
15848 		env->cfg.cur_stack = 1;
15849 		ex_done = true;
15850 		goto walk_cfg;
15851 	}
15852 
15853 	for (i = 0; i < insn_cnt; i++) {
15854 		struct bpf_insn *insn = &env->prog->insnsi[i];
15855 
15856 		if (insn_state[i] != EXPLORED) {
15857 			verbose(env, "unreachable insn %d\n", i);
15858 			ret = -EINVAL;
15859 			goto err_free;
15860 		}
15861 		if (bpf_is_ldimm64(insn)) {
15862 			if (insn_state[i + 1] != 0) {
15863 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15864 				ret = -EINVAL;
15865 				goto err_free;
15866 			}
15867 			i++; /* skip second half of ldimm64 */
15868 		}
15869 	}
15870 	ret = 0; /* cfg looks good */
15871 
15872 err_free:
15873 	kvfree(insn_state);
15874 	kvfree(insn_stack);
15875 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15876 	return ret;
15877 }
15878 
15879 static int check_abnormal_return(struct bpf_verifier_env *env)
15880 {
15881 	int i;
15882 
15883 	for (i = 1; i < env->subprog_cnt; i++) {
15884 		if (env->subprog_info[i].has_ld_abs) {
15885 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15886 			return -EINVAL;
15887 		}
15888 		if (env->subprog_info[i].has_tail_call) {
15889 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15890 			return -EINVAL;
15891 		}
15892 	}
15893 	return 0;
15894 }
15895 
15896 /* The minimum supported BTF func info size */
15897 #define MIN_BPF_FUNCINFO_SIZE	8
15898 #define MAX_FUNCINFO_REC_SIZE	252
15899 
15900 static int check_btf_func_early(struct bpf_verifier_env *env,
15901 				const union bpf_attr *attr,
15902 				bpfptr_t uattr)
15903 {
15904 	u32 krec_size = sizeof(struct bpf_func_info);
15905 	const struct btf_type *type, *func_proto;
15906 	u32 i, nfuncs, urec_size, min_size;
15907 	struct bpf_func_info *krecord;
15908 	struct bpf_prog *prog;
15909 	const struct btf *btf;
15910 	u32 prev_offset = 0;
15911 	bpfptr_t urecord;
15912 	int ret = -ENOMEM;
15913 
15914 	nfuncs = attr->func_info_cnt;
15915 	if (!nfuncs) {
15916 		if (check_abnormal_return(env))
15917 			return -EINVAL;
15918 		return 0;
15919 	}
15920 
15921 	urec_size = attr->func_info_rec_size;
15922 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15923 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15924 	    urec_size % sizeof(u32)) {
15925 		verbose(env, "invalid func info rec size %u\n", urec_size);
15926 		return -EINVAL;
15927 	}
15928 
15929 	prog = env->prog;
15930 	btf = prog->aux->btf;
15931 
15932 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15933 	min_size = min_t(u32, krec_size, urec_size);
15934 
15935 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15936 	if (!krecord)
15937 		return -ENOMEM;
15938 
15939 	for (i = 0; i < nfuncs; i++) {
15940 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15941 		if (ret) {
15942 			if (ret == -E2BIG) {
15943 				verbose(env, "nonzero tailing record in func info");
15944 				/* set the size kernel expects so loader can zero
15945 				 * out the rest of the record.
15946 				 */
15947 				if (copy_to_bpfptr_offset(uattr,
15948 							  offsetof(union bpf_attr, func_info_rec_size),
15949 							  &min_size, sizeof(min_size)))
15950 					ret = -EFAULT;
15951 			}
15952 			goto err_free;
15953 		}
15954 
15955 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15956 			ret = -EFAULT;
15957 			goto err_free;
15958 		}
15959 
15960 		/* check insn_off */
15961 		ret = -EINVAL;
15962 		if (i == 0) {
15963 			if (krecord[i].insn_off) {
15964 				verbose(env,
15965 					"nonzero insn_off %u for the first func info record",
15966 					krecord[i].insn_off);
15967 				goto err_free;
15968 			}
15969 		} else if (krecord[i].insn_off <= prev_offset) {
15970 			verbose(env,
15971 				"same or smaller insn offset (%u) than previous func info record (%u)",
15972 				krecord[i].insn_off, prev_offset);
15973 			goto err_free;
15974 		}
15975 
15976 		/* check type_id */
15977 		type = btf_type_by_id(btf, krecord[i].type_id);
15978 		if (!type || !btf_type_is_func(type)) {
15979 			verbose(env, "invalid type id %d in func info",
15980 				krecord[i].type_id);
15981 			goto err_free;
15982 		}
15983 
15984 		func_proto = btf_type_by_id(btf, type->type);
15985 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15986 			/* btf_func_check() already verified it during BTF load */
15987 			goto err_free;
15988 
15989 		prev_offset = krecord[i].insn_off;
15990 		bpfptr_add(&urecord, urec_size);
15991 	}
15992 
15993 	prog->aux->func_info = krecord;
15994 	prog->aux->func_info_cnt = nfuncs;
15995 	return 0;
15996 
15997 err_free:
15998 	kvfree(krecord);
15999 	return ret;
16000 }
16001 
16002 static int check_btf_func(struct bpf_verifier_env *env,
16003 			  const union bpf_attr *attr,
16004 			  bpfptr_t uattr)
16005 {
16006 	const struct btf_type *type, *func_proto, *ret_type;
16007 	u32 i, nfuncs, urec_size;
16008 	struct bpf_func_info *krecord;
16009 	struct bpf_func_info_aux *info_aux = NULL;
16010 	struct bpf_prog *prog;
16011 	const struct btf *btf;
16012 	bpfptr_t urecord;
16013 	bool scalar_return;
16014 	int ret = -ENOMEM;
16015 
16016 	nfuncs = attr->func_info_cnt;
16017 	if (!nfuncs) {
16018 		if (check_abnormal_return(env))
16019 			return -EINVAL;
16020 		return 0;
16021 	}
16022 	if (nfuncs != env->subprog_cnt) {
16023 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16024 		return -EINVAL;
16025 	}
16026 
16027 	urec_size = attr->func_info_rec_size;
16028 
16029 	prog = env->prog;
16030 	btf = prog->aux->btf;
16031 
16032 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16033 
16034 	krecord = prog->aux->func_info;
16035 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16036 	if (!info_aux)
16037 		return -ENOMEM;
16038 
16039 	for (i = 0; i < nfuncs; i++) {
16040 		/* check insn_off */
16041 		ret = -EINVAL;
16042 
16043 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16044 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16045 			goto err_free;
16046 		}
16047 
16048 		/* Already checked type_id */
16049 		type = btf_type_by_id(btf, krecord[i].type_id);
16050 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16051 		/* Already checked func_proto */
16052 		func_proto = btf_type_by_id(btf, type->type);
16053 
16054 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16055 		scalar_return =
16056 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16057 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16058 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
16059 			goto err_free;
16060 		}
16061 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
16062 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
16063 			goto err_free;
16064 		}
16065 
16066 		bpfptr_add(&urecord, urec_size);
16067 	}
16068 
16069 	prog->aux->func_info_aux = info_aux;
16070 	return 0;
16071 
16072 err_free:
16073 	kfree(info_aux);
16074 	return ret;
16075 }
16076 
16077 static void adjust_btf_func(struct bpf_verifier_env *env)
16078 {
16079 	struct bpf_prog_aux *aux = env->prog->aux;
16080 	int i;
16081 
16082 	if (!aux->func_info)
16083 		return;
16084 
16085 	/* func_info is not available for hidden subprogs */
16086 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
16087 		aux->func_info[i].insn_off = env->subprog_info[i].start;
16088 }
16089 
16090 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
16091 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
16092 
16093 static int check_btf_line(struct bpf_verifier_env *env,
16094 			  const union bpf_attr *attr,
16095 			  bpfptr_t uattr)
16096 {
16097 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16098 	struct bpf_subprog_info *sub;
16099 	struct bpf_line_info *linfo;
16100 	struct bpf_prog *prog;
16101 	const struct btf *btf;
16102 	bpfptr_t ulinfo;
16103 	int err;
16104 
16105 	nr_linfo = attr->line_info_cnt;
16106 	if (!nr_linfo)
16107 		return 0;
16108 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16109 		return -EINVAL;
16110 
16111 	rec_size = attr->line_info_rec_size;
16112 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16113 	    rec_size > MAX_LINEINFO_REC_SIZE ||
16114 	    rec_size & (sizeof(u32) - 1))
16115 		return -EINVAL;
16116 
16117 	/* Need to zero it in case the userspace may
16118 	 * pass in a smaller bpf_line_info object.
16119 	 */
16120 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16121 			 GFP_KERNEL | __GFP_NOWARN);
16122 	if (!linfo)
16123 		return -ENOMEM;
16124 
16125 	prog = env->prog;
16126 	btf = prog->aux->btf;
16127 
16128 	s = 0;
16129 	sub = env->subprog_info;
16130 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16131 	expected_size = sizeof(struct bpf_line_info);
16132 	ncopy = min_t(u32, expected_size, rec_size);
16133 	for (i = 0; i < nr_linfo; i++) {
16134 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16135 		if (err) {
16136 			if (err == -E2BIG) {
16137 				verbose(env, "nonzero tailing record in line_info");
16138 				if (copy_to_bpfptr_offset(uattr,
16139 							  offsetof(union bpf_attr, line_info_rec_size),
16140 							  &expected_size, sizeof(expected_size)))
16141 					err = -EFAULT;
16142 			}
16143 			goto err_free;
16144 		}
16145 
16146 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16147 			err = -EFAULT;
16148 			goto err_free;
16149 		}
16150 
16151 		/*
16152 		 * Check insn_off to ensure
16153 		 * 1) strictly increasing AND
16154 		 * 2) bounded by prog->len
16155 		 *
16156 		 * The linfo[0].insn_off == 0 check logically falls into
16157 		 * the later "missing bpf_line_info for func..." case
16158 		 * because the first linfo[0].insn_off must be the
16159 		 * first sub also and the first sub must have
16160 		 * subprog_info[0].start == 0.
16161 		 */
16162 		if ((i && linfo[i].insn_off <= prev_offset) ||
16163 		    linfo[i].insn_off >= prog->len) {
16164 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16165 				i, linfo[i].insn_off, prev_offset,
16166 				prog->len);
16167 			err = -EINVAL;
16168 			goto err_free;
16169 		}
16170 
16171 		if (!prog->insnsi[linfo[i].insn_off].code) {
16172 			verbose(env,
16173 				"Invalid insn code at line_info[%u].insn_off\n",
16174 				i);
16175 			err = -EINVAL;
16176 			goto err_free;
16177 		}
16178 
16179 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16180 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16181 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16182 			err = -EINVAL;
16183 			goto err_free;
16184 		}
16185 
16186 		if (s != env->subprog_cnt) {
16187 			if (linfo[i].insn_off == sub[s].start) {
16188 				sub[s].linfo_idx = i;
16189 				s++;
16190 			} else if (sub[s].start < linfo[i].insn_off) {
16191 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16192 				err = -EINVAL;
16193 				goto err_free;
16194 			}
16195 		}
16196 
16197 		prev_offset = linfo[i].insn_off;
16198 		bpfptr_add(&ulinfo, rec_size);
16199 	}
16200 
16201 	if (s != env->subprog_cnt) {
16202 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16203 			env->subprog_cnt - s, s);
16204 		err = -EINVAL;
16205 		goto err_free;
16206 	}
16207 
16208 	prog->aux->linfo = linfo;
16209 	prog->aux->nr_linfo = nr_linfo;
16210 
16211 	return 0;
16212 
16213 err_free:
16214 	kvfree(linfo);
16215 	return err;
16216 }
16217 
16218 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16219 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16220 
16221 static int check_core_relo(struct bpf_verifier_env *env,
16222 			   const union bpf_attr *attr,
16223 			   bpfptr_t uattr)
16224 {
16225 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16226 	struct bpf_core_relo core_relo = {};
16227 	struct bpf_prog *prog = env->prog;
16228 	const struct btf *btf = prog->aux->btf;
16229 	struct bpf_core_ctx ctx = {
16230 		.log = &env->log,
16231 		.btf = btf,
16232 	};
16233 	bpfptr_t u_core_relo;
16234 	int err;
16235 
16236 	nr_core_relo = attr->core_relo_cnt;
16237 	if (!nr_core_relo)
16238 		return 0;
16239 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16240 		return -EINVAL;
16241 
16242 	rec_size = attr->core_relo_rec_size;
16243 	if (rec_size < MIN_CORE_RELO_SIZE ||
16244 	    rec_size > MAX_CORE_RELO_SIZE ||
16245 	    rec_size % sizeof(u32))
16246 		return -EINVAL;
16247 
16248 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16249 	expected_size = sizeof(struct bpf_core_relo);
16250 	ncopy = min_t(u32, expected_size, rec_size);
16251 
16252 	/* Unlike func_info and line_info, copy and apply each CO-RE
16253 	 * relocation record one at a time.
16254 	 */
16255 	for (i = 0; i < nr_core_relo; i++) {
16256 		/* future proofing when sizeof(bpf_core_relo) changes */
16257 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16258 		if (err) {
16259 			if (err == -E2BIG) {
16260 				verbose(env, "nonzero tailing record in core_relo");
16261 				if (copy_to_bpfptr_offset(uattr,
16262 							  offsetof(union bpf_attr, core_relo_rec_size),
16263 							  &expected_size, sizeof(expected_size)))
16264 					err = -EFAULT;
16265 			}
16266 			break;
16267 		}
16268 
16269 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16270 			err = -EFAULT;
16271 			break;
16272 		}
16273 
16274 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16275 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16276 				i, core_relo.insn_off, prog->len);
16277 			err = -EINVAL;
16278 			break;
16279 		}
16280 
16281 		err = bpf_core_apply(&ctx, &core_relo, i,
16282 				     &prog->insnsi[core_relo.insn_off / 8]);
16283 		if (err)
16284 			break;
16285 		bpfptr_add(&u_core_relo, rec_size);
16286 	}
16287 	return err;
16288 }
16289 
16290 static int check_btf_info_early(struct bpf_verifier_env *env,
16291 				const union bpf_attr *attr,
16292 				bpfptr_t uattr)
16293 {
16294 	struct btf *btf;
16295 	int err;
16296 
16297 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16298 		if (check_abnormal_return(env))
16299 			return -EINVAL;
16300 		return 0;
16301 	}
16302 
16303 	btf = btf_get_by_fd(attr->prog_btf_fd);
16304 	if (IS_ERR(btf))
16305 		return PTR_ERR(btf);
16306 	if (btf_is_kernel(btf)) {
16307 		btf_put(btf);
16308 		return -EACCES;
16309 	}
16310 	env->prog->aux->btf = btf;
16311 
16312 	err = check_btf_func_early(env, attr, uattr);
16313 	if (err)
16314 		return err;
16315 	return 0;
16316 }
16317 
16318 static int check_btf_info(struct bpf_verifier_env *env,
16319 			  const union bpf_attr *attr,
16320 			  bpfptr_t uattr)
16321 {
16322 	int err;
16323 
16324 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16325 		if (check_abnormal_return(env))
16326 			return -EINVAL;
16327 		return 0;
16328 	}
16329 
16330 	err = check_btf_func(env, attr, uattr);
16331 	if (err)
16332 		return err;
16333 
16334 	err = check_btf_line(env, attr, uattr);
16335 	if (err)
16336 		return err;
16337 
16338 	err = check_core_relo(env, attr, uattr);
16339 	if (err)
16340 		return err;
16341 
16342 	return 0;
16343 }
16344 
16345 /* check %cur's range satisfies %old's */
16346 static bool range_within(const struct bpf_reg_state *old,
16347 			 const struct bpf_reg_state *cur)
16348 {
16349 	return old->umin_value <= cur->umin_value &&
16350 	       old->umax_value >= cur->umax_value &&
16351 	       old->smin_value <= cur->smin_value &&
16352 	       old->smax_value >= cur->smax_value &&
16353 	       old->u32_min_value <= cur->u32_min_value &&
16354 	       old->u32_max_value >= cur->u32_max_value &&
16355 	       old->s32_min_value <= cur->s32_min_value &&
16356 	       old->s32_max_value >= cur->s32_max_value;
16357 }
16358 
16359 /* If in the old state two registers had the same id, then they need to have
16360  * the same id in the new state as well.  But that id could be different from
16361  * the old state, so we need to track the mapping from old to new ids.
16362  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16363  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16364  * regs with a different old id could still have new id 9, we don't care about
16365  * that.
16366  * So we look through our idmap to see if this old id has been seen before.  If
16367  * so, we require the new id to match; otherwise, we add the id pair to the map.
16368  */
16369 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16370 {
16371 	struct bpf_id_pair *map = idmap->map;
16372 	unsigned int i;
16373 
16374 	/* either both IDs should be set or both should be zero */
16375 	if (!!old_id != !!cur_id)
16376 		return false;
16377 
16378 	if (old_id == 0) /* cur_id == 0 as well */
16379 		return true;
16380 
16381 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16382 		if (!map[i].old) {
16383 			/* Reached an empty slot; haven't seen this id before */
16384 			map[i].old = old_id;
16385 			map[i].cur = cur_id;
16386 			return true;
16387 		}
16388 		if (map[i].old == old_id)
16389 			return map[i].cur == cur_id;
16390 		if (map[i].cur == cur_id)
16391 			return false;
16392 	}
16393 	/* We ran out of idmap slots, which should be impossible */
16394 	WARN_ON_ONCE(1);
16395 	return false;
16396 }
16397 
16398 /* Similar to check_ids(), but allocate a unique temporary ID
16399  * for 'old_id' or 'cur_id' of zero.
16400  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16401  */
16402 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16403 {
16404 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16405 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16406 
16407 	return check_ids(old_id, cur_id, idmap);
16408 }
16409 
16410 static void clean_func_state(struct bpf_verifier_env *env,
16411 			     struct bpf_func_state *st)
16412 {
16413 	enum bpf_reg_liveness live;
16414 	int i, j;
16415 
16416 	for (i = 0; i < BPF_REG_FP; i++) {
16417 		live = st->regs[i].live;
16418 		/* liveness must not touch this register anymore */
16419 		st->regs[i].live |= REG_LIVE_DONE;
16420 		if (!(live & REG_LIVE_READ))
16421 			/* since the register is unused, clear its state
16422 			 * to make further comparison simpler
16423 			 */
16424 			__mark_reg_not_init(env, &st->regs[i]);
16425 	}
16426 
16427 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16428 		live = st->stack[i].spilled_ptr.live;
16429 		/* liveness must not touch this stack slot anymore */
16430 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16431 		if (!(live & REG_LIVE_READ)) {
16432 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16433 			for (j = 0; j < BPF_REG_SIZE; j++)
16434 				st->stack[i].slot_type[j] = STACK_INVALID;
16435 		}
16436 	}
16437 }
16438 
16439 static void clean_verifier_state(struct bpf_verifier_env *env,
16440 				 struct bpf_verifier_state *st)
16441 {
16442 	int i;
16443 
16444 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16445 		/* all regs in this state in all frames were already marked */
16446 		return;
16447 
16448 	for (i = 0; i <= st->curframe; i++)
16449 		clean_func_state(env, st->frame[i]);
16450 }
16451 
16452 /* the parentage chains form a tree.
16453  * the verifier states are added to state lists at given insn and
16454  * pushed into state stack for future exploration.
16455  * when the verifier reaches bpf_exit insn some of the verifer states
16456  * stored in the state lists have their final liveness state already,
16457  * but a lot of states will get revised from liveness point of view when
16458  * the verifier explores other branches.
16459  * Example:
16460  * 1: r0 = 1
16461  * 2: if r1 == 100 goto pc+1
16462  * 3: r0 = 2
16463  * 4: exit
16464  * when the verifier reaches exit insn the register r0 in the state list of
16465  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16466  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16467  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16468  *
16469  * Since the verifier pushes the branch states as it sees them while exploring
16470  * the program the condition of walking the branch instruction for the second
16471  * time means that all states below this branch were already explored and
16472  * their final liveness marks are already propagated.
16473  * Hence when the verifier completes the search of state list in is_state_visited()
16474  * we can call this clean_live_states() function to mark all liveness states
16475  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16476  * will not be used.
16477  * This function also clears the registers and stack for states that !READ
16478  * to simplify state merging.
16479  *
16480  * Important note here that walking the same branch instruction in the callee
16481  * doesn't meant that the states are DONE. The verifier has to compare
16482  * the callsites
16483  */
16484 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16485 			      struct bpf_verifier_state *cur)
16486 {
16487 	struct bpf_verifier_state_list *sl;
16488 
16489 	sl = *explored_state(env, insn);
16490 	while (sl) {
16491 		if (sl->state.branches)
16492 			goto next;
16493 		if (sl->state.insn_idx != insn ||
16494 		    !same_callsites(&sl->state, cur))
16495 			goto next;
16496 		clean_verifier_state(env, &sl->state);
16497 next:
16498 		sl = sl->next;
16499 	}
16500 }
16501 
16502 static bool regs_exact(const struct bpf_reg_state *rold,
16503 		       const struct bpf_reg_state *rcur,
16504 		       struct bpf_idmap *idmap)
16505 {
16506 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16507 	       check_ids(rold->id, rcur->id, idmap) &&
16508 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16509 }
16510 
16511 enum exact_level {
16512 	NOT_EXACT,
16513 	EXACT,
16514 	RANGE_WITHIN
16515 };
16516 
16517 /* Returns true if (rold safe implies rcur safe) */
16518 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16519 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
16520 		    enum exact_level exact)
16521 {
16522 	if (exact == EXACT)
16523 		return regs_exact(rold, rcur, idmap);
16524 
16525 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
16526 		/* explored state didn't use this */
16527 		return true;
16528 	if (rold->type == NOT_INIT) {
16529 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
16530 			/* explored state can't have used this */
16531 			return true;
16532 	}
16533 
16534 	/* Enforce that register types have to match exactly, including their
16535 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16536 	 * rule.
16537 	 *
16538 	 * One can make a point that using a pointer register as unbounded
16539 	 * SCALAR would be technically acceptable, but this could lead to
16540 	 * pointer leaks because scalars are allowed to leak while pointers
16541 	 * are not. We could make this safe in special cases if root is
16542 	 * calling us, but it's probably not worth the hassle.
16543 	 *
16544 	 * Also, register types that are *not* MAYBE_NULL could technically be
16545 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16546 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16547 	 * to the same map).
16548 	 * However, if the old MAYBE_NULL register then got NULL checked,
16549 	 * doing so could have affected others with the same id, and we can't
16550 	 * check for that because we lost the id when we converted to
16551 	 * a non-MAYBE_NULL variant.
16552 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16553 	 * non-MAYBE_NULL registers as well.
16554 	 */
16555 	if (rold->type != rcur->type)
16556 		return false;
16557 
16558 	switch (base_type(rold->type)) {
16559 	case SCALAR_VALUE:
16560 		if (env->explore_alu_limits) {
16561 			/* explore_alu_limits disables tnum_in() and range_within()
16562 			 * logic and requires everything to be strict
16563 			 */
16564 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16565 			       check_scalar_ids(rold->id, rcur->id, idmap);
16566 		}
16567 		if (!rold->precise && exact == NOT_EXACT)
16568 			return true;
16569 		/* Why check_ids() for scalar registers?
16570 		 *
16571 		 * Consider the following BPF code:
16572 		 *   1: r6 = ... unbound scalar, ID=a ...
16573 		 *   2: r7 = ... unbound scalar, ID=b ...
16574 		 *   3: if (r6 > r7) goto +1
16575 		 *   4: r6 = r7
16576 		 *   5: if (r6 > X) goto ...
16577 		 *   6: ... memory operation using r7 ...
16578 		 *
16579 		 * First verification path is [1-6]:
16580 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16581 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16582 		 *   r7 <= X, because r6 and r7 share same id.
16583 		 * Next verification path is [1-4, 6].
16584 		 *
16585 		 * Instruction (6) would be reached in two states:
16586 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16587 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16588 		 *
16589 		 * Use check_ids() to distinguish these states.
16590 		 * ---
16591 		 * Also verify that new value satisfies old value range knowledge.
16592 		 */
16593 		return range_within(rold, rcur) &&
16594 		       tnum_in(rold->var_off, rcur->var_off) &&
16595 		       check_scalar_ids(rold->id, rcur->id, idmap);
16596 	case PTR_TO_MAP_KEY:
16597 	case PTR_TO_MAP_VALUE:
16598 	case PTR_TO_MEM:
16599 	case PTR_TO_BUF:
16600 	case PTR_TO_TP_BUFFER:
16601 		/* If the new min/max/var_off satisfy the old ones and
16602 		 * everything else matches, we are OK.
16603 		 */
16604 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16605 		       range_within(rold, rcur) &&
16606 		       tnum_in(rold->var_off, rcur->var_off) &&
16607 		       check_ids(rold->id, rcur->id, idmap) &&
16608 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16609 	case PTR_TO_PACKET_META:
16610 	case PTR_TO_PACKET:
16611 		/* We must have at least as much range as the old ptr
16612 		 * did, so that any accesses which were safe before are
16613 		 * still safe.  This is true even if old range < old off,
16614 		 * since someone could have accessed through (ptr - k), or
16615 		 * even done ptr -= k in a register, to get a safe access.
16616 		 */
16617 		if (rold->range > rcur->range)
16618 			return false;
16619 		/* If the offsets don't match, we can't trust our alignment;
16620 		 * nor can we be sure that we won't fall out of range.
16621 		 */
16622 		if (rold->off != rcur->off)
16623 			return false;
16624 		/* id relations must be preserved */
16625 		if (!check_ids(rold->id, rcur->id, idmap))
16626 			return false;
16627 		/* new val must satisfy old val knowledge */
16628 		return range_within(rold, rcur) &&
16629 		       tnum_in(rold->var_off, rcur->var_off);
16630 	case PTR_TO_STACK:
16631 		/* two stack pointers are equal only if they're pointing to
16632 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16633 		 */
16634 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16635 	case PTR_TO_ARENA:
16636 		return true;
16637 	default:
16638 		return regs_exact(rold, rcur, idmap);
16639 	}
16640 }
16641 
16642 static struct bpf_reg_state unbound_reg;
16643 
16644 static __init int unbound_reg_init(void)
16645 {
16646 	__mark_reg_unknown_imprecise(&unbound_reg);
16647 	unbound_reg.live |= REG_LIVE_READ;
16648 	return 0;
16649 }
16650 late_initcall(unbound_reg_init);
16651 
16652 static bool is_stack_all_misc(struct bpf_verifier_env *env,
16653 			      struct bpf_stack_state *stack)
16654 {
16655 	u32 i;
16656 
16657 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
16658 		if ((stack->slot_type[i] == STACK_MISC) ||
16659 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
16660 			continue;
16661 		return false;
16662 	}
16663 
16664 	return true;
16665 }
16666 
16667 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
16668 						  struct bpf_stack_state *stack)
16669 {
16670 	if (is_spilled_scalar_reg64(stack))
16671 		return &stack->spilled_ptr;
16672 
16673 	if (is_stack_all_misc(env, stack))
16674 		return &unbound_reg;
16675 
16676 	return NULL;
16677 }
16678 
16679 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16680 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
16681 		      enum exact_level exact)
16682 {
16683 	int i, spi;
16684 
16685 	/* walk slots of the explored stack and ignore any additional
16686 	 * slots in the current stack, since explored(safe) state
16687 	 * didn't use them
16688 	 */
16689 	for (i = 0; i < old->allocated_stack; i++) {
16690 		struct bpf_reg_state *old_reg, *cur_reg;
16691 
16692 		spi = i / BPF_REG_SIZE;
16693 
16694 		if (exact != NOT_EXACT &&
16695 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16696 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16697 			return false;
16698 
16699 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
16700 		    && exact == NOT_EXACT) {
16701 			i += BPF_REG_SIZE - 1;
16702 			/* explored state didn't use this */
16703 			continue;
16704 		}
16705 
16706 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16707 			continue;
16708 
16709 		if (env->allow_uninit_stack &&
16710 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16711 			continue;
16712 
16713 		/* explored stack has more populated slots than current stack
16714 		 * and these slots were used
16715 		 */
16716 		if (i >= cur->allocated_stack)
16717 			return false;
16718 
16719 		/* 64-bit scalar spill vs all slots MISC and vice versa.
16720 		 * Load from all slots MISC produces unbound scalar.
16721 		 * Construct a fake register for such stack and call
16722 		 * regsafe() to ensure scalar ids are compared.
16723 		 */
16724 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
16725 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
16726 		if (old_reg && cur_reg) {
16727 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
16728 				return false;
16729 			i += BPF_REG_SIZE - 1;
16730 			continue;
16731 		}
16732 
16733 		/* if old state was safe with misc data in the stack
16734 		 * it will be safe with zero-initialized stack.
16735 		 * The opposite is not true
16736 		 */
16737 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16738 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16739 			continue;
16740 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16741 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16742 			/* Ex: old explored (safe) state has STACK_SPILL in
16743 			 * this stack slot, but current has STACK_MISC ->
16744 			 * this verifier states are not equivalent,
16745 			 * return false to continue verification of this path
16746 			 */
16747 			return false;
16748 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16749 			continue;
16750 		/* Both old and cur are having same slot_type */
16751 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16752 		case STACK_SPILL:
16753 			/* when explored and current stack slot are both storing
16754 			 * spilled registers, check that stored pointers types
16755 			 * are the same as well.
16756 			 * Ex: explored safe path could have stored
16757 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16758 			 * but current path has stored:
16759 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16760 			 * such verifier states are not equivalent.
16761 			 * return false to continue verification of this path
16762 			 */
16763 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16764 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16765 				return false;
16766 			break;
16767 		case STACK_DYNPTR:
16768 			old_reg = &old->stack[spi].spilled_ptr;
16769 			cur_reg = &cur->stack[spi].spilled_ptr;
16770 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16771 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16772 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16773 				return false;
16774 			break;
16775 		case STACK_ITER:
16776 			old_reg = &old->stack[spi].spilled_ptr;
16777 			cur_reg = &cur->stack[spi].spilled_ptr;
16778 			/* iter.depth is not compared between states as it
16779 			 * doesn't matter for correctness and would otherwise
16780 			 * prevent convergence; we maintain it only to prevent
16781 			 * infinite loop check triggering, see
16782 			 * iter_active_depths_differ()
16783 			 */
16784 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16785 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16786 			    old_reg->iter.state != cur_reg->iter.state ||
16787 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16788 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16789 				return false;
16790 			break;
16791 		case STACK_MISC:
16792 		case STACK_ZERO:
16793 		case STACK_INVALID:
16794 			continue;
16795 		/* Ensure that new unhandled slot types return false by default */
16796 		default:
16797 			return false;
16798 		}
16799 	}
16800 	return true;
16801 }
16802 
16803 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16804 		    struct bpf_idmap *idmap)
16805 {
16806 	int i;
16807 
16808 	if (old->acquired_refs != cur->acquired_refs)
16809 		return false;
16810 
16811 	for (i = 0; i < old->acquired_refs; i++) {
16812 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16813 			return false;
16814 	}
16815 
16816 	return true;
16817 }
16818 
16819 /* compare two verifier states
16820  *
16821  * all states stored in state_list are known to be valid, since
16822  * verifier reached 'bpf_exit' instruction through them
16823  *
16824  * this function is called when verifier exploring different branches of
16825  * execution popped from the state stack. If it sees an old state that has
16826  * more strict register state and more strict stack state then this execution
16827  * branch doesn't need to be explored further, since verifier already
16828  * concluded that more strict state leads to valid finish.
16829  *
16830  * Therefore two states are equivalent if register state is more conservative
16831  * and explored stack state is more conservative than the current one.
16832  * Example:
16833  *       explored                   current
16834  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16835  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16836  *
16837  * In other words if current stack state (one being explored) has more
16838  * valid slots than old one that already passed validation, it means
16839  * the verifier can stop exploring and conclude that current state is valid too
16840  *
16841  * Similarly with registers. If explored state has register type as invalid
16842  * whereas register type in current state is meaningful, it means that
16843  * the current state will reach 'bpf_exit' instruction safely
16844  */
16845 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16846 			      struct bpf_func_state *cur, enum exact_level exact)
16847 {
16848 	int i;
16849 
16850 	if (old->callback_depth > cur->callback_depth)
16851 		return false;
16852 
16853 	for (i = 0; i < MAX_BPF_REG; i++)
16854 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16855 			     &env->idmap_scratch, exact))
16856 			return false;
16857 
16858 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16859 		return false;
16860 
16861 	if (!refsafe(old, cur, &env->idmap_scratch))
16862 		return false;
16863 
16864 	return true;
16865 }
16866 
16867 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16868 {
16869 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16870 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16871 }
16872 
16873 static bool states_equal(struct bpf_verifier_env *env,
16874 			 struct bpf_verifier_state *old,
16875 			 struct bpf_verifier_state *cur,
16876 			 enum exact_level exact)
16877 {
16878 	int i;
16879 
16880 	if (old->curframe != cur->curframe)
16881 		return false;
16882 
16883 	reset_idmap_scratch(env);
16884 
16885 	/* Verification state from speculative execution simulation
16886 	 * must never prune a non-speculative execution one.
16887 	 */
16888 	if (old->speculative && !cur->speculative)
16889 		return false;
16890 
16891 	if (old->active_lock.ptr != cur->active_lock.ptr)
16892 		return false;
16893 
16894 	/* Old and cur active_lock's have to be either both present
16895 	 * or both absent.
16896 	 */
16897 	if (!!old->active_lock.id != !!cur->active_lock.id)
16898 		return false;
16899 
16900 	if (old->active_lock.id &&
16901 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16902 		return false;
16903 
16904 	if (old->active_rcu_lock != cur->active_rcu_lock)
16905 		return false;
16906 
16907 	/* for states to be equal callsites have to be the same
16908 	 * and all frame states need to be equivalent
16909 	 */
16910 	for (i = 0; i <= old->curframe; i++) {
16911 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16912 			return false;
16913 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16914 			return false;
16915 	}
16916 	return true;
16917 }
16918 
16919 /* Return 0 if no propagation happened. Return negative error code if error
16920  * happened. Otherwise, return the propagated bit.
16921  */
16922 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16923 				  struct bpf_reg_state *reg,
16924 				  struct bpf_reg_state *parent_reg)
16925 {
16926 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16927 	u8 flag = reg->live & REG_LIVE_READ;
16928 	int err;
16929 
16930 	/* When comes here, read flags of PARENT_REG or REG could be any of
16931 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16932 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16933 	 */
16934 	if (parent_flag == REG_LIVE_READ64 ||
16935 	    /* Or if there is no read flag from REG. */
16936 	    !flag ||
16937 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16938 	    parent_flag == flag)
16939 		return 0;
16940 
16941 	err = mark_reg_read(env, reg, parent_reg, flag);
16942 	if (err)
16943 		return err;
16944 
16945 	return flag;
16946 }
16947 
16948 /* A write screens off any subsequent reads; but write marks come from the
16949  * straight-line code between a state and its parent.  When we arrive at an
16950  * equivalent state (jump target or such) we didn't arrive by the straight-line
16951  * code, so read marks in the state must propagate to the parent regardless
16952  * of the state's write marks. That's what 'parent == state->parent' comparison
16953  * in mark_reg_read() is for.
16954  */
16955 static int propagate_liveness(struct bpf_verifier_env *env,
16956 			      const struct bpf_verifier_state *vstate,
16957 			      struct bpf_verifier_state *vparent)
16958 {
16959 	struct bpf_reg_state *state_reg, *parent_reg;
16960 	struct bpf_func_state *state, *parent;
16961 	int i, frame, err = 0;
16962 
16963 	if (vparent->curframe != vstate->curframe) {
16964 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16965 		     vparent->curframe, vstate->curframe);
16966 		return -EFAULT;
16967 	}
16968 	/* Propagate read liveness of registers... */
16969 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16970 	for (frame = 0; frame <= vstate->curframe; frame++) {
16971 		parent = vparent->frame[frame];
16972 		state = vstate->frame[frame];
16973 		parent_reg = parent->regs;
16974 		state_reg = state->regs;
16975 		/* We don't need to worry about FP liveness, it's read-only */
16976 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16977 			err = propagate_liveness_reg(env, &state_reg[i],
16978 						     &parent_reg[i]);
16979 			if (err < 0)
16980 				return err;
16981 			if (err == REG_LIVE_READ64)
16982 				mark_insn_zext(env, &parent_reg[i]);
16983 		}
16984 
16985 		/* Propagate stack slots. */
16986 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16987 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16988 			parent_reg = &parent->stack[i].spilled_ptr;
16989 			state_reg = &state->stack[i].spilled_ptr;
16990 			err = propagate_liveness_reg(env, state_reg,
16991 						     parent_reg);
16992 			if (err < 0)
16993 				return err;
16994 		}
16995 	}
16996 	return 0;
16997 }
16998 
16999 /* find precise scalars in the previous equivalent state and
17000  * propagate them into the current state
17001  */
17002 static int propagate_precision(struct bpf_verifier_env *env,
17003 			       const struct bpf_verifier_state *old)
17004 {
17005 	struct bpf_reg_state *state_reg;
17006 	struct bpf_func_state *state;
17007 	int i, err = 0, fr;
17008 	bool first;
17009 
17010 	for (fr = old->curframe; fr >= 0; fr--) {
17011 		state = old->frame[fr];
17012 		state_reg = state->regs;
17013 		first = true;
17014 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17015 			if (state_reg->type != SCALAR_VALUE ||
17016 			    !state_reg->precise ||
17017 			    !(state_reg->live & REG_LIVE_READ))
17018 				continue;
17019 			if (env->log.level & BPF_LOG_LEVEL2) {
17020 				if (first)
17021 					verbose(env, "frame %d: propagating r%d", fr, i);
17022 				else
17023 					verbose(env, ",r%d", i);
17024 			}
17025 			bt_set_frame_reg(&env->bt, fr, i);
17026 			first = false;
17027 		}
17028 
17029 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17030 			if (!is_spilled_reg(&state->stack[i]))
17031 				continue;
17032 			state_reg = &state->stack[i].spilled_ptr;
17033 			if (state_reg->type != SCALAR_VALUE ||
17034 			    !state_reg->precise ||
17035 			    !(state_reg->live & REG_LIVE_READ))
17036 				continue;
17037 			if (env->log.level & BPF_LOG_LEVEL2) {
17038 				if (first)
17039 					verbose(env, "frame %d: propagating fp%d",
17040 						fr, (-i - 1) * BPF_REG_SIZE);
17041 				else
17042 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17043 			}
17044 			bt_set_frame_slot(&env->bt, fr, i);
17045 			first = false;
17046 		}
17047 		if (!first)
17048 			verbose(env, "\n");
17049 	}
17050 
17051 	err = mark_chain_precision_batch(env);
17052 	if (err < 0)
17053 		return err;
17054 
17055 	return 0;
17056 }
17057 
17058 static bool states_maybe_looping(struct bpf_verifier_state *old,
17059 				 struct bpf_verifier_state *cur)
17060 {
17061 	struct bpf_func_state *fold, *fcur;
17062 	int i, fr = cur->curframe;
17063 
17064 	if (old->curframe != fr)
17065 		return false;
17066 
17067 	fold = old->frame[fr];
17068 	fcur = cur->frame[fr];
17069 	for (i = 0; i < MAX_BPF_REG; i++)
17070 		if (memcmp(&fold->regs[i], &fcur->regs[i],
17071 			   offsetof(struct bpf_reg_state, parent)))
17072 			return false;
17073 	return true;
17074 }
17075 
17076 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
17077 {
17078 	return env->insn_aux_data[insn_idx].is_iter_next;
17079 }
17080 
17081 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
17082  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
17083  * states to match, which otherwise would look like an infinite loop. So while
17084  * iter_next() calls are taken care of, we still need to be careful and
17085  * prevent erroneous and too eager declaration of "ininite loop", when
17086  * iterators are involved.
17087  *
17088  * Here's a situation in pseudo-BPF assembly form:
17089  *
17090  *   0: again:                          ; set up iter_next() call args
17091  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
17092  *   2:   call bpf_iter_num_next        ; this is iter_next() call
17093  *   3:   if r0 == 0 goto done
17094  *   4:   ... something useful here ...
17095  *   5:   goto again                    ; another iteration
17096  *   6: done:
17097  *   7:   r1 = &it
17098  *   8:   call bpf_iter_num_destroy     ; clean up iter state
17099  *   9:   exit
17100  *
17101  * This is a typical loop. Let's assume that we have a prune point at 1:,
17102  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
17103  * again`, assuming other heuristics don't get in a way).
17104  *
17105  * When we first time come to 1:, let's say we have some state X. We proceed
17106  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
17107  * Now we come back to validate that forked ACTIVE state. We proceed through
17108  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
17109  * are converging. But the problem is that we don't know that yet, as this
17110  * convergence has to happen at iter_next() call site only. So if nothing is
17111  * done, at 1: verifier will use bounded loop logic and declare infinite
17112  * looping (and would be *technically* correct, if not for iterator's
17113  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
17114  * don't want that. So what we do in process_iter_next_call() when we go on
17115  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
17116  * a different iteration. So when we suspect an infinite loop, we additionally
17117  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
17118  * pretend we are not looping and wait for next iter_next() call.
17119  *
17120  * This only applies to ACTIVE state. In DRAINED state we don't expect to
17121  * loop, because that would actually mean infinite loop, as DRAINED state is
17122  * "sticky", and so we'll keep returning into the same instruction with the
17123  * same state (at least in one of possible code paths).
17124  *
17125  * This approach allows to keep infinite loop heuristic even in the face of
17126  * active iterator. E.g., C snippet below is and will be detected as
17127  * inifintely looping:
17128  *
17129  *   struct bpf_iter_num it;
17130  *   int *p, x;
17131  *
17132  *   bpf_iter_num_new(&it, 0, 10);
17133  *   while ((p = bpf_iter_num_next(&t))) {
17134  *       x = p;
17135  *       while (x--) {} // <<-- infinite loop here
17136  *   }
17137  *
17138  */
17139 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
17140 {
17141 	struct bpf_reg_state *slot, *cur_slot;
17142 	struct bpf_func_state *state;
17143 	int i, fr;
17144 
17145 	for (fr = old->curframe; fr >= 0; fr--) {
17146 		state = old->frame[fr];
17147 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17148 			if (state->stack[i].slot_type[0] != STACK_ITER)
17149 				continue;
17150 
17151 			slot = &state->stack[i].spilled_ptr;
17152 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
17153 				continue;
17154 
17155 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17156 			if (cur_slot->iter.depth != slot->iter.depth)
17157 				return true;
17158 		}
17159 	}
17160 	return false;
17161 }
17162 
17163 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17164 {
17165 	struct bpf_verifier_state_list *new_sl;
17166 	struct bpf_verifier_state_list *sl, **pprev;
17167 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17168 	int i, j, n, err, states_cnt = 0;
17169 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
17170 	bool add_new_state = force_new_state;
17171 	bool force_exact;
17172 
17173 	/* bpf progs typically have pruning point every 4 instructions
17174 	 * http://vger.kernel.org/bpfconf2019.html#session-1
17175 	 * Do not add new state for future pruning if the verifier hasn't seen
17176 	 * at least 2 jumps and at least 8 instructions.
17177 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17178 	 * In tests that amounts to up to 50% reduction into total verifier
17179 	 * memory consumption and 20% verifier time speedup.
17180 	 */
17181 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17182 	    env->insn_processed - env->prev_insn_processed >= 8)
17183 		add_new_state = true;
17184 
17185 	pprev = explored_state(env, insn_idx);
17186 	sl = *pprev;
17187 
17188 	clean_live_states(env, insn_idx, cur);
17189 
17190 	while (sl) {
17191 		states_cnt++;
17192 		if (sl->state.insn_idx != insn_idx)
17193 			goto next;
17194 
17195 		if (sl->state.branches) {
17196 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17197 
17198 			if (frame->in_async_callback_fn &&
17199 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17200 				/* Different async_entry_cnt means that the verifier is
17201 				 * processing another entry into async callback.
17202 				 * Seeing the same state is not an indication of infinite
17203 				 * loop or infinite recursion.
17204 				 * But finding the same state doesn't mean that it's safe
17205 				 * to stop processing the current state. The previous state
17206 				 * hasn't yet reached bpf_exit, since state.branches > 0.
17207 				 * Checking in_async_callback_fn alone is not enough either.
17208 				 * Since the verifier still needs to catch infinite loops
17209 				 * inside async callbacks.
17210 				 */
17211 				goto skip_inf_loop_check;
17212 			}
17213 			/* BPF open-coded iterators loop detection is special.
17214 			 * states_maybe_looping() logic is too simplistic in detecting
17215 			 * states that *might* be equivalent, because it doesn't know
17216 			 * about ID remapping, so don't even perform it.
17217 			 * See process_iter_next_call() and iter_active_depths_differ()
17218 			 * for overview of the logic. When current and one of parent
17219 			 * states are detected as equivalent, it's a good thing: we prove
17220 			 * convergence and can stop simulating further iterations.
17221 			 * It's safe to assume that iterator loop will finish, taking into
17222 			 * account iter_next() contract of eventually returning
17223 			 * sticky NULL result.
17224 			 *
17225 			 * Note, that states have to be compared exactly in this case because
17226 			 * read and precision marks might not be finalized inside the loop.
17227 			 * E.g. as in the program below:
17228 			 *
17229 			 *     1. r7 = -16
17230 			 *     2. r6 = bpf_get_prandom_u32()
17231 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17232 			 *     4.   if (r6 != 42) {
17233 			 *     5.     r7 = -32
17234 			 *     6.     r6 = bpf_get_prandom_u32()
17235 			 *     7.     continue
17236 			 *     8.   }
17237 			 *     9.   r0 = r10
17238 			 *    10.   r0 += r7
17239 			 *    11.   r8 = *(u64 *)(r0 + 0)
17240 			 *    12.   r6 = bpf_get_prandom_u32()
17241 			 *    13. }
17242 			 *
17243 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17244 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17245 			 * not have read or precision mark for r7 yet, thus inexact states
17246 			 * comparison would discard current state with r7=-32
17247 			 * => unsafe memory access at 11 would not be caught.
17248 			 */
17249 			if (is_iter_next_insn(env, insn_idx)) {
17250 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17251 					struct bpf_func_state *cur_frame;
17252 					struct bpf_reg_state *iter_state, *iter_reg;
17253 					int spi;
17254 
17255 					cur_frame = cur->frame[cur->curframe];
17256 					/* btf_check_iter_kfuncs() enforces that
17257 					 * iter state pointer is always the first arg
17258 					 */
17259 					iter_reg = &cur_frame->regs[BPF_REG_1];
17260 					/* current state is valid due to states_equal(),
17261 					 * so we can assume valid iter and reg state,
17262 					 * no need for extra (re-)validations
17263 					 */
17264 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17265 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17266 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17267 						update_loop_entry(cur, &sl->state);
17268 						goto hit;
17269 					}
17270 				}
17271 				goto skip_inf_loop_check;
17272 			}
17273 			if (is_may_goto_insn_at(env, insn_idx)) {
17274 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17275 					update_loop_entry(cur, &sl->state);
17276 					goto hit;
17277 				}
17278 				goto skip_inf_loop_check;
17279 			}
17280 			if (calls_callback(env, insn_idx)) {
17281 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
17282 					goto hit;
17283 				goto skip_inf_loop_check;
17284 			}
17285 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17286 			if (states_maybe_looping(&sl->state, cur) &&
17287 			    states_equal(env, &sl->state, cur, EXACT) &&
17288 			    !iter_active_depths_differ(&sl->state, cur) &&
17289 			    sl->state.may_goto_depth == cur->may_goto_depth &&
17290 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
17291 				verbose_linfo(env, insn_idx, "; ");
17292 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
17293 				verbose(env, "cur state:");
17294 				print_verifier_state(env, cur->frame[cur->curframe], true);
17295 				verbose(env, "old state:");
17296 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17297 				return -EINVAL;
17298 			}
17299 			/* if the verifier is processing a loop, avoid adding new state
17300 			 * too often, since different loop iterations have distinct
17301 			 * states and may not help future pruning.
17302 			 * This threshold shouldn't be too low to make sure that
17303 			 * a loop with large bound will be rejected quickly.
17304 			 * The most abusive loop will be:
17305 			 * r1 += 1
17306 			 * if r1 < 1000000 goto pc-2
17307 			 * 1M insn_procssed limit / 100 == 10k peak states.
17308 			 * This threshold shouldn't be too high either, since states
17309 			 * at the end of the loop are likely to be useful in pruning.
17310 			 */
17311 skip_inf_loop_check:
17312 			if (!force_new_state &&
17313 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17314 			    env->insn_processed - env->prev_insn_processed < 100)
17315 				add_new_state = false;
17316 			goto miss;
17317 		}
17318 		/* If sl->state is a part of a loop and this loop's entry is a part of
17319 		 * current verification path then states have to be compared exactly.
17320 		 * 'force_exact' is needed to catch the following case:
17321 		 *
17322 		 *                initial     Here state 'succ' was processed first,
17323 		 *                  |         it was eventually tracked to produce a
17324 		 *                  V         state identical to 'hdr'.
17325 		 *     .---------> hdr        All branches from 'succ' had been explored
17326 		 *     |            |         and thus 'succ' has its .branches == 0.
17327 		 *     |            V
17328 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17329 		 *     |    |       |         to the same instruction + callsites.
17330 		 *     |    V       V         In such case it is necessary to check
17331 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17332 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17333 		 *     |    V       V         same loop exact flag has to be set.
17334 		 *     |   succ <- cur        To check if that is the case, verify
17335 		 *     |    |                 if loop entry of 'succ' is in current
17336 		 *     |    V                 DFS path.
17337 		 *     |   ...
17338 		 *     |    |
17339 		 *     '----'
17340 		 *
17341 		 * Additional details are in the comment before get_loop_entry().
17342 		 */
17343 		loop_entry = get_loop_entry(&sl->state);
17344 		force_exact = loop_entry && loop_entry->branches > 0;
17345 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
17346 			if (force_exact)
17347 				update_loop_entry(cur, loop_entry);
17348 hit:
17349 			sl->hit_cnt++;
17350 			/* reached equivalent register/stack state,
17351 			 * prune the search.
17352 			 * Registers read by the continuation are read by us.
17353 			 * If we have any write marks in env->cur_state, they
17354 			 * will prevent corresponding reads in the continuation
17355 			 * from reaching our parent (an explored_state).  Our
17356 			 * own state will get the read marks recorded, but
17357 			 * they'll be immediately forgotten as we're pruning
17358 			 * this state and will pop a new one.
17359 			 */
17360 			err = propagate_liveness(env, &sl->state, cur);
17361 
17362 			/* if previous state reached the exit with precision and
17363 			 * current state is equivalent to it (except precsion marks)
17364 			 * the precision needs to be propagated back in
17365 			 * the current state.
17366 			 */
17367 			if (is_jmp_point(env, env->insn_idx))
17368 				err = err ? : push_jmp_history(env, cur, 0);
17369 			err = err ? : propagate_precision(env, &sl->state);
17370 			if (err)
17371 				return err;
17372 			return 1;
17373 		}
17374 miss:
17375 		/* when new state is not going to be added do not increase miss count.
17376 		 * Otherwise several loop iterations will remove the state
17377 		 * recorded earlier. The goal of these heuristics is to have
17378 		 * states from some iterations of the loop (some in the beginning
17379 		 * and some at the end) to help pruning.
17380 		 */
17381 		if (add_new_state)
17382 			sl->miss_cnt++;
17383 		/* heuristic to determine whether this state is beneficial
17384 		 * to keep checking from state equivalence point of view.
17385 		 * Higher numbers increase max_states_per_insn and verification time,
17386 		 * but do not meaningfully decrease insn_processed.
17387 		 * 'n' controls how many times state could miss before eviction.
17388 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17389 		 * too early would hinder iterator convergence.
17390 		 */
17391 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17392 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17393 			/* the state is unlikely to be useful. Remove it to
17394 			 * speed up verification
17395 			 */
17396 			*pprev = sl->next;
17397 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17398 			    !sl->state.used_as_loop_entry) {
17399 				u32 br = sl->state.branches;
17400 
17401 				WARN_ONCE(br,
17402 					  "BUG live_done but branches_to_explore %d\n",
17403 					  br);
17404 				free_verifier_state(&sl->state, false);
17405 				kfree(sl);
17406 				env->peak_states--;
17407 			} else {
17408 				/* cannot free this state, since parentage chain may
17409 				 * walk it later. Add it for free_list instead to
17410 				 * be freed at the end of verification
17411 				 */
17412 				sl->next = env->free_list;
17413 				env->free_list = sl;
17414 			}
17415 			sl = *pprev;
17416 			continue;
17417 		}
17418 next:
17419 		pprev = &sl->next;
17420 		sl = *pprev;
17421 	}
17422 
17423 	if (env->max_states_per_insn < states_cnt)
17424 		env->max_states_per_insn = states_cnt;
17425 
17426 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17427 		return 0;
17428 
17429 	if (!add_new_state)
17430 		return 0;
17431 
17432 	/* There were no equivalent states, remember the current one.
17433 	 * Technically the current state is not proven to be safe yet,
17434 	 * but it will either reach outer most bpf_exit (which means it's safe)
17435 	 * or it will be rejected. When there are no loops the verifier won't be
17436 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17437 	 * again on the way to bpf_exit.
17438 	 * When looping the sl->state.branches will be > 0 and this state
17439 	 * will not be considered for equivalence until branches == 0.
17440 	 */
17441 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17442 	if (!new_sl)
17443 		return -ENOMEM;
17444 	env->total_states++;
17445 	env->peak_states++;
17446 	env->prev_jmps_processed = env->jmps_processed;
17447 	env->prev_insn_processed = env->insn_processed;
17448 
17449 	/* forget precise markings we inherited, see __mark_chain_precision */
17450 	if (env->bpf_capable)
17451 		mark_all_scalars_imprecise(env, cur);
17452 
17453 	/* add new state to the head of linked list */
17454 	new = &new_sl->state;
17455 	err = copy_verifier_state(new, cur);
17456 	if (err) {
17457 		free_verifier_state(new, false);
17458 		kfree(new_sl);
17459 		return err;
17460 	}
17461 	new->insn_idx = insn_idx;
17462 	WARN_ONCE(new->branches != 1,
17463 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17464 
17465 	cur->parent = new;
17466 	cur->first_insn_idx = insn_idx;
17467 	cur->dfs_depth = new->dfs_depth + 1;
17468 	clear_jmp_history(cur);
17469 	new_sl->next = *explored_state(env, insn_idx);
17470 	*explored_state(env, insn_idx) = new_sl;
17471 	/* connect new state to parentage chain. Current frame needs all
17472 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17473 	 * to the stack implicitly by JITs) so in callers' frames connect just
17474 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17475 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17476 	 * from callee with its full parentage chain, anyway.
17477 	 */
17478 	/* clear write marks in current state: the writes we did are not writes
17479 	 * our child did, so they don't screen off its reads from us.
17480 	 * (There are no read marks in current state, because reads always mark
17481 	 * their parent and current state never has children yet.  Only
17482 	 * explored_states can get read marks.)
17483 	 */
17484 	for (j = 0; j <= cur->curframe; j++) {
17485 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17486 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17487 		for (i = 0; i < BPF_REG_FP; i++)
17488 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17489 	}
17490 
17491 	/* all stack frames are accessible from callee, clear them all */
17492 	for (j = 0; j <= cur->curframe; j++) {
17493 		struct bpf_func_state *frame = cur->frame[j];
17494 		struct bpf_func_state *newframe = new->frame[j];
17495 
17496 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17497 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17498 			frame->stack[i].spilled_ptr.parent =
17499 						&newframe->stack[i].spilled_ptr;
17500 		}
17501 	}
17502 	return 0;
17503 }
17504 
17505 /* Return true if it's OK to have the same insn return a different type. */
17506 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17507 {
17508 	switch (base_type(type)) {
17509 	case PTR_TO_CTX:
17510 	case PTR_TO_SOCKET:
17511 	case PTR_TO_SOCK_COMMON:
17512 	case PTR_TO_TCP_SOCK:
17513 	case PTR_TO_XDP_SOCK:
17514 	case PTR_TO_BTF_ID:
17515 	case PTR_TO_ARENA:
17516 		return false;
17517 	default:
17518 		return true;
17519 	}
17520 }
17521 
17522 /* If an instruction was previously used with particular pointer types, then we
17523  * need to be careful to avoid cases such as the below, where it may be ok
17524  * for one branch accessing the pointer, but not ok for the other branch:
17525  *
17526  * R1 = sock_ptr
17527  * goto X;
17528  * ...
17529  * R1 = some_other_valid_ptr;
17530  * goto X;
17531  * ...
17532  * R2 = *(u32 *)(R1 + 0);
17533  */
17534 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17535 {
17536 	return src != prev && (!reg_type_mismatch_ok(src) ||
17537 			       !reg_type_mismatch_ok(prev));
17538 }
17539 
17540 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17541 			     bool allow_trust_missmatch)
17542 {
17543 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17544 
17545 	if (*prev_type == NOT_INIT) {
17546 		/* Saw a valid insn
17547 		 * dst_reg = *(u32 *)(src_reg + off)
17548 		 * save type to validate intersecting paths
17549 		 */
17550 		*prev_type = type;
17551 	} else if (reg_type_mismatch(type, *prev_type)) {
17552 		/* Abuser program is trying to use the same insn
17553 		 * dst_reg = *(u32*) (src_reg + off)
17554 		 * with different pointer types:
17555 		 * src_reg == ctx in one branch and
17556 		 * src_reg == stack|map in some other branch.
17557 		 * Reject it.
17558 		 */
17559 		if (allow_trust_missmatch &&
17560 		    base_type(type) == PTR_TO_BTF_ID &&
17561 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17562 			/*
17563 			 * Have to support a use case when one path through
17564 			 * the program yields TRUSTED pointer while another
17565 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17566 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17567 			 */
17568 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17569 		} else {
17570 			verbose(env, "same insn cannot be used with different pointers\n");
17571 			return -EINVAL;
17572 		}
17573 	}
17574 
17575 	return 0;
17576 }
17577 
17578 static int do_check(struct bpf_verifier_env *env)
17579 {
17580 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17581 	struct bpf_verifier_state *state = env->cur_state;
17582 	struct bpf_insn *insns = env->prog->insnsi;
17583 	struct bpf_reg_state *regs;
17584 	int insn_cnt = env->prog->len;
17585 	bool do_print_state = false;
17586 	int prev_insn_idx = -1;
17587 
17588 	for (;;) {
17589 		bool exception_exit = false;
17590 		struct bpf_insn *insn;
17591 		u8 class;
17592 		int err;
17593 
17594 		/* reset current history entry on each new instruction */
17595 		env->cur_hist_ent = NULL;
17596 
17597 		env->prev_insn_idx = prev_insn_idx;
17598 		if (env->insn_idx >= insn_cnt) {
17599 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17600 				env->insn_idx, insn_cnt);
17601 			return -EFAULT;
17602 		}
17603 
17604 		insn = &insns[env->insn_idx];
17605 		class = BPF_CLASS(insn->code);
17606 
17607 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17608 			verbose(env,
17609 				"BPF program is too large. Processed %d insn\n",
17610 				env->insn_processed);
17611 			return -E2BIG;
17612 		}
17613 
17614 		state->last_insn_idx = env->prev_insn_idx;
17615 
17616 		if (is_prune_point(env, env->insn_idx)) {
17617 			err = is_state_visited(env, env->insn_idx);
17618 			if (err < 0)
17619 				return err;
17620 			if (err == 1) {
17621 				/* found equivalent state, can prune the search */
17622 				if (env->log.level & BPF_LOG_LEVEL) {
17623 					if (do_print_state)
17624 						verbose(env, "\nfrom %d to %d%s: safe\n",
17625 							env->prev_insn_idx, env->insn_idx,
17626 							env->cur_state->speculative ?
17627 							" (speculative execution)" : "");
17628 					else
17629 						verbose(env, "%d: safe\n", env->insn_idx);
17630 				}
17631 				goto process_bpf_exit;
17632 			}
17633 		}
17634 
17635 		if (is_jmp_point(env, env->insn_idx)) {
17636 			err = push_jmp_history(env, state, 0);
17637 			if (err)
17638 				return err;
17639 		}
17640 
17641 		if (signal_pending(current))
17642 			return -EAGAIN;
17643 
17644 		if (need_resched())
17645 			cond_resched();
17646 
17647 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17648 			verbose(env, "\nfrom %d to %d%s:",
17649 				env->prev_insn_idx, env->insn_idx,
17650 				env->cur_state->speculative ?
17651 				" (speculative execution)" : "");
17652 			print_verifier_state(env, state->frame[state->curframe], true);
17653 			do_print_state = false;
17654 		}
17655 
17656 		if (env->log.level & BPF_LOG_LEVEL) {
17657 			const struct bpf_insn_cbs cbs = {
17658 				.cb_call	= disasm_kfunc_name,
17659 				.cb_print	= verbose,
17660 				.private_data	= env,
17661 			};
17662 
17663 			if (verifier_state_scratched(env))
17664 				print_insn_state(env, state->frame[state->curframe]);
17665 
17666 			verbose_linfo(env, env->insn_idx, "; ");
17667 			env->prev_log_pos = env->log.end_pos;
17668 			verbose(env, "%d: ", env->insn_idx);
17669 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17670 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17671 			env->prev_log_pos = env->log.end_pos;
17672 		}
17673 
17674 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17675 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17676 							   env->prev_insn_idx);
17677 			if (err)
17678 				return err;
17679 		}
17680 
17681 		regs = cur_regs(env);
17682 		sanitize_mark_insn_seen(env);
17683 		prev_insn_idx = env->insn_idx;
17684 
17685 		if (class == BPF_ALU || class == BPF_ALU64) {
17686 			err = check_alu_op(env, insn);
17687 			if (err)
17688 				return err;
17689 
17690 		} else if (class == BPF_LDX) {
17691 			enum bpf_reg_type src_reg_type;
17692 
17693 			/* check for reserved fields is already done */
17694 
17695 			/* check src operand */
17696 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17697 			if (err)
17698 				return err;
17699 
17700 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17701 			if (err)
17702 				return err;
17703 
17704 			src_reg_type = regs[insn->src_reg].type;
17705 
17706 			/* check that memory (src_reg + off) is readable,
17707 			 * the state of dst_reg will be updated by this func
17708 			 */
17709 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17710 					       insn->off, BPF_SIZE(insn->code),
17711 					       BPF_READ, insn->dst_reg, false,
17712 					       BPF_MODE(insn->code) == BPF_MEMSX);
17713 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17714 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17715 			if (err)
17716 				return err;
17717 		} else if (class == BPF_STX) {
17718 			enum bpf_reg_type dst_reg_type;
17719 
17720 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17721 				err = check_atomic(env, env->insn_idx, insn);
17722 				if (err)
17723 					return err;
17724 				env->insn_idx++;
17725 				continue;
17726 			}
17727 
17728 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17729 				verbose(env, "BPF_STX uses reserved fields\n");
17730 				return -EINVAL;
17731 			}
17732 
17733 			/* check src1 operand */
17734 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17735 			if (err)
17736 				return err;
17737 			/* check src2 operand */
17738 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17739 			if (err)
17740 				return err;
17741 
17742 			dst_reg_type = regs[insn->dst_reg].type;
17743 
17744 			/* check that memory (dst_reg + off) is writeable */
17745 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17746 					       insn->off, BPF_SIZE(insn->code),
17747 					       BPF_WRITE, insn->src_reg, false, false);
17748 			if (err)
17749 				return err;
17750 
17751 			err = save_aux_ptr_type(env, dst_reg_type, false);
17752 			if (err)
17753 				return err;
17754 		} else if (class == BPF_ST) {
17755 			enum bpf_reg_type dst_reg_type;
17756 
17757 			if (BPF_MODE(insn->code) != BPF_MEM ||
17758 			    insn->src_reg != BPF_REG_0) {
17759 				verbose(env, "BPF_ST uses reserved fields\n");
17760 				return -EINVAL;
17761 			}
17762 			/* check src operand */
17763 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17764 			if (err)
17765 				return err;
17766 
17767 			dst_reg_type = regs[insn->dst_reg].type;
17768 
17769 			/* check that memory (dst_reg + off) is writeable */
17770 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17771 					       insn->off, BPF_SIZE(insn->code),
17772 					       BPF_WRITE, -1, false, false);
17773 			if (err)
17774 				return err;
17775 
17776 			err = save_aux_ptr_type(env, dst_reg_type, false);
17777 			if (err)
17778 				return err;
17779 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17780 			u8 opcode = BPF_OP(insn->code);
17781 
17782 			env->jmps_processed++;
17783 			if (opcode == BPF_CALL) {
17784 				if (BPF_SRC(insn->code) != BPF_K ||
17785 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17786 				     && insn->off != 0) ||
17787 				    (insn->src_reg != BPF_REG_0 &&
17788 				     insn->src_reg != BPF_PSEUDO_CALL &&
17789 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17790 				    insn->dst_reg != BPF_REG_0 ||
17791 				    class == BPF_JMP32) {
17792 					verbose(env, "BPF_CALL uses reserved fields\n");
17793 					return -EINVAL;
17794 				}
17795 
17796 				if (env->cur_state->active_lock.ptr) {
17797 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17798 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17799 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17800 						verbose(env, "function calls are not allowed while holding a lock\n");
17801 						return -EINVAL;
17802 					}
17803 				}
17804 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17805 					err = check_func_call(env, insn, &env->insn_idx);
17806 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17807 					err = check_kfunc_call(env, insn, &env->insn_idx);
17808 					if (!err && is_bpf_throw_kfunc(insn)) {
17809 						exception_exit = true;
17810 						goto process_bpf_exit_full;
17811 					}
17812 				} else {
17813 					err = check_helper_call(env, insn, &env->insn_idx);
17814 				}
17815 				if (err)
17816 					return err;
17817 
17818 				mark_reg_scratched(env, BPF_REG_0);
17819 			} else if (opcode == BPF_JA) {
17820 				if (BPF_SRC(insn->code) != BPF_K ||
17821 				    insn->src_reg != BPF_REG_0 ||
17822 				    insn->dst_reg != BPF_REG_0 ||
17823 				    (class == BPF_JMP && insn->imm != 0) ||
17824 				    (class == BPF_JMP32 && insn->off != 0)) {
17825 					verbose(env, "BPF_JA uses reserved fields\n");
17826 					return -EINVAL;
17827 				}
17828 
17829 				if (class == BPF_JMP)
17830 					env->insn_idx += insn->off + 1;
17831 				else
17832 					env->insn_idx += insn->imm + 1;
17833 				continue;
17834 
17835 			} else if (opcode == BPF_EXIT) {
17836 				if (BPF_SRC(insn->code) != BPF_K ||
17837 				    insn->imm != 0 ||
17838 				    insn->src_reg != BPF_REG_0 ||
17839 				    insn->dst_reg != BPF_REG_0 ||
17840 				    class == BPF_JMP32) {
17841 					verbose(env, "BPF_EXIT uses reserved fields\n");
17842 					return -EINVAL;
17843 				}
17844 process_bpf_exit_full:
17845 				if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
17846 					verbose(env, "bpf_spin_unlock is missing\n");
17847 					return -EINVAL;
17848 				}
17849 
17850 				if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
17851 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17852 					return -EINVAL;
17853 				}
17854 
17855 				/* We must do check_reference_leak here before
17856 				 * prepare_func_exit to handle the case when
17857 				 * state->curframe > 0, it may be a callback
17858 				 * function, for which reference_state must
17859 				 * match caller reference state when it exits.
17860 				 */
17861 				err = check_reference_leak(env, exception_exit);
17862 				if (err)
17863 					return err;
17864 
17865 				/* The side effect of the prepare_func_exit
17866 				 * which is being skipped is that it frees
17867 				 * bpf_func_state. Typically, process_bpf_exit
17868 				 * will only be hit with outermost exit.
17869 				 * copy_verifier_state in pop_stack will handle
17870 				 * freeing of any extra bpf_func_state left over
17871 				 * from not processing all nested function
17872 				 * exits. We also skip return code checks as
17873 				 * they are not needed for exceptional exits.
17874 				 */
17875 				if (exception_exit)
17876 					goto process_bpf_exit;
17877 
17878 				if (state->curframe) {
17879 					/* exit from nested function */
17880 					err = prepare_func_exit(env, &env->insn_idx);
17881 					if (err)
17882 						return err;
17883 					do_print_state = true;
17884 					continue;
17885 				}
17886 
17887 				err = check_return_code(env, BPF_REG_0, "R0");
17888 				if (err)
17889 					return err;
17890 process_bpf_exit:
17891 				mark_verifier_state_scratched(env);
17892 				update_branch_counts(env, env->cur_state);
17893 				err = pop_stack(env, &prev_insn_idx,
17894 						&env->insn_idx, pop_log);
17895 				if (err < 0) {
17896 					if (err != -ENOENT)
17897 						return err;
17898 					break;
17899 				} else {
17900 					do_print_state = true;
17901 					continue;
17902 				}
17903 			} else {
17904 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17905 				if (err)
17906 					return err;
17907 			}
17908 		} else if (class == BPF_LD) {
17909 			u8 mode = BPF_MODE(insn->code);
17910 
17911 			if (mode == BPF_ABS || mode == BPF_IND) {
17912 				err = check_ld_abs(env, insn);
17913 				if (err)
17914 					return err;
17915 
17916 			} else if (mode == BPF_IMM) {
17917 				err = check_ld_imm(env, insn);
17918 				if (err)
17919 					return err;
17920 
17921 				env->insn_idx++;
17922 				sanitize_mark_insn_seen(env);
17923 			} else {
17924 				verbose(env, "invalid BPF_LD mode\n");
17925 				return -EINVAL;
17926 			}
17927 		} else {
17928 			verbose(env, "unknown insn class %d\n", class);
17929 			return -EINVAL;
17930 		}
17931 
17932 		env->insn_idx++;
17933 	}
17934 
17935 	return 0;
17936 }
17937 
17938 static int find_btf_percpu_datasec(struct btf *btf)
17939 {
17940 	const struct btf_type *t;
17941 	const char *tname;
17942 	int i, n;
17943 
17944 	/*
17945 	 * Both vmlinux and module each have their own ".data..percpu"
17946 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17947 	 * types to look at only module's own BTF types.
17948 	 */
17949 	n = btf_nr_types(btf);
17950 	if (btf_is_module(btf))
17951 		i = btf_nr_types(btf_vmlinux);
17952 	else
17953 		i = 1;
17954 
17955 	for(; i < n; i++) {
17956 		t = btf_type_by_id(btf, i);
17957 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17958 			continue;
17959 
17960 		tname = btf_name_by_offset(btf, t->name_off);
17961 		if (!strcmp(tname, ".data..percpu"))
17962 			return i;
17963 	}
17964 
17965 	return -ENOENT;
17966 }
17967 
17968 /* replace pseudo btf_id with kernel symbol address */
17969 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17970 			       struct bpf_insn *insn,
17971 			       struct bpf_insn_aux_data *aux)
17972 {
17973 	const struct btf_var_secinfo *vsi;
17974 	const struct btf_type *datasec;
17975 	struct btf_mod_pair *btf_mod;
17976 	const struct btf_type *t;
17977 	const char *sym_name;
17978 	bool percpu = false;
17979 	u32 type, id = insn->imm;
17980 	struct btf *btf;
17981 	s32 datasec_id;
17982 	u64 addr;
17983 	int i, btf_fd, err;
17984 
17985 	btf_fd = insn[1].imm;
17986 	if (btf_fd) {
17987 		btf = btf_get_by_fd(btf_fd);
17988 		if (IS_ERR(btf)) {
17989 			verbose(env, "invalid module BTF object FD specified.\n");
17990 			return -EINVAL;
17991 		}
17992 	} else {
17993 		if (!btf_vmlinux) {
17994 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17995 			return -EINVAL;
17996 		}
17997 		btf = btf_vmlinux;
17998 		btf_get(btf);
17999 	}
18000 
18001 	t = btf_type_by_id(btf, id);
18002 	if (!t) {
18003 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18004 		err = -ENOENT;
18005 		goto err_put;
18006 	}
18007 
18008 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18009 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18010 		err = -EINVAL;
18011 		goto err_put;
18012 	}
18013 
18014 	sym_name = btf_name_by_offset(btf, t->name_off);
18015 	addr = kallsyms_lookup_name(sym_name);
18016 	if (!addr) {
18017 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18018 			sym_name);
18019 		err = -ENOENT;
18020 		goto err_put;
18021 	}
18022 	insn[0].imm = (u32)addr;
18023 	insn[1].imm = addr >> 32;
18024 
18025 	if (btf_type_is_func(t)) {
18026 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18027 		aux->btf_var.mem_size = 0;
18028 		goto check_btf;
18029 	}
18030 
18031 	datasec_id = find_btf_percpu_datasec(btf);
18032 	if (datasec_id > 0) {
18033 		datasec = btf_type_by_id(btf, datasec_id);
18034 		for_each_vsi(i, datasec, vsi) {
18035 			if (vsi->type == id) {
18036 				percpu = true;
18037 				break;
18038 			}
18039 		}
18040 	}
18041 
18042 	type = t->type;
18043 	t = btf_type_skip_modifiers(btf, type, NULL);
18044 	if (percpu) {
18045 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18046 		aux->btf_var.btf = btf;
18047 		aux->btf_var.btf_id = type;
18048 	} else if (!btf_type_is_struct(t)) {
18049 		const struct btf_type *ret;
18050 		const char *tname;
18051 		u32 tsize;
18052 
18053 		/* resolve the type size of ksym. */
18054 		ret = btf_resolve_size(btf, t, &tsize);
18055 		if (IS_ERR(ret)) {
18056 			tname = btf_name_by_offset(btf, t->name_off);
18057 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
18058 				tname, PTR_ERR(ret));
18059 			err = -EINVAL;
18060 			goto err_put;
18061 		}
18062 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18063 		aux->btf_var.mem_size = tsize;
18064 	} else {
18065 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
18066 		aux->btf_var.btf = btf;
18067 		aux->btf_var.btf_id = type;
18068 	}
18069 check_btf:
18070 	/* check whether we recorded this BTF (and maybe module) already */
18071 	for (i = 0; i < env->used_btf_cnt; i++) {
18072 		if (env->used_btfs[i].btf == btf) {
18073 			btf_put(btf);
18074 			return 0;
18075 		}
18076 	}
18077 
18078 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
18079 		err = -E2BIG;
18080 		goto err_put;
18081 	}
18082 
18083 	btf_mod = &env->used_btfs[env->used_btf_cnt];
18084 	btf_mod->btf = btf;
18085 	btf_mod->module = NULL;
18086 
18087 	/* if we reference variables from kernel module, bump its refcount */
18088 	if (btf_is_module(btf)) {
18089 		btf_mod->module = btf_try_get_module(btf);
18090 		if (!btf_mod->module) {
18091 			err = -ENXIO;
18092 			goto err_put;
18093 		}
18094 	}
18095 
18096 	env->used_btf_cnt++;
18097 
18098 	return 0;
18099 err_put:
18100 	btf_put(btf);
18101 	return err;
18102 }
18103 
18104 static bool is_tracing_prog_type(enum bpf_prog_type type)
18105 {
18106 	switch (type) {
18107 	case BPF_PROG_TYPE_KPROBE:
18108 	case BPF_PROG_TYPE_TRACEPOINT:
18109 	case BPF_PROG_TYPE_PERF_EVENT:
18110 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
18111 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
18112 		return true;
18113 	default:
18114 		return false;
18115 	}
18116 }
18117 
18118 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
18119 					struct bpf_map *map,
18120 					struct bpf_prog *prog)
18121 
18122 {
18123 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18124 
18125 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
18126 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
18127 		if (is_tracing_prog_type(prog_type)) {
18128 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
18129 			return -EINVAL;
18130 		}
18131 	}
18132 
18133 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
18134 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
18135 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
18136 			return -EINVAL;
18137 		}
18138 
18139 		if (is_tracing_prog_type(prog_type)) {
18140 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
18141 			return -EINVAL;
18142 		}
18143 	}
18144 
18145 	if (btf_record_has_field(map->record, BPF_TIMER)) {
18146 		if (is_tracing_prog_type(prog_type)) {
18147 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
18148 			return -EINVAL;
18149 		}
18150 	}
18151 
18152 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
18153 	    !bpf_offload_prog_map_match(prog, map)) {
18154 		verbose(env, "offload device mismatch between prog and map\n");
18155 		return -EINVAL;
18156 	}
18157 
18158 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
18159 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
18160 		return -EINVAL;
18161 	}
18162 
18163 	if (prog->sleepable)
18164 		switch (map->map_type) {
18165 		case BPF_MAP_TYPE_HASH:
18166 		case BPF_MAP_TYPE_LRU_HASH:
18167 		case BPF_MAP_TYPE_ARRAY:
18168 		case BPF_MAP_TYPE_PERCPU_HASH:
18169 		case BPF_MAP_TYPE_PERCPU_ARRAY:
18170 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18171 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18172 		case BPF_MAP_TYPE_HASH_OF_MAPS:
18173 		case BPF_MAP_TYPE_RINGBUF:
18174 		case BPF_MAP_TYPE_USER_RINGBUF:
18175 		case BPF_MAP_TYPE_INODE_STORAGE:
18176 		case BPF_MAP_TYPE_SK_STORAGE:
18177 		case BPF_MAP_TYPE_TASK_STORAGE:
18178 		case BPF_MAP_TYPE_CGRP_STORAGE:
18179 		case BPF_MAP_TYPE_QUEUE:
18180 		case BPF_MAP_TYPE_STACK:
18181 		case BPF_MAP_TYPE_ARENA:
18182 			break;
18183 		default:
18184 			verbose(env,
18185 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18186 			return -EINVAL;
18187 		}
18188 
18189 	return 0;
18190 }
18191 
18192 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18193 {
18194 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18195 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18196 }
18197 
18198 /* find and rewrite pseudo imm in ld_imm64 instructions:
18199  *
18200  * 1. if it accesses map FD, replace it with actual map pointer.
18201  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18202  *
18203  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18204  */
18205 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18206 {
18207 	struct bpf_insn *insn = env->prog->insnsi;
18208 	int insn_cnt = env->prog->len;
18209 	int i, j, err;
18210 
18211 	err = bpf_prog_calc_tag(env->prog);
18212 	if (err)
18213 		return err;
18214 
18215 	for (i = 0; i < insn_cnt; i++, insn++) {
18216 		if (BPF_CLASS(insn->code) == BPF_LDX &&
18217 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18218 		    insn->imm != 0)) {
18219 			verbose(env, "BPF_LDX uses reserved fields\n");
18220 			return -EINVAL;
18221 		}
18222 
18223 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18224 			struct bpf_insn_aux_data *aux;
18225 			struct bpf_map *map;
18226 			struct fd f;
18227 			u64 addr;
18228 			u32 fd;
18229 
18230 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
18231 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
18232 			    insn[1].off != 0) {
18233 				verbose(env, "invalid bpf_ld_imm64 insn\n");
18234 				return -EINVAL;
18235 			}
18236 
18237 			if (insn[0].src_reg == 0)
18238 				/* valid generic load 64-bit imm */
18239 				goto next_insn;
18240 
18241 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
18242 				aux = &env->insn_aux_data[i];
18243 				err = check_pseudo_btf_id(env, insn, aux);
18244 				if (err)
18245 					return err;
18246 				goto next_insn;
18247 			}
18248 
18249 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
18250 				aux = &env->insn_aux_data[i];
18251 				aux->ptr_type = PTR_TO_FUNC;
18252 				goto next_insn;
18253 			}
18254 
18255 			/* In final convert_pseudo_ld_imm64() step, this is
18256 			 * converted into regular 64-bit imm load insn.
18257 			 */
18258 			switch (insn[0].src_reg) {
18259 			case BPF_PSEUDO_MAP_VALUE:
18260 			case BPF_PSEUDO_MAP_IDX_VALUE:
18261 				break;
18262 			case BPF_PSEUDO_MAP_FD:
18263 			case BPF_PSEUDO_MAP_IDX:
18264 				if (insn[1].imm == 0)
18265 					break;
18266 				fallthrough;
18267 			default:
18268 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
18269 				return -EINVAL;
18270 			}
18271 
18272 			switch (insn[0].src_reg) {
18273 			case BPF_PSEUDO_MAP_IDX_VALUE:
18274 			case BPF_PSEUDO_MAP_IDX:
18275 				if (bpfptr_is_null(env->fd_array)) {
18276 					verbose(env, "fd_idx without fd_array is invalid\n");
18277 					return -EPROTO;
18278 				}
18279 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
18280 							    insn[0].imm * sizeof(fd),
18281 							    sizeof(fd)))
18282 					return -EFAULT;
18283 				break;
18284 			default:
18285 				fd = insn[0].imm;
18286 				break;
18287 			}
18288 
18289 			f = fdget(fd);
18290 			map = __bpf_map_get(f);
18291 			if (IS_ERR(map)) {
18292 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
18293 					insn[0].imm);
18294 				return PTR_ERR(map);
18295 			}
18296 
18297 			err = check_map_prog_compatibility(env, map, env->prog);
18298 			if (err) {
18299 				fdput(f);
18300 				return err;
18301 			}
18302 
18303 			aux = &env->insn_aux_data[i];
18304 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18305 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18306 				addr = (unsigned long)map;
18307 			} else {
18308 				u32 off = insn[1].imm;
18309 
18310 				if (off >= BPF_MAX_VAR_OFF) {
18311 					verbose(env, "direct value offset of %u is not allowed\n", off);
18312 					fdput(f);
18313 					return -EINVAL;
18314 				}
18315 
18316 				if (!map->ops->map_direct_value_addr) {
18317 					verbose(env, "no direct value access support for this map type\n");
18318 					fdput(f);
18319 					return -EINVAL;
18320 				}
18321 
18322 				err = map->ops->map_direct_value_addr(map, &addr, off);
18323 				if (err) {
18324 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18325 						map->value_size, off);
18326 					fdput(f);
18327 					return err;
18328 				}
18329 
18330 				aux->map_off = off;
18331 				addr += off;
18332 			}
18333 
18334 			insn[0].imm = (u32)addr;
18335 			insn[1].imm = addr >> 32;
18336 
18337 			/* check whether we recorded this map already */
18338 			for (j = 0; j < env->used_map_cnt; j++) {
18339 				if (env->used_maps[j] == map) {
18340 					aux->map_index = j;
18341 					fdput(f);
18342 					goto next_insn;
18343 				}
18344 			}
18345 
18346 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18347 				fdput(f);
18348 				return -E2BIG;
18349 			}
18350 
18351 			if (env->prog->sleepable)
18352 				atomic64_inc(&map->sleepable_refcnt);
18353 			/* hold the map. If the program is rejected by verifier,
18354 			 * the map will be released by release_maps() or it
18355 			 * will be used by the valid program until it's unloaded
18356 			 * and all maps are released in bpf_free_used_maps()
18357 			 */
18358 			bpf_map_inc(map);
18359 
18360 			aux->map_index = env->used_map_cnt;
18361 			env->used_maps[env->used_map_cnt++] = map;
18362 
18363 			if (bpf_map_is_cgroup_storage(map) &&
18364 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18365 				verbose(env, "only one cgroup storage of each type is allowed\n");
18366 				fdput(f);
18367 				return -EBUSY;
18368 			}
18369 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
18370 				if (env->prog->aux->arena) {
18371 					verbose(env, "Only one arena per program\n");
18372 					fdput(f);
18373 					return -EBUSY;
18374 				}
18375 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
18376 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
18377 					fdput(f);
18378 					return -EPERM;
18379 				}
18380 				if (!env->prog->jit_requested) {
18381 					verbose(env, "JIT is required to use arena\n");
18382 					return -EOPNOTSUPP;
18383 				}
18384 				if (!bpf_jit_supports_arena()) {
18385 					verbose(env, "JIT doesn't support arena\n");
18386 					return -EOPNOTSUPP;
18387 				}
18388 				env->prog->aux->arena = (void *)map;
18389 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
18390 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
18391 					return -EINVAL;
18392 				}
18393 			}
18394 
18395 			fdput(f);
18396 next_insn:
18397 			insn++;
18398 			i++;
18399 			continue;
18400 		}
18401 
18402 		/* Basic sanity check before we invest more work here. */
18403 		if (!bpf_opcode_in_insntable(insn->code)) {
18404 			verbose(env, "unknown opcode %02x\n", insn->code);
18405 			return -EINVAL;
18406 		}
18407 	}
18408 
18409 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18410 	 * 'struct bpf_map *' into a register instead of user map_fd.
18411 	 * These pointers will be used later by verifier to validate map access.
18412 	 */
18413 	return 0;
18414 }
18415 
18416 /* drop refcnt of maps used by the rejected program */
18417 static void release_maps(struct bpf_verifier_env *env)
18418 {
18419 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18420 			     env->used_map_cnt);
18421 }
18422 
18423 /* drop refcnt of maps used by the rejected program */
18424 static void release_btfs(struct bpf_verifier_env *env)
18425 {
18426 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18427 			     env->used_btf_cnt);
18428 }
18429 
18430 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18431 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18432 {
18433 	struct bpf_insn *insn = env->prog->insnsi;
18434 	int insn_cnt = env->prog->len;
18435 	int i;
18436 
18437 	for (i = 0; i < insn_cnt; i++, insn++) {
18438 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18439 			continue;
18440 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18441 			continue;
18442 		insn->src_reg = 0;
18443 	}
18444 }
18445 
18446 /* single env->prog->insni[off] instruction was replaced with the range
18447  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18448  * [0, off) and [off, end) to new locations, so the patched range stays zero
18449  */
18450 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18451 				 struct bpf_insn_aux_data *new_data,
18452 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18453 {
18454 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18455 	struct bpf_insn *insn = new_prog->insnsi;
18456 	u32 old_seen = old_data[off].seen;
18457 	u32 prog_len;
18458 	int i;
18459 
18460 	/* aux info at OFF always needs adjustment, no matter fast path
18461 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18462 	 * original insn at old prog.
18463 	 */
18464 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18465 
18466 	if (cnt == 1)
18467 		return;
18468 	prog_len = new_prog->len;
18469 
18470 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18471 	memcpy(new_data + off + cnt - 1, old_data + off,
18472 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18473 	for (i = off; i < off + cnt - 1; i++) {
18474 		/* Expand insni[off]'s seen count to the patched range. */
18475 		new_data[i].seen = old_seen;
18476 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18477 	}
18478 	env->insn_aux_data = new_data;
18479 	vfree(old_data);
18480 }
18481 
18482 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18483 {
18484 	int i;
18485 
18486 	if (len == 1)
18487 		return;
18488 	/* NOTE: fake 'exit' subprog should be updated as well. */
18489 	for (i = 0; i <= env->subprog_cnt; i++) {
18490 		if (env->subprog_info[i].start <= off)
18491 			continue;
18492 		env->subprog_info[i].start += len - 1;
18493 	}
18494 }
18495 
18496 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18497 {
18498 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18499 	int i, sz = prog->aux->size_poke_tab;
18500 	struct bpf_jit_poke_descriptor *desc;
18501 
18502 	for (i = 0; i < sz; i++) {
18503 		desc = &tab[i];
18504 		if (desc->insn_idx <= off)
18505 			continue;
18506 		desc->insn_idx += len - 1;
18507 	}
18508 }
18509 
18510 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18511 					    const struct bpf_insn *patch, u32 len)
18512 {
18513 	struct bpf_prog *new_prog;
18514 	struct bpf_insn_aux_data *new_data = NULL;
18515 
18516 	if (len > 1) {
18517 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18518 					      sizeof(struct bpf_insn_aux_data)));
18519 		if (!new_data)
18520 			return NULL;
18521 	}
18522 
18523 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18524 	if (IS_ERR(new_prog)) {
18525 		if (PTR_ERR(new_prog) == -ERANGE)
18526 			verbose(env,
18527 				"insn %d cannot be patched due to 16-bit range\n",
18528 				env->insn_aux_data[off].orig_idx);
18529 		vfree(new_data);
18530 		return NULL;
18531 	}
18532 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18533 	adjust_subprog_starts(env, off, len);
18534 	adjust_poke_descs(new_prog, off, len);
18535 	return new_prog;
18536 }
18537 
18538 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18539 					      u32 off, u32 cnt)
18540 {
18541 	int i, j;
18542 
18543 	/* find first prog starting at or after off (first to remove) */
18544 	for (i = 0; i < env->subprog_cnt; i++)
18545 		if (env->subprog_info[i].start >= off)
18546 			break;
18547 	/* find first prog starting at or after off + cnt (first to stay) */
18548 	for (j = i; j < env->subprog_cnt; j++)
18549 		if (env->subprog_info[j].start >= off + cnt)
18550 			break;
18551 	/* if j doesn't start exactly at off + cnt, we are just removing
18552 	 * the front of previous prog
18553 	 */
18554 	if (env->subprog_info[j].start != off + cnt)
18555 		j--;
18556 
18557 	if (j > i) {
18558 		struct bpf_prog_aux *aux = env->prog->aux;
18559 		int move;
18560 
18561 		/* move fake 'exit' subprog as well */
18562 		move = env->subprog_cnt + 1 - j;
18563 
18564 		memmove(env->subprog_info + i,
18565 			env->subprog_info + j,
18566 			sizeof(*env->subprog_info) * move);
18567 		env->subprog_cnt -= j - i;
18568 
18569 		/* remove func_info */
18570 		if (aux->func_info) {
18571 			move = aux->func_info_cnt - j;
18572 
18573 			memmove(aux->func_info + i,
18574 				aux->func_info + j,
18575 				sizeof(*aux->func_info) * move);
18576 			aux->func_info_cnt -= j - i;
18577 			/* func_info->insn_off is set after all code rewrites,
18578 			 * in adjust_btf_func() - no need to adjust
18579 			 */
18580 		}
18581 	} else {
18582 		/* convert i from "first prog to remove" to "first to adjust" */
18583 		if (env->subprog_info[i].start == off)
18584 			i++;
18585 	}
18586 
18587 	/* update fake 'exit' subprog as well */
18588 	for (; i <= env->subprog_cnt; i++)
18589 		env->subprog_info[i].start -= cnt;
18590 
18591 	return 0;
18592 }
18593 
18594 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18595 				      u32 cnt)
18596 {
18597 	struct bpf_prog *prog = env->prog;
18598 	u32 i, l_off, l_cnt, nr_linfo;
18599 	struct bpf_line_info *linfo;
18600 
18601 	nr_linfo = prog->aux->nr_linfo;
18602 	if (!nr_linfo)
18603 		return 0;
18604 
18605 	linfo = prog->aux->linfo;
18606 
18607 	/* find first line info to remove, count lines to be removed */
18608 	for (i = 0; i < nr_linfo; i++)
18609 		if (linfo[i].insn_off >= off)
18610 			break;
18611 
18612 	l_off = i;
18613 	l_cnt = 0;
18614 	for (; i < nr_linfo; i++)
18615 		if (linfo[i].insn_off < off + cnt)
18616 			l_cnt++;
18617 		else
18618 			break;
18619 
18620 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18621 	 * last removed linfo.  prog is already modified, so prog->len == off
18622 	 * means no live instructions after (tail of the program was removed).
18623 	 */
18624 	if (prog->len != off && l_cnt &&
18625 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18626 		l_cnt--;
18627 		linfo[--i].insn_off = off + cnt;
18628 	}
18629 
18630 	/* remove the line info which refer to the removed instructions */
18631 	if (l_cnt) {
18632 		memmove(linfo + l_off, linfo + i,
18633 			sizeof(*linfo) * (nr_linfo - i));
18634 
18635 		prog->aux->nr_linfo -= l_cnt;
18636 		nr_linfo = prog->aux->nr_linfo;
18637 	}
18638 
18639 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18640 	for (i = l_off; i < nr_linfo; i++)
18641 		linfo[i].insn_off -= cnt;
18642 
18643 	/* fix up all subprogs (incl. 'exit') which start >= off */
18644 	for (i = 0; i <= env->subprog_cnt; i++)
18645 		if (env->subprog_info[i].linfo_idx > l_off) {
18646 			/* program may have started in the removed region but
18647 			 * may not be fully removed
18648 			 */
18649 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18650 				env->subprog_info[i].linfo_idx -= l_cnt;
18651 			else
18652 				env->subprog_info[i].linfo_idx = l_off;
18653 		}
18654 
18655 	return 0;
18656 }
18657 
18658 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18659 {
18660 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18661 	unsigned int orig_prog_len = env->prog->len;
18662 	int err;
18663 
18664 	if (bpf_prog_is_offloaded(env->prog->aux))
18665 		bpf_prog_offload_remove_insns(env, off, cnt);
18666 
18667 	err = bpf_remove_insns(env->prog, off, cnt);
18668 	if (err)
18669 		return err;
18670 
18671 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18672 	if (err)
18673 		return err;
18674 
18675 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18676 	if (err)
18677 		return err;
18678 
18679 	memmove(aux_data + off,	aux_data + off + cnt,
18680 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18681 
18682 	return 0;
18683 }
18684 
18685 /* The verifier does more data flow analysis than llvm and will not
18686  * explore branches that are dead at run time. Malicious programs can
18687  * have dead code too. Therefore replace all dead at-run-time code
18688  * with 'ja -1'.
18689  *
18690  * Just nops are not optimal, e.g. if they would sit at the end of the
18691  * program and through another bug we would manage to jump there, then
18692  * we'd execute beyond program memory otherwise. Returning exception
18693  * code also wouldn't work since we can have subprogs where the dead
18694  * code could be located.
18695  */
18696 static void sanitize_dead_code(struct bpf_verifier_env *env)
18697 {
18698 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18699 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18700 	struct bpf_insn *insn = env->prog->insnsi;
18701 	const int insn_cnt = env->prog->len;
18702 	int i;
18703 
18704 	for (i = 0; i < insn_cnt; i++) {
18705 		if (aux_data[i].seen)
18706 			continue;
18707 		memcpy(insn + i, &trap, sizeof(trap));
18708 		aux_data[i].zext_dst = false;
18709 	}
18710 }
18711 
18712 static bool insn_is_cond_jump(u8 code)
18713 {
18714 	u8 op;
18715 
18716 	op = BPF_OP(code);
18717 	if (BPF_CLASS(code) == BPF_JMP32)
18718 		return op != BPF_JA;
18719 
18720 	if (BPF_CLASS(code) != BPF_JMP)
18721 		return false;
18722 
18723 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18724 }
18725 
18726 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18727 {
18728 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18729 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18730 	struct bpf_insn *insn = env->prog->insnsi;
18731 	const int insn_cnt = env->prog->len;
18732 	int i;
18733 
18734 	for (i = 0; i < insn_cnt; i++, insn++) {
18735 		if (!insn_is_cond_jump(insn->code))
18736 			continue;
18737 
18738 		if (!aux_data[i + 1].seen)
18739 			ja.off = insn->off;
18740 		else if (!aux_data[i + 1 + insn->off].seen)
18741 			ja.off = 0;
18742 		else
18743 			continue;
18744 
18745 		if (bpf_prog_is_offloaded(env->prog->aux))
18746 			bpf_prog_offload_replace_insn(env, i, &ja);
18747 
18748 		memcpy(insn, &ja, sizeof(ja));
18749 	}
18750 }
18751 
18752 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18753 {
18754 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18755 	int insn_cnt = env->prog->len;
18756 	int i, err;
18757 
18758 	for (i = 0; i < insn_cnt; i++) {
18759 		int j;
18760 
18761 		j = 0;
18762 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18763 			j++;
18764 		if (!j)
18765 			continue;
18766 
18767 		err = verifier_remove_insns(env, i, j);
18768 		if (err)
18769 			return err;
18770 		insn_cnt = env->prog->len;
18771 	}
18772 
18773 	return 0;
18774 }
18775 
18776 static int opt_remove_nops(struct bpf_verifier_env *env)
18777 {
18778 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18779 	struct bpf_insn *insn = env->prog->insnsi;
18780 	int insn_cnt = env->prog->len;
18781 	int i, err;
18782 
18783 	for (i = 0; i < insn_cnt; i++) {
18784 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18785 			continue;
18786 
18787 		err = verifier_remove_insns(env, i, 1);
18788 		if (err)
18789 			return err;
18790 		insn_cnt--;
18791 		i--;
18792 	}
18793 
18794 	return 0;
18795 }
18796 
18797 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18798 					 const union bpf_attr *attr)
18799 {
18800 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18801 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18802 	int i, patch_len, delta = 0, len = env->prog->len;
18803 	struct bpf_insn *insns = env->prog->insnsi;
18804 	struct bpf_prog *new_prog;
18805 	bool rnd_hi32;
18806 
18807 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18808 	zext_patch[1] = BPF_ZEXT_REG(0);
18809 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18810 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18811 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18812 	for (i = 0; i < len; i++) {
18813 		int adj_idx = i + delta;
18814 		struct bpf_insn insn;
18815 		int load_reg;
18816 
18817 		insn = insns[adj_idx];
18818 		load_reg = insn_def_regno(&insn);
18819 		if (!aux[adj_idx].zext_dst) {
18820 			u8 code, class;
18821 			u32 imm_rnd;
18822 
18823 			if (!rnd_hi32)
18824 				continue;
18825 
18826 			code = insn.code;
18827 			class = BPF_CLASS(code);
18828 			if (load_reg == -1)
18829 				continue;
18830 
18831 			/* NOTE: arg "reg" (the fourth one) is only used for
18832 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18833 			 *       here.
18834 			 */
18835 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18836 				if (class == BPF_LD &&
18837 				    BPF_MODE(code) == BPF_IMM)
18838 					i++;
18839 				continue;
18840 			}
18841 
18842 			/* ctx load could be transformed into wider load. */
18843 			if (class == BPF_LDX &&
18844 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18845 				continue;
18846 
18847 			imm_rnd = get_random_u32();
18848 			rnd_hi32_patch[0] = insn;
18849 			rnd_hi32_patch[1].imm = imm_rnd;
18850 			rnd_hi32_patch[3].dst_reg = load_reg;
18851 			patch = rnd_hi32_patch;
18852 			patch_len = 4;
18853 			goto apply_patch_buffer;
18854 		}
18855 
18856 		/* Add in an zero-extend instruction if a) the JIT has requested
18857 		 * it or b) it's a CMPXCHG.
18858 		 *
18859 		 * The latter is because: BPF_CMPXCHG always loads a value into
18860 		 * R0, therefore always zero-extends. However some archs'
18861 		 * equivalent instruction only does this load when the
18862 		 * comparison is successful. This detail of CMPXCHG is
18863 		 * orthogonal to the general zero-extension behaviour of the
18864 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18865 		 */
18866 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18867 			continue;
18868 
18869 		/* Zero-extension is done by the caller. */
18870 		if (bpf_pseudo_kfunc_call(&insn))
18871 			continue;
18872 
18873 		if (WARN_ON(load_reg == -1)) {
18874 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18875 			return -EFAULT;
18876 		}
18877 
18878 		zext_patch[0] = insn;
18879 		zext_patch[1].dst_reg = load_reg;
18880 		zext_patch[1].src_reg = load_reg;
18881 		patch = zext_patch;
18882 		patch_len = 2;
18883 apply_patch_buffer:
18884 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18885 		if (!new_prog)
18886 			return -ENOMEM;
18887 		env->prog = new_prog;
18888 		insns = new_prog->insnsi;
18889 		aux = env->insn_aux_data;
18890 		delta += patch_len - 1;
18891 	}
18892 
18893 	return 0;
18894 }
18895 
18896 /* convert load instructions that access fields of a context type into a
18897  * sequence of instructions that access fields of the underlying structure:
18898  *     struct __sk_buff    -> struct sk_buff
18899  *     struct bpf_sock_ops -> struct sock
18900  */
18901 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18902 {
18903 	const struct bpf_verifier_ops *ops = env->ops;
18904 	int i, cnt, size, ctx_field_size, delta = 0;
18905 	const int insn_cnt = env->prog->len;
18906 	struct bpf_insn insn_buf[16], *insn;
18907 	u32 target_size, size_default, off;
18908 	struct bpf_prog *new_prog;
18909 	enum bpf_access_type type;
18910 	bool is_narrower_load;
18911 
18912 	if (ops->gen_prologue || env->seen_direct_write) {
18913 		if (!ops->gen_prologue) {
18914 			verbose(env, "bpf verifier is misconfigured\n");
18915 			return -EINVAL;
18916 		}
18917 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18918 					env->prog);
18919 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18920 			verbose(env, "bpf verifier is misconfigured\n");
18921 			return -EINVAL;
18922 		} else if (cnt) {
18923 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18924 			if (!new_prog)
18925 				return -ENOMEM;
18926 
18927 			env->prog = new_prog;
18928 			delta += cnt - 1;
18929 		}
18930 	}
18931 
18932 	if (bpf_prog_is_offloaded(env->prog->aux))
18933 		return 0;
18934 
18935 	insn = env->prog->insnsi + delta;
18936 
18937 	for (i = 0; i < insn_cnt; i++, insn++) {
18938 		bpf_convert_ctx_access_t convert_ctx_access;
18939 		u8 mode;
18940 
18941 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18942 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18943 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18944 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18945 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18946 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18947 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18948 			type = BPF_READ;
18949 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18950 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18951 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18952 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18953 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18954 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18955 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18956 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18957 			type = BPF_WRITE;
18958 		} else {
18959 			continue;
18960 		}
18961 
18962 		if (type == BPF_WRITE &&
18963 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18964 			struct bpf_insn patch[] = {
18965 				*insn,
18966 				BPF_ST_NOSPEC(),
18967 			};
18968 
18969 			cnt = ARRAY_SIZE(patch);
18970 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18971 			if (!new_prog)
18972 				return -ENOMEM;
18973 
18974 			delta    += cnt - 1;
18975 			env->prog = new_prog;
18976 			insn      = new_prog->insnsi + i + delta;
18977 			continue;
18978 		}
18979 
18980 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18981 		case PTR_TO_CTX:
18982 			if (!ops->convert_ctx_access)
18983 				continue;
18984 			convert_ctx_access = ops->convert_ctx_access;
18985 			break;
18986 		case PTR_TO_SOCKET:
18987 		case PTR_TO_SOCK_COMMON:
18988 			convert_ctx_access = bpf_sock_convert_ctx_access;
18989 			break;
18990 		case PTR_TO_TCP_SOCK:
18991 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18992 			break;
18993 		case PTR_TO_XDP_SOCK:
18994 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18995 			break;
18996 		case PTR_TO_BTF_ID:
18997 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18998 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18999 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
19000 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
19001 		 * any faults for loads into such types. BPF_WRITE is disallowed
19002 		 * for this case.
19003 		 */
19004 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
19005 			if (type == BPF_READ) {
19006 				if (BPF_MODE(insn->code) == BPF_MEM)
19007 					insn->code = BPF_LDX | BPF_PROBE_MEM |
19008 						     BPF_SIZE((insn)->code);
19009 				else
19010 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
19011 						     BPF_SIZE((insn)->code);
19012 				env->prog->aux->num_exentries++;
19013 			}
19014 			continue;
19015 		case PTR_TO_ARENA:
19016 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
19017 				verbose(env, "sign extending loads from arena are not supported yet\n");
19018 				return -EOPNOTSUPP;
19019 			}
19020 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
19021 			env->prog->aux->num_exentries++;
19022 			continue;
19023 		default:
19024 			continue;
19025 		}
19026 
19027 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
19028 		size = BPF_LDST_BYTES(insn);
19029 		mode = BPF_MODE(insn->code);
19030 
19031 		/* If the read access is a narrower load of the field,
19032 		 * convert to a 4/8-byte load, to minimum program type specific
19033 		 * convert_ctx_access changes. If conversion is successful,
19034 		 * we will apply proper mask to the result.
19035 		 */
19036 		is_narrower_load = size < ctx_field_size;
19037 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
19038 		off = insn->off;
19039 		if (is_narrower_load) {
19040 			u8 size_code;
19041 
19042 			if (type == BPF_WRITE) {
19043 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
19044 				return -EINVAL;
19045 			}
19046 
19047 			size_code = BPF_H;
19048 			if (ctx_field_size == 4)
19049 				size_code = BPF_W;
19050 			else if (ctx_field_size == 8)
19051 				size_code = BPF_DW;
19052 
19053 			insn->off = off & ~(size_default - 1);
19054 			insn->code = BPF_LDX | BPF_MEM | size_code;
19055 		}
19056 
19057 		target_size = 0;
19058 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
19059 					 &target_size);
19060 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
19061 		    (ctx_field_size && !target_size)) {
19062 			verbose(env, "bpf verifier is misconfigured\n");
19063 			return -EINVAL;
19064 		}
19065 
19066 		if (is_narrower_load && size < target_size) {
19067 			u8 shift = bpf_ctx_narrow_access_offset(
19068 				off, size, size_default) * 8;
19069 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
19070 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
19071 				return -EINVAL;
19072 			}
19073 			if (ctx_field_size <= 4) {
19074 				if (shift)
19075 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
19076 									insn->dst_reg,
19077 									shift);
19078 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19079 								(1 << size * 8) - 1);
19080 			} else {
19081 				if (shift)
19082 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
19083 									insn->dst_reg,
19084 									shift);
19085 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19086 								(1ULL << size * 8) - 1);
19087 			}
19088 		}
19089 		if (mode == BPF_MEMSX)
19090 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
19091 						       insn->dst_reg, insn->dst_reg,
19092 						       size * 8, 0);
19093 
19094 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19095 		if (!new_prog)
19096 			return -ENOMEM;
19097 
19098 		delta += cnt - 1;
19099 
19100 		/* keep walking new program and skip insns we just inserted */
19101 		env->prog = new_prog;
19102 		insn      = new_prog->insnsi + i + delta;
19103 	}
19104 
19105 	return 0;
19106 }
19107 
19108 static int jit_subprogs(struct bpf_verifier_env *env)
19109 {
19110 	struct bpf_prog *prog = env->prog, **func, *tmp;
19111 	int i, j, subprog_start, subprog_end = 0, len, subprog;
19112 	struct bpf_map *map_ptr;
19113 	struct bpf_insn *insn;
19114 	void *old_bpf_func;
19115 	int err, num_exentries;
19116 
19117 	if (env->subprog_cnt <= 1)
19118 		return 0;
19119 
19120 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19121 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
19122 			continue;
19123 
19124 		/* Upon error here we cannot fall back to interpreter but
19125 		 * need a hard reject of the program. Thus -EFAULT is
19126 		 * propagated in any case.
19127 		 */
19128 		subprog = find_subprog(env, i + insn->imm + 1);
19129 		if (subprog < 0) {
19130 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
19131 				  i + insn->imm + 1);
19132 			return -EFAULT;
19133 		}
19134 		/* temporarily remember subprog id inside insn instead of
19135 		 * aux_data, since next loop will split up all insns into funcs
19136 		 */
19137 		insn->off = subprog;
19138 		/* remember original imm in case JIT fails and fallback
19139 		 * to interpreter will be needed
19140 		 */
19141 		env->insn_aux_data[i].call_imm = insn->imm;
19142 		/* point imm to __bpf_call_base+1 from JITs point of view */
19143 		insn->imm = 1;
19144 		if (bpf_pseudo_func(insn))
19145 			/* jit (e.g. x86_64) may emit fewer instructions
19146 			 * if it learns a u32 imm is the same as a u64 imm.
19147 			 * Force a non zero here.
19148 			 */
19149 			insn[1].imm = 1;
19150 	}
19151 
19152 	err = bpf_prog_alloc_jited_linfo(prog);
19153 	if (err)
19154 		goto out_undo_insn;
19155 
19156 	err = -ENOMEM;
19157 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
19158 	if (!func)
19159 		goto out_undo_insn;
19160 
19161 	for (i = 0; i < env->subprog_cnt; i++) {
19162 		subprog_start = subprog_end;
19163 		subprog_end = env->subprog_info[i + 1].start;
19164 
19165 		len = subprog_end - subprog_start;
19166 		/* bpf_prog_run() doesn't call subprogs directly,
19167 		 * hence main prog stats include the runtime of subprogs.
19168 		 * subprogs don't have IDs and not reachable via prog_get_next_id
19169 		 * func[i]->stats will never be accessed and stays NULL
19170 		 */
19171 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
19172 		if (!func[i])
19173 			goto out_free;
19174 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
19175 		       len * sizeof(struct bpf_insn));
19176 		func[i]->type = prog->type;
19177 		func[i]->len = len;
19178 		if (bpf_prog_calc_tag(func[i]))
19179 			goto out_free;
19180 		func[i]->is_func = 1;
19181 		func[i]->aux->func_idx = i;
19182 		/* Below members will be freed only at prog->aux */
19183 		func[i]->aux->btf = prog->aux->btf;
19184 		func[i]->aux->func_info = prog->aux->func_info;
19185 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
19186 		func[i]->aux->poke_tab = prog->aux->poke_tab;
19187 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
19188 
19189 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
19190 			struct bpf_jit_poke_descriptor *poke;
19191 
19192 			poke = &prog->aux->poke_tab[j];
19193 			if (poke->insn_idx < subprog_end &&
19194 			    poke->insn_idx >= subprog_start)
19195 				poke->aux = func[i]->aux;
19196 		}
19197 
19198 		func[i]->aux->name[0] = 'F';
19199 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
19200 		func[i]->jit_requested = 1;
19201 		func[i]->blinding_requested = prog->blinding_requested;
19202 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
19203 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
19204 		func[i]->aux->linfo = prog->aux->linfo;
19205 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
19206 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
19207 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
19208 		func[i]->aux->arena = prog->aux->arena;
19209 		num_exentries = 0;
19210 		insn = func[i]->insnsi;
19211 		for (j = 0; j < func[i]->len; j++, insn++) {
19212 			if (BPF_CLASS(insn->code) == BPF_LDX &&
19213 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
19214 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
19215 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
19216 				num_exentries++;
19217 			if ((BPF_CLASS(insn->code) == BPF_STX ||
19218 			     BPF_CLASS(insn->code) == BPF_ST) &&
19219 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
19220 				num_exentries++;
19221 		}
19222 		func[i]->aux->num_exentries = num_exentries;
19223 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
19224 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
19225 		if (!i)
19226 			func[i]->aux->exception_boundary = env->seen_exception;
19227 		func[i] = bpf_int_jit_compile(func[i]);
19228 		if (!func[i]->jited) {
19229 			err = -ENOTSUPP;
19230 			goto out_free;
19231 		}
19232 		cond_resched();
19233 	}
19234 
19235 	/* at this point all bpf functions were successfully JITed
19236 	 * now populate all bpf_calls with correct addresses and
19237 	 * run last pass of JIT
19238 	 */
19239 	for (i = 0; i < env->subprog_cnt; i++) {
19240 		insn = func[i]->insnsi;
19241 		for (j = 0; j < func[i]->len; j++, insn++) {
19242 			if (bpf_pseudo_func(insn)) {
19243 				subprog = insn->off;
19244 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
19245 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
19246 				continue;
19247 			}
19248 			if (!bpf_pseudo_call(insn))
19249 				continue;
19250 			subprog = insn->off;
19251 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
19252 		}
19253 
19254 		/* we use the aux data to keep a list of the start addresses
19255 		 * of the JITed images for each function in the program
19256 		 *
19257 		 * for some architectures, such as powerpc64, the imm field
19258 		 * might not be large enough to hold the offset of the start
19259 		 * address of the callee's JITed image from __bpf_call_base
19260 		 *
19261 		 * in such cases, we can lookup the start address of a callee
19262 		 * by using its subprog id, available from the off field of
19263 		 * the call instruction, as an index for this list
19264 		 */
19265 		func[i]->aux->func = func;
19266 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19267 		func[i]->aux->real_func_cnt = env->subprog_cnt;
19268 	}
19269 	for (i = 0; i < env->subprog_cnt; i++) {
19270 		old_bpf_func = func[i]->bpf_func;
19271 		tmp = bpf_int_jit_compile(func[i]);
19272 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
19273 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
19274 			err = -ENOTSUPP;
19275 			goto out_free;
19276 		}
19277 		cond_resched();
19278 	}
19279 
19280 	/* finally lock prog and jit images for all functions and
19281 	 * populate kallsysm. Begin at the first subprogram, since
19282 	 * bpf_prog_load will add the kallsyms for the main program.
19283 	 */
19284 	for (i = 1; i < env->subprog_cnt; i++) {
19285 		bpf_prog_lock_ro(func[i]);
19286 		bpf_prog_kallsyms_add(func[i]);
19287 	}
19288 
19289 	/* Last step: make now unused interpreter insns from main
19290 	 * prog consistent for later dump requests, so they can
19291 	 * later look the same as if they were interpreted only.
19292 	 */
19293 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19294 		if (bpf_pseudo_func(insn)) {
19295 			insn[0].imm = env->insn_aux_data[i].call_imm;
19296 			insn[1].imm = insn->off;
19297 			insn->off = 0;
19298 			continue;
19299 		}
19300 		if (!bpf_pseudo_call(insn))
19301 			continue;
19302 		insn->off = env->insn_aux_data[i].call_imm;
19303 		subprog = find_subprog(env, i + insn->off + 1);
19304 		insn->imm = subprog;
19305 	}
19306 
19307 	prog->jited = 1;
19308 	prog->bpf_func = func[0]->bpf_func;
19309 	prog->jited_len = func[0]->jited_len;
19310 	prog->aux->extable = func[0]->aux->extable;
19311 	prog->aux->num_exentries = func[0]->aux->num_exentries;
19312 	prog->aux->func = func;
19313 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19314 	prog->aux->real_func_cnt = env->subprog_cnt;
19315 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
19316 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
19317 	bpf_prog_jit_attempt_done(prog);
19318 	return 0;
19319 out_free:
19320 	/* We failed JIT'ing, so at this point we need to unregister poke
19321 	 * descriptors from subprogs, so that kernel is not attempting to
19322 	 * patch it anymore as we're freeing the subprog JIT memory.
19323 	 */
19324 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19325 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19326 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
19327 	}
19328 	/* At this point we're guaranteed that poke descriptors are not
19329 	 * live anymore. We can just unlink its descriptor table as it's
19330 	 * released with the main prog.
19331 	 */
19332 	for (i = 0; i < env->subprog_cnt; i++) {
19333 		if (!func[i])
19334 			continue;
19335 		func[i]->aux->poke_tab = NULL;
19336 		bpf_jit_free(func[i]);
19337 	}
19338 	kfree(func);
19339 out_undo_insn:
19340 	/* cleanup main prog to be interpreted */
19341 	prog->jit_requested = 0;
19342 	prog->blinding_requested = 0;
19343 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19344 		if (!bpf_pseudo_call(insn))
19345 			continue;
19346 		insn->off = 0;
19347 		insn->imm = env->insn_aux_data[i].call_imm;
19348 	}
19349 	bpf_prog_jit_attempt_done(prog);
19350 	return err;
19351 }
19352 
19353 static int fixup_call_args(struct bpf_verifier_env *env)
19354 {
19355 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19356 	struct bpf_prog *prog = env->prog;
19357 	struct bpf_insn *insn = prog->insnsi;
19358 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19359 	int i, depth;
19360 #endif
19361 	int err = 0;
19362 
19363 	if (env->prog->jit_requested &&
19364 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19365 		err = jit_subprogs(env);
19366 		if (err == 0)
19367 			return 0;
19368 		if (err == -EFAULT)
19369 			return err;
19370 	}
19371 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19372 	if (has_kfunc_call) {
19373 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19374 		return -EINVAL;
19375 	}
19376 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19377 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19378 		 * have to be rejected, since interpreter doesn't support them yet.
19379 		 */
19380 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19381 		return -EINVAL;
19382 	}
19383 	for (i = 0; i < prog->len; i++, insn++) {
19384 		if (bpf_pseudo_func(insn)) {
19385 			/* When JIT fails the progs with callback calls
19386 			 * have to be rejected, since interpreter doesn't support them yet.
19387 			 */
19388 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19389 			return -EINVAL;
19390 		}
19391 
19392 		if (!bpf_pseudo_call(insn))
19393 			continue;
19394 		depth = get_callee_stack_depth(env, insn, i);
19395 		if (depth < 0)
19396 			return depth;
19397 		bpf_patch_call_args(insn, depth);
19398 	}
19399 	err = 0;
19400 #endif
19401 	return err;
19402 }
19403 
19404 /* replace a generic kfunc with a specialized version if necessary */
19405 static void specialize_kfunc(struct bpf_verifier_env *env,
19406 			     u32 func_id, u16 offset, unsigned long *addr)
19407 {
19408 	struct bpf_prog *prog = env->prog;
19409 	bool seen_direct_write;
19410 	void *xdp_kfunc;
19411 	bool is_rdonly;
19412 
19413 	if (bpf_dev_bound_kfunc_id(func_id)) {
19414 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19415 		if (xdp_kfunc) {
19416 			*addr = (unsigned long)xdp_kfunc;
19417 			return;
19418 		}
19419 		/* fallback to default kfunc when not supported by netdev */
19420 	}
19421 
19422 	if (offset)
19423 		return;
19424 
19425 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19426 		seen_direct_write = env->seen_direct_write;
19427 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19428 
19429 		if (is_rdonly)
19430 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19431 
19432 		/* restore env->seen_direct_write to its original value, since
19433 		 * may_access_direct_pkt_data mutates it
19434 		 */
19435 		env->seen_direct_write = seen_direct_write;
19436 	}
19437 }
19438 
19439 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19440 					    u16 struct_meta_reg,
19441 					    u16 node_offset_reg,
19442 					    struct bpf_insn *insn,
19443 					    struct bpf_insn *insn_buf,
19444 					    int *cnt)
19445 {
19446 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19447 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19448 
19449 	insn_buf[0] = addr[0];
19450 	insn_buf[1] = addr[1];
19451 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19452 	insn_buf[3] = *insn;
19453 	*cnt = 4;
19454 }
19455 
19456 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19457 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19458 {
19459 	const struct bpf_kfunc_desc *desc;
19460 
19461 	if (!insn->imm) {
19462 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19463 		return -EINVAL;
19464 	}
19465 
19466 	*cnt = 0;
19467 
19468 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19469 	 * __bpf_call_base, unless the JIT needs to call functions that are
19470 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19471 	 */
19472 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19473 	if (!desc) {
19474 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19475 			insn->imm);
19476 		return -EFAULT;
19477 	}
19478 
19479 	if (!bpf_jit_supports_far_kfunc_call())
19480 		insn->imm = BPF_CALL_IMM(desc->addr);
19481 	if (insn->off)
19482 		return 0;
19483 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19484 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19485 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19486 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19487 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19488 
19489 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19490 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19491 				insn_idx);
19492 			return -EFAULT;
19493 		}
19494 
19495 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19496 		insn_buf[1] = addr[0];
19497 		insn_buf[2] = addr[1];
19498 		insn_buf[3] = *insn;
19499 		*cnt = 4;
19500 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19501 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19502 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19503 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19504 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19505 
19506 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19507 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19508 				insn_idx);
19509 			return -EFAULT;
19510 		}
19511 
19512 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19513 		    !kptr_struct_meta) {
19514 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19515 				insn_idx);
19516 			return -EFAULT;
19517 		}
19518 
19519 		insn_buf[0] = addr[0];
19520 		insn_buf[1] = addr[1];
19521 		insn_buf[2] = *insn;
19522 		*cnt = 3;
19523 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19524 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19525 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19526 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19527 		int struct_meta_reg = BPF_REG_3;
19528 		int node_offset_reg = BPF_REG_4;
19529 
19530 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19531 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19532 			struct_meta_reg = BPF_REG_4;
19533 			node_offset_reg = BPF_REG_5;
19534 		}
19535 
19536 		if (!kptr_struct_meta) {
19537 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19538 				insn_idx);
19539 			return -EFAULT;
19540 		}
19541 
19542 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19543 						node_offset_reg, insn, insn_buf, cnt);
19544 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19545 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19546 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19547 		*cnt = 1;
19548 	}
19549 	return 0;
19550 }
19551 
19552 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19553 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19554 {
19555 	struct bpf_subprog_info *info = env->subprog_info;
19556 	int cnt = env->subprog_cnt;
19557 	struct bpf_prog *prog;
19558 
19559 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19560 	if (env->hidden_subprog_cnt) {
19561 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19562 		return -EFAULT;
19563 	}
19564 	/* We're not patching any existing instruction, just appending the new
19565 	 * ones for the hidden subprog. Hence all of the adjustment operations
19566 	 * in bpf_patch_insn_data are no-ops.
19567 	 */
19568 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19569 	if (!prog)
19570 		return -ENOMEM;
19571 	env->prog = prog;
19572 	info[cnt + 1].start = info[cnt].start;
19573 	info[cnt].start = prog->len - len + 1;
19574 	env->subprog_cnt++;
19575 	env->hidden_subprog_cnt++;
19576 	return 0;
19577 }
19578 
19579 /* Do various post-verification rewrites in a single program pass.
19580  * These rewrites simplify JIT and interpreter implementations.
19581  */
19582 static int do_misc_fixups(struct bpf_verifier_env *env)
19583 {
19584 	struct bpf_prog *prog = env->prog;
19585 	enum bpf_attach_type eatype = prog->expected_attach_type;
19586 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19587 	struct bpf_insn *insn = prog->insnsi;
19588 	const struct bpf_func_proto *fn;
19589 	const int insn_cnt = prog->len;
19590 	const struct bpf_map_ops *ops;
19591 	struct bpf_insn_aux_data *aux;
19592 	struct bpf_insn insn_buf[16];
19593 	struct bpf_prog *new_prog;
19594 	struct bpf_map *map_ptr;
19595 	int i, ret, cnt, delta = 0, cur_subprog = 0;
19596 	struct bpf_subprog_info *subprogs = env->subprog_info;
19597 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19598 	u16 stack_depth_extra = 0;
19599 
19600 	if (env->seen_exception && !env->exception_callback_subprog) {
19601 		struct bpf_insn patch[] = {
19602 			env->prog->insnsi[insn_cnt - 1],
19603 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19604 			BPF_EXIT_INSN(),
19605 		};
19606 
19607 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19608 		if (ret < 0)
19609 			return ret;
19610 		prog = env->prog;
19611 		insn = prog->insnsi;
19612 
19613 		env->exception_callback_subprog = env->subprog_cnt - 1;
19614 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19615 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
19616 	}
19617 
19618 	for (i = 0; i < insn_cnt;) {
19619 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
19620 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
19621 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
19622 				/* convert to 32-bit mov that clears upper 32-bit */
19623 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
19624 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
19625 				insn->off = 0;
19626 				insn->imm = 0;
19627 			} /* cast from as(0) to as(1) should be handled by JIT */
19628 			goto next_insn;
19629 		}
19630 
19631 		if (env->insn_aux_data[i + delta].needs_zext)
19632 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
19633 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
19634 
19635 		/* Make divide-by-zero exceptions impossible. */
19636 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19637 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19638 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19639 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19640 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19641 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19642 			struct bpf_insn *patchlet;
19643 			struct bpf_insn chk_and_div[] = {
19644 				/* [R,W]x div 0 -> 0 */
19645 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19646 					     BPF_JNE | BPF_K, insn->src_reg,
19647 					     0, 2, 0),
19648 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19649 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19650 				*insn,
19651 			};
19652 			struct bpf_insn chk_and_mod[] = {
19653 				/* [R,W]x mod 0 -> [R,W]x */
19654 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19655 					     BPF_JEQ | BPF_K, insn->src_reg,
19656 					     0, 1 + (is64 ? 0 : 1), 0),
19657 				*insn,
19658 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19659 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19660 			};
19661 
19662 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19663 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19664 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19665 
19666 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19667 			if (!new_prog)
19668 				return -ENOMEM;
19669 
19670 			delta    += cnt - 1;
19671 			env->prog = prog = new_prog;
19672 			insn      = new_prog->insnsi + i + delta;
19673 			goto next_insn;
19674 		}
19675 
19676 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19677 		if (BPF_CLASS(insn->code) == BPF_LD &&
19678 		    (BPF_MODE(insn->code) == BPF_ABS ||
19679 		     BPF_MODE(insn->code) == BPF_IND)) {
19680 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19681 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19682 				verbose(env, "bpf verifier is misconfigured\n");
19683 				return -EINVAL;
19684 			}
19685 
19686 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19687 			if (!new_prog)
19688 				return -ENOMEM;
19689 
19690 			delta    += cnt - 1;
19691 			env->prog = prog = new_prog;
19692 			insn      = new_prog->insnsi + i + delta;
19693 			goto next_insn;
19694 		}
19695 
19696 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19697 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19698 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19699 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19700 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19701 			struct bpf_insn *patch = &insn_buf[0];
19702 			bool issrc, isneg, isimm;
19703 			u32 off_reg;
19704 
19705 			aux = &env->insn_aux_data[i + delta];
19706 			if (!aux->alu_state ||
19707 			    aux->alu_state == BPF_ALU_NON_POINTER)
19708 				goto next_insn;
19709 
19710 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19711 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19712 				BPF_ALU_SANITIZE_SRC;
19713 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19714 
19715 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19716 			if (isimm) {
19717 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19718 			} else {
19719 				if (isneg)
19720 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19721 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19722 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19723 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19724 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19725 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19726 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19727 			}
19728 			if (!issrc)
19729 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19730 			insn->src_reg = BPF_REG_AX;
19731 			if (isneg)
19732 				insn->code = insn->code == code_add ?
19733 					     code_sub : code_add;
19734 			*patch++ = *insn;
19735 			if (issrc && isneg && !isimm)
19736 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19737 			cnt = patch - insn_buf;
19738 
19739 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19740 			if (!new_prog)
19741 				return -ENOMEM;
19742 
19743 			delta    += cnt - 1;
19744 			env->prog = prog = new_prog;
19745 			insn      = new_prog->insnsi + i + delta;
19746 			goto next_insn;
19747 		}
19748 
19749 		if (is_may_goto_insn(insn)) {
19750 			int stack_off = -stack_depth - 8;
19751 
19752 			stack_depth_extra = 8;
19753 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
19754 			insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
19755 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
19756 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
19757 			cnt = 4;
19758 
19759 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19760 			if (!new_prog)
19761 				return -ENOMEM;
19762 
19763 			delta += cnt - 1;
19764 			env->prog = prog = new_prog;
19765 			insn = new_prog->insnsi + i + delta;
19766 			goto next_insn;
19767 		}
19768 
19769 		if (insn->code != (BPF_JMP | BPF_CALL))
19770 			goto next_insn;
19771 		if (insn->src_reg == BPF_PSEUDO_CALL)
19772 			goto next_insn;
19773 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19774 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19775 			if (ret)
19776 				return ret;
19777 			if (cnt == 0)
19778 				goto next_insn;
19779 
19780 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19781 			if (!new_prog)
19782 				return -ENOMEM;
19783 
19784 			delta	 += cnt - 1;
19785 			env->prog = prog = new_prog;
19786 			insn	  = new_prog->insnsi + i + delta;
19787 			goto next_insn;
19788 		}
19789 
19790 		if (insn->imm == BPF_FUNC_get_route_realm)
19791 			prog->dst_needed = 1;
19792 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19793 			bpf_user_rnd_init_once();
19794 		if (insn->imm == BPF_FUNC_override_return)
19795 			prog->kprobe_override = 1;
19796 		if (insn->imm == BPF_FUNC_tail_call) {
19797 			/* If we tail call into other programs, we
19798 			 * cannot make any assumptions since they can
19799 			 * be replaced dynamically during runtime in
19800 			 * the program array.
19801 			 */
19802 			prog->cb_access = 1;
19803 			if (!allow_tail_call_in_subprogs(env))
19804 				prog->aux->stack_depth = MAX_BPF_STACK;
19805 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19806 
19807 			/* mark bpf_tail_call as different opcode to avoid
19808 			 * conditional branch in the interpreter for every normal
19809 			 * call and to prevent accidental JITing by JIT compiler
19810 			 * that doesn't support bpf_tail_call yet
19811 			 */
19812 			insn->imm = 0;
19813 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19814 
19815 			aux = &env->insn_aux_data[i + delta];
19816 			if (env->bpf_capable && !prog->blinding_requested &&
19817 			    prog->jit_requested &&
19818 			    !bpf_map_key_poisoned(aux) &&
19819 			    !bpf_map_ptr_poisoned(aux) &&
19820 			    !bpf_map_ptr_unpriv(aux)) {
19821 				struct bpf_jit_poke_descriptor desc = {
19822 					.reason = BPF_POKE_REASON_TAIL_CALL,
19823 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19824 					.tail_call.key = bpf_map_key_immediate(aux),
19825 					.insn_idx = i + delta,
19826 				};
19827 
19828 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19829 				if (ret < 0) {
19830 					verbose(env, "adding tail call poke descriptor failed\n");
19831 					return ret;
19832 				}
19833 
19834 				insn->imm = ret + 1;
19835 				goto next_insn;
19836 			}
19837 
19838 			if (!bpf_map_ptr_unpriv(aux))
19839 				goto next_insn;
19840 
19841 			/* instead of changing every JIT dealing with tail_call
19842 			 * emit two extra insns:
19843 			 * if (index >= max_entries) goto out;
19844 			 * index &= array->index_mask;
19845 			 * to avoid out-of-bounds cpu speculation
19846 			 */
19847 			if (bpf_map_ptr_poisoned(aux)) {
19848 				verbose(env, "tail_call abusing map_ptr\n");
19849 				return -EINVAL;
19850 			}
19851 
19852 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19853 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19854 						  map_ptr->max_entries, 2);
19855 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19856 						    container_of(map_ptr,
19857 								 struct bpf_array,
19858 								 map)->index_mask);
19859 			insn_buf[2] = *insn;
19860 			cnt = 3;
19861 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19862 			if (!new_prog)
19863 				return -ENOMEM;
19864 
19865 			delta    += cnt - 1;
19866 			env->prog = prog = new_prog;
19867 			insn      = new_prog->insnsi + i + delta;
19868 			goto next_insn;
19869 		}
19870 
19871 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19872 			/* The verifier will process callback_fn as many times as necessary
19873 			 * with different maps and the register states prepared by
19874 			 * set_timer_callback_state will be accurate.
19875 			 *
19876 			 * The following use case is valid:
19877 			 *   map1 is shared by prog1, prog2, prog3.
19878 			 *   prog1 calls bpf_timer_init for some map1 elements
19879 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19880 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19881 			 *   prog3 calls bpf_timer_start for some map1 elements.
19882 			 *     Those that were not both bpf_timer_init-ed and
19883 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19884 			 */
19885 			struct bpf_insn ld_addrs[2] = {
19886 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19887 			};
19888 
19889 			insn_buf[0] = ld_addrs[0];
19890 			insn_buf[1] = ld_addrs[1];
19891 			insn_buf[2] = *insn;
19892 			cnt = 3;
19893 
19894 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19895 			if (!new_prog)
19896 				return -ENOMEM;
19897 
19898 			delta    += cnt - 1;
19899 			env->prog = prog = new_prog;
19900 			insn      = new_prog->insnsi + i + delta;
19901 			goto patch_call_imm;
19902 		}
19903 
19904 		if (is_storage_get_function(insn->imm)) {
19905 			if (!in_sleepable(env) ||
19906 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19907 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19908 			else
19909 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19910 			insn_buf[1] = *insn;
19911 			cnt = 2;
19912 
19913 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19914 			if (!new_prog)
19915 				return -ENOMEM;
19916 
19917 			delta += cnt - 1;
19918 			env->prog = prog = new_prog;
19919 			insn = new_prog->insnsi + i + delta;
19920 			goto patch_call_imm;
19921 		}
19922 
19923 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19924 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19925 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19926 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19927 			 */
19928 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19929 			insn_buf[1] = *insn;
19930 			cnt = 2;
19931 
19932 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19933 			if (!new_prog)
19934 				return -ENOMEM;
19935 
19936 			delta += cnt - 1;
19937 			env->prog = prog = new_prog;
19938 			insn = new_prog->insnsi + i + delta;
19939 			goto patch_call_imm;
19940 		}
19941 
19942 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19943 		 * and other inlining handlers are currently limited to 64 bit
19944 		 * only.
19945 		 */
19946 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19947 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19948 		     insn->imm == BPF_FUNC_map_update_elem ||
19949 		     insn->imm == BPF_FUNC_map_delete_elem ||
19950 		     insn->imm == BPF_FUNC_map_push_elem   ||
19951 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19952 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19953 		     insn->imm == BPF_FUNC_redirect_map    ||
19954 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19955 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19956 			aux = &env->insn_aux_data[i + delta];
19957 			if (bpf_map_ptr_poisoned(aux))
19958 				goto patch_call_imm;
19959 
19960 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19961 			ops = map_ptr->ops;
19962 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19963 			    ops->map_gen_lookup) {
19964 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19965 				if (cnt == -EOPNOTSUPP)
19966 					goto patch_map_ops_generic;
19967 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19968 					verbose(env, "bpf verifier is misconfigured\n");
19969 					return -EINVAL;
19970 				}
19971 
19972 				new_prog = bpf_patch_insn_data(env, i + delta,
19973 							       insn_buf, cnt);
19974 				if (!new_prog)
19975 					return -ENOMEM;
19976 
19977 				delta    += cnt - 1;
19978 				env->prog = prog = new_prog;
19979 				insn      = new_prog->insnsi + i + delta;
19980 				goto next_insn;
19981 			}
19982 
19983 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19984 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19985 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19986 				     (long (*)(struct bpf_map *map, void *key))NULL));
19987 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19988 				     (long (*)(struct bpf_map *map, void *key, void *value,
19989 					      u64 flags))NULL));
19990 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19991 				     (long (*)(struct bpf_map *map, void *value,
19992 					      u64 flags))NULL));
19993 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19994 				     (long (*)(struct bpf_map *map, void *value))NULL));
19995 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19996 				     (long (*)(struct bpf_map *map, void *value))NULL));
19997 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19998 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19999 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
20000 				     (long (*)(struct bpf_map *map,
20001 					      bpf_callback_t callback_fn,
20002 					      void *callback_ctx,
20003 					      u64 flags))NULL));
20004 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
20005 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
20006 
20007 patch_map_ops_generic:
20008 			switch (insn->imm) {
20009 			case BPF_FUNC_map_lookup_elem:
20010 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
20011 				goto next_insn;
20012 			case BPF_FUNC_map_update_elem:
20013 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
20014 				goto next_insn;
20015 			case BPF_FUNC_map_delete_elem:
20016 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
20017 				goto next_insn;
20018 			case BPF_FUNC_map_push_elem:
20019 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
20020 				goto next_insn;
20021 			case BPF_FUNC_map_pop_elem:
20022 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
20023 				goto next_insn;
20024 			case BPF_FUNC_map_peek_elem:
20025 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
20026 				goto next_insn;
20027 			case BPF_FUNC_redirect_map:
20028 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
20029 				goto next_insn;
20030 			case BPF_FUNC_for_each_map_elem:
20031 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
20032 				goto next_insn;
20033 			case BPF_FUNC_map_lookup_percpu_elem:
20034 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
20035 				goto next_insn;
20036 			}
20037 
20038 			goto patch_call_imm;
20039 		}
20040 
20041 		/* Implement bpf_jiffies64 inline. */
20042 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20043 		    insn->imm == BPF_FUNC_jiffies64) {
20044 			struct bpf_insn ld_jiffies_addr[2] = {
20045 				BPF_LD_IMM64(BPF_REG_0,
20046 					     (unsigned long)&jiffies),
20047 			};
20048 
20049 			insn_buf[0] = ld_jiffies_addr[0];
20050 			insn_buf[1] = ld_jiffies_addr[1];
20051 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
20052 						  BPF_REG_0, 0);
20053 			cnt = 3;
20054 
20055 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
20056 						       cnt);
20057 			if (!new_prog)
20058 				return -ENOMEM;
20059 
20060 			delta    += cnt - 1;
20061 			env->prog = prog = new_prog;
20062 			insn      = new_prog->insnsi + i + delta;
20063 			goto next_insn;
20064 		}
20065 
20066 		/* Implement bpf_get_func_arg inline. */
20067 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20068 		    insn->imm == BPF_FUNC_get_func_arg) {
20069 			/* Load nr_args from ctx - 8 */
20070 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20071 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
20072 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
20073 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
20074 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
20075 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
20076 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
20077 			insn_buf[7] = BPF_JMP_A(1);
20078 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
20079 			cnt = 9;
20080 
20081 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20082 			if (!new_prog)
20083 				return -ENOMEM;
20084 
20085 			delta    += cnt - 1;
20086 			env->prog = prog = new_prog;
20087 			insn      = new_prog->insnsi + i + delta;
20088 			goto next_insn;
20089 		}
20090 
20091 		/* Implement bpf_get_func_ret inline. */
20092 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20093 		    insn->imm == BPF_FUNC_get_func_ret) {
20094 			if (eatype == BPF_TRACE_FEXIT ||
20095 			    eatype == BPF_MODIFY_RETURN) {
20096 				/* Load nr_args from ctx - 8 */
20097 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20098 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
20099 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
20100 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
20101 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
20102 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
20103 				cnt = 6;
20104 			} else {
20105 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
20106 				cnt = 1;
20107 			}
20108 
20109 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20110 			if (!new_prog)
20111 				return -ENOMEM;
20112 
20113 			delta    += cnt - 1;
20114 			env->prog = prog = new_prog;
20115 			insn      = new_prog->insnsi + i + delta;
20116 			goto next_insn;
20117 		}
20118 
20119 		/* Implement get_func_arg_cnt inline. */
20120 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20121 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
20122 			/* Load nr_args from ctx - 8 */
20123 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20124 
20125 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
20126 			if (!new_prog)
20127 				return -ENOMEM;
20128 
20129 			env->prog = prog = new_prog;
20130 			insn      = new_prog->insnsi + i + delta;
20131 			goto next_insn;
20132 		}
20133 
20134 		/* Implement bpf_get_func_ip inline. */
20135 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20136 		    insn->imm == BPF_FUNC_get_func_ip) {
20137 			/* Load IP address from ctx - 16 */
20138 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
20139 
20140 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
20141 			if (!new_prog)
20142 				return -ENOMEM;
20143 
20144 			env->prog = prog = new_prog;
20145 			insn      = new_prog->insnsi + i + delta;
20146 			goto next_insn;
20147 		}
20148 
20149 		/* Implement bpf_kptr_xchg inline */
20150 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20151 		    insn->imm == BPF_FUNC_kptr_xchg &&
20152 		    bpf_jit_supports_ptr_xchg()) {
20153 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
20154 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
20155 			cnt = 2;
20156 
20157 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20158 			if (!new_prog)
20159 				return -ENOMEM;
20160 
20161 			delta    += cnt - 1;
20162 			env->prog = prog = new_prog;
20163 			insn      = new_prog->insnsi + i + delta;
20164 			goto next_insn;
20165 		}
20166 patch_call_imm:
20167 		fn = env->ops->get_func_proto(insn->imm, env->prog);
20168 		/* all functions that have prototype and verifier allowed
20169 		 * programs to call them, must be real in-kernel functions
20170 		 */
20171 		if (!fn->func) {
20172 			verbose(env,
20173 				"kernel subsystem misconfigured func %s#%d\n",
20174 				func_id_name(insn->imm), insn->imm);
20175 			return -EFAULT;
20176 		}
20177 		insn->imm = fn->func - __bpf_call_base;
20178 next_insn:
20179 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20180 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20181 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
20182 			cur_subprog++;
20183 			stack_depth = subprogs[cur_subprog].stack_depth;
20184 			stack_depth_extra = 0;
20185 		}
20186 		i++;
20187 		insn++;
20188 	}
20189 
20190 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
20191 	for (i = 0; i < env->subprog_cnt; i++) {
20192 		int subprog_start = subprogs[i].start;
20193 		int stack_slots = subprogs[i].stack_extra / 8;
20194 
20195 		if (!stack_slots)
20196 			continue;
20197 		if (stack_slots > 1) {
20198 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
20199 			return -EFAULT;
20200 		}
20201 
20202 		/* Add ST insn to subprog prologue to init extra stack */
20203 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
20204 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
20205 		/* Copy first actual insn to preserve it */
20206 		insn_buf[1] = env->prog->insnsi[subprog_start];
20207 
20208 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
20209 		if (!new_prog)
20210 			return -ENOMEM;
20211 		env->prog = prog = new_prog;
20212 	}
20213 
20214 	/* Since poke tab is now finalized, publish aux to tracker. */
20215 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20216 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20217 		if (!map_ptr->ops->map_poke_track ||
20218 		    !map_ptr->ops->map_poke_untrack ||
20219 		    !map_ptr->ops->map_poke_run) {
20220 			verbose(env, "bpf verifier is misconfigured\n");
20221 			return -EINVAL;
20222 		}
20223 
20224 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
20225 		if (ret < 0) {
20226 			verbose(env, "tracking tail call prog failed\n");
20227 			return ret;
20228 		}
20229 	}
20230 
20231 	sort_kfunc_descs_by_imm_off(env->prog);
20232 
20233 	return 0;
20234 }
20235 
20236 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
20237 					int position,
20238 					s32 stack_base,
20239 					u32 callback_subprogno,
20240 					u32 *cnt)
20241 {
20242 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
20243 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
20244 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
20245 	int reg_loop_max = BPF_REG_6;
20246 	int reg_loop_cnt = BPF_REG_7;
20247 	int reg_loop_ctx = BPF_REG_8;
20248 
20249 	struct bpf_prog *new_prog;
20250 	u32 callback_start;
20251 	u32 call_insn_offset;
20252 	s32 callback_offset;
20253 
20254 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
20255 	 * be careful to modify this code in sync.
20256 	 */
20257 	struct bpf_insn insn_buf[] = {
20258 		/* Return error and jump to the end of the patch if
20259 		 * expected number of iterations is too big.
20260 		 */
20261 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
20262 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
20263 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
20264 		/* spill R6, R7, R8 to use these as loop vars */
20265 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
20266 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
20267 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
20268 		/* initialize loop vars */
20269 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
20270 		BPF_MOV32_IMM(reg_loop_cnt, 0),
20271 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
20272 		/* loop header,
20273 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
20274 		 */
20275 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
20276 		/* callback call,
20277 		 * correct callback offset would be set after patching
20278 		 */
20279 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
20280 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
20281 		BPF_CALL_REL(0),
20282 		/* increment loop counter */
20283 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
20284 		/* jump to loop header if callback returned 0 */
20285 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
20286 		/* return value of bpf_loop,
20287 		 * set R0 to the number of iterations
20288 		 */
20289 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
20290 		/* restore original values of R6, R7, R8 */
20291 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
20292 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
20293 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
20294 	};
20295 
20296 	*cnt = ARRAY_SIZE(insn_buf);
20297 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
20298 	if (!new_prog)
20299 		return new_prog;
20300 
20301 	/* callback start is known only after patching */
20302 	callback_start = env->subprog_info[callback_subprogno].start;
20303 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
20304 	call_insn_offset = position + 12;
20305 	callback_offset = callback_start - call_insn_offset - 1;
20306 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
20307 
20308 	return new_prog;
20309 }
20310 
20311 static bool is_bpf_loop_call(struct bpf_insn *insn)
20312 {
20313 	return insn->code == (BPF_JMP | BPF_CALL) &&
20314 		insn->src_reg == 0 &&
20315 		insn->imm == BPF_FUNC_loop;
20316 }
20317 
20318 /* For all sub-programs in the program (including main) check
20319  * insn_aux_data to see if there are bpf_loop calls that require
20320  * inlining. If such calls are found the calls are replaced with a
20321  * sequence of instructions produced by `inline_bpf_loop` function and
20322  * subprog stack_depth is increased by the size of 3 registers.
20323  * This stack space is used to spill values of the R6, R7, R8.  These
20324  * registers are used to store the loop bound, counter and context
20325  * variables.
20326  */
20327 static int optimize_bpf_loop(struct bpf_verifier_env *env)
20328 {
20329 	struct bpf_subprog_info *subprogs = env->subprog_info;
20330 	int i, cur_subprog = 0, cnt, delta = 0;
20331 	struct bpf_insn *insn = env->prog->insnsi;
20332 	int insn_cnt = env->prog->len;
20333 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20334 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20335 	u16 stack_depth_extra = 0;
20336 
20337 	for (i = 0; i < insn_cnt; i++, insn++) {
20338 		struct bpf_loop_inline_state *inline_state =
20339 			&env->insn_aux_data[i + delta].loop_inline_state;
20340 
20341 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
20342 			struct bpf_prog *new_prog;
20343 
20344 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
20345 			new_prog = inline_bpf_loop(env,
20346 						   i + delta,
20347 						   -(stack_depth + stack_depth_extra),
20348 						   inline_state->callback_subprogno,
20349 						   &cnt);
20350 			if (!new_prog)
20351 				return -ENOMEM;
20352 
20353 			delta     += cnt - 1;
20354 			env->prog  = new_prog;
20355 			insn       = new_prog->insnsi + i + delta;
20356 		}
20357 
20358 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20359 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20360 			cur_subprog++;
20361 			stack_depth = subprogs[cur_subprog].stack_depth;
20362 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20363 			stack_depth_extra = 0;
20364 		}
20365 	}
20366 
20367 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20368 
20369 	return 0;
20370 }
20371 
20372 static void free_states(struct bpf_verifier_env *env)
20373 {
20374 	struct bpf_verifier_state_list *sl, *sln;
20375 	int i;
20376 
20377 	sl = env->free_list;
20378 	while (sl) {
20379 		sln = sl->next;
20380 		free_verifier_state(&sl->state, false);
20381 		kfree(sl);
20382 		sl = sln;
20383 	}
20384 	env->free_list = NULL;
20385 
20386 	if (!env->explored_states)
20387 		return;
20388 
20389 	for (i = 0; i < state_htab_size(env); i++) {
20390 		sl = env->explored_states[i];
20391 
20392 		while (sl) {
20393 			sln = sl->next;
20394 			free_verifier_state(&sl->state, false);
20395 			kfree(sl);
20396 			sl = sln;
20397 		}
20398 		env->explored_states[i] = NULL;
20399 	}
20400 }
20401 
20402 static int do_check_common(struct bpf_verifier_env *env, int subprog)
20403 {
20404 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20405 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
20406 	struct bpf_verifier_state *state;
20407 	struct bpf_reg_state *regs;
20408 	int ret, i;
20409 
20410 	env->prev_linfo = NULL;
20411 	env->pass_cnt++;
20412 
20413 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
20414 	if (!state)
20415 		return -ENOMEM;
20416 	state->curframe = 0;
20417 	state->speculative = false;
20418 	state->branches = 1;
20419 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
20420 	if (!state->frame[0]) {
20421 		kfree(state);
20422 		return -ENOMEM;
20423 	}
20424 	env->cur_state = state;
20425 	init_func_state(env, state->frame[0],
20426 			BPF_MAIN_FUNC /* callsite */,
20427 			0 /* frameno */,
20428 			subprog);
20429 	state->first_insn_idx = env->subprog_info[subprog].start;
20430 	state->last_insn_idx = -1;
20431 
20432 	regs = state->frame[state->curframe]->regs;
20433 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20434 		const char *sub_name = subprog_name(env, subprog);
20435 		struct bpf_subprog_arg_info *arg;
20436 		struct bpf_reg_state *reg;
20437 
20438 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
20439 		ret = btf_prepare_func_args(env, subprog);
20440 		if (ret)
20441 			goto out;
20442 
20443 		if (subprog_is_exc_cb(env, subprog)) {
20444 			state->frame[0]->in_exception_callback_fn = true;
20445 			/* We have already ensured that the callback returns an integer, just
20446 			 * like all global subprogs. We need to determine it only has a single
20447 			 * scalar argument.
20448 			 */
20449 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
20450 				verbose(env, "exception cb only supports single integer argument\n");
20451 				ret = -EINVAL;
20452 				goto out;
20453 			}
20454 		}
20455 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
20456 			arg = &sub->args[i - BPF_REG_1];
20457 			reg = &regs[i];
20458 
20459 			if (arg->arg_type == ARG_PTR_TO_CTX) {
20460 				reg->type = PTR_TO_CTX;
20461 				mark_reg_known_zero(env, regs, i);
20462 			} else if (arg->arg_type == ARG_ANYTHING) {
20463 				reg->type = SCALAR_VALUE;
20464 				mark_reg_unknown(env, regs, i);
20465 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
20466 				/* assume unspecial LOCAL dynptr type */
20467 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
20468 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
20469 				reg->type = PTR_TO_MEM;
20470 				if (arg->arg_type & PTR_MAYBE_NULL)
20471 					reg->type |= PTR_MAYBE_NULL;
20472 				mark_reg_known_zero(env, regs, i);
20473 				reg->mem_size = arg->mem_size;
20474 				reg->id = ++env->id_gen;
20475 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
20476 				reg->type = PTR_TO_BTF_ID;
20477 				if (arg->arg_type & PTR_MAYBE_NULL)
20478 					reg->type |= PTR_MAYBE_NULL;
20479 				if (arg->arg_type & PTR_UNTRUSTED)
20480 					reg->type |= PTR_UNTRUSTED;
20481 				if (arg->arg_type & PTR_TRUSTED)
20482 					reg->type |= PTR_TRUSTED;
20483 				mark_reg_known_zero(env, regs, i);
20484 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
20485 				reg->btf_id = arg->btf_id;
20486 				reg->id = ++env->id_gen;
20487 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
20488 				/* caller can pass either PTR_TO_ARENA or SCALAR */
20489 				mark_reg_unknown(env, regs, i);
20490 			} else {
20491 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
20492 					  i - BPF_REG_1, arg->arg_type);
20493 				ret = -EFAULT;
20494 				goto out;
20495 			}
20496 		}
20497 	} else {
20498 		/* if main BPF program has associated BTF info, validate that
20499 		 * it's matching expected signature, and otherwise mark BTF
20500 		 * info for main program as unreliable
20501 		 */
20502 		if (env->prog->aux->func_info_aux) {
20503 			ret = btf_prepare_func_args(env, 0);
20504 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
20505 				env->prog->aux->func_info_aux[0].unreliable = true;
20506 		}
20507 
20508 		/* 1st arg to a function */
20509 		regs[BPF_REG_1].type = PTR_TO_CTX;
20510 		mark_reg_known_zero(env, regs, BPF_REG_1);
20511 	}
20512 
20513 	ret = do_check(env);
20514 out:
20515 	/* check for NULL is necessary, since cur_state can be freed inside
20516 	 * do_check() under memory pressure.
20517 	 */
20518 	if (env->cur_state) {
20519 		free_verifier_state(env->cur_state, true);
20520 		env->cur_state = NULL;
20521 	}
20522 	while (!pop_stack(env, NULL, NULL, false));
20523 	if (!ret && pop_log)
20524 		bpf_vlog_reset(&env->log, 0);
20525 	free_states(env);
20526 	return ret;
20527 }
20528 
20529 /* Lazily verify all global functions based on their BTF, if they are called
20530  * from main BPF program or any of subprograms transitively.
20531  * BPF global subprogs called from dead code are not validated.
20532  * All callable global functions must pass verification.
20533  * Otherwise the whole program is rejected.
20534  * Consider:
20535  * int bar(int);
20536  * int foo(int f)
20537  * {
20538  *    return bar(f);
20539  * }
20540  * int bar(int b)
20541  * {
20542  *    ...
20543  * }
20544  * foo() will be verified first for R1=any_scalar_value. During verification it
20545  * will be assumed that bar() already verified successfully and call to bar()
20546  * from foo() will be checked for type match only. Later bar() will be verified
20547  * independently to check that it's safe for R1=any_scalar_value.
20548  */
20549 static int do_check_subprogs(struct bpf_verifier_env *env)
20550 {
20551 	struct bpf_prog_aux *aux = env->prog->aux;
20552 	struct bpf_func_info_aux *sub_aux;
20553 	int i, ret, new_cnt;
20554 
20555 	if (!aux->func_info)
20556 		return 0;
20557 
20558 	/* exception callback is presumed to be always called */
20559 	if (env->exception_callback_subprog)
20560 		subprog_aux(env, env->exception_callback_subprog)->called = true;
20561 
20562 again:
20563 	new_cnt = 0;
20564 	for (i = 1; i < env->subprog_cnt; i++) {
20565 		if (!subprog_is_global(env, i))
20566 			continue;
20567 
20568 		sub_aux = subprog_aux(env, i);
20569 		if (!sub_aux->called || sub_aux->verified)
20570 			continue;
20571 
20572 		env->insn_idx = env->subprog_info[i].start;
20573 		WARN_ON_ONCE(env->insn_idx == 0);
20574 		ret = do_check_common(env, i);
20575 		if (ret) {
20576 			return ret;
20577 		} else if (env->log.level & BPF_LOG_LEVEL) {
20578 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
20579 				i, subprog_name(env, i));
20580 		}
20581 
20582 		/* We verified new global subprog, it might have called some
20583 		 * more global subprogs that we haven't verified yet, so we
20584 		 * need to do another pass over subprogs to verify those.
20585 		 */
20586 		sub_aux->verified = true;
20587 		new_cnt++;
20588 	}
20589 
20590 	/* We can't loop forever as we verify at least one global subprog on
20591 	 * each pass.
20592 	 */
20593 	if (new_cnt)
20594 		goto again;
20595 
20596 	return 0;
20597 }
20598 
20599 static int do_check_main(struct bpf_verifier_env *env)
20600 {
20601 	int ret;
20602 
20603 	env->insn_idx = 0;
20604 	ret = do_check_common(env, 0);
20605 	if (!ret)
20606 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20607 	return ret;
20608 }
20609 
20610 
20611 static void print_verification_stats(struct bpf_verifier_env *env)
20612 {
20613 	int i;
20614 
20615 	if (env->log.level & BPF_LOG_STATS) {
20616 		verbose(env, "verification time %lld usec\n",
20617 			div_u64(env->verification_time, 1000));
20618 		verbose(env, "stack depth ");
20619 		for (i = 0; i < env->subprog_cnt; i++) {
20620 			u32 depth = env->subprog_info[i].stack_depth;
20621 
20622 			verbose(env, "%d", depth);
20623 			if (i + 1 < env->subprog_cnt)
20624 				verbose(env, "+");
20625 		}
20626 		verbose(env, "\n");
20627 	}
20628 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20629 		"total_states %d peak_states %d mark_read %d\n",
20630 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20631 		env->max_states_per_insn, env->total_states,
20632 		env->peak_states, env->longest_mark_read_walk);
20633 }
20634 
20635 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20636 {
20637 	const struct btf_type *t, *func_proto;
20638 	const struct bpf_struct_ops_desc *st_ops_desc;
20639 	const struct bpf_struct_ops *st_ops;
20640 	const struct btf_member *member;
20641 	struct bpf_prog *prog = env->prog;
20642 	u32 btf_id, member_idx;
20643 	struct btf *btf;
20644 	const char *mname;
20645 
20646 	if (!prog->gpl_compatible) {
20647 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20648 		return -EINVAL;
20649 	}
20650 
20651 	if (!prog->aux->attach_btf_id)
20652 		return -ENOTSUPP;
20653 
20654 	btf = prog->aux->attach_btf;
20655 	if (btf_is_module(btf)) {
20656 		/* Make sure st_ops is valid through the lifetime of env */
20657 		env->attach_btf_mod = btf_try_get_module(btf);
20658 		if (!env->attach_btf_mod) {
20659 			verbose(env, "struct_ops module %s is not found\n",
20660 				btf_get_name(btf));
20661 			return -ENOTSUPP;
20662 		}
20663 	}
20664 
20665 	btf_id = prog->aux->attach_btf_id;
20666 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
20667 	if (!st_ops_desc) {
20668 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20669 			btf_id);
20670 		return -ENOTSUPP;
20671 	}
20672 	st_ops = st_ops_desc->st_ops;
20673 
20674 	t = st_ops_desc->type;
20675 	member_idx = prog->expected_attach_type;
20676 	if (member_idx >= btf_type_vlen(t)) {
20677 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20678 			member_idx, st_ops->name);
20679 		return -EINVAL;
20680 	}
20681 
20682 	member = &btf_type_member(t)[member_idx];
20683 	mname = btf_name_by_offset(btf, member->name_off);
20684 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
20685 					       NULL);
20686 	if (!func_proto) {
20687 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20688 			mname, member_idx, st_ops->name);
20689 		return -EINVAL;
20690 	}
20691 
20692 	if (st_ops->check_member) {
20693 		int err = st_ops->check_member(t, member, prog);
20694 
20695 		if (err) {
20696 			verbose(env, "attach to unsupported member %s of struct %s\n",
20697 				mname, st_ops->name);
20698 			return err;
20699 		}
20700 	}
20701 
20702 	/* btf_ctx_access() used this to provide argument type info */
20703 	prog->aux->ctx_arg_info =
20704 		st_ops_desc->arg_info[member_idx].info;
20705 	prog->aux->ctx_arg_info_size =
20706 		st_ops_desc->arg_info[member_idx].cnt;
20707 
20708 	prog->aux->attach_func_proto = func_proto;
20709 	prog->aux->attach_func_name = mname;
20710 	env->ops = st_ops->verifier_ops;
20711 
20712 	return 0;
20713 }
20714 #define SECURITY_PREFIX "security_"
20715 
20716 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20717 {
20718 	if (within_error_injection_list(addr) ||
20719 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20720 		return 0;
20721 
20722 	return -EINVAL;
20723 }
20724 
20725 /* list of non-sleepable functions that are otherwise on
20726  * ALLOW_ERROR_INJECTION list
20727  */
20728 BTF_SET_START(btf_non_sleepable_error_inject)
20729 /* Three functions below can be called from sleepable and non-sleepable context.
20730  * Assume non-sleepable from bpf safety point of view.
20731  */
20732 BTF_ID(func, __filemap_add_folio)
20733 BTF_ID(func, should_fail_alloc_page)
20734 BTF_ID(func, should_failslab)
20735 BTF_SET_END(btf_non_sleepable_error_inject)
20736 
20737 static int check_non_sleepable_error_inject(u32 btf_id)
20738 {
20739 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20740 }
20741 
20742 int bpf_check_attach_target(struct bpf_verifier_log *log,
20743 			    const struct bpf_prog *prog,
20744 			    const struct bpf_prog *tgt_prog,
20745 			    u32 btf_id,
20746 			    struct bpf_attach_target_info *tgt_info)
20747 {
20748 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20749 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
20750 	const char prefix[] = "btf_trace_";
20751 	int ret = 0, subprog = -1, i;
20752 	const struct btf_type *t;
20753 	bool conservative = true;
20754 	const char *tname;
20755 	struct btf *btf;
20756 	long addr = 0;
20757 	struct module *mod = NULL;
20758 
20759 	if (!btf_id) {
20760 		bpf_log(log, "Tracing programs must provide btf_id\n");
20761 		return -EINVAL;
20762 	}
20763 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20764 	if (!btf) {
20765 		bpf_log(log,
20766 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20767 		return -EINVAL;
20768 	}
20769 	t = btf_type_by_id(btf, btf_id);
20770 	if (!t) {
20771 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20772 		return -EINVAL;
20773 	}
20774 	tname = btf_name_by_offset(btf, t->name_off);
20775 	if (!tname) {
20776 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20777 		return -EINVAL;
20778 	}
20779 	if (tgt_prog) {
20780 		struct bpf_prog_aux *aux = tgt_prog->aux;
20781 
20782 		if (bpf_prog_is_dev_bound(prog->aux) &&
20783 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20784 			bpf_log(log, "Target program bound device mismatch");
20785 			return -EINVAL;
20786 		}
20787 
20788 		for (i = 0; i < aux->func_info_cnt; i++)
20789 			if (aux->func_info[i].type_id == btf_id) {
20790 				subprog = i;
20791 				break;
20792 			}
20793 		if (subprog == -1) {
20794 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20795 			return -EINVAL;
20796 		}
20797 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20798 			bpf_log(log,
20799 				"%s programs cannot attach to exception callback\n",
20800 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20801 			return -EINVAL;
20802 		}
20803 		conservative = aux->func_info_aux[subprog].unreliable;
20804 		if (prog_extension) {
20805 			if (conservative) {
20806 				bpf_log(log,
20807 					"Cannot replace static functions\n");
20808 				return -EINVAL;
20809 			}
20810 			if (!prog->jit_requested) {
20811 				bpf_log(log,
20812 					"Extension programs should be JITed\n");
20813 				return -EINVAL;
20814 			}
20815 		}
20816 		if (!tgt_prog->jited) {
20817 			bpf_log(log, "Can attach to only JITed progs\n");
20818 			return -EINVAL;
20819 		}
20820 		if (prog_tracing) {
20821 			if (aux->attach_tracing_prog) {
20822 				/*
20823 				 * Target program is an fentry/fexit which is already attached
20824 				 * to another tracing program. More levels of nesting
20825 				 * attachment are not allowed.
20826 				 */
20827 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
20828 				return -EINVAL;
20829 			}
20830 		} else if (tgt_prog->type == prog->type) {
20831 			/*
20832 			 * To avoid potential call chain cycles, prevent attaching of a
20833 			 * program extension to another extension. It's ok to attach
20834 			 * fentry/fexit to extension program.
20835 			 */
20836 			bpf_log(log, "Cannot recursively attach\n");
20837 			return -EINVAL;
20838 		}
20839 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20840 		    prog_extension &&
20841 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20842 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20843 			/* Program extensions can extend all program types
20844 			 * except fentry/fexit. The reason is the following.
20845 			 * The fentry/fexit programs are used for performance
20846 			 * analysis, stats and can be attached to any program
20847 			 * type. When extension program is replacing XDP function
20848 			 * it is necessary to allow performance analysis of all
20849 			 * functions. Both original XDP program and its program
20850 			 * extension. Hence attaching fentry/fexit to
20851 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
20852 			 * fentry/fexit was allowed it would be possible to create
20853 			 * long call chain fentry->extension->fentry->extension
20854 			 * beyond reasonable stack size. Hence extending fentry
20855 			 * is not allowed.
20856 			 */
20857 			bpf_log(log, "Cannot extend fentry/fexit\n");
20858 			return -EINVAL;
20859 		}
20860 	} else {
20861 		if (prog_extension) {
20862 			bpf_log(log, "Cannot replace kernel functions\n");
20863 			return -EINVAL;
20864 		}
20865 	}
20866 
20867 	switch (prog->expected_attach_type) {
20868 	case BPF_TRACE_RAW_TP:
20869 		if (tgt_prog) {
20870 			bpf_log(log,
20871 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20872 			return -EINVAL;
20873 		}
20874 		if (!btf_type_is_typedef(t)) {
20875 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20876 				btf_id);
20877 			return -EINVAL;
20878 		}
20879 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20880 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20881 				btf_id, tname);
20882 			return -EINVAL;
20883 		}
20884 		tname += sizeof(prefix) - 1;
20885 		t = btf_type_by_id(btf, t->type);
20886 		if (!btf_type_is_ptr(t))
20887 			/* should never happen in valid vmlinux build */
20888 			return -EINVAL;
20889 		t = btf_type_by_id(btf, t->type);
20890 		if (!btf_type_is_func_proto(t))
20891 			/* should never happen in valid vmlinux build */
20892 			return -EINVAL;
20893 
20894 		break;
20895 	case BPF_TRACE_ITER:
20896 		if (!btf_type_is_func(t)) {
20897 			bpf_log(log, "attach_btf_id %u is not a function\n",
20898 				btf_id);
20899 			return -EINVAL;
20900 		}
20901 		t = btf_type_by_id(btf, t->type);
20902 		if (!btf_type_is_func_proto(t))
20903 			return -EINVAL;
20904 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20905 		if (ret)
20906 			return ret;
20907 		break;
20908 	default:
20909 		if (!prog_extension)
20910 			return -EINVAL;
20911 		fallthrough;
20912 	case BPF_MODIFY_RETURN:
20913 	case BPF_LSM_MAC:
20914 	case BPF_LSM_CGROUP:
20915 	case BPF_TRACE_FENTRY:
20916 	case BPF_TRACE_FEXIT:
20917 		if (!btf_type_is_func(t)) {
20918 			bpf_log(log, "attach_btf_id %u is not a function\n",
20919 				btf_id);
20920 			return -EINVAL;
20921 		}
20922 		if (prog_extension &&
20923 		    btf_check_type_match(log, prog, btf, t))
20924 			return -EINVAL;
20925 		t = btf_type_by_id(btf, t->type);
20926 		if (!btf_type_is_func_proto(t))
20927 			return -EINVAL;
20928 
20929 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20930 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20931 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20932 			return -EINVAL;
20933 
20934 		if (tgt_prog && conservative)
20935 			t = NULL;
20936 
20937 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20938 		if (ret < 0)
20939 			return ret;
20940 
20941 		if (tgt_prog) {
20942 			if (subprog == 0)
20943 				addr = (long) tgt_prog->bpf_func;
20944 			else
20945 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20946 		} else {
20947 			if (btf_is_module(btf)) {
20948 				mod = btf_try_get_module(btf);
20949 				if (mod)
20950 					addr = find_kallsyms_symbol_value(mod, tname);
20951 				else
20952 					addr = 0;
20953 			} else {
20954 				addr = kallsyms_lookup_name(tname);
20955 			}
20956 			if (!addr) {
20957 				module_put(mod);
20958 				bpf_log(log,
20959 					"The address of function %s cannot be found\n",
20960 					tname);
20961 				return -ENOENT;
20962 			}
20963 		}
20964 
20965 		if (prog->sleepable) {
20966 			ret = -EINVAL;
20967 			switch (prog->type) {
20968 			case BPF_PROG_TYPE_TRACING:
20969 
20970 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20971 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20972 				 */
20973 				if (!check_non_sleepable_error_inject(btf_id) &&
20974 				    within_error_injection_list(addr))
20975 					ret = 0;
20976 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20977 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20978 				 */
20979 				else {
20980 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20981 										prog);
20982 
20983 					if (flags && (*flags & KF_SLEEPABLE))
20984 						ret = 0;
20985 				}
20986 				break;
20987 			case BPF_PROG_TYPE_LSM:
20988 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20989 				 * Only some of them are sleepable.
20990 				 */
20991 				if (bpf_lsm_is_sleepable_hook(btf_id))
20992 					ret = 0;
20993 				break;
20994 			default:
20995 				break;
20996 			}
20997 			if (ret) {
20998 				module_put(mod);
20999 				bpf_log(log, "%s is not sleepable\n", tname);
21000 				return ret;
21001 			}
21002 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
21003 			if (tgt_prog) {
21004 				module_put(mod);
21005 				bpf_log(log, "can't modify return codes of BPF programs\n");
21006 				return -EINVAL;
21007 			}
21008 			ret = -EINVAL;
21009 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
21010 			    !check_attach_modify_return(addr, tname))
21011 				ret = 0;
21012 			if (ret) {
21013 				module_put(mod);
21014 				bpf_log(log, "%s() is not modifiable\n", tname);
21015 				return ret;
21016 			}
21017 		}
21018 
21019 		break;
21020 	}
21021 	tgt_info->tgt_addr = addr;
21022 	tgt_info->tgt_name = tname;
21023 	tgt_info->tgt_type = t;
21024 	tgt_info->tgt_mod = mod;
21025 	return 0;
21026 }
21027 
21028 BTF_SET_START(btf_id_deny)
21029 BTF_ID_UNUSED
21030 #ifdef CONFIG_SMP
21031 BTF_ID(func, migrate_disable)
21032 BTF_ID(func, migrate_enable)
21033 #endif
21034 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
21035 BTF_ID(func, rcu_read_unlock_strict)
21036 #endif
21037 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
21038 BTF_ID(func, preempt_count_add)
21039 BTF_ID(func, preempt_count_sub)
21040 #endif
21041 #ifdef CONFIG_PREEMPT_RCU
21042 BTF_ID(func, __rcu_read_lock)
21043 BTF_ID(func, __rcu_read_unlock)
21044 #endif
21045 BTF_SET_END(btf_id_deny)
21046 
21047 static bool can_be_sleepable(struct bpf_prog *prog)
21048 {
21049 	if (prog->type == BPF_PROG_TYPE_TRACING) {
21050 		switch (prog->expected_attach_type) {
21051 		case BPF_TRACE_FENTRY:
21052 		case BPF_TRACE_FEXIT:
21053 		case BPF_MODIFY_RETURN:
21054 		case BPF_TRACE_ITER:
21055 			return true;
21056 		default:
21057 			return false;
21058 		}
21059 	}
21060 	return prog->type == BPF_PROG_TYPE_LSM ||
21061 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
21062 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
21063 }
21064 
21065 static int check_attach_btf_id(struct bpf_verifier_env *env)
21066 {
21067 	struct bpf_prog *prog = env->prog;
21068 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
21069 	struct bpf_attach_target_info tgt_info = {};
21070 	u32 btf_id = prog->aux->attach_btf_id;
21071 	struct bpf_trampoline *tr;
21072 	int ret;
21073 	u64 key;
21074 
21075 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
21076 		if (prog->sleepable)
21077 			/* attach_btf_id checked to be zero already */
21078 			return 0;
21079 		verbose(env, "Syscall programs can only be sleepable\n");
21080 		return -EINVAL;
21081 	}
21082 
21083 	if (prog->sleepable && !can_be_sleepable(prog)) {
21084 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
21085 		return -EINVAL;
21086 	}
21087 
21088 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
21089 		return check_struct_ops_btf_id(env);
21090 
21091 	if (prog->type != BPF_PROG_TYPE_TRACING &&
21092 	    prog->type != BPF_PROG_TYPE_LSM &&
21093 	    prog->type != BPF_PROG_TYPE_EXT)
21094 		return 0;
21095 
21096 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
21097 	if (ret)
21098 		return ret;
21099 
21100 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
21101 		/* to make freplace equivalent to their targets, they need to
21102 		 * inherit env->ops and expected_attach_type for the rest of the
21103 		 * verification
21104 		 */
21105 		env->ops = bpf_verifier_ops[tgt_prog->type];
21106 		prog->expected_attach_type = tgt_prog->expected_attach_type;
21107 	}
21108 
21109 	/* store info about the attachment target that will be used later */
21110 	prog->aux->attach_func_proto = tgt_info.tgt_type;
21111 	prog->aux->attach_func_name = tgt_info.tgt_name;
21112 	prog->aux->mod = tgt_info.tgt_mod;
21113 
21114 	if (tgt_prog) {
21115 		prog->aux->saved_dst_prog_type = tgt_prog->type;
21116 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
21117 	}
21118 
21119 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
21120 		prog->aux->attach_btf_trace = true;
21121 		return 0;
21122 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
21123 		if (!bpf_iter_prog_supported(prog))
21124 			return -EINVAL;
21125 		return 0;
21126 	}
21127 
21128 	if (prog->type == BPF_PROG_TYPE_LSM) {
21129 		ret = bpf_lsm_verify_prog(&env->log, prog);
21130 		if (ret < 0)
21131 			return ret;
21132 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
21133 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
21134 		return -EINVAL;
21135 	}
21136 
21137 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
21138 	tr = bpf_trampoline_get(key, &tgt_info);
21139 	if (!tr)
21140 		return -ENOMEM;
21141 
21142 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
21143 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
21144 
21145 	prog->aux->dst_trampoline = tr;
21146 	return 0;
21147 }
21148 
21149 struct btf *bpf_get_btf_vmlinux(void)
21150 {
21151 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
21152 		mutex_lock(&bpf_verifier_lock);
21153 		if (!btf_vmlinux)
21154 			btf_vmlinux = btf_parse_vmlinux();
21155 		mutex_unlock(&bpf_verifier_lock);
21156 	}
21157 	return btf_vmlinux;
21158 }
21159 
21160 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
21161 {
21162 	u64 start_time = ktime_get_ns();
21163 	struct bpf_verifier_env *env;
21164 	int i, len, ret = -EINVAL, err;
21165 	u32 log_true_size;
21166 	bool is_priv;
21167 
21168 	/* no program is valid */
21169 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
21170 		return -EINVAL;
21171 
21172 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
21173 	 * allocate/free it every time bpf_check() is called
21174 	 */
21175 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
21176 	if (!env)
21177 		return -ENOMEM;
21178 
21179 	env->bt.env = env;
21180 
21181 	len = (*prog)->len;
21182 	env->insn_aux_data =
21183 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
21184 	ret = -ENOMEM;
21185 	if (!env->insn_aux_data)
21186 		goto err_free_env;
21187 	for (i = 0; i < len; i++)
21188 		env->insn_aux_data[i].orig_idx = i;
21189 	env->prog = *prog;
21190 	env->ops = bpf_verifier_ops[env->prog->type];
21191 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
21192 
21193 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
21194 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
21195 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
21196 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
21197 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
21198 
21199 	bpf_get_btf_vmlinux();
21200 
21201 	/* grab the mutex to protect few globals used by verifier */
21202 	if (!is_priv)
21203 		mutex_lock(&bpf_verifier_lock);
21204 
21205 	/* user could have requested verbose verifier output
21206 	 * and supplied buffer to store the verification trace
21207 	 */
21208 	ret = bpf_vlog_init(&env->log, attr->log_level,
21209 			    (char __user *) (unsigned long) attr->log_buf,
21210 			    attr->log_size);
21211 	if (ret)
21212 		goto err_unlock;
21213 
21214 	mark_verifier_state_clean(env);
21215 
21216 	if (IS_ERR(btf_vmlinux)) {
21217 		/* Either gcc or pahole or kernel are broken. */
21218 		verbose(env, "in-kernel BTF is malformed\n");
21219 		ret = PTR_ERR(btf_vmlinux);
21220 		goto skip_full_check;
21221 	}
21222 
21223 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
21224 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
21225 		env->strict_alignment = true;
21226 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
21227 		env->strict_alignment = false;
21228 
21229 	if (is_priv)
21230 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
21231 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
21232 
21233 	env->explored_states = kvcalloc(state_htab_size(env),
21234 				       sizeof(struct bpf_verifier_state_list *),
21235 				       GFP_USER);
21236 	ret = -ENOMEM;
21237 	if (!env->explored_states)
21238 		goto skip_full_check;
21239 
21240 	ret = check_btf_info_early(env, attr, uattr);
21241 	if (ret < 0)
21242 		goto skip_full_check;
21243 
21244 	ret = add_subprog_and_kfunc(env);
21245 	if (ret < 0)
21246 		goto skip_full_check;
21247 
21248 	ret = check_subprogs(env);
21249 	if (ret < 0)
21250 		goto skip_full_check;
21251 
21252 	ret = check_btf_info(env, attr, uattr);
21253 	if (ret < 0)
21254 		goto skip_full_check;
21255 
21256 	ret = check_attach_btf_id(env);
21257 	if (ret)
21258 		goto skip_full_check;
21259 
21260 	ret = resolve_pseudo_ldimm64(env);
21261 	if (ret < 0)
21262 		goto skip_full_check;
21263 
21264 	if (bpf_prog_is_offloaded(env->prog->aux)) {
21265 		ret = bpf_prog_offload_verifier_prep(env->prog);
21266 		if (ret)
21267 			goto skip_full_check;
21268 	}
21269 
21270 	ret = check_cfg(env);
21271 	if (ret < 0)
21272 		goto skip_full_check;
21273 
21274 	ret = do_check_main(env);
21275 	ret = ret ?: do_check_subprogs(env);
21276 
21277 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
21278 		ret = bpf_prog_offload_finalize(env);
21279 
21280 skip_full_check:
21281 	kvfree(env->explored_states);
21282 
21283 	if (ret == 0)
21284 		ret = check_max_stack_depth(env);
21285 
21286 	/* instruction rewrites happen after this point */
21287 	if (ret == 0)
21288 		ret = optimize_bpf_loop(env);
21289 
21290 	if (is_priv) {
21291 		if (ret == 0)
21292 			opt_hard_wire_dead_code_branches(env);
21293 		if (ret == 0)
21294 			ret = opt_remove_dead_code(env);
21295 		if (ret == 0)
21296 			ret = opt_remove_nops(env);
21297 	} else {
21298 		if (ret == 0)
21299 			sanitize_dead_code(env);
21300 	}
21301 
21302 	if (ret == 0)
21303 		/* program is valid, convert *(u32*)(ctx + off) accesses */
21304 		ret = convert_ctx_accesses(env);
21305 
21306 	if (ret == 0)
21307 		ret = do_misc_fixups(env);
21308 
21309 	/* do 32-bit optimization after insn patching has done so those patched
21310 	 * insns could be handled correctly.
21311 	 */
21312 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
21313 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
21314 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
21315 								     : false;
21316 	}
21317 
21318 	if (ret == 0)
21319 		ret = fixup_call_args(env);
21320 
21321 	env->verification_time = ktime_get_ns() - start_time;
21322 	print_verification_stats(env);
21323 	env->prog->aux->verified_insns = env->insn_processed;
21324 
21325 	/* preserve original error even if log finalization is successful */
21326 	err = bpf_vlog_finalize(&env->log, &log_true_size);
21327 	if (err)
21328 		ret = err;
21329 
21330 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
21331 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
21332 				  &log_true_size, sizeof(log_true_size))) {
21333 		ret = -EFAULT;
21334 		goto err_release_maps;
21335 	}
21336 
21337 	if (ret)
21338 		goto err_release_maps;
21339 
21340 	if (env->used_map_cnt) {
21341 		/* if program passed verifier, update used_maps in bpf_prog_info */
21342 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
21343 							  sizeof(env->used_maps[0]),
21344 							  GFP_KERNEL);
21345 
21346 		if (!env->prog->aux->used_maps) {
21347 			ret = -ENOMEM;
21348 			goto err_release_maps;
21349 		}
21350 
21351 		memcpy(env->prog->aux->used_maps, env->used_maps,
21352 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
21353 		env->prog->aux->used_map_cnt = env->used_map_cnt;
21354 	}
21355 	if (env->used_btf_cnt) {
21356 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
21357 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
21358 							  sizeof(env->used_btfs[0]),
21359 							  GFP_KERNEL);
21360 		if (!env->prog->aux->used_btfs) {
21361 			ret = -ENOMEM;
21362 			goto err_release_maps;
21363 		}
21364 
21365 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
21366 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
21367 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
21368 	}
21369 	if (env->used_map_cnt || env->used_btf_cnt) {
21370 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
21371 		 * bpf_ld_imm64 instructions
21372 		 */
21373 		convert_pseudo_ld_imm64(env);
21374 	}
21375 
21376 	adjust_btf_func(env);
21377 
21378 err_release_maps:
21379 	if (!env->prog->aux->used_maps)
21380 		/* if we didn't copy map pointers into bpf_prog_info, release
21381 		 * them now. Otherwise free_used_maps() will release them.
21382 		 */
21383 		release_maps(env);
21384 	if (!env->prog->aux->used_btfs)
21385 		release_btfs(env);
21386 
21387 	/* extension progs temporarily inherit the attach_type of their targets
21388 	   for verification purposes, so set it back to zero before returning
21389 	 */
21390 	if (env->prog->type == BPF_PROG_TYPE_EXT)
21391 		env->prog->expected_attach_type = 0;
21392 
21393 	*prog = env->prog;
21394 
21395 	module_put(env->attach_btf_mod);
21396 err_unlock:
21397 	if (!is_priv)
21398 		mutex_unlock(&bpf_verifier_lock);
21399 	vfree(env->insn_aux_data);
21400 err_free_env:
21401 	kfree(env);
21402 	return ret;
21403 }
21404