1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 }; 36 37 /* bpf_check() is a static code analyzer that walks eBPF program 38 * instruction by instruction and updates register/stack state. 39 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 40 * 41 * The first pass is depth-first-search to check that the program is a DAG. 42 * It rejects the following programs: 43 * - larger than BPF_MAXINSNS insns 44 * - if loop is present (detected via back-edge) 45 * - unreachable insns exist (shouldn't be a forest. program = one function) 46 * - out of bounds or malformed jumps 47 * The second pass is all possible path descent from the 1st insn. 48 * Since it's analyzing all pathes through the program, the length of the 49 * analysis is limited to 64k insn, which may be hit even if total number of 50 * insn is less then 4K, but there are too many branches that change stack/regs. 51 * Number of 'branches to be analyzed' is limited to 1k 52 * 53 * On entry to each instruction, each register has a type, and the instruction 54 * changes the types of the registers depending on instruction semantics. 55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 56 * copied to R1. 57 * 58 * All registers are 64-bit. 59 * R0 - return register 60 * R1-R5 argument passing registers 61 * R6-R9 callee saved registers 62 * R10 - frame pointer read-only 63 * 64 * At the start of BPF program the register R1 contains a pointer to bpf_context 65 * and has type PTR_TO_CTX. 66 * 67 * Verifier tracks arithmetic operations on pointers in case: 68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 70 * 1st insn copies R10 (which has FRAME_PTR) type into R1 71 * and 2nd arithmetic instruction is pattern matched to recognize 72 * that it wants to construct a pointer to some element within stack. 73 * So after 2nd insn, the register R1 has type PTR_TO_STACK 74 * (and -20 constant is saved for further stack bounds checking). 75 * Meaning that this reg is a pointer to stack plus known immediate constant. 76 * 77 * Most of the time the registers have SCALAR_VALUE type, which 78 * means the register has some value, but it's not a valid pointer. 79 * (like pointer plus pointer becomes SCALAR_VALUE type) 80 * 81 * When verifier sees load or store instructions the type of base register 82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 83 * types recognized by check_mem_access() function. 84 * 85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 86 * and the range of [ptr, ptr + map's value_size) is accessible. 87 * 88 * registers used to pass values to function calls are checked against 89 * function argument constraints. 90 * 91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 92 * It means that the register type passed to this function must be 93 * PTR_TO_STACK and it will be used inside the function as 94 * 'pointer to map element key' 95 * 96 * For example the argument constraints for bpf_map_lookup_elem(): 97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 98 * .arg1_type = ARG_CONST_MAP_PTR, 99 * .arg2_type = ARG_PTR_TO_MAP_KEY, 100 * 101 * ret_type says that this function returns 'pointer to map elem value or null' 102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 103 * 2nd argument should be a pointer to stack, which will be used inside 104 * the helper function as a pointer to map element key. 105 * 106 * On the kernel side the helper function looks like: 107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 108 * { 109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 110 * void *key = (void *) (unsigned long) r2; 111 * void *value; 112 * 113 * here kernel can access 'key' and 'map' pointers safely, knowing that 114 * [key, key + map->key_size) bytes are valid and were initialized on 115 * the stack of eBPF program. 116 * } 117 * 118 * Corresponding eBPF program may look like: 119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 123 * here verifier looks at prototype of map_lookup_elem() and sees: 124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 126 * 127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 129 * and were initialized prior to this call. 130 * If it's ok, then verifier allows this BPF_CALL insn and looks at 131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 133 * returns ether pointer to map value or NULL. 134 * 135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 136 * insn, the register holding that pointer in the true branch changes state to 137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 138 * branch. See check_cond_jmp_op(). 139 * 140 * After the call R0 is set to return type of the function and registers R1-R5 141 * are set to NOT_INIT to indicate that they are no longer readable. 142 */ 143 144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 145 struct bpf_verifier_stack_elem { 146 /* verifer state is 'st' 147 * before processing instruction 'insn_idx' 148 * and after processing instruction 'prev_insn_idx' 149 */ 150 struct bpf_verifier_state st; 151 int insn_idx; 152 int prev_insn_idx; 153 struct bpf_verifier_stack_elem *next; 154 }; 155 156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 157 #define BPF_COMPLEXITY_LIMIT_STACK 1024 158 159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 160 161 struct bpf_call_arg_meta { 162 struct bpf_map *map_ptr; 163 bool raw_mode; 164 bool pkt_access; 165 int regno; 166 int access_size; 167 }; 168 169 static DEFINE_MUTEX(bpf_verifier_lock); 170 171 /* log_level controls verbosity level of eBPF verifier. 172 * bpf_verifier_log_write() is used to dump the verification trace to the log, 173 * so the user can figure out what's wrong with the program 174 */ 175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 176 const char *fmt, ...) 177 { 178 struct bpf_verifer_log *log = &env->log; 179 unsigned int n; 180 va_list args; 181 182 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) 183 return; 184 185 va_start(args, fmt); 186 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 187 va_end(args); 188 189 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 190 "verifier log line truncated - local buffer too short\n"); 191 192 n = min(log->len_total - log->len_used - 1, n); 193 log->kbuf[n] = '\0'; 194 195 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 196 log->len_used += n; 197 else 198 log->ubuf = NULL; 199 } 200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 201 /* Historically bpf_verifier_log_write was called verbose, but the name was too 202 * generic for symbol export. The function was renamed, but not the calls in 203 * the verifier to avoid complicating backports. Hence the alias below. 204 */ 205 static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 206 const char *fmt, ...) 207 __attribute__((alias("bpf_verifier_log_write"))); 208 209 static bool type_is_pkt_pointer(enum bpf_reg_type type) 210 { 211 return type == PTR_TO_PACKET || 212 type == PTR_TO_PACKET_META; 213 } 214 215 /* string representation of 'enum bpf_reg_type' */ 216 static const char * const reg_type_str[] = { 217 [NOT_INIT] = "?", 218 [SCALAR_VALUE] = "inv", 219 [PTR_TO_CTX] = "ctx", 220 [CONST_PTR_TO_MAP] = "map_ptr", 221 [PTR_TO_MAP_VALUE] = "map_value", 222 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 223 [PTR_TO_STACK] = "fp", 224 [PTR_TO_PACKET] = "pkt", 225 [PTR_TO_PACKET_META] = "pkt_meta", 226 [PTR_TO_PACKET_END] = "pkt_end", 227 }; 228 229 static void print_liveness(struct bpf_verifier_env *env, 230 enum bpf_reg_liveness live) 231 { 232 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 233 verbose(env, "_"); 234 if (live & REG_LIVE_READ) 235 verbose(env, "r"); 236 if (live & REG_LIVE_WRITTEN) 237 verbose(env, "w"); 238 } 239 240 static struct bpf_func_state *func(struct bpf_verifier_env *env, 241 const struct bpf_reg_state *reg) 242 { 243 struct bpf_verifier_state *cur = env->cur_state; 244 245 return cur->frame[reg->frameno]; 246 } 247 248 static void print_verifier_state(struct bpf_verifier_env *env, 249 const struct bpf_func_state *state) 250 { 251 const struct bpf_reg_state *reg; 252 enum bpf_reg_type t; 253 int i; 254 255 if (state->frameno) 256 verbose(env, " frame%d:", state->frameno); 257 for (i = 0; i < MAX_BPF_REG; i++) { 258 reg = &state->regs[i]; 259 t = reg->type; 260 if (t == NOT_INIT) 261 continue; 262 verbose(env, " R%d", i); 263 print_liveness(env, reg->live); 264 verbose(env, "=%s", reg_type_str[t]); 265 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 266 tnum_is_const(reg->var_off)) { 267 /* reg->off should be 0 for SCALAR_VALUE */ 268 verbose(env, "%lld", reg->var_off.value + reg->off); 269 if (t == PTR_TO_STACK) 270 verbose(env, ",call_%d", func(env, reg)->callsite); 271 } else { 272 verbose(env, "(id=%d", reg->id); 273 if (t != SCALAR_VALUE) 274 verbose(env, ",off=%d", reg->off); 275 if (type_is_pkt_pointer(t)) 276 verbose(env, ",r=%d", reg->range); 277 else if (t == CONST_PTR_TO_MAP || 278 t == PTR_TO_MAP_VALUE || 279 t == PTR_TO_MAP_VALUE_OR_NULL) 280 verbose(env, ",ks=%d,vs=%d", 281 reg->map_ptr->key_size, 282 reg->map_ptr->value_size); 283 if (tnum_is_const(reg->var_off)) { 284 /* Typically an immediate SCALAR_VALUE, but 285 * could be a pointer whose offset is too big 286 * for reg->off 287 */ 288 verbose(env, ",imm=%llx", reg->var_off.value); 289 } else { 290 if (reg->smin_value != reg->umin_value && 291 reg->smin_value != S64_MIN) 292 verbose(env, ",smin_value=%lld", 293 (long long)reg->smin_value); 294 if (reg->smax_value != reg->umax_value && 295 reg->smax_value != S64_MAX) 296 verbose(env, ",smax_value=%lld", 297 (long long)reg->smax_value); 298 if (reg->umin_value != 0) 299 verbose(env, ",umin_value=%llu", 300 (unsigned long long)reg->umin_value); 301 if (reg->umax_value != U64_MAX) 302 verbose(env, ",umax_value=%llu", 303 (unsigned long long)reg->umax_value); 304 if (!tnum_is_unknown(reg->var_off)) { 305 char tn_buf[48]; 306 307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 308 verbose(env, ",var_off=%s", tn_buf); 309 } 310 } 311 verbose(env, ")"); 312 } 313 } 314 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 315 if (state->stack[i].slot_type[0] == STACK_SPILL) { 316 verbose(env, " fp%d", 317 (-i - 1) * BPF_REG_SIZE); 318 print_liveness(env, state->stack[i].spilled_ptr.live); 319 verbose(env, "=%s", 320 reg_type_str[state->stack[i].spilled_ptr.type]); 321 } 322 if (state->stack[i].slot_type[0] == STACK_ZERO) 323 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 324 } 325 verbose(env, "\n"); 326 } 327 328 static int copy_stack_state(struct bpf_func_state *dst, 329 const struct bpf_func_state *src) 330 { 331 if (!src->stack) 332 return 0; 333 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 334 /* internal bug, make state invalid to reject the program */ 335 memset(dst, 0, sizeof(*dst)); 336 return -EFAULT; 337 } 338 memcpy(dst->stack, src->stack, 339 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 340 return 0; 341 } 342 343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 344 * make it consume minimal amount of memory. check_stack_write() access from 345 * the program calls into realloc_func_state() to grow the stack size. 346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 347 * which this function copies over. It points to previous bpf_verifier_state 348 * which is never reallocated 349 */ 350 static int realloc_func_state(struct bpf_func_state *state, int size, 351 bool copy_old) 352 { 353 u32 old_size = state->allocated_stack; 354 struct bpf_stack_state *new_stack; 355 int slot = size / BPF_REG_SIZE; 356 357 if (size <= old_size || !size) { 358 if (copy_old) 359 return 0; 360 state->allocated_stack = slot * BPF_REG_SIZE; 361 if (!size && old_size) { 362 kfree(state->stack); 363 state->stack = NULL; 364 } 365 return 0; 366 } 367 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 368 GFP_KERNEL); 369 if (!new_stack) 370 return -ENOMEM; 371 if (copy_old) { 372 if (state->stack) 373 memcpy(new_stack, state->stack, 374 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 375 memset(new_stack + old_size / BPF_REG_SIZE, 0, 376 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 377 } 378 state->allocated_stack = slot * BPF_REG_SIZE; 379 kfree(state->stack); 380 state->stack = new_stack; 381 return 0; 382 } 383 384 static void free_func_state(struct bpf_func_state *state) 385 { 386 if (!state) 387 return; 388 kfree(state->stack); 389 kfree(state); 390 } 391 392 static void free_verifier_state(struct bpf_verifier_state *state, 393 bool free_self) 394 { 395 int i; 396 397 for (i = 0; i <= state->curframe; i++) { 398 free_func_state(state->frame[i]); 399 state->frame[i] = NULL; 400 } 401 if (free_self) 402 kfree(state); 403 } 404 405 /* copy verifier state from src to dst growing dst stack space 406 * when necessary to accommodate larger src stack 407 */ 408 static int copy_func_state(struct bpf_func_state *dst, 409 const struct bpf_func_state *src) 410 { 411 int err; 412 413 err = realloc_func_state(dst, src->allocated_stack, false); 414 if (err) 415 return err; 416 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 417 return copy_stack_state(dst, src); 418 } 419 420 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 421 const struct bpf_verifier_state *src) 422 { 423 struct bpf_func_state *dst; 424 int i, err; 425 426 /* if dst has more stack frames then src frame, free them */ 427 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 428 free_func_state(dst_state->frame[i]); 429 dst_state->frame[i] = NULL; 430 } 431 dst_state->curframe = src->curframe; 432 dst_state->parent = src->parent; 433 for (i = 0; i <= src->curframe; i++) { 434 dst = dst_state->frame[i]; 435 if (!dst) { 436 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 437 if (!dst) 438 return -ENOMEM; 439 dst_state->frame[i] = dst; 440 } 441 err = copy_func_state(dst, src->frame[i]); 442 if (err) 443 return err; 444 } 445 return 0; 446 } 447 448 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 449 int *insn_idx) 450 { 451 struct bpf_verifier_state *cur = env->cur_state; 452 struct bpf_verifier_stack_elem *elem, *head = env->head; 453 int err; 454 455 if (env->head == NULL) 456 return -ENOENT; 457 458 if (cur) { 459 err = copy_verifier_state(cur, &head->st); 460 if (err) 461 return err; 462 } 463 if (insn_idx) 464 *insn_idx = head->insn_idx; 465 if (prev_insn_idx) 466 *prev_insn_idx = head->prev_insn_idx; 467 elem = head->next; 468 free_verifier_state(&head->st, false); 469 kfree(head); 470 env->head = elem; 471 env->stack_size--; 472 return 0; 473 } 474 475 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 476 int insn_idx, int prev_insn_idx) 477 { 478 struct bpf_verifier_state *cur = env->cur_state; 479 struct bpf_verifier_stack_elem *elem; 480 int err; 481 482 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 483 if (!elem) 484 goto err; 485 486 elem->insn_idx = insn_idx; 487 elem->prev_insn_idx = prev_insn_idx; 488 elem->next = env->head; 489 env->head = elem; 490 env->stack_size++; 491 err = copy_verifier_state(&elem->st, cur); 492 if (err) 493 goto err; 494 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 495 verbose(env, "BPF program is too complex\n"); 496 goto err; 497 } 498 return &elem->st; 499 err: 500 free_verifier_state(env->cur_state, true); 501 env->cur_state = NULL; 502 /* pop all elements and return */ 503 while (!pop_stack(env, NULL, NULL)); 504 return NULL; 505 } 506 507 #define CALLER_SAVED_REGS 6 508 static const int caller_saved[CALLER_SAVED_REGS] = { 509 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 510 }; 511 512 static void __mark_reg_not_init(struct bpf_reg_state *reg); 513 514 /* Mark the unknown part of a register (variable offset or scalar value) as 515 * known to have the value @imm. 516 */ 517 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 518 { 519 reg->id = 0; 520 reg->var_off = tnum_const(imm); 521 reg->smin_value = (s64)imm; 522 reg->smax_value = (s64)imm; 523 reg->umin_value = imm; 524 reg->umax_value = imm; 525 } 526 527 /* Mark the 'variable offset' part of a register as zero. This should be 528 * used only on registers holding a pointer type. 529 */ 530 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 531 { 532 __mark_reg_known(reg, 0); 533 } 534 535 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 536 { 537 __mark_reg_known(reg, 0); 538 reg->off = 0; 539 reg->type = SCALAR_VALUE; 540 } 541 542 static void mark_reg_known_zero(struct bpf_verifier_env *env, 543 struct bpf_reg_state *regs, u32 regno) 544 { 545 if (WARN_ON(regno >= MAX_BPF_REG)) { 546 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 547 /* Something bad happened, let's kill all regs */ 548 for (regno = 0; regno < MAX_BPF_REG; regno++) 549 __mark_reg_not_init(regs + regno); 550 return; 551 } 552 __mark_reg_known_zero(regs + regno); 553 } 554 555 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 556 { 557 return type_is_pkt_pointer(reg->type); 558 } 559 560 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 561 { 562 return reg_is_pkt_pointer(reg) || 563 reg->type == PTR_TO_PACKET_END; 564 } 565 566 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 567 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 568 enum bpf_reg_type which) 569 { 570 /* The register can already have a range from prior markings. 571 * This is fine as long as it hasn't been advanced from its 572 * origin. 573 */ 574 return reg->type == which && 575 reg->id == 0 && 576 reg->off == 0 && 577 tnum_equals_const(reg->var_off, 0); 578 } 579 580 /* Attempts to improve min/max values based on var_off information */ 581 static void __update_reg_bounds(struct bpf_reg_state *reg) 582 { 583 /* min signed is max(sign bit) | min(other bits) */ 584 reg->smin_value = max_t(s64, reg->smin_value, 585 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 586 /* max signed is min(sign bit) | max(other bits) */ 587 reg->smax_value = min_t(s64, reg->smax_value, 588 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 589 reg->umin_value = max(reg->umin_value, reg->var_off.value); 590 reg->umax_value = min(reg->umax_value, 591 reg->var_off.value | reg->var_off.mask); 592 } 593 594 /* Uses signed min/max values to inform unsigned, and vice-versa */ 595 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 596 { 597 /* Learn sign from signed bounds. 598 * If we cannot cross the sign boundary, then signed and unsigned bounds 599 * are the same, so combine. This works even in the negative case, e.g. 600 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 601 */ 602 if (reg->smin_value >= 0 || reg->smax_value < 0) { 603 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 604 reg->umin_value); 605 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 606 reg->umax_value); 607 return; 608 } 609 /* Learn sign from unsigned bounds. Signed bounds cross the sign 610 * boundary, so we must be careful. 611 */ 612 if ((s64)reg->umax_value >= 0) { 613 /* Positive. We can't learn anything from the smin, but smax 614 * is positive, hence safe. 615 */ 616 reg->smin_value = reg->umin_value; 617 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 618 reg->umax_value); 619 } else if ((s64)reg->umin_value < 0) { 620 /* Negative. We can't learn anything from the smax, but smin 621 * is negative, hence safe. 622 */ 623 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 624 reg->umin_value); 625 reg->smax_value = reg->umax_value; 626 } 627 } 628 629 /* Attempts to improve var_off based on unsigned min/max information */ 630 static void __reg_bound_offset(struct bpf_reg_state *reg) 631 { 632 reg->var_off = tnum_intersect(reg->var_off, 633 tnum_range(reg->umin_value, 634 reg->umax_value)); 635 } 636 637 /* Reset the min/max bounds of a register */ 638 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 639 { 640 reg->smin_value = S64_MIN; 641 reg->smax_value = S64_MAX; 642 reg->umin_value = 0; 643 reg->umax_value = U64_MAX; 644 } 645 646 /* Mark a register as having a completely unknown (scalar) value. */ 647 static void __mark_reg_unknown(struct bpf_reg_state *reg) 648 { 649 reg->type = SCALAR_VALUE; 650 reg->id = 0; 651 reg->off = 0; 652 reg->var_off = tnum_unknown; 653 reg->frameno = 0; 654 __mark_reg_unbounded(reg); 655 } 656 657 static void mark_reg_unknown(struct bpf_verifier_env *env, 658 struct bpf_reg_state *regs, u32 regno) 659 { 660 if (WARN_ON(regno >= MAX_BPF_REG)) { 661 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 662 /* Something bad happened, let's kill all regs except FP */ 663 for (regno = 0; regno < BPF_REG_FP; regno++) 664 __mark_reg_not_init(regs + regno); 665 return; 666 } 667 __mark_reg_unknown(regs + regno); 668 } 669 670 static void __mark_reg_not_init(struct bpf_reg_state *reg) 671 { 672 __mark_reg_unknown(reg); 673 reg->type = NOT_INIT; 674 } 675 676 static void mark_reg_not_init(struct bpf_verifier_env *env, 677 struct bpf_reg_state *regs, u32 regno) 678 { 679 if (WARN_ON(regno >= MAX_BPF_REG)) { 680 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 681 /* Something bad happened, let's kill all regs except FP */ 682 for (regno = 0; regno < BPF_REG_FP; regno++) 683 __mark_reg_not_init(regs + regno); 684 return; 685 } 686 __mark_reg_not_init(regs + regno); 687 } 688 689 static void init_reg_state(struct bpf_verifier_env *env, 690 struct bpf_func_state *state) 691 { 692 struct bpf_reg_state *regs = state->regs; 693 int i; 694 695 for (i = 0; i < MAX_BPF_REG; i++) { 696 mark_reg_not_init(env, regs, i); 697 regs[i].live = REG_LIVE_NONE; 698 } 699 700 /* frame pointer */ 701 regs[BPF_REG_FP].type = PTR_TO_STACK; 702 mark_reg_known_zero(env, regs, BPF_REG_FP); 703 regs[BPF_REG_FP].frameno = state->frameno; 704 705 /* 1st arg to a function */ 706 regs[BPF_REG_1].type = PTR_TO_CTX; 707 mark_reg_known_zero(env, regs, BPF_REG_1); 708 } 709 710 #define BPF_MAIN_FUNC (-1) 711 static void init_func_state(struct bpf_verifier_env *env, 712 struct bpf_func_state *state, 713 int callsite, int frameno, int subprogno) 714 { 715 state->callsite = callsite; 716 state->frameno = frameno; 717 state->subprogno = subprogno; 718 init_reg_state(env, state); 719 } 720 721 enum reg_arg_type { 722 SRC_OP, /* register is used as source operand */ 723 DST_OP, /* register is used as destination operand */ 724 DST_OP_NO_MARK /* same as above, check only, don't mark */ 725 }; 726 727 static int cmp_subprogs(const void *a, const void *b) 728 { 729 return *(int *)a - *(int *)b; 730 } 731 732 static int find_subprog(struct bpf_verifier_env *env, int off) 733 { 734 u32 *p; 735 736 p = bsearch(&off, env->subprog_starts, env->subprog_cnt, 737 sizeof(env->subprog_starts[0]), cmp_subprogs); 738 if (!p) 739 return -ENOENT; 740 return p - env->subprog_starts; 741 742 } 743 744 static int add_subprog(struct bpf_verifier_env *env, int off) 745 { 746 int insn_cnt = env->prog->len; 747 int ret; 748 749 if (off >= insn_cnt || off < 0) { 750 verbose(env, "call to invalid destination\n"); 751 return -EINVAL; 752 } 753 ret = find_subprog(env, off); 754 if (ret >= 0) 755 return 0; 756 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 757 verbose(env, "too many subprograms\n"); 758 return -E2BIG; 759 } 760 env->subprog_starts[env->subprog_cnt++] = off; 761 sort(env->subprog_starts, env->subprog_cnt, 762 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL); 763 return 0; 764 } 765 766 static int check_subprogs(struct bpf_verifier_env *env) 767 { 768 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 769 struct bpf_insn *insn = env->prog->insnsi; 770 int insn_cnt = env->prog->len; 771 772 /* determine subprog starts. The end is one before the next starts */ 773 for (i = 0; i < insn_cnt; i++) { 774 if (insn[i].code != (BPF_JMP | BPF_CALL)) 775 continue; 776 if (insn[i].src_reg != BPF_PSEUDO_CALL) 777 continue; 778 if (!env->allow_ptr_leaks) { 779 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 780 return -EPERM; 781 } 782 if (bpf_prog_is_dev_bound(env->prog->aux)) { 783 verbose(env, "function calls in offloaded programs are not supported yet\n"); 784 return -EINVAL; 785 } 786 ret = add_subprog(env, i + insn[i].imm + 1); 787 if (ret < 0) 788 return ret; 789 } 790 791 if (env->log.level > 1) 792 for (i = 0; i < env->subprog_cnt; i++) 793 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]); 794 795 /* now check that all jumps are within the same subprog */ 796 subprog_start = 0; 797 if (env->subprog_cnt == cur_subprog) 798 subprog_end = insn_cnt; 799 else 800 subprog_end = env->subprog_starts[cur_subprog++]; 801 for (i = 0; i < insn_cnt; i++) { 802 u8 code = insn[i].code; 803 804 if (BPF_CLASS(code) != BPF_JMP) 805 goto next; 806 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 807 goto next; 808 off = i + insn[i].off + 1; 809 if (off < subprog_start || off >= subprog_end) { 810 verbose(env, "jump out of range from insn %d to %d\n", i, off); 811 return -EINVAL; 812 } 813 next: 814 if (i == subprog_end - 1) { 815 /* to avoid fall-through from one subprog into another 816 * the last insn of the subprog should be either exit 817 * or unconditional jump back 818 */ 819 if (code != (BPF_JMP | BPF_EXIT) && 820 code != (BPF_JMP | BPF_JA)) { 821 verbose(env, "last insn is not an exit or jmp\n"); 822 return -EINVAL; 823 } 824 subprog_start = subprog_end; 825 if (env->subprog_cnt == cur_subprog) 826 subprog_end = insn_cnt; 827 else 828 subprog_end = env->subprog_starts[cur_subprog++]; 829 } 830 } 831 return 0; 832 } 833 834 static 835 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 836 const struct bpf_verifier_state *state, 837 struct bpf_verifier_state *parent, 838 u32 regno) 839 { 840 struct bpf_verifier_state *tmp = NULL; 841 842 /* 'parent' could be a state of caller and 843 * 'state' could be a state of callee. In such case 844 * parent->curframe < state->curframe 845 * and it's ok for r1 - r5 registers 846 * 847 * 'parent' could be a callee's state after it bpf_exit-ed. 848 * In such case parent->curframe > state->curframe 849 * and it's ok for r0 only 850 */ 851 if (parent->curframe == state->curframe || 852 (parent->curframe < state->curframe && 853 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 854 (parent->curframe > state->curframe && 855 regno == BPF_REG_0)) 856 return parent; 857 858 if (parent->curframe > state->curframe && 859 regno >= BPF_REG_6) { 860 /* for callee saved regs we have to skip the whole chain 861 * of states that belong to callee and mark as LIVE_READ 862 * the registers before the call 863 */ 864 tmp = parent; 865 while (tmp && tmp->curframe != state->curframe) { 866 tmp = tmp->parent; 867 } 868 if (!tmp) 869 goto bug; 870 parent = tmp; 871 } else { 872 goto bug; 873 } 874 return parent; 875 bug: 876 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 877 verbose(env, "regno %d parent frame %d current frame %d\n", 878 regno, parent->curframe, state->curframe); 879 return NULL; 880 } 881 882 static int mark_reg_read(struct bpf_verifier_env *env, 883 const struct bpf_verifier_state *state, 884 struct bpf_verifier_state *parent, 885 u32 regno) 886 { 887 bool writes = parent == state->parent; /* Observe write marks */ 888 889 if (regno == BPF_REG_FP) 890 /* We don't need to worry about FP liveness because it's read-only */ 891 return 0; 892 893 while (parent) { 894 /* if read wasn't screened by an earlier write ... */ 895 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 896 break; 897 parent = skip_callee(env, state, parent, regno); 898 if (!parent) 899 return -EFAULT; 900 /* ... then we depend on parent's value */ 901 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 902 state = parent; 903 parent = state->parent; 904 writes = true; 905 } 906 return 0; 907 } 908 909 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 910 enum reg_arg_type t) 911 { 912 struct bpf_verifier_state *vstate = env->cur_state; 913 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 914 struct bpf_reg_state *regs = state->regs; 915 916 if (regno >= MAX_BPF_REG) { 917 verbose(env, "R%d is invalid\n", regno); 918 return -EINVAL; 919 } 920 921 if (t == SRC_OP) { 922 /* check whether register used as source operand can be read */ 923 if (regs[regno].type == NOT_INIT) { 924 verbose(env, "R%d !read_ok\n", regno); 925 return -EACCES; 926 } 927 return mark_reg_read(env, vstate, vstate->parent, regno); 928 } else { 929 /* check whether register used as dest operand can be written to */ 930 if (regno == BPF_REG_FP) { 931 verbose(env, "frame pointer is read only\n"); 932 return -EACCES; 933 } 934 regs[regno].live |= REG_LIVE_WRITTEN; 935 if (t == DST_OP) 936 mark_reg_unknown(env, regs, regno); 937 } 938 return 0; 939 } 940 941 static bool is_spillable_regtype(enum bpf_reg_type type) 942 { 943 switch (type) { 944 case PTR_TO_MAP_VALUE: 945 case PTR_TO_MAP_VALUE_OR_NULL: 946 case PTR_TO_STACK: 947 case PTR_TO_CTX: 948 case PTR_TO_PACKET: 949 case PTR_TO_PACKET_META: 950 case PTR_TO_PACKET_END: 951 case CONST_PTR_TO_MAP: 952 return true; 953 default: 954 return false; 955 } 956 } 957 958 /* Does this register contain a constant zero? */ 959 static bool register_is_null(struct bpf_reg_state *reg) 960 { 961 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 962 } 963 964 /* check_stack_read/write functions track spill/fill of registers, 965 * stack boundary and alignment are checked in check_mem_access() 966 */ 967 static int check_stack_write(struct bpf_verifier_env *env, 968 struct bpf_func_state *state, /* func where register points to */ 969 int off, int size, int value_regno) 970 { 971 struct bpf_func_state *cur; /* state of the current function */ 972 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 973 enum bpf_reg_type type; 974 975 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 976 true); 977 if (err) 978 return err; 979 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 980 * so it's aligned access and [off, off + size) are within stack limits 981 */ 982 if (!env->allow_ptr_leaks && 983 state->stack[spi].slot_type[0] == STACK_SPILL && 984 size != BPF_REG_SIZE) { 985 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 986 return -EACCES; 987 } 988 989 cur = env->cur_state->frame[env->cur_state->curframe]; 990 if (value_regno >= 0 && 991 is_spillable_regtype((type = cur->regs[value_regno].type))) { 992 993 /* register containing pointer is being spilled into stack */ 994 if (size != BPF_REG_SIZE) { 995 verbose(env, "invalid size of register spill\n"); 996 return -EACCES; 997 } 998 999 if (state != cur && type == PTR_TO_STACK) { 1000 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1001 return -EINVAL; 1002 } 1003 1004 /* save register state */ 1005 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1006 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1007 1008 for (i = 0; i < BPF_REG_SIZE; i++) 1009 state->stack[spi].slot_type[i] = STACK_SPILL; 1010 } else { 1011 u8 type = STACK_MISC; 1012 1013 /* regular write of data into stack */ 1014 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1015 1016 /* only mark the slot as written if all 8 bytes were written 1017 * otherwise read propagation may incorrectly stop too soon 1018 * when stack slots are partially written. 1019 * This heuristic means that read propagation will be 1020 * conservative, since it will add reg_live_read marks 1021 * to stack slots all the way to first state when programs 1022 * writes+reads less than 8 bytes 1023 */ 1024 if (size == BPF_REG_SIZE) 1025 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1026 1027 /* when we zero initialize stack slots mark them as such */ 1028 if (value_regno >= 0 && 1029 register_is_null(&cur->regs[value_regno])) 1030 type = STACK_ZERO; 1031 1032 for (i = 0; i < size; i++) 1033 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1034 type; 1035 } 1036 return 0; 1037 } 1038 1039 /* registers of every function are unique and mark_reg_read() propagates 1040 * the liveness in the following cases: 1041 * - from callee into caller for R1 - R5 that were used as arguments 1042 * - from caller into callee for R0 that used as result of the call 1043 * - from caller to the same caller skipping states of the callee for R6 - R9, 1044 * since R6 - R9 are callee saved by implicit function prologue and 1045 * caller's R6 != callee's R6, so when we propagate liveness up to 1046 * parent states we need to skip callee states for R6 - R9. 1047 * 1048 * stack slot marking is different, since stacks of caller and callee are 1049 * accessible in both (since caller can pass a pointer to caller's stack to 1050 * callee which can pass it to another function), hence mark_stack_slot_read() 1051 * has to propagate the stack liveness to all parent states at given frame number. 1052 * Consider code: 1053 * f1() { 1054 * ptr = fp - 8; 1055 * *ptr = ctx; 1056 * call f2 { 1057 * .. = *ptr; 1058 * } 1059 * .. = *ptr; 1060 * } 1061 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1062 * to mark liveness at the f1's frame and not f2's frame. 1063 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1064 * to propagate liveness to f2 states at f1's frame level and further into 1065 * f1 states at f1's frame level until write into that stack slot 1066 */ 1067 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1068 const struct bpf_verifier_state *state, 1069 struct bpf_verifier_state *parent, 1070 int slot, int frameno) 1071 { 1072 bool writes = parent == state->parent; /* Observe write marks */ 1073 1074 while (parent) { 1075 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1076 /* since LIVE_WRITTEN mark is only done for full 8-byte 1077 * write the read marks are conservative and parent 1078 * state may not even have the stack allocated. In such case 1079 * end the propagation, since the loop reached beginning 1080 * of the function 1081 */ 1082 break; 1083 /* if read wasn't screened by an earlier write ... */ 1084 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1085 break; 1086 /* ... then we depend on parent's value */ 1087 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1088 state = parent; 1089 parent = state->parent; 1090 writes = true; 1091 } 1092 } 1093 1094 static int check_stack_read(struct bpf_verifier_env *env, 1095 struct bpf_func_state *reg_state /* func where register points to */, 1096 int off, int size, int value_regno) 1097 { 1098 struct bpf_verifier_state *vstate = env->cur_state; 1099 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1100 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1101 u8 *stype; 1102 1103 if (reg_state->allocated_stack <= slot) { 1104 verbose(env, "invalid read from stack off %d+0 size %d\n", 1105 off, size); 1106 return -EACCES; 1107 } 1108 stype = reg_state->stack[spi].slot_type; 1109 1110 if (stype[0] == STACK_SPILL) { 1111 if (size != BPF_REG_SIZE) { 1112 verbose(env, "invalid size of register spill\n"); 1113 return -EACCES; 1114 } 1115 for (i = 1; i < BPF_REG_SIZE; i++) { 1116 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1117 verbose(env, "corrupted spill memory\n"); 1118 return -EACCES; 1119 } 1120 } 1121 1122 if (value_regno >= 0) { 1123 /* restore register state from stack */ 1124 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1125 /* mark reg as written since spilled pointer state likely 1126 * has its liveness marks cleared by is_state_visited() 1127 * which resets stack/reg liveness for state transitions 1128 */ 1129 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1130 } 1131 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1132 reg_state->frameno); 1133 return 0; 1134 } else { 1135 int zeros = 0; 1136 1137 for (i = 0; i < size; i++) { 1138 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1139 continue; 1140 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1141 zeros++; 1142 continue; 1143 } 1144 verbose(env, "invalid read from stack off %d+%d size %d\n", 1145 off, i, size); 1146 return -EACCES; 1147 } 1148 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1149 reg_state->frameno); 1150 if (value_regno >= 0) { 1151 if (zeros == size) { 1152 /* any size read into register is zero extended, 1153 * so the whole register == const_zero 1154 */ 1155 __mark_reg_const_zero(&state->regs[value_regno]); 1156 } else { 1157 /* have read misc data from the stack */ 1158 mark_reg_unknown(env, state->regs, value_regno); 1159 } 1160 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1161 } 1162 return 0; 1163 } 1164 } 1165 1166 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1167 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1168 int size, bool zero_size_allowed) 1169 { 1170 struct bpf_reg_state *regs = cur_regs(env); 1171 struct bpf_map *map = regs[regno].map_ptr; 1172 1173 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1174 off + size > map->value_size) { 1175 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1176 map->value_size, off, size); 1177 return -EACCES; 1178 } 1179 return 0; 1180 } 1181 1182 /* check read/write into a map element with possible variable offset */ 1183 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1184 int off, int size, bool zero_size_allowed) 1185 { 1186 struct bpf_verifier_state *vstate = env->cur_state; 1187 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1188 struct bpf_reg_state *reg = &state->regs[regno]; 1189 int err; 1190 1191 /* We may have adjusted the register to this map value, so we 1192 * need to try adding each of min_value and max_value to off 1193 * to make sure our theoretical access will be safe. 1194 */ 1195 if (env->log.level) 1196 print_verifier_state(env, state); 1197 /* The minimum value is only important with signed 1198 * comparisons where we can't assume the floor of a 1199 * value is 0. If we are using signed variables for our 1200 * index'es we need to make sure that whatever we use 1201 * will have a set floor within our range. 1202 */ 1203 if (reg->smin_value < 0) { 1204 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1205 regno); 1206 return -EACCES; 1207 } 1208 err = __check_map_access(env, regno, reg->smin_value + off, size, 1209 zero_size_allowed); 1210 if (err) { 1211 verbose(env, "R%d min value is outside of the array range\n", 1212 regno); 1213 return err; 1214 } 1215 1216 /* If we haven't set a max value then we need to bail since we can't be 1217 * sure we won't do bad things. 1218 * If reg->umax_value + off could overflow, treat that as unbounded too. 1219 */ 1220 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1221 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1222 regno); 1223 return -EACCES; 1224 } 1225 err = __check_map_access(env, regno, reg->umax_value + off, size, 1226 zero_size_allowed); 1227 if (err) 1228 verbose(env, "R%d max value is outside of the array range\n", 1229 regno); 1230 return err; 1231 } 1232 1233 #define MAX_PACKET_OFF 0xffff 1234 1235 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1236 const struct bpf_call_arg_meta *meta, 1237 enum bpf_access_type t) 1238 { 1239 switch (env->prog->type) { 1240 case BPF_PROG_TYPE_LWT_IN: 1241 case BPF_PROG_TYPE_LWT_OUT: 1242 /* dst_input() and dst_output() can't write for now */ 1243 if (t == BPF_WRITE) 1244 return false; 1245 /* fallthrough */ 1246 case BPF_PROG_TYPE_SCHED_CLS: 1247 case BPF_PROG_TYPE_SCHED_ACT: 1248 case BPF_PROG_TYPE_XDP: 1249 case BPF_PROG_TYPE_LWT_XMIT: 1250 case BPF_PROG_TYPE_SK_SKB: 1251 if (meta) 1252 return meta->pkt_access; 1253 1254 env->seen_direct_write = true; 1255 return true; 1256 default: 1257 return false; 1258 } 1259 } 1260 1261 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1262 int off, int size, bool zero_size_allowed) 1263 { 1264 struct bpf_reg_state *regs = cur_regs(env); 1265 struct bpf_reg_state *reg = ®s[regno]; 1266 1267 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1268 (u64)off + size > reg->range) { 1269 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1270 off, size, regno, reg->id, reg->off, reg->range); 1271 return -EACCES; 1272 } 1273 return 0; 1274 } 1275 1276 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1277 int size, bool zero_size_allowed) 1278 { 1279 struct bpf_reg_state *regs = cur_regs(env); 1280 struct bpf_reg_state *reg = ®s[regno]; 1281 int err; 1282 1283 /* We may have added a variable offset to the packet pointer; but any 1284 * reg->range we have comes after that. We are only checking the fixed 1285 * offset. 1286 */ 1287 1288 /* We don't allow negative numbers, because we aren't tracking enough 1289 * detail to prove they're safe. 1290 */ 1291 if (reg->smin_value < 0) { 1292 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1293 regno); 1294 return -EACCES; 1295 } 1296 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1297 if (err) { 1298 verbose(env, "R%d offset is outside of the packet\n", regno); 1299 return err; 1300 } 1301 return err; 1302 } 1303 1304 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1305 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1306 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1307 { 1308 struct bpf_insn_access_aux info = { 1309 .reg_type = *reg_type, 1310 }; 1311 1312 if (env->ops->is_valid_access && 1313 env->ops->is_valid_access(off, size, t, &info)) { 1314 /* A non zero info.ctx_field_size indicates that this field is a 1315 * candidate for later verifier transformation to load the whole 1316 * field and then apply a mask when accessed with a narrower 1317 * access than actual ctx access size. A zero info.ctx_field_size 1318 * will only allow for whole field access and rejects any other 1319 * type of narrower access. 1320 */ 1321 *reg_type = info.reg_type; 1322 1323 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1324 /* remember the offset of last byte accessed in ctx */ 1325 if (env->prog->aux->max_ctx_offset < off + size) 1326 env->prog->aux->max_ctx_offset = off + size; 1327 return 0; 1328 } 1329 1330 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1331 return -EACCES; 1332 } 1333 1334 static bool __is_pointer_value(bool allow_ptr_leaks, 1335 const struct bpf_reg_state *reg) 1336 { 1337 if (allow_ptr_leaks) 1338 return false; 1339 1340 return reg->type != SCALAR_VALUE; 1341 } 1342 1343 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1344 { 1345 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1346 } 1347 1348 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1349 { 1350 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1351 1352 return reg->type == PTR_TO_CTX; 1353 } 1354 1355 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1356 const struct bpf_reg_state *reg, 1357 int off, int size, bool strict) 1358 { 1359 struct tnum reg_off; 1360 int ip_align; 1361 1362 /* Byte size accesses are always allowed. */ 1363 if (!strict || size == 1) 1364 return 0; 1365 1366 /* For platforms that do not have a Kconfig enabling 1367 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1368 * NET_IP_ALIGN is universally set to '2'. And on platforms 1369 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1370 * to this code only in strict mode where we want to emulate 1371 * the NET_IP_ALIGN==2 checking. Therefore use an 1372 * unconditional IP align value of '2'. 1373 */ 1374 ip_align = 2; 1375 1376 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1377 if (!tnum_is_aligned(reg_off, size)) { 1378 char tn_buf[48]; 1379 1380 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1381 verbose(env, 1382 "misaligned packet access off %d+%s+%d+%d size %d\n", 1383 ip_align, tn_buf, reg->off, off, size); 1384 return -EACCES; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1391 const struct bpf_reg_state *reg, 1392 const char *pointer_desc, 1393 int off, int size, bool strict) 1394 { 1395 struct tnum reg_off; 1396 1397 /* Byte size accesses are always allowed. */ 1398 if (!strict || size == 1) 1399 return 0; 1400 1401 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1402 if (!tnum_is_aligned(reg_off, size)) { 1403 char tn_buf[48]; 1404 1405 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1406 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1407 pointer_desc, tn_buf, reg->off, off, size); 1408 return -EACCES; 1409 } 1410 1411 return 0; 1412 } 1413 1414 static int check_ptr_alignment(struct bpf_verifier_env *env, 1415 const struct bpf_reg_state *reg, 1416 int off, int size) 1417 { 1418 bool strict = env->strict_alignment; 1419 const char *pointer_desc = ""; 1420 1421 switch (reg->type) { 1422 case PTR_TO_PACKET: 1423 case PTR_TO_PACKET_META: 1424 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1425 * right in front, treat it the very same way. 1426 */ 1427 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1428 case PTR_TO_MAP_VALUE: 1429 pointer_desc = "value "; 1430 break; 1431 case PTR_TO_CTX: 1432 pointer_desc = "context "; 1433 break; 1434 case PTR_TO_STACK: 1435 pointer_desc = "stack "; 1436 /* The stack spill tracking logic in check_stack_write() 1437 * and check_stack_read() relies on stack accesses being 1438 * aligned. 1439 */ 1440 strict = true; 1441 break; 1442 default: 1443 break; 1444 } 1445 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1446 strict); 1447 } 1448 1449 static int update_stack_depth(struct bpf_verifier_env *env, 1450 const struct bpf_func_state *func, 1451 int off) 1452 { 1453 u16 stack = env->subprog_stack_depth[func->subprogno]; 1454 1455 if (stack >= -off) 1456 return 0; 1457 1458 /* update known max for given subprogram */ 1459 env->subprog_stack_depth[func->subprogno] = -off; 1460 return 0; 1461 } 1462 1463 /* starting from main bpf function walk all instructions of the function 1464 * and recursively walk all callees that given function can call. 1465 * Ignore jump and exit insns. 1466 * Since recursion is prevented by check_cfg() this algorithm 1467 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1468 */ 1469 static int check_max_stack_depth(struct bpf_verifier_env *env) 1470 { 1471 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end; 1472 struct bpf_insn *insn = env->prog->insnsi; 1473 int insn_cnt = env->prog->len; 1474 int ret_insn[MAX_CALL_FRAMES]; 1475 int ret_prog[MAX_CALL_FRAMES]; 1476 1477 process_func: 1478 /* round up to 32-bytes, since this is granularity 1479 * of interpreter stack size 1480 */ 1481 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); 1482 if (depth > MAX_BPF_STACK) { 1483 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1484 frame + 1, depth); 1485 return -EACCES; 1486 } 1487 continue_func: 1488 if (env->subprog_cnt == subprog) 1489 subprog_end = insn_cnt; 1490 else 1491 subprog_end = env->subprog_starts[subprog]; 1492 for (; i < subprog_end; i++) { 1493 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1494 continue; 1495 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1496 continue; 1497 /* remember insn and function to return to */ 1498 ret_insn[frame] = i + 1; 1499 ret_prog[frame] = subprog; 1500 1501 /* find the callee */ 1502 i = i + insn[i].imm + 1; 1503 subprog = find_subprog(env, i); 1504 if (subprog < 0) { 1505 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1506 i); 1507 return -EFAULT; 1508 } 1509 subprog++; 1510 frame++; 1511 if (frame >= MAX_CALL_FRAMES) { 1512 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1513 return -EFAULT; 1514 } 1515 goto process_func; 1516 } 1517 /* end of for() loop means the last insn of the 'subprog' 1518 * was reached. Doesn't matter whether it was JA or EXIT 1519 */ 1520 if (frame == 0) 1521 return 0; 1522 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); 1523 frame--; 1524 i = ret_insn[frame]; 1525 subprog = ret_prog[frame]; 1526 goto continue_func; 1527 } 1528 1529 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1530 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1531 const struct bpf_insn *insn, int idx) 1532 { 1533 int start = idx + insn->imm + 1, subprog; 1534 1535 subprog = find_subprog(env, start); 1536 if (subprog < 0) { 1537 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1538 start); 1539 return -EFAULT; 1540 } 1541 subprog++; 1542 return env->subprog_stack_depth[subprog]; 1543 } 1544 #endif 1545 1546 /* truncate register to smaller size (in bytes) 1547 * must be called with size < BPF_REG_SIZE 1548 */ 1549 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1550 { 1551 u64 mask; 1552 1553 /* clear high bits in bit representation */ 1554 reg->var_off = tnum_cast(reg->var_off, size); 1555 1556 /* fix arithmetic bounds */ 1557 mask = ((u64)1 << (size * 8)) - 1; 1558 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1559 reg->umin_value &= mask; 1560 reg->umax_value &= mask; 1561 } else { 1562 reg->umin_value = 0; 1563 reg->umax_value = mask; 1564 } 1565 reg->smin_value = reg->umin_value; 1566 reg->smax_value = reg->umax_value; 1567 } 1568 1569 /* check whether memory at (regno + off) is accessible for t = (read | write) 1570 * if t==write, value_regno is a register which value is stored into memory 1571 * if t==read, value_regno is a register which will receive the value from memory 1572 * if t==write && value_regno==-1, some unknown value is stored into memory 1573 * if t==read && value_regno==-1, don't care what we read from memory 1574 */ 1575 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1576 int bpf_size, enum bpf_access_type t, 1577 int value_regno) 1578 { 1579 struct bpf_reg_state *regs = cur_regs(env); 1580 struct bpf_reg_state *reg = regs + regno; 1581 struct bpf_func_state *state; 1582 int size, err = 0; 1583 1584 size = bpf_size_to_bytes(bpf_size); 1585 if (size < 0) 1586 return size; 1587 1588 /* alignment checks will add in reg->off themselves */ 1589 err = check_ptr_alignment(env, reg, off, size); 1590 if (err) 1591 return err; 1592 1593 /* for access checks, reg->off is just part of off */ 1594 off += reg->off; 1595 1596 if (reg->type == PTR_TO_MAP_VALUE) { 1597 if (t == BPF_WRITE && value_regno >= 0 && 1598 is_pointer_value(env, value_regno)) { 1599 verbose(env, "R%d leaks addr into map\n", value_regno); 1600 return -EACCES; 1601 } 1602 1603 err = check_map_access(env, regno, off, size, false); 1604 if (!err && t == BPF_READ && value_regno >= 0) 1605 mark_reg_unknown(env, regs, value_regno); 1606 1607 } else if (reg->type == PTR_TO_CTX) { 1608 enum bpf_reg_type reg_type = SCALAR_VALUE; 1609 1610 if (t == BPF_WRITE && value_regno >= 0 && 1611 is_pointer_value(env, value_regno)) { 1612 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1613 return -EACCES; 1614 } 1615 /* ctx accesses must be at a fixed offset, so that we can 1616 * determine what type of data were returned. 1617 */ 1618 if (reg->off) { 1619 verbose(env, 1620 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1621 regno, reg->off, off - reg->off); 1622 return -EACCES; 1623 } 1624 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1625 char tn_buf[48]; 1626 1627 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1628 verbose(env, 1629 "variable ctx access var_off=%s off=%d size=%d", 1630 tn_buf, off, size); 1631 return -EACCES; 1632 } 1633 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1634 if (!err && t == BPF_READ && value_regno >= 0) { 1635 /* ctx access returns either a scalar, or a 1636 * PTR_TO_PACKET[_META,_END]. In the latter 1637 * case, we know the offset is zero. 1638 */ 1639 if (reg_type == SCALAR_VALUE) 1640 mark_reg_unknown(env, regs, value_regno); 1641 else 1642 mark_reg_known_zero(env, regs, 1643 value_regno); 1644 regs[value_regno].id = 0; 1645 regs[value_regno].off = 0; 1646 regs[value_regno].range = 0; 1647 regs[value_regno].type = reg_type; 1648 } 1649 1650 } else if (reg->type == PTR_TO_STACK) { 1651 /* stack accesses must be at a fixed offset, so that we can 1652 * determine what type of data were returned. 1653 * See check_stack_read(). 1654 */ 1655 if (!tnum_is_const(reg->var_off)) { 1656 char tn_buf[48]; 1657 1658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1659 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1660 tn_buf, off, size); 1661 return -EACCES; 1662 } 1663 off += reg->var_off.value; 1664 if (off >= 0 || off < -MAX_BPF_STACK) { 1665 verbose(env, "invalid stack off=%d size=%d\n", off, 1666 size); 1667 return -EACCES; 1668 } 1669 1670 state = func(env, reg); 1671 err = update_stack_depth(env, state, off); 1672 if (err) 1673 return err; 1674 1675 if (t == BPF_WRITE) 1676 err = check_stack_write(env, state, off, size, 1677 value_regno); 1678 else 1679 err = check_stack_read(env, state, off, size, 1680 value_regno); 1681 } else if (reg_is_pkt_pointer(reg)) { 1682 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1683 verbose(env, "cannot write into packet\n"); 1684 return -EACCES; 1685 } 1686 if (t == BPF_WRITE && value_regno >= 0 && 1687 is_pointer_value(env, value_regno)) { 1688 verbose(env, "R%d leaks addr into packet\n", 1689 value_regno); 1690 return -EACCES; 1691 } 1692 err = check_packet_access(env, regno, off, size, false); 1693 if (!err && t == BPF_READ && value_regno >= 0) 1694 mark_reg_unknown(env, regs, value_regno); 1695 } else { 1696 verbose(env, "R%d invalid mem access '%s'\n", regno, 1697 reg_type_str[reg->type]); 1698 return -EACCES; 1699 } 1700 1701 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1702 regs[value_regno].type == SCALAR_VALUE) { 1703 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1704 coerce_reg_to_size(®s[value_regno], size); 1705 } 1706 return err; 1707 } 1708 1709 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1710 { 1711 int err; 1712 1713 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1714 insn->imm != 0) { 1715 verbose(env, "BPF_XADD uses reserved fields\n"); 1716 return -EINVAL; 1717 } 1718 1719 /* check src1 operand */ 1720 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1721 if (err) 1722 return err; 1723 1724 /* check src2 operand */ 1725 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1726 if (err) 1727 return err; 1728 1729 if (is_pointer_value(env, insn->src_reg)) { 1730 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1731 return -EACCES; 1732 } 1733 1734 if (is_ctx_reg(env, insn->dst_reg)) { 1735 verbose(env, "BPF_XADD stores into R%d context is not allowed\n", 1736 insn->dst_reg); 1737 return -EACCES; 1738 } 1739 1740 /* check whether atomic_add can read the memory */ 1741 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1742 BPF_SIZE(insn->code), BPF_READ, -1); 1743 if (err) 1744 return err; 1745 1746 /* check whether atomic_add can write into the same memory */ 1747 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1748 BPF_SIZE(insn->code), BPF_WRITE, -1); 1749 } 1750 1751 /* when register 'regno' is passed into function that will read 'access_size' 1752 * bytes from that pointer, make sure that it's within stack boundary 1753 * and all elements of stack are initialized. 1754 * Unlike most pointer bounds-checking functions, this one doesn't take an 1755 * 'off' argument, so it has to add in reg->off itself. 1756 */ 1757 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1758 int access_size, bool zero_size_allowed, 1759 struct bpf_call_arg_meta *meta) 1760 { 1761 struct bpf_reg_state *reg = cur_regs(env) + regno; 1762 struct bpf_func_state *state = func(env, reg); 1763 int off, i, slot, spi; 1764 1765 if (reg->type != PTR_TO_STACK) { 1766 /* Allow zero-byte read from NULL, regardless of pointer type */ 1767 if (zero_size_allowed && access_size == 0 && 1768 register_is_null(reg)) 1769 return 0; 1770 1771 verbose(env, "R%d type=%s expected=%s\n", regno, 1772 reg_type_str[reg->type], 1773 reg_type_str[PTR_TO_STACK]); 1774 return -EACCES; 1775 } 1776 1777 /* Only allow fixed-offset stack reads */ 1778 if (!tnum_is_const(reg->var_off)) { 1779 char tn_buf[48]; 1780 1781 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1782 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1783 regno, tn_buf); 1784 return -EACCES; 1785 } 1786 off = reg->off + reg->var_off.value; 1787 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1788 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1789 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1790 regno, off, access_size); 1791 return -EACCES; 1792 } 1793 1794 if (meta && meta->raw_mode) { 1795 meta->access_size = access_size; 1796 meta->regno = regno; 1797 return 0; 1798 } 1799 1800 for (i = 0; i < access_size; i++) { 1801 u8 *stype; 1802 1803 slot = -(off + i) - 1; 1804 spi = slot / BPF_REG_SIZE; 1805 if (state->allocated_stack <= slot) 1806 goto err; 1807 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1808 if (*stype == STACK_MISC) 1809 goto mark; 1810 if (*stype == STACK_ZERO) { 1811 /* helper can write anything into the stack */ 1812 *stype = STACK_MISC; 1813 goto mark; 1814 } 1815 err: 1816 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1817 off, i, access_size); 1818 return -EACCES; 1819 mark: 1820 /* reading any byte out of 8-byte 'spill_slot' will cause 1821 * the whole slot to be marked as 'read' 1822 */ 1823 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1824 spi, state->frameno); 1825 } 1826 return update_stack_depth(env, state, off); 1827 } 1828 1829 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1830 int access_size, bool zero_size_allowed, 1831 struct bpf_call_arg_meta *meta) 1832 { 1833 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1834 1835 switch (reg->type) { 1836 case PTR_TO_PACKET: 1837 case PTR_TO_PACKET_META: 1838 return check_packet_access(env, regno, reg->off, access_size, 1839 zero_size_allowed); 1840 case PTR_TO_MAP_VALUE: 1841 return check_map_access(env, regno, reg->off, access_size, 1842 zero_size_allowed); 1843 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1844 return check_stack_boundary(env, regno, access_size, 1845 zero_size_allowed, meta); 1846 } 1847 } 1848 1849 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1850 { 1851 return type == ARG_PTR_TO_MEM || 1852 type == ARG_PTR_TO_MEM_OR_NULL || 1853 type == ARG_PTR_TO_UNINIT_MEM; 1854 } 1855 1856 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1857 { 1858 return type == ARG_CONST_SIZE || 1859 type == ARG_CONST_SIZE_OR_ZERO; 1860 } 1861 1862 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1863 enum bpf_arg_type arg_type, 1864 struct bpf_call_arg_meta *meta) 1865 { 1866 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1867 enum bpf_reg_type expected_type, type = reg->type; 1868 int err = 0; 1869 1870 if (arg_type == ARG_DONTCARE) 1871 return 0; 1872 1873 err = check_reg_arg(env, regno, SRC_OP); 1874 if (err) 1875 return err; 1876 1877 if (arg_type == ARG_ANYTHING) { 1878 if (is_pointer_value(env, regno)) { 1879 verbose(env, "R%d leaks addr into helper function\n", 1880 regno); 1881 return -EACCES; 1882 } 1883 return 0; 1884 } 1885 1886 if (type_is_pkt_pointer(type) && 1887 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1888 verbose(env, "helper access to the packet is not allowed\n"); 1889 return -EACCES; 1890 } 1891 1892 if (arg_type == ARG_PTR_TO_MAP_KEY || 1893 arg_type == ARG_PTR_TO_MAP_VALUE) { 1894 expected_type = PTR_TO_STACK; 1895 if (!type_is_pkt_pointer(type) && 1896 type != expected_type) 1897 goto err_type; 1898 } else if (arg_type == ARG_CONST_SIZE || 1899 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1900 expected_type = SCALAR_VALUE; 1901 if (type != expected_type) 1902 goto err_type; 1903 } else if (arg_type == ARG_CONST_MAP_PTR) { 1904 expected_type = CONST_PTR_TO_MAP; 1905 if (type != expected_type) 1906 goto err_type; 1907 } else if (arg_type == ARG_PTR_TO_CTX) { 1908 expected_type = PTR_TO_CTX; 1909 if (type != expected_type) 1910 goto err_type; 1911 } else if (arg_type_is_mem_ptr(arg_type)) { 1912 expected_type = PTR_TO_STACK; 1913 /* One exception here. In case function allows for NULL to be 1914 * passed in as argument, it's a SCALAR_VALUE type. Final test 1915 * happens during stack boundary checking. 1916 */ 1917 if (register_is_null(reg) && 1918 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1919 /* final test in check_stack_boundary() */; 1920 else if (!type_is_pkt_pointer(type) && 1921 type != PTR_TO_MAP_VALUE && 1922 type != expected_type) 1923 goto err_type; 1924 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1925 } else { 1926 verbose(env, "unsupported arg_type %d\n", arg_type); 1927 return -EFAULT; 1928 } 1929 1930 if (arg_type == ARG_CONST_MAP_PTR) { 1931 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1932 meta->map_ptr = reg->map_ptr; 1933 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1934 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1935 * check that [key, key + map->key_size) are within 1936 * stack limits and initialized 1937 */ 1938 if (!meta->map_ptr) { 1939 /* in function declaration map_ptr must come before 1940 * map_key, so that it's verified and known before 1941 * we have to check map_key here. Otherwise it means 1942 * that kernel subsystem misconfigured verifier 1943 */ 1944 verbose(env, "invalid map_ptr to access map->key\n"); 1945 return -EACCES; 1946 } 1947 if (type_is_pkt_pointer(type)) 1948 err = check_packet_access(env, regno, reg->off, 1949 meta->map_ptr->key_size, 1950 false); 1951 else 1952 err = check_stack_boundary(env, regno, 1953 meta->map_ptr->key_size, 1954 false, NULL); 1955 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1956 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1957 * check [value, value + map->value_size) validity 1958 */ 1959 if (!meta->map_ptr) { 1960 /* kernel subsystem misconfigured verifier */ 1961 verbose(env, "invalid map_ptr to access map->value\n"); 1962 return -EACCES; 1963 } 1964 if (type_is_pkt_pointer(type)) 1965 err = check_packet_access(env, regno, reg->off, 1966 meta->map_ptr->value_size, 1967 false); 1968 else 1969 err = check_stack_boundary(env, regno, 1970 meta->map_ptr->value_size, 1971 false, NULL); 1972 } else if (arg_type_is_mem_size(arg_type)) { 1973 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1974 1975 /* The register is SCALAR_VALUE; the access check 1976 * happens using its boundaries. 1977 */ 1978 if (!tnum_is_const(reg->var_off)) 1979 /* For unprivileged variable accesses, disable raw 1980 * mode so that the program is required to 1981 * initialize all the memory that the helper could 1982 * just partially fill up. 1983 */ 1984 meta = NULL; 1985 1986 if (reg->smin_value < 0) { 1987 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 1988 regno); 1989 return -EACCES; 1990 } 1991 1992 if (reg->umin_value == 0) { 1993 err = check_helper_mem_access(env, regno - 1, 0, 1994 zero_size_allowed, 1995 meta); 1996 if (err) 1997 return err; 1998 } 1999 2000 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2001 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2002 regno); 2003 return -EACCES; 2004 } 2005 err = check_helper_mem_access(env, regno - 1, 2006 reg->umax_value, 2007 zero_size_allowed, meta); 2008 } 2009 2010 return err; 2011 err_type: 2012 verbose(env, "R%d type=%s expected=%s\n", regno, 2013 reg_type_str[type], reg_type_str[expected_type]); 2014 return -EACCES; 2015 } 2016 2017 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2018 struct bpf_map *map, int func_id) 2019 { 2020 if (!map) 2021 return 0; 2022 2023 /* We need a two way check, first is from map perspective ... */ 2024 switch (map->map_type) { 2025 case BPF_MAP_TYPE_PROG_ARRAY: 2026 if (func_id != BPF_FUNC_tail_call) 2027 goto error; 2028 break; 2029 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2030 if (func_id != BPF_FUNC_perf_event_read && 2031 func_id != BPF_FUNC_perf_event_output && 2032 func_id != BPF_FUNC_perf_event_read_value) 2033 goto error; 2034 break; 2035 case BPF_MAP_TYPE_STACK_TRACE: 2036 if (func_id != BPF_FUNC_get_stackid) 2037 goto error; 2038 break; 2039 case BPF_MAP_TYPE_CGROUP_ARRAY: 2040 if (func_id != BPF_FUNC_skb_under_cgroup && 2041 func_id != BPF_FUNC_current_task_under_cgroup) 2042 goto error; 2043 break; 2044 /* devmap returns a pointer to a live net_device ifindex that we cannot 2045 * allow to be modified from bpf side. So do not allow lookup elements 2046 * for now. 2047 */ 2048 case BPF_MAP_TYPE_DEVMAP: 2049 if (func_id != BPF_FUNC_redirect_map) 2050 goto error; 2051 break; 2052 /* Restrict bpf side of cpumap, open when use-cases appear */ 2053 case BPF_MAP_TYPE_CPUMAP: 2054 if (func_id != BPF_FUNC_redirect_map) 2055 goto error; 2056 break; 2057 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2058 case BPF_MAP_TYPE_HASH_OF_MAPS: 2059 if (func_id != BPF_FUNC_map_lookup_elem) 2060 goto error; 2061 break; 2062 case BPF_MAP_TYPE_SOCKMAP: 2063 if (func_id != BPF_FUNC_sk_redirect_map && 2064 func_id != BPF_FUNC_sock_map_update && 2065 func_id != BPF_FUNC_map_delete_elem) 2066 goto error; 2067 break; 2068 default: 2069 break; 2070 } 2071 2072 /* ... and second from the function itself. */ 2073 switch (func_id) { 2074 case BPF_FUNC_tail_call: 2075 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2076 goto error; 2077 if (env->subprog_cnt) { 2078 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2079 return -EINVAL; 2080 } 2081 break; 2082 case BPF_FUNC_perf_event_read: 2083 case BPF_FUNC_perf_event_output: 2084 case BPF_FUNC_perf_event_read_value: 2085 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2086 goto error; 2087 break; 2088 case BPF_FUNC_get_stackid: 2089 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2090 goto error; 2091 break; 2092 case BPF_FUNC_current_task_under_cgroup: 2093 case BPF_FUNC_skb_under_cgroup: 2094 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2095 goto error; 2096 break; 2097 case BPF_FUNC_redirect_map: 2098 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2099 map->map_type != BPF_MAP_TYPE_CPUMAP) 2100 goto error; 2101 break; 2102 case BPF_FUNC_sk_redirect_map: 2103 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2104 goto error; 2105 break; 2106 case BPF_FUNC_sock_map_update: 2107 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2108 goto error; 2109 break; 2110 default: 2111 break; 2112 } 2113 2114 return 0; 2115 error: 2116 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2117 map->map_type, func_id_name(func_id), func_id); 2118 return -EINVAL; 2119 } 2120 2121 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2122 { 2123 int count = 0; 2124 2125 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2126 count++; 2127 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2128 count++; 2129 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2130 count++; 2131 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2132 count++; 2133 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2134 count++; 2135 2136 /* We only support one arg being in raw mode at the moment, 2137 * which is sufficient for the helper functions we have 2138 * right now. 2139 */ 2140 return count <= 1; 2141 } 2142 2143 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2144 enum bpf_arg_type arg_next) 2145 { 2146 return (arg_type_is_mem_ptr(arg_curr) && 2147 !arg_type_is_mem_size(arg_next)) || 2148 (!arg_type_is_mem_ptr(arg_curr) && 2149 arg_type_is_mem_size(arg_next)); 2150 } 2151 2152 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2153 { 2154 /* bpf_xxx(..., buf, len) call will access 'len' 2155 * bytes from memory 'buf'. Both arg types need 2156 * to be paired, so make sure there's no buggy 2157 * helper function specification. 2158 */ 2159 if (arg_type_is_mem_size(fn->arg1_type) || 2160 arg_type_is_mem_ptr(fn->arg5_type) || 2161 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2162 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2163 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2164 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2165 return false; 2166 2167 return true; 2168 } 2169 2170 static int check_func_proto(const struct bpf_func_proto *fn) 2171 { 2172 return check_raw_mode_ok(fn) && 2173 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2174 } 2175 2176 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2177 * are now invalid, so turn them into unknown SCALAR_VALUE. 2178 */ 2179 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2180 struct bpf_func_state *state) 2181 { 2182 struct bpf_reg_state *regs = state->regs, *reg; 2183 int i; 2184 2185 for (i = 0; i < MAX_BPF_REG; i++) 2186 if (reg_is_pkt_pointer_any(®s[i])) 2187 mark_reg_unknown(env, regs, i); 2188 2189 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2190 if (state->stack[i].slot_type[0] != STACK_SPILL) 2191 continue; 2192 reg = &state->stack[i].spilled_ptr; 2193 if (reg_is_pkt_pointer_any(reg)) 2194 __mark_reg_unknown(reg); 2195 } 2196 } 2197 2198 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2199 { 2200 struct bpf_verifier_state *vstate = env->cur_state; 2201 int i; 2202 2203 for (i = 0; i <= vstate->curframe; i++) 2204 __clear_all_pkt_pointers(env, vstate->frame[i]); 2205 } 2206 2207 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2208 int *insn_idx) 2209 { 2210 struct bpf_verifier_state *state = env->cur_state; 2211 struct bpf_func_state *caller, *callee; 2212 int i, subprog, target_insn; 2213 2214 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2215 verbose(env, "the call stack of %d frames is too deep\n", 2216 state->curframe + 2); 2217 return -E2BIG; 2218 } 2219 2220 target_insn = *insn_idx + insn->imm; 2221 subprog = find_subprog(env, target_insn + 1); 2222 if (subprog < 0) { 2223 verbose(env, "verifier bug. No program starts at insn %d\n", 2224 target_insn + 1); 2225 return -EFAULT; 2226 } 2227 2228 caller = state->frame[state->curframe]; 2229 if (state->frame[state->curframe + 1]) { 2230 verbose(env, "verifier bug. Frame %d already allocated\n", 2231 state->curframe + 1); 2232 return -EFAULT; 2233 } 2234 2235 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2236 if (!callee) 2237 return -ENOMEM; 2238 state->frame[state->curframe + 1] = callee; 2239 2240 /* callee cannot access r0, r6 - r9 for reading and has to write 2241 * into its own stack before reading from it. 2242 * callee can read/write into caller's stack 2243 */ 2244 init_func_state(env, callee, 2245 /* remember the callsite, it will be used by bpf_exit */ 2246 *insn_idx /* callsite */, 2247 state->curframe + 1 /* frameno within this callchain */, 2248 subprog + 1 /* subprog number within this prog */); 2249 2250 /* copy r1 - r5 args that callee can access */ 2251 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2252 callee->regs[i] = caller->regs[i]; 2253 2254 /* after the call regsiters r0 - r5 were scratched */ 2255 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2256 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2257 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2258 } 2259 2260 /* only increment it after check_reg_arg() finished */ 2261 state->curframe++; 2262 2263 /* and go analyze first insn of the callee */ 2264 *insn_idx = target_insn; 2265 2266 if (env->log.level) { 2267 verbose(env, "caller:\n"); 2268 print_verifier_state(env, caller); 2269 verbose(env, "callee:\n"); 2270 print_verifier_state(env, callee); 2271 } 2272 return 0; 2273 } 2274 2275 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2276 { 2277 struct bpf_verifier_state *state = env->cur_state; 2278 struct bpf_func_state *caller, *callee; 2279 struct bpf_reg_state *r0; 2280 2281 callee = state->frame[state->curframe]; 2282 r0 = &callee->regs[BPF_REG_0]; 2283 if (r0->type == PTR_TO_STACK) { 2284 /* technically it's ok to return caller's stack pointer 2285 * (or caller's caller's pointer) back to the caller, 2286 * since these pointers are valid. Only current stack 2287 * pointer will be invalid as soon as function exits, 2288 * but let's be conservative 2289 */ 2290 verbose(env, "cannot return stack pointer to the caller\n"); 2291 return -EINVAL; 2292 } 2293 2294 state->curframe--; 2295 caller = state->frame[state->curframe]; 2296 /* return to the caller whatever r0 had in the callee */ 2297 caller->regs[BPF_REG_0] = *r0; 2298 2299 *insn_idx = callee->callsite + 1; 2300 if (env->log.level) { 2301 verbose(env, "returning from callee:\n"); 2302 print_verifier_state(env, callee); 2303 verbose(env, "to caller at %d:\n", *insn_idx); 2304 print_verifier_state(env, caller); 2305 } 2306 /* clear everything in the callee */ 2307 free_func_state(callee); 2308 state->frame[state->curframe + 1] = NULL; 2309 return 0; 2310 } 2311 2312 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2313 { 2314 const struct bpf_func_proto *fn = NULL; 2315 struct bpf_reg_state *regs; 2316 struct bpf_call_arg_meta meta; 2317 bool changes_data; 2318 int i, err; 2319 2320 /* find function prototype */ 2321 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2322 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2323 func_id); 2324 return -EINVAL; 2325 } 2326 2327 if (env->ops->get_func_proto) 2328 fn = env->ops->get_func_proto(func_id); 2329 if (!fn) { 2330 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2331 func_id); 2332 return -EINVAL; 2333 } 2334 2335 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2336 if (!env->prog->gpl_compatible && fn->gpl_only) { 2337 verbose(env, "cannot call GPL only function from proprietary program\n"); 2338 return -EINVAL; 2339 } 2340 2341 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2342 changes_data = bpf_helper_changes_pkt_data(fn->func); 2343 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2344 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2345 func_id_name(func_id), func_id); 2346 return -EINVAL; 2347 } 2348 2349 memset(&meta, 0, sizeof(meta)); 2350 meta.pkt_access = fn->pkt_access; 2351 2352 err = check_func_proto(fn); 2353 if (err) { 2354 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2355 func_id_name(func_id), func_id); 2356 return err; 2357 } 2358 2359 /* check args */ 2360 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2361 if (err) 2362 return err; 2363 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2364 if (err) 2365 return err; 2366 if (func_id == BPF_FUNC_tail_call) { 2367 if (meta.map_ptr == NULL) { 2368 verbose(env, "verifier bug\n"); 2369 return -EINVAL; 2370 } 2371 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr; 2372 } 2373 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2374 if (err) 2375 return err; 2376 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2377 if (err) 2378 return err; 2379 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2380 if (err) 2381 return err; 2382 2383 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2384 * is inferred from register state. 2385 */ 2386 for (i = 0; i < meta.access_size; i++) { 2387 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 2388 if (err) 2389 return err; 2390 } 2391 2392 regs = cur_regs(env); 2393 /* reset caller saved regs */ 2394 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2395 mark_reg_not_init(env, regs, caller_saved[i]); 2396 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2397 } 2398 2399 /* update return register (already marked as written above) */ 2400 if (fn->ret_type == RET_INTEGER) { 2401 /* sets type to SCALAR_VALUE */ 2402 mark_reg_unknown(env, regs, BPF_REG_0); 2403 } else if (fn->ret_type == RET_VOID) { 2404 regs[BPF_REG_0].type = NOT_INIT; 2405 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 2406 struct bpf_insn_aux_data *insn_aux; 2407 2408 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2409 /* There is no offset yet applied, variable or fixed */ 2410 mark_reg_known_zero(env, regs, BPF_REG_0); 2411 regs[BPF_REG_0].off = 0; 2412 /* remember map_ptr, so that check_map_access() 2413 * can check 'value_size' boundary of memory access 2414 * to map element returned from bpf_map_lookup_elem() 2415 */ 2416 if (meta.map_ptr == NULL) { 2417 verbose(env, 2418 "kernel subsystem misconfigured verifier\n"); 2419 return -EINVAL; 2420 } 2421 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2422 regs[BPF_REG_0].id = ++env->id_gen; 2423 insn_aux = &env->insn_aux_data[insn_idx]; 2424 if (!insn_aux->map_ptr) 2425 insn_aux->map_ptr = meta.map_ptr; 2426 else if (insn_aux->map_ptr != meta.map_ptr) 2427 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 2428 } else { 2429 verbose(env, "unknown return type %d of func %s#%d\n", 2430 fn->ret_type, func_id_name(func_id), func_id); 2431 return -EINVAL; 2432 } 2433 2434 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2435 if (err) 2436 return err; 2437 2438 if (changes_data) 2439 clear_all_pkt_pointers(env); 2440 return 0; 2441 } 2442 2443 static bool signed_add_overflows(s64 a, s64 b) 2444 { 2445 /* Do the add in u64, where overflow is well-defined */ 2446 s64 res = (s64)((u64)a + (u64)b); 2447 2448 if (b < 0) 2449 return res > a; 2450 return res < a; 2451 } 2452 2453 static bool signed_sub_overflows(s64 a, s64 b) 2454 { 2455 /* Do the sub in u64, where overflow is well-defined */ 2456 s64 res = (s64)((u64)a - (u64)b); 2457 2458 if (b < 0) 2459 return res < a; 2460 return res > a; 2461 } 2462 2463 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2464 const struct bpf_reg_state *reg, 2465 enum bpf_reg_type type) 2466 { 2467 bool known = tnum_is_const(reg->var_off); 2468 s64 val = reg->var_off.value; 2469 s64 smin = reg->smin_value; 2470 2471 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2472 verbose(env, "math between %s pointer and %lld is not allowed\n", 2473 reg_type_str[type], val); 2474 return false; 2475 } 2476 2477 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2478 verbose(env, "%s pointer offset %d is not allowed\n", 2479 reg_type_str[type], reg->off); 2480 return false; 2481 } 2482 2483 if (smin == S64_MIN) { 2484 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2485 reg_type_str[type]); 2486 return false; 2487 } 2488 2489 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2490 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2491 smin, reg_type_str[type]); 2492 return false; 2493 } 2494 2495 return true; 2496 } 2497 2498 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2499 * Caller should also handle BPF_MOV case separately. 2500 * If we return -EACCES, caller may want to try again treating pointer as a 2501 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2502 */ 2503 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2504 struct bpf_insn *insn, 2505 const struct bpf_reg_state *ptr_reg, 2506 const struct bpf_reg_state *off_reg) 2507 { 2508 struct bpf_verifier_state *vstate = env->cur_state; 2509 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2510 struct bpf_reg_state *regs = state->regs, *dst_reg; 2511 bool known = tnum_is_const(off_reg->var_off); 2512 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2513 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2514 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2515 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2516 u8 opcode = BPF_OP(insn->code); 2517 u32 dst = insn->dst_reg; 2518 2519 dst_reg = ®s[dst]; 2520 2521 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2522 smin_val > smax_val || umin_val > umax_val) { 2523 /* Taint dst register if offset had invalid bounds derived from 2524 * e.g. dead branches. 2525 */ 2526 __mark_reg_unknown(dst_reg); 2527 return 0; 2528 } 2529 2530 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2531 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2532 verbose(env, 2533 "R%d 32-bit pointer arithmetic prohibited\n", 2534 dst); 2535 return -EACCES; 2536 } 2537 2538 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2539 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2540 dst); 2541 return -EACCES; 2542 } 2543 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2544 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2545 dst); 2546 return -EACCES; 2547 } 2548 if (ptr_reg->type == PTR_TO_PACKET_END) { 2549 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2550 dst); 2551 return -EACCES; 2552 } 2553 2554 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2555 * The id may be overwritten later if we create a new variable offset. 2556 */ 2557 dst_reg->type = ptr_reg->type; 2558 dst_reg->id = ptr_reg->id; 2559 2560 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2561 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2562 return -EINVAL; 2563 2564 switch (opcode) { 2565 case BPF_ADD: 2566 /* We can take a fixed offset as long as it doesn't overflow 2567 * the s32 'off' field 2568 */ 2569 if (known && (ptr_reg->off + smin_val == 2570 (s64)(s32)(ptr_reg->off + smin_val))) { 2571 /* pointer += K. Accumulate it into fixed offset */ 2572 dst_reg->smin_value = smin_ptr; 2573 dst_reg->smax_value = smax_ptr; 2574 dst_reg->umin_value = umin_ptr; 2575 dst_reg->umax_value = umax_ptr; 2576 dst_reg->var_off = ptr_reg->var_off; 2577 dst_reg->off = ptr_reg->off + smin_val; 2578 dst_reg->range = ptr_reg->range; 2579 break; 2580 } 2581 /* A new variable offset is created. Note that off_reg->off 2582 * == 0, since it's a scalar. 2583 * dst_reg gets the pointer type and since some positive 2584 * integer value was added to the pointer, give it a new 'id' 2585 * if it's a PTR_TO_PACKET. 2586 * this creates a new 'base' pointer, off_reg (variable) gets 2587 * added into the variable offset, and we copy the fixed offset 2588 * from ptr_reg. 2589 */ 2590 if (signed_add_overflows(smin_ptr, smin_val) || 2591 signed_add_overflows(smax_ptr, smax_val)) { 2592 dst_reg->smin_value = S64_MIN; 2593 dst_reg->smax_value = S64_MAX; 2594 } else { 2595 dst_reg->smin_value = smin_ptr + smin_val; 2596 dst_reg->smax_value = smax_ptr + smax_val; 2597 } 2598 if (umin_ptr + umin_val < umin_ptr || 2599 umax_ptr + umax_val < umax_ptr) { 2600 dst_reg->umin_value = 0; 2601 dst_reg->umax_value = U64_MAX; 2602 } else { 2603 dst_reg->umin_value = umin_ptr + umin_val; 2604 dst_reg->umax_value = umax_ptr + umax_val; 2605 } 2606 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2607 dst_reg->off = ptr_reg->off; 2608 if (reg_is_pkt_pointer(ptr_reg)) { 2609 dst_reg->id = ++env->id_gen; 2610 /* something was added to pkt_ptr, set range to zero */ 2611 dst_reg->range = 0; 2612 } 2613 break; 2614 case BPF_SUB: 2615 if (dst_reg == off_reg) { 2616 /* scalar -= pointer. Creates an unknown scalar */ 2617 verbose(env, "R%d tried to subtract pointer from scalar\n", 2618 dst); 2619 return -EACCES; 2620 } 2621 /* We don't allow subtraction from FP, because (according to 2622 * test_verifier.c test "invalid fp arithmetic", JITs might not 2623 * be able to deal with it. 2624 */ 2625 if (ptr_reg->type == PTR_TO_STACK) { 2626 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2627 dst); 2628 return -EACCES; 2629 } 2630 if (known && (ptr_reg->off - smin_val == 2631 (s64)(s32)(ptr_reg->off - smin_val))) { 2632 /* pointer -= K. Subtract it from fixed offset */ 2633 dst_reg->smin_value = smin_ptr; 2634 dst_reg->smax_value = smax_ptr; 2635 dst_reg->umin_value = umin_ptr; 2636 dst_reg->umax_value = umax_ptr; 2637 dst_reg->var_off = ptr_reg->var_off; 2638 dst_reg->id = ptr_reg->id; 2639 dst_reg->off = ptr_reg->off - smin_val; 2640 dst_reg->range = ptr_reg->range; 2641 break; 2642 } 2643 /* A new variable offset is created. If the subtrahend is known 2644 * nonnegative, then any reg->range we had before is still good. 2645 */ 2646 if (signed_sub_overflows(smin_ptr, smax_val) || 2647 signed_sub_overflows(smax_ptr, smin_val)) { 2648 /* Overflow possible, we know nothing */ 2649 dst_reg->smin_value = S64_MIN; 2650 dst_reg->smax_value = S64_MAX; 2651 } else { 2652 dst_reg->smin_value = smin_ptr - smax_val; 2653 dst_reg->smax_value = smax_ptr - smin_val; 2654 } 2655 if (umin_ptr < umax_val) { 2656 /* Overflow possible, we know nothing */ 2657 dst_reg->umin_value = 0; 2658 dst_reg->umax_value = U64_MAX; 2659 } else { 2660 /* Cannot overflow (as long as bounds are consistent) */ 2661 dst_reg->umin_value = umin_ptr - umax_val; 2662 dst_reg->umax_value = umax_ptr - umin_val; 2663 } 2664 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2665 dst_reg->off = ptr_reg->off; 2666 if (reg_is_pkt_pointer(ptr_reg)) { 2667 dst_reg->id = ++env->id_gen; 2668 /* something was added to pkt_ptr, set range to zero */ 2669 if (smin_val < 0) 2670 dst_reg->range = 0; 2671 } 2672 break; 2673 case BPF_AND: 2674 case BPF_OR: 2675 case BPF_XOR: 2676 /* bitwise ops on pointers are troublesome, prohibit. */ 2677 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2678 dst, bpf_alu_string[opcode >> 4]); 2679 return -EACCES; 2680 default: 2681 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2682 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2683 dst, bpf_alu_string[opcode >> 4]); 2684 return -EACCES; 2685 } 2686 2687 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2688 return -EINVAL; 2689 2690 __update_reg_bounds(dst_reg); 2691 __reg_deduce_bounds(dst_reg); 2692 __reg_bound_offset(dst_reg); 2693 return 0; 2694 } 2695 2696 /* WARNING: This function does calculations on 64-bit values, but the actual 2697 * execution may occur on 32-bit values. Therefore, things like bitshifts 2698 * need extra checks in the 32-bit case. 2699 */ 2700 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2701 struct bpf_insn *insn, 2702 struct bpf_reg_state *dst_reg, 2703 struct bpf_reg_state src_reg) 2704 { 2705 struct bpf_reg_state *regs = cur_regs(env); 2706 u8 opcode = BPF_OP(insn->code); 2707 bool src_known, dst_known; 2708 s64 smin_val, smax_val; 2709 u64 umin_val, umax_val; 2710 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2711 2712 smin_val = src_reg.smin_value; 2713 smax_val = src_reg.smax_value; 2714 umin_val = src_reg.umin_value; 2715 umax_val = src_reg.umax_value; 2716 src_known = tnum_is_const(src_reg.var_off); 2717 dst_known = tnum_is_const(dst_reg->var_off); 2718 2719 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2720 smin_val > smax_val || umin_val > umax_val) { 2721 /* Taint dst register if offset had invalid bounds derived from 2722 * e.g. dead branches. 2723 */ 2724 __mark_reg_unknown(dst_reg); 2725 return 0; 2726 } 2727 2728 if (!src_known && 2729 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2730 __mark_reg_unknown(dst_reg); 2731 return 0; 2732 } 2733 2734 switch (opcode) { 2735 case BPF_ADD: 2736 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2737 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2738 dst_reg->smin_value = S64_MIN; 2739 dst_reg->smax_value = S64_MAX; 2740 } else { 2741 dst_reg->smin_value += smin_val; 2742 dst_reg->smax_value += smax_val; 2743 } 2744 if (dst_reg->umin_value + umin_val < umin_val || 2745 dst_reg->umax_value + umax_val < umax_val) { 2746 dst_reg->umin_value = 0; 2747 dst_reg->umax_value = U64_MAX; 2748 } else { 2749 dst_reg->umin_value += umin_val; 2750 dst_reg->umax_value += umax_val; 2751 } 2752 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2753 break; 2754 case BPF_SUB: 2755 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2756 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2757 /* Overflow possible, we know nothing */ 2758 dst_reg->smin_value = S64_MIN; 2759 dst_reg->smax_value = S64_MAX; 2760 } else { 2761 dst_reg->smin_value -= smax_val; 2762 dst_reg->smax_value -= smin_val; 2763 } 2764 if (dst_reg->umin_value < umax_val) { 2765 /* Overflow possible, we know nothing */ 2766 dst_reg->umin_value = 0; 2767 dst_reg->umax_value = U64_MAX; 2768 } else { 2769 /* Cannot overflow (as long as bounds are consistent) */ 2770 dst_reg->umin_value -= umax_val; 2771 dst_reg->umax_value -= umin_val; 2772 } 2773 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2774 break; 2775 case BPF_MUL: 2776 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2777 if (smin_val < 0 || dst_reg->smin_value < 0) { 2778 /* Ain't nobody got time to multiply that sign */ 2779 __mark_reg_unbounded(dst_reg); 2780 __update_reg_bounds(dst_reg); 2781 break; 2782 } 2783 /* Both values are positive, so we can work with unsigned and 2784 * copy the result to signed (unless it exceeds S64_MAX). 2785 */ 2786 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2787 /* Potential overflow, we know nothing */ 2788 __mark_reg_unbounded(dst_reg); 2789 /* (except what we can learn from the var_off) */ 2790 __update_reg_bounds(dst_reg); 2791 break; 2792 } 2793 dst_reg->umin_value *= umin_val; 2794 dst_reg->umax_value *= umax_val; 2795 if (dst_reg->umax_value > S64_MAX) { 2796 /* Overflow possible, we know nothing */ 2797 dst_reg->smin_value = S64_MIN; 2798 dst_reg->smax_value = S64_MAX; 2799 } else { 2800 dst_reg->smin_value = dst_reg->umin_value; 2801 dst_reg->smax_value = dst_reg->umax_value; 2802 } 2803 break; 2804 case BPF_AND: 2805 if (src_known && dst_known) { 2806 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2807 src_reg.var_off.value); 2808 break; 2809 } 2810 /* We get our minimum from the var_off, since that's inherently 2811 * bitwise. Our maximum is the minimum of the operands' maxima. 2812 */ 2813 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2814 dst_reg->umin_value = dst_reg->var_off.value; 2815 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2816 if (dst_reg->smin_value < 0 || smin_val < 0) { 2817 /* Lose signed bounds when ANDing negative numbers, 2818 * ain't nobody got time for that. 2819 */ 2820 dst_reg->smin_value = S64_MIN; 2821 dst_reg->smax_value = S64_MAX; 2822 } else { 2823 /* ANDing two positives gives a positive, so safe to 2824 * cast result into s64. 2825 */ 2826 dst_reg->smin_value = dst_reg->umin_value; 2827 dst_reg->smax_value = dst_reg->umax_value; 2828 } 2829 /* We may learn something more from the var_off */ 2830 __update_reg_bounds(dst_reg); 2831 break; 2832 case BPF_OR: 2833 if (src_known && dst_known) { 2834 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2835 src_reg.var_off.value); 2836 break; 2837 } 2838 /* We get our maximum from the var_off, and our minimum is the 2839 * maximum of the operands' minima 2840 */ 2841 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2842 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2843 dst_reg->umax_value = dst_reg->var_off.value | 2844 dst_reg->var_off.mask; 2845 if (dst_reg->smin_value < 0 || smin_val < 0) { 2846 /* Lose signed bounds when ORing negative numbers, 2847 * ain't nobody got time for that. 2848 */ 2849 dst_reg->smin_value = S64_MIN; 2850 dst_reg->smax_value = S64_MAX; 2851 } else { 2852 /* ORing two positives gives a positive, so safe to 2853 * cast result into s64. 2854 */ 2855 dst_reg->smin_value = dst_reg->umin_value; 2856 dst_reg->smax_value = dst_reg->umax_value; 2857 } 2858 /* We may learn something more from the var_off */ 2859 __update_reg_bounds(dst_reg); 2860 break; 2861 case BPF_LSH: 2862 if (umax_val >= insn_bitness) { 2863 /* Shifts greater than 31 or 63 are undefined. 2864 * This includes shifts by a negative number. 2865 */ 2866 mark_reg_unknown(env, regs, insn->dst_reg); 2867 break; 2868 } 2869 /* We lose all sign bit information (except what we can pick 2870 * up from var_off) 2871 */ 2872 dst_reg->smin_value = S64_MIN; 2873 dst_reg->smax_value = S64_MAX; 2874 /* If we might shift our top bit out, then we know nothing */ 2875 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2876 dst_reg->umin_value = 0; 2877 dst_reg->umax_value = U64_MAX; 2878 } else { 2879 dst_reg->umin_value <<= umin_val; 2880 dst_reg->umax_value <<= umax_val; 2881 } 2882 if (src_known) 2883 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2884 else 2885 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2886 /* We may learn something more from the var_off */ 2887 __update_reg_bounds(dst_reg); 2888 break; 2889 case BPF_RSH: 2890 if (umax_val >= insn_bitness) { 2891 /* Shifts greater than 31 or 63 are undefined. 2892 * This includes shifts by a negative number. 2893 */ 2894 mark_reg_unknown(env, regs, insn->dst_reg); 2895 break; 2896 } 2897 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2898 * be negative, then either: 2899 * 1) src_reg might be zero, so the sign bit of the result is 2900 * unknown, so we lose our signed bounds 2901 * 2) it's known negative, thus the unsigned bounds capture the 2902 * signed bounds 2903 * 3) the signed bounds cross zero, so they tell us nothing 2904 * about the result 2905 * If the value in dst_reg is known nonnegative, then again the 2906 * unsigned bounts capture the signed bounds. 2907 * Thus, in all cases it suffices to blow away our signed bounds 2908 * and rely on inferring new ones from the unsigned bounds and 2909 * var_off of the result. 2910 */ 2911 dst_reg->smin_value = S64_MIN; 2912 dst_reg->smax_value = S64_MAX; 2913 if (src_known) 2914 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2915 umin_val); 2916 else 2917 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2918 dst_reg->umin_value >>= umax_val; 2919 dst_reg->umax_value >>= umin_val; 2920 /* We may learn something more from the var_off */ 2921 __update_reg_bounds(dst_reg); 2922 break; 2923 default: 2924 mark_reg_unknown(env, regs, insn->dst_reg); 2925 break; 2926 } 2927 2928 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2929 /* 32-bit ALU ops are (32,32)->32 */ 2930 coerce_reg_to_size(dst_reg, 4); 2931 coerce_reg_to_size(&src_reg, 4); 2932 } 2933 2934 __reg_deduce_bounds(dst_reg); 2935 __reg_bound_offset(dst_reg); 2936 return 0; 2937 } 2938 2939 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2940 * and var_off. 2941 */ 2942 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2943 struct bpf_insn *insn) 2944 { 2945 struct bpf_verifier_state *vstate = env->cur_state; 2946 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2947 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 2948 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2949 u8 opcode = BPF_OP(insn->code); 2950 2951 dst_reg = ®s[insn->dst_reg]; 2952 src_reg = NULL; 2953 if (dst_reg->type != SCALAR_VALUE) 2954 ptr_reg = dst_reg; 2955 if (BPF_SRC(insn->code) == BPF_X) { 2956 src_reg = ®s[insn->src_reg]; 2957 if (src_reg->type != SCALAR_VALUE) { 2958 if (dst_reg->type != SCALAR_VALUE) { 2959 /* Combining two pointers by any ALU op yields 2960 * an arbitrary scalar. Disallow all math except 2961 * pointer subtraction 2962 */ 2963 if (opcode == BPF_SUB){ 2964 mark_reg_unknown(env, regs, insn->dst_reg); 2965 return 0; 2966 } 2967 verbose(env, "R%d pointer %s pointer prohibited\n", 2968 insn->dst_reg, 2969 bpf_alu_string[opcode >> 4]); 2970 return -EACCES; 2971 } else { 2972 /* scalar += pointer 2973 * This is legal, but we have to reverse our 2974 * src/dest handling in computing the range 2975 */ 2976 return adjust_ptr_min_max_vals(env, insn, 2977 src_reg, dst_reg); 2978 } 2979 } else if (ptr_reg) { 2980 /* pointer += scalar */ 2981 return adjust_ptr_min_max_vals(env, insn, 2982 dst_reg, src_reg); 2983 } 2984 } else { 2985 /* Pretend the src is a reg with a known value, since we only 2986 * need to be able to read from this state. 2987 */ 2988 off_reg.type = SCALAR_VALUE; 2989 __mark_reg_known(&off_reg, insn->imm); 2990 src_reg = &off_reg; 2991 if (ptr_reg) /* pointer += K */ 2992 return adjust_ptr_min_max_vals(env, insn, 2993 ptr_reg, src_reg); 2994 } 2995 2996 /* Got here implies adding two SCALAR_VALUEs */ 2997 if (WARN_ON_ONCE(ptr_reg)) { 2998 print_verifier_state(env, state); 2999 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3000 return -EINVAL; 3001 } 3002 if (WARN_ON(!src_reg)) { 3003 print_verifier_state(env, state); 3004 verbose(env, "verifier internal error: no src_reg\n"); 3005 return -EINVAL; 3006 } 3007 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3008 } 3009 3010 /* check validity of 32-bit and 64-bit arithmetic operations */ 3011 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3012 { 3013 struct bpf_reg_state *regs = cur_regs(env); 3014 u8 opcode = BPF_OP(insn->code); 3015 int err; 3016 3017 if (opcode == BPF_END || opcode == BPF_NEG) { 3018 if (opcode == BPF_NEG) { 3019 if (BPF_SRC(insn->code) != 0 || 3020 insn->src_reg != BPF_REG_0 || 3021 insn->off != 0 || insn->imm != 0) { 3022 verbose(env, "BPF_NEG uses reserved fields\n"); 3023 return -EINVAL; 3024 } 3025 } else { 3026 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3027 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3028 BPF_CLASS(insn->code) == BPF_ALU64) { 3029 verbose(env, "BPF_END uses reserved fields\n"); 3030 return -EINVAL; 3031 } 3032 } 3033 3034 /* check src operand */ 3035 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3036 if (err) 3037 return err; 3038 3039 if (is_pointer_value(env, insn->dst_reg)) { 3040 verbose(env, "R%d pointer arithmetic prohibited\n", 3041 insn->dst_reg); 3042 return -EACCES; 3043 } 3044 3045 /* check dest operand */ 3046 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3047 if (err) 3048 return err; 3049 3050 } else if (opcode == BPF_MOV) { 3051 3052 if (BPF_SRC(insn->code) == BPF_X) { 3053 if (insn->imm != 0 || insn->off != 0) { 3054 verbose(env, "BPF_MOV uses reserved fields\n"); 3055 return -EINVAL; 3056 } 3057 3058 /* check src operand */ 3059 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3060 if (err) 3061 return err; 3062 } else { 3063 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3064 verbose(env, "BPF_MOV uses reserved fields\n"); 3065 return -EINVAL; 3066 } 3067 } 3068 3069 /* check dest operand */ 3070 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3071 if (err) 3072 return err; 3073 3074 if (BPF_SRC(insn->code) == BPF_X) { 3075 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3076 /* case: R1 = R2 3077 * copy register state to dest reg 3078 */ 3079 regs[insn->dst_reg] = regs[insn->src_reg]; 3080 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3081 } else { 3082 /* R1 = (u32) R2 */ 3083 if (is_pointer_value(env, insn->src_reg)) { 3084 verbose(env, 3085 "R%d partial copy of pointer\n", 3086 insn->src_reg); 3087 return -EACCES; 3088 } 3089 mark_reg_unknown(env, regs, insn->dst_reg); 3090 coerce_reg_to_size(®s[insn->dst_reg], 4); 3091 } 3092 } else { 3093 /* case: R = imm 3094 * remember the value we stored into this reg 3095 */ 3096 regs[insn->dst_reg].type = SCALAR_VALUE; 3097 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3098 __mark_reg_known(regs + insn->dst_reg, 3099 insn->imm); 3100 } else { 3101 __mark_reg_known(regs + insn->dst_reg, 3102 (u32)insn->imm); 3103 } 3104 } 3105 3106 } else if (opcode > BPF_END) { 3107 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3108 return -EINVAL; 3109 3110 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3111 3112 if (BPF_SRC(insn->code) == BPF_X) { 3113 if (insn->imm != 0 || insn->off != 0) { 3114 verbose(env, "BPF_ALU uses reserved fields\n"); 3115 return -EINVAL; 3116 } 3117 /* check src1 operand */ 3118 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3119 if (err) 3120 return err; 3121 } else { 3122 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3123 verbose(env, "BPF_ALU uses reserved fields\n"); 3124 return -EINVAL; 3125 } 3126 } 3127 3128 /* check src2 operand */ 3129 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3130 if (err) 3131 return err; 3132 3133 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3134 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3135 verbose(env, "div by zero\n"); 3136 return -EINVAL; 3137 } 3138 3139 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3140 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3141 return -EINVAL; 3142 } 3143 3144 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3145 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3146 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3147 3148 if (insn->imm < 0 || insn->imm >= size) { 3149 verbose(env, "invalid shift %d\n", insn->imm); 3150 return -EINVAL; 3151 } 3152 } 3153 3154 /* check dest operand */ 3155 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3156 if (err) 3157 return err; 3158 3159 return adjust_reg_min_max_vals(env, insn); 3160 } 3161 3162 return 0; 3163 } 3164 3165 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3166 struct bpf_reg_state *dst_reg, 3167 enum bpf_reg_type type, 3168 bool range_right_open) 3169 { 3170 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3171 struct bpf_reg_state *regs = state->regs, *reg; 3172 u16 new_range; 3173 int i, j; 3174 3175 if (dst_reg->off < 0 || 3176 (dst_reg->off == 0 && range_right_open)) 3177 /* This doesn't give us any range */ 3178 return; 3179 3180 if (dst_reg->umax_value > MAX_PACKET_OFF || 3181 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3182 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3183 * than pkt_end, but that's because it's also less than pkt. 3184 */ 3185 return; 3186 3187 new_range = dst_reg->off; 3188 if (range_right_open) 3189 new_range--; 3190 3191 /* Examples for register markings: 3192 * 3193 * pkt_data in dst register: 3194 * 3195 * r2 = r3; 3196 * r2 += 8; 3197 * if (r2 > pkt_end) goto <handle exception> 3198 * <access okay> 3199 * 3200 * r2 = r3; 3201 * r2 += 8; 3202 * if (r2 < pkt_end) goto <access okay> 3203 * <handle exception> 3204 * 3205 * Where: 3206 * r2 == dst_reg, pkt_end == src_reg 3207 * r2=pkt(id=n,off=8,r=0) 3208 * r3=pkt(id=n,off=0,r=0) 3209 * 3210 * pkt_data in src register: 3211 * 3212 * r2 = r3; 3213 * r2 += 8; 3214 * if (pkt_end >= r2) goto <access okay> 3215 * <handle exception> 3216 * 3217 * r2 = r3; 3218 * r2 += 8; 3219 * if (pkt_end <= r2) goto <handle exception> 3220 * <access okay> 3221 * 3222 * Where: 3223 * pkt_end == dst_reg, r2 == src_reg 3224 * r2=pkt(id=n,off=8,r=0) 3225 * r3=pkt(id=n,off=0,r=0) 3226 * 3227 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3228 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3229 * and [r3, r3 + 8-1) respectively is safe to access depending on 3230 * the check. 3231 */ 3232 3233 /* If our ids match, then we must have the same max_value. And we 3234 * don't care about the other reg's fixed offset, since if it's too big 3235 * the range won't allow anything. 3236 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3237 */ 3238 for (i = 0; i < MAX_BPF_REG; i++) 3239 if (regs[i].type == type && regs[i].id == dst_reg->id) 3240 /* keep the maximum range already checked */ 3241 regs[i].range = max(regs[i].range, new_range); 3242 3243 for (j = 0; j <= vstate->curframe; j++) { 3244 state = vstate->frame[j]; 3245 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3246 if (state->stack[i].slot_type[0] != STACK_SPILL) 3247 continue; 3248 reg = &state->stack[i].spilled_ptr; 3249 if (reg->type == type && reg->id == dst_reg->id) 3250 reg->range = max(reg->range, new_range); 3251 } 3252 } 3253 } 3254 3255 /* Adjusts the register min/max values in the case that the dst_reg is the 3256 * variable register that we are working on, and src_reg is a constant or we're 3257 * simply doing a BPF_K check. 3258 * In JEQ/JNE cases we also adjust the var_off values. 3259 */ 3260 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3261 struct bpf_reg_state *false_reg, u64 val, 3262 u8 opcode) 3263 { 3264 /* If the dst_reg is a pointer, we can't learn anything about its 3265 * variable offset from the compare (unless src_reg were a pointer into 3266 * the same object, but we don't bother with that. 3267 * Since false_reg and true_reg have the same type by construction, we 3268 * only need to check one of them for pointerness. 3269 */ 3270 if (__is_pointer_value(false, false_reg)) 3271 return; 3272 3273 switch (opcode) { 3274 case BPF_JEQ: 3275 /* If this is false then we know nothing Jon Snow, but if it is 3276 * true then we know for sure. 3277 */ 3278 __mark_reg_known(true_reg, val); 3279 break; 3280 case BPF_JNE: 3281 /* If this is true we know nothing Jon Snow, but if it is false 3282 * we know the value for sure; 3283 */ 3284 __mark_reg_known(false_reg, val); 3285 break; 3286 case BPF_JGT: 3287 false_reg->umax_value = min(false_reg->umax_value, val); 3288 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3289 break; 3290 case BPF_JSGT: 3291 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3292 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3293 break; 3294 case BPF_JLT: 3295 false_reg->umin_value = max(false_reg->umin_value, val); 3296 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3297 break; 3298 case BPF_JSLT: 3299 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3300 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3301 break; 3302 case BPF_JGE: 3303 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3304 true_reg->umin_value = max(true_reg->umin_value, val); 3305 break; 3306 case BPF_JSGE: 3307 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3308 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3309 break; 3310 case BPF_JLE: 3311 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3312 true_reg->umax_value = min(true_reg->umax_value, val); 3313 break; 3314 case BPF_JSLE: 3315 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3316 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3317 break; 3318 default: 3319 break; 3320 } 3321 3322 __reg_deduce_bounds(false_reg); 3323 __reg_deduce_bounds(true_reg); 3324 /* We might have learned some bits from the bounds. */ 3325 __reg_bound_offset(false_reg); 3326 __reg_bound_offset(true_reg); 3327 /* Intersecting with the old var_off might have improved our bounds 3328 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3329 * then new var_off is (0; 0x7f...fc) which improves our umax. 3330 */ 3331 __update_reg_bounds(false_reg); 3332 __update_reg_bounds(true_reg); 3333 } 3334 3335 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3336 * the variable reg. 3337 */ 3338 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3339 struct bpf_reg_state *false_reg, u64 val, 3340 u8 opcode) 3341 { 3342 if (__is_pointer_value(false, false_reg)) 3343 return; 3344 3345 switch (opcode) { 3346 case BPF_JEQ: 3347 /* If this is false then we know nothing Jon Snow, but if it is 3348 * true then we know for sure. 3349 */ 3350 __mark_reg_known(true_reg, val); 3351 break; 3352 case BPF_JNE: 3353 /* If this is true we know nothing Jon Snow, but if it is false 3354 * we know the value for sure; 3355 */ 3356 __mark_reg_known(false_reg, val); 3357 break; 3358 case BPF_JGT: 3359 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3360 false_reg->umin_value = max(false_reg->umin_value, val); 3361 break; 3362 case BPF_JSGT: 3363 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3364 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3365 break; 3366 case BPF_JLT: 3367 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3368 false_reg->umax_value = min(false_reg->umax_value, val); 3369 break; 3370 case BPF_JSLT: 3371 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3372 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3373 break; 3374 case BPF_JGE: 3375 true_reg->umax_value = min(true_reg->umax_value, val); 3376 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3377 break; 3378 case BPF_JSGE: 3379 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3380 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3381 break; 3382 case BPF_JLE: 3383 true_reg->umin_value = max(true_reg->umin_value, val); 3384 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3385 break; 3386 case BPF_JSLE: 3387 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3388 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3389 break; 3390 default: 3391 break; 3392 } 3393 3394 __reg_deduce_bounds(false_reg); 3395 __reg_deduce_bounds(true_reg); 3396 /* We might have learned some bits from the bounds. */ 3397 __reg_bound_offset(false_reg); 3398 __reg_bound_offset(true_reg); 3399 /* Intersecting with the old var_off might have improved our bounds 3400 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3401 * then new var_off is (0; 0x7f...fc) which improves our umax. 3402 */ 3403 __update_reg_bounds(false_reg); 3404 __update_reg_bounds(true_reg); 3405 } 3406 3407 /* Regs are known to be equal, so intersect their min/max/var_off */ 3408 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3409 struct bpf_reg_state *dst_reg) 3410 { 3411 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3412 dst_reg->umin_value); 3413 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3414 dst_reg->umax_value); 3415 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3416 dst_reg->smin_value); 3417 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3418 dst_reg->smax_value); 3419 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3420 dst_reg->var_off); 3421 /* We might have learned new bounds from the var_off. */ 3422 __update_reg_bounds(src_reg); 3423 __update_reg_bounds(dst_reg); 3424 /* We might have learned something about the sign bit. */ 3425 __reg_deduce_bounds(src_reg); 3426 __reg_deduce_bounds(dst_reg); 3427 /* We might have learned some bits from the bounds. */ 3428 __reg_bound_offset(src_reg); 3429 __reg_bound_offset(dst_reg); 3430 /* Intersecting with the old var_off might have improved our bounds 3431 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3432 * then new var_off is (0; 0x7f...fc) which improves our umax. 3433 */ 3434 __update_reg_bounds(src_reg); 3435 __update_reg_bounds(dst_reg); 3436 } 3437 3438 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3439 struct bpf_reg_state *true_dst, 3440 struct bpf_reg_state *false_src, 3441 struct bpf_reg_state *false_dst, 3442 u8 opcode) 3443 { 3444 switch (opcode) { 3445 case BPF_JEQ: 3446 __reg_combine_min_max(true_src, true_dst); 3447 break; 3448 case BPF_JNE: 3449 __reg_combine_min_max(false_src, false_dst); 3450 break; 3451 } 3452 } 3453 3454 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3455 bool is_null) 3456 { 3457 struct bpf_reg_state *reg = ®s[regno]; 3458 3459 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3460 /* Old offset (both fixed and variable parts) should 3461 * have been known-zero, because we don't allow pointer 3462 * arithmetic on pointers that might be NULL. 3463 */ 3464 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3465 !tnum_equals_const(reg->var_off, 0) || 3466 reg->off)) { 3467 __mark_reg_known_zero(reg); 3468 reg->off = 0; 3469 } 3470 if (is_null) { 3471 reg->type = SCALAR_VALUE; 3472 } else if (reg->map_ptr->inner_map_meta) { 3473 reg->type = CONST_PTR_TO_MAP; 3474 reg->map_ptr = reg->map_ptr->inner_map_meta; 3475 } else { 3476 reg->type = PTR_TO_MAP_VALUE; 3477 } 3478 /* We don't need id from this point onwards anymore, thus we 3479 * should better reset it, so that state pruning has chances 3480 * to take effect. 3481 */ 3482 reg->id = 0; 3483 } 3484 } 3485 3486 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3487 * be folded together at some point. 3488 */ 3489 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3490 bool is_null) 3491 { 3492 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3493 struct bpf_reg_state *regs = state->regs; 3494 u32 id = regs[regno].id; 3495 int i, j; 3496 3497 for (i = 0; i < MAX_BPF_REG; i++) 3498 mark_map_reg(regs, i, id, is_null); 3499 3500 for (j = 0; j <= vstate->curframe; j++) { 3501 state = vstate->frame[j]; 3502 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3503 if (state->stack[i].slot_type[0] != STACK_SPILL) 3504 continue; 3505 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3506 } 3507 } 3508 } 3509 3510 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3511 struct bpf_reg_state *dst_reg, 3512 struct bpf_reg_state *src_reg, 3513 struct bpf_verifier_state *this_branch, 3514 struct bpf_verifier_state *other_branch) 3515 { 3516 if (BPF_SRC(insn->code) != BPF_X) 3517 return false; 3518 3519 switch (BPF_OP(insn->code)) { 3520 case BPF_JGT: 3521 if ((dst_reg->type == PTR_TO_PACKET && 3522 src_reg->type == PTR_TO_PACKET_END) || 3523 (dst_reg->type == PTR_TO_PACKET_META && 3524 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3525 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3526 find_good_pkt_pointers(this_branch, dst_reg, 3527 dst_reg->type, false); 3528 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3529 src_reg->type == PTR_TO_PACKET) || 3530 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3531 src_reg->type == PTR_TO_PACKET_META)) { 3532 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3533 find_good_pkt_pointers(other_branch, src_reg, 3534 src_reg->type, true); 3535 } else { 3536 return false; 3537 } 3538 break; 3539 case BPF_JLT: 3540 if ((dst_reg->type == PTR_TO_PACKET && 3541 src_reg->type == PTR_TO_PACKET_END) || 3542 (dst_reg->type == PTR_TO_PACKET_META && 3543 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3544 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3545 find_good_pkt_pointers(other_branch, dst_reg, 3546 dst_reg->type, true); 3547 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3548 src_reg->type == PTR_TO_PACKET) || 3549 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3550 src_reg->type == PTR_TO_PACKET_META)) { 3551 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3552 find_good_pkt_pointers(this_branch, src_reg, 3553 src_reg->type, false); 3554 } else { 3555 return false; 3556 } 3557 break; 3558 case BPF_JGE: 3559 if ((dst_reg->type == PTR_TO_PACKET && 3560 src_reg->type == PTR_TO_PACKET_END) || 3561 (dst_reg->type == PTR_TO_PACKET_META && 3562 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3563 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3564 find_good_pkt_pointers(this_branch, dst_reg, 3565 dst_reg->type, true); 3566 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3567 src_reg->type == PTR_TO_PACKET) || 3568 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3569 src_reg->type == PTR_TO_PACKET_META)) { 3570 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3571 find_good_pkt_pointers(other_branch, src_reg, 3572 src_reg->type, false); 3573 } else { 3574 return false; 3575 } 3576 break; 3577 case BPF_JLE: 3578 if ((dst_reg->type == PTR_TO_PACKET && 3579 src_reg->type == PTR_TO_PACKET_END) || 3580 (dst_reg->type == PTR_TO_PACKET_META && 3581 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3582 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3583 find_good_pkt_pointers(other_branch, dst_reg, 3584 dst_reg->type, false); 3585 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3586 src_reg->type == PTR_TO_PACKET) || 3587 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3588 src_reg->type == PTR_TO_PACKET_META)) { 3589 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3590 find_good_pkt_pointers(this_branch, src_reg, 3591 src_reg->type, true); 3592 } else { 3593 return false; 3594 } 3595 break; 3596 default: 3597 return false; 3598 } 3599 3600 return true; 3601 } 3602 3603 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3604 struct bpf_insn *insn, int *insn_idx) 3605 { 3606 struct bpf_verifier_state *this_branch = env->cur_state; 3607 struct bpf_verifier_state *other_branch; 3608 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3609 struct bpf_reg_state *dst_reg, *other_branch_regs; 3610 u8 opcode = BPF_OP(insn->code); 3611 int err; 3612 3613 if (opcode > BPF_JSLE) { 3614 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3615 return -EINVAL; 3616 } 3617 3618 if (BPF_SRC(insn->code) == BPF_X) { 3619 if (insn->imm != 0) { 3620 verbose(env, "BPF_JMP uses reserved fields\n"); 3621 return -EINVAL; 3622 } 3623 3624 /* check src1 operand */ 3625 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3626 if (err) 3627 return err; 3628 3629 if (is_pointer_value(env, insn->src_reg)) { 3630 verbose(env, "R%d pointer comparison prohibited\n", 3631 insn->src_reg); 3632 return -EACCES; 3633 } 3634 } else { 3635 if (insn->src_reg != BPF_REG_0) { 3636 verbose(env, "BPF_JMP uses reserved fields\n"); 3637 return -EINVAL; 3638 } 3639 } 3640 3641 /* check src2 operand */ 3642 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3643 if (err) 3644 return err; 3645 3646 dst_reg = ®s[insn->dst_reg]; 3647 3648 /* detect if R == 0 where R was initialized to zero earlier */ 3649 if (BPF_SRC(insn->code) == BPF_K && 3650 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3651 dst_reg->type == SCALAR_VALUE && 3652 tnum_is_const(dst_reg->var_off)) { 3653 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3654 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3655 /* if (imm == imm) goto pc+off; 3656 * only follow the goto, ignore fall-through 3657 */ 3658 *insn_idx += insn->off; 3659 return 0; 3660 } else { 3661 /* if (imm != imm) goto pc+off; 3662 * only follow fall-through branch, since 3663 * that's where the program will go 3664 */ 3665 return 0; 3666 } 3667 } 3668 3669 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3670 if (!other_branch) 3671 return -EFAULT; 3672 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3673 3674 /* detect if we are comparing against a constant value so we can adjust 3675 * our min/max values for our dst register. 3676 * this is only legit if both are scalars (or pointers to the same 3677 * object, I suppose, but we don't support that right now), because 3678 * otherwise the different base pointers mean the offsets aren't 3679 * comparable. 3680 */ 3681 if (BPF_SRC(insn->code) == BPF_X) { 3682 if (dst_reg->type == SCALAR_VALUE && 3683 regs[insn->src_reg].type == SCALAR_VALUE) { 3684 if (tnum_is_const(regs[insn->src_reg].var_off)) 3685 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3686 dst_reg, regs[insn->src_reg].var_off.value, 3687 opcode); 3688 else if (tnum_is_const(dst_reg->var_off)) 3689 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3690 ®s[insn->src_reg], 3691 dst_reg->var_off.value, opcode); 3692 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3693 /* Comparing for equality, we can combine knowledge */ 3694 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3695 &other_branch_regs[insn->dst_reg], 3696 ®s[insn->src_reg], 3697 ®s[insn->dst_reg], opcode); 3698 } 3699 } else if (dst_reg->type == SCALAR_VALUE) { 3700 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3701 dst_reg, insn->imm, opcode); 3702 } 3703 3704 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3705 if (BPF_SRC(insn->code) == BPF_K && 3706 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3707 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3708 /* Mark all identical map registers in each branch as either 3709 * safe or unknown depending R == 0 or R != 0 conditional. 3710 */ 3711 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3712 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3713 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3714 this_branch, other_branch) && 3715 is_pointer_value(env, insn->dst_reg)) { 3716 verbose(env, "R%d pointer comparison prohibited\n", 3717 insn->dst_reg); 3718 return -EACCES; 3719 } 3720 if (env->log.level) 3721 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3722 return 0; 3723 } 3724 3725 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3726 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3727 { 3728 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3729 3730 return (struct bpf_map *) (unsigned long) imm64; 3731 } 3732 3733 /* verify BPF_LD_IMM64 instruction */ 3734 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3735 { 3736 struct bpf_reg_state *regs = cur_regs(env); 3737 int err; 3738 3739 if (BPF_SIZE(insn->code) != BPF_DW) { 3740 verbose(env, "invalid BPF_LD_IMM insn\n"); 3741 return -EINVAL; 3742 } 3743 if (insn->off != 0) { 3744 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3745 return -EINVAL; 3746 } 3747 3748 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3749 if (err) 3750 return err; 3751 3752 if (insn->src_reg == 0) { 3753 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3754 3755 regs[insn->dst_reg].type = SCALAR_VALUE; 3756 __mark_reg_known(®s[insn->dst_reg], imm); 3757 return 0; 3758 } 3759 3760 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3761 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3762 3763 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3764 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3765 return 0; 3766 } 3767 3768 static bool may_access_skb(enum bpf_prog_type type) 3769 { 3770 switch (type) { 3771 case BPF_PROG_TYPE_SOCKET_FILTER: 3772 case BPF_PROG_TYPE_SCHED_CLS: 3773 case BPF_PROG_TYPE_SCHED_ACT: 3774 return true; 3775 default: 3776 return false; 3777 } 3778 } 3779 3780 /* verify safety of LD_ABS|LD_IND instructions: 3781 * - they can only appear in the programs where ctx == skb 3782 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3783 * preserve R6-R9, and store return value into R0 3784 * 3785 * Implicit input: 3786 * ctx == skb == R6 == CTX 3787 * 3788 * Explicit input: 3789 * SRC == any register 3790 * IMM == 32-bit immediate 3791 * 3792 * Output: 3793 * R0 - 8/16/32-bit skb data converted to cpu endianness 3794 */ 3795 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3796 { 3797 struct bpf_reg_state *regs = cur_regs(env); 3798 u8 mode = BPF_MODE(insn->code); 3799 int i, err; 3800 3801 if (!may_access_skb(env->prog->type)) { 3802 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3803 return -EINVAL; 3804 } 3805 3806 if (env->subprog_cnt) { 3807 /* when program has LD_ABS insn JITs and interpreter assume 3808 * that r1 == ctx == skb which is not the case for callees 3809 * that can have arbitrary arguments. It's problematic 3810 * for main prog as well since JITs would need to analyze 3811 * all functions in order to make proper register save/restore 3812 * decisions in the main prog. Hence disallow LD_ABS with calls 3813 */ 3814 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3815 return -EINVAL; 3816 } 3817 3818 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3819 BPF_SIZE(insn->code) == BPF_DW || 3820 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3821 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3822 return -EINVAL; 3823 } 3824 3825 /* check whether implicit source operand (register R6) is readable */ 3826 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3827 if (err) 3828 return err; 3829 3830 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3831 verbose(env, 3832 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3833 return -EINVAL; 3834 } 3835 3836 if (mode == BPF_IND) { 3837 /* check explicit source operand */ 3838 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3839 if (err) 3840 return err; 3841 } 3842 3843 /* reset caller saved regs to unreadable */ 3844 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3845 mark_reg_not_init(env, regs, caller_saved[i]); 3846 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3847 } 3848 3849 /* mark destination R0 register as readable, since it contains 3850 * the value fetched from the packet. 3851 * Already marked as written above. 3852 */ 3853 mark_reg_unknown(env, regs, BPF_REG_0); 3854 return 0; 3855 } 3856 3857 static int check_return_code(struct bpf_verifier_env *env) 3858 { 3859 struct bpf_reg_state *reg; 3860 struct tnum range = tnum_range(0, 1); 3861 3862 switch (env->prog->type) { 3863 case BPF_PROG_TYPE_CGROUP_SKB: 3864 case BPF_PROG_TYPE_CGROUP_SOCK: 3865 case BPF_PROG_TYPE_SOCK_OPS: 3866 case BPF_PROG_TYPE_CGROUP_DEVICE: 3867 break; 3868 default: 3869 return 0; 3870 } 3871 3872 reg = cur_regs(env) + BPF_REG_0; 3873 if (reg->type != SCALAR_VALUE) { 3874 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3875 reg_type_str[reg->type]); 3876 return -EINVAL; 3877 } 3878 3879 if (!tnum_in(range, reg->var_off)) { 3880 verbose(env, "At program exit the register R0 "); 3881 if (!tnum_is_unknown(reg->var_off)) { 3882 char tn_buf[48]; 3883 3884 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3885 verbose(env, "has value %s", tn_buf); 3886 } else { 3887 verbose(env, "has unknown scalar value"); 3888 } 3889 verbose(env, " should have been 0 or 1\n"); 3890 return -EINVAL; 3891 } 3892 return 0; 3893 } 3894 3895 /* non-recursive DFS pseudo code 3896 * 1 procedure DFS-iterative(G,v): 3897 * 2 label v as discovered 3898 * 3 let S be a stack 3899 * 4 S.push(v) 3900 * 5 while S is not empty 3901 * 6 t <- S.pop() 3902 * 7 if t is what we're looking for: 3903 * 8 return t 3904 * 9 for all edges e in G.adjacentEdges(t) do 3905 * 10 if edge e is already labelled 3906 * 11 continue with the next edge 3907 * 12 w <- G.adjacentVertex(t,e) 3908 * 13 if vertex w is not discovered and not explored 3909 * 14 label e as tree-edge 3910 * 15 label w as discovered 3911 * 16 S.push(w) 3912 * 17 continue at 5 3913 * 18 else if vertex w is discovered 3914 * 19 label e as back-edge 3915 * 20 else 3916 * 21 // vertex w is explored 3917 * 22 label e as forward- or cross-edge 3918 * 23 label t as explored 3919 * 24 S.pop() 3920 * 3921 * convention: 3922 * 0x10 - discovered 3923 * 0x11 - discovered and fall-through edge labelled 3924 * 0x12 - discovered and fall-through and branch edges labelled 3925 * 0x20 - explored 3926 */ 3927 3928 enum { 3929 DISCOVERED = 0x10, 3930 EXPLORED = 0x20, 3931 FALLTHROUGH = 1, 3932 BRANCH = 2, 3933 }; 3934 3935 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3936 3937 static int *insn_stack; /* stack of insns to process */ 3938 static int cur_stack; /* current stack index */ 3939 static int *insn_state; 3940 3941 /* t, w, e - match pseudo-code above: 3942 * t - index of current instruction 3943 * w - next instruction 3944 * e - edge 3945 */ 3946 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3947 { 3948 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3949 return 0; 3950 3951 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3952 return 0; 3953 3954 if (w < 0 || w >= env->prog->len) { 3955 verbose(env, "jump out of range from insn %d to %d\n", t, w); 3956 return -EINVAL; 3957 } 3958 3959 if (e == BRANCH) 3960 /* mark branch target for state pruning */ 3961 env->explored_states[w] = STATE_LIST_MARK; 3962 3963 if (insn_state[w] == 0) { 3964 /* tree-edge */ 3965 insn_state[t] = DISCOVERED | e; 3966 insn_state[w] = DISCOVERED; 3967 if (cur_stack >= env->prog->len) 3968 return -E2BIG; 3969 insn_stack[cur_stack++] = w; 3970 return 1; 3971 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3972 verbose(env, "back-edge from insn %d to %d\n", t, w); 3973 return -EINVAL; 3974 } else if (insn_state[w] == EXPLORED) { 3975 /* forward- or cross-edge */ 3976 insn_state[t] = DISCOVERED | e; 3977 } else { 3978 verbose(env, "insn state internal bug\n"); 3979 return -EFAULT; 3980 } 3981 return 0; 3982 } 3983 3984 /* non-recursive depth-first-search to detect loops in BPF program 3985 * loop == back-edge in directed graph 3986 */ 3987 static int check_cfg(struct bpf_verifier_env *env) 3988 { 3989 struct bpf_insn *insns = env->prog->insnsi; 3990 int insn_cnt = env->prog->len; 3991 int ret = 0; 3992 int i, t; 3993 3994 ret = check_subprogs(env); 3995 if (ret < 0) 3996 return ret; 3997 3998 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3999 if (!insn_state) 4000 return -ENOMEM; 4001 4002 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4003 if (!insn_stack) { 4004 kfree(insn_state); 4005 return -ENOMEM; 4006 } 4007 4008 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4009 insn_stack[0] = 0; /* 0 is the first instruction */ 4010 cur_stack = 1; 4011 4012 peek_stack: 4013 if (cur_stack == 0) 4014 goto check_state; 4015 t = insn_stack[cur_stack - 1]; 4016 4017 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4018 u8 opcode = BPF_OP(insns[t].code); 4019 4020 if (opcode == BPF_EXIT) { 4021 goto mark_explored; 4022 } else if (opcode == BPF_CALL) { 4023 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4024 if (ret == 1) 4025 goto peek_stack; 4026 else if (ret < 0) 4027 goto err_free; 4028 if (t + 1 < insn_cnt) 4029 env->explored_states[t + 1] = STATE_LIST_MARK; 4030 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4031 env->explored_states[t] = STATE_LIST_MARK; 4032 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4033 if (ret == 1) 4034 goto peek_stack; 4035 else if (ret < 0) 4036 goto err_free; 4037 } 4038 } else if (opcode == BPF_JA) { 4039 if (BPF_SRC(insns[t].code) != BPF_K) { 4040 ret = -EINVAL; 4041 goto err_free; 4042 } 4043 /* unconditional jump with single edge */ 4044 ret = push_insn(t, t + insns[t].off + 1, 4045 FALLTHROUGH, env); 4046 if (ret == 1) 4047 goto peek_stack; 4048 else if (ret < 0) 4049 goto err_free; 4050 /* tell verifier to check for equivalent states 4051 * after every call and jump 4052 */ 4053 if (t + 1 < insn_cnt) 4054 env->explored_states[t + 1] = STATE_LIST_MARK; 4055 } else { 4056 /* conditional jump with two edges */ 4057 env->explored_states[t] = STATE_LIST_MARK; 4058 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4059 if (ret == 1) 4060 goto peek_stack; 4061 else if (ret < 0) 4062 goto err_free; 4063 4064 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4065 if (ret == 1) 4066 goto peek_stack; 4067 else if (ret < 0) 4068 goto err_free; 4069 } 4070 } else { 4071 /* all other non-branch instructions with single 4072 * fall-through edge 4073 */ 4074 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4075 if (ret == 1) 4076 goto peek_stack; 4077 else if (ret < 0) 4078 goto err_free; 4079 } 4080 4081 mark_explored: 4082 insn_state[t] = EXPLORED; 4083 if (cur_stack-- <= 0) { 4084 verbose(env, "pop stack internal bug\n"); 4085 ret = -EFAULT; 4086 goto err_free; 4087 } 4088 goto peek_stack; 4089 4090 check_state: 4091 for (i = 0; i < insn_cnt; i++) { 4092 if (insn_state[i] != EXPLORED) { 4093 verbose(env, "unreachable insn %d\n", i); 4094 ret = -EINVAL; 4095 goto err_free; 4096 } 4097 } 4098 ret = 0; /* cfg looks good */ 4099 4100 err_free: 4101 kfree(insn_state); 4102 kfree(insn_stack); 4103 return ret; 4104 } 4105 4106 /* check %cur's range satisfies %old's */ 4107 static bool range_within(struct bpf_reg_state *old, 4108 struct bpf_reg_state *cur) 4109 { 4110 return old->umin_value <= cur->umin_value && 4111 old->umax_value >= cur->umax_value && 4112 old->smin_value <= cur->smin_value && 4113 old->smax_value >= cur->smax_value; 4114 } 4115 4116 /* Maximum number of register states that can exist at once */ 4117 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4118 struct idpair { 4119 u32 old; 4120 u32 cur; 4121 }; 4122 4123 /* If in the old state two registers had the same id, then they need to have 4124 * the same id in the new state as well. But that id could be different from 4125 * the old state, so we need to track the mapping from old to new ids. 4126 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4127 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4128 * regs with a different old id could still have new id 9, we don't care about 4129 * that. 4130 * So we look through our idmap to see if this old id has been seen before. If 4131 * so, we require the new id to match; otherwise, we add the id pair to the map. 4132 */ 4133 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4134 { 4135 unsigned int i; 4136 4137 for (i = 0; i < ID_MAP_SIZE; i++) { 4138 if (!idmap[i].old) { 4139 /* Reached an empty slot; haven't seen this id before */ 4140 idmap[i].old = old_id; 4141 idmap[i].cur = cur_id; 4142 return true; 4143 } 4144 if (idmap[i].old == old_id) 4145 return idmap[i].cur == cur_id; 4146 } 4147 /* We ran out of idmap slots, which should be impossible */ 4148 WARN_ON_ONCE(1); 4149 return false; 4150 } 4151 4152 /* Returns true if (rold safe implies rcur safe) */ 4153 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4154 struct idpair *idmap) 4155 { 4156 bool equal; 4157 4158 if (!(rold->live & REG_LIVE_READ)) 4159 /* explored state didn't use this */ 4160 return true; 4161 4162 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4163 4164 if (rold->type == PTR_TO_STACK) 4165 /* two stack pointers are equal only if they're pointing to 4166 * the same stack frame, since fp-8 in foo != fp-8 in bar 4167 */ 4168 return equal && rold->frameno == rcur->frameno; 4169 4170 if (equal) 4171 return true; 4172 4173 if (rold->type == NOT_INIT) 4174 /* explored state can't have used this */ 4175 return true; 4176 if (rcur->type == NOT_INIT) 4177 return false; 4178 switch (rold->type) { 4179 case SCALAR_VALUE: 4180 if (rcur->type == SCALAR_VALUE) { 4181 /* new val must satisfy old val knowledge */ 4182 return range_within(rold, rcur) && 4183 tnum_in(rold->var_off, rcur->var_off); 4184 } else { 4185 /* We're trying to use a pointer in place of a scalar. 4186 * Even if the scalar was unbounded, this could lead to 4187 * pointer leaks because scalars are allowed to leak 4188 * while pointers are not. We could make this safe in 4189 * special cases if root is calling us, but it's 4190 * probably not worth the hassle. 4191 */ 4192 return false; 4193 } 4194 case PTR_TO_MAP_VALUE: 4195 /* If the new min/max/var_off satisfy the old ones and 4196 * everything else matches, we are OK. 4197 * We don't care about the 'id' value, because nothing 4198 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4199 */ 4200 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4201 range_within(rold, rcur) && 4202 tnum_in(rold->var_off, rcur->var_off); 4203 case PTR_TO_MAP_VALUE_OR_NULL: 4204 /* a PTR_TO_MAP_VALUE could be safe to use as a 4205 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4206 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4207 * checked, doing so could have affected others with the same 4208 * id, and we can't check for that because we lost the id when 4209 * we converted to a PTR_TO_MAP_VALUE. 4210 */ 4211 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4212 return false; 4213 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4214 return false; 4215 /* Check our ids match any regs they're supposed to */ 4216 return check_ids(rold->id, rcur->id, idmap); 4217 case PTR_TO_PACKET_META: 4218 case PTR_TO_PACKET: 4219 if (rcur->type != rold->type) 4220 return false; 4221 /* We must have at least as much range as the old ptr 4222 * did, so that any accesses which were safe before are 4223 * still safe. This is true even if old range < old off, 4224 * since someone could have accessed through (ptr - k), or 4225 * even done ptr -= k in a register, to get a safe access. 4226 */ 4227 if (rold->range > rcur->range) 4228 return false; 4229 /* If the offsets don't match, we can't trust our alignment; 4230 * nor can we be sure that we won't fall out of range. 4231 */ 4232 if (rold->off != rcur->off) 4233 return false; 4234 /* id relations must be preserved */ 4235 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4236 return false; 4237 /* new val must satisfy old val knowledge */ 4238 return range_within(rold, rcur) && 4239 tnum_in(rold->var_off, rcur->var_off); 4240 case PTR_TO_CTX: 4241 case CONST_PTR_TO_MAP: 4242 case PTR_TO_PACKET_END: 4243 /* Only valid matches are exact, which memcmp() above 4244 * would have accepted 4245 */ 4246 default: 4247 /* Don't know what's going on, just say it's not safe */ 4248 return false; 4249 } 4250 4251 /* Shouldn't get here; if we do, say it's not safe */ 4252 WARN_ON_ONCE(1); 4253 return false; 4254 } 4255 4256 static bool stacksafe(struct bpf_func_state *old, 4257 struct bpf_func_state *cur, 4258 struct idpair *idmap) 4259 { 4260 int i, spi; 4261 4262 /* if explored stack has more populated slots than current stack 4263 * such stacks are not equivalent 4264 */ 4265 if (old->allocated_stack > cur->allocated_stack) 4266 return false; 4267 4268 /* walk slots of the explored stack and ignore any additional 4269 * slots in the current stack, since explored(safe) state 4270 * didn't use them 4271 */ 4272 for (i = 0; i < old->allocated_stack; i++) { 4273 spi = i / BPF_REG_SIZE; 4274 4275 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4276 /* explored state didn't use this */ 4277 continue; 4278 4279 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4280 continue; 4281 /* if old state was safe with misc data in the stack 4282 * it will be safe with zero-initialized stack. 4283 * The opposite is not true 4284 */ 4285 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4286 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4287 continue; 4288 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4289 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4290 /* Ex: old explored (safe) state has STACK_SPILL in 4291 * this stack slot, but current has has STACK_MISC -> 4292 * this verifier states are not equivalent, 4293 * return false to continue verification of this path 4294 */ 4295 return false; 4296 if (i % BPF_REG_SIZE) 4297 continue; 4298 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4299 continue; 4300 if (!regsafe(&old->stack[spi].spilled_ptr, 4301 &cur->stack[spi].spilled_ptr, 4302 idmap)) 4303 /* when explored and current stack slot are both storing 4304 * spilled registers, check that stored pointers types 4305 * are the same as well. 4306 * Ex: explored safe path could have stored 4307 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4308 * but current path has stored: 4309 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4310 * such verifier states are not equivalent. 4311 * return false to continue verification of this path 4312 */ 4313 return false; 4314 } 4315 return true; 4316 } 4317 4318 /* compare two verifier states 4319 * 4320 * all states stored in state_list are known to be valid, since 4321 * verifier reached 'bpf_exit' instruction through them 4322 * 4323 * this function is called when verifier exploring different branches of 4324 * execution popped from the state stack. If it sees an old state that has 4325 * more strict register state and more strict stack state then this execution 4326 * branch doesn't need to be explored further, since verifier already 4327 * concluded that more strict state leads to valid finish. 4328 * 4329 * Therefore two states are equivalent if register state is more conservative 4330 * and explored stack state is more conservative than the current one. 4331 * Example: 4332 * explored current 4333 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4334 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4335 * 4336 * In other words if current stack state (one being explored) has more 4337 * valid slots than old one that already passed validation, it means 4338 * the verifier can stop exploring and conclude that current state is valid too 4339 * 4340 * Similarly with registers. If explored state has register type as invalid 4341 * whereas register type in current state is meaningful, it means that 4342 * the current state will reach 'bpf_exit' instruction safely 4343 */ 4344 static bool func_states_equal(struct bpf_func_state *old, 4345 struct bpf_func_state *cur) 4346 { 4347 struct idpair *idmap; 4348 bool ret = false; 4349 int i; 4350 4351 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4352 /* If we failed to allocate the idmap, just say it's not safe */ 4353 if (!idmap) 4354 return false; 4355 4356 for (i = 0; i < MAX_BPF_REG; i++) { 4357 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4358 goto out_free; 4359 } 4360 4361 if (!stacksafe(old, cur, idmap)) 4362 goto out_free; 4363 ret = true; 4364 out_free: 4365 kfree(idmap); 4366 return ret; 4367 } 4368 4369 static bool states_equal(struct bpf_verifier_env *env, 4370 struct bpf_verifier_state *old, 4371 struct bpf_verifier_state *cur) 4372 { 4373 int i; 4374 4375 if (old->curframe != cur->curframe) 4376 return false; 4377 4378 /* for states to be equal callsites have to be the same 4379 * and all frame states need to be equivalent 4380 */ 4381 for (i = 0; i <= old->curframe; i++) { 4382 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4383 return false; 4384 if (!func_states_equal(old->frame[i], cur->frame[i])) 4385 return false; 4386 } 4387 return true; 4388 } 4389 4390 /* A write screens off any subsequent reads; but write marks come from the 4391 * straight-line code between a state and its parent. When we arrive at an 4392 * equivalent state (jump target or such) we didn't arrive by the straight-line 4393 * code, so read marks in the state must propagate to the parent regardless 4394 * of the state's write marks. That's what 'parent == state->parent' comparison 4395 * in mark_reg_read() and mark_stack_slot_read() is for. 4396 */ 4397 static int propagate_liveness(struct bpf_verifier_env *env, 4398 const struct bpf_verifier_state *vstate, 4399 struct bpf_verifier_state *vparent) 4400 { 4401 int i, frame, err = 0; 4402 struct bpf_func_state *state, *parent; 4403 4404 if (vparent->curframe != vstate->curframe) { 4405 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4406 vparent->curframe, vstate->curframe); 4407 return -EFAULT; 4408 } 4409 /* Propagate read liveness of registers... */ 4410 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4411 /* We don't need to worry about FP liveness because it's read-only */ 4412 for (i = 0; i < BPF_REG_FP; i++) { 4413 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4414 continue; 4415 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4416 err = mark_reg_read(env, vstate, vparent, i); 4417 if (err) 4418 return err; 4419 } 4420 } 4421 4422 /* ... and stack slots */ 4423 for (frame = 0; frame <= vstate->curframe; frame++) { 4424 state = vstate->frame[frame]; 4425 parent = vparent->frame[frame]; 4426 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4427 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4428 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4429 continue; 4430 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4431 mark_stack_slot_read(env, vstate, vparent, i, frame); 4432 } 4433 } 4434 return err; 4435 } 4436 4437 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4438 { 4439 struct bpf_verifier_state_list *new_sl; 4440 struct bpf_verifier_state_list *sl; 4441 struct bpf_verifier_state *cur = env->cur_state; 4442 int i, j, err; 4443 4444 sl = env->explored_states[insn_idx]; 4445 if (!sl) 4446 /* this 'insn_idx' instruction wasn't marked, so we will not 4447 * be doing state search here 4448 */ 4449 return 0; 4450 4451 while (sl != STATE_LIST_MARK) { 4452 if (states_equal(env, &sl->state, cur)) { 4453 /* reached equivalent register/stack state, 4454 * prune the search. 4455 * Registers read by the continuation are read by us. 4456 * If we have any write marks in env->cur_state, they 4457 * will prevent corresponding reads in the continuation 4458 * from reaching our parent (an explored_state). Our 4459 * own state will get the read marks recorded, but 4460 * they'll be immediately forgotten as we're pruning 4461 * this state and will pop a new one. 4462 */ 4463 err = propagate_liveness(env, &sl->state, cur); 4464 if (err) 4465 return err; 4466 return 1; 4467 } 4468 sl = sl->next; 4469 } 4470 4471 /* there were no equivalent states, remember current one. 4472 * technically the current state is not proven to be safe yet, 4473 * but it will either reach outer most bpf_exit (which means it's safe) 4474 * or it will be rejected. Since there are no loops, we won't be 4475 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4476 * again on the way to bpf_exit 4477 */ 4478 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4479 if (!new_sl) 4480 return -ENOMEM; 4481 4482 /* add new state to the head of linked list */ 4483 err = copy_verifier_state(&new_sl->state, cur); 4484 if (err) { 4485 free_verifier_state(&new_sl->state, false); 4486 kfree(new_sl); 4487 return err; 4488 } 4489 new_sl->next = env->explored_states[insn_idx]; 4490 env->explored_states[insn_idx] = new_sl; 4491 /* connect new state to parentage chain */ 4492 cur->parent = &new_sl->state; 4493 /* clear write marks in current state: the writes we did are not writes 4494 * our child did, so they don't screen off its reads from us. 4495 * (There are no read marks in current state, because reads always mark 4496 * their parent and current state never has children yet. Only 4497 * explored_states can get read marks.) 4498 */ 4499 for (i = 0; i < BPF_REG_FP; i++) 4500 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4501 4502 /* all stack frames are accessible from callee, clear them all */ 4503 for (j = 0; j <= cur->curframe; j++) { 4504 struct bpf_func_state *frame = cur->frame[j]; 4505 4506 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4507 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4508 } 4509 return 0; 4510 } 4511 4512 static int do_check(struct bpf_verifier_env *env) 4513 { 4514 struct bpf_verifier_state *state; 4515 struct bpf_insn *insns = env->prog->insnsi; 4516 struct bpf_reg_state *regs; 4517 int insn_cnt = env->prog->len, i; 4518 int insn_idx, prev_insn_idx = 0; 4519 int insn_processed = 0; 4520 bool do_print_state = false; 4521 4522 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4523 if (!state) 4524 return -ENOMEM; 4525 state->curframe = 0; 4526 state->parent = NULL; 4527 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4528 if (!state->frame[0]) { 4529 kfree(state); 4530 return -ENOMEM; 4531 } 4532 env->cur_state = state; 4533 init_func_state(env, state->frame[0], 4534 BPF_MAIN_FUNC /* callsite */, 4535 0 /* frameno */, 4536 0 /* subprogno, zero == main subprog */); 4537 insn_idx = 0; 4538 for (;;) { 4539 struct bpf_insn *insn; 4540 u8 class; 4541 int err; 4542 4543 if (insn_idx >= insn_cnt) { 4544 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4545 insn_idx, insn_cnt); 4546 return -EFAULT; 4547 } 4548 4549 insn = &insns[insn_idx]; 4550 class = BPF_CLASS(insn->code); 4551 4552 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4553 verbose(env, 4554 "BPF program is too large. Processed %d insn\n", 4555 insn_processed); 4556 return -E2BIG; 4557 } 4558 4559 err = is_state_visited(env, insn_idx); 4560 if (err < 0) 4561 return err; 4562 if (err == 1) { 4563 /* found equivalent state, can prune the search */ 4564 if (env->log.level) { 4565 if (do_print_state) 4566 verbose(env, "\nfrom %d to %d: safe\n", 4567 prev_insn_idx, insn_idx); 4568 else 4569 verbose(env, "%d: safe\n", insn_idx); 4570 } 4571 goto process_bpf_exit; 4572 } 4573 4574 if (need_resched()) 4575 cond_resched(); 4576 4577 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4578 if (env->log.level > 1) 4579 verbose(env, "%d:", insn_idx); 4580 else 4581 verbose(env, "\nfrom %d to %d:", 4582 prev_insn_idx, insn_idx); 4583 print_verifier_state(env, state->frame[state->curframe]); 4584 do_print_state = false; 4585 } 4586 4587 if (env->log.level) { 4588 const struct bpf_insn_cbs cbs = { 4589 .cb_print = verbose, 4590 }; 4591 4592 verbose(env, "%d: ", insn_idx); 4593 print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks); 4594 } 4595 4596 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4597 err = bpf_prog_offload_verify_insn(env, insn_idx, 4598 prev_insn_idx); 4599 if (err) 4600 return err; 4601 } 4602 4603 regs = cur_regs(env); 4604 env->insn_aux_data[insn_idx].seen = true; 4605 if (class == BPF_ALU || class == BPF_ALU64) { 4606 err = check_alu_op(env, insn); 4607 if (err) 4608 return err; 4609 4610 } else if (class == BPF_LDX) { 4611 enum bpf_reg_type *prev_src_type, src_reg_type; 4612 4613 /* check for reserved fields is already done */ 4614 4615 /* check src operand */ 4616 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4617 if (err) 4618 return err; 4619 4620 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4621 if (err) 4622 return err; 4623 4624 src_reg_type = regs[insn->src_reg].type; 4625 4626 /* check that memory (src_reg + off) is readable, 4627 * the state of dst_reg will be updated by this func 4628 */ 4629 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4630 BPF_SIZE(insn->code), BPF_READ, 4631 insn->dst_reg); 4632 if (err) 4633 return err; 4634 4635 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4636 4637 if (*prev_src_type == NOT_INIT) { 4638 /* saw a valid insn 4639 * dst_reg = *(u32 *)(src_reg + off) 4640 * save type to validate intersecting paths 4641 */ 4642 *prev_src_type = src_reg_type; 4643 4644 } else if (src_reg_type != *prev_src_type && 4645 (src_reg_type == PTR_TO_CTX || 4646 *prev_src_type == PTR_TO_CTX)) { 4647 /* ABuser program is trying to use the same insn 4648 * dst_reg = *(u32*) (src_reg + off) 4649 * with different pointer types: 4650 * src_reg == ctx in one branch and 4651 * src_reg == stack|map in some other branch. 4652 * Reject it. 4653 */ 4654 verbose(env, "same insn cannot be used with different pointers\n"); 4655 return -EINVAL; 4656 } 4657 4658 } else if (class == BPF_STX) { 4659 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4660 4661 if (BPF_MODE(insn->code) == BPF_XADD) { 4662 err = check_xadd(env, insn_idx, insn); 4663 if (err) 4664 return err; 4665 insn_idx++; 4666 continue; 4667 } 4668 4669 /* check src1 operand */ 4670 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4671 if (err) 4672 return err; 4673 /* check src2 operand */ 4674 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4675 if (err) 4676 return err; 4677 4678 dst_reg_type = regs[insn->dst_reg].type; 4679 4680 /* check that memory (dst_reg + off) is writeable */ 4681 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4682 BPF_SIZE(insn->code), BPF_WRITE, 4683 insn->src_reg); 4684 if (err) 4685 return err; 4686 4687 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4688 4689 if (*prev_dst_type == NOT_INIT) { 4690 *prev_dst_type = dst_reg_type; 4691 } else if (dst_reg_type != *prev_dst_type && 4692 (dst_reg_type == PTR_TO_CTX || 4693 *prev_dst_type == PTR_TO_CTX)) { 4694 verbose(env, "same insn cannot be used with different pointers\n"); 4695 return -EINVAL; 4696 } 4697 4698 } else if (class == BPF_ST) { 4699 if (BPF_MODE(insn->code) != BPF_MEM || 4700 insn->src_reg != BPF_REG_0) { 4701 verbose(env, "BPF_ST uses reserved fields\n"); 4702 return -EINVAL; 4703 } 4704 /* check src operand */ 4705 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4706 if (err) 4707 return err; 4708 4709 if (is_ctx_reg(env, insn->dst_reg)) { 4710 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4711 insn->dst_reg); 4712 return -EACCES; 4713 } 4714 4715 /* check that memory (dst_reg + off) is writeable */ 4716 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4717 BPF_SIZE(insn->code), BPF_WRITE, 4718 -1); 4719 if (err) 4720 return err; 4721 4722 } else if (class == BPF_JMP) { 4723 u8 opcode = BPF_OP(insn->code); 4724 4725 if (opcode == BPF_CALL) { 4726 if (BPF_SRC(insn->code) != BPF_K || 4727 insn->off != 0 || 4728 (insn->src_reg != BPF_REG_0 && 4729 insn->src_reg != BPF_PSEUDO_CALL) || 4730 insn->dst_reg != BPF_REG_0) { 4731 verbose(env, "BPF_CALL uses reserved fields\n"); 4732 return -EINVAL; 4733 } 4734 4735 if (insn->src_reg == BPF_PSEUDO_CALL) 4736 err = check_func_call(env, insn, &insn_idx); 4737 else 4738 err = check_helper_call(env, insn->imm, insn_idx); 4739 if (err) 4740 return err; 4741 4742 } else if (opcode == BPF_JA) { 4743 if (BPF_SRC(insn->code) != BPF_K || 4744 insn->imm != 0 || 4745 insn->src_reg != BPF_REG_0 || 4746 insn->dst_reg != BPF_REG_0) { 4747 verbose(env, "BPF_JA uses reserved fields\n"); 4748 return -EINVAL; 4749 } 4750 4751 insn_idx += insn->off + 1; 4752 continue; 4753 4754 } else if (opcode == BPF_EXIT) { 4755 if (BPF_SRC(insn->code) != BPF_K || 4756 insn->imm != 0 || 4757 insn->src_reg != BPF_REG_0 || 4758 insn->dst_reg != BPF_REG_0) { 4759 verbose(env, "BPF_EXIT uses reserved fields\n"); 4760 return -EINVAL; 4761 } 4762 4763 if (state->curframe) { 4764 /* exit from nested function */ 4765 prev_insn_idx = insn_idx; 4766 err = prepare_func_exit(env, &insn_idx); 4767 if (err) 4768 return err; 4769 do_print_state = true; 4770 continue; 4771 } 4772 4773 /* eBPF calling convetion is such that R0 is used 4774 * to return the value from eBPF program. 4775 * Make sure that it's readable at this time 4776 * of bpf_exit, which means that program wrote 4777 * something into it earlier 4778 */ 4779 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4780 if (err) 4781 return err; 4782 4783 if (is_pointer_value(env, BPF_REG_0)) { 4784 verbose(env, "R0 leaks addr as return value\n"); 4785 return -EACCES; 4786 } 4787 4788 err = check_return_code(env); 4789 if (err) 4790 return err; 4791 process_bpf_exit: 4792 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4793 if (err < 0) { 4794 if (err != -ENOENT) 4795 return err; 4796 break; 4797 } else { 4798 do_print_state = true; 4799 continue; 4800 } 4801 } else { 4802 err = check_cond_jmp_op(env, insn, &insn_idx); 4803 if (err) 4804 return err; 4805 } 4806 } else if (class == BPF_LD) { 4807 u8 mode = BPF_MODE(insn->code); 4808 4809 if (mode == BPF_ABS || mode == BPF_IND) { 4810 err = check_ld_abs(env, insn); 4811 if (err) 4812 return err; 4813 4814 } else if (mode == BPF_IMM) { 4815 err = check_ld_imm(env, insn); 4816 if (err) 4817 return err; 4818 4819 insn_idx++; 4820 env->insn_aux_data[insn_idx].seen = true; 4821 } else { 4822 verbose(env, "invalid BPF_LD mode\n"); 4823 return -EINVAL; 4824 } 4825 } else { 4826 verbose(env, "unknown insn class %d\n", class); 4827 return -EINVAL; 4828 } 4829 4830 insn_idx++; 4831 } 4832 4833 verbose(env, "processed %d insns (limit %d), stack depth ", 4834 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 4835 for (i = 0; i < env->subprog_cnt + 1; i++) { 4836 u32 depth = env->subprog_stack_depth[i]; 4837 4838 verbose(env, "%d", depth); 4839 if (i + 1 < env->subprog_cnt + 1) 4840 verbose(env, "+"); 4841 } 4842 verbose(env, "\n"); 4843 env->prog->aux->stack_depth = env->subprog_stack_depth[0]; 4844 return 0; 4845 } 4846 4847 static int check_map_prealloc(struct bpf_map *map) 4848 { 4849 return (map->map_type != BPF_MAP_TYPE_HASH && 4850 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4851 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4852 !(map->map_flags & BPF_F_NO_PREALLOC); 4853 } 4854 4855 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4856 struct bpf_map *map, 4857 struct bpf_prog *prog) 4858 4859 { 4860 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4861 * preallocated hash maps, since doing memory allocation 4862 * in overflow_handler can crash depending on where nmi got 4863 * triggered. 4864 */ 4865 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4866 if (!check_map_prealloc(map)) { 4867 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4868 return -EINVAL; 4869 } 4870 if (map->inner_map_meta && 4871 !check_map_prealloc(map->inner_map_meta)) { 4872 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4873 return -EINVAL; 4874 } 4875 } 4876 4877 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 4878 !bpf_offload_dev_match(prog, map)) { 4879 verbose(env, "offload device mismatch between prog and map\n"); 4880 return -EINVAL; 4881 } 4882 4883 return 0; 4884 } 4885 4886 /* look for pseudo eBPF instructions that access map FDs and 4887 * replace them with actual map pointers 4888 */ 4889 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4890 { 4891 struct bpf_insn *insn = env->prog->insnsi; 4892 int insn_cnt = env->prog->len; 4893 int i, j, err; 4894 4895 err = bpf_prog_calc_tag(env->prog); 4896 if (err) 4897 return err; 4898 4899 for (i = 0; i < insn_cnt; i++, insn++) { 4900 if (BPF_CLASS(insn->code) == BPF_LDX && 4901 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 4902 verbose(env, "BPF_LDX uses reserved fields\n"); 4903 return -EINVAL; 4904 } 4905 4906 if (BPF_CLASS(insn->code) == BPF_STX && 4907 ((BPF_MODE(insn->code) != BPF_MEM && 4908 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 4909 verbose(env, "BPF_STX uses reserved fields\n"); 4910 return -EINVAL; 4911 } 4912 4913 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 4914 struct bpf_map *map; 4915 struct fd f; 4916 4917 if (i == insn_cnt - 1 || insn[1].code != 0 || 4918 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 4919 insn[1].off != 0) { 4920 verbose(env, "invalid bpf_ld_imm64 insn\n"); 4921 return -EINVAL; 4922 } 4923 4924 if (insn->src_reg == 0) 4925 /* valid generic load 64-bit imm */ 4926 goto next_insn; 4927 4928 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 4929 verbose(env, 4930 "unrecognized bpf_ld_imm64 insn\n"); 4931 return -EINVAL; 4932 } 4933 4934 f = fdget(insn->imm); 4935 map = __bpf_map_get(f); 4936 if (IS_ERR(map)) { 4937 verbose(env, "fd %d is not pointing to valid bpf_map\n", 4938 insn->imm); 4939 return PTR_ERR(map); 4940 } 4941 4942 err = check_map_prog_compatibility(env, map, env->prog); 4943 if (err) { 4944 fdput(f); 4945 return err; 4946 } 4947 4948 /* store map pointer inside BPF_LD_IMM64 instruction */ 4949 insn[0].imm = (u32) (unsigned long) map; 4950 insn[1].imm = ((u64) (unsigned long) map) >> 32; 4951 4952 /* check whether we recorded this map already */ 4953 for (j = 0; j < env->used_map_cnt; j++) 4954 if (env->used_maps[j] == map) { 4955 fdput(f); 4956 goto next_insn; 4957 } 4958 4959 if (env->used_map_cnt >= MAX_USED_MAPS) { 4960 fdput(f); 4961 return -E2BIG; 4962 } 4963 4964 /* hold the map. If the program is rejected by verifier, 4965 * the map will be released by release_maps() or it 4966 * will be used by the valid program until it's unloaded 4967 * and all maps are released in free_bpf_prog_info() 4968 */ 4969 map = bpf_map_inc(map, false); 4970 if (IS_ERR(map)) { 4971 fdput(f); 4972 return PTR_ERR(map); 4973 } 4974 env->used_maps[env->used_map_cnt++] = map; 4975 4976 fdput(f); 4977 next_insn: 4978 insn++; 4979 i++; 4980 continue; 4981 } 4982 4983 /* Basic sanity check before we invest more work here. */ 4984 if (!bpf_opcode_in_insntable(insn->code)) { 4985 verbose(env, "unknown opcode %02x\n", insn->code); 4986 return -EINVAL; 4987 } 4988 } 4989 4990 /* now all pseudo BPF_LD_IMM64 instructions load valid 4991 * 'struct bpf_map *' into a register instead of user map_fd. 4992 * These pointers will be used later by verifier to validate map access. 4993 */ 4994 return 0; 4995 } 4996 4997 /* drop refcnt of maps used by the rejected program */ 4998 static void release_maps(struct bpf_verifier_env *env) 4999 { 5000 int i; 5001 5002 for (i = 0; i < env->used_map_cnt; i++) 5003 bpf_map_put(env->used_maps[i]); 5004 } 5005 5006 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5007 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5008 { 5009 struct bpf_insn *insn = env->prog->insnsi; 5010 int insn_cnt = env->prog->len; 5011 int i; 5012 5013 for (i = 0; i < insn_cnt; i++, insn++) 5014 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5015 insn->src_reg = 0; 5016 } 5017 5018 /* single env->prog->insni[off] instruction was replaced with the range 5019 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5020 * [0, off) and [off, end) to new locations, so the patched range stays zero 5021 */ 5022 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5023 u32 off, u32 cnt) 5024 { 5025 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5026 int i; 5027 5028 if (cnt == 1) 5029 return 0; 5030 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 5031 if (!new_data) 5032 return -ENOMEM; 5033 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5034 memcpy(new_data + off + cnt - 1, old_data + off, 5035 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5036 for (i = off; i < off + cnt - 1; i++) 5037 new_data[i].seen = true; 5038 env->insn_aux_data = new_data; 5039 vfree(old_data); 5040 return 0; 5041 } 5042 5043 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5044 { 5045 int i; 5046 5047 if (len == 1) 5048 return; 5049 for (i = 0; i < env->subprog_cnt; i++) { 5050 if (env->subprog_starts[i] < off) 5051 continue; 5052 env->subprog_starts[i] += len - 1; 5053 } 5054 } 5055 5056 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5057 const struct bpf_insn *patch, u32 len) 5058 { 5059 struct bpf_prog *new_prog; 5060 5061 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5062 if (!new_prog) 5063 return NULL; 5064 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5065 return NULL; 5066 adjust_subprog_starts(env, off, len); 5067 return new_prog; 5068 } 5069 5070 /* The verifier does more data flow analysis than llvm and will not 5071 * explore branches that are dead at run time. Malicious programs can 5072 * have dead code too. Therefore replace all dead at-run-time code 5073 * with 'ja -1'. 5074 * 5075 * Just nops are not optimal, e.g. if they would sit at the end of the 5076 * program and through another bug we would manage to jump there, then 5077 * we'd execute beyond program memory otherwise. Returning exception 5078 * code also wouldn't work since we can have subprogs where the dead 5079 * code could be located. 5080 */ 5081 static void sanitize_dead_code(struct bpf_verifier_env *env) 5082 { 5083 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5084 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5085 struct bpf_insn *insn = env->prog->insnsi; 5086 const int insn_cnt = env->prog->len; 5087 int i; 5088 5089 for (i = 0; i < insn_cnt; i++) { 5090 if (aux_data[i].seen) 5091 continue; 5092 memcpy(insn + i, &trap, sizeof(trap)); 5093 } 5094 } 5095 5096 /* convert load instructions that access fields of 'struct __sk_buff' 5097 * into sequence of instructions that access fields of 'struct sk_buff' 5098 */ 5099 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5100 { 5101 const struct bpf_verifier_ops *ops = env->ops; 5102 int i, cnt, size, ctx_field_size, delta = 0; 5103 const int insn_cnt = env->prog->len; 5104 struct bpf_insn insn_buf[16], *insn; 5105 struct bpf_prog *new_prog; 5106 enum bpf_access_type type; 5107 bool is_narrower_load; 5108 u32 target_size; 5109 5110 if (ops->gen_prologue) { 5111 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5112 env->prog); 5113 if (cnt >= ARRAY_SIZE(insn_buf)) { 5114 verbose(env, "bpf verifier is misconfigured\n"); 5115 return -EINVAL; 5116 } else if (cnt) { 5117 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5118 if (!new_prog) 5119 return -ENOMEM; 5120 5121 env->prog = new_prog; 5122 delta += cnt - 1; 5123 } 5124 } 5125 5126 if (!ops->convert_ctx_access) 5127 return 0; 5128 5129 insn = env->prog->insnsi + delta; 5130 5131 for (i = 0; i < insn_cnt; i++, insn++) { 5132 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5133 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5134 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5135 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5136 type = BPF_READ; 5137 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5138 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5139 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5140 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5141 type = BPF_WRITE; 5142 else 5143 continue; 5144 5145 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5146 continue; 5147 5148 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5149 size = BPF_LDST_BYTES(insn); 5150 5151 /* If the read access is a narrower load of the field, 5152 * convert to a 4/8-byte load, to minimum program type specific 5153 * convert_ctx_access changes. If conversion is successful, 5154 * we will apply proper mask to the result. 5155 */ 5156 is_narrower_load = size < ctx_field_size; 5157 if (is_narrower_load) { 5158 u32 off = insn->off; 5159 u8 size_code; 5160 5161 if (type == BPF_WRITE) { 5162 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5163 return -EINVAL; 5164 } 5165 5166 size_code = BPF_H; 5167 if (ctx_field_size == 4) 5168 size_code = BPF_W; 5169 else if (ctx_field_size == 8) 5170 size_code = BPF_DW; 5171 5172 insn->off = off & ~(ctx_field_size - 1); 5173 insn->code = BPF_LDX | BPF_MEM | size_code; 5174 } 5175 5176 target_size = 0; 5177 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5178 &target_size); 5179 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5180 (ctx_field_size && !target_size)) { 5181 verbose(env, "bpf verifier is misconfigured\n"); 5182 return -EINVAL; 5183 } 5184 5185 if (is_narrower_load && size < target_size) { 5186 if (ctx_field_size <= 4) 5187 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5188 (1 << size * 8) - 1); 5189 else 5190 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5191 (1 << size * 8) - 1); 5192 } 5193 5194 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5195 if (!new_prog) 5196 return -ENOMEM; 5197 5198 delta += cnt - 1; 5199 5200 /* keep walking new program and skip insns we just inserted */ 5201 env->prog = new_prog; 5202 insn = new_prog->insnsi + i + delta; 5203 } 5204 5205 return 0; 5206 } 5207 5208 static int jit_subprogs(struct bpf_verifier_env *env) 5209 { 5210 struct bpf_prog *prog = env->prog, **func, *tmp; 5211 int i, j, subprog_start, subprog_end = 0, len, subprog; 5212 struct bpf_insn *insn; 5213 void *old_bpf_func; 5214 int err = -ENOMEM; 5215 5216 if (env->subprog_cnt == 0) 5217 return 0; 5218 5219 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5220 if (insn->code != (BPF_JMP | BPF_CALL) || 5221 insn->src_reg != BPF_PSEUDO_CALL) 5222 continue; 5223 subprog = find_subprog(env, i + insn->imm + 1); 5224 if (subprog < 0) { 5225 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5226 i + insn->imm + 1); 5227 return -EFAULT; 5228 } 5229 /* temporarily remember subprog id inside insn instead of 5230 * aux_data, since next loop will split up all insns into funcs 5231 */ 5232 insn->off = subprog + 1; 5233 /* remember original imm in case JIT fails and fallback 5234 * to interpreter will be needed 5235 */ 5236 env->insn_aux_data[i].call_imm = insn->imm; 5237 /* point imm to __bpf_call_base+1 from JITs point of view */ 5238 insn->imm = 1; 5239 } 5240 5241 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL); 5242 if (!func) 5243 return -ENOMEM; 5244 5245 for (i = 0; i <= env->subprog_cnt; i++) { 5246 subprog_start = subprog_end; 5247 if (env->subprog_cnt == i) 5248 subprog_end = prog->len; 5249 else 5250 subprog_end = env->subprog_starts[i]; 5251 5252 len = subprog_end - subprog_start; 5253 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5254 if (!func[i]) 5255 goto out_free; 5256 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5257 len * sizeof(struct bpf_insn)); 5258 func[i]->type = prog->type; 5259 func[i]->len = len; 5260 if (bpf_prog_calc_tag(func[i])) 5261 goto out_free; 5262 func[i]->is_func = 1; 5263 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5264 * Long term would need debug info to populate names 5265 */ 5266 func[i]->aux->name[0] = 'F'; 5267 func[i]->aux->stack_depth = env->subprog_stack_depth[i]; 5268 func[i]->jit_requested = 1; 5269 func[i] = bpf_int_jit_compile(func[i]); 5270 if (!func[i]->jited) { 5271 err = -ENOTSUPP; 5272 goto out_free; 5273 } 5274 cond_resched(); 5275 } 5276 /* at this point all bpf functions were successfully JITed 5277 * now populate all bpf_calls with correct addresses and 5278 * run last pass of JIT 5279 */ 5280 for (i = 0; i <= env->subprog_cnt; i++) { 5281 insn = func[i]->insnsi; 5282 for (j = 0; j < func[i]->len; j++, insn++) { 5283 if (insn->code != (BPF_JMP | BPF_CALL) || 5284 insn->src_reg != BPF_PSEUDO_CALL) 5285 continue; 5286 subprog = insn->off; 5287 insn->off = 0; 5288 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5289 func[subprog]->bpf_func - 5290 __bpf_call_base; 5291 } 5292 } 5293 for (i = 0; i <= env->subprog_cnt; i++) { 5294 old_bpf_func = func[i]->bpf_func; 5295 tmp = bpf_int_jit_compile(func[i]); 5296 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5297 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5298 err = -EFAULT; 5299 goto out_free; 5300 } 5301 cond_resched(); 5302 } 5303 5304 /* finally lock prog and jit images for all functions and 5305 * populate kallsysm 5306 */ 5307 for (i = 0; i <= env->subprog_cnt; i++) { 5308 bpf_prog_lock_ro(func[i]); 5309 bpf_prog_kallsyms_add(func[i]); 5310 } 5311 5312 /* Last step: make now unused interpreter insns from main 5313 * prog consistent for later dump requests, so they can 5314 * later look the same as if they were interpreted only. 5315 */ 5316 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5317 unsigned long addr; 5318 5319 if (insn->code != (BPF_JMP | BPF_CALL) || 5320 insn->src_reg != BPF_PSEUDO_CALL) 5321 continue; 5322 insn->off = env->insn_aux_data[i].call_imm; 5323 subprog = find_subprog(env, i + insn->off + 1); 5324 addr = (unsigned long)func[subprog + 1]->bpf_func; 5325 addr &= PAGE_MASK; 5326 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5327 addr - __bpf_call_base; 5328 } 5329 5330 prog->jited = 1; 5331 prog->bpf_func = func[0]->bpf_func; 5332 prog->aux->func = func; 5333 prog->aux->func_cnt = env->subprog_cnt + 1; 5334 return 0; 5335 out_free: 5336 for (i = 0; i <= env->subprog_cnt; i++) 5337 if (func[i]) 5338 bpf_jit_free(func[i]); 5339 kfree(func); 5340 /* cleanup main prog to be interpreted */ 5341 prog->jit_requested = 0; 5342 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5343 if (insn->code != (BPF_JMP | BPF_CALL) || 5344 insn->src_reg != BPF_PSEUDO_CALL) 5345 continue; 5346 insn->off = 0; 5347 insn->imm = env->insn_aux_data[i].call_imm; 5348 } 5349 return err; 5350 } 5351 5352 static int fixup_call_args(struct bpf_verifier_env *env) 5353 { 5354 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5355 struct bpf_prog *prog = env->prog; 5356 struct bpf_insn *insn = prog->insnsi; 5357 int i, depth; 5358 #endif 5359 int err; 5360 5361 err = 0; 5362 if (env->prog->jit_requested) { 5363 err = jit_subprogs(env); 5364 if (err == 0) 5365 return 0; 5366 } 5367 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5368 for (i = 0; i < prog->len; i++, insn++) { 5369 if (insn->code != (BPF_JMP | BPF_CALL) || 5370 insn->src_reg != BPF_PSEUDO_CALL) 5371 continue; 5372 depth = get_callee_stack_depth(env, insn, i); 5373 if (depth < 0) 5374 return depth; 5375 bpf_patch_call_args(insn, depth); 5376 } 5377 err = 0; 5378 #endif 5379 return err; 5380 } 5381 5382 /* fixup insn->imm field of bpf_call instructions 5383 * and inline eligible helpers as explicit sequence of BPF instructions 5384 * 5385 * this function is called after eBPF program passed verification 5386 */ 5387 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5388 { 5389 struct bpf_prog *prog = env->prog; 5390 struct bpf_insn *insn = prog->insnsi; 5391 const struct bpf_func_proto *fn; 5392 const int insn_cnt = prog->len; 5393 struct bpf_insn insn_buf[16]; 5394 struct bpf_prog *new_prog; 5395 struct bpf_map *map_ptr; 5396 int i, cnt, delta = 0; 5397 5398 for (i = 0; i < insn_cnt; i++, insn++) { 5399 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5400 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5401 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5402 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5403 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5404 struct bpf_insn mask_and_div[] = { 5405 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5406 /* Rx div 0 -> 0 */ 5407 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5408 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5409 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5410 *insn, 5411 }; 5412 struct bpf_insn mask_and_mod[] = { 5413 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5414 /* Rx mod 0 -> Rx */ 5415 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5416 *insn, 5417 }; 5418 struct bpf_insn *patchlet; 5419 5420 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5421 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5422 patchlet = mask_and_div + (is64 ? 1 : 0); 5423 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5424 } else { 5425 patchlet = mask_and_mod + (is64 ? 1 : 0); 5426 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5427 } 5428 5429 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5430 if (!new_prog) 5431 return -ENOMEM; 5432 5433 delta += cnt - 1; 5434 env->prog = prog = new_prog; 5435 insn = new_prog->insnsi + i + delta; 5436 continue; 5437 } 5438 5439 if (insn->code != (BPF_JMP | BPF_CALL)) 5440 continue; 5441 if (insn->src_reg == BPF_PSEUDO_CALL) 5442 continue; 5443 5444 if (insn->imm == BPF_FUNC_get_route_realm) 5445 prog->dst_needed = 1; 5446 if (insn->imm == BPF_FUNC_get_prandom_u32) 5447 bpf_user_rnd_init_once(); 5448 if (insn->imm == BPF_FUNC_override_return) 5449 prog->kprobe_override = 1; 5450 if (insn->imm == BPF_FUNC_tail_call) { 5451 /* If we tail call into other programs, we 5452 * cannot make any assumptions since they can 5453 * be replaced dynamically during runtime in 5454 * the program array. 5455 */ 5456 prog->cb_access = 1; 5457 env->prog->aux->stack_depth = MAX_BPF_STACK; 5458 5459 /* mark bpf_tail_call as different opcode to avoid 5460 * conditional branch in the interpeter for every normal 5461 * call and to prevent accidental JITing by JIT compiler 5462 * that doesn't support bpf_tail_call yet 5463 */ 5464 insn->imm = 0; 5465 insn->code = BPF_JMP | BPF_TAIL_CALL; 5466 5467 /* instead of changing every JIT dealing with tail_call 5468 * emit two extra insns: 5469 * if (index >= max_entries) goto out; 5470 * index &= array->index_mask; 5471 * to avoid out-of-bounds cpu speculation 5472 */ 5473 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5474 if (map_ptr == BPF_MAP_PTR_POISON) { 5475 verbose(env, "tail_call abusing map_ptr\n"); 5476 return -EINVAL; 5477 } 5478 if (!map_ptr->unpriv_array) 5479 continue; 5480 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5481 map_ptr->max_entries, 2); 5482 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5483 container_of(map_ptr, 5484 struct bpf_array, 5485 map)->index_mask); 5486 insn_buf[2] = *insn; 5487 cnt = 3; 5488 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5489 if (!new_prog) 5490 return -ENOMEM; 5491 5492 delta += cnt - 1; 5493 env->prog = prog = new_prog; 5494 insn = new_prog->insnsi + i + delta; 5495 continue; 5496 } 5497 5498 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5499 * handlers are currently limited to 64 bit only. 5500 */ 5501 if (prog->jit_requested && BITS_PER_LONG == 64 && 5502 insn->imm == BPF_FUNC_map_lookup_elem) { 5503 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5504 if (map_ptr == BPF_MAP_PTR_POISON || 5505 !map_ptr->ops->map_gen_lookup) 5506 goto patch_call_imm; 5507 5508 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 5509 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5510 verbose(env, "bpf verifier is misconfigured\n"); 5511 return -EINVAL; 5512 } 5513 5514 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 5515 cnt); 5516 if (!new_prog) 5517 return -ENOMEM; 5518 5519 delta += cnt - 1; 5520 5521 /* keep walking new program and skip insns we just inserted */ 5522 env->prog = prog = new_prog; 5523 insn = new_prog->insnsi + i + delta; 5524 continue; 5525 } 5526 5527 if (insn->imm == BPF_FUNC_redirect_map) { 5528 /* Note, we cannot use prog directly as imm as subsequent 5529 * rewrites would still change the prog pointer. The only 5530 * stable address we can use is aux, which also works with 5531 * prog clones during blinding. 5532 */ 5533 u64 addr = (unsigned long)prog->aux; 5534 struct bpf_insn r4_ld[] = { 5535 BPF_LD_IMM64(BPF_REG_4, addr), 5536 *insn, 5537 }; 5538 cnt = ARRAY_SIZE(r4_ld); 5539 5540 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 5541 if (!new_prog) 5542 return -ENOMEM; 5543 5544 delta += cnt - 1; 5545 env->prog = prog = new_prog; 5546 insn = new_prog->insnsi + i + delta; 5547 } 5548 patch_call_imm: 5549 fn = env->ops->get_func_proto(insn->imm); 5550 /* all functions that have prototype and verifier allowed 5551 * programs to call them, must be real in-kernel functions 5552 */ 5553 if (!fn->func) { 5554 verbose(env, 5555 "kernel subsystem misconfigured func %s#%d\n", 5556 func_id_name(insn->imm), insn->imm); 5557 return -EFAULT; 5558 } 5559 insn->imm = fn->func - __bpf_call_base; 5560 } 5561 5562 return 0; 5563 } 5564 5565 static void free_states(struct bpf_verifier_env *env) 5566 { 5567 struct bpf_verifier_state_list *sl, *sln; 5568 int i; 5569 5570 if (!env->explored_states) 5571 return; 5572 5573 for (i = 0; i < env->prog->len; i++) { 5574 sl = env->explored_states[i]; 5575 5576 if (sl) 5577 while (sl != STATE_LIST_MARK) { 5578 sln = sl->next; 5579 free_verifier_state(&sl->state, false); 5580 kfree(sl); 5581 sl = sln; 5582 } 5583 } 5584 5585 kfree(env->explored_states); 5586 } 5587 5588 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5589 { 5590 struct bpf_verifier_env *env; 5591 struct bpf_verifer_log *log; 5592 int ret = -EINVAL; 5593 5594 /* no program is valid */ 5595 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5596 return -EINVAL; 5597 5598 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5599 * allocate/free it every time bpf_check() is called 5600 */ 5601 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5602 if (!env) 5603 return -ENOMEM; 5604 log = &env->log; 5605 5606 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 5607 (*prog)->len); 5608 ret = -ENOMEM; 5609 if (!env->insn_aux_data) 5610 goto err_free_env; 5611 env->prog = *prog; 5612 env->ops = bpf_verifier_ops[env->prog->type]; 5613 5614 /* grab the mutex to protect few globals used by verifier */ 5615 mutex_lock(&bpf_verifier_lock); 5616 5617 if (attr->log_level || attr->log_buf || attr->log_size) { 5618 /* user requested verbose verifier output 5619 * and supplied buffer to store the verification trace 5620 */ 5621 log->level = attr->log_level; 5622 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5623 log->len_total = attr->log_size; 5624 5625 ret = -EINVAL; 5626 /* log attributes have to be sane */ 5627 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5628 !log->level || !log->ubuf) 5629 goto err_unlock; 5630 } 5631 5632 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5633 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5634 env->strict_alignment = true; 5635 5636 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5637 ret = bpf_prog_offload_verifier_prep(env); 5638 if (ret) 5639 goto err_unlock; 5640 } 5641 5642 ret = replace_map_fd_with_map_ptr(env); 5643 if (ret < 0) 5644 goto skip_full_check; 5645 5646 env->explored_states = kcalloc(env->prog->len, 5647 sizeof(struct bpf_verifier_state_list *), 5648 GFP_USER); 5649 ret = -ENOMEM; 5650 if (!env->explored_states) 5651 goto skip_full_check; 5652 5653 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5654 5655 ret = check_cfg(env); 5656 if (ret < 0) 5657 goto skip_full_check; 5658 5659 ret = do_check(env); 5660 if (env->cur_state) { 5661 free_verifier_state(env->cur_state, true); 5662 env->cur_state = NULL; 5663 } 5664 5665 skip_full_check: 5666 while (!pop_stack(env, NULL, NULL)); 5667 free_states(env); 5668 5669 if (ret == 0) 5670 sanitize_dead_code(env); 5671 5672 if (ret == 0) 5673 ret = check_max_stack_depth(env); 5674 5675 if (ret == 0) 5676 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5677 ret = convert_ctx_accesses(env); 5678 5679 if (ret == 0) 5680 ret = fixup_bpf_calls(env); 5681 5682 if (ret == 0) 5683 ret = fixup_call_args(env); 5684 5685 if (log->level && bpf_verifier_log_full(log)) 5686 ret = -ENOSPC; 5687 if (log->level && !log->ubuf) { 5688 ret = -EFAULT; 5689 goto err_release_maps; 5690 } 5691 5692 if (ret == 0 && env->used_map_cnt) { 5693 /* if program passed verifier, update used_maps in bpf_prog_info */ 5694 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5695 sizeof(env->used_maps[0]), 5696 GFP_KERNEL); 5697 5698 if (!env->prog->aux->used_maps) { 5699 ret = -ENOMEM; 5700 goto err_release_maps; 5701 } 5702 5703 memcpy(env->prog->aux->used_maps, env->used_maps, 5704 sizeof(env->used_maps[0]) * env->used_map_cnt); 5705 env->prog->aux->used_map_cnt = env->used_map_cnt; 5706 5707 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5708 * bpf_ld_imm64 instructions 5709 */ 5710 convert_pseudo_ld_imm64(env); 5711 } 5712 5713 err_release_maps: 5714 if (!env->prog->aux->used_maps) 5715 /* if we didn't copy map pointers into bpf_prog_info, release 5716 * them now. Otherwise free_bpf_prog_info() will release them. 5717 */ 5718 release_maps(env); 5719 *prog = env->prog; 5720 err_unlock: 5721 mutex_unlock(&bpf_verifier_lock); 5722 vfree(env->insn_aux_data); 5723 err_free_env: 5724 kfree(env); 5725 return ret; 5726 } 5727