1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #define BPF_LINK_TYPE(_id, _name) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 #undef BPF_LINK_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164 struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175 }; 176 177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_KEY_POISON (1ULL << 63) 181 #define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_ptr_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_key_state & BPF_MAP_KEY_POISON; 210 } 211 212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 213 { 214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 215 } 216 217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 220 } 221 222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 223 { 224 bool poisoned = bpf_map_key_poisoned(aux); 225 226 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 228 } 229 230 struct bpf_call_arg_meta { 231 struct bpf_map *map_ptr; 232 bool raw_mode; 233 bool pkt_access; 234 int regno; 235 int access_size; 236 int mem_size; 237 u64 msize_max_value; 238 int ref_obj_id; 239 int func_id; 240 u32 btf_id; 241 }; 242 243 struct btf *btf_vmlinux; 244 245 static DEFINE_MUTEX(bpf_verifier_lock); 246 247 static const struct bpf_line_info * 248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 249 { 250 const struct bpf_line_info *linfo; 251 const struct bpf_prog *prog; 252 u32 i, nr_linfo; 253 254 prog = env->prog; 255 nr_linfo = prog->aux->nr_linfo; 256 257 if (!nr_linfo || insn_off >= prog->len) 258 return NULL; 259 260 linfo = prog->aux->linfo; 261 for (i = 1; i < nr_linfo; i++) 262 if (insn_off < linfo[i].insn_off) 263 break; 264 265 return &linfo[i - 1]; 266 } 267 268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 269 va_list args) 270 { 271 unsigned int n; 272 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 274 275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 276 "verifier log line truncated - local buffer too short\n"); 277 278 n = min(log->len_total - log->len_used - 1, n); 279 log->kbuf[n] = '\0'; 280 281 if (log->level == BPF_LOG_KERNEL) { 282 pr_err("BPF:%s\n", log->kbuf); 283 return; 284 } 285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 286 log->len_used += n; 287 else 288 log->ubuf = NULL; 289 } 290 291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 292 { 293 char zero = 0; 294 295 if (!bpf_verifier_log_needed(log)) 296 return; 297 298 log->len_used = new_pos; 299 if (put_user(zero, log->ubuf + new_pos)) 300 log->ubuf = NULL; 301 } 302 303 /* log_level controls verbosity level of eBPF verifier. 304 * bpf_verifier_log_write() is used to dump the verification trace to the log, 305 * so the user can figure out what's wrong with the program 306 */ 307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 308 const char *fmt, ...) 309 { 310 va_list args; 311 312 if (!bpf_verifier_log_needed(&env->log)) 313 return; 314 315 va_start(args, fmt); 316 bpf_verifier_vlog(&env->log, fmt, args); 317 va_end(args); 318 } 319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 320 321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 322 { 323 struct bpf_verifier_env *env = private_data; 324 va_list args; 325 326 if (!bpf_verifier_log_needed(&env->log)) 327 return; 328 329 va_start(args, fmt); 330 bpf_verifier_vlog(&env->log, fmt, args); 331 va_end(args); 332 } 333 334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(log, fmt, args); 344 va_end(args); 345 } 346 347 static const char *ltrim(const char *s) 348 { 349 while (isspace(*s)) 350 s++; 351 352 return s; 353 } 354 355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 356 u32 insn_off, 357 const char *prefix_fmt, ...) 358 { 359 const struct bpf_line_info *linfo; 360 361 if (!bpf_verifier_log_needed(&env->log)) 362 return; 363 364 linfo = find_linfo(env, insn_off); 365 if (!linfo || linfo == env->prev_linfo) 366 return; 367 368 if (prefix_fmt) { 369 va_list args; 370 371 va_start(args, prefix_fmt); 372 bpf_verifier_vlog(&env->log, prefix_fmt, args); 373 va_end(args); 374 } 375 376 verbose(env, "%s\n", 377 ltrim(btf_name_by_offset(env->prog->aux->btf, 378 linfo->line_off))); 379 380 env->prev_linfo = linfo; 381 } 382 383 static bool type_is_pkt_pointer(enum bpf_reg_type type) 384 { 385 return type == PTR_TO_PACKET || 386 type == PTR_TO_PACKET_META; 387 } 388 389 static bool type_is_sk_pointer(enum bpf_reg_type type) 390 { 391 return type == PTR_TO_SOCKET || 392 type == PTR_TO_SOCK_COMMON || 393 type == PTR_TO_TCP_SOCK || 394 type == PTR_TO_XDP_SOCK; 395 } 396 397 static bool reg_type_not_null(enum bpf_reg_type type) 398 { 399 return type == PTR_TO_SOCKET || 400 type == PTR_TO_TCP_SOCK || 401 type == PTR_TO_MAP_VALUE || 402 type == PTR_TO_SOCK_COMMON; 403 } 404 405 static bool reg_type_may_be_null(enum bpf_reg_type type) 406 { 407 return type == PTR_TO_MAP_VALUE_OR_NULL || 408 type == PTR_TO_SOCKET_OR_NULL || 409 type == PTR_TO_SOCK_COMMON_OR_NULL || 410 type == PTR_TO_TCP_SOCK_OR_NULL || 411 type == PTR_TO_BTF_ID_OR_NULL || 412 type == PTR_TO_MEM_OR_NULL || 413 type == PTR_TO_RDONLY_BUF_OR_NULL || 414 type == PTR_TO_RDWR_BUF_OR_NULL; 415 } 416 417 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 418 { 419 return reg->type == PTR_TO_MAP_VALUE && 420 map_value_has_spin_lock(reg->map_ptr); 421 } 422 423 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 424 { 425 return type == PTR_TO_SOCKET || 426 type == PTR_TO_SOCKET_OR_NULL || 427 type == PTR_TO_TCP_SOCK || 428 type == PTR_TO_TCP_SOCK_OR_NULL || 429 type == PTR_TO_MEM || 430 type == PTR_TO_MEM_OR_NULL; 431 } 432 433 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 434 { 435 return type == ARG_PTR_TO_SOCK_COMMON; 436 } 437 438 /* Determine whether the function releases some resources allocated by another 439 * function call. The first reference type argument will be assumed to be 440 * released by release_reference(). 441 */ 442 static bool is_release_function(enum bpf_func_id func_id) 443 { 444 return func_id == BPF_FUNC_sk_release || 445 func_id == BPF_FUNC_ringbuf_submit || 446 func_id == BPF_FUNC_ringbuf_discard; 447 } 448 449 static bool may_be_acquire_function(enum bpf_func_id func_id) 450 { 451 return func_id == BPF_FUNC_sk_lookup_tcp || 452 func_id == BPF_FUNC_sk_lookup_udp || 453 func_id == BPF_FUNC_skc_lookup_tcp || 454 func_id == BPF_FUNC_map_lookup_elem || 455 func_id == BPF_FUNC_ringbuf_reserve; 456 } 457 458 static bool is_acquire_function(enum bpf_func_id func_id, 459 const struct bpf_map *map) 460 { 461 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 462 463 if (func_id == BPF_FUNC_sk_lookup_tcp || 464 func_id == BPF_FUNC_sk_lookup_udp || 465 func_id == BPF_FUNC_skc_lookup_tcp || 466 func_id == BPF_FUNC_ringbuf_reserve) 467 return true; 468 469 if (func_id == BPF_FUNC_map_lookup_elem && 470 (map_type == BPF_MAP_TYPE_SOCKMAP || 471 map_type == BPF_MAP_TYPE_SOCKHASH)) 472 return true; 473 474 return false; 475 } 476 477 static bool is_ptr_cast_function(enum bpf_func_id func_id) 478 { 479 return func_id == BPF_FUNC_tcp_sock || 480 func_id == BPF_FUNC_sk_fullsock; 481 } 482 483 /* string representation of 'enum bpf_reg_type' */ 484 static const char * const reg_type_str[] = { 485 [NOT_INIT] = "?", 486 [SCALAR_VALUE] = "inv", 487 [PTR_TO_CTX] = "ctx", 488 [CONST_PTR_TO_MAP] = "map_ptr", 489 [PTR_TO_MAP_VALUE] = "map_value", 490 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 491 [PTR_TO_STACK] = "fp", 492 [PTR_TO_PACKET] = "pkt", 493 [PTR_TO_PACKET_META] = "pkt_meta", 494 [PTR_TO_PACKET_END] = "pkt_end", 495 [PTR_TO_FLOW_KEYS] = "flow_keys", 496 [PTR_TO_SOCKET] = "sock", 497 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 498 [PTR_TO_SOCK_COMMON] = "sock_common", 499 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 500 [PTR_TO_TCP_SOCK] = "tcp_sock", 501 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 502 [PTR_TO_TP_BUFFER] = "tp_buffer", 503 [PTR_TO_XDP_SOCK] = "xdp_sock", 504 [PTR_TO_BTF_ID] = "ptr_", 505 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 506 [PTR_TO_MEM] = "mem", 507 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 508 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 509 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 510 [PTR_TO_RDWR_BUF] = "rdwr_buf", 511 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 512 }; 513 514 static char slot_type_char[] = { 515 [STACK_INVALID] = '?', 516 [STACK_SPILL] = 'r', 517 [STACK_MISC] = 'm', 518 [STACK_ZERO] = '0', 519 }; 520 521 static void print_liveness(struct bpf_verifier_env *env, 522 enum bpf_reg_liveness live) 523 { 524 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 525 verbose(env, "_"); 526 if (live & REG_LIVE_READ) 527 verbose(env, "r"); 528 if (live & REG_LIVE_WRITTEN) 529 verbose(env, "w"); 530 if (live & REG_LIVE_DONE) 531 verbose(env, "D"); 532 } 533 534 static struct bpf_func_state *func(struct bpf_verifier_env *env, 535 const struct bpf_reg_state *reg) 536 { 537 struct bpf_verifier_state *cur = env->cur_state; 538 539 return cur->frame[reg->frameno]; 540 } 541 542 const char *kernel_type_name(u32 id) 543 { 544 return btf_name_by_offset(btf_vmlinux, 545 btf_type_by_id(btf_vmlinux, id)->name_off); 546 } 547 548 static void print_verifier_state(struct bpf_verifier_env *env, 549 const struct bpf_func_state *state) 550 { 551 const struct bpf_reg_state *reg; 552 enum bpf_reg_type t; 553 int i; 554 555 if (state->frameno) 556 verbose(env, " frame%d:", state->frameno); 557 for (i = 0; i < MAX_BPF_REG; i++) { 558 reg = &state->regs[i]; 559 t = reg->type; 560 if (t == NOT_INIT) 561 continue; 562 verbose(env, " R%d", i); 563 print_liveness(env, reg->live); 564 verbose(env, "=%s", reg_type_str[t]); 565 if (t == SCALAR_VALUE && reg->precise) 566 verbose(env, "P"); 567 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 568 tnum_is_const(reg->var_off)) { 569 /* reg->off should be 0 for SCALAR_VALUE */ 570 verbose(env, "%lld", reg->var_off.value + reg->off); 571 } else { 572 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) 573 verbose(env, "%s", kernel_type_name(reg->btf_id)); 574 verbose(env, "(id=%d", reg->id); 575 if (reg_type_may_be_refcounted_or_null(t)) 576 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 577 if (t != SCALAR_VALUE) 578 verbose(env, ",off=%d", reg->off); 579 if (type_is_pkt_pointer(t)) 580 verbose(env, ",r=%d", reg->range); 581 else if (t == CONST_PTR_TO_MAP || 582 t == PTR_TO_MAP_VALUE || 583 t == PTR_TO_MAP_VALUE_OR_NULL) 584 verbose(env, ",ks=%d,vs=%d", 585 reg->map_ptr->key_size, 586 reg->map_ptr->value_size); 587 if (tnum_is_const(reg->var_off)) { 588 /* Typically an immediate SCALAR_VALUE, but 589 * could be a pointer whose offset is too big 590 * for reg->off 591 */ 592 verbose(env, ",imm=%llx", reg->var_off.value); 593 } else { 594 if (reg->smin_value != reg->umin_value && 595 reg->smin_value != S64_MIN) 596 verbose(env, ",smin_value=%lld", 597 (long long)reg->smin_value); 598 if (reg->smax_value != reg->umax_value && 599 reg->smax_value != S64_MAX) 600 verbose(env, ",smax_value=%lld", 601 (long long)reg->smax_value); 602 if (reg->umin_value != 0) 603 verbose(env, ",umin_value=%llu", 604 (unsigned long long)reg->umin_value); 605 if (reg->umax_value != U64_MAX) 606 verbose(env, ",umax_value=%llu", 607 (unsigned long long)reg->umax_value); 608 if (!tnum_is_unknown(reg->var_off)) { 609 char tn_buf[48]; 610 611 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 612 verbose(env, ",var_off=%s", tn_buf); 613 } 614 if (reg->s32_min_value != reg->smin_value && 615 reg->s32_min_value != S32_MIN) 616 verbose(env, ",s32_min_value=%d", 617 (int)(reg->s32_min_value)); 618 if (reg->s32_max_value != reg->smax_value && 619 reg->s32_max_value != S32_MAX) 620 verbose(env, ",s32_max_value=%d", 621 (int)(reg->s32_max_value)); 622 if (reg->u32_min_value != reg->umin_value && 623 reg->u32_min_value != U32_MIN) 624 verbose(env, ",u32_min_value=%d", 625 (int)(reg->u32_min_value)); 626 if (reg->u32_max_value != reg->umax_value && 627 reg->u32_max_value != U32_MAX) 628 verbose(env, ",u32_max_value=%d", 629 (int)(reg->u32_max_value)); 630 } 631 verbose(env, ")"); 632 } 633 } 634 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 635 char types_buf[BPF_REG_SIZE + 1]; 636 bool valid = false; 637 int j; 638 639 for (j = 0; j < BPF_REG_SIZE; j++) { 640 if (state->stack[i].slot_type[j] != STACK_INVALID) 641 valid = true; 642 types_buf[j] = slot_type_char[ 643 state->stack[i].slot_type[j]]; 644 } 645 types_buf[BPF_REG_SIZE] = 0; 646 if (!valid) 647 continue; 648 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 649 print_liveness(env, state->stack[i].spilled_ptr.live); 650 if (state->stack[i].slot_type[0] == STACK_SPILL) { 651 reg = &state->stack[i].spilled_ptr; 652 t = reg->type; 653 verbose(env, "=%s", reg_type_str[t]); 654 if (t == SCALAR_VALUE && reg->precise) 655 verbose(env, "P"); 656 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 657 verbose(env, "%lld", reg->var_off.value + reg->off); 658 } else { 659 verbose(env, "=%s", types_buf); 660 } 661 } 662 if (state->acquired_refs && state->refs[0].id) { 663 verbose(env, " refs=%d", state->refs[0].id); 664 for (i = 1; i < state->acquired_refs; i++) 665 if (state->refs[i].id) 666 verbose(env, ",%d", state->refs[i].id); 667 } 668 verbose(env, "\n"); 669 } 670 671 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 672 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 673 const struct bpf_func_state *src) \ 674 { \ 675 if (!src->FIELD) \ 676 return 0; \ 677 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 678 /* internal bug, make state invalid to reject the program */ \ 679 memset(dst, 0, sizeof(*dst)); \ 680 return -EFAULT; \ 681 } \ 682 memcpy(dst->FIELD, src->FIELD, \ 683 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 684 return 0; \ 685 } 686 /* copy_reference_state() */ 687 COPY_STATE_FN(reference, acquired_refs, refs, 1) 688 /* copy_stack_state() */ 689 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 690 #undef COPY_STATE_FN 691 692 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 693 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 694 bool copy_old) \ 695 { \ 696 u32 old_size = state->COUNT; \ 697 struct bpf_##NAME##_state *new_##FIELD; \ 698 int slot = size / SIZE; \ 699 \ 700 if (size <= old_size || !size) { \ 701 if (copy_old) \ 702 return 0; \ 703 state->COUNT = slot * SIZE; \ 704 if (!size && old_size) { \ 705 kfree(state->FIELD); \ 706 state->FIELD = NULL; \ 707 } \ 708 return 0; \ 709 } \ 710 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 711 GFP_KERNEL); \ 712 if (!new_##FIELD) \ 713 return -ENOMEM; \ 714 if (copy_old) { \ 715 if (state->FIELD) \ 716 memcpy(new_##FIELD, state->FIELD, \ 717 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 718 memset(new_##FIELD + old_size / SIZE, 0, \ 719 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 720 } \ 721 state->COUNT = slot * SIZE; \ 722 kfree(state->FIELD); \ 723 state->FIELD = new_##FIELD; \ 724 return 0; \ 725 } 726 /* realloc_reference_state() */ 727 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 728 /* realloc_stack_state() */ 729 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 730 #undef REALLOC_STATE_FN 731 732 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 733 * make it consume minimal amount of memory. check_stack_write() access from 734 * the program calls into realloc_func_state() to grow the stack size. 735 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 736 * which realloc_stack_state() copies over. It points to previous 737 * bpf_verifier_state which is never reallocated. 738 */ 739 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 740 int refs_size, bool copy_old) 741 { 742 int err = realloc_reference_state(state, refs_size, copy_old); 743 if (err) 744 return err; 745 return realloc_stack_state(state, stack_size, copy_old); 746 } 747 748 /* Acquire a pointer id from the env and update the state->refs to include 749 * this new pointer reference. 750 * On success, returns a valid pointer id to associate with the register 751 * On failure, returns a negative errno. 752 */ 753 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 754 { 755 struct bpf_func_state *state = cur_func(env); 756 int new_ofs = state->acquired_refs; 757 int id, err; 758 759 err = realloc_reference_state(state, state->acquired_refs + 1, true); 760 if (err) 761 return err; 762 id = ++env->id_gen; 763 state->refs[new_ofs].id = id; 764 state->refs[new_ofs].insn_idx = insn_idx; 765 766 return id; 767 } 768 769 /* release function corresponding to acquire_reference_state(). Idempotent. */ 770 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 771 { 772 int i, last_idx; 773 774 last_idx = state->acquired_refs - 1; 775 for (i = 0; i < state->acquired_refs; i++) { 776 if (state->refs[i].id == ptr_id) { 777 if (last_idx && i != last_idx) 778 memcpy(&state->refs[i], &state->refs[last_idx], 779 sizeof(*state->refs)); 780 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 781 state->acquired_refs--; 782 return 0; 783 } 784 } 785 return -EINVAL; 786 } 787 788 static int transfer_reference_state(struct bpf_func_state *dst, 789 struct bpf_func_state *src) 790 { 791 int err = realloc_reference_state(dst, src->acquired_refs, false); 792 if (err) 793 return err; 794 err = copy_reference_state(dst, src); 795 if (err) 796 return err; 797 return 0; 798 } 799 800 static void free_func_state(struct bpf_func_state *state) 801 { 802 if (!state) 803 return; 804 kfree(state->refs); 805 kfree(state->stack); 806 kfree(state); 807 } 808 809 static void clear_jmp_history(struct bpf_verifier_state *state) 810 { 811 kfree(state->jmp_history); 812 state->jmp_history = NULL; 813 state->jmp_history_cnt = 0; 814 } 815 816 static void free_verifier_state(struct bpf_verifier_state *state, 817 bool free_self) 818 { 819 int i; 820 821 for (i = 0; i <= state->curframe; i++) { 822 free_func_state(state->frame[i]); 823 state->frame[i] = NULL; 824 } 825 clear_jmp_history(state); 826 if (free_self) 827 kfree(state); 828 } 829 830 /* copy verifier state from src to dst growing dst stack space 831 * when necessary to accommodate larger src stack 832 */ 833 static int copy_func_state(struct bpf_func_state *dst, 834 const struct bpf_func_state *src) 835 { 836 int err; 837 838 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 839 false); 840 if (err) 841 return err; 842 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 843 err = copy_reference_state(dst, src); 844 if (err) 845 return err; 846 return copy_stack_state(dst, src); 847 } 848 849 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 850 const struct bpf_verifier_state *src) 851 { 852 struct bpf_func_state *dst; 853 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 854 int i, err; 855 856 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 857 kfree(dst_state->jmp_history); 858 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 859 if (!dst_state->jmp_history) 860 return -ENOMEM; 861 } 862 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 863 dst_state->jmp_history_cnt = src->jmp_history_cnt; 864 865 /* if dst has more stack frames then src frame, free them */ 866 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 867 free_func_state(dst_state->frame[i]); 868 dst_state->frame[i] = NULL; 869 } 870 dst_state->speculative = src->speculative; 871 dst_state->curframe = src->curframe; 872 dst_state->active_spin_lock = src->active_spin_lock; 873 dst_state->branches = src->branches; 874 dst_state->parent = src->parent; 875 dst_state->first_insn_idx = src->first_insn_idx; 876 dst_state->last_insn_idx = src->last_insn_idx; 877 for (i = 0; i <= src->curframe; i++) { 878 dst = dst_state->frame[i]; 879 if (!dst) { 880 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 881 if (!dst) 882 return -ENOMEM; 883 dst_state->frame[i] = dst; 884 } 885 err = copy_func_state(dst, src->frame[i]); 886 if (err) 887 return err; 888 } 889 return 0; 890 } 891 892 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 893 { 894 while (st) { 895 u32 br = --st->branches; 896 897 /* WARN_ON(br > 1) technically makes sense here, 898 * but see comment in push_stack(), hence: 899 */ 900 WARN_ONCE((int)br < 0, 901 "BUG update_branch_counts:branches_to_explore=%d\n", 902 br); 903 if (br) 904 break; 905 st = st->parent; 906 } 907 } 908 909 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 910 int *insn_idx, bool pop_log) 911 { 912 struct bpf_verifier_state *cur = env->cur_state; 913 struct bpf_verifier_stack_elem *elem, *head = env->head; 914 int err; 915 916 if (env->head == NULL) 917 return -ENOENT; 918 919 if (cur) { 920 err = copy_verifier_state(cur, &head->st); 921 if (err) 922 return err; 923 } 924 if (pop_log) 925 bpf_vlog_reset(&env->log, head->log_pos); 926 if (insn_idx) 927 *insn_idx = head->insn_idx; 928 if (prev_insn_idx) 929 *prev_insn_idx = head->prev_insn_idx; 930 elem = head->next; 931 free_verifier_state(&head->st, false); 932 kfree(head); 933 env->head = elem; 934 env->stack_size--; 935 return 0; 936 } 937 938 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 939 int insn_idx, int prev_insn_idx, 940 bool speculative) 941 { 942 struct bpf_verifier_state *cur = env->cur_state; 943 struct bpf_verifier_stack_elem *elem; 944 int err; 945 946 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 947 if (!elem) 948 goto err; 949 950 elem->insn_idx = insn_idx; 951 elem->prev_insn_idx = prev_insn_idx; 952 elem->next = env->head; 953 elem->log_pos = env->log.len_used; 954 env->head = elem; 955 env->stack_size++; 956 err = copy_verifier_state(&elem->st, cur); 957 if (err) 958 goto err; 959 elem->st.speculative |= speculative; 960 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 961 verbose(env, "The sequence of %d jumps is too complex.\n", 962 env->stack_size); 963 goto err; 964 } 965 if (elem->st.parent) { 966 ++elem->st.parent->branches; 967 /* WARN_ON(branches > 2) technically makes sense here, 968 * but 969 * 1. speculative states will bump 'branches' for non-branch 970 * instructions 971 * 2. is_state_visited() heuristics may decide not to create 972 * a new state for a sequence of branches and all such current 973 * and cloned states will be pointing to a single parent state 974 * which might have large 'branches' count. 975 */ 976 } 977 return &elem->st; 978 err: 979 free_verifier_state(env->cur_state, true); 980 env->cur_state = NULL; 981 /* pop all elements and return */ 982 while (!pop_stack(env, NULL, NULL, false)); 983 return NULL; 984 } 985 986 #define CALLER_SAVED_REGS 6 987 static const int caller_saved[CALLER_SAVED_REGS] = { 988 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 989 }; 990 991 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 992 struct bpf_reg_state *reg); 993 994 /* Mark the unknown part of a register (variable offset or scalar value) as 995 * known to have the value @imm. 996 */ 997 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 998 { 999 /* Clear id, off, and union(map_ptr, range) */ 1000 memset(((u8 *)reg) + sizeof(reg->type), 0, 1001 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1002 reg->var_off = tnum_const(imm); 1003 reg->smin_value = (s64)imm; 1004 reg->smax_value = (s64)imm; 1005 reg->umin_value = imm; 1006 reg->umax_value = imm; 1007 1008 reg->s32_min_value = (s32)imm; 1009 reg->s32_max_value = (s32)imm; 1010 reg->u32_min_value = (u32)imm; 1011 reg->u32_max_value = (u32)imm; 1012 } 1013 1014 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1015 { 1016 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1017 reg->s32_min_value = (s32)imm; 1018 reg->s32_max_value = (s32)imm; 1019 reg->u32_min_value = (u32)imm; 1020 reg->u32_max_value = (u32)imm; 1021 } 1022 1023 /* Mark the 'variable offset' part of a register as zero. This should be 1024 * used only on registers holding a pointer type. 1025 */ 1026 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1027 { 1028 __mark_reg_known(reg, 0); 1029 } 1030 1031 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1032 { 1033 __mark_reg_known(reg, 0); 1034 reg->type = SCALAR_VALUE; 1035 } 1036 1037 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1038 struct bpf_reg_state *regs, u32 regno) 1039 { 1040 if (WARN_ON(regno >= MAX_BPF_REG)) { 1041 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1042 /* Something bad happened, let's kill all regs */ 1043 for (regno = 0; regno < MAX_BPF_REG; regno++) 1044 __mark_reg_not_init(env, regs + regno); 1045 return; 1046 } 1047 __mark_reg_known_zero(regs + regno); 1048 } 1049 1050 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1051 { 1052 return type_is_pkt_pointer(reg->type); 1053 } 1054 1055 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1056 { 1057 return reg_is_pkt_pointer(reg) || 1058 reg->type == PTR_TO_PACKET_END; 1059 } 1060 1061 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1062 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1063 enum bpf_reg_type which) 1064 { 1065 /* The register can already have a range from prior markings. 1066 * This is fine as long as it hasn't been advanced from its 1067 * origin. 1068 */ 1069 return reg->type == which && 1070 reg->id == 0 && 1071 reg->off == 0 && 1072 tnum_equals_const(reg->var_off, 0); 1073 } 1074 1075 /* Reset the min/max bounds of a register */ 1076 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1077 { 1078 reg->smin_value = S64_MIN; 1079 reg->smax_value = S64_MAX; 1080 reg->umin_value = 0; 1081 reg->umax_value = U64_MAX; 1082 1083 reg->s32_min_value = S32_MIN; 1084 reg->s32_max_value = S32_MAX; 1085 reg->u32_min_value = 0; 1086 reg->u32_max_value = U32_MAX; 1087 } 1088 1089 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1090 { 1091 reg->smin_value = S64_MIN; 1092 reg->smax_value = S64_MAX; 1093 reg->umin_value = 0; 1094 reg->umax_value = U64_MAX; 1095 } 1096 1097 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1098 { 1099 reg->s32_min_value = S32_MIN; 1100 reg->s32_max_value = S32_MAX; 1101 reg->u32_min_value = 0; 1102 reg->u32_max_value = U32_MAX; 1103 } 1104 1105 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1106 { 1107 struct tnum var32_off = tnum_subreg(reg->var_off); 1108 1109 /* min signed is max(sign bit) | min(other bits) */ 1110 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1111 var32_off.value | (var32_off.mask & S32_MIN)); 1112 /* max signed is min(sign bit) | max(other bits) */ 1113 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1114 var32_off.value | (var32_off.mask & S32_MAX)); 1115 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1116 reg->u32_max_value = min(reg->u32_max_value, 1117 (u32)(var32_off.value | var32_off.mask)); 1118 } 1119 1120 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1121 { 1122 /* min signed is max(sign bit) | min(other bits) */ 1123 reg->smin_value = max_t(s64, reg->smin_value, 1124 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1125 /* max signed is min(sign bit) | max(other bits) */ 1126 reg->smax_value = min_t(s64, reg->smax_value, 1127 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1128 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1129 reg->umax_value = min(reg->umax_value, 1130 reg->var_off.value | reg->var_off.mask); 1131 } 1132 1133 static void __update_reg_bounds(struct bpf_reg_state *reg) 1134 { 1135 __update_reg32_bounds(reg); 1136 __update_reg64_bounds(reg); 1137 } 1138 1139 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1140 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1141 { 1142 /* Learn sign from signed bounds. 1143 * If we cannot cross the sign boundary, then signed and unsigned bounds 1144 * are the same, so combine. This works even in the negative case, e.g. 1145 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1146 */ 1147 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1148 reg->s32_min_value = reg->u32_min_value = 1149 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1150 reg->s32_max_value = reg->u32_max_value = 1151 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1152 return; 1153 } 1154 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1155 * boundary, so we must be careful. 1156 */ 1157 if ((s32)reg->u32_max_value >= 0) { 1158 /* Positive. We can't learn anything from the smin, but smax 1159 * is positive, hence safe. 1160 */ 1161 reg->s32_min_value = reg->u32_min_value; 1162 reg->s32_max_value = reg->u32_max_value = 1163 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1164 } else if ((s32)reg->u32_min_value < 0) { 1165 /* Negative. We can't learn anything from the smax, but smin 1166 * is negative, hence safe. 1167 */ 1168 reg->s32_min_value = reg->u32_min_value = 1169 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1170 reg->s32_max_value = reg->u32_max_value; 1171 } 1172 } 1173 1174 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1175 { 1176 /* Learn sign from signed bounds. 1177 * If we cannot cross the sign boundary, then signed and unsigned bounds 1178 * are the same, so combine. This works even in the negative case, e.g. 1179 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1180 */ 1181 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1182 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1183 reg->umin_value); 1184 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1185 reg->umax_value); 1186 return; 1187 } 1188 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1189 * boundary, so we must be careful. 1190 */ 1191 if ((s64)reg->umax_value >= 0) { 1192 /* Positive. We can't learn anything from the smin, but smax 1193 * is positive, hence safe. 1194 */ 1195 reg->smin_value = reg->umin_value; 1196 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1197 reg->umax_value); 1198 } else if ((s64)reg->umin_value < 0) { 1199 /* Negative. We can't learn anything from the smax, but smin 1200 * is negative, hence safe. 1201 */ 1202 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1203 reg->umin_value); 1204 reg->smax_value = reg->umax_value; 1205 } 1206 } 1207 1208 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1209 { 1210 __reg32_deduce_bounds(reg); 1211 __reg64_deduce_bounds(reg); 1212 } 1213 1214 /* Attempts to improve var_off based on unsigned min/max information */ 1215 static void __reg_bound_offset(struct bpf_reg_state *reg) 1216 { 1217 struct tnum var64_off = tnum_intersect(reg->var_off, 1218 tnum_range(reg->umin_value, 1219 reg->umax_value)); 1220 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1221 tnum_range(reg->u32_min_value, 1222 reg->u32_max_value)); 1223 1224 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1225 } 1226 1227 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1228 { 1229 reg->umin_value = reg->u32_min_value; 1230 reg->umax_value = reg->u32_max_value; 1231 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1232 * but must be positive otherwise set to worse case bounds 1233 * and refine later from tnum. 1234 */ 1235 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1236 reg->smax_value = reg->s32_max_value; 1237 else 1238 reg->smax_value = U32_MAX; 1239 if (reg->s32_min_value >= 0) 1240 reg->smin_value = reg->s32_min_value; 1241 else 1242 reg->smin_value = 0; 1243 } 1244 1245 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1246 { 1247 /* special case when 64-bit register has upper 32-bit register 1248 * zeroed. Typically happens after zext or <<32, >>32 sequence 1249 * allowing us to use 32-bit bounds directly, 1250 */ 1251 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1252 __reg_assign_32_into_64(reg); 1253 } else { 1254 /* Otherwise the best we can do is push lower 32bit known and 1255 * unknown bits into register (var_off set from jmp logic) 1256 * then learn as much as possible from the 64-bit tnum 1257 * known and unknown bits. The previous smin/smax bounds are 1258 * invalid here because of jmp32 compare so mark them unknown 1259 * so they do not impact tnum bounds calculation. 1260 */ 1261 __mark_reg64_unbounded(reg); 1262 __update_reg_bounds(reg); 1263 } 1264 1265 /* Intersecting with the old var_off might have improved our bounds 1266 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1267 * then new var_off is (0; 0x7f...fc) which improves our umax. 1268 */ 1269 __reg_deduce_bounds(reg); 1270 __reg_bound_offset(reg); 1271 __update_reg_bounds(reg); 1272 } 1273 1274 static bool __reg64_bound_s32(s64 a) 1275 { 1276 if (a > S32_MIN && a < S32_MAX) 1277 return true; 1278 return false; 1279 } 1280 1281 static bool __reg64_bound_u32(u64 a) 1282 { 1283 if (a > U32_MIN && a < U32_MAX) 1284 return true; 1285 return false; 1286 } 1287 1288 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1289 { 1290 __mark_reg32_unbounded(reg); 1291 1292 if (__reg64_bound_s32(reg->smin_value)) 1293 reg->s32_min_value = (s32)reg->smin_value; 1294 if (__reg64_bound_s32(reg->smax_value)) 1295 reg->s32_max_value = (s32)reg->smax_value; 1296 if (__reg64_bound_u32(reg->umin_value)) 1297 reg->u32_min_value = (u32)reg->umin_value; 1298 if (__reg64_bound_u32(reg->umax_value)) 1299 reg->u32_max_value = (u32)reg->umax_value; 1300 1301 /* Intersecting with the old var_off might have improved our bounds 1302 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1303 * then new var_off is (0; 0x7f...fc) which improves our umax. 1304 */ 1305 __reg_deduce_bounds(reg); 1306 __reg_bound_offset(reg); 1307 __update_reg_bounds(reg); 1308 } 1309 1310 /* Mark a register as having a completely unknown (scalar) value. */ 1311 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1312 struct bpf_reg_state *reg) 1313 { 1314 /* 1315 * Clear type, id, off, and union(map_ptr, range) and 1316 * padding between 'type' and union 1317 */ 1318 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1319 reg->type = SCALAR_VALUE; 1320 reg->var_off = tnum_unknown; 1321 reg->frameno = 0; 1322 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1323 __mark_reg_unbounded(reg); 1324 } 1325 1326 static void mark_reg_unknown(struct bpf_verifier_env *env, 1327 struct bpf_reg_state *regs, u32 regno) 1328 { 1329 if (WARN_ON(regno >= MAX_BPF_REG)) { 1330 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1331 /* Something bad happened, let's kill all regs except FP */ 1332 for (regno = 0; regno < BPF_REG_FP; regno++) 1333 __mark_reg_not_init(env, regs + regno); 1334 return; 1335 } 1336 __mark_reg_unknown(env, regs + regno); 1337 } 1338 1339 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1340 struct bpf_reg_state *reg) 1341 { 1342 __mark_reg_unknown(env, reg); 1343 reg->type = NOT_INIT; 1344 } 1345 1346 static void mark_reg_not_init(struct bpf_verifier_env *env, 1347 struct bpf_reg_state *regs, u32 regno) 1348 { 1349 if (WARN_ON(regno >= MAX_BPF_REG)) { 1350 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1351 /* Something bad happened, let's kill all regs except FP */ 1352 for (regno = 0; regno < BPF_REG_FP; regno++) 1353 __mark_reg_not_init(env, regs + regno); 1354 return; 1355 } 1356 __mark_reg_not_init(env, regs + regno); 1357 } 1358 1359 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1360 struct bpf_reg_state *regs, u32 regno, 1361 enum bpf_reg_type reg_type, u32 btf_id) 1362 { 1363 if (reg_type == SCALAR_VALUE) { 1364 mark_reg_unknown(env, regs, regno); 1365 return; 1366 } 1367 mark_reg_known_zero(env, regs, regno); 1368 regs[regno].type = PTR_TO_BTF_ID; 1369 regs[regno].btf_id = btf_id; 1370 } 1371 1372 #define DEF_NOT_SUBREG (0) 1373 static void init_reg_state(struct bpf_verifier_env *env, 1374 struct bpf_func_state *state) 1375 { 1376 struct bpf_reg_state *regs = state->regs; 1377 int i; 1378 1379 for (i = 0; i < MAX_BPF_REG; i++) { 1380 mark_reg_not_init(env, regs, i); 1381 regs[i].live = REG_LIVE_NONE; 1382 regs[i].parent = NULL; 1383 regs[i].subreg_def = DEF_NOT_SUBREG; 1384 } 1385 1386 /* frame pointer */ 1387 regs[BPF_REG_FP].type = PTR_TO_STACK; 1388 mark_reg_known_zero(env, regs, BPF_REG_FP); 1389 regs[BPF_REG_FP].frameno = state->frameno; 1390 } 1391 1392 #define BPF_MAIN_FUNC (-1) 1393 static void init_func_state(struct bpf_verifier_env *env, 1394 struct bpf_func_state *state, 1395 int callsite, int frameno, int subprogno) 1396 { 1397 state->callsite = callsite; 1398 state->frameno = frameno; 1399 state->subprogno = subprogno; 1400 init_reg_state(env, state); 1401 } 1402 1403 enum reg_arg_type { 1404 SRC_OP, /* register is used as source operand */ 1405 DST_OP, /* register is used as destination operand */ 1406 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1407 }; 1408 1409 static int cmp_subprogs(const void *a, const void *b) 1410 { 1411 return ((struct bpf_subprog_info *)a)->start - 1412 ((struct bpf_subprog_info *)b)->start; 1413 } 1414 1415 static int find_subprog(struct bpf_verifier_env *env, int off) 1416 { 1417 struct bpf_subprog_info *p; 1418 1419 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1420 sizeof(env->subprog_info[0]), cmp_subprogs); 1421 if (!p) 1422 return -ENOENT; 1423 return p - env->subprog_info; 1424 1425 } 1426 1427 static int add_subprog(struct bpf_verifier_env *env, int off) 1428 { 1429 int insn_cnt = env->prog->len; 1430 int ret; 1431 1432 if (off >= insn_cnt || off < 0) { 1433 verbose(env, "call to invalid destination\n"); 1434 return -EINVAL; 1435 } 1436 ret = find_subprog(env, off); 1437 if (ret >= 0) 1438 return 0; 1439 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1440 verbose(env, "too many subprograms\n"); 1441 return -E2BIG; 1442 } 1443 env->subprog_info[env->subprog_cnt++].start = off; 1444 sort(env->subprog_info, env->subprog_cnt, 1445 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1446 return 0; 1447 } 1448 1449 static int check_subprogs(struct bpf_verifier_env *env) 1450 { 1451 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1452 struct bpf_subprog_info *subprog = env->subprog_info; 1453 struct bpf_insn *insn = env->prog->insnsi; 1454 int insn_cnt = env->prog->len; 1455 1456 /* Add entry function. */ 1457 ret = add_subprog(env, 0); 1458 if (ret < 0) 1459 return ret; 1460 1461 /* determine subprog starts. The end is one before the next starts */ 1462 for (i = 0; i < insn_cnt; i++) { 1463 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1464 continue; 1465 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1466 continue; 1467 if (!env->bpf_capable) { 1468 verbose(env, 1469 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1470 return -EPERM; 1471 } 1472 ret = add_subprog(env, i + insn[i].imm + 1); 1473 if (ret < 0) 1474 return ret; 1475 } 1476 1477 /* Add a fake 'exit' subprog which could simplify subprog iteration 1478 * logic. 'subprog_cnt' should not be increased. 1479 */ 1480 subprog[env->subprog_cnt].start = insn_cnt; 1481 1482 if (env->log.level & BPF_LOG_LEVEL2) 1483 for (i = 0; i < env->subprog_cnt; i++) 1484 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1485 1486 /* now check that all jumps are within the same subprog */ 1487 subprog_start = subprog[cur_subprog].start; 1488 subprog_end = subprog[cur_subprog + 1].start; 1489 for (i = 0; i < insn_cnt; i++) { 1490 u8 code = insn[i].code; 1491 1492 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1493 goto next; 1494 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1495 goto next; 1496 off = i + insn[i].off + 1; 1497 if (off < subprog_start || off >= subprog_end) { 1498 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1499 return -EINVAL; 1500 } 1501 next: 1502 if (i == subprog_end - 1) { 1503 /* to avoid fall-through from one subprog into another 1504 * the last insn of the subprog should be either exit 1505 * or unconditional jump back 1506 */ 1507 if (code != (BPF_JMP | BPF_EXIT) && 1508 code != (BPF_JMP | BPF_JA)) { 1509 verbose(env, "last insn is not an exit or jmp\n"); 1510 return -EINVAL; 1511 } 1512 subprog_start = subprog_end; 1513 cur_subprog++; 1514 if (cur_subprog < env->subprog_cnt) 1515 subprog_end = subprog[cur_subprog + 1].start; 1516 } 1517 } 1518 return 0; 1519 } 1520 1521 /* Parentage chain of this register (or stack slot) should take care of all 1522 * issues like callee-saved registers, stack slot allocation time, etc. 1523 */ 1524 static int mark_reg_read(struct bpf_verifier_env *env, 1525 const struct bpf_reg_state *state, 1526 struct bpf_reg_state *parent, u8 flag) 1527 { 1528 bool writes = parent == state->parent; /* Observe write marks */ 1529 int cnt = 0; 1530 1531 while (parent) { 1532 /* if read wasn't screened by an earlier write ... */ 1533 if (writes && state->live & REG_LIVE_WRITTEN) 1534 break; 1535 if (parent->live & REG_LIVE_DONE) { 1536 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1537 reg_type_str[parent->type], 1538 parent->var_off.value, parent->off); 1539 return -EFAULT; 1540 } 1541 /* The first condition is more likely to be true than the 1542 * second, checked it first. 1543 */ 1544 if ((parent->live & REG_LIVE_READ) == flag || 1545 parent->live & REG_LIVE_READ64) 1546 /* The parentage chain never changes and 1547 * this parent was already marked as LIVE_READ. 1548 * There is no need to keep walking the chain again and 1549 * keep re-marking all parents as LIVE_READ. 1550 * This case happens when the same register is read 1551 * multiple times without writes into it in-between. 1552 * Also, if parent has the stronger REG_LIVE_READ64 set, 1553 * then no need to set the weak REG_LIVE_READ32. 1554 */ 1555 break; 1556 /* ... then we depend on parent's value */ 1557 parent->live |= flag; 1558 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1559 if (flag == REG_LIVE_READ64) 1560 parent->live &= ~REG_LIVE_READ32; 1561 state = parent; 1562 parent = state->parent; 1563 writes = true; 1564 cnt++; 1565 } 1566 1567 if (env->longest_mark_read_walk < cnt) 1568 env->longest_mark_read_walk = cnt; 1569 return 0; 1570 } 1571 1572 /* This function is supposed to be used by the following 32-bit optimization 1573 * code only. It returns TRUE if the source or destination register operates 1574 * on 64-bit, otherwise return FALSE. 1575 */ 1576 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1577 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1578 { 1579 u8 code, class, op; 1580 1581 code = insn->code; 1582 class = BPF_CLASS(code); 1583 op = BPF_OP(code); 1584 if (class == BPF_JMP) { 1585 /* BPF_EXIT for "main" will reach here. Return TRUE 1586 * conservatively. 1587 */ 1588 if (op == BPF_EXIT) 1589 return true; 1590 if (op == BPF_CALL) { 1591 /* BPF to BPF call will reach here because of marking 1592 * caller saved clobber with DST_OP_NO_MARK for which we 1593 * don't care the register def because they are anyway 1594 * marked as NOT_INIT already. 1595 */ 1596 if (insn->src_reg == BPF_PSEUDO_CALL) 1597 return false; 1598 /* Helper call will reach here because of arg type 1599 * check, conservatively return TRUE. 1600 */ 1601 if (t == SRC_OP) 1602 return true; 1603 1604 return false; 1605 } 1606 } 1607 1608 if (class == BPF_ALU64 || class == BPF_JMP || 1609 /* BPF_END always use BPF_ALU class. */ 1610 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1611 return true; 1612 1613 if (class == BPF_ALU || class == BPF_JMP32) 1614 return false; 1615 1616 if (class == BPF_LDX) { 1617 if (t != SRC_OP) 1618 return BPF_SIZE(code) == BPF_DW; 1619 /* LDX source must be ptr. */ 1620 return true; 1621 } 1622 1623 if (class == BPF_STX) { 1624 if (reg->type != SCALAR_VALUE) 1625 return true; 1626 return BPF_SIZE(code) == BPF_DW; 1627 } 1628 1629 if (class == BPF_LD) { 1630 u8 mode = BPF_MODE(code); 1631 1632 /* LD_IMM64 */ 1633 if (mode == BPF_IMM) 1634 return true; 1635 1636 /* Both LD_IND and LD_ABS return 32-bit data. */ 1637 if (t != SRC_OP) 1638 return false; 1639 1640 /* Implicit ctx ptr. */ 1641 if (regno == BPF_REG_6) 1642 return true; 1643 1644 /* Explicit source could be any width. */ 1645 return true; 1646 } 1647 1648 if (class == BPF_ST) 1649 /* The only source register for BPF_ST is a ptr. */ 1650 return true; 1651 1652 /* Conservatively return true at default. */ 1653 return true; 1654 } 1655 1656 /* Return TRUE if INSN doesn't have explicit value define. */ 1657 static bool insn_no_def(struct bpf_insn *insn) 1658 { 1659 u8 class = BPF_CLASS(insn->code); 1660 1661 return (class == BPF_JMP || class == BPF_JMP32 || 1662 class == BPF_STX || class == BPF_ST); 1663 } 1664 1665 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1666 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1667 { 1668 if (insn_no_def(insn)) 1669 return false; 1670 1671 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1672 } 1673 1674 static void mark_insn_zext(struct bpf_verifier_env *env, 1675 struct bpf_reg_state *reg) 1676 { 1677 s32 def_idx = reg->subreg_def; 1678 1679 if (def_idx == DEF_NOT_SUBREG) 1680 return; 1681 1682 env->insn_aux_data[def_idx - 1].zext_dst = true; 1683 /* The dst will be zero extended, so won't be sub-register anymore. */ 1684 reg->subreg_def = DEF_NOT_SUBREG; 1685 } 1686 1687 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1688 enum reg_arg_type t) 1689 { 1690 struct bpf_verifier_state *vstate = env->cur_state; 1691 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1692 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1693 struct bpf_reg_state *reg, *regs = state->regs; 1694 bool rw64; 1695 1696 if (regno >= MAX_BPF_REG) { 1697 verbose(env, "R%d is invalid\n", regno); 1698 return -EINVAL; 1699 } 1700 1701 reg = ®s[regno]; 1702 rw64 = is_reg64(env, insn, regno, reg, t); 1703 if (t == SRC_OP) { 1704 /* check whether register used as source operand can be read */ 1705 if (reg->type == NOT_INIT) { 1706 verbose(env, "R%d !read_ok\n", regno); 1707 return -EACCES; 1708 } 1709 /* We don't need to worry about FP liveness because it's read-only */ 1710 if (regno == BPF_REG_FP) 1711 return 0; 1712 1713 if (rw64) 1714 mark_insn_zext(env, reg); 1715 1716 return mark_reg_read(env, reg, reg->parent, 1717 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1718 } else { 1719 /* check whether register used as dest operand can be written to */ 1720 if (regno == BPF_REG_FP) { 1721 verbose(env, "frame pointer is read only\n"); 1722 return -EACCES; 1723 } 1724 reg->live |= REG_LIVE_WRITTEN; 1725 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1726 if (t == DST_OP) 1727 mark_reg_unknown(env, regs, regno); 1728 } 1729 return 0; 1730 } 1731 1732 /* for any branch, call, exit record the history of jmps in the given state */ 1733 static int push_jmp_history(struct bpf_verifier_env *env, 1734 struct bpf_verifier_state *cur) 1735 { 1736 u32 cnt = cur->jmp_history_cnt; 1737 struct bpf_idx_pair *p; 1738 1739 cnt++; 1740 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1741 if (!p) 1742 return -ENOMEM; 1743 p[cnt - 1].idx = env->insn_idx; 1744 p[cnt - 1].prev_idx = env->prev_insn_idx; 1745 cur->jmp_history = p; 1746 cur->jmp_history_cnt = cnt; 1747 return 0; 1748 } 1749 1750 /* Backtrack one insn at a time. If idx is not at the top of recorded 1751 * history then previous instruction came from straight line execution. 1752 */ 1753 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1754 u32 *history) 1755 { 1756 u32 cnt = *history; 1757 1758 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1759 i = st->jmp_history[cnt - 1].prev_idx; 1760 (*history)--; 1761 } else { 1762 i--; 1763 } 1764 return i; 1765 } 1766 1767 /* For given verifier state backtrack_insn() is called from the last insn to 1768 * the first insn. Its purpose is to compute a bitmask of registers and 1769 * stack slots that needs precision in the parent verifier state. 1770 */ 1771 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1772 u32 *reg_mask, u64 *stack_mask) 1773 { 1774 const struct bpf_insn_cbs cbs = { 1775 .cb_print = verbose, 1776 .private_data = env, 1777 }; 1778 struct bpf_insn *insn = env->prog->insnsi + idx; 1779 u8 class = BPF_CLASS(insn->code); 1780 u8 opcode = BPF_OP(insn->code); 1781 u8 mode = BPF_MODE(insn->code); 1782 u32 dreg = 1u << insn->dst_reg; 1783 u32 sreg = 1u << insn->src_reg; 1784 u32 spi; 1785 1786 if (insn->code == 0) 1787 return 0; 1788 if (env->log.level & BPF_LOG_LEVEL) { 1789 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1790 verbose(env, "%d: ", idx); 1791 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1792 } 1793 1794 if (class == BPF_ALU || class == BPF_ALU64) { 1795 if (!(*reg_mask & dreg)) 1796 return 0; 1797 if (opcode == BPF_MOV) { 1798 if (BPF_SRC(insn->code) == BPF_X) { 1799 /* dreg = sreg 1800 * dreg needs precision after this insn 1801 * sreg needs precision before this insn 1802 */ 1803 *reg_mask &= ~dreg; 1804 *reg_mask |= sreg; 1805 } else { 1806 /* dreg = K 1807 * dreg needs precision after this insn. 1808 * Corresponding register is already marked 1809 * as precise=true in this verifier state. 1810 * No further markings in parent are necessary 1811 */ 1812 *reg_mask &= ~dreg; 1813 } 1814 } else { 1815 if (BPF_SRC(insn->code) == BPF_X) { 1816 /* dreg += sreg 1817 * both dreg and sreg need precision 1818 * before this insn 1819 */ 1820 *reg_mask |= sreg; 1821 } /* else dreg += K 1822 * dreg still needs precision before this insn 1823 */ 1824 } 1825 } else if (class == BPF_LDX) { 1826 if (!(*reg_mask & dreg)) 1827 return 0; 1828 *reg_mask &= ~dreg; 1829 1830 /* scalars can only be spilled into stack w/o losing precision. 1831 * Load from any other memory can be zero extended. 1832 * The desire to keep that precision is already indicated 1833 * by 'precise' mark in corresponding register of this state. 1834 * No further tracking necessary. 1835 */ 1836 if (insn->src_reg != BPF_REG_FP) 1837 return 0; 1838 if (BPF_SIZE(insn->code) != BPF_DW) 1839 return 0; 1840 1841 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1842 * that [fp - off] slot contains scalar that needs to be 1843 * tracked with precision 1844 */ 1845 spi = (-insn->off - 1) / BPF_REG_SIZE; 1846 if (spi >= 64) { 1847 verbose(env, "BUG spi %d\n", spi); 1848 WARN_ONCE(1, "verifier backtracking bug"); 1849 return -EFAULT; 1850 } 1851 *stack_mask |= 1ull << spi; 1852 } else if (class == BPF_STX || class == BPF_ST) { 1853 if (*reg_mask & dreg) 1854 /* stx & st shouldn't be using _scalar_ dst_reg 1855 * to access memory. It means backtracking 1856 * encountered a case of pointer subtraction. 1857 */ 1858 return -ENOTSUPP; 1859 /* scalars can only be spilled into stack */ 1860 if (insn->dst_reg != BPF_REG_FP) 1861 return 0; 1862 if (BPF_SIZE(insn->code) != BPF_DW) 1863 return 0; 1864 spi = (-insn->off - 1) / BPF_REG_SIZE; 1865 if (spi >= 64) { 1866 verbose(env, "BUG spi %d\n", spi); 1867 WARN_ONCE(1, "verifier backtracking bug"); 1868 return -EFAULT; 1869 } 1870 if (!(*stack_mask & (1ull << spi))) 1871 return 0; 1872 *stack_mask &= ~(1ull << spi); 1873 if (class == BPF_STX) 1874 *reg_mask |= sreg; 1875 } else if (class == BPF_JMP || class == BPF_JMP32) { 1876 if (opcode == BPF_CALL) { 1877 if (insn->src_reg == BPF_PSEUDO_CALL) 1878 return -ENOTSUPP; 1879 /* regular helper call sets R0 */ 1880 *reg_mask &= ~1; 1881 if (*reg_mask & 0x3f) { 1882 /* if backtracing was looking for registers R1-R5 1883 * they should have been found already. 1884 */ 1885 verbose(env, "BUG regs %x\n", *reg_mask); 1886 WARN_ONCE(1, "verifier backtracking bug"); 1887 return -EFAULT; 1888 } 1889 } else if (opcode == BPF_EXIT) { 1890 return -ENOTSUPP; 1891 } 1892 } else if (class == BPF_LD) { 1893 if (!(*reg_mask & dreg)) 1894 return 0; 1895 *reg_mask &= ~dreg; 1896 /* It's ld_imm64 or ld_abs or ld_ind. 1897 * For ld_imm64 no further tracking of precision 1898 * into parent is necessary 1899 */ 1900 if (mode == BPF_IND || mode == BPF_ABS) 1901 /* to be analyzed */ 1902 return -ENOTSUPP; 1903 } 1904 return 0; 1905 } 1906 1907 /* the scalar precision tracking algorithm: 1908 * . at the start all registers have precise=false. 1909 * . scalar ranges are tracked as normal through alu and jmp insns. 1910 * . once precise value of the scalar register is used in: 1911 * . ptr + scalar alu 1912 * . if (scalar cond K|scalar) 1913 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1914 * backtrack through the verifier states and mark all registers and 1915 * stack slots with spilled constants that these scalar regisers 1916 * should be precise. 1917 * . during state pruning two registers (or spilled stack slots) 1918 * are equivalent if both are not precise. 1919 * 1920 * Note the verifier cannot simply walk register parentage chain, 1921 * since many different registers and stack slots could have been 1922 * used to compute single precise scalar. 1923 * 1924 * The approach of starting with precise=true for all registers and then 1925 * backtrack to mark a register as not precise when the verifier detects 1926 * that program doesn't care about specific value (e.g., when helper 1927 * takes register as ARG_ANYTHING parameter) is not safe. 1928 * 1929 * It's ok to walk single parentage chain of the verifier states. 1930 * It's possible that this backtracking will go all the way till 1st insn. 1931 * All other branches will be explored for needing precision later. 1932 * 1933 * The backtracking needs to deal with cases like: 1934 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1935 * r9 -= r8 1936 * r5 = r9 1937 * if r5 > 0x79f goto pc+7 1938 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1939 * r5 += 1 1940 * ... 1941 * call bpf_perf_event_output#25 1942 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1943 * 1944 * and this case: 1945 * r6 = 1 1946 * call foo // uses callee's r6 inside to compute r0 1947 * r0 += r6 1948 * if r0 == 0 goto 1949 * 1950 * to track above reg_mask/stack_mask needs to be independent for each frame. 1951 * 1952 * Also if parent's curframe > frame where backtracking started, 1953 * the verifier need to mark registers in both frames, otherwise callees 1954 * may incorrectly prune callers. This is similar to 1955 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1956 * 1957 * For now backtracking falls back into conservative marking. 1958 */ 1959 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1960 struct bpf_verifier_state *st) 1961 { 1962 struct bpf_func_state *func; 1963 struct bpf_reg_state *reg; 1964 int i, j; 1965 1966 /* big hammer: mark all scalars precise in this path. 1967 * pop_stack may still get !precise scalars. 1968 */ 1969 for (; st; st = st->parent) 1970 for (i = 0; i <= st->curframe; i++) { 1971 func = st->frame[i]; 1972 for (j = 0; j < BPF_REG_FP; j++) { 1973 reg = &func->regs[j]; 1974 if (reg->type != SCALAR_VALUE) 1975 continue; 1976 reg->precise = true; 1977 } 1978 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1979 if (func->stack[j].slot_type[0] != STACK_SPILL) 1980 continue; 1981 reg = &func->stack[j].spilled_ptr; 1982 if (reg->type != SCALAR_VALUE) 1983 continue; 1984 reg->precise = true; 1985 } 1986 } 1987 } 1988 1989 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1990 int spi) 1991 { 1992 struct bpf_verifier_state *st = env->cur_state; 1993 int first_idx = st->first_insn_idx; 1994 int last_idx = env->insn_idx; 1995 struct bpf_func_state *func; 1996 struct bpf_reg_state *reg; 1997 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1998 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1999 bool skip_first = true; 2000 bool new_marks = false; 2001 int i, err; 2002 2003 if (!env->bpf_capable) 2004 return 0; 2005 2006 func = st->frame[st->curframe]; 2007 if (regno >= 0) { 2008 reg = &func->regs[regno]; 2009 if (reg->type != SCALAR_VALUE) { 2010 WARN_ONCE(1, "backtracing misuse"); 2011 return -EFAULT; 2012 } 2013 if (!reg->precise) 2014 new_marks = true; 2015 else 2016 reg_mask = 0; 2017 reg->precise = true; 2018 } 2019 2020 while (spi >= 0) { 2021 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2022 stack_mask = 0; 2023 break; 2024 } 2025 reg = &func->stack[spi].spilled_ptr; 2026 if (reg->type != SCALAR_VALUE) { 2027 stack_mask = 0; 2028 break; 2029 } 2030 if (!reg->precise) 2031 new_marks = true; 2032 else 2033 stack_mask = 0; 2034 reg->precise = true; 2035 break; 2036 } 2037 2038 if (!new_marks) 2039 return 0; 2040 if (!reg_mask && !stack_mask) 2041 return 0; 2042 for (;;) { 2043 DECLARE_BITMAP(mask, 64); 2044 u32 history = st->jmp_history_cnt; 2045 2046 if (env->log.level & BPF_LOG_LEVEL) 2047 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2048 for (i = last_idx;;) { 2049 if (skip_first) { 2050 err = 0; 2051 skip_first = false; 2052 } else { 2053 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2054 } 2055 if (err == -ENOTSUPP) { 2056 mark_all_scalars_precise(env, st); 2057 return 0; 2058 } else if (err) { 2059 return err; 2060 } 2061 if (!reg_mask && !stack_mask) 2062 /* Found assignment(s) into tracked register in this state. 2063 * Since this state is already marked, just return. 2064 * Nothing to be tracked further in the parent state. 2065 */ 2066 return 0; 2067 if (i == first_idx) 2068 break; 2069 i = get_prev_insn_idx(st, i, &history); 2070 if (i >= env->prog->len) { 2071 /* This can happen if backtracking reached insn 0 2072 * and there are still reg_mask or stack_mask 2073 * to backtrack. 2074 * It means the backtracking missed the spot where 2075 * particular register was initialized with a constant. 2076 */ 2077 verbose(env, "BUG backtracking idx %d\n", i); 2078 WARN_ONCE(1, "verifier backtracking bug"); 2079 return -EFAULT; 2080 } 2081 } 2082 st = st->parent; 2083 if (!st) 2084 break; 2085 2086 new_marks = false; 2087 func = st->frame[st->curframe]; 2088 bitmap_from_u64(mask, reg_mask); 2089 for_each_set_bit(i, mask, 32) { 2090 reg = &func->regs[i]; 2091 if (reg->type != SCALAR_VALUE) { 2092 reg_mask &= ~(1u << i); 2093 continue; 2094 } 2095 if (!reg->precise) 2096 new_marks = true; 2097 reg->precise = true; 2098 } 2099 2100 bitmap_from_u64(mask, stack_mask); 2101 for_each_set_bit(i, mask, 64) { 2102 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2103 /* the sequence of instructions: 2104 * 2: (bf) r3 = r10 2105 * 3: (7b) *(u64 *)(r3 -8) = r0 2106 * 4: (79) r4 = *(u64 *)(r10 -8) 2107 * doesn't contain jmps. It's backtracked 2108 * as a single block. 2109 * During backtracking insn 3 is not recognized as 2110 * stack access, so at the end of backtracking 2111 * stack slot fp-8 is still marked in stack_mask. 2112 * However the parent state may not have accessed 2113 * fp-8 and it's "unallocated" stack space. 2114 * In such case fallback to conservative. 2115 */ 2116 mark_all_scalars_precise(env, st); 2117 return 0; 2118 } 2119 2120 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2121 stack_mask &= ~(1ull << i); 2122 continue; 2123 } 2124 reg = &func->stack[i].spilled_ptr; 2125 if (reg->type != SCALAR_VALUE) { 2126 stack_mask &= ~(1ull << i); 2127 continue; 2128 } 2129 if (!reg->precise) 2130 new_marks = true; 2131 reg->precise = true; 2132 } 2133 if (env->log.level & BPF_LOG_LEVEL) { 2134 print_verifier_state(env, func); 2135 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2136 new_marks ? "didn't have" : "already had", 2137 reg_mask, stack_mask); 2138 } 2139 2140 if (!reg_mask && !stack_mask) 2141 break; 2142 if (!new_marks) 2143 break; 2144 2145 last_idx = st->last_insn_idx; 2146 first_idx = st->first_insn_idx; 2147 } 2148 return 0; 2149 } 2150 2151 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2152 { 2153 return __mark_chain_precision(env, regno, -1); 2154 } 2155 2156 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2157 { 2158 return __mark_chain_precision(env, -1, spi); 2159 } 2160 2161 static bool is_spillable_regtype(enum bpf_reg_type type) 2162 { 2163 switch (type) { 2164 case PTR_TO_MAP_VALUE: 2165 case PTR_TO_MAP_VALUE_OR_NULL: 2166 case PTR_TO_STACK: 2167 case PTR_TO_CTX: 2168 case PTR_TO_PACKET: 2169 case PTR_TO_PACKET_META: 2170 case PTR_TO_PACKET_END: 2171 case PTR_TO_FLOW_KEYS: 2172 case CONST_PTR_TO_MAP: 2173 case PTR_TO_SOCKET: 2174 case PTR_TO_SOCKET_OR_NULL: 2175 case PTR_TO_SOCK_COMMON: 2176 case PTR_TO_SOCK_COMMON_OR_NULL: 2177 case PTR_TO_TCP_SOCK: 2178 case PTR_TO_TCP_SOCK_OR_NULL: 2179 case PTR_TO_XDP_SOCK: 2180 case PTR_TO_BTF_ID: 2181 case PTR_TO_BTF_ID_OR_NULL: 2182 case PTR_TO_RDONLY_BUF: 2183 case PTR_TO_RDONLY_BUF_OR_NULL: 2184 case PTR_TO_RDWR_BUF: 2185 case PTR_TO_RDWR_BUF_OR_NULL: 2186 return true; 2187 default: 2188 return false; 2189 } 2190 } 2191 2192 /* Does this register contain a constant zero? */ 2193 static bool register_is_null(struct bpf_reg_state *reg) 2194 { 2195 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2196 } 2197 2198 static bool register_is_const(struct bpf_reg_state *reg) 2199 { 2200 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2201 } 2202 2203 static bool __is_pointer_value(bool allow_ptr_leaks, 2204 const struct bpf_reg_state *reg) 2205 { 2206 if (allow_ptr_leaks) 2207 return false; 2208 2209 return reg->type != SCALAR_VALUE; 2210 } 2211 2212 static void save_register_state(struct bpf_func_state *state, 2213 int spi, struct bpf_reg_state *reg) 2214 { 2215 int i; 2216 2217 state->stack[spi].spilled_ptr = *reg; 2218 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2219 2220 for (i = 0; i < BPF_REG_SIZE; i++) 2221 state->stack[spi].slot_type[i] = STACK_SPILL; 2222 } 2223 2224 /* check_stack_read/write functions track spill/fill of registers, 2225 * stack boundary and alignment are checked in check_mem_access() 2226 */ 2227 static int check_stack_write(struct bpf_verifier_env *env, 2228 struct bpf_func_state *state, /* func where register points to */ 2229 int off, int size, int value_regno, int insn_idx) 2230 { 2231 struct bpf_func_state *cur; /* state of the current function */ 2232 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2233 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2234 struct bpf_reg_state *reg = NULL; 2235 2236 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2237 state->acquired_refs, true); 2238 if (err) 2239 return err; 2240 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2241 * so it's aligned access and [off, off + size) are within stack limits 2242 */ 2243 if (!env->allow_ptr_leaks && 2244 state->stack[spi].slot_type[0] == STACK_SPILL && 2245 size != BPF_REG_SIZE) { 2246 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2247 return -EACCES; 2248 } 2249 2250 cur = env->cur_state->frame[env->cur_state->curframe]; 2251 if (value_regno >= 0) 2252 reg = &cur->regs[value_regno]; 2253 2254 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2255 !register_is_null(reg) && env->bpf_capable) { 2256 if (dst_reg != BPF_REG_FP) { 2257 /* The backtracking logic can only recognize explicit 2258 * stack slot address like [fp - 8]. Other spill of 2259 * scalar via different register has to be conervative. 2260 * Backtrack from here and mark all registers as precise 2261 * that contributed into 'reg' being a constant. 2262 */ 2263 err = mark_chain_precision(env, value_regno); 2264 if (err) 2265 return err; 2266 } 2267 save_register_state(state, spi, reg); 2268 } else if (reg && is_spillable_regtype(reg->type)) { 2269 /* register containing pointer is being spilled into stack */ 2270 if (size != BPF_REG_SIZE) { 2271 verbose_linfo(env, insn_idx, "; "); 2272 verbose(env, "invalid size of register spill\n"); 2273 return -EACCES; 2274 } 2275 2276 if (state != cur && reg->type == PTR_TO_STACK) { 2277 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2278 return -EINVAL; 2279 } 2280 2281 if (!env->bypass_spec_v4) { 2282 bool sanitize = false; 2283 2284 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2285 register_is_const(&state->stack[spi].spilled_ptr)) 2286 sanitize = true; 2287 for (i = 0; i < BPF_REG_SIZE; i++) 2288 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2289 sanitize = true; 2290 break; 2291 } 2292 if (sanitize) { 2293 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2294 int soff = (-spi - 1) * BPF_REG_SIZE; 2295 2296 /* detected reuse of integer stack slot with a pointer 2297 * which means either llvm is reusing stack slot or 2298 * an attacker is trying to exploit CVE-2018-3639 2299 * (speculative store bypass) 2300 * Have to sanitize that slot with preemptive 2301 * store of zero. 2302 */ 2303 if (*poff && *poff != soff) { 2304 /* disallow programs where single insn stores 2305 * into two different stack slots, since verifier 2306 * cannot sanitize them 2307 */ 2308 verbose(env, 2309 "insn %d cannot access two stack slots fp%d and fp%d", 2310 insn_idx, *poff, soff); 2311 return -EINVAL; 2312 } 2313 *poff = soff; 2314 } 2315 } 2316 save_register_state(state, spi, reg); 2317 } else { 2318 u8 type = STACK_MISC; 2319 2320 /* regular write of data into stack destroys any spilled ptr */ 2321 state->stack[spi].spilled_ptr.type = NOT_INIT; 2322 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2323 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2324 for (i = 0; i < BPF_REG_SIZE; i++) 2325 state->stack[spi].slot_type[i] = STACK_MISC; 2326 2327 /* only mark the slot as written if all 8 bytes were written 2328 * otherwise read propagation may incorrectly stop too soon 2329 * when stack slots are partially written. 2330 * This heuristic means that read propagation will be 2331 * conservative, since it will add reg_live_read marks 2332 * to stack slots all the way to first state when programs 2333 * writes+reads less than 8 bytes 2334 */ 2335 if (size == BPF_REG_SIZE) 2336 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2337 2338 /* when we zero initialize stack slots mark them as such */ 2339 if (reg && register_is_null(reg)) { 2340 /* backtracking doesn't work for STACK_ZERO yet. */ 2341 err = mark_chain_precision(env, value_regno); 2342 if (err) 2343 return err; 2344 type = STACK_ZERO; 2345 } 2346 2347 /* Mark slots affected by this stack write. */ 2348 for (i = 0; i < size; i++) 2349 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2350 type; 2351 } 2352 return 0; 2353 } 2354 2355 static int check_stack_read(struct bpf_verifier_env *env, 2356 struct bpf_func_state *reg_state /* func where register points to */, 2357 int off, int size, int value_regno) 2358 { 2359 struct bpf_verifier_state *vstate = env->cur_state; 2360 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2361 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2362 struct bpf_reg_state *reg; 2363 u8 *stype; 2364 2365 if (reg_state->allocated_stack <= slot) { 2366 verbose(env, "invalid read from stack off %d+0 size %d\n", 2367 off, size); 2368 return -EACCES; 2369 } 2370 stype = reg_state->stack[spi].slot_type; 2371 reg = ®_state->stack[spi].spilled_ptr; 2372 2373 if (stype[0] == STACK_SPILL) { 2374 if (size != BPF_REG_SIZE) { 2375 if (reg->type != SCALAR_VALUE) { 2376 verbose_linfo(env, env->insn_idx, "; "); 2377 verbose(env, "invalid size of register fill\n"); 2378 return -EACCES; 2379 } 2380 if (value_regno >= 0) { 2381 mark_reg_unknown(env, state->regs, value_regno); 2382 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2383 } 2384 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2385 return 0; 2386 } 2387 for (i = 1; i < BPF_REG_SIZE; i++) { 2388 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2389 verbose(env, "corrupted spill memory\n"); 2390 return -EACCES; 2391 } 2392 } 2393 2394 if (value_regno >= 0) { 2395 /* restore register state from stack */ 2396 state->regs[value_regno] = *reg; 2397 /* mark reg as written since spilled pointer state likely 2398 * has its liveness marks cleared by is_state_visited() 2399 * which resets stack/reg liveness for state transitions 2400 */ 2401 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2402 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2403 /* If value_regno==-1, the caller is asking us whether 2404 * it is acceptable to use this value as a SCALAR_VALUE 2405 * (e.g. for XADD). 2406 * We must not allow unprivileged callers to do that 2407 * with spilled pointers. 2408 */ 2409 verbose(env, "leaking pointer from stack off %d\n", 2410 off); 2411 return -EACCES; 2412 } 2413 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2414 } else { 2415 int zeros = 0; 2416 2417 for (i = 0; i < size; i++) { 2418 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2419 continue; 2420 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2421 zeros++; 2422 continue; 2423 } 2424 verbose(env, "invalid read from stack off %d+%d size %d\n", 2425 off, i, size); 2426 return -EACCES; 2427 } 2428 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2429 if (value_regno >= 0) { 2430 if (zeros == size) { 2431 /* any size read into register is zero extended, 2432 * so the whole register == const_zero 2433 */ 2434 __mark_reg_const_zero(&state->regs[value_regno]); 2435 /* backtracking doesn't support STACK_ZERO yet, 2436 * so mark it precise here, so that later 2437 * backtracking can stop here. 2438 * Backtracking may not need this if this register 2439 * doesn't participate in pointer adjustment. 2440 * Forward propagation of precise flag is not 2441 * necessary either. This mark is only to stop 2442 * backtracking. Any register that contributed 2443 * to const 0 was marked precise before spill. 2444 */ 2445 state->regs[value_regno].precise = true; 2446 } else { 2447 /* have read misc data from the stack */ 2448 mark_reg_unknown(env, state->regs, value_regno); 2449 } 2450 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2451 } 2452 } 2453 return 0; 2454 } 2455 2456 static int check_stack_access(struct bpf_verifier_env *env, 2457 const struct bpf_reg_state *reg, 2458 int off, int size) 2459 { 2460 /* Stack accesses must be at a fixed offset, so that we 2461 * can determine what type of data were returned. See 2462 * check_stack_read(). 2463 */ 2464 if (!tnum_is_const(reg->var_off)) { 2465 char tn_buf[48]; 2466 2467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2468 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2469 tn_buf, off, size); 2470 return -EACCES; 2471 } 2472 2473 if (off >= 0 || off < -MAX_BPF_STACK) { 2474 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2475 return -EACCES; 2476 } 2477 2478 return 0; 2479 } 2480 2481 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2482 int off, int size, enum bpf_access_type type) 2483 { 2484 struct bpf_reg_state *regs = cur_regs(env); 2485 struct bpf_map *map = regs[regno].map_ptr; 2486 u32 cap = bpf_map_flags_to_cap(map); 2487 2488 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2489 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2490 map->value_size, off, size); 2491 return -EACCES; 2492 } 2493 2494 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2495 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2496 map->value_size, off, size); 2497 return -EACCES; 2498 } 2499 2500 return 0; 2501 } 2502 2503 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2504 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2505 int off, int size, u32 mem_size, 2506 bool zero_size_allowed) 2507 { 2508 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2509 struct bpf_reg_state *reg; 2510 2511 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2512 return 0; 2513 2514 reg = &cur_regs(env)[regno]; 2515 switch (reg->type) { 2516 case PTR_TO_MAP_VALUE: 2517 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2518 mem_size, off, size); 2519 break; 2520 case PTR_TO_PACKET: 2521 case PTR_TO_PACKET_META: 2522 case PTR_TO_PACKET_END: 2523 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2524 off, size, regno, reg->id, off, mem_size); 2525 break; 2526 case PTR_TO_MEM: 2527 default: 2528 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2529 mem_size, off, size); 2530 } 2531 2532 return -EACCES; 2533 } 2534 2535 /* check read/write into a memory region with possible variable offset */ 2536 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2537 int off, int size, u32 mem_size, 2538 bool zero_size_allowed) 2539 { 2540 struct bpf_verifier_state *vstate = env->cur_state; 2541 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2542 struct bpf_reg_state *reg = &state->regs[regno]; 2543 int err; 2544 2545 /* We may have adjusted the register pointing to memory region, so we 2546 * need to try adding each of min_value and max_value to off 2547 * to make sure our theoretical access will be safe. 2548 */ 2549 if (env->log.level & BPF_LOG_LEVEL) 2550 print_verifier_state(env, state); 2551 2552 /* The minimum value is only important with signed 2553 * comparisons where we can't assume the floor of a 2554 * value is 0. If we are using signed variables for our 2555 * index'es we need to make sure that whatever we use 2556 * will have a set floor within our range. 2557 */ 2558 if (reg->smin_value < 0 && 2559 (reg->smin_value == S64_MIN || 2560 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2561 reg->smin_value + off < 0)) { 2562 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2563 regno); 2564 return -EACCES; 2565 } 2566 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2567 mem_size, zero_size_allowed); 2568 if (err) { 2569 verbose(env, "R%d min value is outside of the allowed memory range\n", 2570 regno); 2571 return err; 2572 } 2573 2574 /* If we haven't set a max value then we need to bail since we can't be 2575 * sure we won't do bad things. 2576 * If reg->umax_value + off could overflow, treat that as unbounded too. 2577 */ 2578 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2579 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2580 regno); 2581 return -EACCES; 2582 } 2583 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2584 mem_size, zero_size_allowed); 2585 if (err) { 2586 verbose(env, "R%d max value is outside of the allowed memory range\n", 2587 regno); 2588 return err; 2589 } 2590 2591 return 0; 2592 } 2593 2594 /* check read/write into a map element with possible variable offset */ 2595 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2596 int off, int size, bool zero_size_allowed) 2597 { 2598 struct bpf_verifier_state *vstate = env->cur_state; 2599 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2600 struct bpf_reg_state *reg = &state->regs[regno]; 2601 struct bpf_map *map = reg->map_ptr; 2602 int err; 2603 2604 err = check_mem_region_access(env, regno, off, size, map->value_size, 2605 zero_size_allowed); 2606 if (err) 2607 return err; 2608 2609 if (map_value_has_spin_lock(map)) { 2610 u32 lock = map->spin_lock_off; 2611 2612 /* if any part of struct bpf_spin_lock can be touched by 2613 * load/store reject this program. 2614 * To check that [x1, x2) overlaps with [y1, y2) 2615 * it is sufficient to check x1 < y2 && y1 < x2. 2616 */ 2617 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2618 lock < reg->umax_value + off + size) { 2619 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2620 return -EACCES; 2621 } 2622 } 2623 return err; 2624 } 2625 2626 #define MAX_PACKET_OFF 0xffff 2627 2628 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2629 const struct bpf_call_arg_meta *meta, 2630 enum bpf_access_type t) 2631 { 2632 switch (env->prog->type) { 2633 /* Program types only with direct read access go here! */ 2634 case BPF_PROG_TYPE_LWT_IN: 2635 case BPF_PROG_TYPE_LWT_OUT: 2636 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2637 case BPF_PROG_TYPE_SK_REUSEPORT: 2638 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2639 case BPF_PROG_TYPE_CGROUP_SKB: 2640 if (t == BPF_WRITE) 2641 return false; 2642 /* fallthrough */ 2643 2644 /* Program types with direct read + write access go here! */ 2645 case BPF_PROG_TYPE_SCHED_CLS: 2646 case BPF_PROG_TYPE_SCHED_ACT: 2647 case BPF_PROG_TYPE_XDP: 2648 case BPF_PROG_TYPE_LWT_XMIT: 2649 case BPF_PROG_TYPE_SK_SKB: 2650 case BPF_PROG_TYPE_SK_MSG: 2651 if (meta) 2652 return meta->pkt_access; 2653 2654 env->seen_direct_write = true; 2655 return true; 2656 2657 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2658 if (t == BPF_WRITE) 2659 env->seen_direct_write = true; 2660 2661 return true; 2662 2663 default: 2664 return false; 2665 } 2666 } 2667 2668 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2669 int size, bool zero_size_allowed) 2670 { 2671 struct bpf_reg_state *regs = cur_regs(env); 2672 struct bpf_reg_state *reg = ®s[regno]; 2673 int err; 2674 2675 /* We may have added a variable offset to the packet pointer; but any 2676 * reg->range we have comes after that. We are only checking the fixed 2677 * offset. 2678 */ 2679 2680 /* We don't allow negative numbers, because we aren't tracking enough 2681 * detail to prove they're safe. 2682 */ 2683 if (reg->smin_value < 0) { 2684 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2685 regno); 2686 return -EACCES; 2687 } 2688 err = __check_mem_access(env, regno, off, size, reg->range, 2689 zero_size_allowed); 2690 if (err) { 2691 verbose(env, "R%d offset is outside of the packet\n", regno); 2692 return err; 2693 } 2694 2695 /* __check_mem_access has made sure "off + size - 1" is within u16. 2696 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2697 * otherwise find_good_pkt_pointers would have refused to set range info 2698 * that __check_mem_access would have rejected this pkt access. 2699 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2700 */ 2701 env->prog->aux->max_pkt_offset = 2702 max_t(u32, env->prog->aux->max_pkt_offset, 2703 off + reg->umax_value + size - 1); 2704 2705 return err; 2706 } 2707 2708 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2709 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2710 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2711 u32 *btf_id) 2712 { 2713 struct bpf_insn_access_aux info = { 2714 .reg_type = *reg_type, 2715 .log = &env->log, 2716 }; 2717 2718 if (env->ops->is_valid_access && 2719 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2720 /* A non zero info.ctx_field_size indicates that this field is a 2721 * candidate for later verifier transformation to load the whole 2722 * field and then apply a mask when accessed with a narrower 2723 * access than actual ctx access size. A zero info.ctx_field_size 2724 * will only allow for whole field access and rejects any other 2725 * type of narrower access. 2726 */ 2727 *reg_type = info.reg_type; 2728 2729 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2730 *btf_id = info.btf_id; 2731 else 2732 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2733 /* remember the offset of last byte accessed in ctx */ 2734 if (env->prog->aux->max_ctx_offset < off + size) 2735 env->prog->aux->max_ctx_offset = off + size; 2736 return 0; 2737 } 2738 2739 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2740 return -EACCES; 2741 } 2742 2743 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2744 int size) 2745 { 2746 if (size < 0 || off < 0 || 2747 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2748 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2749 off, size); 2750 return -EACCES; 2751 } 2752 return 0; 2753 } 2754 2755 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2756 u32 regno, int off, int size, 2757 enum bpf_access_type t) 2758 { 2759 struct bpf_reg_state *regs = cur_regs(env); 2760 struct bpf_reg_state *reg = ®s[regno]; 2761 struct bpf_insn_access_aux info = {}; 2762 bool valid; 2763 2764 if (reg->smin_value < 0) { 2765 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2766 regno); 2767 return -EACCES; 2768 } 2769 2770 switch (reg->type) { 2771 case PTR_TO_SOCK_COMMON: 2772 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2773 break; 2774 case PTR_TO_SOCKET: 2775 valid = bpf_sock_is_valid_access(off, size, t, &info); 2776 break; 2777 case PTR_TO_TCP_SOCK: 2778 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2779 break; 2780 case PTR_TO_XDP_SOCK: 2781 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2782 break; 2783 default: 2784 valid = false; 2785 } 2786 2787 2788 if (valid) { 2789 env->insn_aux_data[insn_idx].ctx_field_size = 2790 info.ctx_field_size; 2791 return 0; 2792 } 2793 2794 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2795 regno, reg_type_str[reg->type], off, size); 2796 2797 return -EACCES; 2798 } 2799 2800 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2801 { 2802 return cur_regs(env) + regno; 2803 } 2804 2805 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2806 { 2807 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2808 } 2809 2810 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2811 { 2812 const struct bpf_reg_state *reg = reg_state(env, regno); 2813 2814 return reg->type == PTR_TO_CTX; 2815 } 2816 2817 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2818 { 2819 const struct bpf_reg_state *reg = reg_state(env, regno); 2820 2821 return type_is_sk_pointer(reg->type); 2822 } 2823 2824 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2825 { 2826 const struct bpf_reg_state *reg = reg_state(env, regno); 2827 2828 return type_is_pkt_pointer(reg->type); 2829 } 2830 2831 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2832 { 2833 const struct bpf_reg_state *reg = reg_state(env, regno); 2834 2835 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2836 return reg->type == PTR_TO_FLOW_KEYS; 2837 } 2838 2839 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2840 const struct bpf_reg_state *reg, 2841 int off, int size, bool strict) 2842 { 2843 struct tnum reg_off; 2844 int ip_align; 2845 2846 /* Byte size accesses are always allowed. */ 2847 if (!strict || size == 1) 2848 return 0; 2849 2850 /* For platforms that do not have a Kconfig enabling 2851 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2852 * NET_IP_ALIGN is universally set to '2'. And on platforms 2853 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2854 * to this code only in strict mode where we want to emulate 2855 * the NET_IP_ALIGN==2 checking. Therefore use an 2856 * unconditional IP align value of '2'. 2857 */ 2858 ip_align = 2; 2859 2860 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2861 if (!tnum_is_aligned(reg_off, size)) { 2862 char tn_buf[48]; 2863 2864 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2865 verbose(env, 2866 "misaligned packet access off %d+%s+%d+%d size %d\n", 2867 ip_align, tn_buf, reg->off, off, size); 2868 return -EACCES; 2869 } 2870 2871 return 0; 2872 } 2873 2874 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2875 const struct bpf_reg_state *reg, 2876 const char *pointer_desc, 2877 int off, int size, bool strict) 2878 { 2879 struct tnum reg_off; 2880 2881 /* Byte size accesses are always allowed. */ 2882 if (!strict || size == 1) 2883 return 0; 2884 2885 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2886 if (!tnum_is_aligned(reg_off, size)) { 2887 char tn_buf[48]; 2888 2889 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2890 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2891 pointer_desc, tn_buf, reg->off, off, size); 2892 return -EACCES; 2893 } 2894 2895 return 0; 2896 } 2897 2898 static int check_ptr_alignment(struct bpf_verifier_env *env, 2899 const struct bpf_reg_state *reg, int off, 2900 int size, bool strict_alignment_once) 2901 { 2902 bool strict = env->strict_alignment || strict_alignment_once; 2903 const char *pointer_desc = ""; 2904 2905 switch (reg->type) { 2906 case PTR_TO_PACKET: 2907 case PTR_TO_PACKET_META: 2908 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2909 * right in front, treat it the very same way. 2910 */ 2911 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2912 case PTR_TO_FLOW_KEYS: 2913 pointer_desc = "flow keys "; 2914 break; 2915 case PTR_TO_MAP_VALUE: 2916 pointer_desc = "value "; 2917 break; 2918 case PTR_TO_CTX: 2919 pointer_desc = "context "; 2920 break; 2921 case PTR_TO_STACK: 2922 pointer_desc = "stack "; 2923 /* The stack spill tracking logic in check_stack_write() 2924 * and check_stack_read() relies on stack accesses being 2925 * aligned. 2926 */ 2927 strict = true; 2928 break; 2929 case PTR_TO_SOCKET: 2930 pointer_desc = "sock "; 2931 break; 2932 case PTR_TO_SOCK_COMMON: 2933 pointer_desc = "sock_common "; 2934 break; 2935 case PTR_TO_TCP_SOCK: 2936 pointer_desc = "tcp_sock "; 2937 break; 2938 case PTR_TO_XDP_SOCK: 2939 pointer_desc = "xdp_sock "; 2940 break; 2941 default: 2942 break; 2943 } 2944 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2945 strict); 2946 } 2947 2948 static int update_stack_depth(struct bpf_verifier_env *env, 2949 const struct bpf_func_state *func, 2950 int off) 2951 { 2952 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2953 2954 if (stack >= -off) 2955 return 0; 2956 2957 /* update known max for given subprogram */ 2958 env->subprog_info[func->subprogno].stack_depth = -off; 2959 return 0; 2960 } 2961 2962 /* starting from main bpf function walk all instructions of the function 2963 * and recursively walk all callees that given function can call. 2964 * Ignore jump and exit insns. 2965 * Since recursion is prevented by check_cfg() this algorithm 2966 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2967 */ 2968 static int check_max_stack_depth(struct bpf_verifier_env *env) 2969 { 2970 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2971 struct bpf_subprog_info *subprog = env->subprog_info; 2972 struct bpf_insn *insn = env->prog->insnsi; 2973 int ret_insn[MAX_CALL_FRAMES]; 2974 int ret_prog[MAX_CALL_FRAMES]; 2975 2976 process_func: 2977 /* round up to 32-bytes, since this is granularity 2978 * of interpreter stack size 2979 */ 2980 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2981 if (depth > MAX_BPF_STACK) { 2982 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2983 frame + 1, depth); 2984 return -EACCES; 2985 } 2986 continue_func: 2987 subprog_end = subprog[idx + 1].start; 2988 for (; i < subprog_end; i++) { 2989 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2990 continue; 2991 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2992 continue; 2993 /* remember insn and function to return to */ 2994 ret_insn[frame] = i + 1; 2995 ret_prog[frame] = idx; 2996 2997 /* find the callee */ 2998 i = i + insn[i].imm + 1; 2999 idx = find_subprog(env, i); 3000 if (idx < 0) { 3001 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3002 i); 3003 return -EFAULT; 3004 } 3005 frame++; 3006 if (frame >= MAX_CALL_FRAMES) { 3007 verbose(env, "the call stack of %d frames is too deep !\n", 3008 frame); 3009 return -E2BIG; 3010 } 3011 goto process_func; 3012 } 3013 /* end of for() loop means the last insn of the 'subprog' 3014 * was reached. Doesn't matter whether it was JA or EXIT 3015 */ 3016 if (frame == 0) 3017 return 0; 3018 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3019 frame--; 3020 i = ret_insn[frame]; 3021 idx = ret_prog[frame]; 3022 goto continue_func; 3023 } 3024 3025 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3026 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3027 const struct bpf_insn *insn, int idx) 3028 { 3029 int start = idx + insn->imm + 1, subprog; 3030 3031 subprog = find_subprog(env, start); 3032 if (subprog < 0) { 3033 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3034 start); 3035 return -EFAULT; 3036 } 3037 return env->subprog_info[subprog].stack_depth; 3038 } 3039 #endif 3040 3041 int check_ctx_reg(struct bpf_verifier_env *env, 3042 const struct bpf_reg_state *reg, int regno) 3043 { 3044 /* Access to ctx or passing it to a helper is only allowed in 3045 * its original, unmodified form. 3046 */ 3047 3048 if (reg->off) { 3049 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3050 regno, reg->off); 3051 return -EACCES; 3052 } 3053 3054 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3055 char tn_buf[48]; 3056 3057 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3058 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3059 return -EACCES; 3060 } 3061 3062 return 0; 3063 } 3064 3065 static int __check_buffer_access(struct bpf_verifier_env *env, 3066 const char *buf_info, 3067 const struct bpf_reg_state *reg, 3068 int regno, int off, int size) 3069 { 3070 if (off < 0) { 3071 verbose(env, 3072 "R%d invalid %s buffer access: off=%d, size=%d", 3073 regno, buf_info, off, size); 3074 return -EACCES; 3075 } 3076 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3077 char tn_buf[48]; 3078 3079 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3080 verbose(env, 3081 "R%d invalid variable buffer offset: off=%d, var_off=%s", 3082 regno, off, tn_buf); 3083 return -EACCES; 3084 } 3085 3086 return 0; 3087 } 3088 3089 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3090 const struct bpf_reg_state *reg, 3091 int regno, int off, int size) 3092 { 3093 int err; 3094 3095 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3096 if (err) 3097 return err; 3098 3099 if (off + size > env->prog->aux->max_tp_access) 3100 env->prog->aux->max_tp_access = off + size; 3101 3102 return 0; 3103 } 3104 3105 static int check_buffer_access(struct bpf_verifier_env *env, 3106 const struct bpf_reg_state *reg, 3107 int regno, int off, int size, 3108 bool zero_size_allowed, 3109 const char *buf_info, 3110 u32 *max_access) 3111 { 3112 int err; 3113 3114 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3115 if (err) 3116 return err; 3117 3118 if (off + size > *max_access) 3119 *max_access = off + size; 3120 3121 return 0; 3122 } 3123 3124 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3125 static void zext_32_to_64(struct bpf_reg_state *reg) 3126 { 3127 reg->var_off = tnum_subreg(reg->var_off); 3128 __reg_assign_32_into_64(reg); 3129 } 3130 3131 /* truncate register to smaller size (in bytes) 3132 * must be called with size < BPF_REG_SIZE 3133 */ 3134 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3135 { 3136 u64 mask; 3137 3138 /* clear high bits in bit representation */ 3139 reg->var_off = tnum_cast(reg->var_off, size); 3140 3141 /* fix arithmetic bounds */ 3142 mask = ((u64)1 << (size * 8)) - 1; 3143 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3144 reg->umin_value &= mask; 3145 reg->umax_value &= mask; 3146 } else { 3147 reg->umin_value = 0; 3148 reg->umax_value = mask; 3149 } 3150 reg->smin_value = reg->umin_value; 3151 reg->smax_value = reg->umax_value; 3152 3153 /* If size is smaller than 32bit register the 32bit register 3154 * values are also truncated so we push 64-bit bounds into 3155 * 32-bit bounds. Above were truncated < 32-bits already. 3156 */ 3157 if (size >= 4) 3158 return; 3159 __reg_combine_64_into_32(reg); 3160 } 3161 3162 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3163 { 3164 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3165 } 3166 3167 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3168 { 3169 void *ptr; 3170 u64 addr; 3171 int err; 3172 3173 err = map->ops->map_direct_value_addr(map, &addr, off); 3174 if (err) 3175 return err; 3176 ptr = (void *)(long)addr + off; 3177 3178 switch (size) { 3179 case sizeof(u8): 3180 *val = (u64)*(u8 *)ptr; 3181 break; 3182 case sizeof(u16): 3183 *val = (u64)*(u16 *)ptr; 3184 break; 3185 case sizeof(u32): 3186 *val = (u64)*(u32 *)ptr; 3187 break; 3188 case sizeof(u64): 3189 *val = *(u64 *)ptr; 3190 break; 3191 default: 3192 return -EINVAL; 3193 } 3194 return 0; 3195 } 3196 3197 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3198 struct bpf_reg_state *regs, 3199 int regno, int off, int size, 3200 enum bpf_access_type atype, 3201 int value_regno) 3202 { 3203 struct bpf_reg_state *reg = regs + regno; 3204 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3205 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3206 u32 btf_id; 3207 int ret; 3208 3209 if (off < 0) { 3210 verbose(env, 3211 "R%d is ptr_%s invalid negative access: off=%d\n", 3212 regno, tname, off); 3213 return -EACCES; 3214 } 3215 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3216 char tn_buf[48]; 3217 3218 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3219 verbose(env, 3220 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3221 regno, tname, off, tn_buf); 3222 return -EACCES; 3223 } 3224 3225 if (env->ops->btf_struct_access) { 3226 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3227 atype, &btf_id); 3228 } else { 3229 if (atype != BPF_READ) { 3230 verbose(env, "only read is supported\n"); 3231 return -EACCES; 3232 } 3233 3234 ret = btf_struct_access(&env->log, t, off, size, atype, 3235 &btf_id); 3236 } 3237 3238 if (ret < 0) 3239 return ret; 3240 3241 if (atype == BPF_READ && value_regno >= 0) 3242 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3243 3244 return 0; 3245 } 3246 3247 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3248 struct bpf_reg_state *regs, 3249 int regno, int off, int size, 3250 enum bpf_access_type atype, 3251 int value_regno) 3252 { 3253 struct bpf_reg_state *reg = regs + regno; 3254 struct bpf_map *map = reg->map_ptr; 3255 const struct btf_type *t; 3256 const char *tname; 3257 u32 btf_id; 3258 int ret; 3259 3260 if (!btf_vmlinux) { 3261 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3262 return -ENOTSUPP; 3263 } 3264 3265 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3266 verbose(env, "map_ptr access not supported for map type %d\n", 3267 map->map_type); 3268 return -ENOTSUPP; 3269 } 3270 3271 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3272 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3273 3274 if (!env->allow_ptr_to_map_access) { 3275 verbose(env, 3276 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3277 tname); 3278 return -EPERM; 3279 } 3280 3281 if (off < 0) { 3282 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3283 regno, tname, off); 3284 return -EACCES; 3285 } 3286 3287 if (atype != BPF_READ) { 3288 verbose(env, "only read from %s is supported\n", tname); 3289 return -EACCES; 3290 } 3291 3292 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3293 if (ret < 0) 3294 return ret; 3295 3296 if (value_regno >= 0) 3297 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3298 3299 return 0; 3300 } 3301 3302 3303 /* check whether memory at (regno + off) is accessible for t = (read | write) 3304 * if t==write, value_regno is a register which value is stored into memory 3305 * if t==read, value_regno is a register which will receive the value from memory 3306 * if t==write && value_regno==-1, some unknown value is stored into memory 3307 * if t==read && value_regno==-1, don't care what we read from memory 3308 */ 3309 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3310 int off, int bpf_size, enum bpf_access_type t, 3311 int value_regno, bool strict_alignment_once) 3312 { 3313 struct bpf_reg_state *regs = cur_regs(env); 3314 struct bpf_reg_state *reg = regs + regno; 3315 struct bpf_func_state *state; 3316 int size, err = 0; 3317 3318 size = bpf_size_to_bytes(bpf_size); 3319 if (size < 0) 3320 return size; 3321 3322 /* alignment checks will add in reg->off themselves */ 3323 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3324 if (err) 3325 return err; 3326 3327 /* for access checks, reg->off is just part of off */ 3328 off += reg->off; 3329 3330 if (reg->type == PTR_TO_MAP_VALUE) { 3331 if (t == BPF_WRITE && value_regno >= 0 && 3332 is_pointer_value(env, value_regno)) { 3333 verbose(env, "R%d leaks addr into map\n", value_regno); 3334 return -EACCES; 3335 } 3336 err = check_map_access_type(env, regno, off, size, t); 3337 if (err) 3338 return err; 3339 err = check_map_access(env, regno, off, size, false); 3340 if (!err && t == BPF_READ && value_regno >= 0) { 3341 struct bpf_map *map = reg->map_ptr; 3342 3343 /* if map is read-only, track its contents as scalars */ 3344 if (tnum_is_const(reg->var_off) && 3345 bpf_map_is_rdonly(map) && 3346 map->ops->map_direct_value_addr) { 3347 int map_off = off + reg->var_off.value; 3348 u64 val = 0; 3349 3350 err = bpf_map_direct_read(map, map_off, size, 3351 &val); 3352 if (err) 3353 return err; 3354 3355 regs[value_regno].type = SCALAR_VALUE; 3356 __mark_reg_known(®s[value_regno], val); 3357 } else { 3358 mark_reg_unknown(env, regs, value_regno); 3359 } 3360 } 3361 } else if (reg->type == PTR_TO_MEM) { 3362 if (t == BPF_WRITE && value_regno >= 0 && 3363 is_pointer_value(env, value_regno)) { 3364 verbose(env, "R%d leaks addr into mem\n", value_regno); 3365 return -EACCES; 3366 } 3367 err = check_mem_region_access(env, regno, off, size, 3368 reg->mem_size, false); 3369 if (!err && t == BPF_READ && value_regno >= 0) 3370 mark_reg_unknown(env, regs, value_regno); 3371 } else if (reg->type == PTR_TO_CTX) { 3372 enum bpf_reg_type reg_type = SCALAR_VALUE; 3373 u32 btf_id = 0; 3374 3375 if (t == BPF_WRITE && value_regno >= 0 && 3376 is_pointer_value(env, value_regno)) { 3377 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3378 return -EACCES; 3379 } 3380 3381 err = check_ctx_reg(env, reg, regno); 3382 if (err < 0) 3383 return err; 3384 3385 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3386 if (err) 3387 verbose_linfo(env, insn_idx, "; "); 3388 if (!err && t == BPF_READ && value_regno >= 0) { 3389 /* ctx access returns either a scalar, or a 3390 * PTR_TO_PACKET[_META,_END]. In the latter 3391 * case, we know the offset is zero. 3392 */ 3393 if (reg_type == SCALAR_VALUE) { 3394 mark_reg_unknown(env, regs, value_regno); 3395 } else { 3396 mark_reg_known_zero(env, regs, 3397 value_regno); 3398 if (reg_type_may_be_null(reg_type)) 3399 regs[value_regno].id = ++env->id_gen; 3400 /* A load of ctx field could have different 3401 * actual load size with the one encoded in the 3402 * insn. When the dst is PTR, it is for sure not 3403 * a sub-register. 3404 */ 3405 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3406 if (reg_type == PTR_TO_BTF_ID || 3407 reg_type == PTR_TO_BTF_ID_OR_NULL) 3408 regs[value_regno].btf_id = btf_id; 3409 } 3410 regs[value_regno].type = reg_type; 3411 } 3412 3413 } else if (reg->type == PTR_TO_STACK) { 3414 off += reg->var_off.value; 3415 err = check_stack_access(env, reg, off, size); 3416 if (err) 3417 return err; 3418 3419 state = func(env, reg); 3420 err = update_stack_depth(env, state, off); 3421 if (err) 3422 return err; 3423 3424 if (t == BPF_WRITE) 3425 err = check_stack_write(env, state, off, size, 3426 value_regno, insn_idx); 3427 else 3428 err = check_stack_read(env, state, off, size, 3429 value_regno); 3430 } else if (reg_is_pkt_pointer(reg)) { 3431 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3432 verbose(env, "cannot write into packet\n"); 3433 return -EACCES; 3434 } 3435 if (t == BPF_WRITE && value_regno >= 0 && 3436 is_pointer_value(env, value_regno)) { 3437 verbose(env, "R%d leaks addr into packet\n", 3438 value_regno); 3439 return -EACCES; 3440 } 3441 err = check_packet_access(env, regno, off, size, false); 3442 if (!err && t == BPF_READ && value_regno >= 0) 3443 mark_reg_unknown(env, regs, value_regno); 3444 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3445 if (t == BPF_WRITE && value_regno >= 0 && 3446 is_pointer_value(env, value_regno)) { 3447 verbose(env, "R%d leaks addr into flow keys\n", 3448 value_regno); 3449 return -EACCES; 3450 } 3451 3452 err = check_flow_keys_access(env, off, size); 3453 if (!err && t == BPF_READ && value_regno >= 0) 3454 mark_reg_unknown(env, regs, value_regno); 3455 } else if (type_is_sk_pointer(reg->type)) { 3456 if (t == BPF_WRITE) { 3457 verbose(env, "R%d cannot write into %s\n", 3458 regno, reg_type_str[reg->type]); 3459 return -EACCES; 3460 } 3461 err = check_sock_access(env, insn_idx, regno, off, size, t); 3462 if (!err && value_regno >= 0) 3463 mark_reg_unknown(env, regs, value_regno); 3464 } else if (reg->type == PTR_TO_TP_BUFFER) { 3465 err = check_tp_buffer_access(env, reg, regno, off, size); 3466 if (!err && t == BPF_READ && value_regno >= 0) 3467 mark_reg_unknown(env, regs, value_regno); 3468 } else if (reg->type == PTR_TO_BTF_ID) { 3469 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3470 value_regno); 3471 } else if (reg->type == CONST_PTR_TO_MAP) { 3472 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3473 value_regno); 3474 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3475 if (t == BPF_WRITE) { 3476 verbose(env, "R%d cannot write into %s\n", 3477 regno, reg_type_str[reg->type]); 3478 return -EACCES; 3479 } 3480 err = check_buffer_access(env, reg, regno, off, size, "rdonly", 3481 false, 3482 &env->prog->aux->max_rdonly_access); 3483 if (!err && value_regno >= 0) 3484 mark_reg_unknown(env, regs, value_regno); 3485 } else if (reg->type == PTR_TO_RDWR_BUF) { 3486 err = check_buffer_access(env, reg, regno, off, size, "rdwr", 3487 false, 3488 &env->prog->aux->max_rdwr_access); 3489 if (!err && t == BPF_READ && value_regno >= 0) 3490 mark_reg_unknown(env, regs, value_regno); 3491 } else { 3492 verbose(env, "R%d invalid mem access '%s'\n", regno, 3493 reg_type_str[reg->type]); 3494 return -EACCES; 3495 } 3496 3497 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3498 regs[value_regno].type == SCALAR_VALUE) { 3499 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3500 coerce_reg_to_size(®s[value_regno], size); 3501 } 3502 return err; 3503 } 3504 3505 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3506 { 3507 int err; 3508 3509 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3510 insn->imm != 0) { 3511 verbose(env, "BPF_XADD uses reserved fields\n"); 3512 return -EINVAL; 3513 } 3514 3515 /* check src1 operand */ 3516 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3517 if (err) 3518 return err; 3519 3520 /* check src2 operand */ 3521 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3522 if (err) 3523 return err; 3524 3525 if (is_pointer_value(env, insn->src_reg)) { 3526 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3527 return -EACCES; 3528 } 3529 3530 if (is_ctx_reg(env, insn->dst_reg) || 3531 is_pkt_reg(env, insn->dst_reg) || 3532 is_flow_key_reg(env, insn->dst_reg) || 3533 is_sk_reg(env, insn->dst_reg)) { 3534 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3535 insn->dst_reg, 3536 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3537 return -EACCES; 3538 } 3539 3540 /* check whether atomic_add can read the memory */ 3541 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3542 BPF_SIZE(insn->code), BPF_READ, -1, true); 3543 if (err) 3544 return err; 3545 3546 /* check whether atomic_add can write into the same memory */ 3547 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3548 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3549 } 3550 3551 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3552 int off, int access_size, 3553 bool zero_size_allowed) 3554 { 3555 struct bpf_reg_state *reg = reg_state(env, regno); 3556 3557 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3558 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3559 if (tnum_is_const(reg->var_off)) { 3560 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3561 regno, off, access_size); 3562 } else { 3563 char tn_buf[48]; 3564 3565 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3566 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3567 regno, tn_buf, access_size); 3568 } 3569 return -EACCES; 3570 } 3571 return 0; 3572 } 3573 3574 /* when register 'regno' is passed into function that will read 'access_size' 3575 * bytes from that pointer, make sure that it's within stack boundary 3576 * and all elements of stack are initialized. 3577 * Unlike most pointer bounds-checking functions, this one doesn't take an 3578 * 'off' argument, so it has to add in reg->off itself. 3579 */ 3580 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3581 int access_size, bool zero_size_allowed, 3582 struct bpf_call_arg_meta *meta) 3583 { 3584 struct bpf_reg_state *reg = reg_state(env, regno); 3585 struct bpf_func_state *state = func(env, reg); 3586 int err, min_off, max_off, i, j, slot, spi; 3587 3588 if (reg->type != PTR_TO_STACK) { 3589 /* Allow zero-byte read from NULL, regardless of pointer type */ 3590 if (zero_size_allowed && access_size == 0 && 3591 register_is_null(reg)) 3592 return 0; 3593 3594 verbose(env, "R%d type=%s expected=%s\n", regno, 3595 reg_type_str[reg->type], 3596 reg_type_str[PTR_TO_STACK]); 3597 return -EACCES; 3598 } 3599 3600 if (tnum_is_const(reg->var_off)) { 3601 min_off = max_off = reg->var_off.value + reg->off; 3602 err = __check_stack_boundary(env, regno, min_off, access_size, 3603 zero_size_allowed); 3604 if (err) 3605 return err; 3606 } else { 3607 /* Variable offset is prohibited for unprivileged mode for 3608 * simplicity since it requires corresponding support in 3609 * Spectre masking for stack ALU. 3610 * See also retrieve_ptr_limit(). 3611 */ 3612 if (!env->bypass_spec_v1) { 3613 char tn_buf[48]; 3614 3615 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3616 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3617 regno, tn_buf); 3618 return -EACCES; 3619 } 3620 /* Only initialized buffer on stack is allowed to be accessed 3621 * with variable offset. With uninitialized buffer it's hard to 3622 * guarantee that whole memory is marked as initialized on 3623 * helper return since specific bounds are unknown what may 3624 * cause uninitialized stack leaking. 3625 */ 3626 if (meta && meta->raw_mode) 3627 meta = NULL; 3628 3629 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3630 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3631 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3632 regno); 3633 return -EACCES; 3634 } 3635 min_off = reg->smin_value + reg->off; 3636 max_off = reg->smax_value + reg->off; 3637 err = __check_stack_boundary(env, regno, min_off, access_size, 3638 zero_size_allowed); 3639 if (err) { 3640 verbose(env, "R%d min value is outside of stack bound\n", 3641 regno); 3642 return err; 3643 } 3644 err = __check_stack_boundary(env, regno, max_off, access_size, 3645 zero_size_allowed); 3646 if (err) { 3647 verbose(env, "R%d max value is outside of stack bound\n", 3648 regno); 3649 return err; 3650 } 3651 } 3652 3653 if (meta && meta->raw_mode) { 3654 meta->access_size = access_size; 3655 meta->regno = regno; 3656 return 0; 3657 } 3658 3659 for (i = min_off; i < max_off + access_size; i++) { 3660 u8 *stype; 3661 3662 slot = -i - 1; 3663 spi = slot / BPF_REG_SIZE; 3664 if (state->allocated_stack <= slot) 3665 goto err; 3666 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3667 if (*stype == STACK_MISC) 3668 goto mark; 3669 if (*stype == STACK_ZERO) { 3670 /* helper can write anything into the stack */ 3671 *stype = STACK_MISC; 3672 goto mark; 3673 } 3674 3675 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3676 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3677 goto mark; 3678 3679 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3680 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3681 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3682 for (j = 0; j < BPF_REG_SIZE; j++) 3683 state->stack[spi].slot_type[j] = STACK_MISC; 3684 goto mark; 3685 } 3686 3687 err: 3688 if (tnum_is_const(reg->var_off)) { 3689 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3690 min_off, i - min_off, access_size); 3691 } else { 3692 char tn_buf[48]; 3693 3694 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3695 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3696 tn_buf, i - min_off, access_size); 3697 } 3698 return -EACCES; 3699 mark: 3700 /* reading any byte out of 8-byte 'spill_slot' will cause 3701 * the whole slot to be marked as 'read' 3702 */ 3703 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3704 state->stack[spi].spilled_ptr.parent, 3705 REG_LIVE_READ64); 3706 } 3707 return update_stack_depth(env, state, min_off); 3708 } 3709 3710 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3711 int access_size, bool zero_size_allowed, 3712 struct bpf_call_arg_meta *meta) 3713 { 3714 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3715 3716 switch (reg->type) { 3717 case PTR_TO_PACKET: 3718 case PTR_TO_PACKET_META: 3719 return check_packet_access(env, regno, reg->off, access_size, 3720 zero_size_allowed); 3721 case PTR_TO_MAP_VALUE: 3722 if (check_map_access_type(env, regno, reg->off, access_size, 3723 meta && meta->raw_mode ? BPF_WRITE : 3724 BPF_READ)) 3725 return -EACCES; 3726 return check_map_access(env, regno, reg->off, access_size, 3727 zero_size_allowed); 3728 case PTR_TO_MEM: 3729 return check_mem_region_access(env, regno, reg->off, 3730 access_size, reg->mem_size, 3731 zero_size_allowed); 3732 case PTR_TO_RDONLY_BUF: 3733 if (meta && meta->raw_mode) 3734 return -EACCES; 3735 return check_buffer_access(env, reg, regno, reg->off, 3736 access_size, zero_size_allowed, 3737 "rdonly", 3738 &env->prog->aux->max_rdonly_access); 3739 case PTR_TO_RDWR_BUF: 3740 return check_buffer_access(env, reg, regno, reg->off, 3741 access_size, zero_size_allowed, 3742 "rdwr", 3743 &env->prog->aux->max_rdwr_access); 3744 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3745 return check_stack_boundary(env, regno, access_size, 3746 zero_size_allowed, meta); 3747 } 3748 } 3749 3750 /* Implementation details: 3751 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3752 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3753 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3754 * value_or_null->value transition, since the verifier only cares about 3755 * the range of access to valid map value pointer and doesn't care about actual 3756 * address of the map element. 3757 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3758 * reg->id > 0 after value_or_null->value transition. By doing so 3759 * two bpf_map_lookups will be considered two different pointers that 3760 * point to different bpf_spin_locks. 3761 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3762 * dead-locks. 3763 * Since only one bpf_spin_lock is allowed the checks are simpler than 3764 * reg_is_refcounted() logic. The verifier needs to remember only 3765 * one spin_lock instead of array of acquired_refs. 3766 * cur_state->active_spin_lock remembers which map value element got locked 3767 * and clears it after bpf_spin_unlock. 3768 */ 3769 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3770 bool is_lock) 3771 { 3772 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3773 struct bpf_verifier_state *cur = env->cur_state; 3774 bool is_const = tnum_is_const(reg->var_off); 3775 struct bpf_map *map = reg->map_ptr; 3776 u64 val = reg->var_off.value; 3777 3778 if (reg->type != PTR_TO_MAP_VALUE) { 3779 verbose(env, "R%d is not a pointer to map_value\n", regno); 3780 return -EINVAL; 3781 } 3782 if (!is_const) { 3783 verbose(env, 3784 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3785 regno); 3786 return -EINVAL; 3787 } 3788 if (!map->btf) { 3789 verbose(env, 3790 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3791 map->name); 3792 return -EINVAL; 3793 } 3794 if (!map_value_has_spin_lock(map)) { 3795 if (map->spin_lock_off == -E2BIG) 3796 verbose(env, 3797 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3798 map->name); 3799 else if (map->spin_lock_off == -ENOENT) 3800 verbose(env, 3801 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3802 map->name); 3803 else 3804 verbose(env, 3805 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3806 map->name); 3807 return -EINVAL; 3808 } 3809 if (map->spin_lock_off != val + reg->off) { 3810 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3811 val + reg->off); 3812 return -EINVAL; 3813 } 3814 if (is_lock) { 3815 if (cur->active_spin_lock) { 3816 verbose(env, 3817 "Locking two bpf_spin_locks are not allowed\n"); 3818 return -EINVAL; 3819 } 3820 cur->active_spin_lock = reg->id; 3821 } else { 3822 if (!cur->active_spin_lock) { 3823 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3824 return -EINVAL; 3825 } 3826 if (cur->active_spin_lock != reg->id) { 3827 verbose(env, "bpf_spin_unlock of different lock\n"); 3828 return -EINVAL; 3829 } 3830 cur->active_spin_lock = 0; 3831 } 3832 return 0; 3833 } 3834 3835 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3836 { 3837 return type == ARG_PTR_TO_MEM || 3838 type == ARG_PTR_TO_MEM_OR_NULL || 3839 type == ARG_PTR_TO_UNINIT_MEM; 3840 } 3841 3842 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3843 { 3844 return type == ARG_CONST_SIZE || 3845 type == ARG_CONST_SIZE_OR_ZERO; 3846 } 3847 3848 static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type) 3849 { 3850 return type == ARG_PTR_TO_ALLOC_MEM || 3851 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 3852 } 3853 3854 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3855 { 3856 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3857 } 3858 3859 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3860 { 3861 return type == ARG_PTR_TO_INT || 3862 type == ARG_PTR_TO_LONG; 3863 } 3864 3865 static int int_ptr_type_to_size(enum bpf_arg_type type) 3866 { 3867 if (type == ARG_PTR_TO_INT) 3868 return sizeof(u32); 3869 else if (type == ARG_PTR_TO_LONG) 3870 return sizeof(u64); 3871 3872 return -EINVAL; 3873 } 3874 3875 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 3876 struct bpf_call_arg_meta *meta, 3877 const struct bpf_func_proto *fn) 3878 { 3879 u32 regno = BPF_REG_1 + arg; 3880 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3881 enum bpf_reg_type expected_type, type = reg->type; 3882 enum bpf_arg_type arg_type = fn->arg_type[arg]; 3883 int err = 0; 3884 3885 if (arg_type == ARG_DONTCARE) 3886 return 0; 3887 3888 err = check_reg_arg(env, regno, SRC_OP); 3889 if (err) 3890 return err; 3891 3892 if (arg_type == ARG_ANYTHING) { 3893 if (is_pointer_value(env, regno)) { 3894 verbose(env, "R%d leaks addr into helper function\n", 3895 regno); 3896 return -EACCES; 3897 } 3898 return 0; 3899 } 3900 3901 if (type_is_pkt_pointer(type) && 3902 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3903 verbose(env, "helper access to the packet is not allowed\n"); 3904 return -EACCES; 3905 } 3906 3907 if (arg_type == ARG_PTR_TO_MAP_KEY || 3908 arg_type == ARG_PTR_TO_MAP_VALUE || 3909 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3910 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3911 expected_type = PTR_TO_STACK; 3912 if (register_is_null(reg) && 3913 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3914 /* final test in check_stack_boundary() */; 3915 else if (!type_is_pkt_pointer(type) && 3916 type != PTR_TO_MAP_VALUE && 3917 type != expected_type) 3918 goto err_type; 3919 } else if (arg_type == ARG_CONST_SIZE || 3920 arg_type == ARG_CONST_SIZE_OR_ZERO || 3921 arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) { 3922 expected_type = SCALAR_VALUE; 3923 if (type != expected_type) 3924 goto err_type; 3925 } else if (arg_type == ARG_CONST_MAP_PTR) { 3926 expected_type = CONST_PTR_TO_MAP; 3927 if (type != expected_type) 3928 goto err_type; 3929 } else if (arg_type == ARG_PTR_TO_CTX || 3930 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3931 expected_type = PTR_TO_CTX; 3932 if (!(register_is_null(reg) && 3933 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3934 if (type != expected_type) 3935 goto err_type; 3936 err = check_ctx_reg(env, reg, regno); 3937 if (err < 0) 3938 return err; 3939 } 3940 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3941 expected_type = PTR_TO_SOCK_COMMON; 3942 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3943 if (!type_is_sk_pointer(type)) 3944 goto err_type; 3945 if (reg->ref_obj_id) { 3946 if (meta->ref_obj_id) { 3947 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3948 regno, reg->ref_obj_id, 3949 meta->ref_obj_id); 3950 return -EFAULT; 3951 } 3952 meta->ref_obj_id = reg->ref_obj_id; 3953 } 3954 } else if (arg_type == ARG_PTR_TO_SOCKET || 3955 arg_type == ARG_PTR_TO_SOCKET_OR_NULL) { 3956 expected_type = PTR_TO_SOCKET; 3957 if (!(register_is_null(reg) && 3958 arg_type == ARG_PTR_TO_SOCKET_OR_NULL)) { 3959 if (type != expected_type) 3960 goto err_type; 3961 } 3962 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3963 expected_type = PTR_TO_BTF_ID; 3964 if (type != expected_type) 3965 goto err_type; 3966 if (!fn->check_btf_id) { 3967 if (reg->btf_id != meta->btf_id) { 3968 verbose(env, "Helper has type %s got %s in R%d\n", 3969 kernel_type_name(meta->btf_id), 3970 kernel_type_name(reg->btf_id), regno); 3971 3972 return -EACCES; 3973 } 3974 } else if (!fn->check_btf_id(reg->btf_id, arg)) { 3975 verbose(env, "Helper does not support %s in R%d\n", 3976 kernel_type_name(reg->btf_id), regno); 3977 3978 return -EACCES; 3979 } 3980 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3981 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3982 regno); 3983 return -EACCES; 3984 } 3985 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3986 if (meta->func_id == BPF_FUNC_spin_lock) { 3987 if (process_spin_lock(env, regno, true)) 3988 return -EACCES; 3989 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3990 if (process_spin_lock(env, regno, false)) 3991 return -EACCES; 3992 } else { 3993 verbose(env, "verifier internal error\n"); 3994 return -EFAULT; 3995 } 3996 } else if (arg_type_is_mem_ptr(arg_type)) { 3997 expected_type = PTR_TO_STACK; 3998 /* One exception here. In case function allows for NULL to be 3999 * passed in as argument, it's a SCALAR_VALUE type. Final test 4000 * happens during stack boundary checking. 4001 */ 4002 if (register_is_null(reg) && 4003 (arg_type == ARG_PTR_TO_MEM_OR_NULL || 4004 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)) 4005 /* final test in check_stack_boundary() */; 4006 else if (!type_is_pkt_pointer(type) && 4007 type != PTR_TO_MAP_VALUE && 4008 type != PTR_TO_MEM && 4009 type != PTR_TO_RDONLY_BUF && 4010 type != PTR_TO_RDWR_BUF && 4011 type != expected_type) 4012 goto err_type; 4013 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 4014 } else if (arg_type_is_alloc_mem_ptr(arg_type)) { 4015 expected_type = PTR_TO_MEM; 4016 if (register_is_null(reg) && 4017 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL) 4018 /* final test in check_stack_boundary() */; 4019 else if (type != expected_type) 4020 goto err_type; 4021 if (meta->ref_obj_id) { 4022 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4023 regno, reg->ref_obj_id, 4024 meta->ref_obj_id); 4025 return -EFAULT; 4026 } 4027 meta->ref_obj_id = reg->ref_obj_id; 4028 } else if (arg_type_is_int_ptr(arg_type)) { 4029 expected_type = PTR_TO_STACK; 4030 if (!type_is_pkt_pointer(type) && 4031 type != PTR_TO_MAP_VALUE && 4032 type != expected_type) 4033 goto err_type; 4034 } else { 4035 verbose(env, "unsupported arg_type %d\n", arg_type); 4036 return -EFAULT; 4037 } 4038 4039 if (arg_type == ARG_CONST_MAP_PTR) { 4040 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4041 meta->map_ptr = reg->map_ptr; 4042 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4043 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4044 * check that [key, key + map->key_size) are within 4045 * stack limits and initialized 4046 */ 4047 if (!meta->map_ptr) { 4048 /* in function declaration map_ptr must come before 4049 * map_key, so that it's verified and known before 4050 * we have to check map_key here. Otherwise it means 4051 * that kernel subsystem misconfigured verifier 4052 */ 4053 verbose(env, "invalid map_ptr to access map->key\n"); 4054 return -EACCES; 4055 } 4056 err = check_helper_mem_access(env, regno, 4057 meta->map_ptr->key_size, false, 4058 NULL); 4059 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4060 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4061 !register_is_null(reg)) || 4062 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4063 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4064 * check [value, value + map->value_size) validity 4065 */ 4066 if (!meta->map_ptr) { 4067 /* kernel subsystem misconfigured verifier */ 4068 verbose(env, "invalid map_ptr to access map->value\n"); 4069 return -EACCES; 4070 } 4071 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4072 err = check_helper_mem_access(env, regno, 4073 meta->map_ptr->value_size, false, 4074 meta); 4075 } else if (arg_type_is_mem_size(arg_type)) { 4076 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4077 4078 /* This is used to refine r0 return value bounds for helpers 4079 * that enforce this value as an upper bound on return values. 4080 * See do_refine_retval_range() for helpers that can refine 4081 * the return value. C type of helper is u32 so we pull register 4082 * bound from umax_value however, if negative verifier errors 4083 * out. Only upper bounds can be learned because retval is an 4084 * int type and negative retvals are allowed. 4085 */ 4086 meta->msize_max_value = reg->umax_value; 4087 4088 /* The register is SCALAR_VALUE; the access check 4089 * happens using its boundaries. 4090 */ 4091 if (!tnum_is_const(reg->var_off)) 4092 /* For unprivileged variable accesses, disable raw 4093 * mode so that the program is required to 4094 * initialize all the memory that the helper could 4095 * just partially fill up. 4096 */ 4097 meta = NULL; 4098 4099 if (reg->smin_value < 0) { 4100 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4101 regno); 4102 return -EACCES; 4103 } 4104 4105 if (reg->umin_value == 0) { 4106 err = check_helper_mem_access(env, regno - 1, 0, 4107 zero_size_allowed, 4108 meta); 4109 if (err) 4110 return err; 4111 } 4112 4113 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4114 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4115 regno); 4116 return -EACCES; 4117 } 4118 err = check_helper_mem_access(env, regno - 1, 4119 reg->umax_value, 4120 zero_size_allowed, meta); 4121 if (!err) 4122 err = mark_chain_precision(env, regno); 4123 } else if (arg_type_is_alloc_size(arg_type)) { 4124 if (!tnum_is_const(reg->var_off)) { 4125 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4126 regno); 4127 return -EACCES; 4128 } 4129 meta->mem_size = reg->var_off.value; 4130 } else if (arg_type_is_int_ptr(arg_type)) { 4131 int size = int_ptr_type_to_size(arg_type); 4132 4133 err = check_helper_mem_access(env, regno, size, false, meta); 4134 if (err) 4135 return err; 4136 err = check_ptr_alignment(env, reg, 0, size, true); 4137 } 4138 4139 return err; 4140 err_type: 4141 verbose(env, "R%d type=%s expected=%s\n", regno, 4142 reg_type_str[type], reg_type_str[expected_type]); 4143 return -EACCES; 4144 } 4145 4146 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4147 struct bpf_map *map, int func_id) 4148 { 4149 if (!map) 4150 return 0; 4151 4152 /* We need a two way check, first is from map perspective ... */ 4153 switch (map->map_type) { 4154 case BPF_MAP_TYPE_PROG_ARRAY: 4155 if (func_id != BPF_FUNC_tail_call) 4156 goto error; 4157 break; 4158 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4159 if (func_id != BPF_FUNC_perf_event_read && 4160 func_id != BPF_FUNC_perf_event_output && 4161 func_id != BPF_FUNC_skb_output && 4162 func_id != BPF_FUNC_perf_event_read_value && 4163 func_id != BPF_FUNC_xdp_output) 4164 goto error; 4165 break; 4166 case BPF_MAP_TYPE_RINGBUF: 4167 if (func_id != BPF_FUNC_ringbuf_output && 4168 func_id != BPF_FUNC_ringbuf_reserve && 4169 func_id != BPF_FUNC_ringbuf_submit && 4170 func_id != BPF_FUNC_ringbuf_discard && 4171 func_id != BPF_FUNC_ringbuf_query) 4172 goto error; 4173 break; 4174 case BPF_MAP_TYPE_STACK_TRACE: 4175 if (func_id != BPF_FUNC_get_stackid) 4176 goto error; 4177 break; 4178 case BPF_MAP_TYPE_CGROUP_ARRAY: 4179 if (func_id != BPF_FUNC_skb_under_cgroup && 4180 func_id != BPF_FUNC_current_task_under_cgroup) 4181 goto error; 4182 break; 4183 case BPF_MAP_TYPE_CGROUP_STORAGE: 4184 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4185 if (func_id != BPF_FUNC_get_local_storage) 4186 goto error; 4187 break; 4188 case BPF_MAP_TYPE_DEVMAP: 4189 case BPF_MAP_TYPE_DEVMAP_HASH: 4190 if (func_id != BPF_FUNC_redirect_map && 4191 func_id != BPF_FUNC_map_lookup_elem) 4192 goto error; 4193 break; 4194 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4195 * appear. 4196 */ 4197 case BPF_MAP_TYPE_CPUMAP: 4198 if (func_id != BPF_FUNC_redirect_map) 4199 goto error; 4200 break; 4201 case BPF_MAP_TYPE_XSKMAP: 4202 if (func_id != BPF_FUNC_redirect_map && 4203 func_id != BPF_FUNC_map_lookup_elem) 4204 goto error; 4205 break; 4206 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4207 case BPF_MAP_TYPE_HASH_OF_MAPS: 4208 if (func_id != BPF_FUNC_map_lookup_elem) 4209 goto error; 4210 break; 4211 case BPF_MAP_TYPE_SOCKMAP: 4212 if (func_id != BPF_FUNC_sk_redirect_map && 4213 func_id != BPF_FUNC_sock_map_update && 4214 func_id != BPF_FUNC_map_delete_elem && 4215 func_id != BPF_FUNC_msg_redirect_map && 4216 func_id != BPF_FUNC_sk_select_reuseport && 4217 func_id != BPF_FUNC_map_lookup_elem) 4218 goto error; 4219 break; 4220 case BPF_MAP_TYPE_SOCKHASH: 4221 if (func_id != BPF_FUNC_sk_redirect_hash && 4222 func_id != BPF_FUNC_sock_hash_update && 4223 func_id != BPF_FUNC_map_delete_elem && 4224 func_id != BPF_FUNC_msg_redirect_hash && 4225 func_id != BPF_FUNC_sk_select_reuseport && 4226 func_id != BPF_FUNC_map_lookup_elem) 4227 goto error; 4228 break; 4229 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4230 if (func_id != BPF_FUNC_sk_select_reuseport) 4231 goto error; 4232 break; 4233 case BPF_MAP_TYPE_QUEUE: 4234 case BPF_MAP_TYPE_STACK: 4235 if (func_id != BPF_FUNC_map_peek_elem && 4236 func_id != BPF_FUNC_map_pop_elem && 4237 func_id != BPF_FUNC_map_push_elem) 4238 goto error; 4239 break; 4240 case BPF_MAP_TYPE_SK_STORAGE: 4241 if (func_id != BPF_FUNC_sk_storage_get && 4242 func_id != BPF_FUNC_sk_storage_delete) 4243 goto error; 4244 break; 4245 default: 4246 break; 4247 } 4248 4249 /* ... and second from the function itself. */ 4250 switch (func_id) { 4251 case BPF_FUNC_tail_call: 4252 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4253 goto error; 4254 if (env->subprog_cnt > 1) { 4255 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 4256 return -EINVAL; 4257 } 4258 break; 4259 case BPF_FUNC_perf_event_read: 4260 case BPF_FUNC_perf_event_output: 4261 case BPF_FUNC_perf_event_read_value: 4262 case BPF_FUNC_skb_output: 4263 case BPF_FUNC_xdp_output: 4264 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4265 goto error; 4266 break; 4267 case BPF_FUNC_get_stackid: 4268 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4269 goto error; 4270 break; 4271 case BPF_FUNC_current_task_under_cgroup: 4272 case BPF_FUNC_skb_under_cgroup: 4273 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4274 goto error; 4275 break; 4276 case BPF_FUNC_redirect_map: 4277 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4278 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4279 map->map_type != BPF_MAP_TYPE_CPUMAP && 4280 map->map_type != BPF_MAP_TYPE_XSKMAP) 4281 goto error; 4282 break; 4283 case BPF_FUNC_sk_redirect_map: 4284 case BPF_FUNC_msg_redirect_map: 4285 case BPF_FUNC_sock_map_update: 4286 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4287 goto error; 4288 break; 4289 case BPF_FUNC_sk_redirect_hash: 4290 case BPF_FUNC_msg_redirect_hash: 4291 case BPF_FUNC_sock_hash_update: 4292 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4293 goto error; 4294 break; 4295 case BPF_FUNC_get_local_storage: 4296 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4297 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4298 goto error; 4299 break; 4300 case BPF_FUNC_sk_select_reuseport: 4301 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4302 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4303 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4304 goto error; 4305 break; 4306 case BPF_FUNC_map_peek_elem: 4307 case BPF_FUNC_map_pop_elem: 4308 case BPF_FUNC_map_push_elem: 4309 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4310 map->map_type != BPF_MAP_TYPE_STACK) 4311 goto error; 4312 break; 4313 case BPF_FUNC_sk_storage_get: 4314 case BPF_FUNC_sk_storage_delete: 4315 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4316 goto error; 4317 break; 4318 default: 4319 break; 4320 } 4321 4322 return 0; 4323 error: 4324 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4325 map->map_type, func_id_name(func_id), func_id); 4326 return -EINVAL; 4327 } 4328 4329 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4330 { 4331 int count = 0; 4332 4333 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4334 count++; 4335 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4336 count++; 4337 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4338 count++; 4339 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4340 count++; 4341 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4342 count++; 4343 4344 /* We only support one arg being in raw mode at the moment, 4345 * which is sufficient for the helper functions we have 4346 * right now. 4347 */ 4348 return count <= 1; 4349 } 4350 4351 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4352 enum bpf_arg_type arg_next) 4353 { 4354 return (arg_type_is_mem_ptr(arg_curr) && 4355 !arg_type_is_mem_size(arg_next)) || 4356 (!arg_type_is_mem_ptr(arg_curr) && 4357 arg_type_is_mem_size(arg_next)); 4358 } 4359 4360 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4361 { 4362 /* bpf_xxx(..., buf, len) call will access 'len' 4363 * bytes from memory 'buf'. Both arg types need 4364 * to be paired, so make sure there's no buggy 4365 * helper function specification. 4366 */ 4367 if (arg_type_is_mem_size(fn->arg1_type) || 4368 arg_type_is_mem_ptr(fn->arg5_type) || 4369 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4370 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4371 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4372 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4373 return false; 4374 4375 return true; 4376 } 4377 4378 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4379 { 4380 int count = 0; 4381 4382 if (arg_type_may_be_refcounted(fn->arg1_type)) 4383 count++; 4384 if (arg_type_may_be_refcounted(fn->arg2_type)) 4385 count++; 4386 if (arg_type_may_be_refcounted(fn->arg3_type)) 4387 count++; 4388 if (arg_type_may_be_refcounted(fn->arg4_type)) 4389 count++; 4390 if (arg_type_may_be_refcounted(fn->arg5_type)) 4391 count++; 4392 4393 /* A reference acquiring function cannot acquire 4394 * another refcounted ptr. 4395 */ 4396 if (may_be_acquire_function(func_id) && count) 4397 return false; 4398 4399 /* We only support one arg being unreferenced at the moment, 4400 * which is sufficient for the helper functions we have right now. 4401 */ 4402 return count <= 1; 4403 } 4404 4405 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4406 { 4407 return check_raw_mode_ok(fn) && 4408 check_arg_pair_ok(fn) && 4409 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4410 } 4411 4412 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4413 * are now invalid, so turn them into unknown SCALAR_VALUE. 4414 */ 4415 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4416 struct bpf_func_state *state) 4417 { 4418 struct bpf_reg_state *regs = state->regs, *reg; 4419 int i; 4420 4421 for (i = 0; i < MAX_BPF_REG; i++) 4422 if (reg_is_pkt_pointer_any(®s[i])) 4423 mark_reg_unknown(env, regs, i); 4424 4425 bpf_for_each_spilled_reg(i, state, reg) { 4426 if (!reg) 4427 continue; 4428 if (reg_is_pkt_pointer_any(reg)) 4429 __mark_reg_unknown(env, reg); 4430 } 4431 } 4432 4433 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4434 { 4435 struct bpf_verifier_state *vstate = env->cur_state; 4436 int i; 4437 4438 for (i = 0; i <= vstate->curframe; i++) 4439 __clear_all_pkt_pointers(env, vstate->frame[i]); 4440 } 4441 4442 static void release_reg_references(struct bpf_verifier_env *env, 4443 struct bpf_func_state *state, 4444 int ref_obj_id) 4445 { 4446 struct bpf_reg_state *regs = state->regs, *reg; 4447 int i; 4448 4449 for (i = 0; i < MAX_BPF_REG; i++) 4450 if (regs[i].ref_obj_id == ref_obj_id) 4451 mark_reg_unknown(env, regs, i); 4452 4453 bpf_for_each_spilled_reg(i, state, reg) { 4454 if (!reg) 4455 continue; 4456 if (reg->ref_obj_id == ref_obj_id) 4457 __mark_reg_unknown(env, reg); 4458 } 4459 } 4460 4461 /* The pointer with the specified id has released its reference to kernel 4462 * resources. Identify all copies of the same pointer and clear the reference. 4463 */ 4464 static int release_reference(struct bpf_verifier_env *env, 4465 int ref_obj_id) 4466 { 4467 struct bpf_verifier_state *vstate = env->cur_state; 4468 int err; 4469 int i; 4470 4471 err = release_reference_state(cur_func(env), ref_obj_id); 4472 if (err) 4473 return err; 4474 4475 for (i = 0; i <= vstate->curframe; i++) 4476 release_reg_references(env, vstate->frame[i], ref_obj_id); 4477 4478 return 0; 4479 } 4480 4481 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4482 struct bpf_reg_state *regs) 4483 { 4484 int i; 4485 4486 /* after the call registers r0 - r5 were scratched */ 4487 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4488 mark_reg_not_init(env, regs, caller_saved[i]); 4489 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4490 } 4491 } 4492 4493 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4494 int *insn_idx) 4495 { 4496 struct bpf_verifier_state *state = env->cur_state; 4497 struct bpf_func_info_aux *func_info_aux; 4498 struct bpf_func_state *caller, *callee; 4499 int i, err, subprog, target_insn; 4500 bool is_global = false; 4501 4502 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4503 verbose(env, "the call stack of %d frames is too deep\n", 4504 state->curframe + 2); 4505 return -E2BIG; 4506 } 4507 4508 target_insn = *insn_idx + insn->imm; 4509 subprog = find_subprog(env, target_insn + 1); 4510 if (subprog < 0) { 4511 verbose(env, "verifier bug. No program starts at insn %d\n", 4512 target_insn + 1); 4513 return -EFAULT; 4514 } 4515 4516 caller = state->frame[state->curframe]; 4517 if (state->frame[state->curframe + 1]) { 4518 verbose(env, "verifier bug. Frame %d already allocated\n", 4519 state->curframe + 1); 4520 return -EFAULT; 4521 } 4522 4523 func_info_aux = env->prog->aux->func_info_aux; 4524 if (func_info_aux) 4525 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4526 err = btf_check_func_arg_match(env, subprog, caller->regs); 4527 if (err == -EFAULT) 4528 return err; 4529 if (is_global) { 4530 if (err) { 4531 verbose(env, "Caller passes invalid args into func#%d\n", 4532 subprog); 4533 return err; 4534 } else { 4535 if (env->log.level & BPF_LOG_LEVEL) 4536 verbose(env, 4537 "Func#%d is global and valid. Skipping.\n", 4538 subprog); 4539 clear_caller_saved_regs(env, caller->regs); 4540 4541 /* All global functions return SCALAR_VALUE */ 4542 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4543 4544 /* continue with next insn after call */ 4545 return 0; 4546 } 4547 } 4548 4549 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4550 if (!callee) 4551 return -ENOMEM; 4552 state->frame[state->curframe + 1] = callee; 4553 4554 /* callee cannot access r0, r6 - r9 for reading and has to write 4555 * into its own stack before reading from it. 4556 * callee can read/write into caller's stack 4557 */ 4558 init_func_state(env, callee, 4559 /* remember the callsite, it will be used by bpf_exit */ 4560 *insn_idx /* callsite */, 4561 state->curframe + 1 /* frameno within this callchain */, 4562 subprog /* subprog number within this prog */); 4563 4564 /* Transfer references to the callee */ 4565 err = transfer_reference_state(callee, caller); 4566 if (err) 4567 return err; 4568 4569 /* copy r1 - r5 args that callee can access. The copy includes parent 4570 * pointers, which connects us up to the liveness chain 4571 */ 4572 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4573 callee->regs[i] = caller->regs[i]; 4574 4575 clear_caller_saved_regs(env, caller->regs); 4576 4577 /* only increment it after check_reg_arg() finished */ 4578 state->curframe++; 4579 4580 /* and go analyze first insn of the callee */ 4581 *insn_idx = target_insn; 4582 4583 if (env->log.level & BPF_LOG_LEVEL) { 4584 verbose(env, "caller:\n"); 4585 print_verifier_state(env, caller); 4586 verbose(env, "callee:\n"); 4587 print_verifier_state(env, callee); 4588 } 4589 return 0; 4590 } 4591 4592 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4593 { 4594 struct bpf_verifier_state *state = env->cur_state; 4595 struct bpf_func_state *caller, *callee; 4596 struct bpf_reg_state *r0; 4597 int err; 4598 4599 callee = state->frame[state->curframe]; 4600 r0 = &callee->regs[BPF_REG_0]; 4601 if (r0->type == PTR_TO_STACK) { 4602 /* technically it's ok to return caller's stack pointer 4603 * (or caller's caller's pointer) back to the caller, 4604 * since these pointers are valid. Only current stack 4605 * pointer will be invalid as soon as function exits, 4606 * but let's be conservative 4607 */ 4608 verbose(env, "cannot return stack pointer to the caller\n"); 4609 return -EINVAL; 4610 } 4611 4612 state->curframe--; 4613 caller = state->frame[state->curframe]; 4614 /* return to the caller whatever r0 had in the callee */ 4615 caller->regs[BPF_REG_0] = *r0; 4616 4617 /* Transfer references to the caller */ 4618 err = transfer_reference_state(caller, callee); 4619 if (err) 4620 return err; 4621 4622 *insn_idx = callee->callsite + 1; 4623 if (env->log.level & BPF_LOG_LEVEL) { 4624 verbose(env, "returning from callee:\n"); 4625 print_verifier_state(env, callee); 4626 verbose(env, "to caller at %d:\n", *insn_idx); 4627 print_verifier_state(env, caller); 4628 } 4629 /* clear everything in the callee */ 4630 free_func_state(callee); 4631 state->frame[state->curframe + 1] = NULL; 4632 return 0; 4633 } 4634 4635 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4636 int func_id, 4637 struct bpf_call_arg_meta *meta) 4638 { 4639 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4640 4641 if (ret_type != RET_INTEGER || 4642 (func_id != BPF_FUNC_get_stack && 4643 func_id != BPF_FUNC_probe_read_str && 4644 func_id != BPF_FUNC_probe_read_kernel_str && 4645 func_id != BPF_FUNC_probe_read_user_str)) 4646 return; 4647 4648 ret_reg->smax_value = meta->msize_max_value; 4649 ret_reg->s32_max_value = meta->msize_max_value; 4650 __reg_deduce_bounds(ret_reg); 4651 __reg_bound_offset(ret_reg); 4652 __update_reg_bounds(ret_reg); 4653 } 4654 4655 static int 4656 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4657 int func_id, int insn_idx) 4658 { 4659 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4660 struct bpf_map *map = meta->map_ptr; 4661 4662 if (func_id != BPF_FUNC_tail_call && 4663 func_id != BPF_FUNC_map_lookup_elem && 4664 func_id != BPF_FUNC_map_update_elem && 4665 func_id != BPF_FUNC_map_delete_elem && 4666 func_id != BPF_FUNC_map_push_elem && 4667 func_id != BPF_FUNC_map_pop_elem && 4668 func_id != BPF_FUNC_map_peek_elem) 4669 return 0; 4670 4671 if (map == NULL) { 4672 verbose(env, "kernel subsystem misconfigured verifier\n"); 4673 return -EINVAL; 4674 } 4675 4676 /* In case of read-only, some additional restrictions 4677 * need to be applied in order to prevent altering the 4678 * state of the map from program side. 4679 */ 4680 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4681 (func_id == BPF_FUNC_map_delete_elem || 4682 func_id == BPF_FUNC_map_update_elem || 4683 func_id == BPF_FUNC_map_push_elem || 4684 func_id == BPF_FUNC_map_pop_elem)) { 4685 verbose(env, "write into map forbidden\n"); 4686 return -EACCES; 4687 } 4688 4689 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4690 bpf_map_ptr_store(aux, meta->map_ptr, 4691 !meta->map_ptr->bypass_spec_v1); 4692 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4693 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4694 !meta->map_ptr->bypass_spec_v1); 4695 return 0; 4696 } 4697 4698 static int 4699 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4700 int func_id, int insn_idx) 4701 { 4702 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4703 struct bpf_reg_state *regs = cur_regs(env), *reg; 4704 struct bpf_map *map = meta->map_ptr; 4705 struct tnum range; 4706 u64 val; 4707 int err; 4708 4709 if (func_id != BPF_FUNC_tail_call) 4710 return 0; 4711 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4712 verbose(env, "kernel subsystem misconfigured verifier\n"); 4713 return -EINVAL; 4714 } 4715 4716 range = tnum_range(0, map->max_entries - 1); 4717 reg = ®s[BPF_REG_3]; 4718 4719 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4720 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4721 return 0; 4722 } 4723 4724 err = mark_chain_precision(env, BPF_REG_3); 4725 if (err) 4726 return err; 4727 4728 val = reg->var_off.value; 4729 if (bpf_map_key_unseen(aux)) 4730 bpf_map_key_store(aux, val); 4731 else if (!bpf_map_key_poisoned(aux) && 4732 bpf_map_key_immediate(aux) != val) 4733 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4734 return 0; 4735 } 4736 4737 static int check_reference_leak(struct bpf_verifier_env *env) 4738 { 4739 struct bpf_func_state *state = cur_func(env); 4740 int i; 4741 4742 for (i = 0; i < state->acquired_refs; i++) { 4743 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4744 state->refs[i].id, state->refs[i].insn_idx); 4745 } 4746 return state->acquired_refs ? -EINVAL : 0; 4747 } 4748 4749 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4750 { 4751 const struct bpf_func_proto *fn = NULL; 4752 struct bpf_reg_state *regs; 4753 struct bpf_call_arg_meta meta; 4754 bool changes_data; 4755 int i, err; 4756 4757 /* find function prototype */ 4758 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4759 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4760 func_id); 4761 return -EINVAL; 4762 } 4763 4764 if (env->ops->get_func_proto) 4765 fn = env->ops->get_func_proto(func_id, env->prog); 4766 if (!fn) { 4767 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4768 func_id); 4769 return -EINVAL; 4770 } 4771 4772 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4773 if (!env->prog->gpl_compatible && fn->gpl_only) { 4774 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4775 return -EINVAL; 4776 } 4777 4778 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4779 changes_data = bpf_helper_changes_pkt_data(fn->func); 4780 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4781 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4782 func_id_name(func_id), func_id); 4783 return -EINVAL; 4784 } 4785 4786 memset(&meta, 0, sizeof(meta)); 4787 meta.pkt_access = fn->pkt_access; 4788 4789 err = check_func_proto(fn, func_id); 4790 if (err) { 4791 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4792 func_id_name(func_id), func_id); 4793 return err; 4794 } 4795 4796 meta.func_id = func_id; 4797 /* check args */ 4798 for (i = 0; i < 5; i++) { 4799 if (!fn->check_btf_id) { 4800 err = btf_resolve_helper_id(&env->log, fn, i); 4801 if (err > 0) 4802 meta.btf_id = err; 4803 } 4804 err = check_func_arg(env, i, &meta, fn); 4805 if (err) 4806 return err; 4807 } 4808 4809 err = record_func_map(env, &meta, func_id, insn_idx); 4810 if (err) 4811 return err; 4812 4813 err = record_func_key(env, &meta, func_id, insn_idx); 4814 if (err) 4815 return err; 4816 4817 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4818 * is inferred from register state. 4819 */ 4820 for (i = 0; i < meta.access_size; i++) { 4821 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4822 BPF_WRITE, -1, false); 4823 if (err) 4824 return err; 4825 } 4826 4827 if (func_id == BPF_FUNC_tail_call) { 4828 err = check_reference_leak(env); 4829 if (err) { 4830 verbose(env, "tail_call would lead to reference leak\n"); 4831 return err; 4832 } 4833 } else if (is_release_function(func_id)) { 4834 err = release_reference(env, meta.ref_obj_id); 4835 if (err) { 4836 verbose(env, "func %s#%d reference has not been acquired before\n", 4837 func_id_name(func_id), func_id); 4838 return err; 4839 } 4840 } 4841 4842 regs = cur_regs(env); 4843 4844 /* check that flags argument in get_local_storage(map, flags) is 0, 4845 * this is required because get_local_storage() can't return an error. 4846 */ 4847 if (func_id == BPF_FUNC_get_local_storage && 4848 !register_is_null(®s[BPF_REG_2])) { 4849 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4850 return -EINVAL; 4851 } 4852 4853 /* reset caller saved regs */ 4854 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4855 mark_reg_not_init(env, regs, caller_saved[i]); 4856 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4857 } 4858 4859 /* helper call returns 64-bit value. */ 4860 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4861 4862 /* update return register (already marked as written above) */ 4863 if (fn->ret_type == RET_INTEGER) { 4864 /* sets type to SCALAR_VALUE */ 4865 mark_reg_unknown(env, regs, BPF_REG_0); 4866 } else if (fn->ret_type == RET_VOID) { 4867 regs[BPF_REG_0].type = NOT_INIT; 4868 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4869 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4870 /* There is no offset yet applied, variable or fixed */ 4871 mark_reg_known_zero(env, regs, BPF_REG_0); 4872 /* remember map_ptr, so that check_map_access() 4873 * can check 'value_size' boundary of memory access 4874 * to map element returned from bpf_map_lookup_elem() 4875 */ 4876 if (meta.map_ptr == NULL) { 4877 verbose(env, 4878 "kernel subsystem misconfigured verifier\n"); 4879 return -EINVAL; 4880 } 4881 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4882 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4883 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4884 if (map_value_has_spin_lock(meta.map_ptr)) 4885 regs[BPF_REG_0].id = ++env->id_gen; 4886 } else { 4887 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4888 regs[BPF_REG_0].id = ++env->id_gen; 4889 } 4890 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4891 mark_reg_known_zero(env, regs, BPF_REG_0); 4892 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4893 regs[BPF_REG_0].id = ++env->id_gen; 4894 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4895 mark_reg_known_zero(env, regs, BPF_REG_0); 4896 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4897 regs[BPF_REG_0].id = ++env->id_gen; 4898 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4899 mark_reg_known_zero(env, regs, BPF_REG_0); 4900 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4901 regs[BPF_REG_0].id = ++env->id_gen; 4902 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 4903 mark_reg_known_zero(env, regs, BPF_REG_0); 4904 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 4905 regs[BPF_REG_0].id = ++env->id_gen; 4906 regs[BPF_REG_0].mem_size = meta.mem_size; 4907 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) { 4908 int ret_btf_id; 4909 4910 mark_reg_known_zero(env, regs, BPF_REG_0); 4911 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL; 4912 ret_btf_id = *fn->ret_btf_id; 4913 if (ret_btf_id == 0) { 4914 verbose(env, "invalid return type %d of func %s#%d\n", 4915 fn->ret_type, func_id_name(func_id), func_id); 4916 return -EINVAL; 4917 } 4918 regs[BPF_REG_0].btf_id = ret_btf_id; 4919 } else { 4920 verbose(env, "unknown return type %d of func %s#%d\n", 4921 fn->ret_type, func_id_name(func_id), func_id); 4922 return -EINVAL; 4923 } 4924 4925 if (is_ptr_cast_function(func_id)) { 4926 /* For release_reference() */ 4927 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4928 } else if (is_acquire_function(func_id, meta.map_ptr)) { 4929 int id = acquire_reference_state(env, insn_idx); 4930 4931 if (id < 0) 4932 return id; 4933 /* For mark_ptr_or_null_reg() */ 4934 regs[BPF_REG_0].id = id; 4935 /* For release_reference() */ 4936 regs[BPF_REG_0].ref_obj_id = id; 4937 } 4938 4939 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4940 4941 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4942 if (err) 4943 return err; 4944 4945 if ((func_id == BPF_FUNC_get_stack || 4946 func_id == BPF_FUNC_get_task_stack) && 4947 !env->prog->has_callchain_buf) { 4948 const char *err_str; 4949 4950 #ifdef CONFIG_PERF_EVENTS 4951 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4952 err_str = "cannot get callchain buffer for func %s#%d\n"; 4953 #else 4954 err = -ENOTSUPP; 4955 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4956 #endif 4957 if (err) { 4958 verbose(env, err_str, func_id_name(func_id), func_id); 4959 return err; 4960 } 4961 4962 env->prog->has_callchain_buf = true; 4963 } 4964 4965 if (changes_data) 4966 clear_all_pkt_pointers(env); 4967 return 0; 4968 } 4969 4970 static bool signed_add_overflows(s64 a, s64 b) 4971 { 4972 /* Do the add in u64, where overflow is well-defined */ 4973 s64 res = (s64)((u64)a + (u64)b); 4974 4975 if (b < 0) 4976 return res > a; 4977 return res < a; 4978 } 4979 4980 static bool signed_add32_overflows(s64 a, s64 b) 4981 { 4982 /* Do the add in u32, where overflow is well-defined */ 4983 s32 res = (s32)((u32)a + (u32)b); 4984 4985 if (b < 0) 4986 return res > a; 4987 return res < a; 4988 } 4989 4990 static bool signed_sub_overflows(s32 a, s32 b) 4991 { 4992 /* Do the sub in u64, where overflow is well-defined */ 4993 s64 res = (s64)((u64)a - (u64)b); 4994 4995 if (b < 0) 4996 return res < a; 4997 return res > a; 4998 } 4999 5000 static bool signed_sub32_overflows(s32 a, s32 b) 5001 { 5002 /* Do the sub in u64, where overflow is well-defined */ 5003 s32 res = (s32)((u32)a - (u32)b); 5004 5005 if (b < 0) 5006 return res < a; 5007 return res > a; 5008 } 5009 5010 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5011 const struct bpf_reg_state *reg, 5012 enum bpf_reg_type type) 5013 { 5014 bool known = tnum_is_const(reg->var_off); 5015 s64 val = reg->var_off.value; 5016 s64 smin = reg->smin_value; 5017 5018 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5019 verbose(env, "math between %s pointer and %lld is not allowed\n", 5020 reg_type_str[type], val); 5021 return false; 5022 } 5023 5024 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5025 verbose(env, "%s pointer offset %d is not allowed\n", 5026 reg_type_str[type], reg->off); 5027 return false; 5028 } 5029 5030 if (smin == S64_MIN) { 5031 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5032 reg_type_str[type]); 5033 return false; 5034 } 5035 5036 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5037 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5038 smin, reg_type_str[type]); 5039 return false; 5040 } 5041 5042 return true; 5043 } 5044 5045 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5046 { 5047 return &env->insn_aux_data[env->insn_idx]; 5048 } 5049 5050 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5051 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5052 { 5053 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5054 (opcode == BPF_SUB && !off_is_neg); 5055 u32 off; 5056 5057 switch (ptr_reg->type) { 5058 case PTR_TO_STACK: 5059 /* Indirect variable offset stack access is prohibited in 5060 * unprivileged mode so it's not handled here. 5061 */ 5062 off = ptr_reg->off + ptr_reg->var_off.value; 5063 if (mask_to_left) 5064 *ptr_limit = MAX_BPF_STACK + off; 5065 else 5066 *ptr_limit = -off; 5067 return 0; 5068 case PTR_TO_MAP_VALUE: 5069 if (mask_to_left) { 5070 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5071 } else { 5072 off = ptr_reg->smin_value + ptr_reg->off; 5073 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5074 } 5075 return 0; 5076 default: 5077 return -EINVAL; 5078 } 5079 } 5080 5081 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5082 const struct bpf_insn *insn) 5083 { 5084 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5085 } 5086 5087 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5088 u32 alu_state, u32 alu_limit) 5089 { 5090 /* If we arrived here from different branches with different 5091 * state or limits to sanitize, then this won't work. 5092 */ 5093 if (aux->alu_state && 5094 (aux->alu_state != alu_state || 5095 aux->alu_limit != alu_limit)) 5096 return -EACCES; 5097 5098 /* Corresponding fixup done in fixup_bpf_calls(). */ 5099 aux->alu_state = alu_state; 5100 aux->alu_limit = alu_limit; 5101 return 0; 5102 } 5103 5104 static int sanitize_val_alu(struct bpf_verifier_env *env, 5105 struct bpf_insn *insn) 5106 { 5107 struct bpf_insn_aux_data *aux = cur_aux(env); 5108 5109 if (can_skip_alu_sanitation(env, insn)) 5110 return 0; 5111 5112 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5113 } 5114 5115 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5116 struct bpf_insn *insn, 5117 const struct bpf_reg_state *ptr_reg, 5118 struct bpf_reg_state *dst_reg, 5119 bool off_is_neg) 5120 { 5121 struct bpf_verifier_state *vstate = env->cur_state; 5122 struct bpf_insn_aux_data *aux = cur_aux(env); 5123 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5124 u8 opcode = BPF_OP(insn->code); 5125 u32 alu_state, alu_limit; 5126 struct bpf_reg_state tmp; 5127 bool ret; 5128 5129 if (can_skip_alu_sanitation(env, insn)) 5130 return 0; 5131 5132 /* We already marked aux for masking from non-speculative 5133 * paths, thus we got here in the first place. We only care 5134 * to explore bad access from here. 5135 */ 5136 if (vstate->speculative) 5137 goto do_sim; 5138 5139 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5140 alu_state |= ptr_is_dst_reg ? 5141 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5142 5143 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5144 return 0; 5145 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5146 return -EACCES; 5147 do_sim: 5148 /* Simulate and find potential out-of-bounds access under 5149 * speculative execution from truncation as a result of 5150 * masking when off was not within expected range. If off 5151 * sits in dst, then we temporarily need to move ptr there 5152 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5153 * for cases where we use K-based arithmetic in one direction 5154 * and truncated reg-based in the other in order to explore 5155 * bad access. 5156 */ 5157 if (!ptr_is_dst_reg) { 5158 tmp = *dst_reg; 5159 *dst_reg = *ptr_reg; 5160 } 5161 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5162 if (!ptr_is_dst_reg && ret) 5163 *dst_reg = tmp; 5164 return !ret ? -EFAULT : 0; 5165 } 5166 5167 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5168 * Caller should also handle BPF_MOV case separately. 5169 * If we return -EACCES, caller may want to try again treating pointer as a 5170 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5171 */ 5172 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5173 struct bpf_insn *insn, 5174 const struct bpf_reg_state *ptr_reg, 5175 const struct bpf_reg_state *off_reg) 5176 { 5177 struct bpf_verifier_state *vstate = env->cur_state; 5178 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5179 struct bpf_reg_state *regs = state->regs, *dst_reg; 5180 bool known = tnum_is_const(off_reg->var_off); 5181 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5182 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5183 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5184 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5185 u32 dst = insn->dst_reg, src = insn->src_reg; 5186 u8 opcode = BPF_OP(insn->code); 5187 int ret; 5188 5189 dst_reg = ®s[dst]; 5190 5191 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5192 smin_val > smax_val || umin_val > umax_val) { 5193 /* Taint dst register if offset had invalid bounds derived from 5194 * e.g. dead branches. 5195 */ 5196 __mark_reg_unknown(env, dst_reg); 5197 return 0; 5198 } 5199 5200 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5201 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5202 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5203 __mark_reg_unknown(env, dst_reg); 5204 return 0; 5205 } 5206 5207 verbose(env, 5208 "R%d 32-bit pointer arithmetic prohibited\n", 5209 dst); 5210 return -EACCES; 5211 } 5212 5213 switch (ptr_reg->type) { 5214 case PTR_TO_MAP_VALUE_OR_NULL: 5215 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5216 dst, reg_type_str[ptr_reg->type]); 5217 return -EACCES; 5218 case CONST_PTR_TO_MAP: 5219 case PTR_TO_PACKET_END: 5220 case PTR_TO_SOCKET: 5221 case PTR_TO_SOCKET_OR_NULL: 5222 case PTR_TO_SOCK_COMMON: 5223 case PTR_TO_SOCK_COMMON_OR_NULL: 5224 case PTR_TO_TCP_SOCK: 5225 case PTR_TO_TCP_SOCK_OR_NULL: 5226 case PTR_TO_XDP_SOCK: 5227 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5228 dst, reg_type_str[ptr_reg->type]); 5229 return -EACCES; 5230 case PTR_TO_MAP_VALUE: 5231 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5232 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5233 off_reg == dst_reg ? dst : src); 5234 return -EACCES; 5235 } 5236 /* fall-through */ 5237 default: 5238 break; 5239 } 5240 5241 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5242 * The id may be overwritten later if we create a new variable offset. 5243 */ 5244 dst_reg->type = ptr_reg->type; 5245 dst_reg->id = ptr_reg->id; 5246 5247 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5248 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5249 return -EINVAL; 5250 5251 /* pointer types do not carry 32-bit bounds at the moment. */ 5252 __mark_reg32_unbounded(dst_reg); 5253 5254 switch (opcode) { 5255 case BPF_ADD: 5256 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5257 if (ret < 0) { 5258 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5259 return ret; 5260 } 5261 /* We can take a fixed offset as long as it doesn't overflow 5262 * the s32 'off' field 5263 */ 5264 if (known && (ptr_reg->off + smin_val == 5265 (s64)(s32)(ptr_reg->off + smin_val))) { 5266 /* pointer += K. Accumulate it into fixed offset */ 5267 dst_reg->smin_value = smin_ptr; 5268 dst_reg->smax_value = smax_ptr; 5269 dst_reg->umin_value = umin_ptr; 5270 dst_reg->umax_value = umax_ptr; 5271 dst_reg->var_off = ptr_reg->var_off; 5272 dst_reg->off = ptr_reg->off + smin_val; 5273 dst_reg->raw = ptr_reg->raw; 5274 break; 5275 } 5276 /* A new variable offset is created. Note that off_reg->off 5277 * == 0, since it's a scalar. 5278 * dst_reg gets the pointer type and since some positive 5279 * integer value was added to the pointer, give it a new 'id' 5280 * if it's a PTR_TO_PACKET. 5281 * this creates a new 'base' pointer, off_reg (variable) gets 5282 * added into the variable offset, and we copy the fixed offset 5283 * from ptr_reg. 5284 */ 5285 if (signed_add_overflows(smin_ptr, smin_val) || 5286 signed_add_overflows(smax_ptr, smax_val)) { 5287 dst_reg->smin_value = S64_MIN; 5288 dst_reg->smax_value = S64_MAX; 5289 } else { 5290 dst_reg->smin_value = smin_ptr + smin_val; 5291 dst_reg->smax_value = smax_ptr + smax_val; 5292 } 5293 if (umin_ptr + umin_val < umin_ptr || 5294 umax_ptr + umax_val < umax_ptr) { 5295 dst_reg->umin_value = 0; 5296 dst_reg->umax_value = U64_MAX; 5297 } else { 5298 dst_reg->umin_value = umin_ptr + umin_val; 5299 dst_reg->umax_value = umax_ptr + umax_val; 5300 } 5301 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5302 dst_reg->off = ptr_reg->off; 5303 dst_reg->raw = ptr_reg->raw; 5304 if (reg_is_pkt_pointer(ptr_reg)) { 5305 dst_reg->id = ++env->id_gen; 5306 /* something was added to pkt_ptr, set range to zero */ 5307 dst_reg->raw = 0; 5308 } 5309 break; 5310 case BPF_SUB: 5311 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5312 if (ret < 0) { 5313 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5314 return ret; 5315 } 5316 if (dst_reg == off_reg) { 5317 /* scalar -= pointer. Creates an unknown scalar */ 5318 verbose(env, "R%d tried to subtract pointer from scalar\n", 5319 dst); 5320 return -EACCES; 5321 } 5322 /* We don't allow subtraction from FP, because (according to 5323 * test_verifier.c test "invalid fp arithmetic", JITs might not 5324 * be able to deal with it. 5325 */ 5326 if (ptr_reg->type == PTR_TO_STACK) { 5327 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5328 dst); 5329 return -EACCES; 5330 } 5331 if (known && (ptr_reg->off - smin_val == 5332 (s64)(s32)(ptr_reg->off - smin_val))) { 5333 /* pointer -= K. Subtract it from fixed offset */ 5334 dst_reg->smin_value = smin_ptr; 5335 dst_reg->smax_value = smax_ptr; 5336 dst_reg->umin_value = umin_ptr; 5337 dst_reg->umax_value = umax_ptr; 5338 dst_reg->var_off = ptr_reg->var_off; 5339 dst_reg->id = ptr_reg->id; 5340 dst_reg->off = ptr_reg->off - smin_val; 5341 dst_reg->raw = ptr_reg->raw; 5342 break; 5343 } 5344 /* A new variable offset is created. If the subtrahend is known 5345 * nonnegative, then any reg->range we had before is still good. 5346 */ 5347 if (signed_sub_overflows(smin_ptr, smax_val) || 5348 signed_sub_overflows(smax_ptr, smin_val)) { 5349 /* Overflow possible, we know nothing */ 5350 dst_reg->smin_value = S64_MIN; 5351 dst_reg->smax_value = S64_MAX; 5352 } else { 5353 dst_reg->smin_value = smin_ptr - smax_val; 5354 dst_reg->smax_value = smax_ptr - smin_val; 5355 } 5356 if (umin_ptr < umax_val) { 5357 /* Overflow possible, we know nothing */ 5358 dst_reg->umin_value = 0; 5359 dst_reg->umax_value = U64_MAX; 5360 } else { 5361 /* Cannot overflow (as long as bounds are consistent) */ 5362 dst_reg->umin_value = umin_ptr - umax_val; 5363 dst_reg->umax_value = umax_ptr - umin_val; 5364 } 5365 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5366 dst_reg->off = ptr_reg->off; 5367 dst_reg->raw = ptr_reg->raw; 5368 if (reg_is_pkt_pointer(ptr_reg)) { 5369 dst_reg->id = ++env->id_gen; 5370 /* something was added to pkt_ptr, set range to zero */ 5371 if (smin_val < 0) 5372 dst_reg->raw = 0; 5373 } 5374 break; 5375 case BPF_AND: 5376 case BPF_OR: 5377 case BPF_XOR: 5378 /* bitwise ops on pointers are troublesome, prohibit. */ 5379 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5380 dst, bpf_alu_string[opcode >> 4]); 5381 return -EACCES; 5382 default: 5383 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5384 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5385 dst, bpf_alu_string[opcode >> 4]); 5386 return -EACCES; 5387 } 5388 5389 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5390 return -EINVAL; 5391 5392 __update_reg_bounds(dst_reg); 5393 __reg_deduce_bounds(dst_reg); 5394 __reg_bound_offset(dst_reg); 5395 5396 /* For unprivileged we require that resulting offset must be in bounds 5397 * in order to be able to sanitize access later on. 5398 */ 5399 if (!env->bypass_spec_v1) { 5400 if (dst_reg->type == PTR_TO_MAP_VALUE && 5401 check_map_access(env, dst, dst_reg->off, 1, false)) { 5402 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5403 "prohibited for !root\n", dst); 5404 return -EACCES; 5405 } else if (dst_reg->type == PTR_TO_STACK && 5406 check_stack_access(env, dst_reg, dst_reg->off + 5407 dst_reg->var_off.value, 1)) { 5408 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5409 "prohibited for !root\n", dst); 5410 return -EACCES; 5411 } 5412 } 5413 5414 return 0; 5415 } 5416 5417 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5418 struct bpf_reg_state *src_reg) 5419 { 5420 s32 smin_val = src_reg->s32_min_value; 5421 s32 smax_val = src_reg->s32_max_value; 5422 u32 umin_val = src_reg->u32_min_value; 5423 u32 umax_val = src_reg->u32_max_value; 5424 5425 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5426 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5427 dst_reg->s32_min_value = S32_MIN; 5428 dst_reg->s32_max_value = S32_MAX; 5429 } else { 5430 dst_reg->s32_min_value += smin_val; 5431 dst_reg->s32_max_value += smax_val; 5432 } 5433 if (dst_reg->u32_min_value + umin_val < umin_val || 5434 dst_reg->u32_max_value + umax_val < umax_val) { 5435 dst_reg->u32_min_value = 0; 5436 dst_reg->u32_max_value = U32_MAX; 5437 } else { 5438 dst_reg->u32_min_value += umin_val; 5439 dst_reg->u32_max_value += umax_val; 5440 } 5441 } 5442 5443 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5444 struct bpf_reg_state *src_reg) 5445 { 5446 s64 smin_val = src_reg->smin_value; 5447 s64 smax_val = src_reg->smax_value; 5448 u64 umin_val = src_reg->umin_value; 5449 u64 umax_val = src_reg->umax_value; 5450 5451 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5452 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5453 dst_reg->smin_value = S64_MIN; 5454 dst_reg->smax_value = S64_MAX; 5455 } else { 5456 dst_reg->smin_value += smin_val; 5457 dst_reg->smax_value += smax_val; 5458 } 5459 if (dst_reg->umin_value + umin_val < umin_val || 5460 dst_reg->umax_value + umax_val < umax_val) { 5461 dst_reg->umin_value = 0; 5462 dst_reg->umax_value = U64_MAX; 5463 } else { 5464 dst_reg->umin_value += umin_val; 5465 dst_reg->umax_value += umax_val; 5466 } 5467 } 5468 5469 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5470 struct bpf_reg_state *src_reg) 5471 { 5472 s32 smin_val = src_reg->s32_min_value; 5473 s32 smax_val = src_reg->s32_max_value; 5474 u32 umin_val = src_reg->u32_min_value; 5475 u32 umax_val = src_reg->u32_max_value; 5476 5477 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5478 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5479 /* Overflow possible, we know nothing */ 5480 dst_reg->s32_min_value = S32_MIN; 5481 dst_reg->s32_max_value = S32_MAX; 5482 } else { 5483 dst_reg->s32_min_value -= smax_val; 5484 dst_reg->s32_max_value -= smin_val; 5485 } 5486 if (dst_reg->u32_min_value < umax_val) { 5487 /* Overflow possible, we know nothing */ 5488 dst_reg->u32_min_value = 0; 5489 dst_reg->u32_max_value = U32_MAX; 5490 } else { 5491 /* Cannot overflow (as long as bounds are consistent) */ 5492 dst_reg->u32_min_value -= umax_val; 5493 dst_reg->u32_max_value -= umin_val; 5494 } 5495 } 5496 5497 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5498 struct bpf_reg_state *src_reg) 5499 { 5500 s64 smin_val = src_reg->smin_value; 5501 s64 smax_val = src_reg->smax_value; 5502 u64 umin_val = src_reg->umin_value; 5503 u64 umax_val = src_reg->umax_value; 5504 5505 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5506 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5507 /* Overflow possible, we know nothing */ 5508 dst_reg->smin_value = S64_MIN; 5509 dst_reg->smax_value = S64_MAX; 5510 } else { 5511 dst_reg->smin_value -= smax_val; 5512 dst_reg->smax_value -= smin_val; 5513 } 5514 if (dst_reg->umin_value < umax_val) { 5515 /* Overflow possible, we know nothing */ 5516 dst_reg->umin_value = 0; 5517 dst_reg->umax_value = U64_MAX; 5518 } else { 5519 /* Cannot overflow (as long as bounds are consistent) */ 5520 dst_reg->umin_value -= umax_val; 5521 dst_reg->umax_value -= umin_val; 5522 } 5523 } 5524 5525 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5526 struct bpf_reg_state *src_reg) 5527 { 5528 s32 smin_val = src_reg->s32_min_value; 5529 u32 umin_val = src_reg->u32_min_value; 5530 u32 umax_val = src_reg->u32_max_value; 5531 5532 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5533 /* Ain't nobody got time to multiply that sign */ 5534 __mark_reg32_unbounded(dst_reg); 5535 return; 5536 } 5537 /* Both values are positive, so we can work with unsigned and 5538 * copy the result to signed (unless it exceeds S32_MAX). 5539 */ 5540 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5541 /* Potential overflow, we know nothing */ 5542 __mark_reg32_unbounded(dst_reg); 5543 return; 5544 } 5545 dst_reg->u32_min_value *= umin_val; 5546 dst_reg->u32_max_value *= umax_val; 5547 if (dst_reg->u32_max_value > S32_MAX) { 5548 /* Overflow possible, we know nothing */ 5549 dst_reg->s32_min_value = S32_MIN; 5550 dst_reg->s32_max_value = S32_MAX; 5551 } else { 5552 dst_reg->s32_min_value = dst_reg->u32_min_value; 5553 dst_reg->s32_max_value = dst_reg->u32_max_value; 5554 } 5555 } 5556 5557 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5558 struct bpf_reg_state *src_reg) 5559 { 5560 s64 smin_val = src_reg->smin_value; 5561 u64 umin_val = src_reg->umin_value; 5562 u64 umax_val = src_reg->umax_value; 5563 5564 if (smin_val < 0 || dst_reg->smin_value < 0) { 5565 /* Ain't nobody got time to multiply that sign */ 5566 __mark_reg64_unbounded(dst_reg); 5567 return; 5568 } 5569 /* Both values are positive, so we can work with unsigned and 5570 * copy the result to signed (unless it exceeds S64_MAX). 5571 */ 5572 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5573 /* Potential overflow, we know nothing */ 5574 __mark_reg64_unbounded(dst_reg); 5575 return; 5576 } 5577 dst_reg->umin_value *= umin_val; 5578 dst_reg->umax_value *= umax_val; 5579 if (dst_reg->umax_value > S64_MAX) { 5580 /* Overflow possible, we know nothing */ 5581 dst_reg->smin_value = S64_MIN; 5582 dst_reg->smax_value = S64_MAX; 5583 } else { 5584 dst_reg->smin_value = dst_reg->umin_value; 5585 dst_reg->smax_value = dst_reg->umax_value; 5586 } 5587 } 5588 5589 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5590 struct bpf_reg_state *src_reg) 5591 { 5592 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5593 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5594 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5595 s32 smin_val = src_reg->s32_min_value; 5596 u32 umax_val = src_reg->u32_max_value; 5597 5598 /* Assuming scalar64_min_max_and will be called so its safe 5599 * to skip updating register for known 32-bit case. 5600 */ 5601 if (src_known && dst_known) 5602 return; 5603 5604 /* We get our minimum from the var_off, since that's inherently 5605 * bitwise. Our maximum is the minimum of the operands' maxima. 5606 */ 5607 dst_reg->u32_min_value = var32_off.value; 5608 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5609 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5610 /* Lose signed bounds when ANDing negative numbers, 5611 * ain't nobody got time for that. 5612 */ 5613 dst_reg->s32_min_value = S32_MIN; 5614 dst_reg->s32_max_value = S32_MAX; 5615 } else { 5616 /* ANDing two positives gives a positive, so safe to 5617 * cast result into s64. 5618 */ 5619 dst_reg->s32_min_value = dst_reg->u32_min_value; 5620 dst_reg->s32_max_value = dst_reg->u32_max_value; 5621 } 5622 5623 } 5624 5625 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5626 struct bpf_reg_state *src_reg) 5627 { 5628 bool src_known = tnum_is_const(src_reg->var_off); 5629 bool dst_known = tnum_is_const(dst_reg->var_off); 5630 s64 smin_val = src_reg->smin_value; 5631 u64 umax_val = src_reg->umax_value; 5632 5633 if (src_known && dst_known) { 5634 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5635 src_reg->var_off.value); 5636 return; 5637 } 5638 5639 /* We get our minimum from the var_off, since that's inherently 5640 * bitwise. Our maximum is the minimum of the operands' maxima. 5641 */ 5642 dst_reg->umin_value = dst_reg->var_off.value; 5643 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5644 if (dst_reg->smin_value < 0 || smin_val < 0) { 5645 /* Lose signed bounds when ANDing negative numbers, 5646 * ain't nobody got time for that. 5647 */ 5648 dst_reg->smin_value = S64_MIN; 5649 dst_reg->smax_value = S64_MAX; 5650 } else { 5651 /* ANDing two positives gives a positive, so safe to 5652 * cast result into s64. 5653 */ 5654 dst_reg->smin_value = dst_reg->umin_value; 5655 dst_reg->smax_value = dst_reg->umax_value; 5656 } 5657 /* We may learn something more from the var_off */ 5658 __update_reg_bounds(dst_reg); 5659 } 5660 5661 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5662 struct bpf_reg_state *src_reg) 5663 { 5664 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5665 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5666 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5667 s32 smin_val = src_reg->smin_value; 5668 u32 umin_val = src_reg->umin_value; 5669 5670 /* Assuming scalar64_min_max_or will be called so it is safe 5671 * to skip updating register for known case. 5672 */ 5673 if (src_known && dst_known) 5674 return; 5675 5676 /* We get our maximum from the var_off, and our minimum is the 5677 * maximum of the operands' minima 5678 */ 5679 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5680 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5681 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5682 /* Lose signed bounds when ORing negative numbers, 5683 * ain't nobody got time for that. 5684 */ 5685 dst_reg->s32_min_value = S32_MIN; 5686 dst_reg->s32_max_value = S32_MAX; 5687 } else { 5688 /* ORing two positives gives a positive, so safe to 5689 * cast result into s64. 5690 */ 5691 dst_reg->s32_min_value = dst_reg->umin_value; 5692 dst_reg->s32_max_value = dst_reg->umax_value; 5693 } 5694 } 5695 5696 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5697 struct bpf_reg_state *src_reg) 5698 { 5699 bool src_known = tnum_is_const(src_reg->var_off); 5700 bool dst_known = tnum_is_const(dst_reg->var_off); 5701 s64 smin_val = src_reg->smin_value; 5702 u64 umin_val = src_reg->umin_value; 5703 5704 if (src_known && dst_known) { 5705 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5706 src_reg->var_off.value); 5707 return; 5708 } 5709 5710 /* We get our maximum from the var_off, and our minimum is the 5711 * maximum of the operands' minima 5712 */ 5713 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5714 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5715 if (dst_reg->smin_value < 0 || smin_val < 0) { 5716 /* Lose signed bounds when ORing negative numbers, 5717 * ain't nobody got time for that. 5718 */ 5719 dst_reg->smin_value = S64_MIN; 5720 dst_reg->smax_value = S64_MAX; 5721 } else { 5722 /* ORing two positives gives a positive, so safe to 5723 * cast result into s64. 5724 */ 5725 dst_reg->smin_value = dst_reg->umin_value; 5726 dst_reg->smax_value = dst_reg->umax_value; 5727 } 5728 /* We may learn something more from the var_off */ 5729 __update_reg_bounds(dst_reg); 5730 } 5731 5732 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5733 u64 umin_val, u64 umax_val) 5734 { 5735 /* We lose all sign bit information (except what we can pick 5736 * up from var_off) 5737 */ 5738 dst_reg->s32_min_value = S32_MIN; 5739 dst_reg->s32_max_value = S32_MAX; 5740 /* If we might shift our top bit out, then we know nothing */ 5741 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5742 dst_reg->u32_min_value = 0; 5743 dst_reg->u32_max_value = U32_MAX; 5744 } else { 5745 dst_reg->u32_min_value <<= umin_val; 5746 dst_reg->u32_max_value <<= umax_val; 5747 } 5748 } 5749 5750 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5751 struct bpf_reg_state *src_reg) 5752 { 5753 u32 umax_val = src_reg->u32_max_value; 5754 u32 umin_val = src_reg->u32_min_value; 5755 /* u32 alu operation will zext upper bits */ 5756 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5757 5758 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5759 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5760 /* Not required but being careful mark reg64 bounds as unknown so 5761 * that we are forced to pick them up from tnum and zext later and 5762 * if some path skips this step we are still safe. 5763 */ 5764 __mark_reg64_unbounded(dst_reg); 5765 __update_reg32_bounds(dst_reg); 5766 } 5767 5768 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5769 u64 umin_val, u64 umax_val) 5770 { 5771 /* Special case <<32 because it is a common compiler pattern to sign 5772 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5773 * positive we know this shift will also be positive so we can track 5774 * bounds correctly. Otherwise we lose all sign bit information except 5775 * what we can pick up from var_off. Perhaps we can generalize this 5776 * later to shifts of any length. 5777 */ 5778 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5779 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5780 else 5781 dst_reg->smax_value = S64_MAX; 5782 5783 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5784 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5785 else 5786 dst_reg->smin_value = S64_MIN; 5787 5788 /* If we might shift our top bit out, then we know nothing */ 5789 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5790 dst_reg->umin_value = 0; 5791 dst_reg->umax_value = U64_MAX; 5792 } else { 5793 dst_reg->umin_value <<= umin_val; 5794 dst_reg->umax_value <<= umax_val; 5795 } 5796 } 5797 5798 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5799 struct bpf_reg_state *src_reg) 5800 { 5801 u64 umax_val = src_reg->umax_value; 5802 u64 umin_val = src_reg->umin_value; 5803 5804 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5805 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5806 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5807 5808 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5809 /* We may learn something more from the var_off */ 5810 __update_reg_bounds(dst_reg); 5811 } 5812 5813 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5814 struct bpf_reg_state *src_reg) 5815 { 5816 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5817 u32 umax_val = src_reg->u32_max_value; 5818 u32 umin_val = src_reg->u32_min_value; 5819 5820 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5821 * be negative, then either: 5822 * 1) src_reg might be zero, so the sign bit of the result is 5823 * unknown, so we lose our signed bounds 5824 * 2) it's known negative, thus the unsigned bounds capture the 5825 * signed bounds 5826 * 3) the signed bounds cross zero, so they tell us nothing 5827 * about the result 5828 * If the value in dst_reg is known nonnegative, then again the 5829 * unsigned bounts capture the signed bounds. 5830 * Thus, in all cases it suffices to blow away our signed bounds 5831 * and rely on inferring new ones from the unsigned bounds and 5832 * var_off of the result. 5833 */ 5834 dst_reg->s32_min_value = S32_MIN; 5835 dst_reg->s32_max_value = S32_MAX; 5836 5837 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5838 dst_reg->u32_min_value >>= umax_val; 5839 dst_reg->u32_max_value >>= umin_val; 5840 5841 __mark_reg64_unbounded(dst_reg); 5842 __update_reg32_bounds(dst_reg); 5843 } 5844 5845 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5846 struct bpf_reg_state *src_reg) 5847 { 5848 u64 umax_val = src_reg->umax_value; 5849 u64 umin_val = src_reg->umin_value; 5850 5851 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5852 * be negative, then either: 5853 * 1) src_reg might be zero, so the sign bit of the result is 5854 * unknown, so we lose our signed bounds 5855 * 2) it's known negative, thus the unsigned bounds capture the 5856 * signed bounds 5857 * 3) the signed bounds cross zero, so they tell us nothing 5858 * about the result 5859 * If the value in dst_reg is known nonnegative, then again the 5860 * unsigned bounts capture the signed bounds. 5861 * Thus, in all cases it suffices to blow away our signed bounds 5862 * and rely on inferring new ones from the unsigned bounds and 5863 * var_off of the result. 5864 */ 5865 dst_reg->smin_value = S64_MIN; 5866 dst_reg->smax_value = S64_MAX; 5867 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5868 dst_reg->umin_value >>= umax_val; 5869 dst_reg->umax_value >>= umin_val; 5870 5871 /* Its not easy to operate on alu32 bounds here because it depends 5872 * on bits being shifted in. Take easy way out and mark unbounded 5873 * so we can recalculate later from tnum. 5874 */ 5875 __mark_reg32_unbounded(dst_reg); 5876 __update_reg_bounds(dst_reg); 5877 } 5878 5879 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5880 struct bpf_reg_state *src_reg) 5881 { 5882 u64 umin_val = src_reg->u32_min_value; 5883 5884 /* Upon reaching here, src_known is true and 5885 * umax_val is equal to umin_val. 5886 */ 5887 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5888 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5889 5890 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5891 5892 /* blow away the dst_reg umin_value/umax_value and rely on 5893 * dst_reg var_off to refine the result. 5894 */ 5895 dst_reg->u32_min_value = 0; 5896 dst_reg->u32_max_value = U32_MAX; 5897 5898 __mark_reg64_unbounded(dst_reg); 5899 __update_reg32_bounds(dst_reg); 5900 } 5901 5902 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5903 struct bpf_reg_state *src_reg) 5904 { 5905 u64 umin_val = src_reg->umin_value; 5906 5907 /* Upon reaching here, src_known is true and umax_val is equal 5908 * to umin_val. 5909 */ 5910 dst_reg->smin_value >>= umin_val; 5911 dst_reg->smax_value >>= umin_val; 5912 5913 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5914 5915 /* blow away the dst_reg umin_value/umax_value and rely on 5916 * dst_reg var_off to refine the result. 5917 */ 5918 dst_reg->umin_value = 0; 5919 dst_reg->umax_value = U64_MAX; 5920 5921 /* Its not easy to operate on alu32 bounds here because it depends 5922 * on bits being shifted in from upper 32-bits. Take easy way out 5923 * and mark unbounded so we can recalculate later from tnum. 5924 */ 5925 __mark_reg32_unbounded(dst_reg); 5926 __update_reg_bounds(dst_reg); 5927 } 5928 5929 /* WARNING: This function does calculations on 64-bit values, but the actual 5930 * execution may occur on 32-bit values. Therefore, things like bitshifts 5931 * need extra checks in the 32-bit case. 5932 */ 5933 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5934 struct bpf_insn *insn, 5935 struct bpf_reg_state *dst_reg, 5936 struct bpf_reg_state src_reg) 5937 { 5938 struct bpf_reg_state *regs = cur_regs(env); 5939 u8 opcode = BPF_OP(insn->code); 5940 bool src_known; 5941 s64 smin_val, smax_val; 5942 u64 umin_val, umax_val; 5943 s32 s32_min_val, s32_max_val; 5944 u32 u32_min_val, u32_max_val; 5945 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5946 u32 dst = insn->dst_reg; 5947 int ret; 5948 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5949 5950 smin_val = src_reg.smin_value; 5951 smax_val = src_reg.smax_value; 5952 umin_val = src_reg.umin_value; 5953 umax_val = src_reg.umax_value; 5954 5955 s32_min_val = src_reg.s32_min_value; 5956 s32_max_val = src_reg.s32_max_value; 5957 u32_min_val = src_reg.u32_min_value; 5958 u32_max_val = src_reg.u32_max_value; 5959 5960 if (alu32) { 5961 src_known = tnum_subreg_is_const(src_reg.var_off); 5962 if ((src_known && 5963 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5964 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5965 /* Taint dst register if offset had invalid bounds 5966 * derived from e.g. dead branches. 5967 */ 5968 __mark_reg_unknown(env, dst_reg); 5969 return 0; 5970 } 5971 } else { 5972 src_known = tnum_is_const(src_reg.var_off); 5973 if ((src_known && 5974 (smin_val != smax_val || umin_val != umax_val)) || 5975 smin_val > smax_val || umin_val > umax_val) { 5976 /* Taint dst register if offset had invalid bounds 5977 * derived from e.g. dead branches. 5978 */ 5979 __mark_reg_unknown(env, dst_reg); 5980 return 0; 5981 } 5982 } 5983 5984 if (!src_known && 5985 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5986 __mark_reg_unknown(env, dst_reg); 5987 return 0; 5988 } 5989 5990 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5991 * There are two classes of instructions: The first class we track both 5992 * alu32 and alu64 sign/unsigned bounds independently this provides the 5993 * greatest amount of precision when alu operations are mixed with jmp32 5994 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5995 * and BPF_OR. This is possible because these ops have fairly easy to 5996 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5997 * See alu32 verifier tests for examples. The second class of 5998 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5999 * with regards to tracking sign/unsigned bounds because the bits may 6000 * cross subreg boundaries in the alu64 case. When this happens we mark 6001 * the reg unbounded in the subreg bound space and use the resulting 6002 * tnum to calculate an approximation of the sign/unsigned bounds. 6003 */ 6004 switch (opcode) { 6005 case BPF_ADD: 6006 ret = sanitize_val_alu(env, insn); 6007 if (ret < 0) { 6008 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6009 return ret; 6010 } 6011 scalar32_min_max_add(dst_reg, &src_reg); 6012 scalar_min_max_add(dst_reg, &src_reg); 6013 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6014 break; 6015 case BPF_SUB: 6016 ret = sanitize_val_alu(env, insn); 6017 if (ret < 0) { 6018 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6019 return ret; 6020 } 6021 scalar32_min_max_sub(dst_reg, &src_reg); 6022 scalar_min_max_sub(dst_reg, &src_reg); 6023 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6024 break; 6025 case BPF_MUL: 6026 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6027 scalar32_min_max_mul(dst_reg, &src_reg); 6028 scalar_min_max_mul(dst_reg, &src_reg); 6029 break; 6030 case BPF_AND: 6031 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6032 scalar32_min_max_and(dst_reg, &src_reg); 6033 scalar_min_max_and(dst_reg, &src_reg); 6034 break; 6035 case BPF_OR: 6036 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6037 scalar32_min_max_or(dst_reg, &src_reg); 6038 scalar_min_max_or(dst_reg, &src_reg); 6039 break; 6040 case BPF_LSH: 6041 if (umax_val >= insn_bitness) { 6042 /* Shifts greater than 31 or 63 are undefined. 6043 * This includes shifts by a negative number. 6044 */ 6045 mark_reg_unknown(env, regs, insn->dst_reg); 6046 break; 6047 } 6048 if (alu32) 6049 scalar32_min_max_lsh(dst_reg, &src_reg); 6050 else 6051 scalar_min_max_lsh(dst_reg, &src_reg); 6052 break; 6053 case BPF_RSH: 6054 if (umax_val >= insn_bitness) { 6055 /* Shifts greater than 31 or 63 are undefined. 6056 * This includes shifts by a negative number. 6057 */ 6058 mark_reg_unknown(env, regs, insn->dst_reg); 6059 break; 6060 } 6061 if (alu32) 6062 scalar32_min_max_rsh(dst_reg, &src_reg); 6063 else 6064 scalar_min_max_rsh(dst_reg, &src_reg); 6065 break; 6066 case BPF_ARSH: 6067 if (umax_val >= insn_bitness) { 6068 /* Shifts greater than 31 or 63 are undefined. 6069 * This includes shifts by a negative number. 6070 */ 6071 mark_reg_unknown(env, regs, insn->dst_reg); 6072 break; 6073 } 6074 if (alu32) 6075 scalar32_min_max_arsh(dst_reg, &src_reg); 6076 else 6077 scalar_min_max_arsh(dst_reg, &src_reg); 6078 break; 6079 default: 6080 mark_reg_unknown(env, regs, insn->dst_reg); 6081 break; 6082 } 6083 6084 /* ALU32 ops are zero extended into 64bit register */ 6085 if (alu32) 6086 zext_32_to_64(dst_reg); 6087 6088 __update_reg_bounds(dst_reg); 6089 __reg_deduce_bounds(dst_reg); 6090 __reg_bound_offset(dst_reg); 6091 return 0; 6092 } 6093 6094 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6095 * and var_off. 6096 */ 6097 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6098 struct bpf_insn *insn) 6099 { 6100 struct bpf_verifier_state *vstate = env->cur_state; 6101 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6102 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6103 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6104 u8 opcode = BPF_OP(insn->code); 6105 int err; 6106 6107 dst_reg = ®s[insn->dst_reg]; 6108 src_reg = NULL; 6109 if (dst_reg->type != SCALAR_VALUE) 6110 ptr_reg = dst_reg; 6111 if (BPF_SRC(insn->code) == BPF_X) { 6112 src_reg = ®s[insn->src_reg]; 6113 if (src_reg->type != SCALAR_VALUE) { 6114 if (dst_reg->type != SCALAR_VALUE) { 6115 /* Combining two pointers by any ALU op yields 6116 * an arbitrary scalar. Disallow all math except 6117 * pointer subtraction 6118 */ 6119 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6120 mark_reg_unknown(env, regs, insn->dst_reg); 6121 return 0; 6122 } 6123 verbose(env, "R%d pointer %s pointer prohibited\n", 6124 insn->dst_reg, 6125 bpf_alu_string[opcode >> 4]); 6126 return -EACCES; 6127 } else { 6128 /* scalar += pointer 6129 * This is legal, but we have to reverse our 6130 * src/dest handling in computing the range 6131 */ 6132 err = mark_chain_precision(env, insn->dst_reg); 6133 if (err) 6134 return err; 6135 return adjust_ptr_min_max_vals(env, insn, 6136 src_reg, dst_reg); 6137 } 6138 } else if (ptr_reg) { 6139 /* pointer += scalar */ 6140 err = mark_chain_precision(env, insn->src_reg); 6141 if (err) 6142 return err; 6143 return adjust_ptr_min_max_vals(env, insn, 6144 dst_reg, src_reg); 6145 } 6146 } else { 6147 /* Pretend the src is a reg with a known value, since we only 6148 * need to be able to read from this state. 6149 */ 6150 off_reg.type = SCALAR_VALUE; 6151 __mark_reg_known(&off_reg, insn->imm); 6152 src_reg = &off_reg; 6153 if (ptr_reg) /* pointer += K */ 6154 return adjust_ptr_min_max_vals(env, insn, 6155 ptr_reg, src_reg); 6156 } 6157 6158 /* Got here implies adding two SCALAR_VALUEs */ 6159 if (WARN_ON_ONCE(ptr_reg)) { 6160 print_verifier_state(env, state); 6161 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6162 return -EINVAL; 6163 } 6164 if (WARN_ON(!src_reg)) { 6165 print_verifier_state(env, state); 6166 verbose(env, "verifier internal error: no src_reg\n"); 6167 return -EINVAL; 6168 } 6169 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6170 } 6171 6172 /* check validity of 32-bit and 64-bit arithmetic operations */ 6173 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6174 { 6175 struct bpf_reg_state *regs = cur_regs(env); 6176 u8 opcode = BPF_OP(insn->code); 6177 int err; 6178 6179 if (opcode == BPF_END || opcode == BPF_NEG) { 6180 if (opcode == BPF_NEG) { 6181 if (BPF_SRC(insn->code) != 0 || 6182 insn->src_reg != BPF_REG_0 || 6183 insn->off != 0 || insn->imm != 0) { 6184 verbose(env, "BPF_NEG uses reserved fields\n"); 6185 return -EINVAL; 6186 } 6187 } else { 6188 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6189 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6190 BPF_CLASS(insn->code) == BPF_ALU64) { 6191 verbose(env, "BPF_END uses reserved fields\n"); 6192 return -EINVAL; 6193 } 6194 } 6195 6196 /* check src operand */ 6197 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6198 if (err) 6199 return err; 6200 6201 if (is_pointer_value(env, insn->dst_reg)) { 6202 verbose(env, "R%d pointer arithmetic prohibited\n", 6203 insn->dst_reg); 6204 return -EACCES; 6205 } 6206 6207 /* check dest operand */ 6208 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6209 if (err) 6210 return err; 6211 6212 } else if (opcode == BPF_MOV) { 6213 6214 if (BPF_SRC(insn->code) == BPF_X) { 6215 if (insn->imm != 0 || insn->off != 0) { 6216 verbose(env, "BPF_MOV uses reserved fields\n"); 6217 return -EINVAL; 6218 } 6219 6220 /* check src operand */ 6221 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6222 if (err) 6223 return err; 6224 } else { 6225 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6226 verbose(env, "BPF_MOV uses reserved fields\n"); 6227 return -EINVAL; 6228 } 6229 } 6230 6231 /* check dest operand, mark as required later */ 6232 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6233 if (err) 6234 return err; 6235 6236 if (BPF_SRC(insn->code) == BPF_X) { 6237 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6238 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6239 6240 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6241 /* case: R1 = R2 6242 * copy register state to dest reg 6243 */ 6244 *dst_reg = *src_reg; 6245 dst_reg->live |= REG_LIVE_WRITTEN; 6246 dst_reg->subreg_def = DEF_NOT_SUBREG; 6247 } else { 6248 /* R1 = (u32) R2 */ 6249 if (is_pointer_value(env, insn->src_reg)) { 6250 verbose(env, 6251 "R%d partial copy of pointer\n", 6252 insn->src_reg); 6253 return -EACCES; 6254 } else if (src_reg->type == SCALAR_VALUE) { 6255 *dst_reg = *src_reg; 6256 dst_reg->live |= REG_LIVE_WRITTEN; 6257 dst_reg->subreg_def = env->insn_idx + 1; 6258 } else { 6259 mark_reg_unknown(env, regs, 6260 insn->dst_reg); 6261 } 6262 zext_32_to_64(dst_reg); 6263 } 6264 } else { 6265 /* case: R = imm 6266 * remember the value we stored into this reg 6267 */ 6268 /* clear any state __mark_reg_known doesn't set */ 6269 mark_reg_unknown(env, regs, insn->dst_reg); 6270 regs[insn->dst_reg].type = SCALAR_VALUE; 6271 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6272 __mark_reg_known(regs + insn->dst_reg, 6273 insn->imm); 6274 } else { 6275 __mark_reg_known(regs + insn->dst_reg, 6276 (u32)insn->imm); 6277 } 6278 } 6279 6280 } else if (opcode > BPF_END) { 6281 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6282 return -EINVAL; 6283 6284 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6285 6286 if (BPF_SRC(insn->code) == BPF_X) { 6287 if (insn->imm != 0 || insn->off != 0) { 6288 verbose(env, "BPF_ALU uses reserved fields\n"); 6289 return -EINVAL; 6290 } 6291 /* check src1 operand */ 6292 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6293 if (err) 6294 return err; 6295 } else { 6296 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6297 verbose(env, "BPF_ALU uses reserved fields\n"); 6298 return -EINVAL; 6299 } 6300 } 6301 6302 /* check src2 operand */ 6303 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6304 if (err) 6305 return err; 6306 6307 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6308 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6309 verbose(env, "div by zero\n"); 6310 return -EINVAL; 6311 } 6312 6313 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6314 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6315 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6316 6317 if (insn->imm < 0 || insn->imm >= size) { 6318 verbose(env, "invalid shift %d\n", insn->imm); 6319 return -EINVAL; 6320 } 6321 } 6322 6323 /* check dest operand */ 6324 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6325 if (err) 6326 return err; 6327 6328 return adjust_reg_min_max_vals(env, insn); 6329 } 6330 6331 return 0; 6332 } 6333 6334 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6335 struct bpf_reg_state *dst_reg, 6336 enum bpf_reg_type type, u16 new_range) 6337 { 6338 struct bpf_reg_state *reg; 6339 int i; 6340 6341 for (i = 0; i < MAX_BPF_REG; i++) { 6342 reg = &state->regs[i]; 6343 if (reg->type == type && reg->id == dst_reg->id) 6344 /* keep the maximum range already checked */ 6345 reg->range = max(reg->range, new_range); 6346 } 6347 6348 bpf_for_each_spilled_reg(i, state, reg) { 6349 if (!reg) 6350 continue; 6351 if (reg->type == type && reg->id == dst_reg->id) 6352 reg->range = max(reg->range, new_range); 6353 } 6354 } 6355 6356 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6357 struct bpf_reg_state *dst_reg, 6358 enum bpf_reg_type type, 6359 bool range_right_open) 6360 { 6361 u16 new_range; 6362 int i; 6363 6364 if (dst_reg->off < 0 || 6365 (dst_reg->off == 0 && range_right_open)) 6366 /* This doesn't give us any range */ 6367 return; 6368 6369 if (dst_reg->umax_value > MAX_PACKET_OFF || 6370 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6371 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6372 * than pkt_end, but that's because it's also less than pkt. 6373 */ 6374 return; 6375 6376 new_range = dst_reg->off; 6377 if (range_right_open) 6378 new_range--; 6379 6380 /* Examples for register markings: 6381 * 6382 * pkt_data in dst register: 6383 * 6384 * r2 = r3; 6385 * r2 += 8; 6386 * if (r2 > pkt_end) goto <handle exception> 6387 * <access okay> 6388 * 6389 * r2 = r3; 6390 * r2 += 8; 6391 * if (r2 < pkt_end) goto <access okay> 6392 * <handle exception> 6393 * 6394 * Where: 6395 * r2 == dst_reg, pkt_end == src_reg 6396 * r2=pkt(id=n,off=8,r=0) 6397 * r3=pkt(id=n,off=0,r=0) 6398 * 6399 * pkt_data in src register: 6400 * 6401 * r2 = r3; 6402 * r2 += 8; 6403 * if (pkt_end >= r2) goto <access okay> 6404 * <handle exception> 6405 * 6406 * r2 = r3; 6407 * r2 += 8; 6408 * if (pkt_end <= r2) goto <handle exception> 6409 * <access okay> 6410 * 6411 * Where: 6412 * pkt_end == dst_reg, r2 == src_reg 6413 * r2=pkt(id=n,off=8,r=0) 6414 * r3=pkt(id=n,off=0,r=0) 6415 * 6416 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6417 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6418 * and [r3, r3 + 8-1) respectively is safe to access depending on 6419 * the check. 6420 */ 6421 6422 /* If our ids match, then we must have the same max_value. And we 6423 * don't care about the other reg's fixed offset, since if it's too big 6424 * the range won't allow anything. 6425 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6426 */ 6427 for (i = 0; i <= vstate->curframe; i++) 6428 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6429 new_range); 6430 } 6431 6432 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6433 { 6434 struct tnum subreg = tnum_subreg(reg->var_off); 6435 s32 sval = (s32)val; 6436 6437 switch (opcode) { 6438 case BPF_JEQ: 6439 if (tnum_is_const(subreg)) 6440 return !!tnum_equals_const(subreg, val); 6441 break; 6442 case BPF_JNE: 6443 if (tnum_is_const(subreg)) 6444 return !tnum_equals_const(subreg, val); 6445 break; 6446 case BPF_JSET: 6447 if ((~subreg.mask & subreg.value) & val) 6448 return 1; 6449 if (!((subreg.mask | subreg.value) & val)) 6450 return 0; 6451 break; 6452 case BPF_JGT: 6453 if (reg->u32_min_value > val) 6454 return 1; 6455 else if (reg->u32_max_value <= val) 6456 return 0; 6457 break; 6458 case BPF_JSGT: 6459 if (reg->s32_min_value > sval) 6460 return 1; 6461 else if (reg->s32_max_value < sval) 6462 return 0; 6463 break; 6464 case BPF_JLT: 6465 if (reg->u32_max_value < val) 6466 return 1; 6467 else if (reg->u32_min_value >= val) 6468 return 0; 6469 break; 6470 case BPF_JSLT: 6471 if (reg->s32_max_value < sval) 6472 return 1; 6473 else if (reg->s32_min_value >= sval) 6474 return 0; 6475 break; 6476 case BPF_JGE: 6477 if (reg->u32_min_value >= val) 6478 return 1; 6479 else if (reg->u32_max_value < val) 6480 return 0; 6481 break; 6482 case BPF_JSGE: 6483 if (reg->s32_min_value >= sval) 6484 return 1; 6485 else if (reg->s32_max_value < sval) 6486 return 0; 6487 break; 6488 case BPF_JLE: 6489 if (reg->u32_max_value <= val) 6490 return 1; 6491 else if (reg->u32_min_value > val) 6492 return 0; 6493 break; 6494 case BPF_JSLE: 6495 if (reg->s32_max_value <= sval) 6496 return 1; 6497 else if (reg->s32_min_value > sval) 6498 return 0; 6499 break; 6500 } 6501 6502 return -1; 6503 } 6504 6505 6506 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6507 { 6508 s64 sval = (s64)val; 6509 6510 switch (opcode) { 6511 case BPF_JEQ: 6512 if (tnum_is_const(reg->var_off)) 6513 return !!tnum_equals_const(reg->var_off, val); 6514 break; 6515 case BPF_JNE: 6516 if (tnum_is_const(reg->var_off)) 6517 return !tnum_equals_const(reg->var_off, val); 6518 break; 6519 case BPF_JSET: 6520 if ((~reg->var_off.mask & reg->var_off.value) & val) 6521 return 1; 6522 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6523 return 0; 6524 break; 6525 case BPF_JGT: 6526 if (reg->umin_value > val) 6527 return 1; 6528 else if (reg->umax_value <= val) 6529 return 0; 6530 break; 6531 case BPF_JSGT: 6532 if (reg->smin_value > sval) 6533 return 1; 6534 else if (reg->smax_value < sval) 6535 return 0; 6536 break; 6537 case BPF_JLT: 6538 if (reg->umax_value < val) 6539 return 1; 6540 else if (reg->umin_value >= val) 6541 return 0; 6542 break; 6543 case BPF_JSLT: 6544 if (reg->smax_value < sval) 6545 return 1; 6546 else if (reg->smin_value >= sval) 6547 return 0; 6548 break; 6549 case BPF_JGE: 6550 if (reg->umin_value >= val) 6551 return 1; 6552 else if (reg->umax_value < val) 6553 return 0; 6554 break; 6555 case BPF_JSGE: 6556 if (reg->smin_value >= sval) 6557 return 1; 6558 else if (reg->smax_value < sval) 6559 return 0; 6560 break; 6561 case BPF_JLE: 6562 if (reg->umax_value <= val) 6563 return 1; 6564 else if (reg->umin_value > val) 6565 return 0; 6566 break; 6567 case BPF_JSLE: 6568 if (reg->smax_value <= sval) 6569 return 1; 6570 else if (reg->smin_value > sval) 6571 return 0; 6572 break; 6573 } 6574 6575 return -1; 6576 } 6577 6578 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6579 * and return: 6580 * 1 - branch will be taken and "goto target" will be executed 6581 * 0 - branch will not be taken and fall-through to next insn 6582 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6583 * range [0,10] 6584 */ 6585 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6586 bool is_jmp32) 6587 { 6588 if (__is_pointer_value(false, reg)) { 6589 if (!reg_type_not_null(reg->type)) 6590 return -1; 6591 6592 /* If pointer is valid tests against zero will fail so we can 6593 * use this to direct branch taken. 6594 */ 6595 if (val != 0) 6596 return -1; 6597 6598 switch (opcode) { 6599 case BPF_JEQ: 6600 return 0; 6601 case BPF_JNE: 6602 return 1; 6603 default: 6604 return -1; 6605 } 6606 } 6607 6608 if (is_jmp32) 6609 return is_branch32_taken(reg, val, opcode); 6610 return is_branch64_taken(reg, val, opcode); 6611 } 6612 6613 /* Adjusts the register min/max values in the case that the dst_reg is the 6614 * variable register that we are working on, and src_reg is a constant or we're 6615 * simply doing a BPF_K check. 6616 * In JEQ/JNE cases we also adjust the var_off values. 6617 */ 6618 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6619 struct bpf_reg_state *false_reg, 6620 u64 val, u32 val32, 6621 u8 opcode, bool is_jmp32) 6622 { 6623 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6624 struct tnum false_64off = false_reg->var_off; 6625 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6626 struct tnum true_64off = true_reg->var_off; 6627 s64 sval = (s64)val; 6628 s32 sval32 = (s32)val32; 6629 6630 /* If the dst_reg is a pointer, we can't learn anything about its 6631 * variable offset from the compare (unless src_reg were a pointer into 6632 * the same object, but we don't bother with that. 6633 * Since false_reg and true_reg have the same type by construction, we 6634 * only need to check one of them for pointerness. 6635 */ 6636 if (__is_pointer_value(false, false_reg)) 6637 return; 6638 6639 switch (opcode) { 6640 case BPF_JEQ: 6641 case BPF_JNE: 6642 { 6643 struct bpf_reg_state *reg = 6644 opcode == BPF_JEQ ? true_reg : false_reg; 6645 6646 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6647 * if it is true we know the value for sure. Likewise for 6648 * BPF_JNE. 6649 */ 6650 if (is_jmp32) 6651 __mark_reg32_known(reg, val32); 6652 else 6653 __mark_reg_known(reg, val); 6654 break; 6655 } 6656 case BPF_JSET: 6657 if (is_jmp32) { 6658 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6659 if (is_power_of_2(val32)) 6660 true_32off = tnum_or(true_32off, 6661 tnum_const(val32)); 6662 } else { 6663 false_64off = tnum_and(false_64off, tnum_const(~val)); 6664 if (is_power_of_2(val)) 6665 true_64off = tnum_or(true_64off, 6666 tnum_const(val)); 6667 } 6668 break; 6669 case BPF_JGE: 6670 case BPF_JGT: 6671 { 6672 if (is_jmp32) { 6673 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6674 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6675 6676 false_reg->u32_max_value = min(false_reg->u32_max_value, 6677 false_umax); 6678 true_reg->u32_min_value = max(true_reg->u32_min_value, 6679 true_umin); 6680 } else { 6681 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6682 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6683 6684 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6685 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6686 } 6687 break; 6688 } 6689 case BPF_JSGE: 6690 case BPF_JSGT: 6691 { 6692 if (is_jmp32) { 6693 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6694 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6695 6696 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6697 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6698 } else { 6699 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6700 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6701 6702 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6703 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6704 } 6705 break; 6706 } 6707 case BPF_JLE: 6708 case BPF_JLT: 6709 { 6710 if (is_jmp32) { 6711 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6712 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6713 6714 false_reg->u32_min_value = max(false_reg->u32_min_value, 6715 false_umin); 6716 true_reg->u32_max_value = min(true_reg->u32_max_value, 6717 true_umax); 6718 } else { 6719 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6720 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6721 6722 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6723 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6724 } 6725 break; 6726 } 6727 case BPF_JSLE: 6728 case BPF_JSLT: 6729 { 6730 if (is_jmp32) { 6731 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6732 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6733 6734 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6735 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6736 } else { 6737 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6738 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6739 6740 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6741 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6742 } 6743 break; 6744 } 6745 default: 6746 return; 6747 } 6748 6749 if (is_jmp32) { 6750 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6751 tnum_subreg(false_32off)); 6752 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6753 tnum_subreg(true_32off)); 6754 __reg_combine_32_into_64(false_reg); 6755 __reg_combine_32_into_64(true_reg); 6756 } else { 6757 false_reg->var_off = false_64off; 6758 true_reg->var_off = true_64off; 6759 __reg_combine_64_into_32(false_reg); 6760 __reg_combine_64_into_32(true_reg); 6761 } 6762 } 6763 6764 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6765 * the variable reg. 6766 */ 6767 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6768 struct bpf_reg_state *false_reg, 6769 u64 val, u32 val32, 6770 u8 opcode, bool is_jmp32) 6771 { 6772 /* How can we transform "a <op> b" into "b <op> a"? */ 6773 static const u8 opcode_flip[16] = { 6774 /* these stay the same */ 6775 [BPF_JEQ >> 4] = BPF_JEQ, 6776 [BPF_JNE >> 4] = BPF_JNE, 6777 [BPF_JSET >> 4] = BPF_JSET, 6778 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6779 [BPF_JGE >> 4] = BPF_JLE, 6780 [BPF_JGT >> 4] = BPF_JLT, 6781 [BPF_JLE >> 4] = BPF_JGE, 6782 [BPF_JLT >> 4] = BPF_JGT, 6783 [BPF_JSGE >> 4] = BPF_JSLE, 6784 [BPF_JSGT >> 4] = BPF_JSLT, 6785 [BPF_JSLE >> 4] = BPF_JSGE, 6786 [BPF_JSLT >> 4] = BPF_JSGT 6787 }; 6788 opcode = opcode_flip[opcode >> 4]; 6789 /* This uses zero as "not present in table"; luckily the zero opcode, 6790 * BPF_JA, can't get here. 6791 */ 6792 if (opcode) 6793 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6794 } 6795 6796 /* Regs are known to be equal, so intersect their min/max/var_off */ 6797 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6798 struct bpf_reg_state *dst_reg) 6799 { 6800 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6801 dst_reg->umin_value); 6802 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6803 dst_reg->umax_value); 6804 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6805 dst_reg->smin_value); 6806 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6807 dst_reg->smax_value); 6808 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6809 dst_reg->var_off); 6810 /* We might have learned new bounds from the var_off. */ 6811 __update_reg_bounds(src_reg); 6812 __update_reg_bounds(dst_reg); 6813 /* We might have learned something about the sign bit. */ 6814 __reg_deduce_bounds(src_reg); 6815 __reg_deduce_bounds(dst_reg); 6816 /* We might have learned some bits from the bounds. */ 6817 __reg_bound_offset(src_reg); 6818 __reg_bound_offset(dst_reg); 6819 /* Intersecting with the old var_off might have improved our bounds 6820 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6821 * then new var_off is (0; 0x7f...fc) which improves our umax. 6822 */ 6823 __update_reg_bounds(src_reg); 6824 __update_reg_bounds(dst_reg); 6825 } 6826 6827 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6828 struct bpf_reg_state *true_dst, 6829 struct bpf_reg_state *false_src, 6830 struct bpf_reg_state *false_dst, 6831 u8 opcode) 6832 { 6833 switch (opcode) { 6834 case BPF_JEQ: 6835 __reg_combine_min_max(true_src, true_dst); 6836 break; 6837 case BPF_JNE: 6838 __reg_combine_min_max(false_src, false_dst); 6839 break; 6840 } 6841 } 6842 6843 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6844 struct bpf_reg_state *reg, u32 id, 6845 bool is_null) 6846 { 6847 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6848 /* Old offset (both fixed and variable parts) should 6849 * have been known-zero, because we don't allow pointer 6850 * arithmetic on pointers that might be NULL. 6851 */ 6852 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6853 !tnum_equals_const(reg->var_off, 0) || 6854 reg->off)) { 6855 __mark_reg_known_zero(reg); 6856 reg->off = 0; 6857 } 6858 if (is_null) { 6859 reg->type = SCALAR_VALUE; 6860 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6861 const struct bpf_map *map = reg->map_ptr; 6862 6863 if (map->inner_map_meta) { 6864 reg->type = CONST_PTR_TO_MAP; 6865 reg->map_ptr = map->inner_map_meta; 6866 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 6867 reg->type = PTR_TO_XDP_SOCK; 6868 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 6869 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 6870 reg->type = PTR_TO_SOCKET; 6871 } else { 6872 reg->type = PTR_TO_MAP_VALUE; 6873 } 6874 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6875 reg->type = PTR_TO_SOCKET; 6876 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6877 reg->type = PTR_TO_SOCK_COMMON; 6878 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6879 reg->type = PTR_TO_TCP_SOCK; 6880 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 6881 reg->type = PTR_TO_BTF_ID; 6882 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 6883 reg->type = PTR_TO_MEM; 6884 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 6885 reg->type = PTR_TO_RDONLY_BUF; 6886 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 6887 reg->type = PTR_TO_RDWR_BUF; 6888 } 6889 if (is_null) { 6890 /* We don't need id and ref_obj_id from this point 6891 * onwards anymore, thus we should better reset it, 6892 * so that state pruning has chances to take effect. 6893 */ 6894 reg->id = 0; 6895 reg->ref_obj_id = 0; 6896 } else if (!reg_may_point_to_spin_lock(reg)) { 6897 /* For not-NULL ptr, reg->ref_obj_id will be reset 6898 * in release_reg_references(). 6899 * 6900 * reg->id is still used by spin_lock ptr. Other 6901 * than spin_lock ptr type, reg->id can be reset. 6902 */ 6903 reg->id = 0; 6904 } 6905 } 6906 } 6907 6908 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6909 bool is_null) 6910 { 6911 struct bpf_reg_state *reg; 6912 int i; 6913 6914 for (i = 0; i < MAX_BPF_REG; i++) 6915 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6916 6917 bpf_for_each_spilled_reg(i, state, reg) { 6918 if (!reg) 6919 continue; 6920 mark_ptr_or_null_reg(state, reg, id, is_null); 6921 } 6922 } 6923 6924 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6925 * be folded together at some point. 6926 */ 6927 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6928 bool is_null) 6929 { 6930 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6931 struct bpf_reg_state *regs = state->regs; 6932 u32 ref_obj_id = regs[regno].ref_obj_id; 6933 u32 id = regs[regno].id; 6934 int i; 6935 6936 if (ref_obj_id && ref_obj_id == id && is_null) 6937 /* regs[regno] is in the " == NULL" branch. 6938 * No one could have freed the reference state before 6939 * doing the NULL check. 6940 */ 6941 WARN_ON_ONCE(release_reference_state(state, id)); 6942 6943 for (i = 0; i <= vstate->curframe; i++) 6944 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6945 } 6946 6947 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6948 struct bpf_reg_state *dst_reg, 6949 struct bpf_reg_state *src_reg, 6950 struct bpf_verifier_state *this_branch, 6951 struct bpf_verifier_state *other_branch) 6952 { 6953 if (BPF_SRC(insn->code) != BPF_X) 6954 return false; 6955 6956 /* Pointers are always 64-bit. */ 6957 if (BPF_CLASS(insn->code) == BPF_JMP32) 6958 return false; 6959 6960 switch (BPF_OP(insn->code)) { 6961 case BPF_JGT: 6962 if ((dst_reg->type == PTR_TO_PACKET && 6963 src_reg->type == PTR_TO_PACKET_END) || 6964 (dst_reg->type == PTR_TO_PACKET_META && 6965 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6966 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6967 find_good_pkt_pointers(this_branch, dst_reg, 6968 dst_reg->type, false); 6969 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6970 src_reg->type == PTR_TO_PACKET) || 6971 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6972 src_reg->type == PTR_TO_PACKET_META)) { 6973 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6974 find_good_pkt_pointers(other_branch, src_reg, 6975 src_reg->type, true); 6976 } else { 6977 return false; 6978 } 6979 break; 6980 case BPF_JLT: 6981 if ((dst_reg->type == PTR_TO_PACKET && 6982 src_reg->type == PTR_TO_PACKET_END) || 6983 (dst_reg->type == PTR_TO_PACKET_META && 6984 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6985 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6986 find_good_pkt_pointers(other_branch, dst_reg, 6987 dst_reg->type, true); 6988 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6989 src_reg->type == PTR_TO_PACKET) || 6990 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6991 src_reg->type == PTR_TO_PACKET_META)) { 6992 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6993 find_good_pkt_pointers(this_branch, src_reg, 6994 src_reg->type, false); 6995 } else { 6996 return false; 6997 } 6998 break; 6999 case BPF_JGE: 7000 if ((dst_reg->type == PTR_TO_PACKET && 7001 src_reg->type == PTR_TO_PACKET_END) || 7002 (dst_reg->type == PTR_TO_PACKET_META && 7003 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7004 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7005 find_good_pkt_pointers(this_branch, dst_reg, 7006 dst_reg->type, true); 7007 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7008 src_reg->type == PTR_TO_PACKET) || 7009 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7010 src_reg->type == PTR_TO_PACKET_META)) { 7011 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7012 find_good_pkt_pointers(other_branch, src_reg, 7013 src_reg->type, false); 7014 } else { 7015 return false; 7016 } 7017 break; 7018 case BPF_JLE: 7019 if ((dst_reg->type == PTR_TO_PACKET && 7020 src_reg->type == PTR_TO_PACKET_END) || 7021 (dst_reg->type == PTR_TO_PACKET_META && 7022 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7023 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7024 find_good_pkt_pointers(other_branch, dst_reg, 7025 dst_reg->type, false); 7026 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7027 src_reg->type == PTR_TO_PACKET) || 7028 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7029 src_reg->type == PTR_TO_PACKET_META)) { 7030 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7031 find_good_pkt_pointers(this_branch, src_reg, 7032 src_reg->type, true); 7033 } else { 7034 return false; 7035 } 7036 break; 7037 default: 7038 return false; 7039 } 7040 7041 return true; 7042 } 7043 7044 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7045 struct bpf_insn *insn, int *insn_idx) 7046 { 7047 struct bpf_verifier_state *this_branch = env->cur_state; 7048 struct bpf_verifier_state *other_branch; 7049 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7050 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7051 u8 opcode = BPF_OP(insn->code); 7052 bool is_jmp32; 7053 int pred = -1; 7054 int err; 7055 7056 /* Only conditional jumps are expected to reach here. */ 7057 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7058 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7059 return -EINVAL; 7060 } 7061 7062 if (BPF_SRC(insn->code) == BPF_X) { 7063 if (insn->imm != 0) { 7064 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7065 return -EINVAL; 7066 } 7067 7068 /* check src1 operand */ 7069 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7070 if (err) 7071 return err; 7072 7073 if (is_pointer_value(env, insn->src_reg)) { 7074 verbose(env, "R%d pointer comparison prohibited\n", 7075 insn->src_reg); 7076 return -EACCES; 7077 } 7078 src_reg = ®s[insn->src_reg]; 7079 } else { 7080 if (insn->src_reg != BPF_REG_0) { 7081 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7082 return -EINVAL; 7083 } 7084 } 7085 7086 /* check src2 operand */ 7087 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7088 if (err) 7089 return err; 7090 7091 dst_reg = ®s[insn->dst_reg]; 7092 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7093 7094 if (BPF_SRC(insn->code) == BPF_K) { 7095 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7096 } else if (src_reg->type == SCALAR_VALUE && 7097 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7098 pred = is_branch_taken(dst_reg, 7099 tnum_subreg(src_reg->var_off).value, 7100 opcode, 7101 is_jmp32); 7102 } else if (src_reg->type == SCALAR_VALUE && 7103 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7104 pred = is_branch_taken(dst_reg, 7105 src_reg->var_off.value, 7106 opcode, 7107 is_jmp32); 7108 } 7109 7110 if (pred >= 0) { 7111 /* If we get here with a dst_reg pointer type it is because 7112 * above is_branch_taken() special cased the 0 comparison. 7113 */ 7114 if (!__is_pointer_value(false, dst_reg)) 7115 err = mark_chain_precision(env, insn->dst_reg); 7116 if (BPF_SRC(insn->code) == BPF_X && !err) 7117 err = mark_chain_precision(env, insn->src_reg); 7118 if (err) 7119 return err; 7120 } 7121 if (pred == 1) { 7122 /* only follow the goto, ignore fall-through */ 7123 *insn_idx += insn->off; 7124 return 0; 7125 } else if (pred == 0) { 7126 /* only follow fall-through branch, since 7127 * that's where the program will go 7128 */ 7129 return 0; 7130 } 7131 7132 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7133 false); 7134 if (!other_branch) 7135 return -EFAULT; 7136 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7137 7138 /* detect if we are comparing against a constant value so we can adjust 7139 * our min/max values for our dst register. 7140 * this is only legit if both are scalars (or pointers to the same 7141 * object, I suppose, but we don't support that right now), because 7142 * otherwise the different base pointers mean the offsets aren't 7143 * comparable. 7144 */ 7145 if (BPF_SRC(insn->code) == BPF_X) { 7146 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7147 7148 if (dst_reg->type == SCALAR_VALUE && 7149 src_reg->type == SCALAR_VALUE) { 7150 if (tnum_is_const(src_reg->var_off) || 7151 (is_jmp32 && 7152 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7153 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7154 dst_reg, 7155 src_reg->var_off.value, 7156 tnum_subreg(src_reg->var_off).value, 7157 opcode, is_jmp32); 7158 else if (tnum_is_const(dst_reg->var_off) || 7159 (is_jmp32 && 7160 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7161 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7162 src_reg, 7163 dst_reg->var_off.value, 7164 tnum_subreg(dst_reg->var_off).value, 7165 opcode, is_jmp32); 7166 else if (!is_jmp32 && 7167 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7168 /* Comparing for equality, we can combine knowledge */ 7169 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7170 &other_branch_regs[insn->dst_reg], 7171 src_reg, dst_reg, opcode); 7172 } 7173 } else if (dst_reg->type == SCALAR_VALUE) { 7174 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7175 dst_reg, insn->imm, (u32)insn->imm, 7176 opcode, is_jmp32); 7177 } 7178 7179 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7180 * NOTE: these optimizations below are related with pointer comparison 7181 * which will never be JMP32. 7182 */ 7183 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7184 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7185 reg_type_may_be_null(dst_reg->type)) { 7186 /* Mark all identical registers in each branch as either 7187 * safe or unknown depending R == 0 or R != 0 conditional. 7188 */ 7189 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7190 opcode == BPF_JNE); 7191 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7192 opcode == BPF_JEQ); 7193 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7194 this_branch, other_branch) && 7195 is_pointer_value(env, insn->dst_reg)) { 7196 verbose(env, "R%d pointer comparison prohibited\n", 7197 insn->dst_reg); 7198 return -EACCES; 7199 } 7200 if (env->log.level & BPF_LOG_LEVEL) 7201 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7202 return 0; 7203 } 7204 7205 /* verify BPF_LD_IMM64 instruction */ 7206 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7207 { 7208 struct bpf_insn_aux_data *aux = cur_aux(env); 7209 struct bpf_reg_state *regs = cur_regs(env); 7210 struct bpf_map *map; 7211 int err; 7212 7213 if (BPF_SIZE(insn->code) != BPF_DW) { 7214 verbose(env, "invalid BPF_LD_IMM insn\n"); 7215 return -EINVAL; 7216 } 7217 if (insn->off != 0) { 7218 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7219 return -EINVAL; 7220 } 7221 7222 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7223 if (err) 7224 return err; 7225 7226 if (insn->src_reg == 0) { 7227 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7228 7229 regs[insn->dst_reg].type = SCALAR_VALUE; 7230 __mark_reg_known(®s[insn->dst_reg], imm); 7231 return 0; 7232 } 7233 7234 map = env->used_maps[aux->map_index]; 7235 mark_reg_known_zero(env, regs, insn->dst_reg); 7236 regs[insn->dst_reg].map_ptr = map; 7237 7238 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7239 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 7240 regs[insn->dst_reg].off = aux->map_off; 7241 if (map_value_has_spin_lock(map)) 7242 regs[insn->dst_reg].id = ++env->id_gen; 7243 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7244 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 7245 } else { 7246 verbose(env, "bpf verifier is misconfigured\n"); 7247 return -EINVAL; 7248 } 7249 7250 return 0; 7251 } 7252 7253 static bool may_access_skb(enum bpf_prog_type type) 7254 { 7255 switch (type) { 7256 case BPF_PROG_TYPE_SOCKET_FILTER: 7257 case BPF_PROG_TYPE_SCHED_CLS: 7258 case BPF_PROG_TYPE_SCHED_ACT: 7259 return true; 7260 default: 7261 return false; 7262 } 7263 } 7264 7265 /* verify safety of LD_ABS|LD_IND instructions: 7266 * - they can only appear in the programs where ctx == skb 7267 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7268 * preserve R6-R9, and store return value into R0 7269 * 7270 * Implicit input: 7271 * ctx == skb == R6 == CTX 7272 * 7273 * Explicit input: 7274 * SRC == any register 7275 * IMM == 32-bit immediate 7276 * 7277 * Output: 7278 * R0 - 8/16/32-bit skb data converted to cpu endianness 7279 */ 7280 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7281 { 7282 struct bpf_reg_state *regs = cur_regs(env); 7283 static const int ctx_reg = BPF_REG_6; 7284 u8 mode = BPF_MODE(insn->code); 7285 int i, err; 7286 7287 if (!may_access_skb(env->prog->type)) { 7288 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7289 return -EINVAL; 7290 } 7291 7292 if (!env->ops->gen_ld_abs) { 7293 verbose(env, "bpf verifier is misconfigured\n"); 7294 return -EINVAL; 7295 } 7296 7297 if (env->subprog_cnt > 1) { 7298 /* when program has LD_ABS insn JITs and interpreter assume 7299 * that r1 == ctx == skb which is not the case for callees 7300 * that can have arbitrary arguments. It's problematic 7301 * for main prog as well since JITs would need to analyze 7302 * all functions in order to make proper register save/restore 7303 * decisions in the main prog. Hence disallow LD_ABS with calls 7304 */ 7305 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 7306 return -EINVAL; 7307 } 7308 7309 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7310 BPF_SIZE(insn->code) == BPF_DW || 7311 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7312 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7313 return -EINVAL; 7314 } 7315 7316 /* check whether implicit source operand (register R6) is readable */ 7317 err = check_reg_arg(env, ctx_reg, SRC_OP); 7318 if (err) 7319 return err; 7320 7321 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7322 * gen_ld_abs() may terminate the program at runtime, leading to 7323 * reference leak. 7324 */ 7325 err = check_reference_leak(env); 7326 if (err) { 7327 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7328 return err; 7329 } 7330 7331 if (env->cur_state->active_spin_lock) { 7332 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7333 return -EINVAL; 7334 } 7335 7336 if (regs[ctx_reg].type != PTR_TO_CTX) { 7337 verbose(env, 7338 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7339 return -EINVAL; 7340 } 7341 7342 if (mode == BPF_IND) { 7343 /* check explicit source operand */ 7344 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7345 if (err) 7346 return err; 7347 } 7348 7349 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7350 if (err < 0) 7351 return err; 7352 7353 /* reset caller saved regs to unreadable */ 7354 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7355 mark_reg_not_init(env, regs, caller_saved[i]); 7356 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7357 } 7358 7359 /* mark destination R0 register as readable, since it contains 7360 * the value fetched from the packet. 7361 * Already marked as written above. 7362 */ 7363 mark_reg_unknown(env, regs, BPF_REG_0); 7364 /* ld_abs load up to 32-bit skb data. */ 7365 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7366 return 0; 7367 } 7368 7369 static int check_return_code(struct bpf_verifier_env *env) 7370 { 7371 struct tnum enforce_attach_type_range = tnum_unknown; 7372 const struct bpf_prog *prog = env->prog; 7373 struct bpf_reg_state *reg; 7374 struct tnum range = tnum_range(0, 1); 7375 int err; 7376 7377 /* LSM and struct_ops func-ptr's return type could be "void" */ 7378 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7379 env->prog->type == BPF_PROG_TYPE_LSM) && 7380 !prog->aux->attach_func_proto->type) 7381 return 0; 7382 7383 /* eBPF calling convetion is such that R0 is used 7384 * to return the value from eBPF program. 7385 * Make sure that it's readable at this time 7386 * of bpf_exit, which means that program wrote 7387 * something into it earlier 7388 */ 7389 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7390 if (err) 7391 return err; 7392 7393 if (is_pointer_value(env, BPF_REG_0)) { 7394 verbose(env, "R0 leaks addr as return value\n"); 7395 return -EACCES; 7396 } 7397 7398 switch (env->prog->type) { 7399 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7400 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7401 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7402 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7403 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7404 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7405 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7406 range = tnum_range(1, 1); 7407 break; 7408 case BPF_PROG_TYPE_CGROUP_SKB: 7409 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7410 range = tnum_range(0, 3); 7411 enforce_attach_type_range = tnum_range(2, 3); 7412 } 7413 break; 7414 case BPF_PROG_TYPE_CGROUP_SOCK: 7415 case BPF_PROG_TYPE_SOCK_OPS: 7416 case BPF_PROG_TYPE_CGROUP_DEVICE: 7417 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7418 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7419 break; 7420 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7421 if (!env->prog->aux->attach_btf_id) 7422 return 0; 7423 range = tnum_const(0); 7424 break; 7425 case BPF_PROG_TYPE_TRACING: 7426 switch (env->prog->expected_attach_type) { 7427 case BPF_TRACE_FENTRY: 7428 case BPF_TRACE_FEXIT: 7429 range = tnum_const(0); 7430 break; 7431 case BPF_TRACE_RAW_TP: 7432 case BPF_MODIFY_RETURN: 7433 return 0; 7434 case BPF_TRACE_ITER: 7435 break; 7436 default: 7437 return -ENOTSUPP; 7438 } 7439 break; 7440 case BPF_PROG_TYPE_SK_LOOKUP: 7441 range = tnum_range(SK_DROP, SK_PASS); 7442 break; 7443 case BPF_PROG_TYPE_EXT: 7444 /* freplace program can return anything as its return value 7445 * depends on the to-be-replaced kernel func or bpf program. 7446 */ 7447 default: 7448 return 0; 7449 } 7450 7451 reg = cur_regs(env) + BPF_REG_0; 7452 if (reg->type != SCALAR_VALUE) { 7453 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7454 reg_type_str[reg->type]); 7455 return -EINVAL; 7456 } 7457 7458 if (!tnum_in(range, reg->var_off)) { 7459 char tn_buf[48]; 7460 7461 verbose(env, "At program exit the register R0 "); 7462 if (!tnum_is_unknown(reg->var_off)) { 7463 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7464 verbose(env, "has value %s", tn_buf); 7465 } else { 7466 verbose(env, "has unknown scalar value"); 7467 } 7468 tnum_strn(tn_buf, sizeof(tn_buf), range); 7469 verbose(env, " should have been in %s\n", tn_buf); 7470 return -EINVAL; 7471 } 7472 7473 if (!tnum_is_unknown(enforce_attach_type_range) && 7474 tnum_in(enforce_attach_type_range, reg->var_off)) 7475 env->prog->enforce_expected_attach_type = 1; 7476 return 0; 7477 } 7478 7479 /* non-recursive DFS pseudo code 7480 * 1 procedure DFS-iterative(G,v): 7481 * 2 label v as discovered 7482 * 3 let S be a stack 7483 * 4 S.push(v) 7484 * 5 while S is not empty 7485 * 6 t <- S.pop() 7486 * 7 if t is what we're looking for: 7487 * 8 return t 7488 * 9 for all edges e in G.adjacentEdges(t) do 7489 * 10 if edge e is already labelled 7490 * 11 continue with the next edge 7491 * 12 w <- G.adjacentVertex(t,e) 7492 * 13 if vertex w is not discovered and not explored 7493 * 14 label e as tree-edge 7494 * 15 label w as discovered 7495 * 16 S.push(w) 7496 * 17 continue at 5 7497 * 18 else if vertex w is discovered 7498 * 19 label e as back-edge 7499 * 20 else 7500 * 21 // vertex w is explored 7501 * 22 label e as forward- or cross-edge 7502 * 23 label t as explored 7503 * 24 S.pop() 7504 * 7505 * convention: 7506 * 0x10 - discovered 7507 * 0x11 - discovered and fall-through edge labelled 7508 * 0x12 - discovered and fall-through and branch edges labelled 7509 * 0x20 - explored 7510 */ 7511 7512 enum { 7513 DISCOVERED = 0x10, 7514 EXPLORED = 0x20, 7515 FALLTHROUGH = 1, 7516 BRANCH = 2, 7517 }; 7518 7519 static u32 state_htab_size(struct bpf_verifier_env *env) 7520 { 7521 return env->prog->len; 7522 } 7523 7524 static struct bpf_verifier_state_list **explored_state( 7525 struct bpf_verifier_env *env, 7526 int idx) 7527 { 7528 struct bpf_verifier_state *cur = env->cur_state; 7529 struct bpf_func_state *state = cur->frame[cur->curframe]; 7530 7531 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7532 } 7533 7534 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7535 { 7536 env->insn_aux_data[idx].prune_point = true; 7537 } 7538 7539 /* t, w, e - match pseudo-code above: 7540 * t - index of current instruction 7541 * w - next instruction 7542 * e - edge 7543 */ 7544 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7545 bool loop_ok) 7546 { 7547 int *insn_stack = env->cfg.insn_stack; 7548 int *insn_state = env->cfg.insn_state; 7549 7550 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7551 return 0; 7552 7553 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7554 return 0; 7555 7556 if (w < 0 || w >= env->prog->len) { 7557 verbose_linfo(env, t, "%d: ", t); 7558 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7559 return -EINVAL; 7560 } 7561 7562 if (e == BRANCH) 7563 /* mark branch target for state pruning */ 7564 init_explored_state(env, w); 7565 7566 if (insn_state[w] == 0) { 7567 /* tree-edge */ 7568 insn_state[t] = DISCOVERED | e; 7569 insn_state[w] = DISCOVERED; 7570 if (env->cfg.cur_stack >= env->prog->len) 7571 return -E2BIG; 7572 insn_stack[env->cfg.cur_stack++] = w; 7573 return 1; 7574 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7575 if (loop_ok && env->bpf_capable) 7576 return 0; 7577 verbose_linfo(env, t, "%d: ", t); 7578 verbose_linfo(env, w, "%d: ", w); 7579 verbose(env, "back-edge from insn %d to %d\n", t, w); 7580 return -EINVAL; 7581 } else if (insn_state[w] == EXPLORED) { 7582 /* forward- or cross-edge */ 7583 insn_state[t] = DISCOVERED | e; 7584 } else { 7585 verbose(env, "insn state internal bug\n"); 7586 return -EFAULT; 7587 } 7588 return 0; 7589 } 7590 7591 /* non-recursive depth-first-search to detect loops in BPF program 7592 * loop == back-edge in directed graph 7593 */ 7594 static int check_cfg(struct bpf_verifier_env *env) 7595 { 7596 struct bpf_insn *insns = env->prog->insnsi; 7597 int insn_cnt = env->prog->len; 7598 int *insn_stack, *insn_state; 7599 int ret = 0; 7600 int i, t; 7601 7602 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7603 if (!insn_state) 7604 return -ENOMEM; 7605 7606 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7607 if (!insn_stack) { 7608 kvfree(insn_state); 7609 return -ENOMEM; 7610 } 7611 7612 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7613 insn_stack[0] = 0; /* 0 is the first instruction */ 7614 env->cfg.cur_stack = 1; 7615 7616 peek_stack: 7617 if (env->cfg.cur_stack == 0) 7618 goto check_state; 7619 t = insn_stack[env->cfg.cur_stack - 1]; 7620 7621 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7622 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7623 u8 opcode = BPF_OP(insns[t].code); 7624 7625 if (opcode == BPF_EXIT) { 7626 goto mark_explored; 7627 } else if (opcode == BPF_CALL) { 7628 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7629 if (ret == 1) 7630 goto peek_stack; 7631 else if (ret < 0) 7632 goto err_free; 7633 if (t + 1 < insn_cnt) 7634 init_explored_state(env, t + 1); 7635 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7636 init_explored_state(env, t); 7637 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7638 env, false); 7639 if (ret == 1) 7640 goto peek_stack; 7641 else if (ret < 0) 7642 goto err_free; 7643 } 7644 } else if (opcode == BPF_JA) { 7645 if (BPF_SRC(insns[t].code) != BPF_K) { 7646 ret = -EINVAL; 7647 goto err_free; 7648 } 7649 /* unconditional jump with single edge */ 7650 ret = push_insn(t, t + insns[t].off + 1, 7651 FALLTHROUGH, env, true); 7652 if (ret == 1) 7653 goto peek_stack; 7654 else if (ret < 0) 7655 goto err_free; 7656 /* unconditional jmp is not a good pruning point, 7657 * but it's marked, since backtracking needs 7658 * to record jmp history in is_state_visited(). 7659 */ 7660 init_explored_state(env, t + insns[t].off + 1); 7661 /* tell verifier to check for equivalent states 7662 * after every call and jump 7663 */ 7664 if (t + 1 < insn_cnt) 7665 init_explored_state(env, t + 1); 7666 } else { 7667 /* conditional jump with two edges */ 7668 init_explored_state(env, t); 7669 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7670 if (ret == 1) 7671 goto peek_stack; 7672 else if (ret < 0) 7673 goto err_free; 7674 7675 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7676 if (ret == 1) 7677 goto peek_stack; 7678 else if (ret < 0) 7679 goto err_free; 7680 } 7681 } else { 7682 /* all other non-branch instructions with single 7683 * fall-through edge 7684 */ 7685 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7686 if (ret == 1) 7687 goto peek_stack; 7688 else if (ret < 0) 7689 goto err_free; 7690 } 7691 7692 mark_explored: 7693 insn_state[t] = EXPLORED; 7694 if (env->cfg.cur_stack-- <= 0) { 7695 verbose(env, "pop stack internal bug\n"); 7696 ret = -EFAULT; 7697 goto err_free; 7698 } 7699 goto peek_stack; 7700 7701 check_state: 7702 for (i = 0; i < insn_cnt; i++) { 7703 if (insn_state[i] != EXPLORED) { 7704 verbose(env, "unreachable insn %d\n", i); 7705 ret = -EINVAL; 7706 goto err_free; 7707 } 7708 } 7709 ret = 0; /* cfg looks good */ 7710 7711 err_free: 7712 kvfree(insn_state); 7713 kvfree(insn_stack); 7714 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7715 return ret; 7716 } 7717 7718 /* The minimum supported BTF func info size */ 7719 #define MIN_BPF_FUNCINFO_SIZE 8 7720 #define MAX_FUNCINFO_REC_SIZE 252 7721 7722 static int check_btf_func(struct bpf_verifier_env *env, 7723 const union bpf_attr *attr, 7724 union bpf_attr __user *uattr) 7725 { 7726 u32 i, nfuncs, urec_size, min_size; 7727 u32 krec_size = sizeof(struct bpf_func_info); 7728 struct bpf_func_info *krecord; 7729 struct bpf_func_info_aux *info_aux = NULL; 7730 const struct btf_type *type; 7731 struct bpf_prog *prog; 7732 const struct btf *btf; 7733 void __user *urecord; 7734 u32 prev_offset = 0; 7735 int ret = -ENOMEM; 7736 7737 nfuncs = attr->func_info_cnt; 7738 if (!nfuncs) 7739 return 0; 7740 7741 if (nfuncs != env->subprog_cnt) { 7742 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7743 return -EINVAL; 7744 } 7745 7746 urec_size = attr->func_info_rec_size; 7747 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7748 urec_size > MAX_FUNCINFO_REC_SIZE || 7749 urec_size % sizeof(u32)) { 7750 verbose(env, "invalid func info rec size %u\n", urec_size); 7751 return -EINVAL; 7752 } 7753 7754 prog = env->prog; 7755 btf = prog->aux->btf; 7756 7757 urecord = u64_to_user_ptr(attr->func_info); 7758 min_size = min_t(u32, krec_size, urec_size); 7759 7760 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7761 if (!krecord) 7762 return -ENOMEM; 7763 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7764 if (!info_aux) 7765 goto err_free; 7766 7767 for (i = 0; i < nfuncs; i++) { 7768 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7769 if (ret) { 7770 if (ret == -E2BIG) { 7771 verbose(env, "nonzero tailing record in func info"); 7772 /* set the size kernel expects so loader can zero 7773 * out the rest of the record. 7774 */ 7775 if (put_user(min_size, &uattr->func_info_rec_size)) 7776 ret = -EFAULT; 7777 } 7778 goto err_free; 7779 } 7780 7781 if (copy_from_user(&krecord[i], urecord, min_size)) { 7782 ret = -EFAULT; 7783 goto err_free; 7784 } 7785 7786 /* check insn_off */ 7787 if (i == 0) { 7788 if (krecord[i].insn_off) { 7789 verbose(env, 7790 "nonzero insn_off %u for the first func info record", 7791 krecord[i].insn_off); 7792 ret = -EINVAL; 7793 goto err_free; 7794 } 7795 } else if (krecord[i].insn_off <= prev_offset) { 7796 verbose(env, 7797 "same or smaller insn offset (%u) than previous func info record (%u)", 7798 krecord[i].insn_off, prev_offset); 7799 ret = -EINVAL; 7800 goto err_free; 7801 } 7802 7803 if (env->subprog_info[i].start != krecord[i].insn_off) { 7804 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7805 ret = -EINVAL; 7806 goto err_free; 7807 } 7808 7809 /* check type_id */ 7810 type = btf_type_by_id(btf, krecord[i].type_id); 7811 if (!type || !btf_type_is_func(type)) { 7812 verbose(env, "invalid type id %d in func info", 7813 krecord[i].type_id); 7814 ret = -EINVAL; 7815 goto err_free; 7816 } 7817 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7818 prev_offset = krecord[i].insn_off; 7819 urecord += urec_size; 7820 } 7821 7822 prog->aux->func_info = krecord; 7823 prog->aux->func_info_cnt = nfuncs; 7824 prog->aux->func_info_aux = info_aux; 7825 return 0; 7826 7827 err_free: 7828 kvfree(krecord); 7829 kfree(info_aux); 7830 return ret; 7831 } 7832 7833 static void adjust_btf_func(struct bpf_verifier_env *env) 7834 { 7835 struct bpf_prog_aux *aux = env->prog->aux; 7836 int i; 7837 7838 if (!aux->func_info) 7839 return; 7840 7841 for (i = 0; i < env->subprog_cnt; i++) 7842 aux->func_info[i].insn_off = env->subprog_info[i].start; 7843 } 7844 7845 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7846 sizeof(((struct bpf_line_info *)(0))->line_col)) 7847 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7848 7849 static int check_btf_line(struct bpf_verifier_env *env, 7850 const union bpf_attr *attr, 7851 union bpf_attr __user *uattr) 7852 { 7853 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7854 struct bpf_subprog_info *sub; 7855 struct bpf_line_info *linfo; 7856 struct bpf_prog *prog; 7857 const struct btf *btf; 7858 void __user *ulinfo; 7859 int err; 7860 7861 nr_linfo = attr->line_info_cnt; 7862 if (!nr_linfo) 7863 return 0; 7864 7865 rec_size = attr->line_info_rec_size; 7866 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7867 rec_size > MAX_LINEINFO_REC_SIZE || 7868 rec_size & (sizeof(u32) - 1)) 7869 return -EINVAL; 7870 7871 /* Need to zero it in case the userspace may 7872 * pass in a smaller bpf_line_info object. 7873 */ 7874 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7875 GFP_KERNEL | __GFP_NOWARN); 7876 if (!linfo) 7877 return -ENOMEM; 7878 7879 prog = env->prog; 7880 btf = prog->aux->btf; 7881 7882 s = 0; 7883 sub = env->subprog_info; 7884 ulinfo = u64_to_user_ptr(attr->line_info); 7885 expected_size = sizeof(struct bpf_line_info); 7886 ncopy = min_t(u32, expected_size, rec_size); 7887 for (i = 0; i < nr_linfo; i++) { 7888 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7889 if (err) { 7890 if (err == -E2BIG) { 7891 verbose(env, "nonzero tailing record in line_info"); 7892 if (put_user(expected_size, 7893 &uattr->line_info_rec_size)) 7894 err = -EFAULT; 7895 } 7896 goto err_free; 7897 } 7898 7899 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7900 err = -EFAULT; 7901 goto err_free; 7902 } 7903 7904 /* 7905 * Check insn_off to ensure 7906 * 1) strictly increasing AND 7907 * 2) bounded by prog->len 7908 * 7909 * The linfo[0].insn_off == 0 check logically falls into 7910 * the later "missing bpf_line_info for func..." case 7911 * because the first linfo[0].insn_off must be the 7912 * first sub also and the first sub must have 7913 * subprog_info[0].start == 0. 7914 */ 7915 if ((i && linfo[i].insn_off <= prev_offset) || 7916 linfo[i].insn_off >= prog->len) { 7917 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7918 i, linfo[i].insn_off, prev_offset, 7919 prog->len); 7920 err = -EINVAL; 7921 goto err_free; 7922 } 7923 7924 if (!prog->insnsi[linfo[i].insn_off].code) { 7925 verbose(env, 7926 "Invalid insn code at line_info[%u].insn_off\n", 7927 i); 7928 err = -EINVAL; 7929 goto err_free; 7930 } 7931 7932 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7933 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7934 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7935 err = -EINVAL; 7936 goto err_free; 7937 } 7938 7939 if (s != env->subprog_cnt) { 7940 if (linfo[i].insn_off == sub[s].start) { 7941 sub[s].linfo_idx = i; 7942 s++; 7943 } else if (sub[s].start < linfo[i].insn_off) { 7944 verbose(env, "missing bpf_line_info for func#%u\n", s); 7945 err = -EINVAL; 7946 goto err_free; 7947 } 7948 } 7949 7950 prev_offset = linfo[i].insn_off; 7951 ulinfo += rec_size; 7952 } 7953 7954 if (s != env->subprog_cnt) { 7955 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7956 env->subprog_cnt - s, s); 7957 err = -EINVAL; 7958 goto err_free; 7959 } 7960 7961 prog->aux->linfo = linfo; 7962 prog->aux->nr_linfo = nr_linfo; 7963 7964 return 0; 7965 7966 err_free: 7967 kvfree(linfo); 7968 return err; 7969 } 7970 7971 static int check_btf_info(struct bpf_verifier_env *env, 7972 const union bpf_attr *attr, 7973 union bpf_attr __user *uattr) 7974 { 7975 struct btf *btf; 7976 int err; 7977 7978 if (!attr->func_info_cnt && !attr->line_info_cnt) 7979 return 0; 7980 7981 btf = btf_get_by_fd(attr->prog_btf_fd); 7982 if (IS_ERR(btf)) 7983 return PTR_ERR(btf); 7984 env->prog->aux->btf = btf; 7985 7986 err = check_btf_func(env, attr, uattr); 7987 if (err) 7988 return err; 7989 7990 err = check_btf_line(env, attr, uattr); 7991 if (err) 7992 return err; 7993 7994 return 0; 7995 } 7996 7997 /* check %cur's range satisfies %old's */ 7998 static bool range_within(struct bpf_reg_state *old, 7999 struct bpf_reg_state *cur) 8000 { 8001 return old->umin_value <= cur->umin_value && 8002 old->umax_value >= cur->umax_value && 8003 old->smin_value <= cur->smin_value && 8004 old->smax_value >= cur->smax_value; 8005 } 8006 8007 /* Maximum number of register states that can exist at once */ 8008 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8009 struct idpair { 8010 u32 old; 8011 u32 cur; 8012 }; 8013 8014 /* If in the old state two registers had the same id, then they need to have 8015 * the same id in the new state as well. But that id could be different from 8016 * the old state, so we need to track the mapping from old to new ids. 8017 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8018 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8019 * regs with a different old id could still have new id 9, we don't care about 8020 * that. 8021 * So we look through our idmap to see if this old id has been seen before. If 8022 * so, we require the new id to match; otherwise, we add the id pair to the map. 8023 */ 8024 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8025 { 8026 unsigned int i; 8027 8028 for (i = 0; i < ID_MAP_SIZE; i++) { 8029 if (!idmap[i].old) { 8030 /* Reached an empty slot; haven't seen this id before */ 8031 idmap[i].old = old_id; 8032 idmap[i].cur = cur_id; 8033 return true; 8034 } 8035 if (idmap[i].old == old_id) 8036 return idmap[i].cur == cur_id; 8037 } 8038 /* We ran out of idmap slots, which should be impossible */ 8039 WARN_ON_ONCE(1); 8040 return false; 8041 } 8042 8043 static void clean_func_state(struct bpf_verifier_env *env, 8044 struct bpf_func_state *st) 8045 { 8046 enum bpf_reg_liveness live; 8047 int i, j; 8048 8049 for (i = 0; i < BPF_REG_FP; i++) { 8050 live = st->regs[i].live; 8051 /* liveness must not touch this register anymore */ 8052 st->regs[i].live |= REG_LIVE_DONE; 8053 if (!(live & REG_LIVE_READ)) 8054 /* since the register is unused, clear its state 8055 * to make further comparison simpler 8056 */ 8057 __mark_reg_not_init(env, &st->regs[i]); 8058 } 8059 8060 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8061 live = st->stack[i].spilled_ptr.live; 8062 /* liveness must not touch this stack slot anymore */ 8063 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8064 if (!(live & REG_LIVE_READ)) { 8065 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8066 for (j = 0; j < BPF_REG_SIZE; j++) 8067 st->stack[i].slot_type[j] = STACK_INVALID; 8068 } 8069 } 8070 } 8071 8072 static void clean_verifier_state(struct bpf_verifier_env *env, 8073 struct bpf_verifier_state *st) 8074 { 8075 int i; 8076 8077 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8078 /* all regs in this state in all frames were already marked */ 8079 return; 8080 8081 for (i = 0; i <= st->curframe; i++) 8082 clean_func_state(env, st->frame[i]); 8083 } 8084 8085 /* the parentage chains form a tree. 8086 * the verifier states are added to state lists at given insn and 8087 * pushed into state stack for future exploration. 8088 * when the verifier reaches bpf_exit insn some of the verifer states 8089 * stored in the state lists have their final liveness state already, 8090 * but a lot of states will get revised from liveness point of view when 8091 * the verifier explores other branches. 8092 * Example: 8093 * 1: r0 = 1 8094 * 2: if r1 == 100 goto pc+1 8095 * 3: r0 = 2 8096 * 4: exit 8097 * when the verifier reaches exit insn the register r0 in the state list of 8098 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8099 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8100 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8101 * 8102 * Since the verifier pushes the branch states as it sees them while exploring 8103 * the program the condition of walking the branch instruction for the second 8104 * time means that all states below this branch were already explored and 8105 * their final liveness markes are already propagated. 8106 * Hence when the verifier completes the search of state list in is_state_visited() 8107 * we can call this clean_live_states() function to mark all liveness states 8108 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8109 * will not be used. 8110 * This function also clears the registers and stack for states that !READ 8111 * to simplify state merging. 8112 * 8113 * Important note here that walking the same branch instruction in the callee 8114 * doesn't meant that the states are DONE. The verifier has to compare 8115 * the callsites 8116 */ 8117 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8118 struct bpf_verifier_state *cur) 8119 { 8120 struct bpf_verifier_state_list *sl; 8121 int i; 8122 8123 sl = *explored_state(env, insn); 8124 while (sl) { 8125 if (sl->state.branches) 8126 goto next; 8127 if (sl->state.insn_idx != insn || 8128 sl->state.curframe != cur->curframe) 8129 goto next; 8130 for (i = 0; i <= cur->curframe; i++) 8131 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8132 goto next; 8133 clean_verifier_state(env, &sl->state); 8134 next: 8135 sl = sl->next; 8136 } 8137 } 8138 8139 /* Returns true if (rold safe implies rcur safe) */ 8140 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8141 struct idpair *idmap) 8142 { 8143 bool equal; 8144 8145 if (!(rold->live & REG_LIVE_READ)) 8146 /* explored state didn't use this */ 8147 return true; 8148 8149 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8150 8151 if (rold->type == PTR_TO_STACK) 8152 /* two stack pointers are equal only if they're pointing to 8153 * the same stack frame, since fp-8 in foo != fp-8 in bar 8154 */ 8155 return equal && rold->frameno == rcur->frameno; 8156 8157 if (equal) 8158 return true; 8159 8160 if (rold->type == NOT_INIT) 8161 /* explored state can't have used this */ 8162 return true; 8163 if (rcur->type == NOT_INIT) 8164 return false; 8165 switch (rold->type) { 8166 case SCALAR_VALUE: 8167 if (rcur->type == SCALAR_VALUE) { 8168 if (!rold->precise && !rcur->precise) 8169 return true; 8170 /* new val must satisfy old val knowledge */ 8171 return range_within(rold, rcur) && 8172 tnum_in(rold->var_off, rcur->var_off); 8173 } else { 8174 /* We're trying to use a pointer in place of a scalar. 8175 * Even if the scalar was unbounded, this could lead to 8176 * pointer leaks because scalars are allowed to leak 8177 * while pointers are not. We could make this safe in 8178 * special cases if root is calling us, but it's 8179 * probably not worth the hassle. 8180 */ 8181 return false; 8182 } 8183 case PTR_TO_MAP_VALUE: 8184 /* If the new min/max/var_off satisfy the old ones and 8185 * everything else matches, we are OK. 8186 * 'id' is not compared, since it's only used for maps with 8187 * bpf_spin_lock inside map element and in such cases if 8188 * the rest of the prog is valid for one map element then 8189 * it's valid for all map elements regardless of the key 8190 * used in bpf_map_lookup() 8191 */ 8192 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8193 range_within(rold, rcur) && 8194 tnum_in(rold->var_off, rcur->var_off); 8195 case PTR_TO_MAP_VALUE_OR_NULL: 8196 /* a PTR_TO_MAP_VALUE could be safe to use as a 8197 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8198 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8199 * checked, doing so could have affected others with the same 8200 * id, and we can't check for that because we lost the id when 8201 * we converted to a PTR_TO_MAP_VALUE. 8202 */ 8203 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8204 return false; 8205 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8206 return false; 8207 /* Check our ids match any regs they're supposed to */ 8208 return check_ids(rold->id, rcur->id, idmap); 8209 case PTR_TO_PACKET_META: 8210 case PTR_TO_PACKET: 8211 if (rcur->type != rold->type) 8212 return false; 8213 /* We must have at least as much range as the old ptr 8214 * did, so that any accesses which were safe before are 8215 * still safe. This is true even if old range < old off, 8216 * since someone could have accessed through (ptr - k), or 8217 * even done ptr -= k in a register, to get a safe access. 8218 */ 8219 if (rold->range > rcur->range) 8220 return false; 8221 /* If the offsets don't match, we can't trust our alignment; 8222 * nor can we be sure that we won't fall out of range. 8223 */ 8224 if (rold->off != rcur->off) 8225 return false; 8226 /* id relations must be preserved */ 8227 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8228 return false; 8229 /* new val must satisfy old val knowledge */ 8230 return range_within(rold, rcur) && 8231 tnum_in(rold->var_off, rcur->var_off); 8232 case PTR_TO_CTX: 8233 case CONST_PTR_TO_MAP: 8234 case PTR_TO_PACKET_END: 8235 case PTR_TO_FLOW_KEYS: 8236 case PTR_TO_SOCKET: 8237 case PTR_TO_SOCKET_OR_NULL: 8238 case PTR_TO_SOCK_COMMON: 8239 case PTR_TO_SOCK_COMMON_OR_NULL: 8240 case PTR_TO_TCP_SOCK: 8241 case PTR_TO_TCP_SOCK_OR_NULL: 8242 case PTR_TO_XDP_SOCK: 8243 /* Only valid matches are exact, which memcmp() above 8244 * would have accepted 8245 */ 8246 default: 8247 /* Don't know what's going on, just say it's not safe */ 8248 return false; 8249 } 8250 8251 /* Shouldn't get here; if we do, say it's not safe */ 8252 WARN_ON_ONCE(1); 8253 return false; 8254 } 8255 8256 static bool stacksafe(struct bpf_func_state *old, 8257 struct bpf_func_state *cur, 8258 struct idpair *idmap) 8259 { 8260 int i, spi; 8261 8262 /* walk slots of the explored stack and ignore any additional 8263 * slots in the current stack, since explored(safe) state 8264 * didn't use them 8265 */ 8266 for (i = 0; i < old->allocated_stack; i++) { 8267 spi = i / BPF_REG_SIZE; 8268 8269 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8270 i += BPF_REG_SIZE - 1; 8271 /* explored state didn't use this */ 8272 continue; 8273 } 8274 8275 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8276 continue; 8277 8278 /* explored stack has more populated slots than current stack 8279 * and these slots were used 8280 */ 8281 if (i >= cur->allocated_stack) 8282 return false; 8283 8284 /* if old state was safe with misc data in the stack 8285 * it will be safe with zero-initialized stack. 8286 * The opposite is not true 8287 */ 8288 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8289 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8290 continue; 8291 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8292 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8293 /* Ex: old explored (safe) state has STACK_SPILL in 8294 * this stack slot, but current has has STACK_MISC -> 8295 * this verifier states are not equivalent, 8296 * return false to continue verification of this path 8297 */ 8298 return false; 8299 if (i % BPF_REG_SIZE) 8300 continue; 8301 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8302 continue; 8303 if (!regsafe(&old->stack[spi].spilled_ptr, 8304 &cur->stack[spi].spilled_ptr, 8305 idmap)) 8306 /* when explored and current stack slot are both storing 8307 * spilled registers, check that stored pointers types 8308 * are the same as well. 8309 * Ex: explored safe path could have stored 8310 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8311 * but current path has stored: 8312 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8313 * such verifier states are not equivalent. 8314 * return false to continue verification of this path 8315 */ 8316 return false; 8317 } 8318 return true; 8319 } 8320 8321 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8322 { 8323 if (old->acquired_refs != cur->acquired_refs) 8324 return false; 8325 return !memcmp(old->refs, cur->refs, 8326 sizeof(*old->refs) * old->acquired_refs); 8327 } 8328 8329 /* compare two verifier states 8330 * 8331 * all states stored in state_list are known to be valid, since 8332 * verifier reached 'bpf_exit' instruction through them 8333 * 8334 * this function is called when verifier exploring different branches of 8335 * execution popped from the state stack. If it sees an old state that has 8336 * more strict register state and more strict stack state then this execution 8337 * branch doesn't need to be explored further, since verifier already 8338 * concluded that more strict state leads to valid finish. 8339 * 8340 * Therefore two states are equivalent if register state is more conservative 8341 * and explored stack state is more conservative than the current one. 8342 * Example: 8343 * explored current 8344 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8345 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8346 * 8347 * In other words if current stack state (one being explored) has more 8348 * valid slots than old one that already passed validation, it means 8349 * the verifier can stop exploring and conclude that current state is valid too 8350 * 8351 * Similarly with registers. If explored state has register type as invalid 8352 * whereas register type in current state is meaningful, it means that 8353 * the current state will reach 'bpf_exit' instruction safely 8354 */ 8355 static bool func_states_equal(struct bpf_func_state *old, 8356 struct bpf_func_state *cur) 8357 { 8358 struct idpair *idmap; 8359 bool ret = false; 8360 int i; 8361 8362 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8363 /* If we failed to allocate the idmap, just say it's not safe */ 8364 if (!idmap) 8365 return false; 8366 8367 for (i = 0; i < MAX_BPF_REG; i++) { 8368 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8369 goto out_free; 8370 } 8371 8372 if (!stacksafe(old, cur, idmap)) 8373 goto out_free; 8374 8375 if (!refsafe(old, cur)) 8376 goto out_free; 8377 ret = true; 8378 out_free: 8379 kfree(idmap); 8380 return ret; 8381 } 8382 8383 static bool states_equal(struct bpf_verifier_env *env, 8384 struct bpf_verifier_state *old, 8385 struct bpf_verifier_state *cur) 8386 { 8387 int i; 8388 8389 if (old->curframe != cur->curframe) 8390 return false; 8391 8392 /* Verification state from speculative execution simulation 8393 * must never prune a non-speculative execution one. 8394 */ 8395 if (old->speculative && !cur->speculative) 8396 return false; 8397 8398 if (old->active_spin_lock != cur->active_spin_lock) 8399 return false; 8400 8401 /* for states to be equal callsites have to be the same 8402 * and all frame states need to be equivalent 8403 */ 8404 for (i = 0; i <= old->curframe; i++) { 8405 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8406 return false; 8407 if (!func_states_equal(old->frame[i], cur->frame[i])) 8408 return false; 8409 } 8410 return true; 8411 } 8412 8413 /* Return 0 if no propagation happened. Return negative error code if error 8414 * happened. Otherwise, return the propagated bit. 8415 */ 8416 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8417 struct bpf_reg_state *reg, 8418 struct bpf_reg_state *parent_reg) 8419 { 8420 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8421 u8 flag = reg->live & REG_LIVE_READ; 8422 int err; 8423 8424 /* When comes here, read flags of PARENT_REG or REG could be any of 8425 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8426 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8427 */ 8428 if (parent_flag == REG_LIVE_READ64 || 8429 /* Or if there is no read flag from REG. */ 8430 !flag || 8431 /* Or if the read flag from REG is the same as PARENT_REG. */ 8432 parent_flag == flag) 8433 return 0; 8434 8435 err = mark_reg_read(env, reg, parent_reg, flag); 8436 if (err) 8437 return err; 8438 8439 return flag; 8440 } 8441 8442 /* A write screens off any subsequent reads; but write marks come from the 8443 * straight-line code between a state and its parent. When we arrive at an 8444 * equivalent state (jump target or such) we didn't arrive by the straight-line 8445 * code, so read marks in the state must propagate to the parent regardless 8446 * of the state's write marks. That's what 'parent == state->parent' comparison 8447 * in mark_reg_read() is for. 8448 */ 8449 static int propagate_liveness(struct bpf_verifier_env *env, 8450 const struct bpf_verifier_state *vstate, 8451 struct bpf_verifier_state *vparent) 8452 { 8453 struct bpf_reg_state *state_reg, *parent_reg; 8454 struct bpf_func_state *state, *parent; 8455 int i, frame, err = 0; 8456 8457 if (vparent->curframe != vstate->curframe) { 8458 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8459 vparent->curframe, vstate->curframe); 8460 return -EFAULT; 8461 } 8462 /* Propagate read liveness of registers... */ 8463 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8464 for (frame = 0; frame <= vstate->curframe; frame++) { 8465 parent = vparent->frame[frame]; 8466 state = vstate->frame[frame]; 8467 parent_reg = parent->regs; 8468 state_reg = state->regs; 8469 /* We don't need to worry about FP liveness, it's read-only */ 8470 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8471 err = propagate_liveness_reg(env, &state_reg[i], 8472 &parent_reg[i]); 8473 if (err < 0) 8474 return err; 8475 if (err == REG_LIVE_READ64) 8476 mark_insn_zext(env, &parent_reg[i]); 8477 } 8478 8479 /* Propagate stack slots. */ 8480 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8481 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8482 parent_reg = &parent->stack[i].spilled_ptr; 8483 state_reg = &state->stack[i].spilled_ptr; 8484 err = propagate_liveness_reg(env, state_reg, 8485 parent_reg); 8486 if (err < 0) 8487 return err; 8488 } 8489 } 8490 return 0; 8491 } 8492 8493 /* find precise scalars in the previous equivalent state and 8494 * propagate them into the current state 8495 */ 8496 static int propagate_precision(struct bpf_verifier_env *env, 8497 const struct bpf_verifier_state *old) 8498 { 8499 struct bpf_reg_state *state_reg; 8500 struct bpf_func_state *state; 8501 int i, err = 0; 8502 8503 state = old->frame[old->curframe]; 8504 state_reg = state->regs; 8505 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8506 if (state_reg->type != SCALAR_VALUE || 8507 !state_reg->precise) 8508 continue; 8509 if (env->log.level & BPF_LOG_LEVEL2) 8510 verbose(env, "propagating r%d\n", i); 8511 err = mark_chain_precision(env, i); 8512 if (err < 0) 8513 return err; 8514 } 8515 8516 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8517 if (state->stack[i].slot_type[0] != STACK_SPILL) 8518 continue; 8519 state_reg = &state->stack[i].spilled_ptr; 8520 if (state_reg->type != SCALAR_VALUE || 8521 !state_reg->precise) 8522 continue; 8523 if (env->log.level & BPF_LOG_LEVEL2) 8524 verbose(env, "propagating fp%d\n", 8525 (-i - 1) * BPF_REG_SIZE); 8526 err = mark_chain_precision_stack(env, i); 8527 if (err < 0) 8528 return err; 8529 } 8530 return 0; 8531 } 8532 8533 static bool states_maybe_looping(struct bpf_verifier_state *old, 8534 struct bpf_verifier_state *cur) 8535 { 8536 struct bpf_func_state *fold, *fcur; 8537 int i, fr = cur->curframe; 8538 8539 if (old->curframe != fr) 8540 return false; 8541 8542 fold = old->frame[fr]; 8543 fcur = cur->frame[fr]; 8544 for (i = 0; i < MAX_BPF_REG; i++) 8545 if (memcmp(&fold->regs[i], &fcur->regs[i], 8546 offsetof(struct bpf_reg_state, parent))) 8547 return false; 8548 return true; 8549 } 8550 8551 8552 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8553 { 8554 struct bpf_verifier_state_list *new_sl; 8555 struct bpf_verifier_state_list *sl, **pprev; 8556 struct bpf_verifier_state *cur = env->cur_state, *new; 8557 int i, j, err, states_cnt = 0; 8558 bool add_new_state = env->test_state_freq ? true : false; 8559 8560 cur->last_insn_idx = env->prev_insn_idx; 8561 if (!env->insn_aux_data[insn_idx].prune_point) 8562 /* this 'insn_idx' instruction wasn't marked, so we will not 8563 * be doing state search here 8564 */ 8565 return 0; 8566 8567 /* bpf progs typically have pruning point every 4 instructions 8568 * http://vger.kernel.org/bpfconf2019.html#session-1 8569 * Do not add new state for future pruning if the verifier hasn't seen 8570 * at least 2 jumps and at least 8 instructions. 8571 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8572 * In tests that amounts to up to 50% reduction into total verifier 8573 * memory consumption and 20% verifier time speedup. 8574 */ 8575 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8576 env->insn_processed - env->prev_insn_processed >= 8) 8577 add_new_state = true; 8578 8579 pprev = explored_state(env, insn_idx); 8580 sl = *pprev; 8581 8582 clean_live_states(env, insn_idx, cur); 8583 8584 while (sl) { 8585 states_cnt++; 8586 if (sl->state.insn_idx != insn_idx) 8587 goto next; 8588 if (sl->state.branches) { 8589 if (states_maybe_looping(&sl->state, cur) && 8590 states_equal(env, &sl->state, cur)) { 8591 verbose_linfo(env, insn_idx, "; "); 8592 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8593 return -EINVAL; 8594 } 8595 /* if the verifier is processing a loop, avoid adding new state 8596 * too often, since different loop iterations have distinct 8597 * states and may not help future pruning. 8598 * This threshold shouldn't be too low to make sure that 8599 * a loop with large bound will be rejected quickly. 8600 * The most abusive loop will be: 8601 * r1 += 1 8602 * if r1 < 1000000 goto pc-2 8603 * 1M insn_procssed limit / 100 == 10k peak states. 8604 * This threshold shouldn't be too high either, since states 8605 * at the end of the loop are likely to be useful in pruning. 8606 */ 8607 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8608 env->insn_processed - env->prev_insn_processed < 100) 8609 add_new_state = false; 8610 goto miss; 8611 } 8612 if (states_equal(env, &sl->state, cur)) { 8613 sl->hit_cnt++; 8614 /* reached equivalent register/stack state, 8615 * prune the search. 8616 * Registers read by the continuation are read by us. 8617 * If we have any write marks in env->cur_state, they 8618 * will prevent corresponding reads in the continuation 8619 * from reaching our parent (an explored_state). Our 8620 * own state will get the read marks recorded, but 8621 * they'll be immediately forgotten as we're pruning 8622 * this state and will pop a new one. 8623 */ 8624 err = propagate_liveness(env, &sl->state, cur); 8625 8626 /* if previous state reached the exit with precision and 8627 * current state is equivalent to it (except precsion marks) 8628 * the precision needs to be propagated back in 8629 * the current state. 8630 */ 8631 err = err ? : push_jmp_history(env, cur); 8632 err = err ? : propagate_precision(env, &sl->state); 8633 if (err) 8634 return err; 8635 return 1; 8636 } 8637 miss: 8638 /* when new state is not going to be added do not increase miss count. 8639 * Otherwise several loop iterations will remove the state 8640 * recorded earlier. The goal of these heuristics is to have 8641 * states from some iterations of the loop (some in the beginning 8642 * and some at the end) to help pruning. 8643 */ 8644 if (add_new_state) 8645 sl->miss_cnt++; 8646 /* heuristic to determine whether this state is beneficial 8647 * to keep checking from state equivalence point of view. 8648 * Higher numbers increase max_states_per_insn and verification time, 8649 * but do not meaningfully decrease insn_processed. 8650 */ 8651 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8652 /* the state is unlikely to be useful. Remove it to 8653 * speed up verification 8654 */ 8655 *pprev = sl->next; 8656 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8657 u32 br = sl->state.branches; 8658 8659 WARN_ONCE(br, 8660 "BUG live_done but branches_to_explore %d\n", 8661 br); 8662 free_verifier_state(&sl->state, false); 8663 kfree(sl); 8664 env->peak_states--; 8665 } else { 8666 /* cannot free this state, since parentage chain may 8667 * walk it later. Add it for free_list instead to 8668 * be freed at the end of verification 8669 */ 8670 sl->next = env->free_list; 8671 env->free_list = sl; 8672 } 8673 sl = *pprev; 8674 continue; 8675 } 8676 next: 8677 pprev = &sl->next; 8678 sl = *pprev; 8679 } 8680 8681 if (env->max_states_per_insn < states_cnt) 8682 env->max_states_per_insn = states_cnt; 8683 8684 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8685 return push_jmp_history(env, cur); 8686 8687 if (!add_new_state) 8688 return push_jmp_history(env, cur); 8689 8690 /* There were no equivalent states, remember the current one. 8691 * Technically the current state is not proven to be safe yet, 8692 * but it will either reach outer most bpf_exit (which means it's safe) 8693 * or it will be rejected. When there are no loops the verifier won't be 8694 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8695 * again on the way to bpf_exit. 8696 * When looping the sl->state.branches will be > 0 and this state 8697 * will not be considered for equivalence until branches == 0. 8698 */ 8699 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8700 if (!new_sl) 8701 return -ENOMEM; 8702 env->total_states++; 8703 env->peak_states++; 8704 env->prev_jmps_processed = env->jmps_processed; 8705 env->prev_insn_processed = env->insn_processed; 8706 8707 /* add new state to the head of linked list */ 8708 new = &new_sl->state; 8709 err = copy_verifier_state(new, cur); 8710 if (err) { 8711 free_verifier_state(new, false); 8712 kfree(new_sl); 8713 return err; 8714 } 8715 new->insn_idx = insn_idx; 8716 WARN_ONCE(new->branches != 1, 8717 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8718 8719 cur->parent = new; 8720 cur->first_insn_idx = insn_idx; 8721 clear_jmp_history(cur); 8722 new_sl->next = *explored_state(env, insn_idx); 8723 *explored_state(env, insn_idx) = new_sl; 8724 /* connect new state to parentage chain. Current frame needs all 8725 * registers connected. Only r6 - r9 of the callers are alive (pushed 8726 * to the stack implicitly by JITs) so in callers' frames connect just 8727 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8728 * the state of the call instruction (with WRITTEN set), and r0 comes 8729 * from callee with its full parentage chain, anyway. 8730 */ 8731 /* clear write marks in current state: the writes we did are not writes 8732 * our child did, so they don't screen off its reads from us. 8733 * (There are no read marks in current state, because reads always mark 8734 * their parent and current state never has children yet. Only 8735 * explored_states can get read marks.) 8736 */ 8737 for (j = 0; j <= cur->curframe; j++) { 8738 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8739 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8740 for (i = 0; i < BPF_REG_FP; i++) 8741 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8742 } 8743 8744 /* all stack frames are accessible from callee, clear them all */ 8745 for (j = 0; j <= cur->curframe; j++) { 8746 struct bpf_func_state *frame = cur->frame[j]; 8747 struct bpf_func_state *newframe = new->frame[j]; 8748 8749 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8750 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8751 frame->stack[i].spilled_ptr.parent = 8752 &newframe->stack[i].spilled_ptr; 8753 } 8754 } 8755 return 0; 8756 } 8757 8758 /* Return true if it's OK to have the same insn return a different type. */ 8759 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8760 { 8761 switch (type) { 8762 case PTR_TO_CTX: 8763 case PTR_TO_SOCKET: 8764 case PTR_TO_SOCKET_OR_NULL: 8765 case PTR_TO_SOCK_COMMON: 8766 case PTR_TO_SOCK_COMMON_OR_NULL: 8767 case PTR_TO_TCP_SOCK: 8768 case PTR_TO_TCP_SOCK_OR_NULL: 8769 case PTR_TO_XDP_SOCK: 8770 case PTR_TO_BTF_ID: 8771 case PTR_TO_BTF_ID_OR_NULL: 8772 return false; 8773 default: 8774 return true; 8775 } 8776 } 8777 8778 /* If an instruction was previously used with particular pointer types, then we 8779 * need to be careful to avoid cases such as the below, where it may be ok 8780 * for one branch accessing the pointer, but not ok for the other branch: 8781 * 8782 * R1 = sock_ptr 8783 * goto X; 8784 * ... 8785 * R1 = some_other_valid_ptr; 8786 * goto X; 8787 * ... 8788 * R2 = *(u32 *)(R1 + 0); 8789 */ 8790 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8791 { 8792 return src != prev && (!reg_type_mismatch_ok(src) || 8793 !reg_type_mismatch_ok(prev)); 8794 } 8795 8796 static int do_check(struct bpf_verifier_env *env) 8797 { 8798 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 8799 struct bpf_verifier_state *state = env->cur_state; 8800 struct bpf_insn *insns = env->prog->insnsi; 8801 struct bpf_reg_state *regs; 8802 int insn_cnt = env->prog->len; 8803 bool do_print_state = false; 8804 int prev_insn_idx = -1; 8805 8806 for (;;) { 8807 struct bpf_insn *insn; 8808 u8 class; 8809 int err; 8810 8811 env->prev_insn_idx = prev_insn_idx; 8812 if (env->insn_idx >= insn_cnt) { 8813 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8814 env->insn_idx, insn_cnt); 8815 return -EFAULT; 8816 } 8817 8818 insn = &insns[env->insn_idx]; 8819 class = BPF_CLASS(insn->code); 8820 8821 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8822 verbose(env, 8823 "BPF program is too large. Processed %d insn\n", 8824 env->insn_processed); 8825 return -E2BIG; 8826 } 8827 8828 err = is_state_visited(env, env->insn_idx); 8829 if (err < 0) 8830 return err; 8831 if (err == 1) { 8832 /* found equivalent state, can prune the search */ 8833 if (env->log.level & BPF_LOG_LEVEL) { 8834 if (do_print_state) 8835 verbose(env, "\nfrom %d to %d%s: safe\n", 8836 env->prev_insn_idx, env->insn_idx, 8837 env->cur_state->speculative ? 8838 " (speculative execution)" : ""); 8839 else 8840 verbose(env, "%d: safe\n", env->insn_idx); 8841 } 8842 goto process_bpf_exit; 8843 } 8844 8845 if (signal_pending(current)) 8846 return -EAGAIN; 8847 8848 if (need_resched()) 8849 cond_resched(); 8850 8851 if (env->log.level & BPF_LOG_LEVEL2 || 8852 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8853 if (env->log.level & BPF_LOG_LEVEL2) 8854 verbose(env, "%d:", env->insn_idx); 8855 else 8856 verbose(env, "\nfrom %d to %d%s:", 8857 env->prev_insn_idx, env->insn_idx, 8858 env->cur_state->speculative ? 8859 " (speculative execution)" : ""); 8860 print_verifier_state(env, state->frame[state->curframe]); 8861 do_print_state = false; 8862 } 8863 8864 if (env->log.level & BPF_LOG_LEVEL) { 8865 const struct bpf_insn_cbs cbs = { 8866 .cb_print = verbose, 8867 .private_data = env, 8868 }; 8869 8870 verbose_linfo(env, env->insn_idx, "; "); 8871 verbose(env, "%d: ", env->insn_idx); 8872 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8873 } 8874 8875 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8876 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8877 env->prev_insn_idx); 8878 if (err) 8879 return err; 8880 } 8881 8882 regs = cur_regs(env); 8883 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8884 prev_insn_idx = env->insn_idx; 8885 8886 if (class == BPF_ALU || class == BPF_ALU64) { 8887 err = check_alu_op(env, insn); 8888 if (err) 8889 return err; 8890 8891 } else if (class == BPF_LDX) { 8892 enum bpf_reg_type *prev_src_type, src_reg_type; 8893 8894 /* check for reserved fields is already done */ 8895 8896 /* check src operand */ 8897 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8898 if (err) 8899 return err; 8900 8901 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8902 if (err) 8903 return err; 8904 8905 src_reg_type = regs[insn->src_reg].type; 8906 8907 /* check that memory (src_reg + off) is readable, 8908 * the state of dst_reg will be updated by this func 8909 */ 8910 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8911 insn->off, BPF_SIZE(insn->code), 8912 BPF_READ, insn->dst_reg, false); 8913 if (err) 8914 return err; 8915 8916 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8917 8918 if (*prev_src_type == NOT_INIT) { 8919 /* saw a valid insn 8920 * dst_reg = *(u32 *)(src_reg + off) 8921 * save type to validate intersecting paths 8922 */ 8923 *prev_src_type = src_reg_type; 8924 8925 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8926 /* ABuser program is trying to use the same insn 8927 * dst_reg = *(u32*) (src_reg + off) 8928 * with different pointer types: 8929 * src_reg == ctx in one branch and 8930 * src_reg == stack|map in some other branch. 8931 * Reject it. 8932 */ 8933 verbose(env, "same insn cannot be used with different pointers\n"); 8934 return -EINVAL; 8935 } 8936 8937 } else if (class == BPF_STX) { 8938 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8939 8940 if (BPF_MODE(insn->code) == BPF_XADD) { 8941 err = check_xadd(env, env->insn_idx, insn); 8942 if (err) 8943 return err; 8944 env->insn_idx++; 8945 continue; 8946 } 8947 8948 /* check src1 operand */ 8949 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8950 if (err) 8951 return err; 8952 /* check src2 operand */ 8953 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8954 if (err) 8955 return err; 8956 8957 dst_reg_type = regs[insn->dst_reg].type; 8958 8959 /* check that memory (dst_reg + off) is writeable */ 8960 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8961 insn->off, BPF_SIZE(insn->code), 8962 BPF_WRITE, insn->src_reg, false); 8963 if (err) 8964 return err; 8965 8966 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8967 8968 if (*prev_dst_type == NOT_INIT) { 8969 *prev_dst_type = dst_reg_type; 8970 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8971 verbose(env, "same insn cannot be used with different pointers\n"); 8972 return -EINVAL; 8973 } 8974 8975 } else if (class == BPF_ST) { 8976 if (BPF_MODE(insn->code) != BPF_MEM || 8977 insn->src_reg != BPF_REG_0) { 8978 verbose(env, "BPF_ST uses reserved fields\n"); 8979 return -EINVAL; 8980 } 8981 /* check src operand */ 8982 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8983 if (err) 8984 return err; 8985 8986 if (is_ctx_reg(env, insn->dst_reg)) { 8987 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8988 insn->dst_reg, 8989 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8990 return -EACCES; 8991 } 8992 8993 /* check that memory (dst_reg + off) is writeable */ 8994 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8995 insn->off, BPF_SIZE(insn->code), 8996 BPF_WRITE, -1, false); 8997 if (err) 8998 return err; 8999 9000 } else if (class == BPF_JMP || class == BPF_JMP32) { 9001 u8 opcode = BPF_OP(insn->code); 9002 9003 env->jmps_processed++; 9004 if (opcode == BPF_CALL) { 9005 if (BPF_SRC(insn->code) != BPF_K || 9006 insn->off != 0 || 9007 (insn->src_reg != BPF_REG_0 && 9008 insn->src_reg != BPF_PSEUDO_CALL) || 9009 insn->dst_reg != BPF_REG_0 || 9010 class == BPF_JMP32) { 9011 verbose(env, "BPF_CALL uses reserved fields\n"); 9012 return -EINVAL; 9013 } 9014 9015 if (env->cur_state->active_spin_lock && 9016 (insn->src_reg == BPF_PSEUDO_CALL || 9017 insn->imm != BPF_FUNC_spin_unlock)) { 9018 verbose(env, "function calls are not allowed while holding a lock\n"); 9019 return -EINVAL; 9020 } 9021 if (insn->src_reg == BPF_PSEUDO_CALL) 9022 err = check_func_call(env, insn, &env->insn_idx); 9023 else 9024 err = check_helper_call(env, insn->imm, env->insn_idx); 9025 if (err) 9026 return err; 9027 9028 } else if (opcode == BPF_JA) { 9029 if (BPF_SRC(insn->code) != BPF_K || 9030 insn->imm != 0 || 9031 insn->src_reg != BPF_REG_0 || 9032 insn->dst_reg != BPF_REG_0 || 9033 class == BPF_JMP32) { 9034 verbose(env, "BPF_JA uses reserved fields\n"); 9035 return -EINVAL; 9036 } 9037 9038 env->insn_idx += insn->off + 1; 9039 continue; 9040 9041 } else if (opcode == BPF_EXIT) { 9042 if (BPF_SRC(insn->code) != BPF_K || 9043 insn->imm != 0 || 9044 insn->src_reg != BPF_REG_0 || 9045 insn->dst_reg != BPF_REG_0 || 9046 class == BPF_JMP32) { 9047 verbose(env, "BPF_EXIT uses reserved fields\n"); 9048 return -EINVAL; 9049 } 9050 9051 if (env->cur_state->active_spin_lock) { 9052 verbose(env, "bpf_spin_unlock is missing\n"); 9053 return -EINVAL; 9054 } 9055 9056 if (state->curframe) { 9057 /* exit from nested function */ 9058 err = prepare_func_exit(env, &env->insn_idx); 9059 if (err) 9060 return err; 9061 do_print_state = true; 9062 continue; 9063 } 9064 9065 err = check_reference_leak(env); 9066 if (err) 9067 return err; 9068 9069 err = check_return_code(env); 9070 if (err) 9071 return err; 9072 process_bpf_exit: 9073 update_branch_counts(env, env->cur_state); 9074 err = pop_stack(env, &prev_insn_idx, 9075 &env->insn_idx, pop_log); 9076 if (err < 0) { 9077 if (err != -ENOENT) 9078 return err; 9079 break; 9080 } else { 9081 do_print_state = true; 9082 continue; 9083 } 9084 } else { 9085 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9086 if (err) 9087 return err; 9088 } 9089 } else if (class == BPF_LD) { 9090 u8 mode = BPF_MODE(insn->code); 9091 9092 if (mode == BPF_ABS || mode == BPF_IND) { 9093 err = check_ld_abs(env, insn); 9094 if (err) 9095 return err; 9096 9097 } else if (mode == BPF_IMM) { 9098 err = check_ld_imm(env, insn); 9099 if (err) 9100 return err; 9101 9102 env->insn_idx++; 9103 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9104 } else { 9105 verbose(env, "invalid BPF_LD mode\n"); 9106 return -EINVAL; 9107 } 9108 } else { 9109 verbose(env, "unknown insn class %d\n", class); 9110 return -EINVAL; 9111 } 9112 9113 env->insn_idx++; 9114 } 9115 9116 return 0; 9117 } 9118 9119 static int check_map_prealloc(struct bpf_map *map) 9120 { 9121 return (map->map_type != BPF_MAP_TYPE_HASH && 9122 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9123 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9124 !(map->map_flags & BPF_F_NO_PREALLOC); 9125 } 9126 9127 static bool is_tracing_prog_type(enum bpf_prog_type type) 9128 { 9129 switch (type) { 9130 case BPF_PROG_TYPE_KPROBE: 9131 case BPF_PROG_TYPE_TRACEPOINT: 9132 case BPF_PROG_TYPE_PERF_EVENT: 9133 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9134 return true; 9135 default: 9136 return false; 9137 } 9138 } 9139 9140 static bool is_preallocated_map(struct bpf_map *map) 9141 { 9142 if (!check_map_prealloc(map)) 9143 return false; 9144 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9145 return false; 9146 return true; 9147 } 9148 9149 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9150 struct bpf_map *map, 9151 struct bpf_prog *prog) 9152 9153 { 9154 /* 9155 * Validate that trace type programs use preallocated hash maps. 9156 * 9157 * For programs attached to PERF events this is mandatory as the 9158 * perf NMI can hit any arbitrary code sequence. 9159 * 9160 * All other trace types using preallocated hash maps are unsafe as 9161 * well because tracepoint or kprobes can be inside locked regions 9162 * of the memory allocator or at a place where a recursion into the 9163 * memory allocator would see inconsistent state. 9164 * 9165 * On RT enabled kernels run-time allocation of all trace type 9166 * programs is strictly prohibited due to lock type constraints. On 9167 * !RT kernels it is allowed for backwards compatibility reasons for 9168 * now, but warnings are emitted so developers are made aware of 9169 * the unsafety and can fix their programs before this is enforced. 9170 */ 9171 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 9172 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 9173 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9174 return -EINVAL; 9175 } 9176 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9177 verbose(env, "trace type programs can only use preallocated hash map\n"); 9178 return -EINVAL; 9179 } 9180 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9181 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9182 } 9183 9184 if ((is_tracing_prog_type(prog->type) || 9185 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 9186 map_value_has_spin_lock(map)) { 9187 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9188 return -EINVAL; 9189 } 9190 9191 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9192 !bpf_offload_prog_map_match(prog, map)) { 9193 verbose(env, "offload device mismatch between prog and map\n"); 9194 return -EINVAL; 9195 } 9196 9197 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9198 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9199 return -EINVAL; 9200 } 9201 9202 return 0; 9203 } 9204 9205 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9206 { 9207 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9208 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9209 } 9210 9211 /* look for pseudo eBPF instructions that access map FDs and 9212 * replace them with actual map pointers 9213 */ 9214 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 9215 { 9216 struct bpf_insn *insn = env->prog->insnsi; 9217 int insn_cnt = env->prog->len; 9218 int i, j, err; 9219 9220 err = bpf_prog_calc_tag(env->prog); 9221 if (err) 9222 return err; 9223 9224 for (i = 0; i < insn_cnt; i++, insn++) { 9225 if (BPF_CLASS(insn->code) == BPF_LDX && 9226 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9227 verbose(env, "BPF_LDX uses reserved fields\n"); 9228 return -EINVAL; 9229 } 9230 9231 if (BPF_CLASS(insn->code) == BPF_STX && 9232 ((BPF_MODE(insn->code) != BPF_MEM && 9233 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9234 verbose(env, "BPF_STX uses reserved fields\n"); 9235 return -EINVAL; 9236 } 9237 9238 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9239 struct bpf_insn_aux_data *aux; 9240 struct bpf_map *map; 9241 struct fd f; 9242 u64 addr; 9243 9244 if (i == insn_cnt - 1 || insn[1].code != 0 || 9245 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9246 insn[1].off != 0) { 9247 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9248 return -EINVAL; 9249 } 9250 9251 if (insn[0].src_reg == 0) 9252 /* valid generic load 64-bit imm */ 9253 goto next_insn; 9254 9255 /* In final convert_pseudo_ld_imm64() step, this is 9256 * converted into regular 64-bit imm load insn. 9257 */ 9258 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9259 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9260 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9261 insn[1].imm != 0)) { 9262 verbose(env, 9263 "unrecognized bpf_ld_imm64 insn\n"); 9264 return -EINVAL; 9265 } 9266 9267 f = fdget(insn[0].imm); 9268 map = __bpf_map_get(f); 9269 if (IS_ERR(map)) { 9270 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9271 insn[0].imm); 9272 return PTR_ERR(map); 9273 } 9274 9275 err = check_map_prog_compatibility(env, map, env->prog); 9276 if (err) { 9277 fdput(f); 9278 return err; 9279 } 9280 9281 aux = &env->insn_aux_data[i]; 9282 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9283 addr = (unsigned long)map; 9284 } else { 9285 u32 off = insn[1].imm; 9286 9287 if (off >= BPF_MAX_VAR_OFF) { 9288 verbose(env, "direct value offset of %u is not allowed\n", off); 9289 fdput(f); 9290 return -EINVAL; 9291 } 9292 9293 if (!map->ops->map_direct_value_addr) { 9294 verbose(env, "no direct value access support for this map type\n"); 9295 fdput(f); 9296 return -EINVAL; 9297 } 9298 9299 err = map->ops->map_direct_value_addr(map, &addr, off); 9300 if (err) { 9301 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9302 map->value_size, off); 9303 fdput(f); 9304 return err; 9305 } 9306 9307 aux->map_off = off; 9308 addr += off; 9309 } 9310 9311 insn[0].imm = (u32)addr; 9312 insn[1].imm = addr >> 32; 9313 9314 /* check whether we recorded this map already */ 9315 for (j = 0; j < env->used_map_cnt; j++) { 9316 if (env->used_maps[j] == map) { 9317 aux->map_index = j; 9318 fdput(f); 9319 goto next_insn; 9320 } 9321 } 9322 9323 if (env->used_map_cnt >= MAX_USED_MAPS) { 9324 fdput(f); 9325 return -E2BIG; 9326 } 9327 9328 /* hold the map. If the program is rejected by verifier, 9329 * the map will be released by release_maps() or it 9330 * will be used by the valid program until it's unloaded 9331 * and all maps are released in free_used_maps() 9332 */ 9333 bpf_map_inc(map); 9334 9335 aux->map_index = env->used_map_cnt; 9336 env->used_maps[env->used_map_cnt++] = map; 9337 9338 if (bpf_map_is_cgroup_storage(map) && 9339 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9340 verbose(env, "only one cgroup storage of each type is allowed\n"); 9341 fdput(f); 9342 return -EBUSY; 9343 } 9344 9345 fdput(f); 9346 next_insn: 9347 insn++; 9348 i++; 9349 continue; 9350 } 9351 9352 /* Basic sanity check before we invest more work here. */ 9353 if (!bpf_opcode_in_insntable(insn->code)) { 9354 verbose(env, "unknown opcode %02x\n", insn->code); 9355 return -EINVAL; 9356 } 9357 } 9358 9359 /* now all pseudo BPF_LD_IMM64 instructions load valid 9360 * 'struct bpf_map *' into a register instead of user map_fd. 9361 * These pointers will be used later by verifier to validate map access. 9362 */ 9363 return 0; 9364 } 9365 9366 /* drop refcnt of maps used by the rejected program */ 9367 static void release_maps(struct bpf_verifier_env *env) 9368 { 9369 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9370 env->used_map_cnt); 9371 } 9372 9373 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9374 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9375 { 9376 struct bpf_insn *insn = env->prog->insnsi; 9377 int insn_cnt = env->prog->len; 9378 int i; 9379 9380 for (i = 0; i < insn_cnt; i++, insn++) 9381 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9382 insn->src_reg = 0; 9383 } 9384 9385 /* single env->prog->insni[off] instruction was replaced with the range 9386 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9387 * [0, off) and [off, end) to new locations, so the patched range stays zero 9388 */ 9389 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9390 struct bpf_prog *new_prog, u32 off, u32 cnt) 9391 { 9392 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9393 struct bpf_insn *insn = new_prog->insnsi; 9394 u32 prog_len; 9395 int i; 9396 9397 /* aux info at OFF always needs adjustment, no matter fast path 9398 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9399 * original insn at old prog. 9400 */ 9401 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9402 9403 if (cnt == 1) 9404 return 0; 9405 prog_len = new_prog->len; 9406 new_data = vzalloc(array_size(prog_len, 9407 sizeof(struct bpf_insn_aux_data))); 9408 if (!new_data) 9409 return -ENOMEM; 9410 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9411 memcpy(new_data + off + cnt - 1, old_data + off, 9412 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9413 for (i = off; i < off + cnt - 1; i++) { 9414 new_data[i].seen = env->pass_cnt; 9415 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9416 } 9417 env->insn_aux_data = new_data; 9418 vfree(old_data); 9419 return 0; 9420 } 9421 9422 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9423 { 9424 int i; 9425 9426 if (len == 1) 9427 return; 9428 /* NOTE: fake 'exit' subprog should be updated as well. */ 9429 for (i = 0; i <= env->subprog_cnt; i++) { 9430 if (env->subprog_info[i].start <= off) 9431 continue; 9432 env->subprog_info[i].start += len - 1; 9433 } 9434 } 9435 9436 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9437 const struct bpf_insn *patch, u32 len) 9438 { 9439 struct bpf_prog *new_prog; 9440 9441 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9442 if (IS_ERR(new_prog)) { 9443 if (PTR_ERR(new_prog) == -ERANGE) 9444 verbose(env, 9445 "insn %d cannot be patched due to 16-bit range\n", 9446 env->insn_aux_data[off].orig_idx); 9447 return NULL; 9448 } 9449 if (adjust_insn_aux_data(env, new_prog, off, len)) 9450 return NULL; 9451 adjust_subprog_starts(env, off, len); 9452 return new_prog; 9453 } 9454 9455 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9456 u32 off, u32 cnt) 9457 { 9458 int i, j; 9459 9460 /* find first prog starting at or after off (first to remove) */ 9461 for (i = 0; i < env->subprog_cnt; i++) 9462 if (env->subprog_info[i].start >= off) 9463 break; 9464 /* find first prog starting at or after off + cnt (first to stay) */ 9465 for (j = i; j < env->subprog_cnt; j++) 9466 if (env->subprog_info[j].start >= off + cnt) 9467 break; 9468 /* if j doesn't start exactly at off + cnt, we are just removing 9469 * the front of previous prog 9470 */ 9471 if (env->subprog_info[j].start != off + cnt) 9472 j--; 9473 9474 if (j > i) { 9475 struct bpf_prog_aux *aux = env->prog->aux; 9476 int move; 9477 9478 /* move fake 'exit' subprog as well */ 9479 move = env->subprog_cnt + 1 - j; 9480 9481 memmove(env->subprog_info + i, 9482 env->subprog_info + j, 9483 sizeof(*env->subprog_info) * move); 9484 env->subprog_cnt -= j - i; 9485 9486 /* remove func_info */ 9487 if (aux->func_info) { 9488 move = aux->func_info_cnt - j; 9489 9490 memmove(aux->func_info + i, 9491 aux->func_info + j, 9492 sizeof(*aux->func_info) * move); 9493 aux->func_info_cnt -= j - i; 9494 /* func_info->insn_off is set after all code rewrites, 9495 * in adjust_btf_func() - no need to adjust 9496 */ 9497 } 9498 } else { 9499 /* convert i from "first prog to remove" to "first to adjust" */ 9500 if (env->subprog_info[i].start == off) 9501 i++; 9502 } 9503 9504 /* update fake 'exit' subprog as well */ 9505 for (; i <= env->subprog_cnt; i++) 9506 env->subprog_info[i].start -= cnt; 9507 9508 return 0; 9509 } 9510 9511 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9512 u32 cnt) 9513 { 9514 struct bpf_prog *prog = env->prog; 9515 u32 i, l_off, l_cnt, nr_linfo; 9516 struct bpf_line_info *linfo; 9517 9518 nr_linfo = prog->aux->nr_linfo; 9519 if (!nr_linfo) 9520 return 0; 9521 9522 linfo = prog->aux->linfo; 9523 9524 /* find first line info to remove, count lines to be removed */ 9525 for (i = 0; i < nr_linfo; i++) 9526 if (linfo[i].insn_off >= off) 9527 break; 9528 9529 l_off = i; 9530 l_cnt = 0; 9531 for (; i < nr_linfo; i++) 9532 if (linfo[i].insn_off < off + cnt) 9533 l_cnt++; 9534 else 9535 break; 9536 9537 /* First live insn doesn't match first live linfo, it needs to "inherit" 9538 * last removed linfo. prog is already modified, so prog->len == off 9539 * means no live instructions after (tail of the program was removed). 9540 */ 9541 if (prog->len != off && l_cnt && 9542 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9543 l_cnt--; 9544 linfo[--i].insn_off = off + cnt; 9545 } 9546 9547 /* remove the line info which refer to the removed instructions */ 9548 if (l_cnt) { 9549 memmove(linfo + l_off, linfo + i, 9550 sizeof(*linfo) * (nr_linfo - i)); 9551 9552 prog->aux->nr_linfo -= l_cnt; 9553 nr_linfo = prog->aux->nr_linfo; 9554 } 9555 9556 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9557 for (i = l_off; i < nr_linfo; i++) 9558 linfo[i].insn_off -= cnt; 9559 9560 /* fix up all subprogs (incl. 'exit') which start >= off */ 9561 for (i = 0; i <= env->subprog_cnt; i++) 9562 if (env->subprog_info[i].linfo_idx > l_off) { 9563 /* program may have started in the removed region but 9564 * may not be fully removed 9565 */ 9566 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9567 env->subprog_info[i].linfo_idx -= l_cnt; 9568 else 9569 env->subprog_info[i].linfo_idx = l_off; 9570 } 9571 9572 return 0; 9573 } 9574 9575 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9576 { 9577 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9578 unsigned int orig_prog_len = env->prog->len; 9579 int err; 9580 9581 if (bpf_prog_is_dev_bound(env->prog->aux)) 9582 bpf_prog_offload_remove_insns(env, off, cnt); 9583 9584 err = bpf_remove_insns(env->prog, off, cnt); 9585 if (err) 9586 return err; 9587 9588 err = adjust_subprog_starts_after_remove(env, off, cnt); 9589 if (err) 9590 return err; 9591 9592 err = bpf_adj_linfo_after_remove(env, off, cnt); 9593 if (err) 9594 return err; 9595 9596 memmove(aux_data + off, aux_data + off + cnt, 9597 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9598 9599 return 0; 9600 } 9601 9602 /* The verifier does more data flow analysis than llvm and will not 9603 * explore branches that are dead at run time. Malicious programs can 9604 * have dead code too. Therefore replace all dead at-run-time code 9605 * with 'ja -1'. 9606 * 9607 * Just nops are not optimal, e.g. if they would sit at the end of the 9608 * program and through another bug we would manage to jump there, then 9609 * we'd execute beyond program memory otherwise. Returning exception 9610 * code also wouldn't work since we can have subprogs where the dead 9611 * code could be located. 9612 */ 9613 static void sanitize_dead_code(struct bpf_verifier_env *env) 9614 { 9615 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9616 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9617 struct bpf_insn *insn = env->prog->insnsi; 9618 const int insn_cnt = env->prog->len; 9619 int i; 9620 9621 for (i = 0; i < insn_cnt; i++) { 9622 if (aux_data[i].seen) 9623 continue; 9624 memcpy(insn + i, &trap, sizeof(trap)); 9625 } 9626 } 9627 9628 static bool insn_is_cond_jump(u8 code) 9629 { 9630 u8 op; 9631 9632 if (BPF_CLASS(code) == BPF_JMP32) 9633 return true; 9634 9635 if (BPF_CLASS(code) != BPF_JMP) 9636 return false; 9637 9638 op = BPF_OP(code); 9639 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9640 } 9641 9642 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9643 { 9644 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9645 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9646 struct bpf_insn *insn = env->prog->insnsi; 9647 const int insn_cnt = env->prog->len; 9648 int i; 9649 9650 for (i = 0; i < insn_cnt; i++, insn++) { 9651 if (!insn_is_cond_jump(insn->code)) 9652 continue; 9653 9654 if (!aux_data[i + 1].seen) 9655 ja.off = insn->off; 9656 else if (!aux_data[i + 1 + insn->off].seen) 9657 ja.off = 0; 9658 else 9659 continue; 9660 9661 if (bpf_prog_is_dev_bound(env->prog->aux)) 9662 bpf_prog_offload_replace_insn(env, i, &ja); 9663 9664 memcpy(insn, &ja, sizeof(ja)); 9665 } 9666 } 9667 9668 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9669 { 9670 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9671 int insn_cnt = env->prog->len; 9672 int i, err; 9673 9674 for (i = 0; i < insn_cnt; i++) { 9675 int j; 9676 9677 j = 0; 9678 while (i + j < insn_cnt && !aux_data[i + j].seen) 9679 j++; 9680 if (!j) 9681 continue; 9682 9683 err = verifier_remove_insns(env, i, j); 9684 if (err) 9685 return err; 9686 insn_cnt = env->prog->len; 9687 } 9688 9689 return 0; 9690 } 9691 9692 static int opt_remove_nops(struct bpf_verifier_env *env) 9693 { 9694 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9695 struct bpf_insn *insn = env->prog->insnsi; 9696 int insn_cnt = env->prog->len; 9697 int i, err; 9698 9699 for (i = 0; i < insn_cnt; i++) { 9700 if (memcmp(&insn[i], &ja, sizeof(ja))) 9701 continue; 9702 9703 err = verifier_remove_insns(env, i, 1); 9704 if (err) 9705 return err; 9706 insn_cnt--; 9707 i--; 9708 } 9709 9710 return 0; 9711 } 9712 9713 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9714 const union bpf_attr *attr) 9715 { 9716 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9717 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9718 int i, patch_len, delta = 0, len = env->prog->len; 9719 struct bpf_insn *insns = env->prog->insnsi; 9720 struct bpf_prog *new_prog; 9721 bool rnd_hi32; 9722 9723 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9724 zext_patch[1] = BPF_ZEXT_REG(0); 9725 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9726 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9727 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9728 for (i = 0; i < len; i++) { 9729 int adj_idx = i + delta; 9730 struct bpf_insn insn; 9731 9732 insn = insns[adj_idx]; 9733 if (!aux[adj_idx].zext_dst) { 9734 u8 code, class; 9735 u32 imm_rnd; 9736 9737 if (!rnd_hi32) 9738 continue; 9739 9740 code = insn.code; 9741 class = BPF_CLASS(code); 9742 if (insn_no_def(&insn)) 9743 continue; 9744 9745 /* NOTE: arg "reg" (the fourth one) is only used for 9746 * BPF_STX which has been ruled out in above 9747 * check, it is safe to pass NULL here. 9748 */ 9749 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9750 if (class == BPF_LD && 9751 BPF_MODE(code) == BPF_IMM) 9752 i++; 9753 continue; 9754 } 9755 9756 /* ctx load could be transformed into wider load. */ 9757 if (class == BPF_LDX && 9758 aux[adj_idx].ptr_type == PTR_TO_CTX) 9759 continue; 9760 9761 imm_rnd = get_random_int(); 9762 rnd_hi32_patch[0] = insn; 9763 rnd_hi32_patch[1].imm = imm_rnd; 9764 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9765 patch = rnd_hi32_patch; 9766 patch_len = 4; 9767 goto apply_patch_buffer; 9768 } 9769 9770 if (!bpf_jit_needs_zext()) 9771 continue; 9772 9773 zext_patch[0] = insn; 9774 zext_patch[1].dst_reg = insn.dst_reg; 9775 zext_patch[1].src_reg = insn.dst_reg; 9776 patch = zext_patch; 9777 patch_len = 2; 9778 apply_patch_buffer: 9779 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9780 if (!new_prog) 9781 return -ENOMEM; 9782 env->prog = new_prog; 9783 insns = new_prog->insnsi; 9784 aux = env->insn_aux_data; 9785 delta += patch_len - 1; 9786 } 9787 9788 return 0; 9789 } 9790 9791 /* convert load instructions that access fields of a context type into a 9792 * sequence of instructions that access fields of the underlying structure: 9793 * struct __sk_buff -> struct sk_buff 9794 * struct bpf_sock_ops -> struct sock 9795 */ 9796 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9797 { 9798 const struct bpf_verifier_ops *ops = env->ops; 9799 int i, cnt, size, ctx_field_size, delta = 0; 9800 const int insn_cnt = env->prog->len; 9801 struct bpf_insn insn_buf[16], *insn; 9802 u32 target_size, size_default, off; 9803 struct bpf_prog *new_prog; 9804 enum bpf_access_type type; 9805 bool is_narrower_load; 9806 9807 if (ops->gen_prologue || env->seen_direct_write) { 9808 if (!ops->gen_prologue) { 9809 verbose(env, "bpf verifier is misconfigured\n"); 9810 return -EINVAL; 9811 } 9812 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9813 env->prog); 9814 if (cnt >= ARRAY_SIZE(insn_buf)) { 9815 verbose(env, "bpf verifier is misconfigured\n"); 9816 return -EINVAL; 9817 } else if (cnt) { 9818 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9819 if (!new_prog) 9820 return -ENOMEM; 9821 9822 env->prog = new_prog; 9823 delta += cnt - 1; 9824 } 9825 } 9826 9827 if (bpf_prog_is_dev_bound(env->prog->aux)) 9828 return 0; 9829 9830 insn = env->prog->insnsi + delta; 9831 9832 for (i = 0; i < insn_cnt; i++, insn++) { 9833 bpf_convert_ctx_access_t convert_ctx_access; 9834 9835 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9836 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9837 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9838 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9839 type = BPF_READ; 9840 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9841 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9842 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9843 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9844 type = BPF_WRITE; 9845 else 9846 continue; 9847 9848 if (type == BPF_WRITE && 9849 env->insn_aux_data[i + delta].sanitize_stack_off) { 9850 struct bpf_insn patch[] = { 9851 /* Sanitize suspicious stack slot with zero. 9852 * There are no memory dependencies for this store, 9853 * since it's only using frame pointer and immediate 9854 * constant of zero 9855 */ 9856 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9857 env->insn_aux_data[i + delta].sanitize_stack_off, 9858 0), 9859 /* the original STX instruction will immediately 9860 * overwrite the same stack slot with appropriate value 9861 */ 9862 *insn, 9863 }; 9864 9865 cnt = ARRAY_SIZE(patch); 9866 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9867 if (!new_prog) 9868 return -ENOMEM; 9869 9870 delta += cnt - 1; 9871 env->prog = new_prog; 9872 insn = new_prog->insnsi + i + delta; 9873 continue; 9874 } 9875 9876 switch (env->insn_aux_data[i + delta].ptr_type) { 9877 case PTR_TO_CTX: 9878 if (!ops->convert_ctx_access) 9879 continue; 9880 convert_ctx_access = ops->convert_ctx_access; 9881 break; 9882 case PTR_TO_SOCKET: 9883 case PTR_TO_SOCK_COMMON: 9884 convert_ctx_access = bpf_sock_convert_ctx_access; 9885 break; 9886 case PTR_TO_TCP_SOCK: 9887 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9888 break; 9889 case PTR_TO_XDP_SOCK: 9890 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9891 break; 9892 case PTR_TO_BTF_ID: 9893 if (type == BPF_READ) { 9894 insn->code = BPF_LDX | BPF_PROBE_MEM | 9895 BPF_SIZE((insn)->code); 9896 env->prog->aux->num_exentries++; 9897 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9898 verbose(env, "Writes through BTF pointers are not allowed\n"); 9899 return -EINVAL; 9900 } 9901 continue; 9902 default: 9903 continue; 9904 } 9905 9906 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9907 size = BPF_LDST_BYTES(insn); 9908 9909 /* If the read access is a narrower load of the field, 9910 * convert to a 4/8-byte load, to minimum program type specific 9911 * convert_ctx_access changes. If conversion is successful, 9912 * we will apply proper mask to the result. 9913 */ 9914 is_narrower_load = size < ctx_field_size; 9915 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9916 off = insn->off; 9917 if (is_narrower_load) { 9918 u8 size_code; 9919 9920 if (type == BPF_WRITE) { 9921 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9922 return -EINVAL; 9923 } 9924 9925 size_code = BPF_H; 9926 if (ctx_field_size == 4) 9927 size_code = BPF_W; 9928 else if (ctx_field_size == 8) 9929 size_code = BPF_DW; 9930 9931 insn->off = off & ~(size_default - 1); 9932 insn->code = BPF_LDX | BPF_MEM | size_code; 9933 } 9934 9935 target_size = 0; 9936 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9937 &target_size); 9938 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9939 (ctx_field_size && !target_size)) { 9940 verbose(env, "bpf verifier is misconfigured\n"); 9941 return -EINVAL; 9942 } 9943 9944 if (is_narrower_load && size < target_size) { 9945 u8 shift = bpf_ctx_narrow_access_offset( 9946 off, size, size_default) * 8; 9947 if (ctx_field_size <= 4) { 9948 if (shift) 9949 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9950 insn->dst_reg, 9951 shift); 9952 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9953 (1 << size * 8) - 1); 9954 } else { 9955 if (shift) 9956 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9957 insn->dst_reg, 9958 shift); 9959 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9960 (1ULL << size * 8) - 1); 9961 } 9962 } 9963 9964 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9965 if (!new_prog) 9966 return -ENOMEM; 9967 9968 delta += cnt - 1; 9969 9970 /* keep walking new program and skip insns we just inserted */ 9971 env->prog = new_prog; 9972 insn = new_prog->insnsi + i + delta; 9973 } 9974 9975 return 0; 9976 } 9977 9978 static int jit_subprogs(struct bpf_verifier_env *env) 9979 { 9980 struct bpf_prog *prog = env->prog, **func, *tmp; 9981 int i, j, subprog_start, subprog_end = 0, len, subprog; 9982 struct bpf_insn *insn; 9983 void *old_bpf_func; 9984 int err, num_exentries; 9985 9986 if (env->subprog_cnt <= 1) 9987 return 0; 9988 9989 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9990 if (insn->code != (BPF_JMP | BPF_CALL) || 9991 insn->src_reg != BPF_PSEUDO_CALL) 9992 continue; 9993 /* Upon error here we cannot fall back to interpreter but 9994 * need a hard reject of the program. Thus -EFAULT is 9995 * propagated in any case. 9996 */ 9997 subprog = find_subprog(env, i + insn->imm + 1); 9998 if (subprog < 0) { 9999 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10000 i + insn->imm + 1); 10001 return -EFAULT; 10002 } 10003 /* temporarily remember subprog id inside insn instead of 10004 * aux_data, since next loop will split up all insns into funcs 10005 */ 10006 insn->off = subprog; 10007 /* remember original imm in case JIT fails and fallback 10008 * to interpreter will be needed 10009 */ 10010 env->insn_aux_data[i].call_imm = insn->imm; 10011 /* point imm to __bpf_call_base+1 from JITs point of view */ 10012 insn->imm = 1; 10013 } 10014 10015 err = bpf_prog_alloc_jited_linfo(prog); 10016 if (err) 10017 goto out_undo_insn; 10018 10019 err = -ENOMEM; 10020 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10021 if (!func) 10022 goto out_undo_insn; 10023 10024 for (i = 0; i < env->subprog_cnt; i++) { 10025 subprog_start = subprog_end; 10026 subprog_end = env->subprog_info[i + 1].start; 10027 10028 len = subprog_end - subprog_start; 10029 /* BPF_PROG_RUN doesn't call subprogs directly, 10030 * hence main prog stats include the runtime of subprogs. 10031 * subprogs don't have IDs and not reachable via prog_get_next_id 10032 * func[i]->aux->stats will never be accessed and stays NULL 10033 */ 10034 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10035 if (!func[i]) 10036 goto out_free; 10037 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10038 len * sizeof(struct bpf_insn)); 10039 func[i]->type = prog->type; 10040 func[i]->len = len; 10041 if (bpf_prog_calc_tag(func[i])) 10042 goto out_free; 10043 func[i]->is_func = 1; 10044 func[i]->aux->func_idx = i; 10045 /* the btf and func_info will be freed only at prog->aux */ 10046 func[i]->aux->btf = prog->aux->btf; 10047 func[i]->aux->func_info = prog->aux->func_info; 10048 10049 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10050 * Long term would need debug info to populate names 10051 */ 10052 func[i]->aux->name[0] = 'F'; 10053 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10054 func[i]->jit_requested = 1; 10055 func[i]->aux->linfo = prog->aux->linfo; 10056 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10057 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10058 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10059 num_exentries = 0; 10060 insn = func[i]->insnsi; 10061 for (j = 0; j < func[i]->len; j++, insn++) { 10062 if (BPF_CLASS(insn->code) == BPF_LDX && 10063 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10064 num_exentries++; 10065 } 10066 func[i]->aux->num_exentries = num_exentries; 10067 func[i] = bpf_int_jit_compile(func[i]); 10068 if (!func[i]->jited) { 10069 err = -ENOTSUPP; 10070 goto out_free; 10071 } 10072 cond_resched(); 10073 } 10074 /* at this point all bpf functions were successfully JITed 10075 * now populate all bpf_calls with correct addresses and 10076 * run last pass of JIT 10077 */ 10078 for (i = 0; i < env->subprog_cnt; i++) { 10079 insn = func[i]->insnsi; 10080 for (j = 0; j < func[i]->len; j++, insn++) { 10081 if (insn->code != (BPF_JMP | BPF_CALL) || 10082 insn->src_reg != BPF_PSEUDO_CALL) 10083 continue; 10084 subprog = insn->off; 10085 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10086 __bpf_call_base; 10087 } 10088 10089 /* we use the aux data to keep a list of the start addresses 10090 * of the JITed images for each function in the program 10091 * 10092 * for some architectures, such as powerpc64, the imm field 10093 * might not be large enough to hold the offset of the start 10094 * address of the callee's JITed image from __bpf_call_base 10095 * 10096 * in such cases, we can lookup the start address of a callee 10097 * by using its subprog id, available from the off field of 10098 * the call instruction, as an index for this list 10099 */ 10100 func[i]->aux->func = func; 10101 func[i]->aux->func_cnt = env->subprog_cnt; 10102 } 10103 for (i = 0; i < env->subprog_cnt; i++) { 10104 old_bpf_func = func[i]->bpf_func; 10105 tmp = bpf_int_jit_compile(func[i]); 10106 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10107 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10108 err = -ENOTSUPP; 10109 goto out_free; 10110 } 10111 cond_resched(); 10112 } 10113 10114 /* finally lock prog and jit images for all functions and 10115 * populate kallsysm 10116 */ 10117 for (i = 0; i < env->subprog_cnt; i++) { 10118 bpf_prog_lock_ro(func[i]); 10119 bpf_prog_kallsyms_add(func[i]); 10120 } 10121 10122 /* Last step: make now unused interpreter insns from main 10123 * prog consistent for later dump requests, so they can 10124 * later look the same as if they were interpreted only. 10125 */ 10126 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10127 if (insn->code != (BPF_JMP | BPF_CALL) || 10128 insn->src_reg != BPF_PSEUDO_CALL) 10129 continue; 10130 insn->off = env->insn_aux_data[i].call_imm; 10131 subprog = find_subprog(env, i + insn->off + 1); 10132 insn->imm = subprog; 10133 } 10134 10135 prog->jited = 1; 10136 prog->bpf_func = func[0]->bpf_func; 10137 prog->aux->func = func; 10138 prog->aux->func_cnt = env->subprog_cnt; 10139 bpf_prog_free_unused_jited_linfo(prog); 10140 return 0; 10141 out_free: 10142 for (i = 0; i < env->subprog_cnt; i++) 10143 if (func[i]) 10144 bpf_jit_free(func[i]); 10145 kfree(func); 10146 out_undo_insn: 10147 /* cleanup main prog to be interpreted */ 10148 prog->jit_requested = 0; 10149 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10150 if (insn->code != (BPF_JMP | BPF_CALL) || 10151 insn->src_reg != BPF_PSEUDO_CALL) 10152 continue; 10153 insn->off = 0; 10154 insn->imm = env->insn_aux_data[i].call_imm; 10155 } 10156 bpf_prog_free_jited_linfo(prog); 10157 return err; 10158 } 10159 10160 static int fixup_call_args(struct bpf_verifier_env *env) 10161 { 10162 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10163 struct bpf_prog *prog = env->prog; 10164 struct bpf_insn *insn = prog->insnsi; 10165 int i, depth; 10166 #endif 10167 int err = 0; 10168 10169 if (env->prog->jit_requested && 10170 !bpf_prog_is_dev_bound(env->prog->aux)) { 10171 err = jit_subprogs(env); 10172 if (err == 0) 10173 return 0; 10174 if (err == -EFAULT) 10175 return err; 10176 } 10177 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10178 for (i = 0; i < prog->len; i++, insn++) { 10179 if (insn->code != (BPF_JMP | BPF_CALL) || 10180 insn->src_reg != BPF_PSEUDO_CALL) 10181 continue; 10182 depth = get_callee_stack_depth(env, insn, i); 10183 if (depth < 0) 10184 return depth; 10185 bpf_patch_call_args(insn, depth); 10186 } 10187 err = 0; 10188 #endif 10189 return err; 10190 } 10191 10192 /* fixup insn->imm field of bpf_call instructions 10193 * and inline eligible helpers as explicit sequence of BPF instructions 10194 * 10195 * this function is called after eBPF program passed verification 10196 */ 10197 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10198 { 10199 struct bpf_prog *prog = env->prog; 10200 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10201 struct bpf_insn *insn = prog->insnsi; 10202 const struct bpf_func_proto *fn; 10203 const int insn_cnt = prog->len; 10204 const struct bpf_map_ops *ops; 10205 struct bpf_insn_aux_data *aux; 10206 struct bpf_insn insn_buf[16]; 10207 struct bpf_prog *new_prog; 10208 struct bpf_map *map_ptr; 10209 int i, ret, cnt, delta = 0; 10210 10211 for (i = 0; i < insn_cnt; i++, insn++) { 10212 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10213 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10214 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10215 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10216 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10217 struct bpf_insn mask_and_div[] = { 10218 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10219 /* Rx div 0 -> 0 */ 10220 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10221 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10222 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10223 *insn, 10224 }; 10225 struct bpf_insn mask_and_mod[] = { 10226 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10227 /* Rx mod 0 -> Rx */ 10228 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10229 *insn, 10230 }; 10231 struct bpf_insn *patchlet; 10232 10233 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10234 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10235 patchlet = mask_and_div + (is64 ? 1 : 0); 10236 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10237 } else { 10238 patchlet = mask_and_mod + (is64 ? 1 : 0); 10239 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10240 } 10241 10242 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10243 if (!new_prog) 10244 return -ENOMEM; 10245 10246 delta += cnt - 1; 10247 env->prog = prog = new_prog; 10248 insn = new_prog->insnsi + i + delta; 10249 continue; 10250 } 10251 10252 if (BPF_CLASS(insn->code) == BPF_LD && 10253 (BPF_MODE(insn->code) == BPF_ABS || 10254 BPF_MODE(insn->code) == BPF_IND)) { 10255 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10256 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10257 verbose(env, "bpf verifier is misconfigured\n"); 10258 return -EINVAL; 10259 } 10260 10261 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10262 if (!new_prog) 10263 return -ENOMEM; 10264 10265 delta += cnt - 1; 10266 env->prog = prog = new_prog; 10267 insn = new_prog->insnsi + i + delta; 10268 continue; 10269 } 10270 10271 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10272 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10273 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10274 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10275 struct bpf_insn insn_buf[16]; 10276 struct bpf_insn *patch = &insn_buf[0]; 10277 bool issrc, isneg; 10278 u32 off_reg; 10279 10280 aux = &env->insn_aux_data[i + delta]; 10281 if (!aux->alu_state || 10282 aux->alu_state == BPF_ALU_NON_POINTER) 10283 continue; 10284 10285 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10286 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10287 BPF_ALU_SANITIZE_SRC; 10288 10289 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10290 if (isneg) 10291 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10292 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10293 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10294 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10295 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10296 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10297 if (issrc) { 10298 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10299 off_reg); 10300 insn->src_reg = BPF_REG_AX; 10301 } else { 10302 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10303 BPF_REG_AX); 10304 } 10305 if (isneg) 10306 insn->code = insn->code == code_add ? 10307 code_sub : code_add; 10308 *patch++ = *insn; 10309 if (issrc && isneg) 10310 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10311 cnt = patch - insn_buf; 10312 10313 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10314 if (!new_prog) 10315 return -ENOMEM; 10316 10317 delta += cnt - 1; 10318 env->prog = prog = new_prog; 10319 insn = new_prog->insnsi + i + delta; 10320 continue; 10321 } 10322 10323 if (insn->code != (BPF_JMP | BPF_CALL)) 10324 continue; 10325 if (insn->src_reg == BPF_PSEUDO_CALL) 10326 continue; 10327 10328 if (insn->imm == BPF_FUNC_get_route_realm) 10329 prog->dst_needed = 1; 10330 if (insn->imm == BPF_FUNC_get_prandom_u32) 10331 bpf_user_rnd_init_once(); 10332 if (insn->imm == BPF_FUNC_override_return) 10333 prog->kprobe_override = 1; 10334 if (insn->imm == BPF_FUNC_tail_call) { 10335 /* If we tail call into other programs, we 10336 * cannot make any assumptions since they can 10337 * be replaced dynamically during runtime in 10338 * the program array. 10339 */ 10340 prog->cb_access = 1; 10341 env->prog->aux->stack_depth = MAX_BPF_STACK; 10342 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10343 10344 /* mark bpf_tail_call as different opcode to avoid 10345 * conditional branch in the interpeter for every normal 10346 * call and to prevent accidental JITing by JIT compiler 10347 * that doesn't support bpf_tail_call yet 10348 */ 10349 insn->imm = 0; 10350 insn->code = BPF_JMP | BPF_TAIL_CALL; 10351 10352 aux = &env->insn_aux_data[i + delta]; 10353 if (env->bpf_capable && !expect_blinding && 10354 prog->jit_requested && 10355 !bpf_map_key_poisoned(aux) && 10356 !bpf_map_ptr_poisoned(aux) && 10357 !bpf_map_ptr_unpriv(aux)) { 10358 struct bpf_jit_poke_descriptor desc = { 10359 .reason = BPF_POKE_REASON_TAIL_CALL, 10360 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10361 .tail_call.key = bpf_map_key_immediate(aux), 10362 }; 10363 10364 ret = bpf_jit_add_poke_descriptor(prog, &desc); 10365 if (ret < 0) { 10366 verbose(env, "adding tail call poke descriptor failed\n"); 10367 return ret; 10368 } 10369 10370 insn->imm = ret + 1; 10371 continue; 10372 } 10373 10374 if (!bpf_map_ptr_unpriv(aux)) 10375 continue; 10376 10377 /* instead of changing every JIT dealing with tail_call 10378 * emit two extra insns: 10379 * if (index >= max_entries) goto out; 10380 * index &= array->index_mask; 10381 * to avoid out-of-bounds cpu speculation 10382 */ 10383 if (bpf_map_ptr_poisoned(aux)) { 10384 verbose(env, "tail_call abusing map_ptr\n"); 10385 return -EINVAL; 10386 } 10387 10388 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10389 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10390 map_ptr->max_entries, 2); 10391 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10392 container_of(map_ptr, 10393 struct bpf_array, 10394 map)->index_mask); 10395 insn_buf[2] = *insn; 10396 cnt = 3; 10397 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10398 if (!new_prog) 10399 return -ENOMEM; 10400 10401 delta += cnt - 1; 10402 env->prog = prog = new_prog; 10403 insn = new_prog->insnsi + i + delta; 10404 continue; 10405 } 10406 10407 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10408 * and other inlining handlers are currently limited to 64 bit 10409 * only. 10410 */ 10411 if (prog->jit_requested && BITS_PER_LONG == 64 && 10412 (insn->imm == BPF_FUNC_map_lookup_elem || 10413 insn->imm == BPF_FUNC_map_update_elem || 10414 insn->imm == BPF_FUNC_map_delete_elem || 10415 insn->imm == BPF_FUNC_map_push_elem || 10416 insn->imm == BPF_FUNC_map_pop_elem || 10417 insn->imm == BPF_FUNC_map_peek_elem)) { 10418 aux = &env->insn_aux_data[i + delta]; 10419 if (bpf_map_ptr_poisoned(aux)) 10420 goto patch_call_imm; 10421 10422 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10423 ops = map_ptr->ops; 10424 if (insn->imm == BPF_FUNC_map_lookup_elem && 10425 ops->map_gen_lookup) { 10426 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10427 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10428 verbose(env, "bpf verifier is misconfigured\n"); 10429 return -EINVAL; 10430 } 10431 10432 new_prog = bpf_patch_insn_data(env, i + delta, 10433 insn_buf, cnt); 10434 if (!new_prog) 10435 return -ENOMEM; 10436 10437 delta += cnt - 1; 10438 env->prog = prog = new_prog; 10439 insn = new_prog->insnsi + i + delta; 10440 continue; 10441 } 10442 10443 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10444 (void *(*)(struct bpf_map *map, void *key))NULL)); 10445 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10446 (int (*)(struct bpf_map *map, void *key))NULL)); 10447 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10448 (int (*)(struct bpf_map *map, void *key, void *value, 10449 u64 flags))NULL)); 10450 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10451 (int (*)(struct bpf_map *map, void *value, 10452 u64 flags))NULL)); 10453 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10454 (int (*)(struct bpf_map *map, void *value))NULL)); 10455 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10456 (int (*)(struct bpf_map *map, void *value))NULL)); 10457 10458 switch (insn->imm) { 10459 case BPF_FUNC_map_lookup_elem: 10460 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10461 __bpf_call_base; 10462 continue; 10463 case BPF_FUNC_map_update_elem: 10464 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10465 __bpf_call_base; 10466 continue; 10467 case BPF_FUNC_map_delete_elem: 10468 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10469 __bpf_call_base; 10470 continue; 10471 case BPF_FUNC_map_push_elem: 10472 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10473 __bpf_call_base; 10474 continue; 10475 case BPF_FUNC_map_pop_elem: 10476 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10477 __bpf_call_base; 10478 continue; 10479 case BPF_FUNC_map_peek_elem: 10480 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10481 __bpf_call_base; 10482 continue; 10483 } 10484 10485 goto patch_call_imm; 10486 } 10487 10488 if (prog->jit_requested && BITS_PER_LONG == 64 && 10489 insn->imm == BPF_FUNC_jiffies64) { 10490 struct bpf_insn ld_jiffies_addr[2] = { 10491 BPF_LD_IMM64(BPF_REG_0, 10492 (unsigned long)&jiffies), 10493 }; 10494 10495 insn_buf[0] = ld_jiffies_addr[0]; 10496 insn_buf[1] = ld_jiffies_addr[1]; 10497 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10498 BPF_REG_0, 0); 10499 cnt = 3; 10500 10501 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10502 cnt); 10503 if (!new_prog) 10504 return -ENOMEM; 10505 10506 delta += cnt - 1; 10507 env->prog = prog = new_prog; 10508 insn = new_prog->insnsi + i + delta; 10509 continue; 10510 } 10511 10512 patch_call_imm: 10513 fn = env->ops->get_func_proto(insn->imm, env->prog); 10514 /* all functions that have prototype and verifier allowed 10515 * programs to call them, must be real in-kernel functions 10516 */ 10517 if (!fn->func) { 10518 verbose(env, 10519 "kernel subsystem misconfigured func %s#%d\n", 10520 func_id_name(insn->imm), insn->imm); 10521 return -EFAULT; 10522 } 10523 insn->imm = fn->func - __bpf_call_base; 10524 } 10525 10526 /* Since poke tab is now finalized, publish aux to tracker. */ 10527 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10528 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10529 if (!map_ptr->ops->map_poke_track || 10530 !map_ptr->ops->map_poke_untrack || 10531 !map_ptr->ops->map_poke_run) { 10532 verbose(env, "bpf verifier is misconfigured\n"); 10533 return -EINVAL; 10534 } 10535 10536 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10537 if (ret < 0) { 10538 verbose(env, "tracking tail call prog failed\n"); 10539 return ret; 10540 } 10541 } 10542 10543 return 0; 10544 } 10545 10546 static void free_states(struct bpf_verifier_env *env) 10547 { 10548 struct bpf_verifier_state_list *sl, *sln; 10549 int i; 10550 10551 sl = env->free_list; 10552 while (sl) { 10553 sln = sl->next; 10554 free_verifier_state(&sl->state, false); 10555 kfree(sl); 10556 sl = sln; 10557 } 10558 env->free_list = NULL; 10559 10560 if (!env->explored_states) 10561 return; 10562 10563 for (i = 0; i < state_htab_size(env); i++) { 10564 sl = env->explored_states[i]; 10565 10566 while (sl) { 10567 sln = sl->next; 10568 free_verifier_state(&sl->state, false); 10569 kfree(sl); 10570 sl = sln; 10571 } 10572 env->explored_states[i] = NULL; 10573 } 10574 } 10575 10576 /* The verifier is using insn_aux_data[] to store temporary data during 10577 * verification and to store information for passes that run after the 10578 * verification like dead code sanitization. do_check_common() for subprogram N 10579 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10580 * temporary data after do_check_common() finds that subprogram N cannot be 10581 * verified independently. pass_cnt counts the number of times 10582 * do_check_common() was run and insn->aux->seen tells the pass number 10583 * insn_aux_data was touched. These variables are compared to clear temporary 10584 * data from failed pass. For testing and experiments do_check_common() can be 10585 * run multiple times even when prior attempt to verify is unsuccessful. 10586 */ 10587 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10588 { 10589 struct bpf_insn *insn = env->prog->insnsi; 10590 struct bpf_insn_aux_data *aux; 10591 int i, class; 10592 10593 for (i = 0; i < env->prog->len; i++) { 10594 class = BPF_CLASS(insn[i].code); 10595 if (class != BPF_LDX && class != BPF_STX) 10596 continue; 10597 aux = &env->insn_aux_data[i]; 10598 if (aux->seen != env->pass_cnt) 10599 continue; 10600 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10601 } 10602 } 10603 10604 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10605 { 10606 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10607 struct bpf_verifier_state *state; 10608 struct bpf_reg_state *regs; 10609 int ret, i; 10610 10611 env->prev_linfo = NULL; 10612 env->pass_cnt++; 10613 10614 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10615 if (!state) 10616 return -ENOMEM; 10617 state->curframe = 0; 10618 state->speculative = false; 10619 state->branches = 1; 10620 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10621 if (!state->frame[0]) { 10622 kfree(state); 10623 return -ENOMEM; 10624 } 10625 env->cur_state = state; 10626 init_func_state(env, state->frame[0], 10627 BPF_MAIN_FUNC /* callsite */, 10628 0 /* frameno */, 10629 subprog); 10630 10631 regs = state->frame[state->curframe]->regs; 10632 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10633 ret = btf_prepare_func_args(env, subprog, regs); 10634 if (ret) 10635 goto out; 10636 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10637 if (regs[i].type == PTR_TO_CTX) 10638 mark_reg_known_zero(env, regs, i); 10639 else if (regs[i].type == SCALAR_VALUE) 10640 mark_reg_unknown(env, regs, i); 10641 } 10642 } else { 10643 /* 1st arg to a function */ 10644 regs[BPF_REG_1].type = PTR_TO_CTX; 10645 mark_reg_known_zero(env, regs, BPF_REG_1); 10646 ret = btf_check_func_arg_match(env, subprog, regs); 10647 if (ret == -EFAULT) 10648 /* unlikely verifier bug. abort. 10649 * ret == 0 and ret < 0 are sadly acceptable for 10650 * main() function due to backward compatibility. 10651 * Like socket filter program may be written as: 10652 * int bpf_prog(struct pt_regs *ctx) 10653 * and never dereference that ctx in the program. 10654 * 'struct pt_regs' is a type mismatch for socket 10655 * filter that should be using 'struct __sk_buff'. 10656 */ 10657 goto out; 10658 } 10659 10660 ret = do_check(env); 10661 out: 10662 /* check for NULL is necessary, since cur_state can be freed inside 10663 * do_check() under memory pressure. 10664 */ 10665 if (env->cur_state) { 10666 free_verifier_state(env->cur_state, true); 10667 env->cur_state = NULL; 10668 } 10669 while (!pop_stack(env, NULL, NULL, false)); 10670 if (!ret && pop_log) 10671 bpf_vlog_reset(&env->log, 0); 10672 free_states(env); 10673 if (ret) 10674 /* clean aux data in case subprog was rejected */ 10675 sanitize_insn_aux_data(env); 10676 return ret; 10677 } 10678 10679 /* Verify all global functions in a BPF program one by one based on their BTF. 10680 * All global functions must pass verification. Otherwise the whole program is rejected. 10681 * Consider: 10682 * int bar(int); 10683 * int foo(int f) 10684 * { 10685 * return bar(f); 10686 * } 10687 * int bar(int b) 10688 * { 10689 * ... 10690 * } 10691 * foo() will be verified first for R1=any_scalar_value. During verification it 10692 * will be assumed that bar() already verified successfully and call to bar() 10693 * from foo() will be checked for type match only. Later bar() will be verified 10694 * independently to check that it's safe for R1=any_scalar_value. 10695 */ 10696 static int do_check_subprogs(struct bpf_verifier_env *env) 10697 { 10698 struct bpf_prog_aux *aux = env->prog->aux; 10699 int i, ret; 10700 10701 if (!aux->func_info) 10702 return 0; 10703 10704 for (i = 1; i < env->subprog_cnt; i++) { 10705 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10706 continue; 10707 env->insn_idx = env->subprog_info[i].start; 10708 WARN_ON_ONCE(env->insn_idx == 0); 10709 ret = do_check_common(env, i); 10710 if (ret) { 10711 return ret; 10712 } else if (env->log.level & BPF_LOG_LEVEL) { 10713 verbose(env, 10714 "Func#%d is safe for any args that match its prototype\n", 10715 i); 10716 } 10717 } 10718 return 0; 10719 } 10720 10721 static int do_check_main(struct bpf_verifier_env *env) 10722 { 10723 int ret; 10724 10725 env->insn_idx = 0; 10726 ret = do_check_common(env, 0); 10727 if (!ret) 10728 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10729 return ret; 10730 } 10731 10732 10733 static void print_verification_stats(struct bpf_verifier_env *env) 10734 { 10735 int i; 10736 10737 if (env->log.level & BPF_LOG_STATS) { 10738 verbose(env, "verification time %lld usec\n", 10739 div_u64(env->verification_time, 1000)); 10740 verbose(env, "stack depth "); 10741 for (i = 0; i < env->subprog_cnt; i++) { 10742 u32 depth = env->subprog_info[i].stack_depth; 10743 10744 verbose(env, "%d", depth); 10745 if (i + 1 < env->subprog_cnt) 10746 verbose(env, "+"); 10747 } 10748 verbose(env, "\n"); 10749 } 10750 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10751 "total_states %d peak_states %d mark_read %d\n", 10752 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10753 env->max_states_per_insn, env->total_states, 10754 env->peak_states, env->longest_mark_read_walk); 10755 } 10756 10757 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10758 { 10759 const struct btf_type *t, *func_proto; 10760 const struct bpf_struct_ops *st_ops; 10761 const struct btf_member *member; 10762 struct bpf_prog *prog = env->prog; 10763 u32 btf_id, member_idx; 10764 const char *mname; 10765 10766 btf_id = prog->aux->attach_btf_id; 10767 st_ops = bpf_struct_ops_find(btf_id); 10768 if (!st_ops) { 10769 verbose(env, "attach_btf_id %u is not a supported struct\n", 10770 btf_id); 10771 return -ENOTSUPP; 10772 } 10773 10774 t = st_ops->type; 10775 member_idx = prog->expected_attach_type; 10776 if (member_idx >= btf_type_vlen(t)) { 10777 verbose(env, "attach to invalid member idx %u of struct %s\n", 10778 member_idx, st_ops->name); 10779 return -EINVAL; 10780 } 10781 10782 member = &btf_type_member(t)[member_idx]; 10783 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10784 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10785 NULL); 10786 if (!func_proto) { 10787 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10788 mname, member_idx, st_ops->name); 10789 return -EINVAL; 10790 } 10791 10792 if (st_ops->check_member) { 10793 int err = st_ops->check_member(t, member); 10794 10795 if (err) { 10796 verbose(env, "attach to unsupported member %s of struct %s\n", 10797 mname, st_ops->name); 10798 return err; 10799 } 10800 } 10801 10802 prog->aux->attach_func_proto = func_proto; 10803 prog->aux->attach_func_name = mname; 10804 env->ops = st_ops->verifier_ops; 10805 10806 return 0; 10807 } 10808 #define SECURITY_PREFIX "security_" 10809 10810 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr) 10811 { 10812 if (within_error_injection_list(addr) || 10813 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10814 sizeof(SECURITY_PREFIX) - 1)) 10815 return 0; 10816 10817 return -EINVAL; 10818 } 10819 10820 static int check_attach_btf_id(struct bpf_verifier_env *env) 10821 { 10822 struct bpf_prog *prog = env->prog; 10823 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10824 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10825 u32 btf_id = prog->aux->attach_btf_id; 10826 const char prefix[] = "btf_trace_"; 10827 struct btf_func_model fmodel; 10828 int ret = 0, subprog = -1, i; 10829 struct bpf_trampoline *tr; 10830 const struct btf_type *t; 10831 bool conservative = true; 10832 const char *tname; 10833 struct btf *btf; 10834 long addr; 10835 u64 key; 10836 10837 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10838 return check_struct_ops_btf_id(env); 10839 10840 if (prog->type != BPF_PROG_TYPE_TRACING && 10841 prog->type != BPF_PROG_TYPE_LSM && 10842 !prog_extension) 10843 return 0; 10844 10845 if (!btf_id) { 10846 verbose(env, "Tracing programs must provide btf_id\n"); 10847 return -EINVAL; 10848 } 10849 btf = bpf_prog_get_target_btf(prog); 10850 if (!btf) { 10851 verbose(env, 10852 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10853 return -EINVAL; 10854 } 10855 t = btf_type_by_id(btf, btf_id); 10856 if (!t) { 10857 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10858 return -EINVAL; 10859 } 10860 tname = btf_name_by_offset(btf, t->name_off); 10861 if (!tname) { 10862 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10863 return -EINVAL; 10864 } 10865 if (tgt_prog) { 10866 struct bpf_prog_aux *aux = tgt_prog->aux; 10867 10868 for (i = 0; i < aux->func_info_cnt; i++) 10869 if (aux->func_info[i].type_id == btf_id) { 10870 subprog = i; 10871 break; 10872 } 10873 if (subprog == -1) { 10874 verbose(env, "Subprog %s doesn't exist\n", tname); 10875 return -EINVAL; 10876 } 10877 conservative = aux->func_info_aux[subprog].unreliable; 10878 if (prog_extension) { 10879 if (conservative) { 10880 verbose(env, 10881 "Cannot replace static functions\n"); 10882 return -EINVAL; 10883 } 10884 if (!prog->jit_requested) { 10885 verbose(env, 10886 "Extension programs should be JITed\n"); 10887 return -EINVAL; 10888 } 10889 env->ops = bpf_verifier_ops[tgt_prog->type]; 10890 prog->expected_attach_type = tgt_prog->expected_attach_type; 10891 } 10892 if (!tgt_prog->jited) { 10893 verbose(env, "Can attach to only JITed progs\n"); 10894 return -EINVAL; 10895 } 10896 if (tgt_prog->type == prog->type) { 10897 /* Cannot fentry/fexit another fentry/fexit program. 10898 * Cannot attach program extension to another extension. 10899 * It's ok to attach fentry/fexit to extension program. 10900 */ 10901 verbose(env, "Cannot recursively attach\n"); 10902 return -EINVAL; 10903 } 10904 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10905 prog_extension && 10906 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10907 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10908 /* Program extensions can extend all program types 10909 * except fentry/fexit. The reason is the following. 10910 * The fentry/fexit programs are used for performance 10911 * analysis, stats and can be attached to any program 10912 * type except themselves. When extension program is 10913 * replacing XDP function it is necessary to allow 10914 * performance analysis of all functions. Both original 10915 * XDP program and its program extension. Hence 10916 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10917 * allowed. If extending of fentry/fexit was allowed it 10918 * would be possible to create long call chain 10919 * fentry->extension->fentry->extension beyond 10920 * reasonable stack size. Hence extending fentry is not 10921 * allowed. 10922 */ 10923 verbose(env, "Cannot extend fentry/fexit\n"); 10924 return -EINVAL; 10925 } 10926 key = ((u64)aux->id) << 32 | btf_id; 10927 } else { 10928 if (prog_extension) { 10929 verbose(env, "Cannot replace kernel functions\n"); 10930 return -EINVAL; 10931 } 10932 key = btf_id; 10933 } 10934 10935 switch (prog->expected_attach_type) { 10936 case BPF_TRACE_RAW_TP: 10937 if (tgt_prog) { 10938 verbose(env, 10939 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10940 return -EINVAL; 10941 } 10942 if (!btf_type_is_typedef(t)) { 10943 verbose(env, "attach_btf_id %u is not a typedef\n", 10944 btf_id); 10945 return -EINVAL; 10946 } 10947 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10948 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10949 btf_id, tname); 10950 return -EINVAL; 10951 } 10952 tname += sizeof(prefix) - 1; 10953 t = btf_type_by_id(btf, t->type); 10954 if (!btf_type_is_ptr(t)) 10955 /* should never happen in valid vmlinux build */ 10956 return -EINVAL; 10957 t = btf_type_by_id(btf, t->type); 10958 if (!btf_type_is_func_proto(t)) 10959 /* should never happen in valid vmlinux build */ 10960 return -EINVAL; 10961 10962 /* remember two read only pointers that are valid for 10963 * the life time of the kernel 10964 */ 10965 prog->aux->attach_func_name = tname; 10966 prog->aux->attach_func_proto = t; 10967 prog->aux->attach_btf_trace = true; 10968 return 0; 10969 case BPF_TRACE_ITER: 10970 if (!btf_type_is_func(t)) { 10971 verbose(env, "attach_btf_id %u is not a function\n", 10972 btf_id); 10973 return -EINVAL; 10974 } 10975 t = btf_type_by_id(btf, t->type); 10976 if (!btf_type_is_func_proto(t)) 10977 return -EINVAL; 10978 prog->aux->attach_func_name = tname; 10979 prog->aux->attach_func_proto = t; 10980 if (!bpf_iter_prog_supported(prog)) 10981 return -EINVAL; 10982 ret = btf_distill_func_proto(&env->log, btf, t, 10983 tname, &fmodel); 10984 return ret; 10985 default: 10986 if (!prog_extension) 10987 return -EINVAL; 10988 /* fallthrough */ 10989 case BPF_MODIFY_RETURN: 10990 case BPF_LSM_MAC: 10991 case BPF_TRACE_FENTRY: 10992 case BPF_TRACE_FEXIT: 10993 prog->aux->attach_func_name = tname; 10994 if (prog->type == BPF_PROG_TYPE_LSM) { 10995 ret = bpf_lsm_verify_prog(&env->log, prog); 10996 if (ret < 0) 10997 return ret; 10998 } 10999 11000 if (!btf_type_is_func(t)) { 11001 verbose(env, "attach_btf_id %u is not a function\n", 11002 btf_id); 11003 return -EINVAL; 11004 } 11005 if (prog_extension && 11006 btf_check_type_match(env, prog, btf, t)) 11007 return -EINVAL; 11008 t = btf_type_by_id(btf, t->type); 11009 if (!btf_type_is_func_proto(t)) 11010 return -EINVAL; 11011 tr = bpf_trampoline_lookup(key); 11012 if (!tr) 11013 return -ENOMEM; 11014 /* t is either vmlinux type or another program's type */ 11015 prog->aux->attach_func_proto = t; 11016 mutex_lock(&tr->mutex); 11017 if (tr->func.addr) { 11018 prog->aux->trampoline = tr; 11019 goto out; 11020 } 11021 if (tgt_prog && conservative) { 11022 prog->aux->attach_func_proto = NULL; 11023 t = NULL; 11024 } 11025 ret = btf_distill_func_proto(&env->log, btf, t, 11026 tname, &tr->func.model); 11027 if (ret < 0) 11028 goto out; 11029 if (tgt_prog) { 11030 if (subprog == 0) 11031 addr = (long) tgt_prog->bpf_func; 11032 else 11033 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11034 } else { 11035 addr = kallsyms_lookup_name(tname); 11036 if (!addr) { 11037 verbose(env, 11038 "The address of function %s cannot be found\n", 11039 tname); 11040 ret = -ENOENT; 11041 goto out; 11042 } 11043 } 11044 11045 if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11046 ret = check_attach_modify_return(prog, addr); 11047 if (ret) 11048 verbose(env, "%s() is not modifiable\n", 11049 prog->aux->attach_func_name); 11050 } 11051 11052 if (ret) 11053 goto out; 11054 tr->func.addr = (void *)addr; 11055 prog->aux->trampoline = tr; 11056 out: 11057 mutex_unlock(&tr->mutex); 11058 if (ret) 11059 bpf_trampoline_put(tr); 11060 return ret; 11061 } 11062 } 11063 11064 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11065 union bpf_attr __user *uattr) 11066 { 11067 u64 start_time = ktime_get_ns(); 11068 struct bpf_verifier_env *env; 11069 struct bpf_verifier_log *log; 11070 int i, len, ret = -EINVAL; 11071 bool is_priv; 11072 11073 /* no program is valid */ 11074 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11075 return -EINVAL; 11076 11077 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11078 * allocate/free it every time bpf_check() is called 11079 */ 11080 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11081 if (!env) 11082 return -ENOMEM; 11083 log = &env->log; 11084 11085 len = (*prog)->len; 11086 env->insn_aux_data = 11087 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11088 ret = -ENOMEM; 11089 if (!env->insn_aux_data) 11090 goto err_free_env; 11091 for (i = 0; i < len; i++) 11092 env->insn_aux_data[i].orig_idx = i; 11093 env->prog = *prog; 11094 env->ops = bpf_verifier_ops[env->prog->type]; 11095 is_priv = bpf_capable(); 11096 11097 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11098 mutex_lock(&bpf_verifier_lock); 11099 if (!btf_vmlinux) 11100 btf_vmlinux = btf_parse_vmlinux(); 11101 mutex_unlock(&bpf_verifier_lock); 11102 } 11103 11104 /* grab the mutex to protect few globals used by verifier */ 11105 if (!is_priv) 11106 mutex_lock(&bpf_verifier_lock); 11107 11108 if (attr->log_level || attr->log_buf || attr->log_size) { 11109 /* user requested verbose verifier output 11110 * and supplied buffer to store the verification trace 11111 */ 11112 log->level = attr->log_level; 11113 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11114 log->len_total = attr->log_size; 11115 11116 ret = -EINVAL; 11117 /* log attributes have to be sane */ 11118 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11119 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11120 goto err_unlock; 11121 } 11122 11123 if (IS_ERR(btf_vmlinux)) { 11124 /* Either gcc or pahole or kernel are broken. */ 11125 verbose(env, "in-kernel BTF is malformed\n"); 11126 ret = PTR_ERR(btf_vmlinux); 11127 goto skip_full_check; 11128 } 11129 11130 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 11131 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 11132 env->strict_alignment = true; 11133 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 11134 env->strict_alignment = false; 11135 11136 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 11137 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 11138 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 11139 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 11140 env->bpf_capable = bpf_capable(); 11141 11142 if (is_priv) 11143 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 11144 11145 ret = replace_map_fd_with_map_ptr(env); 11146 if (ret < 0) 11147 goto skip_full_check; 11148 11149 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11150 ret = bpf_prog_offload_verifier_prep(env->prog); 11151 if (ret) 11152 goto skip_full_check; 11153 } 11154 11155 env->explored_states = kvcalloc(state_htab_size(env), 11156 sizeof(struct bpf_verifier_state_list *), 11157 GFP_USER); 11158 ret = -ENOMEM; 11159 if (!env->explored_states) 11160 goto skip_full_check; 11161 11162 ret = check_subprogs(env); 11163 if (ret < 0) 11164 goto skip_full_check; 11165 11166 ret = check_btf_info(env, attr, uattr); 11167 if (ret < 0) 11168 goto skip_full_check; 11169 11170 ret = check_attach_btf_id(env); 11171 if (ret) 11172 goto skip_full_check; 11173 11174 ret = check_cfg(env); 11175 if (ret < 0) 11176 goto skip_full_check; 11177 11178 ret = do_check_subprogs(env); 11179 ret = ret ?: do_check_main(env); 11180 11181 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 11182 ret = bpf_prog_offload_finalize(env); 11183 11184 skip_full_check: 11185 kvfree(env->explored_states); 11186 11187 if (ret == 0) 11188 ret = check_max_stack_depth(env); 11189 11190 /* instruction rewrites happen after this point */ 11191 if (is_priv) { 11192 if (ret == 0) 11193 opt_hard_wire_dead_code_branches(env); 11194 if (ret == 0) 11195 ret = opt_remove_dead_code(env); 11196 if (ret == 0) 11197 ret = opt_remove_nops(env); 11198 } else { 11199 if (ret == 0) 11200 sanitize_dead_code(env); 11201 } 11202 11203 if (ret == 0) 11204 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11205 ret = convert_ctx_accesses(env); 11206 11207 if (ret == 0) 11208 ret = fixup_bpf_calls(env); 11209 11210 /* do 32-bit optimization after insn patching has done so those patched 11211 * insns could be handled correctly. 11212 */ 11213 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11214 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11215 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11216 : false; 11217 } 11218 11219 if (ret == 0) 11220 ret = fixup_call_args(env); 11221 11222 env->verification_time = ktime_get_ns() - start_time; 11223 print_verification_stats(env); 11224 11225 if (log->level && bpf_verifier_log_full(log)) 11226 ret = -ENOSPC; 11227 if (log->level && !log->ubuf) { 11228 ret = -EFAULT; 11229 goto err_release_maps; 11230 } 11231 11232 if (ret == 0 && env->used_map_cnt) { 11233 /* if program passed verifier, update used_maps in bpf_prog_info */ 11234 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11235 sizeof(env->used_maps[0]), 11236 GFP_KERNEL); 11237 11238 if (!env->prog->aux->used_maps) { 11239 ret = -ENOMEM; 11240 goto err_release_maps; 11241 } 11242 11243 memcpy(env->prog->aux->used_maps, env->used_maps, 11244 sizeof(env->used_maps[0]) * env->used_map_cnt); 11245 env->prog->aux->used_map_cnt = env->used_map_cnt; 11246 11247 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 11248 * bpf_ld_imm64 instructions 11249 */ 11250 convert_pseudo_ld_imm64(env); 11251 } 11252 11253 if (ret == 0) 11254 adjust_btf_func(env); 11255 11256 err_release_maps: 11257 if (!env->prog->aux->used_maps) 11258 /* if we didn't copy map pointers into bpf_prog_info, release 11259 * them now. Otherwise free_used_maps() will release them. 11260 */ 11261 release_maps(env); 11262 11263 /* extension progs temporarily inherit the attach_type of their targets 11264 for verification purposes, so set it back to zero before returning 11265 */ 11266 if (env->prog->type == BPF_PROG_TYPE_EXT) 11267 env->prog->expected_attach_type = 0; 11268 11269 *prog = env->prog; 11270 err_unlock: 11271 if (!is_priv) 11272 mutex_unlock(&bpf_verifier_lock); 11273 vfree(env->insn_aux_data); 11274 err_free_env: 11275 kfree(env); 11276 return ret; 11277 } 11278