1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 enum bpf_features { 48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0, 49 BPF_FEAT_STREAMS = 1, 50 __MAX_BPF_FEAT, 51 }; 52 53 struct bpf_mem_alloc bpf_global_percpu_ma; 54 static bool bpf_global_percpu_ma_set; 55 56 /* bpf_check() is a static code analyzer that walks eBPF program 57 * instruction by instruction and updates register/stack state. 58 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 59 * 60 * The first pass is depth-first-search to check that the program is a DAG. 61 * It rejects the following programs: 62 * - larger than BPF_MAXINSNS insns 63 * - if loop is present (detected via back-edge) 64 * - unreachable insns exist (shouldn't be a forest. program = one function) 65 * - out of bounds or malformed jumps 66 * The second pass is all possible path descent from the 1st insn. 67 * Since it's analyzing all paths through the program, the length of the 68 * analysis is limited to 64k insn, which may be hit even if total number of 69 * insn is less then 4K, but there are too many branches that change stack/regs. 70 * Number of 'branches to be analyzed' is limited to 1k 71 * 72 * On entry to each instruction, each register has a type, and the instruction 73 * changes the types of the registers depending on instruction semantics. 74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 75 * copied to R1. 76 * 77 * All registers are 64-bit. 78 * R0 - return register 79 * R1-R5 argument passing registers 80 * R6-R9 callee saved registers 81 * R10 - frame pointer read-only 82 * 83 * At the start of BPF program the register R1 contains a pointer to bpf_context 84 * and has type PTR_TO_CTX. 85 * 86 * Verifier tracks arithmetic operations on pointers in case: 87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 89 * 1st insn copies R10 (which has FRAME_PTR) type into R1 90 * and 2nd arithmetic instruction is pattern matched to recognize 91 * that it wants to construct a pointer to some element within stack. 92 * So after 2nd insn, the register R1 has type PTR_TO_STACK 93 * (and -20 constant is saved for further stack bounds checking). 94 * Meaning that this reg is a pointer to stack plus known immediate constant. 95 * 96 * Most of the time the registers have SCALAR_VALUE type, which 97 * means the register has some value, but it's not a valid pointer. 98 * (like pointer plus pointer becomes SCALAR_VALUE type) 99 * 100 * When verifier sees load or store instructions the type of base register 101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 102 * four pointer types recognized by check_mem_access() function. 103 * 104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 105 * and the range of [ptr, ptr + map's value_size) is accessible. 106 * 107 * registers used to pass values to function calls are checked against 108 * function argument constraints. 109 * 110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 111 * It means that the register type passed to this function must be 112 * PTR_TO_STACK and it will be used inside the function as 113 * 'pointer to map element key' 114 * 115 * For example the argument constraints for bpf_map_lookup_elem(): 116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 117 * .arg1_type = ARG_CONST_MAP_PTR, 118 * .arg2_type = ARG_PTR_TO_MAP_KEY, 119 * 120 * ret_type says that this function returns 'pointer to map elem value or null' 121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 122 * 2nd argument should be a pointer to stack, which will be used inside 123 * the helper function as a pointer to map element key. 124 * 125 * On the kernel side the helper function looks like: 126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 127 * { 128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 129 * void *key = (void *) (unsigned long) r2; 130 * void *value; 131 * 132 * here kernel can access 'key' and 'map' pointers safely, knowing that 133 * [key, key + map->key_size) bytes are valid and were initialized on 134 * the stack of eBPF program. 135 * } 136 * 137 * Corresponding eBPF program may look like: 138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 142 * here verifier looks at prototype of map_lookup_elem() and sees: 143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 145 * 146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 148 * and were initialized prior to this call. 149 * If it's ok, then verifier allows this BPF_CALL insn and looks at 150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 152 * returns either pointer to map value or NULL. 153 * 154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 155 * insn, the register holding that pointer in the true branch changes state to 156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 157 * branch. See check_cond_jmp_op(). 158 * 159 * After the call R0 is set to return type of the function and registers R1-R5 160 * are set to NOT_INIT to indicate that they are no longer readable. 161 * 162 * The following reference types represent a potential reference to a kernel 163 * resource which, after first being allocated, must be checked and freed by 164 * the BPF program: 165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 166 * 167 * When the verifier sees a helper call return a reference type, it allocates a 168 * pointer id for the reference and stores it in the current function state. 169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 171 * passes through a NULL-check conditional. For the branch wherein the state is 172 * changed to CONST_IMM, the verifier releases the reference. 173 * 174 * For each helper function that allocates a reference, such as 175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 176 * bpf_sk_release(). When a reference type passes into the release function, 177 * the verifier also releases the reference. If any unchecked or unreleased 178 * reference remains at the end of the program, the verifier rejects it. 179 */ 180 181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 182 struct bpf_verifier_stack_elem { 183 /* verifier state is 'st' 184 * before processing instruction 'insn_idx' 185 * and after processing instruction 'prev_insn_idx' 186 */ 187 struct bpf_verifier_state st; 188 int insn_idx; 189 int prev_insn_idx; 190 struct bpf_verifier_stack_elem *next; 191 /* length of verifier log at the time this state was pushed on stack */ 192 u32 log_pos; 193 }; 194 195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 196 #define BPF_COMPLEXITY_LIMIT_STATES 64 197 198 #define BPF_MAP_KEY_POISON (1ULL << 63) 199 #define BPF_MAP_KEY_SEEN (1ULL << 62) 200 201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 202 203 #define BPF_PRIV_STACK_MIN_SIZE 64 204 205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 210 static int ref_set_non_owning(struct bpf_verifier_env *env, 211 struct bpf_reg_state *reg); 212 static void specialize_kfunc(struct bpf_verifier_env *env, 213 u32 func_id, u16 offset, unsigned long *addr); 214 static bool is_trusted_reg(const struct bpf_reg_state *reg); 215 216 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 217 { 218 return aux->map_ptr_state.poison; 219 } 220 221 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 222 { 223 return aux->map_ptr_state.unpriv; 224 } 225 226 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 227 struct bpf_map *map, 228 bool unpriv, bool poison) 229 { 230 unpriv |= bpf_map_ptr_unpriv(aux); 231 aux->map_ptr_state.unpriv = unpriv; 232 aux->map_ptr_state.poison = poison; 233 aux->map_ptr_state.map_ptr = map; 234 } 235 236 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 237 { 238 return aux->map_key_state & BPF_MAP_KEY_POISON; 239 } 240 241 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 242 { 243 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 244 } 245 246 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 247 { 248 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 249 } 250 251 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 252 { 253 bool poisoned = bpf_map_key_poisoned(aux); 254 255 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 256 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 257 } 258 259 static bool bpf_helper_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == 0; 263 } 264 265 static bool bpf_pseudo_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_CALL; 269 } 270 271 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 272 { 273 return insn->code == (BPF_JMP | BPF_CALL) && 274 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 275 } 276 277 struct bpf_call_arg_meta { 278 struct bpf_map *map_ptr; 279 bool raw_mode; 280 bool pkt_access; 281 u8 release_regno; 282 int regno; 283 int access_size; 284 int mem_size; 285 u64 msize_max_value; 286 int ref_obj_id; 287 int dynptr_id; 288 int map_uid; 289 int func_id; 290 struct btf *btf; 291 u32 btf_id; 292 struct btf *ret_btf; 293 u32 ret_btf_id; 294 u32 subprogno; 295 struct btf_field *kptr_field; 296 s64 const_map_key; 297 }; 298 299 struct bpf_kfunc_call_arg_meta { 300 /* In parameters */ 301 struct btf *btf; 302 u32 func_id; 303 u32 kfunc_flags; 304 const struct btf_type *func_proto; 305 const char *func_name; 306 /* Out parameters */ 307 u32 ref_obj_id; 308 u8 release_regno; 309 bool r0_rdonly; 310 u32 ret_btf_id; 311 u64 r0_size; 312 u32 subprogno; 313 struct { 314 u64 value; 315 bool found; 316 } arg_constant; 317 318 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 319 * generally to pass info about user-defined local kptr types to later 320 * verification logic 321 * bpf_obj_drop/bpf_percpu_obj_drop 322 * Record the local kptr type to be drop'd 323 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 324 * Record the local kptr type to be refcount_incr'd and use 325 * arg_owning_ref to determine whether refcount_acquire should be 326 * fallible 327 */ 328 struct btf *arg_btf; 329 u32 arg_btf_id; 330 bool arg_owning_ref; 331 bool arg_prog; 332 333 struct { 334 struct btf_field *field; 335 } arg_list_head; 336 struct { 337 struct btf_field *field; 338 } arg_rbtree_root; 339 struct { 340 enum bpf_dynptr_type type; 341 u32 id; 342 u32 ref_obj_id; 343 } initialized_dynptr; 344 struct { 345 u8 spi; 346 u8 frameno; 347 } iter; 348 struct { 349 struct bpf_map *ptr; 350 int uid; 351 } map; 352 u64 mem_size; 353 }; 354 355 struct btf *btf_vmlinux; 356 357 static const char *btf_type_name(const struct btf *btf, u32 id) 358 { 359 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 360 } 361 362 static DEFINE_MUTEX(bpf_verifier_lock); 363 static DEFINE_MUTEX(bpf_percpu_ma_lock); 364 365 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 366 { 367 struct bpf_verifier_env *env = private_data; 368 va_list args; 369 370 if (!bpf_verifier_log_needed(&env->log)) 371 return; 372 373 va_start(args, fmt); 374 bpf_verifier_vlog(&env->log, fmt, args); 375 va_end(args); 376 } 377 378 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 379 struct bpf_reg_state *reg, 380 struct bpf_retval_range range, const char *ctx, 381 const char *reg_name) 382 { 383 bool unknown = true; 384 385 verbose(env, "%s the register %s has", ctx, reg_name); 386 if (reg->smin_value > S64_MIN) { 387 verbose(env, " smin=%lld", reg->smin_value); 388 unknown = false; 389 } 390 if (reg->smax_value < S64_MAX) { 391 verbose(env, " smax=%lld", reg->smax_value); 392 unknown = false; 393 } 394 if (unknown) 395 verbose(env, " unknown scalar value"); 396 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 397 } 398 399 static bool reg_not_null(const struct bpf_reg_state *reg) 400 { 401 enum bpf_reg_type type; 402 403 type = reg->type; 404 if (type_may_be_null(type)) 405 return false; 406 407 type = base_type(type); 408 return type == PTR_TO_SOCKET || 409 type == PTR_TO_TCP_SOCK || 410 type == PTR_TO_MAP_VALUE || 411 type == PTR_TO_MAP_KEY || 412 type == PTR_TO_SOCK_COMMON || 413 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 414 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) || 415 type == CONST_PTR_TO_MAP; 416 } 417 418 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 419 { 420 struct btf_record *rec = NULL; 421 struct btf_struct_meta *meta; 422 423 if (reg->type == PTR_TO_MAP_VALUE) { 424 rec = reg->map_ptr->record; 425 } else if (type_is_ptr_alloc_obj(reg->type)) { 426 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 427 if (meta) 428 rec = meta->record; 429 } 430 return rec; 431 } 432 433 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 434 { 435 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 436 437 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 438 } 439 440 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 441 { 442 struct bpf_func_info *info; 443 444 if (!env->prog->aux->func_info) 445 return ""; 446 447 info = &env->prog->aux->func_info[subprog]; 448 return btf_type_name(env->prog->aux->btf, info->type_id); 449 } 450 451 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 struct bpf_subprog_info *info = subprog_info(env, subprog); 454 455 info->is_cb = true; 456 info->is_async_cb = true; 457 info->is_exception_cb = true; 458 } 459 460 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 461 { 462 return subprog_info(env, subprog)->is_exception_cb; 463 } 464 465 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 466 { 467 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 468 } 469 470 static bool type_is_rdonly_mem(u32 type) 471 { 472 return type & MEM_RDONLY; 473 } 474 475 static bool is_acquire_function(enum bpf_func_id func_id, 476 const struct bpf_map *map) 477 { 478 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 479 480 if (func_id == BPF_FUNC_sk_lookup_tcp || 481 func_id == BPF_FUNC_sk_lookup_udp || 482 func_id == BPF_FUNC_skc_lookup_tcp || 483 func_id == BPF_FUNC_ringbuf_reserve || 484 func_id == BPF_FUNC_kptr_xchg) 485 return true; 486 487 if (func_id == BPF_FUNC_map_lookup_elem && 488 (map_type == BPF_MAP_TYPE_SOCKMAP || 489 map_type == BPF_MAP_TYPE_SOCKHASH)) 490 return true; 491 492 return false; 493 } 494 495 static bool is_ptr_cast_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_tcp_sock || 498 func_id == BPF_FUNC_sk_fullsock || 499 func_id == BPF_FUNC_skc_to_tcp_sock || 500 func_id == BPF_FUNC_skc_to_tcp6_sock || 501 func_id == BPF_FUNC_skc_to_udp6_sock || 502 func_id == BPF_FUNC_skc_to_mptcp_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_dynptr_data; 510 } 511 512 static bool is_sync_callback_calling_kfunc(u32 btf_id); 513 static bool is_async_callback_calling_kfunc(u32 btf_id); 514 static bool is_callback_calling_kfunc(u32 btf_id); 515 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 516 517 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 518 519 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_for_each_map_elem || 522 func_id == BPF_FUNC_find_vma || 523 func_id == BPF_FUNC_loop || 524 func_id == BPF_FUNC_user_ringbuf_drain; 525 } 526 527 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 528 { 529 return func_id == BPF_FUNC_timer_set_callback; 530 } 531 532 static bool is_callback_calling_function(enum bpf_func_id func_id) 533 { 534 return is_sync_callback_calling_function(func_id) || 535 is_async_callback_calling_function(func_id); 536 } 537 538 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 539 { 540 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 541 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 542 } 543 544 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 545 { 546 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 547 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 548 } 549 550 static bool is_may_goto_insn(struct bpf_insn *insn) 551 { 552 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 553 } 554 555 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 556 { 557 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 558 } 559 560 static bool is_storage_get_function(enum bpf_func_id func_id) 561 { 562 return func_id == BPF_FUNC_sk_storage_get || 563 func_id == BPF_FUNC_inode_storage_get || 564 func_id == BPF_FUNC_task_storage_get || 565 func_id == BPF_FUNC_cgrp_storage_get; 566 } 567 568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 569 const struct bpf_map *map) 570 { 571 int ref_obj_uses = 0; 572 573 if (is_ptr_cast_function(func_id)) 574 ref_obj_uses++; 575 if (is_acquire_function(func_id, map)) 576 ref_obj_uses++; 577 if (is_dynptr_ref_function(func_id)) 578 ref_obj_uses++; 579 580 return ref_obj_uses > 1; 581 } 582 583 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 584 { 585 return BPF_CLASS(insn->code) == BPF_STX && 586 BPF_MODE(insn->code) == BPF_ATOMIC && 587 insn->imm == BPF_CMPXCHG; 588 } 589 590 static bool is_atomic_load_insn(const struct bpf_insn *insn) 591 { 592 return BPF_CLASS(insn->code) == BPF_STX && 593 BPF_MODE(insn->code) == BPF_ATOMIC && 594 insn->imm == BPF_LOAD_ACQ; 595 } 596 597 static int __get_spi(s32 off) 598 { 599 return (-off - 1) / BPF_REG_SIZE; 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 611 { 612 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 613 614 /* We need to check that slots between [spi - nr_slots + 1, spi] are 615 * within [0, allocated_stack). 616 * 617 * Please note that the spi grows downwards. For example, a dynptr 618 * takes the size of two stack slots; the first slot will be at 619 * spi and the second slot will be at spi - 1. 620 */ 621 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 622 } 623 624 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 625 const char *obj_kind, int nr_slots) 626 { 627 int off, spi; 628 629 if (!tnum_is_const(reg->var_off)) { 630 verbose(env, "%s has to be at a constant offset\n", obj_kind); 631 return -EINVAL; 632 } 633 634 off = reg->off + reg->var_off.value; 635 if (off % BPF_REG_SIZE) { 636 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 637 return -EINVAL; 638 } 639 640 spi = __get_spi(off); 641 if (spi + 1 < nr_slots) { 642 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 643 return -EINVAL; 644 } 645 646 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 647 return -ERANGE; 648 return spi; 649 } 650 651 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 652 { 653 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 654 } 655 656 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 657 { 658 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 659 } 660 661 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 662 { 663 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 664 } 665 666 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 667 { 668 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 669 case DYNPTR_TYPE_LOCAL: 670 return BPF_DYNPTR_TYPE_LOCAL; 671 case DYNPTR_TYPE_RINGBUF: 672 return BPF_DYNPTR_TYPE_RINGBUF; 673 case DYNPTR_TYPE_SKB: 674 return BPF_DYNPTR_TYPE_SKB; 675 case DYNPTR_TYPE_XDP: 676 return BPF_DYNPTR_TYPE_XDP; 677 case DYNPTR_TYPE_SKB_META: 678 return BPF_DYNPTR_TYPE_SKB_META; 679 default: 680 return BPF_DYNPTR_TYPE_INVALID; 681 } 682 } 683 684 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 685 { 686 switch (type) { 687 case BPF_DYNPTR_TYPE_LOCAL: 688 return DYNPTR_TYPE_LOCAL; 689 case BPF_DYNPTR_TYPE_RINGBUF: 690 return DYNPTR_TYPE_RINGBUF; 691 case BPF_DYNPTR_TYPE_SKB: 692 return DYNPTR_TYPE_SKB; 693 case BPF_DYNPTR_TYPE_XDP: 694 return DYNPTR_TYPE_XDP; 695 case BPF_DYNPTR_TYPE_SKB_META: 696 return DYNPTR_TYPE_SKB_META; 697 default: 698 return 0; 699 } 700 } 701 702 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 703 { 704 return type == BPF_DYNPTR_TYPE_RINGBUF; 705 } 706 707 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 708 enum bpf_dynptr_type type, 709 bool first_slot, int dynptr_id); 710 711 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 712 struct bpf_reg_state *reg); 713 714 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 715 struct bpf_reg_state *sreg1, 716 struct bpf_reg_state *sreg2, 717 enum bpf_dynptr_type type) 718 { 719 int id = ++env->id_gen; 720 721 __mark_dynptr_reg(sreg1, type, true, id); 722 __mark_dynptr_reg(sreg2, type, false, id); 723 } 724 725 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 726 struct bpf_reg_state *reg, 727 enum bpf_dynptr_type type) 728 { 729 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 730 } 731 732 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 733 struct bpf_func_state *state, int spi); 734 735 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 736 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 737 { 738 struct bpf_func_state *state = func(env, reg); 739 enum bpf_dynptr_type type; 740 int spi, i, err; 741 742 spi = dynptr_get_spi(env, reg); 743 if (spi < 0) 744 return spi; 745 746 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 747 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 748 * to ensure that for the following example: 749 * [d1][d1][d2][d2] 750 * spi 3 2 1 0 751 * So marking spi = 2 should lead to destruction of both d1 and d2. In 752 * case they do belong to same dynptr, second call won't see slot_type 753 * as STACK_DYNPTR and will simply skip destruction. 754 */ 755 err = destroy_if_dynptr_stack_slot(env, state, spi); 756 if (err) 757 return err; 758 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 759 if (err) 760 return err; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 int id; 777 778 if (clone_ref_obj_id) 779 id = clone_ref_obj_id; 780 else 781 id = acquire_reference(env, insn_idx); 782 783 if (id < 0) 784 return id; 785 786 state->stack[spi].spilled_ptr.ref_obj_id = id; 787 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 788 } 789 790 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 791 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 792 793 return 0; 794 } 795 796 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 797 { 798 int i; 799 800 for (i = 0; i < BPF_REG_SIZE; i++) { 801 state->stack[spi].slot_type[i] = STACK_INVALID; 802 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 803 } 804 805 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 806 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 807 808 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 809 * 810 * While we don't allow reading STACK_INVALID, it is still possible to 811 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 812 * helpers or insns can do partial read of that part without failing, 813 * but check_stack_range_initialized, check_stack_read_var_off, and 814 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 815 * the slot conservatively. Hence we need to prevent those liveness 816 * marking walks. 817 * 818 * This was not a problem before because STACK_INVALID is only set by 819 * default (where the default reg state has its reg->parent as NULL), or 820 * in clean_live_states after REG_LIVE_DONE (at which point 821 * mark_reg_read won't walk reg->parent chain), but not randomly during 822 * verifier state exploration (like we did above). Hence, for our case 823 * parentage chain will still be live (i.e. reg->parent may be 824 * non-NULL), while earlier reg->parent was NULL, so we need 825 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 826 * done later on reads or by mark_dynptr_read as well to unnecessary 827 * mark registers in verifier state. 828 */ 829 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 830 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 831 } 832 833 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 834 { 835 struct bpf_func_state *state = func(env, reg); 836 int spi, ref_obj_id, i; 837 838 spi = dynptr_get_spi(env, reg); 839 if (spi < 0) 840 return spi; 841 842 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 843 invalidate_dynptr(env, state, spi); 844 return 0; 845 } 846 847 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 848 849 /* If the dynptr has a ref_obj_id, then we need to invalidate 850 * two things: 851 * 852 * 1) Any dynptrs with a matching ref_obj_id (clones) 853 * 2) Any slices derived from this dynptr. 854 */ 855 856 /* Invalidate any slices associated with this dynptr */ 857 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 858 859 /* Invalidate any dynptr clones */ 860 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 861 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 862 continue; 863 864 /* it should always be the case that if the ref obj id 865 * matches then the stack slot also belongs to a 866 * dynptr 867 */ 868 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 869 verifier_bug(env, "misconfigured ref_obj_id"); 870 return -EFAULT; 871 } 872 if (state->stack[i].spilled_ptr.dynptr.first_slot) 873 invalidate_dynptr(env, state, i); 874 } 875 876 return 0; 877 } 878 879 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 880 struct bpf_reg_state *reg); 881 882 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 883 { 884 if (!env->allow_ptr_leaks) 885 __mark_reg_not_init(env, reg); 886 else 887 __mark_reg_unknown(env, reg); 888 } 889 890 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 891 struct bpf_func_state *state, int spi) 892 { 893 struct bpf_func_state *fstate; 894 struct bpf_reg_state *dreg; 895 int i, dynptr_id; 896 897 /* We always ensure that STACK_DYNPTR is never set partially, 898 * hence just checking for slot_type[0] is enough. This is 899 * different for STACK_SPILL, where it may be only set for 900 * 1 byte, so code has to use is_spilled_reg. 901 */ 902 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 903 return 0; 904 905 /* Reposition spi to first slot */ 906 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 907 spi = spi + 1; 908 909 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 910 verbose(env, "cannot overwrite referenced dynptr\n"); 911 return -EINVAL; 912 } 913 914 mark_stack_slot_scratched(env, spi); 915 mark_stack_slot_scratched(env, spi - 1); 916 917 /* Writing partially to one dynptr stack slot destroys both. */ 918 for (i = 0; i < BPF_REG_SIZE; i++) { 919 state->stack[spi].slot_type[i] = STACK_INVALID; 920 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 921 } 922 923 dynptr_id = state->stack[spi].spilled_ptr.id; 924 /* Invalidate any slices associated with this dynptr */ 925 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 926 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 927 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 928 continue; 929 if (dreg->dynptr_id == dynptr_id) 930 mark_reg_invalid(env, dreg); 931 })); 932 933 /* Do not release reference state, we are destroying dynptr on stack, 934 * not using some helper to release it. Just reset register. 935 */ 936 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 937 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 938 939 /* Same reason as unmark_stack_slots_dynptr above */ 940 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 941 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 942 943 return 0; 944 } 945 946 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 947 { 948 int spi; 949 950 if (reg->type == CONST_PTR_TO_DYNPTR) 951 return false; 952 953 spi = dynptr_get_spi(env, reg); 954 955 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 956 * error because this just means the stack state hasn't been updated yet. 957 * We will do check_mem_access to check and update stack bounds later. 958 */ 959 if (spi < 0 && spi != -ERANGE) 960 return false; 961 962 /* We don't need to check if the stack slots are marked by previous 963 * dynptr initializations because we allow overwriting existing unreferenced 964 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 965 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 966 * touching are completely destructed before we reinitialize them for a new 967 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 968 * instead of delaying it until the end where the user will get "Unreleased 969 * reference" error. 970 */ 971 return true; 972 } 973 974 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 975 { 976 struct bpf_func_state *state = func(env, reg); 977 int i, spi; 978 979 /* This already represents first slot of initialized bpf_dynptr. 980 * 981 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 982 * check_func_arg_reg_off's logic, so we don't need to check its 983 * offset and alignment. 984 */ 985 if (reg->type == CONST_PTR_TO_DYNPTR) 986 return true; 987 988 spi = dynptr_get_spi(env, reg); 989 if (spi < 0) 990 return false; 991 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 992 return false; 993 994 for (i = 0; i < BPF_REG_SIZE; i++) { 995 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 996 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 997 return false; 998 } 999 1000 return true; 1001 } 1002 1003 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1004 enum bpf_arg_type arg_type) 1005 { 1006 struct bpf_func_state *state = func(env, reg); 1007 enum bpf_dynptr_type dynptr_type; 1008 int spi; 1009 1010 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1011 if (arg_type == ARG_PTR_TO_DYNPTR) 1012 return true; 1013 1014 dynptr_type = arg_to_dynptr_type(arg_type); 1015 if (reg->type == CONST_PTR_TO_DYNPTR) { 1016 return reg->dynptr.type == dynptr_type; 1017 } else { 1018 spi = dynptr_get_spi(env, reg); 1019 if (spi < 0) 1020 return false; 1021 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1022 } 1023 } 1024 1025 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1026 1027 static bool in_rcu_cs(struct bpf_verifier_env *env); 1028 1029 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1030 1031 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1032 struct bpf_kfunc_call_arg_meta *meta, 1033 struct bpf_reg_state *reg, int insn_idx, 1034 struct btf *btf, u32 btf_id, int nr_slots) 1035 { 1036 struct bpf_func_state *state = func(env, reg); 1037 int spi, i, j, id; 1038 1039 spi = iter_get_spi(env, reg, nr_slots); 1040 if (spi < 0) 1041 return spi; 1042 1043 id = acquire_reference(env, insn_idx); 1044 if (id < 0) 1045 return id; 1046 1047 for (i = 0; i < nr_slots; i++) { 1048 struct bpf_stack_state *slot = &state->stack[spi - i]; 1049 struct bpf_reg_state *st = &slot->spilled_ptr; 1050 1051 __mark_reg_known_zero(st); 1052 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1053 if (is_kfunc_rcu_protected(meta)) { 1054 if (in_rcu_cs(env)) 1055 st->type |= MEM_RCU; 1056 else 1057 st->type |= PTR_UNTRUSTED; 1058 } 1059 st->live |= REG_LIVE_WRITTEN; 1060 st->ref_obj_id = i == 0 ? id : 0; 1061 st->iter.btf = btf; 1062 st->iter.btf_id = btf_id; 1063 st->iter.state = BPF_ITER_STATE_ACTIVE; 1064 st->iter.depth = 0; 1065 1066 for (j = 0; j < BPF_REG_SIZE; j++) 1067 slot->slot_type[j] = STACK_ITER; 1068 1069 mark_stack_slot_scratched(env, spi - i); 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1076 struct bpf_reg_state *reg, int nr_slots) 1077 { 1078 struct bpf_func_state *state = func(env, reg); 1079 int spi, i, j; 1080 1081 spi = iter_get_spi(env, reg, nr_slots); 1082 if (spi < 0) 1083 return spi; 1084 1085 for (i = 0; i < nr_slots; i++) { 1086 struct bpf_stack_state *slot = &state->stack[spi - i]; 1087 struct bpf_reg_state *st = &slot->spilled_ptr; 1088 1089 if (i == 0) 1090 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1091 1092 __mark_reg_not_init(env, st); 1093 1094 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1095 st->live |= REG_LIVE_WRITTEN; 1096 1097 for (j = 0; j < BPF_REG_SIZE; j++) 1098 slot->slot_type[j] = STACK_INVALID; 1099 1100 mark_stack_slot_scratched(env, spi - i); 1101 } 1102 1103 return 0; 1104 } 1105 1106 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1107 struct bpf_reg_state *reg, int nr_slots) 1108 { 1109 struct bpf_func_state *state = func(env, reg); 1110 int spi, i, j; 1111 1112 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1113 * will do check_mem_access to check and update stack bounds later, so 1114 * return true for that case. 1115 */ 1116 spi = iter_get_spi(env, reg, nr_slots); 1117 if (spi == -ERANGE) 1118 return true; 1119 if (spi < 0) 1120 return false; 1121 1122 for (i = 0; i < nr_slots; i++) { 1123 struct bpf_stack_state *slot = &state->stack[spi - i]; 1124 1125 for (j = 0; j < BPF_REG_SIZE; j++) 1126 if (slot->slot_type[j] == STACK_ITER) 1127 return false; 1128 } 1129 1130 return true; 1131 } 1132 1133 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1134 struct btf *btf, u32 btf_id, int nr_slots) 1135 { 1136 struct bpf_func_state *state = func(env, reg); 1137 int spi, i, j; 1138 1139 spi = iter_get_spi(env, reg, nr_slots); 1140 if (spi < 0) 1141 return -EINVAL; 1142 1143 for (i = 0; i < nr_slots; i++) { 1144 struct bpf_stack_state *slot = &state->stack[spi - i]; 1145 struct bpf_reg_state *st = &slot->spilled_ptr; 1146 1147 if (st->type & PTR_UNTRUSTED) 1148 return -EPROTO; 1149 /* only main (first) slot has ref_obj_id set */ 1150 if (i == 0 && !st->ref_obj_id) 1151 return -EINVAL; 1152 if (i != 0 && st->ref_obj_id) 1153 return -EINVAL; 1154 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1155 return -EINVAL; 1156 1157 for (j = 0; j < BPF_REG_SIZE; j++) 1158 if (slot->slot_type[j] != STACK_ITER) 1159 return -EINVAL; 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1166 static int release_irq_state(struct bpf_verifier_state *state, int id); 1167 1168 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1169 struct bpf_kfunc_call_arg_meta *meta, 1170 struct bpf_reg_state *reg, int insn_idx, 1171 int kfunc_class) 1172 { 1173 struct bpf_func_state *state = func(env, reg); 1174 struct bpf_stack_state *slot; 1175 struct bpf_reg_state *st; 1176 int spi, i, id; 1177 1178 spi = irq_flag_get_spi(env, reg); 1179 if (spi < 0) 1180 return spi; 1181 1182 id = acquire_irq_state(env, insn_idx); 1183 if (id < 0) 1184 return id; 1185 1186 slot = &state->stack[spi]; 1187 st = &slot->spilled_ptr; 1188 1189 __mark_reg_known_zero(st); 1190 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1191 st->live |= REG_LIVE_WRITTEN; 1192 st->ref_obj_id = id; 1193 st->irq.kfunc_class = kfunc_class; 1194 1195 for (i = 0; i < BPF_REG_SIZE; i++) 1196 slot->slot_type[i] = STACK_IRQ_FLAG; 1197 1198 mark_stack_slot_scratched(env, spi); 1199 return 0; 1200 } 1201 1202 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1203 int kfunc_class) 1204 { 1205 struct bpf_func_state *state = func(env, reg); 1206 struct bpf_stack_state *slot; 1207 struct bpf_reg_state *st; 1208 int spi, i, err; 1209 1210 spi = irq_flag_get_spi(env, reg); 1211 if (spi < 0) 1212 return spi; 1213 1214 slot = &state->stack[spi]; 1215 st = &slot->spilled_ptr; 1216 1217 if (st->irq.kfunc_class != kfunc_class) { 1218 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1219 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1220 1221 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1222 flag_kfunc, used_kfunc); 1223 return -EINVAL; 1224 } 1225 1226 err = release_irq_state(env->cur_state, st->ref_obj_id); 1227 WARN_ON_ONCE(err && err != -EACCES); 1228 if (err) { 1229 int insn_idx = 0; 1230 1231 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1232 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1233 insn_idx = env->cur_state->refs[i].insn_idx; 1234 break; 1235 } 1236 } 1237 1238 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1239 env->cur_state->active_irq_id, insn_idx); 1240 return err; 1241 } 1242 1243 __mark_reg_not_init(env, st); 1244 1245 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1246 st->live |= REG_LIVE_WRITTEN; 1247 1248 for (i = 0; i < BPF_REG_SIZE; i++) 1249 slot->slot_type[i] = STACK_INVALID; 1250 1251 mark_stack_slot_scratched(env, spi); 1252 return 0; 1253 } 1254 1255 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 struct bpf_stack_state *slot; 1259 int spi, i; 1260 1261 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1262 * will do check_mem_access to check and update stack bounds later, so 1263 * return true for that case. 1264 */ 1265 spi = irq_flag_get_spi(env, reg); 1266 if (spi == -ERANGE) 1267 return true; 1268 if (spi < 0) 1269 return false; 1270 1271 slot = &state->stack[spi]; 1272 1273 for (i = 0; i < BPF_REG_SIZE; i++) 1274 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1275 return false; 1276 return true; 1277 } 1278 1279 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1280 { 1281 struct bpf_func_state *state = func(env, reg); 1282 struct bpf_stack_state *slot; 1283 struct bpf_reg_state *st; 1284 int spi, i; 1285 1286 spi = irq_flag_get_spi(env, reg); 1287 if (spi < 0) 1288 return -EINVAL; 1289 1290 slot = &state->stack[spi]; 1291 st = &slot->spilled_ptr; 1292 1293 if (!st->ref_obj_id) 1294 return -EINVAL; 1295 1296 for (i = 0; i < BPF_REG_SIZE; i++) 1297 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1298 return -EINVAL; 1299 return 0; 1300 } 1301 1302 /* Check if given stack slot is "special": 1303 * - spilled register state (STACK_SPILL); 1304 * - dynptr state (STACK_DYNPTR); 1305 * - iter state (STACK_ITER). 1306 * - irq flag state (STACK_IRQ_FLAG) 1307 */ 1308 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1309 { 1310 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1311 1312 switch (type) { 1313 case STACK_SPILL: 1314 case STACK_DYNPTR: 1315 case STACK_ITER: 1316 case STACK_IRQ_FLAG: 1317 return true; 1318 case STACK_INVALID: 1319 case STACK_MISC: 1320 case STACK_ZERO: 1321 return false; 1322 default: 1323 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1324 return true; 1325 } 1326 } 1327 1328 /* The reg state of a pointer or a bounded scalar was saved when 1329 * it was spilled to the stack. 1330 */ 1331 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1332 { 1333 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1334 } 1335 1336 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1337 { 1338 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1339 stack->spilled_ptr.type == SCALAR_VALUE; 1340 } 1341 1342 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1343 { 1344 return stack->slot_type[0] == STACK_SPILL && 1345 stack->spilled_ptr.type == SCALAR_VALUE; 1346 } 1347 1348 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1349 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1350 * more precise STACK_ZERO. 1351 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1352 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1353 * unnecessary as both are considered equivalent when loading data and pruning, 1354 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1355 * slots. 1356 */ 1357 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1358 { 1359 if (*stype == STACK_ZERO) 1360 return; 1361 if (*stype == STACK_INVALID) 1362 return; 1363 *stype = STACK_MISC; 1364 } 1365 1366 static void scrub_spilled_slot(u8 *stype) 1367 { 1368 if (*stype != STACK_INVALID) 1369 *stype = STACK_MISC; 1370 } 1371 1372 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1373 * small to hold src. This is different from krealloc since we don't want to preserve 1374 * the contents of dst. 1375 * 1376 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1377 * not be allocated. 1378 */ 1379 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1380 { 1381 size_t alloc_bytes; 1382 void *orig = dst; 1383 size_t bytes; 1384 1385 if (ZERO_OR_NULL_PTR(src)) 1386 goto out; 1387 1388 if (unlikely(check_mul_overflow(n, size, &bytes))) 1389 return NULL; 1390 1391 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1392 dst = krealloc(orig, alloc_bytes, flags); 1393 if (!dst) { 1394 kfree(orig); 1395 return NULL; 1396 } 1397 1398 memcpy(dst, src, bytes); 1399 out: 1400 return dst ? dst : ZERO_SIZE_PTR; 1401 } 1402 1403 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1404 * small to hold new_n items. new items are zeroed out if the array grows. 1405 * 1406 * Contrary to krealloc_array, does not free arr if new_n is zero. 1407 */ 1408 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1409 { 1410 size_t alloc_size; 1411 void *new_arr; 1412 1413 if (!new_n || old_n == new_n) 1414 goto out; 1415 1416 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1417 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); 1418 if (!new_arr) { 1419 kfree(arr); 1420 return NULL; 1421 } 1422 arr = new_arr; 1423 1424 if (new_n > old_n) 1425 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1426 1427 out: 1428 return arr ? arr : ZERO_SIZE_PTR; 1429 } 1430 1431 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1432 { 1433 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1434 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); 1435 if (!dst->refs) 1436 return -ENOMEM; 1437 1438 dst->acquired_refs = src->acquired_refs; 1439 dst->active_locks = src->active_locks; 1440 dst->active_preempt_locks = src->active_preempt_locks; 1441 dst->active_rcu_lock = src->active_rcu_lock; 1442 dst->active_irq_id = src->active_irq_id; 1443 dst->active_lock_id = src->active_lock_id; 1444 dst->active_lock_ptr = src->active_lock_ptr; 1445 return 0; 1446 } 1447 1448 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1449 { 1450 size_t n = src->allocated_stack / BPF_REG_SIZE; 1451 1452 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1453 GFP_KERNEL_ACCOUNT); 1454 if (!dst->stack) 1455 return -ENOMEM; 1456 1457 dst->allocated_stack = src->allocated_stack; 1458 return 0; 1459 } 1460 1461 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1462 { 1463 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1464 sizeof(struct bpf_reference_state)); 1465 if (!state->refs) 1466 return -ENOMEM; 1467 1468 state->acquired_refs = n; 1469 return 0; 1470 } 1471 1472 /* Possibly update state->allocated_stack to be at least size bytes. Also 1473 * possibly update the function's high-water mark in its bpf_subprog_info. 1474 */ 1475 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1476 { 1477 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1478 1479 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1480 size = round_up(size, BPF_REG_SIZE); 1481 n = size / BPF_REG_SIZE; 1482 1483 if (old_n >= n) 1484 return 0; 1485 1486 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1487 if (!state->stack) 1488 return -ENOMEM; 1489 1490 state->allocated_stack = size; 1491 1492 /* update known max for given subprogram */ 1493 if (env->subprog_info[state->subprogno].stack_depth < size) 1494 env->subprog_info[state->subprogno].stack_depth = size; 1495 1496 return 0; 1497 } 1498 1499 /* Acquire a pointer id from the env and update the state->refs to include 1500 * this new pointer reference. 1501 * On success, returns a valid pointer id to associate with the register 1502 * On failure, returns a negative errno. 1503 */ 1504 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1505 { 1506 struct bpf_verifier_state *state = env->cur_state; 1507 int new_ofs = state->acquired_refs; 1508 int err; 1509 1510 err = resize_reference_state(state, state->acquired_refs + 1); 1511 if (err) 1512 return NULL; 1513 state->refs[new_ofs].insn_idx = insn_idx; 1514 1515 return &state->refs[new_ofs]; 1516 } 1517 1518 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1519 { 1520 struct bpf_reference_state *s; 1521 1522 s = acquire_reference_state(env, insn_idx); 1523 if (!s) 1524 return -ENOMEM; 1525 s->type = REF_TYPE_PTR; 1526 s->id = ++env->id_gen; 1527 return s->id; 1528 } 1529 1530 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1531 int id, void *ptr) 1532 { 1533 struct bpf_verifier_state *state = env->cur_state; 1534 struct bpf_reference_state *s; 1535 1536 s = acquire_reference_state(env, insn_idx); 1537 if (!s) 1538 return -ENOMEM; 1539 s->type = type; 1540 s->id = id; 1541 s->ptr = ptr; 1542 1543 state->active_locks++; 1544 state->active_lock_id = id; 1545 state->active_lock_ptr = ptr; 1546 return 0; 1547 } 1548 1549 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1550 { 1551 struct bpf_verifier_state *state = env->cur_state; 1552 struct bpf_reference_state *s; 1553 1554 s = acquire_reference_state(env, insn_idx); 1555 if (!s) 1556 return -ENOMEM; 1557 s->type = REF_TYPE_IRQ; 1558 s->id = ++env->id_gen; 1559 1560 state->active_irq_id = s->id; 1561 return s->id; 1562 } 1563 1564 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1565 { 1566 int last_idx; 1567 size_t rem; 1568 1569 /* IRQ state requires the relative ordering of elements remaining the 1570 * same, since it relies on the refs array to behave as a stack, so that 1571 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1572 * the array instead of swapping the final element into the deleted idx. 1573 */ 1574 last_idx = state->acquired_refs - 1; 1575 rem = state->acquired_refs - idx - 1; 1576 if (last_idx && idx != last_idx) 1577 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1578 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1579 state->acquired_refs--; 1580 return; 1581 } 1582 1583 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1584 { 1585 int i; 1586 1587 for (i = 0; i < state->acquired_refs; i++) 1588 if (state->refs[i].id == ptr_id) 1589 return true; 1590 1591 return false; 1592 } 1593 1594 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1595 { 1596 void *prev_ptr = NULL; 1597 u32 prev_id = 0; 1598 int i; 1599 1600 for (i = 0; i < state->acquired_refs; i++) { 1601 if (state->refs[i].type == type && state->refs[i].id == id && 1602 state->refs[i].ptr == ptr) { 1603 release_reference_state(state, i); 1604 state->active_locks--; 1605 /* Reassign active lock (id, ptr). */ 1606 state->active_lock_id = prev_id; 1607 state->active_lock_ptr = prev_ptr; 1608 return 0; 1609 } 1610 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1611 prev_id = state->refs[i].id; 1612 prev_ptr = state->refs[i].ptr; 1613 } 1614 } 1615 return -EINVAL; 1616 } 1617 1618 static int release_irq_state(struct bpf_verifier_state *state, int id) 1619 { 1620 u32 prev_id = 0; 1621 int i; 1622 1623 if (id != state->active_irq_id) 1624 return -EACCES; 1625 1626 for (i = 0; i < state->acquired_refs; i++) { 1627 if (state->refs[i].type != REF_TYPE_IRQ) 1628 continue; 1629 if (state->refs[i].id == id) { 1630 release_reference_state(state, i); 1631 state->active_irq_id = prev_id; 1632 return 0; 1633 } else { 1634 prev_id = state->refs[i].id; 1635 } 1636 } 1637 return -EINVAL; 1638 } 1639 1640 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1641 int id, void *ptr) 1642 { 1643 int i; 1644 1645 for (i = 0; i < state->acquired_refs; i++) { 1646 struct bpf_reference_state *s = &state->refs[i]; 1647 1648 if (!(s->type & type)) 1649 continue; 1650 1651 if (s->id == id && s->ptr == ptr) 1652 return s; 1653 } 1654 return NULL; 1655 } 1656 1657 static void update_peak_states(struct bpf_verifier_env *env) 1658 { 1659 u32 cur_states; 1660 1661 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; 1662 env->peak_states = max(env->peak_states, cur_states); 1663 } 1664 1665 static void free_func_state(struct bpf_func_state *state) 1666 { 1667 if (!state) 1668 return; 1669 kfree(state->stack); 1670 kfree(state); 1671 } 1672 1673 static void clear_jmp_history(struct bpf_verifier_state *state) 1674 { 1675 kfree(state->jmp_history); 1676 state->jmp_history = NULL; 1677 state->jmp_history_cnt = 0; 1678 } 1679 1680 static void free_verifier_state(struct bpf_verifier_state *state, 1681 bool free_self) 1682 { 1683 int i; 1684 1685 for (i = 0; i <= state->curframe; i++) { 1686 free_func_state(state->frame[i]); 1687 state->frame[i] = NULL; 1688 } 1689 kfree(state->refs); 1690 clear_jmp_history(state); 1691 if (free_self) 1692 kfree(state); 1693 } 1694 1695 /* struct bpf_verifier_state->parent refers to states 1696 * that are in either of env->{expored_states,free_list}. 1697 * In both cases the state is contained in struct bpf_verifier_state_list. 1698 */ 1699 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1700 { 1701 if (st->parent) 1702 return container_of(st->parent, struct bpf_verifier_state_list, state); 1703 return NULL; 1704 } 1705 1706 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1707 struct bpf_verifier_state *st); 1708 1709 /* A state can be freed if it is no longer referenced: 1710 * - is in the env->free_list; 1711 * - has no children states; 1712 */ 1713 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1714 struct bpf_verifier_state_list *sl) 1715 { 1716 if (!sl->in_free_list 1717 || sl->state.branches != 0 1718 || incomplete_read_marks(env, &sl->state)) 1719 return; 1720 list_del(&sl->node); 1721 free_verifier_state(&sl->state, false); 1722 kfree(sl); 1723 env->free_list_size--; 1724 } 1725 1726 /* copy verifier state from src to dst growing dst stack space 1727 * when necessary to accommodate larger src stack 1728 */ 1729 static int copy_func_state(struct bpf_func_state *dst, 1730 const struct bpf_func_state *src) 1731 { 1732 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1733 return copy_stack_state(dst, src); 1734 } 1735 1736 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1737 const struct bpf_verifier_state *src) 1738 { 1739 struct bpf_func_state *dst; 1740 int i, err; 1741 1742 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1743 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1744 GFP_KERNEL_ACCOUNT); 1745 if (!dst_state->jmp_history) 1746 return -ENOMEM; 1747 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1748 1749 /* if dst has more stack frames then src frame, free them, this is also 1750 * necessary in case of exceptional exits using bpf_throw. 1751 */ 1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1753 free_func_state(dst_state->frame[i]); 1754 dst_state->frame[i] = NULL; 1755 } 1756 err = copy_reference_state(dst_state, src); 1757 if (err) 1758 return err; 1759 dst_state->speculative = src->speculative; 1760 dst_state->in_sleepable = src->in_sleepable; 1761 dst_state->curframe = src->curframe; 1762 dst_state->branches = src->branches; 1763 dst_state->parent = src->parent; 1764 dst_state->first_insn_idx = src->first_insn_idx; 1765 dst_state->last_insn_idx = src->last_insn_idx; 1766 dst_state->dfs_depth = src->dfs_depth; 1767 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1768 dst_state->may_goto_depth = src->may_goto_depth; 1769 dst_state->equal_state = src->equal_state; 1770 for (i = 0; i <= src->curframe; i++) { 1771 dst = dst_state->frame[i]; 1772 if (!dst) { 1773 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); 1774 if (!dst) 1775 return -ENOMEM; 1776 dst_state->frame[i] = dst; 1777 } 1778 err = copy_func_state(dst, src->frame[i]); 1779 if (err) 1780 return err; 1781 } 1782 return 0; 1783 } 1784 1785 static u32 state_htab_size(struct bpf_verifier_env *env) 1786 { 1787 return env->prog->len; 1788 } 1789 1790 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1791 { 1792 struct bpf_verifier_state *cur = env->cur_state; 1793 struct bpf_func_state *state = cur->frame[cur->curframe]; 1794 1795 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1796 } 1797 1798 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1799 { 1800 int fr; 1801 1802 if (a->curframe != b->curframe) 1803 return false; 1804 1805 for (fr = a->curframe; fr >= 0; fr--) 1806 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1807 return false; 1808 1809 return true; 1810 } 1811 1812 /* Return IP for a given frame in a call stack */ 1813 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) 1814 { 1815 return frame == st->curframe 1816 ? st->insn_idx 1817 : st->frame[frame + 1]->callsite; 1818 } 1819 1820 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC, 1821 * if such frame exists form a corresponding @callchain as an array of 1822 * call sites leading to this frame and SCC id. 1823 * E.g.: 1824 * 1825 * void foo() { A: loop {... SCC#1 ...}; } 1826 * void bar() { B: loop { C: foo(); ... SCC#2 ... } 1827 * D: loop { E: foo(); ... SCC#3 ... } } 1828 * void main() { F: bar(); } 1829 * 1830 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending 1831 * on @st frame call sites being (F,C,A) or (F,E,A). 1832 */ 1833 static bool compute_scc_callchain(struct bpf_verifier_env *env, 1834 struct bpf_verifier_state *st, 1835 struct bpf_scc_callchain *callchain) 1836 { 1837 u32 i, scc, insn_idx; 1838 1839 memset(callchain, 0, sizeof(*callchain)); 1840 for (i = 0; i <= st->curframe; i++) { 1841 insn_idx = frame_insn_idx(st, i); 1842 scc = env->insn_aux_data[insn_idx].scc; 1843 if (scc) { 1844 callchain->scc = scc; 1845 break; 1846 } else if (i < st->curframe) { 1847 callchain->callsites[i] = insn_idx; 1848 } else { 1849 return false; 1850 } 1851 } 1852 return true; 1853 } 1854 1855 /* Check if bpf_scc_visit instance for @callchain exists. */ 1856 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, 1857 struct bpf_scc_callchain *callchain) 1858 { 1859 struct bpf_scc_info *info = env->scc_info[callchain->scc]; 1860 struct bpf_scc_visit *visits = info->visits; 1861 u32 i; 1862 1863 if (!info) 1864 return NULL; 1865 for (i = 0; i < info->num_visits; i++) 1866 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) 1867 return &visits[i]; 1868 return NULL; 1869 } 1870 1871 /* Allocate a new bpf_scc_visit instance corresponding to @callchain. 1872 * Allocated instances are alive for a duration of the do_check_common() 1873 * call and are freed by free_states(). 1874 */ 1875 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, 1876 struct bpf_scc_callchain *callchain) 1877 { 1878 struct bpf_scc_visit *visit; 1879 struct bpf_scc_info *info; 1880 u32 scc, num_visits; 1881 u64 new_sz; 1882 1883 scc = callchain->scc; 1884 info = env->scc_info[scc]; 1885 num_visits = info ? info->num_visits : 0; 1886 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); 1887 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); 1888 if (!info) 1889 return NULL; 1890 env->scc_info[scc] = info; 1891 info->num_visits = num_visits + 1; 1892 visit = &info->visits[num_visits]; 1893 memset(visit, 0, sizeof(*visit)); 1894 memcpy(&visit->callchain, callchain, sizeof(*callchain)); 1895 return visit; 1896 } 1897 1898 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ 1899 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) 1900 { 1901 char *buf = env->tmp_str_buf; 1902 int i, delta = 0; 1903 1904 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); 1905 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { 1906 if (!callchain->callsites[i]) 1907 break; 1908 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", 1909 callchain->callsites[i]); 1910 } 1911 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); 1912 return env->tmp_str_buf; 1913 } 1914 1915 /* If callchain for @st exists (@st is in some SCC), ensure that 1916 * bpf_scc_visit instance for this callchain exists. 1917 * If instance does not exist or is empty, assign visit->entry_state to @st. 1918 */ 1919 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1920 { 1921 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1922 struct bpf_scc_visit *visit; 1923 1924 if (!compute_scc_callchain(env, st, callchain)) 1925 return 0; 1926 visit = scc_visit_lookup(env, callchain); 1927 visit = visit ?: scc_visit_alloc(env, callchain); 1928 if (!visit) 1929 return -ENOMEM; 1930 if (!visit->entry_state) { 1931 visit->entry_state = st; 1932 if (env->log.level & BPF_LOG_LEVEL2) 1933 verbose(env, "SCC enter %s\n", format_callchain(env, callchain)); 1934 } 1935 return 0; 1936 } 1937 1938 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); 1939 1940 /* If callchain for @st exists (@st is in some SCC), make it empty: 1941 * - set visit->entry_state to NULL; 1942 * - flush accumulated backedges. 1943 */ 1944 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1945 { 1946 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1947 struct bpf_scc_visit *visit; 1948 1949 if (!compute_scc_callchain(env, st, callchain)) 1950 return 0; 1951 visit = scc_visit_lookup(env, callchain); 1952 if (!visit) { 1953 verifier_bug(env, "scc exit: no visit info for call chain %s", 1954 format_callchain(env, callchain)); 1955 return -EFAULT; 1956 } 1957 if (visit->entry_state != st) 1958 return 0; 1959 if (env->log.level & BPF_LOG_LEVEL2) 1960 verbose(env, "SCC exit %s\n", format_callchain(env, callchain)); 1961 visit->entry_state = NULL; 1962 env->num_backedges -= visit->num_backedges; 1963 visit->num_backedges = 0; 1964 update_peak_states(env); 1965 return propagate_backedges(env, visit); 1966 } 1967 1968 /* Lookup an bpf_scc_visit instance corresponding to @st callchain 1969 * and add @backedge to visit->backedges. @st callchain must exist. 1970 */ 1971 static int add_scc_backedge(struct bpf_verifier_env *env, 1972 struct bpf_verifier_state *st, 1973 struct bpf_scc_backedge *backedge) 1974 { 1975 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1976 struct bpf_scc_visit *visit; 1977 1978 if (!compute_scc_callchain(env, st, callchain)) { 1979 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", 1980 st->insn_idx); 1981 return -EFAULT; 1982 } 1983 visit = scc_visit_lookup(env, callchain); 1984 if (!visit) { 1985 verifier_bug(env, "add backedge: no visit info for call chain %s", 1986 format_callchain(env, callchain)); 1987 return -EFAULT; 1988 } 1989 if (env->log.level & BPF_LOG_LEVEL2) 1990 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain)); 1991 backedge->next = visit->backedges; 1992 visit->backedges = backedge; 1993 visit->num_backedges++; 1994 env->num_backedges++; 1995 update_peak_states(env); 1996 return 0; 1997 } 1998 1999 /* bpf_reg_state->live marks for registers in a state @st are incomplete, 2000 * if state @st is in some SCC and not all execution paths starting at this 2001 * SCC are fully explored. 2002 */ 2003 static bool incomplete_read_marks(struct bpf_verifier_env *env, 2004 struct bpf_verifier_state *st) 2005 { 2006 struct bpf_scc_callchain *callchain = &env->callchain_buf; 2007 struct bpf_scc_visit *visit; 2008 2009 if (!compute_scc_callchain(env, st, callchain)) 2010 return false; 2011 visit = scc_visit_lookup(env, callchain); 2012 if (!visit) 2013 return false; 2014 return !!visit->backedges; 2015 } 2016 2017 static void free_backedges(struct bpf_scc_visit *visit) 2018 { 2019 struct bpf_scc_backedge *backedge, *next; 2020 2021 for (backedge = visit->backedges; backedge; backedge = next) { 2022 free_verifier_state(&backedge->state, false); 2023 next = backedge->next; 2024 kvfree(backedge); 2025 } 2026 visit->backedges = NULL; 2027 } 2028 2029 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2030 { 2031 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 2032 struct bpf_verifier_state *parent; 2033 int err; 2034 2035 while (st) { 2036 u32 br = --st->branches; 2037 2038 /* verifier_bug_if(br > 1, ...) technically makes sense here, 2039 * but see comment in push_stack(), hence: 2040 */ 2041 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br); 2042 if (br) 2043 break; 2044 err = maybe_exit_scc(env, st); 2045 if (err) 2046 return err; 2047 parent = st->parent; 2048 parent_sl = state_parent_as_list(st); 2049 if (sl) 2050 maybe_free_verifier_state(env, sl); 2051 st = parent; 2052 sl = parent_sl; 2053 } 2054 return 0; 2055 } 2056 2057 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2058 int *insn_idx, bool pop_log) 2059 { 2060 struct bpf_verifier_state *cur = env->cur_state; 2061 struct bpf_verifier_stack_elem *elem, *head = env->head; 2062 int err; 2063 2064 if (env->head == NULL) 2065 return -ENOENT; 2066 2067 if (cur) { 2068 err = copy_verifier_state(cur, &head->st); 2069 if (err) 2070 return err; 2071 } 2072 if (pop_log) 2073 bpf_vlog_reset(&env->log, head->log_pos); 2074 if (insn_idx) 2075 *insn_idx = head->insn_idx; 2076 if (prev_insn_idx) 2077 *prev_insn_idx = head->prev_insn_idx; 2078 elem = head->next; 2079 free_verifier_state(&head->st, false); 2080 kfree(head); 2081 env->head = elem; 2082 env->stack_size--; 2083 return 0; 2084 } 2085 2086 static bool error_recoverable_with_nospec(int err) 2087 { 2088 /* Should only return true for non-fatal errors that are allowed to 2089 * occur during speculative verification. For these we can insert a 2090 * nospec and the program might still be accepted. Do not include 2091 * something like ENOMEM because it is likely to re-occur for the next 2092 * architectural path once it has been recovered-from in all speculative 2093 * paths. 2094 */ 2095 return err == -EPERM || err == -EACCES || err == -EINVAL; 2096 } 2097 2098 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2099 int insn_idx, int prev_insn_idx, 2100 bool speculative) 2101 { 2102 struct bpf_verifier_state *cur = env->cur_state; 2103 struct bpf_verifier_stack_elem *elem; 2104 int err; 2105 2106 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2107 if (!elem) 2108 return NULL; 2109 2110 elem->insn_idx = insn_idx; 2111 elem->prev_insn_idx = prev_insn_idx; 2112 elem->next = env->head; 2113 elem->log_pos = env->log.end_pos; 2114 env->head = elem; 2115 env->stack_size++; 2116 err = copy_verifier_state(&elem->st, cur); 2117 if (err) 2118 return NULL; 2119 elem->st.speculative |= speculative; 2120 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2121 verbose(env, "The sequence of %d jumps is too complex.\n", 2122 env->stack_size); 2123 return NULL; 2124 } 2125 if (elem->st.parent) { 2126 ++elem->st.parent->branches; 2127 /* WARN_ON(branches > 2) technically makes sense here, 2128 * but 2129 * 1. speculative states will bump 'branches' for non-branch 2130 * instructions 2131 * 2. is_state_visited() heuristics may decide not to create 2132 * a new state for a sequence of branches and all such current 2133 * and cloned states will be pointing to a single parent state 2134 * which might have large 'branches' count. 2135 */ 2136 } 2137 return &elem->st; 2138 } 2139 2140 #define CALLER_SAVED_REGS 6 2141 static const int caller_saved[CALLER_SAVED_REGS] = { 2142 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2143 }; 2144 2145 /* This helper doesn't clear reg->id */ 2146 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2147 { 2148 reg->var_off = tnum_const(imm); 2149 reg->smin_value = (s64)imm; 2150 reg->smax_value = (s64)imm; 2151 reg->umin_value = imm; 2152 reg->umax_value = imm; 2153 2154 reg->s32_min_value = (s32)imm; 2155 reg->s32_max_value = (s32)imm; 2156 reg->u32_min_value = (u32)imm; 2157 reg->u32_max_value = (u32)imm; 2158 } 2159 2160 /* Mark the unknown part of a register (variable offset or scalar value) as 2161 * known to have the value @imm. 2162 */ 2163 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2164 { 2165 /* Clear off and union(map_ptr, range) */ 2166 memset(((u8 *)reg) + sizeof(reg->type), 0, 2167 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2168 reg->id = 0; 2169 reg->ref_obj_id = 0; 2170 ___mark_reg_known(reg, imm); 2171 } 2172 2173 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2174 { 2175 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2176 reg->s32_min_value = (s32)imm; 2177 reg->s32_max_value = (s32)imm; 2178 reg->u32_min_value = (u32)imm; 2179 reg->u32_max_value = (u32)imm; 2180 } 2181 2182 /* Mark the 'variable offset' part of a register as zero. This should be 2183 * used only on registers holding a pointer type. 2184 */ 2185 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2186 { 2187 __mark_reg_known(reg, 0); 2188 } 2189 2190 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2191 { 2192 __mark_reg_known(reg, 0); 2193 reg->type = SCALAR_VALUE; 2194 /* all scalars are assumed imprecise initially (unless unprivileged, 2195 * in which case everything is forced to be precise) 2196 */ 2197 reg->precise = !env->bpf_capable; 2198 } 2199 2200 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2201 struct bpf_reg_state *regs, u32 regno) 2202 { 2203 if (WARN_ON(regno >= MAX_BPF_REG)) { 2204 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2205 /* Something bad happened, let's kill all regs */ 2206 for (regno = 0; regno < MAX_BPF_REG; regno++) 2207 __mark_reg_not_init(env, regs + regno); 2208 return; 2209 } 2210 __mark_reg_known_zero(regs + regno); 2211 } 2212 2213 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2214 bool first_slot, int dynptr_id) 2215 { 2216 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2217 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2218 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2219 */ 2220 __mark_reg_known_zero(reg); 2221 reg->type = CONST_PTR_TO_DYNPTR; 2222 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2223 reg->id = dynptr_id; 2224 reg->dynptr.type = type; 2225 reg->dynptr.first_slot = first_slot; 2226 } 2227 2228 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2229 { 2230 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2231 const struct bpf_map *map = reg->map_ptr; 2232 2233 if (map->inner_map_meta) { 2234 reg->type = CONST_PTR_TO_MAP; 2235 reg->map_ptr = map->inner_map_meta; 2236 /* transfer reg's id which is unique for every map_lookup_elem 2237 * as UID of the inner map. 2238 */ 2239 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2240 reg->map_uid = reg->id; 2241 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 2242 reg->map_uid = reg->id; 2243 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2244 reg->type = PTR_TO_XDP_SOCK; 2245 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2246 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2247 reg->type = PTR_TO_SOCKET; 2248 } else { 2249 reg->type = PTR_TO_MAP_VALUE; 2250 } 2251 return; 2252 } 2253 2254 reg->type &= ~PTR_MAYBE_NULL; 2255 } 2256 2257 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2258 struct btf_field_graph_root *ds_head) 2259 { 2260 __mark_reg_known_zero(®s[regno]); 2261 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2262 regs[regno].btf = ds_head->btf; 2263 regs[regno].btf_id = ds_head->value_btf_id; 2264 regs[regno].off = ds_head->node_offset; 2265 } 2266 2267 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2268 { 2269 return type_is_pkt_pointer(reg->type); 2270 } 2271 2272 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2273 { 2274 return reg_is_pkt_pointer(reg) || 2275 reg->type == PTR_TO_PACKET_END; 2276 } 2277 2278 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2279 { 2280 return base_type(reg->type) == PTR_TO_MEM && 2281 (reg->type & 2282 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META)); 2283 } 2284 2285 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2286 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2287 enum bpf_reg_type which) 2288 { 2289 /* The register can already have a range from prior markings. 2290 * This is fine as long as it hasn't been advanced from its 2291 * origin. 2292 */ 2293 return reg->type == which && 2294 reg->id == 0 && 2295 reg->off == 0 && 2296 tnum_equals_const(reg->var_off, 0); 2297 } 2298 2299 /* Reset the min/max bounds of a register */ 2300 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2301 { 2302 reg->smin_value = S64_MIN; 2303 reg->smax_value = S64_MAX; 2304 reg->umin_value = 0; 2305 reg->umax_value = U64_MAX; 2306 2307 reg->s32_min_value = S32_MIN; 2308 reg->s32_max_value = S32_MAX; 2309 reg->u32_min_value = 0; 2310 reg->u32_max_value = U32_MAX; 2311 } 2312 2313 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2314 { 2315 reg->smin_value = S64_MIN; 2316 reg->smax_value = S64_MAX; 2317 reg->umin_value = 0; 2318 reg->umax_value = U64_MAX; 2319 } 2320 2321 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2322 { 2323 reg->s32_min_value = S32_MIN; 2324 reg->s32_max_value = S32_MAX; 2325 reg->u32_min_value = 0; 2326 reg->u32_max_value = U32_MAX; 2327 } 2328 2329 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2330 { 2331 struct tnum var32_off = tnum_subreg(reg->var_off); 2332 2333 /* min signed is max(sign bit) | min(other bits) */ 2334 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2335 var32_off.value | (var32_off.mask & S32_MIN)); 2336 /* max signed is min(sign bit) | max(other bits) */ 2337 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2338 var32_off.value | (var32_off.mask & S32_MAX)); 2339 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2340 reg->u32_max_value = min(reg->u32_max_value, 2341 (u32)(var32_off.value | var32_off.mask)); 2342 } 2343 2344 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2345 { 2346 /* min signed is max(sign bit) | min(other bits) */ 2347 reg->smin_value = max_t(s64, reg->smin_value, 2348 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2349 /* max signed is min(sign bit) | max(other bits) */ 2350 reg->smax_value = min_t(s64, reg->smax_value, 2351 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2352 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2353 reg->umax_value = min(reg->umax_value, 2354 reg->var_off.value | reg->var_off.mask); 2355 } 2356 2357 static void __update_reg_bounds(struct bpf_reg_state *reg) 2358 { 2359 __update_reg32_bounds(reg); 2360 __update_reg64_bounds(reg); 2361 } 2362 2363 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2364 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2365 { 2366 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2367 * bits to improve our u32/s32 boundaries. 2368 * 2369 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2370 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2371 * [10, 20] range. But this property holds for any 64-bit range as 2372 * long as upper 32 bits in that entire range of values stay the same. 2373 * 2374 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2375 * in decimal) has the same upper 32 bits throughout all the values in 2376 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2377 * range. 2378 * 2379 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2380 * following the rules outlined below about u64/s64 correspondence 2381 * (which equally applies to u32 vs s32 correspondence). In general it 2382 * depends on actual hexadecimal values of 32-bit range. They can form 2383 * only valid u32, or only valid s32 ranges in some cases. 2384 * 2385 * So we use all these insights to derive bounds for subregisters here. 2386 */ 2387 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2388 /* u64 to u32 casting preserves validity of low 32 bits as 2389 * a range, if upper 32 bits are the same 2390 */ 2391 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2392 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2393 2394 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2395 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2396 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2397 } 2398 } 2399 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2400 /* low 32 bits should form a proper u32 range */ 2401 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2402 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2403 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2404 } 2405 /* low 32 bits should form a proper s32 range */ 2406 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2407 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2408 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2409 } 2410 } 2411 /* Special case where upper bits form a small sequence of two 2412 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2413 * 0x00000000 is also valid), while lower bits form a proper s32 range 2414 * going from negative numbers to positive numbers. E.g., let's say we 2415 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2416 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2417 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2418 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2419 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2420 * upper 32 bits. As a random example, s64 range 2421 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2422 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2423 */ 2424 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2425 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2426 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2427 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2428 } 2429 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2430 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2431 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2432 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2433 } 2434 /* if u32 range forms a valid s32 range (due to matching sign bit), 2435 * try to learn from that 2436 */ 2437 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2438 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2439 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2440 } 2441 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2442 * are the same, so combine. This works even in the negative case, e.g. 2443 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2444 */ 2445 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2446 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2447 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2448 } 2449 } 2450 2451 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2452 { 2453 /* If u64 range forms a valid s64 range (due to matching sign bit), 2454 * try to learn from that. Let's do a bit of ASCII art to see when 2455 * this is happening. Let's take u64 range first: 2456 * 2457 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2458 * |-------------------------------|--------------------------------| 2459 * 2460 * Valid u64 range is formed when umin and umax are anywhere in the 2461 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2462 * straightforward. Let's see how s64 range maps onto the same range 2463 * of values, annotated below the line for comparison: 2464 * 2465 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2466 * |-------------------------------|--------------------------------| 2467 * 0 S64_MAX S64_MIN -1 2468 * 2469 * So s64 values basically start in the middle and they are logically 2470 * contiguous to the right of it, wrapping around from -1 to 0, and 2471 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2472 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2473 * more visually as mapped to sign-agnostic range of hex values. 2474 * 2475 * u64 start u64 end 2476 * _______________________________________________________________ 2477 * / \ 2478 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2479 * |-------------------------------|--------------------------------| 2480 * 0 S64_MAX S64_MIN -1 2481 * / \ 2482 * >------------------------------ -------------------------------> 2483 * s64 continues... s64 end s64 start s64 "midpoint" 2484 * 2485 * What this means is that, in general, we can't always derive 2486 * something new about u64 from any random s64 range, and vice versa. 2487 * 2488 * But we can do that in two particular cases. One is when entire 2489 * u64/s64 range is *entirely* contained within left half of the above 2490 * diagram or when it is *entirely* contained in the right half. I.e.: 2491 * 2492 * |-------------------------------|--------------------------------| 2493 * ^ ^ ^ ^ 2494 * A B C D 2495 * 2496 * [A, B] and [C, D] are contained entirely in their respective halves 2497 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2498 * will be non-negative both as u64 and s64 (and in fact it will be 2499 * identical ranges no matter the signedness). [C, D] treated as s64 2500 * will be a range of negative values, while in u64 it will be 2501 * non-negative range of values larger than 0x8000000000000000. 2502 * 2503 * Now, any other range here can't be represented in both u64 and s64 2504 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2505 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2506 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2507 * for example. Similarly, valid s64 range [D, A] (going from negative 2508 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2509 * ranges as u64. Currently reg_state can't represent two segments per 2510 * numeric domain, so in such situations we can only derive maximal 2511 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2512 * 2513 * So we use these facts to derive umin/umax from smin/smax and vice 2514 * versa only if they stay within the same "half". This is equivalent 2515 * to checking sign bit: lower half will have sign bit as zero, upper 2516 * half have sign bit 1. Below in code we simplify this by just 2517 * casting umin/umax as smin/smax and checking if they form valid 2518 * range, and vice versa. Those are equivalent checks. 2519 */ 2520 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2521 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2522 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2523 } 2524 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2525 * are the same, so combine. This works even in the negative case, e.g. 2526 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2527 */ 2528 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2529 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2530 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2531 } else { 2532 /* If the s64 range crosses the sign boundary, then it's split 2533 * between the beginning and end of the U64 domain. In that 2534 * case, we can derive new bounds if the u64 range overlaps 2535 * with only one end of the s64 range. 2536 * 2537 * In the following example, the u64 range overlaps only with 2538 * positive portion of the s64 range. 2539 * 2540 * 0 U64_MAX 2541 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2542 * |----------------------------|----------------------------| 2543 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx| 2544 * 0 S64_MAX S64_MIN -1 2545 * 2546 * We can thus derive the following new s64 and u64 ranges. 2547 * 2548 * 0 U64_MAX 2549 * | [xxxxxx u64 range xxxxx] | 2550 * |----------------------------|----------------------------| 2551 * | [xxxxxx s64 range xxxxx] | 2552 * 0 S64_MAX S64_MIN -1 2553 * 2554 * If they overlap in two places, we can't derive anything 2555 * because reg_state can't represent two ranges per numeric 2556 * domain. 2557 * 2558 * 0 U64_MAX 2559 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] | 2560 * |----------------------------|----------------------------| 2561 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx| 2562 * 0 S64_MAX S64_MIN -1 2563 * 2564 * The first condition below corresponds to the first diagram 2565 * above. 2566 */ 2567 if (reg->umax_value < (u64)reg->smin_value) { 2568 reg->smin_value = (s64)reg->umin_value; 2569 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value); 2570 } else if ((u64)reg->smax_value < reg->umin_value) { 2571 /* This second condition considers the case where the u64 range 2572 * overlaps with the negative portion of the s64 range: 2573 * 2574 * 0 U64_MAX 2575 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2576 * |----------------------------|----------------------------| 2577 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range | 2578 * 0 S64_MAX S64_MIN -1 2579 */ 2580 reg->smax_value = (s64)reg->umax_value; 2581 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value); 2582 } 2583 } 2584 } 2585 2586 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2587 { 2588 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2589 * values on both sides of 64-bit range in hope to have tighter range. 2590 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2591 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2592 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2593 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2594 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2595 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2596 * We just need to make sure that derived bounds we are intersecting 2597 * with are well-formed ranges in respective s64 or u64 domain, just 2598 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2599 */ 2600 __u64 new_umin, new_umax; 2601 __s64 new_smin, new_smax; 2602 2603 /* u32 -> u64 tightening, it's always well-formed */ 2604 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2605 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2606 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2607 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2608 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2609 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2610 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2611 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2612 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2613 2614 /* Here we would like to handle a special case after sign extending load, 2615 * when upper bits for a 64-bit range are all 1s or all 0s. 2616 * 2617 * Upper bits are all 1s when register is in a range: 2618 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2619 * Upper bits are all 0s when register is in a range: 2620 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2621 * Together this forms are continuous range: 2622 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2623 * 2624 * Now, suppose that register range is in fact tighter: 2625 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2626 * Also suppose that it's 32-bit range is positive, 2627 * meaning that lower 32-bits of the full 64-bit register 2628 * are in the range: 2629 * [0x0000_0000, 0x7fff_ffff] (W) 2630 * 2631 * If this happens, then any value in a range: 2632 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2633 * is smaller than a lowest bound of the range (R): 2634 * 0xffff_ffff_8000_0000 2635 * which means that upper bits of the full 64-bit register 2636 * can't be all 1s, when lower bits are in range (W). 2637 * 2638 * Note that: 2639 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2640 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2641 * These relations are used in the conditions below. 2642 */ 2643 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2644 reg->smin_value = reg->s32_min_value; 2645 reg->smax_value = reg->s32_max_value; 2646 reg->umin_value = reg->s32_min_value; 2647 reg->umax_value = reg->s32_max_value; 2648 reg->var_off = tnum_intersect(reg->var_off, 2649 tnum_range(reg->smin_value, reg->smax_value)); 2650 } 2651 } 2652 2653 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2654 { 2655 __reg32_deduce_bounds(reg); 2656 __reg64_deduce_bounds(reg); 2657 __reg_deduce_mixed_bounds(reg); 2658 } 2659 2660 /* Attempts to improve var_off based on unsigned min/max information */ 2661 static void __reg_bound_offset(struct bpf_reg_state *reg) 2662 { 2663 struct tnum var64_off = tnum_intersect(reg->var_off, 2664 tnum_range(reg->umin_value, 2665 reg->umax_value)); 2666 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2667 tnum_range(reg->u32_min_value, 2668 reg->u32_max_value)); 2669 2670 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2671 } 2672 2673 static void reg_bounds_sync(struct bpf_reg_state *reg) 2674 { 2675 /* We might have learned new bounds from the var_off. */ 2676 __update_reg_bounds(reg); 2677 /* We might have learned something about the sign bit. */ 2678 __reg_deduce_bounds(reg); 2679 __reg_deduce_bounds(reg); 2680 __reg_deduce_bounds(reg); 2681 /* We might have learned some bits from the bounds. */ 2682 __reg_bound_offset(reg); 2683 /* Intersecting with the old var_off might have improved our bounds 2684 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2685 * then new var_off is (0; 0x7f...fc) which improves our umax. 2686 */ 2687 __update_reg_bounds(reg); 2688 } 2689 2690 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2691 struct bpf_reg_state *reg, const char *ctx) 2692 { 2693 const char *msg; 2694 2695 if (reg->umin_value > reg->umax_value || 2696 reg->smin_value > reg->smax_value || 2697 reg->u32_min_value > reg->u32_max_value || 2698 reg->s32_min_value > reg->s32_max_value) { 2699 msg = "range bounds violation"; 2700 goto out; 2701 } 2702 2703 if (tnum_is_const(reg->var_off)) { 2704 u64 uval = reg->var_off.value; 2705 s64 sval = (s64)uval; 2706 2707 if (reg->umin_value != uval || reg->umax_value != uval || 2708 reg->smin_value != sval || reg->smax_value != sval) { 2709 msg = "const tnum out of sync with range bounds"; 2710 goto out; 2711 } 2712 } 2713 2714 if (tnum_subreg_is_const(reg->var_off)) { 2715 u32 uval32 = tnum_subreg(reg->var_off).value; 2716 s32 sval32 = (s32)uval32; 2717 2718 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2719 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2720 msg = "const subreg tnum out of sync with range bounds"; 2721 goto out; 2722 } 2723 } 2724 2725 return 0; 2726 out: 2727 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2728 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)", 2729 ctx, msg, reg->umin_value, reg->umax_value, 2730 reg->smin_value, reg->smax_value, 2731 reg->u32_min_value, reg->u32_max_value, 2732 reg->s32_min_value, reg->s32_max_value, 2733 reg->var_off.value, reg->var_off.mask); 2734 if (env->test_reg_invariants) 2735 return -EFAULT; 2736 __mark_reg_unbounded(reg); 2737 return 0; 2738 } 2739 2740 static bool __reg32_bound_s64(s32 a) 2741 { 2742 return a >= 0 && a <= S32_MAX; 2743 } 2744 2745 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2746 { 2747 reg->umin_value = reg->u32_min_value; 2748 reg->umax_value = reg->u32_max_value; 2749 2750 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2751 * be positive otherwise set to worse case bounds and refine later 2752 * from tnum. 2753 */ 2754 if (__reg32_bound_s64(reg->s32_min_value) && 2755 __reg32_bound_s64(reg->s32_max_value)) { 2756 reg->smin_value = reg->s32_min_value; 2757 reg->smax_value = reg->s32_max_value; 2758 } else { 2759 reg->smin_value = 0; 2760 reg->smax_value = U32_MAX; 2761 } 2762 } 2763 2764 /* Mark a register as having a completely unknown (scalar) value. */ 2765 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2766 { 2767 /* 2768 * Clear type, off, and union(map_ptr, range) and 2769 * padding between 'type' and union 2770 */ 2771 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2772 reg->type = SCALAR_VALUE; 2773 reg->id = 0; 2774 reg->ref_obj_id = 0; 2775 reg->var_off = tnum_unknown; 2776 reg->frameno = 0; 2777 reg->precise = false; 2778 __mark_reg_unbounded(reg); 2779 } 2780 2781 /* Mark a register as having a completely unknown (scalar) value, 2782 * initialize .precise as true when not bpf capable. 2783 */ 2784 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2785 struct bpf_reg_state *reg) 2786 { 2787 __mark_reg_unknown_imprecise(reg); 2788 reg->precise = !env->bpf_capable; 2789 } 2790 2791 static void mark_reg_unknown(struct bpf_verifier_env *env, 2792 struct bpf_reg_state *regs, u32 regno) 2793 { 2794 if (WARN_ON(regno >= MAX_BPF_REG)) { 2795 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2796 /* Something bad happened, let's kill all regs except FP */ 2797 for (regno = 0; regno < BPF_REG_FP; regno++) 2798 __mark_reg_not_init(env, regs + regno); 2799 return; 2800 } 2801 __mark_reg_unknown(env, regs + regno); 2802 } 2803 2804 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2805 struct bpf_reg_state *regs, 2806 u32 regno, 2807 s32 s32_min, 2808 s32 s32_max) 2809 { 2810 struct bpf_reg_state *reg = regs + regno; 2811 2812 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2813 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2814 2815 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2816 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2817 2818 reg_bounds_sync(reg); 2819 2820 return reg_bounds_sanity_check(env, reg, "s32_range"); 2821 } 2822 2823 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2824 struct bpf_reg_state *reg) 2825 { 2826 __mark_reg_unknown(env, reg); 2827 reg->type = NOT_INIT; 2828 } 2829 2830 static void mark_reg_not_init(struct bpf_verifier_env *env, 2831 struct bpf_reg_state *regs, u32 regno) 2832 { 2833 if (WARN_ON(regno >= MAX_BPF_REG)) { 2834 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2835 /* Something bad happened, let's kill all regs except FP */ 2836 for (regno = 0; regno < BPF_REG_FP; regno++) 2837 __mark_reg_not_init(env, regs + regno); 2838 return; 2839 } 2840 __mark_reg_not_init(env, regs + regno); 2841 } 2842 2843 static int mark_btf_ld_reg(struct bpf_verifier_env *env, 2844 struct bpf_reg_state *regs, u32 regno, 2845 enum bpf_reg_type reg_type, 2846 struct btf *btf, u32 btf_id, 2847 enum bpf_type_flag flag) 2848 { 2849 switch (reg_type) { 2850 case SCALAR_VALUE: 2851 mark_reg_unknown(env, regs, regno); 2852 return 0; 2853 case PTR_TO_BTF_ID: 2854 mark_reg_known_zero(env, regs, regno); 2855 regs[regno].type = PTR_TO_BTF_ID | flag; 2856 regs[regno].btf = btf; 2857 regs[regno].btf_id = btf_id; 2858 if (type_may_be_null(flag)) 2859 regs[regno].id = ++env->id_gen; 2860 return 0; 2861 case PTR_TO_MEM: 2862 mark_reg_known_zero(env, regs, regno); 2863 regs[regno].type = PTR_TO_MEM | flag; 2864 regs[regno].mem_size = 0; 2865 return 0; 2866 default: 2867 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__); 2868 return -EFAULT; 2869 } 2870 } 2871 2872 #define DEF_NOT_SUBREG (0) 2873 static void init_reg_state(struct bpf_verifier_env *env, 2874 struct bpf_func_state *state) 2875 { 2876 struct bpf_reg_state *regs = state->regs; 2877 int i; 2878 2879 for (i = 0; i < MAX_BPF_REG; i++) { 2880 mark_reg_not_init(env, regs, i); 2881 regs[i].live = REG_LIVE_NONE; 2882 regs[i].parent = NULL; 2883 regs[i].subreg_def = DEF_NOT_SUBREG; 2884 } 2885 2886 /* frame pointer */ 2887 regs[BPF_REG_FP].type = PTR_TO_STACK; 2888 mark_reg_known_zero(env, regs, BPF_REG_FP); 2889 regs[BPF_REG_FP].frameno = state->frameno; 2890 } 2891 2892 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2893 { 2894 return (struct bpf_retval_range){ minval, maxval }; 2895 } 2896 2897 #define BPF_MAIN_FUNC (-1) 2898 static void init_func_state(struct bpf_verifier_env *env, 2899 struct bpf_func_state *state, 2900 int callsite, int frameno, int subprogno) 2901 { 2902 state->callsite = callsite; 2903 state->frameno = frameno; 2904 state->subprogno = subprogno; 2905 state->callback_ret_range = retval_range(0, 0); 2906 init_reg_state(env, state); 2907 mark_verifier_state_scratched(env); 2908 } 2909 2910 /* Similar to push_stack(), but for async callbacks */ 2911 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2912 int insn_idx, int prev_insn_idx, 2913 int subprog, bool is_sleepable) 2914 { 2915 struct bpf_verifier_stack_elem *elem; 2916 struct bpf_func_state *frame; 2917 2918 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2919 if (!elem) 2920 return NULL; 2921 2922 elem->insn_idx = insn_idx; 2923 elem->prev_insn_idx = prev_insn_idx; 2924 elem->next = env->head; 2925 elem->log_pos = env->log.end_pos; 2926 env->head = elem; 2927 env->stack_size++; 2928 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2929 verbose(env, 2930 "The sequence of %d jumps is too complex for async cb.\n", 2931 env->stack_size); 2932 return NULL; 2933 } 2934 /* Unlike push_stack() do not copy_verifier_state(). 2935 * The caller state doesn't matter. 2936 * This is async callback. It starts in a fresh stack. 2937 * Initialize it similar to do_check_common(). 2938 */ 2939 elem->st.branches = 1; 2940 elem->st.in_sleepable = is_sleepable; 2941 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); 2942 if (!frame) 2943 return NULL; 2944 init_func_state(env, frame, 2945 BPF_MAIN_FUNC /* callsite */, 2946 0 /* frameno within this callchain */, 2947 subprog /* subprog number within this prog */); 2948 elem->st.frame[0] = frame; 2949 return &elem->st; 2950 } 2951 2952 2953 enum reg_arg_type { 2954 SRC_OP, /* register is used as source operand */ 2955 DST_OP, /* register is used as destination operand */ 2956 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2957 }; 2958 2959 static int cmp_subprogs(const void *a, const void *b) 2960 { 2961 return ((struct bpf_subprog_info *)a)->start - 2962 ((struct bpf_subprog_info *)b)->start; 2963 } 2964 2965 /* Find subprogram that contains instruction at 'off' */ 2966 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off) 2967 { 2968 struct bpf_subprog_info *vals = env->subprog_info; 2969 int l, r, m; 2970 2971 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2972 return NULL; 2973 2974 l = 0; 2975 r = env->subprog_cnt - 1; 2976 while (l < r) { 2977 m = l + (r - l + 1) / 2; 2978 if (vals[m].start <= off) 2979 l = m; 2980 else 2981 r = m - 1; 2982 } 2983 return &vals[l]; 2984 } 2985 2986 /* Find subprogram that starts exactly at 'off' */ 2987 static int find_subprog(struct bpf_verifier_env *env, int off) 2988 { 2989 struct bpf_subprog_info *p; 2990 2991 p = find_containing_subprog(env, off); 2992 if (!p || p->start != off) 2993 return -ENOENT; 2994 return p - env->subprog_info; 2995 } 2996 2997 static int add_subprog(struct bpf_verifier_env *env, int off) 2998 { 2999 int insn_cnt = env->prog->len; 3000 int ret; 3001 3002 if (off >= insn_cnt || off < 0) { 3003 verbose(env, "call to invalid destination\n"); 3004 return -EINVAL; 3005 } 3006 ret = find_subprog(env, off); 3007 if (ret >= 0) 3008 return ret; 3009 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 3010 verbose(env, "too many subprograms\n"); 3011 return -E2BIG; 3012 } 3013 /* determine subprog starts. The end is one before the next starts */ 3014 env->subprog_info[env->subprog_cnt++].start = off; 3015 sort(env->subprog_info, env->subprog_cnt, 3016 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 3017 return env->subprog_cnt - 1; 3018 } 3019 3020 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 3021 { 3022 struct bpf_prog_aux *aux = env->prog->aux; 3023 struct btf *btf = aux->btf; 3024 const struct btf_type *t; 3025 u32 main_btf_id, id; 3026 const char *name; 3027 int ret, i; 3028 3029 /* Non-zero func_info_cnt implies valid btf */ 3030 if (!aux->func_info_cnt) 3031 return 0; 3032 main_btf_id = aux->func_info[0].type_id; 3033 3034 t = btf_type_by_id(btf, main_btf_id); 3035 if (!t) { 3036 verbose(env, "invalid btf id for main subprog in func_info\n"); 3037 return -EINVAL; 3038 } 3039 3040 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 3041 if (IS_ERR(name)) { 3042 ret = PTR_ERR(name); 3043 /* If there is no tag present, there is no exception callback */ 3044 if (ret == -ENOENT) 3045 ret = 0; 3046 else if (ret == -EEXIST) 3047 verbose(env, "multiple exception callback tags for main subprog\n"); 3048 return ret; 3049 } 3050 3051 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 3052 if (ret < 0) { 3053 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 3054 return ret; 3055 } 3056 id = ret; 3057 t = btf_type_by_id(btf, id); 3058 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3059 verbose(env, "exception callback '%s' must have global linkage\n", name); 3060 return -EINVAL; 3061 } 3062 ret = 0; 3063 for (i = 0; i < aux->func_info_cnt; i++) { 3064 if (aux->func_info[i].type_id != id) 3065 continue; 3066 ret = aux->func_info[i].insn_off; 3067 /* Further func_info and subprog checks will also happen 3068 * later, so assume this is the right insn_off for now. 3069 */ 3070 if (!ret) { 3071 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 3072 ret = -EINVAL; 3073 } 3074 } 3075 if (!ret) { 3076 verbose(env, "exception callback type id not found in func_info\n"); 3077 ret = -EINVAL; 3078 } 3079 return ret; 3080 } 3081 3082 #define MAX_KFUNC_DESCS 256 3083 #define MAX_KFUNC_BTFS 256 3084 3085 struct bpf_kfunc_desc { 3086 struct btf_func_model func_model; 3087 u32 func_id; 3088 s32 imm; 3089 u16 offset; 3090 unsigned long addr; 3091 }; 3092 3093 struct bpf_kfunc_btf { 3094 struct btf *btf; 3095 struct module *module; 3096 u16 offset; 3097 }; 3098 3099 struct bpf_kfunc_desc_tab { 3100 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 3101 * verification. JITs do lookups by bpf_insn, where func_id may not be 3102 * available, therefore at the end of verification do_misc_fixups() 3103 * sorts this by imm and offset. 3104 */ 3105 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 3106 u32 nr_descs; 3107 }; 3108 3109 struct bpf_kfunc_btf_tab { 3110 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 3111 u32 nr_descs; 3112 }; 3113 3114 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 3115 { 3116 const struct bpf_kfunc_desc *d0 = a; 3117 const struct bpf_kfunc_desc *d1 = b; 3118 3119 /* func_id is not greater than BTF_MAX_TYPE */ 3120 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3121 } 3122 3123 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3124 { 3125 const struct bpf_kfunc_btf *d0 = a; 3126 const struct bpf_kfunc_btf *d1 = b; 3127 3128 return d0->offset - d1->offset; 3129 } 3130 3131 static const struct bpf_kfunc_desc * 3132 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3133 { 3134 struct bpf_kfunc_desc desc = { 3135 .func_id = func_id, 3136 .offset = offset, 3137 }; 3138 struct bpf_kfunc_desc_tab *tab; 3139 3140 tab = prog->aux->kfunc_tab; 3141 return bsearch(&desc, tab->descs, tab->nr_descs, 3142 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3143 } 3144 3145 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3146 u16 btf_fd_idx, u8 **func_addr) 3147 { 3148 const struct bpf_kfunc_desc *desc; 3149 3150 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3151 if (!desc) 3152 return -EFAULT; 3153 3154 *func_addr = (u8 *)desc->addr; 3155 return 0; 3156 } 3157 3158 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3159 s16 offset) 3160 { 3161 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3162 struct bpf_kfunc_btf_tab *tab; 3163 struct bpf_kfunc_btf *b; 3164 struct module *mod; 3165 struct btf *btf; 3166 int btf_fd; 3167 3168 tab = env->prog->aux->kfunc_btf_tab; 3169 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3170 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3171 if (!b) { 3172 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3173 verbose(env, "too many different module BTFs\n"); 3174 return ERR_PTR(-E2BIG); 3175 } 3176 3177 if (bpfptr_is_null(env->fd_array)) { 3178 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3179 return ERR_PTR(-EPROTO); 3180 } 3181 3182 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3183 offset * sizeof(btf_fd), 3184 sizeof(btf_fd))) 3185 return ERR_PTR(-EFAULT); 3186 3187 btf = btf_get_by_fd(btf_fd); 3188 if (IS_ERR(btf)) { 3189 verbose(env, "invalid module BTF fd specified\n"); 3190 return btf; 3191 } 3192 3193 if (!btf_is_module(btf)) { 3194 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3195 btf_put(btf); 3196 return ERR_PTR(-EINVAL); 3197 } 3198 3199 mod = btf_try_get_module(btf); 3200 if (!mod) { 3201 btf_put(btf); 3202 return ERR_PTR(-ENXIO); 3203 } 3204 3205 b = &tab->descs[tab->nr_descs++]; 3206 b->btf = btf; 3207 b->module = mod; 3208 b->offset = offset; 3209 3210 /* sort() reorders entries by value, so b may no longer point 3211 * to the right entry after this 3212 */ 3213 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3214 kfunc_btf_cmp_by_off, NULL); 3215 } else { 3216 btf = b->btf; 3217 } 3218 3219 return btf; 3220 } 3221 3222 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3223 { 3224 if (!tab) 3225 return; 3226 3227 while (tab->nr_descs--) { 3228 module_put(tab->descs[tab->nr_descs].module); 3229 btf_put(tab->descs[tab->nr_descs].btf); 3230 } 3231 kfree(tab); 3232 } 3233 3234 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3235 { 3236 if (offset) { 3237 if (offset < 0) { 3238 /* In the future, this can be allowed to increase limit 3239 * of fd index into fd_array, interpreted as u16. 3240 */ 3241 verbose(env, "negative offset disallowed for kernel module function call\n"); 3242 return ERR_PTR(-EINVAL); 3243 } 3244 3245 return __find_kfunc_desc_btf(env, offset); 3246 } 3247 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3248 } 3249 3250 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3251 { 3252 const struct btf_type *func, *func_proto; 3253 struct bpf_kfunc_btf_tab *btf_tab; 3254 struct bpf_kfunc_desc_tab *tab; 3255 struct bpf_prog_aux *prog_aux; 3256 struct bpf_kfunc_desc *desc; 3257 const char *func_name; 3258 struct btf *desc_btf; 3259 unsigned long call_imm; 3260 unsigned long addr; 3261 int err; 3262 3263 prog_aux = env->prog->aux; 3264 tab = prog_aux->kfunc_tab; 3265 btf_tab = prog_aux->kfunc_btf_tab; 3266 if (!tab) { 3267 if (!btf_vmlinux) { 3268 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3269 return -ENOTSUPP; 3270 } 3271 3272 if (!env->prog->jit_requested) { 3273 verbose(env, "JIT is required for calling kernel function\n"); 3274 return -ENOTSUPP; 3275 } 3276 3277 if (!bpf_jit_supports_kfunc_call()) { 3278 verbose(env, "JIT does not support calling kernel function\n"); 3279 return -ENOTSUPP; 3280 } 3281 3282 if (!env->prog->gpl_compatible) { 3283 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3284 return -EINVAL; 3285 } 3286 3287 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); 3288 if (!tab) 3289 return -ENOMEM; 3290 prog_aux->kfunc_tab = tab; 3291 } 3292 3293 /* func_id == 0 is always invalid, but instead of returning an error, be 3294 * conservative and wait until the code elimination pass before returning 3295 * error, so that invalid calls that get pruned out can be in BPF programs 3296 * loaded from userspace. It is also required that offset be untouched 3297 * for such calls. 3298 */ 3299 if (!func_id && !offset) 3300 return 0; 3301 3302 if (!btf_tab && offset) { 3303 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); 3304 if (!btf_tab) 3305 return -ENOMEM; 3306 prog_aux->kfunc_btf_tab = btf_tab; 3307 } 3308 3309 desc_btf = find_kfunc_desc_btf(env, offset); 3310 if (IS_ERR(desc_btf)) { 3311 verbose(env, "failed to find BTF for kernel function\n"); 3312 return PTR_ERR(desc_btf); 3313 } 3314 3315 if (find_kfunc_desc(env->prog, func_id, offset)) 3316 return 0; 3317 3318 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3319 verbose(env, "too many different kernel function calls\n"); 3320 return -E2BIG; 3321 } 3322 3323 func = btf_type_by_id(desc_btf, func_id); 3324 if (!func || !btf_type_is_func(func)) { 3325 verbose(env, "kernel btf_id %u is not a function\n", 3326 func_id); 3327 return -EINVAL; 3328 } 3329 func_proto = btf_type_by_id(desc_btf, func->type); 3330 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3331 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3332 func_id); 3333 return -EINVAL; 3334 } 3335 3336 func_name = btf_name_by_offset(desc_btf, func->name_off); 3337 addr = kallsyms_lookup_name(func_name); 3338 if (!addr) { 3339 verbose(env, "cannot find address for kernel function %s\n", 3340 func_name); 3341 return -EINVAL; 3342 } 3343 specialize_kfunc(env, func_id, offset, &addr); 3344 3345 if (bpf_jit_supports_far_kfunc_call()) { 3346 call_imm = func_id; 3347 } else { 3348 call_imm = BPF_CALL_IMM(addr); 3349 /* Check whether the relative offset overflows desc->imm */ 3350 if ((unsigned long)(s32)call_imm != call_imm) { 3351 verbose(env, "address of kernel function %s is out of range\n", 3352 func_name); 3353 return -EINVAL; 3354 } 3355 } 3356 3357 if (bpf_dev_bound_kfunc_id(func_id)) { 3358 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3359 if (err) 3360 return err; 3361 } 3362 3363 desc = &tab->descs[tab->nr_descs++]; 3364 desc->func_id = func_id; 3365 desc->imm = call_imm; 3366 desc->offset = offset; 3367 desc->addr = addr; 3368 err = btf_distill_func_proto(&env->log, desc_btf, 3369 func_proto, func_name, 3370 &desc->func_model); 3371 if (!err) 3372 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3373 kfunc_desc_cmp_by_id_off, NULL); 3374 return err; 3375 } 3376 3377 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3378 { 3379 const struct bpf_kfunc_desc *d0 = a; 3380 const struct bpf_kfunc_desc *d1 = b; 3381 3382 if (d0->imm != d1->imm) 3383 return d0->imm < d1->imm ? -1 : 1; 3384 if (d0->offset != d1->offset) 3385 return d0->offset < d1->offset ? -1 : 1; 3386 return 0; 3387 } 3388 3389 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3390 { 3391 struct bpf_kfunc_desc_tab *tab; 3392 3393 tab = prog->aux->kfunc_tab; 3394 if (!tab) 3395 return; 3396 3397 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3398 kfunc_desc_cmp_by_imm_off, NULL); 3399 } 3400 3401 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3402 { 3403 return !!prog->aux->kfunc_tab; 3404 } 3405 3406 const struct btf_func_model * 3407 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3408 const struct bpf_insn *insn) 3409 { 3410 const struct bpf_kfunc_desc desc = { 3411 .imm = insn->imm, 3412 .offset = insn->off, 3413 }; 3414 const struct bpf_kfunc_desc *res; 3415 struct bpf_kfunc_desc_tab *tab; 3416 3417 tab = prog->aux->kfunc_tab; 3418 res = bsearch(&desc, tab->descs, tab->nr_descs, 3419 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3420 3421 return res ? &res->func_model : NULL; 3422 } 3423 3424 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3425 struct bpf_insn *insn, int cnt) 3426 { 3427 int i, ret; 3428 3429 for (i = 0; i < cnt; i++, insn++) { 3430 if (bpf_pseudo_kfunc_call(insn)) { 3431 ret = add_kfunc_call(env, insn->imm, insn->off); 3432 if (ret < 0) 3433 return ret; 3434 } 3435 } 3436 return 0; 3437 } 3438 3439 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3440 { 3441 struct bpf_subprog_info *subprog = env->subprog_info; 3442 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3443 struct bpf_insn *insn = env->prog->insnsi; 3444 3445 /* Add entry function. */ 3446 ret = add_subprog(env, 0); 3447 if (ret) 3448 return ret; 3449 3450 for (i = 0; i < insn_cnt; i++, insn++) { 3451 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3452 !bpf_pseudo_kfunc_call(insn)) 3453 continue; 3454 3455 if (!env->bpf_capable) { 3456 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3457 return -EPERM; 3458 } 3459 3460 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3461 ret = add_subprog(env, i + insn->imm + 1); 3462 else 3463 ret = add_kfunc_call(env, insn->imm, insn->off); 3464 3465 if (ret < 0) 3466 return ret; 3467 } 3468 3469 ret = bpf_find_exception_callback_insn_off(env); 3470 if (ret < 0) 3471 return ret; 3472 ex_cb_insn = ret; 3473 3474 /* If ex_cb_insn > 0, this means that the main program has a subprog 3475 * marked using BTF decl tag to serve as the exception callback. 3476 */ 3477 if (ex_cb_insn) { 3478 ret = add_subprog(env, ex_cb_insn); 3479 if (ret < 0) 3480 return ret; 3481 for (i = 1; i < env->subprog_cnt; i++) { 3482 if (env->subprog_info[i].start != ex_cb_insn) 3483 continue; 3484 env->exception_callback_subprog = i; 3485 mark_subprog_exc_cb(env, i); 3486 break; 3487 } 3488 } 3489 3490 /* Add a fake 'exit' subprog which could simplify subprog iteration 3491 * logic. 'subprog_cnt' should not be increased. 3492 */ 3493 subprog[env->subprog_cnt].start = insn_cnt; 3494 3495 if (env->log.level & BPF_LOG_LEVEL2) 3496 for (i = 0; i < env->subprog_cnt; i++) 3497 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3498 3499 return 0; 3500 } 3501 3502 static int jmp_offset(struct bpf_insn *insn) 3503 { 3504 u8 code = insn->code; 3505 3506 if (code == (BPF_JMP32 | BPF_JA)) 3507 return insn->imm; 3508 return insn->off; 3509 } 3510 3511 static int check_subprogs(struct bpf_verifier_env *env) 3512 { 3513 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3514 struct bpf_subprog_info *subprog = env->subprog_info; 3515 struct bpf_insn *insn = env->prog->insnsi; 3516 int insn_cnt = env->prog->len; 3517 3518 /* now check that all jumps are within the same subprog */ 3519 subprog_start = subprog[cur_subprog].start; 3520 subprog_end = subprog[cur_subprog + 1].start; 3521 for (i = 0; i < insn_cnt; i++) { 3522 u8 code = insn[i].code; 3523 3524 if (code == (BPF_JMP | BPF_CALL) && 3525 insn[i].src_reg == 0 && 3526 insn[i].imm == BPF_FUNC_tail_call) { 3527 subprog[cur_subprog].has_tail_call = true; 3528 subprog[cur_subprog].tail_call_reachable = true; 3529 } 3530 if (BPF_CLASS(code) == BPF_LD && 3531 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3532 subprog[cur_subprog].has_ld_abs = true; 3533 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3534 goto next; 3535 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3536 goto next; 3537 off = i + jmp_offset(&insn[i]) + 1; 3538 if (off < subprog_start || off >= subprog_end) { 3539 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3540 return -EINVAL; 3541 } 3542 next: 3543 if (i == subprog_end - 1) { 3544 /* to avoid fall-through from one subprog into another 3545 * the last insn of the subprog should be either exit 3546 * or unconditional jump back or bpf_throw call 3547 */ 3548 if (code != (BPF_JMP | BPF_EXIT) && 3549 code != (BPF_JMP32 | BPF_JA) && 3550 code != (BPF_JMP | BPF_JA)) { 3551 verbose(env, "last insn is not an exit or jmp\n"); 3552 return -EINVAL; 3553 } 3554 subprog_start = subprog_end; 3555 cur_subprog++; 3556 if (cur_subprog < env->subprog_cnt) 3557 subprog_end = subprog[cur_subprog + 1].start; 3558 } 3559 } 3560 return 0; 3561 } 3562 3563 /* Parentage chain of this register (or stack slot) should take care of all 3564 * issues like callee-saved registers, stack slot allocation time, etc. 3565 */ 3566 static int mark_reg_read(struct bpf_verifier_env *env, 3567 const struct bpf_reg_state *state, 3568 struct bpf_reg_state *parent, u8 flag) 3569 { 3570 bool writes = parent == state->parent; /* Observe write marks */ 3571 int cnt = 0; 3572 3573 while (parent) { 3574 /* if read wasn't screened by an earlier write ... */ 3575 if (writes && state->live & REG_LIVE_WRITTEN) 3576 break; 3577 if (verifier_bug_if(parent->live & REG_LIVE_DONE, env, 3578 "type %s var_off %lld off %d", 3579 reg_type_str(env, parent->type), 3580 parent->var_off.value, parent->off)) 3581 return -EFAULT; 3582 /* The first condition is more likely to be true than the 3583 * second, checked it first. 3584 */ 3585 if ((parent->live & REG_LIVE_READ) == flag || 3586 parent->live & REG_LIVE_READ64) 3587 /* The parentage chain never changes and 3588 * this parent was already marked as LIVE_READ. 3589 * There is no need to keep walking the chain again and 3590 * keep re-marking all parents as LIVE_READ. 3591 * This case happens when the same register is read 3592 * multiple times without writes into it in-between. 3593 * Also, if parent has the stronger REG_LIVE_READ64 set, 3594 * then no need to set the weak REG_LIVE_READ32. 3595 */ 3596 break; 3597 /* ... then we depend on parent's value */ 3598 parent->live |= flag; 3599 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3600 if (flag == REG_LIVE_READ64) 3601 parent->live &= ~REG_LIVE_READ32; 3602 state = parent; 3603 parent = state->parent; 3604 writes = true; 3605 cnt++; 3606 } 3607 3608 if (env->longest_mark_read_walk < cnt) 3609 env->longest_mark_read_walk = cnt; 3610 return 0; 3611 } 3612 3613 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3614 int spi, int nr_slots) 3615 { 3616 struct bpf_func_state *state = func(env, reg); 3617 int err, i; 3618 3619 for (i = 0; i < nr_slots; i++) { 3620 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3621 3622 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3623 if (err) 3624 return err; 3625 3626 mark_stack_slot_scratched(env, spi - i); 3627 } 3628 return 0; 3629 } 3630 3631 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3632 { 3633 int spi; 3634 3635 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3636 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3637 * check_kfunc_call. 3638 */ 3639 if (reg->type == CONST_PTR_TO_DYNPTR) 3640 return 0; 3641 spi = dynptr_get_spi(env, reg); 3642 if (spi < 0) 3643 return spi; 3644 /* Caller ensures dynptr is valid and initialized, which means spi is in 3645 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3646 * read. 3647 */ 3648 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3649 } 3650 3651 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3652 int spi, int nr_slots) 3653 { 3654 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3655 } 3656 3657 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3658 { 3659 int spi; 3660 3661 spi = irq_flag_get_spi(env, reg); 3662 if (spi < 0) 3663 return spi; 3664 return mark_stack_slot_obj_read(env, reg, spi, 1); 3665 } 3666 3667 /* This function is supposed to be used by the following 32-bit optimization 3668 * code only. It returns TRUE if the source or destination register operates 3669 * on 64-bit, otherwise return FALSE. 3670 */ 3671 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3672 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3673 { 3674 u8 code, class, op; 3675 3676 code = insn->code; 3677 class = BPF_CLASS(code); 3678 op = BPF_OP(code); 3679 if (class == BPF_JMP) { 3680 /* BPF_EXIT for "main" will reach here. Return TRUE 3681 * conservatively. 3682 */ 3683 if (op == BPF_EXIT) 3684 return true; 3685 if (op == BPF_CALL) { 3686 /* BPF to BPF call will reach here because of marking 3687 * caller saved clobber with DST_OP_NO_MARK for which we 3688 * don't care the register def because they are anyway 3689 * marked as NOT_INIT already. 3690 */ 3691 if (insn->src_reg == BPF_PSEUDO_CALL) 3692 return false; 3693 /* Helper call will reach here because of arg type 3694 * check, conservatively return TRUE. 3695 */ 3696 if (t == SRC_OP) 3697 return true; 3698 3699 return false; 3700 } 3701 } 3702 3703 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3704 return false; 3705 3706 if (class == BPF_ALU64 || class == BPF_JMP || 3707 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3708 return true; 3709 3710 if (class == BPF_ALU || class == BPF_JMP32) 3711 return false; 3712 3713 if (class == BPF_LDX) { 3714 if (t != SRC_OP) 3715 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3716 /* LDX source must be ptr. */ 3717 return true; 3718 } 3719 3720 if (class == BPF_STX) { 3721 /* BPF_STX (including atomic variants) has one or more source 3722 * operands, one of which is a ptr. Check whether the caller is 3723 * asking about it. 3724 */ 3725 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3726 return true; 3727 return BPF_SIZE(code) == BPF_DW; 3728 } 3729 3730 if (class == BPF_LD) { 3731 u8 mode = BPF_MODE(code); 3732 3733 /* LD_IMM64 */ 3734 if (mode == BPF_IMM) 3735 return true; 3736 3737 /* Both LD_IND and LD_ABS return 32-bit data. */ 3738 if (t != SRC_OP) 3739 return false; 3740 3741 /* Implicit ctx ptr. */ 3742 if (regno == BPF_REG_6) 3743 return true; 3744 3745 /* Explicit source could be any width. */ 3746 return true; 3747 } 3748 3749 if (class == BPF_ST) 3750 /* The only source register for BPF_ST is a ptr. */ 3751 return true; 3752 3753 /* Conservatively return true at default. */ 3754 return true; 3755 } 3756 3757 /* Return the regno defined by the insn, or -1. */ 3758 static int insn_def_regno(const struct bpf_insn *insn) 3759 { 3760 switch (BPF_CLASS(insn->code)) { 3761 case BPF_JMP: 3762 case BPF_JMP32: 3763 case BPF_ST: 3764 return -1; 3765 case BPF_STX: 3766 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3767 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3768 if (insn->imm == BPF_CMPXCHG) 3769 return BPF_REG_0; 3770 else if (insn->imm == BPF_LOAD_ACQ) 3771 return insn->dst_reg; 3772 else if (insn->imm & BPF_FETCH) 3773 return insn->src_reg; 3774 } 3775 return -1; 3776 default: 3777 return insn->dst_reg; 3778 } 3779 } 3780 3781 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3782 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3783 { 3784 int dst_reg = insn_def_regno(insn); 3785 3786 if (dst_reg == -1) 3787 return false; 3788 3789 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3790 } 3791 3792 static void mark_insn_zext(struct bpf_verifier_env *env, 3793 struct bpf_reg_state *reg) 3794 { 3795 s32 def_idx = reg->subreg_def; 3796 3797 if (def_idx == DEF_NOT_SUBREG) 3798 return; 3799 3800 env->insn_aux_data[def_idx - 1].zext_dst = true; 3801 /* The dst will be zero extended, so won't be sub-register anymore. */ 3802 reg->subreg_def = DEF_NOT_SUBREG; 3803 } 3804 3805 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3806 enum reg_arg_type t) 3807 { 3808 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3809 struct bpf_reg_state *reg; 3810 bool rw64; 3811 3812 if (regno >= MAX_BPF_REG) { 3813 verbose(env, "R%d is invalid\n", regno); 3814 return -EINVAL; 3815 } 3816 3817 mark_reg_scratched(env, regno); 3818 3819 reg = ®s[regno]; 3820 rw64 = is_reg64(env, insn, regno, reg, t); 3821 if (t == SRC_OP) { 3822 /* check whether register used as source operand can be read */ 3823 if (reg->type == NOT_INIT) { 3824 verbose(env, "R%d !read_ok\n", regno); 3825 return -EACCES; 3826 } 3827 /* We don't need to worry about FP liveness because it's read-only */ 3828 if (regno == BPF_REG_FP) 3829 return 0; 3830 3831 if (rw64) 3832 mark_insn_zext(env, reg); 3833 3834 return mark_reg_read(env, reg, reg->parent, 3835 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3836 } else { 3837 /* check whether register used as dest operand can be written to */ 3838 if (regno == BPF_REG_FP) { 3839 verbose(env, "frame pointer is read only\n"); 3840 return -EACCES; 3841 } 3842 reg->live |= REG_LIVE_WRITTEN; 3843 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3844 if (t == DST_OP) 3845 mark_reg_unknown(env, regs, regno); 3846 } 3847 return 0; 3848 } 3849 3850 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3851 enum reg_arg_type t) 3852 { 3853 struct bpf_verifier_state *vstate = env->cur_state; 3854 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3855 3856 return __check_reg_arg(env, state->regs, regno, t); 3857 } 3858 3859 static int insn_stack_access_flags(int frameno, int spi) 3860 { 3861 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3862 } 3863 3864 static int insn_stack_access_spi(int insn_flags) 3865 { 3866 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3867 } 3868 3869 static int insn_stack_access_frameno(int insn_flags) 3870 { 3871 return insn_flags & INSN_F_FRAMENO_MASK; 3872 } 3873 3874 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3875 { 3876 env->insn_aux_data[idx].jmp_point = true; 3877 } 3878 3879 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3880 { 3881 return env->insn_aux_data[insn_idx].jmp_point; 3882 } 3883 3884 #define LR_FRAMENO_BITS 3 3885 #define LR_SPI_BITS 6 3886 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3887 #define LR_SIZE_BITS 4 3888 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3889 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3890 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3891 #define LR_SPI_OFF LR_FRAMENO_BITS 3892 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3893 #define LINKED_REGS_MAX 6 3894 3895 struct linked_reg { 3896 u8 frameno; 3897 union { 3898 u8 spi; 3899 u8 regno; 3900 }; 3901 bool is_reg; 3902 }; 3903 3904 struct linked_regs { 3905 int cnt; 3906 struct linked_reg entries[LINKED_REGS_MAX]; 3907 }; 3908 3909 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3910 { 3911 if (s->cnt < LINKED_REGS_MAX) 3912 return &s->entries[s->cnt++]; 3913 3914 return NULL; 3915 } 3916 3917 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3918 * number of elements currently in stack. 3919 * Pack one history entry for linked registers as 10 bits in the following format: 3920 * - 3-bits frameno 3921 * - 6-bits spi_or_reg 3922 * - 1-bit is_reg 3923 */ 3924 static u64 linked_regs_pack(struct linked_regs *s) 3925 { 3926 u64 val = 0; 3927 int i; 3928 3929 for (i = 0; i < s->cnt; ++i) { 3930 struct linked_reg *e = &s->entries[i]; 3931 u64 tmp = 0; 3932 3933 tmp |= e->frameno; 3934 tmp |= e->spi << LR_SPI_OFF; 3935 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3936 3937 val <<= LR_ENTRY_BITS; 3938 val |= tmp; 3939 } 3940 val <<= LR_SIZE_BITS; 3941 val |= s->cnt; 3942 return val; 3943 } 3944 3945 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3946 { 3947 int i; 3948 3949 s->cnt = val & LR_SIZE_MASK; 3950 val >>= LR_SIZE_BITS; 3951 3952 for (i = 0; i < s->cnt; ++i) { 3953 struct linked_reg *e = &s->entries[i]; 3954 3955 e->frameno = val & LR_FRAMENO_MASK; 3956 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3957 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3958 val >>= LR_ENTRY_BITS; 3959 } 3960 } 3961 3962 /* for any branch, call, exit record the history of jmps in the given state */ 3963 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3964 int insn_flags, u64 linked_regs) 3965 { 3966 u32 cnt = cur->jmp_history_cnt; 3967 struct bpf_jmp_history_entry *p; 3968 size_t alloc_size; 3969 3970 /* combine instruction flags if we already recorded this instruction */ 3971 if (env->cur_hist_ent) { 3972 /* atomic instructions push insn_flags twice, for READ and 3973 * WRITE sides, but they should agree on stack slot 3974 */ 3975 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 3976 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3977 env, "insn history: insn_idx %d cur flags %x new flags %x", 3978 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3979 env->cur_hist_ent->flags |= insn_flags; 3980 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 3981 "insn history: insn_idx %d linked_regs: %#llx", 3982 env->insn_idx, env->cur_hist_ent->linked_regs); 3983 env->cur_hist_ent->linked_regs = linked_regs; 3984 return 0; 3985 } 3986 3987 cnt++; 3988 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3989 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); 3990 if (!p) 3991 return -ENOMEM; 3992 cur->jmp_history = p; 3993 3994 p = &cur->jmp_history[cnt - 1]; 3995 p->idx = env->insn_idx; 3996 p->prev_idx = env->prev_insn_idx; 3997 p->flags = insn_flags; 3998 p->linked_regs = linked_regs; 3999 cur->jmp_history_cnt = cnt; 4000 env->cur_hist_ent = p; 4001 4002 return 0; 4003 } 4004 4005 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 4006 u32 hist_end, int insn_idx) 4007 { 4008 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 4009 return &st->jmp_history[hist_end - 1]; 4010 return NULL; 4011 } 4012 4013 /* Backtrack one insn at a time. If idx is not at the top of recorded 4014 * history then previous instruction came from straight line execution. 4015 * Return -ENOENT if we exhausted all instructions within given state. 4016 * 4017 * It's legal to have a bit of a looping with the same starting and ending 4018 * insn index within the same state, e.g.: 3->4->5->3, so just because current 4019 * instruction index is the same as state's first_idx doesn't mean we are 4020 * done. If there is still some jump history left, we should keep going. We 4021 * need to take into account that we might have a jump history between given 4022 * state's parent and itself, due to checkpointing. In this case, we'll have 4023 * history entry recording a jump from last instruction of parent state and 4024 * first instruction of given state. 4025 */ 4026 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 4027 u32 *history) 4028 { 4029 u32 cnt = *history; 4030 4031 if (i == st->first_insn_idx) { 4032 if (cnt == 0) 4033 return -ENOENT; 4034 if (cnt == 1 && st->jmp_history[0].idx == i) 4035 return -ENOENT; 4036 } 4037 4038 if (cnt && st->jmp_history[cnt - 1].idx == i) { 4039 i = st->jmp_history[cnt - 1].prev_idx; 4040 (*history)--; 4041 } else { 4042 i--; 4043 } 4044 return i; 4045 } 4046 4047 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 4048 { 4049 const struct btf_type *func; 4050 struct btf *desc_btf; 4051 4052 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 4053 return NULL; 4054 4055 desc_btf = find_kfunc_desc_btf(data, insn->off); 4056 if (IS_ERR(desc_btf)) 4057 return "<error>"; 4058 4059 func = btf_type_by_id(desc_btf, insn->imm); 4060 return btf_name_by_offset(desc_btf, func->name_off); 4061 } 4062 4063 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 4064 { 4065 const struct bpf_insn_cbs cbs = { 4066 .cb_call = disasm_kfunc_name, 4067 .cb_print = verbose, 4068 .private_data = env, 4069 }; 4070 4071 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4072 } 4073 4074 static inline void bt_init(struct backtrack_state *bt, u32 frame) 4075 { 4076 bt->frame = frame; 4077 } 4078 4079 static inline void bt_reset(struct backtrack_state *bt) 4080 { 4081 struct bpf_verifier_env *env = bt->env; 4082 4083 memset(bt, 0, sizeof(*bt)); 4084 bt->env = env; 4085 } 4086 4087 static inline u32 bt_empty(struct backtrack_state *bt) 4088 { 4089 u64 mask = 0; 4090 int i; 4091 4092 for (i = 0; i <= bt->frame; i++) 4093 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 4094 4095 return mask == 0; 4096 } 4097 4098 static inline int bt_subprog_enter(struct backtrack_state *bt) 4099 { 4100 if (bt->frame == MAX_CALL_FRAMES - 1) { 4101 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 4102 return -EFAULT; 4103 } 4104 bt->frame++; 4105 return 0; 4106 } 4107 4108 static inline int bt_subprog_exit(struct backtrack_state *bt) 4109 { 4110 if (bt->frame == 0) { 4111 verifier_bug(bt->env, "subprog exit from frame 0"); 4112 return -EFAULT; 4113 } 4114 bt->frame--; 4115 return 0; 4116 } 4117 4118 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4119 { 4120 bt->reg_masks[frame] |= 1 << reg; 4121 } 4122 4123 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4124 { 4125 bt->reg_masks[frame] &= ~(1 << reg); 4126 } 4127 4128 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4129 { 4130 bt_set_frame_reg(bt, bt->frame, reg); 4131 } 4132 4133 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4134 { 4135 bt_clear_frame_reg(bt, bt->frame, reg); 4136 } 4137 4138 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4139 { 4140 bt->stack_masks[frame] |= 1ull << slot; 4141 } 4142 4143 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4144 { 4145 bt->stack_masks[frame] &= ~(1ull << slot); 4146 } 4147 4148 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4149 { 4150 return bt->reg_masks[frame]; 4151 } 4152 4153 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4154 { 4155 return bt->reg_masks[bt->frame]; 4156 } 4157 4158 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4159 { 4160 return bt->stack_masks[frame]; 4161 } 4162 4163 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4164 { 4165 return bt->stack_masks[bt->frame]; 4166 } 4167 4168 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4169 { 4170 return bt->reg_masks[bt->frame] & (1 << reg); 4171 } 4172 4173 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4174 { 4175 return bt->reg_masks[frame] & (1 << reg); 4176 } 4177 4178 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4179 { 4180 return bt->stack_masks[frame] & (1ull << slot); 4181 } 4182 4183 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4184 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4185 { 4186 DECLARE_BITMAP(mask, 64); 4187 bool first = true; 4188 int i, n; 4189 4190 buf[0] = '\0'; 4191 4192 bitmap_from_u64(mask, reg_mask); 4193 for_each_set_bit(i, mask, 32) { 4194 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4195 first = false; 4196 buf += n; 4197 buf_sz -= n; 4198 if (buf_sz < 0) 4199 break; 4200 } 4201 } 4202 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4203 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4204 { 4205 DECLARE_BITMAP(mask, 64); 4206 bool first = true; 4207 int i, n; 4208 4209 buf[0] = '\0'; 4210 4211 bitmap_from_u64(mask, stack_mask); 4212 for_each_set_bit(i, mask, 64) { 4213 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4214 first = false; 4215 buf += n; 4216 buf_sz -= n; 4217 if (buf_sz < 0) 4218 break; 4219 } 4220 } 4221 4222 /* If any register R in hist->linked_regs is marked as precise in bt, 4223 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4224 */ 4225 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 4226 { 4227 struct linked_regs linked_regs; 4228 bool some_precise = false; 4229 int i; 4230 4231 if (!hist || hist->linked_regs == 0) 4232 return; 4233 4234 linked_regs_unpack(hist->linked_regs, &linked_regs); 4235 for (i = 0; i < linked_regs.cnt; ++i) { 4236 struct linked_reg *e = &linked_regs.entries[i]; 4237 4238 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4239 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4240 some_precise = true; 4241 break; 4242 } 4243 } 4244 4245 if (!some_precise) 4246 return; 4247 4248 for (i = 0; i < linked_regs.cnt; ++i) { 4249 struct linked_reg *e = &linked_regs.entries[i]; 4250 4251 if (e->is_reg) 4252 bt_set_frame_reg(bt, e->frameno, e->regno); 4253 else 4254 bt_set_frame_slot(bt, e->frameno, e->spi); 4255 } 4256 } 4257 4258 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 4259 4260 /* For given verifier state backtrack_insn() is called from the last insn to 4261 * the first insn. Its purpose is to compute a bitmask of registers and 4262 * stack slots that needs precision in the parent verifier state. 4263 * 4264 * @idx is an index of the instruction we are currently processing; 4265 * @subseq_idx is an index of the subsequent instruction that: 4266 * - *would be* executed next, if jump history is viewed in forward order; 4267 * - *was* processed previously during backtracking. 4268 */ 4269 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4270 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 4271 { 4272 struct bpf_insn *insn = env->prog->insnsi + idx; 4273 u8 class = BPF_CLASS(insn->code); 4274 u8 opcode = BPF_OP(insn->code); 4275 u8 mode = BPF_MODE(insn->code); 4276 u32 dreg = insn->dst_reg; 4277 u32 sreg = insn->src_reg; 4278 u32 spi, i, fr; 4279 4280 if (insn->code == 0) 4281 return 0; 4282 if (env->log.level & BPF_LOG_LEVEL2) { 4283 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4284 verbose(env, "mark_precise: frame%d: regs=%s ", 4285 bt->frame, env->tmp_str_buf); 4286 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4287 verbose(env, "stack=%s before ", env->tmp_str_buf); 4288 verbose(env, "%d: ", idx); 4289 verbose_insn(env, insn); 4290 } 4291 4292 /* If there is a history record that some registers gained range at this insn, 4293 * propagate precision marks to those registers, so that bt_is_reg_set() 4294 * accounts for these registers. 4295 */ 4296 bt_sync_linked_regs(bt, hist); 4297 4298 if (class == BPF_ALU || class == BPF_ALU64) { 4299 if (!bt_is_reg_set(bt, dreg)) 4300 return 0; 4301 if (opcode == BPF_END || opcode == BPF_NEG) { 4302 /* sreg is reserved and unused 4303 * dreg still need precision before this insn 4304 */ 4305 return 0; 4306 } else if (opcode == BPF_MOV) { 4307 if (BPF_SRC(insn->code) == BPF_X) { 4308 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4309 * dreg needs precision after this insn 4310 * sreg needs precision before this insn 4311 */ 4312 bt_clear_reg(bt, dreg); 4313 if (sreg != BPF_REG_FP) 4314 bt_set_reg(bt, sreg); 4315 } else { 4316 /* dreg = K 4317 * dreg needs precision after this insn. 4318 * Corresponding register is already marked 4319 * as precise=true in this verifier state. 4320 * No further markings in parent are necessary 4321 */ 4322 bt_clear_reg(bt, dreg); 4323 } 4324 } else { 4325 if (BPF_SRC(insn->code) == BPF_X) { 4326 /* dreg += sreg 4327 * both dreg and sreg need precision 4328 * before this insn 4329 */ 4330 if (sreg != BPF_REG_FP) 4331 bt_set_reg(bt, sreg); 4332 } /* else dreg += K 4333 * dreg still needs precision before this insn 4334 */ 4335 } 4336 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4337 if (!bt_is_reg_set(bt, dreg)) 4338 return 0; 4339 bt_clear_reg(bt, dreg); 4340 4341 /* scalars can only be spilled into stack w/o losing precision. 4342 * Load from any other memory can be zero extended. 4343 * The desire to keep that precision is already indicated 4344 * by 'precise' mark in corresponding register of this state. 4345 * No further tracking necessary. 4346 */ 4347 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4348 return 0; 4349 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4350 * that [fp - off] slot contains scalar that needs to be 4351 * tracked with precision 4352 */ 4353 spi = insn_stack_access_spi(hist->flags); 4354 fr = insn_stack_access_frameno(hist->flags); 4355 bt_set_frame_slot(bt, fr, spi); 4356 } else if (class == BPF_STX || class == BPF_ST) { 4357 if (bt_is_reg_set(bt, dreg)) 4358 /* stx & st shouldn't be using _scalar_ dst_reg 4359 * to access memory. It means backtracking 4360 * encountered a case of pointer subtraction. 4361 */ 4362 return -ENOTSUPP; 4363 /* scalars can only be spilled into stack */ 4364 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4365 return 0; 4366 spi = insn_stack_access_spi(hist->flags); 4367 fr = insn_stack_access_frameno(hist->flags); 4368 if (!bt_is_frame_slot_set(bt, fr, spi)) 4369 return 0; 4370 bt_clear_frame_slot(bt, fr, spi); 4371 if (class == BPF_STX) 4372 bt_set_reg(bt, sreg); 4373 } else if (class == BPF_JMP || class == BPF_JMP32) { 4374 if (bpf_pseudo_call(insn)) { 4375 int subprog_insn_idx, subprog; 4376 4377 subprog_insn_idx = idx + insn->imm + 1; 4378 subprog = find_subprog(env, subprog_insn_idx); 4379 if (subprog < 0) 4380 return -EFAULT; 4381 4382 if (subprog_is_global(env, subprog)) { 4383 /* check that jump history doesn't have any 4384 * extra instructions from subprog; the next 4385 * instruction after call to global subprog 4386 * should be literally next instruction in 4387 * caller program 4388 */ 4389 verifier_bug_if(idx + 1 != subseq_idx, env, 4390 "extra insn from subprog"); 4391 /* r1-r5 are invalidated after subprog call, 4392 * so for global func call it shouldn't be set 4393 * anymore 4394 */ 4395 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4396 verifier_bug(env, "global subprog unexpected regs %x", 4397 bt_reg_mask(bt)); 4398 return -EFAULT; 4399 } 4400 /* global subprog always sets R0 */ 4401 bt_clear_reg(bt, BPF_REG_0); 4402 return 0; 4403 } else { 4404 /* static subprog call instruction, which 4405 * means that we are exiting current subprog, 4406 * so only r1-r5 could be still requested as 4407 * precise, r0 and r6-r10 or any stack slot in 4408 * the current frame should be zero by now 4409 */ 4410 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4411 verifier_bug(env, "static subprog unexpected regs %x", 4412 bt_reg_mask(bt)); 4413 return -EFAULT; 4414 } 4415 /* we are now tracking register spills correctly, 4416 * so any instance of leftover slots is a bug 4417 */ 4418 if (bt_stack_mask(bt) != 0) { 4419 verifier_bug(env, 4420 "static subprog leftover stack slots %llx", 4421 bt_stack_mask(bt)); 4422 return -EFAULT; 4423 } 4424 /* propagate r1-r5 to the caller */ 4425 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4426 if (bt_is_reg_set(bt, i)) { 4427 bt_clear_reg(bt, i); 4428 bt_set_frame_reg(bt, bt->frame - 1, i); 4429 } 4430 } 4431 if (bt_subprog_exit(bt)) 4432 return -EFAULT; 4433 return 0; 4434 } 4435 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4436 /* exit from callback subprog to callback-calling helper or 4437 * kfunc call. Use idx/subseq_idx check to discern it from 4438 * straight line code backtracking. 4439 * Unlike the subprog call handling above, we shouldn't 4440 * propagate precision of r1-r5 (if any requested), as they are 4441 * not actually arguments passed directly to callback subprogs 4442 */ 4443 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4444 verifier_bug(env, "callback unexpected regs %x", 4445 bt_reg_mask(bt)); 4446 return -EFAULT; 4447 } 4448 if (bt_stack_mask(bt) != 0) { 4449 verifier_bug(env, "callback leftover stack slots %llx", 4450 bt_stack_mask(bt)); 4451 return -EFAULT; 4452 } 4453 /* clear r1-r5 in callback subprog's mask */ 4454 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4455 bt_clear_reg(bt, i); 4456 if (bt_subprog_exit(bt)) 4457 return -EFAULT; 4458 return 0; 4459 } else if (opcode == BPF_CALL) { 4460 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4461 * catch this error later. Make backtracking conservative 4462 * with ENOTSUPP. 4463 */ 4464 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4465 return -ENOTSUPP; 4466 /* regular helper call sets R0 */ 4467 bt_clear_reg(bt, BPF_REG_0); 4468 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4469 /* if backtracking was looking for registers R1-R5 4470 * they should have been found already. 4471 */ 4472 verifier_bug(env, "backtracking call unexpected regs %x", 4473 bt_reg_mask(bt)); 4474 return -EFAULT; 4475 } 4476 } else if (opcode == BPF_EXIT) { 4477 bool r0_precise; 4478 4479 /* Backtracking to a nested function call, 'idx' is a part of 4480 * the inner frame 'subseq_idx' is a part of the outer frame. 4481 * In case of a regular function call, instructions giving 4482 * precision to registers R1-R5 should have been found already. 4483 * In case of a callback, it is ok to have R1-R5 marked for 4484 * backtracking, as these registers are set by the function 4485 * invoking callback. 4486 */ 4487 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4488 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4489 bt_clear_reg(bt, i); 4490 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4491 verifier_bug(env, "backtracking exit unexpected regs %x", 4492 bt_reg_mask(bt)); 4493 return -EFAULT; 4494 } 4495 4496 /* BPF_EXIT in subprog or callback always returns 4497 * right after the call instruction, so by checking 4498 * whether the instruction at subseq_idx-1 is subprog 4499 * call or not we can distinguish actual exit from 4500 * *subprog* from exit from *callback*. In the former 4501 * case, we need to propagate r0 precision, if 4502 * necessary. In the former we never do that. 4503 */ 4504 r0_precise = subseq_idx - 1 >= 0 && 4505 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4506 bt_is_reg_set(bt, BPF_REG_0); 4507 4508 bt_clear_reg(bt, BPF_REG_0); 4509 if (bt_subprog_enter(bt)) 4510 return -EFAULT; 4511 4512 if (r0_precise) 4513 bt_set_reg(bt, BPF_REG_0); 4514 /* r6-r9 and stack slots will stay set in caller frame 4515 * bitmasks until we return back from callee(s) 4516 */ 4517 return 0; 4518 } else if (BPF_SRC(insn->code) == BPF_X) { 4519 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4520 return 0; 4521 /* dreg <cond> sreg 4522 * Both dreg and sreg need precision before 4523 * this insn. If only sreg was marked precise 4524 * before it would be equally necessary to 4525 * propagate it to dreg. 4526 */ 4527 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4528 bt_set_reg(bt, sreg); 4529 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4530 bt_set_reg(bt, dreg); 4531 } else if (BPF_SRC(insn->code) == BPF_K) { 4532 /* dreg <cond> K 4533 * Only dreg still needs precision before 4534 * this insn, so for the K-based conditional 4535 * there is nothing new to be marked. 4536 */ 4537 } 4538 } else if (class == BPF_LD) { 4539 if (!bt_is_reg_set(bt, dreg)) 4540 return 0; 4541 bt_clear_reg(bt, dreg); 4542 /* It's ld_imm64 or ld_abs or ld_ind. 4543 * For ld_imm64 no further tracking of precision 4544 * into parent is necessary 4545 */ 4546 if (mode == BPF_IND || mode == BPF_ABS) 4547 /* to be analyzed */ 4548 return -ENOTSUPP; 4549 } 4550 /* Propagate precision marks to linked registers, to account for 4551 * registers marked as precise in this function. 4552 */ 4553 bt_sync_linked_regs(bt, hist); 4554 return 0; 4555 } 4556 4557 /* the scalar precision tracking algorithm: 4558 * . at the start all registers have precise=false. 4559 * . scalar ranges are tracked as normal through alu and jmp insns. 4560 * . once precise value of the scalar register is used in: 4561 * . ptr + scalar alu 4562 * . if (scalar cond K|scalar) 4563 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4564 * backtrack through the verifier states and mark all registers and 4565 * stack slots with spilled constants that these scalar registers 4566 * should be precise. 4567 * . during state pruning two registers (or spilled stack slots) 4568 * are equivalent if both are not precise. 4569 * 4570 * Note the verifier cannot simply walk register parentage chain, 4571 * since many different registers and stack slots could have been 4572 * used to compute single precise scalar. 4573 * 4574 * The approach of starting with precise=true for all registers and then 4575 * backtrack to mark a register as not precise when the verifier detects 4576 * that program doesn't care about specific value (e.g., when helper 4577 * takes register as ARG_ANYTHING parameter) is not safe. 4578 * 4579 * It's ok to walk single parentage chain of the verifier states. 4580 * It's possible that this backtracking will go all the way till 1st insn. 4581 * All other branches will be explored for needing precision later. 4582 * 4583 * The backtracking needs to deal with cases like: 4584 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4585 * r9 -= r8 4586 * r5 = r9 4587 * if r5 > 0x79f goto pc+7 4588 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4589 * r5 += 1 4590 * ... 4591 * call bpf_perf_event_output#25 4592 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4593 * 4594 * and this case: 4595 * r6 = 1 4596 * call foo // uses callee's r6 inside to compute r0 4597 * r0 += r6 4598 * if r0 == 0 goto 4599 * 4600 * to track above reg_mask/stack_mask needs to be independent for each frame. 4601 * 4602 * Also if parent's curframe > frame where backtracking started, 4603 * the verifier need to mark registers in both frames, otherwise callees 4604 * may incorrectly prune callers. This is similar to 4605 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4606 * 4607 * For now backtracking falls back into conservative marking. 4608 */ 4609 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4610 struct bpf_verifier_state *st) 4611 { 4612 struct bpf_func_state *func; 4613 struct bpf_reg_state *reg; 4614 int i, j; 4615 4616 if (env->log.level & BPF_LOG_LEVEL2) { 4617 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4618 st->curframe); 4619 } 4620 4621 /* big hammer: mark all scalars precise in this path. 4622 * pop_stack may still get !precise scalars. 4623 * We also skip current state and go straight to first parent state, 4624 * because precision markings in current non-checkpointed state are 4625 * not needed. See why in the comment in __mark_chain_precision below. 4626 */ 4627 for (st = st->parent; st; st = st->parent) { 4628 for (i = 0; i <= st->curframe; i++) { 4629 func = st->frame[i]; 4630 for (j = 0; j < BPF_REG_FP; j++) { 4631 reg = &func->regs[j]; 4632 if (reg->type != SCALAR_VALUE || reg->precise) 4633 continue; 4634 reg->precise = true; 4635 if (env->log.level & BPF_LOG_LEVEL2) { 4636 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4637 i, j); 4638 } 4639 } 4640 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4641 if (!is_spilled_reg(&func->stack[j])) 4642 continue; 4643 reg = &func->stack[j].spilled_ptr; 4644 if (reg->type != SCALAR_VALUE || reg->precise) 4645 continue; 4646 reg->precise = true; 4647 if (env->log.level & BPF_LOG_LEVEL2) { 4648 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4649 i, -(j + 1) * 8); 4650 } 4651 } 4652 } 4653 } 4654 } 4655 4656 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4657 { 4658 struct bpf_func_state *func; 4659 struct bpf_reg_state *reg; 4660 int i, j; 4661 4662 for (i = 0; i <= st->curframe; i++) { 4663 func = st->frame[i]; 4664 for (j = 0; j < BPF_REG_FP; j++) { 4665 reg = &func->regs[j]; 4666 if (reg->type != SCALAR_VALUE) 4667 continue; 4668 reg->precise = false; 4669 } 4670 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4671 if (!is_spilled_reg(&func->stack[j])) 4672 continue; 4673 reg = &func->stack[j].spilled_ptr; 4674 if (reg->type != SCALAR_VALUE) 4675 continue; 4676 reg->precise = false; 4677 } 4678 } 4679 } 4680 4681 /* 4682 * __mark_chain_precision() backtracks BPF program instruction sequence and 4683 * chain of verifier states making sure that register *regno* (if regno >= 0) 4684 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4685 * SCALARS, as well as any other registers and slots that contribute to 4686 * a tracked state of given registers/stack slots, depending on specific BPF 4687 * assembly instructions (see backtrack_insns() for exact instruction handling 4688 * logic). This backtracking relies on recorded jmp_history and is able to 4689 * traverse entire chain of parent states. This process ends only when all the 4690 * necessary registers/slots and their transitive dependencies are marked as 4691 * precise. 4692 * 4693 * One important and subtle aspect is that precise marks *do not matter* in 4694 * the currently verified state (current state). It is important to understand 4695 * why this is the case. 4696 * 4697 * First, note that current state is the state that is not yet "checkpointed", 4698 * i.e., it is not yet put into env->explored_states, and it has no children 4699 * states as well. It's ephemeral, and can end up either a) being discarded if 4700 * compatible explored state is found at some point or BPF_EXIT instruction is 4701 * reached or b) checkpointed and put into env->explored_states, branching out 4702 * into one or more children states. 4703 * 4704 * In the former case, precise markings in current state are completely 4705 * ignored by state comparison code (see regsafe() for details). Only 4706 * checkpointed ("old") state precise markings are important, and if old 4707 * state's register/slot is precise, regsafe() assumes current state's 4708 * register/slot as precise and checks value ranges exactly and precisely. If 4709 * states turn out to be compatible, current state's necessary precise 4710 * markings and any required parent states' precise markings are enforced 4711 * after the fact with propagate_precision() logic, after the fact. But it's 4712 * important to realize that in this case, even after marking current state 4713 * registers/slots as precise, we immediately discard current state. So what 4714 * actually matters is any of the precise markings propagated into current 4715 * state's parent states, which are always checkpointed (due to b) case above). 4716 * As such, for scenario a) it doesn't matter if current state has precise 4717 * markings set or not. 4718 * 4719 * Now, for the scenario b), checkpointing and forking into child(ren) 4720 * state(s). Note that before current state gets to checkpointing step, any 4721 * processed instruction always assumes precise SCALAR register/slot 4722 * knowledge: if precise value or range is useful to prune jump branch, BPF 4723 * verifier takes this opportunity enthusiastically. Similarly, when 4724 * register's value is used to calculate offset or memory address, exact 4725 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4726 * what we mentioned above about state comparison ignoring precise markings 4727 * during state comparison, BPF verifier ignores and also assumes precise 4728 * markings *at will* during instruction verification process. But as verifier 4729 * assumes precision, it also propagates any precision dependencies across 4730 * parent states, which are not yet finalized, so can be further restricted 4731 * based on new knowledge gained from restrictions enforced by their children 4732 * states. This is so that once those parent states are finalized, i.e., when 4733 * they have no more active children state, state comparison logic in 4734 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4735 * required for correctness. 4736 * 4737 * To build a bit more intuition, note also that once a state is checkpointed, 4738 * the path we took to get to that state is not important. This is crucial 4739 * property for state pruning. When state is checkpointed and finalized at 4740 * some instruction index, it can be correctly and safely used to "short 4741 * circuit" any *compatible* state that reaches exactly the same instruction 4742 * index. I.e., if we jumped to that instruction from a completely different 4743 * code path than original finalized state was derived from, it doesn't 4744 * matter, current state can be discarded because from that instruction 4745 * forward having a compatible state will ensure we will safely reach the 4746 * exit. States describe preconditions for further exploration, but completely 4747 * forget the history of how we got here. 4748 * 4749 * This also means that even if we needed precise SCALAR range to get to 4750 * finalized state, but from that point forward *that same* SCALAR register is 4751 * never used in a precise context (i.e., it's precise value is not needed for 4752 * correctness), it's correct and safe to mark such register as "imprecise" 4753 * (i.e., precise marking set to false). This is what we rely on when we do 4754 * not set precise marking in current state. If no child state requires 4755 * precision for any given SCALAR register, it's safe to dictate that it can 4756 * be imprecise. If any child state does require this register to be precise, 4757 * we'll mark it precise later retroactively during precise markings 4758 * propagation from child state to parent states. 4759 * 4760 * Skipping precise marking setting in current state is a mild version of 4761 * relying on the above observation. But we can utilize this property even 4762 * more aggressively by proactively forgetting any precise marking in the 4763 * current state (which we inherited from the parent state), right before we 4764 * checkpoint it and branch off into new child state. This is done by 4765 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4766 * finalized states which help in short circuiting more future states. 4767 */ 4768 static int __mark_chain_precision(struct bpf_verifier_env *env, 4769 struct bpf_verifier_state *starting_state, 4770 int regno, 4771 bool *changed) 4772 { 4773 struct bpf_verifier_state *st = starting_state; 4774 struct backtrack_state *bt = &env->bt; 4775 int first_idx = st->first_insn_idx; 4776 int last_idx = starting_state->insn_idx; 4777 int subseq_idx = -1; 4778 struct bpf_func_state *func; 4779 bool tmp, skip_first = true; 4780 struct bpf_reg_state *reg; 4781 int i, fr, err; 4782 4783 if (!env->bpf_capable) 4784 return 0; 4785 4786 changed = changed ?: &tmp; 4787 /* set frame number from which we are starting to backtrack */ 4788 bt_init(bt, starting_state->curframe); 4789 4790 /* Do sanity checks against current state of register and/or stack 4791 * slot, but don't set precise flag in current state, as precision 4792 * tracking in the current state is unnecessary. 4793 */ 4794 func = st->frame[bt->frame]; 4795 if (regno >= 0) { 4796 reg = &func->regs[regno]; 4797 if (reg->type != SCALAR_VALUE) { 4798 verifier_bug(env, "backtracking misuse"); 4799 return -EFAULT; 4800 } 4801 bt_set_reg(bt, regno); 4802 } 4803 4804 if (bt_empty(bt)) 4805 return 0; 4806 4807 for (;;) { 4808 DECLARE_BITMAP(mask, 64); 4809 u32 history = st->jmp_history_cnt; 4810 struct bpf_jmp_history_entry *hist; 4811 4812 if (env->log.level & BPF_LOG_LEVEL2) { 4813 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4814 bt->frame, last_idx, first_idx, subseq_idx); 4815 } 4816 4817 if (last_idx < 0) { 4818 /* we are at the entry into subprog, which 4819 * is expected for global funcs, but only if 4820 * requested precise registers are R1-R5 4821 * (which are global func's input arguments) 4822 */ 4823 if (st->curframe == 0 && 4824 st->frame[0]->subprogno > 0 && 4825 st->frame[0]->callsite == BPF_MAIN_FUNC && 4826 bt_stack_mask(bt) == 0 && 4827 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4828 bitmap_from_u64(mask, bt_reg_mask(bt)); 4829 for_each_set_bit(i, mask, 32) { 4830 reg = &st->frame[0]->regs[i]; 4831 bt_clear_reg(bt, i); 4832 if (reg->type == SCALAR_VALUE) { 4833 reg->precise = true; 4834 *changed = true; 4835 } 4836 } 4837 return 0; 4838 } 4839 4840 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4841 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4842 return -EFAULT; 4843 } 4844 4845 for (i = last_idx;;) { 4846 if (skip_first) { 4847 err = 0; 4848 skip_first = false; 4849 } else { 4850 hist = get_jmp_hist_entry(st, history, i); 4851 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4852 } 4853 if (err == -ENOTSUPP) { 4854 mark_all_scalars_precise(env, starting_state); 4855 bt_reset(bt); 4856 return 0; 4857 } else if (err) { 4858 return err; 4859 } 4860 if (bt_empty(bt)) 4861 /* Found assignment(s) into tracked register in this state. 4862 * Since this state is already marked, just return. 4863 * Nothing to be tracked further in the parent state. 4864 */ 4865 return 0; 4866 subseq_idx = i; 4867 i = get_prev_insn_idx(st, i, &history); 4868 if (i == -ENOENT) 4869 break; 4870 if (i >= env->prog->len) { 4871 /* This can happen if backtracking reached insn 0 4872 * and there are still reg_mask or stack_mask 4873 * to backtrack. 4874 * It means the backtracking missed the spot where 4875 * particular register was initialized with a constant. 4876 */ 4877 verifier_bug(env, "backtracking idx %d", i); 4878 return -EFAULT; 4879 } 4880 } 4881 st = st->parent; 4882 if (!st) 4883 break; 4884 4885 for (fr = bt->frame; fr >= 0; fr--) { 4886 func = st->frame[fr]; 4887 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4888 for_each_set_bit(i, mask, 32) { 4889 reg = &func->regs[i]; 4890 if (reg->type != SCALAR_VALUE) { 4891 bt_clear_frame_reg(bt, fr, i); 4892 continue; 4893 } 4894 if (reg->precise) { 4895 bt_clear_frame_reg(bt, fr, i); 4896 } else { 4897 reg->precise = true; 4898 *changed = true; 4899 } 4900 } 4901 4902 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4903 for_each_set_bit(i, mask, 64) { 4904 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4905 env, "stack slot %d, total slots %d", 4906 i, func->allocated_stack / BPF_REG_SIZE)) 4907 return -EFAULT; 4908 4909 if (!is_spilled_scalar_reg(&func->stack[i])) { 4910 bt_clear_frame_slot(bt, fr, i); 4911 continue; 4912 } 4913 reg = &func->stack[i].spilled_ptr; 4914 if (reg->precise) { 4915 bt_clear_frame_slot(bt, fr, i); 4916 } else { 4917 reg->precise = true; 4918 *changed = true; 4919 } 4920 } 4921 if (env->log.level & BPF_LOG_LEVEL2) { 4922 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4923 bt_frame_reg_mask(bt, fr)); 4924 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4925 fr, env->tmp_str_buf); 4926 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4927 bt_frame_stack_mask(bt, fr)); 4928 verbose(env, "stack=%s: ", env->tmp_str_buf); 4929 print_verifier_state(env, st, fr, true); 4930 } 4931 } 4932 4933 if (bt_empty(bt)) 4934 return 0; 4935 4936 subseq_idx = first_idx; 4937 last_idx = st->last_insn_idx; 4938 first_idx = st->first_insn_idx; 4939 } 4940 4941 /* if we still have requested precise regs or slots, we missed 4942 * something (e.g., stack access through non-r10 register), so 4943 * fallback to marking all precise 4944 */ 4945 if (!bt_empty(bt)) { 4946 mark_all_scalars_precise(env, starting_state); 4947 bt_reset(bt); 4948 } 4949 4950 return 0; 4951 } 4952 4953 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4954 { 4955 return __mark_chain_precision(env, env->cur_state, regno, NULL); 4956 } 4957 4958 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4959 * desired reg and stack masks across all relevant frames 4960 */ 4961 static int mark_chain_precision_batch(struct bpf_verifier_env *env, 4962 struct bpf_verifier_state *starting_state) 4963 { 4964 return __mark_chain_precision(env, starting_state, -1, NULL); 4965 } 4966 4967 static bool is_spillable_regtype(enum bpf_reg_type type) 4968 { 4969 switch (base_type(type)) { 4970 case PTR_TO_MAP_VALUE: 4971 case PTR_TO_STACK: 4972 case PTR_TO_CTX: 4973 case PTR_TO_PACKET: 4974 case PTR_TO_PACKET_META: 4975 case PTR_TO_PACKET_END: 4976 case PTR_TO_FLOW_KEYS: 4977 case CONST_PTR_TO_MAP: 4978 case PTR_TO_SOCKET: 4979 case PTR_TO_SOCK_COMMON: 4980 case PTR_TO_TCP_SOCK: 4981 case PTR_TO_XDP_SOCK: 4982 case PTR_TO_BTF_ID: 4983 case PTR_TO_BUF: 4984 case PTR_TO_MEM: 4985 case PTR_TO_FUNC: 4986 case PTR_TO_MAP_KEY: 4987 case PTR_TO_ARENA: 4988 return true; 4989 default: 4990 return false; 4991 } 4992 } 4993 4994 /* Does this register contain a constant zero? */ 4995 static bool register_is_null(struct bpf_reg_state *reg) 4996 { 4997 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4998 } 4999 5000 /* check if register is a constant scalar value */ 5001 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 5002 { 5003 return reg->type == SCALAR_VALUE && 5004 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 5005 } 5006 5007 /* assuming is_reg_const() is true, return constant value of a register */ 5008 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 5009 { 5010 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 5011 } 5012 5013 static bool __is_pointer_value(bool allow_ptr_leaks, 5014 const struct bpf_reg_state *reg) 5015 { 5016 if (allow_ptr_leaks) 5017 return false; 5018 5019 return reg->type != SCALAR_VALUE; 5020 } 5021 5022 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 5023 struct bpf_reg_state *src_reg) 5024 { 5025 if (src_reg->type != SCALAR_VALUE) 5026 return; 5027 5028 if (src_reg->id & BPF_ADD_CONST) { 5029 /* 5030 * The verifier is processing rX = rY insn and 5031 * rY->id has special linked register already. 5032 * Cleared it, since multiple rX += const are not supported. 5033 */ 5034 src_reg->id = 0; 5035 src_reg->off = 0; 5036 } 5037 5038 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 5039 /* Ensure that src_reg has a valid ID that will be copied to 5040 * dst_reg and then will be used by sync_linked_regs() to 5041 * propagate min/max range. 5042 */ 5043 src_reg->id = ++env->id_gen; 5044 } 5045 5046 /* Copy src state preserving dst->parent and dst->live fields */ 5047 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 5048 { 5049 struct bpf_reg_state *parent = dst->parent; 5050 enum bpf_reg_liveness live = dst->live; 5051 5052 *dst = *src; 5053 dst->parent = parent; 5054 dst->live = live; 5055 } 5056 5057 static void save_register_state(struct bpf_verifier_env *env, 5058 struct bpf_func_state *state, 5059 int spi, struct bpf_reg_state *reg, 5060 int size) 5061 { 5062 int i; 5063 5064 copy_register_state(&state->stack[spi].spilled_ptr, reg); 5065 if (size == BPF_REG_SIZE) 5066 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 5067 5068 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 5069 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 5070 5071 /* size < 8 bytes spill */ 5072 for (; i; i--) 5073 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 5074 } 5075 5076 static bool is_bpf_st_mem(struct bpf_insn *insn) 5077 { 5078 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 5079 } 5080 5081 static int get_reg_width(struct bpf_reg_state *reg) 5082 { 5083 return fls64(reg->umax_value); 5084 } 5085 5086 /* See comment for mark_fastcall_pattern_for_call() */ 5087 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 5088 struct bpf_func_state *state, int insn_idx, int off) 5089 { 5090 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 5091 struct bpf_insn_aux_data *aux = env->insn_aux_data; 5092 int i; 5093 5094 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 5095 return; 5096 /* access to the region [max_stack_depth .. fastcall_stack_off) 5097 * from something that is not a part of the fastcall pattern, 5098 * disable fastcall rewrites for current subprogram by setting 5099 * fastcall_stack_off to a value smaller than any possible offset. 5100 */ 5101 subprog->fastcall_stack_off = S16_MIN; 5102 /* reset fastcall aux flags within subprogram, 5103 * happens at most once per subprogram 5104 */ 5105 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 5106 aux[i].fastcall_spills_num = 0; 5107 aux[i].fastcall_pattern = 0; 5108 } 5109 } 5110 5111 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 5112 * stack boundary and alignment are checked in check_mem_access() 5113 */ 5114 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 5115 /* stack frame we're writing to */ 5116 struct bpf_func_state *state, 5117 int off, int size, int value_regno, 5118 int insn_idx) 5119 { 5120 struct bpf_func_state *cur; /* state of the current function */ 5121 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 5122 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5123 struct bpf_reg_state *reg = NULL; 5124 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5125 5126 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5127 * so it's aligned access and [off, off + size) are within stack limits 5128 */ 5129 if (!env->allow_ptr_leaks && 5130 is_spilled_reg(&state->stack[spi]) && 5131 !is_spilled_scalar_reg(&state->stack[spi]) && 5132 size != BPF_REG_SIZE) { 5133 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5134 return -EACCES; 5135 } 5136 5137 cur = env->cur_state->frame[env->cur_state->curframe]; 5138 if (value_regno >= 0) 5139 reg = &cur->regs[value_regno]; 5140 if (!env->bypass_spec_v4) { 5141 bool sanitize = reg && is_spillable_regtype(reg->type); 5142 5143 for (i = 0; i < size; i++) { 5144 u8 type = state->stack[spi].slot_type[i]; 5145 5146 if (type != STACK_MISC && type != STACK_ZERO) { 5147 sanitize = true; 5148 break; 5149 } 5150 } 5151 5152 if (sanitize) 5153 env->insn_aux_data[insn_idx].nospec_result = true; 5154 } 5155 5156 err = destroy_if_dynptr_stack_slot(env, state, spi); 5157 if (err) 5158 return err; 5159 5160 check_fastcall_stack_contract(env, state, insn_idx, off); 5161 mark_stack_slot_scratched(env, spi); 5162 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5163 bool reg_value_fits; 5164 5165 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5166 /* Make sure that reg had an ID to build a relation on spill. */ 5167 if (reg_value_fits) 5168 assign_scalar_id_before_mov(env, reg); 5169 save_register_state(env, state, spi, reg, size); 5170 /* Break the relation on a narrowing spill. */ 5171 if (!reg_value_fits) 5172 state->stack[spi].spilled_ptr.id = 0; 5173 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5174 env->bpf_capable) { 5175 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5176 5177 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5178 __mark_reg_known(tmp_reg, insn->imm); 5179 tmp_reg->type = SCALAR_VALUE; 5180 save_register_state(env, state, spi, tmp_reg, size); 5181 } else if (reg && is_spillable_regtype(reg->type)) { 5182 /* register containing pointer is being spilled into stack */ 5183 if (size != BPF_REG_SIZE) { 5184 verbose_linfo(env, insn_idx, "; "); 5185 verbose(env, "invalid size of register spill\n"); 5186 return -EACCES; 5187 } 5188 if (state != cur && reg->type == PTR_TO_STACK) { 5189 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5190 return -EINVAL; 5191 } 5192 save_register_state(env, state, spi, reg, size); 5193 } else { 5194 u8 type = STACK_MISC; 5195 5196 /* regular write of data into stack destroys any spilled ptr */ 5197 state->stack[spi].spilled_ptr.type = NOT_INIT; 5198 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5199 if (is_stack_slot_special(&state->stack[spi])) 5200 for (i = 0; i < BPF_REG_SIZE; i++) 5201 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5202 5203 /* only mark the slot as written if all 8 bytes were written 5204 * otherwise read propagation may incorrectly stop too soon 5205 * when stack slots are partially written. 5206 * This heuristic means that read propagation will be 5207 * conservative, since it will add reg_live_read marks 5208 * to stack slots all the way to first state when programs 5209 * writes+reads less than 8 bytes 5210 */ 5211 if (size == BPF_REG_SIZE) 5212 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 5213 5214 /* when we zero initialize stack slots mark them as such */ 5215 if ((reg && register_is_null(reg)) || 5216 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5217 /* STACK_ZERO case happened because register spill 5218 * wasn't properly aligned at the stack slot boundary, 5219 * so it's not a register spill anymore; force 5220 * originating register to be precise to make 5221 * STACK_ZERO correct for subsequent states 5222 */ 5223 err = mark_chain_precision(env, value_regno); 5224 if (err) 5225 return err; 5226 type = STACK_ZERO; 5227 } 5228 5229 /* Mark slots affected by this stack write. */ 5230 for (i = 0; i < size; i++) 5231 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5232 insn_flags = 0; /* not a register spill */ 5233 } 5234 5235 if (insn_flags) 5236 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5237 return 0; 5238 } 5239 5240 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5241 * known to contain a variable offset. 5242 * This function checks whether the write is permitted and conservatively 5243 * tracks the effects of the write, considering that each stack slot in the 5244 * dynamic range is potentially written to. 5245 * 5246 * 'off' includes 'regno->off'. 5247 * 'value_regno' can be -1, meaning that an unknown value is being written to 5248 * the stack. 5249 * 5250 * Spilled pointers in range are not marked as written because we don't know 5251 * what's going to be actually written. This means that read propagation for 5252 * future reads cannot be terminated by this write. 5253 * 5254 * For privileged programs, uninitialized stack slots are considered 5255 * initialized by this write (even though we don't know exactly what offsets 5256 * are going to be written to). The idea is that we don't want the verifier to 5257 * reject future reads that access slots written to through variable offsets. 5258 */ 5259 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5260 /* func where register points to */ 5261 struct bpf_func_state *state, 5262 int ptr_regno, int off, int size, 5263 int value_regno, int insn_idx) 5264 { 5265 struct bpf_func_state *cur; /* state of the current function */ 5266 int min_off, max_off; 5267 int i, err; 5268 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5269 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5270 bool writing_zero = false; 5271 /* set if the fact that we're writing a zero is used to let any 5272 * stack slots remain STACK_ZERO 5273 */ 5274 bool zero_used = false; 5275 5276 cur = env->cur_state->frame[env->cur_state->curframe]; 5277 ptr_reg = &cur->regs[ptr_regno]; 5278 min_off = ptr_reg->smin_value + off; 5279 max_off = ptr_reg->smax_value + off + size; 5280 if (value_regno >= 0) 5281 value_reg = &cur->regs[value_regno]; 5282 if ((value_reg && register_is_null(value_reg)) || 5283 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5284 writing_zero = true; 5285 5286 for (i = min_off; i < max_off; i++) { 5287 int spi; 5288 5289 spi = __get_spi(i); 5290 err = destroy_if_dynptr_stack_slot(env, state, spi); 5291 if (err) 5292 return err; 5293 } 5294 5295 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5296 /* Variable offset writes destroy any spilled pointers in range. */ 5297 for (i = min_off; i < max_off; i++) { 5298 u8 new_type, *stype; 5299 int slot, spi; 5300 5301 slot = -i - 1; 5302 spi = slot / BPF_REG_SIZE; 5303 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5304 mark_stack_slot_scratched(env, spi); 5305 5306 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5307 /* Reject the write if range we may write to has not 5308 * been initialized beforehand. If we didn't reject 5309 * here, the ptr status would be erased below (even 5310 * though not all slots are actually overwritten), 5311 * possibly opening the door to leaks. 5312 * 5313 * We do however catch STACK_INVALID case below, and 5314 * only allow reading possibly uninitialized memory 5315 * later for CAP_PERFMON, as the write may not happen to 5316 * that slot. 5317 */ 5318 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5319 insn_idx, i); 5320 return -EINVAL; 5321 } 5322 5323 /* If writing_zero and the spi slot contains a spill of value 0, 5324 * maintain the spill type. 5325 */ 5326 if (writing_zero && *stype == STACK_SPILL && 5327 is_spilled_scalar_reg(&state->stack[spi])) { 5328 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5329 5330 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5331 zero_used = true; 5332 continue; 5333 } 5334 } 5335 5336 /* Erase all other spilled pointers. */ 5337 state->stack[spi].spilled_ptr.type = NOT_INIT; 5338 5339 /* Update the slot type. */ 5340 new_type = STACK_MISC; 5341 if (writing_zero && *stype == STACK_ZERO) { 5342 new_type = STACK_ZERO; 5343 zero_used = true; 5344 } 5345 /* If the slot is STACK_INVALID, we check whether it's OK to 5346 * pretend that it will be initialized by this write. The slot 5347 * might not actually be written to, and so if we mark it as 5348 * initialized future reads might leak uninitialized memory. 5349 * For privileged programs, we will accept such reads to slots 5350 * that may or may not be written because, if we're reject 5351 * them, the error would be too confusing. 5352 */ 5353 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5354 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5355 insn_idx, i); 5356 return -EINVAL; 5357 } 5358 *stype = new_type; 5359 } 5360 if (zero_used) { 5361 /* backtracking doesn't work for STACK_ZERO yet. */ 5362 err = mark_chain_precision(env, value_regno); 5363 if (err) 5364 return err; 5365 } 5366 return 0; 5367 } 5368 5369 /* When register 'dst_regno' is assigned some values from stack[min_off, 5370 * max_off), we set the register's type according to the types of the 5371 * respective stack slots. If all the stack values are known to be zeros, then 5372 * so is the destination reg. Otherwise, the register is considered to be 5373 * SCALAR. This function does not deal with register filling; the caller must 5374 * ensure that all spilled registers in the stack range have been marked as 5375 * read. 5376 */ 5377 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5378 /* func where src register points to */ 5379 struct bpf_func_state *ptr_state, 5380 int min_off, int max_off, int dst_regno) 5381 { 5382 struct bpf_verifier_state *vstate = env->cur_state; 5383 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5384 int i, slot, spi; 5385 u8 *stype; 5386 int zeros = 0; 5387 5388 for (i = min_off; i < max_off; i++) { 5389 slot = -i - 1; 5390 spi = slot / BPF_REG_SIZE; 5391 mark_stack_slot_scratched(env, spi); 5392 stype = ptr_state->stack[spi].slot_type; 5393 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5394 break; 5395 zeros++; 5396 } 5397 if (zeros == max_off - min_off) { 5398 /* Any access_size read into register is zero extended, 5399 * so the whole register == const_zero. 5400 */ 5401 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5402 } else { 5403 /* have read misc data from the stack */ 5404 mark_reg_unknown(env, state->regs, dst_regno); 5405 } 5406 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5407 } 5408 5409 /* Read the stack at 'off' and put the results into the register indicated by 5410 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5411 * spilled reg. 5412 * 5413 * 'dst_regno' can be -1, meaning that the read value is not going to a 5414 * register. 5415 * 5416 * The access is assumed to be within the current stack bounds. 5417 */ 5418 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5419 /* func where src register points to */ 5420 struct bpf_func_state *reg_state, 5421 int off, int size, int dst_regno) 5422 { 5423 struct bpf_verifier_state *vstate = env->cur_state; 5424 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5425 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5426 struct bpf_reg_state *reg; 5427 u8 *stype, type; 5428 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5429 5430 stype = reg_state->stack[spi].slot_type; 5431 reg = ®_state->stack[spi].spilled_ptr; 5432 5433 mark_stack_slot_scratched(env, spi); 5434 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5435 5436 if (is_spilled_reg(®_state->stack[spi])) { 5437 u8 spill_size = 1; 5438 5439 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5440 spill_size++; 5441 5442 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5443 if (reg->type != SCALAR_VALUE) { 5444 verbose_linfo(env, env->insn_idx, "; "); 5445 verbose(env, "invalid size of register fill\n"); 5446 return -EACCES; 5447 } 5448 5449 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5450 if (dst_regno < 0) 5451 return 0; 5452 5453 if (size <= spill_size && 5454 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5455 /* The earlier check_reg_arg() has decided the 5456 * subreg_def for this insn. Save it first. 5457 */ 5458 s32 subreg_def = state->regs[dst_regno].subreg_def; 5459 5460 copy_register_state(&state->regs[dst_regno], reg); 5461 state->regs[dst_regno].subreg_def = subreg_def; 5462 5463 /* Break the relation on a narrowing fill. 5464 * coerce_reg_to_size will adjust the boundaries. 5465 */ 5466 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5467 state->regs[dst_regno].id = 0; 5468 } else { 5469 int spill_cnt = 0, zero_cnt = 0; 5470 5471 for (i = 0; i < size; i++) { 5472 type = stype[(slot - i) % BPF_REG_SIZE]; 5473 if (type == STACK_SPILL) { 5474 spill_cnt++; 5475 continue; 5476 } 5477 if (type == STACK_MISC) 5478 continue; 5479 if (type == STACK_ZERO) { 5480 zero_cnt++; 5481 continue; 5482 } 5483 if (type == STACK_INVALID && env->allow_uninit_stack) 5484 continue; 5485 verbose(env, "invalid read from stack off %d+%d size %d\n", 5486 off, i, size); 5487 return -EACCES; 5488 } 5489 5490 if (spill_cnt == size && 5491 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5492 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5493 /* this IS register fill, so keep insn_flags */ 5494 } else if (zero_cnt == size) { 5495 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5496 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5497 insn_flags = 0; /* not restoring original register state */ 5498 } else { 5499 mark_reg_unknown(env, state->regs, dst_regno); 5500 insn_flags = 0; /* not restoring original register state */ 5501 } 5502 } 5503 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5504 } else if (dst_regno >= 0) { 5505 /* restore register state from stack */ 5506 copy_register_state(&state->regs[dst_regno], reg); 5507 /* mark reg as written since spilled pointer state likely 5508 * has its liveness marks cleared by is_state_visited() 5509 * which resets stack/reg liveness for state transitions 5510 */ 5511 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5512 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5513 /* If dst_regno==-1, the caller is asking us whether 5514 * it is acceptable to use this value as a SCALAR_VALUE 5515 * (e.g. for XADD). 5516 * We must not allow unprivileged callers to do that 5517 * with spilled pointers. 5518 */ 5519 verbose(env, "leaking pointer from stack off %d\n", 5520 off); 5521 return -EACCES; 5522 } 5523 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5524 } else { 5525 for (i = 0; i < size; i++) { 5526 type = stype[(slot - i) % BPF_REG_SIZE]; 5527 if (type == STACK_MISC) 5528 continue; 5529 if (type == STACK_ZERO) 5530 continue; 5531 if (type == STACK_INVALID && env->allow_uninit_stack) 5532 continue; 5533 verbose(env, "invalid read from stack off %d+%d size %d\n", 5534 off, i, size); 5535 return -EACCES; 5536 } 5537 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5538 if (dst_regno >= 0) 5539 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5540 insn_flags = 0; /* we are not restoring spilled register */ 5541 } 5542 if (insn_flags) 5543 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5544 return 0; 5545 } 5546 5547 enum bpf_access_src { 5548 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5549 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5550 }; 5551 5552 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5553 int regno, int off, int access_size, 5554 bool zero_size_allowed, 5555 enum bpf_access_type type, 5556 struct bpf_call_arg_meta *meta); 5557 5558 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5559 { 5560 return cur_regs(env) + regno; 5561 } 5562 5563 /* Read the stack at 'ptr_regno + off' and put the result into the register 5564 * 'dst_regno'. 5565 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5566 * but not its variable offset. 5567 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5568 * 5569 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5570 * filling registers (i.e. reads of spilled register cannot be detected when 5571 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5572 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5573 * offset; for a fixed offset check_stack_read_fixed_off should be used 5574 * instead. 5575 */ 5576 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5577 int ptr_regno, int off, int size, int dst_regno) 5578 { 5579 /* The state of the source register. */ 5580 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5581 struct bpf_func_state *ptr_state = func(env, reg); 5582 int err; 5583 int min_off, max_off; 5584 5585 /* Note that we pass a NULL meta, so raw access will not be permitted. 5586 */ 5587 err = check_stack_range_initialized(env, ptr_regno, off, size, 5588 false, BPF_READ, NULL); 5589 if (err) 5590 return err; 5591 5592 min_off = reg->smin_value + off; 5593 max_off = reg->smax_value + off; 5594 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5595 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5596 return 0; 5597 } 5598 5599 /* check_stack_read dispatches to check_stack_read_fixed_off or 5600 * check_stack_read_var_off. 5601 * 5602 * The caller must ensure that the offset falls within the allocated stack 5603 * bounds. 5604 * 5605 * 'dst_regno' is a register which will receive the value from the stack. It 5606 * can be -1, meaning that the read value is not going to a register. 5607 */ 5608 static int check_stack_read(struct bpf_verifier_env *env, 5609 int ptr_regno, int off, int size, 5610 int dst_regno) 5611 { 5612 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5613 struct bpf_func_state *state = func(env, reg); 5614 int err; 5615 /* Some accesses are only permitted with a static offset. */ 5616 bool var_off = !tnum_is_const(reg->var_off); 5617 5618 /* The offset is required to be static when reads don't go to a 5619 * register, in order to not leak pointers (see 5620 * check_stack_read_fixed_off). 5621 */ 5622 if (dst_regno < 0 && var_off) { 5623 char tn_buf[48]; 5624 5625 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5626 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5627 tn_buf, off, size); 5628 return -EACCES; 5629 } 5630 /* Variable offset is prohibited for unprivileged mode for simplicity 5631 * since it requires corresponding support in Spectre masking for stack 5632 * ALU. See also retrieve_ptr_limit(). The check in 5633 * check_stack_access_for_ptr_arithmetic() called by 5634 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5635 * with variable offsets, therefore no check is required here. Further, 5636 * just checking it here would be insufficient as speculative stack 5637 * writes could still lead to unsafe speculative behaviour. 5638 */ 5639 if (!var_off) { 5640 off += reg->var_off.value; 5641 err = check_stack_read_fixed_off(env, state, off, size, 5642 dst_regno); 5643 } else { 5644 /* Variable offset stack reads need more conservative handling 5645 * than fixed offset ones. Note that dst_regno >= 0 on this 5646 * branch. 5647 */ 5648 err = check_stack_read_var_off(env, ptr_regno, off, size, 5649 dst_regno); 5650 } 5651 return err; 5652 } 5653 5654 5655 /* check_stack_write dispatches to check_stack_write_fixed_off or 5656 * check_stack_write_var_off. 5657 * 5658 * 'ptr_regno' is the register used as a pointer into the stack. 5659 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5660 * 'value_regno' is the register whose value we're writing to the stack. It can 5661 * be -1, meaning that we're not writing from a register. 5662 * 5663 * The caller must ensure that the offset falls within the maximum stack size. 5664 */ 5665 static int check_stack_write(struct bpf_verifier_env *env, 5666 int ptr_regno, int off, int size, 5667 int value_regno, int insn_idx) 5668 { 5669 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5670 struct bpf_func_state *state = func(env, reg); 5671 int err; 5672 5673 if (tnum_is_const(reg->var_off)) { 5674 off += reg->var_off.value; 5675 err = check_stack_write_fixed_off(env, state, off, size, 5676 value_regno, insn_idx); 5677 } else { 5678 /* Variable offset stack reads need more conservative handling 5679 * than fixed offset ones. 5680 */ 5681 err = check_stack_write_var_off(env, state, 5682 ptr_regno, off, size, 5683 value_regno, insn_idx); 5684 } 5685 return err; 5686 } 5687 5688 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5689 int off, int size, enum bpf_access_type type) 5690 { 5691 struct bpf_reg_state *regs = cur_regs(env); 5692 struct bpf_map *map = regs[regno].map_ptr; 5693 u32 cap = bpf_map_flags_to_cap(map); 5694 5695 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5696 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5697 map->value_size, off, size); 5698 return -EACCES; 5699 } 5700 5701 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5702 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5703 map->value_size, off, size); 5704 return -EACCES; 5705 } 5706 5707 return 0; 5708 } 5709 5710 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5711 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5712 int off, int size, u32 mem_size, 5713 bool zero_size_allowed) 5714 { 5715 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5716 struct bpf_reg_state *reg; 5717 5718 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5719 return 0; 5720 5721 reg = &cur_regs(env)[regno]; 5722 switch (reg->type) { 5723 case PTR_TO_MAP_KEY: 5724 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5725 mem_size, off, size); 5726 break; 5727 case PTR_TO_MAP_VALUE: 5728 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5729 mem_size, off, size); 5730 break; 5731 case PTR_TO_PACKET: 5732 case PTR_TO_PACKET_META: 5733 case PTR_TO_PACKET_END: 5734 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5735 off, size, regno, reg->id, off, mem_size); 5736 break; 5737 case PTR_TO_MEM: 5738 default: 5739 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5740 mem_size, off, size); 5741 } 5742 5743 return -EACCES; 5744 } 5745 5746 /* check read/write into a memory region with possible variable offset */ 5747 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5748 int off, int size, u32 mem_size, 5749 bool zero_size_allowed) 5750 { 5751 struct bpf_verifier_state *vstate = env->cur_state; 5752 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5753 struct bpf_reg_state *reg = &state->regs[regno]; 5754 int err; 5755 5756 /* We may have adjusted the register pointing to memory region, so we 5757 * need to try adding each of min_value and max_value to off 5758 * to make sure our theoretical access will be safe. 5759 * 5760 * The minimum value is only important with signed 5761 * comparisons where we can't assume the floor of a 5762 * value is 0. If we are using signed variables for our 5763 * index'es we need to make sure that whatever we use 5764 * will have a set floor within our range. 5765 */ 5766 if (reg->smin_value < 0 && 5767 (reg->smin_value == S64_MIN || 5768 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5769 reg->smin_value + off < 0)) { 5770 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5771 regno); 5772 return -EACCES; 5773 } 5774 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5775 mem_size, zero_size_allowed); 5776 if (err) { 5777 verbose(env, "R%d min value is outside of the allowed memory range\n", 5778 regno); 5779 return err; 5780 } 5781 5782 /* If we haven't set a max value then we need to bail since we can't be 5783 * sure we won't do bad things. 5784 * If reg->umax_value + off could overflow, treat that as unbounded too. 5785 */ 5786 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5787 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5788 regno); 5789 return -EACCES; 5790 } 5791 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5792 mem_size, zero_size_allowed); 5793 if (err) { 5794 verbose(env, "R%d max value is outside of the allowed memory range\n", 5795 regno); 5796 return err; 5797 } 5798 5799 return 0; 5800 } 5801 5802 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5803 const struct bpf_reg_state *reg, int regno, 5804 bool fixed_off_ok) 5805 { 5806 /* Access to this pointer-typed register or passing it to a helper 5807 * is only allowed in its original, unmodified form. 5808 */ 5809 5810 if (reg->off < 0) { 5811 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5812 reg_type_str(env, reg->type), regno, reg->off); 5813 return -EACCES; 5814 } 5815 5816 if (!fixed_off_ok && reg->off) { 5817 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5818 reg_type_str(env, reg->type), regno, reg->off); 5819 return -EACCES; 5820 } 5821 5822 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5823 char tn_buf[48]; 5824 5825 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5826 verbose(env, "variable %s access var_off=%s disallowed\n", 5827 reg_type_str(env, reg->type), tn_buf); 5828 return -EACCES; 5829 } 5830 5831 return 0; 5832 } 5833 5834 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5835 const struct bpf_reg_state *reg, int regno) 5836 { 5837 return __check_ptr_off_reg(env, reg, regno, false); 5838 } 5839 5840 static int map_kptr_match_type(struct bpf_verifier_env *env, 5841 struct btf_field *kptr_field, 5842 struct bpf_reg_state *reg, u32 regno) 5843 { 5844 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5845 int perm_flags; 5846 const char *reg_name = ""; 5847 5848 if (btf_is_kernel(reg->btf)) { 5849 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5850 5851 /* Only unreferenced case accepts untrusted pointers */ 5852 if (kptr_field->type == BPF_KPTR_UNREF) 5853 perm_flags |= PTR_UNTRUSTED; 5854 } else { 5855 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5856 if (kptr_field->type == BPF_KPTR_PERCPU) 5857 perm_flags |= MEM_PERCPU; 5858 } 5859 5860 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5861 goto bad_type; 5862 5863 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5864 reg_name = btf_type_name(reg->btf, reg->btf_id); 5865 5866 /* For ref_ptr case, release function check should ensure we get one 5867 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5868 * normal store of unreferenced kptr, we must ensure var_off is zero. 5869 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5870 * reg->off and reg->ref_obj_id are not needed here. 5871 */ 5872 if (__check_ptr_off_reg(env, reg, regno, true)) 5873 return -EACCES; 5874 5875 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5876 * we also need to take into account the reg->off. 5877 * 5878 * We want to support cases like: 5879 * 5880 * struct foo { 5881 * struct bar br; 5882 * struct baz bz; 5883 * }; 5884 * 5885 * struct foo *v; 5886 * v = func(); // PTR_TO_BTF_ID 5887 * val->foo = v; // reg->off is zero, btf and btf_id match type 5888 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5889 * // first member type of struct after comparison fails 5890 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5891 * // to match type 5892 * 5893 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5894 * is zero. We must also ensure that btf_struct_ids_match does not walk 5895 * the struct to match type against first member of struct, i.e. reject 5896 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5897 * strict mode to true for type match. 5898 */ 5899 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5900 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5901 kptr_field->type != BPF_KPTR_UNREF)) 5902 goto bad_type; 5903 return 0; 5904 bad_type: 5905 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5906 reg_type_str(env, reg->type), reg_name); 5907 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5908 if (kptr_field->type == BPF_KPTR_UNREF) 5909 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5910 targ_name); 5911 else 5912 verbose(env, "\n"); 5913 return -EINVAL; 5914 } 5915 5916 static bool in_sleepable(struct bpf_verifier_env *env) 5917 { 5918 return env->prog->sleepable || 5919 (env->cur_state && env->cur_state->in_sleepable); 5920 } 5921 5922 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5923 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5924 */ 5925 static bool in_rcu_cs(struct bpf_verifier_env *env) 5926 { 5927 return env->cur_state->active_rcu_lock || 5928 env->cur_state->active_locks || 5929 !in_sleepable(env); 5930 } 5931 5932 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5933 BTF_SET_START(rcu_protected_types) 5934 #ifdef CONFIG_NET 5935 BTF_ID(struct, prog_test_ref_kfunc) 5936 #endif 5937 #ifdef CONFIG_CGROUPS 5938 BTF_ID(struct, cgroup) 5939 #endif 5940 #ifdef CONFIG_BPF_JIT 5941 BTF_ID(struct, bpf_cpumask) 5942 #endif 5943 BTF_ID(struct, task_struct) 5944 #ifdef CONFIG_CRYPTO 5945 BTF_ID(struct, bpf_crypto_ctx) 5946 #endif 5947 BTF_SET_END(rcu_protected_types) 5948 5949 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5950 { 5951 if (!btf_is_kernel(btf)) 5952 return true; 5953 return btf_id_set_contains(&rcu_protected_types, btf_id); 5954 } 5955 5956 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5957 { 5958 struct btf_struct_meta *meta; 5959 5960 if (btf_is_kernel(kptr_field->kptr.btf)) 5961 return NULL; 5962 5963 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5964 kptr_field->kptr.btf_id); 5965 5966 return meta ? meta->record : NULL; 5967 } 5968 5969 static bool rcu_safe_kptr(const struct btf_field *field) 5970 { 5971 const struct btf_field_kptr *kptr = &field->kptr; 5972 5973 return field->type == BPF_KPTR_PERCPU || 5974 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5975 } 5976 5977 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5978 { 5979 struct btf_record *rec; 5980 u32 ret; 5981 5982 ret = PTR_MAYBE_NULL; 5983 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5984 ret |= MEM_RCU; 5985 if (kptr_field->type == BPF_KPTR_PERCPU) 5986 ret |= MEM_PERCPU; 5987 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5988 ret |= MEM_ALLOC; 5989 5990 rec = kptr_pointee_btf_record(kptr_field); 5991 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5992 ret |= NON_OWN_REF; 5993 } else { 5994 ret |= PTR_UNTRUSTED; 5995 } 5996 5997 return ret; 5998 } 5999 6000 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 6001 struct btf_field *field) 6002 { 6003 struct bpf_reg_state *reg; 6004 const struct btf_type *t; 6005 6006 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 6007 mark_reg_known_zero(env, cur_regs(env), regno); 6008 reg = reg_state(env, regno); 6009 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6010 reg->mem_size = t->size; 6011 reg->id = ++env->id_gen; 6012 6013 return 0; 6014 } 6015 6016 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 6017 int value_regno, int insn_idx, 6018 struct btf_field *kptr_field) 6019 { 6020 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 6021 int class = BPF_CLASS(insn->code); 6022 struct bpf_reg_state *val_reg; 6023 int ret; 6024 6025 /* Things we already checked for in check_map_access and caller: 6026 * - Reject cases where variable offset may touch kptr 6027 * - size of access (must be BPF_DW) 6028 * - tnum_is_const(reg->var_off) 6029 * - kptr_field->offset == off + reg->var_off.value 6030 */ 6031 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 6032 if (BPF_MODE(insn->code) != BPF_MEM) { 6033 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 6034 return -EACCES; 6035 } 6036 6037 /* We only allow loading referenced kptr, since it will be marked as 6038 * untrusted, similar to unreferenced kptr. 6039 */ 6040 if (class != BPF_LDX && 6041 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 6042 verbose(env, "store to referenced kptr disallowed\n"); 6043 return -EACCES; 6044 } 6045 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 6046 verbose(env, "store to uptr disallowed\n"); 6047 return -EACCES; 6048 } 6049 6050 if (class == BPF_LDX) { 6051 if (kptr_field->type == BPF_UPTR) 6052 return mark_uptr_ld_reg(env, value_regno, kptr_field); 6053 6054 /* We can simply mark the value_regno receiving the pointer 6055 * value from map as PTR_TO_BTF_ID, with the correct type. 6056 */ 6057 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, 6058 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 6059 btf_ld_kptr_type(env, kptr_field)); 6060 if (ret < 0) 6061 return ret; 6062 } else if (class == BPF_STX) { 6063 val_reg = reg_state(env, value_regno); 6064 if (!register_is_null(val_reg) && 6065 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 6066 return -EACCES; 6067 } else if (class == BPF_ST) { 6068 if (insn->imm) { 6069 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 6070 kptr_field->offset); 6071 return -EACCES; 6072 } 6073 } else { 6074 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 6075 return -EACCES; 6076 } 6077 return 0; 6078 } 6079 6080 /* check read/write into a map element with possible variable offset */ 6081 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 6082 int off, int size, bool zero_size_allowed, 6083 enum bpf_access_src src) 6084 { 6085 struct bpf_verifier_state *vstate = env->cur_state; 6086 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6087 struct bpf_reg_state *reg = &state->regs[regno]; 6088 struct bpf_map *map = reg->map_ptr; 6089 struct btf_record *rec; 6090 int err, i; 6091 6092 err = check_mem_region_access(env, regno, off, size, map->value_size, 6093 zero_size_allowed); 6094 if (err) 6095 return err; 6096 6097 if (IS_ERR_OR_NULL(map->record)) 6098 return 0; 6099 rec = map->record; 6100 for (i = 0; i < rec->cnt; i++) { 6101 struct btf_field *field = &rec->fields[i]; 6102 u32 p = field->offset; 6103 6104 /* If any part of a field can be touched by load/store, reject 6105 * this program. To check that [x1, x2) overlaps with [y1, y2), 6106 * it is sufficient to check x1 < y2 && y1 < x2. 6107 */ 6108 if (reg->smin_value + off < p + field->size && 6109 p < reg->umax_value + off + size) { 6110 switch (field->type) { 6111 case BPF_KPTR_UNREF: 6112 case BPF_KPTR_REF: 6113 case BPF_KPTR_PERCPU: 6114 case BPF_UPTR: 6115 if (src != ACCESS_DIRECT) { 6116 verbose(env, "%s cannot be accessed indirectly by helper\n", 6117 btf_field_type_name(field->type)); 6118 return -EACCES; 6119 } 6120 if (!tnum_is_const(reg->var_off)) { 6121 verbose(env, "%s access cannot have variable offset\n", 6122 btf_field_type_name(field->type)); 6123 return -EACCES; 6124 } 6125 if (p != off + reg->var_off.value) { 6126 verbose(env, "%s access misaligned expected=%u off=%llu\n", 6127 btf_field_type_name(field->type), 6128 p, off + reg->var_off.value); 6129 return -EACCES; 6130 } 6131 if (size != bpf_size_to_bytes(BPF_DW)) { 6132 verbose(env, "%s access size must be BPF_DW\n", 6133 btf_field_type_name(field->type)); 6134 return -EACCES; 6135 } 6136 break; 6137 default: 6138 verbose(env, "%s cannot be accessed directly by load/store\n", 6139 btf_field_type_name(field->type)); 6140 return -EACCES; 6141 } 6142 } 6143 } 6144 return 0; 6145 } 6146 6147 #define MAX_PACKET_OFF 0xffff 6148 6149 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6150 const struct bpf_call_arg_meta *meta, 6151 enum bpf_access_type t) 6152 { 6153 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6154 6155 switch (prog_type) { 6156 /* Program types only with direct read access go here! */ 6157 case BPF_PROG_TYPE_LWT_IN: 6158 case BPF_PROG_TYPE_LWT_OUT: 6159 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6160 case BPF_PROG_TYPE_SK_REUSEPORT: 6161 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6162 case BPF_PROG_TYPE_CGROUP_SKB: 6163 if (t == BPF_WRITE) 6164 return false; 6165 fallthrough; 6166 6167 /* Program types with direct read + write access go here! */ 6168 case BPF_PROG_TYPE_SCHED_CLS: 6169 case BPF_PROG_TYPE_SCHED_ACT: 6170 case BPF_PROG_TYPE_XDP: 6171 case BPF_PROG_TYPE_LWT_XMIT: 6172 case BPF_PROG_TYPE_SK_SKB: 6173 case BPF_PROG_TYPE_SK_MSG: 6174 if (meta) 6175 return meta->pkt_access; 6176 6177 env->seen_direct_write = true; 6178 return true; 6179 6180 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6181 if (t == BPF_WRITE) 6182 env->seen_direct_write = true; 6183 6184 return true; 6185 6186 default: 6187 return false; 6188 } 6189 } 6190 6191 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6192 int size, bool zero_size_allowed) 6193 { 6194 struct bpf_reg_state *regs = cur_regs(env); 6195 struct bpf_reg_state *reg = ®s[regno]; 6196 int err; 6197 6198 /* We may have added a variable offset to the packet pointer; but any 6199 * reg->range we have comes after that. We are only checking the fixed 6200 * offset. 6201 */ 6202 6203 /* We don't allow negative numbers, because we aren't tracking enough 6204 * detail to prove they're safe. 6205 */ 6206 if (reg->smin_value < 0) { 6207 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6208 regno); 6209 return -EACCES; 6210 } 6211 6212 err = reg->range < 0 ? -EINVAL : 6213 __check_mem_access(env, regno, off, size, reg->range, 6214 zero_size_allowed); 6215 if (err) { 6216 verbose(env, "R%d offset is outside of the packet\n", regno); 6217 return err; 6218 } 6219 6220 /* __check_mem_access has made sure "off + size - 1" is within u16. 6221 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6222 * otherwise find_good_pkt_pointers would have refused to set range info 6223 * that __check_mem_access would have rejected this pkt access. 6224 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6225 */ 6226 env->prog->aux->max_pkt_offset = 6227 max_t(u32, env->prog->aux->max_pkt_offset, 6228 off + reg->umax_value + size - 1); 6229 6230 return err; 6231 } 6232 6233 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6234 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6235 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6236 { 6237 if (env->ops->is_valid_access && 6238 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6239 /* A non zero info.ctx_field_size indicates that this field is a 6240 * candidate for later verifier transformation to load the whole 6241 * field and then apply a mask when accessed with a narrower 6242 * access than actual ctx access size. A zero info.ctx_field_size 6243 * will only allow for whole field access and rejects any other 6244 * type of narrower access. 6245 */ 6246 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6247 if (info->ref_obj_id && 6248 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6249 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6250 off); 6251 return -EACCES; 6252 } 6253 } else { 6254 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6255 } 6256 /* remember the offset of last byte accessed in ctx */ 6257 if (env->prog->aux->max_ctx_offset < off + size) 6258 env->prog->aux->max_ctx_offset = off + size; 6259 return 0; 6260 } 6261 6262 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6263 return -EACCES; 6264 } 6265 6266 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6267 int size) 6268 { 6269 if (size < 0 || off < 0 || 6270 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6271 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6272 off, size); 6273 return -EACCES; 6274 } 6275 return 0; 6276 } 6277 6278 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6279 u32 regno, int off, int size, 6280 enum bpf_access_type t) 6281 { 6282 struct bpf_reg_state *regs = cur_regs(env); 6283 struct bpf_reg_state *reg = ®s[regno]; 6284 struct bpf_insn_access_aux info = {}; 6285 bool valid; 6286 6287 if (reg->smin_value < 0) { 6288 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6289 regno); 6290 return -EACCES; 6291 } 6292 6293 switch (reg->type) { 6294 case PTR_TO_SOCK_COMMON: 6295 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6296 break; 6297 case PTR_TO_SOCKET: 6298 valid = bpf_sock_is_valid_access(off, size, t, &info); 6299 break; 6300 case PTR_TO_TCP_SOCK: 6301 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6302 break; 6303 case PTR_TO_XDP_SOCK: 6304 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6305 break; 6306 default: 6307 valid = false; 6308 } 6309 6310 6311 if (valid) { 6312 env->insn_aux_data[insn_idx].ctx_field_size = 6313 info.ctx_field_size; 6314 return 0; 6315 } 6316 6317 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6318 regno, reg_type_str(env, reg->type), off, size); 6319 6320 return -EACCES; 6321 } 6322 6323 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6324 { 6325 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6326 } 6327 6328 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6329 { 6330 const struct bpf_reg_state *reg = reg_state(env, regno); 6331 6332 return reg->type == PTR_TO_CTX; 6333 } 6334 6335 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6336 { 6337 const struct bpf_reg_state *reg = reg_state(env, regno); 6338 6339 return type_is_sk_pointer(reg->type); 6340 } 6341 6342 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6343 { 6344 const struct bpf_reg_state *reg = reg_state(env, regno); 6345 6346 return type_is_pkt_pointer(reg->type); 6347 } 6348 6349 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6350 { 6351 const struct bpf_reg_state *reg = reg_state(env, regno); 6352 6353 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6354 return reg->type == PTR_TO_FLOW_KEYS; 6355 } 6356 6357 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6358 { 6359 const struct bpf_reg_state *reg = reg_state(env, regno); 6360 6361 return reg->type == PTR_TO_ARENA; 6362 } 6363 6364 /* Return false if @regno contains a pointer whose type isn't supported for 6365 * atomic instruction @insn. 6366 */ 6367 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6368 struct bpf_insn *insn) 6369 { 6370 if (is_ctx_reg(env, regno)) 6371 return false; 6372 if (is_pkt_reg(env, regno)) 6373 return false; 6374 if (is_flow_key_reg(env, regno)) 6375 return false; 6376 if (is_sk_reg(env, regno)) 6377 return false; 6378 if (is_arena_reg(env, regno)) 6379 return bpf_jit_supports_insn(insn, true); 6380 6381 return true; 6382 } 6383 6384 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6385 #ifdef CONFIG_NET 6386 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6387 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6388 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6389 #endif 6390 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6391 }; 6392 6393 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6394 { 6395 /* A referenced register is always trusted. */ 6396 if (reg->ref_obj_id) 6397 return true; 6398 6399 /* Types listed in the reg2btf_ids are always trusted */ 6400 if (reg2btf_ids[base_type(reg->type)] && 6401 !bpf_type_has_unsafe_modifiers(reg->type)) 6402 return true; 6403 6404 /* If a register is not referenced, it is trusted if it has the 6405 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6406 * other type modifiers may be safe, but we elect to take an opt-in 6407 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6408 * not. 6409 * 6410 * Eventually, we should make PTR_TRUSTED the single source of truth 6411 * for whether a register is trusted. 6412 */ 6413 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6414 !bpf_type_has_unsafe_modifiers(reg->type); 6415 } 6416 6417 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6418 { 6419 return reg->type & MEM_RCU; 6420 } 6421 6422 static void clear_trusted_flags(enum bpf_type_flag *flag) 6423 { 6424 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6425 } 6426 6427 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6428 const struct bpf_reg_state *reg, 6429 int off, int size, bool strict) 6430 { 6431 struct tnum reg_off; 6432 int ip_align; 6433 6434 /* Byte size accesses are always allowed. */ 6435 if (!strict || size == 1) 6436 return 0; 6437 6438 /* For platforms that do not have a Kconfig enabling 6439 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6440 * NET_IP_ALIGN is universally set to '2'. And on platforms 6441 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6442 * to this code only in strict mode where we want to emulate 6443 * the NET_IP_ALIGN==2 checking. Therefore use an 6444 * unconditional IP align value of '2'. 6445 */ 6446 ip_align = 2; 6447 6448 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6449 if (!tnum_is_aligned(reg_off, size)) { 6450 char tn_buf[48]; 6451 6452 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6453 verbose(env, 6454 "misaligned packet access off %d+%s+%d+%d size %d\n", 6455 ip_align, tn_buf, reg->off, off, size); 6456 return -EACCES; 6457 } 6458 6459 return 0; 6460 } 6461 6462 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6463 const struct bpf_reg_state *reg, 6464 const char *pointer_desc, 6465 int off, int size, bool strict) 6466 { 6467 struct tnum reg_off; 6468 6469 /* Byte size accesses are always allowed. */ 6470 if (!strict || size == 1) 6471 return 0; 6472 6473 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6474 if (!tnum_is_aligned(reg_off, size)) { 6475 char tn_buf[48]; 6476 6477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6478 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6479 pointer_desc, tn_buf, reg->off, off, size); 6480 return -EACCES; 6481 } 6482 6483 return 0; 6484 } 6485 6486 static int check_ptr_alignment(struct bpf_verifier_env *env, 6487 const struct bpf_reg_state *reg, int off, 6488 int size, bool strict_alignment_once) 6489 { 6490 bool strict = env->strict_alignment || strict_alignment_once; 6491 const char *pointer_desc = ""; 6492 6493 switch (reg->type) { 6494 case PTR_TO_PACKET: 6495 case PTR_TO_PACKET_META: 6496 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6497 * right in front, treat it the very same way. 6498 */ 6499 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6500 case PTR_TO_FLOW_KEYS: 6501 pointer_desc = "flow keys "; 6502 break; 6503 case PTR_TO_MAP_KEY: 6504 pointer_desc = "key "; 6505 break; 6506 case PTR_TO_MAP_VALUE: 6507 pointer_desc = "value "; 6508 break; 6509 case PTR_TO_CTX: 6510 pointer_desc = "context "; 6511 break; 6512 case PTR_TO_STACK: 6513 pointer_desc = "stack "; 6514 /* The stack spill tracking logic in check_stack_write_fixed_off() 6515 * and check_stack_read_fixed_off() relies on stack accesses being 6516 * aligned. 6517 */ 6518 strict = true; 6519 break; 6520 case PTR_TO_SOCKET: 6521 pointer_desc = "sock "; 6522 break; 6523 case PTR_TO_SOCK_COMMON: 6524 pointer_desc = "sock_common "; 6525 break; 6526 case PTR_TO_TCP_SOCK: 6527 pointer_desc = "tcp_sock "; 6528 break; 6529 case PTR_TO_XDP_SOCK: 6530 pointer_desc = "xdp_sock "; 6531 break; 6532 case PTR_TO_ARENA: 6533 return 0; 6534 default: 6535 break; 6536 } 6537 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6538 strict); 6539 } 6540 6541 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6542 { 6543 if (!bpf_jit_supports_private_stack()) 6544 return NO_PRIV_STACK; 6545 6546 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6547 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6548 * explicitly. 6549 */ 6550 switch (prog->type) { 6551 case BPF_PROG_TYPE_KPROBE: 6552 case BPF_PROG_TYPE_TRACEPOINT: 6553 case BPF_PROG_TYPE_PERF_EVENT: 6554 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6555 return PRIV_STACK_ADAPTIVE; 6556 case BPF_PROG_TYPE_TRACING: 6557 case BPF_PROG_TYPE_LSM: 6558 case BPF_PROG_TYPE_STRUCT_OPS: 6559 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6560 return PRIV_STACK_ADAPTIVE; 6561 fallthrough; 6562 default: 6563 break; 6564 } 6565 6566 return NO_PRIV_STACK; 6567 } 6568 6569 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6570 { 6571 if (env->prog->jit_requested) 6572 return round_up(stack_depth, 16); 6573 6574 /* round up to 32-bytes, since this is granularity 6575 * of interpreter stack size 6576 */ 6577 return round_up(max_t(u32, stack_depth, 1), 32); 6578 } 6579 6580 /* starting from main bpf function walk all instructions of the function 6581 * and recursively walk all callees that given function can call. 6582 * Ignore jump and exit insns. 6583 * Since recursion is prevented by check_cfg() this algorithm 6584 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6585 */ 6586 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6587 bool priv_stack_supported) 6588 { 6589 struct bpf_subprog_info *subprog = env->subprog_info; 6590 struct bpf_insn *insn = env->prog->insnsi; 6591 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6592 bool tail_call_reachable = false; 6593 int ret_insn[MAX_CALL_FRAMES]; 6594 int ret_prog[MAX_CALL_FRAMES]; 6595 int j; 6596 6597 i = subprog[idx].start; 6598 if (!priv_stack_supported) 6599 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6600 process_func: 6601 /* protect against potential stack overflow that might happen when 6602 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6603 * depth for such case down to 256 so that the worst case scenario 6604 * would result in 8k stack size (32 which is tailcall limit * 256 = 6605 * 8k). 6606 * 6607 * To get the idea what might happen, see an example: 6608 * func1 -> sub rsp, 128 6609 * subfunc1 -> sub rsp, 256 6610 * tailcall1 -> add rsp, 256 6611 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6612 * subfunc2 -> sub rsp, 64 6613 * subfunc22 -> sub rsp, 128 6614 * tailcall2 -> add rsp, 128 6615 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6616 * 6617 * tailcall will unwind the current stack frame but it will not get rid 6618 * of caller's stack as shown on the example above. 6619 */ 6620 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6621 verbose(env, 6622 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6623 depth); 6624 return -EACCES; 6625 } 6626 6627 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6628 if (priv_stack_supported) { 6629 /* Request private stack support only if the subprog stack 6630 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6631 * avoid jit penalty if the stack usage is small. 6632 */ 6633 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6634 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6635 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6636 } 6637 6638 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6639 if (subprog_depth > MAX_BPF_STACK) { 6640 verbose(env, "stack size of subprog %d is %d. Too large\n", 6641 idx, subprog_depth); 6642 return -EACCES; 6643 } 6644 } else { 6645 depth += subprog_depth; 6646 if (depth > MAX_BPF_STACK) { 6647 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6648 frame + 1, depth); 6649 return -EACCES; 6650 } 6651 } 6652 continue_func: 6653 subprog_end = subprog[idx + 1].start; 6654 for (; i < subprog_end; i++) { 6655 int next_insn, sidx; 6656 6657 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6658 bool err = false; 6659 6660 if (!is_bpf_throw_kfunc(insn + i)) 6661 continue; 6662 if (subprog[idx].is_cb) 6663 err = true; 6664 for (int c = 0; c < frame && !err; c++) { 6665 if (subprog[ret_prog[c]].is_cb) { 6666 err = true; 6667 break; 6668 } 6669 } 6670 if (!err) 6671 continue; 6672 verbose(env, 6673 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6674 i, idx); 6675 return -EINVAL; 6676 } 6677 6678 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6679 continue; 6680 /* remember insn and function to return to */ 6681 ret_insn[frame] = i + 1; 6682 ret_prog[frame] = idx; 6683 6684 /* find the callee */ 6685 next_insn = i + insn[i].imm + 1; 6686 sidx = find_subprog(env, next_insn); 6687 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6688 return -EFAULT; 6689 if (subprog[sidx].is_async_cb) { 6690 if (subprog[sidx].has_tail_call) { 6691 verifier_bug(env, "subprog has tail_call and async cb"); 6692 return -EFAULT; 6693 } 6694 /* async callbacks don't increase bpf prog stack size unless called directly */ 6695 if (!bpf_pseudo_call(insn + i)) 6696 continue; 6697 if (subprog[sidx].is_exception_cb) { 6698 verbose(env, "insn %d cannot call exception cb directly", i); 6699 return -EINVAL; 6700 } 6701 } 6702 i = next_insn; 6703 idx = sidx; 6704 if (!priv_stack_supported) 6705 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6706 6707 if (subprog[idx].has_tail_call) 6708 tail_call_reachable = true; 6709 6710 frame++; 6711 if (frame >= MAX_CALL_FRAMES) { 6712 verbose(env, "the call stack of %d frames is too deep !\n", 6713 frame); 6714 return -E2BIG; 6715 } 6716 goto process_func; 6717 } 6718 /* if tail call got detected across bpf2bpf calls then mark each of the 6719 * currently present subprog frames as tail call reachable subprogs; 6720 * this info will be utilized by JIT so that we will be preserving the 6721 * tail call counter throughout bpf2bpf calls combined with tailcalls 6722 */ 6723 if (tail_call_reachable) 6724 for (j = 0; j < frame; j++) { 6725 if (subprog[ret_prog[j]].is_exception_cb) { 6726 verbose(env, "cannot tail call within exception cb\n"); 6727 return -EINVAL; 6728 } 6729 subprog[ret_prog[j]].tail_call_reachable = true; 6730 } 6731 if (subprog[0].tail_call_reachable) 6732 env->prog->aux->tail_call_reachable = true; 6733 6734 /* end of for() loop means the last insn of the 'subprog' 6735 * was reached. Doesn't matter whether it was JA or EXIT 6736 */ 6737 if (frame == 0) 6738 return 0; 6739 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6740 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6741 frame--; 6742 i = ret_insn[frame]; 6743 idx = ret_prog[frame]; 6744 goto continue_func; 6745 } 6746 6747 static int check_max_stack_depth(struct bpf_verifier_env *env) 6748 { 6749 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6750 struct bpf_subprog_info *si = env->subprog_info; 6751 bool priv_stack_supported; 6752 int ret; 6753 6754 for (int i = 0; i < env->subprog_cnt; i++) { 6755 if (si[i].has_tail_call) { 6756 priv_stack_mode = NO_PRIV_STACK; 6757 break; 6758 } 6759 } 6760 6761 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6762 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6763 6764 /* All async_cb subprogs use normal kernel stack. If a particular 6765 * subprog appears in both main prog and async_cb subtree, that 6766 * subprog will use normal kernel stack to avoid potential nesting. 6767 * The reverse subprog traversal ensures when main prog subtree is 6768 * checked, the subprogs appearing in async_cb subtrees are already 6769 * marked as using normal kernel stack, so stack size checking can 6770 * be done properly. 6771 */ 6772 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6773 if (!i || si[i].is_async_cb) { 6774 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6775 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6776 if (ret < 0) 6777 return ret; 6778 } 6779 } 6780 6781 for (int i = 0; i < env->subprog_cnt; i++) { 6782 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6783 env->prog->aux->jits_use_priv_stack = true; 6784 break; 6785 } 6786 } 6787 6788 return 0; 6789 } 6790 6791 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6792 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6793 const struct bpf_insn *insn, int idx) 6794 { 6795 int start = idx + insn->imm + 1, subprog; 6796 6797 subprog = find_subprog(env, start); 6798 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6799 return -EFAULT; 6800 return env->subprog_info[subprog].stack_depth; 6801 } 6802 #endif 6803 6804 static int __check_buffer_access(struct bpf_verifier_env *env, 6805 const char *buf_info, 6806 const struct bpf_reg_state *reg, 6807 int regno, int off, int size) 6808 { 6809 if (off < 0) { 6810 verbose(env, 6811 "R%d invalid %s buffer access: off=%d, size=%d\n", 6812 regno, buf_info, off, size); 6813 return -EACCES; 6814 } 6815 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6816 char tn_buf[48]; 6817 6818 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6819 verbose(env, 6820 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6821 regno, off, tn_buf); 6822 return -EACCES; 6823 } 6824 6825 return 0; 6826 } 6827 6828 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6829 const struct bpf_reg_state *reg, 6830 int regno, int off, int size) 6831 { 6832 int err; 6833 6834 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6835 if (err) 6836 return err; 6837 6838 if (off + size > env->prog->aux->max_tp_access) 6839 env->prog->aux->max_tp_access = off + size; 6840 6841 return 0; 6842 } 6843 6844 static int check_buffer_access(struct bpf_verifier_env *env, 6845 const struct bpf_reg_state *reg, 6846 int regno, int off, int size, 6847 bool zero_size_allowed, 6848 u32 *max_access) 6849 { 6850 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6851 int err; 6852 6853 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6854 if (err) 6855 return err; 6856 6857 if (off + size > *max_access) 6858 *max_access = off + size; 6859 6860 return 0; 6861 } 6862 6863 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6864 static void zext_32_to_64(struct bpf_reg_state *reg) 6865 { 6866 reg->var_off = tnum_subreg(reg->var_off); 6867 __reg_assign_32_into_64(reg); 6868 } 6869 6870 /* truncate register to smaller size (in bytes) 6871 * must be called with size < BPF_REG_SIZE 6872 */ 6873 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6874 { 6875 u64 mask; 6876 6877 /* clear high bits in bit representation */ 6878 reg->var_off = tnum_cast(reg->var_off, size); 6879 6880 /* fix arithmetic bounds */ 6881 mask = ((u64)1 << (size * 8)) - 1; 6882 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6883 reg->umin_value &= mask; 6884 reg->umax_value &= mask; 6885 } else { 6886 reg->umin_value = 0; 6887 reg->umax_value = mask; 6888 } 6889 reg->smin_value = reg->umin_value; 6890 reg->smax_value = reg->umax_value; 6891 6892 /* If size is smaller than 32bit register the 32bit register 6893 * values are also truncated so we push 64-bit bounds into 6894 * 32-bit bounds. Above were truncated < 32-bits already. 6895 */ 6896 if (size < 4) 6897 __mark_reg32_unbounded(reg); 6898 6899 reg_bounds_sync(reg); 6900 } 6901 6902 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6903 { 6904 if (size == 1) { 6905 reg->smin_value = reg->s32_min_value = S8_MIN; 6906 reg->smax_value = reg->s32_max_value = S8_MAX; 6907 } else if (size == 2) { 6908 reg->smin_value = reg->s32_min_value = S16_MIN; 6909 reg->smax_value = reg->s32_max_value = S16_MAX; 6910 } else { 6911 /* size == 4 */ 6912 reg->smin_value = reg->s32_min_value = S32_MIN; 6913 reg->smax_value = reg->s32_max_value = S32_MAX; 6914 } 6915 reg->umin_value = reg->u32_min_value = 0; 6916 reg->umax_value = U64_MAX; 6917 reg->u32_max_value = U32_MAX; 6918 reg->var_off = tnum_unknown; 6919 } 6920 6921 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6922 { 6923 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6924 u64 top_smax_value, top_smin_value; 6925 u64 num_bits = size * 8; 6926 6927 if (tnum_is_const(reg->var_off)) { 6928 u64_cval = reg->var_off.value; 6929 if (size == 1) 6930 reg->var_off = tnum_const((s8)u64_cval); 6931 else if (size == 2) 6932 reg->var_off = tnum_const((s16)u64_cval); 6933 else 6934 /* size == 4 */ 6935 reg->var_off = tnum_const((s32)u64_cval); 6936 6937 u64_cval = reg->var_off.value; 6938 reg->smax_value = reg->smin_value = u64_cval; 6939 reg->umax_value = reg->umin_value = u64_cval; 6940 reg->s32_max_value = reg->s32_min_value = u64_cval; 6941 reg->u32_max_value = reg->u32_min_value = u64_cval; 6942 return; 6943 } 6944 6945 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6946 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6947 6948 if (top_smax_value != top_smin_value) 6949 goto out; 6950 6951 /* find the s64_min and s64_min after sign extension */ 6952 if (size == 1) { 6953 init_s64_max = (s8)reg->smax_value; 6954 init_s64_min = (s8)reg->smin_value; 6955 } else if (size == 2) { 6956 init_s64_max = (s16)reg->smax_value; 6957 init_s64_min = (s16)reg->smin_value; 6958 } else { 6959 init_s64_max = (s32)reg->smax_value; 6960 init_s64_min = (s32)reg->smin_value; 6961 } 6962 6963 s64_max = max(init_s64_max, init_s64_min); 6964 s64_min = min(init_s64_max, init_s64_min); 6965 6966 /* both of s64_max/s64_min positive or negative */ 6967 if ((s64_max >= 0) == (s64_min >= 0)) { 6968 reg->s32_min_value = reg->smin_value = s64_min; 6969 reg->s32_max_value = reg->smax_value = s64_max; 6970 reg->u32_min_value = reg->umin_value = s64_min; 6971 reg->u32_max_value = reg->umax_value = s64_max; 6972 reg->var_off = tnum_range(s64_min, s64_max); 6973 return; 6974 } 6975 6976 out: 6977 set_sext64_default_val(reg, size); 6978 } 6979 6980 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6981 { 6982 if (size == 1) { 6983 reg->s32_min_value = S8_MIN; 6984 reg->s32_max_value = S8_MAX; 6985 } else { 6986 /* size == 2 */ 6987 reg->s32_min_value = S16_MIN; 6988 reg->s32_max_value = S16_MAX; 6989 } 6990 reg->u32_min_value = 0; 6991 reg->u32_max_value = U32_MAX; 6992 reg->var_off = tnum_subreg(tnum_unknown); 6993 } 6994 6995 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6996 { 6997 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6998 u32 top_smax_value, top_smin_value; 6999 u32 num_bits = size * 8; 7000 7001 if (tnum_is_const(reg->var_off)) { 7002 u32_val = reg->var_off.value; 7003 if (size == 1) 7004 reg->var_off = tnum_const((s8)u32_val); 7005 else 7006 reg->var_off = tnum_const((s16)u32_val); 7007 7008 u32_val = reg->var_off.value; 7009 reg->s32_min_value = reg->s32_max_value = u32_val; 7010 reg->u32_min_value = reg->u32_max_value = u32_val; 7011 return; 7012 } 7013 7014 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 7015 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 7016 7017 if (top_smax_value != top_smin_value) 7018 goto out; 7019 7020 /* find the s32_min and s32_min after sign extension */ 7021 if (size == 1) { 7022 init_s32_max = (s8)reg->s32_max_value; 7023 init_s32_min = (s8)reg->s32_min_value; 7024 } else { 7025 /* size == 2 */ 7026 init_s32_max = (s16)reg->s32_max_value; 7027 init_s32_min = (s16)reg->s32_min_value; 7028 } 7029 s32_max = max(init_s32_max, init_s32_min); 7030 s32_min = min(init_s32_max, init_s32_min); 7031 7032 if ((s32_min >= 0) == (s32_max >= 0)) { 7033 reg->s32_min_value = s32_min; 7034 reg->s32_max_value = s32_max; 7035 reg->u32_min_value = (u32)s32_min; 7036 reg->u32_max_value = (u32)s32_max; 7037 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 7038 return; 7039 } 7040 7041 out: 7042 set_sext32_default_val(reg, size); 7043 } 7044 7045 static bool bpf_map_is_rdonly(const struct bpf_map *map) 7046 { 7047 /* A map is considered read-only if the following condition are true: 7048 * 7049 * 1) BPF program side cannot change any of the map content. The 7050 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 7051 * and was set at map creation time. 7052 * 2) The map value(s) have been initialized from user space by a 7053 * loader and then "frozen", such that no new map update/delete 7054 * operations from syscall side are possible for the rest of 7055 * the map's lifetime from that point onwards. 7056 * 3) Any parallel/pending map update/delete operations from syscall 7057 * side have been completed. Only after that point, it's safe to 7058 * assume that map value(s) are immutable. 7059 */ 7060 return (map->map_flags & BPF_F_RDONLY_PROG) && 7061 READ_ONCE(map->frozen) && 7062 !bpf_map_write_active(map); 7063 } 7064 7065 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 7066 bool is_ldsx) 7067 { 7068 void *ptr; 7069 u64 addr; 7070 int err; 7071 7072 err = map->ops->map_direct_value_addr(map, &addr, off); 7073 if (err) 7074 return err; 7075 ptr = (void *)(long)addr + off; 7076 7077 switch (size) { 7078 case sizeof(u8): 7079 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 7080 break; 7081 case sizeof(u16): 7082 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 7083 break; 7084 case sizeof(u32): 7085 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 7086 break; 7087 case sizeof(u64): 7088 *val = *(u64 *)ptr; 7089 break; 7090 default: 7091 return -EINVAL; 7092 } 7093 return 0; 7094 } 7095 7096 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 7097 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 7098 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 7099 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 7100 7101 /* 7102 * Allow list few fields as RCU trusted or full trusted. 7103 * This logic doesn't allow mix tagging and will be removed once GCC supports 7104 * btf_type_tag. 7105 */ 7106 7107 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 7108 BTF_TYPE_SAFE_RCU(struct task_struct) { 7109 const cpumask_t *cpus_ptr; 7110 struct css_set __rcu *cgroups; 7111 struct task_struct __rcu *real_parent; 7112 struct task_struct *group_leader; 7113 }; 7114 7115 BTF_TYPE_SAFE_RCU(struct cgroup) { 7116 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 7117 struct kernfs_node *kn; 7118 }; 7119 7120 BTF_TYPE_SAFE_RCU(struct css_set) { 7121 struct cgroup *dfl_cgrp; 7122 }; 7123 7124 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { 7125 struct cgroup *cgroup; 7126 }; 7127 7128 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 7129 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 7130 struct file __rcu *exe_file; 7131 }; 7132 7133 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7134 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7135 */ 7136 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7137 struct sock *sk; 7138 }; 7139 7140 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7141 struct sock *sk; 7142 }; 7143 7144 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7145 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7146 struct seq_file *seq; 7147 }; 7148 7149 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7150 struct bpf_iter_meta *meta; 7151 struct task_struct *task; 7152 }; 7153 7154 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7155 struct file *file; 7156 }; 7157 7158 BTF_TYPE_SAFE_TRUSTED(struct file) { 7159 struct inode *f_inode; 7160 }; 7161 7162 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7163 struct inode *d_inode; 7164 }; 7165 7166 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7167 struct sock *sk; 7168 }; 7169 7170 static bool type_is_rcu(struct bpf_verifier_env *env, 7171 struct bpf_reg_state *reg, 7172 const char *field_name, u32 btf_id) 7173 { 7174 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7175 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7176 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7177 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); 7178 7179 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7180 } 7181 7182 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7183 struct bpf_reg_state *reg, 7184 const char *field_name, u32 btf_id) 7185 { 7186 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7187 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7188 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7189 7190 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7191 } 7192 7193 static bool type_is_trusted(struct bpf_verifier_env *env, 7194 struct bpf_reg_state *reg, 7195 const char *field_name, u32 btf_id) 7196 { 7197 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7198 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7199 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7200 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7201 7202 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7203 } 7204 7205 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7206 struct bpf_reg_state *reg, 7207 const char *field_name, u32 btf_id) 7208 { 7209 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7210 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7211 7212 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7213 "__safe_trusted_or_null"); 7214 } 7215 7216 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7217 struct bpf_reg_state *regs, 7218 int regno, int off, int size, 7219 enum bpf_access_type atype, 7220 int value_regno) 7221 { 7222 struct bpf_reg_state *reg = regs + regno; 7223 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7224 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7225 const char *field_name = NULL; 7226 enum bpf_type_flag flag = 0; 7227 u32 btf_id = 0; 7228 int ret; 7229 7230 if (!env->allow_ptr_leaks) { 7231 verbose(env, 7232 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7233 tname); 7234 return -EPERM; 7235 } 7236 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7237 verbose(env, 7238 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7239 tname); 7240 return -EINVAL; 7241 } 7242 if (off < 0) { 7243 verbose(env, 7244 "R%d is ptr_%s invalid negative access: off=%d\n", 7245 regno, tname, off); 7246 return -EACCES; 7247 } 7248 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7249 char tn_buf[48]; 7250 7251 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7252 verbose(env, 7253 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7254 regno, tname, off, tn_buf); 7255 return -EACCES; 7256 } 7257 7258 if (reg->type & MEM_USER) { 7259 verbose(env, 7260 "R%d is ptr_%s access user memory: off=%d\n", 7261 regno, tname, off); 7262 return -EACCES; 7263 } 7264 7265 if (reg->type & MEM_PERCPU) { 7266 verbose(env, 7267 "R%d is ptr_%s access percpu memory: off=%d\n", 7268 regno, tname, off); 7269 return -EACCES; 7270 } 7271 7272 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7273 if (!btf_is_kernel(reg->btf)) { 7274 verifier_bug(env, "reg->btf must be kernel btf"); 7275 return -EFAULT; 7276 } 7277 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7278 } else { 7279 /* Writes are permitted with default btf_struct_access for 7280 * program allocated objects (which always have ref_obj_id > 0), 7281 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7282 */ 7283 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7284 verbose(env, "only read is supported\n"); 7285 return -EACCES; 7286 } 7287 7288 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7289 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7290 verifier_bug(env, "ref_obj_id for allocated object must be non-zero"); 7291 return -EFAULT; 7292 } 7293 7294 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7295 } 7296 7297 if (ret < 0) 7298 return ret; 7299 7300 if (ret != PTR_TO_BTF_ID) { 7301 /* just mark; */ 7302 7303 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7304 /* If this is an untrusted pointer, all pointers formed by walking it 7305 * also inherit the untrusted flag. 7306 */ 7307 flag = PTR_UNTRUSTED; 7308 7309 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7310 /* By default any pointer obtained from walking a trusted pointer is no 7311 * longer trusted, unless the field being accessed has explicitly been 7312 * marked as inheriting its parent's state of trust (either full or RCU). 7313 * For example: 7314 * 'cgroups' pointer is untrusted if task->cgroups dereference 7315 * happened in a sleepable program outside of bpf_rcu_read_lock() 7316 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7317 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7318 * 7319 * A regular RCU-protected pointer with __rcu tag can also be deemed 7320 * trusted if we are in an RCU CS. Such pointer can be NULL. 7321 */ 7322 if (type_is_trusted(env, reg, field_name, btf_id)) { 7323 flag |= PTR_TRUSTED; 7324 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7325 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7326 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7327 if (type_is_rcu(env, reg, field_name, btf_id)) { 7328 /* ignore __rcu tag and mark it MEM_RCU */ 7329 flag |= MEM_RCU; 7330 } else if (flag & MEM_RCU || 7331 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7332 /* __rcu tagged pointers can be NULL */ 7333 flag |= MEM_RCU | PTR_MAYBE_NULL; 7334 7335 /* We always trust them */ 7336 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7337 flag & PTR_UNTRUSTED) 7338 flag &= ~PTR_UNTRUSTED; 7339 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7340 /* keep as-is */ 7341 } else { 7342 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7343 clear_trusted_flags(&flag); 7344 } 7345 } else { 7346 /* 7347 * If not in RCU CS or MEM_RCU pointer can be NULL then 7348 * aggressively mark as untrusted otherwise such 7349 * pointers will be plain PTR_TO_BTF_ID without flags 7350 * and will be allowed to be passed into helpers for 7351 * compat reasons. 7352 */ 7353 flag = PTR_UNTRUSTED; 7354 } 7355 } else { 7356 /* Old compat. Deprecated */ 7357 clear_trusted_flags(&flag); 7358 } 7359 7360 if (atype == BPF_READ && value_regno >= 0) { 7361 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7362 if (ret < 0) 7363 return ret; 7364 } 7365 7366 return 0; 7367 } 7368 7369 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7370 struct bpf_reg_state *regs, 7371 int regno, int off, int size, 7372 enum bpf_access_type atype, 7373 int value_regno) 7374 { 7375 struct bpf_reg_state *reg = regs + regno; 7376 struct bpf_map *map = reg->map_ptr; 7377 struct bpf_reg_state map_reg; 7378 enum bpf_type_flag flag = 0; 7379 const struct btf_type *t; 7380 const char *tname; 7381 u32 btf_id; 7382 int ret; 7383 7384 if (!btf_vmlinux) { 7385 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7386 return -ENOTSUPP; 7387 } 7388 7389 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7390 verbose(env, "map_ptr access not supported for map type %d\n", 7391 map->map_type); 7392 return -ENOTSUPP; 7393 } 7394 7395 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7396 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7397 7398 if (!env->allow_ptr_leaks) { 7399 verbose(env, 7400 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7401 tname); 7402 return -EPERM; 7403 } 7404 7405 if (off < 0) { 7406 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7407 regno, tname, off); 7408 return -EACCES; 7409 } 7410 7411 if (atype != BPF_READ) { 7412 verbose(env, "only read from %s is supported\n", tname); 7413 return -EACCES; 7414 } 7415 7416 /* Simulate access to a PTR_TO_BTF_ID */ 7417 memset(&map_reg, 0, sizeof(map_reg)); 7418 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, 7419 btf_vmlinux, *map->ops->map_btf_id, 0); 7420 if (ret < 0) 7421 return ret; 7422 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7423 if (ret < 0) 7424 return ret; 7425 7426 if (value_regno >= 0) { 7427 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7428 if (ret < 0) 7429 return ret; 7430 } 7431 7432 return 0; 7433 } 7434 7435 /* Check that the stack access at the given offset is within bounds. The 7436 * maximum valid offset is -1. 7437 * 7438 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7439 * -state->allocated_stack for reads. 7440 */ 7441 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7442 s64 off, 7443 struct bpf_func_state *state, 7444 enum bpf_access_type t) 7445 { 7446 int min_valid_off; 7447 7448 if (t == BPF_WRITE || env->allow_uninit_stack) 7449 min_valid_off = -MAX_BPF_STACK; 7450 else 7451 min_valid_off = -state->allocated_stack; 7452 7453 if (off < min_valid_off || off > -1) 7454 return -EACCES; 7455 return 0; 7456 } 7457 7458 /* Check that the stack access at 'regno + off' falls within the maximum stack 7459 * bounds. 7460 * 7461 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7462 */ 7463 static int check_stack_access_within_bounds( 7464 struct bpf_verifier_env *env, 7465 int regno, int off, int access_size, 7466 enum bpf_access_type type) 7467 { 7468 struct bpf_reg_state *regs = cur_regs(env); 7469 struct bpf_reg_state *reg = regs + regno; 7470 struct bpf_func_state *state = func(env, reg); 7471 s64 min_off, max_off; 7472 int err; 7473 char *err_extra; 7474 7475 if (type == BPF_READ) 7476 err_extra = " read from"; 7477 else 7478 err_extra = " write to"; 7479 7480 if (tnum_is_const(reg->var_off)) { 7481 min_off = (s64)reg->var_off.value + off; 7482 max_off = min_off + access_size; 7483 } else { 7484 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7485 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7486 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7487 err_extra, regno); 7488 return -EACCES; 7489 } 7490 min_off = reg->smin_value + off; 7491 max_off = reg->smax_value + off + access_size; 7492 } 7493 7494 err = check_stack_slot_within_bounds(env, min_off, state, type); 7495 if (!err && max_off > 0) 7496 err = -EINVAL; /* out of stack access into non-negative offsets */ 7497 if (!err && access_size < 0) 7498 /* access_size should not be negative (or overflow an int); others checks 7499 * along the way should have prevented such an access. 7500 */ 7501 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7502 7503 if (err) { 7504 if (tnum_is_const(reg->var_off)) { 7505 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7506 err_extra, regno, off, access_size); 7507 } else { 7508 char tn_buf[48]; 7509 7510 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7511 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7512 err_extra, regno, tn_buf, off, access_size); 7513 } 7514 return err; 7515 } 7516 7517 /* Note that there is no stack access with offset zero, so the needed stack 7518 * size is -min_off, not -min_off+1. 7519 */ 7520 return grow_stack_state(env, state, -min_off /* size */); 7521 } 7522 7523 static bool get_func_retval_range(struct bpf_prog *prog, 7524 struct bpf_retval_range *range) 7525 { 7526 if (prog->type == BPF_PROG_TYPE_LSM && 7527 prog->expected_attach_type == BPF_LSM_MAC && 7528 !bpf_lsm_get_retval_range(prog, range)) { 7529 return true; 7530 } 7531 return false; 7532 } 7533 7534 /* check whether memory at (regno + off) is accessible for t = (read | write) 7535 * if t==write, value_regno is a register which value is stored into memory 7536 * if t==read, value_regno is a register which will receive the value from memory 7537 * if t==write && value_regno==-1, some unknown value is stored into memory 7538 * if t==read && value_regno==-1, don't care what we read from memory 7539 */ 7540 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7541 int off, int bpf_size, enum bpf_access_type t, 7542 int value_regno, bool strict_alignment_once, bool is_ldsx) 7543 { 7544 struct bpf_reg_state *regs = cur_regs(env); 7545 struct bpf_reg_state *reg = regs + regno; 7546 int size, err = 0; 7547 7548 size = bpf_size_to_bytes(bpf_size); 7549 if (size < 0) 7550 return size; 7551 7552 /* alignment checks will add in reg->off themselves */ 7553 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7554 if (err) 7555 return err; 7556 7557 /* for access checks, reg->off is just part of off */ 7558 off += reg->off; 7559 7560 if (reg->type == PTR_TO_MAP_KEY) { 7561 if (t == BPF_WRITE) { 7562 verbose(env, "write to change key R%d not allowed\n", regno); 7563 return -EACCES; 7564 } 7565 7566 err = check_mem_region_access(env, regno, off, size, 7567 reg->map_ptr->key_size, false); 7568 if (err) 7569 return err; 7570 if (value_regno >= 0) 7571 mark_reg_unknown(env, regs, value_regno); 7572 } else if (reg->type == PTR_TO_MAP_VALUE) { 7573 struct btf_field *kptr_field = NULL; 7574 7575 if (t == BPF_WRITE && value_regno >= 0 && 7576 is_pointer_value(env, value_regno)) { 7577 verbose(env, "R%d leaks addr into map\n", value_regno); 7578 return -EACCES; 7579 } 7580 err = check_map_access_type(env, regno, off, size, t); 7581 if (err) 7582 return err; 7583 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7584 if (err) 7585 return err; 7586 if (tnum_is_const(reg->var_off)) 7587 kptr_field = btf_record_find(reg->map_ptr->record, 7588 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7589 if (kptr_field) { 7590 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7591 } else if (t == BPF_READ && value_regno >= 0) { 7592 struct bpf_map *map = reg->map_ptr; 7593 7594 /* if map is read-only, track its contents as scalars */ 7595 if (tnum_is_const(reg->var_off) && 7596 bpf_map_is_rdonly(map) && 7597 map->ops->map_direct_value_addr) { 7598 int map_off = off + reg->var_off.value; 7599 u64 val = 0; 7600 7601 err = bpf_map_direct_read(map, map_off, size, 7602 &val, is_ldsx); 7603 if (err) 7604 return err; 7605 7606 regs[value_regno].type = SCALAR_VALUE; 7607 __mark_reg_known(®s[value_regno], val); 7608 } else { 7609 mark_reg_unknown(env, regs, value_regno); 7610 } 7611 } 7612 } else if (base_type(reg->type) == PTR_TO_MEM) { 7613 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7614 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); 7615 7616 if (type_may_be_null(reg->type)) { 7617 verbose(env, "R%d invalid mem access '%s'\n", regno, 7618 reg_type_str(env, reg->type)); 7619 return -EACCES; 7620 } 7621 7622 if (t == BPF_WRITE && rdonly_mem) { 7623 verbose(env, "R%d cannot write into %s\n", 7624 regno, reg_type_str(env, reg->type)); 7625 return -EACCES; 7626 } 7627 7628 if (t == BPF_WRITE && value_regno >= 0 && 7629 is_pointer_value(env, value_regno)) { 7630 verbose(env, "R%d leaks addr into mem\n", value_regno); 7631 return -EACCES; 7632 } 7633 7634 /* 7635 * Accesses to untrusted PTR_TO_MEM are done through probe 7636 * instructions, hence no need to check bounds in that case. 7637 */ 7638 if (!rdonly_untrusted) 7639 err = check_mem_region_access(env, regno, off, size, 7640 reg->mem_size, false); 7641 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7642 mark_reg_unknown(env, regs, value_regno); 7643 } else if (reg->type == PTR_TO_CTX) { 7644 struct bpf_retval_range range; 7645 struct bpf_insn_access_aux info = { 7646 .reg_type = SCALAR_VALUE, 7647 .is_ldsx = is_ldsx, 7648 .log = &env->log, 7649 }; 7650 7651 if (t == BPF_WRITE && value_regno >= 0 && 7652 is_pointer_value(env, value_regno)) { 7653 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7654 return -EACCES; 7655 } 7656 7657 err = check_ptr_off_reg(env, reg, regno); 7658 if (err < 0) 7659 return err; 7660 7661 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7662 if (err) 7663 verbose_linfo(env, insn_idx, "; "); 7664 if (!err && t == BPF_READ && value_regno >= 0) { 7665 /* ctx access returns either a scalar, or a 7666 * PTR_TO_PACKET[_META,_END]. In the latter 7667 * case, we know the offset is zero. 7668 */ 7669 if (info.reg_type == SCALAR_VALUE) { 7670 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7671 err = __mark_reg_s32_range(env, regs, value_regno, 7672 range.minval, range.maxval); 7673 if (err) 7674 return err; 7675 } else { 7676 mark_reg_unknown(env, regs, value_regno); 7677 } 7678 } else { 7679 mark_reg_known_zero(env, regs, 7680 value_regno); 7681 if (type_may_be_null(info.reg_type)) 7682 regs[value_regno].id = ++env->id_gen; 7683 /* A load of ctx field could have different 7684 * actual load size with the one encoded in the 7685 * insn. When the dst is PTR, it is for sure not 7686 * a sub-register. 7687 */ 7688 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7689 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7690 regs[value_regno].btf = info.btf; 7691 regs[value_regno].btf_id = info.btf_id; 7692 regs[value_regno].ref_obj_id = info.ref_obj_id; 7693 } 7694 } 7695 regs[value_regno].type = info.reg_type; 7696 } 7697 7698 } else if (reg->type == PTR_TO_STACK) { 7699 /* Basic bounds checks. */ 7700 err = check_stack_access_within_bounds(env, regno, off, size, t); 7701 if (err) 7702 return err; 7703 7704 if (t == BPF_READ) 7705 err = check_stack_read(env, regno, off, size, 7706 value_regno); 7707 else 7708 err = check_stack_write(env, regno, off, size, 7709 value_regno, insn_idx); 7710 } else if (reg_is_pkt_pointer(reg)) { 7711 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7712 verbose(env, "cannot write into packet\n"); 7713 return -EACCES; 7714 } 7715 if (t == BPF_WRITE && value_regno >= 0 && 7716 is_pointer_value(env, value_regno)) { 7717 verbose(env, "R%d leaks addr into packet\n", 7718 value_regno); 7719 return -EACCES; 7720 } 7721 err = check_packet_access(env, regno, off, size, false); 7722 if (!err && t == BPF_READ && value_regno >= 0) 7723 mark_reg_unknown(env, regs, value_regno); 7724 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7725 if (t == BPF_WRITE && value_regno >= 0 && 7726 is_pointer_value(env, value_regno)) { 7727 verbose(env, "R%d leaks addr into flow keys\n", 7728 value_regno); 7729 return -EACCES; 7730 } 7731 7732 err = check_flow_keys_access(env, off, size); 7733 if (!err && t == BPF_READ && value_regno >= 0) 7734 mark_reg_unknown(env, regs, value_regno); 7735 } else if (type_is_sk_pointer(reg->type)) { 7736 if (t == BPF_WRITE) { 7737 verbose(env, "R%d cannot write into %s\n", 7738 regno, reg_type_str(env, reg->type)); 7739 return -EACCES; 7740 } 7741 err = check_sock_access(env, insn_idx, regno, off, size, t); 7742 if (!err && value_regno >= 0) 7743 mark_reg_unknown(env, regs, value_regno); 7744 } else if (reg->type == PTR_TO_TP_BUFFER) { 7745 err = check_tp_buffer_access(env, reg, regno, off, size); 7746 if (!err && t == BPF_READ && value_regno >= 0) 7747 mark_reg_unknown(env, regs, value_regno); 7748 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7749 !type_may_be_null(reg->type)) { 7750 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7751 value_regno); 7752 } else if (reg->type == CONST_PTR_TO_MAP) { 7753 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7754 value_regno); 7755 } else if (base_type(reg->type) == PTR_TO_BUF) { 7756 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7757 u32 *max_access; 7758 7759 if (rdonly_mem) { 7760 if (t == BPF_WRITE) { 7761 verbose(env, "R%d cannot write into %s\n", 7762 regno, reg_type_str(env, reg->type)); 7763 return -EACCES; 7764 } 7765 max_access = &env->prog->aux->max_rdonly_access; 7766 } else { 7767 max_access = &env->prog->aux->max_rdwr_access; 7768 } 7769 7770 err = check_buffer_access(env, reg, regno, off, size, false, 7771 max_access); 7772 7773 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7774 mark_reg_unknown(env, regs, value_regno); 7775 } else if (reg->type == PTR_TO_ARENA) { 7776 if (t == BPF_READ && value_regno >= 0) 7777 mark_reg_unknown(env, regs, value_regno); 7778 } else { 7779 verbose(env, "R%d invalid mem access '%s'\n", regno, 7780 reg_type_str(env, reg->type)); 7781 return -EACCES; 7782 } 7783 7784 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7785 regs[value_regno].type == SCALAR_VALUE) { 7786 if (!is_ldsx) 7787 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7788 coerce_reg_to_size(®s[value_regno], size); 7789 else 7790 coerce_reg_to_size_sx(®s[value_regno], size); 7791 } 7792 return err; 7793 } 7794 7795 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7796 bool allow_trust_mismatch); 7797 7798 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7799 bool strict_alignment_once, bool is_ldsx, 7800 bool allow_trust_mismatch, const char *ctx) 7801 { 7802 struct bpf_reg_state *regs = cur_regs(env); 7803 enum bpf_reg_type src_reg_type; 7804 int err; 7805 7806 /* check src operand */ 7807 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7808 if (err) 7809 return err; 7810 7811 /* check dst operand */ 7812 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7813 if (err) 7814 return err; 7815 7816 src_reg_type = regs[insn->src_reg].type; 7817 7818 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7819 * updated by this call. 7820 */ 7821 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7822 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7823 strict_alignment_once, is_ldsx); 7824 err = err ?: save_aux_ptr_type(env, src_reg_type, 7825 allow_trust_mismatch); 7826 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7827 7828 return err; 7829 } 7830 7831 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7832 bool strict_alignment_once) 7833 { 7834 struct bpf_reg_state *regs = cur_regs(env); 7835 enum bpf_reg_type dst_reg_type; 7836 int err; 7837 7838 /* check src1 operand */ 7839 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7840 if (err) 7841 return err; 7842 7843 /* check src2 operand */ 7844 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7845 if (err) 7846 return err; 7847 7848 dst_reg_type = regs[insn->dst_reg].type; 7849 7850 /* Check if (dst_reg + off) is writeable. */ 7851 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7852 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7853 strict_alignment_once, false); 7854 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7855 7856 return err; 7857 } 7858 7859 static int check_atomic_rmw(struct bpf_verifier_env *env, 7860 struct bpf_insn *insn) 7861 { 7862 int load_reg; 7863 int err; 7864 7865 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7866 verbose(env, "invalid atomic operand size\n"); 7867 return -EINVAL; 7868 } 7869 7870 /* check src1 operand */ 7871 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7872 if (err) 7873 return err; 7874 7875 /* check src2 operand */ 7876 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7877 if (err) 7878 return err; 7879 7880 if (insn->imm == BPF_CMPXCHG) { 7881 /* Check comparison of R0 with memory location */ 7882 const u32 aux_reg = BPF_REG_0; 7883 7884 err = check_reg_arg(env, aux_reg, SRC_OP); 7885 if (err) 7886 return err; 7887 7888 if (is_pointer_value(env, aux_reg)) { 7889 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7890 return -EACCES; 7891 } 7892 } 7893 7894 if (is_pointer_value(env, insn->src_reg)) { 7895 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7896 return -EACCES; 7897 } 7898 7899 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7900 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7901 insn->dst_reg, 7902 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7903 return -EACCES; 7904 } 7905 7906 if (insn->imm & BPF_FETCH) { 7907 if (insn->imm == BPF_CMPXCHG) 7908 load_reg = BPF_REG_0; 7909 else 7910 load_reg = insn->src_reg; 7911 7912 /* check and record load of old value */ 7913 err = check_reg_arg(env, load_reg, DST_OP); 7914 if (err) 7915 return err; 7916 } else { 7917 /* This instruction accesses a memory location but doesn't 7918 * actually load it into a register. 7919 */ 7920 load_reg = -1; 7921 } 7922 7923 /* Check whether we can read the memory, with second call for fetch 7924 * case to simulate the register fill. 7925 */ 7926 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7927 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7928 if (!err && load_reg >= 0) 7929 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7930 insn->off, BPF_SIZE(insn->code), 7931 BPF_READ, load_reg, true, false); 7932 if (err) 7933 return err; 7934 7935 if (is_arena_reg(env, insn->dst_reg)) { 7936 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7937 if (err) 7938 return err; 7939 } 7940 /* Check whether we can write into the same memory. */ 7941 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7942 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7943 if (err) 7944 return err; 7945 return 0; 7946 } 7947 7948 static int check_atomic_load(struct bpf_verifier_env *env, 7949 struct bpf_insn *insn) 7950 { 7951 int err; 7952 7953 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 7954 if (err) 7955 return err; 7956 7957 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 7958 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 7959 insn->src_reg, 7960 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 7961 return -EACCES; 7962 } 7963 7964 return 0; 7965 } 7966 7967 static int check_atomic_store(struct bpf_verifier_env *env, 7968 struct bpf_insn *insn) 7969 { 7970 int err; 7971 7972 err = check_store_reg(env, insn, true); 7973 if (err) 7974 return err; 7975 7976 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7977 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7978 insn->dst_reg, 7979 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7980 return -EACCES; 7981 } 7982 7983 return 0; 7984 } 7985 7986 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 7987 { 7988 switch (insn->imm) { 7989 case BPF_ADD: 7990 case BPF_ADD | BPF_FETCH: 7991 case BPF_AND: 7992 case BPF_AND | BPF_FETCH: 7993 case BPF_OR: 7994 case BPF_OR | BPF_FETCH: 7995 case BPF_XOR: 7996 case BPF_XOR | BPF_FETCH: 7997 case BPF_XCHG: 7998 case BPF_CMPXCHG: 7999 return check_atomic_rmw(env, insn); 8000 case BPF_LOAD_ACQ: 8001 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 8002 verbose(env, 8003 "64-bit load-acquires are only supported on 64-bit arches\n"); 8004 return -EOPNOTSUPP; 8005 } 8006 return check_atomic_load(env, insn); 8007 case BPF_STORE_REL: 8008 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 8009 verbose(env, 8010 "64-bit store-releases are only supported on 64-bit arches\n"); 8011 return -EOPNOTSUPP; 8012 } 8013 return check_atomic_store(env, insn); 8014 default: 8015 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 8016 insn->imm); 8017 return -EINVAL; 8018 } 8019 } 8020 8021 /* When register 'regno' is used to read the stack (either directly or through 8022 * a helper function) make sure that it's within stack boundary and, depending 8023 * on the access type and privileges, that all elements of the stack are 8024 * initialized. 8025 * 8026 * 'off' includes 'regno->off', but not its dynamic part (if any). 8027 * 8028 * All registers that have been spilled on the stack in the slots within the 8029 * read offsets are marked as read. 8030 */ 8031 static int check_stack_range_initialized( 8032 struct bpf_verifier_env *env, int regno, int off, 8033 int access_size, bool zero_size_allowed, 8034 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 8035 { 8036 struct bpf_reg_state *reg = reg_state(env, regno); 8037 struct bpf_func_state *state = func(env, reg); 8038 int err, min_off, max_off, i, j, slot, spi; 8039 /* Some accesses can write anything into the stack, others are 8040 * read-only. 8041 */ 8042 bool clobber = false; 8043 8044 if (access_size == 0 && !zero_size_allowed) { 8045 verbose(env, "invalid zero-sized read\n"); 8046 return -EACCES; 8047 } 8048 8049 if (type == BPF_WRITE) 8050 clobber = true; 8051 8052 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 8053 if (err) 8054 return err; 8055 8056 8057 if (tnum_is_const(reg->var_off)) { 8058 min_off = max_off = reg->var_off.value + off; 8059 } else { 8060 /* Variable offset is prohibited for unprivileged mode for 8061 * simplicity since it requires corresponding support in 8062 * Spectre masking for stack ALU. 8063 * See also retrieve_ptr_limit(). 8064 */ 8065 if (!env->bypass_spec_v1) { 8066 char tn_buf[48]; 8067 8068 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8069 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 8070 regno, tn_buf); 8071 return -EACCES; 8072 } 8073 /* Only initialized buffer on stack is allowed to be accessed 8074 * with variable offset. With uninitialized buffer it's hard to 8075 * guarantee that whole memory is marked as initialized on 8076 * helper return since specific bounds are unknown what may 8077 * cause uninitialized stack leaking. 8078 */ 8079 if (meta && meta->raw_mode) 8080 meta = NULL; 8081 8082 min_off = reg->smin_value + off; 8083 max_off = reg->smax_value + off; 8084 } 8085 8086 if (meta && meta->raw_mode) { 8087 /* Ensure we won't be overwriting dynptrs when simulating byte 8088 * by byte access in check_helper_call using meta.access_size. 8089 * This would be a problem if we have a helper in the future 8090 * which takes: 8091 * 8092 * helper(uninit_mem, len, dynptr) 8093 * 8094 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 8095 * may end up writing to dynptr itself when touching memory from 8096 * arg 1. This can be relaxed on a case by case basis for known 8097 * safe cases, but reject due to the possibilitiy of aliasing by 8098 * default. 8099 */ 8100 for (i = min_off; i < max_off + access_size; i++) { 8101 int stack_off = -i - 1; 8102 8103 spi = __get_spi(i); 8104 /* raw_mode may write past allocated_stack */ 8105 if (state->allocated_stack <= stack_off) 8106 continue; 8107 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 8108 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 8109 return -EACCES; 8110 } 8111 } 8112 meta->access_size = access_size; 8113 meta->regno = regno; 8114 return 0; 8115 } 8116 8117 for (i = min_off; i < max_off + access_size; i++) { 8118 u8 *stype; 8119 8120 slot = -i - 1; 8121 spi = slot / BPF_REG_SIZE; 8122 if (state->allocated_stack <= slot) { 8123 verbose(env, "allocated_stack too small\n"); 8124 return -EFAULT; 8125 } 8126 8127 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 8128 if (*stype == STACK_MISC) 8129 goto mark; 8130 if ((*stype == STACK_ZERO) || 8131 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 8132 if (clobber) { 8133 /* helper can write anything into the stack */ 8134 *stype = STACK_MISC; 8135 } 8136 goto mark; 8137 } 8138 8139 if (is_spilled_reg(&state->stack[spi]) && 8140 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 8141 env->allow_ptr_leaks)) { 8142 if (clobber) { 8143 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 8144 for (j = 0; j < BPF_REG_SIZE; j++) 8145 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 8146 } 8147 goto mark; 8148 } 8149 8150 if (tnum_is_const(reg->var_off)) { 8151 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8152 regno, min_off, i - min_off, access_size); 8153 } else { 8154 char tn_buf[48]; 8155 8156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8157 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8158 regno, tn_buf, i - min_off, access_size); 8159 } 8160 return -EACCES; 8161 mark: 8162 /* reading any byte out of 8-byte 'spill_slot' will cause 8163 * the whole slot to be marked as 'read' 8164 */ 8165 mark_reg_read(env, &state->stack[spi].spilled_ptr, 8166 state->stack[spi].spilled_ptr.parent, 8167 REG_LIVE_READ64); 8168 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 8169 * be sure that whether stack slot is written to or not. Hence, 8170 * we must still conservatively propagate reads upwards even if 8171 * helper may write to the entire memory range. 8172 */ 8173 } 8174 return 0; 8175 } 8176 8177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8178 int access_size, enum bpf_access_type access_type, 8179 bool zero_size_allowed, 8180 struct bpf_call_arg_meta *meta) 8181 { 8182 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8183 u32 *max_access; 8184 8185 switch (base_type(reg->type)) { 8186 case PTR_TO_PACKET: 8187 case PTR_TO_PACKET_META: 8188 return check_packet_access(env, regno, reg->off, access_size, 8189 zero_size_allowed); 8190 case PTR_TO_MAP_KEY: 8191 if (access_type == BPF_WRITE) { 8192 verbose(env, "R%d cannot write into %s\n", regno, 8193 reg_type_str(env, reg->type)); 8194 return -EACCES; 8195 } 8196 return check_mem_region_access(env, regno, reg->off, access_size, 8197 reg->map_ptr->key_size, false); 8198 case PTR_TO_MAP_VALUE: 8199 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8200 return -EACCES; 8201 return check_map_access(env, regno, reg->off, access_size, 8202 zero_size_allowed, ACCESS_HELPER); 8203 case PTR_TO_MEM: 8204 if (type_is_rdonly_mem(reg->type)) { 8205 if (access_type == BPF_WRITE) { 8206 verbose(env, "R%d cannot write into %s\n", regno, 8207 reg_type_str(env, reg->type)); 8208 return -EACCES; 8209 } 8210 } 8211 return check_mem_region_access(env, regno, reg->off, 8212 access_size, reg->mem_size, 8213 zero_size_allowed); 8214 case PTR_TO_BUF: 8215 if (type_is_rdonly_mem(reg->type)) { 8216 if (access_type == BPF_WRITE) { 8217 verbose(env, "R%d cannot write into %s\n", regno, 8218 reg_type_str(env, reg->type)); 8219 return -EACCES; 8220 } 8221 8222 max_access = &env->prog->aux->max_rdonly_access; 8223 } else { 8224 max_access = &env->prog->aux->max_rdwr_access; 8225 } 8226 return check_buffer_access(env, reg, regno, reg->off, 8227 access_size, zero_size_allowed, 8228 max_access); 8229 case PTR_TO_STACK: 8230 return check_stack_range_initialized( 8231 env, 8232 regno, reg->off, access_size, 8233 zero_size_allowed, access_type, meta); 8234 case PTR_TO_BTF_ID: 8235 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8236 access_size, BPF_READ, -1); 8237 case PTR_TO_CTX: 8238 /* in case the function doesn't know how to access the context, 8239 * (because we are in a program of type SYSCALL for example), we 8240 * can not statically check its size. 8241 * Dynamically check it now. 8242 */ 8243 if (!env->ops->convert_ctx_access) { 8244 int offset = access_size - 1; 8245 8246 /* Allow zero-byte read from PTR_TO_CTX */ 8247 if (access_size == 0) 8248 return zero_size_allowed ? 0 : -EACCES; 8249 8250 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8251 access_type, -1, false, false); 8252 } 8253 8254 fallthrough; 8255 default: /* scalar_value or invalid ptr */ 8256 /* Allow zero-byte read from NULL, regardless of pointer type */ 8257 if (zero_size_allowed && access_size == 0 && 8258 register_is_null(reg)) 8259 return 0; 8260 8261 verbose(env, "R%d type=%s ", regno, 8262 reg_type_str(env, reg->type)); 8263 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8264 return -EACCES; 8265 } 8266 } 8267 8268 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8269 * size. 8270 * 8271 * @regno is the register containing the access size. regno-1 is the register 8272 * containing the pointer. 8273 */ 8274 static int check_mem_size_reg(struct bpf_verifier_env *env, 8275 struct bpf_reg_state *reg, u32 regno, 8276 enum bpf_access_type access_type, 8277 bool zero_size_allowed, 8278 struct bpf_call_arg_meta *meta) 8279 { 8280 int err; 8281 8282 /* This is used to refine r0 return value bounds for helpers 8283 * that enforce this value as an upper bound on return values. 8284 * See do_refine_retval_range() for helpers that can refine 8285 * the return value. C type of helper is u32 so we pull register 8286 * bound from umax_value however, if negative verifier errors 8287 * out. Only upper bounds can be learned because retval is an 8288 * int type and negative retvals are allowed. 8289 */ 8290 meta->msize_max_value = reg->umax_value; 8291 8292 /* The register is SCALAR_VALUE; the access check happens using 8293 * its boundaries. For unprivileged variable accesses, disable 8294 * raw mode so that the program is required to initialize all 8295 * the memory that the helper could just partially fill up. 8296 */ 8297 if (!tnum_is_const(reg->var_off)) 8298 meta = NULL; 8299 8300 if (reg->smin_value < 0) { 8301 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8302 regno); 8303 return -EACCES; 8304 } 8305 8306 if (reg->umin_value == 0 && !zero_size_allowed) { 8307 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8308 regno, reg->umin_value, reg->umax_value); 8309 return -EACCES; 8310 } 8311 8312 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8313 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8314 regno); 8315 return -EACCES; 8316 } 8317 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8318 access_type, zero_size_allowed, meta); 8319 if (!err) 8320 err = mark_chain_precision(env, regno); 8321 return err; 8322 } 8323 8324 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8325 u32 regno, u32 mem_size) 8326 { 8327 bool may_be_null = type_may_be_null(reg->type); 8328 struct bpf_reg_state saved_reg; 8329 int err; 8330 8331 if (register_is_null(reg)) 8332 return 0; 8333 8334 /* Assuming that the register contains a value check if the memory 8335 * access is safe. Temporarily save and restore the register's state as 8336 * the conversion shouldn't be visible to a caller. 8337 */ 8338 if (may_be_null) { 8339 saved_reg = *reg; 8340 mark_ptr_not_null_reg(reg); 8341 } 8342 8343 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8344 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8345 8346 if (may_be_null) 8347 *reg = saved_reg; 8348 8349 return err; 8350 } 8351 8352 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8353 u32 regno) 8354 { 8355 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8356 bool may_be_null = type_may_be_null(mem_reg->type); 8357 struct bpf_reg_state saved_reg; 8358 struct bpf_call_arg_meta meta; 8359 int err; 8360 8361 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8362 8363 memset(&meta, 0, sizeof(meta)); 8364 8365 if (may_be_null) { 8366 saved_reg = *mem_reg; 8367 mark_ptr_not_null_reg(mem_reg); 8368 } 8369 8370 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8371 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8372 8373 if (may_be_null) 8374 *mem_reg = saved_reg; 8375 8376 return err; 8377 } 8378 8379 enum { 8380 PROCESS_SPIN_LOCK = (1 << 0), 8381 PROCESS_RES_LOCK = (1 << 1), 8382 PROCESS_LOCK_IRQ = (1 << 2), 8383 }; 8384 8385 /* Implementation details: 8386 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8387 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8388 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8389 * Two separate bpf_obj_new will also have different reg->id. 8390 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8391 * clears reg->id after value_or_null->value transition, since the verifier only 8392 * cares about the range of access to valid map value pointer and doesn't care 8393 * about actual address of the map element. 8394 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8395 * reg->id > 0 after value_or_null->value transition. By doing so 8396 * two bpf_map_lookups will be considered two different pointers that 8397 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8398 * returned from bpf_obj_new. 8399 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8400 * dead-locks. 8401 * Since only one bpf_spin_lock is allowed the checks are simpler than 8402 * reg_is_refcounted() logic. The verifier needs to remember only 8403 * one spin_lock instead of array of acquired_refs. 8404 * env->cur_state->active_locks remembers which map value element or allocated 8405 * object got locked and clears it after bpf_spin_unlock. 8406 */ 8407 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8408 { 8409 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8410 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8411 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8412 struct bpf_verifier_state *cur = env->cur_state; 8413 bool is_const = tnum_is_const(reg->var_off); 8414 bool is_irq = flags & PROCESS_LOCK_IRQ; 8415 u64 val = reg->var_off.value; 8416 struct bpf_map *map = NULL; 8417 struct btf *btf = NULL; 8418 struct btf_record *rec; 8419 u32 spin_lock_off; 8420 int err; 8421 8422 if (!is_const) { 8423 verbose(env, 8424 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8425 regno, lock_str); 8426 return -EINVAL; 8427 } 8428 if (reg->type == PTR_TO_MAP_VALUE) { 8429 map = reg->map_ptr; 8430 if (!map->btf) { 8431 verbose(env, 8432 "map '%s' has to have BTF in order to use %s_lock\n", 8433 map->name, lock_str); 8434 return -EINVAL; 8435 } 8436 } else { 8437 btf = reg->btf; 8438 } 8439 8440 rec = reg_btf_record(reg); 8441 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8442 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8443 map ? map->name : "kptr", lock_str); 8444 return -EINVAL; 8445 } 8446 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8447 if (spin_lock_off != val + reg->off) { 8448 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8449 val + reg->off, lock_str, spin_lock_off); 8450 return -EINVAL; 8451 } 8452 if (is_lock) { 8453 void *ptr; 8454 int type; 8455 8456 if (map) 8457 ptr = map; 8458 else 8459 ptr = btf; 8460 8461 if (!is_res_lock && cur->active_locks) { 8462 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8463 verbose(env, 8464 "Locking two bpf_spin_locks are not allowed\n"); 8465 return -EINVAL; 8466 } 8467 } else if (is_res_lock && cur->active_locks) { 8468 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8469 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8470 return -EINVAL; 8471 } 8472 } 8473 8474 if (is_res_lock && is_irq) 8475 type = REF_TYPE_RES_LOCK_IRQ; 8476 else if (is_res_lock) 8477 type = REF_TYPE_RES_LOCK; 8478 else 8479 type = REF_TYPE_LOCK; 8480 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8481 if (err < 0) { 8482 verbose(env, "Failed to acquire lock state\n"); 8483 return err; 8484 } 8485 } else { 8486 void *ptr; 8487 int type; 8488 8489 if (map) 8490 ptr = map; 8491 else 8492 ptr = btf; 8493 8494 if (!cur->active_locks) { 8495 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8496 return -EINVAL; 8497 } 8498 8499 if (is_res_lock && is_irq) 8500 type = REF_TYPE_RES_LOCK_IRQ; 8501 else if (is_res_lock) 8502 type = REF_TYPE_RES_LOCK; 8503 else 8504 type = REF_TYPE_LOCK; 8505 if (!find_lock_state(cur, type, reg->id, ptr)) { 8506 verbose(env, "%s_unlock of different lock\n", lock_str); 8507 return -EINVAL; 8508 } 8509 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8510 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8511 return -EINVAL; 8512 } 8513 if (release_lock_state(cur, type, reg->id, ptr)) { 8514 verbose(env, "%s_unlock of different lock\n", lock_str); 8515 return -EINVAL; 8516 } 8517 8518 invalidate_non_owning_refs(env); 8519 } 8520 return 0; 8521 } 8522 8523 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8524 struct bpf_call_arg_meta *meta) 8525 { 8526 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8527 bool is_const = tnum_is_const(reg->var_off); 8528 struct bpf_map *map = reg->map_ptr; 8529 u64 val = reg->var_off.value; 8530 8531 if (!is_const) { 8532 verbose(env, 8533 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 8534 regno); 8535 return -EINVAL; 8536 } 8537 if (!map->btf) { 8538 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 8539 map->name); 8540 return -EINVAL; 8541 } 8542 if (!btf_record_has_field(map->record, BPF_TIMER)) { 8543 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 8544 return -EINVAL; 8545 } 8546 if (map->record->timer_off != val + reg->off) { 8547 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 8548 val + reg->off, map->record->timer_off); 8549 return -EINVAL; 8550 } 8551 if (meta->map_ptr) { 8552 verifier_bug(env, "Two map pointers in a timer helper"); 8553 return -EFAULT; 8554 } 8555 meta->map_uid = reg->map_uid; 8556 meta->map_ptr = map; 8557 return 0; 8558 } 8559 8560 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8561 struct bpf_kfunc_call_arg_meta *meta) 8562 { 8563 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8564 struct bpf_map *map = reg->map_ptr; 8565 u64 val = reg->var_off.value; 8566 8567 if (map->record->wq_off != val + reg->off) { 8568 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8569 val + reg->off, map->record->wq_off); 8570 return -EINVAL; 8571 } 8572 meta->map.uid = reg->map_uid; 8573 meta->map.ptr = map; 8574 return 0; 8575 } 8576 8577 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8578 struct bpf_call_arg_meta *meta) 8579 { 8580 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8581 struct btf_field *kptr_field; 8582 struct bpf_map *map_ptr; 8583 struct btf_record *rec; 8584 u32 kptr_off; 8585 8586 if (type_is_ptr_alloc_obj(reg->type)) { 8587 rec = reg_btf_record(reg); 8588 } else { /* PTR_TO_MAP_VALUE */ 8589 map_ptr = reg->map_ptr; 8590 if (!map_ptr->btf) { 8591 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8592 map_ptr->name); 8593 return -EINVAL; 8594 } 8595 rec = map_ptr->record; 8596 meta->map_ptr = map_ptr; 8597 } 8598 8599 if (!tnum_is_const(reg->var_off)) { 8600 verbose(env, 8601 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8602 regno); 8603 return -EINVAL; 8604 } 8605 8606 if (!btf_record_has_field(rec, BPF_KPTR)) { 8607 verbose(env, "R%d has no valid kptr\n", regno); 8608 return -EINVAL; 8609 } 8610 8611 kptr_off = reg->off + reg->var_off.value; 8612 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8613 if (!kptr_field) { 8614 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8615 return -EACCES; 8616 } 8617 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8618 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8619 return -EACCES; 8620 } 8621 meta->kptr_field = kptr_field; 8622 return 0; 8623 } 8624 8625 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8626 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8627 * 8628 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8629 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8630 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8631 * 8632 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8633 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8634 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8635 * mutate the view of the dynptr and also possibly destroy it. In the latter 8636 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8637 * memory that dynptr points to. 8638 * 8639 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8640 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8641 * readonly dynptr view yet, hence only the first case is tracked and checked. 8642 * 8643 * This is consistent with how C applies the const modifier to a struct object, 8644 * where the pointer itself inside bpf_dynptr becomes const but not what it 8645 * points to. 8646 * 8647 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8648 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8649 */ 8650 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8651 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8652 { 8653 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8654 int err; 8655 8656 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8657 verbose(env, 8658 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8659 regno - 1); 8660 return -EINVAL; 8661 } 8662 8663 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8664 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8665 */ 8666 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8667 verifier_bug(env, "misconfigured dynptr helper type flags"); 8668 return -EFAULT; 8669 } 8670 8671 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8672 * constructing a mutable bpf_dynptr object. 8673 * 8674 * Currently, this is only possible with PTR_TO_STACK 8675 * pointing to a region of at least 16 bytes which doesn't 8676 * contain an existing bpf_dynptr. 8677 * 8678 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8679 * mutated or destroyed. However, the memory it points to 8680 * may be mutated. 8681 * 8682 * None - Points to a initialized dynptr that can be mutated and 8683 * destroyed, including mutation of the memory it points 8684 * to. 8685 */ 8686 if (arg_type & MEM_UNINIT) { 8687 int i; 8688 8689 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8690 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8691 return -EINVAL; 8692 } 8693 8694 /* we write BPF_DW bits (8 bytes) at a time */ 8695 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8696 err = check_mem_access(env, insn_idx, regno, 8697 i, BPF_DW, BPF_WRITE, -1, false, false); 8698 if (err) 8699 return err; 8700 } 8701 8702 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8703 } else /* MEM_RDONLY and None case from above */ { 8704 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8705 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8706 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8707 return -EINVAL; 8708 } 8709 8710 if (!is_dynptr_reg_valid_init(env, reg)) { 8711 verbose(env, 8712 "Expected an initialized dynptr as arg #%d\n", 8713 regno - 1); 8714 return -EINVAL; 8715 } 8716 8717 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8718 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8719 verbose(env, 8720 "Expected a dynptr of type %s as arg #%d\n", 8721 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8722 return -EINVAL; 8723 } 8724 8725 err = mark_dynptr_read(env, reg); 8726 } 8727 return err; 8728 } 8729 8730 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8731 { 8732 struct bpf_func_state *state = func(env, reg); 8733 8734 return state->stack[spi].spilled_ptr.ref_obj_id; 8735 } 8736 8737 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8738 { 8739 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8740 } 8741 8742 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8743 { 8744 return meta->kfunc_flags & KF_ITER_NEW; 8745 } 8746 8747 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8748 { 8749 return meta->kfunc_flags & KF_ITER_NEXT; 8750 } 8751 8752 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8753 { 8754 return meta->kfunc_flags & KF_ITER_DESTROY; 8755 } 8756 8757 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8758 const struct btf_param *arg) 8759 { 8760 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8761 * kfunc is iter state pointer 8762 */ 8763 if (is_iter_kfunc(meta)) 8764 return arg_idx == 0; 8765 8766 /* iter passed as an argument to a generic kfunc */ 8767 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8768 } 8769 8770 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8771 struct bpf_kfunc_call_arg_meta *meta) 8772 { 8773 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8774 const struct btf_type *t; 8775 int spi, err, i, nr_slots, btf_id; 8776 8777 if (reg->type != PTR_TO_STACK) { 8778 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8779 return -EINVAL; 8780 } 8781 8782 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8783 * ensures struct convention, so we wouldn't need to do any BTF 8784 * validation here. But given iter state can be passed as a parameter 8785 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8786 * conservative here. 8787 */ 8788 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8789 if (btf_id < 0) { 8790 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8791 return -EINVAL; 8792 } 8793 t = btf_type_by_id(meta->btf, btf_id); 8794 nr_slots = t->size / BPF_REG_SIZE; 8795 8796 if (is_iter_new_kfunc(meta)) { 8797 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8798 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8799 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8800 iter_type_str(meta->btf, btf_id), regno - 1); 8801 return -EINVAL; 8802 } 8803 8804 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8805 err = check_mem_access(env, insn_idx, regno, 8806 i, BPF_DW, BPF_WRITE, -1, false, false); 8807 if (err) 8808 return err; 8809 } 8810 8811 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8812 if (err) 8813 return err; 8814 } else { 8815 /* iter_next() or iter_destroy(), as well as any kfunc 8816 * accepting iter argument, expect initialized iter state 8817 */ 8818 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8819 switch (err) { 8820 case 0: 8821 break; 8822 case -EINVAL: 8823 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8824 iter_type_str(meta->btf, btf_id), regno - 1); 8825 return err; 8826 case -EPROTO: 8827 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8828 return err; 8829 default: 8830 return err; 8831 } 8832 8833 spi = iter_get_spi(env, reg, nr_slots); 8834 if (spi < 0) 8835 return spi; 8836 8837 err = mark_iter_read(env, reg, spi, nr_slots); 8838 if (err) 8839 return err; 8840 8841 /* remember meta->iter info for process_iter_next_call() */ 8842 meta->iter.spi = spi; 8843 meta->iter.frameno = reg->frameno; 8844 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8845 8846 if (is_iter_destroy_kfunc(meta)) { 8847 err = unmark_stack_slots_iter(env, reg, nr_slots); 8848 if (err) 8849 return err; 8850 } 8851 } 8852 8853 return 0; 8854 } 8855 8856 /* Look for a previous loop entry at insn_idx: nearest parent state 8857 * stopped at insn_idx with callsites matching those in cur->frame. 8858 */ 8859 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8860 struct bpf_verifier_state *cur, 8861 int insn_idx) 8862 { 8863 struct bpf_verifier_state_list *sl; 8864 struct bpf_verifier_state *st; 8865 struct list_head *pos, *head; 8866 8867 /* Explored states are pushed in stack order, most recent states come first */ 8868 head = explored_state(env, insn_idx); 8869 list_for_each(pos, head) { 8870 sl = container_of(pos, struct bpf_verifier_state_list, node); 8871 /* If st->branches != 0 state is a part of current DFS verification path, 8872 * hence cur & st for a loop. 8873 */ 8874 st = &sl->state; 8875 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8876 st->dfs_depth < cur->dfs_depth) 8877 return st; 8878 } 8879 8880 return NULL; 8881 } 8882 8883 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8884 static bool regs_exact(const struct bpf_reg_state *rold, 8885 const struct bpf_reg_state *rcur, 8886 struct bpf_idmap *idmap); 8887 8888 static void maybe_widen_reg(struct bpf_verifier_env *env, 8889 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8890 struct bpf_idmap *idmap) 8891 { 8892 if (rold->type != SCALAR_VALUE) 8893 return; 8894 if (rold->type != rcur->type) 8895 return; 8896 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8897 return; 8898 __mark_reg_unknown(env, rcur); 8899 } 8900 8901 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8902 struct bpf_verifier_state *old, 8903 struct bpf_verifier_state *cur) 8904 { 8905 struct bpf_func_state *fold, *fcur; 8906 int i, fr; 8907 8908 reset_idmap_scratch(env); 8909 for (fr = old->curframe; fr >= 0; fr--) { 8910 fold = old->frame[fr]; 8911 fcur = cur->frame[fr]; 8912 8913 for (i = 0; i < MAX_BPF_REG; i++) 8914 maybe_widen_reg(env, 8915 &fold->regs[i], 8916 &fcur->regs[i], 8917 &env->idmap_scratch); 8918 8919 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8920 if (!is_spilled_reg(&fold->stack[i]) || 8921 !is_spilled_reg(&fcur->stack[i])) 8922 continue; 8923 8924 maybe_widen_reg(env, 8925 &fold->stack[i].spilled_ptr, 8926 &fcur->stack[i].spilled_ptr, 8927 &env->idmap_scratch); 8928 } 8929 } 8930 return 0; 8931 } 8932 8933 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8934 struct bpf_kfunc_call_arg_meta *meta) 8935 { 8936 int iter_frameno = meta->iter.frameno; 8937 int iter_spi = meta->iter.spi; 8938 8939 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8940 } 8941 8942 /* process_iter_next_call() is called when verifier gets to iterator's next 8943 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8944 * to it as just "iter_next()" in comments below. 8945 * 8946 * BPF verifier relies on a crucial contract for any iter_next() 8947 * implementation: it should *eventually* return NULL, and once that happens 8948 * it should keep returning NULL. That is, once iterator exhausts elements to 8949 * iterate, it should never reset or spuriously return new elements. 8950 * 8951 * With the assumption of such contract, process_iter_next_call() simulates 8952 * a fork in the verifier state to validate loop logic correctness and safety 8953 * without having to simulate infinite amount of iterations. 8954 * 8955 * In current state, we first assume that iter_next() returned NULL and 8956 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8957 * conditions we should not form an infinite loop and should eventually reach 8958 * exit. 8959 * 8960 * Besides that, we also fork current state and enqueue it for later 8961 * verification. In a forked state we keep iterator state as ACTIVE 8962 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8963 * also bump iteration depth to prevent erroneous infinite loop detection 8964 * later on (see iter_active_depths_differ() comment for details). In this 8965 * state we assume that we'll eventually loop back to another iter_next() 8966 * calls (it could be in exactly same location or in some other instruction, 8967 * it doesn't matter, we don't make any unnecessary assumptions about this, 8968 * everything revolves around iterator state in a stack slot, not which 8969 * instruction is calling iter_next()). When that happens, we either will come 8970 * to iter_next() with equivalent state and can conclude that next iteration 8971 * will proceed in exactly the same way as we just verified, so it's safe to 8972 * assume that loop converges. If not, we'll go on another iteration 8973 * simulation with a different input state, until all possible starting states 8974 * are validated or we reach maximum number of instructions limit. 8975 * 8976 * This way, we will either exhaustively discover all possible input states 8977 * that iterator loop can start with and eventually will converge, or we'll 8978 * effectively regress into bounded loop simulation logic and either reach 8979 * maximum number of instructions if loop is not provably convergent, or there 8980 * is some statically known limit on number of iterations (e.g., if there is 8981 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8982 * 8983 * Iteration convergence logic in is_state_visited() relies on exact 8984 * states comparison, which ignores read and precision marks. 8985 * This is necessary because read and precision marks are not finalized 8986 * while in the loop. Exact comparison might preclude convergence for 8987 * simple programs like below: 8988 * 8989 * i = 0; 8990 * while(iter_next(&it)) 8991 * i++; 8992 * 8993 * At each iteration step i++ would produce a new distinct state and 8994 * eventually instruction processing limit would be reached. 8995 * 8996 * To avoid such behavior speculatively forget (widen) range for 8997 * imprecise scalar registers, if those registers were not precise at the 8998 * end of the previous iteration and do not match exactly. 8999 * 9000 * This is a conservative heuristic that allows to verify wide range of programs, 9001 * however it precludes verification of programs that conjure an 9002 * imprecise value on the first loop iteration and use it as precise on a second. 9003 * For example, the following safe program would fail to verify: 9004 * 9005 * struct bpf_num_iter it; 9006 * int arr[10]; 9007 * int i = 0, a = 0; 9008 * bpf_iter_num_new(&it, 0, 10); 9009 * while (bpf_iter_num_next(&it)) { 9010 * if (a == 0) { 9011 * a = 1; 9012 * i = 7; // Because i changed verifier would forget 9013 * // it's range on second loop entry. 9014 * } else { 9015 * arr[i] = 42; // This would fail to verify. 9016 * } 9017 * } 9018 * bpf_iter_num_destroy(&it); 9019 */ 9020 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 9021 struct bpf_kfunc_call_arg_meta *meta) 9022 { 9023 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 9024 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 9025 struct bpf_reg_state *cur_iter, *queued_iter; 9026 9027 BTF_TYPE_EMIT(struct bpf_iter); 9028 9029 cur_iter = get_iter_from_state(cur_st, meta); 9030 9031 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 9032 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 9033 verifier_bug(env, "unexpected iterator state %d (%s)", 9034 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 9035 return -EFAULT; 9036 } 9037 9038 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 9039 /* Because iter_next() call is a checkpoint is_state_visitied() 9040 * should guarantee parent state with same call sites and insn_idx. 9041 */ 9042 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 9043 !same_callsites(cur_st->parent, cur_st)) { 9044 verifier_bug(env, "bad parent state for iter next call"); 9045 return -EFAULT; 9046 } 9047 /* Note cur_st->parent in the call below, it is necessary to skip 9048 * checkpoint created for cur_st by is_state_visited() 9049 * right at this instruction. 9050 */ 9051 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 9052 /* branch out active iter state */ 9053 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 9054 if (!queued_st) 9055 return -ENOMEM; 9056 9057 queued_iter = get_iter_from_state(queued_st, meta); 9058 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 9059 queued_iter->iter.depth++; 9060 if (prev_st) 9061 widen_imprecise_scalars(env, prev_st, queued_st); 9062 9063 queued_fr = queued_st->frame[queued_st->curframe]; 9064 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 9065 } 9066 9067 /* switch to DRAINED state, but keep the depth unchanged */ 9068 /* mark current iter state as drained and assume returned NULL */ 9069 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 9070 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 9071 9072 return 0; 9073 } 9074 9075 static bool arg_type_is_mem_size(enum bpf_arg_type type) 9076 { 9077 return type == ARG_CONST_SIZE || 9078 type == ARG_CONST_SIZE_OR_ZERO; 9079 } 9080 9081 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 9082 { 9083 return base_type(type) == ARG_PTR_TO_MEM && 9084 type & MEM_UNINIT; 9085 } 9086 9087 static bool arg_type_is_release(enum bpf_arg_type type) 9088 { 9089 return type & OBJ_RELEASE; 9090 } 9091 9092 static bool arg_type_is_dynptr(enum bpf_arg_type type) 9093 { 9094 return base_type(type) == ARG_PTR_TO_DYNPTR; 9095 } 9096 9097 static int resolve_map_arg_type(struct bpf_verifier_env *env, 9098 const struct bpf_call_arg_meta *meta, 9099 enum bpf_arg_type *arg_type) 9100 { 9101 if (!meta->map_ptr) { 9102 /* kernel subsystem misconfigured verifier */ 9103 verifier_bug(env, "invalid map_ptr to access map->type"); 9104 return -EFAULT; 9105 } 9106 9107 switch (meta->map_ptr->map_type) { 9108 case BPF_MAP_TYPE_SOCKMAP: 9109 case BPF_MAP_TYPE_SOCKHASH: 9110 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 9111 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 9112 } else { 9113 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 9114 return -EINVAL; 9115 } 9116 break; 9117 case BPF_MAP_TYPE_BLOOM_FILTER: 9118 if (meta->func_id == BPF_FUNC_map_peek_elem) 9119 *arg_type = ARG_PTR_TO_MAP_VALUE; 9120 break; 9121 default: 9122 break; 9123 } 9124 return 0; 9125 } 9126 9127 struct bpf_reg_types { 9128 const enum bpf_reg_type types[10]; 9129 u32 *btf_id; 9130 }; 9131 9132 static const struct bpf_reg_types sock_types = { 9133 .types = { 9134 PTR_TO_SOCK_COMMON, 9135 PTR_TO_SOCKET, 9136 PTR_TO_TCP_SOCK, 9137 PTR_TO_XDP_SOCK, 9138 }, 9139 }; 9140 9141 #ifdef CONFIG_NET 9142 static const struct bpf_reg_types btf_id_sock_common_types = { 9143 .types = { 9144 PTR_TO_SOCK_COMMON, 9145 PTR_TO_SOCKET, 9146 PTR_TO_TCP_SOCK, 9147 PTR_TO_XDP_SOCK, 9148 PTR_TO_BTF_ID, 9149 PTR_TO_BTF_ID | PTR_TRUSTED, 9150 }, 9151 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9152 }; 9153 #endif 9154 9155 static const struct bpf_reg_types mem_types = { 9156 .types = { 9157 PTR_TO_STACK, 9158 PTR_TO_PACKET, 9159 PTR_TO_PACKET_META, 9160 PTR_TO_MAP_KEY, 9161 PTR_TO_MAP_VALUE, 9162 PTR_TO_MEM, 9163 PTR_TO_MEM | MEM_RINGBUF, 9164 PTR_TO_BUF, 9165 PTR_TO_BTF_ID | PTR_TRUSTED, 9166 }, 9167 }; 9168 9169 static const struct bpf_reg_types spin_lock_types = { 9170 .types = { 9171 PTR_TO_MAP_VALUE, 9172 PTR_TO_BTF_ID | MEM_ALLOC, 9173 } 9174 }; 9175 9176 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9177 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9178 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9179 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9180 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9181 static const struct bpf_reg_types btf_ptr_types = { 9182 .types = { 9183 PTR_TO_BTF_ID, 9184 PTR_TO_BTF_ID | PTR_TRUSTED, 9185 PTR_TO_BTF_ID | MEM_RCU, 9186 }, 9187 }; 9188 static const struct bpf_reg_types percpu_btf_ptr_types = { 9189 .types = { 9190 PTR_TO_BTF_ID | MEM_PERCPU, 9191 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9192 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9193 } 9194 }; 9195 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9196 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9197 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9198 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9199 static const struct bpf_reg_types kptr_xchg_dest_types = { 9200 .types = { 9201 PTR_TO_MAP_VALUE, 9202 PTR_TO_BTF_ID | MEM_ALLOC 9203 } 9204 }; 9205 static const struct bpf_reg_types dynptr_types = { 9206 .types = { 9207 PTR_TO_STACK, 9208 CONST_PTR_TO_DYNPTR, 9209 } 9210 }; 9211 9212 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9213 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9214 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9215 [ARG_CONST_SIZE] = &scalar_types, 9216 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9217 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9218 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9219 [ARG_PTR_TO_CTX] = &context_types, 9220 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9221 #ifdef CONFIG_NET 9222 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9223 #endif 9224 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9225 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9226 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9227 [ARG_PTR_TO_MEM] = &mem_types, 9228 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9229 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9230 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9231 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9232 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9233 [ARG_PTR_TO_TIMER] = &timer_types, 9234 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9235 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9236 }; 9237 9238 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9239 enum bpf_arg_type arg_type, 9240 const u32 *arg_btf_id, 9241 struct bpf_call_arg_meta *meta) 9242 { 9243 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9244 enum bpf_reg_type expected, type = reg->type; 9245 const struct bpf_reg_types *compatible; 9246 int i, j; 9247 9248 compatible = compatible_reg_types[base_type(arg_type)]; 9249 if (!compatible) { 9250 verifier_bug(env, "unsupported arg type %d", arg_type); 9251 return -EFAULT; 9252 } 9253 9254 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9255 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9256 * 9257 * Same for MAYBE_NULL: 9258 * 9259 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9260 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9261 * 9262 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9263 * 9264 * Therefore we fold these flags depending on the arg_type before comparison. 9265 */ 9266 if (arg_type & MEM_RDONLY) 9267 type &= ~MEM_RDONLY; 9268 if (arg_type & PTR_MAYBE_NULL) 9269 type &= ~PTR_MAYBE_NULL; 9270 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9271 type &= ~DYNPTR_TYPE_FLAG_MASK; 9272 9273 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9274 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9275 type &= ~MEM_ALLOC; 9276 type &= ~MEM_PERCPU; 9277 } 9278 9279 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9280 expected = compatible->types[i]; 9281 if (expected == NOT_INIT) 9282 break; 9283 9284 if (type == expected) 9285 goto found; 9286 } 9287 9288 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9289 for (j = 0; j + 1 < i; j++) 9290 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9291 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9292 return -EACCES; 9293 9294 found: 9295 if (base_type(reg->type) != PTR_TO_BTF_ID) 9296 return 0; 9297 9298 if (compatible == &mem_types) { 9299 if (!(arg_type & MEM_RDONLY)) { 9300 verbose(env, 9301 "%s() may write into memory pointed by R%d type=%s\n", 9302 func_id_name(meta->func_id), 9303 regno, reg_type_str(env, reg->type)); 9304 return -EACCES; 9305 } 9306 return 0; 9307 } 9308 9309 switch ((int)reg->type) { 9310 case PTR_TO_BTF_ID: 9311 case PTR_TO_BTF_ID | PTR_TRUSTED: 9312 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9313 case PTR_TO_BTF_ID | MEM_RCU: 9314 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9315 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9316 { 9317 /* For bpf_sk_release, it needs to match against first member 9318 * 'struct sock_common', hence make an exception for it. This 9319 * allows bpf_sk_release to work for multiple socket types. 9320 */ 9321 bool strict_type_match = arg_type_is_release(arg_type) && 9322 meta->func_id != BPF_FUNC_sk_release; 9323 9324 if (type_may_be_null(reg->type) && 9325 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9326 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9327 return -EACCES; 9328 } 9329 9330 if (!arg_btf_id) { 9331 if (!compatible->btf_id) { 9332 verifier_bug(env, "missing arg compatible BTF ID"); 9333 return -EFAULT; 9334 } 9335 arg_btf_id = compatible->btf_id; 9336 } 9337 9338 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9339 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9340 return -EACCES; 9341 } else { 9342 if (arg_btf_id == BPF_PTR_POISON) { 9343 verbose(env, "verifier internal error:"); 9344 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9345 regno); 9346 return -EACCES; 9347 } 9348 9349 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9350 btf_vmlinux, *arg_btf_id, 9351 strict_type_match)) { 9352 verbose(env, "R%d is of type %s but %s is expected\n", 9353 regno, btf_type_name(reg->btf, reg->btf_id), 9354 btf_type_name(btf_vmlinux, *arg_btf_id)); 9355 return -EACCES; 9356 } 9357 } 9358 break; 9359 } 9360 case PTR_TO_BTF_ID | MEM_ALLOC: 9361 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9362 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9363 meta->func_id != BPF_FUNC_kptr_xchg) { 9364 verifier_bug(env, "unimplemented handling of MEM_ALLOC"); 9365 return -EFAULT; 9366 } 9367 /* Check if local kptr in src arg matches kptr in dst arg */ 9368 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9369 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9370 return -EACCES; 9371 } 9372 break; 9373 case PTR_TO_BTF_ID | MEM_PERCPU: 9374 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9375 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9376 /* Handled by helper specific checks */ 9377 break; 9378 default: 9379 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match"); 9380 return -EFAULT; 9381 } 9382 return 0; 9383 } 9384 9385 static struct btf_field * 9386 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9387 { 9388 struct btf_field *field; 9389 struct btf_record *rec; 9390 9391 rec = reg_btf_record(reg); 9392 if (!rec) 9393 return NULL; 9394 9395 field = btf_record_find(rec, off, fields); 9396 if (!field) 9397 return NULL; 9398 9399 return field; 9400 } 9401 9402 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9403 const struct bpf_reg_state *reg, int regno, 9404 enum bpf_arg_type arg_type) 9405 { 9406 u32 type = reg->type; 9407 9408 /* When referenced register is passed to release function, its fixed 9409 * offset must be 0. 9410 * 9411 * We will check arg_type_is_release reg has ref_obj_id when storing 9412 * meta->release_regno. 9413 */ 9414 if (arg_type_is_release(arg_type)) { 9415 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9416 * may not directly point to the object being released, but to 9417 * dynptr pointing to such object, which might be at some offset 9418 * on the stack. In that case, we simply to fallback to the 9419 * default handling. 9420 */ 9421 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9422 return 0; 9423 9424 /* Doing check_ptr_off_reg check for the offset will catch this 9425 * because fixed_off_ok is false, but checking here allows us 9426 * to give the user a better error message. 9427 */ 9428 if (reg->off) { 9429 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9430 regno); 9431 return -EINVAL; 9432 } 9433 return __check_ptr_off_reg(env, reg, regno, false); 9434 } 9435 9436 switch (type) { 9437 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9438 case PTR_TO_STACK: 9439 case PTR_TO_PACKET: 9440 case PTR_TO_PACKET_META: 9441 case PTR_TO_MAP_KEY: 9442 case PTR_TO_MAP_VALUE: 9443 case PTR_TO_MEM: 9444 case PTR_TO_MEM | MEM_RDONLY: 9445 case PTR_TO_MEM | MEM_RINGBUF: 9446 case PTR_TO_BUF: 9447 case PTR_TO_BUF | MEM_RDONLY: 9448 case PTR_TO_ARENA: 9449 case SCALAR_VALUE: 9450 return 0; 9451 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9452 * fixed offset. 9453 */ 9454 case PTR_TO_BTF_ID: 9455 case PTR_TO_BTF_ID | MEM_ALLOC: 9456 case PTR_TO_BTF_ID | PTR_TRUSTED: 9457 case PTR_TO_BTF_ID | MEM_RCU: 9458 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9459 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9460 /* When referenced PTR_TO_BTF_ID is passed to release function, 9461 * its fixed offset must be 0. In the other cases, fixed offset 9462 * can be non-zero. This was already checked above. So pass 9463 * fixed_off_ok as true to allow fixed offset for all other 9464 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9465 * still need to do checks instead of returning. 9466 */ 9467 return __check_ptr_off_reg(env, reg, regno, true); 9468 default: 9469 return __check_ptr_off_reg(env, reg, regno, false); 9470 } 9471 } 9472 9473 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9474 const struct bpf_func_proto *fn, 9475 struct bpf_reg_state *regs) 9476 { 9477 struct bpf_reg_state *state = NULL; 9478 int i; 9479 9480 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9481 if (arg_type_is_dynptr(fn->arg_type[i])) { 9482 if (state) { 9483 verbose(env, "verifier internal error: multiple dynptr args\n"); 9484 return NULL; 9485 } 9486 state = ®s[BPF_REG_1 + i]; 9487 } 9488 9489 if (!state) 9490 verbose(env, "verifier internal error: no dynptr arg found\n"); 9491 9492 return state; 9493 } 9494 9495 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9496 { 9497 struct bpf_func_state *state = func(env, reg); 9498 int spi; 9499 9500 if (reg->type == CONST_PTR_TO_DYNPTR) 9501 return reg->id; 9502 spi = dynptr_get_spi(env, reg); 9503 if (spi < 0) 9504 return spi; 9505 return state->stack[spi].spilled_ptr.id; 9506 } 9507 9508 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9509 { 9510 struct bpf_func_state *state = func(env, reg); 9511 int spi; 9512 9513 if (reg->type == CONST_PTR_TO_DYNPTR) 9514 return reg->ref_obj_id; 9515 spi = dynptr_get_spi(env, reg); 9516 if (spi < 0) 9517 return spi; 9518 return state->stack[spi].spilled_ptr.ref_obj_id; 9519 } 9520 9521 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9522 struct bpf_reg_state *reg) 9523 { 9524 struct bpf_func_state *state = func(env, reg); 9525 int spi; 9526 9527 if (reg->type == CONST_PTR_TO_DYNPTR) 9528 return reg->dynptr.type; 9529 9530 spi = __get_spi(reg->off); 9531 if (spi < 0) { 9532 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9533 return BPF_DYNPTR_TYPE_INVALID; 9534 } 9535 9536 return state->stack[spi].spilled_ptr.dynptr.type; 9537 } 9538 9539 static int check_reg_const_str(struct bpf_verifier_env *env, 9540 struct bpf_reg_state *reg, u32 regno) 9541 { 9542 struct bpf_map *map = reg->map_ptr; 9543 int err; 9544 int map_off; 9545 u64 map_addr; 9546 char *str_ptr; 9547 9548 if (reg->type != PTR_TO_MAP_VALUE) 9549 return -EINVAL; 9550 9551 if (!bpf_map_is_rdonly(map)) { 9552 verbose(env, "R%d does not point to a readonly map'\n", regno); 9553 return -EACCES; 9554 } 9555 9556 if (!tnum_is_const(reg->var_off)) { 9557 verbose(env, "R%d is not a constant address'\n", regno); 9558 return -EACCES; 9559 } 9560 9561 if (!map->ops->map_direct_value_addr) { 9562 verbose(env, "no direct value access support for this map type\n"); 9563 return -EACCES; 9564 } 9565 9566 err = check_map_access(env, regno, reg->off, 9567 map->value_size - reg->off, false, 9568 ACCESS_HELPER); 9569 if (err) 9570 return err; 9571 9572 map_off = reg->off + reg->var_off.value; 9573 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9574 if (err) { 9575 verbose(env, "direct value access on string failed\n"); 9576 return err; 9577 } 9578 9579 str_ptr = (char *)(long)(map_addr); 9580 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9581 verbose(env, "string is not zero-terminated\n"); 9582 return -EINVAL; 9583 } 9584 return 0; 9585 } 9586 9587 /* Returns constant key value in `value` if possible, else negative error */ 9588 static int get_constant_map_key(struct bpf_verifier_env *env, 9589 struct bpf_reg_state *key, 9590 u32 key_size, 9591 s64 *value) 9592 { 9593 struct bpf_func_state *state = func(env, key); 9594 struct bpf_reg_state *reg; 9595 int slot, spi, off; 9596 int spill_size = 0; 9597 int zero_size = 0; 9598 int stack_off; 9599 int i, err; 9600 u8 *stype; 9601 9602 if (!env->bpf_capable) 9603 return -EOPNOTSUPP; 9604 if (key->type != PTR_TO_STACK) 9605 return -EOPNOTSUPP; 9606 if (!tnum_is_const(key->var_off)) 9607 return -EOPNOTSUPP; 9608 9609 stack_off = key->off + key->var_off.value; 9610 slot = -stack_off - 1; 9611 spi = slot / BPF_REG_SIZE; 9612 off = slot % BPF_REG_SIZE; 9613 stype = state->stack[spi].slot_type; 9614 9615 /* First handle precisely tracked STACK_ZERO */ 9616 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9617 zero_size++; 9618 if (zero_size >= key_size) { 9619 *value = 0; 9620 return 0; 9621 } 9622 9623 /* Check that stack contains a scalar spill of expected size */ 9624 if (!is_spilled_scalar_reg(&state->stack[spi])) 9625 return -EOPNOTSUPP; 9626 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9627 spill_size++; 9628 if (spill_size != key_size) 9629 return -EOPNOTSUPP; 9630 9631 reg = &state->stack[spi].spilled_ptr; 9632 if (!tnum_is_const(reg->var_off)) 9633 /* Stack value not statically known */ 9634 return -EOPNOTSUPP; 9635 9636 /* We are relying on a constant value. So mark as precise 9637 * to prevent pruning on it. 9638 */ 9639 bt_set_frame_slot(&env->bt, key->frameno, spi); 9640 err = mark_chain_precision_batch(env, env->cur_state); 9641 if (err < 0) 9642 return err; 9643 9644 *value = reg->var_off.value; 9645 return 0; 9646 } 9647 9648 static bool can_elide_value_nullness(enum bpf_map_type type); 9649 9650 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9651 struct bpf_call_arg_meta *meta, 9652 const struct bpf_func_proto *fn, 9653 int insn_idx) 9654 { 9655 u32 regno = BPF_REG_1 + arg; 9656 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9657 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9658 enum bpf_reg_type type = reg->type; 9659 u32 *arg_btf_id = NULL; 9660 u32 key_size; 9661 int err = 0; 9662 9663 if (arg_type == ARG_DONTCARE) 9664 return 0; 9665 9666 err = check_reg_arg(env, regno, SRC_OP); 9667 if (err) 9668 return err; 9669 9670 if (arg_type == ARG_ANYTHING) { 9671 if (is_pointer_value(env, regno)) { 9672 verbose(env, "R%d leaks addr into helper function\n", 9673 regno); 9674 return -EACCES; 9675 } 9676 return 0; 9677 } 9678 9679 if (type_is_pkt_pointer(type) && 9680 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9681 verbose(env, "helper access to the packet is not allowed\n"); 9682 return -EACCES; 9683 } 9684 9685 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9686 err = resolve_map_arg_type(env, meta, &arg_type); 9687 if (err) 9688 return err; 9689 } 9690 9691 if (register_is_null(reg) && type_may_be_null(arg_type)) 9692 /* A NULL register has a SCALAR_VALUE type, so skip 9693 * type checking. 9694 */ 9695 goto skip_type_check; 9696 9697 /* arg_btf_id and arg_size are in a union. */ 9698 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9699 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9700 arg_btf_id = fn->arg_btf_id[arg]; 9701 9702 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9703 if (err) 9704 return err; 9705 9706 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9707 if (err) 9708 return err; 9709 9710 skip_type_check: 9711 if (arg_type_is_release(arg_type)) { 9712 if (arg_type_is_dynptr(arg_type)) { 9713 struct bpf_func_state *state = func(env, reg); 9714 int spi; 9715 9716 /* Only dynptr created on stack can be released, thus 9717 * the get_spi and stack state checks for spilled_ptr 9718 * should only be done before process_dynptr_func for 9719 * PTR_TO_STACK. 9720 */ 9721 if (reg->type == PTR_TO_STACK) { 9722 spi = dynptr_get_spi(env, reg); 9723 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9724 verbose(env, "arg %d is an unacquired reference\n", regno); 9725 return -EINVAL; 9726 } 9727 } else { 9728 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9729 return -EINVAL; 9730 } 9731 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9732 verbose(env, "R%d must be referenced when passed to release function\n", 9733 regno); 9734 return -EINVAL; 9735 } 9736 if (meta->release_regno) { 9737 verifier_bug(env, "more than one release argument"); 9738 return -EFAULT; 9739 } 9740 meta->release_regno = regno; 9741 } 9742 9743 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9744 if (meta->ref_obj_id) { 9745 verbose(env, "more than one arg with ref_obj_id R%d %u %u", 9746 regno, reg->ref_obj_id, 9747 meta->ref_obj_id); 9748 return -EACCES; 9749 } 9750 meta->ref_obj_id = reg->ref_obj_id; 9751 } 9752 9753 switch (base_type(arg_type)) { 9754 case ARG_CONST_MAP_PTR: 9755 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9756 if (meta->map_ptr) { 9757 /* Use map_uid (which is unique id of inner map) to reject: 9758 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9759 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9760 * if (inner_map1 && inner_map2) { 9761 * timer = bpf_map_lookup_elem(inner_map1); 9762 * if (timer) 9763 * // mismatch would have been allowed 9764 * bpf_timer_init(timer, inner_map2); 9765 * } 9766 * 9767 * Comparing map_ptr is enough to distinguish normal and outer maps. 9768 */ 9769 if (meta->map_ptr != reg->map_ptr || 9770 meta->map_uid != reg->map_uid) { 9771 verbose(env, 9772 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9773 meta->map_uid, reg->map_uid); 9774 return -EINVAL; 9775 } 9776 } 9777 meta->map_ptr = reg->map_ptr; 9778 meta->map_uid = reg->map_uid; 9779 break; 9780 case ARG_PTR_TO_MAP_KEY: 9781 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9782 * check that [key, key + map->key_size) are within 9783 * stack limits and initialized 9784 */ 9785 if (!meta->map_ptr) { 9786 /* in function declaration map_ptr must come before 9787 * map_key, so that it's verified and known before 9788 * we have to check map_key here. Otherwise it means 9789 * that kernel subsystem misconfigured verifier 9790 */ 9791 verifier_bug(env, "invalid map_ptr to access map->key"); 9792 return -EFAULT; 9793 } 9794 key_size = meta->map_ptr->key_size; 9795 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9796 if (err) 9797 return err; 9798 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9799 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9800 if (err < 0) { 9801 meta->const_map_key = -1; 9802 if (err == -EOPNOTSUPP) 9803 err = 0; 9804 else 9805 return err; 9806 } 9807 } 9808 break; 9809 case ARG_PTR_TO_MAP_VALUE: 9810 if (type_may_be_null(arg_type) && register_is_null(reg)) 9811 return 0; 9812 9813 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9814 * check [value, value + map->value_size) validity 9815 */ 9816 if (!meta->map_ptr) { 9817 /* kernel subsystem misconfigured verifier */ 9818 verifier_bug(env, "invalid map_ptr to access map->value"); 9819 return -EFAULT; 9820 } 9821 meta->raw_mode = arg_type & MEM_UNINIT; 9822 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9823 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9824 false, meta); 9825 break; 9826 case ARG_PTR_TO_PERCPU_BTF_ID: 9827 if (!reg->btf_id) { 9828 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9829 return -EACCES; 9830 } 9831 meta->ret_btf = reg->btf; 9832 meta->ret_btf_id = reg->btf_id; 9833 break; 9834 case ARG_PTR_TO_SPIN_LOCK: 9835 if (in_rbtree_lock_required_cb(env)) { 9836 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9837 return -EACCES; 9838 } 9839 if (meta->func_id == BPF_FUNC_spin_lock) { 9840 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9841 if (err) 9842 return err; 9843 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9844 err = process_spin_lock(env, regno, 0); 9845 if (err) 9846 return err; 9847 } else { 9848 verifier_bug(env, "spin lock arg on unexpected helper"); 9849 return -EFAULT; 9850 } 9851 break; 9852 case ARG_PTR_TO_TIMER: 9853 err = process_timer_func(env, regno, meta); 9854 if (err) 9855 return err; 9856 break; 9857 case ARG_PTR_TO_FUNC: 9858 meta->subprogno = reg->subprogno; 9859 break; 9860 case ARG_PTR_TO_MEM: 9861 /* The access to this pointer is only checked when we hit the 9862 * next is_mem_size argument below. 9863 */ 9864 meta->raw_mode = arg_type & MEM_UNINIT; 9865 if (arg_type & MEM_FIXED_SIZE) { 9866 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9867 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9868 false, meta); 9869 if (err) 9870 return err; 9871 if (arg_type & MEM_ALIGNED) 9872 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9873 } 9874 break; 9875 case ARG_CONST_SIZE: 9876 err = check_mem_size_reg(env, reg, regno, 9877 fn->arg_type[arg - 1] & MEM_WRITE ? 9878 BPF_WRITE : BPF_READ, 9879 false, meta); 9880 break; 9881 case ARG_CONST_SIZE_OR_ZERO: 9882 err = check_mem_size_reg(env, reg, regno, 9883 fn->arg_type[arg - 1] & MEM_WRITE ? 9884 BPF_WRITE : BPF_READ, 9885 true, meta); 9886 break; 9887 case ARG_PTR_TO_DYNPTR: 9888 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9889 if (err) 9890 return err; 9891 break; 9892 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9893 if (!tnum_is_const(reg->var_off)) { 9894 verbose(env, "R%d is not a known constant'\n", 9895 regno); 9896 return -EACCES; 9897 } 9898 meta->mem_size = reg->var_off.value; 9899 err = mark_chain_precision(env, regno); 9900 if (err) 9901 return err; 9902 break; 9903 case ARG_PTR_TO_CONST_STR: 9904 { 9905 err = check_reg_const_str(env, reg, regno); 9906 if (err) 9907 return err; 9908 break; 9909 } 9910 case ARG_KPTR_XCHG_DEST: 9911 err = process_kptr_func(env, regno, meta); 9912 if (err) 9913 return err; 9914 break; 9915 } 9916 9917 return err; 9918 } 9919 9920 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9921 { 9922 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9923 enum bpf_prog_type type = resolve_prog_type(env->prog); 9924 9925 if (func_id != BPF_FUNC_map_update_elem && 9926 func_id != BPF_FUNC_map_delete_elem) 9927 return false; 9928 9929 /* It's not possible to get access to a locked struct sock in these 9930 * contexts, so updating is safe. 9931 */ 9932 switch (type) { 9933 case BPF_PROG_TYPE_TRACING: 9934 if (eatype == BPF_TRACE_ITER) 9935 return true; 9936 break; 9937 case BPF_PROG_TYPE_SOCK_OPS: 9938 /* map_update allowed only via dedicated helpers with event type checks */ 9939 if (func_id == BPF_FUNC_map_delete_elem) 9940 return true; 9941 break; 9942 case BPF_PROG_TYPE_SOCKET_FILTER: 9943 case BPF_PROG_TYPE_SCHED_CLS: 9944 case BPF_PROG_TYPE_SCHED_ACT: 9945 case BPF_PROG_TYPE_XDP: 9946 case BPF_PROG_TYPE_SK_REUSEPORT: 9947 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9948 case BPF_PROG_TYPE_SK_LOOKUP: 9949 return true; 9950 default: 9951 break; 9952 } 9953 9954 verbose(env, "cannot update sockmap in this context\n"); 9955 return false; 9956 } 9957 9958 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9959 { 9960 return env->prog->jit_requested && 9961 bpf_jit_supports_subprog_tailcalls(); 9962 } 9963 9964 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9965 struct bpf_map *map, int func_id) 9966 { 9967 if (!map) 9968 return 0; 9969 9970 /* We need a two way check, first is from map perspective ... */ 9971 switch (map->map_type) { 9972 case BPF_MAP_TYPE_PROG_ARRAY: 9973 if (func_id != BPF_FUNC_tail_call) 9974 goto error; 9975 break; 9976 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9977 if (func_id != BPF_FUNC_perf_event_read && 9978 func_id != BPF_FUNC_perf_event_output && 9979 func_id != BPF_FUNC_skb_output && 9980 func_id != BPF_FUNC_perf_event_read_value && 9981 func_id != BPF_FUNC_xdp_output) 9982 goto error; 9983 break; 9984 case BPF_MAP_TYPE_RINGBUF: 9985 if (func_id != BPF_FUNC_ringbuf_output && 9986 func_id != BPF_FUNC_ringbuf_reserve && 9987 func_id != BPF_FUNC_ringbuf_query && 9988 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9989 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9990 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9991 goto error; 9992 break; 9993 case BPF_MAP_TYPE_USER_RINGBUF: 9994 if (func_id != BPF_FUNC_user_ringbuf_drain) 9995 goto error; 9996 break; 9997 case BPF_MAP_TYPE_STACK_TRACE: 9998 if (func_id != BPF_FUNC_get_stackid) 9999 goto error; 10000 break; 10001 case BPF_MAP_TYPE_CGROUP_ARRAY: 10002 if (func_id != BPF_FUNC_skb_under_cgroup && 10003 func_id != BPF_FUNC_current_task_under_cgroup) 10004 goto error; 10005 break; 10006 case BPF_MAP_TYPE_CGROUP_STORAGE: 10007 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 10008 if (func_id != BPF_FUNC_get_local_storage) 10009 goto error; 10010 break; 10011 case BPF_MAP_TYPE_DEVMAP: 10012 case BPF_MAP_TYPE_DEVMAP_HASH: 10013 if (func_id != BPF_FUNC_redirect_map && 10014 func_id != BPF_FUNC_map_lookup_elem) 10015 goto error; 10016 break; 10017 /* Restrict bpf side of cpumap and xskmap, open when use-cases 10018 * appear. 10019 */ 10020 case BPF_MAP_TYPE_CPUMAP: 10021 if (func_id != BPF_FUNC_redirect_map) 10022 goto error; 10023 break; 10024 case BPF_MAP_TYPE_XSKMAP: 10025 if (func_id != BPF_FUNC_redirect_map && 10026 func_id != BPF_FUNC_map_lookup_elem) 10027 goto error; 10028 break; 10029 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 10030 case BPF_MAP_TYPE_HASH_OF_MAPS: 10031 if (func_id != BPF_FUNC_map_lookup_elem) 10032 goto error; 10033 break; 10034 case BPF_MAP_TYPE_SOCKMAP: 10035 if (func_id != BPF_FUNC_sk_redirect_map && 10036 func_id != BPF_FUNC_sock_map_update && 10037 func_id != BPF_FUNC_msg_redirect_map && 10038 func_id != BPF_FUNC_sk_select_reuseport && 10039 func_id != BPF_FUNC_map_lookup_elem && 10040 !may_update_sockmap(env, func_id)) 10041 goto error; 10042 break; 10043 case BPF_MAP_TYPE_SOCKHASH: 10044 if (func_id != BPF_FUNC_sk_redirect_hash && 10045 func_id != BPF_FUNC_sock_hash_update && 10046 func_id != BPF_FUNC_msg_redirect_hash && 10047 func_id != BPF_FUNC_sk_select_reuseport && 10048 func_id != BPF_FUNC_map_lookup_elem && 10049 !may_update_sockmap(env, func_id)) 10050 goto error; 10051 break; 10052 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 10053 if (func_id != BPF_FUNC_sk_select_reuseport) 10054 goto error; 10055 break; 10056 case BPF_MAP_TYPE_QUEUE: 10057 case BPF_MAP_TYPE_STACK: 10058 if (func_id != BPF_FUNC_map_peek_elem && 10059 func_id != BPF_FUNC_map_pop_elem && 10060 func_id != BPF_FUNC_map_push_elem) 10061 goto error; 10062 break; 10063 case BPF_MAP_TYPE_SK_STORAGE: 10064 if (func_id != BPF_FUNC_sk_storage_get && 10065 func_id != BPF_FUNC_sk_storage_delete && 10066 func_id != BPF_FUNC_kptr_xchg) 10067 goto error; 10068 break; 10069 case BPF_MAP_TYPE_INODE_STORAGE: 10070 if (func_id != BPF_FUNC_inode_storage_get && 10071 func_id != BPF_FUNC_inode_storage_delete && 10072 func_id != BPF_FUNC_kptr_xchg) 10073 goto error; 10074 break; 10075 case BPF_MAP_TYPE_TASK_STORAGE: 10076 if (func_id != BPF_FUNC_task_storage_get && 10077 func_id != BPF_FUNC_task_storage_delete && 10078 func_id != BPF_FUNC_kptr_xchg) 10079 goto error; 10080 break; 10081 case BPF_MAP_TYPE_CGRP_STORAGE: 10082 if (func_id != BPF_FUNC_cgrp_storage_get && 10083 func_id != BPF_FUNC_cgrp_storage_delete && 10084 func_id != BPF_FUNC_kptr_xchg) 10085 goto error; 10086 break; 10087 case BPF_MAP_TYPE_BLOOM_FILTER: 10088 if (func_id != BPF_FUNC_map_peek_elem && 10089 func_id != BPF_FUNC_map_push_elem) 10090 goto error; 10091 break; 10092 default: 10093 break; 10094 } 10095 10096 /* ... and second from the function itself. */ 10097 switch (func_id) { 10098 case BPF_FUNC_tail_call: 10099 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 10100 goto error; 10101 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 10102 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 10103 return -EINVAL; 10104 } 10105 break; 10106 case BPF_FUNC_perf_event_read: 10107 case BPF_FUNC_perf_event_output: 10108 case BPF_FUNC_perf_event_read_value: 10109 case BPF_FUNC_skb_output: 10110 case BPF_FUNC_xdp_output: 10111 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10112 goto error; 10113 break; 10114 case BPF_FUNC_ringbuf_output: 10115 case BPF_FUNC_ringbuf_reserve: 10116 case BPF_FUNC_ringbuf_query: 10117 case BPF_FUNC_ringbuf_reserve_dynptr: 10118 case BPF_FUNC_ringbuf_submit_dynptr: 10119 case BPF_FUNC_ringbuf_discard_dynptr: 10120 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 10121 goto error; 10122 break; 10123 case BPF_FUNC_user_ringbuf_drain: 10124 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 10125 goto error; 10126 break; 10127 case BPF_FUNC_get_stackid: 10128 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 10129 goto error; 10130 break; 10131 case BPF_FUNC_current_task_under_cgroup: 10132 case BPF_FUNC_skb_under_cgroup: 10133 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 10134 goto error; 10135 break; 10136 case BPF_FUNC_redirect_map: 10137 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 10138 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 10139 map->map_type != BPF_MAP_TYPE_CPUMAP && 10140 map->map_type != BPF_MAP_TYPE_XSKMAP) 10141 goto error; 10142 break; 10143 case BPF_FUNC_sk_redirect_map: 10144 case BPF_FUNC_msg_redirect_map: 10145 case BPF_FUNC_sock_map_update: 10146 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 10147 goto error; 10148 break; 10149 case BPF_FUNC_sk_redirect_hash: 10150 case BPF_FUNC_msg_redirect_hash: 10151 case BPF_FUNC_sock_hash_update: 10152 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10153 goto error; 10154 break; 10155 case BPF_FUNC_get_local_storage: 10156 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10157 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10158 goto error; 10159 break; 10160 case BPF_FUNC_sk_select_reuseport: 10161 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10162 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10163 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10164 goto error; 10165 break; 10166 case BPF_FUNC_map_pop_elem: 10167 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10168 map->map_type != BPF_MAP_TYPE_STACK) 10169 goto error; 10170 break; 10171 case BPF_FUNC_map_peek_elem: 10172 case BPF_FUNC_map_push_elem: 10173 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10174 map->map_type != BPF_MAP_TYPE_STACK && 10175 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10176 goto error; 10177 break; 10178 case BPF_FUNC_map_lookup_percpu_elem: 10179 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10180 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10181 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10182 goto error; 10183 break; 10184 case BPF_FUNC_sk_storage_get: 10185 case BPF_FUNC_sk_storage_delete: 10186 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10187 goto error; 10188 break; 10189 case BPF_FUNC_inode_storage_get: 10190 case BPF_FUNC_inode_storage_delete: 10191 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10192 goto error; 10193 break; 10194 case BPF_FUNC_task_storage_get: 10195 case BPF_FUNC_task_storage_delete: 10196 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10197 goto error; 10198 break; 10199 case BPF_FUNC_cgrp_storage_get: 10200 case BPF_FUNC_cgrp_storage_delete: 10201 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10202 goto error; 10203 break; 10204 default: 10205 break; 10206 } 10207 10208 return 0; 10209 error: 10210 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10211 map->map_type, func_id_name(func_id), func_id); 10212 return -EINVAL; 10213 } 10214 10215 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10216 { 10217 int count = 0; 10218 10219 if (arg_type_is_raw_mem(fn->arg1_type)) 10220 count++; 10221 if (arg_type_is_raw_mem(fn->arg2_type)) 10222 count++; 10223 if (arg_type_is_raw_mem(fn->arg3_type)) 10224 count++; 10225 if (arg_type_is_raw_mem(fn->arg4_type)) 10226 count++; 10227 if (arg_type_is_raw_mem(fn->arg5_type)) 10228 count++; 10229 10230 /* We only support one arg being in raw mode at the moment, 10231 * which is sufficient for the helper functions we have 10232 * right now. 10233 */ 10234 return count <= 1; 10235 } 10236 10237 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10238 { 10239 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10240 bool has_size = fn->arg_size[arg] != 0; 10241 bool is_next_size = false; 10242 10243 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10244 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10245 10246 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10247 return is_next_size; 10248 10249 return has_size == is_next_size || is_next_size == is_fixed; 10250 } 10251 10252 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10253 { 10254 /* bpf_xxx(..., buf, len) call will access 'len' 10255 * bytes from memory 'buf'. Both arg types need 10256 * to be paired, so make sure there's no buggy 10257 * helper function specification. 10258 */ 10259 if (arg_type_is_mem_size(fn->arg1_type) || 10260 check_args_pair_invalid(fn, 0) || 10261 check_args_pair_invalid(fn, 1) || 10262 check_args_pair_invalid(fn, 2) || 10263 check_args_pair_invalid(fn, 3) || 10264 check_args_pair_invalid(fn, 4)) 10265 return false; 10266 10267 return true; 10268 } 10269 10270 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10271 { 10272 int i; 10273 10274 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10275 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10276 return !!fn->arg_btf_id[i]; 10277 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10278 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10279 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10280 /* arg_btf_id and arg_size are in a union. */ 10281 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10282 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10283 return false; 10284 } 10285 10286 return true; 10287 } 10288 10289 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 10290 { 10291 return check_raw_mode_ok(fn) && 10292 check_arg_pair_ok(fn) && 10293 check_btf_id_ok(fn) ? 0 : -EINVAL; 10294 } 10295 10296 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10297 * are now invalid, so turn them into unknown SCALAR_VALUE. 10298 * 10299 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10300 * since these slices point to packet data. 10301 */ 10302 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10303 { 10304 struct bpf_func_state *state; 10305 struct bpf_reg_state *reg; 10306 10307 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10308 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10309 mark_reg_invalid(env, reg); 10310 })); 10311 } 10312 10313 enum { 10314 AT_PKT_END = -1, 10315 BEYOND_PKT_END = -2, 10316 }; 10317 10318 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10319 { 10320 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10321 struct bpf_reg_state *reg = &state->regs[regn]; 10322 10323 if (reg->type != PTR_TO_PACKET) 10324 /* PTR_TO_PACKET_META is not supported yet */ 10325 return; 10326 10327 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10328 * How far beyond pkt_end it goes is unknown. 10329 * if (!range_open) it's the case of pkt >= pkt_end 10330 * if (range_open) it's the case of pkt > pkt_end 10331 * hence this pointer is at least 1 byte bigger than pkt_end 10332 */ 10333 if (range_open) 10334 reg->range = BEYOND_PKT_END; 10335 else 10336 reg->range = AT_PKT_END; 10337 } 10338 10339 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10340 { 10341 int i; 10342 10343 for (i = 0; i < state->acquired_refs; i++) { 10344 if (state->refs[i].type != REF_TYPE_PTR) 10345 continue; 10346 if (state->refs[i].id == ref_obj_id) { 10347 release_reference_state(state, i); 10348 return 0; 10349 } 10350 } 10351 return -EINVAL; 10352 } 10353 10354 /* The pointer with the specified id has released its reference to kernel 10355 * resources. Identify all copies of the same pointer and clear the reference. 10356 * 10357 * This is the release function corresponding to acquire_reference(). Idempotent. 10358 */ 10359 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10360 { 10361 struct bpf_verifier_state *vstate = env->cur_state; 10362 struct bpf_func_state *state; 10363 struct bpf_reg_state *reg; 10364 int err; 10365 10366 err = release_reference_nomark(vstate, ref_obj_id); 10367 if (err) 10368 return err; 10369 10370 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10371 if (reg->ref_obj_id == ref_obj_id) 10372 mark_reg_invalid(env, reg); 10373 })); 10374 10375 return 0; 10376 } 10377 10378 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10379 { 10380 struct bpf_func_state *unused; 10381 struct bpf_reg_state *reg; 10382 10383 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10384 if (type_is_non_owning_ref(reg->type)) 10385 mark_reg_invalid(env, reg); 10386 })); 10387 } 10388 10389 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10390 struct bpf_reg_state *regs) 10391 { 10392 int i; 10393 10394 /* after the call registers r0 - r5 were scratched */ 10395 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10396 mark_reg_not_init(env, regs, caller_saved[i]); 10397 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10398 } 10399 } 10400 10401 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10402 struct bpf_func_state *caller, 10403 struct bpf_func_state *callee, 10404 int insn_idx); 10405 10406 static int set_callee_state(struct bpf_verifier_env *env, 10407 struct bpf_func_state *caller, 10408 struct bpf_func_state *callee, int insn_idx); 10409 10410 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10411 set_callee_state_fn set_callee_state_cb, 10412 struct bpf_verifier_state *state) 10413 { 10414 struct bpf_func_state *caller, *callee; 10415 int err; 10416 10417 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10418 verbose(env, "the call stack of %d frames is too deep\n", 10419 state->curframe + 2); 10420 return -E2BIG; 10421 } 10422 10423 if (state->frame[state->curframe + 1]) { 10424 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10425 return -EFAULT; 10426 } 10427 10428 caller = state->frame[state->curframe]; 10429 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); 10430 if (!callee) 10431 return -ENOMEM; 10432 state->frame[state->curframe + 1] = callee; 10433 10434 /* callee cannot access r0, r6 - r9 for reading and has to write 10435 * into its own stack before reading from it. 10436 * callee can read/write into caller's stack 10437 */ 10438 init_func_state(env, callee, 10439 /* remember the callsite, it will be used by bpf_exit */ 10440 callsite, 10441 state->curframe + 1 /* frameno within this callchain */, 10442 subprog /* subprog number within this prog */); 10443 err = set_callee_state_cb(env, caller, callee, callsite); 10444 if (err) 10445 goto err_out; 10446 10447 /* only increment it after check_reg_arg() finished */ 10448 state->curframe++; 10449 10450 return 0; 10451 10452 err_out: 10453 free_func_state(callee); 10454 state->frame[state->curframe + 1] = NULL; 10455 return err; 10456 } 10457 10458 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10459 const struct btf *btf, 10460 struct bpf_reg_state *regs) 10461 { 10462 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10463 struct bpf_verifier_log *log = &env->log; 10464 u32 i; 10465 int ret; 10466 10467 ret = btf_prepare_func_args(env, subprog); 10468 if (ret) 10469 return ret; 10470 10471 /* check that BTF function arguments match actual types that the 10472 * verifier sees. 10473 */ 10474 for (i = 0; i < sub->arg_cnt; i++) { 10475 u32 regno = i + 1; 10476 struct bpf_reg_state *reg = ®s[regno]; 10477 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10478 10479 if (arg->arg_type == ARG_ANYTHING) { 10480 if (reg->type != SCALAR_VALUE) { 10481 bpf_log(log, "R%d is not a scalar\n", regno); 10482 return -EINVAL; 10483 } 10484 } else if (arg->arg_type & PTR_UNTRUSTED) { 10485 /* 10486 * Anything is allowed for untrusted arguments, as these are 10487 * read-only and probe read instructions would protect against 10488 * invalid memory access. 10489 */ 10490 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10491 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10492 if (ret < 0) 10493 return ret; 10494 /* If function expects ctx type in BTF check that caller 10495 * is passing PTR_TO_CTX. 10496 */ 10497 if (reg->type != PTR_TO_CTX) { 10498 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10499 return -EINVAL; 10500 } 10501 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10502 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10503 if (ret < 0) 10504 return ret; 10505 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10506 return -EINVAL; 10507 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10508 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10509 return -EINVAL; 10510 } 10511 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10512 /* 10513 * Can pass any value and the kernel won't crash, but 10514 * only PTR_TO_ARENA or SCALAR make sense. Everything 10515 * else is a bug in the bpf program. Point it out to 10516 * the user at the verification time instead of 10517 * run-time debug nightmare. 10518 */ 10519 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10520 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10521 return -EINVAL; 10522 } 10523 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10524 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10525 if (ret) 10526 return ret; 10527 10528 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10529 if (ret) 10530 return ret; 10531 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10532 struct bpf_call_arg_meta meta; 10533 int err; 10534 10535 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10536 continue; 10537 10538 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10539 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10540 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10541 if (err) 10542 return err; 10543 } else { 10544 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10545 return -EFAULT; 10546 } 10547 } 10548 10549 return 0; 10550 } 10551 10552 /* Compare BTF of a function call with given bpf_reg_state. 10553 * Returns: 10554 * EFAULT - there is a verifier bug. Abort verification. 10555 * EINVAL - there is a type mismatch or BTF is not available. 10556 * 0 - BTF matches with what bpf_reg_state expects. 10557 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10558 */ 10559 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10560 struct bpf_reg_state *regs) 10561 { 10562 struct bpf_prog *prog = env->prog; 10563 struct btf *btf = prog->aux->btf; 10564 u32 btf_id; 10565 int err; 10566 10567 if (!prog->aux->func_info) 10568 return -EINVAL; 10569 10570 btf_id = prog->aux->func_info[subprog].type_id; 10571 if (!btf_id) 10572 return -EFAULT; 10573 10574 if (prog->aux->func_info_aux[subprog].unreliable) 10575 return -EINVAL; 10576 10577 err = btf_check_func_arg_match(env, subprog, btf, regs); 10578 /* Compiler optimizations can remove arguments from static functions 10579 * or mismatched type can be passed into a global function. 10580 * In such cases mark the function as unreliable from BTF point of view. 10581 */ 10582 if (err) 10583 prog->aux->func_info_aux[subprog].unreliable = true; 10584 return err; 10585 } 10586 10587 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10588 int insn_idx, int subprog, 10589 set_callee_state_fn set_callee_state_cb) 10590 { 10591 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10592 struct bpf_func_state *caller, *callee; 10593 int err; 10594 10595 caller = state->frame[state->curframe]; 10596 err = btf_check_subprog_call(env, subprog, caller->regs); 10597 if (err == -EFAULT) 10598 return err; 10599 10600 /* set_callee_state is used for direct subprog calls, but we are 10601 * interested in validating only BPF helpers that can call subprogs as 10602 * callbacks 10603 */ 10604 env->subprog_info[subprog].is_cb = true; 10605 if (bpf_pseudo_kfunc_call(insn) && 10606 !is_callback_calling_kfunc(insn->imm)) { 10607 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10608 func_id_name(insn->imm), insn->imm); 10609 return -EFAULT; 10610 } else if (!bpf_pseudo_kfunc_call(insn) && 10611 !is_callback_calling_function(insn->imm)) { /* helper */ 10612 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10613 func_id_name(insn->imm), insn->imm); 10614 return -EFAULT; 10615 } 10616 10617 if (is_async_callback_calling_insn(insn)) { 10618 struct bpf_verifier_state *async_cb; 10619 10620 /* there is no real recursion here. timer and workqueue callbacks are async */ 10621 env->subprog_info[subprog].is_async_cb = true; 10622 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10623 insn_idx, subprog, 10624 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 10625 if (!async_cb) 10626 return -EFAULT; 10627 callee = async_cb->frame[0]; 10628 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10629 10630 /* Convert bpf_timer_set_callback() args into timer callback args */ 10631 err = set_callee_state_cb(env, caller, callee, insn_idx); 10632 if (err) 10633 return err; 10634 10635 return 0; 10636 } 10637 10638 /* for callback functions enqueue entry to callback and 10639 * proceed with next instruction within current frame. 10640 */ 10641 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10642 if (!callback_state) 10643 return -ENOMEM; 10644 10645 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10646 callback_state); 10647 if (err) 10648 return err; 10649 10650 callback_state->callback_unroll_depth++; 10651 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10652 caller->callback_depth = 0; 10653 return 0; 10654 } 10655 10656 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10657 int *insn_idx) 10658 { 10659 struct bpf_verifier_state *state = env->cur_state; 10660 struct bpf_func_state *caller; 10661 int err, subprog, target_insn; 10662 10663 target_insn = *insn_idx + insn->imm + 1; 10664 subprog = find_subprog(env, target_insn); 10665 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10666 target_insn)) 10667 return -EFAULT; 10668 10669 caller = state->frame[state->curframe]; 10670 err = btf_check_subprog_call(env, subprog, caller->regs); 10671 if (err == -EFAULT) 10672 return err; 10673 if (subprog_is_global(env, subprog)) { 10674 const char *sub_name = subprog_name(env, subprog); 10675 10676 if (env->cur_state->active_locks) { 10677 verbose(env, "global function calls are not allowed while holding a lock,\n" 10678 "use static function instead\n"); 10679 return -EINVAL; 10680 } 10681 10682 if (env->subprog_info[subprog].might_sleep && 10683 (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks || 10684 env->cur_state->active_irq_id || !in_sleepable(env))) { 10685 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10686 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10687 "a non-sleepable BPF program context\n"); 10688 return -EINVAL; 10689 } 10690 10691 if (err) { 10692 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10693 subprog, sub_name); 10694 return err; 10695 } 10696 10697 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10698 subprog, sub_name); 10699 if (env->subprog_info[subprog].changes_pkt_data) 10700 clear_all_pkt_pointers(env); 10701 /* mark global subprog for verifying after main prog */ 10702 subprog_aux(env, subprog)->called = true; 10703 clear_caller_saved_regs(env, caller->regs); 10704 10705 /* All global functions return a 64-bit SCALAR_VALUE */ 10706 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10707 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10708 10709 /* continue with next insn after call */ 10710 return 0; 10711 } 10712 10713 /* for regular function entry setup new frame and continue 10714 * from that frame. 10715 */ 10716 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10717 if (err) 10718 return err; 10719 10720 clear_caller_saved_regs(env, caller->regs); 10721 10722 /* and go analyze first insn of the callee */ 10723 *insn_idx = env->subprog_info[subprog].start - 1; 10724 10725 if (env->log.level & BPF_LOG_LEVEL) { 10726 verbose(env, "caller:\n"); 10727 print_verifier_state(env, state, caller->frameno, true); 10728 verbose(env, "callee:\n"); 10729 print_verifier_state(env, state, state->curframe, true); 10730 } 10731 10732 return 0; 10733 } 10734 10735 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10736 struct bpf_func_state *caller, 10737 struct bpf_func_state *callee) 10738 { 10739 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10740 * void *callback_ctx, u64 flags); 10741 * callback_fn(struct bpf_map *map, void *key, void *value, 10742 * void *callback_ctx); 10743 */ 10744 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10745 10746 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10747 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10748 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10749 10750 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10751 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10752 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10753 10754 /* pointer to stack or null */ 10755 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10756 10757 /* unused */ 10758 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10759 return 0; 10760 } 10761 10762 static int set_callee_state(struct bpf_verifier_env *env, 10763 struct bpf_func_state *caller, 10764 struct bpf_func_state *callee, int insn_idx) 10765 { 10766 int i; 10767 10768 /* copy r1 - r5 args that callee can access. The copy includes parent 10769 * pointers, which connects us up to the liveness chain 10770 */ 10771 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10772 callee->regs[i] = caller->regs[i]; 10773 return 0; 10774 } 10775 10776 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10777 struct bpf_func_state *caller, 10778 struct bpf_func_state *callee, 10779 int insn_idx) 10780 { 10781 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10782 struct bpf_map *map; 10783 int err; 10784 10785 /* valid map_ptr and poison value does not matter */ 10786 map = insn_aux->map_ptr_state.map_ptr; 10787 if (!map->ops->map_set_for_each_callback_args || 10788 !map->ops->map_for_each_callback) { 10789 verbose(env, "callback function not allowed for map\n"); 10790 return -ENOTSUPP; 10791 } 10792 10793 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10794 if (err) 10795 return err; 10796 10797 callee->in_callback_fn = true; 10798 callee->callback_ret_range = retval_range(0, 1); 10799 return 0; 10800 } 10801 10802 static int set_loop_callback_state(struct bpf_verifier_env *env, 10803 struct bpf_func_state *caller, 10804 struct bpf_func_state *callee, 10805 int insn_idx) 10806 { 10807 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10808 * u64 flags); 10809 * callback_fn(u64 index, void *callback_ctx); 10810 */ 10811 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10812 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10813 10814 /* unused */ 10815 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10816 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10817 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10818 10819 callee->in_callback_fn = true; 10820 callee->callback_ret_range = retval_range(0, 1); 10821 return 0; 10822 } 10823 10824 static int set_timer_callback_state(struct bpf_verifier_env *env, 10825 struct bpf_func_state *caller, 10826 struct bpf_func_state *callee, 10827 int insn_idx) 10828 { 10829 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10830 10831 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10832 * callback_fn(struct bpf_map *map, void *key, void *value); 10833 */ 10834 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10835 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10836 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10837 10838 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10839 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10840 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10841 10842 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10843 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10844 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10845 10846 /* unused */ 10847 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10848 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10849 callee->in_async_callback_fn = true; 10850 callee->callback_ret_range = retval_range(0, 1); 10851 return 0; 10852 } 10853 10854 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10855 struct bpf_func_state *caller, 10856 struct bpf_func_state *callee, 10857 int insn_idx) 10858 { 10859 /* bpf_find_vma(struct task_struct *task, u64 addr, 10860 * void *callback_fn, void *callback_ctx, u64 flags) 10861 * (callback_fn)(struct task_struct *task, 10862 * struct vm_area_struct *vma, void *callback_ctx); 10863 */ 10864 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10865 10866 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10867 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10868 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10869 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10870 10871 /* pointer to stack or null */ 10872 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10873 10874 /* unused */ 10875 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10876 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10877 callee->in_callback_fn = true; 10878 callee->callback_ret_range = retval_range(0, 1); 10879 return 0; 10880 } 10881 10882 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10883 struct bpf_func_state *caller, 10884 struct bpf_func_state *callee, 10885 int insn_idx) 10886 { 10887 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10888 * callback_ctx, u64 flags); 10889 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10890 */ 10891 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10892 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10893 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10894 10895 /* unused */ 10896 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10897 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10898 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10899 10900 callee->in_callback_fn = true; 10901 callee->callback_ret_range = retval_range(0, 1); 10902 return 0; 10903 } 10904 10905 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10906 struct bpf_func_state *caller, 10907 struct bpf_func_state *callee, 10908 int insn_idx) 10909 { 10910 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10911 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10912 * 10913 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10914 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10915 * by this point, so look at 'root' 10916 */ 10917 struct btf_field *field; 10918 10919 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10920 BPF_RB_ROOT); 10921 if (!field || !field->graph_root.value_btf_id) 10922 return -EFAULT; 10923 10924 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10925 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10926 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10927 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10928 10929 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10930 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10931 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10932 callee->in_callback_fn = true; 10933 callee->callback_ret_range = retval_range(0, 1); 10934 return 0; 10935 } 10936 10937 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10938 10939 /* Are we currently verifying the callback for a rbtree helper that must 10940 * be called with lock held? If so, no need to complain about unreleased 10941 * lock 10942 */ 10943 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10944 { 10945 struct bpf_verifier_state *state = env->cur_state; 10946 struct bpf_insn *insn = env->prog->insnsi; 10947 struct bpf_func_state *callee; 10948 int kfunc_btf_id; 10949 10950 if (!state->curframe) 10951 return false; 10952 10953 callee = state->frame[state->curframe]; 10954 10955 if (!callee->in_callback_fn) 10956 return false; 10957 10958 kfunc_btf_id = insn[callee->callsite].imm; 10959 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10960 } 10961 10962 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10963 bool return_32bit) 10964 { 10965 if (return_32bit) 10966 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10967 else 10968 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10969 } 10970 10971 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10972 { 10973 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10974 struct bpf_func_state *caller, *callee; 10975 struct bpf_reg_state *r0; 10976 bool in_callback_fn; 10977 int err; 10978 10979 callee = state->frame[state->curframe]; 10980 r0 = &callee->regs[BPF_REG_0]; 10981 if (r0->type == PTR_TO_STACK) { 10982 /* technically it's ok to return caller's stack pointer 10983 * (or caller's caller's pointer) back to the caller, 10984 * since these pointers are valid. Only current stack 10985 * pointer will be invalid as soon as function exits, 10986 * but let's be conservative 10987 */ 10988 verbose(env, "cannot return stack pointer to the caller\n"); 10989 return -EINVAL; 10990 } 10991 10992 caller = state->frame[state->curframe - 1]; 10993 if (callee->in_callback_fn) { 10994 if (r0->type != SCALAR_VALUE) { 10995 verbose(env, "R0 not a scalar value\n"); 10996 return -EACCES; 10997 } 10998 10999 /* we are going to rely on register's precise value */ 11000 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 11001 err = err ?: mark_chain_precision(env, BPF_REG_0); 11002 if (err) 11003 return err; 11004 11005 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 11006 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 11007 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 11008 "At callback return", "R0"); 11009 return -EINVAL; 11010 } 11011 if (!calls_callback(env, callee->callsite)) { 11012 verifier_bug(env, "in callback at %d, callsite %d !calls_callback", 11013 *insn_idx, callee->callsite); 11014 return -EFAULT; 11015 } 11016 } else { 11017 /* return to the caller whatever r0 had in the callee */ 11018 caller->regs[BPF_REG_0] = *r0; 11019 } 11020 11021 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 11022 * there function call logic would reschedule callback visit. If iteration 11023 * converges is_state_visited() would prune that visit eventually. 11024 */ 11025 in_callback_fn = callee->in_callback_fn; 11026 if (in_callback_fn) 11027 *insn_idx = callee->callsite; 11028 else 11029 *insn_idx = callee->callsite + 1; 11030 11031 if (env->log.level & BPF_LOG_LEVEL) { 11032 verbose(env, "returning from callee:\n"); 11033 print_verifier_state(env, state, callee->frameno, true); 11034 verbose(env, "to caller at %d:\n", *insn_idx); 11035 print_verifier_state(env, state, caller->frameno, true); 11036 } 11037 /* clear everything in the callee. In case of exceptional exits using 11038 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 11039 free_func_state(callee); 11040 state->frame[state->curframe--] = NULL; 11041 11042 /* for callbacks widen imprecise scalars to make programs like below verify: 11043 * 11044 * struct ctx { int i; } 11045 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 11046 * ... 11047 * struct ctx = { .i = 0; } 11048 * bpf_loop(100, cb, &ctx, 0); 11049 * 11050 * This is similar to what is done in process_iter_next_call() for open 11051 * coded iterators. 11052 */ 11053 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 11054 if (prev_st) { 11055 err = widen_imprecise_scalars(env, prev_st, state); 11056 if (err) 11057 return err; 11058 } 11059 return 0; 11060 } 11061 11062 static int do_refine_retval_range(struct bpf_verifier_env *env, 11063 struct bpf_reg_state *regs, int ret_type, 11064 int func_id, 11065 struct bpf_call_arg_meta *meta) 11066 { 11067 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 11068 11069 if (ret_type != RET_INTEGER) 11070 return 0; 11071 11072 switch (func_id) { 11073 case BPF_FUNC_get_stack: 11074 case BPF_FUNC_get_task_stack: 11075 case BPF_FUNC_probe_read_str: 11076 case BPF_FUNC_probe_read_kernel_str: 11077 case BPF_FUNC_probe_read_user_str: 11078 ret_reg->smax_value = meta->msize_max_value; 11079 ret_reg->s32_max_value = meta->msize_max_value; 11080 ret_reg->smin_value = -MAX_ERRNO; 11081 ret_reg->s32_min_value = -MAX_ERRNO; 11082 reg_bounds_sync(ret_reg); 11083 break; 11084 case BPF_FUNC_get_smp_processor_id: 11085 ret_reg->umax_value = nr_cpu_ids - 1; 11086 ret_reg->u32_max_value = nr_cpu_ids - 1; 11087 ret_reg->smax_value = nr_cpu_ids - 1; 11088 ret_reg->s32_max_value = nr_cpu_ids - 1; 11089 ret_reg->umin_value = 0; 11090 ret_reg->u32_min_value = 0; 11091 ret_reg->smin_value = 0; 11092 ret_reg->s32_min_value = 0; 11093 reg_bounds_sync(ret_reg); 11094 break; 11095 } 11096 11097 return reg_bounds_sanity_check(env, ret_reg, "retval"); 11098 } 11099 11100 static int 11101 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11102 int func_id, int insn_idx) 11103 { 11104 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11105 struct bpf_map *map = meta->map_ptr; 11106 11107 if (func_id != BPF_FUNC_tail_call && 11108 func_id != BPF_FUNC_map_lookup_elem && 11109 func_id != BPF_FUNC_map_update_elem && 11110 func_id != BPF_FUNC_map_delete_elem && 11111 func_id != BPF_FUNC_map_push_elem && 11112 func_id != BPF_FUNC_map_pop_elem && 11113 func_id != BPF_FUNC_map_peek_elem && 11114 func_id != BPF_FUNC_for_each_map_elem && 11115 func_id != BPF_FUNC_redirect_map && 11116 func_id != BPF_FUNC_map_lookup_percpu_elem) 11117 return 0; 11118 11119 if (map == NULL) { 11120 verifier_bug(env, "expected map for helper call"); 11121 return -EFAULT; 11122 } 11123 11124 /* In case of read-only, some additional restrictions 11125 * need to be applied in order to prevent altering the 11126 * state of the map from program side. 11127 */ 11128 if ((map->map_flags & BPF_F_RDONLY_PROG) && 11129 (func_id == BPF_FUNC_map_delete_elem || 11130 func_id == BPF_FUNC_map_update_elem || 11131 func_id == BPF_FUNC_map_push_elem || 11132 func_id == BPF_FUNC_map_pop_elem)) { 11133 verbose(env, "write into map forbidden\n"); 11134 return -EACCES; 11135 } 11136 11137 if (!aux->map_ptr_state.map_ptr) 11138 bpf_map_ptr_store(aux, meta->map_ptr, 11139 !meta->map_ptr->bypass_spec_v1, false); 11140 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 11141 bpf_map_ptr_store(aux, meta->map_ptr, 11142 !meta->map_ptr->bypass_spec_v1, true); 11143 return 0; 11144 } 11145 11146 static int 11147 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11148 int func_id, int insn_idx) 11149 { 11150 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11151 struct bpf_reg_state *regs = cur_regs(env), *reg; 11152 struct bpf_map *map = meta->map_ptr; 11153 u64 val, max; 11154 int err; 11155 11156 if (func_id != BPF_FUNC_tail_call) 11157 return 0; 11158 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11159 verbose(env, "expected prog array map for tail call"); 11160 return -EINVAL; 11161 } 11162 11163 reg = ®s[BPF_REG_3]; 11164 val = reg->var_off.value; 11165 max = map->max_entries; 11166 11167 if (!(is_reg_const(reg, false) && val < max)) { 11168 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11169 return 0; 11170 } 11171 11172 err = mark_chain_precision(env, BPF_REG_3); 11173 if (err) 11174 return err; 11175 if (bpf_map_key_unseen(aux)) 11176 bpf_map_key_store(aux, val); 11177 else if (!bpf_map_key_poisoned(aux) && 11178 bpf_map_key_immediate(aux) != val) 11179 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11180 return 0; 11181 } 11182 11183 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11184 { 11185 struct bpf_verifier_state *state = env->cur_state; 11186 enum bpf_prog_type type = resolve_prog_type(env->prog); 11187 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11188 bool refs_lingering = false; 11189 int i; 11190 11191 if (!exception_exit && cur_func(env)->frameno) 11192 return 0; 11193 11194 for (i = 0; i < state->acquired_refs; i++) { 11195 if (state->refs[i].type != REF_TYPE_PTR) 11196 continue; 11197 /* Allow struct_ops programs to return a referenced kptr back to 11198 * kernel. Type checks are performed later in check_return_code. 11199 */ 11200 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11201 reg->ref_obj_id == state->refs[i].id) 11202 continue; 11203 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11204 state->refs[i].id, state->refs[i].insn_idx); 11205 refs_lingering = true; 11206 } 11207 return refs_lingering ? -EINVAL : 0; 11208 } 11209 11210 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11211 { 11212 int err; 11213 11214 if (check_lock && env->cur_state->active_locks) { 11215 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11216 return -EINVAL; 11217 } 11218 11219 err = check_reference_leak(env, exception_exit); 11220 if (err) { 11221 verbose(env, "%s would lead to reference leak\n", prefix); 11222 return err; 11223 } 11224 11225 if (check_lock && env->cur_state->active_irq_id) { 11226 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11227 return -EINVAL; 11228 } 11229 11230 if (check_lock && env->cur_state->active_rcu_lock) { 11231 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11232 return -EINVAL; 11233 } 11234 11235 if (check_lock && env->cur_state->active_preempt_locks) { 11236 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11237 return -EINVAL; 11238 } 11239 11240 return 0; 11241 } 11242 11243 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11244 struct bpf_reg_state *regs) 11245 { 11246 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11247 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11248 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11249 struct bpf_bprintf_data data = {}; 11250 int err, fmt_map_off, num_args; 11251 u64 fmt_addr; 11252 char *fmt; 11253 11254 /* data must be an array of u64 */ 11255 if (data_len_reg->var_off.value % 8) 11256 return -EINVAL; 11257 num_args = data_len_reg->var_off.value / 8; 11258 11259 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11260 * and map_direct_value_addr is set. 11261 */ 11262 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11263 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11264 fmt_map_off); 11265 if (err) { 11266 verbose(env, "failed to retrieve map value address\n"); 11267 return -EFAULT; 11268 } 11269 fmt = (char *)(long)fmt_addr + fmt_map_off; 11270 11271 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11272 * can focus on validating the format specifiers. 11273 */ 11274 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11275 if (err < 0) 11276 verbose(env, "Invalid format string\n"); 11277 11278 return err; 11279 } 11280 11281 static int check_get_func_ip(struct bpf_verifier_env *env) 11282 { 11283 enum bpf_prog_type type = resolve_prog_type(env->prog); 11284 int func_id = BPF_FUNC_get_func_ip; 11285 11286 if (type == BPF_PROG_TYPE_TRACING) { 11287 if (!bpf_prog_has_trampoline(env->prog)) { 11288 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11289 func_id_name(func_id), func_id); 11290 return -ENOTSUPP; 11291 } 11292 return 0; 11293 } else if (type == BPF_PROG_TYPE_KPROBE) { 11294 return 0; 11295 } 11296 11297 verbose(env, "func %s#%d not supported for program type %d\n", 11298 func_id_name(func_id), func_id, type); 11299 return -ENOTSUPP; 11300 } 11301 11302 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) 11303 { 11304 return &env->insn_aux_data[env->insn_idx]; 11305 } 11306 11307 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11308 { 11309 struct bpf_reg_state *regs = cur_regs(env); 11310 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 11311 bool reg_is_null = register_is_null(reg); 11312 11313 if (reg_is_null) 11314 mark_chain_precision(env, BPF_REG_4); 11315 11316 return reg_is_null; 11317 } 11318 11319 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11320 { 11321 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11322 11323 if (!state->initialized) { 11324 state->initialized = 1; 11325 state->fit_for_inline = loop_flag_is_zero(env); 11326 state->callback_subprogno = subprogno; 11327 return; 11328 } 11329 11330 if (!state->fit_for_inline) 11331 return; 11332 11333 state->fit_for_inline = (loop_flag_is_zero(env) && 11334 state->callback_subprogno == subprogno); 11335 } 11336 11337 /* Returns whether or not the given map type can potentially elide 11338 * lookup return value nullness check. This is possible if the key 11339 * is statically known. 11340 */ 11341 static bool can_elide_value_nullness(enum bpf_map_type type) 11342 { 11343 switch (type) { 11344 case BPF_MAP_TYPE_ARRAY: 11345 case BPF_MAP_TYPE_PERCPU_ARRAY: 11346 return true; 11347 default: 11348 return false; 11349 } 11350 } 11351 11352 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11353 const struct bpf_func_proto **ptr) 11354 { 11355 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11356 return -ERANGE; 11357 11358 if (!env->ops->get_func_proto) 11359 return -EINVAL; 11360 11361 *ptr = env->ops->get_func_proto(func_id, env->prog); 11362 return *ptr ? 0 : -EINVAL; 11363 } 11364 11365 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11366 int *insn_idx_p) 11367 { 11368 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11369 bool returns_cpu_specific_alloc_ptr = false; 11370 const struct bpf_func_proto *fn = NULL; 11371 enum bpf_return_type ret_type; 11372 enum bpf_type_flag ret_flag; 11373 struct bpf_reg_state *regs; 11374 struct bpf_call_arg_meta meta; 11375 int insn_idx = *insn_idx_p; 11376 bool changes_data; 11377 int i, err, func_id; 11378 11379 /* find function prototype */ 11380 func_id = insn->imm; 11381 err = get_helper_proto(env, insn->imm, &fn); 11382 if (err == -ERANGE) { 11383 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11384 return -EINVAL; 11385 } 11386 11387 if (err) { 11388 verbose(env, "program of this type cannot use helper %s#%d\n", 11389 func_id_name(func_id), func_id); 11390 return err; 11391 } 11392 11393 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11394 if (!env->prog->gpl_compatible && fn->gpl_only) { 11395 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11396 return -EINVAL; 11397 } 11398 11399 if (fn->allowed && !fn->allowed(env->prog)) { 11400 verbose(env, "helper call is not allowed in probe\n"); 11401 return -EINVAL; 11402 } 11403 11404 if (!in_sleepable(env) && fn->might_sleep) { 11405 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11406 return -EINVAL; 11407 } 11408 11409 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11410 changes_data = bpf_helper_changes_pkt_data(func_id); 11411 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11412 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id); 11413 return -EFAULT; 11414 } 11415 11416 memset(&meta, 0, sizeof(meta)); 11417 meta.pkt_access = fn->pkt_access; 11418 11419 err = check_func_proto(fn, func_id); 11420 if (err) { 11421 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id); 11422 return err; 11423 } 11424 11425 if (env->cur_state->active_rcu_lock) { 11426 if (fn->might_sleep) { 11427 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11428 func_id_name(func_id), func_id); 11429 return -EINVAL; 11430 } 11431 11432 if (in_sleepable(env) && is_storage_get_function(func_id)) 11433 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11434 } 11435 11436 if (env->cur_state->active_preempt_locks) { 11437 if (fn->might_sleep) { 11438 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11439 func_id_name(func_id), func_id); 11440 return -EINVAL; 11441 } 11442 11443 if (in_sleepable(env) && is_storage_get_function(func_id)) 11444 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11445 } 11446 11447 if (env->cur_state->active_irq_id) { 11448 if (fn->might_sleep) { 11449 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11450 func_id_name(func_id), func_id); 11451 return -EINVAL; 11452 } 11453 11454 if (in_sleepable(env) && is_storage_get_function(func_id)) 11455 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11456 } 11457 11458 meta.func_id = func_id; 11459 /* check args */ 11460 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11461 err = check_func_arg(env, i, &meta, fn, insn_idx); 11462 if (err) 11463 return err; 11464 } 11465 11466 err = record_func_map(env, &meta, func_id, insn_idx); 11467 if (err) 11468 return err; 11469 11470 err = record_func_key(env, &meta, func_id, insn_idx); 11471 if (err) 11472 return err; 11473 11474 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11475 * is inferred from register state. 11476 */ 11477 for (i = 0; i < meta.access_size; i++) { 11478 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11479 BPF_WRITE, -1, false, false); 11480 if (err) 11481 return err; 11482 } 11483 11484 regs = cur_regs(env); 11485 11486 if (meta.release_regno) { 11487 err = -EINVAL; 11488 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11489 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11490 * is safe to do directly. 11491 */ 11492 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11493 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11494 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released"); 11495 return -EFAULT; 11496 } 11497 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11498 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11499 u32 ref_obj_id = meta.ref_obj_id; 11500 bool in_rcu = in_rcu_cs(env); 11501 struct bpf_func_state *state; 11502 struct bpf_reg_state *reg; 11503 11504 err = release_reference_nomark(env->cur_state, ref_obj_id); 11505 if (!err) { 11506 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11507 if (reg->ref_obj_id == ref_obj_id) { 11508 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11509 reg->ref_obj_id = 0; 11510 reg->type &= ~MEM_ALLOC; 11511 reg->type |= MEM_RCU; 11512 } else { 11513 mark_reg_invalid(env, reg); 11514 } 11515 } 11516 })); 11517 } 11518 } else if (meta.ref_obj_id) { 11519 err = release_reference(env, meta.ref_obj_id); 11520 } else if (register_is_null(®s[meta.release_regno])) { 11521 /* meta.ref_obj_id can only be 0 if register that is meant to be 11522 * released is NULL, which must be > R0. 11523 */ 11524 err = 0; 11525 } 11526 if (err) { 11527 verbose(env, "func %s#%d reference has not been acquired before\n", 11528 func_id_name(func_id), func_id); 11529 return err; 11530 } 11531 } 11532 11533 switch (func_id) { 11534 case BPF_FUNC_tail_call: 11535 err = check_resource_leak(env, false, true, "tail_call"); 11536 if (err) 11537 return err; 11538 break; 11539 case BPF_FUNC_get_local_storage: 11540 /* check that flags argument in get_local_storage(map, flags) is 0, 11541 * this is required because get_local_storage() can't return an error. 11542 */ 11543 if (!register_is_null(®s[BPF_REG_2])) { 11544 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11545 return -EINVAL; 11546 } 11547 break; 11548 case BPF_FUNC_for_each_map_elem: 11549 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11550 set_map_elem_callback_state); 11551 break; 11552 case BPF_FUNC_timer_set_callback: 11553 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11554 set_timer_callback_state); 11555 break; 11556 case BPF_FUNC_find_vma: 11557 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11558 set_find_vma_callback_state); 11559 break; 11560 case BPF_FUNC_snprintf: 11561 err = check_bpf_snprintf_call(env, regs); 11562 break; 11563 case BPF_FUNC_loop: 11564 update_loop_inline_state(env, meta.subprogno); 11565 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11566 * is finished, thus mark it precise. 11567 */ 11568 err = mark_chain_precision(env, BPF_REG_1); 11569 if (err) 11570 return err; 11571 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11572 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11573 set_loop_callback_state); 11574 } else { 11575 cur_func(env)->callback_depth = 0; 11576 if (env->log.level & BPF_LOG_LEVEL2) 11577 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11578 env->cur_state->curframe); 11579 } 11580 break; 11581 case BPF_FUNC_dynptr_from_mem: 11582 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11583 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11584 reg_type_str(env, regs[BPF_REG_1].type)); 11585 return -EACCES; 11586 } 11587 break; 11588 case BPF_FUNC_set_retval: 11589 if (prog_type == BPF_PROG_TYPE_LSM && 11590 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11591 if (!env->prog->aux->attach_func_proto->type) { 11592 /* Make sure programs that attach to void 11593 * hooks don't try to modify return value. 11594 */ 11595 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11596 return -EINVAL; 11597 } 11598 } 11599 break; 11600 case BPF_FUNC_dynptr_data: 11601 { 11602 struct bpf_reg_state *reg; 11603 int id, ref_obj_id; 11604 11605 reg = get_dynptr_arg_reg(env, fn, regs); 11606 if (!reg) 11607 return -EFAULT; 11608 11609 11610 if (meta.dynptr_id) { 11611 verifier_bug(env, "meta.dynptr_id already set"); 11612 return -EFAULT; 11613 } 11614 if (meta.ref_obj_id) { 11615 verifier_bug(env, "meta.ref_obj_id already set"); 11616 return -EFAULT; 11617 } 11618 11619 id = dynptr_id(env, reg); 11620 if (id < 0) { 11621 verifier_bug(env, "failed to obtain dynptr id"); 11622 return id; 11623 } 11624 11625 ref_obj_id = dynptr_ref_obj_id(env, reg); 11626 if (ref_obj_id < 0) { 11627 verifier_bug(env, "failed to obtain dynptr ref_obj_id"); 11628 return ref_obj_id; 11629 } 11630 11631 meta.dynptr_id = id; 11632 meta.ref_obj_id = ref_obj_id; 11633 11634 break; 11635 } 11636 case BPF_FUNC_dynptr_write: 11637 { 11638 enum bpf_dynptr_type dynptr_type; 11639 struct bpf_reg_state *reg; 11640 11641 reg = get_dynptr_arg_reg(env, fn, regs); 11642 if (!reg) 11643 return -EFAULT; 11644 11645 dynptr_type = dynptr_get_type(env, reg); 11646 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11647 return -EFAULT; 11648 11649 if (dynptr_type == BPF_DYNPTR_TYPE_SKB || 11650 dynptr_type == BPF_DYNPTR_TYPE_SKB_META) 11651 /* this will trigger clear_all_pkt_pointers(), which will 11652 * invalidate all dynptr slices associated with the skb 11653 */ 11654 changes_data = true; 11655 11656 break; 11657 } 11658 case BPF_FUNC_per_cpu_ptr: 11659 case BPF_FUNC_this_cpu_ptr: 11660 { 11661 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11662 const struct btf_type *type; 11663 11664 if (reg->type & MEM_RCU) { 11665 type = btf_type_by_id(reg->btf, reg->btf_id); 11666 if (!type || !btf_type_is_struct(type)) { 11667 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11668 return -EFAULT; 11669 } 11670 returns_cpu_specific_alloc_ptr = true; 11671 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11672 } 11673 break; 11674 } 11675 case BPF_FUNC_user_ringbuf_drain: 11676 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11677 set_user_ringbuf_callback_state); 11678 break; 11679 } 11680 11681 if (err) 11682 return err; 11683 11684 /* reset caller saved regs */ 11685 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11686 mark_reg_not_init(env, regs, caller_saved[i]); 11687 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11688 } 11689 11690 /* helper call returns 64-bit value. */ 11691 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11692 11693 /* update return register (already marked as written above) */ 11694 ret_type = fn->ret_type; 11695 ret_flag = type_flag(ret_type); 11696 11697 switch (base_type(ret_type)) { 11698 case RET_INTEGER: 11699 /* sets type to SCALAR_VALUE */ 11700 mark_reg_unknown(env, regs, BPF_REG_0); 11701 break; 11702 case RET_VOID: 11703 regs[BPF_REG_0].type = NOT_INIT; 11704 break; 11705 case RET_PTR_TO_MAP_VALUE: 11706 /* There is no offset yet applied, variable or fixed */ 11707 mark_reg_known_zero(env, regs, BPF_REG_0); 11708 /* remember map_ptr, so that check_map_access() 11709 * can check 'value_size' boundary of memory access 11710 * to map element returned from bpf_map_lookup_elem() 11711 */ 11712 if (meta.map_ptr == NULL) { 11713 verifier_bug(env, "unexpected null map_ptr"); 11714 return -EFAULT; 11715 } 11716 11717 if (func_id == BPF_FUNC_map_lookup_elem && 11718 can_elide_value_nullness(meta.map_ptr->map_type) && 11719 meta.const_map_key >= 0 && 11720 meta.const_map_key < meta.map_ptr->max_entries) 11721 ret_flag &= ~PTR_MAYBE_NULL; 11722 11723 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11724 regs[BPF_REG_0].map_uid = meta.map_uid; 11725 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11726 if (!type_may_be_null(ret_flag) && 11727 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11728 regs[BPF_REG_0].id = ++env->id_gen; 11729 } 11730 break; 11731 case RET_PTR_TO_SOCKET: 11732 mark_reg_known_zero(env, regs, BPF_REG_0); 11733 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11734 break; 11735 case RET_PTR_TO_SOCK_COMMON: 11736 mark_reg_known_zero(env, regs, BPF_REG_0); 11737 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11738 break; 11739 case RET_PTR_TO_TCP_SOCK: 11740 mark_reg_known_zero(env, regs, BPF_REG_0); 11741 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11742 break; 11743 case RET_PTR_TO_MEM: 11744 mark_reg_known_zero(env, regs, BPF_REG_0); 11745 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11746 regs[BPF_REG_0].mem_size = meta.mem_size; 11747 break; 11748 case RET_PTR_TO_MEM_OR_BTF_ID: 11749 { 11750 const struct btf_type *t; 11751 11752 mark_reg_known_zero(env, regs, BPF_REG_0); 11753 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11754 if (!btf_type_is_struct(t)) { 11755 u32 tsize; 11756 const struct btf_type *ret; 11757 const char *tname; 11758 11759 /* resolve the type size of ksym. */ 11760 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11761 if (IS_ERR(ret)) { 11762 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11763 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11764 tname, PTR_ERR(ret)); 11765 return -EINVAL; 11766 } 11767 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11768 regs[BPF_REG_0].mem_size = tsize; 11769 } else { 11770 if (returns_cpu_specific_alloc_ptr) { 11771 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11772 } else { 11773 /* MEM_RDONLY may be carried from ret_flag, but it 11774 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11775 * it will confuse the check of PTR_TO_BTF_ID in 11776 * check_mem_access(). 11777 */ 11778 ret_flag &= ~MEM_RDONLY; 11779 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11780 } 11781 11782 regs[BPF_REG_0].btf = meta.ret_btf; 11783 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11784 } 11785 break; 11786 } 11787 case RET_PTR_TO_BTF_ID: 11788 { 11789 struct btf *ret_btf; 11790 int ret_btf_id; 11791 11792 mark_reg_known_zero(env, regs, BPF_REG_0); 11793 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11794 if (func_id == BPF_FUNC_kptr_xchg) { 11795 ret_btf = meta.kptr_field->kptr.btf; 11796 ret_btf_id = meta.kptr_field->kptr.btf_id; 11797 if (!btf_is_kernel(ret_btf)) { 11798 regs[BPF_REG_0].type |= MEM_ALLOC; 11799 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11800 regs[BPF_REG_0].type |= MEM_PERCPU; 11801 } 11802 } else { 11803 if (fn->ret_btf_id == BPF_PTR_POISON) { 11804 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type", 11805 func_id_name(func_id)); 11806 return -EFAULT; 11807 } 11808 ret_btf = btf_vmlinux; 11809 ret_btf_id = *fn->ret_btf_id; 11810 } 11811 if (ret_btf_id == 0) { 11812 verbose(env, "invalid return type %u of func %s#%d\n", 11813 base_type(ret_type), func_id_name(func_id), 11814 func_id); 11815 return -EINVAL; 11816 } 11817 regs[BPF_REG_0].btf = ret_btf; 11818 regs[BPF_REG_0].btf_id = ret_btf_id; 11819 break; 11820 } 11821 default: 11822 verbose(env, "unknown return type %u of func %s#%d\n", 11823 base_type(ret_type), func_id_name(func_id), func_id); 11824 return -EINVAL; 11825 } 11826 11827 if (type_may_be_null(regs[BPF_REG_0].type)) 11828 regs[BPF_REG_0].id = ++env->id_gen; 11829 11830 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11831 verifier_bug(env, "func %s#%d sets ref_obj_id more than once", 11832 func_id_name(func_id), func_id); 11833 return -EFAULT; 11834 } 11835 11836 if (is_dynptr_ref_function(func_id)) 11837 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11838 11839 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11840 /* For release_reference() */ 11841 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11842 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11843 int id = acquire_reference(env, insn_idx); 11844 11845 if (id < 0) 11846 return id; 11847 /* For mark_ptr_or_null_reg() */ 11848 regs[BPF_REG_0].id = id; 11849 /* For release_reference() */ 11850 regs[BPF_REG_0].ref_obj_id = id; 11851 } 11852 11853 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11854 if (err) 11855 return err; 11856 11857 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11858 if (err) 11859 return err; 11860 11861 if ((func_id == BPF_FUNC_get_stack || 11862 func_id == BPF_FUNC_get_task_stack) && 11863 !env->prog->has_callchain_buf) { 11864 const char *err_str; 11865 11866 #ifdef CONFIG_PERF_EVENTS 11867 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11868 err_str = "cannot get callchain buffer for func %s#%d\n"; 11869 #else 11870 err = -ENOTSUPP; 11871 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11872 #endif 11873 if (err) { 11874 verbose(env, err_str, func_id_name(func_id), func_id); 11875 return err; 11876 } 11877 11878 env->prog->has_callchain_buf = true; 11879 } 11880 11881 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11882 env->prog->call_get_stack = true; 11883 11884 if (func_id == BPF_FUNC_get_func_ip) { 11885 if (check_get_func_ip(env)) 11886 return -ENOTSUPP; 11887 env->prog->call_get_func_ip = true; 11888 } 11889 11890 if (changes_data) 11891 clear_all_pkt_pointers(env); 11892 return 0; 11893 } 11894 11895 /* mark_btf_func_reg_size() is used when the reg size is determined by 11896 * the BTF func_proto's return value size and argument. 11897 */ 11898 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 11899 u32 regno, size_t reg_size) 11900 { 11901 struct bpf_reg_state *reg = ®s[regno]; 11902 11903 if (regno == BPF_REG_0) { 11904 /* Function return value */ 11905 reg->live |= REG_LIVE_WRITTEN; 11906 reg->subreg_def = reg_size == sizeof(u64) ? 11907 DEF_NOT_SUBREG : env->insn_idx + 1; 11908 } else { 11909 /* Function argument */ 11910 if (reg_size == sizeof(u64)) { 11911 mark_insn_zext(env, reg); 11912 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11913 } else { 11914 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11915 } 11916 } 11917 } 11918 11919 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11920 size_t reg_size) 11921 { 11922 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 11923 } 11924 11925 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11926 { 11927 return meta->kfunc_flags & KF_ACQUIRE; 11928 } 11929 11930 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11931 { 11932 return meta->kfunc_flags & KF_RELEASE; 11933 } 11934 11935 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11936 { 11937 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11938 } 11939 11940 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11941 { 11942 return meta->kfunc_flags & KF_SLEEPABLE; 11943 } 11944 11945 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11946 { 11947 return meta->kfunc_flags & KF_DESTRUCTIVE; 11948 } 11949 11950 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11951 { 11952 return meta->kfunc_flags & KF_RCU; 11953 } 11954 11955 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11956 { 11957 return meta->kfunc_flags & KF_RCU_PROTECTED; 11958 } 11959 11960 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11961 const struct btf_param *arg, 11962 const struct bpf_reg_state *reg) 11963 { 11964 const struct btf_type *t; 11965 11966 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11967 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11968 return false; 11969 11970 return btf_param_match_suffix(btf, arg, "__sz"); 11971 } 11972 11973 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11974 const struct btf_param *arg, 11975 const struct bpf_reg_state *reg) 11976 { 11977 const struct btf_type *t; 11978 11979 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11980 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11981 return false; 11982 11983 return btf_param_match_suffix(btf, arg, "__szk"); 11984 } 11985 11986 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11987 { 11988 return btf_param_match_suffix(btf, arg, "__opt"); 11989 } 11990 11991 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11992 { 11993 return btf_param_match_suffix(btf, arg, "__k"); 11994 } 11995 11996 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11997 { 11998 return btf_param_match_suffix(btf, arg, "__ign"); 11999 } 12000 12001 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 12002 { 12003 return btf_param_match_suffix(btf, arg, "__map"); 12004 } 12005 12006 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 12007 { 12008 return btf_param_match_suffix(btf, arg, "__alloc"); 12009 } 12010 12011 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 12012 { 12013 return btf_param_match_suffix(btf, arg, "__uninit"); 12014 } 12015 12016 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 12017 { 12018 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 12019 } 12020 12021 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 12022 { 12023 return btf_param_match_suffix(btf, arg, "__nullable"); 12024 } 12025 12026 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 12027 { 12028 return btf_param_match_suffix(btf, arg, "__str"); 12029 } 12030 12031 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 12032 { 12033 return btf_param_match_suffix(btf, arg, "__irq_flag"); 12034 } 12035 12036 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) 12037 { 12038 return btf_param_match_suffix(btf, arg, "__prog"); 12039 } 12040 12041 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 12042 const struct btf_param *arg, 12043 const char *name) 12044 { 12045 int len, target_len = strlen(name); 12046 const char *param_name; 12047 12048 param_name = btf_name_by_offset(btf, arg->name_off); 12049 if (str_is_empty(param_name)) 12050 return false; 12051 len = strlen(param_name); 12052 if (len != target_len) 12053 return false; 12054 if (strcmp(param_name, name)) 12055 return false; 12056 12057 return true; 12058 } 12059 12060 enum { 12061 KF_ARG_DYNPTR_ID, 12062 KF_ARG_LIST_HEAD_ID, 12063 KF_ARG_LIST_NODE_ID, 12064 KF_ARG_RB_ROOT_ID, 12065 KF_ARG_RB_NODE_ID, 12066 KF_ARG_WORKQUEUE_ID, 12067 KF_ARG_RES_SPIN_LOCK_ID, 12068 }; 12069 12070 BTF_ID_LIST(kf_arg_btf_ids) 12071 BTF_ID(struct, bpf_dynptr) 12072 BTF_ID(struct, bpf_list_head) 12073 BTF_ID(struct, bpf_list_node) 12074 BTF_ID(struct, bpf_rb_root) 12075 BTF_ID(struct, bpf_rb_node) 12076 BTF_ID(struct, bpf_wq) 12077 BTF_ID(struct, bpf_res_spin_lock) 12078 12079 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 12080 const struct btf_param *arg, int type) 12081 { 12082 const struct btf_type *t; 12083 u32 res_id; 12084 12085 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12086 if (!t) 12087 return false; 12088 if (!btf_type_is_ptr(t)) 12089 return false; 12090 t = btf_type_skip_modifiers(btf, t->type, &res_id); 12091 if (!t) 12092 return false; 12093 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 12094 } 12095 12096 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 12097 { 12098 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 12099 } 12100 12101 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 12102 { 12103 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 12104 } 12105 12106 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 12107 { 12108 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 12109 } 12110 12111 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 12112 { 12113 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 12114 } 12115 12116 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 12117 { 12118 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 12119 } 12120 12121 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 12122 { 12123 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 12124 } 12125 12126 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 12127 { 12128 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 12129 } 12130 12131 static bool is_rbtree_node_type(const struct btf_type *t) 12132 { 12133 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 12134 } 12135 12136 static bool is_list_node_type(const struct btf_type *t) 12137 { 12138 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 12139 } 12140 12141 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 12142 const struct btf_param *arg) 12143 { 12144 const struct btf_type *t; 12145 12146 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 12147 if (!t) 12148 return false; 12149 12150 return true; 12151 } 12152 12153 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12154 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12155 const struct btf *btf, 12156 const struct btf_type *t, int rec) 12157 { 12158 const struct btf_type *member_type; 12159 const struct btf_member *member; 12160 u32 i; 12161 12162 if (!btf_type_is_struct(t)) 12163 return false; 12164 12165 for_each_member(i, t, member) { 12166 const struct btf_array *array; 12167 12168 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12169 if (btf_type_is_struct(member_type)) { 12170 if (rec >= 3) { 12171 verbose(env, "max struct nesting depth exceeded\n"); 12172 return false; 12173 } 12174 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12175 return false; 12176 continue; 12177 } 12178 if (btf_type_is_array(member_type)) { 12179 array = btf_array(member_type); 12180 if (!array->nelems) 12181 return false; 12182 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12183 if (!btf_type_is_scalar(member_type)) 12184 return false; 12185 continue; 12186 } 12187 if (!btf_type_is_scalar(member_type)) 12188 return false; 12189 } 12190 return true; 12191 } 12192 12193 enum kfunc_ptr_arg_type { 12194 KF_ARG_PTR_TO_CTX, 12195 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12196 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12197 KF_ARG_PTR_TO_DYNPTR, 12198 KF_ARG_PTR_TO_ITER, 12199 KF_ARG_PTR_TO_LIST_HEAD, 12200 KF_ARG_PTR_TO_LIST_NODE, 12201 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12202 KF_ARG_PTR_TO_MEM, 12203 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12204 KF_ARG_PTR_TO_CALLBACK, 12205 KF_ARG_PTR_TO_RB_ROOT, 12206 KF_ARG_PTR_TO_RB_NODE, 12207 KF_ARG_PTR_TO_NULL, 12208 KF_ARG_PTR_TO_CONST_STR, 12209 KF_ARG_PTR_TO_MAP, 12210 KF_ARG_PTR_TO_WORKQUEUE, 12211 KF_ARG_PTR_TO_IRQ_FLAG, 12212 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12213 }; 12214 12215 enum special_kfunc_type { 12216 KF_bpf_obj_new_impl, 12217 KF_bpf_obj_drop_impl, 12218 KF_bpf_refcount_acquire_impl, 12219 KF_bpf_list_push_front_impl, 12220 KF_bpf_list_push_back_impl, 12221 KF_bpf_list_pop_front, 12222 KF_bpf_list_pop_back, 12223 KF_bpf_list_front, 12224 KF_bpf_list_back, 12225 KF_bpf_cast_to_kern_ctx, 12226 KF_bpf_rdonly_cast, 12227 KF_bpf_rcu_read_lock, 12228 KF_bpf_rcu_read_unlock, 12229 KF_bpf_rbtree_remove, 12230 KF_bpf_rbtree_add_impl, 12231 KF_bpf_rbtree_first, 12232 KF_bpf_rbtree_root, 12233 KF_bpf_rbtree_left, 12234 KF_bpf_rbtree_right, 12235 KF_bpf_dynptr_from_skb, 12236 KF_bpf_dynptr_from_xdp, 12237 KF_bpf_dynptr_from_skb_meta, 12238 KF_bpf_dynptr_slice, 12239 KF_bpf_dynptr_slice_rdwr, 12240 KF_bpf_dynptr_clone, 12241 KF_bpf_percpu_obj_new_impl, 12242 KF_bpf_percpu_obj_drop_impl, 12243 KF_bpf_throw, 12244 KF_bpf_wq_set_callback_impl, 12245 KF_bpf_preempt_disable, 12246 KF_bpf_preempt_enable, 12247 KF_bpf_iter_css_task_new, 12248 KF_bpf_session_cookie, 12249 KF_bpf_get_kmem_cache, 12250 KF_bpf_local_irq_save, 12251 KF_bpf_local_irq_restore, 12252 KF_bpf_iter_num_new, 12253 KF_bpf_iter_num_next, 12254 KF_bpf_iter_num_destroy, 12255 KF_bpf_set_dentry_xattr, 12256 KF_bpf_remove_dentry_xattr, 12257 KF_bpf_res_spin_lock, 12258 KF_bpf_res_spin_unlock, 12259 KF_bpf_res_spin_lock_irqsave, 12260 KF_bpf_res_spin_unlock_irqrestore, 12261 KF___bpf_trap, 12262 }; 12263 12264 BTF_ID_LIST(special_kfunc_list) 12265 BTF_ID(func, bpf_obj_new_impl) 12266 BTF_ID(func, bpf_obj_drop_impl) 12267 BTF_ID(func, bpf_refcount_acquire_impl) 12268 BTF_ID(func, bpf_list_push_front_impl) 12269 BTF_ID(func, bpf_list_push_back_impl) 12270 BTF_ID(func, bpf_list_pop_front) 12271 BTF_ID(func, bpf_list_pop_back) 12272 BTF_ID(func, bpf_list_front) 12273 BTF_ID(func, bpf_list_back) 12274 BTF_ID(func, bpf_cast_to_kern_ctx) 12275 BTF_ID(func, bpf_rdonly_cast) 12276 BTF_ID(func, bpf_rcu_read_lock) 12277 BTF_ID(func, bpf_rcu_read_unlock) 12278 BTF_ID(func, bpf_rbtree_remove) 12279 BTF_ID(func, bpf_rbtree_add_impl) 12280 BTF_ID(func, bpf_rbtree_first) 12281 BTF_ID(func, bpf_rbtree_root) 12282 BTF_ID(func, bpf_rbtree_left) 12283 BTF_ID(func, bpf_rbtree_right) 12284 #ifdef CONFIG_NET 12285 BTF_ID(func, bpf_dynptr_from_skb) 12286 BTF_ID(func, bpf_dynptr_from_xdp) 12287 BTF_ID(func, bpf_dynptr_from_skb_meta) 12288 #else 12289 BTF_ID_UNUSED 12290 BTF_ID_UNUSED 12291 BTF_ID_UNUSED 12292 #endif 12293 BTF_ID(func, bpf_dynptr_slice) 12294 BTF_ID(func, bpf_dynptr_slice_rdwr) 12295 BTF_ID(func, bpf_dynptr_clone) 12296 BTF_ID(func, bpf_percpu_obj_new_impl) 12297 BTF_ID(func, bpf_percpu_obj_drop_impl) 12298 BTF_ID(func, bpf_throw) 12299 BTF_ID(func, bpf_wq_set_callback_impl) 12300 BTF_ID(func, bpf_preempt_disable) 12301 BTF_ID(func, bpf_preempt_enable) 12302 #ifdef CONFIG_CGROUPS 12303 BTF_ID(func, bpf_iter_css_task_new) 12304 #else 12305 BTF_ID_UNUSED 12306 #endif 12307 #ifdef CONFIG_BPF_EVENTS 12308 BTF_ID(func, bpf_session_cookie) 12309 #else 12310 BTF_ID_UNUSED 12311 #endif 12312 BTF_ID(func, bpf_get_kmem_cache) 12313 BTF_ID(func, bpf_local_irq_save) 12314 BTF_ID(func, bpf_local_irq_restore) 12315 BTF_ID(func, bpf_iter_num_new) 12316 BTF_ID(func, bpf_iter_num_next) 12317 BTF_ID(func, bpf_iter_num_destroy) 12318 #ifdef CONFIG_BPF_LSM 12319 BTF_ID(func, bpf_set_dentry_xattr) 12320 BTF_ID(func, bpf_remove_dentry_xattr) 12321 #else 12322 BTF_ID_UNUSED 12323 BTF_ID_UNUSED 12324 #endif 12325 BTF_ID(func, bpf_res_spin_lock) 12326 BTF_ID(func, bpf_res_spin_unlock) 12327 BTF_ID(func, bpf_res_spin_lock_irqsave) 12328 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12329 BTF_ID(func, __bpf_trap) 12330 12331 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12332 { 12333 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12334 meta->arg_owning_ref) { 12335 return false; 12336 } 12337 12338 return meta->kfunc_flags & KF_RET_NULL; 12339 } 12340 12341 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12342 { 12343 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12344 } 12345 12346 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12347 { 12348 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12349 } 12350 12351 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12352 { 12353 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12354 } 12355 12356 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12357 { 12358 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12359 } 12360 12361 static enum kfunc_ptr_arg_type 12362 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12363 struct bpf_kfunc_call_arg_meta *meta, 12364 const struct btf_type *t, const struct btf_type *ref_t, 12365 const char *ref_tname, const struct btf_param *args, 12366 int argno, int nargs) 12367 { 12368 u32 regno = argno + 1; 12369 struct bpf_reg_state *regs = cur_regs(env); 12370 struct bpf_reg_state *reg = ®s[regno]; 12371 bool arg_mem_size = false; 12372 12373 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 12374 return KF_ARG_PTR_TO_CTX; 12375 12376 /* In this function, we verify the kfunc's BTF as per the argument type, 12377 * leaving the rest of the verification with respect to the register 12378 * type to our caller. When a set of conditions hold in the BTF type of 12379 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12380 */ 12381 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12382 return KF_ARG_PTR_TO_CTX; 12383 12384 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 12385 return KF_ARG_PTR_TO_NULL; 12386 12387 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12388 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12389 12390 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12391 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12392 12393 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12394 return KF_ARG_PTR_TO_DYNPTR; 12395 12396 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12397 return KF_ARG_PTR_TO_ITER; 12398 12399 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12400 return KF_ARG_PTR_TO_LIST_HEAD; 12401 12402 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12403 return KF_ARG_PTR_TO_LIST_NODE; 12404 12405 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12406 return KF_ARG_PTR_TO_RB_ROOT; 12407 12408 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12409 return KF_ARG_PTR_TO_RB_NODE; 12410 12411 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12412 return KF_ARG_PTR_TO_CONST_STR; 12413 12414 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12415 return KF_ARG_PTR_TO_MAP; 12416 12417 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12418 return KF_ARG_PTR_TO_WORKQUEUE; 12419 12420 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12421 return KF_ARG_PTR_TO_IRQ_FLAG; 12422 12423 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12424 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12425 12426 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12427 if (!btf_type_is_struct(ref_t)) { 12428 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12429 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12430 return -EINVAL; 12431 } 12432 return KF_ARG_PTR_TO_BTF_ID; 12433 } 12434 12435 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12436 return KF_ARG_PTR_TO_CALLBACK; 12437 12438 if (argno + 1 < nargs && 12439 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12440 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12441 arg_mem_size = true; 12442 12443 /* This is the catch all argument type of register types supported by 12444 * check_helper_mem_access. However, we only allow when argument type is 12445 * pointer to scalar, or struct composed (recursively) of scalars. When 12446 * arg_mem_size is true, the pointer can be void *. 12447 */ 12448 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12449 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12450 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12451 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12452 return -EINVAL; 12453 } 12454 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12455 } 12456 12457 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12458 struct bpf_reg_state *reg, 12459 const struct btf_type *ref_t, 12460 const char *ref_tname, u32 ref_id, 12461 struct bpf_kfunc_call_arg_meta *meta, 12462 int argno) 12463 { 12464 const struct btf_type *reg_ref_t; 12465 bool strict_type_match = false; 12466 const struct btf *reg_btf; 12467 const char *reg_ref_tname; 12468 bool taking_projection; 12469 bool struct_same; 12470 u32 reg_ref_id; 12471 12472 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12473 reg_btf = reg->btf; 12474 reg_ref_id = reg->btf_id; 12475 } else { 12476 reg_btf = btf_vmlinux; 12477 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12478 } 12479 12480 /* Enforce strict type matching for calls to kfuncs that are acquiring 12481 * or releasing a reference, or are no-cast aliases. We do _not_ 12482 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12483 * as we want to enable BPF programs to pass types that are bitwise 12484 * equivalent without forcing them to explicitly cast with something 12485 * like bpf_cast_to_kern_ctx(). 12486 * 12487 * For example, say we had a type like the following: 12488 * 12489 * struct bpf_cpumask { 12490 * cpumask_t cpumask; 12491 * refcount_t usage; 12492 * }; 12493 * 12494 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12495 * to a struct cpumask, so it would be safe to pass a struct 12496 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12497 * 12498 * The philosophy here is similar to how we allow scalars of different 12499 * types to be passed to kfuncs as long as the size is the same. The 12500 * only difference here is that we're simply allowing 12501 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12502 * resolve types. 12503 */ 12504 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12505 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12506 strict_type_match = true; 12507 12508 WARN_ON_ONCE(is_kfunc_release(meta) && 12509 (reg->off || !tnum_is_const(reg->var_off) || 12510 reg->var_off.value)); 12511 12512 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12513 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12514 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12515 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12516 * actually use it -- it must cast to the underlying type. So we allow 12517 * caller to pass in the underlying type. 12518 */ 12519 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12520 if (!taking_projection && !struct_same) { 12521 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12522 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12523 btf_type_str(reg_ref_t), reg_ref_tname); 12524 return -EINVAL; 12525 } 12526 return 0; 12527 } 12528 12529 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12530 struct bpf_kfunc_call_arg_meta *meta) 12531 { 12532 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12533 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12534 bool irq_save; 12535 12536 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12537 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12538 irq_save = true; 12539 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12540 kfunc_class = IRQ_LOCK_KFUNC; 12541 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12542 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12543 irq_save = false; 12544 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12545 kfunc_class = IRQ_LOCK_KFUNC; 12546 } else { 12547 verifier_bug(env, "unknown irq flags kfunc"); 12548 return -EFAULT; 12549 } 12550 12551 if (irq_save) { 12552 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12553 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12554 return -EINVAL; 12555 } 12556 12557 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12558 if (err) 12559 return err; 12560 12561 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12562 if (err) 12563 return err; 12564 } else { 12565 err = is_irq_flag_reg_valid_init(env, reg); 12566 if (err) { 12567 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12568 return err; 12569 } 12570 12571 err = mark_irq_flag_read(env, reg); 12572 if (err) 12573 return err; 12574 12575 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12576 if (err) 12577 return err; 12578 } 12579 return 0; 12580 } 12581 12582 12583 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12584 { 12585 struct btf_record *rec = reg_btf_record(reg); 12586 12587 if (!env->cur_state->active_locks) { 12588 verifier_bug(env, "%s w/o active lock", __func__); 12589 return -EFAULT; 12590 } 12591 12592 if (type_flag(reg->type) & NON_OWN_REF) { 12593 verifier_bug(env, "NON_OWN_REF already set"); 12594 return -EFAULT; 12595 } 12596 12597 reg->type |= NON_OWN_REF; 12598 if (rec->refcount_off >= 0) 12599 reg->type |= MEM_RCU; 12600 12601 return 0; 12602 } 12603 12604 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12605 { 12606 struct bpf_verifier_state *state = env->cur_state; 12607 struct bpf_func_state *unused; 12608 struct bpf_reg_state *reg; 12609 int i; 12610 12611 if (!ref_obj_id) { 12612 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion"); 12613 return -EFAULT; 12614 } 12615 12616 for (i = 0; i < state->acquired_refs; i++) { 12617 if (state->refs[i].id != ref_obj_id) 12618 continue; 12619 12620 /* Clear ref_obj_id here so release_reference doesn't clobber 12621 * the whole reg 12622 */ 12623 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12624 if (reg->ref_obj_id == ref_obj_id) { 12625 reg->ref_obj_id = 0; 12626 ref_set_non_owning(env, reg); 12627 } 12628 })); 12629 return 0; 12630 } 12631 12632 verifier_bug(env, "ref state missing for ref_obj_id"); 12633 return -EFAULT; 12634 } 12635 12636 /* Implementation details: 12637 * 12638 * Each register points to some region of memory, which we define as an 12639 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12640 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12641 * allocation. The lock and the data it protects are colocated in the same 12642 * memory region. 12643 * 12644 * Hence, everytime a register holds a pointer value pointing to such 12645 * allocation, the verifier preserves a unique reg->id for it. 12646 * 12647 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12648 * bpf_spin_lock is called. 12649 * 12650 * To enable this, lock state in the verifier captures two values: 12651 * active_lock.ptr = Register's type specific pointer 12652 * active_lock.id = A unique ID for each register pointer value 12653 * 12654 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12655 * supported register types. 12656 * 12657 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12658 * allocated objects is the reg->btf pointer. 12659 * 12660 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12661 * can establish the provenance of the map value statically for each distinct 12662 * lookup into such maps. They always contain a single map value hence unique 12663 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12664 * 12665 * So, in case of global variables, they use array maps with max_entries = 1, 12666 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12667 * into the same map value as max_entries is 1, as described above). 12668 * 12669 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12670 * outer map pointer (in verifier context), but each lookup into an inner map 12671 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12672 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12673 * will get different reg->id assigned to each lookup, hence different 12674 * active_lock.id. 12675 * 12676 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12677 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12678 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12679 */ 12680 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12681 { 12682 struct bpf_reference_state *s; 12683 void *ptr; 12684 u32 id; 12685 12686 switch ((int)reg->type) { 12687 case PTR_TO_MAP_VALUE: 12688 ptr = reg->map_ptr; 12689 break; 12690 case PTR_TO_BTF_ID | MEM_ALLOC: 12691 ptr = reg->btf; 12692 break; 12693 default: 12694 verifier_bug(env, "unknown reg type for lock check"); 12695 return -EFAULT; 12696 } 12697 id = reg->id; 12698 12699 if (!env->cur_state->active_locks) 12700 return -EINVAL; 12701 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12702 if (!s) { 12703 verbose(env, "held lock and object are not in the same allocation\n"); 12704 return -EINVAL; 12705 } 12706 return 0; 12707 } 12708 12709 static bool is_bpf_list_api_kfunc(u32 btf_id) 12710 { 12711 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12712 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12713 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12714 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12715 btf_id == special_kfunc_list[KF_bpf_list_front] || 12716 btf_id == special_kfunc_list[KF_bpf_list_back]; 12717 } 12718 12719 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12720 { 12721 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12722 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12723 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12724 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12725 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12726 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12727 } 12728 12729 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12730 { 12731 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12732 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12733 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12734 } 12735 12736 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12737 { 12738 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12739 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12740 } 12741 12742 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12743 { 12744 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12745 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12746 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12747 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12748 } 12749 12750 static bool kfunc_spin_allowed(u32 btf_id) 12751 { 12752 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 12753 is_bpf_res_spin_lock_kfunc(btf_id); 12754 } 12755 12756 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12757 { 12758 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12759 } 12760 12761 static bool is_async_callback_calling_kfunc(u32 btf_id) 12762 { 12763 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12764 } 12765 12766 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12767 { 12768 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12769 insn->imm == special_kfunc_list[KF_bpf_throw]; 12770 } 12771 12772 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12773 { 12774 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12775 } 12776 12777 static bool is_callback_calling_kfunc(u32 btf_id) 12778 { 12779 return is_sync_callback_calling_kfunc(btf_id) || 12780 is_async_callback_calling_kfunc(btf_id); 12781 } 12782 12783 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12784 { 12785 return is_bpf_rbtree_api_kfunc(btf_id); 12786 } 12787 12788 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12789 enum btf_field_type head_field_type, 12790 u32 kfunc_btf_id) 12791 { 12792 bool ret; 12793 12794 switch (head_field_type) { 12795 case BPF_LIST_HEAD: 12796 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12797 break; 12798 case BPF_RB_ROOT: 12799 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12800 break; 12801 default: 12802 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12803 btf_field_type_name(head_field_type)); 12804 return false; 12805 } 12806 12807 if (!ret) 12808 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12809 btf_field_type_name(head_field_type)); 12810 return ret; 12811 } 12812 12813 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12814 enum btf_field_type node_field_type, 12815 u32 kfunc_btf_id) 12816 { 12817 bool ret; 12818 12819 switch (node_field_type) { 12820 case BPF_LIST_NODE: 12821 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12822 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12823 break; 12824 case BPF_RB_NODE: 12825 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12826 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12827 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12828 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 12829 break; 12830 default: 12831 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12832 btf_field_type_name(node_field_type)); 12833 return false; 12834 } 12835 12836 if (!ret) 12837 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12838 btf_field_type_name(node_field_type)); 12839 return ret; 12840 } 12841 12842 static int 12843 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12844 struct bpf_reg_state *reg, u32 regno, 12845 struct bpf_kfunc_call_arg_meta *meta, 12846 enum btf_field_type head_field_type, 12847 struct btf_field **head_field) 12848 { 12849 const char *head_type_name; 12850 struct btf_field *field; 12851 struct btf_record *rec; 12852 u32 head_off; 12853 12854 if (meta->btf != btf_vmlinux) { 12855 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12856 return -EFAULT; 12857 } 12858 12859 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12860 return -EFAULT; 12861 12862 head_type_name = btf_field_type_name(head_field_type); 12863 if (!tnum_is_const(reg->var_off)) { 12864 verbose(env, 12865 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12866 regno, head_type_name); 12867 return -EINVAL; 12868 } 12869 12870 rec = reg_btf_record(reg); 12871 head_off = reg->off + reg->var_off.value; 12872 field = btf_record_find(rec, head_off, head_field_type); 12873 if (!field) { 12874 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12875 return -EINVAL; 12876 } 12877 12878 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12879 if (check_reg_allocation_locked(env, reg)) { 12880 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12881 rec->spin_lock_off, head_type_name); 12882 return -EINVAL; 12883 } 12884 12885 if (*head_field) { 12886 verifier_bug(env, "repeating %s arg", head_type_name); 12887 return -EFAULT; 12888 } 12889 *head_field = field; 12890 return 0; 12891 } 12892 12893 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12894 struct bpf_reg_state *reg, u32 regno, 12895 struct bpf_kfunc_call_arg_meta *meta) 12896 { 12897 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12898 &meta->arg_list_head.field); 12899 } 12900 12901 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12902 struct bpf_reg_state *reg, u32 regno, 12903 struct bpf_kfunc_call_arg_meta *meta) 12904 { 12905 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12906 &meta->arg_rbtree_root.field); 12907 } 12908 12909 static int 12910 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12911 struct bpf_reg_state *reg, u32 regno, 12912 struct bpf_kfunc_call_arg_meta *meta, 12913 enum btf_field_type head_field_type, 12914 enum btf_field_type node_field_type, 12915 struct btf_field **node_field) 12916 { 12917 const char *node_type_name; 12918 const struct btf_type *et, *t; 12919 struct btf_field *field; 12920 u32 node_off; 12921 12922 if (meta->btf != btf_vmlinux) { 12923 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12924 return -EFAULT; 12925 } 12926 12927 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12928 return -EFAULT; 12929 12930 node_type_name = btf_field_type_name(node_field_type); 12931 if (!tnum_is_const(reg->var_off)) { 12932 verbose(env, 12933 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12934 regno, node_type_name); 12935 return -EINVAL; 12936 } 12937 12938 node_off = reg->off + reg->var_off.value; 12939 field = reg_find_field_offset(reg, node_off, node_field_type); 12940 if (!field) { 12941 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12942 return -EINVAL; 12943 } 12944 12945 field = *node_field; 12946 12947 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12948 t = btf_type_by_id(reg->btf, reg->btf_id); 12949 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12950 field->graph_root.value_btf_id, true)) { 12951 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12952 "in struct %s, but arg is at offset=%d in struct %s\n", 12953 btf_field_type_name(head_field_type), 12954 btf_field_type_name(node_field_type), 12955 field->graph_root.node_offset, 12956 btf_name_by_offset(field->graph_root.btf, et->name_off), 12957 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12958 return -EINVAL; 12959 } 12960 meta->arg_btf = reg->btf; 12961 meta->arg_btf_id = reg->btf_id; 12962 12963 if (node_off != field->graph_root.node_offset) { 12964 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12965 node_off, btf_field_type_name(node_field_type), 12966 field->graph_root.node_offset, 12967 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12968 return -EINVAL; 12969 } 12970 12971 return 0; 12972 } 12973 12974 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12975 struct bpf_reg_state *reg, u32 regno, 12976 struct bpf_kfunc_call_arg_meta *meta) 12977 { 12978 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12979 BPF_LIST_HEAD, BPF_LIST_NODE, 12980 &meta->arg_list_head.field); 12981 } 12982 12983 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12984 struct bpf_reg_state *reg, u32 regno, 12985 struct bpf_kfunc_call_arg_meta *meta) 12986 { 12987 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12988 BPF_RB_ROOT, BPF_RB_NODE, 12989 &meta->arg_rbtree_root.field); 12990 } 12991 12992 /* 12993 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12994 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12995 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12996 * them can only be attached to some specific hook points. 12997 */ 12998 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12999 { 13000 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13001 13002 switch (prog_type) { 13003 case BPF_PROG_TYPE_LSM: 13004 return true; 13005 case BPF_PROG_TYPE_TRACING: 13006 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 13007 return true; 13008 fallthrough; 13009 default: 13010 return in_sleepable(env); 13011 } 13012 } 13013 13014 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13015 int insn_idx) 13016 { 13017 const char *func_name = meta->func_name, *ref_tname; 13018 const struct btf *btf = meta->btf; 13019 const struct btf_param *args; 13020 struct btf_record *rec; 13021 u32 i, nargs; 13022 int ret; 13023 13024 args = (const struct btf_param *)(meta->func_proto + 1); 13025 nargs = btf_type_vlen(meta->func_proto); 13026 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 13027 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 13028 MAX_BPF_FUNC_REG_ARGS); 13029 return -EINVAL; 13030 } 13031 13032 /* Check that BTF function arguments match actual types that the 13033 * verifier sees. 13034 */ 13035 for (i = 0; i < nargs; i++) { 13036 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 13037 const struct btf_type *t, *ref_t, *resolve_ret; 13038 enum bpf_arg_type arg_type = ARG_DONTCARE; 13039 u32 regno = i + 1, ref_id, type_size; 13040 bool is_ret_buf_sz = false; 13041 int kf_arg_type; 13042 13043 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 13044 13045 if (is_kfunc_arg_ignore(btf, &args[i])) 13046 continue; 13047 13048 if (is_kfunc_arg_prog(btf, &args[i])) { 13049 /* Used to reject repeated use of __prog. */ 13050 if (meta->arg_prog) { 13051 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc"); 13052 return -EFAULT; 13053 } 13054 meta->arg_prog = true; 13055 cur_aux(env)->arg_prog = regno; 13056 continue; 13057 } 13058 13059 if (btf_type_is_scalar(t)) { 13060 if (reg->type != SCALAR_VALUE) { 13061 verbose(env, "R%d is not a scalar\n", regno); 13062 return -EINVAL; 13063 } 13064 13065 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 13066 if (meta->arg_constant.found) { 13067 verifier_bug(env, "only one constant argument permitted"); 13068 return -EFAULT; 13069 } 13070 if (!tnum_is_const(reg->var_off)) { 13071 verbose(env, "R%d must be a known constant\n", regno); 13072 return -EINVAL; 13073 } 13074 ret = mark_chain_precision(env, regno); 13075 if (ret < 0) 13076 return ret; 13077 meta->arg_constant.found = true; 13078 meta->arg_constant.value = reg->var_off.value; 13079 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 13080 meta->r0_rdonly = true; 13081 is_ret_buf_sz = true; 13082 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 13083 is_ret_buf_sz = true; 13084 } 13085 13086 if (is_ret_buf_sz) { 13087 if (meta->r0_size) { 13088 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 13089 return -EINVAL; 13090 } 13091 13092 if (!tnum_is_const(reg->var_off)) { 13093 verbose(env, "R%d is not a const\n", regno); 13094 return -EINVAL; 13095 } 13096 13097 meta->r0_size = reg->var_off.value; 13098 ret = mark_chain_precision(env, regno); 13099 if (ret) 13100 return ret; 13101 } 13102 continue; 13103 } 13104 13105 if (!btf_type_is_ptr(t)) { 13106 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 13107 return -EINVAL; 13108 } 13109 13110 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 13111 (register_is_null(reg) || type_may_be_null(reg->type)) && 13112 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 13113 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 13114 return -EACCES; 13115 } 13116 13117 if (reg->ref_obj_id) { 13118 if (is_kfunc_release(meta) && meta->ref_obj_id) { 13119 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u", 13120 regno, reg->ref_obj_id, 13121 meta->ref_obj_id); 13122 return -EFAULT; 13123 } 13124 meta->ref_obj_id = reg->ref_obj_id; 13125 if (is_kfunc_release(meta)) 13126 meta->release_regno = regno; 13127 } 13128 13129 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 13130 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13131 13132 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 13133 if (kf_arg_type < 0) 13134 return kf_arg_type; 13135 13136 switch (kf_arg_type) { 13137 case KF_ARG_PTR_TO_NULL: 13138 continue; 13139 case KF_ARG_PTR_TO_MAP: 13140 if (!reg->map_ptr) { 13141 verbose(env, "pointer in R%d isn't map pointer\n", regno); 13142 return -EINVAL; 13143 } 13144 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 13145 /* Use map_uid (which is unique id of inner map) to reject: 13146 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 13147 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 13148 * if (inner_map1 && inner_map2) { 13149 * wq = bpf_map_lookup_elem(inner_map1); 13150 * if (wq) 13151 * // mismatch would have been allowed 13152 * bpf_wq_init(wq, inner_map2); 13153 * } 13154 * 13155 * Comparing map_ptr is enough to distinguish normal and outer maps. 13156 */ 13157 if (meta->map.ptr != reg->map_ptr || 13158 meta->map.uid != reg->map_uid) { 13159 verbose(env, 13160 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13161 meta->map.uid, reg->map_uid); 13162 return -EINVAL; 13163 } 13164 } 13165 meta->map.ptr = reg->map_ptr; 13166 meta->map.uid = reg->map_uid; 13167 fallthrough; 13168 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13169 case KF_ARG_PTR_TO_BTF_ID: 13170 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 13171 break; 13172 13173 if (!is_trusted_reg(reg)) { 13174 if (!is_kfunc_rcu(meta)) { 13175 verbose(env, "R%d must be referenced or trusted\n", regno); 13176 return -EINVAL; 13177 } 13178 if (!is_rcu_reg(reg)) { 13179 verbose(env, "R%d must be a rcu pointer\n", regno); 13180 return -EINVAL; 13181 } 13182 } 13183 fallthrough; 13184 case KF_ARG_PTR_TO_CTX: 13185 case KF_ARG_PTR_TO_DYNPTR: 13186 case KF_ARG_PTR_TO_ITER: 13187 case KF_ARG_PTR_TO_LIST_HEAD: 13188 case KF_ARG_PTR_TO_LIST_NODE: 13189 case KF_ARG_PTR_TO_RB_ROOT: 13190 case KF_ARG_PTR_TO_RB_NODE: 13191 case KF_ARG_PTR_TO_MEM: 13192 case KF_ARG_PTR_TO_MEM_SIZE: 13193 case KF_ARG_PTR_TO_CALLBACK: 13194 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13195 case KF_ARG_PTR_TO_CONST_STR: 13196 case KF_ARG_PTR_TO_WORKQUEUE: 13197 case KF_ARG_PTR_TO_IRQ_FLAG: 13198 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13199 break; 13200 default: 13201 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type); 13202 return -EFAULT; 13203 } 13204 13205 if (is_kfunc_release(meta) && reg->ref_obj_id) 13206 arg_type |= OBJ_RELEASE; 13207 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13208 if (ret < 0) 13209 return ret; 13210 13211 switch (kf_arg_type) { 13212 case KF_ARG_PTR_TO_CTX: 13213 if (reg->type != PTR_TO_CTX) { 13214 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13215 i, reg_type_str(env, reg->type)); 13216 return -EINVAL; 13217 } 13218 13219 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13220 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13221 if (ret < 0) 13222 return -EINVAL; 13223 meta->ret_btf_id = ret; 13224 } 13225 break; 13226 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13227 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13228 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13229 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13230 return -EINVAL; 13231 } 13232 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13233 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13234 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13235 return -EINVAL; 13236 } 13237 } else { 13238 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13239 return -EINVAL; 13240 } 13241 if (!reg->ref_obj_id) { 13242 verbose(env, "allocated object must be referenced\n"); 13243 return -EINVAL; 13244 } 13245 if (meta->btf == btf_vmlinux) { 13246 meta->arg_btf = reg->btf; 13247 meta->arg_btf_id = reg->btf_id; 13248 } 13249 break; 13250 case KF_ARG_PTR_TO_DYNPTR: 13251 { 13252 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13253 int clone_ref_obj_id = 0; 13254 13255 if (reg->type == CONST_PTR_TO_DYNPTR) 13256 dynptr_arg_type |= MEM_RDONLY; 13257 13258 if (is_kfunc_arg_uninit(btf, &args[i])) 13259 dynptr_arg_type |= MEM_UNINIT; 13260 13261 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13262 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13263 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13264 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13265 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) { 13266 dynptr_arg_type |= DYNPTR_TYPE_SKB_META; 13267 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13268 (dynptr_arg_type & MEM_UNINIT)) { 13269 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13270 13271 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13272 verifier_bug(env, "no dynptr type for parent of clone"); 13273 return -EFAULT; 13274 } 13275 13276 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13277 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13278 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13279 verifier_bug(env, "missing ref obj id for parent of clone"); 13280 return -EFAULT; 13281 } 13282 } 13283 13284 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13285 if (ret < 0) 13286 return ret; 13287 13288 if (!(dynptr_arg_type & MEM_UNINIT)) { 13289 int id = dynptr_id(env, reg); 13290 13291 if (id < 0) { 13292 verifier_bug(env, "failed to obtain dynptr id"); 13293 return id; 13294 } 13295 meta->initialized_dynptr.id = id; 13296 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13297 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13298 } 13299 13300 break; 13301 } 13302 case KF_ARG_PTR_TO_ITER: 13303 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13304 if (!check_css_task_iter_allowlist(env)) { 13305 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13306 return -EINVAL; 13307 } 13308 } 13309 ret = process_iter_arg(env, regno, insn_idx, meta); 13310 if (ret < 0) 13311 return ret; 13312 break; 13313 case KF_ARG_PTR_TO_LIST_HEAD: 13314 if (reg->type != PTR_TO_MAP_VALUE && 13315 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13316 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13317 return -EINVAL; 13318 } 13319 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13320 verbose(env, "allocated object must be referenced\n"); 13321 return -EINVAL; 13322 } 13323 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13324 if (ret < 0) 13325 return ret; 13326 break; 13327 case KF_ARG_PTR_TO_RB_ROOT: 13328 if (reg->type != PTR_TO_MAP_VALUE && 13329 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13330 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13331 return -EINVAL; 13332 } 13333 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13334 verbose(env, "allocated object must be referenced\n"); 13335 return -EINVAL; 13336 } 13337 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13338 if (ret < 0) 13339 return ret; 13340 break; 13341 case KF_ARG_PTR_TO_LIST_NODE: 13342 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13343 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13344 return -EINVAL; 13345 } 13346 if (!reg->ref_obj_id) { 13347 verbose(env, "allocated object must be referenced\n"); 13348 return -EINVAL; 13349 } 13350 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13351 if (ret < 0) 13352 return ret; 13353 break; 13354 case KF_ARG_PTR_TO_RB_NODE: 13355 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13356 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13357 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13358 return -EINVAL; 13359 } 13360 if (!reg->ref_obj_id) { 13361 verbose(env, "allocated object must be referenced\n"); 13362 return -EINVAL; 13363 } 13364 } else { 13365 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13366 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13367 return -EINVAL; 13368 } 13369 if (in_rbtree_lock_required_cb(env)) { 13370 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13371 return -EINVAL; 13372 } 13373 } 13374 13375 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13376 if (ret < 0) 13377 return ret; 13378 break; 13379 case KF_ARG_PTR_TO_MAP: 13380 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13381 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13382 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13383 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13384 fallthrough; 13385 case KF_ARG_PTR_TO_BTF_ID: 13386 /* Only base_type is checked, further checks are done here */ 13387 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13388 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13389 !reg2btf_ids[base_type(reg->type)]) { 13390 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13391 verbose(env, "expected %s or socket\n", 13392 reg_type_str(env, base_type(reg->type) | 13393 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13394 return -EINVAL; 13395 } 13396 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13397 if (ret < 0) 13398 return ret; 13399 break; 13400 case KF_ARG_PTR_TO_MEM: 13401 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13402 if (IS_ERR(resolve_ret)) { 13403 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13404 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13405 return -EINVAL; 13406 } 13407 ret = check_mem_reg(env, reg, regno, type_size); 13408 if (ret < 0) 13409 return ret; 13410 break; 13411 case KF_ARG_PTR_TO_MEM_SIZE: 13412 { 13413 struct bpf_reg_state *buff_reg = ®s[regno]; 13414 const struct btf_param *buff_arg = &args[i]; 13415 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13416 const struct btf_param *size_arg = &args[i + 1]; 13417 13418 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 13419 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13420 if (ret < 0) { 13421 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13422 return ret; 13423 } 13424 } 13425 13426 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13427 if (meta->arg_constant.found) { 13428 verifier_bug(env, "only one constant argument permitted"); 13429 return -EFAULT; 13430 } 13431 if (!tnum_is_const(size_reg->var_off)) { 13432 verbose(env, "R%d must be a known constant\n", regno + 1); 13433 return -EINVAL; 13434 } 13435 meta->arg_constant.found = true; 13436 meta->arg_constant.value = size_reg->var_off.value; 13437 } 13438 13439 /* Skip next '__sz' or '__szk' argument */ 13440 i++; 13441 break; 13442 } 13443 case KF_ARG_PTR_TO_CALLBACK: 13444 if (reg->type != PTR_TO_FUNC) { 13445 verbose(env, "arg%d expected pointer to func\n", i); 13446 return -EINVAL; 13447 } 13448 meta->subprogno = reg->subprogno; 13449 break; 13450 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13451 if (!type_is_ptr_alloc_obj(reg->type)) { 13452 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13453 return -EINVAL; 13454 } 13455 if (!type_is_non_owning_ref(reg->type)) 13456 meta->arg_owning_ref = true; 13457 13458 rec = reg_btf_record(reg); 13459 if (!rec) { 13460 verifier_bug(env, "Couldn't find btf_record"); 13461 return -EFAULT; 13462 } 13463 13464 if (rec->refcount_off < 0) { 13465 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13466 return -EINVAL; 13467 } 13468 13469 meta->arg_btf = reg->btf; 13470 meta->arg_btf_id = reg->btf_id; 13471 break; 13472 case KF_ARG_PTR_TO_CONST_STR: 13473 if (reg->type != PTR_TO_MAP_VALUE) { 13474 verbose(env, "arg#%d doesn't point to a const string\n", i); 13475 return -EINVAL; 13476 } 13477 ret = check_reg_const_str(env, reg, regno); 13478 if (ret) 13479 return ret; 13480 break; 13481 case KF_ARG_PTR_TO_WORKQUEUE: 13482 if (reg->type != PTR_TO_MAP_VALUE) { 13483 verbose(env, "arg#%d doesn't point to a map value\n", i); 13484 return -EINVAL; 13485 } 13486 ret = process_wq_func(env, regno, meta); 13487 if (ret < 0) 13488 return ret; 13489 break; 13490 case KF_ARG_PTR_TO_IRQ_FLAG: 13491 if (reg->type != PTR_TO_STACK) { 13492 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13493 return -EINVAL; 13494 } 13495 ret = process_irq_flag(env, regno, meta); 13496 if (ret < 0) 13497 return ret; 13498 break; 13499 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13500 { 13501 int flags = PROCESS_RES_LOCK; 13502 13503 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13504 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13505 return -EINVAL; 13506 } 13507 13508 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13509 return -EFAULT; 13510 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13511 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13512 flags |= PROCESS_SPIN_LOCK; 13513 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13514 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13515 flags |= PROCESS_LOCK_IRQ; 13516 ret = process_spin_lock(env, regno, flags); 13517 if (ret < 0) 13518 return ret; 13519 break; 13520 } 13521 } 13522 } 13523 13524 if (is_kfunc_release(meta) && !meta->release_regno) { 13525 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13526 func_name); 13527 return -EINVAL; 13528 } 13529 13530 return 0; 13531 } 13532 13533 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13534 struct bpf_insn *insn, 13535 struct bpf_kfunc_call_arg_meta *meta, 13536 const char **kfunc_name) 13537 { 13538 const struct btf_type *func, *func_proto; 13539 u32 func_id, *kfunc_flags; 13540 const char *func_name; 13541 struct btf *desc_btf; 13542 13543 if (kfunc_name) 13544 *kfunc_name = NULL; 13545 13546 if (!insn->imm) 13547 return -EINVAL; 13548 13549 desc_btf = find_kfunc_desc_btf(env, insn->off); 13550 if (IS_ERR(desc_btf)) 13551 return PTR_ERR(desc_btf); 13552 13553 func_id = insn->imm; 13554 func = btf_type_by_id(desc_btf, func_id); 13555 func_name = btf_name_by_offset(desc_btf, func->name_off); 13556 if (kfunc_name) 13557 *kfunc_name = func_name; 13558 func_proto = btf_type_by_id(desc_btf, func->type); 13559 13560 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13561 if (!kfunc_flags) { 13562 return -EACCES; 13563 } 13564 13565 memset(meta, 0, sizeof(*meta)); 13566 meta->btf = desc_btf; 13567 meta->func_id = func_id; 13568 meta->kfunc_flags = *kfunc_flags; 13569 meta->func_proto = func_proto; 13570 meta->func_name = func_name; 13571 13572 return 0; 13573 } 13574 13575 /* check special kfuncs and return: 13576 * 1 - not fall-through to 'else' branch, continue verification 13577 * 0 - fall-through to 'else' branch 13578 * < 0 - not fall-through to 'else' branch, return error 13579 */ 13580 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13581 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13582 const struct btf_type *ptr_type, struct btf *desc_btf) 13583 { 13584 const struct btf_type *ret_t; 13585 int err = 0; 13586 13587 if (meta->btf != btf_vmlinux) 13588 return 0; 13589 13590 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13591 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13592 struct btf_struct_meta *struct_meta; 13593 struct btf *ret_btf; 13594 u32 ret_btf_id; 13595 13596 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13597 return -ENOMEM; 13598 13599 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13600 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13601 return -EINVAL; 13602 } 13603 13604 ret_btf = env->prog->aux->btf; 13605 ret_btf_id = meta->arg_constant.value; 13606 13607 /* This may be NULL due to user not supplying a BTF */ 13608 if (!ret_btf) { 13609 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13610 return -EINVAL; 13611 } 13612 13613 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13614 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13615 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13616 return -EINVAL; 13617 } 13618 13619 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13620 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13621 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13622 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13623 return -EINVAL; 13624 } 13625 13626 if (!bpf_global_percpu_ma_set) { 13627 mutex_lock(&bpf_percpu_ma_lock); 13628 if (!bpf_global_percpu_ma_set) { 13629 /* Charge memory allocated with bpf_global_percpu_ma to 13630 * root memcg. The obj_cgroup for root memcg is NULL. 13631 */ 13632 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13633 if (!err) 13634 bpf_global_percpu_ma_set = true; 13635 } 13636 mutex_unlock(&bpf_percpu_ma_lock); 13637 if (err) 13638 return err; 13639 } 13640 13641 mutex_lock(&bpf_percpu_ma_lock); 13642 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13643 mutex_unlock(&bpf_percpu_ma_lock); 13644 if (err) 13645 return err; 13646 } 13647 13648 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13649 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13650 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13651 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13652 return -EINVAL; 13653 } 13654 13655 if (struct_meta) { 13656 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13657 return -EINVAL; 13658 } 13659 } 13660 13661 mark_reg_known_zero(env, regs, BPF_REG_0); 13662 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13663 regs[BPF_REG_0].btf = ret_btf; 13664 regs[BPF_REG_0].btf_id = ret_btf_id; 13665 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13666 regs[BPF_REG_0].type |= MEM_PERCPU; 13667 13668 insn_aux->obj_new_size = ret_t->size; 13669 insn_aux->kptr_struct_meta = struct_meta; 13670 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13671 mark_reg_known_zero(env, regs, BPF_REG_0); 13672 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13673 regs[BPF_REG_0].btf = meta->arg_btf; 13674 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13675 13676 insn_aux->kptr_struct_meta = 13677 btf_find_struct_meta(meta->arg_btf, 13678 meta->arg_btf_id); 13679 } else if (is_list_node_type(ptr_type)) { 13680 struct btf_field *field = meta->arg_list_head.field; 13681 13682 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13683 } else if (is_rbtree_node_type(ptr_type)) { 13684 struct btf_field *field = meta->arg_rbtree_root.field; 13685 13686 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13687 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13688 mark_reg_known_zero(env, regs, BPF_REG_0); 13689 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13690 regs[BPF_REG_0].btf = desc_btf; 13691 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13692 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13693 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13694 if (!ret_t) { 13695 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", 13696 meta->arg_constant.value); 13697 return -EINVAL; 13698 } else if (btf_type_is_struct(ret_t)) { 13699 mark_reg_known_zero(env, regs, BPF_REG_0); 13700 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13701 regs[BPF_REG_0].btf = desc_btf; 13702 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13703 } else if (btf_type_is_void(ret_t)) { 13704 mark_reg_known_zero(env, regs, BPF_REG_0); 13705 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 13706 regs[BPF_REG_0].mem_size = 0; 13707 } else { 13708 verbose(env, 13709 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); 13710 return -EINVAL; 13711 } 13712 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13713 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13714 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13715 13716 mark_reg_known_zero(env, regs, BPF_REG_0); 13717 13718 if (!meta->arg_constant.found) { 13719 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size"); 13720 return -EFAULT; 13721 } 13722 13723 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 13724 13725 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13726 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13727 13728 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13729 regs[BPF_REG_0].type |= MEM_RDONLY; 13730 } else { 13731 /* this will set env->seen_direct_write to true */ 13732 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13733 verbose(env, "the prog does not allow writes to packet data\n"); 13734 return -EINVAL; 13735 } 13736 } 13737 13738 if (!meta->initialized_dynptr.id) { 13739 verifier_bug(env, "no dynptr id"); 13740 return -EFAULT; 13741 } 13742 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 13743 13744 /* we don't need to set BPF_REG_0's ref obj id 13745 * because packet slices are not refcounted (see 13746 * dynptr_type_refcounted) 13747 */ 13748 } else { 13749 return 0; 13750 } 13751 13752 return 1; 13753 } 13754 13755 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13756 13757 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13758 int *insn_idx_p) 13759 { 13760 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13761 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13762 struct bpf_reg_state *regs = cur_regs(env); 13763 const char *func_name, *ptr_type_name; 13764 const struct btf_type *t, *ptr_type; 13765 struct bpf_kfunc_call_arg_meta meta; 13766 struct bpf_insn_aux_data *insn_aux; 13767 int err, insn_idx = *insn_idx_p; 13768 const struct btf_param *args; 13769 struct btf *desc_btf; 13770 13771 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13772 if (!insn->imm) 13773 return 0; 13774 13775 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13776 if (err == -EACCES && func_name) 13777 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13778 if (err) 13779 return err; 13780 desc_btf = meta.btf; 13781 insn_aux = &env->insn_aux_data[insn_idx]; 13782 13783 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13784 13785 if (!insn->off && 13786 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 13787 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 13788 struct bpf_verifier_state *branch; 13789 struct bpf_reg_state *regs; 13790 13791 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 13792 if (!branch) { 13793 verbose(env, "failed to push state for failed lock acquisition\n"); 13794 return -ENOMEM; 13795 } 13796 13797 regs = branch->frame[branch->curframe]->regs; 13798 13799 /* Clear r0-r5 registers in forked state */ 13800 for (i = 0; i < CALLER_SAVED_REGS; i++) 13801 mark_reg_not_init(env, regs, caller_saved[i]); 13802 13803 mark_reg_unknown(env, regs, BPF_REG_0); 13804 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 13805 if (err) { 13806 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 13807 return err; 13808 } 13809 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 13810 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 13811 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 13812 return -EFAULT; 13813 } 13814 13815 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13816 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13817 return -EACCES; 13818 } 13819 13820 sleepable = is_kfunc_sleepable(&meta); 13821 if (sleepable && !in_sleepable(env)) { 13822 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13823 return -EACCES; 13824 } 13825 13826 /* Check the arguments */ 13827 err = check_kfunc_args(env, &meta, insn_idx); 13828 if (err < 0) 13829 return err; 13830 13831 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13832 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13833 set_rbtree_add_callback_state); 13834 if (err) { 13835 verbose(env, "kfunc %s#%d failed callback verification\n", 13836 func_name, meta.func_id); 13837 return err; 13838 } 13839 } 13840 13841 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13842 meta.r0_size = sizeof(u64); 13843 meta.r0_rdonly = false; 13844 } 13845 13846 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13847 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13848 set_timer_callback_state); 13849 if (err) { 13850 verbose(env, "kfunc %s#%d failed callback verification\n", 13851 func_name, meta.func_id); 13852 return err; 13853 } 13854 } 13855 13856 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13857 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13858 13859 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13860 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13861 13862 if (env->cur_state->active_rcu_lock) { 13863 struct bpf_func_state *state; 13864 struct bpf_reg_state *reg; 13865 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13866 13867 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13868 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13869 return -EACCES; 13870 } 13871 13872 if (rcu_lock) { 13873 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13874 return -EINVAL; 13875 } else if (rcu_unlock) { 13876 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13877 if (reg->type & MEM_RCU) { 13878 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13879 reg->type |= PTR_UNTRUSTED; 13880 } 13881 })); 13882 env->cur_state->active_rcu_lock = false; 13883 } else if (sleepable) { 13884 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13885 return -EACCES; 13886 } 13887 } else if (rcu_lock) { 13888 env->cur_state->active_rcu_lock = true; 13889 } else if (rcu_unlock) { 13890 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13891 return -EINVAL; 13892 } 13893 13894 if (env->cur_state->active_preempt_locks) { 13895 if (preempt_disable) { 13896 env->cur_state->active_preempt_locks++; 13897 } else if (preempt_enable) { 13898 env->cur_state->active_preempt_locks--; 13899 } else if (sleepable) { 13900 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13901 return -EACCES; 13902 } 13903 } else if (preempt_disable) { 13904 env->cur_state->active_preempt_locks++; 13905 } else if (preempt_enable) { 13906 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13907 return -EINVAL; 13908 } 13909 13910 if (env->cur_state->active_irq_id && sleepable) { 13911 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13912 return -EACCES; 13913 } 13914 13915 /* In case of release function, we get register number of refcounted 13916 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13917 */ 13918 if (meta.release_regno) { 13919 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13920 if (err) { 13921 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13922 func_name, meta.func_id); 13923 return err; 13924 } 13925 } 13926 13927 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13928 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13929 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13930 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13931 insn_aux->insert_off = regs[BPF_REG_2].off; 13932 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13933 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13934 if (err) { 13935 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13936 func_name, meta.func_id); 13937 return err; 13938 } 13939 13940 err = release_reference(env, release_ref_obj_id); 13941 if (err) { 13942 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13943 func_name, meta.func_id); 13944 return err; 13945 } 13946 } 13947 13948 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 13949 if (!bpf_jit_supports_exceptions()) { 13950 verbose(env, "JIT does not support calling kfunc %s#%d\n", 13951 func_name, meta.func_id); 13952 return -ENOTSUPP; 13953 } 13954 env->seen_exception = true; 13955 13956 /* In the case of the default callback, the cookie value passed 13957 * to bpf_throw becomes the return value of the program. 13958 */ 13959 if (!env->exception_callback_subprog) { 13960 err = check_return_code(env, BPF_REG_1, "R1"); 13961 if (err < 0) 13962 return err; 13963 } 13964 } 13965 13966 for (i = 0; i < CALLER_SAVED_REGS; i++) 13967 mark_reg_not_init(env, regs, caller_saved[i]); 13968 13969 /* Check return type */ 13970 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 13971 13972 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 13973 /* Only exception is bpf_obj_new_impl */ 13974 if (meta.btf != btf_vmlinux || 13975 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 13976 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 13977 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 13978 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 13979 return -EINVAL; 13980 } 13981 } 13982 13983 if (btf_type_is_scalar(t)) { 13984 mark_reg_unknown(env, regs, BPF_REG_0); 13985 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13986 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 13987 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 13988 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 13989 } else if (btf_type_is_ptr(t)) { 13990 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 13991 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 13992 if (err) { 13993 if (err < 0) 13994 return err; 13995 } else if (btf_type_is_void(ptr_type)) { 13996 /* kfunc returning 'void *' is equivalent to returning scalar */ 13997 mark_reg_unknown(env, regs, BPF_REG_0); 13998 } else if (!__btf_type_is_struct(ptr_type)) { 13999 if (!meta.r0_size) { 14000 __u32 sz; 14001 14002 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 14003 meta.r0_size = sz; 14004 meta.r0_rdonly = true; 14005 } 14006 } 14007 if (!meta.r0_size) { 14008 ptr_type_name = btf_name_by_offset(desc_btf, 14009 ptr_type->name_off); 14010 verbose(env, 14011 "kernel function %s returns pointer type %s %s is not supported\n", 14012 func_name, 14013 btf_type_str(ptr_type), 14014 ptr_type_name); 14015 return -EINVAL; 14016 } 14017 14018 mark_reg_known_zero(env, regs, BPF_REG_0); 14019 regs[BPF_REG_0].type = PTR_TO_MEM; 14020 regs[BPF_REG_0].mem_size = meta.r0_size; 14021 14022 if (meta.r0_rdonly) 14023 regs[BPF_REG_0].type |= MEM_RDONLY; 14024 14025 /* Ensures we don't access the memory after a release_reference() */ 14026 if (meta.ref_obj_id) 14027 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 14028 } else { 14029 mark_reg_known_zero(env, regs, BPF_REG_0); 14030 regs[BPF_REG_0].btf = desc_btf; 14031 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 14032 regs[BPF_REG_0].btf_id = ptr_type_id; 14033 14034 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 14035 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 14036 14037 if (is_iter_next_kfunc(&meta)) { 14038 struct bpf_reg_state *cur_iter; 14039 14040 cur_iter = get_iter_from_state(env->cur_state, &meta); 14041 14042 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 14043 regs[BPF_REG_0].type |= MEM_RCU; 14044 else 14045 regs[BPF_REG_0].type |= PTR_TRUSTED; 14046 } 14047 } 14048 14049 if (is_kfunc_ret_null(&meta)) { 14050 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 14051 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 14052 regs[BPF_REG_0].id = ++env->id_gen; 14053 } 14054 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 14055 if (is_kfunc_acquire(&meta)) { 14056 int id = acquire_reference(env, insn_idx); 14057 14058 if (id < 0) 14059 return id; 14060 if (is_kfunc_ret_null(&meta)) 14061 regs[BPF_REG_0].id = id; 14062 regs[BPF_REG_0].ref_obj_id = id; 14063 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 14064 ref_set_non_owning(env, ®s[BPF_REG_0]); 14065 } 14066 14067 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 14068 regs[BPF_REG_0].id = ++env->id_gen; 14069 } else if (btf_type_is_void(t)) { 14070 if (meta.btf == btf_vmlinux) { 14071 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 14072 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 14073 insn_aux->kptr_struct_meta = 14074 btf_find_struct_meta(meta.arg_btf, 14075 meta.arg_btf_id); 14076 } 14077 } 14078 } 14079 14080 nargs = btf_type_vlen(meta.func_proto); 14081 args = (const struct btf_param *)(meta.func_proto + 1); 14082 for (i = 0; i < nargs; i++) { 14083 u32 regno = i + 1; 14084 14085 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 14086 if (btf_type_is_ptr(t)) 14087 mark_btf_func_reg_size(env, regno, sizeof(void *)); 14088 else 14089 /* scalar. ensured by btf_check_kfunc_arg_match() */ 14090 mark_btf_func_reg_size(env, regno, t->size); 14091 } 14092 14093 if (is_iter_next_kfunc(&meta)) { 14094 err = process_iter_next_call(env, insn_idx, &meta); 14095 if (err) 14096 return err; 14097 } 14098 14099 return 0; 14100 } 14101 14102 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 14103 const struct bpf_reg_state *reg, 14104 enum bpf_reg_type type) 14105 { 14106 bool known = tnum_is_const(reg->var_off); 14107 s64 val = reg->var_off.value; 14108 s64 smin = reg->smin_value; 14109 14110 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 14111 verbose(env, "math between %s pointer and %lld is not allowed\n", 14112 reg_type_str(env, type), val); 14113 return false; 14114 } 14115 14116 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 14117 verbose(env, "%s pointer offset %d is not allowed\n", 14118 reg_type_str(env, type), reg->off); 14119 return false; 14120 } 14121 14122 if (smin == S64_MIN) { 14123 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 14124 reg_type_str(env, type)); 14125 return false; 14126 } 14127 14128 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 14129 verbose(env, "value %lld makes %s pointer be out of bounds\n", 14130 smin, reg_type_str(env, type)); 14131 return false; 14132 } 14133 14134 return true; 14135 } 14136 14137 enum { 14138 REASON_BOUNDS = -1, 14139 REASON_TYPE = -2, 14140 REASON_PATHS = -3, 14141 REASON_LIMIT = -4, 14142 REASON_STACK = -5, 14143 }; 14144 14145 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 14146 u32 *alu_limit, bool mask_to_left) 14147 { 14148 u32 max = 0, ptr_limit = 0; 14149 14150 switch (ptr_reg->type) { 14151 case PTR_TO_STACK: 14152 /* Offset 0 is out-of-bounds, but acceptable start for the 14153 * left direction, see BPF_REG_FP. Also, unknown scalar 14154 * offset where we would need to deal with min/max bounds is 14155 * currently prohibited for unprivileged. 14156 */ 14157 max = MAX_BPF_STACK + mask_to_left; 14158 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 14159 break; 14160 case PTR_TO_MAP_VALUE: 14161 max = ptr_reg->map_ptr->value_size; 14162 ptr_limit = (mask_to_left ? 14163 ptr_reg->smin_value : 14164 ptr_reg->umax_value) + ptr_reg->off; 14165 break; 14166 default: 14167 return REASON_TYPE; 14168 } 14169 14170 if (ptr_limit >= max) 14171 return REASON_LIMIT; 14172 *alu_limit = ptr_limit; 14173 return 0; 14174 } 14175 14176 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14177 const struct bpf_insn *insn) 14178 { 14179 return env->bypass_spec_v1 || 14180 BPF_SRC(insn->code) == BPF_K || 14181 cur_aux(env)->nospec; 14182 } 14183 14184 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14185 u32 alu_state, u32 alu_limit) 14186 { 14187 /* If we arrived here from different branches with different 14188 * state or limits to sanitize, then this won't work. 14189 */ 14190 if (aux->alu_state && 14191 (aux->alu_state != alu_state || 14192 aux->alu_limit != alu_limit)) 14193 return REASON_PATHS; 14194 14195 /* Corresponding fixup done in do_misc_fixups(). */ 14196 aux->alu_state = alu_state; 14197 aux->alu_limit = alu_limit; 14198 return 0; 14199 } 14200 14201 static int sanitize_val_alu(struct bpf_verifier_env *env, 14202 struct bpf_insn *insn) 14203 { 14204 struct bpf_insn_aux_data *aux = cur_aux(env); 14205 14206 if (can_skip_alu_sanitation(env, insn)) 14207 return 0; 14208 14209 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14210 } 14211 14212 static bool sanitize_needed(u8 opcode) 14213 { 14214 return opcode == BPF_ADD || opcode == BPF_SUB; 14215 } 14216 14217 struct bpf_sanitize_info { 14218 struct bpf_insn_aux_data aux; 14219 bool mask_to_left; 14220 }; 14221 14222 static struct bpf_verifier_state * 14223 sanitize_speculative_path(struct bpf_verifier_env *env, 14224 const struct bpf_insn *insn, 14225 u32 next_idx, u32 curr_idx) 14226 { 14227 struct bpf_verifier_state *branch; 14228 struct bpf_reg_state *regs; 14229 14230 branch = push_stack(env, next_idx, curr_idx, true); 14231 if (branch && insn) { 14232 regs = branch->frame[branch->curframe]->regs; 14233 if (BPF_SRC(insn->code) == BPF_K) { 14234 mark_reg_unknown(env, regs, insn->dst_reg); 14235 } else if (BPF_SRC(insn->code) == BPF_X) { 14236 mark_reg_unknown(env, regs, insn->dst_reg); 14237 mark_reg_unknown(env, regs, insn->src_reg); 14238 } 14239 } 14240 return branch; 14241 } 14242 14243 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14244 struct bpf_insn *insn, 14245 const struct bpf_reg_state *ptr_reg, 14246 const struct bpf_reg_state *off_reg, 14247 struct bpf_reg_state *dst_reg, 14248 struct bpf_sanitize_info *info, 14249 const bool commit_window) 14250 { 14251 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14252 struct bpf_verifier_state *vstate = env->cur_state; 14253 bool off_is_imm = tnum_is_const(off_reg->var_off); 14254 bool off_is_neg = off_reg->smin_value < 0; 14255 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14256 u8 opcode = BPF_OP(insn->code); 14257 u32 alu_state, alu_limit; 14258 struct bpf_reg_state tmp; 14259 bool ret; 14260 int err; 14261 14262 if (can_skip_alu_sanitation(env, insn)) 14263 return 0; 14264 14265 /* We already marked aux for masking from non-speculative 14266 * paths, thus we got here in the first place. We only care 14267 * to explore bad access from here. 14268 */ 14269 if (vstate->speculative) 14270 goto do_sim; 14271 14272 if (!commit_window) { 14273 if (!tnum_is_const(off_reg->var_off) && 14274 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14275 return REASON_BOUNDS; 14276 14277 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14278 (opcode == BPF_SUB && !off_is_neg); 14279 } 14280 14281 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14282 if (err < 0) 14283 return err; 14284 14285 if (commit_window) { 14286 /* In commit phase we narrow the masking window based on 14287 * the observed pointer move after the simulated operation. 14288 */ 14289 alu_state = info->aux.alu_state; 14290 alu_limit = abs(info->aux.alu_limit - alu_limit); 14291 } else { 14292 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14293 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14294 alu_state |= ptr_is_dst_reg ? 14295 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14296 14297 /* Limit pruning on unknown scalars to enable deep search for 14298 * potential masking differences from other program paths. 14299 */ 14300 if (!off_is_imm) 14301 env->explore_alu_limits = true; 14302 } 14303 14304 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14305 if (err < 0) 14306 return err; 14307 do_sim: 14308 /* If we're in commit phase, we're done here given we already 14309 * pushed the truncated dst_reg into the speculative verification 14310 * stack. 14311 * 14312 * Also, when register is a known constant, we rewrite register-based 14313 * operation to immediate-based, and thus do not need masking (and as 14314 * a consequence, do not need to simulate the zero-truncation either). 14315 */ 14316 if (commit_window || off_is_imm) 14317 return 0; 14318 14319 /* Simulate and find potential out-of-bounds access under 14320 * speculative execution from truncation as a result of 14321 * masking when off was not within expected range. If off 14322 * sits in dst, then we temporarily need to move ptr there 14323 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14324 * for cases where we use K-based arithmetic in one direction 14325 * and truncated reg-based in the other in order to explore 14326 * bad access. 14327 */ 14328 if (!ptr_is_dst_reg) { 14329 tmp = *dst_reg; 14330 copy_register_state(dst_reg, ptr_reg); 14331 } 14332 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 14333 env->insn_idx); 14334 if (!ptr_is_dst_reg && ret) 14335 *dst_reg = tmp; 14336 return !ret ? REASON_STACK : 0; 14337 } 14338 14339 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14340 { 14341 struct bpf_verifier_state *vstate = env->cur_state; 14342 14343 /* If we simulate paths under speculation, we don't update the 14344 * insn as 'seen' such that when we verify unreachable paths in 14345 * the non-speculative domain, sanitize_dead_code() can still 14346 * rewrite/sanitize them. 14347 */ 14348 if (!vstate->speculative) 14349 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14350 } 14351 14352 static int sanitize_err(struct bpf_verifier_env *env, 14353 const struct bpf_insn *insn, int reason, 14354 const struct bpf_reg_state *off_reg, 14355 const struct bpf_reg_state *dst_reg) 14356 { 14357 static const char *err = "pointer arithmetic with it prohibited for !root"; 14358 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14359 u32 dst = insn->dst_reg, src = insn->src_reg; 14360 14361 switch (reason) { 14362 case REASON_BOUNDS: 14363 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14364 off_reg == dst_reg ? dst : src, err); 14365 break; 14366 case REASON_TYPE: 14367 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14368 off_reg == dst_reg ? src : dst, err); 14369 break; 14370 case REASON_PATHS: 14371 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14372 dst, op, err); 14373 break; 14374 case REASON_LIMIT: 14375 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14376 dst, op, err); 14377 break; 14378 case REASON_STACK: 14379 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14380 dst, err); 14381 return -ENOMEM; 14382 default: 14383 verifier_bug(env, "unknown reason (%d)", reason); 14384 break; 14385 } 14386 14387 return -EACCES; 14388 } 14389 14390 /* check that stack access falls within stack limits and that 'reg' doesn't 14391 * have a variable offset. 14392 * 14393 * Variable offset is prohibited for unprivileged mode for simplicity since it 14394 * requires corresponding support in Spectre masking for stack ALU. See also 14395 * retrieve_ptr_limit(). 14396 * 14397 * 14398 * 'off' includes 'reg->off'. 14399 */ 14400 static int check_stack_access_for_ptr_arithmetic( 14401 struct bpf_verifier_env *env, 14402 int regno, 14403 const struct bpf_reg_state *reg, 14404 int off) 14405 { 14406 if (!tnum_is_const(reg->var_off)) { 14407 char tn_buf[48]; 14408 14409 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14410 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14411 regno, tn_buf, off); 14412 return -EACCES; 14413 } 14414 14415 if (off >= 0 || off < -MAX_BPF_STACK) { 14416 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14417 "prohibited for !root; off=%d\n", regno, off); 14418 return -EACCES; 14419 } 14420 14421 return 0; 14422 } 14423 14424 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14425 const struct bpf_insn *insn, 14426 const struct bpf_reg_state *dst_reg) 14427 { 14428 u32 dst = insn->dst_reg; 14429 14430 /* For unprivileged we require that resulting offset must be in bounds 14431 * in order to be able to sanitize access later on. 14432 */ 14433 if (env->bypass_spec_v1) 14434 return 0; 14435 14436 switch (dst_reg->type) { 14437 case PTR_TO_STACK: 14438 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14439 dst_reg->off + dst_reg->var_off.value)) 14440 return -EACCES; 14441 break; 14442 case PTR_TO_MAP_VALUE: 14443 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14444 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14445 "prohibited for !root\n", dst); 14446 return -EACCES; 14447 } 14448 break; 14449 default: 14450 return -EOPNOTSUPP; 14451 } 14452 14453 return 0; 14454 } 14455 14456 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14457 * Caller should also handle BPF_MOV case separately. 14458 * If we return -EACCES, caller may want to try again treating pointer as a 14459 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14460 */ 14461 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14462 struct bpf_insn *insn, 14463 const struct bpf_reg_state *ptr_reg, 14464 const struct bpf_reg_state *off_reg) 14465 { 14466 struct bpf_verifier_state *vstate = env->cur_state; 14467 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14468 struct bpf_reg_state *regs = state->regs, *dst_reg; 14469 bool known = tnum_is_const(off_reg->var_off); 14470 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14471 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14472 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14473 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14474 struct bpf_sanitize_info info = {}; 14475 u8 opcode = BPF_OP(insn->code); 14476 u32 dst = insn->dst_reg; 14477 int ret, bounds_ret; 14478 14479 dst_reg = ®s[dst]; 14480 14481 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14482 smin_val > smax_val || umin_val > umax_val) { 14483 /* Taint dst register if offset had invalid bounds derived from 14484 * e.g. dead branches. 14485 */ 14486 __mark_reg_unknown(env, dst_reg); 14487 return 0; 14488 } 14489 14490 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14491 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14492 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14493 __mark_reg_unknown(env, dst_reg); 14494 return 0; 14495 } 14496 14497 verbose(env, 14498 "R%d 32-bit pointer arithmetic prohibited\n", 14499 dst); 14500 return -EACCES; 14501 } 14502 14503 if (ptr_reg->type & PTR_MAYBE_NULL) { 14504 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14505 dst, reg_type_str(env, ptr_reg->type)); 14506 return -EACCES; 14507 } 14508 14509 /* 14510 * Accesses to untrusted PTR_TO_MEM are done through probe 14511 * instructions, hence no need to track offsets. 14512 */ 14513 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) 14514 return 0; 14515 14516 switch (base_type(ptr_reg->type)) { 14517 case PTR_TO_CTX: 14518 case PTR_TO_MAP_VALUE: 14519 case PTR_TO_MAP_KEY: 14520 case PTR_TO_STACK: 14521 case PTR_TO_PACKET_META: 14522 case PTR_TO_PACKET: 14523 case PTR_TO_TP_BUFFER: 14524 case PTR_TO_BTF_ID: 14525 case PTR_TO_MEM: 14526 case PTR_TO_BUF: 14527 case PTR_TO_FUNC: 14528 case CONST_PTR_TO_DYNPTR: 14529 break; 14530 case PTR_TO_FLOW_KEYS: 14531 if (known) 14532 break; 14533 fallthrough; 14534 case CONST_PTR_TO_MAP: 14535 /* smin_val represents the known value */ 14536 if (known && smin_val == 0 && opcode == BPF_ADD) 14537 break; 14538 fallthrough; 14539 default: 14540 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14541 dst, reg_type_str(env, ptr_reg->type)); 14542 return -EACCES; 14543 } 14544 14545 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14546 * The id may be overwritten later if we create a new variable offset. 14547 */ 14548 dst_reg->type = ptr_reg->type; 14549 dst_reg->id = ptr_reg->id; 14550 14551 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14552 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14553 return -EINVAL; 14554 14555 /* pointer types do not carry 32-bit bounds at the moment. */ 14556 __mark_reg32_unbounded(dst_reg); 14557 14558 if (sanitize_needed(opcode)) { 14559 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14560 &info, false); 14561 if (ret < 0) 14562 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14563 } 14564 14565 switch (opcode) { 14566 case BPF_ADD: 14567 /* We can take a fixed offset as long as it doesn't overflow 14568 * the s32 'off' field 14569 */ 14570 if (known && (ptr_reg->off + smin_val == 14571 (s64)(s32)(ptr_reg->off + smin_val))) { 14572 /* pointer += K. Accumulate it into fixed offset */ 14573 dst_reg->smin_value = smin_ptr; 14574 dst_reg->smax_value = smax_ptr; 14575 dst_reg->umin_value = umin_ptr; 14576 dst_reg->umax_value = umax_ptr; 14577 dst_reg->var_off = ptr_reg->var_off; 14578 dst_reg->off = ptr_reg->off + smin_val; 14579 dst_reg->raw = ptr_reg->raw; 14580 break; 14581 } 14582 /* A new variable offset is created. Note that off_reg->off 14583 * == 0, since it's a scalar. 14584 * dst_reg gets the pointer type and since some positive 14585 * integer value was added to the pointer, give it a new 'id' 14586 * if it's a PTR_TO_PACKET. 14587 * this creates a new 'base' pointer, off_reg (variable) gets 14588 * added into the variable offset, and we copy the fixed offset 14589 * from ptr_reg. 14590 */ 14591 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14592 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14593 dst_reg->smin_value = S64_MIN; 14594 dst_reg->smax_value = S64_MAX; 14595 } 14596 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14597 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14598 dst_reg->umin_value = 0; 14599 dst_reg->umax_value = U64_MAX; 14600 } 14601 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14602 dst_reg->off = ptr_reg->off; 14603 dst_reg->raw = ptr_reg->raw; 14604 if (reg_is_pkt_pointer(ptr_reg)) { 14605 dst_reg->id = ++env->id_gen; 14606 /* something was added to pkt_ptr, set range to zero */ 14607 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14608 } 14609 break; 14610 case BPF_SUB: 14611 if (dst_reg == off_reg) { 14612 /* scalar -= pointer. Creates an unknown scalar */ 14613 verbose(env, "R%d tried to subtract pointer from scalar\n", 14614 dst); 14615 return -EACCES; 14616 } 14617 /* We don't allow subtraction from FP, because (according to 14618 * test_verifier.c test "invalid fp arithmetic", JITs might not 14619 * be able to deal with it. 14620 */ 14621 if (ptr_reg->type == PTR_TO_STACK) { 14622 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14623 dst); 14624 return -EACCES; 14625 } 14626 if (known && (ptr_reg->off - smin_val == 14627 (s64)(s32)(ptr_reg->off - smin_val))) { 14628 /* pointer -= K. Subtract it from fixed offset */ 14629 dst_reg->smin_value = smin_ptr; 14630 dst_reg->smax_value = smax_ptr; 14631 dst_reg->umin_value = umin_ptr; 14632 dst_reg->umax_value = umax_ptr; 14633 dst_reg->var_off = ptr_reg->var_off; 14634 dst_reg->id = ptr_reg->id; 14635 dst_reg->off = ptr_reg->off - smin_val; 14636 dst_reg->raw = ptr_reg->raw; 14637 break; 14638 } 14639 /* A new variable offset is created. If the subtrahend is known 14640 * nonnegative, then any reg->range we had before is still good. 14641 */ 14642 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14643 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14644 /* Overflow possible, we know nothing */ 14645 dst_reg->smin_value = S64_MIN; 14646 dst_reg->smax_value = S64_MAX; 14647 } 14648 if (umin_ptr < umax_val) { 14649 /* Overflow possible, we know nothing */ 14650 dst_reg->umin_value = 0; 14651 dst_reg->umax_value = U64_MAX; 14652 } else { 14653 /* Cannot overflow (as long as bounds are consistent) */ 14654 dst_reg->umin_value = umin_ptr - umax_val; 14655 dst_reg->umax_value = umax_ptr - umin_val; 14656 } 14657 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14658 dst_reg->off = ptr_reg->off; 14659 dst_reg->raw = ptr_reg->raw; 14660 if (reg_is_pkt_pointer(ptr_reg)) { 14661 dst_reg->id = ++env->id_gen; 14662 /* something was added to pkt_ptr, set range to zero */ 14663 if (smin_val < 0) 14664 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14665 } 14666 break; 14667 case BPF_AND: 14668 case BPF_OR: 14669 case BPF_XOR: 14670 /* bitwise ops on pointers are troublesome, prohibit. */ 14671 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14672 dst, bpf_alu_string[opcode >> 4]); 14673 return -EACCES; 14674 default: 14675 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14676 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14677 dst, bpf_alu_string[opcode >> 4]); 14678 return -EACCES; 14679 } 14680 14681 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14682 return -EINVAL; 14683 reg_bounds_sync(dst_reg); 14684 bounds_ret = sanitize_check_bounds(env, insn, dst_reg); 14685 if (bounds_ret == -EACCES) 14686 return bounds_ret; 14687 if (sanitize_needed(opcode)) { 14688 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14689 &info, true); 14690 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) 14691 && !env->cur_state->speculative 14692 && bounds_ret 14693 && !ret, 14694 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { 14695 return -EFAULT; 14696 } 14697 if (ret < 0) 14698 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14699 } 14700 14701 return 0; 14702 } 14703 14704 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14705 struct bpf_reg_state *src_reg) 14706 { 14707 s32 *dst_smin = &dst_reg->s32_min_value; 14708 s32 *dst_smax = &dst_reg->s32_max_value; 14709 u32 *dst_umin = &dst_reg->u32_min_value; 14710 u32 *dst_umax = &dst_reg->u32_max_value; 14711 u32 umin_val = src_reg->u32_min_value; 14712 u32 umax_val = src_reg->u32_max_value; 14713 bool min_overflow, max_overflow; 14714 14715 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14716 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14717 *dst_smin = S32_MIN; 14718 *dst_smax = S32_MAX; 14719 } 14720 14721 /* If either all additions overflow or no additions overflow, then 14722 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14723 * dst_umax + src_umax. Otherwise (some additions overflow), set 14724 * the output bounds to unbounded. 14725 */ 14726 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14727 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14728 14729 if (!min_overflow && max_overflow) { 14730 *dst_umin = 0; 14731 *dst_umax = U32_MAX; 14732 } 14733 } 14734 14735 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14736 struct bpf_reg_state *src_reg) 14737 { 14738 s64 *dst_smin = &dst_reg->smin_value; 14739 s64 *dst_smax = &dst_reg->smax_value; 14740 u64 *dst_umin = &dst_reg->umin_value; 14741 u64 *dst_umax = &dst_reg->umax_value; 14742 u64 umin_val = src_reg->umin_value; 14743 u64 umax_val = src_reg->umax_value; 14744 bool min_overflow, max_overflow; 14745 14746 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14747 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14748 *dst_smin = S64_MIN; 14749 *dst_smax = S64_MAX; 14750 } 14751 14752 /* If either all additions overflow or no additions overflow, then 14753 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14754 * dst_umax + src_umax. Otherwise (some additions overflow), set 14755 * the output bounds to unbounded. 14756 */ 14757 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14758 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14759 14760 if (!min_overflow && max_overflow) { 14761 *dst_umin = 0; 14762 *dst_umax = U64_MAX; 14763 } 14764 } 14765 14766 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14767 struct bpf_reg_state *src_reg) 14768 { 14769 s32 *dst_smin = &dst_reg->s32_min_value; 14770 s32 *dst_smax = &dst_reg->s32_max_value; 14771 u32 *dst_umin = &dst_reg->u32_min_value; 14772 u32 *dst_umax = &dst_reg->u32_max_value; 14773 u32 umin_val = src_reg->u32_min_value; 14774 u32 umax_val = src_reg->u32_max_value; 14775 bool min_underflow, max_underflow; 14776 14777 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14778 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14779 /* Overflow possible, we know nothing */ 14780 *dst_smin = S32_MIN; 14781 *dst_smax = S32_MAX; 14782 } 14783 14784 /* If either all subtractions underflow or no subtractions 14785 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14786 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14787 * underflow), set the output bounds to unbounded. 14788 */ 14789 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14790 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14791 14792 if (min_underflow && !max_underflow) { 14793 *dst_umin = 0; 14794 *dst_umax = U32_MAX; 14795 } 14796 } 14797 14798 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14799 struct bpf_reg_state *src_reg) 14800 { 14801 s64 *dst_smin = &dst_reg->smin_value; 14802 s64 *dst_smax = &dst_reg->smax_value; 14803 u64 *dst_umin = &dst_reg->umin_value; 14804 u64 *dst_umax = &dst_reg->umax_value; 14805 u64 umin_val = src_reg->umin_value; 14806 u64 umax_val = src_reg->umax_value; 14807 bool min_underflow, max_underflow; 14808 14809 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14810 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14811 /* Overflow possible, we know nothing */ 14812 *dst_smin = S64_MIN; 14813 *dst_smax = S64_MAX; 14814 } 14815 14816 /* If either all subtractions underflow or no subtractions 14817 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14818 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14819 * underflow), set the output bounds to unbounded. 14820 */ 14821 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14822 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14823 14824 if (min_underflow && !max_underflow) { 14825 *dst_umin = 0; 14826 *dst_umax = U64_MAX; 14827 } 14828 } 14829 14830 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14831 struct bpf_reg_state *src_reg) 14832 { 14833 s32 *dst_smin = &dst_reg->s32_min_value; 14834 s32 *dst_smax = &dst_reg->s32_max_value; 14835 u32 *dst_umin = &dst_reg->u32_min_value; 14836 u32 *dst_umax = &dst_reg->u32_max_value; 14837 s32 tmp_prod[4]; 14838 14839 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14840 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14841 /* Overflow possible, we know nothing */ 14842 *dst_umin = 0; 14843 *dst_umax = U32_MAX; 14844 } 14845 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14846 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14847 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14848 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14849 /* Overflow possible, we know nothing */ 14850 *dst_smin = S32_MIN; 14851 *dst_smax = S32_MAX; 14852 } else { 14853 *dst_smin = min_array(tmp_prod, 4); 14854 *dst_smax = max_array(tmp_prod, 4); 14855 } 14856 } 14857 14858 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14859 struct bpf_reg_state *src_reg) 14860 { 14861 s64 *dst_smin = &dst_reg->smin_value; 14862 s64 *dst_smax = &dst_reg->smax_value; 14863 u64 *dst_umin = &dst_reg->umin_value; 14864 u64 *dst_umax = &dst_reg->umax_value; 14865 s64 tmp_prod[4]; 14866 14867 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14868 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14869 /* Overflow possible, we know nothing */ 14870 *dst_umin = 0; 14871 *dst_umax = U64_MAX; 14872 } 14873 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14874 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14875 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14876 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14877 /* Overflow possible, we know nothing */ 14878 *dst_smin = S64_MIN; 14879 *dst_smax = S64_MAX; 14880 } else { 14881 *dst_smin = min_array(tmp_prod, 4); 14882 *dst_smax = max_array(tmp_prod, 4); 14883 } 14884 } 14885 14886 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14887 struct bpf_reg_state *src_reg) 14888 { 14889 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14890 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14891 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14892 u32 umax_val = src_reg->u32_max_value; 14893 14894 if (src_known && dst_known) { 14895 __mark_reg32_known(dst_reg, var32_off.value); 14896 return; 14897 } 14898 14899 /* We get our minimum from the var_off, since that's inherently 14900 * bitwise. Our maximum is the minimum of the operands' maxima. 14901 */ 14902 dst_reg->u32_min_value = var32_off.value; 14903 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14904 14905 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14906 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14907 */ 14908 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14909 dst_reg->s32_min_value = dst_reg->u32_min_value; 14910 dst_reg->s32_max_value = dst_reg->u32_max_value; 14911 } else { 14912 dst_reg->s32_min_value = S32_MIN; 14913 dst_reg->s32_max_value = S32_MAX; 14914 } 14915 } 14916 14917 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14918 struct bpf_reg_state *src_reg) 14919 { 14920 bool src_known = tnum_is_const(src_reg->var_off); 14921 bool dst_known = tnum_is_const(dst_reg->var_off); 14922 u64 umax_val = src_reg->umax_value; 14923 14924 if (src_known && dst_known) { 14925 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14926 return; 14927 } 14928 14929 /* We get our minimum from the var_off, since that's inherently 14930 * bitwise. Our maximum is the minimum of the operands' maxima. 14931 */ 14932 dst_reg->umin_value = dst_reg->var_off.value; 14933 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14934 14935 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14936 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14937 */ 14938 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14939 dst_reg->smin_value = dst_reg->umin_value; 14940 dst_reg->smax_value = dst_reg->umax_value; 14941 } else { 14942 dst_reg->smin_value = S64_MIN; 14943 dst_reg->smax_value = S64_MAX; 14944 } 14945 /* We may learn something more from the var_off */ 14946 __update_reg_bounds(dst_reg); 14947 } 14948 14949 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 14950 struct bpf_reg_state *src_reg) 14951 { 14952 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14953 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14954 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14955 u32 umin_val = src_reg->u32_min_value; 14956 14957 if (src_known && dst_known) { 14958 __mark_reg32_known(dst_reg, var32_off.value); 14959 return; 14960 } 14961 14962 /* We get our maximum from the var_off, and our minimum is the 14963 * maximum of the operands' minima 14964 */ 14965 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 14966 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14967 14968 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14969 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14970 */ 14971 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14972 dst_reg->s32_min_value = dst_reg->u32_min_value; 14973 dst_reg->s32_max_value = dst_reg->u32_max_value; 14974 } else { 14975 dst_reg->s32_min_value = S32_MIN; 14976 dst_reg->s32_max_value = S32_MAX; 14977 } 14978 } 14979 14980 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 14981 struct bpf_reg_state *src_reg) 14982 { 14983 bool src_known = tnum_is_const(src_reg->var_off); 14984 bool dst_known = tnum_is_const(dst_reg->var_off); 14985 u64 umin_val = src_reg->umin_value; 14986 14987 if (src_known && dst_known) { 14988 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14989 return; 14990 } 14991 14992 /* We get our maximum from the var_off, and our minimum is the 14993 * maximum of the operands' minima 14994 */ 14995 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14996 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14997 14998 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14999 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15000 */ 15001 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15002 dst_reg->smin_value = dst_reg->umin_value; 15003 dst_reg->smax_value = dst_reg->umax_value; 15004 } else { 15005 dst_reg->smin_value = S64_MIN; 15006 dst_reg->smax_value = S64_MAX; 15007 } 15008 /* We may learn something more from the var_off */ 15009 __update_reg_bounds(dst_reg); 15010 } 15011 15012 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 15013 struct bpf_reg_state *src_reg) 15014 { 15015 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15016 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15017 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15018 15019 if (src_known && dst_known) { 15020 __mark_reg32_known(dst_reg, var32_off.value); 15021 return; 15022 } 15023 15024 /* We get both minimum and maximum from the var32_off. */ 15025 dst_reg->u32_min_value = var32_off.value; 15026 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15027 15028 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15029 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15030 */ 15031 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15032 dst_reg->s32_min_value = dst_reg->u32_min_value; 15033 dst_reg->s32_max_value = dst_reg->u32_max_value; 15034 } else { 15035 dst_reg->s32_min_value = S32_MIN; 15036 dst_reg->s32_max_value = S32_MAX; 15037 } 15038 } 15039 15040 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 15041 struct bpf_reg_state *src_reg) 15042 { 15043 bool src_known = tnum_is_const(src_reg->var_off); 15044 bool dst_known = tnum_is_const(dst_reg->var_off); 15045 15046 if (src_known && dst_known) { 15047 /* dst_reg->var_off.value has been updated earlier */ 15048 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15049 return; 15050 } 15051 15052 /* We get both minimum and maximum from the var_off. */ 15053 dst_reg->umin_value = dst_reg->var_off.value; 15054 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15055 15056 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15057 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15058 */ 15059 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15060 dst_reg->smin_value = dst_reg->umin_value; 15061 dst_reg->smax_value = dst_reg->umax_value; 15062 } else { 15063 dst_reg->smin_value = S64_MIN; 15064 dst_reg->smax_value = S64_MAX; 15065 } 15066 15067 __update_reg_bounds(dst_reg); 15068 } 15069 15070 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15071 u64 umin_val, u64 umax_val) 15072 { 15073 /* We lose all sign bit information (except what we can pick 15074 * up from var_off) 15075 */ 15076 dst_reg->s32_min_value = S32_MIN; 15077 dst_reg->s32_max_value = S32_MAX; 15078 /* If we might shift our top bit out, then we know nothing */ 15079 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 15080 dst_reg->u32_min_value = 0; 15081 dst_reg->u32_max_value = U32_MAX; 15082 } else { 15083 dst_reg->u32_min_value <<= umin_val; 15084 dst_reg->u32_max_value <<= umax_val; 15085 } 15086 } 15087 15088 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15089 struct bpf_reg_state *src_reg) 15090 { 15091 u32 umax_val = src_reg->u32_max_value; 15092 u32 umin_val = src_reg->u32_min_value; 15093 /* u32 alu operation will zext upper bits */ 15094 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15095 15096 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15097 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 15098 /* Not required but being careful mark reg64 bounds as unknown so 15099 * that we are forced to pick them up from tnum and zext later and 15100 * if some path skips this step we are still safe. 15101 */ 15102 __mark_reg64_unbounded(dst_reg); 15103 __update_reg32_bounds(dst_reg); 15104 } 15105 15106 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 15107 u64 umin_val, u64 umax_val) 15108 { 15109 /* Special case <<32 because it is a common compiler pattern to sign 15110 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 15111 * positive we know this shift will also be positive so we can track 15112 * bounds correctly. Otherwise we lose all sign bit information except 15113 * what we can pick up from var_off. Perhaps we can generalize this 15114 * later to shifts of any length. 15115 */ 15116 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 15117 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 15118 else 15119 dst_reg->smax_value = S64_MAX; 15120 15121 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 15122 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 15123 else 15124 dst_reg->smin_value = S64_MIN; 15125 15126 /* If we might shift our top bit out, then we know nothing */ 15127 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 15128 dst_reg->umin_value = 0; 15129 dst_reg->umax_value = U64_MAX; 15130 } else { 15131 dst_reg->umin_value <<= umin_val; 15132 dst_reg->umax_value <<= umax_val; 15133 } 15134 } 15135 15136 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 15137 struct bpf_reg_state *src_reg) 15138 { 15139 u64 umax_val = src_reg->umax_value; 15140 u64 umin_val = src_reg->umin_value; 15141 15142 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 15143 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 15144 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15145 15146 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 15147 /* We may learn something more from the var_off */ 15148 __update_reg_bounds(dst_reg); 15149 } 15150 15151 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 15152 struct bpf_reg_state *src_reg) 15153 { 15154 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15155 u32 umax_val = src_reg->u32_max_value; 15156 u32 umin_val = src_reg->u32_min_value; 15157 15158 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15159 * be negative, then either: 15160 * 1) src_reg might be zero, so the sign bit of the result is 15161 * unknown, so we lose our signed bounds 15162 * 2) it's known negative, thus the unsigned bounds capture the 15163 * signed bounds 15164 * 3) the signed bounds cross zero, so they tell us nothing 15165 * about the result 15166 * If the value in dst_reg is known nonnegative, then again the 15167 * unsigned bounds capture the signed bounds. 15168 * Thus, in all cases it suffices to blow away our signed bounds 15169 * and rely on inferring new ones from the unsigned bounds and 15170 * var_off of the result. 15171 */ 15172 dst_reg->s32_min_value = S32_MIN; 15173 dst_reg->s32_max_value = S32_MAX; 15174 15175 dst_reg->var_off = tnum_rshift(subreg, umin_val); 15176 dst_reg->u32_min_value >>= umax_val; 15177 dst_reg->u32_max_value >>= umin_val; 15178 15179 __mark_reg64_unbounded(dst_reg); 15180 __update_reg32_bounds(dst_reg); 15181 } 15182 15183 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 15184 struct bpf_reg_state *src_reg) 15185 { 15186 u64 umax_val = src_reg->umax_value; 15187 u64 umin_val = src_reg->umin_value; 15188 15189 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15190 * be negative, then either: 15191 * 1) src_reg might be zero, so the sign bit of the result is 15192 * unknown, so we lose our signed bounds 15193 * 2) it's known negative, thus the unsigned bounds capture the 15194 * signed bounds 15195 * 3) the signed bounds cross zero, so they tell us nothing 15196 * about the result 15197 * If the value in dst_reg is known nonnegative, then again the 15198 * unsigned bounds capture the signed bounds. 15199 * Thus, in all cases it suffices to blow away our signed bounds 15200 * and rely on inferring new ones from the unsigned bounds and 15201 * var_off of the result. 15202 */ 15203 dst_reg->smin_value = S64_MIN; 15204 dst_reg->smax_value = S64_MAX; 15205 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 15206 dst_reg->umin_value >>= umax_val; 15207 dst_reg->umax_value >>= umin_val; 15208 15209 /* Its not easy to operate on alu32 bounds here because it depends 15210 * on bits being shifted in. Take easy way out and mark unbounded 15211 * so we can recalculate later from tnum. 15212 */ 15213 __mark_reg32_unbounded(dst_reg); 15214 __update_reg_bounds(dst_reg); 15215 } 15216 15217 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15218 struct bpf_reg_state *src_reg) 15219 { 15220 u64 umin_val = src_reg->u32_min_value; 15221 15222 /* Upon reaching here, src_known is true and 15223 * umax_val is equal to umin_val. 15224 */ 15225 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15226 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15227 15228 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15229 15230 /* blow away the dst_reg umin_value/umax_value and rely on 15231 * dst_reg var_off to refine the result. 15232 */ 15233 dst_reg->u32_min_value = 0; 15234 dst_reg->u32_max_value = U32_MAX; 15235 15236 __mark_reg64_unbounded(dst_reg); 15237 __update_reg32_bounds(dst_reg); 15238 } 15239 15240 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15241 struct bpf_reg_state *src_reg) 15242 { 15243 u64 umin_val = src_reg->umin_value; 15244 15245 /* Upon reaching here, src_known is true and umax_val is equal 15246 * to umin_val. 15247 */ 15248 dst_reg->smin_value >>= umin_val; 15249 dst_reg->smax_value >>= umin_val; 15250 15251 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15252 15253 /* blow away the dst_reg umin_value/umax_value and rely on 15254 * dst_reg var_off to refine the result. 15255 */ 15256 dst_reg->umin_value = 0; 15257 dst_reg->umax_value = U64_MAX; 15258 15259 /* Its not easy to operate on alu32 bounds here because it depends 15260 * on bits being shifted in from upper 32-bits. Take easy way out 15261 * and mark unbounded so we can recalculate later from tnum. 15262 */ 15263 __mark_reg32_unbounded(dst_reg); 15264 __update_reg_bounds(dst_reg); 15265 } 15266 15267 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15268 const struct bpf_reg_state *src_reg) 15269 { 15270 bool src_is_const = false; 15271 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15272 15273 if (insn_bitness == 32) { 15274 if (tnum_subreg_is_const(src_reg->var_off) 15275 && src_reg->s32_min_value == src_reg->s32_max_value 15276 && src_reg->u32_min_value == src_reg->u32_max_value) 15277 src_is_const = true; 15278 } else { 15279 if (tnum_is_const(src_reg->var_off) 15280 && src_reg->smin_value == src_reg->smax_value 15281 && src_reg->umin_value == src_reg->umax_value) 15282 src_is_const = true; 15283 } 15284 15285 switch (BPF_OP(insn->code)) { 15286 case BPF_ADD: 15287 case BPF_SUB: 15288 case BPF_NEG: 15289 case BPF_AND: 15290 case BPF_XOR: 15291 case BPF_OR: 15292 case BPF_MUL: 15293 return true; 15294 15295 /* Shift operators range is only computable if shift dimension operand 15296 * is a constant. Shifts greater than 31 or 63 are undefined. This 15297 * includes shifts by a negative number. 15298 */ 15299 case BPF_LSH: 15300 case BPF_RSH: 15301 case BPF_ARSH: 15302 return (src_is_const && src_reg->umax_value < insn_bitness); 15303 default: 15304 return false; 15305 } 15306 } 15307 15308 /* WARNING: This function does calculations on 64-bit values, but the actual 15309 * execution may occur on 32-bit values. Therefore, things like bitshifts 15310 * need extra checks in the 32-bit case. 15311 */ 15312 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15313 struct bpf_insn *insn, 15314 struct bpf_reg_state *dst_reg, 15315 struct bpf_reg_state src_reg) 15316 { 15317 u8 opcode = BPF_OP(insn->code); 15318 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15319 int ret; 15320 15321 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15322 __mark_reg_unknown(env, dst_reg); 15323 return 0; 15324 } 15325 15326 if (sanitize_needed(opcode)) { 15327 ret = sanitize_val_alu(env, insn); 15328 if (ret < 0) 15329 return sanitize_err(env, insn, ret, NULL, NULL); 15330 } 15331 15332 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15333 * There are two classes of instructions: The first class we track both 15334 * alu32 and alu64 sign/unsigned bounds independently this provides the 15335 * greatest amount of precision when alu operations are mixed with jmp32 15336 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15337 * and BPF_OR. This is possible because these ops have fairly easy to 15338 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15339 * See alu32 verifier tests for examples. The second class of 15340 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15341 * with regards to tracking sign/unsigned bounds because the bits may 15342 * cross subreg boundaries in the alu64 case. When this happens we mark 15343 * the reg unbounded in the subreg bound space and use the resulting 15344 * tnum to calculate an approximation of the sign/unsigned bounds. 15345 */ 15346 switch (opcode) { 15347 case BPF_ADD: 15348 scalar32_min_max_add(dst_reg, &src_reg); 15349 scalar_min_max_add(dst_reg, &src_reg); 15350 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 15351 break; 15352 case BPF_SUB: 15353 scalar32_min_max_sub(dst_reg, &src_reg); 15354 scalar_min_max_sub(dst_reg, &src_reg); 15355 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 15356 break; 15357 case BPF_NEG: 15358 env->fake_reg[0] = *dst_reg; 15359 __mark_reg_known(dst_reg, 0); 15360 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); 15361 scalar_min_max_sub(dst_reg, &env->fake_reg[0]); 15362 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); 15363 break; 15364 case BPF_MUL: 15365 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 15366 scalar32_min_max_mul(dst_reg, &src_reg); 15367 scalar_min_max_mul(dst_reg, &src_reg); 15368 break; 15369 case BPF_AND: 15370 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 15371 scalar32_min_max_and(dst_reg, &src_reg); 15372 scalar_min_max_and(dst_reg, &src_reg); 15373 break; 15374 case BPF_OR: 15375 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 15376 scalar32_min_max_or(dst_reg, &src_reg); 15377 scalar_min_max_or(dst_reg, &src_reg); 15378 break; 15379 case BPF_XOR: 15380 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 15381 scalar32_min_max_xor(dst_reg, &src_reg); 15382 scalar_min_max_xor(dst_reg, &src_reg); 15383 break; 15384 case BPF_LSH: 15385 if (alu32) 15386 scalar32_min_max_lsh(dst_reg, &src_reg); 15387 else 15388 scalar_min_max_lsh(dst_reg, &src_reg); 15389 break; 15390 case BPF_RSH: 15391 if (alu32) 15392 scalar32_min_max_rsh(dst_reg, &src_reg); 15393 else 15394 scalar_min_max_rsh(dst_reg, &src_reg); 15395 break; 15396 case BPF_ARSH: 15397 if (alu32) 15398 scalar32_min_max_arsh(dst_reg, &src_reg); 15399 else 15400 scalar_min_max_arsh(dst_reg, &src_reg); 15401 break; 15402 default: 15403 break; 15404 } 15405 15406 /* ALU32 ops are zero extended into 64bit register */ 15407 if (alu32) 15408 zext_32_to_64(dst_reg); 15409 reg_bounds_sync(dst_reg); 15410 return 0; 15411 } 15412 15413 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 15414 * and var_off. 15415 */ 15416 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 15417 struct bpf_insn *insn) 15418 { 15419 struct bpf_verifier_state *vstate = env->cur_state; 15420 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15421 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 15422 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 15423 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15424 u8 opcode = BPF_OP(insn->code); 15425 int err; 15426 15427 dst_reg = ®s[insn->dst_reg]; 15428 src_reg = NULL; 15429 15430 if (dst_reg->type == PTR_TO_ARENA) { 15431 struct bpf_insn_aux_data *aux = cur_aux(env); 15432 15433 if (BPF_CLASS(insn->code) == BPF_ALU64) 15434 /* 15435 * 32-bit operations zero upper bits automatically. 15436 * 64-bit operations need to be converted to 32. 15437 */ 15438 aux->needs_zext = true; 15439 15440 /* Any arithmetic operations are allowed on arena pointers */ 15441 return 0; 15442 } 15443 15444 if (dst_reg->type != SCALAR_VALUE) 15445 ptr_reg = dst_reg; 15446 15447 if (BPF_SRC(insn->code) == BPF_X) { 15448 src_reg = ®s[insn->src_reg]; 15449 if (src_reg->type != SCALAR_VALUE) { 15450 if (dst_reg->type != SCALAR_VALUE) { 15451 /* Combining two pointers by any ALU op yields 15452 * an arbitrary scalar. Disallow all math except 15453 * pointer subtraction 15454 */ 15455 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 15456 mark_reg_unknown(env, regs, insn->dst_reg); 15457 return 0; 15458 } 15459 verbose(env, "R%d pointer %s pointer prohibited\n", 15460 insn->dst_reg, 15461 bpf_alu_string[opcode >> 4]); 15462 return -EACCES; 15463 } else { 15464 /* scalar += pointer 15465 * This is legal, but we have to reverse our 15466 * src/dest handling in computing the range 15467 */ 15468 err = mark_chain_precision(env, insn->dst_reg); 15469 if (err) 15470 return err; 15471 return adjust_ptr_min_max_vals(env, insn, 15472 src_reg, dst_reg); 15473 } 15474 } else if (ptr_reg) { 15475 /* pointer += scalar */ 15476 err = mark_chain_precision(env, insn->src_reg); 15477 if (err) 15478 return err; 15479 return adjust_ptr_min_max_vals(env, insn, 15480 dst_reg, src_reg); 15481 } else if (dst_reg->precise) { 15482 /* if dst_reg is precise, src_reg should be precise as well */ 15483 err = mark_chain_precision(env, insn->src_reg); 15484 if (err) 15485 return err; 15486 } 15487 } else { 15488 /* Pretend the src is a reg with a known value, since we only 15489 * need to be able to read from this state. 15490 */ 15491 off_reg.type = SCALAR_VALUE; 15492 __mark_reg_known(&off_reg, insn->imm); 15493 src_reg = &off_reg; 15494 if (ptr_reg) /* pointer += K */ 15495 return adjust_ptr_min_max_vals(env, insn, 15496 ptr_reg, src_reg); 15497 } 15498 15499 /* Got here implies adding two SCALAR_VALUEs */ 15500 if (WARN_ON_ONCE(ptr_reg)) { 15501 print_verifier_state(env, vstate, vstate->curframe, true); 15502 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 15503 return -EFAULT; 15504 } 15505 if (WARN_ON(!src_reg)) { 15506 print_verifier_state(env, vstate, vstate->curframe, true); 15507 verbose(env, "verifier internal error: no src_reg\n"); 15508 return -EFAULT; 15509 } 15510 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 15511 if (err) 15512 return err; 15513 /* 15514 * Compilers can generate the code 15515 * r1 = r2 15516 * r1 += 0x1 15517 * if r2 < 1000 goto ... 15518 * use r1 in memory access 15519 * So for 64-bit alu remember constant delta between r2 and r1 and 15520 * update r1 after 'if' condition. 15521 */ 15522 if (env->bpf_capable && 15523 BPF_OP(insn->code) == BPF_ADD && !alu32 && 15524 dst_reg->id && is_reg_const(src_reg, false)) { 15525 u64 val = reg_const_value(src_reg, false); 15526 15527 if ((dst_reg->id & BPF_ADD_CONST) || 15528 /* prevent overflow in sync_linked_regs() later */ 15529 val > (u32)S32_MAX) { 15530 /* 15531 * If the register already went through rX += val 15532 * we cannot accumulate another val into rx->off. 15533 */ 15534 dst_reg->off = 0; 15535 dst_reg->id = 0; 15536 } else { 15537 dst_reg->id |= BPF_ADD_CONST; 15538 dst_reg->off = val; 15539 } 15540 } else { 15541 /* 15542 * Make sure ID is cleared otherwise dst_reg min/max could be 15543 * incorrectly propagated into other registers by sync_linked_regs() 15544 */ 15545 dst_reg->id = 0; 15546 } 15547 return 0; 15548 } 15549 15550 /* check validity of 32-bit and 64-bit arithmetic operations */ 15551 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 15552 { 15553 struct bpf_reg_state *regs = cur_regs(env); 15554 u8 opcode = BPF_OP(insn->code); 15555 int err; 15556 15557 if (opcode == BPF_END || opcode == BPF_NEG) { 15558 if (opcode == BPF_NEG) { 15559 if (BPF_SRC(insn->code) != BPF_K || 15560 insn->src_reg != BPF_REG_0 || 15561 insn->off != 0 || insn->imm != 0) { 15562 verbose(env, "BPF_NEG uses reserved fields\n"); 15563 return -EINVAL; 15564 } 15565 } else { 15566 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 15567 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 15568 (BPF_CLASS(insn->code) == BPF_ALU64 && 15569 BPF_SRC(insn->code) != BPF_TO_LE)) { 15570 verbose(env, "BPF_END uses reserved fields\n"); 15571 return -EINVAL; 15572 } 15573 } 15574 15575 /* check src operand */ 15576 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15577 if (err) 15578 return err; 15579 15580 if (is_pointer_value(env, insn->dst_reg)) { 15581 verbose(env, "R%d pointer arithmetic prohibited\n", 15582 insn->dst_reg); 15583 return -EACCES; 15584 } 15585 15586 /* check dest operand */ 15587 if (opcode == BPF_NEG) { 15588 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15589 err = err ?: adjust_scalar_min_max_vals(env, insn, 15590 ®s[insn->dst_reg], 15591 regs[insn->dst_reg]); 15592 } else { 15593 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15594 } 15595 if (err) 15596 return err; 15597 15598 } else if (opcode == BPF_MOV) { 15599 15600 if (BPF_SRC(insn->code) == BPF_X) { 15601 if (BPF_CLASS(insn->code) == BPF_ALU) { 15602 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 15603 insn->imm) { 15604 verbose(env, "BPF_MOV uses reserved fields\n"); 15605 return -EINVAL; 15606 } 15607 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 15608 if (insn->imm != 1 && insn->imm != 1u << 16) { 15609 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 15610 return -EINVAL; 15611 } 15612 if (!env->prog->aux->arena) { 15613 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 15614 return -EINVAL; 15615 } 15616 } else { 15617 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 15618 insn->off != 32) || insn->imm) { 15619 verbose(env, "BPF_MOV uses reserved fields\n"); 15620 return -EINVAL; 15621 } 15622 } 15623 15624 /* check src operand */ 15625 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15626 if (err) 15627 return err; 15628 } else { 15629 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 15630 verbose(env, "BPF_MOV uses reserved fields\n"); 15631 return -EINVAL; 15632 } 15633 } 15634 15635 /* check dest operand, mark as required later */ 15636 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15637 if (err) 15638 return err; 15639 15640 if (BPF_SRC(insn->code) == BPF_X) { 15641 struct bpf_reg_state *src_reg = regs + insn->src_reg; 15642 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 15643 15644 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15645 if (insn->imm) { 15646 /* off == BPF_ADDR_SPACE_CAST */ 15647 mark_reg_unknown(env, regs, insn->dst_reg); 15648 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 15649 dst_reg->type = PTR_TO_ARENA; 15650 /* PTR_TO_ARENA is 32-bit */ 15651 dst_reg->subreg_def = env->insn_idx + 1; 15652 } 15653 } else if (insn->off == 0) { 15654 /* case: R1 = R2 15655 * copy register state to dest reg 15656 */ 15657 assign_scalar_id_before_mov(env, src_reg); 15658 copy_register_state(dst_reg, src_reg); 15659 dst_reg->live |= REG_LIVE_WRITTEN; 15660 dst_reg->subreg_def = DEF_NOT_SUBREG; 15661 } else { 15662 /* case: R1 = (s8, s16 s32)R2 */ 15663 if (is_pointer_value(env, insn->src_reg)) { 15664 verbose(env, 15665 "R%d sign-extension part of pointer\n", 15666 insn->src_reg); 15667 return -EACCES; 15668 } else if (src_reg->type == SCALAR_VALUE) { 15669 bool no_sext; 15670 15671 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15672 if (no_sext) 15673 assign_scalar_id_before_mov(env, src_reg); 15674 copy_register_state(dst_reg, src_reg); 15675 if (!no_sext) 15676 dst_reg->id = 0; 15677 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15678 dst_reg->live |= REG_LIVE_WRITTEN; 15679 dst_reg->subreg_def = DEF_NOT_SUBREG; 15680 } else { 15681 mark_reg_unknown(env, regs, insn->dst_reg); 15682 } 15683 } 15684 } else { 15685 /* R1 = (u32) R2 */ 15686 if (is_pointer_value(env, insn->src_reg)) { 15687 verbose(env, 15688 "R%d partial copy of pointer\n", 15689 insn->src_reg); 15690 return -EACCES; 15691 } else if (src_reg->type == SCALAR_VALUE) { 15692 if (insn->off == 0) { 15693 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15694 15695 if (is_src_reg_u32) 15696 assign_scalar_id_before_mov(env, src_reg); 15697 copy_register_state(dst_reg, src_reg); 15698 /* Make sure ID is cleared if src_reg is not in u32 15699 * range otherwise dst_reg min/max could be incorrectly 15700 * propagated into src_reg by sync_linked_regs() 15701 */ 15702 if (!is_src_reg_u32) 15703 dst_reg->id = 0; 15704 dst_reg->live |= REG_LIVE_WRITTEN; 15705 dst_reg->subreg_def = env->insn_idx + 1; 15706 } else { 15707 /* case: W1 = (s8, s16)W2 */ 15708 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15709 15710 if (no_sext) 15711 assign_scalar_id_before_mov(env, src_reg); 15712 copy_register_state(dst_reg, src_reg); 15713 if (!no_sext) 15714 dst_reg->id = 0; 15715 dst_reg->live |= REG_LIVE_WRITTEN; 15716 dst_reg->subreg_def = env->insn_idx + 1; 15717 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15718 } 15719 } else { 15720 mark_reg_unknown(env, regs, 15721 insn->dst_reg); 15722 } 15723 zext_32_to_64(dst_reg); 15724 reg_bounds_sync(dst_reg); 15725 } 15726 } else { 15727 /* case: R = imm 15728 * remember the value we stored into this reg 15729 */ 15730 /* clear any state __mark_reg_known doesn't set */ 15731 mark_reg_unknown(env, regs, insn->dst_reg); 15732 regs[insn->dst_reg].type = SCALAR_VALUE; 15733 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15734 __mark_reg_known(regs + insn->dst_reg, 15735 insn->imm); 15736 } else { 15737 __mark_reg_known(regs + insn->dst_reg, 15738 (u32)insn->imm); 15739 } 15740 } 15741 15742 } else if (opcode > BPF_END) { 15743 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15744 return -EINVAL; 15745 15746 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15747 15748 if (BPF_SRC(insn->code) == BPF_X) { 15749 if (insn->imm != 0 || insn->off > 1 || 15750 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15751 verbose(env, "BPF_ALU uses reserved fields\n"); 15752 return -EINVAL; 15753 } 15754 /* check src1 operand */ 15755 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15756 if (err) 15757 return err; 15758 } else { 15759 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 15760 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15761 verbose(env, "BPF_ALU uses reserved fields\n"); 15762 return -EINVAL; 15763 } 15764 } 15765 15766 /* check src2 operand */ 15767 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15768 if (err) 15769 return err; 15770 15771 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15772 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15773 verbose(env, "div by zero\n"); 15774 return -EINVAL; 15775 } 15776 15777 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15778 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15779 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15780 15781 if (insn->imm < 0 || insn->imm >= size) { 15782 verbose(env, "invalid shift %d\n", insn->imm); 15783 return -EINVAL; 15784 } 15785 } 15786 15787 /* check dest operand */ 15788 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15789 err = err ?: adjust_reg_min_max_vals(env, insn); 15790 if (err) 15791 return err; 15792 } 15793 15794 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15795 } 15796 15797 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15798 struct bpf_reg_state *dst_reg, 15799 enum bpf_reg_type type, 15800 bool range_right_open) 15801 { 15802 struct bpf_func_state *state; 15803 struct bpf_reg_state *reg; 15804 int new_range; 15805 15806 if (dst_reg->off < 0 || 15807 (dst_reg->off == 0 && range_right_open)) 15808 /* This doesn't give us any range */ 15809 return; 15810 15811 if (dst_reg->umax_value > MAX_PACKET_OFF || 15812 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15813 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15814 * than pkt_end, but that's because it's also less than pkt. 15815 */ 15816 return; 15817 15818 new_range = dst_reg->off; 15819 if (range_right_open) 15820 new_range++; 15821 15822 /* Examples for register markings: 15823 * 15824 * pkt_data in dst register: 15825 * 15826 * r2 = r3; 15827 * r2 += 8; 15828 * if (r2 > pkt_end) goto <handle exception> 15829 * <access okay> 15830 * 15831 * r2 = r3; 15832 * r2 += 8; 15833 * if (r2 < pkt_end) goto <access okay> 15834 * <handle exception> 15835 * 15836 * Where: 15837 * r2 == dst_reg, pkt_end == src_reg 15838 * r2=pkt(id=n,off=8,r=0) 15839 * r3=pkt(id=n,off=0,r=0) 15840 * 15841 * pkt_data in src register: 15842 * 15843 * r2 = r3; 15844 * r2 += 8; 15845 * if (pkt_end >= r2) goto <access okay> 15846 * <handle exception> 15847 * 15848 * r2 = r3; 15849 * r2 += 8; 15850 * if (pkt_end <= r2) goto <handle exception> 15851 * <access okay> 15852 * 15853 * Where: 15854 * pkt_end == dst_reg, r2 == src_reg 15855 * r2=pkt(id=n,off=8,r=0) 15856 * r3=pkt(id=n,off=0,r=0) 15857 * 15858 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15859 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15860 * and [r3, r3 + 8-1) respectively is safe to access depending on 15861 * the check. 15862 */ 15863 15864 /* If our ids match, then we must have the same max_value. And we 15865 * don't care about the other reg's fixed offset, since if it's too big 15866 * the range won't allow anything. 15867 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15868 */ 15869 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15870 if (reg->type == type && reg->id == dst_reg->id) 15871 /* keep the maximum range already checked */ 15872 reg->range = max(reg->range, new_range); 15873 })); 15874 } 15875 15876 /* 15877 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15878 */ 15879 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15880 u8 opcode, bool is_jmp32) 15881 { 15882 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15883 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15884 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15885 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15886 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15887 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15888 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15889 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15890 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15891 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15892 15893 switch (opcode) { 15894 case BPF_JEQ: 15895 /* constants, umin/umax and smin/smax checks would be 15896 * redundant in this case because they all should match 15897 */ 15898 if (tnum_is_const(t1) && tnum_is_const(t2)) 15899 return t1.value == t2.value; 15900 /* non-overlapping ranges */ 15901 if (umin1 > umax2 || umax1 < umin2) 15902 return 0; 15903 if (smin1 > smax2 || smax1 < smin2) 15904 return 0; 15905 if (!is_jmp32) { 15906 /* if 64-bit ranges are inconclusive, see if we can 15907 * utilize 32-bit subrange knowledge to eliminate 15908 * branches that can't be taken a priori 15909 */ 15910 if (reg1->u32_min_value > reg2->u32_max_value || 15911 reg1->u32_max_value < reg2->u32_min_value) 15912 return 0; 15913 if (reg1->s32_min_value > reg2->s32_max_value || 15914 reg1->s32_max_value < reg2->s32_min_value) 15915 return 0; 15916 } 15917 break; 15918 case BPF_JNE: 15919 /* constants, umin/umax and smin/smax checks would be 15920 * redundant in this case because they all should match 15921 */ 15922 if (tnum_is_const(t1) && tnum_is_const(t2)) 15923 return t1.value != t2.value; 15924 /* non-overlapping ranges */ 15925 if (umin1 > umax2 || umax1 < umin2) 15926 return 1; 15927 if (smin1 > smax2 || smax1 < smin2) 15928 return 1; 15929 if (!is_jmp32) { 15930 /* if 64-bit ranges are inconclusive, see if we can 15931 * utilize 32-bit subrange knowledge to eliminate 15932 * branches that can't be taken a priori 15933 */ 15934 if (reg1->u32_min_value > reg2->u32_max_value || 15935 reg1->u32_max_value < reg2->u32_min_value) 15936 return 1; 15937 if (reg1->s32_min_value > reg2->s32_max_value || 15938 reg1->s32_max_value < reg2->s32_min_value) 15939 return 1; 15940 } 15941 break; 15942 case BPF_JSET: 15943 if (!is_reg_const(reg2, is_jmp32)) { 15944 swap(reg1, reg2); 15945 swap(t1, t2); 15946 } 15947 if (!is_reg_const(reg2, is_jmp32)) 15948 return -1; 15949 if ((~t1.mask & t1.value) & t2.value) 15950 return 1; 15951 if (!((t1.mask | t1.value) & t2.value)) 15952 return 0; 15953 break; 15954 case BPF_JGT: 15955 if (umin1 > umax2) 15956 return 1; 15957 else if (umax1 <= umin2) 15958 return 0; 15959 break; 15960 case BPF_JSGT: 15961 if (smin1 > smax2) 15962 return 1; 15963 else if (smax1 <= smin2) 15964 return 0; 15965 break; 15966 case BPF_JLT: 15967 if (umax1 < umin2) 15968 return 1; 15969 else if (umin1 >= umax2) 15970 return 0; 15971 break; 15972 case BPF_JSLT: 15973 if (smax1 < smin2) 15974 return 1; 15975 else if (smin1 >= smax2) 15976 return 0; 15977 break; 15978 case BPF_JGE: 15979 if (umin1 >= umax2) 15980 return 1; 15981 else if (umax1 < umin2) 15982 return 0; 15983 break; 15984 case BPF_JSGE: 15985 if (smin1 >= smax2) 15986 return 1; 15987 else if (smax1 < smin2) 15988 return 0; 15989 break; 15990 case BPF_JLE: 15991 if (umax1 <= umin2) 15992 return 1; 15993 else if (umin1 > umax2) 15994 return 0; 15995 break; 15996 case BPF_JSLE: 15997 if (smax1 <= smin2) 15998 return 1; 15999 else if (smin1 > smax2) 16000 return 0; 16001 break; 16002 } 16003 16004 return -1; 16005 } 16006 16007 static int flip_opcode(u32 opcode) 16008 { 16009 /* How can we transform "a <op> b" into "b <op> a"? */ 16010 static const u8 opcode_flip[16] = { 16011 /* these stay the same */ 16012 [BPF_JEQ >> 4] = BPF_JEQ, 16013 [BPF_JNE >> 4] = BPF_JNE, 16014 [BPF_JSET >> 4] = BPF_JSET, 16015 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 16016 [BPF_JGE >> 4] = BPF_JLE, 16017 [BPF_JGT >> 4] = BPF_JLT, 16018 [BPF_JLE >> 4] = BPF_JGE, 16019 [BPF_JLT >> 4] = BPF_JGT, 16020 [BPF_JSGE >> 4] = BPF_JSLE, 16021 [BPF_JSGT >> 4] = BPF_JSLT, 16022 [BPF_JSLE >> 4] = BPF_JSGE, 16023 [BPF_JSLT >> 4] = BPF_JSGT 16024 }; 16025 return opcode_flip[opcode >> 4]; 16026 } 16027 16028 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 16029 struct bpf_reg_state *src_reg, 16030 u8 opcode) 16031 { 16032 struct bpf_reg_state *pkt; 16033 16034 if (src_reg->type == PTR_TO_PACKET_END) { 16035 pkt = dst_reg; 16036 } else if (dst_reg->type == PTR_TO_PACKET_END) { 16037 pkt = src_reg; 16038 opcode = flip_opcode(opcode); 16039 } else { 16040 return -1; 16041 } 16042 16043 if (pkt->range >= 0) 16044 return -1; 16045 16046 switch (opcode) { 16047 case BPF_JLE: 16048 /* pkt <= pkt_end */ 16049 fallthrough; 16050 case BPF_JGT: 16051 /* pkt > pkt_end */ 16052 if (pkt->range == BEYOND_PKT_END) 16053 /* pkt has at last one extra byte beyond pkt_end */ 16054 return opcode == BPF_JGT; 16055 break; 16056 case BPF_JLT: 16057 /* pkt < pkt_end */ 16058 fallthrough; 16059 case BPF_JGE: 16060 /* pkt >= pkt_end */ 16061 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 16062 return opcode == BPF_JGE; 16063 break; 16064 } 16065 return -1; 16066 } 16067 16068 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 16069 * and return: 16070 * 1 - branch will be taken and "goto target" will be executed 16071 * 0 - branch will not be taken and fall-through to next insn 16072 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 16073 * range [0,10] 16074 */ 16075 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16076 u8 opcode, bool is_jmp32) 16077 { 16078 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 16079 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 16080 16081 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 16082 u64 val; 16083 16084 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 16085 if (!is_reg_const(reg2, is_jmp32)) { 16086 opcode = flip_opcode(opcode); 16087 swap(reg1, reg2); 16088 } 16089 /* and ensure that reg2 is a constant */ 16090 if (!is_reg_const(reg2, is_jmp32)) 16091 return -1; 16092 16093 if (!reg_not_null(reg1)) 16094 return -1; 16095 16096 /* If pointer is valid tests against zero will fail so we can 16097 * use this to direct branch taken. 16098 */ 16099 val = reg_const_value(reg2, is_jmp32); 16100 if (val != 0) 16101 return -1; 16102 16103 switch (opcode) { 16104 case BPF_JEQ: 16105 return 0; 16106 case BPF_JNE: 16107 return 1; 16108 default: 16109 return -1; 16110 } 16111 } 16112 16113 /* now deal with two scalars, but not necessarily constants */ 16114 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 16115 } 16116 16117 /* Opcode that corresponds to a *false* branch condition. 16118 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 16119 */ 16120 static u8 rev_opcode(u8 opcode) 16121 { 16122 switch (opcode) { 16123 case BPF_JEQ: return BPF_JNE; 16124 case BPF_JNE: return BPF_JEQ; 16125 /* JSET doesn't have it's reverse opcode in BPF, so add 16126 * BPF_X flag to denote the reverse of that operation 16127 */ 16128 case BPF_JSET: return BPF_JSET | BPF_X; 16129 case BPF_JSET | BPF_X: return BPF_JSET; 16130 case BPF_JGE: return BPF_JLT; 16131 case BPF_JGT: return BPF_JLE; 16132 case BPF_JLE: return BPF_JGT; 16133 case BPF_JLT: return BPF_JGE; 16134 case BPF_JSGE: return BPF_JSLT; 16135 case BPF_JSGT: return BPF_JSLE; 16136 case BPF_JSLE: return BPF_JSGT; 16137 case BPF_JSLT: return BPF_JSGE; 16138 default: return 0; 16139 } 16140 } 16141 16142 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 16143 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16144 u8 opcode, bool is_jmp32) 16145 { 16146 struct tnum t; 16147 u64 val; 16148 16149 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 16150 switch (opcode) { 16151 case BPF_JGE: 16152 case BPF_JGT: 16153 case BPF_JSGE: 16154 case BPF_JSGT: 16155 opcode = flip_opcode(opcode); 16156 swap(reg1, reg2); 16157 break; 16158 default: 16159 break; 16160 } 16161 16162 switch (opcode) { 16163 case BPF_JEQ: 16164 if (is_jmp32) { 16165 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16166 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16167 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16168 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16169 reg2->u32_min_value = reg1->u32_min_value; 16170 reg2->u32_max_value = reg1->u32_max_value; 16171 reg2->s32_min_value = reg1->s32_min_value; 16172 reg2->s32_max_value = reg1->s32_max_value; 16173 16174 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 16175 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16176 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 16177 } else { 16178 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 16179 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16180 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 16181 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16182 reg2->umin_value = reg1->umin_value; 16183 reg2->umax_value = reg1->umax_value; 16184 reg2->smin_value = reg1->smin_value; 16185 reg2->smax_value = reg1->smax_value; 16186 16187 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 16188 reg2->var_off = reg1->var_off; 16189 } 16190 break; 16191 case BPF_JNE: 16192 if (!is_reg_const(reg2, is_jmp32)) 16193 swap(reg1, reg2); 16194 if (!is_reg_const(reg2, is_jmp32)) 16195 break; 16196 16197 /* try to recompute the bound of reg1 if reg2 is a const and 16198 * is exactly the edge of reg1. 16199 */ 16200 val = reg_const_value(reg2, is_jmp32); 16201 if (is_jmp32) { 16202 /* u32_min_value is not equal to 0xffffffff at this point, 16203 * because otherwise u32_max_value is 0xffffffff as well, 16204 * in such a case both reg1 and reg2 would be constants, 16205 * jump would be predicted and reg_set_min_max() won't 16206 * be called. 16207 * 16208 * Same reasoning works for all {u,s}{min,max}{32,64} cases 16209 * below. 16210 */ 16211 if (reg1->u32_min_value == (u32)val) 16212 reg1->u32_min_value++; 16213 if (reg1->u32_max_value == (u32)val) 16214 reg1->u32_max_value--; 16215 if (reg1->s32_min_value == (s32)val) 16216 reg1->s32_min_value++; 16217 if (reg1->s32_max_value == (s32)val) 16218 reg1->s32_max_value--; 16219 } else { 16220 if (reg1->umin_value == (u64)val) 16221 reg1->umin_value++; 16222 if (reg1->umax_value == (u64)val) 16223 reg1->umax_value--; 16224 if (reg1->smin_value == (s64)val) 16225 reg1->smin_value++; 16226 if (reg1->smax_value == (s64)val) 16227 reg1->smax_value--; 16228 } 16229 break; 16230 case BPF_JSET: 16231 if (!is_reg_const(reg2, is_jmp32)) 16232 swap(reg1, reg2); 16233 if (!is_reg_const(reg2, is_jmp32)) 16234 break; 16235 val = reg_const_value(reg2, is_jmp32); 16236 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16237 * requires single bit to learn something useful. E.g., if we 16238 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16239 * are actually set? We can learn something definite only if 16240 * it's a single-bit value to begin with. 16241 * 16242 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16243 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16244 * bit 1 is set, which we can readily use in adjustments. 16245 */ 16246 if (!is_power_of_2(val)) 16247 break; 16248 if (is_jmp32) { 16249 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 16250 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16251 } else { 16252 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 16253 } 16254 break; 16255 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 16256 if (!is_reg_const(reg2, is_jmp32)) 16257 swap(reg1, reg2); 16258 if (!is_reg_const(reg2, is_jmp32)) 16259 break; 16260 val = reg_const_value(reg2, is_jmp32); 16261 /* Forget the ranges before narrowing tnums, to avoid invariant 16262 * violations if we're on a dead branch. 16263 */ 16264 __mark_reg_unbounded(reg1); 16265 if (is_jmp32) { 16266 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 16267 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16268 } else { 16269 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 16270 } 16271 break; 16272 case BPF_JLE: 16273 if (is_jmp32) { 16274 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16275 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16276 } else { 16277 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16278 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 16279 } 16280 break; 16281 case BPF_JLT: 16282 if (is_jmp32) { 16283 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 16284 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 16285 } else { 16286 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 16287 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 16288 } 16289 break; 16290 case BPF_JSLE: 16291 if (is_jmp32) { 16292 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16293 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16294 } else { 16295 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16296 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 16297 } 16298 break; 16299 case BPF_JSLT: 16300 if (is_jmp32) { 16301 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 16302 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 16303 } else { 16304 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 16305 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 16306 } 16307 break; 16308 default: 16309 return; 16310 } 16311 } 16312 16313 /* Adjusts the register min/max values in the case that the dst_reg and 16314 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 16315 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 16316 * Technically we can do similar adjustments for pointers to the same object, 16317 * but we don't support that right now. 16318 */ 16319 static int reg_set_min_max(struct bpf_verifier_env *env, 16320 struct bpf_reg_state *true_reg1, 16321 struct bpf_reg_state *true_reg2, 16322 struct bpf_reg_state *false_reg1, 16323 struct bpf_reg_state *false_reg2, 16324 u8 opcode, bool is_jmp32) 16325 { 16326 int err; 16327 16328 /* If either register is a pointer, we can't learn anything about its 16329 * variable offset from the compare (unless they were a pointer into 16330 * the same object, but we don't bother with that). 16331 */ 16332 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 16333 return 0; 16334 16335 /* fallthrough (FALSE) branch */ 16336 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 16337 reg_bounds_sync(false_reg1); 16338 reg_bounds_sync(false_reg2); 16339 16340 /* jump (TRUE) branch */ 16341 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 16342 reg_bounds_sync(true_reg1); 16343 reg_bounds_sync(true_reg2); 16344 16345 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 16346 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 16347 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 16348 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 16349 return err; 16350 } 16351 16352 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 16353 struct bpf_reg_state *reg, u32 id, 16354 bool is_null) 16355 { 16356 if (type_may_be_null(reg->type) && reg->id == id && 16357 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 16358 /* Old offset (both fixed and variable parts) should have been 16359 * known-zero, because we don't allow pointer arithmetic on 16360 * pointers that might be NULL. If we see this happening, don't 16361 * convert the register. 16362 * 16363 * But in some cases, some helpers that return local kptrs 16364 * advance offset for the returned pointer. In those cases, it 16365 * is fine to expect to see reg->off. 16366 */ 16367 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 16368 return; 16369 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 16370 WARN_ON_ONCE(reg->off)) 16371 return; 16372 16373 if (is_null) { 16374 reg->type = SCALAR_VALUE; 16375 /* We don't need id and ref_obj_id from this point 16376 * onwards anymore, thus we should better reset it, 16377 * so that state pruning has chances to take effect. 16378 */ 16379 reg->id = 0; 16380 reg->ref_obj_id = 0; 16381 16382 return; 16383 } 16384 16385 mark_ptr_not_null_reg(reg); 16386 16387 if (!reg_may_point_to_spin_lock(reg)) { 16388 /* For not-NULL ptr, reg->ref_obj_id will be reset 16389 * in release_reference(). 16390 * 16391 * reg->id is still used by spin_lock ptr. Other 16392 * than spin_lock ptr type, reg->id can be reset. 16393 */ 16394 reg->id = 0; 16395 } 16396 } 16397 } 16398 16399 /* The logic is similar to find_good_pkt_pointers(), both could eventually 16400 * be folded together at some point. 16401 */ 16402 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 16403 bool is_null) 16404 { 16405 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16406 struct bpf_reg_state *regs = state->regs, *reg; 16407 u32 ref_obj_id = regs[regno].ref_obj_id; 16408 u32 id = regs[regno].id; 16409 16410 if (ref_obj_id && ref_obj_id == id && is_null) 16411 /* regs[regno] is in the " == NULL" branch. 16412 * No one could have freed the reference state before 16413 * doing the NULL check. 16414 */ 16415 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 16416 16417 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16418 mark_ptr_or_null_reg(state, reg, id, is_null); 16419 })); 16420 } 16421 16422 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 16423 struct bpf_reg_state *dst_reg, 16424 struct bpf_reg_state *src_reg, 16425 struct bpf_verifier_state *this_branch, 16426 struct bpf_verifier_state *other_branch) 16427 { 16428 if (BPF_SRC(insn->code) != BPF_X) 16429 return false; 16430 16431 /* Pointers are always 64-bit. */ 16432 if (BPF_CLASS(insn->code) == BPF_JMP32) 16433 return false; 16434 16435 switch (BPF_OP(insn->code)) { 16436 case BPF_JGT: 16437 if ((dst_reg->type == PTR_TO_PACKET && 16438 src_reg->type == PTR_TO_PACKET_END) || 16439 (dst_reg->type == PTR_TO_PACKET_META && 16440 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16441 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 16442 find_good_pkt_pointers(this_branch, dst_reg, 16443 dst_reg->type, false); 16444 mark_pkt_end(other_branch, insn->dst_reg, true); 16445 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16446 src_reg->type == PTR_TO_PACKET) || 16447 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16448 src_reg->type == PTR_TO_PACKET_META)) { 16449 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 16450 find_good_pkt_pointers(other_branch, src_reg, 16451 src_reg->type, true); 16452 mark_pkt_end(this_branch, insn->src_reg, false); 16453 } else { 16454 return false; 16455 } 16456 break; 16457 case BPF_JLT: 16458 if ((dst_reg->type == PTR_TO_PACKET && 16459 src_reg->type == PTR_TO_PACKET_END) || 16460 (dst_reg->type == PTR_TO_PACKET_META && 16461 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16462 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 16463 find_good_pkt_pointers(other_branch, dst_reg, 16464 dst_reg->type, true); 16465 mark_pkt_end(this_branch, insn->dst_reg, false); 16466 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16467 src_reg->type == PTR_TO_PACKET) || 16468 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16469 src_reg->type == PTR_TO_PACKET_META)) { 16470 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 16471 find_good_pkt_pointers(this_branch, src_reg, 16472 src_reg->type, false); 16473 mark_pkt_end(other_branch, insn->src_reg, true); 16474 } else { 16475 return false; 16476 } 16477 break; 16478 case BPF_JGE: 16479 if ((dst_reg->type == PTR_TO_PACKET && 16480 src_reg->type == PTR_TO_PACKET_END) || 16481 (dst_reg->type == PTR_TO_PACKET_META && 16482 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16483 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 16484 find_good_pkt_pointers(this_branch, dst_reg, 16485 dst_reg->type, true); 16486 mark_pkt_end(other_branch, insn->dst_reg, false); 16487 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16488 src_reg->type == PTR_TO_PACKET) || 16489 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16490 src_reg->type == PTR_TO_PACKET_META)) { 16491 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 16492 find_good_pkt_pointers(other_branch, src_reg, 16493 src_reg->type, false); 16494 mark_pkt_end(this_branch, insn->src_reg, true); 16495 } else { 16496 return false; 16497 } 16498 break; 16499 case BPF_JLE: 16500 if ((dst_reg->type == PTR_TO_PACKET && 16501 src_reg->type == PTR_TO_PACKET_END) || 16502 (dst_reg->type == PTR_TO_PACKET_META && 16503 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16504 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 16505 find_good_pkt_pointers(other_branch, dst_reg, 16506 dst_reg->type, false); 16507 mark_pkt_end(this_branch, insn->dst_reg, true); 16508 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16509 src_reg->type == PTR_TO_PACKET) || 16510 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16511 src_reg->type == PTR_TO_PACKET_META)) { 16512 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 16513 find_good_pkt_pointers(this_branch, src_reg, 16514 src_reg->type, true); 16515 mark_pkt_end(other_branch, insn->src_reg, false); 16516 } else { 16517 return false; 16518 } 16519 break; 16520 default: 16521 return false; 16522 } 16523 16524 return true; 16525 } 16526 16527 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 16528 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 16529 { 16530 struct linked_reg *e; 16531 16532 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 16533 return; 16534 16535 e = linked_regs_push(reg_set); 16536 if (e) { 16537 e->frameno = frameno; 16538 e->is_reg = is_reg; 16539 e->regno = spi_or_reg; 16540 } else { 16541 reg->id = 0; 16542 } 16543 } 16544 16545 /* For all R being scalar registers or spilled scalar registers 16546 * in verifier state, save R in linked_regs if R->id == id. 16547 * If there are too many Rs sharing same id, reset id for leftover Rs. 16548 */ 16549 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 16550 struct linked_regs *linked_regs) 16551 { 16552 struct bpf_func_state *func; 16553 struct bpf_reg_state *reg; 16554 int i, j; 16555 16556 id = id & ~BPF_ADD_CONST; 16557 for (i = vstate->curframe; i >= 0; i--) { 16558 func = vstate->frame[i]; 16559 for (j = 0; j < BPF_REG_FP; j++) { 16560 reg = &func->regs[j]; 16561 __collect_linked_regs(linked_regs, reg, id, i, j, true); 16562 } 16563 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 16564 if (!is_spilled_reg(&func->stack[j])) 16565 continue; 16566 reg = &func->stack[j].spilled_ptr; 16567 __collect_linked_regs(linked_regs, reg, id, i, j, false); 16568 } 16569 } 16570 } 16571 16572 /* For all R in linked_regs, copy known_reg range into R 16573 * if R->id == known_reg->id. 16574 */ 16575 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 16576 struct linked_regs *linked_regs) 16577 { 16578 struct bpf_reg_state fake_reg; 16579 struct bpf_reg_state *reg; 16580 struct linked_reg *e; 16581 int i; 16582 16583 for (i = 0; i < linked_regs->cnt; ++i) { 16584 e = &linked_regs->entries[i]; 16585 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 16586 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 16587 if (reg->type != SCALAR_VALUE || reg == known_reg) 16588 continue; 16589 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 16590 continue; 16591 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 16592 reg->off == known_reg->off) { 16593 s32 saved_subreg_def = reg->subreg_def; 16594 16595 copy_register_state(reg, known_reg); 16596 reg->subreg_def = saved_subreg_def; 16597 } else { 16598 s32 saved_subreg_def = reg->subreg_def; 16599 s32 saved_off = reg->off; 16600 16601 fake_reg.type = SCALAR_VALUE; 16602 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 16603 16604 /* reg = known_reg; reg += delta */ 16605 copy_register_state(reg, known_reg); 16606 /* 16607 * Must preserve off, id and add_const flag, 16608 * otherwise another sync_linked_regs() will be incorrect. 16609 */ 16610 reg->off = saved_off; 16611 reg->subreg_def = saved_subreg_def; 16612 16613 scalar32_min_max_add(reg, &fake_reg); 16614 scalar_min_max_add(reg, &fake_reg); 16615 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 16616 } 16617 } 16618 } 16619 16620 static int check_cond_jmp_op(struct bpf_verifier_env *env, 16621 struct bpf_insn *insn, int *insn_idx) 16622 { 16623 struct bpf_verifier_state *this_branch = env->cur_state; 16624 struct bpf_verifier_state *other_branch; 16625 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 16626 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 16627 struct bpf_reg_state *eq_branch_regs; 16628 struct linked_regs linked_regs = {}; 16629 u8 opcode = BPF_OP(insn->code); 16630 int insn_flags = 0; 16631 bool is_jmp32; 16632 int pred = -1; 16633 int err; 16634 16635 /* Only conditional jumps are expected to reach here. */ 16636 if (opcode == BPF_JA || opcode > BPF_JCOND) { 16637 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 16638 return -EINVAL; 16639 } 16640 16641 if (opcode == BPF_JCOND) { 16642 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 16643 int idx = *insn_idx; 16644 16645 if (insn->code != (BPF_JMP | BPF_JCOND) || 16646 insn->src_reg != BPF_MAY_GOTO || 16647 insn->dst_reg || insn->imm) { 16648 verbose(env, "invalid may_goto imm %d\n", insn->imm); 16649 return -EINVAL; 16650 } 16651 prev_st = find_prev_entry(env, cur_st->parent, idx); 16652 16653 /* branch out 'fallthrough' insn as a new state to explore */ 16654 queued_st = push_stack(env, idx + 1, idx, false); 16655 if (!queued_st) 16656 return -ENOMEM; 16657 16658 queued_st->may_goto_depth++; 16659 if (prev_st) 16660 widen_imprecise_scalars(env, prev_st, queued_st); 16661 *insn_idx += insn->off; 16662 return 0; 16663 } 16664 16665 /* check src2 operand */ 16666 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16667 if (err) 16668 return err; 16669 16670 dst_reg = ®s[insn->dst_reg]; 16671 if (BPF_SRC(insn->code) == BPF_X) { 16672 if (insn->imm != 0) { 16673 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16674 return -EINVAL; 16675 } 16676 16677 /* check src1 operand */ 16678 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16679 if (err) 16680 return err; 16681 16682 src_reg = ®s[insn->src_reg]; 16683 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16684 is_pointer_value(env, insn->src_reg)) { 16685 verbose(env, "R%d pointer comparison prohibited\n", 16686 insn->src_reg); 16687 return -EACCES; 16688 } 16689 16690 if (src_reg->type == PTR_TO_STACK) 16691 insn_flags |= INSN_F_SRC_REG_STACK; 16692 if (dst_reg->type == PTR_TO_STACK) 16693 insn_flags |= INSN_F_DST_REG_STACK; 16694 } else { 16695 if (insn->src_reg != BPF_REG_0) { 16696 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16697 return -EINVAL; 16698 } 16699 src_reg = &env->fake_reg[0]; 16700 memset(src_reg, 0, sizeof(*src_reg)); 16701 src_reg->type = SCALAR_VALUE; 16702 __mark_reg_known(src_reg, insn->imm); 16703 16704 if (dst_reg->type == PTR_TO_STACK) 16705 insn_flags |= INSN_F_DST_REG_STACK; 16706 } 16707 16708 if (insn_flags) { 16709 err = push_jmp_history(env, this_branch, insn_flags, 0); 16710 if (err) 16711 return err; 16712 } 16713 16714 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16715 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16716 if (pred >= 0) { 16717 /* If we get here with a dst_reg pointer type it is because 16718 * above is_branch_taken() special cased the 0 comparison. 16719 */ 16720 if (!__is_pointer_value(false, dst_reg)) 16721 err = mark_chain_precision(env, insn->dst_reg); 16722 if (BPF_SRC(insn->code) == BPF_X && !err && 16723 !__is_pointer_value(false, src_reg)) 16724 err = mark_chain_precision(env, insn->src_reg); 16725 if (err) 16726 return err; 16727 } 16728 16729 if (pred == 1) { 16730 /* Only follow the goto, ignore fall-through. If needed, push 16731 * the fall-through branch for simulation under speculative 16732 * execution. 16733 */ 16734 if (!env->bypass_spec_v1 && 16735 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16736 *insn_idx)) 16737 return -EFAULT; 16738 if (env->log.level & BPF_LOG_LEVEL) 16739 print_insn_state(env, this_branch, this_branch->curframe); 16740 *insn_idx += insn->off; 16741 return 0; 16742 } else if (pred == 0) { 16743 /* Only follow the fall-through branch, since that's where the 16744 * program will go. If needed, push the goto branch for 16745 * simulation under speculative execution. 16746 */ 16747 if (!env->bypass_spec_v1 && 16748 !sanitize_speculative_path(env, insn, 16749 *insn_idx + insn->off + 1, 16750 *insn_idx)) 16751 return -EFAULT; 16752 if (env->log.level & BPF_LOG_LEVEL) 16753 print_insn_state(env, this_branch, this_branch->curframe); 16754 return 0; 16755 } 16756 16757 /* Push scalar registers sharing same ID to jump history, 16758 * do this before creating 'other_branch', so that both 16759 * 'this_branch' and 'other_branch' share this history 16760 * if parent state is created. 16761 */ 16762 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16763 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16764 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16765 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16766 if (linked_regs.cnt > 1) { 16767 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16768 if (err) 16769 return err; 16770 } 16771 16772 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16773 false); 16774 if (!other_branch) 16775 return -EFAULT; 16776 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16777 16778 if (BPF_SRC(insn->code) == BPF_X) { 16779 err = reg_set_min_max(env, 16780 &other_branch_regs[insn->dst_reg], 16781 &other_branch_regs[insn->src_reg], 16782 dst_reg, src_reg, opcode, is_jmp32); 16783 } else /* BPF_SRC(insn->code) == BPF_K */ { 16784 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16785 * so that these are two different memory locations. The 16786 * src_reg is not used beyond here in context of K. 16787 */ 16788 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16789 sizeof(env->fake_reg[0])); 16790 err = reg_set_min_max(env, 16791 &other_branch_regs[insn->dst_reg], 16792 &env->fake_reg[0], 16793 dst_reg, &env->fake_reg[1], 16794 opcode, is_jmp32); 16795 } 16796 if (err) 16797 return err; 16798 16799 if (BPF_SRC(insn->code) == BPF_X && 16800 src_reg->type == SCALAR_VALUE && src_reg->id && 16801 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16802 sync_linked_regs(this_branch, src_reg, &linked_regs); 16803 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16804 } 16805 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16806 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16807 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16808 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16809 } 16810 16811 /* if one pointer register is compared to another pointer 16812 * register check if PTR_MAYBE_NULL could be lifted. 16813 * E.g. register A - maybe null 16814 * register B - not null 16815 * for JNE A, B, ... - A is not null in the false branch; 16816 * for JEQ A, B, ... - A is not null in the true branch. 16817 * 16818 * Since PTR_TO_BTF_ID points to a kernel struct that does 16819 * not need to be null checked by the BPF program, i.e., 16820 * could be null even without PTR_MAYBE_NULL marking, so 16821 * only propagate nullness when neither reg is that type. 16822 */ 16823 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16824 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16825 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16826 base_type(src_reg->type) != PTR_TO_BTF_ID && 16827 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16828 eq_branch_regs = NULL; 16829 switch (opcode) { 16830 case BPF_JEQ: 16831 eq_branch_regs = other_branch_regs; 16832 break; 16833 case BPF_JNE: 16834 eq_branch_regs = regs; 16835 break; 16836 default: 16837 /* do nothing */ 16838 break; 16839 } 16840 if (eq_branch_regs) { 16841 if (type_may_be_null(src_reg->type)) 16842 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16843 else 16844 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16845 } 16846 } 16847 16848 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16849 * NOTE: these optimizations below are related with pointer comparison 16850 * which will never be JMP32. 16851 */ 16852 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16853 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16854 type_may_be_null(dst_reg->type)) { 16855 /* Mark all identical registers in each branch as either 16856 * safe or unknown depending R == 0 or R != 0 conditional. 16857 */ 16858 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16859 opcode == BPF_JNE); 16860 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16861 opcode == BPF_JEQ); 16862 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16863 this_branch, other_branch) && 16864 is_pointer_value(env, insn->dst_reg)) { 16865 verbose(env, "R%d pointer comparison prohibited\n", 16866 insn->dst_reg); 16867 return -EACCES; 16868 } 16869 if (env->log.level & BPF_LOG_LEVEL) 16870 print_insn_state(env, this_branch, this_branch->curframe); 16871 return 0; 16872 } 16873 16874 /* verify BPF_LD_IMM64 instruction */ 16875 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16876 { 16877 struct bpf_insn_aux_data *aux = cur_aux(env); 16878 struct bpf_reg_state *regs = cur_regs(env); 16879 struct bpf_reg_state *dst_reg; 16880 struct bpf_map *map; 16881 int err; 16882 16883 if (BPF_SIZE(insn->code) != BPF_DW) { 16884 verbose(env, "invalid BPF_LD_IMM insn\n"); 16885 return -EINVAL; 16886 } 16887 if (insn->off != 0) { 16888 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16889 return -EINVAL; 16890 } 16891 16892 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16893 if (err) 16894 return err; 16895 16896 dst_reg = ®s[insn->dst_reg]; 16897 if (insn->src_reg == 0) { 16898 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16899 16900 dst_reg->type = SCALAR_VALUE; 16901 __mark_reg_known(®s[insn->dst_reg], imm); 16902 return 0; 16903 } 16904 16905 /* All special src_reg cases are listed below. From this point onwards 16906 * we either succeed and assign a corresponding dst_reg->type after 16907 * zeroing the offset, or fail and reject the program. 16908 */ 16909 mark_reg_known_zero(env, regs, insn->dst_reg); 16910 16911 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16912 dst_reg->type = aux->btf_var.reg_type; 16913 switch (base_type(dst_reg->type)) { 16914 case PTR_TO_MEM: 16915 dst_reg->mem_size = aux->btf_var.mem_size; 16916 break; 16917 case PTR_TO_BTF_ID: 16918 dst_reg->btf = aux->btf_var.btf; 16919 dst_reg->btf_id = aux->btf_var.btf_id; 16920 break; 16921 default: 16922 verifier_bug(env, "pseudo btf id: unexpected dst reg type"); 16923 return -EFAULT; 16924 } 16925 return 0; 16926 } 16927 16928 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16929 struct bpf_prog_aux *aux = env->prog->aux; 16930 u32 subprogno = find_subprog(env, 16931 env->insn_idx + insn->imm + 1); 16932 16933 if (!aux->func_info) { 16934 verbose(env, "missing btf func_info\n"); 16935 return -EINVAL; 16936 } 16937 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 16938 verbose(env, "callback function not static\n"); 16939 return -EINVAL; 16940 } 16941 16942 dst_reg->type = PTR_TO_FUNC; 16943 dst_reg->subprogno = subprogno; 16944 return 0; 16945 } 16946 16947 map = env->used_maps[aux->map_index]; 16948 dst_reg->map_ptr = map; 16949 16950 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 16951 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 16952 if (map->map_type == BPF_MAP_TYPE_ARENA) { 16953 __mark_reg_unknown(env, dst_reg); 16954 return 0; 16955 } 16956 dst_reg->type = PTR_TO_MAP_VALUE; 16957 dst_reg->off = aux->map_off; 16958 WARN_ON_ONCE(map->max_entries != 1); 16959 /* We want reg->id to be same (0) as map_value is not distinct */ 16960 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 16961 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 16962 dst_reg->type = CONST_PTR_TO_MAP; 16963 } else { 16964 verifier_bug(env, "unexpected src reg value for ldimm64"); 16965 return -EFAULT; 16966 } 16967 16968 return 0; 16969 } 16970 16971 static bool may_access_skb(enum bpf_prog_type type) 16972 { 16973 switch (type) { 16974 case BPF_PROG_TYPE_SOCKET_FILTER: 16975 case BPF_PROG_TYPE_SCHED_CLS: 16976 case BPF_PROG_TYPE_SCHED_ACT: 16977 return true; 16978 default: 16979 return false; 16980 } 16981 } 16982 16983 /* verify safety of LD_ABS|LD_IND instructions: 16984 * - they can only appear in the programs where ctx == skb 16985 * - since they are wrappers of function calls, they scratch R1-R5 registers, 16986 * preserve R6-R9, and store return value into R0 16987 * 16988 * Implicit input: 16989 * ctx == skb == R6 == CTX 16990 * 16991 * Explicit input: 16992 * SRC == any register 16993 * IMM == 32-bit immediate 16994 * 16995 * Output: 16996 * R0 - 8/16/32-bit skb data converted to cpu endianness 16997 */ 16998 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 16999 { 17000 struct bpf_reg_state *regs = cur_regs(env); 17001 static const int ctx_reg = BPF_REG_6; 17002 u8 mode = BPF_MODE(insn->code); 17003 int i, err; 17004 17005 if (!may_access_skb(resolve_prog_type(env->prog))) { 17006 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 17007 return -EINVAL; 17008 } 17009 17010 if (!env->ops->gen_ld_abs) { 17011 verifier_bug(env, "gen_ld_abs is null"); 17012 return -EFAULT; 17013 } 17014 17015 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 17016 BPF_SIZE(insn->code) == BPF_DW || 17017 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 17018 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 17019 return -EINVAL; 17020 } 17021 17022 /* check whether implicit source operand (register R6) is readable */ 17023 err = check_reg_arg(env, ctx_reg, SRC_OP); 17024 if (err) 17025 return err; 17026 17027 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 17028 * gen_ld_abs() may terminate the program at runtime, leading to 17029 * reference leak. 17030 */ 17031 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 17032 if (err) 17033 return err; 17034 17035 if (regs[ctx_reg].type != PTR_TO_CTX) { 17036 verbose(env, 17037 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 17038 return -EINVAL; 17039 } 17040 17041 if (mode == BPF_IND) { 17042 /* check explicit source operand */ 17043 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17044 if (err) 17045 return err; 17046 } 17047 17048 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 17049 if (err < 0) 17050 return err; 17051 17052 /* reset caller saved regs to unreadable */ 17053 for (i = 0; i < CALLER_SAVED_REGS; i++) { 17054 mark_reg_not_init(env, regs, caller_saved[i]); 17055 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 17056 } 17057 17058 /* mark destination R0 register as readable, since it contains 17059 * the value fetched from the packet. 17060 * Already marked as written above. 17061 */ 17062 mark_reg_unknown(env, regs, BPF_REG_0); 17063 /* ld_abs load up to 32-bit skb data. */ 17064 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 17065 return 0; 17066 } 17067 17068 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 17069 { 17070 const char *exit_ctx = "At program exit"; 17071 struct tnum enforce_attach_type_range = tnum_unknown; 17072 const struct bpf_prog *prog = env->prog; 17073 struct bpf_reg_state *reg = reg_state(env, regno); 17074 struct bpf_retval_range range = retval_range(0, 1); 17075 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 17076 int err; 17077 struct bpf_func_state *frame = env->cur_state->frame[0]; 17078 const bool is_subprog = frame->subprogno; 17079 bool return_32bit = false; 17080 const struct btf_type *reg_type, *ret_type = NULL; 17081 17082 /* LSM and struct_ops func-ptr's return type could be "void" */ 17083 if (!is_subprog || frame->in_exception_callback_fn) { 17084 switch (prog_type) { 17085 case BPF_PROG_TYPE_LSM: 17086 if (prog->expected_attach_type == BPF_LSM_CGROUP) 17087 /* See below, can be 0 or 0-1 depending on hook. */ 17088 break; 17089 if (!prog->aux->attach_func_proto->type) 17090 return 0; 17091 break; 17092 case BPF_PROG_TYPE_STRUCT_OPS: 17093 if (!prog->aux->attach_func_proto->type) 17094 return 0; 17095 17096 if (frame->in_exception_callback_fn) 17097 break; 17098 17099 /* Allow a struct_ops program to return a referenced kptr if it 17100 * matches the operator's return type and is in its unmodified 17101 * form. A scalar zero (i.e., a null pointer) is also allowed. 17102 */ 17103 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 17104 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 17105 prog->aux->attach_func_proto->type, 17106 NULL); 17107 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 17108 return __check_ptr_off_reg(env, reg, regno, false); 17109 break; 17110 default: 17111 break; 17112 } 17113 } 17114 17115 /* eBPF calling convention is such that R0 is used 17116 * to return the value from eBPF program. 17117 * Make sure that it's readable at this time 17118 * of bpf_exit, which means that program wrote 17119 * something into it earlier 17120 */ 17121 err = check_reg_arg(env, regno, SRC_OP); 17122 if (err) 17123 return err; 17124 17125 if (is_pointer_value(env, regno)) { 17126 verbose(env, "R%d leaks addr as return value\n", regno); 17127 return -EACCES; 17128 } 17129 17130 if (frame->in_async_callback_fn) { 17131 /* enforce return zero from async callbacks like timer */ 17132 exit_ctx = "At async callback return"; 17133 range = retval_range(0, 0); 17134 goto enforce_retval; 17135 } 17136 17137 if (is_subprog && !frame->in_exception_callback_fn) { 17138 if (reg->type != SCALAR_VALUE) { 17139 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 17140 regno, reg_type_str(env, reg->type)); 17141 return -EINVAL; 17142 } 17143 return 0; 17144 } 17145 17146 switch (prog_type) { 17147 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 17148 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 17149 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 17150 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 17151 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 17152 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 17153 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 17154 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 17155 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 17156 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 17157 range = retval_range(1, 1); 17158 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 17159 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 17160 range = retval_range(0, 3); 17161 break; 17162 case BPF_PROG_TYPE_CGROUP_SKB: 17163 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 17164 range = retval_range(0, 3); 17165 enforce_attach_type_range = tnum_range(2, 3); 17166 } 17167 break; 17168 case BPF_PROG_TYPE_CGROUP_SOCK: 17169 case BPF_PROG_TYPE_SOCK_OPS: 17170 case BPF_PROG_TYPE_CGROUP_DEVICE: 17171 case BPF_PROG_TYPE_CGROUP_SYSCTL: 17172 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 17173 break; 17174 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17175 if (!env->prog->aux->attach_btf_id) 17176 return 0; 17177 range = retval_range(0, 0); 17178 break; 17179 case BPF_PROG_TYPE_TRACING: 17180 switch (env->prog->expected_attach_type) { 17181 case BPF_TRACE_FENTRY: 17182 case BPF_TRACE_FEXIT: 17183 range = retval_range(0, 0); 17184 break; 17185 case BPF_TRACE_RAW_TP: 17186 case BPF_MODIFY_RETURN: 17187 return 0; 17188 case BPF_TRACE_ITER: 17189 break; 17190 default: 17191 return -ENOTSUPP; 17192 } 17193 break; 17194 case BPF_PROG_TYPE_KPROBE: 17195 switch (env->prog->expected_attach_type) { 17196 case BPF_TRACE_KPROBE_SESSION: 17197 case BPF_TRACE_UPROBE_SESSION: 17198 range = retval_range(0, 1); 17199 break; 17200 default: 17201 return 0; 17202 } 17203 break; 17204 case BPF_PROG_TYPE_SK_LOOKUP: 17205 range = retval_range(SK_DROP, SK_PASS); 17206 break; 17207 17208 case BPF_PROG_TYPE_LSM: 17209 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 17210 /* no range found, any return value is allowed */ 17211 if (!get_func_retval_range(env->prog, &range)) 17212 return 0; 17213 /* no restricted range, any return value is allowed */ 17214 if (range.minval == S32_MIN && range.maxval == S32_MAX) 17215 return 0; 17216 return_32bit = true; 17217 } else if (!env->prog->aux->attach_func_proto->type) { 17218 /* Make sure programs that attach to void 17219 * hooks don't try to modify return value. 17220 */ 17221 range = retval_range(1, 1); 17222 } 17223 break; 17224 17225 case BPF_PROG_TYPE_NETFILTER: 17226 range = retval_range(NF_DROP, NF_ACCEPT); 17227 break; 17228 case BPF_PROG_TYPE_STRUCT_OPS: 17229 if (!ret_type) 17230 return 0; 17231 range = retval_range(0, 0); 17232 break; 17233 case BPF_PROG_TYPE_EXT: 17234 /* freplace program can return anything as its return value 17235 * depends on the to-be-replaced kernel func or bpf program. 17236 */ 17237 default: 17238 return 0; 17239 } 17240 17241 enforce_retval: 17242 if (reg->type != SCALAR_VALUE) { 17243 verbose(env, "%s the register R%d is not a known value (%s)\n", 17244 exit_ctx, regno, reg_type_str(env, reg->type)); 17245 return -EINVAL; 17246 } 17247 17248 err = mark_chain_precision(env, regno); 17249 if (err) 17250 return err; 17251 17252 if (!retval_range_within(range, reg, return_32bit)) { 17253 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 17254 if (!is_subprog && 17255 prog->expected_attach_type == BPF_LSM_CGROUP && 17256 prog_type == BPF_PROG_TYPE_LSM && 17257 !prog->aux->attach_func_proto->type) 17258 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 17259 return -EINVAL; 17260 } 17261 17262 if (!tnum_is_unknown(enforce_attach_type_range) && 17263 tnum_in(enforce_attach_type_range, reg->var_off)) 17264 env->prog->enforce_expected_attach_type = 1; 17265 return 0; 17266 } 17267 17268 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 17269 { 17270 struct bpf_subprog_info *subprog; 17271 17272 subprog = find_containing_subprog(env, off); 17273 subprog->changes_pkt_data = true; 17274 } 17275 17276 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 17277 { 17278 struct bpf_subprog_info *subprog; 17279 17280 subprog = find_containing_subprog(env, off); 17281 subprog->might_sleep = true; 17282 } 17283 17284 /* 't' is an index of a call-site. 17285 * 'w' is a callee entry point. 17286 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 17287 * Rely on DFS traversal order and absence of recursive calls to guarantee that 17288 * callee's change_pkt_data marks would be correct at that moment. 17289 */ 17290 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 17291 { 17292 struct bpf_subprog_info *caller, *callee; 17293 17294 caller = find_containing_subprog(env, t); 17295 callee = find_containing_subprog(env, w); 17296 caller->changes_pkt_data |= callee->changes_pkt_data; 17297 caller->might_sleep |= callee->might_sleep; 17298 } 17299 17300 /* non-recursive DFS pseudo code 17301 * 1 procedure DFS-iterative(G,v): 17302 * 2 label v as discovered 17303 * 3 let S be a stack 17304 * 4 S.push(v) 17305 * 5 while S is not empty 17306 * 6 t <- S.peek() 17307 * 7 if t is what we're looking for: 17308 * 8 return t 17309 * 9 for all edges e in G.adjacentEdges(t) do 17310 * 10 if edge e is already labelled 17311 * 11 continue with the next edge 17312 * 12 w <- G.adjacentVertex(t,e) 17313 * 13 if vertex w is not discovered and not explored 17314 * 14 label e as tree-edge 17315 * 15 label w as discovered 17316 * 16 S.push(w) 17317 * 17 continue at 5 17318 * 18 else if vertex w is discovered 17319 * 19 label e as back-edge 17320 * 20 else 17321 * 21 // vertex w is explored 17322 * 22 label e as forward- or cross-edge 17323 * 23 label t as explored 17324 * 24 S.pop() 17325 * 17326 * convention: 17327 * 0x10 - discovered 17328 * 0x11 - discovered and fall-through edge labelled 17329 * 0x12 - discovered and fall-through and branch edges labelled 17330 * 0x20 - explored 17331 */ 17332 17333 enum { 17334 DISCOVERED = 0x10, 17335 EXPLORED = 0x20, 17336 FALLTHROUGH = 1, 17337 BRANCH = 2, 17338 }; 17339 17340 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 17341 { 17342 env->insn_aux_data[idx].prune_point = true; 17343 } 17344 17345 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 17346 { 17347 return env->insn_aux_data[insn_idx].prune_point; 17348 } 17349 17350 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 17351 { 17352 env->insn_aux_data[idx].force_checkpoint = true; 17353 } 17354 17355 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 17356 { 17357 return env->insn_aux_data[insn_idx].force_checkpoint; 17358 } 17359 17360 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 17361 { 17362 env->insn_aux_data[idx].calls_callback = true; 17363 } 17364 17365 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 17366 { 17367 return env->insn_aux_data[insn_idx].calls_callback; 17368 } 17369 17370 enum { 17371 DONE_EXPLORING = 0, 17372 KEEP_EXPLORING = 1, 17373 }; 17374 17375 /* t, w, e - match pseudo-code above: 17376 * t - index of current instruction 17377 * w - next instruction 17378 * e - edge 17379 */ 17380 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 17381 { 17382 int *insn_stack = env->cfg.insn_stack; 17383 int *insn_state = env->cfg.insn_state; 17384 17385 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 17386 return DONE_EXPLORING; 17387 17388 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 17389 return DONE_EXPLORING; 17390 17391 if (w < 0 || w >= env->prog->len) { 17392 verbose_linfo(env, t, "%d: ", t); 17393 verbose(env, "jump out of range from insn %d to %d\n", t, w); 17394 return -EINVAL; 17395 } 17396 17397 if (e == BRANCH) { 17398 /* mark branch target for state pruning */ 17399 mark_prune_point(env, w); 17400 mark_jmp_point(env, w); 17401 } 17402 17403 if (insn_state[w] == 0) { 17404 /* tree-edge */ 17405 insn_state[t] = DISCOVERED | e; 17406 insn_state[w] = DISCOVERED; 17407 if (env->cfg.cur_stack >= env->prog->len) 17408 return -E2BIG; 17409 insn_stack[env->cfg.cur_stack++] = w; 17410 return KEEP_EXPLORING; 17411 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 17412 if (env->bpf_capable) 17413 return DONE_EXPLORING; 17414 verbose_linfo(env, t, "%d: ", t); 17415 verbose_linfo(env, w, "%d: ", w); 17416 verbose(env, "back-edge from insn %d to %d\n", t, w); 17417 return -EINVAL; 17418 } else if (insn_state[w] == EXPLORED) { 17419 /* forward- or cross-edge */ 17420 insn_state[t] = DISCOVERED | e; 17421 } else { 17422 verifier_bug(env, "insn state internal bug"); 17423 return -EFAULT; 17424 } 17425 return DONE_EXPLORING; 17426 } 17427 17428 static int visit_func_call_insn(int t, struct bpf_insn *insns, 17429 struct bpf_verifier_env *env, 17430 bool visit_callee) 17431 { 17432 int ret, insn_sz; 17433 int w; 17434 17435 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 17436 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 17437 if (ret) 17438 return ret; 17439 17440 mark_prune_point(env, t + insn_sz); 17441 /* when we exit from subprog, we need to record non-linear history */ 17442 mark_jmp_point(env, t + insn_sz); 17443 17444 if (visit_callee) { 17445 w = t + insns[t].imm + 1; 17446 mark_prune_point(env, t); 17447 merge_callee_effects(env, t, w); 17448 ret = push_insn(t, w, BRANCH, env); 17449 } 17450 return ret; 17451 } 17452 17453 /* Bitmask with 1s for all caller saved registers */ 17454 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 17455 17456 /* True if do_misc_fixups() replaces calls to helper number 'imm', 17457 * replacement patch is presumed to follow bpf_fastcall contract 17458 * (see mark_fastcall_pattern_for_call() below). 17459 */ 17460 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 17461 { 17462 switch (imm) { 17463 #ifdef CONFIG_X86_64 17464 case BPF_FUNC_get_smp_processor_id: 17465 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 17466 #endif 17467 default: 17468 return false; 17469 } 17470 } 17471 17472 struct call_summary { 17473 u8 num_params; 17474 bool is_void; 17475 bool fastcall; 17476 }; 17477 17478 /* If @call is a kfunc or helper call, fills @cs and returns true, 17479 * otherwise returns false. 17480 */ 17481 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 17482 struct call_summary *cs) 17483 { 17484 struct bpf_kfunc_call_arg_meta meta; 17485 const struct bpf_func_proto *fn; 17486 int i; 17487 17488 if (bpf_helper_call(call)) { 17489 17490 if (get_helper_proto(env, call->imm, &fn) < 0) 17491 /* error would be reported later */ 17492 return false; 17493 cs->fastcall = fn->allow_fastcall && 17494 (verifier_inlines_helper_call(env, call->imm) || 17495 bpf_jit_inlines_helper_call(call->imm)); 17496 cs->is_void = fn->ret_type == RET_VOID; 17497 cs->num_params = 0; 17498 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 17499 if (fn->arg_type[i] == ARG_DONTCARE) 17500 break; 17501 cs->num_params++; 17502 } 17503 return true; 17504 } 17505 17506 if (bpf_pseudo_kfunc_call(call)) { 17507 int err; 17508 17509 err = fetch_kfunc_meta(env, call, &meta, NULL); 17510 if (err < 0) 17511 /* error would be reported later */ 17512 return false; 17513 cs->num_params = btf_type_vlen(meta.func_proto); 17514 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 17515 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 17516 return true; 17517 } 17518 17519 return false; 17520 } 17521 17522 /* LLVM define a bpf_fastcall function attribute. 17523 * This attribute means that function scratches only some of 17524 * the caller saved registers defined by ABI. 17525 * For BPF the set of such registers could be defined as follows: 17526 * - R0 is scratched only if function is non-void; 17527 * - R1-R5 are scratched only if corresponding parameter type is defined 17528 * in the function prototype. 17529 * 17530 * The contract between kernel and clang allows to simultaneously use 17531 * such functions and maintain backwards compatibility with old 17532 * kernels that don't understand bpf_fastcall calls: 17533 * 17534 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 17535 * registers are not scratched by the call; 17536 * 17537 * - as a post-processing step, clang visits each bpf_fastcall call and adds 17538 * spill/fill for every live r0-r5; 17539 * 17540 * - stack offsets used for the spill/fill are allocated as lowest 17541 * stack offsets in whole function and are not used for any other 17542 * purposes; 17543 * 17544 * - when kernel loads a program, it looks for such patterns 17545 * (bpf_fastcall function surrounded by spills/fills) and checks if 17546 * spill/fill stack offsets are used exclusively in fastcall patterns; 17547 * 17548 * - if so, and if verifier or current JIT inlines the call to the 17549 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 17550 * spill/fill pairs; 17551 * 17552 * - when old kernel loads a program, presence of spill/fill pairs 17553 * keeps BPF program valid, albeit slightly less efficient. 17554 * 17555 * For example: 17556 * 17557 * r1 = 1; 17558 * r2 = 2; 17559 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17560 * *(u64 *)(r10 - 16) = r2; r2 = 2; 17561 * call %[to_be_inlined] --> call %[to_be_inlined] 17562 * r2 = *(u64 *)(r10 - 16); r0 = r1; 17563 * r1 = *(u64 *)(r10 - 8); r0 += r2; 17564 * r0 = r1; exit; 17565 * r0 += r2; 17566 * exit; 17567 * 17568 * The purpose of mark_fastcall_pattern_for_call is to: 17569 * - look for such patterns; 17570 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 17571 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 17572 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 17573 * at which bpf_fastcall spill/fill stack slots start; 17574 * - update env->subprog_info[*]->keep_fastcall_stack. 17575 * 17576 * The .fastcall_pattern and .fastcall_stack_off are used by 17577 * check_fastcall_stack_contract() to check if every stack access to 17578 * fastcall spill/fill stack slot originates from spill/fill 17579 * instructions, members of fastcall patterns. 17580 * 17581 * If such condition holds true for a subprogram, fastcall patterns could 17582 * be rewritten by remove_fastcall_spills_fills(). 17583 * Otherwise bpf_fastcall patterns are not changed in the subprogram 17584 * (code, presumably, generated by an older clang version). 17585 * 17586 * For example, it is *not* safe to remove spill/fill below: 17587 * 17588 * r1 = 1; 17589 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17590 * call %[to_be_inlined] --> call %[to_be_inlined] 17591 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 17592 * r0 = *(u64 *)(r10 - 8); r0 += r1; 17593 * r0 += r1; exit; 17594 * exit; 17595 */ 17596 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 17597 struct bpf_subprog_info *subprog, 17598 int insn_idx, s16 lowest_off) 17599 { 17600 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 17601 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 17602 u32 clobbered_regs_mask; 17603 struct call_summary cs; 17604 u32 expected_regs_mask; 17605 s16 off; 17606 int i; 17607 17608 if (!get_call_summary(env, call, &cs)) 17609 return; 17610 17611 /* A bitmask specifying which caller saved registers are clobbered 17612 * by a call to a helper/kfunc *as if* this helper/kfunc follows 17613 * bpf_fastcall contract: 17614 * - includes R0 if function is non-void; 17615 * - includes R1-R5 if corresponding parameter has is described 17616 * in the function prototype. 17617 */ 17618 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 17619 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 17620 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 17621 17622 /* match pairs of form: 17623 * 17624 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 17625 * ... 17626 * call %[to_be_inlined] 17627 * ... 17628 * rX = *(u64 *)(r10 - Y) 17629 */ 17630 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 17631 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 17632 break; 17633 stx = &insns[insn_idx - i]; 17634 ldx = &insns[insn_idx + i]; 17635 /* must be a stack spill/fill pair */ 17636 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 17637 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 17638 stx->dst_reg != BPF_REG_10 || 17639 ldx->src_reg != BPF_REG_10) 17640 break; 17641 /* must be a spill/fill for the same reg */ 17642 if (stx->src_reg != ldx->dst_reg) 17643 break; 17644 /* must be one of the previously unseen registers */ 17645 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 17646 break; 17647 /* must be a spill/fill for the same expected offset, 17648 * no need to check offset alignment, BPF_DW stack access 17649 * is always 8-byte aligned. 17650 */ 17651 if (stx->off != off || ldx->off != off) 17652 break; 17653 expected_regs_mask &= ~BIT(stx->src_reg); 17654 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 17655 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 17656 } 17657 if (i == 1) 17658 return; 17659 17660 /* Conditionally set 'fastcall_spills_num' to allow forward 17661 * compatibility when more helper functions are marked as 17662 * bpf_fastcall at compile time than current kernel supports, e.g: 17663 * 17664 * 1: *(u64 *)(r10 - 8) = r1 17665 * 2: call A ;; assume A is bpf_fastcall for current kernel 17666 * 3: r1 = *(u64 *)(r10 - 8) 17667 * 4: *(u64 *)(r10 - 8) = r1 17668 * 5: call B ;; assume B is not bpf_fastcall for current kernel 17669 * 6: r1 = *(u64 *)(r10 - 8) 17670 * 17671 * There is no need to block bpf_fastcall rewrite for such program. 17672 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 17673 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 17674 * does not remove spill/fill pair {4,6}. 17675 */ 17676 if (cs.fastcall) 17677 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 17678 else 17679 subprog->keep_fastcall_stack = 1; 17680 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 17681 } 17682 17683 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 17684 { 17685 struct bpf_subprog_info *subprog = env->subprog_info; 17686 struct bpf_insn *insn; 17687 s16 lowest_off; 17688 int s, i; 17689 17690 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 17691 /* find lowest stack spill offset used in this subprog */ 17692 lowest_off = 0; 17693 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17694 insn = env->prog->insnsi + i; 17695 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17696 insn->dst_reg != BPF_REG_10) 17697 continue; 17698 lowest_off = min(lowest_off, insn->off); 17699 } 17700 /* use this offset to find fastcall patterns */ 17701 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17702 insn = env->prog->insnsi + i; 17703 if (insn->code != (BPF_JMP | BPF_CALL)) 17704 continue; 17705 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17706 } 17707 } 17708 return 0; 17709 } 17710 17711 /* Visits the instruction at index t and returns one of the following: 17712 * < 0 - an error occurred 17713 * DONE_EXPLORING - the instruction was fully explored 17714 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17715 */ 17716 static int visit_insn(int t, struct bpf_verifier_env *env) 17717 { 17718 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17719 int ret, off, insn_sz; 17720 17721 if (bpf_pseudo_func(insn)) 17722 return visit_func_call_insn(t, insns, env, true); 17723 17724 /* All non-branch instructions have a single fall-through edge. */ 17725 if (BPF_CLASS(insn->code) != BPF_JMP && 17726 BPF_CLASS(insn->code) != BPF_JMP32) { 17727 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17728 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17729 } 17730 17731 switch (BPF_OP(insn->code)) { 17732 case BPF_EXIT: 17733 return DONE_EXPLORING; 17734 17735 case BPF_CALL: 17736 if (is_async_callback_calling_insn(insn)) 17737 /* Mark this call insn as a prune point to trigger 17738 * is_state_visited() check before call itself is 17739 * processed by __check_func_call(). Otherwise new 17740 * async state will be pushed for further exploration. 17741 */ 17742 mark_prune_point(env, t); 17743 /* For functions that invoke callbacks it is not known how many times 17744 * callback would be called. Verifier models callback calling functions 17745 * by repeatedly visiting callback bodies and returning to origin call 17746 * instruction. 17747 * In order to stop such iteration verifier needs to identify when a 17748 * state identical some state from a previous iteration is reached. 17749 * Check below forces creation of checkpoint before callback calling 17750 * instruction to allow search for such identical states. 17751 */ 17752 if (is_sync_callback_calling_insn(insn)) { 17753 mark_calls_callback(env, t); 17754 mark_force_checkpoint(env, t); 17755 mark_prune_point(env, t); 17756 mark_jmp_point(env, t); 17757 } 17758 if (bpf_helper_call(insn)) { 17759 const struct bpf_func_proto *fp; 17760 17761 ret = get_helper_proto(env, insn->imm, &fp); 17762 /* If called in a non-sleepable context program will be 17763 * rejected anyway, so we should end up with precise 17764 * sleepable marks on subprogs, except for dead code 17765 * elimination. 17766 */ 17767 if (ret == 0 && fp->might_sleep) 17768 mark_subprog_might_sleep(env, t); 17769 if (bpf_helper_changes_pkt_data(insn->imm)) 17770 mark_subprog_changes_pkt_data(env, t); 17771 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17772 struct bpf_kfunc_call_arg_meta meta; 17773 17774 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17775 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17776 mark_prune_point(env, t); 17777 /* Checking and saving state checkpoints at iter_next() call 17778 * is crucial for fast convergence of open-coded iterator loop 17779 * logic, so we need to force it. If we don't do that, 17780 * is_state_visited() might skip saving a checkpoint, causing 17781 * unnecessarily long sequence of not checkpointed 17782 * instructions and jumps, leading to exhaustion of jump 17783 * history buffer, and potentially other undesired outcomes. 17784 * It is expected that with correct open-coded iterators 17785 * convergence will happen quickly, so we don't run a risk of 17786 * exhausting memory. 17787 */ 17788 mark_force_checkpoint(env, t); 17789 } 17790 /* Same as helpers, if called in a non-sleepable context 17791 * program will be rejected anyway, so we should end up 17792 * with precise sleepable marks on subprogs, except for 17793 * dead code elimination. 17794 */ 17795 if (ret == 0 && is_kfunc_sleepable(&meta)) 17796 mark_subprog_might_sleep(env, t); 17797 } 17798 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17799 17800 case BPF_JA: 17801 if (BPF_SRC(insn->code) != BPF_K) 17802 return -EINVAL; 17803 17804 if (BPF_CLASS(insn->code) == BPF_JMP) 17805 off = insn->off; 17806 else 17807 off = insn->imm; 17808 17809 /* unconditional jump with single edge */ 17810 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17811 if (ret) 17812 return ret; 17813 17814 mark_prune_point(env, t + off + 1); 17815 mark_jmp_point(env, t + off + 1); 17816 17817 return ret; 17818 17819 default: 17820 /* conditional jump with two edges */ 17821 mark_prune_point(env, t); 17822 if (is_may_goto_insn(insn)) 17823 mark_force_checkpoint(env, t); 17824 17825 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17826 if (ret) 17827 return ret; 17828 17829 return push_insn(t, t + insn->off + 1, BRANCH, env); 17830 } 17831 } 17832 17833 /* non-recursive depth-first-search to detect loops in BPF program 17834 * loop == back-edge in directed graph 17835 */ 17836 static int check_cfg(struct bpf_verifier_env *env) 17837 { 17838 int insn_cnt = env->prog->len; 17839 int *insn_stack, *insn_state, *insn_postorder; 17840 int ex_insn_beg, i, ret = 0; 17841 17842 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17843 if (!insn_state) 17844 return -ENOMEM; 17845 17846 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17847 if (!insn_stack) { 17848 kvfree(insn_state); 17849 return -ENOMEM; 17850 } 17851 17852 insn_postorder = env->cfg.insn_postorder = 17853 kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17854 if (!insn_postorder) { 17855 kvfree(insn_state); 17856 kvfree(insn_stack); 17857 return -ENOMEM; 17858 } 17859 17860 ex_insn_beg = env->exception_callback_subprog 17861 ? env->subprog_info[env->exception_callback_subprog].start 17862 : 0; 17863 17864 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17865 insn_stack[0] = 0; /* 0 is the first instruction */ 17866 env->cfg.cur_stack = 1; 17867 17868 walk_cfg: 17869 while (env->cfg.cur_stack > 0) { 17870 int t = insn_stack[env->cfg.cur_stack - 1]; 17871 17872 ret = visit_insn(t, env); 17873 switch (ret) { 17874 case DONE_EXPLORING: 17875 insn_state[t] = EXPLORED; 17876 env->cfg.cur_stack--; 17877 insn_postorder[env->cfg.cur_postorder++] = t; 17878 break; 17879 case KEEP_EXPLORING: 17880 break; 17881 default: 17882 if (ret > 0) { 17883 verifier_bug(env, "visit_insn internal bug"); 17884 ret = -EFAULT; 17885 } 17886 goto err_free; 17887 } 17888 } 17889 17890 if (env->cfg.cur_stack < 0) { 17891 verifier_bug(env, "pop stack internal bug"); 17892 ret = -EFAULT; 17893 goto err_free; 17894 } 17895 17896 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 17897 insn_state[ex_insn_beg] = DISCOVERED; 17898 insn_stack[0] = ex_insn_beg; 17899 env->cfg.cur_stack = 1; 17900 goto walk_cfg; 17901 } 17902 17903 for (i = 0; i < insn_cnt; i++) { 17904 struct bpf_insn *insn = &env->prog->insnsi[i]; 17905 17906 if (insn_state[i] != EXPLORED) { 17907 verbose(env, "unreachable insn %d\n", i); 17908 ret = -EINVAL; 17909 goto err_free; 17910 } 17911 if (bpf_is_ldimm64(insn)) { 17912 if (insn_state[i + 1] != 0) { 17913 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17914 ret = -EINVAL; 17915 goto err_free; 17916 } 17917 i++; /* skip second half of ldimm64 */ 17918 } 17919 } 17920 ret = 0; /* cfg looks good */ 17921 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17922 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 17923 17924 err_free: 17925 kvfree(insn_state); 17926 kvfree(insn_stack); 17927 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17928 return ret; 17929 } 17930 17931 static int check_abnormal_return(struct bpf_verifier_env *env) 17932 { 17933 int i; 17934 17935 for (i = 1; i < env->subprog_cnt; i++) { 17936 if (env->subprog_info[i].has_ld_abs) { 17937 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 17938 return -EINVAL; 17939 } 17940 if (env->subprog_info[i].has_tail_call) { 17941 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 17942 return -EINVAL; 17943 } 17944 } 17945 return 0; 17946 } 17947 17948 /* The minimum supported BTF func info size */ 17949 #define MIN_BPF_FUNCINFO_SIZE 8 17950 #define MAX_FUNCINFO_REC_SIZE 252 17951 17952 static int check_btf_func_early(struct bpf_verifier_env *env, 17953 const union bpf_attr *attr, 17954 bpfptr_t uattr) 17955 { 17956 u32 krec_size = sizeof(struct bpf_func_info); 17957 const struct btf_type *type, *func_proto; 17958 u32 i, nfuncs, urec_size, min_size; 17959 struct bpf_func_info *krecord; 17960 struct bpf_prog *prog; 17961 const struct btf *btf; 17962 u32 prev_offset = 0; 17963 bpfptr_t urecord; 17964 int ret = -ENOMEM; 17965 17966 nfuncs = attr->func_info_cnt; 17967 if (!nfuncs) { 17968 if (check_abnormal_return(env)) 17969 return -EINVAL; 17970 return 0; 17971 } 17972 17973 urec_size = attr->func_info_rec_size; 17974 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 17975 urec_size > MAX_FUNCINFO_REC_SIZE || 17976 urec_size % sizeof(u32)) { 17977 verbose(env, "invalid func info rec size %u\n", urec_size); 17978 return -EINVAL; 17979 } 17980 17981 prog = env->prog; 17982 btf = prog->aux->btf; 17983 17984 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17985 min_size = min_t(u32, krec_size, urec_size); 17986 17987 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 17988 if (!krecord) 17989 return -ENOMEM; 17990 17991 for (i = 0; i < nfuncs; i++) { 17992 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 17993 if (ret) { 17994 if (ret == -E2BIG) { 17995 verbose(env, "nonzero tailing record in func info"); 17996 /* set the size kernel expects so loader can zero 17997 * out the rest of the record. 17998 */ 17999 if (copy_to_bpfptr_offset(uattr, 18000 offsetof(union bpf_attr, func_info_rec_size), 18001 &min_size, sizeof(min_size))) 18002 ret = -EFAULT; 18003 } 18004 goto err_free; 18005 } 18006 18007 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 18008 ret = -EFAULT; 18009 goto err_free; 18010 } 18011 18012 /* check insn_off */ 18013 ret = -EINVAL; 18014 if (i == 0) { 18015 if (krecord[i].insn_off) { 18016 verbose(env, 18017 "nonzero insn_off %u for the first func info record", 18018 krecord[i].insn_off); 18019 goto err_free; 18020 } 18021 } else if (krecord[i].insn_off <= prev_offset) { 18022 verbose(env, 18023 "same or smaller insn offset (%u) than previous func info record (%u)", 18024 krecord[i].insn_off, prev_offset); 18025 goto err_free; 18026 } 18027 18028 /* check type_id */ 18029 type = btf_type_by_id(btf, krecord[i].type_id); 18030 if (!type || !btf_type_is_func(type)) { 18031 verbose(env, "invalid type id %d in func info", 18032 krecord[i].type_id); 18033 goto err_free; 18034 } 18035 18036 func_proto = btf_type_by_id(btf, type->type); 18037 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 18038 /* btf_func_check() already verified it during BTF load */ 18039 goto err_free; 18040 18041 prev_offset = krecord[i].insn_off; 18042 bpfptr_add(&urecord, urec_size); 18043 } 18044 18045 prog->aux->func_info = krecord; 18046 prog->aux->func_info_cnt = nfuncs; 18047 return 0; 18048 18049 err_free: 18050 kvfree(krecord); 18051 return ret; 18052 } 18053 18054 static int check_btf_func(struct bpf_verifier_env *env, 18055 const union bpf_attr *attr, 18056 bpfptr_t uattr) 18057 { 18058 const struct btf_type *type, *func_proto, *ret_type; 18059 u32 i, nfuncs, urec_size; 18060 struct bpf_func_info *krecord; 18061 struct bpf_func_info_aux *info_aux = NULL; 18062 struct bpf_prog *prog; 18063 const struct btf *btf; 18064 bpfptr_t urecord; 18065 bool scalar_return; 18066 int ret = -ENOMEM; 18067 18068 nfuncs = attr->func_info_cnt; 18069 if (!nfuncs) { 18070 if (check_abnormal_return(env)) 18071 return -EINVAL; 18072 return 0; 18073 } 18074 if (nfuncs != env->subprog_cnt) { 18075 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 18076 return -EINVAL; 18077 } 18078 18079 urec_size = attr->func_info_rec_size; 18080 18081 prog = env->prog; 18082 btf = prog->aux->btf; 18083 18084 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18085 18086 krecord = prog->aux->func_info; 18087 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18088 if (!info_aux) 18089 return -ENOMEM; 18090 18091 for (i = 0; i < nfuncs; i++) { 18092 /* check insn_off */ 18093 ret = -EINVAL; 18094 18095 if (env->subprog_info[i].start != krecord[i].insn_off) { 18096 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 18097 goto err_free; 18098 } 18099 18100 /* Already checked type_id */ 18101 type = btf_type_by_id(btf, krecord[i].type_id); 18102 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 18103 /* Already checked func_proto */ 18104 func_proto = btf_type_by_id(btf, type->type); 18105 18106 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 18107 scalar_return = 18108 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 18109 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 18110 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 18111 goto err_free; 18112 } 18113 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 18114 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 18115 goto err_free; 18116 } 18117 18118 bpfptr_add(&urecord, urec_size); 18119 } 18120 18121 prog->aux->func_info_aux = info_aux; 18122 return 0; 18123 18124 err_free: 18125 kfree(info_aux); 18126 return ret; 18127 } 18128 18129 static void adjust_btf_func(struct bpf_verifier_env *env) 18130 { 18131 struct bpf_prog_aux *aux = env->prog->aux; 18132 int i; 18133 18134 if (!aux->func_info) 18135 return; 18136 18137 /* func_info is not available for hidden subprogs */ 18138 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 18139 aux->func_info[i].insn_off = env->subprog_info[i].start; 18140 } 18141 18142 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 18143 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 18144 18145 static int check_btf_line(struct bpf_verifier_env *env, 18146 const union bpf_attr *attr, 18147 bpfptr_t uattr) 18148 { 18149 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 18150 struct bpf_subprog_info *sub; 18151 struct bpf_line_info *linfo; 18152 struct bpf_prog *prog; 18153 const struct btf *btf; 18154 bpfptr_t ulinfo; 18155 int err; 18156 18157 nr_linfo = attr->line_info_cnt; 18158 if (!nr_linfo) 18159 return 0; 18160 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 18161 return -EINVAL; 18162 18163 rec_size = attr->line_info_rec_size; 18164 if (rec_size < MIN_BPF_LINEINFO_SIZE || 18165 rec_size > MAX_LINEINFO_REC_SIZE || 18166 rec_size & (sizeof(u32) - 1)) 18167 return -EINVAL; 18168 18169 /* Need to zero it in case the userspace may 18170 * pass in a smaller bpf_line_info object. 18171 */ 18172 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 18173 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18174 if (!linfo) 18175 return -ENOMEM; 18176 18177 prog = env->prog; 18178 btf = prog->aux->btf; 18179 18180 s = 0; 18181 sub = env->subprog_info; 18182 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 18183 expected_size = sizeof(struct bpf_line_info); 18184 ncopy = min_t(u32, expected_size, rec_size); 18185 for (i = 0; i < nr_linfo; i++) { 18186 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 18187 if (err) { 18188 if (err == -E2BIG) { 18189 verbose(env, "nonzero tailing record in line_info"); 18190 if (copy_to_bpfptr_offset(uattr, 18191 offsetof(union bpf_attr, line_info_rec_size), 18192 &expected_size, sizeof(expected_size))) 18193 err = -EFAULT; 18194 } 18195 goto err_free; 18196 } 18197 18198 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 18199 err = -EFAULT; 18200 goto err_free; 18201 } 18202 18203 /* 18204 * Check insn_off to ensure 18205 * 1) strictly increasing AND 18206 * 2) bounded by prog->len 18207 * 18208 * The linfo[0].insn_off == 0 check logically falls into 18209 * the later "missing bpf_line_info for func..." case 18210 * because the first linfo[0].insn_off must be the 18211 * first sub also and the first sub must have 18212 * subprog_info[0].start == 0. 18213 */ 18214 if ((i && linfo[i].insn_off <= prev_offset) || 18215 linfo[i].insn_off >= prog->len) { 18216 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 18217 i, linfo[i].insn_off, prev_offset, 18218 prog->len); 18219 err = -EINVAL; 18220 goto err_free; 18221 } 18222 18223 if (!prog->insnsi[linfo[i].insn_off].code) { 18224 verbose(env, 18225 "Invalid insn code at line_info[%u].insn_off\n", 18226 i); 18227 err = -EINVAL; 18228 goto err_free; 18229 } 18230 18231 if (!btf_name_by_offset(btf, linfo[i].line_off) || 18232 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 18233 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 18234 err = -EINVAL; 18235 goto err_free; 18236 } 18237 18238 if (s != env->subprog_cnt) { 18239 if (linfo[i].insn_off == sub[s].start) { 18240 sub[s].linfo_idx = i; 18241 s++; 18242 } else if (sub[s].start < linfo[i].insn_off) { 18243 verbose(env, "missing bpf_line_info for func#%u\n", s); 18244 err = -EINVAL; 18245 goto err_free; 18246 } 18247 } 18248 18249 prev_offset = linfo[i].insn_off; 18250 bpfptr_add(&ulinfo, rec_size); 18251 } 18252 18253 if (s != env->subprog_cnt) { 18254 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 18255 env->subprog_cnt - s, s); 18256 err = -EINVAL; 18257 goto err_free; 18258 } 18259 18260 prog->aux->linfo = linfo; 18261 prog->aux->nr_linfo = nr_linfo; 18262 18263 return 0; 18264 18265 err_free: 18266 kvfree(linfo); 18267 return err; 18268 } 18269 18270 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 18271 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 18272 18273 static int check_core_relo(struct bpf_verifier_env *env, 18274 const union bpf_attr *attr, 18275 bpfptr_t uattr) 18276 { 18277 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 18278 struct bpf_core_relo core_relo = {}; 18279 struct bpf_prog *prog = env->prog; 18280 const struct btf *btf = prog->aux->btf; 18281 struct bpf_core_ctx ctx = { 18282 .log = &env->log, 18283 .btf = btf, 18284 }; 18285 bpfptr_t u_core_relo; 18286 int err; 18287 18288 nr_core_relo = attr->core_relo_cnt; 18289 if (!nr_core_relo) 18290 return 0; 18291 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 18292 return -EINVAL; 18293 18294 rec_size = attr->core_relo_rec_size; 18295 if (rec_size < MIN_CORE_RELO_SIZE || 18296 rec_size > MAX_CORE_RELO_SIZE || 18297 rec_size % sizeof(u32)) 18298 return -EINVAL; 18299 18300 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 18301 expected_size = sizeof(struct bpf_core_relo); 18302 ncopy = min_t(u32, expected_size, rec_size); 18303 18304 /* Unlike func_info and line_info, copy and apply each CO-RE 18305 * relocation record one at a time. 18306 */ 18307 for (i = 0; i < nr_core_relo; i++) { 18308 /* future proofing when sizeof(bpf_core_relo) changes */ 18309 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 18310 if (err) { 18311 if (err == -E2BIG) { 18312 verbose(env, "nonzero tailing record in core_relo"); 18313 if (copy_to_bpfptr_offset(uattr, 18314 offsetof(union bpf_attr, core_relo_rec_size), 18315 &expected_size, sizeof(expected_size))) 18316 err = -EFAULT; 18317 } 18318 break; 18319 } 18320 18321 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 18322 err = -EFAULT; 18323 break; 18324 } 18325 18326 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 18327 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 18328 i, core_relo.insn_off, prog->len); 18329 err = -EINVAL; 18330 break; 18331 } 18332 18333 err = bpf_core_apply(&ctx, &core_relo, i, 18334 &prog->insnsi[core_relo.insn_off / 8]); 18335 if (err) 18336 break; 18337 bpfptr_add(&u_core_relo, rec_size); 18338 } 18339 return err; 18340 } 18341 18342 static int check_btf_info_early(struct bpf_verifier_env *env, 18343 const union bpf_attr *attr, 18344 bpfptr_t uattr) 18345 { 18346 struct btf *btf; 18347 int err; 18348 18349 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18350 if (check_abnormal_return(env)) 18351 return -EINVAL; 18352 return 0; 18353 } 18354 18355 btf = btf_get_by_fd(attr->prog_btf_fd); 18356 if (IS_ERR(btf)) 18357 return PTR_ERR(btf); 18358 if (btf_is_kernel(btf)) { 18359 btf_put(btf); 18360 return -EACCES; 18361 } 18362 env->prog->aux->btf = btf; 18363 18364 err = check_btf_func_early(env, attr, uattr); 18365 if (err) 18366 return err; 18367 return 0; 18368 } 18369 18370 static int check_btf_info(struct bpf_verifier_env *env, 18371 const union bpf_attr *attr, 18372 bpfptr_t uattr) 18373 { 18374 int err; 18375 18376 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18377 if (check_abnormal_return(env)) 18378 return -EINVAL; 18379 return 0; 18380 } 18381 18382 err = check_btf_func(env, attr, uattr); 18383 if (err) 18384 return err; 18385 18386 err = check_btf_line(env, attr, uattr); 18387 if (err) 18388 return err; 18389 18390 err = check_core_relo(env, attr, uattr); 18391 if (err) 18392 return err; 18393 18394 return 0; 18395 } 18396 18397 /* check %cur's range satisfies %old's */ 18398 static bool range_within(const struct bpf_reg_state *old, 18399 const struct bpf_reg_state *cur) 18400 { 18401 return old->umin_value <= cur->umin_value && 18402 old->umax_value >= cur->umax_value && 18403 old->smin_value <= cur->smin_value && 18404 old->smax_value >= cur->smax_value && 18405 old->u32_min_value <= cur->u32_min_value && 18406 old->u32_max_value >= cur->u32_max_value && 18407 old->s32_min_value <= cur->s32_min_value && 18408 old->s32_max_value >= cur->s32_max_value; 18409 } 18410 18411 /* If in the old state two registers had the same id, then they need to have 18412 * the same id in the new state as well. But that id could be different from 18413 * the old state, so we need to track the mapping from old to new ids. 18414 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 18415 * regs with old id 5 must also have new id 9 for the new state to be safe. But 18416 * regs with a different old id could still have new id 9, we don't care about 18417 * that. 18418 * So we look through our idmap to see if this old id has been seen before. If 18419 * so, we require the new id to match; otherwise, we add the id pair to the map. 18420 */ 18421 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18422 { 18423 struct bpf_id_pair *map = idmap->map; 18424 unsigned int i; 18425 18426 /* either both IDs should be set or both should be zero */ 18427 if (!!old_id != !!cur_id) 18428 return false; 18429 18430 if (old_id == 0) /* cur_id == 0 as well */ 18431 return true; 18432 18433 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 18434 if (!map[i].old) { 18435 /* Reached an empty slot; haven't seen this id before */ 18436 map[i].old = old_id; 18437 map[i].cur = cur_id; 18438 return true; 18439 } 18440 if (map[i].old == old_id) 18441 return map[i].cur == cur_id; 18442 if (map[i].cur == cur_id) 18443 return false; 18444 } 18445 /* We ran out of idmap slots, which should be impossible */ 18446 WARN_ON_ONCE(1); 18447 return false; 18448 } 18449 18450 /* Similar to check_ids(), but allocate a unique temporary ID 18451 * for 'old_id' or 'cur_id' of zero. 18452 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 18453 */ 18454 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18455 { 18456 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 18457 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 18458 18459 return check_ids(old_id, cur_id, idmap); 18460 } 18461 18462 static void clean_func_state(struct bpf_verifier_env *env, 18463 struct bpf_func_state *st) 18464 { 18465 enum bpf_reg_liveness live; 18466 int i, j; 18467 18468 for (i = 0; i < BPF_REG_FP; i++) { 18469 live = st->regs[i].live; 18470 /* liveness must not touch this register anymore */ 18471 st->regs[i].live |= REG_LIVE_DONE; 18472 if (!(live & REG_LIVE_READ)) 18473 /* since the register is unused, clear its state 18474 * to make further comparison simpler 18475 */ 18476 __mark_reg_not_init(env, &st->regs[i]); 18477 } 18478 18479 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 18480 live = st->stack[i].spilled_ptr.live; 18481 /* liveness must not touch this stack slot anymore */ 18482 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 18483 if (!(live & REG_LIVE_READ)) { 18484 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 18485 for (j = 0; j < BPF_REG_SIZE; j++) 18486 st->stack[i].slot_type[j] = STACK_INVALID; 18487 } 18488 } 18489 } 18490 18491 static void clean_verifier_state(struct bpf_verifier_env *env, 18492 struct bpf_verifier_state *st) 18493 { 18494 int i; 18495 18496 for (i = 0; i <= st->curframe; i++) 18497 clean_func_state(env, st->frame[i]); 18498 } 18499 18500 /* the parentage chains form a tree. 18501 * the verifier states are added to state lists at given insn and 18502 * pushed into state stack for future exploration. 18503 * when the verifier reaches bpf_exit insn some of the verifier states 18504 * stored in the state lists have their final liveness state already, 18505 * but a lot of states will get revised from liveness point of view when 18506 * the verifier explores other branches. 18507 * Example: 18508 * 1: r0 = 1 18509 * 2: if r1 == 100 goto pc+1 18510 * 3: r0 = 2 18511 * 4: exit 18512 * when the verifier reaches exit insn the register r0 in the state list of 18513 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 18514 * of insn 2 and goes exploring further. At the insn 4 it will walk the 18515 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 18516 * 18517 * Since the verifier pushes the branch states as it sees them while exploring 18518 * the program the condition of walking the branch instruction for the second 18519 * time means that all states below this branch were already explored and 18520 * their final liveness marks are already propagated. 18521 * Hence when the verifier completes the search of state list in is_state_visited() 18522 * we can call this clean_live_states() function to mark all liveness states 18523 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 18524 * will not be used. 18525 * This function also clears the registers and stack for states that !READ 18526 * to simplify state merging. 18527 * 18528 * Important note here that walking the same branch instruction in the callee 18529 * doesn't meant that the states are DONE. The verifier has to compare 18530 * the callsites 18531 */ 18532 static void clean_live_states(struct bpf_verifier_env *env, int insn, 18533 struct bpf_verifier_state *cur) 18534 { 18535 struct bpf_verifier_state_list *sl; 18536 struct list_head *pos, *head; 18537 18538 head = explored_state(env, insn); 18539 list_for_each(pos, head) { 18540 sl = container_of(pos, struct bpf_verifier_state_list, node); 18541 if (sl->state.branches) 18542 continue; 18543 if (sl->state.insn_idx != insn || 18544 !same_callsites(&sl->state, cur)) 18545 continue; 18546 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) 18547 /* all regs in this state in all frames were already marked */ 18548 continue; 18549 if (incomplete_read_marks(env, &sl->state)) 18550 continue; 18551 clean_verifier_state(env, &sl->state); 18552 } 18553 } 18554 18555 static bool regs_exact(const struct bpf_reg_state *rold, 18556 const struct bpf_reg_state *rcur, 18557 struct bpf_idmap *idmap) 18558 { 18559 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18560 check_ids(rold->id, rcur->id, idmap) && 18561 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18562 } 18563 18564 enum exact_level { 18565 NOT_EXACT, 18566 EXACT, 18567 RANGE_WITHIN 18568 }; 18569 18570 /* Returns true if (rold safe implies rcur safe) */ 18571 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 18572 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 18573 enum exact_level exact) 18574 { 18575 if (exact == EXACT) 18576 return regs_exact(rold, rcur, idmap); 18577 18578 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 18579 /* explored state didn't use this */ 18580 return true; 18581 if (rold->type == NOT_INIT) { 18582 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 18583 /* explored state can't have used this */ 18584 return true; 18585 } 18586 18587 /* Enforce that register types have to match exactly, including their 18588 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 18589 * rule. 18590 * 18591 * One can make a point that using a pointer register as unbounded 18592 * SCALAR would be technically acceptable, but this could lead to 18593 * pointer leaks because scalars are allowed to leak while pointers 18594 * are not. We could make this safe in special cases if root is 18595 * calling us, but it's probably not worth the hassle. 18596 * 18597 * Also, register types that are *not* MAYBE_NULL could technically be 18598 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 18599 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 18600 * to the same map). 18601 * However, if the old MAYBE_NULL register then got NULL checked, 18602 * doing so could have affected others with the same id, and we can't 18603 * check for that because we lost the id when we converted to 18604 * a non-MAYBE_NULL variant. 18605 * So, as a general rule we don't allow mixing MAYBE_NULL and 18606 * non-MAYBE_NULL registers as well. 18607 */ 18608 if (rold->type != rcur->type) 18609 return false; 18610 18611 switch (base_type(rold->type)) { 18612 case SCALAR_VALUE: 18613 if (env->explore_alu_limits) { 18614 /* explore_alu_limits disables tnum_in() and range_within() 18615 * logic and requires everything to be strict 18616 */ 18617 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18618 check_scalar_ids(rold->id, rcur->id, idmap); 18619 } 18620 if (!rold->precise && exact == NOT_EXACT) 18621 return true; 18622 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 18623 return false; 18624 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 18625 return false; 18626 /* Why check_ids() for scalar registers? 18627 * 18628 * Consider the following BPF code: 18629 * 1: r6 = ... unbound scalar, ID=a ... 18630 * 2: r7 = ... unbound scalar, ID=b ... 18631 * 3: if (r6 > r7) goto +1 18632 * 4: r6 = r7 18633 * 5: if (r6 > X) goto ... 18634 * 6: ... memory operation using r7 ... 18635 * 18636 * First verification path is [1-6]: 18637 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 18638 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 18639 * r7 <= X, because r6 and r7 share same id. 18640 * Next verification path is [1-4, 6]. 18641 * 18642 * Instruction (6) would be reached in two states: 18643 * I. r6{.id=b}, r7{.id=b} via path 1-6; 18644 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 18645 * 18646 * Use check_ids() to distinguish these states. 18647 * --- 18648 * Also verify that new value satisfies old value range knowledge. 18649 */ 18650 return range_within(rold, rcur) && 18651 tnum_in(rold->var_off, rcur->var_off) && 18652 check_scalar_ids(rold->id, rcur->id, idmap); 18653 case PTR_TO_MAP_KEY: 18654 case PTR_TO_MAP_VALUE: 18655 case PTR_TO_MEM: 18656 case PTR_TO_BUF: 18657 case PTR_TO_TP_BUFFER: 18658 /* If the new min/max/var_off satisfy the old ones and 18659 * everything else matches, we are OK. 18660 */ 18661 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 18662 range_within(rold, rcur) && 18663 tnum_in(rold->var_off, rcur->var_off) && 18664 check_ids(rold->id, rcur->id, idmap) && 18665 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18666 case PTR_TO_PACKET_META: 18667 case PTR_TO_PACKET: 18668 /* We must have at least as much range as the old ptr 18669 * did, so that any accesses which were safe before are 18670 * still safe. This is true even if old range < old off, 18671 * since someone could have accessed through (ptr - k), or 18672 * even done ptr -= k in a register, to get a safe access. 18673 */ 18674 if (rold->range > rcur->range) 18675 return false; 18676 /* If the offsets don't match, we can't trust our alignment; 18677 * nor can we be sure that we won't fall out of range. 18678 */ 18679 if (rold->off != rcur->off) 18680 return false; 18681 /* id relations must be preserved */ 18682 if (!check_ids(rold->id, rcur->id, idmap)) 18683 return false; 18684 /* new val must satisfy old val knowledge */ 18685 return range_within(rold, rcur) && 18686 tnum_in(rold->var_off, rcur->var_off); 18687 case PTR_TO_STACK: 18688 /* two stack pointers are equal only if they're pointing to 18689 * the same stack frame, since fp-8 in foo != fp-8 in bar 18690 */ 18691 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 18692 case PTR_TO_ARENA: 18693 return true; 18694 default: 18695 return regs_exact(rold, rcur, idmap); 18696 } 18697 } 18698 18699 static struct bpf_reg_state unbound_reg; 18700 18701 static __init int unbound_reg_init(void) 18702 { 18703 __mark_reg_unknown_imprecise(&unbound_reg); 18704 unbound_reg.live |= REG_LIVE_READ; 18705 return 0; 18706 } 18707 late_initcall(unbound_reg_init); 18708 18709 static bool is_stack_all_misc(struct bpf_verifier_env *env, 18710 struct bpf_stack_state *stack) 18711 { 18712 u32 i; 18713 18714 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 18715 if ((stack->slot_type[i] == STACK_MISC) || 18716 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 18717 continue; 18718 return false; 18719 } 18720 18721 return true; 18722 } 18723 18724 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 18725 struct bpf_stack_state *stack) 18726 { 18727 if (is_spilled_scalar_reg64(stack)) 18728 return &stack->spilled_ptr; 18729 18730 if (is_stack_all_misc(env, stack)) 18731 return &unbound_reg; 18732 18733 return NULL; 18734 } 18735 18736 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18737 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18738 enum exact_level exact) 18739 { 18740 int i, spi; 18741 18742 /* walk slots of the explored stack and ignore any additional 18743 * slots in the current stack, since explored(safe) state 18744 * didn't use them 18745 */ 18746 for (i = 0; i < old->allocated_stack; i++) { 18747 struct bpf_reg_state *old_reg, *cur_reg; 18748 18749 spi = i / BPF_REG_SIZE; 18750 18751 if (exact != NOT_EXACT && 18752 (i >= cur->allocated_stack || 18753 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18754 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18755 return false; 18756 18757 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 18758 && exact == NOT_EXACT) { 18759 i += BPF_REG_SIZE - 1; 18760 /* explored state didn't use this */ 18761 continue; 18762 } 18763 18764 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18765 continue; 18766 18767 if (env->allow_uninit_stack && 18768 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18769 continue; 18770 18771 /* explored stack has more populated slots than current stack 18772 * and these slots were used 18773 */ 18774 if (i >= cur->allocated_stack) 18775 return false; 18776 18777 /* 64-bit scalar spill vs all slots MISC and vice versa. 18778 * Load from all slots MISC produces unbound scalar. 18779 * Construct a fake register for such stack and call 18780 * regsafe() to ensure scalar ids are compared. 18781 */ 18782 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18783 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18784 if (old_reg && cur_reg) { 18785 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18786 return false; 18787 i += BPF_REG_SIZE - 1; 18788 continue; 18789 } 18790 18791 /* if old state was safe with misc data in the stack 18792 * it will be safe with zero-initialized stack. 18793 * The opposite is not true 18794 */ 18795 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18796 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18797 continue; 18798 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18799 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18800 /* Ex: old explored (safe) state has STACK_SPILL in 18801 * this stack slot, but current has STACK_MISC -> 18802 * this verifier states are not equivalent, 18803 * return false to continue verification of this path 18804 */ 18805 return false; 18806 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18807 continue; 18808 /* Both old and cur are having same slot_type */ 18809 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18810 case STACK_SPILL: 18811 /* when explored and current stack slot are both storing 18812 * spilled registers, check that stored pointers types 18813 * are the same as well. 18814 * Ex: explored safe path could have stored 18815 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18816 * but current path has stored: 18817 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18818 * such verifier states are not equivalent. 18819 * return false to continue verification of this path 18820 */ 18821 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18822 &cur->stack[spi].spilled_ptr, idmap, exact)) 18823 return false; 18824 break; 18825 case STACK_DYNPTR: 18826 old_reg = &old->stack[spi].spilled_ptr; 18827 cur_reg = &cur->stack[spi].spilled_ptr; 18828 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18829 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18830 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18831 return false; 18832 break; 18833 case STACK_ITER: 18834 old_reg = &old->stack[spi].spilled_ptr; 18835 cur_reg = &cur->stack[spi].spilled_ptr; 18836 /* iter.depth is not compared between states as it 18837 * doesn't matter for correctness and would otherwise 18838 * prevent convergence; we maintain it only to prevent 18839 * infinite loop check triggering, see 18840 * iter_active_depths_differ() 18841 */ 18842 if (old_reg->iter.btf != cur_reg->iter.btf || 18843 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18844 old_reg->iter.state != cur_reg->iter.state || 18845 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18846 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18847 return false; 18848 break; 18849 case STACK_IRQ_FLAG: 18850 old_reg = &old->stack[spi].spilled_ptr; 18851 cur_reg = &cur->stack[spi].spilled_ptr; 18852 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 18853 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 18854 return false; 18855 break; 18856 case STACK_MISC: 18857 case STACK_ZERO: 18858 case STACK_INVALID: 18859 continue; 18860 /* Ensure that new unhandled slot types return false by default */ 18861 default: 18862 return false; 18863 } 18864 } 18865 return true; 18866 } 18867 18868 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18869 struct bpf_idmap *idmap) 18870 { 18871 int i; 18872 18873 if (old->acquired_refs != cur->acquired_refs) 18874 return false; 18875 18876 if (old->active_locks != cur->active_locks) 18877 return false; 18878 18879 if (old->active_preempt_locks != cur->active_preempt_locks) 18880 return false; 18881 18882 if (old->active_rcu_lock != cur->active_rcu_lock) 18883 return false; 18884 18885 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18886 return false; 18887 18888 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 18889 old->active_lock_ptr != cur->active_lock_ptr) 18890 return false; 18891 18892 for (i = 0; i < old->acquired_refs; i++) { 18893 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18894 old->refs[i].type != cur->refs[i].type) 18895 return false; 18896 switch (old->refs[i].type) { 18897 case REF_TYPE_PTR: 18898 case REF_TYPE_IRQ: 18899 break; 18900 case REF_TYPE_LOCK: 18901 case REF_TYPE_RES_LOCK: 18902 case REF_TYPE_RES_LOCK_IRQ: 18903 if (old->refs[i].ptr != cur->refs[i].ptr) 18904 return false; 18905 break; 18906 default: 18907 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 18908 return false; 18909 } 18910 } 18911 18912 return true; 18913 } 18914 18915 /* compare two verifier states 18916 * 18917 * all states stored in state_list are known to be valid, since 18918 * verifier reached 'bpf_exit' instruction through them 18919 * 18920 * this function is called when verifier exploring different branches of 18921 * execution popped from the state stack. If it sees an old state that has 18922 * more strict register state and more strict stack state then this execution 18923 * branch doesn't need to be explored further, since verifier already 18924 * concluded that more strict state leads to valid finish. 18925 * 18926 * Therefore two states are equivalent if register state is more conservative 18927 * and explored stack state is more conservative than the current one. 18928 * Example: 18929 * explored current 18930 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 18931 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 18932 * 18933 * In other words if current stack state (one being explored) has more 18934 * valid slots than old one that already passed validation, it means 18935 * the verifier can stop exploring and conclude that current state is valid too 18936 * 18937 * Similarly with registers. If explored state has register type as invalid 18938 * whereas register type in current state is meaningful, it means that 18939 * the current state will reach 'bpf_exit' instruction safely 18940 */ 18941 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 18942 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 18943 { 18944 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 18945 u16 i; 18946 18947 if (old->callback_depth > cur->callback_depth) 18948 return false; 18949 18950 for (i = 0; i < MAX_BPF_REG; i++) 18951 if (((1 << i) & live_regs) && 18952 !regsafe(env, &old->regs[i], &cur->regs[i], 18953 &env->idmap_scratch, exact)) 18954 return false; 18955 18956 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 18957 return false; 18958 18959 return true; 18960 } 18961 18962 static void reset_idmap_scratch(struct bpf_verifier_env *env) 18963 { 18964 env->idmap_scratch.tmp_id_gen = env->id_gen; 18965 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 18966 } 18967 18968 static bool states_equal(struct bpf_verifier_env *env, 18969 struct bpf_verifier_state *old, 18970 struct bpf_verifier_state *cur, 18971 enum exact_level exact) 18972 { 18973 u32 insn_idx; 18974 int i; 18975 18976 if (old->curframe != cur->curframe) 18977 return false; 18978 18979 reset_idmap_scratch(env); 18980 18981 /* Verification state from speculative execution simulation 18982 * must never prune a non-speculative execution one. 18983 */ 18984 if (old->speculative && !cur->speculative) 18985 return false; 18986 18987 if (old->in_sleepable != cur->in_sleepable) 18988 return false; 18989 18990 if (!refsafe(old, cur, &env->idmap_scratch)) 18991 return false; 18992 18993 /* for states to be equal callsites have to be the same 18994 * and all frame states need to be equivalent 18995 */ 18996 for (i = 0; i <= old->curframe; i++) { 18997 insn_idx = frame_insn_idx(old, i); 18998 if (old->frame[i]->callsite != cur->frame[i]->callsite) 18999 return false; 19000 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 19001 return false; 19002 } 19003 return true; 19004 } 19005 19006 /* Return 0 if no propagation happened. Return negative error code if error 19007 * happened. Otherwise, return the propagated bit. 19008 */ 19009 static int propagate_liveness_reg(struct bpf_verifier_env *env, 19010 struct bpf_reg_state *reg, 19011 struct bpf_reg_state *parent_reg) 19012 { 19013 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 19014 u8 flag = reg->live & REG_LIVE_READ; 19015 int err; 19016 19017 /* When comes here, read flags of PARENT_REG or REG could be any of 19018 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 19019 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 19020 */ 19021 if (parent_flag == REG_LIVE_READ64 || 19022 /* Or if there is no read flag from REG. */ 19023 !flag || 19024 /* Or if the read flag from REG is the same as PARENT_REG. */ 19025 parent_flag == flag) 19026 return 0; 19027 19028 err = mark_reg_read(env, reg, parent_reg, flag); 19029 if (err) 19030 return err; 19031 19032 return flag; 19033 } 19034 19035 /* A write screens off any subsequent reads; but write marks come from the 19036 * straight-line code between a state and its parent. When we arrive at an 19037 * equivalent state (jump target or such) we didn't arrive by the straight-line 19038 * code, so read marks in the state must propagate to the parent regardless 19039 * of the state's write marks. That's what 'parent == state->parent' comparison 19040 * in mark_reg_read() is for. 19041 */ 19042 static int propagate_liveness(struct bpf_verifier_env *env, 19043 const struct bpf_verifier_state *vstate, 19044 struct bpf_verifier_state *vparent, 19045 bool *changed) 19046 { 19047 struct bpf_reg_state *state_reg, *parent_reg; 19048 struct bpf_func_state *state, *parent; 19049 int i, frame, err = 0; 19050 bool tmp = false; 19051 19052 changed = changed ?: &tmp; 19053 if (vparent->curframe != vstate->curframe) { 19054 WARN(1, "propagate_live: parent frame %d current frame %d\n", 19055 vparent->curframe, vstate->curframe); 19056 return -EFAULT; 19057 } 19058 /* Propagate read liveness of registers... */ 19059 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 19060 for (frame = 0; frame <= vstate->curframe; frame++) { 19061 parent = vparent->frame[frame]; 19062 state = vstate->frame[frame]; 19063 parent_reg = parent->regs; 19064 state_reg = state->regs; 19065 /* We don't need to worry about FP liveness, it's read-only */ 19066 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 19067 err = propagate_liveness_reg(env, &state_reg[i], 19068 &parent_reg[i]); 19069 if (err < 0) 19070 return err; 19071 *changed |= err > 0; 19072 if (err == REG_LIVE_READ64) 19073 mark_insn_zext(env, &parent_reg[i]); 19074 } 19075 19076 /* Propagate stack slots. */ 19077 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 19078 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 19079 parent_reg = &parent->stack[i].spilled_ptr; 19080 state_reg = &state->stack[i].spilled_ptr; 19081 err = propagate_liveness_reg(env, state_reg, 19082 parent_reg); 19083 *changed |= err > 0; 19084 if (err < 0) 19085 return err; 19086 } 19087 } 19088 return 0; 19089 } 19090 19091 /* find precise scalars in the previous equivalent state and 19092 * propagate them into the current state 19093 */ 19094 static int propagate_precision(struct bpf_verifier_env *env, 19095 const struct bpf_verifier_state *old, 19096 struct bpf_verifier_state *cur, 19097 bool *changed) 19098 { 19099 struct bpf_reg_state *state_reg; 19100 struct bpf_func_state *state; 19101 int i, err = 0, fr; 19102 bool first; 19103 19104 for (fr = old->curframe; fr >= 0; fr--) { 19105 state = old->frame[fr]; 19106 state_reg = state->regs; 19107 first = true; 19108 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 19109 if (state_reg->type != SCALAR_VALUE || 19110 !state_reg->precise || 19111 !(state_reg->live & REG_LIVE_READ)) 19112 continue; 19113 if (env->log.level & BPF_LOG_LEVEL2) { 19114 if (first) 19115 verbose(env, "frame %d: propagating r%d", fr, i); 19116 else 19117 verbose(env, ",r%d", i); 19118 } 19119 bt_set_frame_reg(&env->bt, fr, i); 19120 first = false; 19121 } 19122 19123 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19124 if (!is_spilled_reg(&state->stack[i])) 19125 continue; 19126 state_reg = &state->stack[i].spilled_ptr; 19127 if (state_reg->type != SCALAR_VALUE || 19128 !state_reg->precise || 19129 !(state_reg->live & REG_LIVE_READ)) 19130 continue; 19131 if (env->log.level & BPF_LOG_LEVEL2) { 19132 if (first) 19133 verbose(env, "frame %d: propagating fp%d", 19134 fr, (-i - 1) * BPF_REG_SIZE); 19135 else 19136 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 19137 } 19138 bt_set_frame_slot(&env->bt, fr, i); 19139 first = false; 19140 } 19141 if (!first) 19142 verbose(env, "\n"); 19143 } 19144 19145 err = __mark_chain_precision(env, cur, -1, changed); 19146 if (err < 0) 19147 return err; 19148 19149 return 0; 19150 } 19151 19152 #define MAX_BACKEDGE_ITERS 64 19153 19154 /* Propagate read and precision marks from visit->backedges[*].state->equal_state 19155 * to corresponding parent states of visit->backedges[*].state until fixed point is reached, 19156 * then free visit->backedges. 19157 * After execution of this function incomplete_read_marks() will return false 19158 * for all states corresponding to @visit->callchain. 19159 */ 19160 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) 19161 { 19162 struct bpf_scc_backedge *backedge; 19163 struct bpf_verifier_state *st; 19164 bool changed; 19165 int i, err; 19166 19167 i = 0; 19168 do { 19169 if (i++ > MAX_BACKEDGE_ITERS) { 19170 if (env->log.level & BPF_LOG_LEVEL2) 19171 verbose(env, "%s: too many iterations\n", __func__); 19172 for (backedge = visit->backedges; backedge; backedge = backedge->next) 19173 mark_all_scalars_precise(env, &backedge->state); 19174 break; 19175 } 19176 changed = false; 19177 for (backedge = visit->backedges; backedge; backedge = backedge->next) { 19178 st = &backedge->state; 19179 err = propagate_liveness(env, st->equal_state, st, &changed); 19180 if (err) 19181 return err; 19182 err = propagate_precision(env, st->equal_state, st, &changed); 19183 if (err) 19184 return err; 19185 } 19186 } while (changed); 19187 19188 free_backedges(visit); 19189 return 0; 19190 } 19191 19192 static bool states_maybe_looping(struct bpf_verifier_state *old, 19193 struct bpf_verifier_state *cur) 19194 { 19195 struct bpf_func_state *fold, *fcur; 19196 int i, fr = cur->curframe; 19197 19198 if (old->curframe != fr) 19199 return false; 19200 19201 fold = old->frame[fr]; 19202 fcur = cur->frame[fr]; 19203 for (i = 0; i < MAX_BPF_REG; i++) 19204 if (memcmp(&fold->regs[i], &fcur->regs[i], 19205 offsetof(struct bpf_reg_state, parent))) 19206 return false; 19207 return true; 19208 } 19209 19210 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 19211 { 19212 return env->insn_aux_data[insn_idx].is_iter_next; 19213 } 19214 19215 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 19216 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 19217 * states to match, which otherwise would look like an infinite loop. So while 19218 * iter_next() calls are taken care of, we still need to be careful and 19219 * prevent erroneous and too eager declaration of "infinite loop", when 19220 * iterators are involved. 19221 * 19222 * Here's a situation in pseudo-BPF assembly form: 19223 * 19224 * 0: again: ; set up iter_next() call args 19225 * 1: r1 = &it ; <CHECKPOINT HERE> 19226 * 2: call bpf_iter_num_next ; this is iter_next() call 19227 * 3: if r0 == 0 goto done 19228 * 4: ... something useful here ... 19229 * 5: goto again ; another iteration 19230 * 6: done: 19231 * 7: r1 = &it 19232 * 8: call bpf_iter_num_destroy ; clean up iter state 19233 * 9: exit 19234 * 19235 * This is a typical loop. Let's assume that we have a prune point at 1:, 19236 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 19237 * again`, assuming other heuristics don't get in a way). 19238 * 19239 * When we first time come to 1:, let's say we have some state X. We proceed 19240 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 19241 * Now we come back to validate that forked ACTIVE state. We proceed through 19242 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 19243 * are converging. But the problem is that we don't know that yet, as this 19244 * convergence has to happen at iter_next() call site only. So if nothing is 19245 * done, at 1: verifier will use bounded loop logic and declare infinite 19246 * looping (and would be *technically* correct, if not for iterator's 19247 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 19248 * don't want that. So what we do in process_iter_next_call() when we go on 19249 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 19250 * a different iteration. So when we suspect an infinite loop, we additionally 19251 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 19252 * pretend we are not looping and wait for next iter_next() call. 19253 * 19254 * This only applies to ACTIVE state. In DRAINED state we don't expect to 19255 * loop, because that would actually mean infinite loop, as DRAINED state is 19256 * "sticky", and so we'll keep returning into the same instruction with the 19257 * same state (at least in one of possible code paths). 19258 * 19259 * This approach allows to keep infinite loop heuristic even in the face of 19260 * active iterator. E.g., C snippet below is and will be detected as 19261 * infinitely looping: 19262 * 19263 * struct bpf_iter_num it; 19264 * int *p, x; 19265 * 19266 * bpf_iter_num_new(&it, 0, 10); 19267 * while ((p = bpf_iter_num_next(&t))) { 19268 * x = p; 19269 * while (x--) {} // <<-- infinite loop here 19270 * } 19271 * 19272 */ 19273 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 19274 { 19275 struct bpf_reg_state *slot, *cur_slot; 19276 struct bpf_func_state *state; 19277 int i, fr; 19278 19279 for (fr = old->curframe; fr >= 0; fr--) { 19280 state = old->frame[fr]; 19281 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19282 if (state->stack[i].slot_type[0] != STACK_ITER) 19283 continue; 19284 19285 slot = &state->stack[i].spilled_ptr; 19286 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 19287 continue; 19288 19289 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 19290 if (cur_slot->iter.depth != slot->iter.depth) 19291 return true; 19292 } 19293 } 19294 return false; 19295 } 19296 19297 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 19298 { 19299 struct bpf_verifier_state_list *new_sl; 19300 struct bpf_verifier_state_list *sl; 19301 struct bpf_verifier_state *cur = env->cur_state, *new; 19302 bool force_new_state, add_new_state, loop; 19303 int i, j, n, err, states_cnt = 0; 19304 struct list_head *pos, *tmp, *head; 19305 19306 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 19307 /* Avoid accumulating infinitely long jmp history */ 19308 cur->jmp_history_cnt > 40; 19309 19310 /* bpf progs typically have pruning point every 4 instructions 19311 * http://vger.kernel.org/bpfconf2019.html#session-1 19312 * Do not add new state for future pruning if the verifier hasn't seen 19313 * at least 2 jumps and at least 8 instructions. 19314 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 19315 * In tests that amounts to up to 50% reduction into total verifier 19316 * memory consumption and 20% verifier time speedup. 19317 */ 19318 add_new_state = force_new_state; 19319 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 19320 env->insn_processed - env->prev_insn_processed >= 8) 19321 add_new_state = true; 19322 19323 clean_live_states(env, insn_idx, cur); 19324 19325 loop = false; 19326 head = explored_state(env, insn_idx); 19327 list_for_each_safe(pos, tmp, head) { 19328 sl = container_of(pos, struct bpf_verifier_state_list, node); 19329 states_cnt++; 19330 if (sl->state.insn_idx != insn_idx) 19331 continue; 19332 19333 if (sl->state.branches) { 19334 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 19335 19336 if (frame->in_async_callback_fn && 19337 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 19338 /* Different async_entry_cnt means that the verifier is 19339 * processing another entry into async callback. 19340 * Seeing the same state is not an indication of infinite 19341 * loop or infinite recursion. 19342 * But finding the same state doesn't mean that it's safe 19343 * to stop processing the current state. The previous state 19344 * hasn't yet reached bpf_exit, since state.branches > 0. 19345 * Checking in_async_callback_fn alone is not enough either. 19346 * Since the verifier still needs to catch infinite loops 19347 * inside async callbacks. 19348 */ 19349 goto skip_inf_loop_check; 19350 } 19351 /* BPF open-coded iterators loop detection is special. 19352 * states_maybe_looping() logic is too simplistic in detecting 19353 * states that *might* be equivalent, because it doesn't know 19354 * about ID remapping, so don't even perform it. 19355 * See process_iter_next_call() and iter_active_depths_differ() 19356 * for overview of the logic. When current and one of parent 19357 * states are detected as equivalent, it's a good thing: we prove 19358 * convergence and can stop simulating further iterations. 19359 * It's safe to assume that iterator loop will finish, taking into 19360 * account iter_next() contract of eventually returning 19361 * sticky NULL result. 19362 * 19363 * Note, that states have to be compared exactly in this case because 19364 * read and precision marks might not be finalized inside the loop. 19365 * E.g. as in the program below: 19366 * 19367 * 1. r7 = -16 19368 * 2. r6 = bpf_get_prandom_u32() 19369 * 3. while (bpf_iter_num_next(&fp[-8])) { 19370 * 4. if (r6 != 42) { 19371 * 5. r7 = -32 19372 * 6. r6 = bpf_get_prandom_u32() 19373 * 7. continue 19374 * 8. } 19375 * 9. r0 = r10 19376 * 10. r0 += r7 19377 * 11. r8 = *(u64 *)(r0 + 0) 19378 * 12. r6 = bpf_get_prandom_u32() 19379 * 13. } 19380 * 19381 * Here verifier would first visit path 1-3, create a checkpoint at 3 19382 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 19383 * not have read or precision mark for r7 yet, thus inexact states 19384 * comparison would discard current state with r7=-32 19385 * => unsafe memory access at 11 would not be caught. 19386 */ 19387 if (is_iter_next_insn(env, insn_idx)) { 19388 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19389 struct bpf_func_state *cur_frame; 19390 struct bpf_reg_state *iter_state, *iter_reg; 19391 int spi; 19392 19393 cur_frame = cur->frame[cur->curframe]; 19394 /* btf_check_iter_kfuncs() enforces that 19395 * iter state pointer is always the first arg 19396 */ 19397 iter_reg = &cur_frame->regs[BPF_REG_1]; 19398 /* current state is valid due to states_equal(), 19399 * so we can assume valid iter and reg state, 19400 * no need for extra (re-)validations 19401 */ 19402 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 19403 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 19404 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 19405 loop = true; 19406 goto hit; 19407 } 19408 } 19409 goto skip_inf_loop_check; 19410 } 19411 if (is_may_goto_insn_at(env, insn_idx)) { 19412 if (sl->state.may_goto_depth != cur->may_goto_depth && 19413 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19414 loop = true; 19415 goto hit; 19416 } 19417 } 19418 if (calls_callback(env, insn_idx)) { 19419 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 19420 goto hit; 19421 goto skip_inf_loop_check; 19422 } 19423 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 19424 if (states_maybe_looping(&sl->state, cur) && 19425 states_equal(env, &sl->state, cur, EXACT) && 19426 !iter_active_depths_differ(&sl->state, cur) && 19427 sl->state.may_goto_depth == cur->may_goto_depth && 19428 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 19429 verbose_linfo(env, insn_idx, "; "); 19430 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 19431 verbose(env, "cur state:"); 19432 print_verifier_state(env, cur, cur->curframe, true); 19433 verbose(env, "old state:"); 19434 print_verifier_state(env, &sl->state, cur->curframe, true); 19435 return -EINVAL; 19436 } 19437 /* if the verifier is processing a loop, avoid adding new state 19438 * too often, since different loop iterations have distinct 19439 * states and may not help future pruning. 19440 * This threshold shouldn't be too low to make sure that 19441 * a loop with large bound will be rejected quickly. 19442 * The most abusive loop will be: 19443 * r1 += 1 19444 * if r1 < 1000000 goto pc-2 19445 * 1M insn_procssed limit / 100 == 10k peak states. 19446 * This threshold shouldn't be too high either, since states 19447 * at the end of the loop are likely to be useful in pruning. 19448 */ 19449 skip_inf_loop_check: 19450 if (!force_new_state && 19451 env->jmps_processed - env->prev_jmps_processed < 20 && 19452 env->insn_processed - env->prev_insn_processed < 100) 19453 add_new_state = false; 19454 goto miss; 19455 } 19456 /* See comments for mark_all_regs_read_and_precise() */ 19457 loop = incomplete_read_marks(env, &sl->state); 19458 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { 19459 hit: 19460 sl->hit_cnt++; 19461 /* reached equivalent register/stack state, 19462 * prune the search. 19463 * Registers read by the continuation are read by us. 19464 * If we have any write marks in env->cur_state, they 19465 * will prevent corresponding reads in the continuation 19466 * from reaching our parent (an explored_state). Our 19467 * own state will get the read marks recorded, but 19468 * they'll be immediately forgotten as we're pruning 19469 * this state and will pop a new one. 19470 */ 19471 err = propagate_liveness(env, &sl->state, cur, NULL); 19472 19473 /* if previous state reached the exit with precision and 19474 * current state is equivalent to it (except precision marks) 19475 * the precision needs to be propagated back in 19476 * the current state. 19477 */ 19478 if (is_jmp_point(env, env->insn_idx)) 19479 err = err ? : push_jmp_history(env, cur, 0, 0); 19480 err = err ? : propagate_precision(env, &sl->state, cur, NULL); 19481 if (err) 19482 return err; 19483 /* When processing iterator based loops above propagate_liveness and 19484 * propagate_precision calls are not sufficient to transfer all relevant 19485 * read and precision marks. E.g. consider the following case: 19486 * 19487 * .-> A --. Assume the states are visited in the order A, B, C. 19488 * | | | Assume that state B reaches a state equivalent to state A. 19489 * | v v At this point, state C is not processed yet, so state A 19490 * '-- B C has not received any read or precision marks from C. 19491 * Thus, marks propagated from A to B are incomplete. 19492 * 19493 * The verifier mitigates this by performing the following steps: 19494 * 19495 * - Prior to the main verification pass, strongly connected components 19496 * (SCCs) are computed over the program's control flow graph, 19497 * intraprocedurally. 19498 * 19499 * - During the main verification pass, `maybe_enter_scc()` checks 19500 * whether the current verifier state is entering an SCC. If so, an 19501 * instance of a `bpf_scc_visit` object is created, and the state 19502 * entering the SCC is recorded as the entry state. 19503 * 19504 * - This instance is associated not with the SCC itself, but with a 19505 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to 19506 * the SCC and the SCC id. See `compute_scc_callchain()`. 19507 * 19508 * - When a verification path encounters a `states_equal(..., 19509 * RANGE_WITHIN)` condition, there exists a call chain describing the 19510 * current state and a corresponding `bpf_scc_visit` instance. A copy 19511 * of the current state is created and added to 19512 * `bpf_scc_visit->backedges`. 19513 * 19514 * - When a verification path terminates, `maybe_exit_scc()` is called 19515 * from `update_branch_counts()`. For states with `branches == 0`, it 19516 * checks whether the state is the entry state of any `bpf_scc_visit` 19517 * instance. If it is, this indicates that all paths originating from 19518 * this SCC visit have been explored. `propagate_backedges()` is then 19519 * called, which propagates read and precision marks through the 19520 * backedges until a fixed point is reached. 19521 * (In the earlier example, this would propagate marks from A to B, 19522 * from C to A, and then again from A to B.) 19523 * 19524 * A note on callchains 19525 * -------------------- 19526 * 19527 * Consider the following example: 19528 * 19529 * void foo() { loop { ... SCC#1 ... } } 19530 * void main() { 19531 * A: foo(); 19532 * B: ... 19533 * C: foo(); 19534 * } 19535 * 19536 * Here, there are two distinct callchains leading to SCC#1: 19537 * - (A, SCC#1) 19538 * - (C, SCC#1) 19539 * 19540 * Each callchain identifies a separate `bpf_scc_visit` instance that 19541 * accumulates backedge states. The `propagate_{liveness,precision}()` 19542 * functions traverse the parent state of each backedge state, which 19543 * means these parent states must remain valid (i.e., not freed) while 19544 * the corresponding `bpf_scc_visit` instance exists. 19545 * 19546 * Associating `bpf_scc_visit` instances directly with SCCs instead of 19547 * callchains would break this invariant: 19548 * - States explored during `C: foo()` would contribute backedges to 19549 * SCC#1, but SCC#1 would only be exited once the exploration of 19550 * `A: foo()` completes. 19551 * - By that time, the states explored between `A: foo()` and `C: foo()` 19552 * (i.e., `B: ...`) may have already been freed, causing the parent 19553 * links for states from `C: foo()` to become invalid. 19554 */ 19555 if (loop) { 19556 struct bpf_scc_backedge *backedge; 19557 19558 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); 19559 if (!backedge) 19560 return -ENOMEM; 19561 err = copy_verifier_state(&backedge->state, cur); 19562 backedge->state.equal_state = &sl->state; 19563 backedge->state.insn_idx = insn_idx; 19564 err = err ?: add_scc_backedge(env, &sl->state, backedge); 19565 if (err) { 19566 free_verifier_state(&backedge->state, false); 19567 kvfree(backedge); 19568 return err; 19569 } 19570 } 19571 return 1; 19572 } 19573 miss: 19574 /* when new state is not going to be added do not increase miss count. 19575 * Otherwise several loop iterations will remove the state 19576 * recorded earlier. The goal of these heuristics is to have 19577 * states from some iterations of the loop (some in the beginning 19578 * and some at the end) to help pruning. 19579 */ 19580 if (add_new_state) 19581 sl->miss_cnt++; 19582 /* heuristic to determine whether this state is beneficial 19583 * to keep checking from state equivalence point of view. 19584 * Higher numbers increase max_states_per_insn and verification time, 19585 * but do not meaningfully decrease insn_processed. 19586 * 'n' controls how many times state could miss before eviction. 19587 * Use bigger 'n' for checkpoints because evicting checkpoint states 19588 * too early would hinder iterator convergence. 19589 */ 19590 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 19591 if (sl->miss_cnt > sl->hit_cnt * n + n) { 19592 /* the state is unlikely to be useful. Remove it to 19593 * speed up verification 19594 */ 19595 sl->in_free_list = true; 19596 list_del(&sl->node); 19597 list_add(&sl->node, &env->free_list); 19598 env->free_list_size++; 19599 env->explored_states_size--; 19600 maybe_free_verifier_state(env, sl); 19601 } 19602 } 19603 19604 if (env->max_states_per_insn < states_cnt) 19605 env->max_states_per_insn = states_cnt; 19606 19607 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 19608 return 0; 19609 19610 if (!add_new_state) 19611 return 0; 19612 19613 /* There were no equivalent states, remember the current one. 19614 * Technically the current state is not proven to be safe yet, 19615 * but it will either reach outer most bpf_exit (which means it's safe) 19616 * or it will be rejected. When there are no loops the verifier won't be 19617 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 19618 * again on the way to bpf_exit. 19619 * When looping the sl->state.branches will be > 0 and this state 19620 * will not be considered for equivalence until branches == 0. 19621 */ 19622 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); 19623 if (!new_sl) 19624 return -ENOMEM; 19625 env->total_states++; 19626 env->explored_states_size++; 19627 update_peak_states(env); 19628 env->prev_jmps_processed = env->jmps_processed; 19629 env->prev_insn_processed = env->insn_processed; 19630 19631 /* forget precise markings we inherited, see __mark_chain_precision */ 19632 if (env->bpf_capable) 19633 mark_all_scalars_imprecise(env, cur); 19634 19635 /* add new state to the head of linked list */ 19636 new = &new_sl->state; 19637 err = copy_verifier_state(new, cur); 19638 if (err) { 19639 free_verifier_state(new, false); 19640 kfree(new_sl); 19641 return err; 19642 } 19643 new->insn_idx = insn_idx; 19644 verifier_bug_if(new->branches != 1, env, 19645 "%s:branches_to_explore=%d insn %d", 19646 __func__, new->branches, insn_idx); 19647 err = maybe_enter_scc(env, new); 19648 if (err) { 19649 free_verifier_state(new, false); 19650 kvfree(new_sl); 19651 return err; 19652 } 19653 19654 cur->parent = new; 19655 cur->first_insn_idx = insn_idx; 19656 cur->dfs_depth = new->dfs_depth + 1; 19657 clear_jmp_history(cur); 19658 list_add(&new_sl->node, head); 19659 19660 /* connect new state to parentage chain. Current frame needs all 19661 * registers connected. Only r6 - r9 of the callers are alive (pushed 19662 * to the stack implicitly by JITs) so in callers' frames connect just 19663 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 19664 * the state of the call instruction (with WRITTEN set), and r0 comes 19665 * from callee with its full parentage chain, anyway. 19666 */ 19667 /* clear write marks in current state: the writes we did are not writes 19668 * our child did, so they don't screen off its reads from us. 19669 * (There are no read marks in current state, because reads always mark 19670 * their parent and current state never has children yet. Only 19671 * explored_states can get read marks.) 19672 */ 19673 for (j = 0; j <= cur->curframe; j++) { 19674 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 19675 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 19676 for (i = 0; i < BPF_REG_FP; i++) 19677 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 19678 } 19679 19680 /* all stack frames are accessible from callee, clear them all */ 19681 for (j = 0; j <= cur->curframe; j++) { 19682 struct bpf_func_state *frame = cur->frame[j]; 19683 struct bpf_func_state *newframe = new->frame[j]; 19684 19685 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 19686 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 19687 frame->stack[i].spilled_ptr.parent = 19688 &newframe->stack[i].spilled_ptr; 19689 } 19690 } 19691 return 0; 19692 } 19693 19694 /* Return true if it's OK to have the same insn return a different type. */ 19695 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 19696 { 19697 switch (base_type(type)) { 19698 case PTR_TO_CTX: 19699 case PTR_TO_SOCKET: 19700 case PTR_TO_SOCK_COMMON: 19701 case PTR_TO_TCP_SOCK: 19702 case PTR_TO_XDP_SOCK: 19703 case PTR_TO_BTF_ID: 19704 case PTR_TO_ARENA: 19705 return false; 19706 default: 19707 return true; 19708 } 19709 } 19710 19711 /* If an instruction was previously used with particular pointer types, then we 19712 * need to be careful to avoid cases such as the below, where it may be ok 19713 * for one branch accessing the pointer, but not ok for the other branch: 19714 * 19715 * R1 = sock_ptr 19716 * goto X; 19717 * ... 19718 * R1 = some_other_valid_ptr; 19719 * goto X; 19720 * ... 19721 * R2 = *(u32 *)(R1 + 0); 19722 */ 19723 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 19724 { 19725 return src != prev && (!reg_type_mismatch_ok(src) || 19726 !reg_type_mismatch_ok(prev)); 19727 } 19728 19729 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) 19730 { 19731 switch (base_type(type)) { 19732 case PTR_TO_MEM: 19733 case PTR_TO_BTF_ID: 19734 return true; 19735 default: 19736 return false; 19737 } 19738 } 19739 19740 static bool is_ptr_to_mem(enum bpf_reg_type type) 19741 { 19742 return base_type(type) == PTR_TO_MEM; 19743 } 19744 19745 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 19746 bool allow_trust_mismatch) 19747 { 19748 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 19749 enum bpf_reg_type merged_type; 19750 19751 if (*prev_type == NOT_INIT) { 19752 /* Saw a valid insn 19753 * dst_reg = *(u32 *)(src_reg + off) 19754 * save type to validate intersecting paths 19755 */ 19756 *prev_type = type; 19757 } else if (reg_type_mismatch(type, *prev_type)) { 19758 /* Abuser program is trying to use the same insn 19759 * dst_reg = *(u32*) (src_reg + off) 19760 * with different pointer types: 19761 * src_reg == ctx in one branch and 19762 * src_reg == stack|map in some other branch. 19763 * Reject it. 19764 */ 19765 if (allow_trust_mismatch && 19766 is_ptr_to_mem_or_btf_id(type) && 19767 is_ptr_to_mem_or_btf_id(*prev_type)) { 19768 /* 19769 * Have to support a use case when one path through 19770 * the program yields TRUSTED pointer while another 19771 * is UNTRUSTED. Fallback to UNTRUSTED to generate 19772 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 19773 * Same behavior of MEM_RDONLY flag. 19774 */ 19775 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) 19776 merged_type = PTR_TO_MEM; 19777 else 19778 merged_type = PTR_TO_BTF_ID; 19779 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) 19780 merged_type |= PTR_UNTRUSTED; 19781 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) 19782 merged_type |= MEM_RDONLY; 19783 *prev_type = merged_type; 19784 } else { 19785 verbose(env, "same insn cannot be used with different pointers\n"); 19786 return -EINVAL; 19787 } 19788 } 19789 19790 return 0; 19791 } 19792 19793 enum { 19794 PROCESS_BPF_EXIT = 1 19795 }; 19796 19797 static int process_bpf_exit_full(struct bpf_verifier_env *env, 19798 bool *do_print_state, 19799 bool exception_exit) 19800 { 19801 /* We must do check_reference_leak here before 19802 * prepare_func_exit to handle the case when 19803 * state->curframe > 0, it may be a callback function, 19804 * for which reference_state must match caller reference 19805 * state when it exits. 19806 */ 19807 int err = check_resource_leak(env, exception_exit, 19808 !env->cur_state->curframe, 19809 "BPF_EXIT instruction in main prog"); 19810 if (err) 19811 return err; 19812 19813 /* The side effect of the prepare_func_exit which is 19814 * being skipped is that it frees bpf_func_state. 19815 * Typically, process_bpf_exit will only be hit with 19816 * outermost exit. copy_verifier_state in pop_stack will 19817 * handle freeing of any extra bpf_func_state left over 19818 * from not processing all nested function exits. We 19819 * also skip return code checks as they are not needed 19820 * for exceptional exits. 19821 */ 19822 if (exception_exit) 19823 return PROCESS_BPF_EXIT; 19824 19825 if (env->cur_state->curframe) { 19826 /* exit from nested function */ 19827 err = prepare_func_exit(env, &env->insn_idx); 19828 if (err) 19829 return err; 19830 *do_print_state = true; 19831 return 0; 19832 } 19833 19834 err = check_return_code(env, BPF_REG_0, "R0"); 19835 if (err) 19836 return err; 19837 return PROCESS_BPF_EXIT; 19838 } 19839 19840 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) 19841 { 19842 int err; 19843 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; 19844 u8 class = BPF_CLASS(insn->code); 19845 19846 if (class == BPF_ALU || class == BPF_ALU64) { 19847 err = check_alu_op(env, insn); 19848 if (err) 19849 return err; 19850 19851 } else if (class == BPF_LDX) { 19852 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 19853 19854 /* Check for reserved fields is already done in 19855 * resolve_pseudo_ldimm64(). 19856 */ 19857 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); 19858 if (err) 19859 return err; 19860 } else if (class == BPF_STX) { 19861 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19862 err = check_atomic(env, insn); 19863 if (err) 19864 return err; 19865 env->insn_idx++; 19866 return 0; 19867 } 19868 19869 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19870 verbose(env, "BPF_STX uses reserved fields\n"); 19871 return -EINVAL; 19872 } 19873 19874 err = check_store_reg(env, insn, false); 19875 if (err) 19876 return err; 19877 } else if (class == BPF_ST) { 19878 enum bpf_reg_type dst_reg_type; 19879 19880 if (BPF_MODE(insn->code) != BPF_MEM || 19881 insn->src_reg != BPF_REG_0) { 19882 verbose(env, "BPF_ST uses reserved fields\n"); 19883 return -EINVAL; 19884 } 19885 /* check src operand */ 19886 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19887 if (err) 19888 return err; 19889 19890 dst_reg_type = cur_regs(env)[insn->dst_reg].type; 19891 19892 /* check that memory (dst_reg + off) is writeable */ 19893 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19894 insn->off, BPF_SIZE(insn->code), 19895 BPF_WRITE, -1, false, false); 19896 if (err) 19897 return err; 19898 19899 err = save_aux_ptr_type(env, dst_reg_type, false); 19900 if (err) 19901 return err; 19902 } else if (class == BPF_JMP || class == BPF_JMP32) { 19903 u8 opcode = BPF_OP(insn->code); 19904 19905 env->jmps_processed++; 19906 if (opcode == BPF_CALL) { 19907 if (BPF_SRC(insn->code) != BPF_K || 19908 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && 19909 insn->off != 0) || 19910 (insn->src_reg != BPF_REG_0 && 19911 insn->src_reg != BPF_PSEUDO_CALL && 19912 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19913 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 19914 verbose(env, "BPF_CALL uses reserved fields\n"); 19915 return -EINVAL; 19916 } 19917 19918 if (env->cur_state->active_locks) { 19919 if ((insn->src_reg == BPF_REG_0 && 19920 insn->imm != BPF_FUNC_spin_unlock) || 19921 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19922 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19923 verbose(env, 19924 "function calls are not allowed while holding a lock\n"); 19925 return -EINVAL; 19926 } 19927 } 19928 if (insn->src_reg == BPF_PSEUDO_CALL) { 19929 err = check_func_call(env, insn, &env->insn_idx); 19930 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19931 err = check_kfunc_call(env, insn, &env->insn_idx); 19932 if (!err && is_bpf_throw_kfunc(insn)) 19933 return process_bpf_exit_full(env, do_print_state, true); 19934 } else { 19935 err = check_helper_call(env, insn, &env->insn_idx); 19936 } 19937 if (err) 19938 return err; 19939 19940 mark_reg_scratched(env, BPF_REG_0); 19941 } else if (opcode == BPF_JA) { 19942 if (BPF_SRC(insn->code) != BPF_K || 19943 insn->src_reg != BPF_REG_0 || 19944 insn->dst_reg != BPF_REG_0 || 19945 (class == BPF_JMP && insn->imm != 0) || 19946 (class == BPF_JMP32 && insn->off != 0)) { 19947 verbose(env, "BPF_JA uses reserved fields\n"); 19948 return -EINVAL; 19949 } 19950 19951 if (class == BPF_JMP) 19952 env->insn_idx += insn->off + 1; 19953 else 19954 env->insn_idx += insn->imm + 1; 19955 return 0; 19956 } else if (opcode == BPF_EXIT) { 19957 if (BPF_SRC(insn->code) != BPF_K || 19958 insn->imm != 0 || 19959 insn->src_reg != BPF_REG_0 || 19960 insn->dst_reg != BPF_REG_0 || 19961 class == BPF_JMP32) { 19962 verbose(env, "BPF_EXIT uses reserved fields\n"); 19963 return -EINVAL; 19964 } 19965 return process_bpf_exit_full(env, do_print_state, false); 19966 } else { 19967 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19968 if (err) 19969 return err; 19970 } 19971 } else if (class == BPF_LD) { 19972 u8 mode = BPF_MODE(insn->code); 19973 19974 if (mode == BPF_ABS || mode == BPF_IND) { 19975 err = check_ld_abs(env, insn); 19976 if (err) 19977 return err; 19978 19979 } else if (mode == BPF_IMM) { 19980 err = check_ld_imm(env, insn); 19981 if (err) 19982 return err; 19983 19984 env->insn_idx++; 19985 sanitize_mark_insn_seen(env); 19986 } else { 19987 verbose(env, "invalid BPF_LD mode\n"); 19988 return -EINVAL; 19989 } 19990 } else { 19991 verbose(env, "unknown insn class %d\n", class); 19992 return -EINVAL; 19993 } 19994 19995 env->insn_idx++; 19996 return 0; 19997 } 19998 19999 static int do_check(struct bpf_verifier_env *env) 20000 { 20001 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20002 struct bpf_verifier_state *state = env->cur_state; 20003 struct bpf_insn *insns = env->prog->insnsi; 20004 int insn_cnt = env->prog->len; 20005 bool do_print_state = false; 20006 int prev_insn_idx = -1; 20007 20008 for (;;) { 20009 struct bpf_insn *insn; 20010 struct bpf_insn_aux_data *insn_aux; 20011 int err; 20012 20013 /* reset current history entry on each new instruction */ 20014 env->cur_hist_ent = NULL; 20015 20016 env->prev_insn_idx = prev_insn_idx; 20017 if (env->insn_idx >= insn_cnt) { 20018 verbose(env, "invalid insn idx %d insn_cnt %d\n", 20019 env->insn_idx, insn_cnt); 20020 return -EFAULT; 20021 } 20022 20023 insn = &insns[env->insn_idx]; 20024 insn_aux = &env->insn_aux_data[env->insn_idx]; 20025 20026 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 20027 verbose(env, 20028 "BPF program is too large. Processed %d insn\n", 20029 env->insn_processed); 20030 return -E2BIG; 20031 } 20032 20033 state->last_insn_idx = env->prev_insn_idx; 20034 state->insn_idx = env->insn_idx; 20035 20036 if (is_prune_point(env, env->insn_idx)) { 20037 err = is_state_visited(env, env->insn_idx); 20038 if (err < 0) 20039 return err; 20040 if (err == 1) { 20041 /* found equivalent state, can prune the search */ 20042 if (env->log.level & BPF_LOG_LEVEL) { 20043 if (do_print_state) 20044 verbose(env, "\nfrom %d to %d%s: safe\n", 20045 env->prev_insn_idx, env->insn_idx, 20046 env->cur_state->speculative ? 20047 " (speculative execution)" : ""); 20048 else 20049 verbose(env, "%d: safe\n", env->insn_idx); 20050 } 20051 goto process_bpf_exit; 20052 } 20053 } 20054 20055 if (is_jmp_point(env, env->insn_idx)) { 20056 err = push_jmp_history(env, state, 0, 0); 20057 if (err) 20058 return err; 20059 } 20060 20061 if (signal_pending(current)) 20062 return -EAGAIN; 20063 20064 if (need_resched()) 20065 cond_resched(); 20066 20067 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 20068 verbose(env, "\nfrom %d to %d%s:", 20069 env->prev_insn_idx, env->insn_idx, 20070 env->cur_state->speculative ? 20071 " (speculative execution)" : ""); 20072 print_verifier_state(env, state, state->curframe, true); 20073 do_print_state = false; 20074 } 20075 20076 if (env->log.level & BPF_LOG_LEVEL) { 20077 if (verifier_state_scratched(env)) 20078 print_insn_state(env, state, state->curframe); 20079 20080 verbose_linfo(env, env->insn_idx, "; "); 20081 env->prev_log_pos = env->log.end_pos; 20082 verbose(env, "%d: ", env->insn_idx); 20083 verbose_insn(env, insn); 20084 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 20085 env->prev_log_pos = env->log.end_pos; 20086 } 20087 20088 if (bpf_prog_is_offloaded(env->prog->aux)) { 20089 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 20090 env->prev_insn_idx); 20091 if (err) 20092 return err; 20093 } 20094 20095 sanitize_mark_insn_seen(env); 20096 prev_insn_idx = env->insn_idx; 20097 20098 /* Reduce verification complexity by stopping speculative path 20099 * verification when a nospec is encountered. 20100 */ 20101 if (state->speculative && insn_aux->nospec) 20102 goto process_bpf_exit; 20103 20104 err = do_check_insn(env, &do_print_state); 20105 if (error_recoverable_with_nospec(err) && state->speculative) { 20106 /* Prevent this speculative path from ever reaching the 20107 * insn that would have been unsafe to execute. 20108 */ 20109 insn_aux->nospec = true; 20110 /* If it was an ADD/SUB insn, potentially remove any 20111 * markings for alu sanitization. 20112 */ 20113 insn_aux->alu_state = 0; 20114 goto process_bpf_exit; 20115 } else if (err < 0) { 20116 return err; 20117 } else if (err == PROCESS_BPF_EXIT) { 20118 goto process_bpf_exit; 20119 } 20120 WARN_ON_ONCE(err); 20121 20122 if (state->speculative && insn_aux->nospec_result) { 20123 /* If we are on a path that performed a jump-op, this 20124 * may skip a nospec patched-in after the jump. This can 20125 * currently never happen because nospec_result is only 20126 * used for the write-ops 20127 * `*(size*)(dst_reg+off)=src_reg|imm32` which must 20128 * never skip the following insn. Still, add a warning 20129 * to document this in case nospec_result is used 20130 * elsewhere in the future. 20131 * 20132 * All non-branch instructions have a single 20133 * fall-through edge. For these, nospec_result should 20134 * already work. 20135 */ 20136 if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP || 20137 BPF_CLASS(insn->code) == BPF_JMP32, env, 20138 "speculation barrier after jump instruction may not have the desired effect")) 20139 return -EFAULT; 20140 process_bpf_exit: 20141 mark_verifier_state_scratched(env); 20142 err = update_branch_counts(env, env->cur_state); 20143 if (err) 20144 return err; 20145 err = pop_stack(env, &prev_insn_idx, &env->insn_idx, 20146 pop_log); 20147 if (err < 0) { 20148 if (err != -ENOENT) 20149 return err; 20150 break; 20151 } else { 20152 do_print_state = true; 20153 continue; 20154 } 20155 } 20156 } 20157 20158 return 0; 20159 } 20160 20161 static int find_btf_percpu_datasec(struct btf *btf) 20162 { 20163 const struct btf_type *t; 20164 const char *tname; 20165 int i, n; 20166 20167 /* 20168 * Both vmlinux and module each have their own ".data..percpu" 20169 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 20170 * types to look at only module's own BTF types. 20171 */ 20172 n = btf_nr_types(btf); 20173 if (btf_is_module(btf)) 20174 i = btf_nr_types(btf_vmlinux); 20175 else 20176 i = 1; 20177 20178 for(; i < n; i++) { 20179 t = btf_type_by_id(btf, i); 20180 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 20181 continue; 20182 20183 tname = btf_name_by_offset(btf, t->name_off); 20184 if (!strcmp(tname, ".data..percpu")) 20185 return i; 20186 } 20187 20188 return -ENOENT; 20189 } 20190 20191 /* 20192 * Add btf to the used_btfs array and return the index. (If the btf was 20193 * already added, then just return the index.) Upon successful insertion 20194 * increase btf refcnt, and, if present, also refcount the corresponding 20195 * kernel module. 20196 */ 20197 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 20198 { 20199 struct btf_mod_pair *btf_mod; 20200 int i; 20201 20202 /* check whether we recorded this BTF (and maybe module) already */ 20203 for (i = 0; i < env->used_btf_cnt; i++) 20204 if (env->used_btfs[i].btf == btf) 20205 return i; 20206 20207 if (env->used_btf_cnt >= MAX_USED_BTFS) 20208 return -E2BIG; 20209 20210 btf_get(btf); 20211 20212 btf_mod = &env->used_btfs[env->used_btf_cnt]; 20213 btf_mod->btf = btf; 20214 btf_mod->module = NULL; 20215 20216 /* if we reference variables from kernel module, bump its refcount */ 20217 if (btf_is_module(btf)) { 20218 btf_mod->module = btf_try_get_module(btf); 20219 if (!btf_mod->module) { 20220 btf_put(btf); 20221 return -ENXIO; 20222 } 20223 } 20224 20225 return env->used_btf_cnt++; 20226 } 20227 20228 /* replace pseudo btf_id with kernel symbol address */ 20229 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 20230 struct bpf_insn *insn, 20231 struct bpf_insn_aux_data *aux, 20232 struct btf *btf) 20233 { 20234 const struct btf_var_secinfo *vsi; 20235 const struct btf_type *datasec; 20236 const struct btf_type *t; 20237 const char *sym_name; 20238 bool percpu = false; 20239 u32 type, id = insn->imm; 20240 s32 datasec_id; 20241 u64 addr; 20242 int i; 20243 20244 t = btf_type_by_id(btf, id); 20245 if (!t) { 20246 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 20247 return -ENOENT; 20248 } 20249 20250 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 20251 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 20252 return -EINVAL; 20253 } 20254 20255 sym_name = btf_name_by_offset(btf, t->name_off); 20256 addr = kallsyms_lookup_name(sym_name); 20257 if (!addr) { 20258 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 20259 sym_name); 20260 return -ENOENT; 20261 } 20262 insn[0].imm = (u32)addr; 20263 insn[1].imm = addr >> 32; 20264 20265 if (btf_type_is_func(t)) { 20266 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20267 aux->btf_var.mem_size = 0; 20268 return 0; 20269 } 20270 20271 datasec_id = find_btf_percpu_datasec(btf); 20272 if (datasec_id > 0) { 20273 datasec = btf_type_by_id(btf, datasec_id); 20274 for_each_vsi(i, datasec, vsi) { 20275 if (vsi->type == id) { 20276 percpu = true; 20277 break; 20278 } 20279 } 20280 } 20281 20282 type = t->type; 20283 t = btf_type_skip_modifiers(btf, type, NULL); 20284 if (percpu) { 20285 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 20286 aux->btf_var.btf = btf; 20287 aux->btf_var.btf_id = type; 20288 } else if (!btf_type_is_struct(t)) { 20289 const struct btf_type *ret; 20290 const char *tname; 20291 u32 tsize; 20292 20293 /* resolve the type size of ksym. */ 20294 ret = btf_resolve_size(btf, t, &tsize); 20295 if (IS_ERR(ret)) { 20296 tname = btf_name_by_offset(btf, t->name_off); 20297 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 20298 tname, PTR_ERR(ret)); 20299 return -EINVAL; 20300 } 20301 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20302 aux->btf_var.mem_size = tsize; 20303 } else { 20304 aux->btf_var.reg_type = PTR_TO_BTF_ID; 20305 aux->btf_var.btf = btf; 20306 aux->btf_var.btf_id = type; 20307 } 20308 20309 return 0; 20310 } 20311 20312 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 20313 struct bpf_insn *insn, 20314 struct bpf_insn_aux_data *aux) 20315 { 20316 struct btf *btf; 20317 int btf_fd; 20318 int err; 20319 20320 btf_fd = insn[1].imm; 20321 if (btf_fd) { 20322 CLASS(fd, f)(btf_fd); 20323 20324 btf = __btf_get_by_fd(f); 20325 if (IS_ERR(btf)) { 20326 verbose(env, "invalid module BTF object FD specified.\n"); 20327 return -EINVAL; 20328 } 20329 } else { 20330 if (!btf_vmlinux) { 20331 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 20332 return -EINVAL; 20333 } 20334 btf = btf_vmlinux; 20335 } 20336 20337 err = __check_pseudo_btf_id(env, insn, aux, btf); 20338 if (err) 20339 return err; 20340 20341 err = __add_used_btf(env, btf); 20342 if (err < 0) 20343 return err; 20344 return 0; 20345 } 20346 20347 static bool is_tracing_prog_type(enum bpf_prog_type type) 20348 { 20349 switch (type) { 20350 case BPF_PROG_TYPE_KPROBE: 20351 case BPF_PROG_TYPE_TRACEPOINT: 20352 case BPF_PROG_TYPE_PERF_EVENT: 20353 case BPF_PROG_TYPE_RAW_TRACEPOINT: 20354 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 20355 return true; 20356 default: 20357 return false; 20358 } 20359 } 20360 20361 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 20362 { 20363 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 20364 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 20365 } 20366 20367 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 20368 struct bpf_map *map, 20369 struct bpf_prog *prog) 20370 20371 { 20372 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20373 20374 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 20375 btf_record_has_field(map->record, BPF_RB_ROOT)) { 20376 if (is_tracing_prog_type(prog_type)) { 20377 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 20378 return -EINVAL; 20379 } 20380 } 20381 20382 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 20383 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 20384 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 20385 return -EINVAL; 20386 } 20387 20388 if (is_tracing_prog_type(prog_type)) { 20389 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 20390 return -EINVAL; 20391 } 20392 } 20393 20394 if (btf_record_has_field(map->record, BPF_TIMER)) { 20395 if (is_tracing_prog_type(prog_type)) { 20396 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 20397 return -EINVAL; 20398 } 20399 } 20400 20401 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 20402 if (is_tracing_prog_type(prog_type)) { 20403 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 20404 return -EINVAL; 20405 } 20406 } 20407 20408 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 20409 !bpf_offload_prog_map_match(prog, map)) { 20410 verbose(env, "offload device mismatch between prog and map\n"); 20411 return -EINVAL; 20412 } 20413 20414 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 20415 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 20416 return -EINVAL; 20417 } 20418 20419 if (prog->sleepable) 20420 switch (map->map_type) { 20421 case BPF_MAP_TYPE_HASH: 20422 case BPF_MAP_TYPE_LRU_HASH: 20423 case BPF_MAP_TYPE_ARRAY: 20424 case BPF_MAP_TYPE_PERCPU_HASH: 20425 case BPF_MAP_TYPE_PERCPU_ARRAY: 20426 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 20427 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 20428 case BPF_MAP_TYPE_HASH_OF_MAPS: 20429 case BPF_MAP_TYPE_RINGBUF: 20430 case BPF_MAP_TYPE_USER_RINGBUF: 20431 case BPF_MAP_TYPE_INODE_STORAGE: 20432 case BPF_MAP_TYPE_SK_STORAGE: 20433 case BPF_MAP_TYPE_TASK_STORAGE: 20434 case BPF_MAP_TYPE_CGRP_STORAGE: 20435 case BPF_MAP_TYPE_QUEUE: 20436 case BPF_MAP_TYPE_STACK: 20437 case BPF_MAP_TYPE_ARENA: 20438 break; 20439 default: 20440 verbose(env, 20441 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 20442 return -EINVAL; 20443 } 20444 20445 if (bpf_map_is_cgroup_storage(map) && 20446 bpf_cgroup_storage_assign(env->prog->aux, map)) { 20447 verbose(env, "only one cgroup storage of each type is allowed\n"); 20448 return -EBUSY; 20449 } 20450 20451 if (map->map_type == BPF_MAP_TYPE_ARENA) { 20452 if (env->prog->aux->arena) { 20453 verbose(env, "Only one arena per program\n"); 20454 return -EBUSY; 20455 } 20456 if (!env->allow_ptr_leaks || !env->bpf_capable) { 20457 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 20458 return -EPERM; 20459 } 20460 if (!env->prog->jit_requested) { 20461 verbose(env, "JIT is required to use arena\n"); 20462 return -EOPNOTSUPP; 20463 } 20464 if (!bpf_jit_supports_arena()) { 20465 verbose(env, "JIT doesn't support arena\n"); 20466 return -EOPNOTSUPP; 20467 } 20468 env->prog->aux->arena = (void *)map; 20469 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 20470 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 20471 return -EINVAL; 20472 } 20473 } 20474 20475 return 0; 20476 } 20477 20478 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 20479 { 20480 int i, err; 20481 20482 /* check whether we recorded this map already */ 20483 for (i = 0; i < env->used_map_cnt; i++) 20484 if (env->used_maps[i] == map) 20485 return i; 20486 20487 if (env->used_map_cnt >= MAX_USED_MAPS) { 20488 verbose(env, "The total number of maps per program has reached the limit of %u\n", 20489 MAX_USED_MAPS); 20490 return -E2BIG; 20491 } 20492 20493 err = check_map_prog_compatibility(env, map, env->prog); 20494 if (err) 20495 return err; 20496 20497 if (env->prog->sleepable) 20498 atomic64_inc(&map->sleepable_refcnt); 20499 20500 /* hold the map. If the program is rejected by verifier, 20501 * the map will be released by release_maps() or it 20502 * will be used by the valid program until it's unloaded 20503 * and all maps are released in bpf_free_used_maps() 20504 */ 20505 bpf_map_inc(map); 20506 20507 env->used_maps[env->used_map_cnt++] = map; 20508 20509 return env->used_map_cnt - 1; 20510 } 20511 20512 /* Add map behind fd to used maps list, if it's not already there, and return 20513 * its index. 20514 * Returns <0 on error, or >= 0 index, on success. 20515 */ 20516 static int add_used_map(struct bpf_verifier_env *env, int fd) 20517 { 20518 struct bpf_map *map; 20519 CLASS(fd, f)(fd); 20520 20521 map = __bpf_map_get(f); 20522 if (IS_ERR(map)) { 20523 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 20524 return PTR_ERR(map); 20525 } 20526 20527 return __add_used_map(env, map); 20528 } 20529 20530 /* find and rewrite pseudo imm in ld_imm64 instructions: 20531 * 20532 * 1. if it accesses map FD, replace it with actual map pointer. 20533 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 20534 * 20535 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 20536 */ 20537 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 20538 { 20539 struct bpf_insn *insn = env->prog->insnsi; 20540 int insn_cnt = env->prog->len; 20541 int i, err; 20542 20543 err = bpf_prog_calc_tag(env->prog); 20544 if (err) 20545 return err; 20546 20547 for (i = 0; i < insn_cnt; i++, insn++) { 20548 if (BPF_CLASS(insn->code) == BPF_LDX && 20549 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 20550 insn->imm != 0)) { 20551 verbose(env, "BPF_LDX uses reserved fields\n"); 20552 return -EINVAL; 20553 } 20554 20555 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 20556 struct bpf_insn_aux_data *aux; 20557 struct bpf_map *map; 20558 int map_idx; 20559 u64 addr; 20560 u32 fd; 20561 20562 if (i == insn_cnt - 1 || insn[1].code != 0 || 20563 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 20564 insn[1].off != 0) { 20565 verbose(env, "invalid bpf_ld_imm64 insn\n"); 20566 return -EINVAL; 20567 } 20568 20569 if (insn[0].src_reg == 0) 20570 /* valid generic load 64-bit imm */ 20571 goto next_insn; 20572 20573 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 20574 aux = &env->insn_aux_data[i]; 20575 err = check_pseudo_btf_id(env, insn, aux); 20576 if (err) 20577 return err; 20578 goto next_insn; 20579 } 20580 20581 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 20582 aux = &env->insn_aux_data[i]; 20583 aux->ptr_type = PTR_TO_FUNC; 20584 goto next_insn; 20585 } 20586 20587 /* In final convert_pseudo_ld_imm64() step, this is 20588 * converted into regular 64-bit imm load insn. 20589 */ 20590 switch (insn[0].src_reg) { 20591 case BPF_PSEUDO_MAP_VALUE: 20592 case BPF_PSEUDO_MAP_IDX_VALUE: 20593 break; 20594 case BPF_PSEUDO_MAP_FD: 20595 case BPF_PSEUDO_MAP_IDX: 20596 if (insn[1].imm == 0) 20597 break; 20598 fallthrough; 20599 default: 20600 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 20601 return -EINVAL; 20602 } 20603 20604 switch (insn[0].src_reg) { 20605 case BPF_PSEUDO_MAP_IDX_VALUE: 20606 case BPF_PSEUDO_MAP_IDX: 20607 if (bpfptr_is_null(env->fd_array)) { 20608 verbose(env, "fd_idx without fd_array is invalid\n"); 20609 return -EPROTO; 20610 } 20611 if (copy_from_bpfptr_offset(&fd, env->fd_array, 20612 insn[0].imm * sizeof(fd), 20613 sizeof(fd))) 20614 return -EFAULT; 20615 break; 20616 default: 20617 fd = insn[0].imm; 20618 break; 20619 } 20620 20621 map_idx = add_used_map(env, fd); 20622 if (map_idx < 0) 20623 return map_idx; 20624 map = env->used_maps[map_idx]; 20625 20626 aux = &env->insn_aux_data[i]; 20627 aux->map_index = map_idx; 20628 20629 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 20630 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 20631 addr = (unsigned long)map; 20632 } else { 20633 u32 off = insn[1].imm; 20634 20635 if (off >= BPF_MAX_VAR_OFF) { 20636 verbose(env, "direct value offset of %u is not allowed\n", off); 20637 return -EINVAL; 20638 } 20639 20640 if (!map->ops->map_direct_value_addr) { 20641 verbose(env, "no direct value access support for this map type\n"); 20642 return -EINVAL; 20643 } 20644 20645 err = map->ops->map_direct_value_addr(map, &addr, off); 20646 if (err) { 20647 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 20648 map->value_size, off); 20649 return err; 20650 } 20651 20652 aux->map_off = off; 20653 addr += off; 20654 } 20655 20656 insn[0].imm = (u32)addr; 20657 insn[1].imm = addr >> 32; 20658 20659 next_insn: 20660 insn++; 20661 i++; 20662 continue; 20663 } 20664 20665 /* Basic sanity check before we invest more work here. */ 20666 if (!bpf_opcode_in_insntable(insn->code)) { 20667 verbose(env, "unknown opcode %02x\n", insn->code); 20668 return -EINVAL; 20669 } 20670 } 20671 20672 /* now all pseudo BPF_LD_IMM64 instructions load valid 20673 * 'struct bpf_map *' into a register instead of user map_fd. 20674 * These pointers will be used later by verifier to validate map access. 20675 */ 20676 return 0; 20677 } 20678 20679 /* drop refcnt of maps used by the rejected program */ 20680 static void release_maps(struct bpf_verifier_env *env) 20681 { 20682 __bpf_free_used_maps(env->prog->aux, env->used_maps, 20683 env->used_map_cnt); 20684 } 20685 20686 /* drop refcnt of maps used by the rejected program */ 20687 static void release_btfs(struct bpf_verifier_env *env) 20688 { 20689 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 20690 } 20691 20692 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 20693 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 20694 { 20695 struct bpf_insn *insn = env->prog->insnsi; 20696 int insn_cnt = env->prog->len; 20697 int i; 20698 20699 for (i = 0; i < insn_cnt; i++, insn++) { 20700 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 20701 continue; 20702 if (insn->src_reg == BPF_PSEUDO_FUNC) 20703 continue; 20704 insn->src_reg = 0; 20705 } 20706 } 20707 20708 /* single env->prog->insni[off] instruction was replaced with the range 20709 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 20710 * [0, off) and [off, end) to new locations, so the patched range stays zero 20711 */ 20712 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 20713 struct bpf_insn_aux_data *new_data, 20714 struct bpf_prog *new_prog, u32 off, u32 cnt) 20715 { 20716 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 20717 struct bpf_insn *insn = new_prog->insnsi; 20718 u32 old_seen = old_data[off].seen; 20719 u32 prog_len; 20720 int i; 20721 20722 /* aux info at OFF always needs adjustment, no matter fast path 20723 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 20724 * original insn at old prog. 20725 */ 20726 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 20727 20728 if (cnt == 1) 20729 return; 20730 prog_len = new_prog->len; 20731 20732 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 20733 memcpy(new_data + off + cnt - 1, old_data + off, 20734 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 20735 for (i = off; i < off + cnt - 1; i++) { 20736 /* Expand insni[off]'s seen count to the patched range. */ 20737 new_data[i].seen = old_seen; 20738 new_data[i].zext_dst = insn_has_def32(env, insn + i); 20739 } 20740 env->insn_aux_data = new_data; 20741 vfree(old_data); 20742 } 20743 20744 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 20745 { 20746 int i; 20747 20748 if (len == 1) 20749 return; 20750 /* NOTE: fake 'exit' subprog should be updated as well. */ 20751 for (i = 0; i <= env->subprog_cnt; i++) { 20752 if (env->subprog_info[i].start <= off) 20753 continue; 20754 env->subprog_info[i].start += len - 1; 20755 } 20756 } 20757 20758 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 20759 { 20760 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 20761 int i, sz = prog->aux->size_poke_tab; 20762 struct bpf_jit_poke_descriptor *desc; 20763 20764 for (i = 0; i < sz; i++) { 20765 desc = &tab[i]; 20766 if (desc->insn_idx <= off) 20767 continue; 20768 desc->insn_idx += len - 1; 20769 } 20770 } 20771 20772 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 20773 const struct bpf_insn *patch, u32 len) 20774 { 20775 struct bpf_prog *new_prog; 20776 struct bpf_insn_aux_data *new_data = NULL; 20777 20778 if (len > 1) { 20779 new_data = vzalloc(array_size(env->prog->len + len - 1, 20780 sizeof(struct bpf_insn_aux_data))); 20781 if (!new_data) 20782 return NULL; 20783 } 20784 20785 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 20786 if (IS_ERR(new_prog)) { 20787 if (PTR_ERR(new_prog) == -ERANGE) 20788 verbose(env, 20789 "insn %d cannot be patched due to 16-bit range\n", 20790 env->insn_aux_data[off].orig_idx); 20791 vfree(new_data); 20792 return NULL; 20793 } 20794 adjust_insn_aux_data(env, new_data, new_prog, off, len); 20795 adjust_subprog_starts(env, off, len); 20796 adjust_poke_descs(new_prog, off, len); 20797 return new_prog; 20798 } 20799 20800 /* 20801 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 20802 * jump offset by 'delta'. 20803 */ 20804 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 20805 { 20806 struct bpf_insn *insn = prog->insnsi; 20807 u32 insn_cnt = prog->len, i; 20808 s32 imm; 20809 s16 off; 20810 20811 for (i = 0; i < insn_cnt; i++, insn++) { 20812 u8 code = insn->code; 20813 20814 if (tgt_idx <= i && i < tgt_idx + delta) 20815 continue; 20816 20817 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 20818 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 20819 continue; 20820 20821 if (insn->code == (BPF_JMP32 | BPF_JA)) { 20822 if (i + 1 + insn->imm != tgt_idx) 20823 continue; 20824 if (check_add_overflow(insn->imm, delta, &imm)) 20825 return -ERANGE; 20826 insn->imm = imm; 20827 } else { 20828 if (i + 1 + insn->off != tgt_idx) 20829 continue; 20830 if (check_add_overflow(insn->off, delta, &off)) 20831 return -ERANGE; 20832 insn->off = off; 20833 } 20834 } 20835 return 0; 20836 } 20837 20838 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 20839 u32 off, u32 cnt) 20840 { 20841 int i, j; 20842 20843 /* find first prog starting at or after off (first to remove) */ 20844 for (i = 0; i < env->subprog_cnt; i++) 20845 if (env->subprog_info[i].start >= off) 20846 break; 20847 /* find first prog starting at or after off + cnt (first to stay) */ 20848 for (j = i; j < env->subprog_cnt; j++) 20849 if (env->subprog_info[j].start >= off + cnt) 20850 break; 20851 /* if j doesn't start exactly at off + cnt, we are just removing 20852 * the front of previous prog 20853 */ 20854 if (env->subprog_info[j].start != off + cnt) 20855 j--; 20856 20857 if (j > i) { 20858 struct bpf_prog_aux *aux = env->prog->aux; 20859 int move; 20860 20861 /* move fake 'exit' subprog as well */ 20862 move = env->subprog_cnt + 1 - j; 20863 20864 memmove(env->subprog_info + i, 20865 env->subprog_info + j, 20866 sizeof(*env->subprog_info) * move); 20867 env->subprog_cnt -= j - i; 20868 20869 /* remove func_info */ 20870 if (aux->func_info) { 20871 move = aux->func_info_cnt - j; 20872 20873 memmove(aux->func_info + i, 20874 aux->func_info + j, 20875 sizeof(*aux->func_info) * move); 20876 aux->func_info_cnt -= j - i; 20877 /* func_info->insn_off is set after all code rewrites, 20878 * in adjust_btf_func() - no need to adjust 20879 */ 20880 } 20881 } else { 20882 /* convert i from "first prog to remove" to "first to adjust" */ 20883 if (env->subprog_info[i].start == off) 20884 i++; 20885 } 20886 20887 /* update fake 'exit' subprog as well */ 20888 for (; i <= env->subprog_cnt; i++) 20889 env->subprog_info[i].start -= cnt; 20890 20891 return 0; 20892 } 20893 20894 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20895 u32 cnt) 20896 { 20897 struct bpf_prog *prog = env->prog; 20898 u32 i, l_off, l_cnt, nr_linfo; 20899 struct bpf_line_info *linfo; 20900 20901 nr_linfo = prog->aux->nr_linfo; 20902 if (!nr_linfo) 20903 return 0; 20904 20905 linfo = prog->aux->linfo; 20906 20907 /* find first line info to remove, count lines to be removed */ 20908 for (i = 0; i < nr_linfo; i++) 20909 if (linfo[i].insn_off >= off) 20910 break; 20911 20912 l_off = i; 20913 l_cnt = 0; 20914 for (; i < nr_linfo; i++) 20915 if (linfo[i].insn_off < off + cnt) 20916 l_cnt++; 20917 else 20918 break; 20919 20920 /* First live insn doesn't match first live linfo, it needs to "inherit" 20921 * last removed linfo. prog is already modified, so prog->len == off 20922 * means no live instructions after (tail of the program was removed). 20923 */ 20924 if (prog->len != off && l_cnt && 20925 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20926 l_cnt--; 20927 linfo[--i].insn_off = off + cnt; 20928 } 20929 20930 /* remove the line info which refer to the removed instructions */ 20931 if (l_cnt) { 20932 memmove(linfo + l_off, linfo + i, 20933 sizeof(*linfo) * (nr_linfo - i)); 20934 20935 prog->aux->nr_linfo -= l_cnt; 20936 nr_linfo = prog->aux->nr_linfo; 20937 } 20938 20939 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20940 for (i = l_off; i < nr_linfo; i++) 20941 linfo[i].insn_off -= cnt; 20942 20943 /* fix up all subprogs (incl. 'exit') which start >= off */ 20944 for (i = 0; i <= env->subprog_cnt; i++) 20945 if (env->subprog_info[i].linfo_idx > l_off) { 20946 /* program may have started in the removed region but 20947 * may not be fully removed 20948 */ 20949 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20950 env->subprog_info[i].linfo_idx -= l_cnt; 20951 else 20952 env->subprog_info[i].linfo_idx = l_off; 20953 } 20954 20955 return 0; 20956 } 20957 20958 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20959 { 20960 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20961 unsigned int orig_prog_len = env->prog->len; 20962 int err; 20963 20964 if (bpf_prog_is_offloaded(env->prog->aux)) 20965 bpf_prog_offload_remove_insns(env, off, cnt); 20966 20967 err = bpf_remove_insns(env->prog, off, cnt); 20968 if (err) 20969 return err; 20970 20971 err = adjust_subprog_starts_after_remove(env, off, cnt); 20972 if (err) 20973 return err; 20974 20975 err = bpf_adj_linfo_after_remove(env, off, cnt); 20976 if (err) 20977 return err; 20978 20979 memmove(aux_data + off, aux_data + off + cnt, 20980 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20981 20982 return 0; 20983 } 20984 20985 /* The verifier does more data flow analysis than llvm and will not 20986 * explore branches that are dead at run time. Malicious programs can 20987 * have dead code too. Therefore replace all dead at-run-time code 20988 * with 'ja -1'. 20989 * 20990 * Just nops are not optimal, e.g. if they would sit at the end of the 20991 * program and through another bug we would manage to jump there, then 20992 * we'd execute beyond program memory otherwise. Returning exception 20993 * code also wouldn't work since we can have subprogs where the dead 20994 * code could be located. 20995 */ 20996 static void sanitize_dead_code(struct bpf_verifier_env *env) 20997 { 20998 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20999 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 21000 struct bpf_insn *insn = env->prog->insnsi; 21001 const int insn_cnt = env->prog->len; 21002 int i; 21003 21004 for (i = 0; i < insn_cnt; i++) { 21005 if (aux_data[i].seen) 21006 continue; 21007 memcpy(insn + i, &trap, sizeof(trap)); 21008 aux_data[i].zext_dst = false; 21009 } 21010 } 21011 21012 static bool insn_is_cond_jump(u8 code) 21013 { 21014 u8 op; 21015 21016 op = BPF_OP(code); 21017 if (BPF_CLASS(code) == BPF_JMP32) 21018 return op != BPF_JA; 21019 21020 if (BPF_CLASS(code) != BPF_JMP) 21021 return false; 21022 21023 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 21024 } 21025 21026 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 21027 { 21028 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21029 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21030 struct bpf_insn *insn = env->prog->insnsi; 21031 const int insn_cnt = env->prog->len; 21032 int i; 21033 21034 for (i = 0; i < insn_cnt; i++, insn++) { 21035 if (!insn_is_cond_jump(insn->code)) 21036 continue; 21037 21038 if (!aux_data[i + 1].seen) 21039 ja.off = insn->off; 21040 else if (!aux_data[i + 1 + insn->off].seen) 21041 ja.off = 0; 21042 else 21043 continue; 21044 21045 if (bpf_prog_is_offloaded(env->prog->aux)) 21046 bpf_prog_offload_replace_insn(env, i, &ja); 21047 21048 memcpy(insn, &ja, sizeof(ja)); 21049 } 21050 } 21051 21052 static int opt_remove_dead_code(struct bpf_verifier_env *env) 21053 { 21054 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21055 int insn_cnt = env->prog->len; 21056 int i, err; 21057 21058 for (i = 0; i < insn_cnt; i++) { 21059 int j; 21060 21061 j = 0; 21062 while (i + j < insn_cnt && !aux_data[i + j].seen) 21063 j++; 21064 if (!j) 21065 continue; 21066 21067 err = verifier_remove_insns(env, i, j); 21068 if (err) 21069 return err; 21070 insn_cnt = env->prog->len; 21071 } 21072 21073 return 0; 21074 } 21075 21076 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21077 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 21078 21079 static int opt_remove_nops(struct bpf_verifier_env *env) 21080 { 21081 struct bpf_insn *insn = env->prog->insnsi; 21082 int insn_cnt = env->prog->len; 21083 bool is_may_goto_0, is_ja; 21084 int i, err; 21085 21086 for (i = 0; i < insn_cnt; i++) { 21087 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 21088 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 21089 21090 if (!is_may_goto_0 && !is_ja) 21091 continue; 21092 21093 err = verifier_remove_insns(env, i, 1); 21094 if (err) 21095 return err; 21096 insn_cnt--; 21097 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 21098 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 21099 } 21100 21101 return 0; 21102 } 21103 21104 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 21105 const union bpf_attr *attr) 21106 { 21107 struct bpf_insn *patch; 21108 /* use env->insn_buf as two independent buffers */ 21109 struct bpf_insn *zext_patch = env->insn_buf; 21110 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2]; 21111 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21112 int i, patch_len, delta = 0, len = env->prog->len; 21113 struct bpf_insn *insns = env->prog->insnsi; 21114 struct bpf_prog *new_prog; 21115 bool rnd_hi32; 21116 21117 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 21118 zext_patch[1] = BPF_ZEXT_REG(0); 21119 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 21120 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 21121 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 21122 for (i = 0; i < len; i++) { 21123 int adj_idx = i + delta; 21124 struct bpf_insn insn; 21125 int load_reg; 21126 21127 insn = insns[adj_idx]; 21128 load_reg = insn_def_regno(&insn); 21129 if (!aux[adj_idx].zext_dst) { 21130 u8 code, class; 21131 u32 imm_rnd; 21132 21133 if (!rnd_hi32) 21134 continue; 21135 21136 code = insn.code; 21137 class = BPF_CLASS(code); 21138 if (load_reg == -1) 21139 continue; 21140 21141 /* NOTE: arg "reg" (the fourth one) is only used for 21142 * BPF_STX + SRC_OP, so it is safe to pass NULL 21143 * here. 21144 */ 21145 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 21146 if (class == BPF_LD && 21147 BPF_MODE(code) == BPF_IMM) 21148 i++; 21149 continue; 21150 } 21151 21152 /* ctx load could be transformed into wider load. */ 21153 if (class == BPF_LDX && 21154 aux[adj_idx].ptr_type == PTR_TO_CTX) 21155 continue; 21156 21157 imm_rnd = get_random_u32(); 21158 rnd_hi32_patch[0] = insn; 21159 rnd_hi32_patch[1].imm = imm_rnd; 21160 rnd_hi32_patch[3].dst_reg = load_reg; 21161 patch = rnd_hi32_patch; 21162 patch_len = 4; 21163 goto apply_patch_buffer; 21164 } 21165 21166 /* Add in an zero-extend instruction if a) the JIT has requested 21167 * it or b) it's a CMPXCHG. 21168 * 21169 * The latter is because: BPF_CMPXCHG always loads a value into 21170 * R0, therefore always zero-extends. However some archs' 21171 * equivalent instruction only does this load when the 21172 * comparison is successful. This detail of CMPXCHG is 21173 * orthogonal to the general zero-extension behaviour of the 21174 * CPU, so it's treated independently of bpf_jit_needs_zext. 21175 */ 21176 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 21177 continue; 21178 21179 /* Zero-extension is done by the caller. */ 21180 if (bpf_pseudo_kfunc_call(&insn)) 21181 continue; 21182 21183 if (verifier_bug_if(load_reg == -1, env, 21184 "zext_dst is set, but no reg is defined")) 21185 return -EFAULT; 21186 21187 zext_patch[0] = insn; 21188 zext_patch[1].dst_reg = load_reg; 21189 zext_patch[1].src_reg = load_reg; 21190 patch = zext_patch; 21191 patch_len = 2; 21192 apply_patch_buffer: 21193 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 21194 if (!new_prog) 21195 return -ENOMEM; 21196 env->prog = new_prog; 21197 insns = new_prog->insnsi; 21198 aux = env->insn_aux_data; 21199 delta += patch_len - 1; 21200 } 21201 21202 return 0; 21203 } 21204 21205 /* convert load instructions that access fields of a context type into a 21206 * sequence of instructions that access fields of the underlying structure: 21207 * struct __sk_buff -> struct sk_buff 21208 * struct bpf_sock_ops -> struct sock 21209 */ 21210 static int convert_ctx_accesses(struct bpf_verifier_env *env) 21211 { 21212 struct bpf_subprog_info *subprogs = env->subprog_info; 21213 const struct bpf_verifier_ops *ops = env->ops; 21214 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 21215 const int insn_cnt = env->prog->len; 21216 struct bpf_insn *epilogue_buf = env->epilogue_buf; 21217 struct bpf_insn *insn_buf = env->insn_buf; 21218 struct bpf_insn *insn; 21219 u32 target_size, size_default, off; 21220 struct bpf_prog *new_prog; 21221 enum bpf_access_type type; 21222 bool is_narrower_load; 21223 int epilogue_idx = 0; 21224 21225 if (ops->gen_epilogue) { 21226 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 21227 -(subprogs[0].stack_depth + 8)); 21228 if (epilogue_cnt >= INSN_BUF_SIZE) { 21229 verifier_bug(env, "epilogue is too long"); 21230 return -EFAULT; 21231 } else if (epilogue_cnt) { 21232 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 21233 cnt = 0; 21234 subprogs[0].stack_depth += 8; 21235 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 21236 -subprogs[0].stack_depth); 21237 insn_buf[cnt++] = env->prog->insnsi[0]; 21238 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21239 if (!new_prog) 21240 return -ENOMEM; 21241 env->prog = new_prog; 21242 delta += cnt - 1; 21243 21244 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 21245 if (ret < 0) 21246 return ret; 21247 } 21248 } 21249 21250 if (ops->gen_prologue || env->seen_direct_write) { 21251 if (!ops->gen_prologue) { 21252 verifier_bug(env, "gen_prologue is null"); 21253 return -EFAULT; 21254 } 21255 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 21256 env->prog); 21257 if (cnt >= INSN_BUF_SIZE) { 21258 verifier_bug(env, "prologue is too long"); 21259 return -EFAULT; 21260 } else if (cnt) { 21261 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21262 if (!new_prog) 21263 return -ENOMEM; 21264 21265 env->prog = new_prog; 21266 delta += cnt - 1; 21267 21268 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 21269 if (ret < 0) 21270 return ret; 21271 } 21272 } 21273 21274 if (delta) 21275 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 21276 21277 if (bpf_prog_is_offloaded(env->prog->aux)) 21278 return 0; 21279 21280 insn = env->prog->insnsi + delta; 21281 21282 for (i = 0; i < insn_cnt; i++, insn++) { 21283 bpf_convert_ctx_access_t convert_ctx_access; 21284 u8 mode; 21285 21286 if (env->insn_aux_data[i + delta].nospec) { 21287 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); 21288 struct bpf_insn *patch = insn_buf; 21289 21290 *patch++ = BPF_ST_NOSPEC(); 21291 *patch++ = *insn; 21292 cnt = patch - insn_buf; 21293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21294 if (!new_prog) 21295 return -ENOMEM; 21296 21297 delta += cnt - 1; 21298 env->prog = new_prog; 21299 insn = new_prog->insnsi + i + delta; 21300 /* This can not be easily merged with the 21301 * nospec_result-case, because an insn may require a 21302 * nospec before and after itself. Therefore also do not 21303 * 'continue' here but potentially apply further 21304 * patching to insn. *insn should equal patch[1] now. 21305 */ 21306 } 21307 21308 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 21309 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 21310 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 21311 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 21312 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 21313 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 21314 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 21315 type = BPF_READ; 21316 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 21317 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 21318 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 21319 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 21320 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 21321 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 21322 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 21323 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 21324 type = BPF_WRITE; 21325 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 21326 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 21327 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 21328 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 21329 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 21330 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 21331 env->prog->aux->num_exentries++; 21332 continue; 21333 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 21334 epilogue_cnt && 21335 i + delta < subprogs[1].start) { 21336 /* Generate epilogue for the main prog */ 21337 if (epilogue_idx) { 21338 /* jump back to the earlier generated epilogue */ 21339 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 21340 cnt = 1; 21341 } else { 21342 memcpy(insn_buf, epilogue_buf, 21343 epilogue_cnt * sizeof(*epilogue_buf)); 21344 cnt = epilogue_cnt; 21345 /* epilogue_idx cannot be 0. It must have at 21346 * least one ctx ptr saving insn before the 21347 * epilogue. 21348 */ 21349 epilogue_idx = i + delta; 21350 } 21351 goto patch_insn_buf; 21352 } else { 21353 continue; 21354 } 21355 21356 if (type == BPF_WRITE && 21357 env->insn_aux_data[i + delta].nospec_result) { 21358 /* nospec_result is only used to mitigate Spectre v4 and 21359 * to limit verification-time for Spectre v1. 21360 */ 21361 struct bpf_insn *patch = insn_buf; 21362 21363 *patch++ = *insn; 21364 *patch++ = BPF_ST_NOSPEC(); 21365 cnt = patch - insn_buf; 21366 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21367 if (!new_prog) 21368 return -ENOMEM; 21369 21370 delta += cnt - 1; 21371 env->prog = new_prog; 21372 insn = new_prog->insnsi + i + delta; 21373 continue; 21374 } 21375 21376 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 21377 case PTR_TO_CTX: 21378 if (!ops->convert_ctx_access) 21379 continue; 21380 convert_ctx_access = ops->convert_ctx_access; 21381 break; 21382 case PTR_TO_SOCKET: 21383 case PTR_TO_SOCK_COMMON: 21384 convert_ctx_access = bpf_sock_convert_ctx_access; 21385 break; 21386 case PTR_TO_TCP_SOCK: 21387 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 21388 break; 21389 case PTR_TO_XDP_SOCK: 21390 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 21391 break; 21392 case PTR_TO_BTF_ID: 21393 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 21394 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 21395 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 21396 * be said once it is marked PTR_UNTRUSTED, hence we must handle 21397 * any faults for loads into such types. BPF_WRITE is disallowed 21398 * for this case. 21399 */ 21400 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 21401 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: 21402 if (type == BPF_READ) { 21403 if (BPF_MODE(insn->code) == BPF_MEM) 21404 insn->code = BPF_LDX | BPF_PROBE_MEM | 21405 BPF_SIZE((insn)->code); 21406 else 21407 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 21408 BPF_SIZE((insn)->code); 21409 env->prog->aux->num_exentries++; 21410 } 21411 continue; 21412 case PTR_TO_ARENA: 21413 if (BPF_MODE(insn->code) == BPF_MEMSX) { 21414 verbose(env, "sign extending loads from arena are not supported yet\n"); 21415 return -EOPNOTSUPP; 21416 } 21417 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 21418 env->prog->aux->num_exentries++; 21419 continue; 21420 default: 21421 continue; 21422 } 21423 21424 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 21425 size = BPF_LDST_BYTES(insn); 21426 mode = BPF_MODE(insn->code); 21427 21428 /* If the read access is a narrower load of the field, 21429 * convert to a 4/8-byte load, to minimum program type specific 21430 * convert_ctx_access changes. If conversion is successful, 21431 * we will apply proper mask to the result. 21432 */ 21433 is_narrower_load = size < ctx_field_size; 21434 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 21435 off = insn->off; 21436 if (is_narrower_load) { 21437 u8 size_code; 21438 21439 if (type == BPF_WRITE) { 21440 verifier_bug(env, "narrow ctx access misconfigured"); 21441 return -EFAULT; 21442 } 21443 21444 size_code = BPF_H; 21445 if (ctx_field_size == 4) 21446 size_code = BPF_W; 21447 else if (ctx_field_size == 8) 21448 size_code = BPF_DW; 21449 21450 insn->off = off & ~(size_default - 1); 21451 insn->code = BPF_LDX | BPF_MEM | size_code; 21452 } 21453 21454 target_size = 0; 21455 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 21456 &target_size); 21457 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 21458 (ctx_field_size && !target_size)) { 21459 verifier_bug(env, "error during ctx access conversion (%d)", cnt); 21460 return -EFAULT; 21461 } 21462 21463 if (is_narrower_load && size < target_size) { 21464 u8 shift = bpf_ctx_narrow_access_offset( 21465 off, size, size_default) * 8; 21466 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 21467 verifier_bug(env, "narrow ctx load misconfigured"); 21468 return -EFAULT; 21469 } 21470 if (ctx_field_size <= 4) { 21471 if (shift) 21472 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 21473 insn->dst_reg, 21474 shift); 21475 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21476 (1 << size * 8) - 1); 21477 } else { 21478 if (shift) 21479 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 21480 insn->dst_reg, 21481 shift); 21482 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21483 (1ULL << size * 8) - 1); 21484 } 21485 } 21486 if (mode == BPF_MEMSX) 21487 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 21488 insn->dst_reg, insn->dst_reg, 21489 size * 8, 0); 21490 21491 patch_insn_buf: 21492 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21493 if (!new_prog) 21494 return -ENOMEM; 21495 21496 delta += cnt - 1; 21497 21498 /* keep walking new program and skip insns we just inserted */ 21499 env->prog = new_prog; 21500 insn = new_prog->insnsi + i + delta; 21501 } 21502 21503 return 0; 21504 } 21505 21506 static int jit_subprogs(struct bpf_verifier_env *env) 21507 { 21508 struct bpf_prog *prog = env->prog, **func, *tmp; 21509 int i, j, subprog_start, subprog_end = 0, len, subprog; 21510 struct bpf_map *map_ptr; 21511 struct bpf_insn *insn; 21512 void *old_bpf_func; 21513 int err, num_exentries; 21514 21515 if (env->subprog_cnt <= 1) 21516 return 0; 21517 21518 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21519 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 21520 continue; 21521 21522 /* Upon error here we cannot fall back to interpreter but 21523 * need a hard reject of the program. Thus -EFAULT is 21524 * propagated in any case. 21525 */ 21526 subprog = find_subprog(env, i + insn->imm + 1); 21527 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 21528 i + insn->imm + 1)) 21529 return -EFAULT; 21530 /* temporarily remember subprog id inside insn instead of 21531 * aux_data, since next loop will split up all insns into funcs 21532 */ 21533 insn->off = subprog; 21534 /* remember original imm in case JIT fails and fallback 21535 * to interpreter will be needed 21536 */ 21537 env->insn_aux_data[i].call_imm = insn->imm; 21538 /* point imm to __bpf_call_base+1 from JITs point of view */ 21539 insn->imm = 1; 21540 if (bpf_pseudo_func(insn)) { 21541 #if defined(MODULES_VADDR) 21542 u64 addr = MODULES_VADDR; 21543 #else 21544 u64 addr = VMALLOC_START; 21545 #endif 21546 /* jit (e.g. x86_64) may emit fewer instructions 21547 * if it learns a u32 imm is the same as a u64 imm. 21548 * Set close enough to possible prog address. 21549 */ 21550 insn[0].imm = (u32)addr; 21551 insn[1].imm = addr >> 32; 21552 } 21553 } 21554 21555 err = bpf_prog_alloc_jited_linfo(prog); 21556 if (err) 21557 goto out_undo_insn; 21558 21559 err = -ENOMEM; 21560 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 21561 if (!func) 21562 goto out_undo_insn; 21563 21564 for (i = 0; i < env->subprog_cnt; i++) { 21565 subprog_start = subprog_end; 21566 subprog_end = env->subprog_info[i + 1].start; 21567 21568 len = subprog_end - subprog_start; 21569 /* bpf_prog_run() doesn't call subprogs directly, 21570 * hence main prog stats include the runtime of subprogs. 21571 * subprogs don't have IDs and not reachable via prog_get_next_id 21572 * func[i]->stats will never be accessed and stays NULL 21573 */ 21574 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 21575 if (!func[i]) 21576 goto out_free; 21577 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 21578 len * sizeof(struct bpf_insn)); 21579 func[i]->type = prog->type; 21580 func[i]->len = len; 21581 if (bpf_prog_calc_tag(func[i])) 21582 goto out_free; 21583 func[i]->is_func = 1; 21584 func[i]->sleepable = prog->sleepable; 21585 func[i]->aux->func_idx = i; 21586 /* Below members will be freed only at prog->aux */ 21587 func[i]->aux->btf = prog->aux->btf; 21588 func[i]->aux->func_info = prog->aux->func_info; 21589 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 21590 func[i]->aux->poke_tab = prog->aux->poke_tab; 21591 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 21592 21593 for (j = 0; j < prog->aux->size_poke_tab; j++) { 21594 struct bpf_jit_poke_descriptor *poke; 21595 21596 poke = &prog->aux->poke_tab[j]; 21597 if (poke->insn_idx < subprog_end && 21598 poke->insn_idx >= subprog_start) 21599 poke->aux = func[i]->aux; 21600 } 21601 21602 func[i]->aux->name[0] = 'F'; 21603 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 21604 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 21605 func[i]->aux->jits_use_priv_stack = true; 21606 21607 func[i]->jit_requested = 1; 21608 func[i]->blinding_requested = prog->blinding_requested; 21609 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 21610 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 21611 func[i]->aux->linfo = prog->aux->linfo; 21612 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 21613 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 21614 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 21615 func[i]->aux->arena = prog->aux->arena; 21616 num_exentries = 0; 21617 insn = func[i]->insnsi; 21618 for (j = 0; j < func[i]->len; j++, insn++) { 21619 if (BPF_CLASS(insn->code) == BPF_LDX && 21620 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21621 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 21622 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 21623 num_exentries++; 21624 if ((BPF_CLASS(insn->code) == BPF_STX || 21625 BPF_CLASS(insn->code) == BPF_ST) && 21626 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 21627 num_exentries++; 21628 if (BPF_CLASS(insn->code) == BPF_STX && 21629 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 21630 num_exentries++; 21631 } 21632 func[i]->aux->num_exentries = num_exentries; 21633 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 21634 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 21635 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 21636 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 21637 if (!i) 21638 func[i]->aux->exception_boundary = env->seen_exception; 21639 func[i] = bpf_int_jit_compile(func[i]); 21640 if (!func[i]->jited) { 21641 err = -ENOTSUPP; 21642 goto out_free; 21643 } 21644 cond_resched(); 21645 } 21646 21647 /* at this point all bpf functions were successfully JITed 21648 * now populate all bpf_calls with correct addresses and 21649 * run last pass of JIT 21650 */ 21651 for (i = 0; i < env->subprog_cnt; i++) { 21652 insn = func[i]->insnsi; 21653 for (j = 0; j < func[i]->len; j++, insn++) { 21654 if (bpf_pseudo_func(insn)) { 21655 subprog = insn->off; 21656 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 21657 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 21658 continue; 21659 } 21660 if (!bpf_pseudo_call(insn)) 21661 continue; 21662 subprog = insn->off; 21663 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 21664 } 21665 21666 /* we use the aux data to keep a list of the start addresses 21667 * of the JITed images for each function in the program 21668 * 21669 * for some architectures, such as powerpc64, the imm field 21670 * might not be large enough to hold the offset of the start 21671 * address of the callee's JITed image from __bpf_call_base 21672 * 21673 * in such cases, we can lookup the start address of a callee 21674 * by using its subprog id, available from the off field of 21675 * the call instruction, as an index for this list 21676 */ 21677 func[i]->aux->func = func; 21678 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21679 func[i]->aux->real_func_cnt = env->subprog_cnt; 21680 } 21681 for (i = 0; i < env->subprog_cnt; i++) { 21682 old_bpf_func = func[i]->bpf_func; 21683 tmp = bpf_int_jit_compile(func[i]); 21684 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 21685 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 21686 err = -ENOTSUPP; 21687 goto out_free; 21688 } 21689 cond_resched(); 21690 } 21691 21692 /* finally lock prog and jit images for all functions and 21693 * populate kallsysm. Begin at the first subprogram, since 21694 * bpf_prog_load will add the kallsyms for the main program. 21695 */ 21696 for (i = 1; i < env->subprog_cnt; i++) { 21697 err = bpf_prog_lock_ro(func[i]); 21698 if (err) 21699 goto out_free; 21700 } 21701 21702 for (i = 1; i < env->subprog_cnt; i++) 21703 bpf_prog_kallsyms_add(func[i]); 21704 21705 /* Last step: make now unused interpreter insns from main 21706 * prog consistent for later dump requests, so they can 21707 * later look the same as if they were interpreted only. 21708 */ 21709 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21710 if (bpf_pseudo_func(insn)) { 21711 insn[0].imm = env->insn_aux_data[i].call_imm; 21712 insn[1].imm = insn->off; 21713 insn->off = 0; 21714 continue; 21715 } 21716 if (!bpf_pseudo_call(insn)) 21717 continue; 21718 insn->off = env->insn_aux_data[i].call_imm; 21719 subprog = find_subprog(env, i + insn->off + 1); 21720 insn->imm = subprog; 21721 } 21722 21723 prog->jited = 1; 21724 prog->bpf_func = func[0]->bpf_func; 21725 prog->jited_len = func[0]->jited_len; 21726 prog->aux->extable = func[0]->aux->extable; 21727 prog->aux->num_exentries = func[0]->aux->num_exentries; 21728 prog->aux->func = func; 21729 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21730 prog->aux->real_func_cnt = env->subprog_cnt; 21731 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 21732 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 21733 bpf_prog_jit_attempt_done(prog); 21734 return 0; 21735 out_free: 21736 /* We failed JIT'ing, so at this point we need to unregister poke 21737 * descriptors from subprogs, so that kernel is not attempting to 21738 * patch it anymore as we're freeing the subprog JIT memory. 21739 */ 21740 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21741 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21742 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 21743 } 21744 /* At this point we're guaranteed that poke descriptors are not 21745 * live anymore. We can just unlink its descriptor table as it's 21746 * released with the main prog. 21747 */ 21748 for (i = 0; i < env->subprog_cnt; i++) { 21749 if (!func[i]) 21750 continue; 21751 func[i]->aux->poke_tab = NULL; 21752 bpf_jit_free(func[i]); 21753 } 21754 kfree(func); 21755 out_undo_insn: 21756 /* cleanup main prog to be interpreted */ 21757 prog->jit_requested = 0; 21758 prog->blinding_requested = 0; 21759 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21760 if (!bpf_pseudo_call(insn)) 21761 continue; 21762 insn->off = 0; 21763 insn->imm = env->insn_aux_data[i].call_imm; 21764 } 21765 bpf_prog_jit_attempt_done(prog); 21766 return err; 21767 } 21768 21769 static int fixup_call_args(struct bpf_verifier_env *env) 21770 { 21771 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21772 struct bpf_prog *prog = env->prog; 21773 struct bpf_insn *insn = prog->insnsi; 21774 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 21775 int i, depth; 21776 #endif 21777 int err = 0; 21778 21779 if (env->prog->jit_requested && 21780 !bpf_prog_is_offloaded(env->prog->aux)) { 21781 err = jit_subprogs(env); 21782 if (err == 0) 21783 return 0; 21784 if (err == -EFAULT) 21785 return err; 21786 } 21787 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21788 if (has_kfunc_call) { 21789 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 21790 return -EINVAL; 21791 } 21792 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 21793 /* When JIT fails the progs with bpf2bpf calls and tail_calls 21794 * have to be rejected, since interpreter doesn't support them yet. 21795 */ 21796 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 21797 return -EINVAL; 21798 } 21799 for (i = 0; i < prog->len; i++, insn++) { 21800 if (bpf_pseudo_func(insn)) { 21801 /* When JIT fails the progs with callback calls 21802 * have to be rejected, since interpreter doesn't support them yet. 21803 */ 21804 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 21805 return -EINVAL; 21806 } 21807 21808 if (!bpf_pseudo_call(insn)) 21809 continue; 21810 depth = get_callee_stack_depth(env, insn, i); 21811 if (depth < 0) 21812 return depth; 21813 bpf_patch_call_args(insn, depth); 21814 } 21815 err = 0; 21816 #endif 21817 return err; 21818 } 21819 21820 /* replace a generic kfunc with a specialized version if necessary */ 21821 static void specialize_kfunc(struct bpf_verifier_env *env, 21822 u32 func_id, u16 offset, unsigned long *addr) 21823 { 21824 struct bpf_prog *prog = env->prog; 21825 bool seen_direct_write; 21826 void *xdp_kfunc; 21827 bool is_rdonly; 21828 21829 if (bpf_dev_bound_kfunc_id(func_id)) { 21830 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 21831 if (xdp_kfunc) { 21832 *addr = (unsigned long)xdp_kfunc; 21833 return; 21834 } 21835 /* fallback to default kfunc when not supported by netdev */ 21836 } 21837 21838 if (offset) 21839 return; 21840 21841 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 21842 seen_direct_write = env->seen_direct_write; 21843 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 21844 21845 if (is_rdonly) 21846 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 21847 21848 /* restore env->seen_direct_write to its original value, since 21849 * may_access_direct_pkt_data mutates it 21850 */ 21851 env->seen_direct_write = seen_direct_write; 21852 } 21853 21854 if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] && 21855 bpf_lsm_has_d_inode_locked(prog)) 21856 *addr = (unsigned long)bpf_set_dentry_xattr_locked; 21857 21858 if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] && 21859 bpf_lsm_has_d_inode_locked(prog)) 21860 *addr = (unsigned long)bpf_remove_dentry_xattr_locked; 21861 } 21862 21863 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 21864 u16 struct_meta_reg, 21865 u16 node_offset_reg, 21866 struct bpf_insn *insn, 21867 struct bpf_insn *insn_buf, 21868 int *cnt) 21869 { 21870 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 21871 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 21872 21873 insn_buf[0] = addr[0]; 21874 insn_buf[1] = addr[1]; 21875 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 21876 insn_buf[3] = *insn; 21877 *cnt = 4; 21878 } 21879 21880 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 21881 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 21882 { 21883 const struct bpf_kfunc_desc *desc; 21884 21885 if (!insn->imm) { 21886 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 21887 return -EINVAL; 21888 } 21889 21890 *cnt = 0; 21891 21892 /* insn->imm has the btf func_id. Replace it with an offset relative to 21893 * __bpf_call_base, unless the JIT needs to call functions that are 21894 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 21895 */ 21896 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 21897 if (!desc) { 21898 verifier_bug(env, "kernel function descriptor not found for func_id %u", 21899 insn->imm); 21900 return -EFAULT; 21901 } 21902 21903 if (!bpf_jit_supports_far_kfunc_call()) 21904 insn->imm = BPF_CALL_IMM(desc->addr); 21905 if (insn->off) 21906 return 0; 21907 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 21908 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 21909 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21910 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21911 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 21912 21913 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 21914 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 21915 insn_idx); 21916 return -EFAULT; 21917 } 21918 21919 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 21920 insn_buf[1] = addr[0]; 21921 insn_buf[2] = addr[1]; 21922 insn_buf[3] = *insn; 21923 *cnt = 4; 21924 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 21925 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 21926 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 21927 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21928 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21929 21930 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 21931 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 21932 insn_idx); 21933 return -EFAULT; 21934 } 21935 21936 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21937 !kptr_struct_meta) { 21938 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 21939 insn_idx); 21940 return -EFAULT; 21941 } 21942 21943 insn_buf[0] = addr[0]; 21944 insn_buf[1] = addr[1]; 21945 insn_buf[2] = *insn; 21946 *cnt = 3; 21947 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21948 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21949 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21950 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21951 int struct_meta_reg = BPF_REG_3; 21952 int node_offset_reg = BPF_REG_4; 21953 21954 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21955 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21956 struct_meta_reg = BPF_REG_4; 21957 node_offset_reg = BPF_REG_5; 21958 } 21959 21960 if (!kptr_struct_meta) { 21961 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 21962 insn_idx); 21963 return -EFAULT; 21964 } 21965 21966 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21967 node_offset_reg, insn, insn_buf, cnt); 21968 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21969 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21970 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21971 *cnt = 1; 21972 } 21973 21974 if (env->insn_aux_data[insn_idx].arg_prog) { 21975 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 21976 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 21977 int idx = *cnt; 21978 21979 insn_buf[idx++] = ld_addrs[0]; 21980 insn_buf[idx++] = ld_addrs[1]; 21981 insn_buf[idx++] = *insn; 21982 *cnt = idx; 21983 } 21984 return 0; 21985 } 21986 21987 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21988 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21989 { 21990 struct bpf_subprog_info *info = env->subprog_info; 21991 int cnt = env->subprog_cnt; 21992 struct bpf_prog *prog; 21993 21994 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21995 if (env->hidden_subprog_cnt) { 21996 verifier_bug(env, "only one hidden subprog supported"); 21997 return -EFAULT; 21998 } 21999 /* We're not patching any existing instruction, just appending the new 22000 * ones for the hidden subprog. Hence all of the adjustment operations 22001 * in bpf_patch_insn_data are no-ops. 22002 */ 22003 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 22004 if (!prog) 22005 return -ENOMEM; 22006 env->prog = prog; 22007 info[cnt + 1].start = info[cnt].start; 22008 info[cnt].start = prog->len - len + 1; 22009 env->subprog_cnt++; 22010 env->hidden_subprog_cnt++; 22011 return 0; 22012 } 22013 22014 /* Do various post-verification rewrites in a single program pass. 22015 * These rewrites simplify JIT and interpreter implementations. 22016 */ 22017 static int do_misc_fixups(struct bpf_verifier_env *env) 22018 { 22019 struct bpf_prog *prog = env->prog; 22020 enum bpf_attach_type eatype = prog->expected_attach_type; 22021 enum bpf_prog_type prog_type = resolve_prog_type(prog); 22022 struct bpf_insn *insn = prog->insnsi; 22023 const struct bpf_func_proto *fn; 22024 const int insn_cnt = prog->len; 22025 const struct bpf_map_ops *ops; 22026 struct bpf_insn_aux_data *aux; 22027 struct bpf_insn *insn_buf = env->insn_buf; 22028 struct bpf_prog *new_prog; 22029 struct bpf_map *map_ptr; 22030 int i, ret, cnt, delta = 0, cur_subprog = 0; 22031 struct bpf_subprog_info *subprogs = env->subprog_info; 22032 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22033 u16 stack_depth_extra = 0; 22034 22035 if (env->seen_exception && !env->exception_callback_subprog) { 22036 struct bpf_insn *patch = insn_buf; 22037 22038 *patch++ = env->prog->insnsi[insn_cnt - 1]; 22039 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 22040 *patch++ = BPF_EXIT_INSN(); 22041 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf); 22042 if (ret < 0) 22043 return ret; 22044 prog = env->prog; 22045 insn = prog->insnsi; 22046 22047 env->exception_callback_subprog = env->subprog_cnt - 1; 22048 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 22049 mark_subprog_exc_cb(env, env->exception_callback_subprog); 22050 } 22051 22052 for (i = 0; i < insn_cnt;) { 22053 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 22054 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 22055 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 22056 /* convert to 32-bit mov that clears upper 32-bit */ 22057 insn->code = BPF_ALU | BPF_MOV | BPF_X; 22058 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 22059 insn->off = 0; 22060 insn->imm = 0; 22061 } /* cast from as(0) to as(1) should be handled by JIT */ 22062 goto next_insn; 22063 } 22064 22065 if (env->insn_aux_data[i + delta].needs_zext) 22066 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 22067 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 22068 22069 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 22070 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 22071 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 22072 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 22073 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 22074 insn->off == 1 && insn->imm == -1) { 22075 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22076 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22077 struct bpf_insn *patch = insn_buf; 22078 22079 if (isdiv) 22080 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22081 BPF_NEG | BPF_K, insn->dst_reg, 22082 0, 0, 0); 22083 else 22084 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22085 22086 cnt = patch - insn_buf; 22087 22088 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22089 if (!new_prog) 22090 return -ENOMEM; 22091 22092 delta += cnt - 1; 22093 env->prog = prog = new_prog; 22094 insn = new_prog->insnsi + i + delta; 22095 goto next_insn; 22096 } 22097 22098 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 22099 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 22100 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 22101 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 22102 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 22103 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22104 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22105 bool is_sdiv = isdiv && insn->off == 1; 22106 bool is_smod = !isdiv && insn->off == 1; 22107 struct bpf_insn *patch = insn_buf; 22108 22109 if (is_sdiv) { 22110 /* [R,W]x sdiv 0 -> 0 22111 * LLONG_MIN sdiv -1 -> LLONG_MIN 22112 * INT_MIN sdiv -1 -> INT_MIN 22113 */ 22114 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22115 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22116 BPF_ADD | BPF_K, BPF_REG_AX, 22117 0, 0, 1); 22118 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22119 BPF_JGT | BPF_K, BPF_REG_AX, 22120 0, 4, 1); 22121 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22122 BPF_JEQ | BPF_K, BPF_REG_AX, 22123 0, 1, 0); 22124 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22125 BPF_MOV | BPF_K, insn->dst_reg, 22126 0, 0, 0); 22127 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 22128 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22129 BPF_NEG | BPF_K, insn->dst_reg, 22130 0, 0, 0); 22131 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22132 *patch++ = *insn; 22133 cnt = patch - insn_buf; 22134 } else if (is_smod) { 22135 /* [R,W]x mod 0 -> [R,W]x */ 22136 /* [R,W]x mod -1 -> 0 */ 22137 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22138 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22139 BPF_ADD | BPF_K, BPF_REG_AX, 22140 0, 0, 1); 22141 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22142 BPF_JGT | BPF_K, BPF_REG_AX, 22143 0, 3, 1); 22144 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22145 BPF_JEQ | BPF_K, BPF_REG_AX, 22146 0, 3 + (is64 ? 0 : 1), 1); 22147 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22148 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22149 *patch++ = *insn; 22150 22151 if (!is64) { 22152 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22153 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22154 } 22155 cnt = patch - insn_buf; 22156 } else if (isdiv) { 22157 /* [R,W]x div 0 -> 0 */ 22158 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22159 BPF_JNE | BPF_K, insn->src_reg, 22160 0, 2, 0); 22161 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg); 22162 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22163 *patch++ = *insn; 22164 cnt = patch - insn_buf; 22165 } else { 22166 /* [R,W]x mod 0 -> [R,W]x */ 22167 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22168 BPF_JEQ | BPF_K, insn->src_reg, 22169 0, 1 + (is64 ? 0 : 1), 0); 22170 *patch++ = *insn; 22171 22172 if (!is64) { 22173 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22174 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22175 } 22176 cnt = patch - insn_buf; 22177 } 22178 22179 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22180 if (!new_prog) 22181 return -ENOMEM; 22182 22183 delta += cnt - 1; 22184 env->prog = prog = new_prog; 22185 insn = new_prog->insnsi + i + delta; 22186 goto next_insn; 22187 } 22188 22189 /* Make it impossible to de-reference a userspace address */ 22190 if (BPF_CLASS(insn->code) == BPF_LDX && 22191 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 22192 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 22193 struct bpf_insn *patch = insn_buf; 22194 u64 uaddress_limit = bpf_arch_uaddress_limit(); 22195 22196 if (!uaddress_limit) 22197 goto next_insn; 22198 22199 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22200 if (insn->off) 22201 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 22202 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 22203 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 22204 *patch++ = *insn; 22205 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22206 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 22207 22208 cnt = patch - insn_buf; 22209 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22210 if (!new_prog) 22211 return -ENOMEM; 22212 22213 delta += cnt - 1; 22214 env->prog = prog = new_prog; 22215 insn = new_prog->insnsi + i + delta; 22216 goto next_insn; 22217 } 22218 22219 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 22220 if (BPF_CLASS(insn->code) == BPF_LD && 22221 (BPF_MODE(insn->code) == BPF_ABS || 22222 BPF_MODE(insn->code) == BPF_IND)) { 22223 cnt = env->ops->gen_ld_abs(insn, insn_buf); 22224 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 22225 verifier_bug(env, "%d insns generated for ld_abs", cnt); 22226 return -EFAULT; 22227 } 22228 22229 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22230 if (!new_prog) 22231 return -ENOMEM; 22232 22233 delta += cnt - 1; 22234 env->prog = prog = new_prog; 22235 insn = new_prog->insnsi + i + delta; 22236 goto next_insn; 22237 } 22238 22239 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 22240 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 22241 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 22242 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 22243 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 22244 struct bpf_insn *patch = insn_buf; 22245 bool issrc, isneg, isimm; 22246 u32 off_reg; 22247 22248 aux = &env->insn_aux_data[i + delta]; 22249 if (!aux->alu_state || 22250 aux->alu_state == BPF_ALU_NON_POINTER) 22251 goto next_insn; 22252 22253 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 22254 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 22255 BPF_ALU_SANITIZE_SRC; 22256 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 22257 22258 off_reg = issrc ? insn->src_reg : insn->dst_reg; 22259 if (isimm) { 22260 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22261 } else { 22262 if (isneg) 22263 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22264 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22265 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 22266 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 22267 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 22268 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 22269 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 22270 } 22271 if (!issrc) 22272 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 22273 insn->src_reg = BPF_REG_AX; 22274 if (isneg) 22275 insn->code = insn->code == code_add ? 22276 code_sub : code_add; 22277 *patch++ = *insn; 22278 if (issrc && isneg && !isimm) 22279 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22280 cnt = patch - insn_buf; 22281 22282 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22283 if (!new_prog) 22284 return -ENOMEM; 22285 22286 delta += cnt - 1; 22287 env->prog = prog = new_prog; 22288 insn = new_prog->insnsi + i + delta; 22289 goto next_insn; 22290 } 22291 22292 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 22293 int stack_off_cnt = -stack_depth - 16; 22294 22295 /* 22296 * Two 8 byte slots, depth-16 stores the count, and 22297 * depth-8 stores the start timestamp of the loop. 22298 * 22299 * The starting value of count is BPF_MAX_TIMED_LOOPS 22300 * (0xffff). Every iteration loads it and subs it by 1, 22301 * until the value becomes 0 in AX (thus, 1 in stack), 22302 * after which we call arch_bpf_timed_may_goto, which 22303 * either sets AX to 0xffff to keep looping, or to 0 22304 * upon timeout. AX is then stored into the stack. In 22305 * the next iteration, we either see 0 and break out, or 22306 * continue iterating until the next time value is 0 22307 * after subtraction, rinse and repeat. 22308 */ 22309 stack_depth_extra = 16; 22310 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 22311 if (insn->off >= 0) 22312 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 22313 else 22314 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22315 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22316 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 22317 /* 22318 * AX is used as an argument to pass in stack_off_cnt 22319 * (to add to r10/fp), and also as the return value of 22320 * the call to arch_bpf_timed_may_goto. 22321 */ 22322 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 22323 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 22324 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 22325 cnt = 7; 22326 22327 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22328 if (!new_prog) 22329 return -ENOMEM; 22330 22331 delta += cnt - 1; 22332 env->prog = prog = new_prog; 22333 insn = new_prog->insnsi + i + delta; 22334 goto next_insn; 22335 } else if (is_may_goto_insn(insn)) { 22336 int stack_off = -stack_depth - 8; 22337 22338 stack_depth_extra = 8; 22339 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 22340 if (insn->off >= 0) 22341 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 22342 else 22343 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22344 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22345 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 22346 cnt = 4; 22347 22348 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22349 if (!new_prog) 22350 return -ENOMEM; 22351 22352 delta += cnt - 1; 22353 env->prog = prog = new_prog; 22354 insn = new_prog->insnsi + i + delta; 22355 goto next_insn; 22356 } 22357 22358 if (insn->code != (BPF_JMP | BPF_CALL)) 22359 goto next_insn; 22360 if (insn->src_reg == BPF_PSEUDO_CALL) 22361 goto next_insn; 22362 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 22363 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 22364 if (ret) 22365 return ret; 22366 if (cnt == 0) 22367 goto next_insn; 22368 22369 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22370 if (!new_prog) 22371 return -ENOMEM; 22372 22373 delta += cnt - 1; 22374 env->prog = prog = new_prog; 22375 insn = new_prog->insnsi + i + delta; 22376 goto next_insn; 22377 } 22378 22379 /* Skip inlining the helper call if the JIT does it. */ 22380 if (bpf_jit_inlines_helper_call(insn->imm)) 22381 goto next_insn; 22382 22383 if (insn->imm == BPF_FUNC_get_route_realm) 22384 prog->dst_needed = 1; 22385 if (insn->imm == BPF_FUNC_get_prandom_u32) 22386 bpf_user_rnd_init_once(); 22387 if (insn->imm == BPF_FUNC_override_return) 22388 prog->kprobe_override = 1; 22389 if (insn->imm == BPF_FUNC_tail_call) { 22390 /* If we tail call into other programs, we 22391 * cannot make any assumptions since they can 22392 * be replaced dynamically during runtime in 22393 * the program array. 22394 */ 22395 prog->cb_access = 1; 22396 if (!allow_tail_call_in_subprogs(env)) 22397 prog->aux->stack_depth = MAX_BPF_STACK; 22398 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 22399 22400 /* mark bpf_tail_call as different opcode to avoid 22401 * conditional branch in the interpreter for every normal 22402 * call and to prevent accidental JITing by JIT compiler 22403 * that doesn't support bpf_tail_call yet 22404 */ 22405 insn->imm = 0; 22406 insn->code = BPF_JMP | BPF_TAIL_CALL; 22407 22408 aux = &env->insn_aux_data[i + delta]; 22409 if (env->bpf_capable && !prog->blinding_requested && 22410 prog->jit_requested && 22411 !bpf_map_key_poisoned(aux) && 22412 !bpf_map_ptr_poisoned(aux) && 22413 !bpf_map_ptr_unpriv(aux)) { 22414 struct bpf_jit_poke_descriptor desc = { 22415 .reason = BPF_POKE_REASON_TAIL_CALL, 22416 .tail_call.map = aux->map_ptr_state.map_ptr, 22417 .tail_call.key = bpf_map_key_immediate(aux), 22418 .insn_idx = i + delta, 22419 }; 22420 22421 ret = bpf_jit_add_poke_descriptor(prog, &desc); 22422 if (ret < 0) { 22423 verbose(env, "adding tail call poke descriptor failed\n"); 22424 return ret; 22425 } 22426 22427 insn->imm = ret + 1; 22428 goto next_insn; 22429 } 22430 22431 if (!bpf_map_ptr_unpriv(aux)) 22432 goto next_insn; 22433 22434 /* instead of changing every JIT dealing with tail_call 22435 * emit two extra insns: 22436 * if (index >= max_entries) goto out; 22437 * index &= array->index_mask; 22438 * to avoid out-of-bounds cpu speculation 22439 */ 22440 if (bpf_map_ptr_poisoned(aux)) { 22441 verbose(env, "tail_call abusing map_ptr\n"); 22442 return -EINVAL; 22443 } 22444 22445 map_ptr = aux->map_ptr_state.map_ptr; 22446 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 22447 map_ptr->max_entries, 2); 22448 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 22449 container_of(map_ptr, 22450 struct bpf_array, 22451 map)->index_mask); 22452 insn_buf[2] = *insn; 22453 cnt = 3; 22454 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22455 if (!new_prog) 22456 return -ENOMEM; 22457 22458 delta += cnt - 1; 22459 env->prog = prog = new_prog; 22460 insn = new_prog->insnsi + i + delta; 22461 goto next_insn; 22462 } 22463 22464 if (insn->imm == BPF_FUNC_timer_set_callback) { 22465 /* The verifier will process callback_fn as many times as necessary 22466 * with different maps and the register states prepared by 22467 * set_timer_callback_state will be accurate. 22468 * 22469 * The following use case is valid: 22470 * map1 is shared by prog1, prog2, prog3. 22471 * prog1 calls bpf_timer_init for some map1 elements 22472 * prog2 calls bpf_timer_set_callback for some map1 elements. 22473 * Those that were not bpf_timer_init-ed will return -EINVAL. 22474 * prog3 calls bpf_timer_start for some map1 elements. 22475 * Those that were not both bpf_timer_init-ed and 22476 * bpf_timer_set_callback-ed will return -EINVAL. 22477 */ 22478 struct bpf_insn ld_addrs[2] = { 22479 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 22480 }; 22481 22482 insn_buf[0] = ld_addrs[0]; 22483 insn_buf[1] = ld_addrs[1]; 22484 insn_buf[2] = *insn; 22485 cnt = 3; 22486 22487 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22488 if (!new_prog) 22489 return -ENOMEM; 22490 22491 delta += cnt - 1; 22492 env->prog = prog = new_prog; 22493 insn = new_prog->insnsi + i + delta; 22494 goto patch_call_imm; 22495 } 22496 22497 if (is_storage_get_function(insn->imm)) { 22498 if (!in_sleepable(env) || 22499 env->insn_aux_data[i + delta].storage_get_func_atomic) 22500 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 22501 else 22502 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 22503 insn_buf[1] = *insn; 22504 cnt = 2; 22505 22506 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22507 if (!new_prog) 22508 return -ENOMEM; 22509 22510 delta += cnt - 1; 22511 env->prog = prog = new_prog; 22512 insn = new_prog->insnsi + i + delta; 22513 goto patch_call_imm; 22514 } 22515 22516 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 22517 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 22518 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 22519 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 22520 */ 22521 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 22522 insn_buf[1] = *insn; 22523 cnt = 2; 22524 22525 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22526 if (!new_prog) 22527 return -ENOMEM; 22528 22529 delta += cnt - 1; 22530 env->prog = prog = new_prog; 22531 insn = new_prog->insnsi + i + delta; 22532 goto patch_call_imm; 22533 } 22534 22535 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 22536 * and other inlining handlers are currently limited to 64 bit 22537 * only. 22538 */ 22539 if (prog->jit_requested && BITS_PER_LONG == 64 && 22540 (insn->imm == BPF_FUNC_map_lookup_elem || 22541 insn->imm == BPF_FUNC_map_update_elem || 22542 insn->imm == BPF_FUNC_map_delete_elem || 22543 insn->imm == BPF_FUNC_map_push_elem || 22544 insn->imm == BPF_FUNC_map_pop_elem || 22545 insn->imm == BPF_FUNC_map_peek_elem || 22546 insn->imm == BPF_FUNC_redirect_map || 22547 insn->imm == BPF_FUNC_for_each_map_elem || 22548 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 22549 aux = &env->insn_aux_data[i + delta]; 22550 if (bpf_map_ptr_poisoned(aux)) 22551 goto patch_call_imm; 22552 22553 map_ptr = aux->map_ptr_state.map_ptr; 22554 ops = map_ptr->ops; 22555 if (insn->imm == BPF_FUNC_map_lookup_elem && 22556 ops->map_gen_lookup) { 22557 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 22558 if (cnt == -EOPNOTSUPP) 22559 goto patch_map_ops_generic; 22560 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 22561 verifier_bug(env, "%d insns generated for map lookup", cnt); 22562 return -EFAULT; 22563 } 22564 22565 new_prog = bpf_patch_insn_data(env, i + delta, 22566 insn_buf, cnt); 22567 if (!new_prog) 22568 return -ENOMEM; 22569 22570 delta += cnt - 1; 22571 env->prog = prog = new_prog; 22572 insn = new_prog->insnsi + i + delta; 22573 goto next_insn; 22574 } 22575 22576 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 22577 (void *(*)(struct bpf_map *map, void *key))NULL)); 22578 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 22579 (long (*)(struct bpf_map *map, void *key))NULL)); 22580 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 22581 (long (*)(struct bpf_map *map, void *key, void *value, 22582 u64 flags))NULL)); 22583 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 22584 (long (*)(struct bpf_map *map, void *value, 22585 u64 flags))NULL)); 22586 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 22587 (long (*)(struct bpf_map *map, void *value))NULL)); 22588 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 22589 (long (*)(struct bpf_map *map, void *value))NULL)); 22590 BUILD_BUG_ON(!__same_type(ops->map_redirect, 22591 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 22592 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 22593 (long (*)(struct bpf_map *map, 22594 bpf_callback_t callback_fn, 22595 void *callback_ctx, 22596 u64 flags))NULL)); 22597 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 22598 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 22599 22600 patch_map_ops_generic: 22601 switch (insn->imm) { 22602 case BPF_FUNC_map_lookup_elem: 22603 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 22604 goto next_insn; 22605 case BPF_FUNC_map_update_elem: 22606 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 22607 goto next_insn; 22608 case BPF_FUNC_map_delete_elem: 22609 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 22610 goto next_insn; 22611 case BPF_FUNC_map_push_elem: 22612 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 22613 goto next_insn; 22614 case BPF_FUNC_map_pop_elem: 22615 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 22616 goto next_insn; 22617 case BPF_FUNC_map_peek_elem: 22618 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 22619 goto next_insn; 22620 case BPF_FUNC_redirect_map: 22621 insn->imm = BPF_CALL_IMM(ops->map_redirect); 22622 goto next_insn; 22623 case BPF_FUNC_for_each_map_elem: 22624 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 22625 goto next_insn; 22626 case BPF_FUNC_map_lookup_percpu_elem: 22627 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 22628 goto next_insn; 22629 } 22630 22631 goto patch_call_imm; 22632 } 22633 22634 /* Implement bpf_jiffies64 inline. */ 22635 if (prog->jit_requested && BITS_PER_LONG == 64 && 22636 insn->imm == BPF_FUNC_jiffies64) { 22637 struct bpf_insn ld_jiffies_addr[2] = { 22638 BPF_LD_IMM64(BPF_REG_0, 22639 (unsigned long)&jiffies), 22640 }; 22641 22642 insn_buf[0] = ld_jiffies_addr[0]; 22643 insn_buf[1] = ld_jiffies_addr[1]; 22644 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 22645 BPF_REG_0, 0); 22646 cnt = 3; 22647 22648 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 22649 cnt); 22650 if (!new_prog) 22651 return -ENOMEM; 22652 22653 delta += cnt - 1; 22654 env->prog = prog = new_prog; 22655 insn = new_prog->insnsi + i + delta; 22656 goto next_insn; 22657 } 22658 22659 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 22660 /* Implement bpf_get_smp_processor_id() inline. */ 22661 if (insn->imm == BPF_FUNC_get_smp_processor_id && 22662 verifier_inlines_helper_call(env, insn->imm)) { 22663 /* BPF_FUNC_get_smp_processor_id inlining is an 22664 * optimization, so if cpu_number is ever 22665 * changed in some incompatible and hard to support 22666 * way, it's fine to back out this inlining logic 22667 */ 22668 #ifdef CONFIG_SMP 22669 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 22670 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 22671 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 22672 cnt = 3; 22673 #else 22674 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 22675 cnt = 1; 22676 #endif 22677 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22678 if (!new_prog) 22679 return -ENOMEM; 22680 22681 delta += cnt - 1; 22682 env->prog = prog = new_prog; 22683 insn = new_prog->insnsi + i + delta; 22684 goto next_insn; 22685 } 22686 #endif 22687 /* Implement bpf_get_func_arg inline. */ 22688 if (prog_type == BPF_PROG_TYPE_TRACING && 22689 insn->imm == BPF_FUNC_get_func_arg) { 22690 /* Load nr_args from ctx - 8 */ 22691 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22692 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 22693 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 22694 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 22695 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 22696 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22697 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 22698 insn_buf[7] = BPF_JMP_A(1); 22699 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22700 cnt = 9; 22701 22702 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22703 if (!new_prog) 22704 return -ENOMEM; 22705 22706 delta += cnt - 1; 22707 env->prog = prog = new_prog; 22708 insn = new_prog->insnsi + i + delta; 22709 goto next_insn; 22710 } 22711 22712 /* Implement bpf_get_func_ret inline. */ 22713 if (prog_type == BPF_PROG_TYPE_TRACING && 22714 insn->imm == BPF_FUNC_get_func_ret) { 22715 if (eatype == BPF_TRACE_FEXIT || 22716 eatype == BPF_MODIFY_RETURN) { 22717 /* Load nr_args from ctx - 8 */ 22718 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22719 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 22720 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 22721 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22722 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 22723 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 22724 cnt = 6; 22725 } else { 22726 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 22727 cnt = 1; 22728 } 22729 22730 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22731 if (!new_prog) 22732 return -ENOMEM; 22733 22734 delta += cnt - 1; 22735 env->prog = prog = new_prog; 22736 insn = new_prog->insnsi + i + delta; 22737 goto next_insn; 22738 } 22739 22740 /* Implement get_func_arg_cnt inline. */ 22741 if (prog_type == BPF_PROG_TYPE_TRACING && 22742 insn->imm == BPF_FUNC_get_func_arg_cnt) { 22743 /* Load nr_args from ctx - 8 */ 22744 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22745 22746 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22747 if (!new_prog) 22748 return -ENOMEM; 22749 22750 env->prog = prog = new_prog; 22751 insn = new_prog->insnsi + i + delta; 22752 goto next_insn; 22753 } 22754 22755 /* Implement bpf_get_func_ip inline. */ 22756 if (prog_type == BPF_PROG_TYPE_TRACING && 22757 insn->imm == BPF_FUNC_get_func_ip) { 22758 /* Load IP address from ctx - 16 */ 22759 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 22760 22761 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22762 if (!new_prog) 22763 return -ENOMEM; 22764 22765 env->prog = prog = new_prog; 22766 insn = new_prog->insnsi + i + delta; 22767 goto next_insn; 22768 } 22769 22770 /* Implement bpf_get_branch_snapshot inline. */ 22771 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 22772 prog->jit_requested && BITS_PER_LONG == 64 && 22773 insn->imm == BPF_FUNC_get_branch_snapshot) { 22774 /* We are dealing with the following func protos: 22775 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 22776 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 22777 */ 22778 const u32 br_entry_size = sizeof(struct perf_branch_entry); 22779 22780 /* struct perf_branch_entry is part of UAPI and is 22781 * used as an array element, so extremely unlikely to 22782 * ever grow or shrink 22783 */ 22784 BUILD_BUG_ON(br_entry_size != 24); 22785 22786 /* if (unlikely(flags)) return -EINVAL */ 22787 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 22788 22789 /* Transform size (bytes) into number of entries (cnt = size / 24). 22790 * But to avoid expensive division instruction, we implement 22791 * divide-by-3 through multiplication, followed by further 22792 * division by 8 through 3-bit right shift. 22793 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 22794 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 22795 * 22796 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 22797 */ 22798 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 22799 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 22800 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 22801 22802 /* call perf_snapshot_branch_stack implementation */ 22803 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 22804 /* if (entry_cnt == 0) return -ENOENT */ 22805 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 22806 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 22807 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 22808 insn_buf[7] = BPF_JMP_A(3); 22809 /* return -EINVAL; */ 22810 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22811 insn_buf[9] = BPF_JMP_A(1); 22812 /* return -ENOENT; */ 22813 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 22814 cnt = 11; 22815 22816 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22817 if (!new_prog) 22818 return -ENOMEM; 22819 22820 delta += cnt - 1; 22821 env->prog = prog = new_prog; 22822 insn = new_prog->insnsi + i + delta; 22823 goto next_insn; 22824 } 22825 22826 /* Implement bpf_kptr_xchg inline */ 22827 if (prog->jit_requested && BITS_PER_LONG == 64 && 22828 insn->imm == BPF_FUNC_kptr_xchg && 22829 bpf_jit_supports_ptr_xchg()) { 22830 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 22831 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 22832 cnt = 2; 22833 22834 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22835 if (!new_prog) 22836 return -ENOMEM; 22837 22838 delta += cnt - 1; 22839 env->prog = prog = new_prog; 22840 insn = new_prog->insnsi + i + delta; 22841 goto next_insn; 22842 } 22843 patch_call_imm: 22844 fn = env->ops->get_func_proto(insn->imm, env->prog); 22845 /* all functions that have prototype and verifier allowed 22846 * programs to call them, must be real in-kernel functions 22847 */ 22848 if (!fn->func) { 22849 verifier_bug(env, 22850 "not inlined functions %s#%d is missing func", 22851 func_id_name(insn->imm), insn->imm); 22852 return -EFAULT; 22853 } 22854 insn->imm = fn->func - __bpf_call_base; 22855 next_insn: 22856 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22857 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22858 subprogs[cur_subprog].stack_extra = stack_depth_extra; 22859 22860 stack_depth = subprogs[cur_subprog].stack_depth; 22861 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 22862 verbose(env, "stack size %d(extra %d) is too large\n", 22863 stack_depth, stack_depth_extra); 22864 return -EINVAL; 22865 } 22866 cur_subprog++; 22867 stack_depth = subprogs[cur_subprog].stack_depth; 22868 stack_depth_extra = 0; 22869 } 22870 i++; 22871 insn++; 22872 } 22873 22874 env->prog->aux->stack_depth = subprogs[0].stack_depth; 22875 for (i = 0; i < env->subprog_cnt; i++) { 22876 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 22877 int subprog_start = subprogs[i].start; 22878 int stack_slots = subprogs[i].stack_extra / 8; 22879 int slots = delta, cnt = 0; 22880 22881 if (!stack_slots) 22882 continue; 22883 /* We need two slots in case timed may_goto is supported. */ 22884 if (stack_slots > slots) { 22885 verifier_bug(env, "stack_slots supports may_goto only"); 22886 return -EFAULT; 22887 } 22888 22889 stack_depth = subprogs[i].stack_depth; 22890 if (bpf_jit_supports_timed_may_goto()) { 22891 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22892 BPF_MAX_TIMED_LOOPS); 22893 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 22894 } else { 22895 /* Add ST insn to subprog prologue to init extra stack */ 22896 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22897 BPF_MAX_LOOPS); 22898 } 22899 /* Copy first actual insn to preserve it */ 22900 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 22901 22902 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 22903 if (!new_prog) 22904 return -ENOMEM; 22905 env->prog = prog = new_prog; 22906 /* 22907 * If may_goto is a first insn of a prog there could be a jmp 22908 * insn that points to it, hence adjust all such jmps to point 22909 * to insn after BPF_ST that inits may_goto count. 22910 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 22911 */ 22912 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 22913 } 22914 22915 /* Since poke tab is now finalized, publish aux to tracker. */ 22916 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22917 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22918 if (!map_ptr->ops->map_poke_track || 22919 !map_ptr->ops->map_poke_untrack || 22920 !map_ptr->ops->map_poke_run) { 22921 verifier_bug(env, "poke tab is misconfigured"); 22922 return -EFAULT; 22923 } 22924 22925 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 22926 if (ret < 0) { 22927 verbose(env, "tracking tail call prog failed\n"); 22928 return ret; 22929 } 22930 } 22931 22932 sort_kfunc_descs_by_imm_off(env->prog); 22933 22934 return 0; 22935 } 22936 22937 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 22938 int position, 22939 s32 stack_base, 22940 u32 callback_subprogno, 22941 u32 *total_cnt) 22942 { 22943 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 22944 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 22945 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 22946 int reg_loop_max = BPF_REG_6; 22947 int reg_loop_cnt = BPF_REG_7; 22948 int reg_loop_ctx = BPF_REG_8; 22949 22950 struct bpf_insn *insn_buf = env->insn_buf; 22951 struct bpf_prog *new_prog; 22952 u32 callback_start; 22953 u32 call_insn_offset; 22954 s32 callback_offset; 22955 u32 cnt = 0; 22956 22957 /* This represents an inlined version of bpf_iter.c:bpf_loop, 22958 * be careful to modify this code in sync. 22959 */ 22960 22961 /* Return error and jump to the end of the patch if 22962 * expected number of iterations is too big. 22963 */ 22964 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 22965 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 22966 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 22967 /* spill R6, R7, R8 to use these as loop vars */ 22968 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 22969 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 22970 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 22971 /* initialize loop vars */ 22972 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 22973 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 22974 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 22975 /* loop header, 22976 * if reg_loop_cnt >= reg_loop_max skip the loop body 22977 */ 22978 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 22979 /* callback call, 22980 * correct callback offset would be set after patching 22981 */ 22982 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 22983 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 22984 insn_buf[cnt++] = BPF_CALL_REL(0); 22985 /* increment loop counter */ 22986 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 22987 /* jump to loop header if callback returned 0 */ 22988 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 22989 /* return value of bpf_loop, 22990 * set R0 to the number of iterations 22991 */ 22992 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22993 /* restore original values of R6, R7, R8 */ 22994 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22995 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22996 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22997 22998 *total_cnt = cnt; 22999 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 23000 if (!new_prog) 23001 return new_prog; 23002 23003 /* callback start is known only after patching */ 23004 callback_start = env->subprog_info[callback_subprogno].start; 23005 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 23006 call_insn_offset = position + 12; 23007 callback_offset = callback_start - call_insn_offset - 1; 23008 new_prog->insnsi[call_insn_offset].imm = callback_offset; 23009 23010 return new_prog; 23011 } 23012 23013 static bool is_bpf_loop_call(struct bpf_insn *insn) 23014 { 23015 return insn->code == (BPF_JMP | BPF_CALL) && 23016 insn->src_reg == 0 && 23017 insn->imm == BPF_FUNC_loop; 23018 } 23019 23020 /* For all sub-programs in the program (including main) check 23021 * insn_aux_data to see if there are bpf_loop calls that require 23022 * inlining. If such calls are found the calls are replaced with a 23023 * sequence of instructions produced by `inline_bpf_loop` function and 23024 * subprog stack_depth is increased by the size of 3 registers. 23025 * This stack space is used to spill values of the R6, R7, R8. These 23026 * registers are used to store the loop bound, counter and context 23027 * variables. 23028 */ 23029 static int optimize_bpf_loop(struct bpf_verifier_env *env) 23030 { 23031 struct bpf_subprog_info *subprogs = env->subprog_info; 23032 int i, cur_subprog = 0, cnt, delta = 0; 23033 struct bpf_insn *insn = env->prog->insnsi; 23034 int insn_cnt = env->prog->len; 23035 u16 stack_depth = subprogs[cur_subprog].stack_depth; 23036 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23037 u16 stack_depth_extra = 0; 23038 23039 for (i = 0; i < insn_cnt; i++, insn++) { 23040 struct bpf_loop_inline_state *inline_state = 23041 &env->insn_aux_data[i + delta].loop_inline_state; 23042 23043 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 23044 struct bpf_prog *new_prog; 23045 23046 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 23047 new_prog = inline_bpf_loop(env, 23048 i + delta, 23049 -(stack_depth + stack_depth_extra), 23050 inline_state->callback_subprogno, 23051 &cnt); 23052 if (!new_prog) 23053 return -ENOMEM; 23054 23055 delta += cnt - 1; 23056 env->prog = new_prog; 23057 insn = new_prog->insnsi + i + delta; 23058 } 23059 23060 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 23061 subprogs[cur_subprog].stack_depth += stack_depth_extra; 23062 cur_subprog++; 23063 stack_depth = subprogs[cur_subprog].stack_depth; 23064 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23065 stack_depth_extra = 0; 23066 } 23067 } 23068 23069 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23070 23071 return 0; 23072 } 23073 23074 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 23075 * adjust subprograms stack depth when possible. 23076 */ 23077 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 23078 { 23079 struct bpf_subprog_info *subprog = env->subprog_info; 23080 struct bpf_insn_aux_data *aux = env->insn_aux_data; 23081 struct bpf_insn *insn = env->prog->insnsi; 23082 int insn_cnt = env->prog->len; 23083 u32 spills_num; 23084 bool modified = false; 23085 int i, j; 23086 23087 for (i = 0; i < insn_cnt; i++, insn++) { 23088 if (aux[i].fastcall_spills_num > 0) { 23089 spills_num = aux[i].fastcall_spills_num; 23090 /* NOPs would be removed by opt_remove_nops() */ 23091 for (j = 1; j <= spills_num; ++j) { 23092 *(insn - j) = NOP; 23093 *(insn + j) = NOP; 23094 } 23095 modified = true; 23096 } 23097 if ((subprog + 1)->start == i + 1) { 23098 if (modified && !subprog->keep_fastcall_stack) 23099 subprog->stack_depth = -subprog->fastcall_stack_off; 23100 subprog++; 23101 modified = false; 23102 } 23103 } 23104 23105 return 0; 23106 } 23107 23108 static void free_states(struct bpf_verifier_env *env) 23109 { 23110 struct bpf_verifier_state_list *sl; 23111 struct list_head *head, *pos, *tmp; 23112 struct bpf_scc_info *info; 23113 int i, j; 23114 23115 free_verifier_state(env->cur_state, true); 23116 env->cur_state = NULL; 23117 while (!pop_stack(env, NULL, NULL, false)); 23118 23119 list_for_each_safe(pos, tmp, &env->free_list) { 23120 sl = container_of(pos, struct bpf_verifier_state_list, node); 23121 free_verifier_state(&sl->state, false); 23122 kfree(sl); 23123 } 23124 INIT_LIST_HEAD(&env->free_list); 23125 23126 for (i = 0; i < env->scc_cnt; ++i) { 23127 info = env->scc_info[i]; 23128 if (!info) 23129 continue; 23130 for (j = 0; j < info->num_visits; j++) 23131 free_backedges(&info->visits[j]); 23132 kvfree(info); 23133 env->scc_info[i] = NULL; 23134 } 23135 23136 if (!env->explored_states) 23137 return; 23138 23139 for (i = 0; i < state_htab_size(env); i++) { 23140 head = &env->explored_states[i]; 23141 23142 list_for_each_safe(pos, tmp, head) { 23143 sl = container_of(pos, struct bpf_verifier_state_list, node); 23144 free_verifier_state(&sl->state, false); 23145 kfree(sl); 23146 } 23147 INIT_LIST_HEAD(&env->explored_states[i]); 23148 } 23149 } 23150 23151 static int do_check_common(struct bpf_verifier_env *env, int subprog) 23152 { 23153 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 23154 struct bpf_subprog_info *sub = subprog_info(env, subprog); 23155 struct bpf_prog_aux *aux = env->prog->aux; 23156 struct bpf_verifier_state *state; 23157 struct bpf_reg_state *regs; 23158 int ret, i; 23159 23160 env->prev_linfo = NULL; 23161 env->pass_cnt++; 23162 23163 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); 23164 if (!state) 23165 return -ENOMEM; 23166 state->curframe = 0; 23167 state->speculative = false; 23168 state->branches = 1; 23169 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); 23170 if (!state->frame[0]) { 23171 kfree(state); 23172 return -ENOMEM; 23173 } 23174 env->cur_state = state; 23175 init_func_state(env, state->frame[0], 23176 BPF_MAIN_FUNC /* callsite */, 23177 0 /* frameno */, 23178 subprog); 23179 state->first_insn_idx = env->subprog_info[subprog].start; 23180 state->last_insn_idx = -1; 23181 23182 regs = state->frame[state->curframe]->regs; 23183 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 23184 const char *sub_name = subprog_name(env, subprog); 23185 struct bpf_subprog_arg_info *arg; 23186 struct bpf_reg_state *reg; 23187 23188 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 23189 ret = btf_prepare_func_args(env, subprog); 23190 if (ret) 23191 goto out; 23192 23193 if (subprog_is_exc_cb(env, subprog)) { 23194 state->frame[0]->in_exception_callback_fn = true; 23195 /* We have already ensured that the callback returns an integer, just 23196 * like all global subprogs. We need to determine it only has a single 23197 * scalar argument. 23198 */ 23199 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 23200 verbose(env, "exception cb only supports single integer argument\n"); 23201 ret = -EINVAL; 23202 goto out; 23203 } 23204 } 23205 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 23206 arg = &sub->args[i - BPF_REG_1]; 23207 reg = ®s[i]; 23208 23209 if (arg->arg_type == ARG_PTR_TO_CTX) { 23210 reg->type = PTR_TO_CTX; 23211 mark_reg_known_zero(env, regs, i); 23212 } else if (arg->arg_type == ARG_ANYTHING) { 23213 reg->type = SCALAR_VALUE; 23214 mark_reg_unknown(env, regs, i); 23215 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 23216 /* assume unspecial LOCAL dynptr type */ 23217 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 23218 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 23219 reg->type = PTR_TO_MEM; 23220 reg->type |= arg->arg_type & 23221 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY); 23222 mark_reg_known_zero(env, regs, i); 23223 reg->mem_size = arg->mem_size; 23224 if (arg->arg_type & PTR_MAYBE_NULL) 23225 reg->id = ++env->id_gen; 23226 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 23227 reg->type = PTR_TO_BTF_ID; 23228 if (arg->arg_type & PTR_MAYBE_NULL) 23229 reg->type |= PTR_MAYBE_NULL; 23230 if (arg->arg_type & PTR_UNTRUSTED) 23231 reg->type |= PTR_UNTRUSTED; 23232 if (arg->arg_type & PTR_TRUSTED) 23233 reg->type |= PTR_TRUSTED; 23234 mark_reg_known_zero(env, regs, i); 23235 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 23236 reg->btf_id = arg->btf_id; 23237 reg->id = ++env->id_gen; 23238 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 23239 /* caller can pass either PTR_TO_ARENA or SCALAR */ 23240 mark_reg_unknown(env, regs, i); 23241 } else { 23242 verifier_bug(env, "unhandled arg#%d type %d", 23243 i - BPF_REG_1, arg->arg_type); 23244 ret = -EFAULT; 23245 goto out; 23246 } 23247 } 23248 } else { 23249 /* if main BPF program has associated BTF info, validate that 23250 * it's matching expected signature, and otherwise mark BTF 23251 * info for main program as unreliable 23252 */ 23253 if (env->prog->aux->func_info_aux) { 23254 ret = btf_prepare_func_args(env, 0); 23255 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 23256 env->prog->aux->func_info_aux[0].unreliable = true; 23257 } 23258 23259 /* 1st arg to a function */ 23260 regs[BPF_REG_1].type = PTR_TO_CTX; 23261 mark_reg_known_zero(env, regs, BPF_REG_1); 23262 } 23263 23264 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 23265 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 23266 for (i = 0; i < aux->ctx_arg_info_size; i++) 23267 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 23268 acquire_reference(env, 0) : 0; 23269 } 23270 23271 ret = do_check(env); 23272 out: 23273 if (!ret && pop_log) 23274 bpf_vlog_reset(&env->log, 0); 23275 free_states(env); 23276 return ret; 23277 } 23278 23279 /* Lazily verify all global functions based on their BTF, if they are called 23280 * from main BPF program or any of subprograms transitively. 23281 * BPF global subprogs called from dead code are not validated. 23282 * All callable global functions must pass verification. 23283 * Otherwise the whole program is rejected. 23284 * Consider: 23285 * int bar(int); 23286 * int foo(int f) 23287 * { 23288 * return bar(f); 23289 * } 23290 * int bar(int b) 23291 * { 23292 * ... 23293 * } 23294 * foo() will be verified first for R1=any_scalar_value. During verification it 23295 * will be assumed that bar() already verified successfully and call to bar() 23296 * from foo() will be checked for type match only. Later bar() will be verified 23297 * independently to check that it's safe for R1=any_scalar_value. 23298 */ 23299 static int do_check_subprogs(struct bpf_verifier_env *env) 23300 { 23301 struct bpf_prog_aux *aux = env->prog->aux; 23302 struct bpf_func_info_aux *sub_aux; 23303 int i, ret, new_cnt; 23304 23305 if (!aux->func_info) 23306 return 0; 23307 23308 /* exception callback is presumed to be always called */ 23309 if (env->exception_callback_subprog) 23310 subprog_aux(env, env->exception_callback_subprog)->called = true; 23311 23312 again: 23313 new_cnt = 0; 23314 for (i = 1; i < env->subprog_cnt; i++) { 23315 if (!subprog_is_global(env, i)) 23316 continue; 23317 23318 sub_aux = subprog_aux(env, i); 23319 if (!sub_aux->called || sub_aux->verified) 23320 continue; 23321 23322 env->insn_idx = env->subprog_info[i].start; 23323 WARN_ON_ONCE(env->insn_idx == 0); 23324 ret = do_check_common(env, i); 23325 if (ret) { 23326 return ret; 23327 } else if (env->log.level & BPF_LOG_LEVEL) { 23328 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 23329 i, subprog_name(env, i)); 23330 } 23331 23332 /* We verified new global subprog, it might have called some 23333 * more global subprogs that we haven't verified yet, so we 23334 * need to do another pass over subprogs to verify those. 23335 */ 23336 sub_aux->verified = true; 23337 new_cnt++; 23338 } 23339 23340 /* We can't loop forever as we verify at least one global subprog on 23341 * each pass. 23342 */ 23343 if (new_cnt) 23344 goto again; 23345 23346 return 0; 23347 } 23348 23349 static int do_check_main(struct bpf_verifier_env *env) 23350 { 23351 int ret; 23352 23353 env->insn_idx = 0; 23354 ret = do_check_common(env, 0); 23355 if (!ret) 23356 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23357 return ret; 23358 } 23359 23360 23361 static void print_verification_stats(struct bpf_verifier_env *env) 23362 { 23363 int i; 23364 23365 if (env->log.level & BPF_LOG_STATS) { 23366 verbose(env, "verification time %lld usec\n", 23367 div_u64(env->verification_time, 1000)); 23368 verbose(env, "stack depth "); 23369 for (i = 0; i < env->subprog_cnt; i++) { 23370 u32 depth = env->subprog_info[i].stack_depth; 23371 23372 verbose(env, "%d", depth); 23373 if (i + 1 < env->subprog_cnt) 23374 verbose(env, "+"); 23375 } 23376 verbose(env, "\n"); 23377 } 23378 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 23379 "total_states %d peak_states %d mark_read %d\n", 23380 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 23381 env->max_states_per_insn, env->total_states, 23382 env->peak_states, env->longest_mark_read_walk); 23383 } 23384 23385 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 23386 const struct bpf_ctx_arg_aux *info, u32 cnt) 23387 { 23388 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); 23389 prog->aux->ctx_arg_info_size = cnt; 23390 23391 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 23392 } 23393 23394 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 23395 { 23396 const struct btf_type *t, *func_proto; 23397 const struct bpf_struct_ops_desc *st_ops_desc; 23398 const struct bpf_struct_ops *st_ops; 23399 const struct btf_member *member; 23400 struct bpf_prog *prog = env->prog; 23401 bool has_refcounted_arg = false; 23402 u32 btf_id, member_idx, member_off; 23403 struct btf *btf; 23404 const char *mname; 23405 int i, err; 23406 23407 if (!prog->gpl_compatible) { 23408 verbose(env, "struct ops programs must have a GPL compatible license\n"); 23409 return -EINVAL; 23410 } 23411 23412 if (!prog->aux->attach_btf_id) 23413 return -ENOTSUPP; 23414 23415 btf = prog->aux->attach_btf; 23416 if (btf_is_module(btf)) { 23417 /* Make sure st_ops is valid through the lifetime of env */ 23418 env->attach_btf_mod = btf_try_get_module(btf); 23419 if (!env->attach_btf_mod) { 23420 verbose(env, "struct_ops module %s is not found\n", 23421 btf_get_name(btf)); 23422 return -ENOTSUPP; 23423 } 23424 } 23425 23426 btf_id = prog->aux->attach_btf_id; 23427 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 23428 if (!st_ops_desc) { 23429 verbose(env, "attach_btf_id %u is not a supported struct\n", 23430 btf_id); 23431 return -ENOTSUPP; 23432 } 23433 st_ops = st_ops_desc->st_ops; 23434 23435 t = st_ops_desc->type; 23436 member_idx = prog->expected_attach_type; 23437 if (member_idx >= btf_type_vlen(t)) { 23438 verbose(env, "attach to invalid member idx %u of struct %s\n", 23439 member_idx, st_ops->name); 23440 return -EINVAL; 23441 } 23442 23443 member = &btf_type_member(t)[member_idx]; 23444 mname = btf_name_by_offset(btf, member->name_off); 23445 func_proto = btf_type_resolve_func_ptr(btf, member->type, 23446 NULL); 23447 if (!func_proto) { 23448 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 23449 mname, member_idx, st_ops->name); 23450 return -EINVAL; 23451 } 23452 23453 member_off = __btf_member_bit_offset(t, member) / 8; 23454 err = bpf_struct_ops_supported(st_ops, member_off); 23455 if (err) { 23456 verbose(env, "attach to unsupported member %s of struct %s\n", 23457 mname, st_ops->name); 23458 return err; 23459 } 23460 23461 if (st_ops->check_member) { 23462 err = st_ops->check_member(t, member, prog); 23463 23464 if (err) { 23465 verbose(env, "attach to unsupported member %s of struct %s\n", 23466 mname, st_ops->name); 23467 return err; 23468 } 23469 } 23470 23471 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 23472 verbose(env, "Private stack not supported by jit\n"); 23473 return -EACCES; 23474 } 23475 23476 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 23477 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 23478 has_refcounted_arg = true; 23479 break; 23480 } 23481 } 23482 23483 /* Tail call is not allowed for programs with refcounted arguments since we 23484 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 23485 */ 23486 for (i = 0; i < env->subprog_cnt; i++) { 23487 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 23488 verbose(env, "program with __ref argument cannot tail call\n"); 23489 return -EINVAL; 23490 } 23491 } 23492 23493 prog->aux->st_ops = st_ops; 23494 prog->aux->attach_st_ops_member_off = member_off; 23495 23496 prog->aux->attach_func_proto = func_proto; 23497 prog->aux->attach_func_name = mname; 23498 env->ops = st_ops->verifier_ops; 23499 23500 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 23501 st_ops_desc->arg_info[member_idx].cnt); 23502 } 23503 #define SECURITY_PREFIX "security_" 23504 23505 static int check_attach_modify_return(unsigned long addr, const char *func_name) 23506 { 23507 if (within_error_injection_list(addr) || 23508 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 23509 return 0; 23510 23511 return -EINVAL; 23512 } 23513 23514 /* list of non-sleepable functions that are otherwise on 23515 * ALLOW_ERROR_INJECTION list 23516 */ 23517 BTF_SET_START(btf_non_sleepable_error_inject) 23518 /* Three functions below can be called from sleepable and non-sleepable context. 23519 * Assume non-sleepable from bpf safety point of view. 23520 */ 23521 BTF_ID(func, __filemap_add_folio) 23522 #ifdef CONFIG_FAIL_PAGE_ALLOC 23523 BTF_ID(func, should_fail_alloc_page) 23524 #endif 23525 #ifdef CONFIG_FAILSLAB 23526 BTF_ID(func, should_failslab) 23527 #endif 23528 BTF_SET_END(btf_non_sleepable_error_inject) 23529 23530 static int check_non_sleepable_error_inject(u32 btf_id) 23531 { 23532 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 23533 } 23534 23535 int bpf_check_attach_target(struct bpf_verifier_log *log, 23536 const struct bpf_prog *prog, 23537 const struct bpf_prog *tgt_prog, 23538 u32 btf_id, 23539 struct bpf_attach_target_info *tgt_info) 23540 { 23541 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 23542 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 23543 char trace_symbol[KSYM_SYMBOL_LEN]; 23544 const char prefix[] = "btf_trace_"; 23545 struct bpf_raw_event_map *btp; 23546 int ret = 0, subprog = -1, i; 23547 const struct btf_type *t; 23548 bool conservative = true; 23549 const char *tname, *fname; 23550 struct btf *btf; 23551 long addr = 0; 23552 struct module *mod = NULL; 23553 23554 if (!btf_id) { 23555 bpf_log(log, "Tracing programs must provide btf_id\n"); 23556 return -EINVAL; 23557 } 23558 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 23559 if (!btf) { 23560 bpf_log(log, 23561 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 23562 return -EINVAL; 23563 } 23564 t = btf_type_by_id(btf, btf_id); 23565 if (!t) { 23566 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 23567 return -EINVAL; 23568 } 23569 tname = btf_name_by_offset(btf, t->name_off); 23570 if (!tname) { 23571 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 23572 return -EINVAL; 23573 } 23574 if (tgt_prog) { 23575 struct bpf_prog_aux *aux = tgt_prog->aux; 23576 bool tgt_changes_pkt_data; 23577 bool tgt_might_sleep; 23578 23579 if (bpf_prog_is_dev_bound(prog->aux) && 23580 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 23581 bpf_log(log, "Target program bound device mismatch"); 23582 return -EINVAL; 23583 } 23584 23585 for (i = 0; i < aux->func_info_cnt; i++) 23586 if (aux->func_info[i].type_id == btf_id) { 23587 subprog = i; 23588 break; 23589 } 23590 if (subprog == -1) { 23591 bpf_log(log, "Subprog %s doesn't exist\n", tname); 23592 return -EINVAL; 23593 } 23594 if (aux->func && aux->func[subprog]->aux->exception_cb) { 23595 bpf_log(log, 23596 "%s programs cannot attach to exception callback\n", 23597 prog_extension ? "Extension" : "FENTRY/FEXIT"); 23598 return -EINVAL; 23599 } 23600 conservative = aux->func_info_aux[subprog].unreliable; 23601 if (prog_extension) { 23602 if (conservative) { 23603 bpf_log(log, 23604 "Cannot replace static functions\n"); 23605 return -EINVAL; 23606 } 23607 if (!prog->jit_requested) { 23608 bpf_log(log, 23609 "Extension programs should be JITed\n"); 23610 return -EINVAL; 23611 } 23612 tgt_changes_pkt_data = aux->func 23613 ? aux->func[subprog]->aux->changes_pkt_data 23614 : aux->changes_pkt_data; 23615 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 23616 bpf_log(log, 23617 "Extension program changes packet data, while original does not\n"); 23618 return -EINVAL; 23619 } 23620 23621 tgt_might_sleep = aux->func 23622 ? aux->func[subprog]->aux->might_sleep 23623 : aux->might_sleep; 23624 if (prog->aux->might_sleep && !tgt_might_sleep) { 23625 bpf_log(log, 23626 "Extension program may sleep, while original does not\n"); 23627 return -EINVAL; 23628 } 23629 } 23630 if (!tgt_prog->jited) { 23631 bpf_log(log, "Can attach to only JITed progs\n"); 23632 return -EINVAL; 23633 } 23634 if (prog_tracing) { 23635 if (aux->attach_tracing_prog) { 23636 /* 23637 * Target program is an fentry/fexit which is already attached 23638 * to another tracing program. More levels of nesting 23639 * attachment are not allowed. 23640 */ 23641 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 23642 return -EINVAL; 23643 } 23644 } else if (tgt_prog->type == prog->type) { 23645 /* 23646 * To avoid potential call chain cycles, prevent attaching of a 23647 * program extension to another extension. It's ok to attach 23648 * fentry/fexit to extension program. 23649 */ 23650 bpf_log(log, "Cannot recursively attach\n"); 23651 return -EINVAL; 23652 } 23653 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 23654 prog_extension && 23655 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 23656 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 23657 /* Program extensions can extend all program types 23658 * except fentry/fexit. The reason is the following. 23659 * The fentry/fexit programs are used for performance 23660 * analysis, stats and can be attached to any program 23661 * type. When extension program is replacing XDP function 23662 * it is necessary to allow performance analysis of all 23663 * functions. Both original XDP program and its program 23664 * extension. Hence attaching fentry/fexit to 23665 * BPF_PROG_TYPE_EXT is allowed. If extending of 23666 * fentry/fexit was allowed it would be possible to create 23667 * long call chain fentry->extension->fentry->extension 23668 * beyond reasonable stack size. Hence extending fentry 23669 * is not allowed. 23670 */ 23671 bpf_log(log, "Cannot extend fentry/fexit\n"); 23672 return -EINVAL; 23673 } 23674 } else { 23675 if (prog_extension) { 23676 bpf_log(log, "Cannot replace kernel functions\n"); 23677 return -EINVAL; 23678 } 23679 } 23680 23681 switch (prog->expected_attach_type) { 23682 case BPF_TRACE_RAW_TP: 23683 if (tgt_prog) { 23684 bpf_log(log, 23685 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 23686 return -EINVAL; 23687 } 23688 if (!btf_type_is_typedef(t)) { 23689 bpf_log(log, "attach_btf_id %u is not a typedef\n", 23690 btf_id); 23691 return -EINVAL; 23692 } 23693 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 23694 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 23695 btf_id, tname); 23696 return -EINVAL; 23697 } 23698 tname += sizeof(prefix) - 1; 23699 23700 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 23701 * names. Thus using bpf_raw_event_map to get argument names. 23702 */ 23703 btp = bpf_get_raw_tracepoint(tname); 23704 if (!btp) 23705 return -EINVAL; 23706 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 23707 trace_symbol); 23708 bpf_put_raw_tracepoint(btp); 23709 23710 if (fname) 23711 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 23712 23713 if (!fname || ret < 0) { 23714 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 23715 prefix, tname); 23716 t = btf_type_by_id(btf, t->type); 23717 if (!btf_type_is_ptr(t)) 23718 /* should never happen in valid vmlinux build */ 23719 return -EINVAL; 23720 } else { 23721 t = btf_type_by_id(btf, ret); 23722 if (!btf_type_is_func(t)) 23723 /* should never happen in valid vmlinux build */ 23724 return -EINVAL; 23725 } 23726 23727 t = btf_type_by_id(btf, t->type); 23728 if (!btf_type_is_func_proto(t)) 23729 /* should never happen in valid vmlinux build */ 23730 return -EINVAL; 23731 23732 break; 23733 case BPF_TRACE_ITER: 23734 if (!btf_type_is_func(t)) { 23735 bpf_log(log, "attach_btf_id %u is not a function\n", 23736 btf_id); 23737 return -EINVAL; 23738 } 23739 t = btf_type_by_id(btf, t->type); 23740 if (!btf_type_is_func_proto(t)) 23741 return -EINVAL; 23742 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23743 if (ret) 23744 return ret; 23745 break; 23746 default: 23747 if (!prog_extension) 23748 return -EINVAL; 23749 fallthrough; 23750 case BPF_MODIFY_RETURN: 23751 case BPF_LSM_MAC: 23752 case BPF_LSM_CGROUP: 23753 case BPF_TRACE_FENTRY: 23754 case BPF_TRACE_FEXIT: 23755 if (!btf_type_is_func(t)) { 23756 bpf_log(log, "attach_btf_id %u is not a function\n", 23757 btf_id); 23758 return -EINVAL; 23759 } 23760 if (prog_extension && 23761 btf_check_type_match(log, prog, btf, t)) 23762 return -EINVAL; 23763 t = btf_type_by_id(btf, t->type); 23764 if (!btf_type_is_func_proto(t)) 23765 return -EINVAL; 23766 23767 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 23768 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 23769 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 23770 return -EINVAL; 23771 23772 if (tgt_prog && conservative) 23773 t = NULL; 23774 23775 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23776 if (ret < 0) 23777 return ret; 23778 23779 if (tgt_prog) { 23780 if (subprog == 0) 23781 addr = (long) tgt_prog->bpf_func; 23782 else 23783 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 23784 } else { 23785 if (btf_is_module(btf)) { 23786 mod = btf_try_get_module(btf); 23787 if (mod) 23788 addr = find_kallsyms_symbol_value(mod, tname); 23789 else 23790 addr = 0; 23791 } else { 23792 addr = kallsyms_lookup_name(tname); 23793 } 23794 if (!addr) { 23795 module_put(mod); 23796 bpf_log(log, 23797 "The address of function %s cannot be found\n", 23798 tname); 23799 return -ENOENT; 23800 } 23801 } 23802 23803 if (prog->sleepable) { 23804 ret = -EINVAL; 23805 switch (prog->type) { 23806 case BPF_PROG_TYPE_TRACING: 23807 23808 /* fentry/fexit/fmod_ret progs can be sleepable if they are 23809 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 23810 */ 23811 if (!check_non_sleepable_error_inject(btf_id) && 23812 within_error_injection_list(addr)) 23813 ret = 0; 23814 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 23815 * in the fmodret id set with the KF_SLEEPABLE flag. 23816 */ 23817 else { 23818 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 23819 prog); 23820 23821 if (flags && (*flags & KF_SLEEPABLE)) 23822 ret = 0; 23823 } 23824 break; 23825 case BPF_PROG_TYPE_LSM: 23826 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 23827 * Only some of them are sleepable. 23828 */ 23829 if (bpf_lsm_is_sleepable_hook(btf_id)) 23830 ret = 0; 23831 break; 23832 default: 23833 break; 23834 } 23835 if (ret) { 23836 module_put(mod); 23837 bpf_log(log, "%s is not sleepable\n", tname); 23838 return ret; 23839 } 23840 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 23841 if (tgt_prog) { 23842 module_put(mod); 23843 bpf_log(log, "can't modify return codes of BPF programs\n"); 23844 return -EINVAL; 23845 } 23846 ret = -EINVAL; 23847 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 23848 !check_attach_modify_return(addr, tname)) 23849 ret = 0; 23850 if (ret) { 23851 module_put(mod); 23852 bpf_log(log, "%s() is not modifiable\n", tname); 23853 return ret; 23854 } 23855 } 23856 23857 break; 23858 } 23859 tgt_info->tgt_addr = addr; 23860 tgt_info->tgt_name = tname; 23861 tgt_info->tgt_type = t; 23862 tgt_info->tgt_mod = mod; 23863 return 0; 23864 } 23865 23866 BTF_SET_START(btf_id_deny) 23867 BTF_ID_UNUSED 23868 #ifdef CONFIG_SMP 23869 BTF_ID(func, migrate_disable) 23870 BTF_ID(func, migrate_enable) 23871 #endif 23872 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 23873 BTF_ID(func, rcu_read_unlock_strict) 23874 #endif 23875 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 23876 BTF_ID(func, preempt_count_add) 23877 BTF_ID(func, preempt_count_sub) 23878 #endif 23879 #ifdef CONFIG_PREEMPT_RCU 23880 BTF_ID(func, __rcu_read_lock) 23881 BTF_ID(func, __rcu_read_unlock) 23882 #endif 23883 BTF_SET_END(btf_id_deny) 23884 23885 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 23886 * Currently, we must manually list all __noreturn functions here. Once a more 23887 * robust solution is implemented, this workaround can be removed. 23888 */ 23889 BTF_SET_START(noreturn_deny) 23890 #ifdef CONFIG_IA32_EMULATION 23891 BTF_ID(func, __ia32_sys_exit) 23892 BTF_ID(func, __ia32_sys_exit_group) 23893 #endif 23894 #ifdef CONFIG_KUNIT 23895 BTF_ID(func, __kunit_abort) 23896 BTF_ID(func, kunit_try_catch_throw) 23897 #endif 23898 #ifdef CONFIG_MODULES 23899 BTF_ID(func, __module_put_and_kthread_exit) 23900 #endif 23901 #ifdef CONFIG_X86_64 23902 BTF_ID(func, __x64_sys_exit) 23903 BTF_ID(func, __x64_sys_exit_group) 23904 #endif 23905 BTF_ID(func, do_exit) 23906 BTF_ID(func, do_group_exit) 23907 BTF_ID(func, kthread_complete_and_exit) 23908 BTF_ID(func, kthread_exit) 23909 BTF_ID(func, make_task_dead) 23910 BTF_SET_END(noreturn_deny) 23911 23912 static bool can_be_sleepable(struct bpf_prog *prog) 23913 { 23914 if (prog->type == BPF_PROG_TYPE_TRACING) { 23915 switch (prog->expected_attach_type) { 23916 case BPF_TRACE_FENTRY: 23917 case BPF_TRACE_FEXIT: 23918 case BPF_MODIFY_RETURN: 23919 case BPF_TRACE_ITER: 23920 return true; 23921 default: 23922 return false; 23923 } 23924 } 23925 return prog->type == BPF_PROG_TYPE_LSM || 23926 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 23927 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 23928 } 23929 23930 static int check_attach_btf_id(struct bpf_verifier_env *env) 23931 { 23932 struct bpf_prog *prog = env->prog; 23933 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 23934 struct bpf_attach_target_info tgt_info = {}; 23935 u32 btf_id = prog->aux->attach_btf_id; 23936 struct bpf_trampoline *tr; 23937 int ret; 23938 u64 key; 23939 23940 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 23941 if (prog->sleepable) 23942 /* attach_btf_id checked to be zero already */ 23943 return 0; 23944 verbose(env, "Syscall programs can only be sleepable\n"); 23945 return -EINVAL; 23946 } 23947 23948 if (prog->sleepable && !can_be_sleepable(prog)) { 23949 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 23950 return -EINVAL; 23951 } 23952 23953 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 23954 return check_struct_ops_btf_id(env); 23955 23956 if (prog->type != BPF_PROG_TYPE_TRACING && 23957 prog->type != BPF_PROG_TYPE_LSM && 23958 prog->type != BPF_PROG_TYPE_EXT) 23959 return 0; 23960 23961 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 23962 if (ret) 23963 return ret; 23964 23965 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 23966 /* to make freplace equivalent to their targets, they need to 23967 * inherit env->ops and expected_attach_type for the rest of the 23968 * verification 23969 */ 23970 env->ops = bpf_verifier_ops[tgt_prog->type]; 23971 prog->expected_attach_type = tgt_prog->expected_attach_type; 23972 } 23973 23974 /* store info about the attachment target that will be used later */ 23975 prog->aux->attach_func_proto = tgt_info.tgt_type; 23976 prog->aux->attach_func_name = tgt_info.tgt_name; 23977 prog->aux->mod = tgt_info.tgt_mod; 23978 23979 if (tgt_prog) { 23980 prog->aux->saved_dst_prog_type = tgt_prog->type; 23981 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 23982 } 23983 23984 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 23985 prog->aux->attach_btf_trace = true; 23986 return 0; 23987 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 23988 return bpf_iter_prog_supported(prog); 23989 } 23990 23991 if (prog->type == BPF_PROG_TYPE_LSM) { 23992 ret = bpf_lsm_verify_prog(&env->log, prog); 23993 if (ret < 0) 23994 return ret; 23995 } else if (prog->type == BPF_PROG_TYPE_TRACING && 23996 btf_id_set_contains(&btf_id_deny, btf_id)) { 23997 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n", 23998 tgt_info.tgt_name); 23999 return -EINVAL; 24000 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 24001 prog->expected_attach_type == BPF_MODIFY_RETURN) && 24002 btf_id_set_contains(&noreturn_deny, btf_id)) { 24003 verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n", 24004 tgt_info.tgt_name); 24005 return -EINVAL; 24006 } 24007 24008 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 24009 tr = bpf_trampoline_get(key, &tgt_info); 24010 if (!tr) 24011 return -ENOMEM; 24012 24013 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 24014 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 24015 24016 prog->aux->dst_trampoline = tr; 24017 return 0; 24018 } 24019 24020 struct btf *bpf_get_btf_vmlinux(void) 24021 { 24022 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 24023 mutex_lock(&bpf_verifier_lock); 24024 if (!btf_vmlinux) 24025 btf_vmlinux = btf_parse_vmlinux(); 24026 mutex_unlock(&bpf_verifier_lock); 24027 } 24028 return btf_vmlinux; 24029 } 24030 24031 /* 24032 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 24033 * this case expect that every file descriptor in the array is either a map or 24034 * a BTF. Everything else is considered to be trash. 24035 */ 24036 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 24037 { 24038 struct bpf_map *map; 24039 struct btf *btf; 24040 CLASS(fd, f)(fd); 24041 int err; 24042 24043 map = __bpf_map_get(f); 24044 if (!IS_ERR(map)) { 24045 err = __add_used_map(env, map); 24046 if (err < 0) 24047 return err; 24048 return 0; 24049 } 24050 24051 btf = __btf_get_by_fd(f); 24052 if (!IS_ERR(btf)) { 24053 err = __add_used_btf(env, btf); 24054 if (err < 0) 24055 return err; 24056 return 0; 24057 } 24058 24059 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 24060 return PTR_ERR(map); 24061 } 24062 24063 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 24064 { 24065 size_t size = sizeof(int); 24066 int ret; 24067 int fd; 24068 u32 i; 24069 24070 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 24071 24072 /* 24073 * The only difference between old (no fd_array_cnt is given) and new 24074 * APIs is that in the latter case the fd_array is expected to be 24075 * continuous and is scanned for map fds right away 24076 */ 24077 if (!attr->fd_array_cnt) 24078 return 0; 24079 24080 /* Check for integer overflow */ 24081 if (attr->fd_array_cnt >= (U32_MAX / size)) { 24082 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 24083 return -EINVAL; 24084 } 24085 24086 for (i = 0; i < attr->fd_array_cnt; i++) { 24087 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 24088 return -EFAULT; 24089 24090 ret = add_fd_from_fd_array(env, fd); 24091 if (ret) 24092 return ret; 24093 } 24094 24095 return 0; 24096 } 24097 24098 static bool can_fallthrough(struct bpf_insn *insn) 24099 { 24100 u8 class = BPF_CLASS(insn->code); 24101 u8 opcode = BPF_OP(insn->code); 24102 24103 if (class != BPF_JMP && class != BPF_JMP32) 24104 return true; 24105 24106 if (opcode == BPF_EXIT || opcode == BPF_JA) 24107 return false; 24108 24109 return true; 24110 } 24111 24112 static bool can_jump(struct bpf_insn *insn) 24113 { 24114 u8 class = BPF_CLASS(insn->code); 24115 u8 opcode = BPF_OP(insn->code); 24116 24117 if (class != BPF_JMP && class != BPF_JMP32) 24118 return false; 24119 24120 switch (opcode) { 24121 case BPF_JA: 24122 case BPF_JEQ: 24123 case BPF_JNE: 24124 case BPF_JLT: 24125 case BPF_JLE: 24126 case BPF_JGT: 24127 case BPF_JGE: 24128 case BPF_JSGT: 24129 case BPF_JSGE: 24130 case BPF_JSLT: 24131 case BPF_JSLE: 24132 case BPF_JCOND: 24133 case BPF_JSET: 24134 return true; 24135 } 24136 24137 return false; 24138 } 24139 24140 static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2]) 24141 { 24142 struct bpf_insn *insn = &prog->insnsi[idx]; 24143 int i = 0, insn_sz; 24144 u32 dst; 24145 24146 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 24147 if (can_fallthrough(insn) && idx + 1 < prog->len) 24148 succ[i++] = idx + insn_sz; 24149 24150 if (can_jump(insn)) { 24151 dst = idx + jmp_offset(insn) + 1; 24152 if (i == 0 || succ[0] != dst) 24153 succ[i++] = dst; 24154 } 24155 24156 return i; 24157 } 24158 24159 /* Each field is a register bitmask */ 24160 struct insn_live_regs { 24161 u16 use; /* registers read by instruction */ 24162 u16 def; /* registers written by instruction */ 24163 u16 in; /* registers that may be alive before instruction */ 24164 u16 out; /* registers that may be alive after instruction */ 24165 }; 24166 24167 /* Bitmask with 1s for all caller saved registers */ 24168 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 24169 24170 /* Compute info->{use,def} fields for the instruction */ 24171 static void compute_insn_live_regs(struct bpf_verifier_env *env, 24172 struct bpf_insn *insn, 24173 struct insn_live_regs *info) 24174 { 24175 struct call_summary cs; 24176 u8 class = BPF_CLASS(insn->code); 24177 u8 code = BPF_OP(insn->code); 24178 u8 mode = BPF_MODE(insn->code); 24179 u16 src = BIT(insn->src_reg); 24180 u16 dst = BIT(insn->dst_reg); 24181 u16 r0 = BIT(0); 24182 u16 def = 0; 24183 u16 use = 0xffff; 24184 24185 switch (class) { 24186 case BPF_LD: 24187 switch (mode) { 24188 case BPF_IMM: 24189 if (BPF_SIZE(insn->code) == BPF_DW) { 24190 def = dst; 24191 use = 0; 24192 } 24193 break; 24194 case BPF_LD | BPF_ABS: 24195 case BPF_LD | BPF_IND: 24196 /* stick with defaults */ 24197 break; 24198 } 24199 break; 24200 case BPF_LDX: 24201 switch (mode) { 24202 case BPF_MEM: 24203 case BPF_MEMSX: 24204 def = dst; 24205 use = src; 24206 break; 24207 } 24208 break; 24209 case BPF_ST: 24210 switch (mode) { 24211 case BPF_MEM: 24212 def = 0; 24213 use = dst; 24214 break; 24215 } 24216 break; 24217 case BPF_STX: 24218 switch (mode) { 24219 case BPF_MEM: 24220 def = 0; 24221 use = dst | src; 24222 break; 24223 case BPF_ATOMIC: 24224 switch (insn->imm) { 24225 case BPF_CMPXCHG: 24226 use = r0 | dst | src; 24227 def = r0; 24228 break; 24229 case BPF_LOAD_ACQ: 24230 def = dst; 24231 use = src; 24232 break; 24233 case BPF_STORE_REL: 24234 def = 0; 24235 use = dst | src; 24236 break; 24237 default: 24238 use = dst | src; 24239 if (insn->imm & BPF_FETCH) 24240 def = src; 24241 else 24242 def = 0; 24243 } 24244 break; 24245 } 24246 break; 24247 case BPF_ALU: 24248 case BPF_ALU64: 24249 switch (code) { 24250 case BPF_END: 24251 use = dst; 24252 def = dst; 24253 break; 24254 case BPF_MOV: 24255 def = dst; 24256 if (BPF_SRC(insn->code) == BPF_K) 24257 use = 0; 24258 else 24259 use = src; 24260 break; 24261 default: 24262 def = dst; 24263 if (BPF_SRC(insn->code) == BPF_K) 24264 use = dst; 24265 else 24266 use = dst | src; 24267 } 24268 break; 24269 case BPF_JMP: 24270 case BPF_JMP32: 24271 switch (code) { 24272 case BPF_JA: 24273 case BPF_JCOND: 24274 def = 0; 24275 use = 0; 24276 break; 24277 case BPF_EXIT: 24278 def = 0; 24279 use = r0; 24280 break; 24281 case BPF_CALL: 24282 def = ALL_CALLER_SAVED_REGS; 24283 use = def & ~BIT(BPF_REG_0); 24284 if (get_call_summary(env, insn, &cs)) 24285 use = GENMASK(cs.num_params, 1); 24286 break; 24287 default: 24288 def = 0; 24289 if (BPF_SRC(insn->code) == BPF_K) 24290 use = dst; 24291 else 24292 use = dst | src; 24293 } 24294 break; 24295 } 24296 24297 info->def = def; 24298 info->use = use; 24299 } 24300 24301 /* Compute may-live registers after each instruction in the program. 24302 * The register is live after the instruction I if it is read by some 24303 * instruction S following I during program execution and is not 24304 * overwritten between I and S. 24305 * 24306 * Store result in env->insn_aux_data[i].live_regs. 24307 */ 24308 static int compute_live_registers(struct bpf_verifier_env *env) 24309 { 24310 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 24311 struct bpf_insn *insns = env->prog->insnsi; 24312 struct insn_live_regs *state; 24313 int insn_cnt = env->prog->len; 24314 int err = 0, i, j; 24315 bool changed; 24316 24317 /* Use the following algorithm: 24318 * - define the following: 24319 * - I.use : a set of all registers read by instruction I; 24320 * - I.def : a set of all registers written by instruction I; 24321 * - I.in : a set of all registers that may be alive before I execution; 24322 * - I.out : a set of all registers that may be alive after I execution; 24323 * - insn_successors(I): a set of instructions S that might immediately 24324 * follow I for some program execution; 24325 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 24326 * - visit each instruction in a postorder and update 24327 * state[i].in, state[i].out as follows: 24328 * 24329 * state[i].out = U [state[s].in for S in insn_successors(i)] 24330 * state[i].in = (state[i].out / state[i].def) U state[i].use 24331 * 24332 * (where U stands for set union, / stands for set difference) 24333 * - repeat the computation while {in,out} fields changes for 24334 * any instruction. 24335 */ 24336 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); 24337 if (!state) { 24338 err = -ENOMEM; 24339 goto out; 24340 } 24341 24342 for (i = 0; i < insn_cnt; ++i) 24343 compute_insn_live_regs(env, &insns[i], &state[i]); 24344 24345 changed = true; 24346 while (changed) { 24347 changed = false; 24348 for (i = 0; i < env->cfg.cur_postorder; ++i) { 24349 int insn_idx = env->cfg.insn_postorder[i]; 24350 struct insn_live_regs *live = &state[insn_idx]; 24351 int succ_num; 24352 u32 succ[2]; 24353 u16 new_out = 0; 24354 u16 new_in = 0; 24355 24356 succ_num = insn_successors(env->prog, insn_idx, succ); 24357 for (int s = 0; s < succ_num; ++s) 24358 new_out |= state[succ[s]].in; 24359 new_in = (new_out & ~live->def) | live->use; 24360 if (new_out != live->out || new_in != live->in) { 24361 live->in = new_in; 24362 live->out = new_out; 24363 changed = true; 24364 } 24365 } 24366 } 24367 24368 for (i = 0; i < insn_cnt; ++i) 24369 insn_aux[i].live_regs_before = state[i].in; 24370 24371 if (env->log.level & BPF_LOG_LEVEL2) { 24372 verbose(env, "Live regs before insn:\n"); 24373 for (i = 0; i < insn_cnt; ++i) { 24374 if (env->insn_aux_data[i].scc) 24375 verbose(env, "%3d ", env->insn_aux_data[i].scc); 24376 else 24377 verbose(env, " "); 24378 verbose(env, "%3d: ", i); 24379 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 24380 if (insn_aux[i].live_regs_before & BIT(j)) 24381 verbose(env, "%d", j); 24382 else 24383 verbose(env, "."); 24384 verbose(env, " "); 24385 verbose_insn(env, &insns[i]); 24386 if (bpf_is_ldimm64(&insns[i])) 24387 i++; 24388 } 24389 } 24390 24391 out: 24392 kvfree(state); 24393 kvfree(env->cfg.insn_postorder); 24394 env->cfg.insn_postorder = NULL; 24395 env->cfg.cur_postorder = 0; 24396 return err; 24397 } 24398 24399 /* 24400 * Compute strongly connected components (SCCs) on the CFG. 24401 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. 24402 * If instruction is a sole member of its SCC and there are no self edges, 24403 * assign it SCC number of zero. 24404 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. 24405 */ 24406 static int compute_scc(struct bpf_verifier_env *env) 24407 { 24408 const u32 NOT_ON_STACK = U32_MAX; 24409 24410 struct bpf_insn_aux_data *aux = env->insn_aux_data; 24411 const u32 insn_cnt = env->prog->len; 24412 int stack_sz, dfs_sz, err = 0; 24413 u32 *stack, *pre, *low, *dfs; 24414 u32 succ_cnt, i, j, t, w; 24415 u32 next_preorder_num; 24416 u32 next_scc_id; 24417 bool assign_scc; 24418 u32 succ[2]; 24419 24420 next_preorder_num = 1; 24421 next_scc_id = 1; 24422 /* 24423 * - 'stack' accumulates vertices in DFS order, see invariant comment below; 24424 * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; 24425 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; 24426 * - 'dfs' DFS traversal stack, used to emulate explicit recursion. 24427 */ 24428 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24429 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24430 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24431 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); 24432 if (!stack || !pre || !low || !dfs) { 24433 err = -ENOMEM; 24434 goto exit; 24435 } 24436 /* 24437 * References: 24438 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" 24439 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" 24440 * 24441 * The algorithm maintains the following invariant: 24442 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; 24443 * - then, vertex 'u' remains on stack while vertex 'v' is on stack. 24444 * 24445 * Consequently: 24446 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', 24447 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, 24448 * and thus there is an SCC (loop) containing both 'u' and 'v'. 24449 * - If 'low[v] == pre[v]', loops containing 'v' have been explored, 24450 * and 'v' can be considered the root of some SCC. 24451 * 24452 * Here is a pseudo-code for an explicitly recursive version of the algorithm: 24453 * 24454 * NOT_ON_STACK = insn_cnt + 1 24455 * pre = [0] * insn_cnt 24456 * low = [0] * insn_cnt 24457 * scc = [0] * insn_cnt 24458 * stack = [] 24459 * 24460 * next_preorder_num = 1 24461 * next_scc_id = 1 24462 * 24463 * def recur(w): 24464 * nonlocal next_preorder_num 24465 * nonlocal next_scc_id 24466 * 24467 * pre[w] = next_preorder_num 24468 * low[w] = next_preorder_num 24469 * next_preorder_num += 1 24470 * stack.append(w) 24471 * for s in successors(w): 24472 * # Note: for classic algorithm the block below should look as: 24473 * # 24474 * # if pre[s] == 0: 24475 * # recur(s) 24476 * # low[w] = min(low[w], low[s]) 24477 * # elif low[s] != NOT_ON_STACK: 24478 * # low[w] = min(low[w], pre[s]) 24479 * # 24480 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' 24481 * # does not break the invariant and makes itartive version of the algorithm 24482 * # simpler. See 'Algorithm #3' from [2]. 24483 * 24484 * # 's' not yet visited 24485 * if pre[s] == 0: 24486 * recur(s) 24487 * # if 's' is on stack, pick lowest reachable preorder number from it; 24488 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', 24489 * # so 'min' would be a noop. 24490 * low[w] = min(low[w], low[s]) 24491 * 24492 * if low[w] == pre[w]: 24493 * # 'w' is the root of an SCC, pop all vertices 24494 * # below 'w' on stack and assign same SCC to them. 24495 * while True: 24496 * t = stack.pop() 24497 * low[t] = NOT_ON_STACK 24498 * scc[t] = next_scc_id 24499 * if t == w: 24500 * break 24501 * next_scc_id += 1 24502 * 24503 * for i in range(0, insn_cnt): 24504 * if pre[i] == 0: 24505 * recur(i) 24506 * 24507 * Below implementation replaces explicit recursion with array 'dfs'. 24508 */ 24509 for (i = 0; i < insn_cnt; i++) { 24510 if (pre[i]) 24511 continue; 24512 stack_sz = 0; 24513 dfs_sz = 1; 24514 dfs[0] = i; 24515 dfs_continue: 24516 while (dfs_sz) { 24517 w = dfs[dfs_sz - 1]; 24518 if (pre[w] == 0) { 24519 low[w] = next_preorder_num; 24520 pre[w] = next_preorder_num; 24521 next_preorder_num++; 24522 stack[stack_sz++] = w; 24523 } 24524 /* Visit 'w' successors */ 24525 succ_cnt = insn_successors(env->prog, w, succ); 24526 for (j = 0; j < succ_cnt; ++j) { 24527 if (pre[succ[j]]) { 24528 low[w] = min(low[w], low[succ[j]]); 24529 } else { 24530 dfs[dfs_sz++] = succ[j]; 24531 goto dfs_continue; 24532 } 24533 } 24534 /* 24535 * Preserve the invariant: if some vertex above in the stack 24536 * is reachable from 'w', keep 'w' on the stack. 24537 */ 24538 if (low[w] < pre[w]) { 24539 dfs_sz--; 24540 goto dfs_continue; 24541 } 24542 /* 24543 * Assign SCC number only if component has two or more elements, 24544 * or if component has a self reference. 24545 */ 24546 assign_scc = stack[stack_sz - 1] != w; 24547 for (j = 0; j < succ_cnt; ++j) { 24548 if (succ[j] == w) { 24549 assign_scc = true; 24550 break; 24551 } 24552 } 24553 /* Pop component elements from stack */ 24554 do { 24555 t = stack[--stack_sz]; 24556 low[t] = NOT_ON_STACK; 24557 if (assign_scc) 24558 aux[t].scc = next_scc_id; 24559 } while (t != w); 24560 if (assign_scc) 24561 next_scc_id++; 24562 dfs_sz--; 24563 } 24564 } 24565 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); 24566 if (!env->scc_info) { 24567 err = -ENOMEM; 24568 goto exit; 24569 } 24570 env->scc_cnt = next_scc_id; 24571 exit: 24572 kvfree(stack); 24573 kvfree(pre); 24574 kvfree(low); 24575 kvfree(dfs); 24576 return err; 24577 } 24578 24579 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 24580 { 24581 u64 start_time = ktime_get_ns(); 24582 struct bpf_verifier_env *env; 24583 int i, len, ret = -EINVAL, err; 24584 u32 log_true_size; 24585 bool is_priv; 24586 24587 BTF_TYPE_EMIT(enum bpf_features); 24588 24589 /* no program is valid */ 24590 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 24591 return -EINVAL; 24592 24593 /* 'struct bpf_verifier_env' can be global, but since it's not small, 24594 * allocate/free it every time bpf_check() is called 24595 */ 24596 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); 24597 if (!env) 24598 return -ENOMEM; 24599 24600 env->bt.env = env; 24601 24602 len = (*prog)->len; 24603 env->insn_aux_data = 24604 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 24605 ret = -ENOMEM; 24606 if (!env->insn_aux_data) 24607 goto err_free_env; 24608 for (i = 0; i < len; i++) 24609 env->insn_aux_data[i].orig_idx = i; 24610 env->prog = *prog; 24611 env->ops = bpf_verifier_ops[env->prog->type]; 24612 24613 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 24614 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 24615 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 24616 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 24617 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 24618 24619 bpf_get_btf_vmlinux(); 24620 24621 /* grab the mutex to protect few globals used by verifier */ 24622 if (!is_priv) 24623 mutex_lock(&bpf_verifier_lock); 24624 24625 /* user could have requested verbose verifier output 24626 * and supplied buffer to store the verification trace 24627 */ 24628 ret = bpf_vlog_init(&env->log, attr->log_level, 24629 (char __user *) (unsigned long) attr->log_buf, 24630 attr->log_size); 24631 if (ret) 24632 goto err_unlock; 24633 24634 ret = process_fd_array(env, attr, uattr); 24635 if (ret) 24636 goto skip_full_check; 24637 24638 mark_verifier_state_clean(env); 24639 24640 if (IS_ERR(btf_vmlinux)) { 24641 /* Either gcc or pahole or kernel are broken. */ 24642 verbose(env, "in-kernel BTF is malformed\n"); 24643 ret = PTR_ERR(btf_vmlinux); 24644 goto skip_full_check; 24645 } 24646 24647 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 24648 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 24649 env->strict_alignment = true; 24650 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 24651 env->strict_alignment = false; 24652 24653 if (is_priv) 24654 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 24655 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 24656 24657 env->explored_states = kvcalloc(state_htab_size(env), 24658 sizeof(struct list_head), 24659 GFP_KERNEL_ACCOUNT); 24660 ret = -ENOMEM; 24661 if (!env->explored_states) 24662 goto skip_full_check; 24663 24664 for (i = 0; i < state_htab_size(env); i++) 24665 INIT_LIST_HEAD(&env->explored_states[i]); 24666 INIT_LIST_HEAD(&env->free_list); 24667 24668 ret = check_btf_info_early(env, attr, uattr); 24669 if (ret < 0) 24670 goto skip_full_check; 24671 24672 ret = add_subprog_and_kfunc(env); 24673 if (ret < 0) 24674 goto skip_full_check; 24675 24676 ret = check_subprogs(env); 24677 if (ret < 0) 24678 goto skip_full_check; 24679 24680 ret = check_btf_info(env, attr, uattr); 24681 if (ret < 0) 24682 goto skip_full_check; 24683 24684 ret = resolve_pseudo_ldimm64(env); 24685 if (ret < 0) 24686 goto skip_full_check; 24687 24688 if (bpf_prog_is_offloaded(env->prog->aux)) { 24689 ret = bpf_prog_offload_verifier_prep(env->prog); 24690 if (ret) 24691 goto skip_full_check; 24692 } 24693 24694 ret = check_cfg(env); 24695 if (ret < 0) 24696 goto skip_full_check; 24697 24698 ret = check_attach_btf_id(env); 24699 if (ret) 24700 goto skip_full_check; 24701 24702 ret = compute_scc(env); 24703 if (ret < 0) 24704 goto skip_full_check; 24705 24706 ret = compute_live_registers(env); 24707 if (ret < 0) 24708 goto skip_full_check; 24709 24710 ret = mark_fastcall_patterns(env); 24711 if (ret < 0) 24712 goto skip_full_check; 24713 24714 ret = do_check_main(env); 24715 ret = ret ?: do_check_subprogs(env); 24716 24717 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 24718 ret = bpf_prog_offload_finalize(env); 24719 24720 skip_full_check: 24721 kvfree(env->explored_states); 24722 24723 /* might decrease stack depth, keep it before passes that 24724 * allocate additional slots. 24725 */ 24726 if (ret == 0) 24727 ret = remove_fastcall_spills_fills(env); 24728 24729 if (ret == 0) 24730 ret = check_max_stack_depth(env); 24731 24732 /* instruction rewrites happen after this point */ 24733 if (ret == 0) 24734 ret = optimize_bpf_loop(env); 24735 24736 if (is_priv) { 24737 if (ret == 0) 24738 opt_hard_wire_dead_code_branches(env); 24739 if (ret == 0) 24740 ret = opt_remove_dead_code(env); 24741 if (ret == 0) 24742 ret = opt_remove_nops(env); 24743 } else { 24744 if (ret == 0) 24745 sanitize_dead_code(env); 24746 } 24747 24748 if (ret == 0) 24749 /* program is valid, convert *(u32*)(ctx + off) accesses */ 24750 ret = convert_ctx_accesses(env); 24751 24752 if (ret == 0) 24753 ret = do_misc_fixups(env); 24754 24755 /* do 32-bit optimization after insn patching has done so those patched 24756 * insns could be handled correctly. 24757 */ 24758 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 24759 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 24760 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 24761 : false; 24762 } 24763 24764 if (ret == 0) 24765 ret = fixup_call_args(env); 24766 24767 env->verification_time = ktime_get_ns() - start_time; 24768 print_verification_stats(env); 24769 env->prog->aux->verified_insns = env->insn_processed; 24770 24771 /* preserve original error even if log finalization is successful */ 24772 err = bpf_vlog_finalize(&env->log, &log_true_size); 24773 if (err) 24774 ret = err; 24775 24776 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 24777 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 24778 &log_true_size, sizeof(log_true_size))) { 24779 ret = -EFAULT; 24780 goto err_release_maps; 24781 } 24782 24783 if (ret) 24784 goto err_release_maps; 24785 24786 if (env->used_map_cnt) { 24787 /* if program passed verifier, update used_maps in bpf_prog_info */ 24788 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 24789 sizeof(env->used_maps[0]), 24790 GFP_KERNEL_ACCOUNT); 24791 24792 if (!env->prog->aux->used_maps) { 24793 ret = -ENOMEM; 24794 goto err_release_maps; 24795 } 24796 24797 memcpy(env->prog->aux->used_maps, env->used_maps, 24798 sizeof(env->used_maps[0]) * env->used_map_cnt); 24799 env->prog->aux->used_map_cnt = env->used_map_cnt; 24800 } 24801 if (env->used_btf_cnt) { 24802 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 24803 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 24804 sizeof(env->used_btfs[0]), 24805 GFP_KERNEL_ACCOUNT); 24806 if (!env->prog->aux->used_btfs) { 24807 ret = -ENOMEM; 24808 goto err_release_maps; 24809 } 24810 24811 memcpy(env->prog->aux->used_btfs, env->used_btfs, 24812 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 24813 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 24814 } 24815 if (env->used_map_cnt || env->used_btf_cnt) { 24816 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 24817 * bpf_ld_imm64 instructions 24818 */ 24819 convert_pseudo_ld_imm64(env); 24820 } 24821 24822 adjust_btf_func(env); 24823 24824 err_release_maps: 24825 if (!env->prog->aux->used_maps) 24826 /* if we didn't copy map pointers into bpf_prog_info, release 24827 * them now. Otherwise free_used_maps() will release them. 24828 */ 24829 release_maps(env); 24830 if (!env->prog->aux->used_btfs) 24831 release_btfs(env); 24832 24833 /* extension progs temporarily inherit the attach_type of their targets 24834 for verification purposes, so set it back to zero before returning 24835 */ 24836 if (env->prog->type == BPF_PROG_TYPE_EXT) 24837 env->prog->expected_attach_type = 0; 24838 24839 *prog = env->prog; 24840 24841 module_put(env->attach_btf_mod); 24842 err_unlock: 24843 if (!is_priv) 24844 mutex_unlock(&bpf_verifier_lock); 24845 vfree(env->insn_aux_data); 24846 err_free_env: 24847 kvfree(env->cfg.insn_postorder); 24848 kvfree(env->scc_info); 24849 kvfree(env); 24850 return ret; 24851 } 24852