1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 }; 36 37 /* bpf_check() is a static code analyzer that walks eBPF program 38 * instruction by instruction and updates register/stack state. 39 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 40 * 41 * The first pass is depth-first-search to check that the program is a DAG. 42 * It rejects the following programs: 43 * - larger than BPF_MAXINSNS insns 44 * - if loop is present (detected via back-edge) 45 * - unreachable insns exist (shouldn't be a forest. program = one function) 46 * - out of bounds or malformed jumps 47 * The second pass is all possible path descent from the 1st insn. 48 * Since it's analyzing all pathes through the program, the length of the 49 * analysis is limited to 64k insn, which may be hit even if total number of 50 * insn is less then 4K, but there are too many branches that change stack/regs. 51 * Number of 'branches to be analyzed' is limited to 1k 52 * 53 * On entry to each instruction, each register has a type, and the instruction 54 * changes the types of the registers depending on instruction semantics. 55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 56 * copied to R1. 57 * 58 * All registers are 64-bit. 59 * R0 - return register 60 * R1-R5 argument passing registers 61 * R6-R9 callee saved registers 62 * R10 - frame pointer read-only 63 * 64 * At the start of BPF program the register R1 contains a pointer to bpf_context 65 * and has type PTR_TO_CTX. 66 * 67 * Verifier tracks arithmetic operations on pointers in case: 68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 70 * 1st insn copies R10 (which has FRAME_PTR) type into R1 71 * and 2nd arithmetic instruction is pattern matched to recognize 72 * that it wants to construct a pointer to some element within stack. 73 * So after 2nd insn, the register R1 has type PTR_TO_STACK 74 * (and -20 constant is saved for further stack bounds checking). 75 * Meaning that this reg is a pointer to stack plus known immediate constant. 76 * 77 * Most of the time the registers have SCALAR_VALUE type, which 78 * means the register has some value, but it's not a valid pointer. 79 * (like pointer plus pointer becomes SCALAR_VALUE type) 80 * 81 * When verifier sees load or store instructions the type of base register 82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 83 * types recognized by check_mem_access() function. 84 * 85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 86 * and the range of [ptr, ptr + map's value_size) is accessible. 87 * 88 * registers used to pass values to function calls are checked against 89 * function argument constraints. 90 * 91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 92 * It means that the register type passed to this function must be 93 * PTR_TO_STACK and it will be used inside the function as 94 * 'pointer to map element key' 95 * 96 * For example the argument constraints for bpf_map_lookup_elem(): 97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 98 * .arg1_type = ARG_CONST_MAP_PTR, 99 * .arg2_type = ARG_PTR_TO_MAP_KEY, 100 * 101 * ret_type says that this function returns 'pointer to map elem value or null' 102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 103 * 2nd argument should be a pointer to stack, which will be used inside 104 * the helper function as a pointer to map element key. 105 * 106 * On the kernel side the helper function looks like: 107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 108 * { 109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 110 * void *key = (void *) (unsigned long) r2; 111 * void *value; 112 * 113 * here kernel can access 'key' and 'map' pointers safely, knowing that 114 * [key, key + map->key_size) bytes are valid and were initialized on 115 * the stack of eBPF program. 116 * } 117 * 118 * Corresponding eBPF program may look like: 119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 123 * here verifier looks at prototype of map_lookup_elem() and sees: 124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 126 * 127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 129 * and were initialized prior to this call. 130 * If it's ok, then verifier allows this BPF_CALL insn and looks at 131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 133 * returns ether pointer to map value or NULL. 134 * 135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 136 * insn, the register holding that pointer in the true branch changes state to 137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 138 * branch. See check_cond_jmp_op(). 139 * 140 * After the call R0 is set to return type of the function and registers R1-R5 141 * are set to NOT_INIT to indicate that they are no longer readable. 142 */ 143 144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 145 struct bpf_verifier_stack_elem { 146 /* verifer state is 'st' 147 * before processing instruction 'insn_idx' 148 * and after processing instruction 'prev_insn_idx' 149 */ 150 struct bpf_verifier_state st; 151 int insn_idx; 152 int prev_insn_idx; 153 struct bpf_verifier_stack_elem *next; 154 }; 155 156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 157 #define BPF_COMPLEXITY_LIMIT_STACK 1024 158 159 #define BPF_MAP_PTR_UNPRIV 1UL 160 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 161 POISON_POINTER_DELTA)) 162 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 163 164 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 165 { 166 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 167 } 168 169 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 170 { 171 return aux->map_state & BPF_MAP_PTR_UNPRIV; 172 } 173 174 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 175 const struct bpf_map *map, bool unpriv) 176 { 177 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 178 unpriv |= bpf_map_ptr_unpriv(aux); 179 aux->map_state = (unsigned long)map | 180 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 181 } 182 183 struct bpf_call_arg_meta { 184 struct bpf_map *map_ptr; 185 bool raw_mode; 186 bool pkt_access; 187 int regno; 188 int access_size; 189 }; 190 191 static DEFINE_MUTEX(bpf_verifier_lock); 192 193 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 194 va_list args) 195 { 196 unsigned int n; 197 198 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 199 200 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 201 "verifier log line truncated - local buffer too short\n"); 202 203 n = min(log->len_total - log->len_used - 1, n); 204 log->kbuf[n] = '\0'; 205 206 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 207 log->len_used += n; 208 else 209 log->ubuf = NULL; 210 } 211 212 /* log_level controls verbosity level of eBPF verifier. 213 * bpf_verifier_log_write() is used to dump the verification trace to the log, 214 * so the user can figure out what's wrong with the program 215 */ 216 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 217 const char *fmt, ...) 218 { 219 va_list args; 220 221 if (!bpf_verifier_log_needed(&env->log)) 222 return; 223 224 va_start(args, fmt); 225 bpf_verifier_vlog(&env->log, fmt, args); 226 va_end(args); 227 } 228 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 229 230 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 231 { 232 struct bpf_verifier_env *env = private_data; 233 va_list args; 234 235 if (!bpf_verifier_log_needed(&env->log)) 236 return; 237 238 va_start(args, fmt); 239 bpf_verifier_vlog(&env->log, fmt, args); 240 va_end(args); 241 } 242 243 static bool type_is_pkt_pointer(enum bpf_reg_type type) 244 { 245 return type == PTR_TO_PACKET || 246 type == PTR_TO_PACKET_META; 247 } 248 249 /* string representation of 'enum bpf_reg_type' */ 250 static const char * const reg_type_str[] = { 251 [NOT_INIT] = "?", 252 [SCALAR_VALUE] = "inv", 253 [PTR_TO_CTX] = "ctx", 254 [CONST_PTR_TO_MAP] = "map_ptr", 255 [PTR_TO_MAP_VALUE] = "map_value", 256 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 257 [PTR_TO_STACK] = "fp", 258 [PTR_TO_PACKET] = "pkt", 259 [PTR_TO_PACKET_META] = "pkt_meta", 260 [PTR_TO_PACKET_END] = "pkt_end", 261 }; 262 263 static void print_liveness(struct bpf_verifier_env *env, 264 enum bpf_reg_liveness live) 265 { 266 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 267 verbose(env, "_"); 268 if (live & REG_LIVE_READ) 269 verbose(env, "r"); 270 if (live & REG_LIVE_WRITTEN) 271 verbose(env, "w"); 272 } 273 274 static struct bpf_func_state *func(struct bpf_verifier_env *env, 275 const struct bpf_reg_state *reg) 276 { 277 struct bpf_verifier_state *cur = env->cur_state; 278 279 return cur->frame[reg->frameno]; 280 } 281 282 static void print_verifier_state(struct bpf_verifier_env *env, 283 const struct bpf_func_state *state) 284 { 285 const struct bpf_reg_state *reg; 286 enum bpf_reg_type t; 287 int i; 288 289 if (state->frameno) 290 verbose(env, " frame%d:", state->frameno); 291 for (i = 0; i < MAX_BPF_REG; i++) { 292 reg = &state->regs[i]; 293 t = reg->type; 294 if (t == NOT_INIT) 295 continue; 296 verbose(env, " R%d", i); 297 print_liveness(env, reg->live); 298 verbose(env, "=%s", reg_type_str[t]); 299 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 300 tnum_is_const(reg->var_off)) { 301 /* reg->off should be 0 for SCALAR_VALUE */ 302 verbose(env, "%lld", reg->var_off.value + reg->off); 303 if (t == PTR_TO_STACK) 304 verbose(env, ",call_%d", func(env, reg)->callsite); 305 } else { 306 verbose(env, "(id=%d", reg->id); 307 if (t != SCALAR_VALUE) 308 verbose(env, ",off=%d", reg->off); 309 if (type_is_pkt_pointer(t)) 310 verbose(env, ",r=%d", reg->range); 311 else if (t == CONST_PTR_TO_MAP || 312 t == PTR_TO_MAP_VALUE || 313 t == PTR_TO_MAP_VALUE_OR_NULL) 314 verbose(env, ",ks=%d,vs=%d", 315 reg->map_ptr->key_size, 316 reg->map_ptr->value_size); 317 if (tnum_is_const(reg->var_off)) { 318 /* Typically an immediate SCALAR_VALUE, but 319 * could be a pointer whose offset is too big 320 * for reg->off 321 */ 322 verbose(env, ",imm=%llx", reg->var_off.value); 323 } else { 324 if (reg->smin_value != reg->umin_value && 325 reg->smin_value != S64_MIN) 326 verbose(env, ",smin_value=%lld", 327 (long long)reg->smin_value); 328 if (reg->smax_value != reg->umax_value && 329 reg->smax_value != S64_MAX) 330 verbose(env, ",smax_value=%lld", 331 (long long)reg->smax_value); 332 if (reg->umin_value != 0) 333 verbose(env, ",umin_value=%llu", 334 (unsigned long long)reg->umin_value); 335 if (reg->umax_value != U64_MAX) 336 verbose(env, ",umax_value=%llu", 337 (unsigned long long)reg->umax_value); 338 if (!tnum_is_unknown(reg->var_off)) { 339 char tn_buf[48]; 340 341 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 342 verbose(env, ",var_off=%s", tn_buf); 343 } 344 } 345 verbose(env, ")"); 346 } 347 } 348 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 349 if (state->stack[i].slot_type[0] == STACK_SPILL) { 350 verbose(env, " fp%d", 351 (-i - 1) * BPF_REG_SIZE); 352 print_liveness(env, state->stack[i].spilled_ptr.live); 353 verbose(env, "=%s", 354 reg_type_str[state->stack[i].spilled_ptr.type]); 355 } 356 if (state->stack[i].slot_type[0] == STACK_ZERO) 357 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 358 } 359 verbose(env, "\n"); 360 } 361 362 static int copy_stack_state(struct bpf_func_state *dst, 363 const struct bpf_func_state *src) 364 { 365 if (!src->stack) 366 return 0; 367 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 368 /* internal bug, make state invalid to reject the program */ 369 memset(dst, 0, sizeof(*dst)); 370 return -EFAULT; 371 } 372 memcpy(dst->stack, src->stack, 373 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 374 return 0; 375 } 376 377 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 378 * make it consume minimal amount of memory. check_stack_write() access from 379 * the program calls into realloc_func_state() to grow the stack size. 380 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 381 * which this function copies over. It points to previous bpf_verifier_state 382 * which is never reallocated 383 */ 384 static int realloc_func_state(struct bpf_func_state *state, int size, 385 bool copy_old) 386 { 387 u32 old_size = state->allocated_stack; 388 struct bpf_stack_state *new_stack; 389 int slot = size / BPF_REG_SIZE; 390 391 if (size <= old_size || !size) { 392 if (copy_old) 393 return 0; 394 state->allocated_stack = slot * BPF_REG_SIZE; 395 if (!size && old_size) { 396 kfree(state->stack); 397 state->stack = NULL; 398 } 399 return 0; 400 } 401 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 402 GFP_KERNEL); 403 if (!new_stack) 404 return -ENOMEM; 405 if (copy_old) { 406 if (state->stack) 407 memcpy(new_stack, state->stack, 408 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 409 memset(new_stack + old_size / BPF_REG_SIZE, 0, 410 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 411 } 412 state->allocated_stack = slot * BPF_REG_SIZE; 413 kfree(state->stack); 414 state->stack = new_stack; 415 return 0; 416 } 417 418 static void free_func_state(struct bpf_func_state *state) 419 { 420 if (!state) 421 return; 422 kfree(state->stack); 423 kfree(state); 424 } 425 426 static void free_verifier_state(struct bpf_verifier_state *state, 427 bool free_self) 428 { 429 int i; 430 431 for (i = 0; i <= state->curframe; i++) { 432 free_func_state(state->frame[i]); 433 state->frame[i] = NULL; 434 } 435 if (free_self) 436 kfree(state); 437 } 438 439 /* copy verifier state from src to dst growing dst stack space 440 * when necessary to accommodate larger src stack 441 */ 442 static int copy_func_state(struct bpf_func_state *dst, 443 const struct bpf_func_state *src) 444 { 445 int err; 446 447 err = realloc_func_state(dst, src->allocated_stack, false); 448 if (err) 449 return err; 450 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 451 return copy_stack_state(dst, src); 452 } 453 454 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 455 const struct bpf_verifier_state *src) 456 { 457 struct bpf_func_state *dst; 458 int i, err; 459 460 /* if dst has more stack frames then src frame, free them */ 461 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 462 free_func_state(dst_state->frame[i]); 463 dst_state->frame[i] = NULL; 464 } 465 dst_state->curframe = src->curframe; 466 dst_state->parent = src->parent; 467 for (i = 0; i <= src->curframe; i++) { 468 dst = dst_state->frame[i]; 469 if (!dst) { 470 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 471 if (!dst) 472 return -ENOMEM; 473 dst_state->frame[i] = dst; 474 } 475 err = copy_func_state(dst, src->frame[i]); 476 if (err) 477 return err; 478 } 479 return 0; 480 } 481 482 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 483 int *insn_idx) 484 { 485 struct bpf_verifier_state *cur = env->cur_state; 486 struct bpf_verifier_stack_elem *elem, *head = env->head; 487 int err; 488 489 if (env->head == NULL) 490 return -ENOENT; 491 492 if (cur) { 493 err = copy_verifier_state(cur, &head->st); 494 if (err) 495 return err; 496 } 497 if (insn_idx) 498 *insn_idx = head->insn_idx; 499 if (prev_insn_idx) 500 *prev_insn_idx = head->prev_insn_idx; 501 elem = head->next; 502 free_verifier_state(&head->st, false); 503 kfree(head); 504 env->head = elem; 505 env->stack_size--; 506 return 0; 507 } 508 509 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 510 int insn_idx, int prev_insn_idx) 511 { 512 struct bpf_verifier_state *cur = env->cur_state; 513 struct bpf_verifier_stack_elem *elem; 514 int err; 515 516 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 517 if (!elem) 518 goto err; 519 520 elem->insn_idx = insn_idx; 521 elem->prev_insn_idx = prev_insn_idx; 522 elem->next = env->head; 523 env->head = elem; 524 env->stack_size++; 525 err = copy_verifier_state(&elem->st, cur); 526 if (err) 527 goto err; 528 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 529 verbose(env, "BPF program is too complex\n"); 530 goto err; 531 } 532 return &elem->st; 533 err: 534 free_verifier_state(env->cur_state, true); 535 env->cur_state = NULL; 536 /* pop all elements and return */ 537 while (!pop_stack(env, NULL, NULL)); 538 return NULL; 539 } 540 541 #define CALLER_SAVED_REGS 6 542 static const int caller_saved[CALLER_SAVED_REGS] = { 543 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 544 }; 545 546 static void __mark_reg_not_init(struct bpf_reg_state *reg); 547 548 /* Mark the unknown part of a register (variable offset or scalar value) as 549 * known to have the value @imm. 550 */ 551 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 552 { 553 reg->id = 0; 554 reg->var_off = tnum_const(imm); 555 reg->smin_value = (s64)imm; 556 reg->smax_value = (s64)imm; 557 reg->umin_value = imm; 558 reg->umax_value = imm; 559 } 560 561 /* Mark the 'variable offset' part of a register as zero. This should be 562 * used only on registers holding a pointer type. 563 */ 564 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 565 { 566 __mark_reg_known(reg, 0); 567 } 568 569 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 570 { 571 __mark_reg_known(reg, 0); 572 reg->off = 0; 573 reg->type = SCALAR_VALUE; 574 } 575 576 static void mark_reg_known_zero(struct bpf_verifier_env *env, 577 struct bpf_reg_state *regs, u32 regno) 578 { 579 if (WARN_ON(regno >= MAX_BPF_REG)) { 580 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 581 /* Something bad happened, let's kill all regs */ 582 for (regno = 0; regno < MAX_BPF_REG; regno++) 583 __mark_reg_not_init(regs + regno); 584 return; 585 } 586 __mark_reg_known_zero(regs + regno); 587 } 588 589 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 590 { 591 return type_is_pkt_pointer(reg->type); 592 } 593 594 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 595 { 596 return reg_is_pkt_pointer(reg) || 597 reg->type == PTR_TO_PACKET_END; 598 } 599 600 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 601 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 602 enum bpf_reg_type which) 603 { 604 /* The register can already have a range from prior markings. 605 * This is fine as long as it hasn't been advanced from its 606 * origin. 607 */ 608 return reg->type == which && 609 reg->id == 0 && 610 reg->off == 0 && 611 tnum_equals_const(reg->var_off, 0); 612 } 613 614 /* Attempts to improve min/max values based on var_off information */ 615 static void __update_reg_bounds(struct bpf_reg_state *reg) 616 { 617 /* min signed is max(sign bit) | min(other bits) */ 618 reg->smin_value = max_t(s64, reg->smin_value, 619 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 620 /* max signed is min(sign bit) | max(other bits) */ 621 reg->smax_value = min_t(s64, reg->smax_value, 622 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 623 reg->umin_value = max(reg->umin_value, reg->var_off.value); 624 reg->umax_value = min(reg->umax_value, 625 reg->var_off.value | reg->var_off.mask); 626 } 627 628 /* Uses signed min/max values to inform unsigned, and vice-versa */ 629 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 630 { 631 /* Learn sign from signed bounds. 632 * If we cannot cross the sign boundary, then signed and unsigned bounds 633 * are the same, so combine. This works even in the negative case, e.g. 634 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 635 */ 636 if (reg->smin_value >= 0 || reg->smax_value < 0) { 637 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 638 reg->umin_value); 639 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 640 reg->umax_value); 641 return; 642 } 643 /* Learn sign from unsigned bounds. Signed bounds cross the sign 644 * boundary, so we must be careful. 645 */ 646 if ((s64)reg->umax_value >= 0) { 647 /* Positive. We can't learn anything from the smin, but smax 648 * is positive, hence safe. 649 */ 650 reg->smin_value = reg->umin_value; 651 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 652 reg->umax_value); 653 } else if ((s64)reg->umin_value < 0) { 654 /* Negative. We can't learn anything from the smax, but smin 655 * is negative, hence safe. 656 */ 657 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 658 reg->umin_value); 659 reg->smax_value = reg->umax_value; 660 } 661 } 662 663 /* Attempts to improve var_off based on unsigned min/max information */ 664 static void __reg_bound_offset(struct bpf_reg_state *reg) 665 { 666 reg->var_off = tnum_intersect(reg->var_off, 667 tnum_range(reg->umin_value, 668 reg->umax_value)); 669 } 670 671 /* Reset the min/max bounds of a register */ 672 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 673 { 674 reg->smin_value = S64_MIN; 675 reg->smax_value = S64_MAX; 676 reg->umin_value = 0; 677 reg->umax_value = U64_MAX; 678 } 679 680 /* Mark a register as having a completely unknown (scalar) value. */ 681 static void __mark_reg_unknown(struct bpf_reg_state *reg) 682 { 683 reg->type = SCALAR_VALUE; 684 reg->id = 0; 685 reg->off = 0; 686 reg->var_off = tnum_unknown; 687 reg->frameno = 0; 688 __mark_reg_unbounded(reg); 689 } 690 691 static void mark_reg_unknown(struct bpf_verifier_env *env, 692 struct bpf_reg_state *regs, u32 regno) 693 { 694 if (WARN_ON(regno >= MAX_BPF_REG)) { 695 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 696 /* Something bad happened, let's kill all regs except FP */ 697 for (regno = 0; regno < BPF_REG_FP; regno++) 698 __mark_reg_not_init(regs + regno); 699 return; 700 } 701 __mark_reg_unknown(regs + regno); 702 } 703 704 static void __mark_reg_not_init(struct bpf_reg_state *reg) 705 { 706 __mark_reg_unknown(reg); 707 reg->type = NOT_INIT; 708 } 709 710 static void mark_reg_not_init(struct bpf_verifier_env *env, 711 struct bpf_reg_state *regs, u32 regno) 712 { 713 if (WARN_ON(regno >= MAX_BPF_REG)) { 714 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 715 /* Something bad happened, let's kill all regs except FP */ 716 for (regno = 0; regno < BPF_REG_FP; regno++) 717 __mark_reg_not_init(regs + regno); 718 return; 719 } 720 __mark_reg_not_init(regs + regno); 721 } 722 723 static void init_reg_state(struct bpf_verifier_env *env, 724 struct bpf_func_state *state) 725 { 726 struct bpf_reg_state *regs = state->regs; 727 int i; 728 729 for (i = 0; i < MAX_BPF_REG; i++) { 730 mark_reg_not_init(env, regs, i); 731 regs[i].live = REG_LIVE_NONE; 732 } 733 734 /* frame pointer */ 735 regs[BPF_REG_FP].type = PTR_TO_STACK; 736 mark_reg_known_zero(env, regs, BPF_REG_FP); 737 regs[BPF_REG_FP].frameno = state->frameno; 738 739 /* 1st arg to a function */ 740 regs[BPF_REG_1].type = PTR_TO_CTX; 741 mark_reg_known_zero(env, regs, BPF_REG_1); 742 } 743 744 #define BPF_MAIN_FUNC (-1) 745 static void init_func_state(struct bpf_verifier_env *env, 746 struct bpf_func_state *state, 747 int callsite, int frameno, int subprogno) 748 { 749 state->callsite = callsite; 750 state->frameno = frameno; 751 state->subprogno = subprogno; 752 init_reg_state(env, state); 753 } 754 755 enum reg_arg_type { 756 SRC_OP, /* register is used as source operand */ 757 DST_OP, /* register is used as destination operand */ 758 DST_OP_NO_MARK /* same as above, check only, don't mark */ 759 }; 760 761 static int cmp_subprogs(const void *a, const void *b) 762 { 763 return *(int *)a - *(int *)b; 764 } 765 766 static int find_subprog(struct bpf_verifier_env *env, int off) 767 { 768 u32 *p; 769 770 p = bsearch(&off, env->subprog_starts, env->subprog_cnt, 771 sizeof(env->subprog_starts[0]), cmp_subprogs); 772 if (!p) 773 return -ENOENT; 774 return p - env->subprog_starts; 775 776 } 777 778 static int add_subprog(struct bpf_verifier_env *env, int off) 779 { 780 int insn_cnt = env->prog->len; 781 int ret; 782 783 if (off >= insn_cnt || off < 0) { 784 verbose(env, "call to invalid destination\n"); 785 return -EINVAL; 786 } 787 ret = find_subprog(env, off); 788 if (ret >= 0) 789 return 0; 790 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 791 verbose(env, "too many subprograms\n"); 792 return -E2BIG; 793 } 794 env->subprog_starts[env->subprog_cnt++] = off; 795 sort(env->subprog_starts, env->subprog_cnt, 796 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL); 797 return 0; 798 } 799 800 static int check_subprogs(struct bpf_verifier_env *env) 801 { 802 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 803 struct bpf_insn *insn = env->prog->insnsi; 804 int insn_cnt = env->prog->len; 805 806 /* determine subprog starts. The end is one before the next starts */ 807 for (i = 0; i < insn_cnt; i++) { 808 if (insn[i].code != (BPF_JMP | BPF_CALL)) 809 continue; 810 if (insn[i].src_reg != BPF_PSEUDO_CALL) 811 continue; 812 if (!env->allow_ptr_leaks) { 813 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 814 return -EPERM; 815 } 816 if (bpf_prog_is_dev_bound(env->prog->aux)) { 817 verbose(env, "function calls in offloaded programs are not supported yet\n"); 818 return -EINVAL; 819 } 820 ret = add_subprog(env, i + insn[i].imm + 1); 821 if (ret < 0) 822 return ret; 823 } 824 825 if (env->log.level > 1) 826 for (i = 0; i < env->subprog_cnt; i++) 827 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]); 828 829 /* now check that all jumps are within the same subprog */ 830 subprog_start = 0; 831 if (env->subprog_cnt == cur_subprog) 832 subprog_end = insn_cnt; 833 else 834 subprog_end = env->subprog_starts[cur_subprog++]; 835 for (i = 0; i < insn_cnt; i++) { 836 u8 code = insn[i].code; 837 838 if (BPF_CLASS(code) != BPF_JMP) 839 goto next; 840 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 841 goto next; 842 off = i + insn[i].off + 1; 843 if (off < subprog_start || off >= subprog_end) { 844 verbose(env, "jump out of range from insn %d to %d\n", i, off); 845 return -EINVAL; 846 } 847 next: 848 if (i == subprog_end - 1) { 849 /* to avoid fall-through from one subprog into another 850 * the last insn of the subprog should be either exit 851 * or unconditional jump back 852 */ 853 if (code != (BPF_JMP | BPF_EXIT) && 854 code != (BPF_JMP | BPF_JA)) { 855 verbose(env, "last insn is not an exit or jmp\n"); 856 return -EINVAL; 857 } 858 subprog_start = subprog_end; 859 if (env->subprog_cnt == cur_subprog) 860 subprog_end = insn_cnt; 861 else 862 subprog_end = env->subprog_starts[cur_subprog++]; 863 } 864 } 865 return 0; 866 } 867 868 static 869 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 870 const struct bpf_verifier_state *state, 871 struct bpf_verifier_state *parent, 872 u32 regno) 873 { 874 struct bpf_verifier_state *tmp = NULL; 875 876 /* 'parent' could be a state of caller and 877 * 'state' could be a state of callee. In such case 878 * parent->curframe < state->curframe 879 * and it's ok for r1 - r5 registers 880 * 881 * 'parent' could be a callee's state after it bpf_exit-ed. 882 * In such case parent->curframe > state->curframe 883 * and it's ok for r0 only 884 */ 885 if (parent->curframe == state->curframe || 886 (parent->curframe < state->curframe && 887 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 888 (parent->curframe > state->curframe && 889 regno == BPF_REG_0)) 890 return parent; 891 892 if (parent->curframe > state->curframe && 893 regno >= BPF_REG_6) { 894 /* for callee saved regs we have to skip the whole chain 895 * of states that belong to callee and mark as LIVE_READ 896 * the registers before the call 897 */ 898 tmp = parent; 899 while (tmp && tmp->curframe != state->curframe) { 900 tmp = tmp->parent; 901 } 902 if (!tmp) 903 goto bug; 904 parent = tmp; 905 } else { 906 goto bug; 907 } 908 return parent; 909 bug: 910 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 911 verbose(env, "regno %d parent frame %d current frame %d\n", 912 regno, parent->curframe, state->curframe); 913 return NULL; 914 } 915 916 static int mark_reg_read(struct bpf_verifier_env *env, 917 const struct bpf_verifier_state *state, 918 struct bpf_verifier_state *parent, 919 u32 regno) 920 { 921 bool writes = parent == state->parent; /* Observe write marks */ 922 923 if (regno == BPF_REG_FP) 924 /* We don't need to worry about FP liveness because it's read-only */ 925 return 0; 926 927 while (parent) { 928 /* if read wasn't screened by an earlier write ... */ 929 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 930 break; 931 parent = skip_callee(env, state, parent, regno); 932 if (!parent) 933 return -EFAULT; 934 /* ... then we depend on parent's value */ 935 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 936 state = parent; 937 parent = state->parent; 938 writes = true; 939 } 940 return 0; 941 } 942 943 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 944 enum reg_arg_type t) 945 { 946 struct bpf_verifier_state *vstate = env->cur_state; 947 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 948 struct bpf_reg_state *regs = state->regs; 949 950 if (regno >= MAX_BPF_REG) { 951 verbose(env, "R%d is invalid\n", regno); 952 return -EINVAL; 953 } 954 955 if (t == SRC_OP) { 956 /* check whether register used as source operand can be read */ 957 if (regs[regno].type == NOT_INIT) { 958 verbose(env, "R%d !read_ok\n", regno); 959 return -EACCES; 960 } 961 return mark_reg_read(env, vstate, vstate->parent, regno); 962 } else { 963 /* check whether register used as dest operand can be written to */ 964 if (regno == BPF_REG_FP) { 965 verbose(env, "frame pointer is read only\n"); 966 return -EACCES; 967 } 968 regs[regno].live |= REG_LIVE_WRITTEN; 969 if (t == DST_OP) 970 mark_reg_unknown(env, regs, regno); 971 } 972 return 0; 973 } 974 975 static bool is_spillable_regtype(enum bpf_reg_type type) 976 { 977 switch (type) { 978 case PTR_TO_MAP_VALUE: 979 case PTR_TO_MAP_VALUE_OR_NULL: 980 case PTR_TO_STACK: 981 case PTR_TO_CTX: 982 case PTR_TO_PACKET: 983 case PTR_TO_PACKET_META: 984 case PTR_TO_PACKET_END: 985 case CONST_PTR_TO_MAP: 986 return true; 987 default: 988 return false; 989 } 990 } 991 992 /* Does this register contain a constant zero? */ 993 static bool register_is_null(struct bpf_reg_state *reg) 994 { 995 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 996 } 997 998 /* check_stack_read/write functions track spill/fill of registers, 999 * stack boundary and alignment are checked in check_mem_access() 1000 */ 1001 static int check_stack_write(struct bpf_verifier_env *env, 1002 struct bpf_func_state *state, /* func where register points to */ 1003 int off, int size, int value_regno, int insn_idx) 1004 { 1005 struct bpf_func_state *cur; /* state of the current function */ 1006 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1007 enum bpf_reg_type type; 1008 1009 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1010 true); 1011 if (err) 1012 return err; 1013 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1014 * so it's aligned access and [off, off + size) are within stack limits 1015 */ 1016 if (!env->allow_ptr_leaks && 1017 state->stack[spi].slot_type[0] == STACK_SPILL && 1018 size != BPF_REG_SIZE) { 1019 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1020 return -EACCES; 1021 } 1022 1023 cur = env->cur_state->frame[env->cur_state->curframe]; 1024 if (value_regno >= 0 && 1025 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1026 1027 /* register containing pointer is being spilled into stack */ 1028 if (size != BPF_REG_SIZE) { 1029 verbose(env, "invalid size of register spill\n"); 1030 return -EACCES; 1031 } 1032 1033 if (state != cur && type == PTR_TO_STACK) { 1034 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1035 return -EINVAL; 1036 } 1037 1038 /* save register state */ 1039 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1040 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1041 1042 for (i = 0; i < BPF_REG_SIZE; i++) { 1043 if (state->stack[spi].slot_type[i] == STACK_MISC && 1044 !env->allow_ptr_leaks) { 1045 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1046 int soff = (-spi - 1) * BPF_REG_SIZE; 1047 1048 /* detected reuse of integer stack slot with a pointer 1049 * which means either llvm is reusing stack slot or 1050 * an attacker is trying to exploit CVE-2018-3639 1051 * (speculative store bypass) 1052 * Have to sanitize that slot with preemptive 1053 * store of zero. 1054 */ 1055 if (*poff && *poff != soff) { 1056 /* disallow programs where single insn stores 1057 * into two different stack slots, since verifier 1058 * cannot sanitize them 1059 */ 1060 verbose(env, 1061 "insn %d cannot access two stack slots fp%d and fp%d", 1062 insn_idx, *poff, soff); 1063 return -EINVAL; 1064 } 1065 *poff = soff; 1066 } 1067 state->stack[spi].slot_type[i] = STACK_SPILL; 1068 } 1069 } else { 1070 u8 type = STACK_MISC; 1071 1072 /* regular write of data into stack */ 1073 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1074 1075 /* only mark the slot as written if all 8 bytes were written 1076 * otherwise read propagation may incorrectly stop too soon 1077 * when stack slots are partially written. 1078 * This heuristic means that read propagation will be 1079 * conservative, since it will add reg_live_read marks 1080 * to stack slots all the way to first state when programs 1081 * writes+reads less than 8 bytes 1082 */ 1083 if (size == BPF_REG_SIZE) 1084 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1085 1086 /* when we zero initialize stack slots mark them as such */ 1087 if (value_regno >= 0 && 1088 register_is_null(&cur->regs[value_regno])) 1089 type = STACK_ZERO; 1090 1091 for (i = 0; i < size; i++) 1092 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1093 type; 1094 } 1095 return 0; 1096 } 1097 1098 /* registers of every function are unique and mark_reg_read() propagates 1099 * the liveness in the following cases: 1100 * - from callee into caller for R1 - R5 that were used as arguments 1101 * - from caller into callee for R0 that used as result of the call 1102 * - from caller to the same caller skipping states of the callee for R6 - R9, 1103 * since R6 - R9 are callee saved by implicit function prologue and 1104 * caller's R6 != callee's R6, so when we propagate liveness up to 1105 * parent states we need to skip callee states for R6 - R9. 1106 * 1107 * stack slot marking is different, since stacks of caller and callee are 1108 * accessible in both (since caller can pass a pointer to caller's stack to 1109 * callee which can pass it to another function), hence mark_stack_slot_read() 1110 * has to propagate the stack liveness to all parent states at given frame number. 1111 * Consider code: 1112 * f1() { 1113 * ptr = fp - 8; 1114 * *ptr = ctx; 1115 * call f2 { 1116 * .. = *ptr; 1117 * } 1118 * .. = *ptr; 1119 * } 1120 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1121 * to mark liveness at the f1's frame and not f2's frame. 1122 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1123 * to propagate liveness to f2 states at f1's frame level and further into 1124 * f1 states at f1's frame level until write into that stack slot 1125 */ 1126 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1127 const struct bpf_verifier_state *state, 1128 struct bpf_verifier_state *parent, 1129 int slot, int frameno) 1130 { 1131 bool writes = parent == state->parent; /* Observe write marks */ 1132 1133 while (parent) { 1134 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1135 /* since LIVE_WRITTEN mark is only done for full 8-byte 1136 * write the read marks are conservative and parent 1137 * state may not even have the stack allocated. In such case 1138 * end the propagation, since the loop reached beginning 1139 * of the function 1140 */ 1141 break; 1142 /* if read wasn't screened by an earlier write ... */ 1143 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1144 break; 1145 /* ... then we depend on parent's value */ 1146 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1147 state = parent; 1148 parent = state->parent; 1149 writes = true; 1150 } 1151 } 1152 1153 static int check_stack_read(struct bpf_verifier_env *env, 1154 struct bpf_func_state *reg_state /* func where register points to */, 1155 int off, int size, int value_regno) 1156 { 1157 struct bpf_verifier_state *vstate = env->cur_state; 1158 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1159 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1160 u8 *stype; 1161 1162 if (reg_state->allocated_stack <= slot) { 1163 verbose(env, "invalid read from stack off %d+0 size %d\n", 1164 off, size); 1165 return -EACCES; 1166 } 1167 stype = reg_state->stack[spi].slot_type; 1168 1169 if (stype[0] == STACK_SPILL) { 1170 if (size != BPF_REG_SIZE) { 1171 verbose(env, "invalid size of register spill\n"); 1172 return -EACCES; 1173 } 1174 for (i = 1; i < BPF_REG_SIZE; i++) { 1175 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1176 verbose(env, "corrupted spill memory\n"); 1177 return -EACCES; 1178 } 1179 } 1180 1181 if (value_regno >= 0) { 1182 /* restore register state from stack */ 1183 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1184 /* mark reg as written since spilled pointer state likely 1185 * has its liveness marks cleared by is_state_visited() 1186 * which resets stack/reg liveness for state transitions 1187 */ 1188 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1189 } 1190 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1191 reg_state->frameno); 1192 return 0; 1193 } else { 1194 int zeros = 0; 1195 1196 for (i = 0; i < size; i++) { 1197 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1198 continue; 1199 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1200 zeros++; 1201 continue; 1202 } 1203 verbose(env, "invalid read from stack off %d+%d size %d\n", 1204 off, i, size); 1205 return -EACCES; 1206 } 1207 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1208 reg_state->frameno); 1209 if (value_regno >= 0) { 1210 if (zeros == size) { 1211 /* any size read into register is zero extended, 1212 * so the whole register == const_zero 1213 */ 1214 __mark_reg_const_zero(&state->regs[value_regno]); 1215 } else { 1216 /* have read misc data from the stack */ 1217 mark_reg_unknown(env, state->regs, value_regno); 1218 } 1219 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1220 } 1221 return 0; 1222 } 1223 } 1224 1225 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1226 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1227 int size, bool zero_size_allowed) 1228 { 1229 struct bpf_reg_state *regs = cur_regs(env); 1230 struct bpf_map *map = regs[regno].map_ptr; 1231 1232 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1233 off + size > map->value_size) { 1234 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1235 map->value_size, off, size); 1236 return -EACCES; 1237 } 1238 return 0; 1239 } 1240 1241 /* check read/write into a map element with possible variable offset */ 1242 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1243 int off, int size, bool zero_size_allowed) 1244 { 1245 struct bpf_verifier_state *vstate = env->cur_state; 1246 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1247 struct bpf_reg_state *reg = &state->regs[regno]; 1248 int err; 1249 1250 /* We may have adjusted the register to this map value, so we 1251 * need to try adding each of min_value and max_value to off 1252 * to make sure our theoretical access will be safe. 1253 */ 1254 if (env->log.level) 1255 print_verifier_state(env, state); 1256 /* The minimum value is only important with signed 1257 * comparisons where we can't assume the floor of a 1258 * value is 0. If we are using signed variables for our 1259 * index'es we need to make sure that whatever we use 1260 * will have a set floor within our range. 1261 */ 1262 if (reg->smin_value < 0) { 1263 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1264 regno); 1265 return -EACCES; 1266 } 1267 err = __check_map_access(env, regno, reg->smin_value + off, size, 1268 zero_size_allowed); 1269 if (err) { 1270 verbose(env, "R%d min value is outside of the array range\n", 1271 regno); 1272 return err; 1273 } 1274 1275 /* If we haven't set a max value then we need to bail since we can't be 1276 * sure we won't do bad things. 1277 * If reg->umax_value + off could overflow, treat that as unbounded too. 1278 */ 1279 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1280 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1281 regno); 1282 return -EACCES; 1283 } 1284 err = __check_map_access(env, regno, reg->umax_value + off, size, 1285 zero_size_allowed); 1286 if (err) 1287 verbose(env, "R%d max value is outside of the array range\n", 1288 regno); 1289 return err; 1290 } 1291 1292 #define MAX_PACKET_OFF 0xffff 1293 1294 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1295 const struct bpf_call_arg_meta *meta, 1296 enum bpf_access_type t) 1297 { 1298 switch (env->prog->type) { 1299 case BPF_PROG_TYPE_LWT_IN: 1300 case BPF_PROG_TYPE_LWT_OUT: 1301 /* dst_input() and dst_output() can't write for now */ 1302 if (t == BPF_WRITE) 1303 return false; 1304 /* fallthrough */ 1305 case BPF_PROG_TYPE_SCHED_CLS: 1306 case BPF_PROG_TYPE_SCHED_ACT: 1307 case BPF_PROG_TYPE_XDP: 1308 case BPF_PROG_TYPE_LWT_XMIT: 1309 case BPF_PROG_TYPE_SK_SKB: 1310 case BPF_PROG_TYPE_SK_MSG: 1311 if (meta) 1312 return meta->pkt_access; 1313 1314 env->seen_direct_write = true; 1315 return true; 1316 default: 1317 return false; 1318 } 1319 } 1320 1321 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1322 int off, int size, bool zero_size_allowed) 1323 { 1324 struct bpf_reg_state *regs = cur_regs(env); 1325 struct bpf_reg_state *reg = ®s[regno]; 1326 1327 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1328 (u64)off + size > reg->range) { 1329 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1330 off, size, regno, reg->id, reg->off, reg->range); 1331 return -EACCES; 1332 } 1333 return 0; 1334 } 1335 1336 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1337 int size, bool zero_size_allowed) 1338 { 1339 struct bpf_reg_state *regs = cur_regs(env); 1340 struct bpf_reg_state *reg = ®s[regno]; 1341 int err; 1342 1343 /* We may have added a variable offset to the packet pointer; but any 1344 * reg->range we have comes after that. We are only checking the fixed 1345 * offset. 1346 */ 1347 1348 /* We don't allow negative numbers, because we aren't tracking enough 1349 * detail to prove they're safe. 1350 */ 1351 if (reg->smin_value < 0) { 1352 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1353 regno); 1354 return -EACCES; 1355 } 1356 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1357 if (err) { 1358 verbose(env, "R%d offset is outside of the packet\n", regno); 1359 return err; 1360 } 1361 return err; 1362 } 1363 1364 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1365 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1366 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1367 { 1368 struct bpf_insn_access_aux info = { 1369 .reg_type = *reg_type, 1370 }; 1371 1372 if (env->ops->is_valid_access && 1373 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1374 /* A non zero info.ctx_field_size indicates that this field is a 1375 * candidate for later verifier transformation to load the whole 1376 * field and then apply a mask when accessed with a narrower 1377 * access than actual ctx access size. A zero info.ctx_field_size 1378 * will only allow for whole field access and rejects any other 1379 * type of narrower access. 1380 */ 1381 *reg_type = info.reg_type; 1382 1383 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1384 /* remember the offset of last byte accessed in ctx */ 1385 if (env->prog->aux->max_ctx_offset < off + size) 1386 env->prog->aux->max_ctx_offset = off + size; 1387 return 0; 1388 } 1389 1390 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1391 return -EACCES; 1392 } 1393 1394 static bool __is_pointer_value(bool allow_ptr_leaks, 1395 const struct bpf_reg_state *reg) 1396 { 1397 if (allow_ptr_leaks) 1398 return false; 1399 1400 return reg->type != SCALAR_VALUE; 1401 } 1402 1403 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1404 { 1405 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1406 } 1407 1408 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1409 { 1410 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1411 1412 return reg->type == PTR_TO_CTX; 1413 } 1414 1415 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1416 { 1417 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1418 1419 return type_is_pkt_pointer(reg->type); 1420 } 1421 1422 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1423 const struct bpf_reg_state *reg, 1424 int off, int size, bool strict) 1425 { 1426 struct tnum reg_off; 1427 int ip_align; 1428 1429 /* Byte size accesses are always allowed. */ 1430 if (!strict || size == 1) 1431 return 0; 1432 1433 /* For platforms that do not have a Kconfig enabling 1434 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1435 * NET_IP_ALIGN is universally set to '2'. And on platforms 1436 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1437 * to this code only in strict mode where we want to emulate 1438 * the NET_IP_ALIGN==2 checking. Therefore use an 1439 * unconditional IP align value of '2'. 1440 */ 1441 ip_align = 2; 1442 1443 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1444 if (!tnum_is_aligned(reg_off, size)) { 1445 char tn_buf[48]; 1446 1447 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1448 verbose(env, 1449 "misaligned packet access off %d+%s+%d+%d size %d\n", 1450 ip_align, tn_buf, reg->off, off, size); 1451 return -EACCES; 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1458 const struct bpf_reg_state *reg, 1459 const char *pointer_desc, 1460 int off, int size, bool strict) 1461 { 1462 struct tnum reg_off; 1463 1464 /* Byte size accesses are always allowed. */ 1465 if (!strict || size == 1) 1466 return 0; 1467 1468 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1469 if (!tnum_is_aligned(reg_off, size)) { 1470 char tn_buf[48]; 1471 1472 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1473 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1474 pointer_desc, tn_buf, reg->off, off, size); 1475 return -EACCES; 1476 } 1477 1478 return 0; 1479 } 1480 1481 static int check_ptr_alignment(struct bpf_verifier_env *env, 1482 const struct bpf_reg_state *reg, int off, 1483 int size, bool strict_alignment_once) 1484 { 1485 bool strict = env->strict_alignment || strict_alignment_once; 1486 const char *pointer_desc = ""; 1487 1488 switch (reg->type) { 1489 case PTR_TO_PACKET: 1490 case PTR_TO_PACKET_META: 1491 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1492 * right in front, treat it the very same way. 1493 */ 1494 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1495 case PTR_TO_MAP_VALUE: 1496 pointer_desc = "value "; 1497 break; 1498 case PTR_TO_CTX: 1499 pointer_desc = "context "; 1500 break; 1501 case PTR_TO_STACK: 1502 pointer_desc = "stack "; 1503 /* The stack spill tracking logic in check_stack_write() 1504 * and check_stack_read() relies on stack accesses being 1505 * aligned. 1506 */ 1507 strict = true; 1508 break; 1509 default: 1510 break; 1511 } 1512 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1513 strict); 1514 } 1515 1516 static int update_stack_depth(struct bpf_verifier_env *env, 1517 const struct bpf_func_state *func, 1518 int off) 1519 { 1520 u16 stack = env->subprog_stack_depth[func->subprogno]; 1521 1522 if (stack >= -off) 1523 return 0; 1524 1525 /* update known max for given subprogram */ 1526 env->subprog_stack_depth[func->subprogno] = -off; 1527 return 0; 1528 } 1529 1530 /* starting from main bpf function walk all instructions of the function 1531 * and recursively walk all callees that given function can call. 1532 * Ignore jump and exit insns. 1533 * Since recursion is prevented by check_cfg() this algorithm 1534 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1535 */ 1536 static int check_max_stack_depth(struct bpf_verifier_env *env) 1537 { 1538 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end; 1539 struct bpf_insn *insn = env->prog->insnsi; 1540 int insn_cnt = env->prog->len; 1541 int ret_insn[MAX_CALL_FRAMES]; 1542 int ret_prog[MAX_CALL_FRAMES]; 1543 1544 process_func: 1545 /* round up to 32-bytes, since this is granularity 1546 * of interpreter stack size 1547 */ 1548 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); 1549 if (depth > MAX_BPF_STACK) { 1550 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1551 frame + 1, depth); 1552 return -EACCES; 1553 } 1554 continue_func: 1555 if (env->subprog_cnt == subprog) 1556 subprog_end = insn_cnt; 1557 else 1558 subprog_end = env->subprog_starts[subprog]; 1559 for (; i < subprog_end; i++) { 1560 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1561 continue; 1562 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1563 continue; 1564 /* remember insn and function to return to */ 1565 ret_insn[frame] = i + 1; 1566 ret_prog[frame] = subprog; 1567 1568 /* find the callee */ 1569 i = i + insn[i].imm + 1; 1570 subprog = find_subprog(env, i); 1571 if (subprog < 0) { 1572 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1573 i); 1574 return -EFAULT; 1575 } 1576 subprog++; 1577 frame++; 1578 if (frame >= MAX_CALL_FRAMES) { 1579 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1580 return -EFAULT; 1581 } 1582 goto process_func; 1583 } 1584 /* end of for() loop means the last insn of the 'subprog' 1585 * was reached. Doesn't matter whether it was JA or EXIT 1586 */ 1587 if (frame == 0) 1588 return 0; 1589 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); 1590 frame--; 1591 i = ret_insn[frame]; 1592 subprog = ret_prog[frame]; 1593 goto continue_func; 1594 } 1595 1596 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1597 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1598 const struct bpf_insn *insn, int idx) 1599 { 1600 int start = idx + insn->imm + 1, subprog; 1601 1602 subprog = find_subprog(env, start); 1603 if (subprog < 0) { 1604 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1605 start); 1606 return -EFAULT; 1607 } 1608 subprog++; 1609 return env->subprog_stack_depth[subprog]; 1610 } 1611 #endif 1612 1613 /* truncate register to smaller size (in bytes) 1614 * must be called with size < BPF_REG_SIZE 1615 */ 1616 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1617 { 1618 u64 mask; 1619 1620 /* clear high bits in bit representation */ 1621 reg->var_off = tnum_cast(reg->var_off, size); 1622 1623 /* fix arithmetic bounds */ 1624 mask = ((u64)1 << (size * 8)) - 1; 1625 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1626 reg->umin_value &= mask; 1627 reg->umax_value &= mask; 1628 } else { 1629 reg->umin_value = 0; 1630 reg->umax_value = mask; 1631 } 1632 reg->smin_value = reg->umin_value; 1633 reg->smax_value = reg->umax_value; 1634 } 1635 1636 /* check whether memory at (regno + off) is accessible for t = (read | write) 1637 * if t==write, value_regno is a register which value is stored into memory 1638 * if t==read, value_regno is a register which will receive the value from memory 1639 * if t==write && value_regno==-1, some unknown value is stored into memory 1640 * if t==read && value_regno==-1, don't care what we read from memory 1641 */ 1642 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1643 int off, int bpf_size, enum bpf_access_type t, 1644 int value_regno, bool strict_alignment_once) 1645 { 1646 struct bpf_reg_state *regs = cur_regs(env); 1647 struct bpf_reg_state *reg = regs + regno; 1648 struct bpf_func_state *state; 1649 int size, err = 0; 1650 1651 size = bpf_size_to_bytes(bpf_size); 1652 if (size < 0) 1653 return size; 1654 1655 /* alignment checks will add in reg->off themselves */ 1656 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1657 if (err) 1658 return err; 1659 1660 /* for access checks, reg->off is just part of off */ 1661 off += reg->off; 1662 1663 if (reg->type == PTR_TO_MAP_VALUE) { 1664 if (t == BPF_WRITE && value_regno >= 0 && 1665 is_pointer_value(env, value_regno)) { 1666 verbose(env, "R%d leaks addr into map\n", value_regno); 1667 return -EACCES; 1668 } 1669 1670 err = check_map_access(env, regno, off, size, false); 1671 if (!err && t == BPF_READ && value_regno >= 0) 1672 mark_reg_unknown(env, regs, value_regno); 1673 1674 } else if (reg->type == PTR_TO_CTX) { 1675 enum bpf_reg_type reg_type = SCALAR_VALUE; 1676 1677 if (t == BPF_WRITE && value_regno >= 0 && 1678 is_pointer_value(env, value_regno)) { 1679 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1680 return -EACCES; 1681 } 1682 /* ctx accesses must be at a fixed offset, so that we can 1683 * determine what type of data were returned. 1684 */ 1685 if (reg->off) { 1686 verbose(env, 1687 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1688 regno, reg->off, off - reg->off); 1689 return -EACCES; 1690 } 1691 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1692 char tn_buf[48]; 1693 1694 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1695 verbose(env, 1696 "variable ctx access var_off=%s off=%d size=%d", 1697 tn_buf, off, size); 1698 return -EACCES; 1699 } 1700 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1701 if (!err && t == BPF_READ && value_regno >= 0) { 1702 /* ctx access returns either a scalar, or a 1703 * PTR_TO_PACKET[_META,_END]. In the latter 1704 * case, we know the offset is zero. 1705 */ 1706 if (reg_type == SCALAR_VALUE) 1707 mark_reg_unknown(env, regs, value_regno); 1708 else 1709 mark_reg_known_zero(env, regs, 1710 value_regno); 1711 regs[value_regno].id = 0; 1712 regs[value_regno].off = 0; 1713 regs[value_regno].range = 0; 1714 regs[value_regno].type = reg_type; 1715 } 1716 1717 } else if (reg->type == PTR_TO_STACK) { 1718 /* stack accesses must be at a fixed offset, so that we can 1719 * determine what type of data were returned. 1720 * See check_stack_read(). 1721 */ 1722 if (!tnum_is_const(reg->var_off)) { 1723 char tn_buf[48]; 1724 1725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1726 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1727 tn_buf, off, size); 1728 return -EACCES; 1729 } 1730 off += reg->var_off.value; 1731 if (off >= 0 || off < -MAX_BPF_STACK) { 1732 verbose(env, "invalid stack off=%d size=%d\n", off, 1733 size); 1734 return -EACCES; 1735 } 1736 1737 state = func(env, reg); 1738 err = update_stack_depth(env, state, off); 1739 if (err) 1740 return err; 1741 1742 if (t == BPF_WRITE) 1743 err = check_stack_write(env, state, off, size, 1744 value_regno, insn_idx); 1745 else 1746 err = check_stack_read(env, state, off, size, 1747 value_regno); 1748 } else if (reg_is_pkt_pointer(reg)) { 1749 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1750 verbose(env, "cannot write into packet\n"); 1751 return -EACCES; 1752 } 1753 if (t == BPF_WRITE && value_regno >= 0 && 1754 is_pointer_value(env, value_regno)) { 1755 verbose(env, "R%d leaks addr into packet\n", 1756 value_regno); 1757 return -EACCES; 1758 } 1759 err = check_packet_access(env, regno, off, size, false); 1760 if (!err && t == BPF_READ && value_regno >= 0) 1761 mark_reg_unknown(env, regs, value_regno); 1762 } else { 1763 verbose(env, "R%d invalid mem access '%s'\n", regno, 1764 reg_type_str[reg->type]); 1765 return -EACCES; 1766 } 1767 1768 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1769 regs[value_regno].type == SCALAR_VALUE) { 1770 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1771 coerce_reg_to_size(®s[value_regno], size); 1772 } 1773 return err; 1774 } 1775 1776 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1777 { 1778 int err; 1779 1780 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1781 insn->imm != 0) { 1782 verbose(env, "BPF_XADD uses reserved fields\n"); 1783 return -EINVAL; 1784 } 1785 1786 /* check src1 operand */ 1787 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1788 if (err) 1789 return err; 1790 1791 /* check src2 operand */ 1792 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1793 if (err) 1794 return err; 1795 1796 if (is_pointer_value(env, insn->src_reg)) { 1797 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1798 return -EACCES; 1799 } 1800 1801 if (is_ctx_reg(env, insn->dst_reg) || 1802 is_pkt_reg(env, insn->dst_reg)) { 1803 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1804 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1805 "context" : "packet"); 1806 return -EACCES; 1807 } 1808 1809 /* check whether atomic_add can read the memory */ 1810 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1811 BPF_SIZE(insn->code), BPF_READ, -1, true); 1812 if (err) 1813 return err; 1814 1815 /* check whether atomic_add can write into the same memory */ 1816 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1817 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1818 } 1819 1820 /* when register 'regno' is passed into function that will read 'access_size' 1821 * bytes from that pointer, make sure that it's within stack boundary 1822 * and all elements of stack are initialized. 1823 * Unlike most pointer bounds-checking functions, this one doesn't take an 1824 * 'off' argument, so it has to add in reg->off itself. 1825 */ 1826 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1827 int access_size, bool zero_size_allowed, 1828 struct bpf_call_arg_meta *meta) 1829 { 1830 struct bpf_reg_state *reg = cur_regs(env) + regno; 1831 struct bpf_func_state *state = func(env, reg); 1832 int off, i, slot, spi; 1833 1834 if (reg->type != PTR_TO_STACK) { 1835 /* Allow zero-byte read from NULL, regardless of pointer type */ 1836 if (zero_size_allowed && access_size == 0 && 1837 register_is_null(reg)) 1838 return 0; 1839 1840 verbose(env, "R%d type=%s expected=%s\n", regno, 1841 reg_type_str[reg->type], 1842 reg_type_str[PTR_TO_STACK]); 1843 return -EACCES; 1844 } 1845 1846 /* Only allow fixed-offset stack reads */ 1847 if (!tnum_is_const(reg->var_off)) { 1848 char tn_buf[48]; 1849 1850 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1851 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1852 regno, tn_buf); 1853 return -EACCES; 1854 } 1855 off = reg->off + reg->var_off.value; 1856 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1857 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1858 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1859 regno, off, access_size); 1860 return -EACCES; 1861 } 1862 1863 if (meta && meta->raw_mode) { 1864 meta->access_size = access_size; 1865 meta->regno = regno; 1866 return 0; 1867 } 1868 1869 for (i = 0; i < access_size; i++) { 1870 u8 *stype; 1871 1872 slot = -(off + i) - 1; 1873 spi = slot / BPF_REG_SIZE; 1874 if (state->allocated_stack <= slot) 1875 goto err; 1876 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1877 if (*stype == STACK_MISC) 1878 goto mark; 1879 if (*stype == STACK_ZERO) { 1880 /* helper can write anything into the stack */ 1881 *stype = STACK_MISC; 1882 goto mark; 1883 } 1884 err: 1885 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1886 off, i, access_size); 1887 return -EACCES; 1888 mark: 1889 /* reading any byte out of 8-byte 'spill_slot' will cause 1890 * the whole slot to be marked as 'read' 1891 */ 1892 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1893 spi, state->frameno); 1894 } 1895 return update_stack_depth(env, state, off); 1896 } 1897 1898 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1899 int access_size, bool zero_size_allowed, 1900 struct bpf_call_arg_meta *meta) 1901 { 1902 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1903 1904 switch (reg->type) { 1905 case PTR_TO_PACKET: 1906 case PTR_TO_PACKET_META: 1907 return check_packet_access(env, regno, reg->off, access_size, 1908 zero_size_allowed); 1909 case PTR_TO_MAP_VALUE: 1910 return check_map_access(env, regno, reg->off, access_size, 1911 zero_size_allowed); 1912 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1913 return check_stack_boundary(env, regno, access_size, 1914 zero_size_allowed, meta); 1915 } 1916 } 1917 1918 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1919 { 1920 return type == ARG_PTR_TO_MEM || 1921 type == ARG_PTR_TO_MEM_OR_NULL || 1922 type == ARG_PTR_TO_UNINIT_MEM; 1923 } 1924 1925 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1926 { 1927 return type == ARG_CONST_SIZE || 1928 type == ARG_CONST_SIZE_OR_ZERO; 1929 } 1930 1931 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1932 enum bpf_arg_type arg_type, 1933 struct bpf_call_arg_meta *meta) 1934 { 1935 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1936 enum bpf_reg_type expected_type, type = reg->type; 1937 int err = 0; 1938 1939 if (arg_type == ARG_DONTCARE) 1940 return 0; 1941 1942 err = check_reg_arg(env, regno, SRC_OP); 1943 if (err) 1944 return err; 1945 1946 if (arg_type == ARG_ANYTHING) { 1947 if (is_pointer_value(env, regno)) { 1948 verbose(env, "R%d leaks addr into helper function\n", 1949 regno); 1950 return -EACCES; 1951 } 1952 return 0; 1953 } 1954 1955 if (type_is_pkt_pointer(type) && 1956 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1957 verbose(env, "helper access to the packet is not allowed\n"); 1958 return -EACCES; 1959 } 1960 1961 if (arg_type == ARG_PTR_TO_MAP_KEY || 1962 arg_type == ARG_PTR_TO_MAP_VALUE) { 1963 expected_type = PTR_TO_STACK; 1964 if (!type_is_pkt_pointer(type) && 1965 type != expected_type) 1966 goto err_type; 1967 } else if (arg_type == ARG_CONST_SIZE || 1968 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1969 expected_type = SCALAR_VALUE; 1970 if (type != expected_type) 1971 goto err_type; 1972 } else if (arg_type == ARG_CONST_MAP_PTR) { 1973 expected_type = CONST_PTR_TO_MAP; 1974 if (type != expected_type) 1975 goto err_type; 1976 } else if (arg_type == ARG_PTR_TO_CTX) { 1977 expected_type = PTR_TO_CTX; 1978 if (type != expected_type) 1979 goto err_type; 1980 } else if (arg_type_is_mem_ptr(arg_type)) { 1981 expected_type = PTR_TO_STACK; 1982 /* One exception here. In case function allows for NULL to be 1983 * passed in as argument, it's a SCALAR_VALUE type. Final test 1984 * happens during stack boundary checking. 1985 */ 1986 if (register_is_null(reg) && 1987 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1988 /* final test in check_stack_boundary() */; 1989 else if (!type_is_pkt_pointer(type) && 1990 type != PTR_TO_MAP_VALUE && 1991 type != expected_type) 1992 goto err_type; 1993 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1994 } else { 1995 verbose(env, "unsupported arg_type %d\n", arg_type); 1996 return -EFAULT; 1997 } 1998 1999 if (arg_type == ARG_CONST_MAP_PTR) { 2000 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2001 meta->map_ptr = reg->map_ptr; 2002 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2003 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2004 * check that [key, key + map->key_size) are within 2005 * stack limits and initialized 2006 */ 2007 if (!meta->map_ptr) { 2008 /* in function declaration map_ptr must come before 2009 * map_key, so that it's verified and known before 2010 * we have to check map_key here. Otherwise it means 2011 * that kernel subsystem misconfigured verifier 2012 */ 2013 verbose(env, "invalid map_ptr to access map->key\n"); 2014 return -EACCES; 2015 } 2016 if (type_is_pkt_pointer(type)) 2017 err = check_packet_access(env, regno, reg->off, 2018 meta->map_ptr->key_size, 2019 false); 2020 else 2021 err = check_stack_boundary(env, regno, 2022 meta->map_ptr->key_size, 2023 false, NULL); 2024 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 2025 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2026 * check [value, value + map->value_size) validity 2027 */ 2028 if (!meta->map_ptr) { 2029 /* kernel subsystem misconfigured verifier */ 2030 verbose(env, "invalid map_ptr to access map->value\n"); 2031 return -EACCES; 2032 } 2033 if (type_is_pkt_pointer(type)) 2034 err = check_packet_access(env, regno, reg->off, 2035 meta->map_ptr->value_size, 2036 false); 2037 else 2038 err = check_stack_boundary(env, regno, 2039 meta->map_ptr->value_size, 2040 false, NULL); 2041 } else if (arg_type_is_mem_size(arg_type)) { 2042 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2043 2044 /* The register is SCALAR_VALUE; the access check 2045 * happens using its boundaries. 2046 */ 2047 if (!tnum_is_const(reg->var_off)) 2048 /* For unprivileged variable accesses, disable raw 2049 * mode so that the program is required to 2050 * initialize all the memory that the helper could 2051 * just partially fill up. 2052 */ 2053 meta = NULL; 2054 2055 if (reg->smin_value < 0) { 2056 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2057 regno); 2058 return -EACCES; 2059 } 2060 2061 if (reg->umin_value == 0) { 2062 err = check_helper_mem_access(env, regno - 1, 0, 2063 zero_size_allowed, 2064 meta); 2065 if (err) 2066 return err; 2067 } 2068 2069 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2070 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2071 regno); 2072 return -EACCES; 2073 } 2074 err = check_helper_mem_access(env, regno - 1, 2075 reg->umax_value, 2076 zero_size_allowed, meta); 2077 } 2078 2079 return err; 2080 err_type: 2081 verbose(env, "R%d type=%s expected=%s\n", regno, 2082 reg_type_str[type], reg_type_str[expected_type]); 2083 return -EACCES; 2084 } 2085 2086 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2087 struct bpf_map *map, int func_id) 2088 { 2089 if (!map) 2090 return 0; 2091 2092 /* We need a two way check, first is from map perspective ... */ 2093 switch (map->map_type) { 2094 case BPF_MAP_TYPE_PROG_ARRAY: 2095 if (func_id != BPF_FUNC_tail_call) 2096 goto error; 2097 break; 2098 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2099 if (func_id != BPF_FUNC_perf_event_read && 2100 func_id != BPF_FUNC_perf_event_output && 2101 func_id != BPF_FUNC_perf_event_read_value) 2102 goto error; 2103 break; 2104 case BPF_MAP_TYPE_STACK_TRACE: 2105 if (func_id != BPF_FUNC_get_stackid) 2106 goto error; 2107 break; 2108 case BPF_MAP_TYPE_CGROUP_ARRAY: 2109 if (func_id != BPF_FUNC_skb_under_cgroup && 2110 func_id != BPF_FUNC_current_task_under_cgroup) 2111 goto error; 2112 break; 2113 /* devmap returns a pointer to a live net_device ifindex that we cannot 2114 * allow to be modified from bpf side. So do not allow lookup elements 2115 * for now. 2116 */ 2117 case BPF_MAP_TYPE_DEVMAP: 2118 if (func_id != BPF_FUNC_redirect_map) 2119 goto error; 2120 break; 2121 /* Restrict bpf side of cpumap, open when use-cases appear */ 2122 case BPF_MAP_TYPE_CPUMAP: 2123 if (func_id != BPF_FUNC_redirect_map) 2124 goto error; 2125 break; 2126 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2127 case BPF_MAP_TYPE_HASH_OF_MAPS: 2128 if (func_id != BPF_FUNC_map_lookup_elem) 2129 goto error; 2130 break; 2131 case BPF_MAP_TYPE_SOCKMAP: 2132 if (func_id != BPF_FUNC_sk_redirect_map && 2133 func_id != BPF_FUNC_sock_map_update && 2134 func_id != BPF_FUNC_map_delete_elem && 2135 func_id != BPF_FUNC_msg_redirect_map) 2136 goto error; 2137 break; 2138 default: 2139 break; 2140 } 2141 2142 /* ... and second from the function itself. */ 2143 switch (func_id) { 2144 case BPF_FUNC_tail_call: 2145 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2146 goto error; 2147 if (env->subprog_cnt) { 2148 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2149 return -EINVAL; 2150 } 2151 break; 2152 case BPF_FUNC_perf_event_read: 2153 case BPF_FUNC_perf_event_output: 2154 case BPF_FUNC_perf_event_read_value: 2155 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2156 goto error; 2157 break; 2158 case BPF_FUNC_get_stackid: 2159 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2160 goto error; 2161 break; 2162 case BPF_FUNC_current_task_under_cgroup: 2163 case BPF_FUNC_skb_under_cgroup: 2164 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2165 goto error; 2166 break; 2167 case BPF_FUNC_redirect_map: 2168 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2169 map->map_type != BPF_MAP_TYPE_CPUMAP) 2170 goto error; 2171 break; 2172 case BPF_FUNC_sk_redirect_map: 2173 case BPF_FUNC_msg_redirect_map: 2174 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2175 goto error; 2176 break; 2177 case BPF_FUNC_sock_map_update: 2178 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2179 goto error; 2180 break; 2181 default: 2182 break; 2183 } 2184 2185 return 0; 2186 error: 2187 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2188 map->map_type, func_id_name(func_id), func_id); 2189 return -EINVAL; 2190 } 2191 2192 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2193 { 2194 int count = 0; 2195 2196 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2197 count++; 2198 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2199 count++; 2200 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2201 count++; 2202 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2203 count++; 2204 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2205 count++; 2206 2207 /* We only support one arg being in raw mode at the moment, 2208 * which is sufficient for the helper functions we have 2209 * right now. 2210 */ 2211 return count <= 1; 2212 } 2213 2214 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2215 enum bpf_arg_type arg_next) 2216 { 2217 return (arg_type_is_mem_ptr(arg_curr) && 2218 !arg_type_is_mem_size(arg_next)) || 2219 (!arg_type_is_mem_ptr(arg_curr) && 2220 arg_type_is_mem_size(arg_next)); 2221 } 2222 2223 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2224 { 2225 /* bpf_xxx(..., buf, len) call will access 'len' 2226 * bytes from memory 'buf'. Both arg types need 2227 * to be paired, so make sure there's no buggy 2228 * helper function specification. 2229 */ 2230 if (arg_type_is_mem_size(fn->arg1_type) || 2231 arg_type_is_mem_ptr(fn->arg5_type) || 2232 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2233 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2234 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2235 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2236 return false; 2237 2238 return true; 2239 } 2240 2241 static int check_func_proto(const struct bpf_func_proto *fn) 2242 { 2243 return check_raw_mode_ok(fn) && 2244 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2245 } 2246 2247 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2248 * are now invalid, so turn them into unknown SCALAR_VALUE. 2249 */ 2250 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2251 struct bpf_func_state *state) 2252 { 2253 struct bpf_reg_state *regs = state->regs, *reg; 2254 int i; 2255 2256 for (i = 0; i < MAX_BPF_REG; i++) 2257 if (reg_is_pkt_pointer_any(®s[i])) 2258 mark_reg_unknown(env, regs, i); 2259 2260 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2261 if (state->stack[i].slot_type[0] != STACK_SPILL) 2262 continue; 2263 reg = &state->stack[i].spilled_ptr; 2264 if (reg_is_pkt_pointer_any(reg)) 2265 __mark_reg_unknown(reg); 2266 } 2267 } 2268 2269 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2270 { 2271 struct bpf_verifier_state *vstate = env->cur_state; 2272 int i; 2273 2274 for (i = 0; i <= vstate->curframe; i++) 2275 __clear_all_pkt_pointers(env, vstate->frame[i]); 2276 } 2277 2278 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2279 int *insn_idx) 2280 { 2281 struct bpf_verifier_state *state = env->cur_state; 2282 struct bpf_func_state *caller, *callee; 2283 int i, subprog, target_insn; 2284 2285 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2286 verbose(env, "the call stack of %d frames is too deep\n", 2287 state->curframe + 2); 2288 return -E2BIG; 2289 } 2290 2291 target_insn = *insn_idx + insn->imm; 2292 subprog = find_subprog(env, target_insn + 1); 2293 if (subprog < 0) { 2294 verbose(env, "verifier bug. No program starts at insn %d\n", 2295 target_insn + 1); 2296 return -EFAULT; 2297 } 2298 2299 caller = state->frame[state->curframe]; 2300 if (state->frame[state->curframe + 1]) { 2301 verbose(env, "verifier bug. Frame %d already allocated\n", 2302 state->curframe + 1); 2303 return -EFAULT; 2304 } 2305 2306 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2307 if (!callee) 2308 return -ENOMEM; 2309 state->frame[state->curframe + 1] = callee; 2310 2311 /* callee cannot access r0, r6 - r9 for reading and has to write 2312 * into its own stack before reading from it. 2313 * callee can read/write into caller's stack 2314 */ 2315 init_func_state(env, callee, 2316 /* remember the callsite, it will be used by bpf_exit */ 2317 *insn_idx /* callsite */, 2318 state->curframe + 1 /* frameno within this callchain */, 2319 subprog + 1 /* subprog number within this prog */); 2320 2321 /* copy r1 - r5 args that callee can access */ 2322 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2323 callee->regs[i] = caller->regs[i]; 2324 2325 /* after the call regsiters r0 - r5 were scratched */ 2326 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2327 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2328 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2329 } 2330 2331 /* only increment it after check_reg_arg() finished */ 2332 state->curframe++; 2333 2334 /* and go analyze first insn of the callee */ 2335 *insn_idx = target_insn; 2336 2337 if (env->log.level) { 2338 verbose(env, "caller:\n"); 2339 print_verifier_state(env, caller); 2340 verbose(env, "callee:\n"); 2341 print_verifier_state(env, callee); 2342 } 2343 return 0; 2344 } 2345 2346 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2347 { 2348 struct bpf_verifier_state *state = env->cur_state; 2349 struct bpf_func_state *caller, *callee; 2350 struct bpf_reg_state *r0; 2351 2352 callee = state->frame[state->curframe]; 2353 r0 = &callee->regs[BPF_REG_0]; 2354 if (r0->type == PTR_TO_STACK) { 2355 /* technically it's ok to return caller's stack pointer 2356 * (or caller's caller's pointer) back to the caller, 2357 * since these pointers are valid. Only current stack 2358 * pointer will be invalid as soon as function exits, 2359 * but let's be conservative 2360 */ 2361 verbose(env, "cannot return stack pointer to the caller\n"); 2362 return -EINVAL; 2363 } 2364 2365 state->curframe--; 2366 caller = state->frame[state->curframe]; 2367 /* return to the caller whatever r0 had in the callee */ 2368 caller->regs[BPF_REG_0] = *r0; 2369 2370 *insn_idx = callee->callsite + 1; 2371 if (env->log.level) { 2372 verbose(env, "returning from callee:\n"); 2373 print_verifier_state(env, callee); 2374 verbose(env, "to caller at %d:\n", *insn_idx); 2375 print_verifier_state(env, caller); 2376 } 2377 /* clear everything in the callee */ 2378 free_func_state(callee); 2379 state->frame[state->curframe + 1] = NULL; 2380 return 0; 2381 } 2382 2383 static int 2384 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2385 int func_id, int insn_idx) 2386 { 2387 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2388 2389 if (func_id != BPF_FUNC_tail_call && 2390 func_id != BPF_FUNC_map_lookup_elem) 2391 return 0; 2392 if (meta->map_ptr == NULL) { 2393 verbose(env, "kernel subsystem misconfigured verifier\n"); 2394 return -EINVAL; 2395 } 2396 2397 if (!BPF_MAP_PTR(aux->map_state)) 2398 bpf_map_ptr_store(aux, meta->map_ptr, 2399 meta->map_ptr->unpriv_array); 2400 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2401 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2402 meta->map_ptr->unpriv_array); 2403 return 0; 2404 } 2405 2406 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2407 { 2408 const struct bpf_func_proto *fn = NULL; 2409 struct bpf_reg_state *regs; 2410 struct bpf_call_arg_meta meta; 2411 bool changes_data; 2412 int i, err; 2413 2414 /* find function prototype */ 2415 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2416 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2417 func_id); 2418 return -EINVAL; 2419 } 2420 2421 if (env->ops->get_func_proto) 2422 fn = env->ops->get_func_proto(func_id, env->prog); 2423 if (!fn) { 2424 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2425 func_id); 2426 return -EINVAL; 2427 } 2428 2429 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2430 if (!env->prog->gpl_compatible && fn->gpl_only) { 2431 verbose(env, "cannot call GPL only function from proprietary program\n"); 2432 return -EINVAL; 2433 } 2434 2435 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2436 changes_data = bpf_helper_changes_pkt_data(fn->func); 2437 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2438 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2439 func_id_name(func_id), func_id); 2440 return -EINVAL; 2441 } 2442 2443 memset(&meta, 0, sizeof(meta)); 2444 meta.pkt_access = fn->pkt_access; 2445 2446 err = check_func_proto(fn); 2447 if (err) { 2448 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2449 func_id_name(func_id), func_id); 2450 return err; 2451 } 2452 2453 /* check args */ 2454 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2455 if (err) 2456 return err; 2457 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2458 if (err) 2459 return err; 2460 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2461 if (err) 2462 return err; 2463 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2464 if (err) 2465 return err; 2466 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2467 if (err) 2468 return err; 2469 2470 err = record_func_map(env, &meta, func_id, insn_idx); 2471 if (err) 2472 return err; 2473 2474 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2475 * is inferred from register state. 2476 */ 2477 for (i = 0; i < meta.access_size; i++) { 2478 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2479 BPF_WRITE, -1, false); 2480 if (err) 2481 return err; 2482 } 2483 2484 regs = cur_regs(env); 2485 /* reset caller saved regs */ 2486 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2487 mark_reg_not_init(env, regs, caller_saved[i]); 2488 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2489 } 2490 2491 /* update return register (already marked as written above) */ 2492 if (fn->ret_type == RET_INTEGER) { 2493 /* sets type to SCALAR_VALUE */ 2494 mark_reg_unknown(env, regs, BPF_REG_0); 2495 } else if (fn->ret_type == RET_VOID) { 2496 regs[BPF_REG_0].type = NOT_INIT; 2497 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 2498 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2499 /* There is no offset yet applied, variable or fixed */ 2500 mark_reg_known_zero(env, regs, BPF_REG_0); 2501 regs[BPF_REG_0].off = 0; 2502 /* remember map_ptr, so that check_map_access() 2503 * can check 'value_size' boundary of memory access 2504 * to map element returned from bpf_map_lookup_elem() 2505 */ 2506 if (meta.map_ptr == NULL) { 2507 verbose(env, 2508 "kernel subsystem misconfigured verifier\n"); 2509 return -EINVAL; 2510 } 2511 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2512 regs[BPF_REG_0].id = ++env->id_gen; 2513 } else { 2514 verbose(env, "unknown return type %d of func %s#%d\n", 2515 fn->ret_type, func_id_name(func_id), func_id); 2516 return -EINVAL; 2517 } 2518 2519 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2520 if (err) 2521 return err; 2522 2523 if (changes_data) 2524 clear_all_pkt_pointers(env); 2525 return 0; 2526 } 2527 2528 static bool signed_add_overflows(s64 a, s64 b) 2529 { 2530 /* Do the add in u64, where overflow is well-defined */ 2531 s64 res = (s64)((u64)a + (u64)b); 2532 2533 if (b < 0) 2534 return res > a; 2535 return res < a; 2536 } 2537 2538 static bool signed_sub_overflows(s64 a, s64 b) 2539 { 2540 /* Do the sub in u64, where overflow is well-defined */ 2541 s64 res = (s64)((u64)a - (u64)b); 2542 2543 if (b < 0) 2544 return res < a; 2545 return res > a; 2546 } 2547 2548 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2549 const struct bpf_reg_state *reg, 2550 enum bpf_reg_type type) 2551 { 2552 bool known = tnum_is_const(reg->var_off); 2553 s64 val = reg->var_off.value; 2554 s64 smin = reg->smin_value; 2555 2556 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2557 verbose(env, "math between %s pointer and %lld is not allowed\n", 2558 reg_type_str[type], val); 2559 return false; 2560 } 2561 2562 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2563 verbose(env, "%s pointer offset %d is not allowed\n", 2564 reg_type_str[type], reg->off); 2565 return false; 2566 } 2567 2568 if (smin == S64_MIN) { 2569 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2570 reg_type_str[type]); 2571 return false; 2572 } 2573 2574 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2575 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2576 smin, reg_type_str[type]); 2577 return false; 2578 } 2579 2580 return true; 2581 } 2582 2583 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2584 * Caller should also handle BPF_MOV case separately. 2585 * If we return -EACCES, caller may want to try again treating pointer as a 2586 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2587 */ 2588 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2589 struct bpf_insn *insn, 2590 const struct bpf_reg_state *ptr_reg, 2591 const struct bpf_reg_state *off_reg) 2592 { 2593 struct bpf_verifier_state *vstate = env->cur_state; 2594 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2595 struct bpf_reg_state *regs = state->regs, *dst_reg; 2596 bool known = tnum_is_const(off_reg->var_off); 2597 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2598 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2599 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2600 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2601 u8 opcode = BPF_OP(insn->code); 2602 u32 dst = insn->dst_reg; 2603 2604 dst_reg = ®s[dst]; 2605 2606 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2607 smin_val > smax_val || umin_val > umax_val) { 2608 /* Taint dst register if offset had invalid bounds derived from 2609 * e.g. dead branches. 2610 */ 2611 __mark_reg_unknown(dst_reg); 2612 return 0; 2613 } 2614 2615 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2616 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2617 verbose(env, 2618 "R%d 32-bit pointer arithmetic prohibited\n", 2619 dst); 2620 return -EACCES; 2621 } 2622 2623 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2624 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2625 dst); 2626 return -EACCES; 2627 } 2628 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2629 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2630 dst); 2631 return -EACCES; 2632 } 2633 if (ptr_reg->type == PTR_TO_PACKET_END) { 2634 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2635 dst); 2636 return -EACCES; 2637 } 2638 2639 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2640 * The id may be overwritten later if we create a new variable offset. 2641 */ 2642 dst_reg->type = ptr_reg->type; 2643 dst_reg->id = ptr_reg->id; 2644 2645 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2646 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2647 return -EINVAL; 2648 2649 switch (opcode) { 2650 case BPF_ADD: 2651 /* We can take a fixed offset as long as it doesn't overflow 2652 * the s32 'off' field 2653 */ 2654 if (known && (ptr_reg->off + smin_val == 2655 (s64)(s32)(ptr_reg->off + smin_val))) { 2656 /* pointer += K. Accumulate it into fixed offset */ 2657 dst_reg->smin_value = smin_ptr; 2658 dst_reg->smax_value = smax_ptr; 2659 dst_reg->umin_value = umin_ptr; 2660 dst_reg->umax_value = umax_ptr; 2661 dst_reg->var_off = ptr_reg->var_off; 2662 dst_reg->off = ptr_reg->off + smin_val; 2663 dst_reg->range = ptr_reg->range; 2664 break; 2665 } 2666 /* A new variable offset is created. Note that off_reg->off 2667 * == 0, since it's a scalar. 2668 * dst_reg gets the pointer type and since some positive 2669 * integer value was added to the pointer, give it a new 'id' 2670 * if it's a PTR_TO_PACKET. 2671 * this creates a new 'base' pointer, off_reg (variable) gets 2672 * added into the variable offset, and we copy the fixed offset 2673 * from ptr_reg. 2674 */ 2675 if (signed_add_overflows(smin_ptr, smin_val) || 2676 signed_add_overflows(smax_ptr, smax_val)) { 2677 dst_reg->smin_value = S64_MIN; 2678 dst_reg->smax_value = S64_MAX; 2679 } else { 2680 dst_reg->smin_value = smin_ptr + smin_val; 2681 dst_reg->smax_value = smax_ptr + smax_val; 2682 } 2683 if (umin_ptr + umin_val < umin_ptr || 2684 umax_ptr + umax_val < umax_ptr) { 2685 dst_reg->umin_value = 0; 2686 dst_reg->umax_value = U64_MAX; 2687 } else { 2688 dst_reg->umin_value = umin_ptr + umin_val; 2689 dst_reg->umax_value = umax_ptr + umax_val; 2690 } 2691 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2692 dst_reg->off = ptr_reg->off; 2693 if (reg_is_pkt_pointer(ptr_reg)) { 2694 dst_reg->id = ++env->id_gen; 2695 /* something was added to pkt_ptr, set range to zero */ 2696 dst_reg->range = 0; 2697 } 2698 break; 2699 case BPF_SUB: 2700 if (dst_reg == off_reg) { 2701 /* scalar -= pointer. Creates an unknown scalar */ 2702 verbose(env, "R%d tried to subtract pointer from scalar\n", 2703 dst); 2704 return -EACCES; 2705 } 2706 /* We don't allow subtraction from FP, because (according to 2707 * test_verifier.c test "invalid fp arithmetic", JITs might not 2708 * be able to deal with it. 2709 */ 2710 if (ptr_reg->type == PTR_TO_STACK) { 2711 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2712 dst); 2713 return -EACCES; 2714 } 2715 if (known && (ptr_reg->off - smin_val == 2716 (s64)(s32)(ptr_reg->off - smin_val))) { 2717 /* pointer -= K. Subtract it from fixed offset */ 2718 dst_reg->smin_value = smin_ptr; 2719 dst_reg->smax_value = smax_ptr; 2720 dst_reg->umin_value = umin_ptr; 2721 dst_reg->umax_value = umax_ptr; 2722 dst_reg->var_off = ptr_reg->var_off; 2723 dst_reg->id = ptr_reg->id; 2724 dst_reg->off = ptr_reg->off - smin_val; 2725 dst_reg->range = ptr_reg->range; 2726 break; 2727 } 2728 /* A new variable offset is created. If the subtrahend is known 2729 * nonnegative, then any reg->range we had before is still good. 2730 */ 2731 if (signed_sub_overflows(smin_ptr, smax_val) || 2732 signed_sub_overflows(smax_ptr, smin_val)) { 2733 /* Overflow possible, we know nothing */ 2734 dst_reg->smin_value = S64_MIN; 2735 dst_reg->smax_value = S64_MAX; 2736 } else { 2737 dst_reg->smin_value = smin_ptr - smax_val; 2738 dst_reg->smax_value = smax_ptr - smin_val; 2739 } 2740 if (umin_ptr < umax_val) { 2741 /* Overflow possible, we know nothing */ 2742 dst_reg->umin_value = 0; 2743 dst_reg->umax_value = U64_MAX; 2744 } else { 2745 /* Cannot overflow (as long as bounds are consistent) */ 2746 dst_reg->umin_value = umin_ptr - umax_val; 2747 dst_reg->umax_value = umax_ptr - umin_val; 2748 } 2749 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2750 dst_reg->off = ptr_reg->off; 2751 if (reg_is_pkt_pointer(ptr_reg)) { 2752 dst_reg->id = ++env->id_gen; 2753 /* something was added to pkt_ptr, set range to zero */ 2754 if (smin_val < 0) 2755 dst_reg->range = 0; 2756 } 2757 break; 2758 case BPF_AND: 2759 case BPF_OR: 2760 case BPF_XOR: 2761 /* bitwise ops on pointers are troublesome, prohibit. */ 2762 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2763 dst, bpf_alu_string[opcode >> 4]); 2764 return -EACCES; 2765 default: 2766 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2767 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2768 dst, bpf_alu_string[opcode >> 4]); 2769 return -EACCES; 2770 } 2771 2772 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2773 return -EINVAL; 2774 2775 __update_reg_bounds(dst_reg); 2776 __reg_deduce_bounds(dst_reg); 2777 __reg_bound_offset(dst_reg); 2778 return 0; 2779 } 2780 2781 /* WARNING: This function does calculations on 64-bit values, but the actual 2782 * execution may occur on 32-bit values. Therefore, things like bitshifts 2783 * need extra checks in the 32-bit case. 2784 */ 2785 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2786 struct bpf_insn *insn, 2787 struct bpf_reg_state *dst_reg, 2788 struct bpf_reg_state src_reg) 2789 { 2790 struct bpf_reg_state *regs = cur_regs(env); 2791 u8 opcode = BPF_OP(insn->code); 2792 bool src_known, dst_known; 2793 s64 smin_val, smax_val; 2794 u64 umin_val, umax_val; 2795 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2796 2797 smin_val = src_reg.smin_value; 2798 smax_val = src_reg.smax_value; 2799 umin_val = src_reg.umin_value; 2800 umax_val = src_reg.umax_value; 2801 src_known = tnum_is_const(src_reg.var_off); 2802 dst_known = tnum_is_const(dst_reg->var_off); 2803 2804 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2805 smin_val > smax_val || umin_val > umax_val) { 2806 /* Taint dst register if offset had invalid bounds derived from 2807 * e.g. dead branches. 2808 */ 2809 __mark_reg_unknown(dst_reg); 2810 return 0; 2811 } 2812 2813 if (!src_known && 2814 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2815 __mark_reg_unknown(dst_reg); 2816 return 0; 2817 } 2818 2819 switch (opcode) { 2820 case BPF_ADD: 2821 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2822 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2823 dst_reg->smin_value = S64_MIN; 2824 dst_reg->smax_value = S64_MAX; 2825 } else { 2826 dst_reg->smin_value += smin_val; 2827 dst_reg->smax_value += smax_val; 2828 } 2829 if (dst_reg->umin_value + umin_val < umin_val || 2830 dst_reg->umax_value + umax_val < umax_val) { 2831 dst_reg->umin_value = 0; 2832 dst_reg->umax_value = U64_MAX; 2833 } else { 2834 dst_reg->umin_value += umin_val; 2835 dst_reg->umax_value += umax_val; 2836 } 2837 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2838 break; 2839 case BPF_SUB: 2840 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2841 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2842 /* Overflow possible, we know nothing */ 2843 dst_reg->smin_value = S64_MIN; 2844 dst_reg->smax_value = S64_MAX; 2845 } else { 2846 dst_reg->smin_value -= smax_val; 2847 dst_reg->smax_value -= smin_val; 2848 } 2849 if (dst_reg->umin_value < umax_val) { 2850 /* Overflow possible, we know nothing */ 2851 dst_reg->umin_value = 0; 2852 dst_reg->umax_value = U64_MAX; 2853 } else { 2854 /* Cannot overflow (as long as bounds are consistent) */ 2855 dst_reg->umin_value -= umax_val; 2856 dst_reg->umax_value -= umin_val; 2857 } 2858 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2859 break; 2860 case BPF_MUL: 2861 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2862 if (smin_val < 0 || dst_reg->smin_value < 0) { 2863 /* Ain't nobody got time to multiply that sign */ 2864 __mark_reg_unbounded(dst_reg); 2865 __update_reg_bounds(dst_reg); 2866 break; 2867 } 2868 /* Both values are positive, so we can work with unsigned and 2869 * copy the result to signed (unless it exceeds S64_MAX). 2870 */ 2871 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2872 /* Potential overflow, we know nothing */ 2873 __mark_reg_unbounded(dst_reg); 2874 /* (except what we can learn from the var_off) */ 2875 __update_reg_bounds(dst_reg); 2876 break; 2877 } 2878 dst_reg->umin_value *= umin_val; 2879 dst_reg->umax_value *= umax_val; 2880 if (dst_reg->umax_value > S64_MAX) { 2881 /* Overflow possible, we know nothing */ 2882 dst_reg->smin_value = S64_MIN; 2883 dst_reg->smax_value = S64_MAX; 2884 } else { 2885 dst_reg->smin_value = dst_reg->umin_value; 2886 dst_reg->smax_value = dst_reg->umax_value; 2887 } 2888 break; 2889 case BPF_AND: 2890 if (src_known && dst_known) { 2891 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2892 src_reg.var_off.value); 2893 break; 2894 } 2895 /* We get our minimum from the var_off, since that's inherently 2896 * bitwise. Our maximum is the minimum of the operands' maxima. 2897 */ 2898 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2899 dst_reg->umin_value = dst_reg->var_off.value; 2900 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2901 if (dst_reg->smin_value < 0 || smin_val < 0) { 2902 /* Lose signed bounds when ANDing negative numbers, 2903 * ain't nobody got time for that. 2904 */ 2905 dst_reg->smin_value = S64_MIN; 2906 dst_reg->smax_value = S64_MAX; 2907 } else { 2908 /* ANDing two positives gives a positive, so safe to 2909 * cast result into s64. 2910 */ 2911 dst_reg->smin_value = dst_reg->umin_value; 2912 dst_reg->smax_value = dst_reg->umax_value; 2913 } 2914 /* We may learn something more from the var_off */ 2915 __update_reg_bounds(dst_reg); 2916 break; 2917 case BPF_OR: 2918 if (src_known && dst_known) { 2919 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2920 src_reg.var_off.value); 2921 break; 2922 } 2923 /* We get our maximum from the var_off, and our minimum is the 2924 * maximum of the operands' minima 2925 */ 2926 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2927 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2928 dst_reg->umax_value = dst_reg->var_off.value | 2929 dst_reg->var_off.mask; 2930 if (dst_reg->smin_value < 0 || smin_val < 0) { 2931 /* Lose signed bounds when ORing negative numbers, 2932 * ain't nobody got time for that. 2933 */ 2934 dst_reg->smin_value = S64_MIN; 2935 dst_reg->smax_value = S64_MAX; 2936 } else { 2937 /* ORing two positives gives a positive, so safe to 2938 * cast result into s64. 2939 */ 2940 dst_reg->smin_value = dst_reg->umin_value; 2941 dst_reg->smax_value = dst_reg->umax_value; 2942 } 2943 /* We may learn something more from the var_off */ 2944 __update_reg_bounds(dst_reg); 2945 break; 2946 case BPF_LSH: 2947 if (umax_val >= insn_bitness) { 2948 /* Shifts greater than 31 or 63 are undefined. 2949 * This includes shifts by a negative number. 2950 */ 2951 mark_reg_unknown(env, regs, insn->dst_reg); 2952 break; 2953 } 2954 /* We lose all sign bit information (except what we can pick 2955 * up from var_off) 2956 */ 2957 dst_reg->smin_value = S64_MIN; 2958 dst_reg->smax_value = S64_MAX; 2959 /* If we might shift our top bit out, then we know nothing */ 2960 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2961 dst_reg->umin_value = 0; 2962 dst_reg->umax_value = U64_MAX; 2963 } else { 2964 dst_reg->umin_value <<= umin_val; 2965 dst_reg->umax_value <<= umax_val; 2966 } 2967 if (src_known) 2968 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2969 else 2970 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2971 /* We may learn something more from the var_off */ 2972 __update_reg_bounds(dst_reg); 2973 break; 2974 case BPF_RSH: 2975 if (umax_val >= insn_bitness) { 2976 /* Shifts greater than 31 or 63 are undefined. 2977 * This includes shifts by a negative number. 2978 */ 2979 mark_reg_unknown(env, regs, insn->dst_reg); 2980 break; 2981 } 2982 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2983 * be negative, then either: 2984 * 1) src_reg might be zero, so the sign bit of the result is 2985 * unknown, so we lose our signed bounds 2986 * 2) it's known negative, thus the unsigned bounds capture the 2987 * signed bounds 2988 * 3) the signed bounds cross zero, so they tell us nothing 2989 * about the result 2990 * If the value in dst_reg is known nonnegative, then again the 2991 * unsigned bounts capture the signed bounds. 2992 * Thus, in all cases it suffices to blow away our signed bounds 2993 * and rely on inferring new ones from the unsigned bounds and 2994 * var_off of the result. 2995 */ 2996 dst_reg->smin_value = S64_MIN; 2997 dst_reg->smax_value = S64_MAX; 2998 if (src_known) 2999 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 3000 umin_val); 3001 else 3002 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 3003 dst_reg->umin_value >>= umax_val; 3004 dst_reg->umax_value >>= umin_val; 3005 /* We may learn something more from the var_off */ 3006 __update_reg_bounds(dst_reg); 3007 break; 3008 default: 3009 mark_reg_unknown(env, regs, insn->dst_reg); 3010 break; 3011 } 3012 3013 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3014 /* 32-bit ALU ops are (32,32)->32 */ 3015 coerce_reg_to_size(dst_reg, 4); 3016 coerce_reg_to_size(&src_reg, 4); 3017 } 3018 3019 __reg_deduce_bounds(dst_reg); 3020 __reg_bound_offset(dst_reg); 3021 return 0; 3022 } 3023 3024 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3025 * and var_off. 3026 */ 3027 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3028 struct bpf_insn *insn) 3029 { 3030 struct bpf_verifier_state *vstate = env->cur_state; 3031 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3032 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3033 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3034 u8 opcode = BPF_OP(insn->code); 3035 3036 dst_reg = ®s[insn->dst_reg]; 3037 src_reg = NULL; 3038 if (dst_reg->type != SCALAR_VALUE) 3039 ptr_reg = dst_reg; 3040 if (BPF_SRC(insn->code) == BPF_X) { 3041 src_reg = ®s[insn->src_reg]; 3042 if (src_reg->type != SCALAR_VALUE) { 3043 if (dst_reg->type != SCALAR_VALUE) { 3044 /* Combining two pointers by any ALU op yields 3045 * an arbitrary scalar. Disallow all math except 3046 * pointer subtraction 3047 */ 3048 if (opcode == BPF_SUB){ 3049 mark_reg_unknown(env, regs, insn->dst_reg); 3050 return 0; 3051 } 3052 verbose(env, "R%d pointer %s pointer prohibited\n", 3053 insn->dst_reg, 3054 bpf_alu_string[opcode >> 4]); 3055 return -EACCES; 3056 } else { 3057 /* scalar += pointer 3058 * This is legal, but we have to reverse our 3059 * src/dest handling in computing the range 3060 */ 3061 return adjust_ptr_min_max_vals(env, insn, 3062 src_reg, dst_reg); 3063 } 3064 } else if (ptr_reg) { 3065 /* pointer += scalar */ 3066 return adjust_ptr_min_max_vals(env, insn, 3067 dst_reg, src_reg); 3068 } 3069 } else { 3070 /* Pretend the src is a reg with a known value, since we only 3071 * need to be able to read from this state. 3072 */ 3073 off_reg.type = SCALAR_VALUE; 3074 __mark_reg_known(&off_reg, insn->imm); 3075 src_reg = &off_reg; 3076 if (ptr_reg) /* pointer += K */ 3077 return adjust_ptr_min_max_vals(env, insn, 3078 ptr_reg, src_reg); 3079 } 3080 3081 /* Got here implies adding two SCALAR_VALUEs */ 3082 if (WARN_ON_ONCE(ptr_reg)) { 3083 print_verifier_state(env, state); 3084 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3085 return -EINVAL; 3086 } 3087 if (WARN_ON(!src_reg)) { 3088 print_verifier_state(env, state); 3089 verbose(env, "verifier internal error: no src_reg\n"); 3090 return -EINVAL; 3091 } 3092 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3093 } 3094 3095 /* check validity of 32-bit and 64-bit arithmetic operations */ 3096 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3097 { 3098 struct bpf_reg_state *regs = cur_regs(env); 3099 u8 opcode = BPF_OP(insn->code); 3100 int err; 3101 3102 if (opcode == BPF_END || opcode == BPF_NEG) { 3103 if (opcode == BPF_NEG) { 3104 if (BPF_SRC(insn->code) != 0 || 3105 insn->src_reg != BPF_REG_0 || 3106 insn->off != 0 || insn->imm != 0) { 3107 verbose(env, "BPF_NEG uses reserved fields\n"); 3108 return -EINVAL; 3109 } 3110 } else { 3111 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3112 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3113 BPF_CLASS(insn->code) == BPF_ALU64) { 3114 verbose(env, "BPF_END uses reserved fields\n"); 3115 return -EINVAL; 3116 } 3117 } 3118 3119 /* check src operand */ 3120 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3121 if (err) 3122 return err; 3123 3124 if (is_pointer_value(env, insn->dst_reg)) { 3125 verbose(env, "R%d pointer arithmetic prohibited\n", 3126 insn->dst_reg); 3127 return -EACCES; 3128 } 3129 3130 /* check dest operand */ 3131 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3132 if (err) 3133 return err; 3134 3135 } else if (opcode == BPF_MOV) { 3136 3137 if (BPF_SRC(insn->code) == BPF_X) { 3138 if (insn->imm != 0 || insn->off != 0) { 3139 verbose(env, "BPF_MOV uses reserved fields\n"); 3140 return -EINVAL; 3141 } 3142 3143 /* check src operand */ 3144 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3145 if (err) 3146 return err; 3147 } else { 3148 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3149 verbose(env, "BPF_MOV uses reserved fields\n"); 3150 return -EINVAL; 3151 } 3152 } 3153 3154 /* check dest operand */ 3155 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3156 if (err) 3157 return err; 3158 3159 if (BPF_SRC(insn->code) == BPF_X) { 3160 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3161 /* case: R1 = R2 3162 * copy register state to dest reg 3163 */ 3164 regs[insn->dst_reg] = regs[insn->src_reg]; 3165 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3166 } else { 3167 /* R1 = (u32) R2 */ 3168 if (is_pointer_value(env, insn->src_reg)) { 3169 verbose(env, 3170 "R%d partial copy of pointer\n", 3171 insn->src_reg); 3172 return -EACCES; 3173 } 3174 mark_reg_unknown(env, regs, insn->dst_reg); 3175 coerce_reg_to_size(®s[insn->dst_reg], 4); 3176 } 3177 } else { 3178 /* case: R = imm 3179 * remember the value we stored into this reg 3180 */ 3181 regs[insn->dst_reg].type = SCALAR_VALUE; 3182 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3183 __mark_reg_known(regs + insn->dst_reg, 3184 insn->imm); 3185 } else { 3186 __mark_reg_known(regs + insn->dst_reg, 3187 (u32)insn->imm); 3188 } 3189 } 3190 3191 } else if (opcode > BPF_END) { 3192 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3193 return -EINVAL; 3194 3195 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3196 3197 if (BPF_SRC(insn->code) == BPF_X) { 3198 if (insn->imm != 0 || insn->off != 0) { 3199 verbose(env, "BPF_ALU uses reserved fields\n"); 3200 return -EINVAL; 3201 } 3202 /* check src1 operand */ 3203 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3204 if (err) 3205 return err; 3206 } else { 3207 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3208 verbose(env, "BPF_ALU uses reserved fields\n"); 3209 return -EINVAL; 3210 } 3211 } 3212 3213 /* check src2 operand */ 3214 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3215 if (err) 3216 return err; 3217 3218 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3219 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3220 verbose(env, "div by zero\n"); 3221 return -EINVAL; 3222 } 3223 3224 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3225 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3226 return -EINVAL; 3227 } 3228 3229 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3230 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3231 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3232 3233 if (insn->imm < 0 || insn->imm >= size) { 3234 verbose(env, "invalid shift %d\n", insn->imm); 3235 return -EINVAL; 3236 } 3237 } 3238 3239 /* check dest operand */ 3240 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3241 if (err) 3242 return err; 3243 3244 return adjust_reg_min_max_vals(env, insn); 3245 } 3246 3247 return 0; 3248 } 3249 3250 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3251 struct bpf_reg_state *dst_reg, 3252 enum bpf_reg_type type, 3253 bool range_right_open) 3254 { 3255 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3256 struct bpf_reg_state *regs = state->regs, *reg; 3257 u16 new_range; 3258 int i, j; 3259 3260 if (dst_reg->off < 0 || 3261 (dst_reg->off == 0 && range_right_open)) 3262 /* This doesn't give us any range */ 3263 return; 3264 3265 if (dst_reg->umax_value > MAX_PACKET_OFF || 3266 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3267 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3268 * than pkt_end, but that's because it's also less than pkt. 3269 */ 3270 return; 3271 3272 new_range = dst_reg->off; 3273 if (range_right_open) 3274 new_range--; 3275 3276 /* Examples for register markings: 3277 * 3278 * pkt_data in dst register: 3279 * 3280 * r2 = r3; 3281 * r2 += 8; 3282 * if (r2 > pkt_end) goto <handle exception> 3283 * <access okay> 3284 * 3285 * r2 = r3; 3286 * r2 += 8; 3287 * if (r2 < pkt_end) goto <access okay> 3288 * <handle exception> 3289 * 3290 * Where: 3291 * r2 == dst_reg, pkt_end == src_reg 3292 * r2=pkt(id=n,off=8,r=0) 3293 * r3=pkt(id=n,off=0,r=0) 3294 * 3295 * pkt_data in src register: 3296 * 3297 * r2 = r3; 3298 * r2 += 8; 3299 * if (pkt_end >= r2) goto <access okay> 3300 * <handle exception> 3301 * 3302 * r2 = r3; 3303 * r2 += 8; 3304 * if (pkt_end <= r2) goto <handle exception> 3305 * <access okay> 3306 * 3307 * Where: 3308 * pkt_end == dst_reg, r2 == src_reg 3309 * r2=pkt(id=n,off=8,r=0) 3310 * r3=pkt(id=n,off=0,r=0) 3311 * 3312 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3313 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3314 * and [r3, r3 + 8-1) respectively is safe to access depending on 3315 * the check. 3316 */ 3317 3318 /* If our ids match, then we must have the same max_value. And we 3319 * don't care about the other reg's fixed offset, since if it's too big 3320 * the range won't allow anything. 3321 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3322 */ 3323 for (i = 0; i < MAX_BPF_REG; i++) 3324 if (regs[i].type == type && regs[i].id == dst_reg->id) 3325 /* keep the maximum range already checked */ 3326 regs[i].range = max(regs[i].range, new_range); 3327 3328 for (j = 0; j <= vstate->curframe; j++) { 3329 state = vstate->frame[j]; 3330 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3331 if (state->stack[i].slot_type[0] != STACK_SPILL) 3332 continue; 3333 reg = &state->stack[i].spilled_ptr; 3334 if (reg->type == type && reg->id == dst_reg->id) 3335 reg->range = max(reg->range, new_range); 3336 } 3337 } 3338 } 3339 3340 /* Adjusts the register min/max values in the case that the dst_reg is the 3341 * variable register that we are working on, and src_reg is a constant or we're 3342 * simply doing a BPF_K check. 3343 * In JEQ/JNE cases we also adjust the var_off values. 3344 */ 3345 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3346 struct bpf_reg_state *false_reg, u64 val, 3347 u8 opcode) 3348 { 3349 /* If the dst_reg is a pointer, we can't learn anything about its 3350 * variable offset from the compare (unless src_reg were a pointer into 3351 * the same object, but we don't bother with that. 3352 * Since false_reg and true_reg have the same type by construction, we 3353 * only need to check one of them for pointerness. 3354 */ 3355 if (__is_pointer_value(false, false_reg)) 3356 return; 3357 3358 switch (opcode) { 3359 case BPF_JEQ: 3360 /* If this is false then we know nothing Jon Snow, but if it is 3361 * true then we know for sure. 3362 */ 3363 __mark_reg_known(true_reg, val); 3364 break; 3365 case BPF_JNE: 3366 /* If this is true we know nothing Jon Snow, but if it is false 3367 * we know the value for sure; 3368 */ 3369 __mark_reg_known(false_reg, val); 3370 break; 3371 case BPF_JGT: 3372 false_reg->umax_value = min(false_reg->umax_value, val); 3373 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3374 break; 3375 case BPF_JSGT: 3376 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3377 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3378 break; 3379 case BPF_JLT: 3380 false_reg->umin_value = max(false_reg->umin_value, val); 3381 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3382 break; 3383 case BPF_JSLT: 3384 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3385 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3386 break; 3387 case BPF_JGE: 3388 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3389 true_reg->umin_value = max(true_reg->umin_value, val); 3390 break; 3391 case BPF_JSGE: 3392 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3393 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3394 break; 3395 case BPF_JLE: 3396 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3397 true_reg->umax_value = min(true_reg->umax_value, val); 3398 break; 3399 case BPF_JSLE: 3400 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3401 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3402 break; 3403 default: 3404 break; 3405 } 3406 3407 __reg_deduce_bounds(false_reg); 3408 __reg_deduce_bounds(true_reg); 3409 /* We might have learned some bits from the bounds. */ 3410 __reg_bound_offset(false_reg); 3411 __reg_bound_offset(true_reg); 3412 /* Intersecting with the old var_off might have improved our bounds 3413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3414 * then new var_off is (0; 0x7f...fc) which improves our umax. 3415 */ 3416 __update_reg_bounds(false_reg); 3417 __update_reg_bounds(true_reg); 3418 } 3419 3420 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3421 * the variable reg. 3422 */ 3423 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3424 struct bpf_reg_state *false_reg, u64 val, 3425 u8 opcode) 3426 { 3427 if (__is_pointer_value(false, false_reg)) 3428 return; 3429 3430 switch (opcode) { 3431 case BPF_JEQ: 3432 /* If this is false then we know nothing Jon Snow, but if it is 3433 * true then we know for sure. 3434 */ 3435 __mark_reg_known(true_reg, val); 3436 break; 3437 case BPF_JNE: 3438 /* If this is true we know nothing Jon Snow, but if it is false 3439 * we know the value for sure; 3440 */ 3441 __mark_reg_known(false_reg, val); 3442 break; 3443 case BPF_JGT: 3444 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3445 false_reg->umin_value = max(false_reg->umin_value, val); 3446 break; 3447 case BPF_JSGT: 3448 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3449 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3450 break; 3451 case BPF_JLT: 3452 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3453 false_reg->umax_value = min(false_reg->umax_value, val); 3454 break; 3455 case BPF_JSLT: 3456 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3457 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3458 break; 3459 case BPF_JGE: 3460 true_reg->umax_value = min(true_reg->umax_value, val); 3461 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3462 break; 3463 case BPF_JSGE: 3464 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3465 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3466 break; 3467 case BPF_JLE: 3468 true_reg->umin_value = max(true_reg->umin_value, val); 3469 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3470 break; 3471 case BPF_JSLE: 3472 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3473 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3474 break; 3475 default: 3476 break; 3477 } 3478 3479 __reg_deduce_bounds(false_reg); 3480 __reg_deduce_bounds(true_reg); 3481 /* We might have learned some bits from the bounds. */ 3482 __reg_bound_offset(false_reg); 3483 __reg_bound_offset(true_reg); 3484 /* Intersecting with the old var_off might have improved our bounds 3485 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3486 * then new var_off is (0; 0x7f...fc) which improves our umax. 3487 */ 3488 __update_reg_bounds(false_reg); 3489 __update_reg_bounds(true_reg); 3490 } 3491 3492 /* Regs are known to be equal, so intersect their min/max/var_off */ 3493 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3494 struct bpf_reg_state *dst_reg) 3495 { 3496 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3497 dst_reg->umin_value); 3498 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3499 dst_reg->umax_value); 3500 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3501 dst_reg->smin_value); 3502 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3503 dst_reg->smax_value); 3504 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3505 dst_reg->var_off); 3506 /* We might have learned new bounds from the var_off. */ 3507 __update_reg_bounds(src_reg); 3508 __update_reg_bounds(dst_reg); 3509 /* We might have learned something about the sign bit. */ 3510 __reg_deduce_bounds(src_reg); 3511 __reg_deduce_bounds(dst_reg); 3512 /* We might have learned some bits from the bounds. */ 3513 __reg_bound_offset(src_reg); 3514 __reg_bound_offset(dst_reg); 3515 /* Intersecting with the old var_off might have improved our bounds 3516 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3517 * then new var_off is (0; 0x7f...fc) which improves our umax. 3518 */ 3519 __update_reg_bounds(src_reg); 3520 __update_reg_bounds(dst_reg); 3521 } 3522 3523 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3524 struct bpf_reg_state *true_dst, 3525 struct bpf_reg_state *false_src, 3526 struct bpf_reg_state *false_dst, 3527 u8 opcode) 3528 { 3529 switch (opcode) { 3530 case BPF_JEQ: 3531 __reg_combine_min_max(true_src, true_dst); 3532 break; 3533 case BPF_JNE: 3534 __reg_combine_min_max(false_src, false_dst); 3535 break; 3536 } 3537 } 3538 3539 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3540 bool is_null) 3541 { 3542 struct bpf_reg_state *reg = ®s[regno]; 3543 3544 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3545 /* Old offset (both fixed and variable parts) should 3546 * have been known-zero, because we don't allow pointer 3547 * arithmetic on pointers that might be NULL. 3548 */ 3549 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3550 !tnum_equals_const(reg->var_off, 0) || 3551 reg->off)) { 3552 __mark_reg_known_zero(reg); 3553 reg->off = 0; 3554 } 3555 if (is_null) { 3556 reg->type = SCALAR_VALUE; 3557 } else if (reg->map_ptr->inner_map_meta) { 3558 reg->type = CONST_PTR_TO_MAP; 3559 reg->map_ptr = reg->map_ptr->inner_map_meta; 3560 } else { 3561 reg->type = PTR_TO_MAP_VALUE; 3562 } 3563 /* We don't need id from this point onwards anymore, thus we 3564 * should better reset it, so that state pruning has chances 3565 * to take effect. 3566 */ 3567 reg->id = 0; 3568 } 3569 } 3570 3571 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3572 * be folded together at some point. 3573 */ 3574 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3575 bool is_null) 3576 { 3577 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3578 struct bpf_reg_state *regs = state->regs; 3579 u32 id = regs[regno].id; 3580 int i, j; 3581 3582 for (i = 0; i < MAX_BPF_REG; i++) 3583 mark_map_reg(regs, i, id, is_null); 3584 3585 for (j = 0; j <= vstate->curframe; j++) { 3586 state = vstate->frame[j]; 3587 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3588 if (state->stack[i].slot_type[0] != STACK_SPILL) 3589 continue; 3590 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3591 } 3592 } 3593 } 3594 3595 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3596 struct bpf_reg_state *dst_reg, 3597 struct bpf_reg_state *src_reg, 3598 struct bpf_verifier_state *this_branch, 3599 struct bpf_verifier_state *other_branch) 3600 { 3601 if (BPF_SRC(insn->code) != BPF_X) 3602 return false; 3603 3604 switch (BPF_OP(insn->code)) { 3605 case BPF_JGT: 3606 if ((dst_reg->type == PTR_TO_PACKET && 3607 src_reg->type == PTR_TO_PACKET_END) || 3608 (dst_reg->type == PTR_TO_PACKET_META && 3609 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3610 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3611 find_good_pkt_pointers(this_branch, dst_reg, 3612 dst_reg->type, false); 3613 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3614 src_reg->type == PTR_TO_PACKET) || 3615 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3616 src_reg->type == PTR_TO_PACKET_META)) { 3617 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3618 find_good_pkt_pointers(other_branch, src_reg, 3619 src_reg->type, true); 3620 } else { 3621 return false; 3622 } 3623 break; 3624 case BPF_JLT: 3625 if ((dst_reg->type == PTR_TO_PACKET && 3626 src_reg->type == PTR_TO_PACKET_END) || 3627 (dst_reg->type == PTR_TO_PACKET_META && 3628 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3629 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3630 find_good_pkt_pointers(other_branch, dst_reg, 3631 dst_reg->type, true); 3632 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3633 src_reg->type == PTR_TO_PACKET) || 3634 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3635 src_reg->type == PTR_TO_PACKET_META)) { 3636 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3637 find_good_pkt_pointers(this_branch, src_reg, 3638 src_reg->type, false); 3639 } else { 3640 return false; 3641 } 3642 break; 3643 case BPF_JGE: 3644 if ((dst_reg->type == PTR_TO_PACKET && 3645 src_reg->type == PTR_TO_PACKET_END) || 3646 (dst_reg->type == PTR_TO_PACKET_META && 3647 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3648 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3649 find_good_pkt_pointers(this_branch, dst_reg, 3650 dst_reg->type, true); 3651 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3652 src_reg->type == PTR_TO_PACKET) || 3653 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3654 src_reg->type == PTR_TO_PACKET_META)) { 3655 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3656 find_good_pkt_pointers(other_branch, src_reg, 3657 src_reg->type, false); 3658 } else { 3659 return false; 3660 } 3661 break; 3662 case BPF_JLE: 3663 if ((dst_reg->type == PTR_TO_PACKET && 3664 src_reg->type == PTR_TO_PACKET_END) || 3665 (dst_reg->type == PTR_TO_PACKET_META && 3666 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3667 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3668 find_good_pkt_pointers(other_branch, dst_reg, 3669 dst_reg->type, false); 3670 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3671 src_reg->type == PTR_TO_PACKET) || 3672 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3673 src_reg->type == PTR_TO_PACKET_META)) { 3674 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3675 find_good_pkt_pointers(this_branch, src_reg, 3676 src_reg->type, true); 3677 } else { 3678 return false; 3679 } 3680 break; 3681 default: 3682 return false; 3683 } 3684 3685 return true; 3686 } 3687 3688 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3689 struct bpf_insn *insn, int *insn_idx) 3690 { 3691 struct bpf_verifier_state *this_branch = env->cur_state; 3692 struct bpf_verifier_state *other_branch; 3693 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3694 struct bpf_reg_state *dst_reg, *other_branch_regs; 3695 u8 opcode = BPF_OP(insn->code); 3696 int err; 3697 3698 if (opcode > BPF_JSLE) { 3699 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3700 return -EINVAL; 3701 } 3702 3703 if (BPF_SRC(insn->code) == BPF_X) { 3704 if (insn->imm != 0) { 3705 verbose(env, "BPF_JMP uses reserved fields\n"); 3706 return -EINVAL; 3707 } 3708 3709 /* check src1 operand */ 3710 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3711 if (err) 3712 return err; 3713 3714 if (is_pointer_value(env, insn->src_reg)) { 3715 verbose(env, "R%d pointer comparison prohibited\n", 3716 insn->src_reg); 3717 return -EACCES; 3718 } 3719 } else { 3720 if (insn->src_reg != BPF_REG_0) { 3721 verbose(env, "BPF_JMP uses reserved fields\n"); 3722 return -EINVAL; 3723 } 3724 } 3725 3726 /* check src2 operand */ 3727 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3728 if (err) 3729 return err; 3730 3731 dst_reg = ®s[insn->dst_reg]; 3732 3733 /* detect if R == 0 where R was initialized to zero earlier */ 3734 if (BPF_SRC(insn->code) == BPF_K && 3735 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3736 dst_reg->type == SCALAR_VALUE && 3737 tnum_is_const(dst_reg->var_off)) { 3738 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3739 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3740 /* if (imm == imm) goto pc+off; 3741 * only follow the goto, ignore fall-through 3742 */ 3743 *insn_idx += insn->off; 3744 return 0; 3745 } else { 3746 /* if (imm != imm) goto pc+off; 3747 * only follow fall-through branch, since 3748 * that's where the program will go 3749 */ 3750 return 0; 3751 } 3752 } 3753 3754 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3755 if (!other_branch) 3756 return -EFAULT; 3757 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3758 3759 /* detect if we are comparing against a constant value so we can adjust 3760 * our min/max values for our dst register. 3761 * this is only legit if both are scalars (or pointers to the same 3762 * object, I suppose, but we don't support that right now), because 3763 * otherwise the different base pointers mean the offsets aren't 3764 * comparable. 3765 */ 3766 if (BPF_SRC(insn->code) == BPF_X) { 3767 if (dst_reg->type == SCALAR_VALUE && 3768 regs[insn->src_reg].type == SCALAR_VALUE) { 3769 if (tnum_is_const(regs[insn->src_reg].var_off)) 3770 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3771 dst_reg, regs[insn->src_reg].var_off.value, 3772 opcode); 3773 else if (tnum_is_const(dst_reg->var_off)) 3774 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3775 ®s[insn->src_reg], 3776 dst_reg->var_off.value, opcode); 3777 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3778 /* Comparing for equality, we can combine knowledge */ 3779 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3780 &other_branch_regs[insn->dst_reg], 3781 ®s[insn->src_reg], 3782 ®s[insn->dst_reg], opcode); 3783 } 3784 } else if (dst_reg->type == SCALAR_VALUE) { 3785 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3786 dst_reg, insn->imm, opcode); 3787 } 3788 3789 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3790 if (BPF_SRC(insn->code) == BPF_K && 3791 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3792 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3793 /* Mark all identical map registers in each branch as either 3794 * safe or unknown depending R == 0 or R != 0 conditional. 3795 */ 3796 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3797 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3798 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3799 this_branch, other_branch) && 3800 is_pointer_value(env, insn->dst_reg)) { 3801 verbose(env, "R%d pointer comparison prohibited\n", 3802 insn->dst_reg); 3803 return -EACCES; 3804 } 3805 if (env->log.level) 3806 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3807 return 0; 3808 } 3809 3810 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3811 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3812 { 3813 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3814 3815 return (struct bpf_map *) (unsigned long) imm64; 3816 } 3817 3818 /* verify BPF_LD_IMM64 instruction */ 3819 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3820 { 3821 struct bpf_reg_state *regs = cur_regs(env); 3822 int err; 3823 3824 if (BPF_SIZE(insn->code) != BPF_DW) { 3825 verbose(env, "invalid BPF_LD_IMM insn\n"); 3826 return -EINVAL; 3827 } 3828 if (insn->off != 0) { 3829 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3830 return -EINVAL; 3831 } 3832 3833 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3834 if (err) 3835 return err; 3836 3837 if (insn->src_reg == 0) { 3838 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3839 3840 regs[insn->dst_reg].type = SCALAR_VALUE; 3841 __mark_reg_known(®s[insn->dst_reg], imm); 3842 return 0; 3843 } 3844 3845 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3846 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3847 3848 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3849 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3850 return 0; 3851 } 3852 3853 static bool may_access_skb(enum bpf_prog_type type) 3854 { 3855 switch (type) { 3856 case BPF_PROG_TYPE_SOCKET_FILTER: 3857 case BPF_PROG_TYPE_SCHED_CLS: 3858 case BPF_PROG_TYPE_SCHED_ACT: 3859 return true; 3860 default: 3861 return false; 3862 } 3863 } 3864 3865 /* verify safety of LD_ABS|LD_IND instructions: 3866 * - they can only appear in the programs where ctx == skb 3867 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3868 * preserve R6-R9, and store return value into R0 3869 * 3870 * Implicit input: 3871 * ctx == skb == R6 == CTX 3872 * 3873 * Explicit input: 3874 * SRC == any register 3875 * IMM == 32-bit immediate 3876 * 3877 * Output: 3878 * R0 - 8/16/32-bit skb data converted to cpu endianness 3879 */ 3880 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3881 { 3882 struct bpf_reg_state *regs = cur_regs(env); 3883 u8 mode = BPF_MODE(insn->code); 3884 int i, err; 3885 3886 if (!may_access_skb(env->prog->type)) { 3887 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3888 return -EINVAL; 3889 } 3890 3891 if (env->subprog_cnt) { 3892 /* when program has LD_ABS insn JITs and interpreter assume 3893 * that r1 == ctx == skb which is not the case for callees 3894 * that can have arbitrary arguments. It's problematic 3895 * for main prog as well since JITs would need to analyze 3896 * all functions in order to make proper register save/restore 3897 * decisions in the main prog. Hence disallow LD_ABS with calls 3898 */ 3899 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3900 return -EINVAL; 3901 } 3902 3903 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3904 BPF_SIZE(insn->code) == BPF_DW || 3905 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3906 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3907 return -EINVAL; 3908 } 3909 3910 /* check whether implicit source operand (register R6) is readable */ 3911 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3912 if (err) 3913 return err; 3914 3915 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3916 verbose(env, 3917 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3918 return -EINVAL; 3919 } 3920 3921 if (mode == BPF_IND) { 3922 /* check explicit source operand */ 3923 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3924 if (err) 3925 return err; 3926 } 3927 3928 /* reset caller saved regs to unreadable */ 3929 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3930 mark_reg_not_init(env, regs, caller_saved[i]); 3931 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3932 } 3933 3934 /* mark destination R0 register as readable, since it contains 3935 * the value fetched from the packet. 3936 * Already marked as written above. 3937 */ 3938 mark_reg_unknown(env, regs, BPF_REG_0); 3939 return 0; 3940 } 3941 3942 static int check_return_code(struct bpf_verifier_env *env) 3943 { 3944 struct bpf_reg_state *reg; 3945 struct tnum range = tnum_range(0, 1); 3946 3947 switch (env->prog->type) { 3948 case BPF_PROG_TYPE_CGROUP_SKB: 3949 case BPF_PROG_TYPE_CGROUP_SOCK: 3950 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 3951 case BPF_PROG_TYPE_SOCK_OPS: 3952 case BPF_PROG_TYPE_CGROUP_DEVICE: 3953 break; 3954 default: 3955 return 0; 3956 } 3957 3958 reg = cur_regs(env) + BPF_REG_0; 3959 if (reg->type != SCALAR_VALUE) { 3960 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3961 reg_type_str[reg->type]); 3962 return -EINVAL; 3963 } 3964 3965 if (!tnum_in(range, reg->var_off)) { 3966 verbose(env, "At program exit the register R0 "); 3967 if (!tnum_is_unknown(reg->var_off)) { 3968 char tn_buf[48]; 3969 3970 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3971 verbose(env, "has value %s", tn_buf); 3972 } else { 3973 verbose(env, "has unknown scalar value"); 3974 } 3975 verbose(env, " should have been 0 or 1\n"); 3976 return -EINVAL; 3977 } 3978 return 0; 3979 } 3980 3981 /* non-recursive DFS pseudo code 3982 * 1 procedure DFS-iterative(G,v): 3983 * 2 label v as discovered 3984 * 3 let S be a stack 3985 * 4 S.push(v) 3986 * 5 while S is not empty 3987 * 6 t <- S.pop() 3988 * 7 if t is what we're looking for: 3989 * 8 return t 3990 * 9 for all edges e in G.adjacentEdges(t) do 3991 * 10 if edge e is already labelled 3992 * 11 continue with the next edge 3993 * 12 w <- G.adjacentVertex(t,e) 3994 * 13 if vertex w is not discovered and not explored 3995 * 14 label e as tree-edge 3996 * 15 label w as discovered 3997 * 16 S.push(w) 3998 * 17 continue at 5 3999 * 18 else if vertex w is discovered 4000 * 19 label e as back-edge 4001 * 20 else 4002 * 21 // vertex w is explored 4003 * 22 label e as forward- or cross-edge 4004 * 23 label t as explored 4005 * 24 S.pop() 4006 * 4007 * convention: 4008 * 0x10 - discovered 4009 * 0x11 - discovered and fall-through edge labelled 4010 * 0x12 - discovered and fall-through and branch edges labelled 4011 * 0x20 - explored 4012 */ 4013 4014 enum { 4015 DISCOVERED = 0x10, 4016 EXPLORED = 0x20, 4017 FALLTHROUGH = 1, 4018 BRANCH = 2, 4019 }; 4020 4021 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4022 4023 static int *insn_stack; /* stack of insns to process */ 4024 static int cur_stack; /* current stack index */ 4025 static int *insn_state; 4026 4027 /* t, w, e - match pseudo-code above: 4028 * t - index of current instruction 4029 * w - next instruction 4030 * e - edge 4031 */ 4032 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4033 { 4034 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4035 return 0; 4036 4037 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4038 return 0; 4039 4040 if (w < 0 || w >= env->prog->len) { 4041 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4042 return -EINVAL; 4043 } 4044 4045 if (e == BRANCH) 4046 /* mark branch target for state pruning */ 4047 env->explored_states[w] = STATE_LIST_MARK; 4048 4049 if (insn_state[w] == 0) { 4050 /* tree-edge */ 4051 insn_state[t] = DISCOVERED | e; 4052 insn_state[w] = DISCOVERED; 4053 if (cur_stack >= env->prog->len) 4054 return -E2BIG; 4055 insn_stack[cur_stack++] = w; 4056 return 1; 4057 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4058 verbose(env, "back-edge from insn %d to %d\n", t, w); 4059 return -EINVAL; 4060 } else if (insn_state[w] == EXPLORED) { 4061 /* forward- or cross-edge */ 4062 insn_state[t] = DISCOVERED | e; 4063 } else { 4064 verbose(env, "insn state internal bug\n"); 4065 return -EFAULT; 4066 } 4067 return 0; 4068 } 4069 4070 /* non-recursive depth-first-search to detect loops in BPF program 4071 * loop == back-edge in directed graph 4072 */ 4073 static int check_cfg(struct bpf_verifier_env *env) 4074 { 4075 struct bpf_insn *insns = env->prog->insnsi; 4076 int insn_cnt = env->prog->len; 4077 int ret = 0; 4078 int i, t; 4079 4080 ret = check_subprogs(env); 4081 if (ret < 0) 4082 return ret; 4083 4084 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4085 if (!insn_state) 4086 return -ENOMEM; 4087 4088 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4089 if (!insn_stack) { 4090 kfree(insn_state); 4091 return -ENOMEM; 4092 } 4093 4094 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4095 insn_stack[0] = 0; /* 0 is the first instruction */ 4096 cur_stack = 1; 4097 4098 peek_stack: 4099 if (cur_stack == 0) 4100 goto check_state; 4101 t = insn_stack[cur_stack - 1]; 4102 4103 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4104 u8 opcode = BPF_OP(insns[t].code); 4105 4106 if (opcode == BPF_EXIT) { 4107 goto mark_explored; 4108 } else if (opcode == BPF_CALL) { 4109 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4110 if (ret == 1) 4111 goto peek_stack; 4112 else if (ret < 0) 4113 goto err_free; 4114 if (t + 1 < insn_cnt) 4115 env->explored_states[t + 1] = STATE_LIST_MARK; 4116 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4117 env->explored_states[t] = STATE_LIST_MARK; 4118 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4119 if (ret == 1) 4120 goto peek_stack; 4121 else if (ret < 0) 4122 goto err_free; 4123 } 4124 } else if (opcode == BPF_JA) { 4125 if (BPF_SRC(insns[t].code) != BPF_K) { 4126 ret = -EINVAL; 4127 goto err_free; 4128 } 4129 /* unconditional jump with single edge */ 4130 ret = push_insn(t, t + insns[t].off + 1, 4131 FALLTHROUGH, env); 4132 if (ret == 1) 4133 goto peek_stack; 4134 else if (ret < 0) 4135 goto err_free; 4136 /* tell verifier to check for equivalent states 4137 * after every call and jump 4138 */ 4139 if (t + 1 < insn_cnt) 4140 env->explored_states[t + 1] = STATE_LIST_MARK; 4141 } else { 4142 /* conditional jump with two edges */ 4143 env->explored_states[t] = STATE_LIST_MARK; 4144 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4145 if (ret == 1) 4146 goto peek_stack; 4147 else if (ret < 0) 4148 goto err_free; 4149 4150 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4151 if (ret == 1) 4152 goto peek_stack; 4153 else if (ret < 0) 4154 goto err_free; 4155 } 4156 } else { 4157 /* all other non-branch instructions with single 4158 * fall-through edge 4159 */ 4160 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4161 if (ret == 1) 4162 goto peek_stack; 4163 else if (ret < 0) 4164 goto err_free; 4165 } 4166 4167 mark_explored: 4168 insn_state[t] = EXPLORED; 4169 if (cur_stack-- <= 0) { 4170 verbose(env, "pop stack internal bug\n"); 4171 ret = -EFAULT; 4172 goto err_free; 4173 } 4174 goto peek_stack; 4175 4176 check_state: 4177 for (i = 0; i < insn_cnt; i++) { 4178 if (insn_state[i] != EXPLORED) { 4179 verbose(env, "unreachable insn %d\n", i); 4180 ret = -EINVAL; 4181 goto err_free; 4182 } 4183 } 4184 ret = 0; /* cfg looks good */ 4185 4186 err_free: 4187 kfree(insn_state); 4188 kfree(insn_stack); 4189 return ret; 4190 } 4191 4192 /* check %cur's range satisfies %old's */ 4193 static bool range_within(struct bpf_reg_state *old, 4194 struct bpf_reg_state *cur) 4195 { 4196 return old->umin_value <= cur->umin_value && 4197 old->umax_value >= cur->umax_value && 4198 old->smin_value <= cur->smin_value && 4199 old->smax_value >= cur->smax_value; 4200 } 4201 4202 /* Maximum number of register states that can exist at once */ 4203 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4204 struct idpair { 4205 u32 old; 4206 u32 cur; 4207 }; 4208 4209 /* If in the old state two registers had the same id, then they need to have 4210 * the same id in the new state as well. But that id could be different from 4211 * the old state, so we need to track the mapping from old to new ids. 4212 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4213 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4214 * regs with a different old id could still have new id 9, we don't care about 4215 * that. 4216 * So we look through our idmap to see if this old id has been seen before. If 4217 * so, we require the new id to match; otherwise, we add the id pair to the map. 4218 */ 4219 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4220 { 4221 unsigned int i; 4222 4223 for (i = 0; i < ID_MAP_SIZE; i++) { 4224 if (!idmap[i].old) { 4225 /* Reached an empty slot; haven't seen this id before */ 4226 idmap[i].old = old_id; 4227 idmap[i].cur = cur_id; 4228 return true; 4229 } 4230 if (idmap[i].old == old_id) 4231 return idmap[i].cur == cur_id; 4232 } 4233 /* We ran out of idmap slots, which should be impossible */ 4234 WARN_ON_ONCE(1); 4235 return false; 4236 } 4237 4238 /* Returns true if (rold safe implies rcur safe) */ 4239 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4240 struct idpair *idmap) 4241 { 4242 bool equal; 4243 4244 if (!(rold->live & REG_LIVE_READ)) 4245 /* explored state didn't use this */ 4246 return true; 4247 4248 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4249 4250 if (rold->type == PTR_TO_STACK) 4251 /* two stack pointers are equal only if they're pointing to 4252 * the same stack frame, since fp-8 in foo != fp-8 in bar 4253 */ 4254 return equal && rold->frameno == rcur->frameno; 4255 4256 if (equal) 4257 return true; 4258 4259 if (rold->type == NOT_INIT) 4260 /* explored state can't have used this */ 4261 return true; 4262 if (rcur->type == NOT_INIT) 4263 return false; 4264 switch (rold->type) { 4265 case SCALAR_VALUE: 4266 if (rcur->type == SCALAR_VALUE) { 4267 /* new val must satisfy old val knowledge */ 4268 return range_within(rold, rcur) && 4269 tnum_in(rold->var_off, rcur->var_off); 4270 } else { 4271 /* We're trying to use a pointer in place of a scalar. 4272 * Even if the scalar was unbounded, this could lead to 4273 * pointer leaks because scalars are allowed to leak 4274 * while pointers are not. We could make this safe in 4275 * special cases if root is calling us, but it's 4276 * probably not worth the hassle. 4277 */ 4278 return false; 4279 } 4280 case PTR_TO_MAP_VALUE: 4281 /* If the new min/max/var_off satisfy the old ones and 4282 * everything else matches, we are OK. 4283 * We don't care about the 'id' value, because nothing 4284 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4285 */ 4286 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4287 range_within(rold, rcur) && 4288 tnum_in(rold->var_off, rcur->var_off); 4289 case PTR_TO_MAP_VALUE_OR_NULL: 4290 /* a PTR_TO_MAP_VALUE could be safe to use as a 4291 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4292 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4293 * checked, doing so could have affected others with the same 4294 * id, and we can't check for that because we lost the id when 4295 * we converted to a PTR_TO_MAP_VALUE. 4296 */ 4297 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4298 return false; 4299 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4300 return false; 4301 /* Check our ids match any regs they're supposed to */ 4302 return check_ids(rold->id, rcur->id, idmap); 4303 case PTR_TO_PACKET_META: 4304 case PTR_TO_PACKET: 4305 if (rcur->type != rold->type) 4306 return false; 4307 /* We must have at least as much range as the old ptr 4308 * did, so that any accesses which were safe before are 4309 * still safe. This is true even if old range < old off, 4310 * since someone could have accessed through (ptr - k), or 4311 * even done ptr -= k in a register, to get a safe access. 4312 */ 4313 if (rold->range > rcur->range) 4314 return false; 4315 /* If the offsets don't match, we can't trust our alignment; 4316 * nor can we be sure that we won't fall out of range. 4317 */ 4318 if (rold->off != rcur->off) 4319 return false; 4320 /* id relations must be preserved */ 4321 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4322 return false; 4323 /* new val must satisfy old val knowledge */ 4324 return range_within(rold, rcur) && 4325 tnum_in(rold->var_off, rcur->var_off); 4326 case PTR_TO_CTX: 4327 case CONST_PTR_TO_MAP: 4328 case PTR_TO_PACKET_END: 4329 /* Only valid matches are exact, which memcmp() above 4330 * would have accepted 4331 */ 4332 default: 4333 /* Don't know what's going on, just say it's not safe */ 4334 return false; 4335 } 4336 4337 /* Shouldn't get here; if we do, say it's not safe */ 4338 WARN_ON_ONCE(1); 4339 return false; 4340 } 4341 4342 static bool stacksafe(struct bpf_func_state *old, 4343 struct bpf_func_state *cur, 4344 struct idpair *idmap) 4345 { 4346 int i, spi; 4347 4348 /* if explored stack has more populated slots than current stack 4349 * such stacks are not equivalent 4350 */ 4351 if (old->allocated_stack > cur->allocated_stack) 4352 return false; 4353 4354 /* walk slots of the explored stack and ignore any additional 4355 * slots in the current stack, since explored(safe) state 4356 * didn't use them 4357 */ 4358 for (i = 0; i < old->allocated_stack; i++) { 4359 spi = i / BPF_REG_SIZE; 4360 4361 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4362 /* explored state didn't use this */ 4363 continue; 4364 4365 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4366 continue; 4367 /* if old state was safe with misc data in the stack 4368 * it will be safe with zero-initialized stack. 4369 * The opposite is not true 4370 */ 4371 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4372 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4373 continue; 4374 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4375 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4376 /* Ex: old explored (safe) state has STACK_SPILL in 4377 * this stack slot, but current has has STACK_MISC -> 4378 * this verifier states are not equivalent, 4379 * return false to continue verification of this path 4380 */ 4381 return false; 4382 if (i % BPF_REG_SIZE) 4383 continue; 4384 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4385 continue; 4386 if (!regsafe(&old->stack[spi].spilled_ptr, 4387 &cur->stack[spi].spilled_ptr, 4388 idmap)) 4389 /* when explored and current stack slot are both storing 4390 * spilled registers, check that stored pointers types 4391 * are the same as well. 4392 * Ex: explored safe path could have stored 4393 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4394 * but current path has stored: 4395 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4396 * such verifier states are not equivalent. 4397 * return false to continue verification of this path 4398 */ 4399 return false; 4400 } 4401 return true; 4402 } 4403 4404 /* compare two verifier states 4405 * 4406 * all states stored in state_list are known to be valid, since 4407 * verifier reached 'bpf_exit' instruction through them 4408 * 4409 * this function is called when verifier exploring different branches of 4410 * execution popped from the state stack. If it sees an old state that has 4411 * more strict register state and more strict stack state then this execution 4412 * branch doesn't need to be explored further, since verifier already 4413 * concluded that more strict state leads to valid finish. 4414 * 4415 * Therefore two states are equivalent if register state is more conservative 4416 * and explored stack state is more conservative than the current one. 4417 * Example: 4418 * explored current 4419 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4420 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4421 * 4422 * In other words if current stack state (one being explored) has more 4423 * valid slots than old one that already passed validation, it means 4424 * the verifier can stop exploring and conclude that current state is valid too 4425 * 4426 * Similarly with registers. If explored state has register type as invalid 4427 * whereas register type in current state is meaningful, it means that 4428 * the current state will reach 'bpf_exit' instruction safely 4429 */ 4430 static bool func_states_equal(struct bpf_func_state *old, 4431 struct bpf_func_state *cur) 4432 { 4433 struct idpair *idmap; 4434 bool ret = false; 4435 int i; 4436 4437 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4438 /* If we failed to allocate the idmap, just say it's not safe */ 4439 if (!idmap) 4440 return false; 4441 4442 for (i = 0; i < MAX_BPF_REG; i++) { 4443 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4444 goto out_free; 4445 } 4446 4447 if (!stacksafe(old, cur, idmap)) 4448 goto out_free; 4449 ret = true; 4450 out_free: 4451 kfree(idmap); 4452 return ret; 4453 } 4454 4455 static bool states_equal(struct bpf_verifier_env *env, 4456 struct bpf_verifier_state *old, 4457 struct bpf_verifier_state *cur) 4458 { 4459 int i; 4460 4461 if (old->curframe != cur->curframe) 4462 return false; 4463 4464 /* for states to be equal callsites have to be the same 4465 * and all frame states need to be equivalent 4466 */ 4467 for (i = 0; i <= old->curframe; i++) { 4468 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4469 return false; 4470 if (!func_states_equal(old->frame[i], cur->frame[i])) 4471 return false; 4472 } 4473 return true; 4474 } 4475 4476 /* A write screens off any subsequent reads; but write marks come from the 4477 * straight-line code between a state and its parent. When we arrive at an 4478 * equivalent state (jump target or such) we didn't arrive by the straight-line 4479 * code, so read marks in the state must propagate to the parent regardless 4480 * of the state's write marks. That's what 'parent == state->parent' comparison 4481 * in mark_reg_read() and mark_stack_slot_read() is for. 4482 */ 4483 static int propagate_liveness(struct bpf_verifier_env *env, 4484 const struct bpf_verifier_state *vstate, 4485 struct bpf_verifier_state *vparent) 4486 { 4487 int i, frame, err = 0; 4488 struct bpf_func_state *state, *parent; 4489 4490 if (vparent->curframe != vstate->curframe) { 4491 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4492 vparent->curframe, vstate->curframe); 4493 return -EFAULT; 4494 } 4495 /* Propagate read liveness of registers... */ 4496 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4497 /* We don't need to worry about FP liveness because it's read-only */ 4498 for (i = 0; i < BPF_REG_FP; i++) { 4499 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4500 continue; 4501 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4502 err = mark_reg_read(env, vstate, vparent, i); 4503 if (err) 4504 return err; 4505 } 4506 } 4507 4508 /* ... and stack slots */ 4509 for (frame = 0; frame <= vstate->curframe; frame++) { 4510 state = vstate->frame[frame]; 4511 parent = vparent->frame[frame]; 4512 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4513 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4514 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4515 continue; 4516 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4517 mark_stack_slot_read(env, vstate, vparent, i, frame); 4518 } 4519 } 4520 return err; 4521 } 4522 4523 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4524 { 4525 struct bpf_verifier_state_list *new_sl; 4526 struct bpf_verifier_state_list *sl; 4527 struct bpf_verifier_state *cur = env->cur_state; 4528 int i, j, err; 4529 4530 sl = env->explored_states[insn_idx]; 4531 if (!sl) 4532 /* this 'insn_idx' instruction wasn't marked, so we will not 4533 * be doing state search here 4534 */ 4535 return 0; 4536 4537 while (sl != STATE_LIST_MARK) { 4538 if (states_equal(env, &sl->state, cur)) { 4539 /* reached equivalent register/stack state, 4540 * prune the search. 4541 * Registers read by the continuation are read by us. 4542 * If we have any write marks in env->cur_state, they 4543 * will prevent corresponding reads in the continuation 4544 * from reaching our parent (an explored_state). Our 4545 * own state will get the read marks recorded, but 4546 * they'll be immediately forgotten as we're pruning 4547 * this state and will pop a new one. 4548 */ 4549 err = propagate_liveness(env, &sl->state, cur); 4550 if (err) 4551 return err; 4552 return 1; 4553 } 4554 sl = sl->next; 4555 } 4556 4557 /* there were no equivalent states, remember current one. 4558 * technically the current state is not proven to be safe yet, 4559 * but it will either reach outer most bpf_exit (which means it's safe) 4560 * or it will be rejected. Since there are no loops, we won't be 4561 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4562 * again on the way to bpf_exit 4563 */ 4564 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4565 if (!new_sl) 4566 return -ENOMEM; 4567 4568 /* add new state to the head of linked list */ 4569 err = copy_verifier_state(&new_sl->state, cur); 4570 if (err) { 4571 free_verifier_state(&new_sl->state, false); 4572 kfree(new_sl); 4573 return err; 4574 } 4575 new_sl->next = env->explored_states[insn_idx]; 4576 env->explored_states[insn_idx] = new_sl; 4577 /* connect new state to parentage chain */ 4578 cur->parent = &new_sl->state; 4579 /* clear write marks in current state: the writes we did are not writes 4580 * our child did, so they don't screen off its reads from us. 4581 * (There are no read marks in current state, because reads always mark 4582 * their parent and current state never has children yet. Only 4583 * explored_states can get read marks.) 4584 */ 4585 for (i = 0; i < BPF_REG_FP; i++) 4586 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4587 4588 /* all stack frames are accessible from callee, clear them all */ 4589 for (j = 0; j <= cur->curframe; j++) { 4590 struct bpf_func_state *frame = cur->frame[j]; 4591 4592 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4593 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4594 } 4595 return 0; 4596 } 4597 4598 static int do_check(struct bpf_verifier_env *env) 4599 { 4600 struct bpf_verifier_state *state; 4601 struct bpf_insn *insns = env->prog->insnsi; 4602 struct bpf_reg_state *regs; 4603 int insn_cnt = env->prog->len, i; 4604 int insn_idx, prev_insn_idx = 0; 4605 int insn_processed = 0; 4606 bool do_print_state = false; 4607 4608 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4609 if (!state) 4610 return -ENOMEM; 4611 state->curframe = 0; 4612 state->parent = NULL; 4613 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4614 if (!state->frame[0]) { 4615 kfree(state); 4616 return -ENOMEM; 4617 } 4618 env->cur_state = state; 4619 init_func_state(env, state->frame[0], 4620 BPF_MAIN_FUNC /* callsite */, 4621 0 /* frameno */, 4622 0 /* subprogno, zero == main subprog */); 4623 insn_idx = 0; 4624 for (;;) { 4625 struct bpf_insn *insn; 4626 u8 class; 4627 int err; 4628 4629 if (insn_idx >= insn_cnt) { 4630 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4631 insn_idx, insn_cnt); 4632 return -EFAULT; 4633 } 4634 4635 insn = &insns[insn_idx]; 4636 class = BPF_CLASS(insn->code); 4637 4638 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4639 verbose(env, 4640 "BPF program is too large. Processed %d insn\n", 4641 insn_processed); 4642 return -E2BIG; 4643 } 4644 4645 err = is_state_visited(env, insn_idx); 4646 if (err < 0) 4647 return err; 4648 if (err == 1) { 4649 /* found equivalent state, can prune the search */ 4650 if (env->log.level) { 4651 if (do_print_state) 4652 verbose(env, "\nfrom %d to %d: safe\n", 4653 prev_insn_idx, insn_idx); 4654 else 4655 verbose(env, "%d: safe\n", insn_idx); 4656 } 4657 goto process_bpf_exit; 4658 } 4659 4660 if (need_resched()) 4661 cond_resched(); 4662 4663 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4664 if (env->log.level > 1) 4665 verbose(env, "%d:", insn_idx); 4666 else 4667 verbose(env, "\nfrom %d to %d:", 4668 prev_insn_idx, insn_idx); 4669 print_verifier_state(env, state->frame[state->curframe]); 4670 do_print_state = false; 4671 } 4672 4673 if (env->log.level) { 4674 const struct bpf_insn_cbs cbs = { 4675 .cb_print = verbose, 4676 .private_data = env, 4677 }; 4678 4679 verbose(env, "%d: ", insn_idx); 4680 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4681 } 4682 4683 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4684 err = bpf_prog_offload_verify_insn(env, insn_idx, 4685 prev_insn_idx); 4686 if (err) 4687 return err; 4688 } 4689 4690 regs = cur_regs(env); 4691 env->insn_aux_data[insn_idx].seen = true; 4692 if (class == BPF_ALU || class == BPF_ALU64) { 4693 err = check_alu_op(env, insn); 4694 if (err) 4695 return err; 4696 4697 } else if (class == BPF_LDX) { 4698 enum bpf_reg_type *prev_src_type, src_reg_type; 4699 4700 /* check for reserved fields is already done */ 4701 4702 /* check src operand */ 4703 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4704 if (err) 4705 return err; 4706 4707 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4708 if (err) 4709 return err; 4710 4711 src_reg_type = regs[insn->src_reg].type; 4712 4713 /* check that memory (src_reg + off) is readable, 4714 * the state of dst_reg will be updated by this func 4715 */ 4716 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4717 BPF_SIZE(insn->code), BPF_READ, 4718 insn->dst_reg, false); 4719 if (err) 4720 return err; 4721 4722 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4723 4724 if (*prev_src_type == NOT_INIT) { 4725 /* saw a valid insn 4726 * dst_reg = *(u32 *)(src_reg + off) 4727 * save type to validate intersecting paths 4728 */ 4729 *prev_src_type = src_reg_type; 4730 4731 } else if (src_reg_type != *prev_src_type && 4732 (src_reg_type == PTR_TO_CTX || 4733 *prev_src_type == PTR_TO_CTX)) { 4734 /* ABuser program is trying to use the same insn 4735 * dst_reg = *(u32*) (src_reg + off) 4736 * with different pointer types: 4737 * src_reg == ctx in one branch and 4738 * src_reg == stack|map in some other branch. 4739 * Reject it. 4740 */ 4741 verbose(env, "same insn cannot be used with different pointers\n"); 4742 return -EINVAL; 4743 } 4744 4745 } else if (class == BPF_STX) { 4746 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4747 4748 if (BPF_MODE(insn->code) == BPF_XADD) { 4749 err = check_xadd(env, insn_idx, insn); 4750 if (err) 4751 return err; 4752 insn_idx++; 4753 continue; 4754 } 4755 4756 /* check src1 operand */ 4757 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4758 if (err) 4759 return err; 4760 /* check src2 operand */ 4761 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4762 if (err) 4763 return err; 4764 4765 dst_reg_type = regs[insn->dst_reg].type; 4766 4767 /* check that memory (dst_reg + off) is writeable */ 4768 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4769 BPF_SIZE(insn->code), BPF_WRITE, 4770 insn->src_reg, false); 4771 if (err) 4772 return err; 4773 4774 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4775 4776 if (*prev_dst_type == NOT_INIT) { 4777 *prev_dst_type = dst_reg_type; 4778 } else if (dst_reg_type != *prev_dst_type && 4779 (dst_reg_type == PTR_TO_CTX || 4780 *prev_dst_type == PTR_TO_CTX)) { 4781 verbose(env, "same insn cannot be used with different pointers\n"); 4782 return -EINVAL; 4783 } 4784 4785 } else if (class == BPF_ST) { 4786 if (BPF_MODE(insn->code) != BPF_MEM || 4787 insn->src_reg != BPF_REG_0) { 4788 verbose(env, "BPF_ST uses reserved fields\n"); 4789 return -EINVAL; 4790 } 4791 /* check src operand */ 4792 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4793 if (err) 4794 return err; 4795 4796 if (is_ctx_reg(env, insn->dst_reg)) { 4797 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4798 insn->dst_reg); 4799 return -EACCES; 4800 } 4801 4802 /* check that memory (dst_reg + off) is writeable */ 4803 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4804 BPF_SIZE(insn->code), BPF_WRITE, 4805 -1, false); 4806 if (err) 4807 return err; 4808 4809 } else if (class == BPF_JMP) { 4810 u8 opcode = BPF_OP(insn->code); 4811 4812 if (opcode == BPF_CALL) { 4813 if (BPF_SRC(insn->code) != BPF_K || 4814 insn->off != 0 || 4815 (insn->src_reg != BPF_REG_0 && 4816 insn->src_reg != BPF_PSEUDO_CALL) || 4817 insn->dst_reg != BPF_REG_0) { 4818 verbose(env, "BPF_CALL uses reserved fields\n"); 4819 return -EINVAL; 4820 } 4821 4822 if (insn->src_reg == BPF_PSEUDO_CALL) 4823 err = check_func_call(env, insn, &insn_idx); 4824 else 4825 err = check_helper_call(env, insn->imm, insn_idx); 4826 if (err) 4827 return err; 4828 4829 } else if (opcode == BPF_JA) { 4830 if (BPF_SRC(insn->code) != BPF_K || 4831 insn->imm != 0 || 4832 insn->src_reg != BPF_REG_0 || 4833 insn->dst_reg != BPF_REG_0) { 4834 verbose(env, "BPF_JA uses reserved fields\n"); 4835 return -EINVAL; 4836 } 4837 4838 insn_idx += insn->off + 1; 4839 continue; 4840 4841 } else if (opcode == BPF_EXIT) { 4842 if (BPF_SRC(insn->code) != BPF_K || 4843 insn->imm != 0 || 4844 insn->src_reg != BPF_REG_0 || 4845 insn->dst_reg != BPF_REG_0) { 4846 verbose(env, "BPF_EXIT uses reserved fields\n"); 4847 return -EINVAL; 4848 } 4849 4850 if (state->curframe) { 4851 /* exit from nested function */ 4852 prev_insn_idx = insn_idx; 4853 err = prepare_func_exit(env, &insn_idx); 4854 if (err) 4855 return err; 4856 do_print_state = true; 4857 continue; 4858 } 4859 4860 /* eBPF calling convetion is such that R0 is used 4861 * to return the value from eBPF program. 4862 * Make sure that it's readable at this time 4863 * of bpf_exit, which means that program wrote 4864 * something into it earlier 4865 */ 4866 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4867 if (err) 4868 return err; 4869 4870 if (is_pointer_value(env, BPF_REG_0)) { 4871 verbose(env, "R0 leaks addr as return value\n"); 4872 return -EACCES; 4873 } 4874 4875 err = check_return_code(env); 4876 if (err) 4877 return err; 4878 process_bpf_exit: 4879 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4880 if (err < 0) { 4881 if (err != -ENOENT) 4882 return err; 4883 break; 4884 } else { 4885 do_print_state = true; 4886 continue; 4887 } 4888 } else { 4889 err = check_cond_jmp_op(env, insn, &insn_idx); 4890 if (err) 4891 return err; 4892 } 4893 } else if (class == BPF_LD) { 4894 u8 mode = BPF_MODE(insn->code); 4895 4896 if (mode == BPF_ABS || mode == BPF_IND) { 4897 err = check_ld_abs(env, insn); 4898 if (err) 4899 return err; 4900 4901 } else if (mode == BPF_IMM) { 4902 err = check_ld_imm(env, insn); 4903 if (err) 4904 return err; 4905 4906 insn_idx++; 4907 env->insn_aux_data[insn_idx].seen = true; 4908 } else { 4909 verbose(env, "invalid BPF_LD mode\n"); 4910 return -EINVAL; 4911 } 4912 } else { 4913 verbose(env, "unknown insn class %d\n", class); 4914 return -EINVAL; 4915 } 4916 4917 insn_idx++; 4918 } 4919 4920 verbose(env, "processed %d insns (limit %d), stack depth ", 4921 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 4922 for (i = 0; i < env->subprog_cnt + 1; i++) { 4923 u32 depth = env->subprog_stack_depth[i]; 4924 4925 verbose(env, "%d", depth); 4926 if (i + 1 < env->subprog_cnt + 1) 4927 verbose(env, "+"); 4928 } 4929 verbose(env, "\n"); 4930 env->prog->aux->stack_depth = env->subprog_stack_depth[0]; 4931 return 0; 4932 } 4933 4934 static int check_map_prealloc(struct bpf_map *map) 4935 { 4936 return (map->map_type != BPF_MAP_TYPE_HASH && 4937 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4938 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4939 !(map->map_flags & BPF_F_NO_PREALLOC); 4940 } 4941 4942 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4943 struct bpf_map *map, 4944 struct bpf_prog *prog) 4945 4946 { 4947 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4948 * preallocated hash maps, since doing memory allocation 4949 * in overflow_handler can crash depending on where nmi got 4950 * triggered. 4951 */ 4952 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4953 if (!check_map_prealloc(map)) { 4954 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4955 return -EINVAL; 4956 } 4957 if (map->inner_map_meta && 4958 !check_map_prealloc(map->inner_map_meta)) { 4959 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4960 return -EINVAL; 4961 } 4962 } 4963 4964 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 4965 !bpf_offload_dev_match(prog, map)) { 4966 verbose(env, "offload device mismatch between prog and map\n"); 4967 return -EINVAL; 4968 } 4969 4970 return 0; 4971 } 4972 4973 /* look for pseudo eBPF instructions that access map FDs and 4974 * replace them with actual map pointers 4975 */ 4976 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4977 { 4978 struct bpf_insn *insn = env->prog->insnsi; 4979 int insn_cnt = env->prog->len; 4980 int i, j, err; 4981 4982 err = bpf_prog_calc_tag(env->prog); 4983 if (err) 4984 return err; 4985 4986 for (i = 0; i < insn_cnt; i++, insn++) { 4987 if (BPF_CLASS(insn->code) == BPF_LDX && 4988 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 4989 verbose(env, "BPF_LDX uses reserved fields\n"); 4990 return -EINVAL; 4991 } 4992 4993 if (BPF_CLASS(insn->code) == BPF_STX && 4994 ((BPF_MODE(insn->code) != BPF_MEM && 4995 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 4996 verbose(env, "BPF_STX uses reserved fields\n"); 4997 return -EINVAL; 4998 } 4999 5000 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5001 struct bpf_map *map; 5002 struct fd f; 5003 5004 if (i == insn_cnt - 1 || insn[1].code != 0 || 5005 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5006 insn[1].off != 0) { 5007 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5008 return -EINVAL; 5009 } 5010 5011 if (insn->src_reg == 0) 5012 /* valid generic load 64-bit imm */ 5013 goto next_insn; 5014 5015 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5016 verbose(env, 5017 "unrecognized bpf_ld_imm64 insn\n"); 5018 return -EINVAL; 5019 } 5020 5021 f = fdget(insn->imm); 5022 map = __bpf_map_get(f); 5023 if (IS_ERR(map)) { 5024 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5025 insn->imm); 5026 return PTR_ERR(map); 5027 } 5028 5029 err = check_map_prog_compatibility(env, map, env->prog); 5030 if (err) { 5031 fdput(f); 5032 return err; 5033 } 5034 5035 /* store map pointer inside BPF_LD_IMM64 instruction */ 5036 insn[0].imm = (u32) (unsigned long) map; 5037 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5038 5039 /* check whether we recorded this map already */ 5040 for (j = 0; j < env->used_map_cnt; j++) 5041 if (env->used_maps[j] == map) { 5042 fdput(f); 5043 goto next_insn; 5044 } 5045 5046 if (env->used_map_cnt >= MAX_USED_MAPS) { 5047 fdput(f); 5048 return -E2BIG; 5049 } 5050 5051 /* hold the map. If the program is rejected by verifier, 5052 * the map will be released by release_maps() or it 5053 * will be used by the valid program until it's unloaded 5054 * and all maps are released in free_bpf_prog_info() 5055 */ 5056 map = bpf_map_inc(map, false); 5057 if (IS_ERR(map)) { 5058 fdput(f); 5059 return PTR_ERR(map); 5060 } 5061 env->used_maps[env->used_map_cnt++] = map; 5062 5063 fdput(f); 5064 next_insn: 5065 insn++; 5066 i++; 5067 continue; 5068 } 5069 5070 /* Basic sanity check before we invest more work here. */ 5071 if (!bpf_opcode_in_insntable(insn->code)) { 5072 verbose(env, "unknown opcode %02x\n", insn->code); 5073 return -EINVAL; 5074 } 5075 } 5076 5077 /* now all pseudo BPF_LD_IMM64 instructions load valid 5078 * 'struct bpf_map *' into a register instead of user map_fd. 5079 * These pointers will be used later by verifier to validate map access. 5080 */ 5081 return 0; 5082 } 5083 5084 /* drop refcnt of maps used by the rejected program */ 5085 static void release_maps(struct bpf_verifier_env *env) 5086 { 5087 int i; 5088 5089 for (i = 0; i < env->used_map_cnt; i++) 5090 bpf_map_put(env->used_maps[i]); 5091 } 5092 5093 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5094 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5095 { 5096 struct bpf_insn *insn = env->prog->insnsi; 5097 int insn_cnt = env->prog->len; 5098 int i; 5099 5100 for (i = 0; i < insn_cnt; i++, insn++) 5101 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5102 insn->src_reg = 0; 5103 } 5104 5105 /* single env->prog->insni[off] instruction was replaced with the range 5106 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5107 * [0, off) and [off, end) to new locations, so the patched range stays zero 5108 */ 5109 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5110 u32 off, u32 cnt) 5111 { 5112 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5113 int i; 5114 5115 if (cnt == 1) 5116 return 0; 5117 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 5118 if (!new_data) 5119 return -ENOMEM; 5120 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5121 memcpy(new_data + off + cnt - 1, old_data + off, 5122 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5123 for (i = off; i < off + cnt - 1; i++) 5124 new_data[i].seen = true; 5125 env->insn_aux_data = new_data; 5126 vfree(old_data); 5127 return 0; 5128 } 5129 5130 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5131 { 5132 int i; 5133 5134 if (len == 1) 5135 return; 5136 for (i = 0; i < env->subprog_cnt; i++) { 5137 if (env->subprog_starts[i] < off) 5138 continue; 5139 env->subprog_starts[i] += len - 1; 5140 } 5141 } 5142 5143 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5144 const struct bpf_insn *patch, u32 len) 5145 { 5146 struct bpf_prog *new_prog; 5147 5148 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5149 if (!new_prog) 5150 return NULL; 5151 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5152 return NULL; 5153 adjust_subprog_starts(env, off, len); 5154 return new_prog; 5155 } 5156 5157 /* The verifier does more data flow analysis than llvm and will not 5158 * explore branches that are dead at run time. Malicious programs can 5159 * have dead code too. Therefore replace all dead at-run-time code 5160 * with 'ja -1'. 5161 * 5162 * Just nops are not optimal, e.g. if they would sit at the end of the 5163 * program and through another bug we would manage to jump there, then 5164 * we'd execute beyond program memory otherwise. Returning exception 5165 * code also wouldn't work since we can have subprogs where the dead 5166 * code could be located. 5167 */ 5168 static void sanitize_dead_code(struct bpf_verifier_env *env) 5169 { 5170 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5171 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5172 struct bpf_insn *insn = env->prog->insnsi; 5173 const int insn_cnt = env->prog->len; 5174 int i; 5175 5176 for (i = 0; i < insn_cnt; i++) { 5177 if (aux_data[i].seen) 5178 continue; 5179 memcpy(insn + i, &trap, sizeof(trap)); 5180 } 5181 } 5182 5183 /* convert load instructions that access fields of 'struct __sk_buff' 5184 * into sequence of instructions that access fields of 'struct sk_buff' 5185 */ 5186 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5187 { 5188 const struct bpf_verifier_ops *ops = env->ops; 5189 int i, cnt, size, ctx_field_size, delta = 0; 5190 const int insn_cnt = env->prog->len; 5191 struct bpf_insn insn_buf[16], *insn; 5192 struct bpf_prog *new_prog; 5193 enum bpf_access_type type; 5194 bool is_narrower_load; 5195 u32 target_size; 5196 5197 if (ops->gen_prologue) { 5198 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5199 env->prog); 5200 if (cnt >= ARRAY_SIZE(insn_buf)) { 5201 verbose(env, "bpf verifier is misconfigured\n"); 5202 return -EINVAL; 5203 } else if (cnt) { 5204 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5205 if (!new_prog) 5206 return -ENOMEM; 5207 5208 env->prog = new_prog; 5209 delta += cnt - 1; 5210 } 5211 } 5212 5213 if (!ops->convert_ctx_access) 5214 return 0; 5215 5216 insn = env->prog->insnsi + delta; 5217 5218 for (i = 0; i < insn_cnt; i++, insn++) { 5219 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5220 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5221 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5222 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5223 type = BPF_READ; 5224 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5225 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5226 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5227 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5228 type = BPF_WRITE; 5229 else 5230 continue; 5231 5232 if (type == BPF_WRITE && 5233 env->insn_aux_data[i + delta].sanitize_stack_off) { 5234 struct bpf_insn patch[] = { 5235 /* Sanitize suspicious stack slot with zero. 5236 * There are no memory dependencies for this store, 5237 * since it's only using frame pointer and immediate 5238 * constant of zero 5239 */ 5240 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5241 env->insn_aux_data[i + delta].sanitize_stack_off, 5242 0), 5243 /* the original STX instruction will immediately 5244 * overwrite the same stack slot with appropriate value 5245 */ 5246 *insn, 5247 }; 5248 5249 cnt = ARRAY_SIZE(patch); 5250 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5251 if (!new_prog) 5252 return -ENOMEM; 5253 5254 delta += cnt - 1; 5255 env->prog = new_prog; 5256 insn = new_prog->insnsi + i + delta; 5257 continue; 5258 } 5259 5260 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5261 continue; 5262 5263 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5264 size = BPF_LDST_BYTES(insn); 5265 5266 /* If the read access is a narrower load of the field, 5267 * convert to a 4/8-byte load, to minimum program type specific 5268 * convert_ctx_access changes. If conversion is successful, 5269 * we will apply proper mask to the result. 5270 */ 5271 is_narrower_load = size < ctx_field_size; 5272 if (is_narrower_load) { 5273 u32 off = insn->off; 5274 u8 size_code; 5275 5276 if (type == BPF_WRITE) { 5277 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5278 return -EINVAL; 5279 } 5280 5281 size_code = BPF_H; 5282 if (ctx_field_size == 4) 5283 size_code = BPF_W; 5284 else if (ctx_field_size == 8) 5285 size_code = BPF_DW; 5286 5287 insn->off = off & ~(ctx_field_size - 1); 5288 insn->code = BPF_LDX | BPF_MEM | size_code; 5289 } 5290 5291 target_size = 0; 5292 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5293 &target_size); 5294 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5295 (ctx_field_size && !target_size)) { 5296 verbose(env, "bpf verifier is misconfigured\n"); 5297 return -EINVAL; 5298 } 5299 5300 if (is_narrower_load && size < target_size) { 5301 if (ctx_field_size <= 4) 5302 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5303 (1 << size * 8) - 1); 5304 else 5305 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5306 (1 << size * 8) - 1); 5307 } 5308 5309 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5310 if (!new_prog) 5311 return -ENOMEM; 5312 5313 delta += cnt - 1; 5314 5315 /* keep walking new program and skip insns we just inserted */ 5316 env->prog = new_prog; 5317 insn = new_prog->insnsi + i + delta; 5318 } 5319 5320 return 0; 5321 } 5322 5323 static int jit_subprogs(struct bpf_verifier_env *env) 5324 { 5325 struct bpf_prog *prog = env->prog, **func, *tmp; 5326 int i, j, subprog_start, subprog_end = 0, len, subprog; 5327 struct bpf_insn *insn; 5328 void *old_bpf_func; 5329 int err = -ENOMEM; 5330 5331 if (env->subprog_cnt == 0) 5332 return 0; 5333 5334 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5335 if (insn->code != (BPF_JMP | BPF_CALL) || 5336 insn->src_reg != BPF_PSEUDO_CALL) 5337 continue; 5338 subprog = find_subprog(env, i + insn->imm + 1); 5339 if (subprog < 0) { 5340 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5341 i + insn->imm + 1); 5342 return -EFAULT; 5343 } 5344 /* temporarily remember subprog id inside insn instead of 5345 * aux_data, since next loop will split up all insns into funcs 5346 */ 5347 insn->off = subprog + 1; 5348 /* remember original imm in case JIT fails and fallback 5349 * to interpreter will be needed 5350 */ 5351 env->insn_aux_data[i].call_imm = insn->imm; 5352 /* point imm to __bpf_call_base+1 from JITs point of view */ 5353 insn->imm = 1; 5354 } 5355 5356 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL); 5357 if (!func) 5358 return -ENOMEM; 5359 5360 for (i = 0; i <= env->subprog_cnt; i++) { 5361 subprog_start = subprog_end; 5362 if (env->subprog_cnt == i) 5363 subprog_end = prog->len; 5364 else 5365 subprog_end = env->subprog_starts[i]; 5366 5367 len = subprog_end - subprog_start; 5368 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5369 if (!func[i]) 5370 goto out_free; 5371 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5372 len * sizeof(struct bpf_insn)); 5373 func[i]->type = prog->type; 5374 func[i]->len = len; 5375 if (bpf_prog_calc_tag(func[i])) 5376 goto out_free; 5377 func[i]->is_func = 1; 5378 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5379 * Long term would need debug info to populate names 5380 */ 5381 func[i]->aux->name[0] = 'F'; 5382 func[i]->aux->stack_depth = env->subprog_stack_depth[i]; 5383 func[i]->jit_requested = 1; 5384 func[i] = bpf_int_jit_compile(func[i]); 5385 if (!func[i]->jited) { 5386 err = -ENOTSUPP; 5387 goto out_free; 5388 } 5389 cond_resched(); 5390 } 5391 /* at this point all bpf functions were successfully JITed 5392 * now populate all bpf_calls with correct addresses and 5393 * run last pass of JIT 5394 */ 5395 for (i = 0; i <= env->subprog_cnt; i++) { 5396 insn = func[i]->insnsi; 5397 for (j = 0; j < func[i]->len; j++, insn++) { 5398 if (insn->code != (BPF_JMP | BPF_CALL) || 5399 insn->src_reg != BPF_PSEUDO_CALL) 5400 continue; 5401 subprog = insn->off; 5402 insn->off = 0; 5403 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5404 func[subprog]->bpf_func - 5405 __bpf_call_base; 5406 } 5407 } 5408 for (i = 0; i <= env->subprog_cnt; i++) { 5409 old_bpf_func = func[i]->bpf_func; 5410 tmp = bpf_int_jit_compile(func[i]); 5411 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5412 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5413 err = -EFAULT; 5414 goto out_free; 5415 } 5416 cond_resched(); 5417 } 5418 5419 /* finally lock prog and jit images for all functions and 5420 * populate kallsysm 5421 */ 5422 for (i = 0; i <= env->subprog_cnt; i++) { 5423 bpf_prog_lock_ro(func[i]); 5424 bpf_prog_kallsyms_add(func[i]); 5425 } 5426 5427 /* Last step: make now unused interpreter insns from main 5428 * prog consistent for later dump requests, so they can 5429 * later look the same as if they were interpreted only. 5430 */ 5431 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5432 unsigned long addr; 5433 5434 if (insn->code != (BPF_JMP | BPF_CALL) || 5435 insn->src_reg != BPF_PSEUDO_CALL) 5436 continue; 5437 insn->off = env->insn_aux_data[i].call_imm; 5438 subprog = find_subprog(env, i + insn->off + 1); 5439 addr = (unsigned long)func[subprog + 1]->bpf_func; 5440 addr &= PAGE_MASK; 5441 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5442 addr - __bpf_call_base; 5443 } 5444 5445 prog->jited = 1; 5446 prog->bpf_func = func[0]->bpf_func; 5447 prog->aux->func = func; 5448 prog->aux->func_cnt = env->subprog_cnt + 1; 5449 return 0; 5450 out_free: 5451 for (i = 0; i <= env->subprog_cnt; i++) 5452 if (func[i]) 5453 bpf_jit_free(func[i]); 5454 kfree(func); 5455 /* cleanup main prog to be interpreted */ 5456 prog->jit_requested = 0; 5457 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5458 if (insn->code != (BPF_JMP | BPF_CALL) || 5459 insn->src_reg != BPF_PSEUDO_CALL) 5460 continue; 5461 insn->off = 0; 5462 insn->imm = env->insn_aux_data[i].call_imm; 5463 } 5464 return err; 5465 } 5466 5467 static int fixup_call_args(struct bpf_verifier_env *env) 5468 { 5469 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5470 struct bpf_prog *prog = env->prog; 5471 struct bpf_insn *insn = prog->insnsi; 5472 int i, depth; 5473 #endif 5474 int err; 5475 5476 err = 0; 5477 if (env->prog->jit_requested) { 5478 err = jit_subprogs(env); 5479 if (err == 0) 5480 return 0; 5481 } 5482 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5483 for (i = 0; i < prog->len; i++, insn++) { 5484 if (insn->code != (BPF_JMP | BPF_CALL) || 5485 insn->src_reg != BPF_PSEUDO_CALL) 5486 continue; 5487 depth = get_callee_stack_depth(env, insn, i); 5488 if (depth < 0) 5489 return depth; 5490 bpf_patch_call_args(insn, depth); 5491 } 5492 err = 0; 5493 #endif 5494 return err; 5495 } 5496 5497 /* fixup insn->imm field of bpf_call instructions 5498 * and inline eligible helpers as explicit sequence of BPF instructions 5499 * 5500 * this function is called after eBPF program passed verification 5501 */ 5502 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5503 { 5504 struct bpf_prog *prog = env->prog; 5505 struct bpf_insn *insn = prog->insnsi; 5506 const struct bpf_func_proto *fn; 5507 const int insn_cnt = prog->len; 5508 struct bpf_insn_aux_data *aux; 5509 struct bpf_insn insn_buf[16]; 5510 struct bpf_prog *new_prog; 5511 struct bpf_map *map_ptr; 5512 int i, cnt, delta = 0; 5513 5514 for (i = 0; i < insn_cnt; i++, insn++) { 5515 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5516 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5517 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5518 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5519 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5520 struct bpf_insn mask_and_div[] = { 5521 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5522 /* Rx div 0 -> 0 */ 5523 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5524 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5525 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5526 *insn, 5527 }; 5528 struct bpf_insn mask_and_mod[] = { 5529 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5530 /* Rx mod 0 -> Rx */ 5531 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5532 *insn, 5533 }; 5534 struct bpf_insn *patchlet; 5535 5536 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5537 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5538 patchlet = mask_and_div + (is64 ? 1 : 0); 5539 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5540 } else { 5541 patchlet = mask_and_mod + (is64 ? 1 : 0); 5542 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5543 } 5544 5545 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5546 if (!new_prog) 5547 return -ENOMEM; 5548 5549 delta += cnt - 1; 5550 env->prog = prog = new_prog; 5551 insn = new_prog->insnsi + i + delta; 5552 continue; 5553 } 5554 5555 if (insn->code != (BPF_JMP | BPF_CALL)) 5556 continue; 5557 if (insn->src_reg == BPF_PSEUDO_CALL) 5558 continue; 5559 5560 if (insn->imm == BPF_FUNC_get_route_realm) 5561 prog->dst_needed = 1; 5562 if (insn->imm == BPF_FUNC_get_prandom_u32) 5563 bpf_user_rnd_init_once(); 5564 if (insn->imm == BPF_FUNC_override_return) 5565 prog->kprobe_override = 1; 5566 if (insn->imm == BPF_FUNC_tail_call) { 5567 /* If we tail call into other programs, we 5568 * cannot make any assumptions since they can 5569 * be replaced dynamically during runtime in 5570 * the program array. 5571 */ 5572 prog->cb_access = 1; 5573 env->prog->aux->stack_depth = MAX_BPF_STACK; 5574 5575 /* mark bpf_tail_call as different opcode to avoid 5576 * conditional branch in the interpeter for every normal 5577 * call and to prevent accidental JITing by JIT compiler 5578 * that doesn't support bpf_tail_call yet 5579 */ 5580 insn->imm = 0; 5581 insn->code = BPF_JMP | BPF_TAIL_CALL; 5582 5583 aux = &env->insn_aux_data[i + delta]; 5584 if (!bpf_map_ptr_unpriv(aux)) 5585 continue; 5586 5587 /* instead of changing every JIT dealing with tail_call 5588 * emit two extra insns: 5589 * if (index >= max_entries) goto out; 5590 * index &= array->index_mask; 5591 * to avoid out-of-bounds cpu speculation 5592 */ 5593 if (bpf_map_ptr_poisoned(aux)) { 5594 verbose(env, "tail_call abusing map_ptr\n"); 5595 return -EINVAL; 5596 } 5597 5598 map_ptr = BPF_MAP_PTR(aux->map_state); 5599 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5600 map_ptr->max_entries, 2); 5601 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5602 container_of(map_ptr, 5603 struct bpf_array, 5604 map)->index_mask); 5605 insn_buf[2] = *insn; 5606 cnt = 3; 5607 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5608 if (!new_prog) 5609 return -ENOMEM; 5610 5611 delta += cnt - 1; 5612 env->prog = prog = new_prog; 5613 insn = new_prog->insnsi + i + delta; 5614 continue; 5615 } 5616 5617 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5618 * handlers are currently limited to 64 bit only. 5619 */ 5620 if (prog->jit_requested && BITS_PER_LONG == 64 && 5621 insn->imm == BPF_FUNC_map_lookup_elem) { 5622 aux = &env->insn_aux_data[i + delta]; 5623 if (bpf_map_ptr_poisoned(aux)) 5624 goto patch_call_imm; 5625 5626 map_ptr = BPF_MAP_PTR(aux->map_state); 5627 if (!map_ptr->ops->map_gen_lookup) 5628 goto patch_call_imm; 5629 5630 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 5631 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5632 verbose(env, "bpf verifier is misconfigured\n"); 5633 return -EINVAL; 5634 } 5635 5636 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 5637 cnt); 5638 if (!new_prog) 5639 return -ENOMEM; 5640 5641 delta += cnt - 1; 5642 5643 /* keep walking new program and skip insns we just inserted */ 5644 env->prog = prog = new_prog; 5645 insn = new_prog->insnsi + i + delta; 5646 continue; 5647 } 5648 5649 if (insn->imm == BPF_FUNC_redirect_map) { 5650 /* Note, we cannot use prog directly as imm as subsequent 5651 * rewrites would still change the prog pointer. The only 5652 * stable address we can use is aux, which also works with 5653 * prog clones during blinding. 5654 */ 5655 u64 addr = (unsigned long)prog->aux; 5656 struct bpf_insn r4_ld[] = { 5657 BPF_LD_IMM64(BPF_REG_4, addr), 5658 *insn, 5659 }; 5660 cnt = ARRAY_SIZE(r4_ld); 5661 5662 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 5663 if (!new_prog) 5664 return -ENOMEM; 5665 5666 delta += cnt - 1; 5667 env->prog = prog = new_prog; 5668 insn = new_prog->insnsi + i + delta; 5669 } 5670 patch_call_imm: 5671 fn = env->ops->get_func_proto(insn->imm, env->prog); 5672 /* all functions that have prototype and verifier allowed 5673 * programs to call them, must be real in-kernel functions 5674 */ 5675 if (!fn->func) { 5676 verbose(env, 5677 "kernel subsystem misconfigured func %s#%d\n", 5678 func_id_name(insn->imm), insn->imm); 5679 return -EFAULT; 5680 } 5681 insn->imm = fn->func - __bpf_call_base; 5682 } 5683 5684 return 0; 5685 } 5686 5687 static void free_states(struct bpf_verifier_env *env) 5688 { 5689 struct bpf_verifier_state_list *sl, *sln; 5690 int i; 5691 5692 if (!env->explored_states) 5693 return; 5694 5695 for (i = 0; i < env->prog->len; i++) { 5696 sl = env->explored_states[i]; 5697 5698 if (sl) 5699 while (sl != STATE_LIST_MARK) { 5700 sln = sl->next; 5701 free_verifier_state(&sl->state, false); 5702 kfree(sl); 5703 sl = sln; 5704 } 5705 } 5706 5707 kfree(env->explored_states); 5708 } 5709 5710 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5711 { 5712 struct bpf_verifier_env *env; 5713 struct bpf_verifier_log *log; 5714 int ret = -EINVAL; 5715 5716 /* no program is valid */ 5717 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5718 return -EINVAL; 5719 5720 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5721 * allocate/free it every time bpf_check() is called 5722 */ 5723 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5724 if (!env) 5725 return -ENOMEM; 5726 log = &env->log; 5727 5728 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 5729 (*prog)->len); 5730 ret = -ENOMEM; 5731 if (!env->insn_aux_data) 5732 goto err_free_env; 5733 env->prog = *prog; 5734 env->ops = bpf_verifier_ops[env->prog->type]; 5735 5736 /* grab the mutex to protect few globals used by verifier */ 5737 mutex_lock(&bpf_verifier_lock); 5738 5739 if (attr->log_level || attr->log_buf || attr->log_size) { 5740 /* user requested verbose verifier output 5741 * and supplied buffer to store the verification trace 5742 */ 5743 log->level = attr->log_level; 5744 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5745 log->len_total = attr->log_size; 5746 5747 ret = -EINVAL; 5748 /* log attributes have to be sane */ 5749 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5750 !log->level || !log->ubuf) 5751 goto err_unlock; 5752 } 5753 5754 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5755 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5756 env->strict_alignment = true; 5757 5758 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5759 ret = bpf_prog_offload_verifier_prep(env); 5760 if (ret) 5761 goto err_unlock; 5762 } 5763 5764 ret = replace_map_fd_with_map_ptr(env); 5765 if (ret < 0) 5766 goto skip_full_check; 5767 5768 env->explored_states = kcalloc(env->prog->len, 5769 sizeof(struct bpf_verifier_state_list *), 5770 GFP_USER); 5771 ret = -ENOMEM; 5772 if (!env->explored_states) 5773 goto skip_full_check; 5774 5775 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5776 5777 ret = check_cfg(env); 5778 if (ret < 0) 5779 goto skip_full_check; 5780 5781 ret = do_check(env); 5782 if (env->cur_state) { 5783 free_verifier_state(env->cur_state, true); 5784 env->cur_state = NULL; 5785 } 5786 5787 skip_full_check: 5788 while (!pop_stack(env, NULL, NULL)); 5789 free_states(env); 5790 5791 if (ret == 0) 5792 sanitize_dead_code(env); 5793 5794 if (ret == 0) 5795 ret = check_max_stack_depth(env); 5796 5797 if (ret == 0) 5798 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5799 ret = convert_ctx_accesses(env); 5800 5801 if (ret == 0) 5802 ret = fixup_bpf_calls(env); 5803 5804 if (ret == 0) 5805 ret = fixup_call_args(env); 5806 5807 if (log->level && bpf_verifier_log_full(log)) 5808 ret = -ENOSPC; 5809 if (log->level && !log->ubuf) { 5810 ret = -EFAULT; 5811 goto err_release_maps; 5812 } 5813 5814 if (ret == 0 && env->used_map_cnt) { 5815 /* if program passed verifier, update used_maps in bpf_prog_info */ 5816 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5817 sizeof(env->used_maps[0]), 5818 GFP_KERNEL); 5819 5820 if (!env->prog->aux->used_maps) { 5821 ret = -ENOMEM; 5822 goto err_release_maps; 5823 } 5824 5825 memcpy(env->prog->aux->used_maps, env->used_maps, 5826 sizeof(env->used_maps[0]) * env->used_map_cnt); 5827 env->prog->aux->used_map_cnt = env->used_map_cnt; 5828 5829 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5830 * bpf_ld_imm64 instructions 5831 */ 5832 convert_pseudo_ld_imm64(env); 5833 } 5834 5835 err_release_maps: 5836 if (!env->prog->aux->used_maps) 5837 /* if we didn't copy map pointers into bpf_prog_info, release 5838 * them now. Otherwise free_bpf_prog_info() will release them. 5839 */ 5840 release_maps(env); 5841 *prog = env->prog; 5842 err_unlock: 5843 mutex_unlock(&bpf_verifier_lock); 5844 vfree(env->insn_aux_data); 5845 err_free_env: 5846 kfree(env); 5847 return ret; 5848 } 5849