1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifer state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_MAP_PTR_UNPRIV 1UL 194 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 195 POISON_POINTER_DELTA)) 196 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 197 198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 202 static int ref_set_non_owning(struct bpf_verifier_env *env, 203 struct bpf_reg_state *reg); 204 static void specialize_kfunc(struct bpf_verifier_env *env, 205 u32 func_id, u16 offset, unsigned long *addr); 206 static bool is_trusted_reg(const struct bpf_reg_state *reg); 207 208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 211 } 212 213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 216 } 217 218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 219 const struct bpf_map *map, bool unpriv) 220 { 221 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 222 unpriv |= bpf_map_ptr_unpriv(aux); 223 aux->map_ptr_state = (unsigned long)map | 224 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 225 } 226 227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & BPF_MAP_KEY_POISON; 230 } 231 232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 233 { 234 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 235 } 236 237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 238 { 239 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 240 } 241 242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 243 { 244 bool poisoned = bpf_map_key_poisoned(aux); 245 246 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 247 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 248 } 249 250 static bool bpf_helper_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == 0; 254 } 255 256 static bool bpf_pseudo_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_CALL; 260 } 261 262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 263 { 264 return insn->code == (BPF_JMP | BPF_CALL) && 265 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 266 } 267 268 struct bpf_call_arg_meta { 269 struct bpf_map *map_ptr; 270 bool raw_mode; 271 bool pkt_access; 272 u8 release_regno; 273 int regno; 274 int access_size; 275 int mem_size; 276 u64 msize_max_value; 277 int ref_obj_id; 278 int dynptr_id; 279 int map_uid; 280 int func_id; 281 struct btf *btf; 282 u32 btf_id; 283 struct btf *ret_btf; 284 u32 ret_btf_id; 285 u32 subprogno; 286 struct btf_field *kptr_field; 287 }; 288 289 struct bpf_kfunc_call_arg_meta { 290 /* In parameters */ 291 struct btf *btf; 292 u32 func_id; 293 u32 kfunc_flags; 294 const struct btf_type *func_proto; 295 const char *func_name; 296 /* Out parameters */ 297 u32 ref_obj_id; 298 u8 release_regno; 299 bool r0_rdonly; 300 u32 ret_btf_id; 301 u64 r0_size; 302 u32 subprogno; 303 struct { 304 u64 value; 305 bool found; 306 } arg_constant; 307 308 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 309 * generally to pass info about user-defined local kptr types to later 310 * verification logic 311 * bpf_obj_drop/bpf_percpu_obj_drop 312 * Record the local kptr type to be drop'd 313 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 314 * Record the local kptr type to be refcount_incr'd and use 315 * arg_owning_ref to determine whether refcount_acquire should be 316 * fallible 317 */ 318 struct btf *arg_btf; 319 u32 arg_btf_id; 320 bool arg_owning_ref; 321 322 struct { 323 struct btf_field *field; 324 } arg_list_head; 325 struct { 326 struct btf_field *field; 327 } arg_rbtree_root; 328 struct { 329 enum bpf_dynptr_type type; 330 u32 id; 331 u32 ref_obj_id; 332 } initialized_dynptr; 333 struct { 334 u8 spi; 335 u8 frameno; 336 } iter; 337 u64 mem_size; 338 }; 339 340 struct btf *btf_vmlinux; 341 342 static DEFINE_MUTEX(bpf_verifier_lock); 343 static DEFINE_MUTEX(bpf_percpu_ma_lock); 344 345 static const struct bpf_line_info * 346 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 347 { 348 const struct bpf_line_info *linfo; 349 const struct bpf_prog *prog; 350 u32 i, nr_linfo; 351 352 prog = env->prog; 353 nr_linfo = prog->aux->nr_linfo; 354 355 if (!nr_linfo || insn_off >= prog->len) 356 return NULL; 357 358 linfo = prog->aux->linfo; 359 for (i = 1; i < nr_linfo; i++) 360 if (insn_off < linfo[i].insn_off) 361 break; 362 363 return &linfo[i - 1]; 364 } 365 366 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 367 { 368 struct bpf_verifier_env *env = private_data; 369 va_list args; 370 371 if (!bpf_verifier_log_needed(&env->log)) 372 return; 373 374 va_start(args, fmt); 375 bpf_verifier_vlog(&env->log, fmt, args); 376 va_end(args); 377 } 378 379 static const char *ltrim(const char *s) 380 { 381 while (isspace(*s)) 382 s++; 383 384 return s; 385 } 386 387 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 388 u32 insn_off, 389 const char *prefix_fmt, ...) 390 { 391 const struct bpf_line_info *linfo; 392 393 if (!bpf_verifier_log_needed(&env->log)) 394 return; 395 396 linfo = find_linfo(env, insn_off); 397 if (!linfo || linfo == env->prev_linfo) 398 return; 399 400 if (prefix_fmt) { 401 va_list args; 402 403 va_start(args, prefix_fmt); 404 bpf_verifier_vlog(&env->log, prefix_fmt, args); 405 va_end(args); 406 } 407 408 verbose(env, "%s\n", 409 ltrim(btf_name_by_offset(env->prog->aux->btf, 410 linfo->line_off))); 411 412 env->prev_linfo = linfo; 413 } 414 415 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 416 struct bpf_reg_state *reg, 417 struct tnum *range, const char *ctx, 418 const char *reg_name) 419 { 420 char tn_buf[48]; 421 422 verbose(env, "At %s the register %s ", ctx, reg_name); 423 if (!tnum_is_unknown(reg->var_off)) { 424 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 425 verbose(env, "has value %s", tn_buf); 426 } else { 427 verbose(env, "has unknown scalar value"); 428 } 429 tnum_strn(tn_buf, sizeof(tn_buf), *range); 430 verbose(env, " should have been in %s\n", tn_buf); 431 } 432 433 static bool type_is_pkt_pointer(enum bpf_reg_type type) 434 { 435 type = base_type(type); 436 return type == PTR_TO_PACKET || 437 type == PTR_TO_PACKET_META; 438 } 439 440 static bool type_is_sk_pointer(enum bpf_reg_type type) 441 { 442 return type == PTR_TO_SOCKET || 443 type == PTR_TO_SOCK_COMMON || 444 type == PTR_TO_TCP_SOCK || 445 type == PTR_TO_XDP_SOCK; 446 } 447 448 static bool type_may_be_null(u32 type) 449 { 450 return type & PTR_MAYBE_NULL; 451 } 452 453 static bool reg_not_null(const struct bpf_reg_state *reg) 454 { 455 enum bpf_reg_type type; 456 457 type = reg->type; 458 if (type_may_be_null(type)) 459 return false; 460 461 type = base_type(type); 462 return type == PTR_TO_SOCKET || 463 type == PTR_TO_TCP_SOCK || 464 type == PTR_TO_MAP_VALUE || 465 type == PTR_TO_MAP_KEY || 466 type == PTR_TO_SOCK_COMMON || 467 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 468 type == PTR_TO_MEM; 469 } 470 471 static bool type_is_ptr_alloc_obj(u32 type) 472 { 473 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 474 } 475 476 static bool type_is_non_owning_ref(u32 type) 477 { 478 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 479 } 480 481 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 482 { 483 struct btf_record *rec = NULL; 484 struct btf_struct_meta *meta; 485 486 if (reg->type == PTR_TO_MAP_VALUE) { 487 rec = reg->map_ptr->record; 488 } else if (type_is_ptr_alloc_obj(reg->type)) { 489 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 490 if (meta) 491 rec = meta->record; 492 } 493 return rec; 494 } 495 496 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 497 { 498 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 499 500 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 501 } 502 503 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 504 { 505 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 506 } 507 508 static bool type_is_rdonly_mem(u32 type) 509 { 510 return type & MEM_RDONLY; 511 } 512 513 static bool is_acquire_function(enum bpf_func_id func_id, 514 const struct bpf_map *map) 515 { 516 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 517 518 if (func_id == BPF_FUNC_sk_lookup_tcp || 519 func_id == BPF_FUNC_sk_lookup_udp || 520 func_id == BPF_FUNC_skc_lookup_tcp || 521 func_id == BPF_FUNC_ringbuf_reserve || 522 func_id == BPF_FUNC_kptr_xchg) 523 return true; 524 525 if (func_id == BPF_FUNC_map_lookup_elem && 526 (map_type == BPF_MAP_TYPE_SOCKMAP || 527 map_type == BPF_MAP_TYPE_SOCKHASH)) 528 return true; 529 530 return false; 531 } 532 533 static bool is_ptr_cast_function(enum bpf_func_id func_id) 534 { 535 return func_id == BPF_FUNC_tcp_sock || 536 func_id == BPF_FUNC_sk_fullsock || 537 func_id == BPF_FUNC_skc_to_tcp_sock || 538 func_id == BPF_FUNC_skc_to_tcp6_sock || 539 func_id == BPF_FUNC_skc_to_udp6_sock || 540 func_id == BPF_FUNC_skc_to_mptcp_sock || 541 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 542 func_id == BPF_FUNC_skc_to_tcp_request_sock; 543 } 544 545 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 546 { 547 return func_id == BPF_FUNC_dynptr_data; 548 } 549 550 static bool is_sync_callback_calling_kfunc(u32 btf_id); 551 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 552 553 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 554 { 555 return func_id == BPF_FUNC_for_each_map_elem || 556 func_id == BPF_FUNC_find_vma || 557 func_id == BPF_FUNC_loop || 558 func_id == BPF_FUNC_user_ringbuf_drain; 559 } 560 561 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_timer_set_callback; 564 } 565 566 static bool is_callback_calling_function(enum bpf_func_id func_id) 567 { 568 return is_sync_callback_calling_function(func_id) || 569 is_async_callback_calling_function(func_id); 570 } 571 572 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 573 { 574 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 575 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 576 } 577 578 static bool is_storage_get_function(enum bpf_func_id func_id) 579 { 580 return func_id == BPF_FUNC_sk_storage_get || 581 func_id == BPF_FUNC_inode_storage_get || 582 func_id == BPF_FUNC_task_storage_get || 583 func_id == BPF_FUNC_cgrp_storage_get; 584 } 585 586 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 587 const struct bpf_map *map) 588 { 589 int ref_obj_uses = 0; 590 591 if (is_ptr_cast_function(func_id)) 592 ref_obj_uses++; 593 if (is_acquire_function(func_id, map)) 594 ref_obj_uses++; 595 if (is_dynptr_ref_function(func_id)) 596 ref_obj_uses++; 597 598 return ref_obj_uses > 1; 599 } 600 601 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 602 { 603 return BPF_CLASS(insn->code) == BPF_STX && 604 BPF_MODE(insn->code) == BPF_ATOMIC && 605 insn->imm == BPF_CMPXCHG; 606 } 607 608 /* string representation of 'enum bpf_reg_type' 609 * 610 * Note that reg_type_str() can not appear more than once in a single verbose() 611 * statement. 612 */ 613 static const char *reg_type_str(struct bpf_verifier_env *env, 614 enum bpf_reg_type type) 615 { 616 char postfix[16] = {0}, prefix[64] = {0}; 617 static const char * const str[] = { 618 [NOT_INIT] = "?", 619 [SCALAR_VALUE] = "scalar", 620 [PTR_TO_CTX] = "ctx", 621 [CONST_PTR_TO_MAP] = "map_ptr", 622 [PTR_TO_MAP_VALUE] = "map_value", 623 [PTR_TO_STACK] = "fp", 624 [PTR_TO_PACKET] = "pkt", 625 [PTR_TO_PACKET_META] = "pkt_meta", 626 [PTR_TO_PACKET_END] = "pkt_end", 627 [PTR_TO_FLOW_KEYS] = "flow_keys", 628 [PTR_TO_SOCKET] = "sock", 629 [PTR_TO_SOCK_COMMON] = "sock_common", 630 [PTR_TO_TCP_SOCK] = "tcp_sock", 631 [PTR_TO_TP_BUFFER] = "tp_buffer", 632 [PTR_TO_XDP_SOCK] = "xdp_sock", 633 [PTR_TO_BTF_ID] = "ptr_", 634 [PTR_TO_MEM] = "mem", 635 [PTR_TO_BUF] = "buf", 636 [PTR_TO_FUNC] = "func", 637 [PTR_TO_MAP_KEY] = "map_key", 638 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 639 }; 640 641 if (type & PTR_MAYBE_NULL) { 642 if (base_type(type) == PTR_TO_BTF_ID) 643 strncpy(postfix, "or_null_", 16); 644 else 645 strncpy(postfix, "_or_null", 16); 646 } 647 648 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 649 type & MEM_RDONLY ? "rdonly_" : "", 650 type & MEM_RINGBUF ? "ringbuf_" : "", 651 type & MEM_USER ? "user_" : "", 652 type & MEM_PERCPU ? "percpu_" : "", 653 type & MEM_RCU ? "rcu_" : "", 654 type & PTR_UNTRUSTED ? "untrusted_" : "", 655 type & PTR_TRUSTED ? "trusted_" : "" 656 ); 657 658 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 659 prefix, str[base_type(type)], postfix); 660 return env->tmp_str_buf; 661 } 662 663 static char slot_type_char[] = { 664 [STACK_INVALID] = '?', 665 [STACK_SPILL] = 'r', 666 [STACK_MISC] = 'm', 667 [STACK_ZERO] = '0', 668 [STACK_DYNPTR] = 'd', 669 [STACK_ITER] = 'i', 670 }; 671 672 static void print_liveness(struct bpf_verifier_env *env, 673 enum bpf_reg_liveness live) 674 { 675 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 676 verbose(env, "_"); 677 if (live & REG_LIVE_READ) 678 verbose(env, "r"); 679 if (live & REG_LIVE_WRITTEN) 680 verbose(env, "w"); 681 if (live & REG_LIVE_DONE) 682 verbose(env, "D"); 683 } 684 685 static int __get_spi(s32 off) 686 { 687 return (-off - 1) / BPF_REG_SIZE; 688 } 689 690 static struct bpf_func_state *func(struct bpf_verifier_env *env, 691 const struct bpf_reg_state *reg) 692 { 693 struct bpf_verifier_state *cur = env->cur_state; 694 695 return cur->frame[reg->frameno]; 696 } 697 698 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 699 { 700 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 701 702 /* We need to check that slots between [spi - nr_slots + 1, spi] are 703 * within [0, allocated_stack). 704 * 705 * Please note that the spi grows downwards. For example, a dynptr 706 * takes the size of two stack slots; the first slot will be at 707 * spi and the second slot will be at spi - 1. 708 */ 709 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 710 } 711 712 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 713 const char *obj_kind, int nr_slots) 714 { 715 int off, spi; 716 717 if (!tnum_is_const(reg->var_off)) { 718 verbose(env, "%s has to be at a constant offset\n", obj_kind); 719 return -EINVAL; 720 } 721 722 off = reg->off + reg->var_off.value; 723 if (off % BPF_REG_SIZE) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 spi = __get_spi(off); 729 if (spi + 1 < nr_slots) { 730 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 731 return -EINVAL; 732 } 733 734 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 735 return -ERANGE; 736 return spi; 737 } 738 739 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 740 { 741 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 742 } 743 744 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 745 { 746 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 747 } 748 749 static const char *btf_type_name(const struct btf *btf, u32 id) 750 { 751 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 752 } 753 754 static const char *dynptr_type_str(enum bpf_dynptr_type type) 755 { 756 switch (type) { 757 case BPF_DYNPTR_TYPE_LOCAL: 758 return "local"; 759 case BPF_DYNPTR_TYPE_RINGBUF: 760 return "ringbuf"; 761 case BPF_DYNPTR_TYPE_SKB: 762 return "skb"; 763 case BPF_DYNPTR_TYPE_XDP: 764 return "xdp"; 765 case BPF_DYNPTR_TYPE_INVALID: 766 return "<invalid>"; 767 default: 768 WARN_ONCE(1, "unknown dynptr type %d\n", type); 769 return "<unknown>"; 770 } 771 } 772 773 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 774 { 775 if (!btf || btf_id == 0) 776 return "<invalid>"; 777 778 /* we already validated that type is valid and has conforming name */ 779 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 780 } 781 782 static const char *iter_state_str(enum bpf_iter_state state) 783 { 784 switch (state) { 785 case BPF_ITER_STATE_ACTIVE: 786 return "active"; 787 case BPF_ITER_STATE_DRAINED: 788 return "drained"; 789 case BPF_ITER_STATE_INVALID: 790 return "<invalid>"; 791 default: 792 WARN_ONCE(1, "unknown iter state %d\n", state); 793 return "<unknown>"; 794 } 795 } 796 797 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 798 { 799 env->scratched_regs |= 1U << regno; 800 } 801 802 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 803 { 804 env->scratched_stack_slots |= 1ULL << spi; 805 } 806 807 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 808 { 809 return (env->scratched_regs >> regno) & 1; 810 } 811 812 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 813 { 814 return (env->scratched_stack_slots >> regno) & 1; 815 } 816 817 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 818 { 819 return env->scratched_regs || env->scratched_stack_slots; 820 } 821 822 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 823 { 824 env->scratched_regs = 0U; 825 env->scratched_stack_slots = 0ULL; 826 } 827 828 /* Used for printing the entire verifier state. */ 829 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 830 { 831 env->scratched_regs = ~0U; 832 env->scratched_stack_slots = ~0ULL; 833 } 834 835 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 836 { 837 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 838 case DYNPTR_TYPE_LOCAL: 839 return BPF_DYNPTR_TYPE_LOCAL; 840 case DYNPTR_TYPE_RINGBUF: 841 return BPF_DYNPTR_TYPE_RINGBUF; 842 case DYNPTR_TYPE_SKB: 843 return BPF_DYNPTR_TYPE_SKB; 844 case DYNPTR_TYPE_XDP: 845 return BPF_DYNPTR_TYPE_XDP; 846 default: 847 return BPF_DYNPTR_TYPE_INVALID; 848 } 849 } 850 851 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 852 { 853 switch (type) { 854 case BPF_DYNPTR_TYPE_LOCAL: 855 return DYNPTR_TYPE_LOCAL; 856 case BPF_DYNPTR_TYPE_RINGBUF: 857 return DYNPTR_TYPE_RINGBUF; 858 case BPF_DYNPTR_TYPE_SKB: 859 return DYNPTR_TYPE_SKB; 860 case BPF_DYNPTR_TYPE_XDP: 861 return DYNPTR_TYPE_XDP; 862 default: 863 return 0; 864 } 865 } 866 867 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 868 { 869 return type == BPF_DYNPTR_TYPE_RINGBUF; 870 } 871 872 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 873 enum bpf_dynptr_type type, 874 bool first_slot, int dynptr_id); 875 876 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 877 struct bpf_reg_state *reg); 878 879 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 880 struct bpf_reg_state *sreg1, 881 struct bpf_reg_state *sreg2, 882 enum bpf_dynptr_type type) 883 { 884 int id = ++env->id_gen; 885 886 __mark_dynptr_reg(sreg1, type, true, id); 887 __mark_dynptr_reg(sreg2, type, false, id); 888 } 889 890 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 891 struct bpf_reg_state *reg, 892 enum bpf_dynptr_type type) 893 { 894 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 895 } 896 897 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 898 struct bpf_func_state *state, int spi); 899 900 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 901 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 902 { 903 struct bpf_func_state *state = func(env, reg); 904 enum bpf_dynptr_type type; 905 int spi, i, err; 906 907 spi = dynptr_get_spi(env, reg); 908 if (spi < 0) 909 return spi; 910 911 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 912 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 913 * to ensure that for the following example: 914 * [d1][d1][d2][d2] 915 * spi 3 2 1 0 916 * So marking spi = 2 should lead to destruction of both d1 and d2. In 917 * case they do belong to same dynptr, second call won't see slot_type 918 * as STACK_DYNPTR and will simply skip destruction. 919 */ 920 err = destroy_if_dynptr_stack_slot(env, state, spi); 921 if (err) 922 return err; 923 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 924 if (err) 925 return err; 926 927 for (i = 0; i < BPF_REG_SIZE; i++) { 928 state->stack[spi].slot_type[i] = STACK_DYNPTR; 929 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 930 } 931 932 type = arg_to_dynptr_type(arg_type); 933 if (type == BPF_DYNPTR_TYPE_INVALID) 934 return -EINVAL; 935 936 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 937 &state->stack[spi - 1].spilled_ptr, type); 938 939 if (dynptr_type_refcounted(type)) { 940 /* The id is used to track proper releasing */ 941 int id; 942 943 if (clone_ref_obj_id) 944 id = clone_ref_obj_id; 945 else 946 id = acquire_reference_state(env, insn_idx); 947 948 if (id < 0) 949 return id; 950 951 state->stack[spi].spilled_ptr.ref_obj_id = id; 952 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 953 } 954 955 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 956 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 957 958 return 0; 959 } 960 961 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 962 { 963 int i; 964 965 for (i = 0; i < BPF_REG_SIZE; i++) { 966 state->stack[spi].slot_type[i] = STACK_INVALID; 967 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 968 } 969 970 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 971 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 972 973 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 974 * 975 * While we don't allow reading STACK_INVALID, it is still possible to 976 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 977 * helpers or insns can do partial read of that part without failing, 978 * but check_stack_range_initialized, check_stack_read_var_off, and 979 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 980 * the slot conservatively. Hence we need to prevent those liveness 981 * marking walks. 982 * 983 * This was not a problem before because STACK_INVALID is only set by 984 * default (where the default reg state has its reg->parent as NULL), or 985 * in clean_live_states after REG_LIVE_DONE (at which point 986 * mark_reg_read won't walk reg->parent chain), but not randomly during 987 * verifier state exploration (like we did above). Hence, for our case 988 * parentage chain will still be live (i.e. reg->parent may be 989 * non-NULL), while earlier reg->parent was NULL, so we need 990 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 991 * done later on reads or by mark_dynptr_read as well to unnecessary 992 * mark registers in verifier state. 993 */ 994 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 995 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 996 } 997 998 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 999 { 1000 struct bpf_func_state *state = func(env, reg); 1001 int spi, ref_obj_id, i; 1002 1003 spi = dynptr_get_spi(env, reg); 1004 if (spi < 0) 1005 return spi; 1006 1007 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1008 invalidate_dynptr(env, state, spi); 1009 return 0; 1010 } 1011 1012 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1013 1014 /* If the dynptr has a ref_obj_id, then we need to invalidate 1015 * two things: 1016 * 1017 * 1) Any dynptrs with a matching ref_obj_id (clones) 1018 * 2) Any slices derived from this dynptr. 1019 */ 1020 1021 /* Invalidate any slices associated with this dynptr */ 1022 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1023 1024 /* Invalidate any dynptr clones */ 1025 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1026 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1027 continue; 1028 1029 /* it should always be the case that if the ref obj id 1030 * matches then the stack slot also belongs to a 1031 * dynptr 1032 */ 1033 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1034 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1035 return -EFAULT; 1036 } 1037 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1038 invalidate_dynptr(env, state, i); 1039 } 1040 1041 return 0; 1042 } 1043 1044 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1045 struct bpf_reg_state *reg); 1046 1047 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1048 { 1049 if (!env->allow_ptr_leaks) 1050 __mark_reg_not_init(env, reg); 1051 else 1052 __mark_reg_unknown(env, reg); 1053 } 1054 1055 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1056 struct bpf_func_state *state, int spi) 1057 { 1058 struct bpf_func_state *fstate; 1059 struct bpf_reg_state *dreg; 1060 int i, dynptr_id; 1061 1062 /* We always ensure that STACK_DYNPTR is never set partially, 1063 * hence just checking for slot_type[0] is enough. This is 1064 * different for STACK_SPILL, where it may be only set for 1065 * 1 byte, so code has to use is_spilled_reg. 1066 */ 1067 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1068 return 0; 1069 1070 /* Reposition spi to first slot */ 1071 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1072 spi = spi + 1; 1073 1074 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1075 verbose(env, "cannot overwrite referenced dynptr\n"); 1076 return -EINVAL; 1077 } 1078 1079 mark_stack_slot_scratched(env, spi); 1080 mark_stack_slot_scratched(env, spi - 1); 1081 1082 /* Writing partially to one dynptr stack slot destroys both. */ 1083 for (i = 0; i < BPF_REG_SIZE; i++) { 1084 state->stack[spi].slot_type[i] = STACK_INVALID; 1085 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1086 } 1087 1088 dynptr_id = state->stack[spi].spilled_ptr.id; 1089 /* Invalidate any slices associated with this dynptr */ 1090 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1091 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1092 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1093 continue; 1094 if (dreg->dynptr_id == dynptr_id) 1095 mark_reg_invalid(env, dreg); 1096 })); 1097 1098 /* Do not release reference state, we are destroying dynptr on stack, 1099 * not using some helper to release it. Just reset register. 1100 */ 1101 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1102 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1103 1104 /* Same reason as unmark_stack_slots_dynptr above */ 1105 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1106 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1107 1108 return 0; 1109 } 1110 1111 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1112 { 1113 int spi; 1114 1115 if (reg->type == CONST_PTR_TO_DYNPTR) 1116 return false; 1117 1118 spi = dynptr_get_spi(env, reg); 1119 1120 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1121 * error because this just means the stack state hasn't been updated yet. 1122 * We will do check_mem_access to check and update stack bounds later. 1123 */ 1124 if (spi < 0 && spi != -ERANGE) 1125 return false; 1126 1127 /* We don't need to check if the stack slots are marked by previous 1128 * dynptr initializations because we allow overwriting existing unreferenced 1129 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1130 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1131 * touching are completely destructed before we reinitialize them for a new 1132 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1133 * instead of delaying it until the end where the user will get "Unreleased 1134 * reference" error. 1135 */ 1136 return true; 1137 } 1138 1139 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1140 { 1141 struct bpf_func_state *state = func(env, reg); 1142 int i, spi; 1143 1144 /* This already represents first slot of initialized bpf_dynptr. 1145 * 1146 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1147 * check_func_arg_reg_off's logic, so we don't need to check its 1148 * offset and alignment. 1149 */ 1150 if (reg->type == CONST_PTR_TO_DYNPTR) 1151 return true; 1152 1153 spi = dynptr_get_spi(env, reg); 1154 if (spi < 0) 1155 return false; 1156 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1157 return false; 1158 1159 for (i = 0; i < BPF_REG_SIZE; i++) { 1160 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1161 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1162 return false; 1163 } 1164 1165 return true; 1166 } 1167 1168 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1169 enum bpf_arg_type arg_type) 1170 { 1171 struct bpf_func_state *state = func(env, reg); 1172 enum bpf_dynptr_type dynptr_type; 1173 int spi; 1174 1175 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1176 if (arg_type == ARG_PTR_TO_DYNPTR) 1177 return true; 1178 1179 dynptr_type = arg_to_dynptr_type(arg_type); 1180 if (reg->type == CONST_PTR_TO_DYNPTR) { 1181 return reg->dynptr.type == dynptr_type; 1182 } else { 1183 spi = dynptr_get_spi(env, reg); 1184 if (spi < 0) 1185 return false; 1186 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1187 } 1188 } 1189 1190 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1191 1192 static bool in_rcu_cs(struct bpf_verifier_env *env); 1193 1194 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1195 1196 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1197 struct bpf_kfunc_call_arg_meta *meta, 1198 struct bpf_reg_state *reg, int insn_idx, 1199 struct btf *btf, u32 btf_id, int nr_slots) 1200 { 1201 struct bpf_func_state *state = func(env, reg); 1202 int spi, i, j, id; 1203 1204 spi = iter_get_spi(env, reg, nr_slots); 1205 if (spi < 0) 1206 return spi; 1207 1208 id = acquire_reference_state(env, insn_idx); 1209 if (id < 0) 1210 return id; 1211 1212 for (i = 0; i < nr_slots; i++) { 1213 struct bpf_stack_state *slot = &state->stack[spi - i]; 1214 struct bpf_reg_state *st = &slot->spilled_ptr; 1215 1216 __mark_reg_known_zero(st); 1217 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1218 if (is_kfunc_rcu_protected(meta)) { 1219 if (in_rcu_cs(env)) 1220 st->type |= MEM_RCU; 1221 else 1222 st->type |= PTR_UNTRUSTED; 1223 } 1224 st->live |= REG_LIVE_WRITTEN; 1225 st->ref_obj_id = i == 0 ? id : 0; 1226 st->iter.btf = btf; 1227 st->iter.btf_id = btf_id; 1228 st->iter.state = BPF_ITER_STATE_ACTIVE; 1229 st->iter.depth = 0; 1230 1231 for (j = 0; j < BPF_REG_SIZE; j++) 1232 slot->slot_type[j] = STACK_ITER; 1233 1234 mark_stack_slot_scratched(env, spi - i); 1235 } 1236 1237 return 0; 1238 } 1239 1240 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1241 struct bpf_reg_state *reg, int nr_slots) 1242 { 1243 struct bpf_func_state *state = func(env, reg); 1244 int spi, i, j; 1245 1246 spi = iter_get_spi(env, reg, nr_slots); 1247 if (spi < 0) 1248 return spi; 1249 1250 for (i = 0; i < nr_slots; i++) { 1251 struct bpf_stack_state *slot = &state->stack[spi - i]; 1252 struct bpf_reg_state *st = &slot->spilled_ptr; 1253 1254 if (i == 0) 1255 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1256 1257 __mark_reg_not_init(env, st); 1258 1259 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1260 st->live |= REG_LIVE_WRITTEN; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 slot->slot_type[j] = STACK_INVALID; 1264 1265 mark_stack_slot_scratched(env, spi - i); 1266 } 1267 1268 return 0; 1269 } 1270 1271 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1272 struct bpf_reg_state *reg, int nr_slots) 1273 { 1274 struct bpf_func_state *state = func(env, reg); 1275 int spi, i, j; 1276 1277 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1278 * will do check_mem_access to check and update stack bounds later, so 1279 * return true for that case. 1280 */ 1281 spi = iter_get_spi(env, reg, nr_slots); 1282 if (spi == -ERANGE) 1283 return true; 1284 if (spi < 0) 1285 return false; 1286 1287 for (i = 0; i < nr_slots; i++) { 1288 struct bpf_stack_state *slot = &state->stack[spi - i]; 1289 1290 for (j = 0; j < BPF_REG_SIZE; j++) 1291 if (slot->slot_type[j] == STACK_ITER) 1292 return false; 1293 } 1294 1295 return true; 1296 } 1297 1298 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1299 struct btf *btf, u32 btf_id, int nr_slots) 1300 { 1301 struct bpf_func_state *state = func(env, reg); 1302 int spi, i, j; 1303 1304 spi = iter_get_spi(env, reg, nr_slots); 1305 if (spi < 0) 1306 return -EINVAL; 1307 1308 for (i = 0; i < nr_slots; i++) { 1309 struct bpf_stack_state *slot = &state->stack[spi - i]; 1310 struct bpf_reg_state *st = &slot->spilled_ptr; 1311 1312 if (st->type & PTR_UNTRUSTED) 1313 return -EPROTO; 1314 /* only main (first) slot has ref_obj_id set */ 1315 if (i == 0 && !st->ref_obj_id) 1316 return -EINVAL; 1317 if (i != 0 && st->ref_obj_id) 1318 return -EINVAL; 1319 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1320 return -EINVAL; 1321 1322 for (j = 0; j < BPF_REG_SIZE; j++) 1323 if (slot->slot_type[j] != STACK_ITER) 1324 return -EINVAL; 1325 } 1326 1327 return 0; 1328 } 1329 1330 /* Check if given stack slot is "special": 1331 * - spilled register state (STACK_SPILL); 1332 * - dynptr state (STACK_DYNPTR); 1333 * - iter state (STACK_ITER). 1334 */ 1335 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1336 { 1337 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1338 1339 switch (type) { 1340 case STACK_SPILL: 1341 case STACK_DYNPTR: 1342 case STACK_ITER: 1343 return true; 1344 case STACK_INVALID: 1345 case STACK_MISC: 1346 case STACK_ZERO: 1347 return false; 1348 default: 1349 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1350 return true; 1351 } 1352 } 1353 1354 /* The reg state of a pointer or a bounded scalar was saved when 1355 * it was spilled to the stack. 1356 */ 1357 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1358 { 1359 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1360 } 1361 1362 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1363 { 1364 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1365 stack->spilled_ptr.type == SCALAR_VALUE; 1366 } 1367 1368 static void scrub_spilled_slot(u8 *stype) 1369 { 1370 if (*stype != STACK_INVALID) 1371 *stype = STACK_MISC; 1372 } 1373 1374 static void print_scalar_ranges(struct bpf_verifier_env *env, 1375 const struct bpf_reg_state *reg, 1376 const char **sep) 1377 { 1378 struct { 1379 const char *name; 1380 u64 val; 1381 bool omit; 1382 } minmaxs[] = { 1383 {"smin", reg->smin_value, reg->smin_value == S64_MIN}, 1384 {"smax", reg->smax_value, reg->smax_value == S64_MAX}, 1385 {"umin", reg->umin_value, reg->umin_value == 0}, 1386 {"umax", reg->umax_value, reg->umax_value == U64_MAX}, 1387 {"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN}, 1388 {"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX}, 1389 {"umin32", reg->u32_min_value, reg->u32_min_value == 0}, 1390 {"umax32", reg->u32_max_value, reg->u32_max_value == U32_MAX}, 1391 }, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)]; 1392 bool neg1, neg2; 1393 1394 for (m1 = &minmaxs[0]; m1 < mend; m1++) { 1395 if (m1->omit) 1396 continue; 1397 1398 neg1 = m1->name[0] == 's' && (s64)m1->val < 0; 1399 1400 verbose(env, "%s%s=", *sep, m1->name); 1401 *sep = ","; 1402 1403 for (m2 = m1 + 2; m2 < mend; m2 += 2) { 1404 if (m2->omit || m2->val != m1->val) 1405 continue; 1406 /* don't mix negatives with positives */ 1407 neg2 = m2->name[0] == 's' && (s64)m2->val < 0; 1408 if (neg2 != neg1) 1409 continue; 1410 m2->omit = true; 1411 verbose(env, "%s=", m2->name); 1412 } 1413 1414 verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val); 1415 } 1416 } 1417 1418 static void print_verifier_state(struct bpf_verifier_env *env, 1419 const struct bpf_func_state *state, 1420 bool print_all) 1421 { 1422 const struct bpf_reg_state *reg; 1423 enum bpf_reg_type t; 1424 int i; 1425 1426 if (state->frameno) 1427 verbose(env, " frame%d:", state->frameno); 1428 for (i = 0; i < MAX_BPF_REG; i++) { 1429 reg = &state->regs[i]; 1430 t = reg->type; 1431 if (t == NOT_INIT) 1432 continue; 1433 if (!print_all && !reg_scratched(env, i)) 1434 continue; 1435 verbose(env, " R%d", i); 1436 print_liveness(env, reg->live); 1437 verbose(env, "="); 1438 if (t == SCALAR_VALUE && reg->precise) 1439 verbose(env, "P"); 1440 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1441 tnum_is_const(reg->var_off)) { 1442 /* reg->off should be 0 for SCALAR_VALUE */ 1443 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1444 verbose(env, "%lld", reg->var_off.value + reg->off); 1445 } else { 1446 const char *sep = ""; 1447 1448 verbose(env, "%s", reg_type_str(env, t)); 1449 if (base_type(t) == PTR_TO_BTF_ID) 1450 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1451 verbose(env, "("); 1452 /* 1453 * _a stands for append, was shortened to avoid multiline statements below. 1454 * This macro is used to output a comma separated list of attributes. 1455 */ 1456 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1457 1458 if (reg->id) 1459 verbose_a("id=%d", reg->id); 1460 if (reg->ref_obj_id) 1461 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1462 if (type_is_non_owning_ref(reg->type)) 1463 verbose_a("%s", "non_own_ref"); 1464 if (t != SCALAR_VALUE) 1465 verbose_a("off=%d", reg->off); 1466 if (type_is_pkt_pointer(t)) 1467 verbose_a("r=%d", reg->range); 1468 else if (base_type(t) == CONST_PTR_TO_MAP || 1469 base_type(t) == PTR_TO_MAP_KEY || 1470 base_type(t) == PTR_TO_MAP_VALUE) 1471 verbose_a("ks=%d,vs=%d", 1472 reg->map_ptr->key_size, 1473 reg->map_ptr->value_size); 1474 if (tnum_is_const(reg->var_off)) { 1475 /* Typically an immediate SCALAR_VALUE, but 1476 * could be a pointer whose offset is too big 1477 * for reg->off 1478 */ 1479 verbose_a("imm=%llx", reg->var_off.value); 1480 } else { 1481 print_scalar_ranges(env, reg, &sep); 1482 if (!tnum_is_unknown(reg->var_off)) { 1483 char tn_buf[48]; 1484 1485 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1486 verbose_a("var_off=%s", tn_buf); 1487 } 1488 } 1489 #undef verbose_a 1490 1491 verbose(env, ")"); 1492 } 1493 } 1494 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1495 char types_buf[BPF_REG_SIZE + 1]; 1496 bool valid = false; 1497 int j; 1498 1499 for (j = 0; j < BPF_REG_SIZE; j++) { 1500 if (state->stack[i].slot_type[j] != STACK_INVALID) 1501 valid = true; 1502 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1503 } 1504 types_buf[BPF_REG_SIZE] = 0; 1505 if (!valid) 1506 continue; 1507 if (!print_all && !stack_slot_scratched(env, i)) 1508 continue; 1509 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1510 case STACK_SPILL: 1511 reg = &state->stack[i].spilled_ptr; 1512 t = reg->type; 1513 1514 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1515 print_liveness(env, reg->live); 1516 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1517 if (t == SCALAR_VALUE && reg->precise) 1518 verbose(env, "P"); 1519 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1520 verbose(env, "%lld", reg->var_off.value + reg->off); 1521 break; 1522 case STACK_DYNPTR: 1523 i += BPF_DYNPTR_NR_SLOTS - 1; 1524 reg = &state->stack[i].spilled_ptr; 1525 1526 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1527 print_liveness(env, reg->live); 1528 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1529 if (reg->ref_obj_id) 1530 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1531 break; 1532 case STACK_ITER: 1533 /* only main slot has ref_obj_id set; skip others */ 1534 reg = &state->stack[i].spilled_ptr; 1535 if (!reg->ref_obj_id) 1536 continue; 1537 1538 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1539 print_liveness(env, reg->live); 1540 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1541 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1542 reg->ref_obj_id, iter_state_str(reg->iter.state), 1543 reg->iter.depth); 1544 break; 1545 case STACK_MISC: 1546 case STACK_ZERO: 1547 default: 1548 reg = &state->stack[i].spilled_ptr; 1549 1550 for (j = 0; j < BPF_REG_SIZE; j++) 1551 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1552 types_buf[BPF_REG_SIZE] = 0; 1553 1554 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1555 print_liveness(env, reg->live); 1556 verbose(env, "=%s", types_buf); 1557 break; 1558 } 1559 } 1560 if (state->acquired_refs && state->refs[0].id) { 1561 verbose(env, " refs=%d", state->refs[0].id); 1562 for (i = 1; i < state->acquired_refs; i++) 1563 if (state->refs[i].id) 1564 verbose(env, ",%d", state->refs[i].id); 1565 } 1566 if (state->in_callback_fn) 1567 verbose(env, " cb"); 1568 if (state->in_async_callback_fn) 1569 verbose(env, " async_cb"); 1570 verbose(env, "\n"); 1571 if (!print_all) 1572 mark_verifier_state_clean(env); 1573 } 1574 1575 static inline u32 vlog_alignment(u32 pos) 1576 { 1577 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1578 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1579 } 1580 1581 static void print_insn_state(struct bpf_verifier_env *env, 1582 const struct bpf_func_state *state) 1583 { 1584 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1585 /* remove new line character */ 1586 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1587 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1588 } else { 1589 verbose(env, "%d:", env->insn_idx); 1590 } 1591 print_verifier_state(env, state, false); 1592 } 1593 1594 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1595 * small to hold src. This is different from krealloc since we don't want to preserve 1596 * the contents of dst. 1597 * 1598 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1599 * not be allocated. 1600 */ 1601 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1602 { 1603 size_t alloc_bytes; 1604 void *orig = dst; 1605 size_t bytes; 1606 1607 if (ZERO_OR_NULL_PTR(src)) 1608 goto out; 1609 1610 if (unlikely(check_mul_overflow(n, size, &bytes))) 1611 return NULL; 1612 1613 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1614 dst = krealloc(orig, alloc_bytes, flags); 1615 if (!dst) { 1616 kfree(orig); 1617 return NULL; 1618 } 1619 1620 memcpy(dst, src, bytes); 1621 out: 1622 return dst ? dst : ZERO_SIZE_PTR; 1623 } 1624 1625 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1626 * small to hold new_n items. new items are zeroed out if the array grows. 1627 * 1628 * Contrary to krealloc_array, does not free arr if new_n is zero. 1629 */ 1630 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1631 { 1632 size_t alloc_size; 1633 void *new_arr; 1634 1635 if (!new_n || old_n == new_n) 1636 goto out; 1637 1638 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1639 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1640 if (!new_arr) { 1641 kfree(arr); 1642 return NULL; 1643 } 1644 arr = new_arr; 1645 1646 if (new_n > old_n) 1647 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1648 1649 out: 1650 return arr ? arr : ZERO_SIZE_PTR; 1651 } 1652 1653 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1654 { 1655 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1656 sizeof(struct bpf_reference_state), GFP_KERNEL); 1657 if (!dst->refs) 1658 return -ENOMEM; 1659 1660 dst->acquired_refs = src->acquired_refs; 1661 return 0; 1662 } 1663 1664 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1665 { 1666 size_t n = src->allocated_stack / BPF_REG_SIZE; 1667 1668 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1669 GFP_KERNEL); 1670 if (!dst->stack) 1671 return -ENOMEM; 1672 1673 dst->allocated_stack = src->allocated_stack; 1674 return 0; 1675 } 1676 1677 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1678 { 1679 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1680 sizeof(struct bpf_reference_state)); 1681 if (!state->refs) 1682 return -ENOMEM; 1683 1684 state->acquired_refs = n; 1685 return 0; 1686 } 1687 1688 static int grow_stack_state(struct bpf_func_state *state, int size) 1689 { 1690 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1691 1692 if (old_n >= n) 1693 return 0; 1694 1695 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1696 if (!state->stack) 1697 return -ENOMEM; 1698 1699 state->allocated_stack = size; 1700 return 0; 1701 } 1702 1703 /* Acquire a pointer id from the env and update the state->refs to include 1704 * this new pointer reference. 1705 * On success, returns a valid pointer id to associate with the register 1706 * On failure, returns a negative errno. 1707 */ 1708 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1709 { 1710 struct bpf_func_state *state = cur_func(env); 1711 int new_ofs = state->acquired_refs; 1712 int id, err; 1713 1714 err = resize_reference_state(state, state->acquired_refs + 1); 1715 if (err) 1716 return err; 1717 id = ++env->id_gen; 1718 state->refs[new_ofs].id = id; 1719 state->refs[new_ofs].insn_idx = insn_idx; 1720 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1721 1722 return id; 1723 } 1724 1725 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1726 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1727 { 1728 int i, last_idx; 1729 1730 last_idx = state->acquired_refs - 1; 1731 for (i = 0; i < state->acquired_refs; i++) { 1732 if (state->refs[i].id == ptr_id) { 1733 /* Cannot release caller references in callbacks */ 1734 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1735 return -EINVAL; 1736 if (last_idx && i != last_idx) 1737 memcpy(&state->refs[i], &state->refs[last_idx], 1738 sizeof(*state->refs)); 1739 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1740 state->acquired_refs--; 1741 return 0; 1742 } 1743 } 1744 return -EINVAL; 1745 } 1746 1747 static void free_func_state(struct bpf_func_state *state) 1748 { 1749 if (!state) 1750 return; 1751 kfree(state->refs); 1752 kfree(state->stack); 1753 kfree(state); 1754 } 1755 1756 static void clear_jmp_history(struct bpf_verifier_state *state) 1757 { 1758 kfree(state->jmp_history); 1759 state->jmp_history = NULL; 1760 state->jmp_history_cnt = 0; 1761 } 1762 1763 static void free_verifier_state(struct bpf_verifier_state *state, 1764 bool free_self) 1765 { 1766 int i; 1767 1768 for (i = 0; i <= state->curframe; i++) { 1769 free_func_state(state->frame[i]); 1770 state->frame[i] = NULL; 1771 } 1772 clear_jmp_history(state); 1773 if (free_self) 1774 kfree(state); 1775 } 1776 1777 /* copy verifier state from src to dst growing dst stack space 1778 * when necessary to accommodate larger src stack 1779 */ 1780 static int copy_func_state(struct bpf_func_state *dst, 1781 const struct bpf_func_state *src) 1782 { 1783 int err; 1784 1785 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1786 err = copy_reference_state(dst, src); 1787 if (err) 1788 return err; 1789 return copy_stack_state(dst, src); 1790 } 1791 1792 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1793 const struct bpf_verifier_state *src) 1794 { 1795 struct bpf_func_state *dst; 1796 int i, err; 1797 1798 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1799 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1800 GFP_USER); 1801 if (!dst_state->jmp_history) 1802 return -ENOMEM; 1803 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1804 1805 /* if dst has more stack frames then src frame, free them, this is also 1806 * necessary in case of exceptional exits using bpf_throw. 1807 */ 1808 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1809 free_func_state(dst_state->frame[i]); 1810 dst_state->frame[i] = NULL; 1811 } 1812 dst_state->speculative = src->speculative; 1813 dst_state->active_rcu_lock = src->active_rcu_lock; 1814 dst_state->curframe = src->curframe; 1815 dst_state->active_lock.ptr = src->active_lock.ptr; 1816 dst_state->active_lock.id = src->active_lock.id; 1817 dst_state->branches = src->branches; 1818 dst_state->parent = src->parent; 1819 dst_state->first_insn_idx = src->first_insn_idx; 1820 dst_state->last_insn_idx = src->last_insn_idx; 1821 dst_state->dfs_depth = src->dfs_depth; 1822 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1823 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1824 for (i = 0; i <= src->curframe; i++) { 1825 dst = dst_state->frame[i]; 1826 if (!dst) { 1827 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1828 if (!dst) 1829 return -ENOMEM; 1830 dst_state->frame[i] = dst; 1831 } 1832 err = copy_func_state(dst, src->frame[i]); 1833 if (err) 1834 return err; 1835 } 1836 return 0; 1837 } 1838 1839 static u32 state_htab_size(struct bpf_verifier_env *env) 1840 { 1841 return env->prog->len; 1842 } 1843 1844 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1845 { 1846 struct bpf_verifier_state *cur = env->cur_state; 1847 struct bpf_func_state *state = cur->frame[cur->curframe]; 1848 1849 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1850 } 1851 1852 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1853 { 1854 int fr; 1855 1856 if (a->curframe != b->curframe) 1857 return false; 1858 1859 for (fr = a->curframe; fr >= 0; fr--) 1860 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1861 return false; 1862 1863 return true; 1864 } 1865 1866 /* Open coded iterators allow back-edges in the state graph in order to 1867 * check unbounded loops that iterators. 1868 * 1869 * In is_state_visited() it is necessary to know if explored states are 1870 * part of some loops in order to decide whether non-exact states 1871 * comparison could be used: 1872 * - non-exact states comparison establishes sub-state relation and uses 1873 * read and precision marks to do so, these marks are propagated from 1874 * children states and thus are not guaranteed to be final in a loop; 1875 * - exact states comparison just checks if current and explored states 1876 * are identical (and thus form a back-edge). 1877 * 1878 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1879 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1880 * algorithm for loop structure detection and gives an overview of 1881 * relevant terminology. It also has helpful illustrations. 1882 * 1883 * [1] https://api.semanticscholar.org/CorpusID:15784067 1884 * 1885 * We use a similar algorithm but because loop nested structure is 1886 * irrelevant for verifier ours is significantly simpler and resembles 1887 * strongly connected components algorithm from Sedgewick's textbook. 1888 * 1889 * Define topmost loop entry as a first node of the loop traversed in a 1890 * depth first search starting from initial state. The goal of the loop 1891 * tracking algorithm is to associate topmost loop entries with states 1892 * derived from these entries. 1893 * 1894 * For each step in the DFS states traversal algorithm needs to identify 1895 * the following situations: 1896 * 1897 * initial initial initial 1898 * | | | 1899 * V V V 1900 * ... ... .---------> hdr 1901 * | | | | 1902 * V V | V 1903 * cur .-> succ | .------... 1904 * | | | | | | 1905 * V | V | V V 1906 * succ '-- cur | ... ... 1907 * | | | 1908 * | V V 1909 * | succ <- cur 1910 * | | 1911 * | V 1912 * | ... 1913 * | | 1914 * '----' 1915 * 1916 * (A) successor state of cur (B) successor state of cur or it's entry 1917 * not yet traversed are in current DFS path, thus cur and succ 1918 * are members of the same outermost loop 1919 * 1920 * initial initial 1921 * | | 1922 * V V 1923 * ... ... 1924 * | | 1925 * V V 1926 * .------... .------... 1927 * | | | | 1928 * V V V V 1929 * .-> hdr ... ... ... 1930 * | | | | | 1931 * | V V V V 1932 * | succ <- cur succ <- cur 1933 * | | | 1934 * | V V 1935 * | ... ... 1936 * | | | 1937 * '----' exit 1938 * 1939 * (C) successor state of cur is a part of some loop but this loop 1940 * does not include cur or successor state is not in a loop at all. 1941 * 1942 * Algorithm could be described as the following python code: 1943 * 1944 * traversed = set() # Set of traversed nodes 1945 * entries = {} # Mapping from node to loop entry 1946 * depths = {} # Depth level assigned to graph node 1947 * path = set() # Current DFS path 1948 * 1949 * # Find outermost loop entry known for n 1950 * def get_loop_entry(n): 1951 * h = entries.get(n, None) 1952 * while h in entries and entries[h] != h: 1953 * h = entries[h] 1954 * return h 1955 * 1956 * # Update n's loop entry if h's outermost entry comes 1957 * # before n's outermost entry in current DFS path. 1958 * def update_loop_entry(n, h): 1959 * n1 = get_loop_entry(n) or n 1960 * h1 = get_loop_entry(h) or h 1961 * if h1 in path and depths[h1] <= depths[n1]: 1962 * entries[n] = h1 1963 * 1964 * def dfs(n, depth): 1965 * traversed.add(n) 1966 * path.add(n) 1967 * depths[n] = depth 1968 * for succ in G.successors(n): 1969 * if succ not in traversed: 1970 * # Case A: explore succ and update cur's loop entry 1971 * # only if succ's entry is in current DFS path. 1972 * dfs(succ, depth + 1) 1973 * h = get_loop_entry(succ) 1974 * update_loop_entry(n, h) 1975 * else: 1976 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1977 * update_loop_entry(n, succ) 1978 * path.remove(n) 1979 * 1980 * To adapt this algorithm for use with verifier: 1981 * - use st->branch == 0 as a signal that DFS of succ had been finished 1982 * and cur's loop entry has to be updated (case A), handle this in 1983 * update_branch_counts(); 1984 * - use st->branch > 0 as a signal that st is in the current DFS path; 1985 * - handle cases B and C in is_state_visited(); 1986 * - update topmost loop entry for intermediate states in get_loop_entry(). 1987 */ 1988 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1989 { 1990 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1991 1992 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1993 topmost = topmost->loop_entry; 1994 /* Update loop entries for intermediate states to avoid this 1995 * traversal in future get_loop_entry() calls. 1996 */ 1997 while (st && st->loop_entry != topmost) { 1998 old = st->loop_entry; 1999 st->loop_entry = topmost; 2000 st = old; 2001 } 2002 return topmost; 2003 } 2004 2005 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 2006 { 2007 struct bpf_verifier_state *cur1, *hdr1; 2008 2009 cur1 = get_loop_entry(cur) ?: cur; 2010 hdr1 = get_loop_entry(hdr) ?: hdr; 2011 /* The head1->branches check decides between cases B and C in 2012 * comment for get_loop_entry(). If hdr1->branches == 0 then 2013 * head's topmost loop entry is not in current DFS path, 2014 * hence 'cur' and 'hdr' are not in the same loop and there is 2015 * no need to update cur->loop_entry. 2016 */ 2017 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 2018 cur->loop_entry = hdr; 2019 hdr->used_as_loop_entry = true; 2020 } 2021 } 2022 2023 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2024 { 2025 while (st) { 2026 u32 br = --st->branches; 2027 2028 /* br == 0 signals that DFS exploration for 'st' is finished, 2029 * thus it is necessary to update parent's loop entry if it 2030 * turned out that st is a part of some loop. 2031 * This is a part of 'case A' in get_loop_entry() comment. 2032 */ 2033 if (br == 0 && st->parent && st->loop_entry) 2034 update_loop_entry(st->parent, st->loop_entry); 2035 2036 /* WARN_ON(br > 1) technically makes sense here, 2037 * but see comment in push_stack(), hence: 2038 */ 2039 WARN_ONCE((int)br < 0, 2040 "BUG update_branch_counts:branches_to_explore=%d\n", 2041 br); 2042 if (br) 2043 break; 2044 st = st->parent; 2045 } 2046 } 2047 2048 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2049 int *insn_idx, bool pop_log) 2050 { 2051 struct bpf_verifier_state *cur = env->cur_state; 2052 struct bpf_verifier_stack_elem *elem, *head = env->head; 2053 int err; 2054 2055 if (env->head == NULL) 2056 return -ENOENT; 2057 2058 if (cur) { 2059 err = copy_verifier_state(cur, &head->st); 2060 if (err) 2061 return err; 2062 } 2063 if (pop_log) 2064 bpf_vlog_reset(&env->log, head->log_pos); 2065 if (insn_idx) 2066 *insn_idx = head->insn_idx; 2067 if (prev_insn_idx) 2068 *prev_insn_idx = head->prev_insn_idx; 2069 elem = head->next; 2070 free_verifier_state(&head->st, false); 2071 kfree(head); 2072 env->head = elem; 2073 env->stack_size--; 2074 return 0; 2075 } 2076 2077 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2078 int insn_idx, int prev_insn_idx, 2079 bool speculative) 2080 { 2081 struct bpf_verifier_state *cur = env->cur_state; 2082 struct bpf_verifier_stack_elem *elem; 2083 int err; 2084 2085 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2086 if (!elem) 2087 goto err; 2088 2089 elem->insn_idx = insn_idx; 2090 elem->prev_insn_idx = prev_insn_idx; 2091 elem->next = env->head; 2092 elem->log_pos = env->log.end_pos; 2093 env->head = elem; 2094 env->stack_size++; 2095 err = copy_verifier_state(&elem->st, cur); 2096 if (err) 2097 goto err; 2098 elem->st.speculative |= speculative; 2099 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2100 verbose(env, "The sequence of %d jumps is too complex.\n", 2101 env->stack_size); 2102 goto err; 2103 } 2104 if (elem->st.parent) { 2105 ++elem->st.parent->branches; 2106 /* WARN_ON(branches > 2) technically makes sense here, 2107 * but 2108 * 1. speculative states will bump 'branches' for non-branch 2109 * instructions 2110 * 2. is_state_visited() heuristics may decide not to create 2111 * a new state for a sequence of branches and all such current 2112 * and cloned states will be pointing to a single parent state 2113 * which might have large 'branches' count. 2114 */ 2115 } 2116 return &elem->st; 2117 err: 2118 free_verifier_state(env->cur_state, true); 2119 env->cur_state = NULL; 2120 /* pop all elements and return */ 2121 while (!pop_stack(env, NULL, NULL, false)); 2122 return NULL; 2123 } 2124 2125 #define CALLER_SAVED_REGS 6 2126 static const int caller_saved[CALLER_SAVED_REGS] = { 2127 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2128 }; 2129 2130 /* This helper doesn't clear reg->id */ 2131 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2132 { 2133 reg->var_off = tnum_const(imm); 2134 reg->smin_value = (s64)imm; 2135 reg->smax_value = (s64)imm; 2136 reg->umin_value = imm; 2137 reg->umax_value = imm; 2138 2139 reg->s32_min_value = (s32)imm; 2140 reg->s32_max_value = (s32)imm; 2141 reg->u32_min_value = (u32)imm; 2142 reg->u32_max_value = (u32)imm; 2143 } 2144 2145 /* Mark the unknown part of a register (variable offset or scalar value) as 2146 * known to have the value @imm. 2147 */ 2148 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2149 { 2150 /* Clear off and union(map_ptr, range) */ 2151 memset(((u8 *)reg) + sizeof(reg->type), 0, 2152 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2153 reg->id = 0; 2154 reg->ref_obj_id = 0; 2155 ___mark_reg_known(reg, imm); 2156 } 2157 2158 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2159 { 2160 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2161 reg->s32_min_value = (s32)imm; 2162 reg->s32_max_value = (s32)imm; 2163 reg->u32_min_value = (u32)imm; 2164 reg->u32_max_value = (u32)imm; 2165 } 2166 2167 /* Mark the 'variable offset' part of a register as zero. This should be 2168 * used only on registers holding a pointer type. 2169 */ 2170 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2171 { 2172 __mark_reg_known(reg, 0); 2173 } 2174 2175 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2176 { 2177 __mark_reg_known(reg, 0); 2178 reg->type = SCALAR_VALUE; 2179 } 2180 2181 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2182 struct bpf_reg_state *regs, u32 regno) 2183 { 2184 if (WARN_ON(regno >= MAX_BPF_REG)) { 2185 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2186 /* Something bad happened, let's kill all regs */ 2187 for (regno = 0; regno < MAX_BPF_REG; regno++) 2188 __mark_reg_not_init(env, regs + regno); 2189 return; 2190 } 2191 __mark_reg_known_zero(regs + regno); 2192 } 2193 2194 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2195 bool first_slot, int dynptr_id) 2196 { 2197 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2198 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2199 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2200 */ 2201 __mark_reg_known_zero(reg); 2202 reg->type = CONST_PTR_TO_DYNPTR; 2203 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2204 reg->id = dynptr_id; 2205 reg->dynptr.type = type; 2206 reg->dynptr.first_slot = first_slot; 2207 } 2208 2209 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2210 { 2211 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2212 const struct bpf_map *map = reg->map_ptr; 2213 2214 if (map->inner_map_meta) { 2215 reg->type = CONST_PTR_TO_MAP; 2216 reg->map_ptr = map->inner_map_meta; 2217 /* transfer reg's id which is unique for every map_lookup_elem 2218 * as UID of the inner map. 2219 */ 2220 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2221 reg->map_uid = reg->id; 2222 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2223 reg->type = PTR_TO_XDP_SOCK; 2224 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2225 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2226 reg->type = PTR_TO_SOCKET; 2227 } else { 2228 reg->type = PTR_TO_MAP_VALUE; 2229 } 2230 return; 2231 } 2232 2233 reg->type &= ~PTR_MAYBE_NULL; 2234 } 2235 2236 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2237 struct btf_field_graph_root *ds_head) 2238 { 2239 __mark_reg_known_zero(®s[regno]); 2240 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2241 regs[regno].btf = ds_head->btf; 2242 regs[regno].btf_id = ds_head->value_btf_id; 2243 regs[regno].off = ds_head->node_offset; 2244 } 2245 2246 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2247 { 2248 return type_is_pkt_pointer(reg->type); 2249 } 2250 2251 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2252 { 2253 return reg_is_pkt_pointer(reg) || 2254 reg->type == PTR_TO_PACKET_END; 2255 } 2256 2257 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2258 { 2259 return base_type(reg->type) == PTR_TO_MEM && 2260 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2261 } 2262 2263 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2264 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2265 enum bpf_reg_type which) 2266 { 2267 /* The register can already have a range from prior markings. 2268 * This is fine as long as it hasn't been advanced from its 2269 * origin. 2270 */ 2271 return reg->type == which && 2272 reg->id == 0 && 2273 reg->off == 0 && 2274 tnum_equals_const(reg->var_off, 0); 2275 } 2276 2277 /* Reset the min/max bounds of a register */ 2278 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2279 { 2280 reg->smin_value = S64_MIN; 2281 reg->smax_value = S64_MAX; 2282 reg->umin_value = 0; 2283 reg->umax_value = U64_MAX; 2284 2285 reg->s32_min_value = S32_MIN; 2286 reg->s32_max_value = S32_MAX; 2287 reg->u32_min_value = 0; 2288 reg->u32_max_value = U32_MAX; 2289 } 2290 2291 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2292 { 2293 reg->smin_value = S64_MIN; 2294 reg->smax_value = S64_MAX; 2295 reg->umin_value = 0; 2296 reg->umax_value = U64_MAX; 2297 } 2298 2299 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2300 { 2301 reg->s32_min_value = S32_MIN; 2302 reg->s32_max_value = S32_MAX; 2303 reg->u32_min_value = 0; 2304 reg->u32_max_value = U32_MAX; 2305 } 2306 2307 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2308 { 2309 struct tnum var32_off = tnum_subreg(reg->var_off); 2310 2311 /* min signed is max(sign bit) | min(other bits) */ 2312 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2313 var32_off.value | (var32_off.mask & S32_MIN)); 2314 /* max signed is min(sign bit) | max(other bits) */ 2315 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2316 var32_off.value | (var32_off.mask & S32_MAX)); 2317 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2318 reg->u32_max_value = min(reg->u32_max_value, 2319 (u32)(var32_off.value | var32_off.mask)); 2320 } 2321 2322 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2323 { 2324 /* min signed is max(sign bit) | min(other bits) */ 2325 reg->smin_value = max_t(s64, reg->smin_value, 2326 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2327 /* max signed is min(sign bit) | max(other bits) */ 2328 reg->smax_value = min_t(s64, reg->smax_value, 2329 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2330 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2331 reg->umax_value = min(reg->umax_value, 2332 reg->var_off.value | reg->var_off.mask); 2333 } 2334 2335 static void __update_reg_bounds(struct bpf_reg_state *reg) 2336 { 2337 __update_reg32_bounds(reg); 2338 __update_reg64_bounds(reg); 2339 } 2340 2341 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2342 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2343 { 2344 /* Learn sign from signed bounds. 2345 * If we cannot cross the sign boundary, then signed and unsigned bounds 2346 * are the same, so combine. This works even in the negative case, e.g. 2347 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2348 */ 2349 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2350 reg->s32_min_value = reg->u32_min_value = 2351 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2352 reg->s32_max_value = reg->u32_max_value = 2353 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2354 return; 2355 } 2356 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2357 * boundary, so we must be careful. 2358 */ 2359 if ((s32)reg->u32_max_value >= 0) { 2360 /* Positive. We can't learn anything from the smin, but smax 2361 * is positive, hence safe. 2362 */ 2363 reg->s32_min_value = reg->u32_min_value; 2364 reg->s32_max_value = reg->u32_max_value = 2365 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2366 } else if ((s32)reg->u32_min_value < 0) { 2367 /* Negative. We can't learn anything from the smax, but smin 2368 * is negative, hence safe. 2369 */ 2370 reg->s32_min_value = reg->u32_min_value = 2371 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2372 reg->s32_max_value = reg->u32_max_value; 2373 } 2374 } 2375 2376 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2377 { 2378 /* Learn sign from signed bounds. 2379 * If we cannot cross the sign boundary, then signed and unsigned bounds 2380 * are the same, so combine. This works even in the negative case, e.g. 2381 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2382 */ 2383 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2384 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2385 reg->umin_value); 2386 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2387 reg->umax_value); 2388 return; 2389 } 2390 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2391 * boundary, so we must be careful. 2392 */ 2393 if ((s64)reg->umax_value >= 0) { 2394 /* Positive. We can't learn anything from the smin, but smax 2395 * is positive, hence safe. 2396 */ 2397 reg->smin_value = reg->umin_value; 2398 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2399 reg->umax_value); 2400 } else if ((s64)reg->umin_value < 0) { 2401 /* Negative. We can't learn anything from the smax, but smin 2402 * is negative, hence safe. 2403 */ 2404 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2405 reg->umin_value); 2406 reg->smax_value = reg->umax_value; 2407 } 2408 } 2409 2410 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2411 { 2412 __reg32_deduce_bounds(reg); 2413 __reg64_deduce_bounds(reg); 2414 } 2415 2416 /* Attempts to improve var_off based on unsigned min/max information */ 2417 static void __reg_bound_offset(struct bpf_reg_state *reg) 2418 { 2419 struct tnum var64_off = tnum_intersect(reg->var_off, 2420 tnum_range(reg->umin_value, 2421 reg->umax_value)); 2422 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2423 tnum_range(reg->u32_min_value, 2424 reg->u32_max_value)); 2425 2426 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2427 } 2428 2429 static void reg_bounds_sync(struct bpf_reg_state *reg) 2430 { 2431 /* We might have learned new bounds from the var_off. */ 2432 __update_reg_bounds(reg); 2433 /* We might have learned something about the sign bit. */ 2434 __reg_deduce_bounds(reg); 2435 /* We might have learned some bits from the bounds. */ 2436 __reg_bound_offset(reg); 2437 /* Intersecting with the old var_off might have improved our bounds 2438 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2439 * then new var_off is (0; 0x7f...fc) which improves our umax. 2440 */ 2441 __update_reg_bounds(reg); 2442 } 2443 2444 static bool __reg32_bound_s64(s32 a) 2445 { 2446 return a >= 0 && a <= S32_MAX; 2447 } 2448 2449 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2450 { 2451 reg->umin_value = reg->u32_min_value; 2452 reg->umax_value = reg->u32_max_value; 2453 2454 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2455 * be positive otherwise set to worse case bounds and refine later 2456 * from tnum. 2457 */ 2458 if (__reg32_bound_s64(reg->s32_min_value) && 2459 __reg32_bound_s64(reg->s32_max_value)) { 2460 reg->smin_value = reg->s32_min_value; 2461 reg->smax_value = reg->s32_max_value; 2462 } else { 2463 reg->smin_value = 0; 2464 reg->smax_value = U32_MAX; 2465 } 2466 } 2467 2468 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2469 { 2470 /* special case when 64-bit register has upper 32-bit register 2471 * zeroed. Typically happens after zext or <<32, >>32 sequence 2472 * allowing us to use 32-bit bounds directly, 2473 */ 2474 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2475 __reg_assign_32_into_64(reg); 2476 } else { 2477 /* Otherwise the best we can do is push lower 32bit known and 2478 * unknown bits into register (var_off set from jmp logic) 2479 * then learn as much as possible from the 64-bit tnum 2480 * known and unknown bits. The previous smin/smax bounds are 2481 * invalid here because of jmp32 compare so mark them unknown 2482 * so they do not impact tnum bounds calculation. 2483 */ 2484 __mark_reg64_unbounded(reg); 2485 } 2486 reg_bounds_sync(reg); 2487 } 2488 2489 static bool __reg64_bound_s32(s64 a) 2490 { 2491 return a >= S32_MIN && a <= S32_MAX; 2492 } 2493 2494 static bool __reg64_bound_u32(u64 a) 2495 { 2496 return a >= U32_MIN && a <= U32_MAX; 2497 } 2498 2499 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2500 { 2501 __mark_reg32_unbounded(reg); 2502 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2503 reg->s32_min_value = (s32)reg->smin_value; 2504 reg->s32_max_value = (s32)reg->smax_value; 2505 } 2506 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2507 reg->u32_min_value = (u32)reg->umin_value; 2508 reg->u32_max_value = (u32)reg->umax_value; 2509 } 2510 reg_bounds_sync(reg); 2511 } 2512 2513 /* Mark a register as having a completely unknown (scalar) value. */ 2514 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2515 struct bpf_reg_state *reg) 2516 { 2517 /* 2518 * Clear type, off, and union(map_ptr, range) and 2519 * padding between 'type' and union 2520 */ 2521 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2522 reg->type = SCALAR_VALUE; 2523 reg->id = 0; 2524 reg->ref_obj_id = 0; 2525 reg->var_off = tnum_unknown; 2526 reg->frameno = 0; 2527 reg->precise = !env->bpf_capable; 2528 __mark_reg_unbounded(reg); 2529 } 2530 2531 static void mark_reg_unknown(struct bpf_verifier_env *env, 2532 struct bpf_reg_state *regs, u32 regno) 2533 { 2534 if (WARN_ON(regno >= MAX_BPF_REG)) { 2535 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2536 /* Something bad happened, let's kill all regs except FP */ 2537 for (regno = 0; regno < BPF_REG_FP; regno++) 2538 __mark_reg_not_init(env, regs + regno); 2539 return; 2540 } 2541 __mark_reg_unknown(env, regs + regno); 2542 } 2543 2544 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2545 struct bpf_reg_state *reg) 2546 { 2547 __mark_reg_unknown(env, reg); 2548 reg->type = NOT_INIT; 2549 } 2550 2551 static void mark_reg_not_init(struct bpf_verifier_env *env, 2552 struct bpf_reg_state *regs, u32 regno) 2553 { 2554 if (WARN_ON(regno >= MAX_BPF_REG)) { 2555 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2556 /* Something bad happened, let's kill all regs except FP */ 2557 for (regno = 0; regno < BPF_REG_FP; regno++) 2558 __mark_reg_not_init(env, regs + regno); 2559 return; 2560 } 2561 __mark_reg_not_init(env, regs + regno); 2562 } 2563 2564 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2565 struct bpf_reg_state *regs, u32 regno, 2566 enum bpf_reg_type reg_type, 2567 struct btf *btf, u32 btf_id, 2568 enum bpf_type_flag flag) 2569 { 2570 if (reg_type == SCALAR_VALUE) { 2571 mark_reg_unknown(env, regs, regno); 2572 return; 2573 } 2574 mark_reg_known_zero(env, regs, regno); 2575 regs[regno].type = PTR_TO_BTF_ID | flag; 2576 regs[regno].btf = btf; 2577 regs[regno].btf_id = btf_id; 2578 } 2579 2580 #define DEF_NOT_SUBREG (0) 2581 static void init_reg_state(struct bpf_verifier_env *env, 2582 struct bpf_func_state *state) 2583 { 2584 struct bpf_reg_state *regs = state->regs; 2585 int i; 2586 2587 for (i = 0; i < MAX_BPF_REG; i++) { 2588 mark_reg_not_init(env, regs, i); 2589 regs[i].live = REG_LIVE_NONE; 2590 regs[i].parent = NULL; 2591 regs[i].subreg_def = DEF_NOT_SUBREG; 2592 } 2593 2594 /* frame pointer */ 2595 regs[BPF_REG_FP].type = PTR_TO_STACK; 2596 mark_reg_known_zero(env, regs, BPF_REG_FP); 2597 regs[BPF_REG_FP].frameno = state->frameno; 2598 } 2599 2600 #define BPF_MAIN_FUNC (-1) 2601 static void init_func_state(struct bpf_verifier_env *env, 2602 struct bpf_func_state *state, 2603 int callsite, int frameno, int subprogno) 2604 { 2605 state->callsite = callsite; 2606 state->frameno = frameno; 2607 state->subprogno = subprogno; 2608 state->callback_ret_range = tnum_range(0, 0); 2609 init_reg_state(env, state); 2610 mark_verifier_state_scratched(env); 2611 } 2612 2613 /* Similar to push_stack(), but for async callbacks */ 2614 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2615 int insn_idx, int prev_insn_idx, 2616 int subprog) 2617 { 2618 struct bpf_verifier_stack_elem *elem; 2619 struct bpf_func_state *frame; 2620 2621 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2622 if (!elem) 2623 goto err; 2624 2625 elem->insn_idx = insn_idx; 2626 elem->prev_insn_idx = prev_insn_idx; 2627 elem->next = env->head; 2628 elem->log_pos = env->log.end_pos; 2629 env->head = elem; 2630 env->stack_size++; 2631 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2632 verbose(env, 2633 "The sequence of %d jumps is too complex for async cb.\n", 2634 env->stack_size); 2635 goto err; 2636 } 2637 /* Unlike push_stack() do not copy_verifier_state(). 2638 * The caller state doesn't matter. 2639 * This is async callback. It starts in a fresh stack. 2640 * Initialize it similar to do_check_common(). 2641 */ 2642 elem->st.branches = 1; 2643 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2644 if (!frame) 2645 goto err; 2646 init_func_state(env, frame, 2647 BPF_MAIN_FUNC /* callsite */, 2648 0 /* frameno within this callchain */, 2649 subprog /* subprog number within this prog */); 2650 elem->st.frame[0] = frame; 2651 return &elem->st; 2652 err: 2653 free_verifier_state(env->cur_state, true); 2654 env->cur_state = NULL; 2655 /* pop all elements and return */ 2656 while (!pop_stack(env, NULL, NULL, false)); 2657 return NULL; 2658 } 2659 2660 2661 enum reg_arg_type { 2662 SRC_OP, /* register is used as source operand */ 2663 DST_OP, /* register is used as destination operand */ 2664 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2665 }; 2666 2667 static int cmp_subprogs(const void *a, const void *b) 2668 { 2669 return ((struct bpf_subprog_info *)a)->start - 2670 ((struct bpf_subprog_info *)b)->start; 2671 } 2672 2673 static int find_subprog(struct bpf_verifier_env *env, int off) 2674 { 2675 struct bpf_subprog_info *p; 2676 2677 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2678 sizeof(env->subprog_info[0]), cmp_subprogs); 2679 if (!p) 2680 return -ENOENT; 2681 return p - env->subprog_info; 2682 2683 } 2684 2685 static int add_subprog(struct bpf_verifier_env *env, int off) 2686 { 2687 int insn_cnt = env->prog->len; 2688 int ret; 2689 2690 if (off >= insn_cnt || off < 0) { 2691 verbose(env, "call to invalid destination\n"); 2692 return -EINVAL; 2693 } 2694 ret = find_subprog(env, off); 2695 if (ret >= 0) 2696 return ret; 2697 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2698 verbose(env, "too many subprograms\n"); 2699 return -E2BIG; 2700 } 2701 /* determine subprog starts. The end is one before the next starts */ 2702 env->subprog_info[env->subprog_cnt++].start = off; 2703 sort(env->subprog_info, env->subprog_cnt, 2704 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2705 return env->subprog_cnt - 1; 2706 } 2707 2708 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2709 { 2710 struct bpf_prog_aux *aux = env->prog->aux; 2711 struct btf *btf = aux->btf; 2712 const struct btf_type *t; 2713 u32 main_btf_id, id; 2714 const char *name; 2715 int ret, i; 2716 2717 /* Non-zero func_info_cnt implies valid btf */ 2718 if (!aux->func_info_cnt) 2719 return 0; 2720 main_btf_id = aux->func_info[0].type_id; 2721 2722 t = btf_type_by_id(btf, main_btf_id); 2723 if (!t) { 2724 verbose(env, "invalid btf id for main subprog in func_info\n"); 2725 return -EINVAL; 2726 } 2727 2728 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2729 if (IS_ERR(name)) { 2730 ret = PTR_ERR(name); 2731 /* If there is no tag present, there is no exception callback */ 2732 if (ret == -ENOENT) 2733 ret = 0; 2734 else if (ret == -EEXIST) 2735 verbose(env, "multiple exception callback tags for main subprog\n"); 2736 return ret; 2737 } 2738 2739 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2740 if (ret < 0) { 2741 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2742 return ret; 2743 } 2744 id = ret; 2745 t = btf_type_by_id(btf, id); 2746 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2747 verbose(env, "exception callback '%s' must have global linkage\n", name); 2748 return -EINVAL; 2749 } 2750 ret = 0; 2751 for (i = 0; i < aux->func_info_cnt; i++) { 2752 if (aux->func_info[i].type_id != id) 2753 continue; 2754 ret = aux->func_info[i].insn_off; 2755 /* Further func_info and subprog checks will also happen 2756 * later, so assume this is the right insn_off for now. 2757 */ 2758 if (!ret) { 2759 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2760 ret = -EINVAL; 2761 } 2762 } 2763 if (!ret) { 2764 verbose(env, "exception callback type id not found in func_info\n"); 2765 ret = -EINVAL; 2766 } 2767 return ret; 2768 } 2769 2770 #define MAX_KFUNC_DESCS 256 2771 #define MAX_KFUNC_BTFS 256 2772 2773 struct bpf_kfunc_desc { 2774 struct btf_func_model func_model; 2775 u32 func_id; 2776 s32 imm; 2777 u16 offset; 2778 unsigned long addr; 2779 }; 2780 2781 struct bpf_kfunc_btf { 2782 struct btf *btf; 2783 struct module *module; 2784 u16 offset; 2785 }; 2786 2787 struct bpf_kfunc_desc_tab { 2788 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2789 * verification. JITs do lookups by bpf_insn, where func_id may not be 2790 * available, therefore at the end of verification do_misc_fixups() 2791 * sorts this by imm and offset. 2792 */ 2793 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2794 u32 nr_descs; 2795 }; 2796 2797 struct bpf_kfunc_btf_tab { 2798 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2799 u32 nr_descs; 2800 }; 2801 2802 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2803 { 2804 const struct bpf_kfunc_desc *d0 = a; 2805 const struct bpf_kfunc_desc *d1 = b; 2806 2807 /* func_id is not greater than BTF_MAX_TYPE */ 2808 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2809 } 2810 2811 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2812 { 2813 const struct bpf_kfunc_btf *d0 = a; 2814 const struct bpf_kfunc_btf *d1 = b; 2815 2816 return d0->offset - d1->offset; 2817 } 2818 2819 static const struct bpf_kfunc_desc * 2820 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2821 { 2822 struct bpf_kfunc_desc desc = { 2823 .func_id = func_id, 2824 .offset = offset, 2825 }; 2826 struct bpf_kfunc_desc_tab *tab; 2827 2828 tab = prog->aux->kfunc_tab; 2829 return bsearch(&desc, tab->descs, tab->nr_descs, 2830 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2831 } 2832 2833 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2834 u16 btf_fd_idx, u8 **func_addr) 2835 { 2836 const struct bpf_kfunc_desc *desc; 2837 2838 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2839 if (!desc) 2840 return -EFAULT; 2841 2842 *func_addr = (u8 *)desc->addr; 2843 return 0; 2844 } 2845 2846 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2847 s16 offset) 2848 { 2849 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2850 struct bpf_kfunc_btf_tab *tab; 2851 struct bpf_kfunc_btf *b; 2852 struct module *mod; 2853 struct btf *btf; 2854 int btf_fd; 2855 2856 tab = env->prog->aux->kfunc_btf_tab; 2857 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2858 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2859 if (!b) { 2860 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2861 verbose(env, "too many different module BTFs\n"); 2862 return ERR_PTR(-E2BIG); 2863 } 2864 2865 if (bpfptr_is_null(env->fd_array)) { 2866 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2867 return ERR_PTR(-EPROTO); 2868 } 2869 2870 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2871 offset * sizeof(btf_fd), 2872 sizeof(btf_fd))) 2873 return ERR_PTR(-EFAULT); 2874 2875 btf = btf_get_by_fd(btf_fd); 2876 if (IS_ERR(btf)) { 2877 verbose(env, "invalid module BTF fd specified\n"); 2878 return btf; 2879 } 2880 2881 if (!btf_is_module(btf)) { 2882 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2883 btf_put(btf); 2884 return ERR_PTR(-EINVAL); 2885 } 2886 2887 mod = btf_try_get_module(btf); 2888 if (!mod) { 2889 btf_put(btf); 2890 return ERR_PTR(-ENXIO); 2891 } 2892 2893 b = &tab->descs[tab->nr_descs++]; 2894 b->btf = btf; 2895 b->module = mod; 2896 b->offset = offset; 2897 2898 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2899 kfunc_btf_cmp_by_off, NULL); 2900 } 2901 return b->btf; 2902 } 2903 2904 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2905 { 2906 if (!tab) 2907 return; 2908 2909 while (tab->nr_descs--) { 2910 module_put(tab->descs[tab->nr_descs].module); 2911 btf_put(tab->descs[tab->nr_descs].btf); 2912 } 2913 kfree(tab); 2914 } 2915 2916 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2917 { 2918 if (offset) { 2919 if (offset < 0) { 2920 /* In the future, this can be allowed to increase limit 2921 * of fd index into fd_array, interpreted as u16. 2922 */ 2923 verbose(env, "negative offset disallowed for kernel module function call\n"); 2924 return ERR_PTR(-EINVAL); 2925 } 2926 2927 return __find_kfunc_desc_btf(env, offset); 2928 } 2929 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2930 } 2931 2932 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2933 { 2934 const struct btf_type *func, *func_proto; 2935 struct bpf_kfunc_btf_tab *btf_tab; 2936 struct bpf_kfunc_desc_tab *tab; 2937 struct bpf_prog_aux *prog_aux; 2938 struct bpf_kfunc_desc *desc; 2939 const char *func_name; 2940 struct btf *desc_btf; 2941 unsigned long call_imm; 2942 unsigned long addr; 2943 int err; 2944 2945 prog_aux = env->prog->aux; 2946 tab = prog_aux->kfunc_tab; 2947 btf_tab = prog_aux->kfunc_btf_tab; 2948 if (!tab) { 2949 if (!btf_vmlinux) { 2950 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2951 return -ENOTSUPP; 2952 } 2953 2954 if (!env->prog->jit_requested) { 2955 verbose(env, "JIT is required for calling kernel function\n"); 2956 return -ENOTSUPP; 2957 } 2958 2959 if (!bpf_jit_supports_kfunc_call()) { 2960 verbose(env, "JIT does not support calling kernel function\n"); 2961 return -ENOTSUPP; 2962 } 2963 2964 if (!env->prog->gpl_compatible) { 2965 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2966 return -EINVAL; 2967 } 2968 2969 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2970 if (!tab) 2971 return -ENOMEM; 2972 prog_aux->kfunc_tab = tab; 2973 } 2974 2975 /* func_id == 0 is always invalid, but instead of returning an error, be 2976 * conservative and wait until the code elimination pass before returning 2977 * error, so that invalid calls that get pruned out can be in BPF programs 2978 * loaded from userspace. It is also required that offset be untouched 2979 * for such calls. 2980 */ 2981 if (!func_id && !offset) 2982 return 0; 2983 2984 if (!btf_tab && offset) { 2985 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2986 if (!btf_tab) 2987 return -ENOMEM; 2988 prog_aux->kfunc_btf_tab = btf_tab; 2989 } 2990 2991 desc_btf = find_kfunc_desc_btf(env, offset); 2992 if (IS_ERR(desc_btf)) { 2993 verbose(env, "failed to find BTF for kernel function\n"); 2994 return PTR_ERR(desc_btf); 2995 } 2996 2997 if (find_kfunc_desc(env->prog, func_id, offset)) 2998 return 0; 2999 3000 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3001 verbose(env, "too many different kernel function calls\n"); 3002 return -E2BIG; 3003 } 3004 3005 func = btf_type_by_id(desc_btf, func_id); 3006 if (!func || !btf_type_is_func(func)) { 3007 verbose(env, "kernel btf_id %u is not a function\n", 3008 func_id); 3009 return -EINVAL; 3010 } 3011 func_proto = btf_type_by_id(desc_btf, func->type); 3012 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3013 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3014 func_id); 3015 return -EINVAL; 3016 } 3017 3018 func_name = btf_name_by_offset(desc_btf, func->name_off); 3019 addr = kallsyms_lookup_name(func_name); 3020 if (!addr) { 3021 verbose(env, "cannot find address for kernel function %s\n", 3022 func_name); 3023 return -EINVAL; 3024 } 3025 specialize_kfunc(env, func_id, offset, &addr); 3026 3027 if (bpf_jit_supports_far_kfunc_call()) { 3028 call_imm = func_id; 3029 } else { 3030 call_imm = BPF_CALL_IMM(addr); 3031 /* Check whether the relative offset overflows desc->imm */ 3032 if ((unsigned long)(s32)call_imm != call_imm) { 3033 verbose(env, "address of kernel function %s is out of range\n", 3034 func_name); 3035 return -EINVAL; 3036 } 3037 } 3038 3039 if (bpf_dev_bound_kfunc_id(func_id)) { 3040 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3041 if (err) 3042 return err; 3043 } 3044 3045 desc = &tab->descs[tab->nr_descs++]; 3046 desc->func_id = func_id; 3047 desc->imm = call_imm; 3048 desc->offset = offset; 3049 desc->addr = addr; 3050 err = btf_distill_func_proto(&env->log, desc_btf, 3051 func_proto, func_name, 3052 &desc->func_model); 3053 if (!err) 3054 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3055 kfunc_desc_cmp_by_id_off, NULL); 3056 return err; 3057 } 3058 3059 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3060 { 3061 const struct bpf_kfunc_desc *d0 = a; 3062 const struct bpf_kfunc_desc *d1 = b; 3063 3064 if (d0->imm != d1->imm) 3065 return d0->imm < d1->imm ? -1 : 1; 3066 if (d0->offset != d1->offset) 3067 return d0->offset < d1->offset ? -1 : 1; 3068 return 0; 3069 } 3070 3071 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3072 { 3073 struct bpf_kfunc_desc_tab *tab; 3074 3075 tab = prog->aux->kfunc_tab; 3076 if (!tab) 3077 return; 3078 3079 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3080 kfunc_desc_cmp_by_imm_off, NULL); 3081 } 3082 3083 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3084 { 3085 return !!prog->aux->kfunc_tab; 3086 } 3087 3088 const struct btf_func_model * 3089 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3090 const struct bpf_insn *insn) 3091 { 3092 const struct bpf_kfunc_desc desc = { 3093 .imm = insn->imm, 3094 .offset = insn->off, 3095 }; 3096 const struct bpf_kfunc_desc *res; 3097 struct bpf_kfunc_desc_tab *tab; 3098 3099 tab = prog->aux->kfunc_tab; 3100 res = bsearch(&desc, tab->descs, tab->nr_descs, 3101 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3102 3103 return res ? &res->func_model : NULL; 3104 } 3105 3106 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3107 { 3108 struct bpf_subprog_info *subprog = env->subprog_info; 3109 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3110 struct bpf_insn *insn = env->prog->insnsi; 3111 3112 /* Add entry function. */ 3113 ret = add_subprog(env, 0); 3114 if (ret) 3115 return ret; 3116 3117 for (i = 0; i < insn_cnt; i++, insn++) { 3118 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3119 !bpf_pseudo_kfunc_call(insn)) 3120 continue; 3121 3122 if (!env->bpf_capable) { 3123 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3124 return -EPERM; 3125 } 3126 3127 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3128 ret = add_subprog(env, i + insn->imm + 1); 3129 else 3130 ret = add_kfunc_call(env, insn->imm, insn->off); 3131 3132 if (ret < 0) 3133 return ret; 3134 } 3135 3136 ret = bpf_find_exception_callback_insn_off(env); 3137 if (ret < 0) 3138 return ret; 3139 ex_cb_insn = ret; 3140 3141 /* If ex_cb_insn > 0, this means that the main program has a subprog 3142 * marked using BTF decl tag to serve as the exception callback. 3143 */ 3144 if (ex_cb_insn) { 3145 ret = add_subprog(env, ex_cb_insn); 3146 if (ret < 0) 3147 return ret; 3148 for (i = 1; i < env->subprog_cnt; i++) { 3149 if (env->subprog_info[i].start != ex_cb_insn) 3150 continue; 3151 env->exception_callback_subprog = i; 3152 break; 3153 } 3154 } 3155 3156 /* Add a fake 'exit' subprog which could simplify subprog iteration 3157 * logic. 'subprog_cnt' should not be increased. 3158 */ 3159 subprog[env->subprog_cnt].start = insn_cnt; 3160 3161 if (env->log.level & BPF_LOG_LEVEL2) 3162 for (i = 0; i < env->subprog_cnt; i++) 3163 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3164 3165 return 0; 3166 } 3167 3168 static int check_subprogs(struct bpf_verifier_env *env) 3169 { 3170 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3171 struct bpf_subprog_info *subprog = env->subprog_info; 3172 struct bpf_insn *insn = env->prog->insnsi; 3173 int insn_cnt = env->prog->len; 3174 3175 /* now check that all jumps are within the same subprog */ 3176 subprog_start = subprog[cur_subprog].start; 3177 subprog_end = subprog[cur_subprog + 1].start; 3178 for (i = 0; i < insn_cnt; i++) { 3179 u8 code = insn[i].code; 3180 3181 if (code == (BPF_JMP | BPF_CALL) && 3182 insn[i].src_reg == 0 && 3183 insn[i].imm == BPF_FUNC_tail_call) 3184 subprog[cur_subprog].has_tail_call = true; 3185 if (BPF_CLASS(code) == BPF_LD && 3186 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3187 subprog[cur_subprog].has_ld_abs = true; 3188 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3189 goto next; 3190 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3191 goto next; 3192 if (code == (BPF_JMP32 | BPF_JA)) 3193 off = i + insn[i].imm + 1; 3194 else 3195 off = i + insn[i].off + 1; 3196 if (off < subprog_start || off >= subprog_end) { 3197 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3198 return -EINVAL; 3199 } 3200 next: 3201 if (i == subprog_end - 1) { 3202 /* to avoid fall-through from one subprog into another 3203 * the last insn of the subprog should be either exit 3204 * or unconditional jump back or bpf_throw call 3205 */ 3206 if (code != (BPF_JMP | BPF_EXIT) && 3207 code != (BPF_JMP32 | BPF_JA) && 3208 code != (BPF_JMP | BPF_JA)) { 3209 verbose(env, "last insn is not an exit or jmp\n"); 3210 return -EINVAL; 3211 } 3212 subprog_start = subprog_end; 3213 cur_subprog++; 3214 if (cur_subprog < env->subprog_cnt) 3215 subprog_end = subprog[cur_subprog + 1].start; 3216 } 3217 } 3218 return 0; 3219 } 3220 3221 /* Parentage chain of this register (or stack slot) should take care of all 3222 * issues like callee-saved registers, stack slot allocation time, etc. 3223 */ 3224 static int mark_reg_read(struct bpf_verifier_env *env, 3225 const struct bpf_reg_state *state, 3226 struct bpf_reg_state *parent, u8 flag) 3227 { 3228 bool writes = parent == state->parent; /* Observe write marks */ 3229 int cnt = 0; 3230 3231 while (parent) { 3232 /* if read wasn't screened by an earlier write ... */ 3233 if (writes && state->live & REG_LIVE_WRITTEN) 3234 break; 3235 if (parent->live & REG_LIVE_DONE) { 3236 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3237 reg_type_str(env, parent->type), 3238 parent->var_off.value, parent->off); 3239 return -EFAULT; 3240 } 3241 /* The first condition is more likely to be true than the 3242 * second, checked it first. 3243 */ 3244 if ((parent->live & REG_LIVE_READ) == flag || 3245 parent->live & REG_LIVE_READ64) 3246 /* The parentage chain never changes and 3247 * this parent was already marked as LIVE_READ. 3248 * There is no need to keep walking the chain again and 3249 * keep re-marking all parents as LIVE_READ. 3250 * This case happens when the same register is read 3251 * multiple times without writes into it in-between. 3252 * Also, if parent has the stronger REG_LIVE_READ64 set, 3253 * then no need to set the weak REG_LIVE_READ32. 3254 */ 3255 break; 3256 /* ... then we depend on parent's value */ 3257 parent->live |= flag; 3258 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3259 if (flag == REG_LIVE_READ64) 3260 parent->live &= ~REG_LIVE_READ32; 3261 state = parent; 3262 parent = state->parent; 3263 writes = true; 3264 cnt++; 3265 } 3266 3267 if (env->longest_mark_read_walk < cnt) 3268 env->longest_mark_read_walk = cnt; 3269 return 0; 3270 } 3271 3272 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3273 { 3274 struct bpf_func_state *state = func(env, reg); 3275 int spi, ret; 3276 3277 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3278 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3279 * check_kfunc_call. 3280 */ 3281 if (reg->type == CONST_PTR_TO_DYNPTR) 3282 return 0; 3283 spi = dynptr_get_spi(env, reg); 3284 if (spi < 0) 3285 return spi; 3286 /* Caller ensures dynptr is valid and initialized, which means spi is in 3287 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3288 * read. 3289 */ 3290 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3291 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3292 if (ret) 3293 return ret; 3294 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3295 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3296 } 3297 3298 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3299 int spi, int nr_slots) 3300 { 3301 struct bpf_func_state *state = func(env, reg); 3302 int err, i; 3303 3304 for (i = 0; i < nr_slots; i++) { 3305 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3306 3307 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3308 if (err) 3309 return err; 3310 3311 mark_stack_slot_scratched(env, spi - i); 3312 } 3313 3314 return 0; 3315 } 3316 3317 /* This function is supposed to be used by the following 32-bit optimization 3318 * code only. It returns TRUE if the source or destination register operates 3319 * on 64-bit, otherwise return FALSE. 3320 */ 3321 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3322 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3323 { 3324 u8 code, class, op; 3325 3326 code = insn->code; 3327 class = BPF_CLASS(code); 3328 op = BPF_OP(code); 3329 if (class == BPF_JMP) { 3330 /* BPF_EXIT for "main" will reach here. Return TRUE 3331 * conservatively. 3332 */ 3333 if (op == BPF_EXIT) 3334 return true; 3335 if (op == BPF_CALL) { 3336 /* BPF to BPF call will reach here because of marking 3337 * caller saved clobber with DST_OP_NO_MARK for which we 3338 * don't care the register def because they are anyway 3339 * marked as NOT_INIT already. 3340 */ 3341 if (insn->src_reg == BPF_PSEUDO_CALL) 3342 return false; 3343 /* Helper call will reach here because of arg type 3344 * check, conservatively return TRUE. 3345 */ 3346 if (t == SRC_OP) 3347 return true; 3348 3349 return false; 3350 } 3351 } 3352 3353 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3354 return false; 3355 3356 if (class == BPF_ALU64 || class == BPF_JMP || 3357 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3358 return true; 3359 3360 if (class == BPF_ALU || class == BPF_JMP32) 3361 return false; 3362 3363 if (class == BPF_LDX) { 3364 if (t != SRC_OP) 3365 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3366 /* LDX source must be ptr. */ 3367 return true; 3368 } 3369 3370 if (class == BPF_STX) { 3371 /* BPF_STX (including atomic variants) has multiple source 3372 * operands, one of which is a ptr. Check whether the caller is 3373 * asking about it. 3374 */ 3375 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3376 return true; 3377 return BPF_SIZE(code) == BPF_DW; 3378 } 3379 3380 if (class == BPF_LD) { 3381 u8 mode = BPF_MODE(code); 3382 3383 /* LD_IMM64 */ 3384 if (mode == BPF_IMM) 3385 return true; 3386 3387 /* Both LD_IND and LD_ABS return 32-bit data. */ 3388 if (t != SRC_OP) 3389 return false; 3390 3391 /* Implicit ctx ptr. */ 3392 if (regno == BPF_REG_6) 3393 return true; 3394 3395 /* Explicit source could be any width. */ 3396 return true; 3397 } 3398 3399 if (class == BPF_ST) 3400 /* The only source register for BPF_ST is a ptr. */ 3401 return true; 3402 3403 /* Conservatively return true at default. */ 3404 return true; 3405 } 3406 3407 /* Return the regno defined by the insn, or -1. */ 3408 static int insn_def_regno(const struct bpf_insn *insn) 3409 { 3410 switch (BPF_CLASS(insn->code)) { 3411 case BPF_JMP: 3412 case BPF_JMP32: 3413 case BPF_ST: 3414 return -1; 3415 case BPF_STX: 3416 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3417 (insn->imm & BPF_FETCH)) { 3418 if (insn->imm == BPF_CMPXCHG) 3419 return BPF_REG_0; 3420 else 3421 return insn->src_reg; 3422 } else { 3423 return -1; 3424 } 3425 default: 3426 return insn->dst_reg; 3427 } 3428 } 3429 3430 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3431 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3432 { 3433 int dst_reg = insn_def_regno(insn); 3434 3435 if (dst_reg == -1) 3436 return false; 3437 3438 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3439 } 3440 3441 static void mark_insn_zext(struct bpf_verifier_env *env, 3442 struct bpf_reg_state *reg) 3443 { 3444 s32 def_idx = reg->subreg_def; 3445 3446 if (def_idx == DEF_NOT_SUBREG) 3447 return; 3448 3449 env->insn_aux_data[def_idx - 1].zext_dst = true; 3450 /* The dst will be zero extended, so won't be sub-register anymore. */ 3451 reg->subreg_def = DEF_NOT_SUBREG; 3452 } 3453 3454 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3455 enum reg_arg_type t) 3456 { 3457 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3458 struct bpf_reg_state *reg; 3459 bool rw64; 3460 3461 if (regno >= MAX_BPF_REG) { 3462 verbose(env, "R%d is invalid\n", regno); 3463 return -EINVAL; 3464 } 3465 3466 mark_reg_scratched(env, regno); 3467 3468 reg = ®s[regno]; 3469 rw64 = is_reg64(env, insn, regno, reg, t); 3470 if (t == SRC_OP) { 3471 /* check whether register used as source operand can be read */ 3472 if (reg->type == NOT_INIT) { 3473 verbose(env, "R%d !read_ok\n", regno); 3474 return -EACCES; 3475 } 3476 /* We don't need to worry about FP liveness because it's read-only */ 3477 if (regno == BPF_REG_FP) 3478 return 0; 3479 3480 if (rw64) 3481 mark_insn_zext(env, reg); 3482 3483 return mark_reg_read(env, reg, reg->parent, 3484 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3485 } else { 3486 /* check whether register used as dest operand can be written to */ 3487 if (regno == BPF_REG_FP) { 3488 verbose(env, "frame pointer is read only\n"); 3489 return -EACCES; 3490 } 3491 reg->live |= REG_LIVE_WRITTEN; 3492 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3493 if (t == DST_OP) 3494 mark_reg_unknown(env, regs, regno); 3495 } 3496 return 0; 3497 } 3498 3499 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3500 enum reg_arg_type t) 3501 { 3502 struct bpf_verifier_state *vstate = env->cur_state; 3503 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3504 3505 return __check_reg_arg(env, state->regs, regno, t); 3506 } 3507 3508 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3509 { 3510 env->insn_aux_data[idx].jmp_point = true; 3511 } 3512 3513 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3514 { 3515 return env->insn_aux_data[insn_idx].jmp_point; 3516 } 3517 3518 /* for any branch, call, exit record the history of jmps in the given state */ 3519 static int push_jmp_history(struct bpf_verifier_env *env, 3520 struct bpf_verifier_state *cur) 3521 { 3522 u32 cnt = cur->jmp_history_cnt; 3523 struct bpf_idx_pair *p; 3524 size_t alloc_size; 3525 3526 if (!is_jmp_point(env, env->insn_idx)) 3527 return 0; 3528 3529 cnt++; 3530 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3531 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3532 if (!p) 3533 return -ENOMEM; 3534 p[cnt - 1].idx = env->insn_idx; 3535 p[cnt - 1].prev_idx = env->prev_insn_idx; 3536 cur->jmp_history = p; 3537 cur->jmp_history_cnt = cnt; 3538 return 0; 3539 } 3540 3541 /* Backtrack one insn at a time. If idx is not at the top of recorded 3542 * history then previous instruction came from straight line execution. 3543 * Return -ENOENT if we exhausted all instructions within given state. 3544 * 3545 * It's legal to have a bit of a looping with the same starting and ending 3546 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3547 * instruction index is the same as state's first_idx doesn't mean we are 3548 * done. If there is still some jump history left, we should keep going. We 3549 * need to take into account that we might have a jump history between given 3550 * state's parent and itself, due to checkpointing. In this case, we'll have 3551 * history entry recording a jump from last instruction of parent state and 3552 * first instruction of given state. 3553 */ 3554 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3555 u32 *history) 3556 { 3557 u32 cnt = *history; 3558 3559 if (i == st->first_insn_idx) { 3560 if (cnt == 0) 3561 return -ENOENT; 3562 if (cnt == 1 && st->jmp_history[0].idx == i) 3563 return -ENOENT; 3564 } 3565 3566 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3567 i = st->jmp_history[cnt - 1].prev_idx; 3568 (*history)--; 3569 } else { 3570 i--; 3571 } 3572 return i; 3573 } 3574 3575 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3576 { 3577 const struct btf_type *func; 3578 struct btf *desc_btf; 3579 3580 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3581 return NULL; 3582 3583 desc_btf = find_kfunc_desc_btf(data, insn->off); 3584 if (IS_ERR(desc_btf)) 3585 return "<error>"; 3586 3587 func = btf_type_by_id(desc_btf, insn->imm); 3588 return btf_name_by_offset(desc_btf, func->name_off); 3589 } 3590 3591 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3592 { 3593 bt->frame = frame; 3594 } 3595 3596 static inline void bt_reset(struct backtrack_state *bt) 3597 { 3598 struct bpf_verifier_env *env = bt->env; 3599 3600 memset(bt, 0, sizeof(*bt)); 3601 bt->env = env; 3602 } 3603 3604 static inline u32 bt_empty(struct backtrack_state *bt) 3605 { 3606 u64 mask = 0; 3607 int i; 3608 3609 for (i = 0; i <= bt->frame; i++) 3610 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3611 3612 return mask == 0; 3613 } 3614 3615 static inline int bt_subprog_enter(struct backtrack_state *bt) 3616 { 3617 if (bt->frame == MAX_CALL_FRAMES - 1) { 3618 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3619 WARN_ONCE(1, "verifier backtracking bug"); 3620 return -EFAULT; 3621 } 3622 bt->frame++; 3623 return 0; 3624 } 3625 3626 static inline int bt_subprog_exit(struct backtrack_state *bt) 3627 { 3628 if (bt->frame == 0) { 3629 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3630 WARN_ONCE(1, "verifier backtracking bug"); 3631 return -EFAULT; 3632 } 3633 bt->frame--; 3634 return 0; 3635 } 3636 3637 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3638 { 3639 bt->reg_masks[frame] |= 1 << reg; 3640 } 3641 3642 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3643 { 3644 bt->reg_masks[frame] &= ~(1 << reg); 3645 } 3646 3647 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3648 { 3649 bt_set_frame_reg(bt, bt->frame, reg); 3650 } 3651 3652 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3653 { 3654 bt_clear_frame_reg(bt, bt->frame, reg); 3655 } 3656 3657 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3658 { 3659 bt->stack_masks[frame] |= 1ull << slot; 3660 } 3661 3662 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3663 { 3664 bt->stack_masks[frame] &= ~(1ull << slot); 3665 } 3666 3667 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3668 { 3669 bt_set_frame_slot(bt, bt->frame, slot); 3670 } 3671 3672 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3673 { 3674 bt_clear_frame_slot(bt, bt->frame, slot); 3675 } 3676 3677 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3678 { 3679 return bt->reg_masks[frame]; 3680 } 3681 3682 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3683 { 3684 return bt->reg_masks[bt->frame]; 3685 } 3686 3687 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3688 { 3689 return bt->stack_masks[frame]; 3690 } 3691 3692 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3693 { 3694 return bt->stack_masks[bt->frame]; 3695 } 3696 3697 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3698 { 3699 return bt->reg_masks[bt->frame] & (1 << reg); 3700 } 3701 3702 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3703 { 3704 return bt->stack_masks[bt->frame] & (1ull << slot); 3705 } 3706 3707 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3708 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3709 { 3710 DECLARE_BITMAP(mask, 64); 3711 bool first = true; 3712 int i, n; 3713 3714 buf[0] = '\0'; 3715 3716 bitmap_from_u64(mask, reg_mask); 3717 for_each_set_bit(i, mask, 32) { 3718 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3719 first = false; 3720 buf += n; 3721 buf_sz -= n; 3722 if (buf_sz < 0) 3723 break; 3724 } 3725 } 3726 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3727 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3728 { 3729 DECLARE_BITMAP(mask, 64); 3730 bool first = true; 3731 int i, n; 3732 3733 buf[0] = '\0'; 3734 3735 bitmap_from_u64(mask, stack_mask); 3736 for_each_set_bit(i, mask, 64) { 3737 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3738 first = false; 3739 buf += n; 3740 buf_sz -= n; 3741 if (buf_sz < 0) 3742 break; 3743 } 3744 } 3745 3746 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3747 3748 /* For given verifier state backtrack_insn() is called from the last insn to 3749 * the first insn. Its purpose is to compute a bitmask of registers and 3750 * stack slots that needs precision in the parent verifier state. 3751 * 3752 * @idx is an index of the instruction we are currently processing; 3753 * @subseq_idx is an index of the subsequent instruction that: 3754 * - *would be* executed next, if jump history is viewed in forward order; 3755 * - *was* processed previously during backtracking. 3756 */ 3757 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3758 struct backtrack_state *bt) 3759 { 3760 const struct bpf_insn_cbs cbs = { 3761 .cb_call = disasm_kfunc_name, 3762 .cb_print = verbose, 3763 .private_data = env, 3764 }; 3765 struct bpf_insn *insn = env->prog->insnsi + idx; 3766 u8 class = BPF_CLASS(insn->code); 3767 u8 opcode = BPF_OP(insn->code); 3768 u8 mode = BPF_MODE(insn->code); 3769 u32 dreg = insn->dst_reg; 3770 u32 sreg = insn->src_reg; 3771 u32 spi, i; 3772 3773 if (insn->code == 0) 3774 return 0; 3775 if (env->log.level & BPF_LOG_LEVEL2) { 3776 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3777 verbose(env, "mark_precise: frame%d: regs=%s ", 3778 bt->frame, env->tmp_str_buf); 3779 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3780 verbose(env, "stack=%s before ", env->tmp_str_buf); 3781 verbose(env, "%d: ", idx); 3782 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3783 } 3784 3785 if (class == BPF_ALU || class == BPF_ALU64) { 3786 if (!bt_is_reg_set(bt, dreg)) 3787 return 0; 3788 if (opcode == BPF_END || opcode == BPF_NEG) { 3789 /* sreg is reserved and unused 3790 * dreg still need precision before this insn 3791 */ 3792 return 0; 3793 } else if (opcode == BPF_MOV) { 3794 if (BPF_SRC(insn->code) == BPF_X) { 3795 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3796 * dreg needs precision after this insn 3797 * sreg needs precision before this insn 3798 */ 3799 bt_clear_reg(bt, dreg); 3800 bt_set_reg(bt, sreg); 3801 } else { 3802 /* dreg = K 3803 * dreg needs precision after this insn. 3804 * Corresponding register is already marked 3805 * as precise=true in this verifier state. 3806 * No further markings in parent are necessary 3807 */ 3808 bt_clear_reg(bt, dreg); 3809 } 3810 } else { 3811 if (BPF_SRC(insn->code) == BPF_X) { 3812 /* dreg += sreg 3813 * both dreg and sreg need precision 3814 * before this insn 3815 */ 3816 bt_set_reg(bt, sreg); 3817 } /* else dreg += K 3818 * dreg still needs precision before this insn 3819 */ 3820 } 3821 } else if (class == BPF_LDX) { 3822 if (!bt_is_reg_set(bt, dreg)) 3823 return 0; 3824 bt_clear_reg(bt, dreg); 3825 3826 /* scalars can only be spilled into stack w/o losing precision. 3827 * Load from any other memory can be zero extended. 3828 * The desire to keep that precision is already indicated 3829 * by 'precise' mark in corresponding register of this state. 3830 * No further tracking necessary. 3831 */ 3832 if (insn->src_reg != BPF_REG_FP) 3833 return 0; 3834 3835 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3836 * that [fp - off] slot contains scalar that needs to be 3837 * tracked with precision 3838 */ 3839 spi = (-insn->off - 1) / BPF_REG_SIZE; 3840 if (spi >= 64) { 3841 verbose(env, "BUG spi %d\n", spi); 3842 WARN_ONCE(1, "verifier backtracking bug"); 3843 return -EFAULT; 3844 } 3845 bt_set_slot(bt, spi); 3846 } else if (class == BPF_STX || class == BPF_ST) { 3847 if (bt_is_reg_set(bt, dreg)) 3848 /* stx & st shouldn't be using _scalar_ dst_reg 3849 * to access memory. It means backtracking 3850 * encountered a case of pointer subtraction. 3851 */ 3852 return -ENOTSUPP; 3853 /* scalars can only be spilled into stack */ 3854 if (insn->dst_reg != BPF_REG_FP) 3855 return 0; 3856 spi = (-insn->off - 1) / BPF_REG_SIZE; 3857 if (spi >= 64) { 3858 verbose(env, "BUG spi %d\n", spi); 3859 WARN_ONCE(1, "verifier backtracking bug"); 3860 return -EFAULT; 3861 } 3862 if (!bt_is_slot_set(bt, spi)) 3863 return 0; 3864 bt_clear_slot(bt, spi); 3865 if (class == BPF_STX) 3866 bt_set_reg(bt, sreg); 3867 } else if (class == BPF_JMP || class == BPF_JMP32) { 3868 if (bpf_pseudo_call(insn)) { 3869 int subprog_insn_idx, subprog; 3870 3871 subprog_insn_idx = idx + insn->imm + 1; 3872 subprog = find_subprog(env, subprog_insn_idx); 3873 if (subprog < 0) 3874 return -EFAULT; 3875 3876 if (subprog_is_global(env, subprog)) { 3877 /* check that jump history doesn't have any 3878 * extra instructions from subprog; the next 3879 * instruction after call to global subprog 3880 * should be literally next instruction in 3881 * caller program 3882 */ 3883 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3884 /* r1-r5 are invalidated after subprog call, 3885 * so for global func call it shouldn't be set 3886 * anymore 3887 */ 3888 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3889 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3890 WARN_ONCE(1, "verifier backtracking bug"); 3891 return -EFAULT; 3892 } 3893 /* global subprog always sets R0 */ 3894 bt_clear_reg(bt, BPF_REG_0); 3895 return 0; 3896 } else { 3897 /* static subprog call instruction, which 3898 * means that we are exiting current subprog, 3899 * so only r1-r5 could be still requested as 3900 * precise, r0 and r6-r10 or any stack slot in 3901 * the current frame should be zero by now 3902 */ 3903 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3904 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3905 WARN_ONCE(1, "verifier backtracking bug"); 3906 return -EFAULT; 3907 } 3908 /* we don't track register spills perfectly, 3909 * so fallback to force-precise instead of failing */ 3910 if (bt_stack_mask(bt) != 0) 3911 return -ENOTSUPP; 3912 /* propagate r1-r5 to the caller */ 3913 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3914 if (bt_is_reg_set(bt, i)) { 3915 bt_clear_reg(bt, i); 3916 bt_set_frame_reg(bt, bt->frame - 1, i); 3917 } 3918 } 3919 if (bt_subprog_exit(bt)) 3920 return -EFAULT; 3921 return 0; 3922 } 3923 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3924 /* exit from callback subprog to callback-calling helper or 3925 * kfunc call. Use idx/subseq_idx check to discern it from 3926 * straight line code backtracking. 3927 * Unlike the subprog call handling above, we shouldn't 3928 * propagate precision of r1-r5 (if any requested), as they are 3929 * not actually arguments passed directly to callback subprogs 3930 */ 3931 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3932 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3933 WARN_ONCE(1, "verifier backtracking bug"); 3934 return -EFAULT; 3935 } 3936 if (bt_stack_mask(bt) != 0) 3937 return -ENOTSUPP; 3938 /* clear r1-r5 in callback subprog's mask */ 3939 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3940 bt_clear_reg(bt, i); 3941 if (bt_subprog_exit(bt)) 3942 return -EFAULT; 3943 return 0; 3944 } else if (opcode == BPF_CALL) { 3945 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3946 * catch this error later. Make backtracking conservative 3947 * with ENOTSUPP. 3948 */ 3949 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3950 return -ENOTSUPP; 3951 /* regular helper call sets R0 */ 3952 bt_clear_reg(bt, BPF_REG_0); 3953 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3954 /* if backtracing was looking for registers R1-R5 3955 * they should have been found already. 3956 */ 3957 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3958 WARN_ONCE(1, "verifier backtracking bug"); 3959 return -EFAULT; 3960 } 3961 } else if (opcode == BPF_EXIT) { 3962 bool r0_precise; 3963 3964 /* Backtracking to a nested function call, 'idx' is a part of 3965 * the inner frame 'subseq_idx' is a part of the outer frame. 3966 * In case of a regular function call, instructions giving 3967 * precision to registers R1-R5 should have been found already. 3968 * In case of a callback, it is ok to have R1-R5 marked for 3969 * backtracking, as these registers are set by the function 3970 * invoking callback. 3971 */ 3972 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3973 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3974 bt_clear_reg(bt, i); 3975 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3976 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3977 WARN_ONCE(1, "verifier backtracking bug"); 3978 return -EFAULT; 3979 } 3980 3981 /* BPF_EXIT in subprog or callback always returns 3982 * right after the call instruction, so by checking 3983 * whether the instruction at subseq_idx-1 is subprog 3984 * call or not we can distinguish actual exit from 3985 * *subprog* from exit from *callback*. In the former 3986 * case, we need to propagate r0 precision, if 3987 * necessary. In the former we never do that. 3988 */ 3989 r0_precise = subseq_idx - 1 >= 0 && 3990 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3991 bt_is_reg_set(bt, BPF_REG_0); 3992 3993 bt_clear_reg(bt, BPF_REG_0); 3994 if (bt_subprog_enter(bt)) 3995 return -EFAULT; 3996 3997 if (r0_precise) 3998 bt_set_reg(bt, BPF_REG_0); 3999 /* r6-r9 and stack slots will stay set in caller frame 4000 * bitmasks until we return back from callee(s) 4001 */ 4002 return 0; 4003 } else if (BPF_SRC(insn->code) == BPF_X) { 4004 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4005 return 0; 4006 /* dreg <cond> sreg 4007 * Both dreg and sreg need precision before 4008 * this insn. If only sreg was marked precise 4009 * before it would be equally necessary to 4010 * propagate it to dreg. 4011 */ 4012 bt_set_reg(bt, dreg); 4013 bt_set_reg(bt, sreg); 4014 /* else dreg <cond> K 4015 * Only dreg still needs precision before 4016 * this insn, so for the K-based conditional 4017 * there is nothing new to be marked. 4018 */ 4019 } 4020 } else if (class == BPF_LD) { 4021 if (!bt_is_reg_set(bt, dreg)) 4022 return 0; 4023 bt_clear_reg(bt, dreg); 4024 /* It's ld_imm64 or ld_abs or ld_ind. 4025 * For ld_imm64 no further tracking of precision 4026 * into parent is necessary 4027 */ 4028 if (mode == BPF_IND || mode == BPF_ABS) 4029 /* to be analyzed */ 4030 return -ENOTSUPP; 4031 } 4032 return 0; 4033 } 4034 4035 /* the scalar precision tracking algorithm: 4036 * . at the start all registers have precise=false. 4037 * . scalar ranges are tracked as normal through alu and jmp insns. 4038 * . once precise value of the scalar register is used in: 4039 * . ptr + scalar alu 4040 * . if (scalar cond K|scalar) 4041 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4042 * backtrack through the verifier states and mark all registers and 4043 * stack slots with spilled constants that these scalar regisers 4044 * should be precise. 4045 * . during state pruning two registers (or spilled stack slots) 4046 * are equivalent if both are not precise. 4047 * 4048 * Note the verifier cannot simply walk register parentage chain, 4049 * since many different registers and stack slots could have been 4050 * used to compute single precise scalar. 4051 * 4052 * The approach of starting with precise=true for all registers and then 4053 * backtrack to mark a register as not precise when the verifier detects 4054 * that program doesn't care about specific value (e.g., when helper 4055 * takes register as ARG_ANYTHING parameter) is not safe. 4056 * 4057 * It's ok to walk single parentage chain of the verifier states. 4058 * It's possible that this backtracking will go all the way till 1st insn. 4059 * All other branches will be explored for needing precision later. 4060 * 4061 * The backtracking needs to deal with cases like: 4062 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4063 * r9 -= r8 4064 * r5 = r9 4065 * if r5 > 0x79f goto pc+7 4066 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4067 * r5 += 1 4068 * ... 4069 * call bpf_perf_event_output#25 4070 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4071 * 4072 * and this case: 4073 * r6 = 1 4074 * call foo // uses callee's r6 inside to compute r0 4075 * r0 += r6 4076 * if r0 == 0 goto 4077 * 4078 * to track above reg_mask/stack_mask needs to be independent for each frame. 4079 * 4080 * Also if parent's curframe > frame where backtracking started, 4081 * the verifier need to mark registers in both frames, otherwise callees 4082 * may incorrectly prune callers. This is similar to 4083 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4084 * 4085 * For now backtracking falls back into conservative marking. 4086 */ 4087 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4088 struct bpf_verifier_state *st) 4089 { 4090 struct bpf_func_state *func; 4091 struct bpf_reg_state *reg; 4092 int i, j; 4093 4094 if (env->log.level & BPF_LOG_LEVEL2) { 4095 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4096 st->curframe); 4097 } 4098 4099 /* big hammer: mark all scalars precise in this path. 4100 * pop_stack may still get !precise scalars. 4101 * We also skip current state and go straight to first parent state, 4102 * because precision markings in current non-checkpointed state are 4103 * not needed. See why in the comment in __mark_chain_precision below. 4104 */ 4105 for (st = st->parent; st; st = st->parent) { 4106 for (i = 0; i <= st->curframe; i++) { 4107 func = st->frame[i]; 4108 for (j = 0; j < BPF_REG_FP; j++) { 4109 reg = &func->regs[j]; 4110 if (reg->type != SCALAR_VALUE || reg->precise) 4111 continue; 4112 reg->precise = true; 4113 if (env->log.level & BPF_LOG_LEVEL2) { 4114 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4115 i, j); 4116 } 4117 } 4118 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4119 if (!is_spilled_reg(&func->stack[j])) 4120 continue; 4121 reg = &func->stack[j].spilled_ptr; 4122 if (reg->type != SCALAR_VALUE || reg->precise) 4123 continue; 4124 reg->precise = true; 4125 if (env->log.level & BPF_LOG_LEVEL2) { 4126 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4127 i, -(j + 1) * 8); 4128 } 4129 } 4130 } 4131 } 4132 } 4133 4134 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4135 { 4136 struct bpf_func_state *func; 4137 struct bpf_reg_state *reg; 4138 int i, j; 4139 4140 for (i = 0; i <= st->curframe; i++) { 4141 func = st->frame[i]; 4142 for (j = 0; j < BPF_REG_FP; j++) { 4143 reg = &func->regs[j]; 4144 if (reg->type != SCALAR_VALUE) 4145 continue; 4146 reg->precise = false; 4147 } 4148 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4149 if (!is_spilled_reg(&func->stack[j])) 4150 continue; 4151 reg = &func->stack[j].spilled_ptr; 4152 if (reg->type != SCALAR_VALUE) 4153 continue; 4154 reg->precise = false; 4155 } 4156 } 4157 } 4158 4159 static bool idset_contains(struct bpf_idset *s, u32 id) 4160 { 4161 u32 i; 4162 4163 for (i = 0; i < s->count; ++i) 4164 if (s->ids[i] == id) 4165 return true; 4166 4167 return false; 4168 } 4169 4170 static int idset_push(struct bpf_idset *s, u32 id) 4171 { 4172 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4173 return -EFAULT; 4174 s->ids[s->count++] = id; 4175 return 0; 4176 } 4177 4178 static void idset_reset(struct bpf_idset *s) 4179 { 4180 s->count = 0; 4181 } 4182 4183 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4184 * Mark all registers with these IDs as precise. 4185 */ 4186 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4187 { 4188 struct bpf_idset *precise_ids = &env->idset_scratch; 4189 struct backtrack_state *bt = &env->bt; 4190 struct bpf_func_state *func; 4191 struct bpf_reg_state *reg; 4192 DECLARE_BITMAP(mask, 64); 4193 int i, fr; 4194 4195 idset_reset(precise_ids); 4196 4197 for (fr = bt->frame; fr >= 0; fr--) { 4198 func = st->frame[fr]; 4199 4200 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4201 for_each_set_bit(i, mask, 32) { 4202 reg = &func->regs[i]; 4203 if (!reg->id || reg->type != SCALAR_VALUE) 4204 continue; 4205 if (idset_push(precise_ids, reg->id)) 4206 return -EFAULT; 4207 } 4208 4209 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4210 for_each_set_bit(i, mask, 64) { 4211 if (i >= func->allocated_stack / BPF_REG_SIZE) 4212 break; 4213 if (!is_spilled_scalar_reg(&func->stack[i])) 4214 continue; 4215 reg = &func->stack[i].spilled_ptr; 4216 if (!reg->id) 4217 continue; 4218 if (idset_push(precise_ids, reg->id)) 4219 return -EFAULT; 4220 } 4221 } 4222 4223 for (fr = 0; fr <= st->curframe; ++fr) { 4224 func = st->frame[fr]; 4225 4226 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4227 reg = &func->regs[i]; 4228 if (!reg->id) 4229 continue; 4230 if (!idset_contains(precise_ids, reg->id)) 4231 continue; 4232 bt_set_frame_reg(bt, fr, i); 4233 } 4234 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4235 if (!is_spilled_scalar_reg(&func->stack[i])) 4236 continue; 4237 reg = &func->stack[i].spilled_ptr; 4238 if (!reg->id) 4239 continue; 4240 if (!idset_contains(precise_ids, reg->id)) 4241 continue; 4242 bt_set_frame_slot(bt, fr, i); 4243 } 4244 } 4245 4246 return 0; 4247 } 4248 4249 /* 4250 * __mark_chain_precision() backtracks BPF program instruction sequence and 4251 * chain of verifier states making sure that register *regno* (if regno >= 0) 4252 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4253 * SCALARS, as well as any other registers and slots that contribute to 4254 * a tracked state of given registers/stack slots, depending on specific BPF 4255 * assembly instructions (see backtrack_insns() for exact instruction handling 4256 * logic). This backtracking relies on recorded jmp_history and is able to 4257 * traverse entire chain of parent states. This process ends only when all the 4258 * necessary registers/slots and their transitive dependencies are marked as 4259 * precise. 4260 * 4261 * One important and subtle aspect is that precise marks *do not matter* in 4262 * the currently verified state (current state). It is important to understand 4263 * why this is the case. 4264 * 4265 * First, note that current state is the state that is not yet "checkpointed", 4266 * i.e., it is not yet put into env->explored_states, and it has no children 4267 * states as well. It's ephemeral, and can end up either a) being discarded if 4268 * compatible explored state is found at some point or BPF_EXIT instruction is 4269 * reached or b) checkpointed and put into env->explored_states, branching out 4270 * into one or more children states. 4271 * 4272 * In the former case, precise markings in current state are completely 4273 * ignored by state comparison code (see regsafe() for details). Only 4274 * checkpointed ("old") state precise markings are important, and if old 4275 * state's register/slot is precise, regsafe() assumes current state's 4276 * register/slot as precise and checks value ranges exactly and precisely. If 4277 * states turn out to be compatible, current state's necessary precise 4278 * markings and any required parent states' precise markings are enforced 4279 * after the fact with propagate_precision() logic, after the fact. But it's 4280 * important to realize that in this case, even after marking current state 4281 * registers/slots as precise, we immediately discard current state. So what 4282 * actually matters is any of the precise markings propagated into current 4283 * state's parent states, which are always checkpointed (due to b) case above). 4284 * As such, for scenario a) it doesn't matter if current state has precise 4285 * markings set or not. 4286 * 4287 * Now, for the scenario b), checkpointing and forking into child(ren) 4288 * state(s). Note that before current state gets to checkpointing step, any 4289 * processed instruction always assumes precise SCALAR register/slot 4290 * knowledge: if precise value or range is useful to prune jump branch, BPF 4291 * verifier takes this opportunity enthusiastically. Similarly, when 4292 * register's value is used to calculate offset or memory address, exact 4293 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4294 * what we mentioned above about state comparison ignoring precise markings 4295 * during state comparison, BPF verifier ignores and also assumes precise 4296 * markings *at will* during instruction verification process. But as verifier 4297 * assumes precision, it also propagates any precision dependencies across 4298 * parent states, which are not yet finalized, so can be further restricted 4299 * based on new knowledge gained from restrictions enforced by their children 4300 * states. This is so that once those parent states are finalized, i.e., when 4301 * they have no more active children state, state comparison logic in 4302 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4303 * required for correctness. 4304 * 4305 * To build a bit more intuition, note also that once a state is checkpointed, 4306 * the path we took to get to that state is not important. This is crucial 4307 * property for state pruning. When state is checkpointed and finalized at 4308 * some instruction index, it can be correctly and safely used to "short 4309 * circuit" any *compatible* state that reaches exactly the same instruction 4310 * index. I.e., if we jumped to that instruction from a completely different 4311 * code path than original finalized state was derived from, it doesn't 4312 * matter, current state can be discarded because from that instruction 4313 * forward having a compatible state will ensure we will safely reach the 4314 * exit. States describe preconditions for further exploration, but completely 4315 * forget the history of how we got here. 4316 * 4317 * This also means that even if we needed precise SCALAR range to get to 4318 * finalized state, but from that point forward *that same* SCALAR register is 4319 * never used in a precise context (i.e., it's precise value is not needed for 4320 * correctness), it's correct and safe to mark such register as "imprecise" 4321 * (i.e., precise marking set to false). This is what we rely on when we do 4322 * not set precise marking in current state. If no child state requires 4323 * precision for any given SCALAR register, it's safe to dictate that it can 4324 * be imprecise. If any child state does require this register to be precise, 4325 * we'll mark it precise later retroactively during precise markings 4326 * propagation from child state to parent states. 4327 * 4328 * Skipping precise marking setting in current state is a mild version of 4329 * relying on the above observation. But we can utilize this property even 4330 * more aggressively by proactively forgetting any precise marking in the 4331 * current state (which we inherited from the parent state), right before we 4332 * checkpoint it and branch off into new child state. This is done by 4333 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4334 * finalized states which help in short circuiting more future states. 4335 */ 4336 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4337 { 4338 struct backtrack_state *bt = &env->bt; 4339 struct bpf_verifier_state *st = env->cur_state; 4340 int first_idx = st->first_insn_idx; 4341 int last_idx = env->insn_idx; 4342 int subseq_idx = -1; 4343 struct bpf_func_state *func; 4344 struct bpf_reg_state *reg; 4345 bool skip_first = true; 4346 int i, fr, err; 4347 4348 if (!env->bpf_capable) 4349 return 0; 4350 4351 /* set frame number from which we are starting to backtrack */ 4352 bt_init(bt, env->cur_state->curframe); 4353 4354 /* Do sanity checks against current state of register and/or stack 4355 * slot, but don't set precise flag in current state, as precision 4356 * tracking in the current state is unnecessary. 4357 */ 4358 func = st->frame[bt->frame]; 4359 if (regno >= 0) { 4360 reg = &func->regs[regno]; 4361 if (reg->type != SCALAR_VALUE) { 4362 WARN_ONCE(1, "backtracing misuse"); 4363 return -EFAULT; 4364 } 4365 bt_set_reg(bt, regno); 4366 } 4367 4368 if (bt_empty(bt)) 4369 return 0; 4370 4371 for (;;) { 4372 DECLARE_BITMAP(mask, 64); 4373 u32 history = st->jmp_history_cnt; 4374 4375 if (env->log.level & BPF_LOG_LEVEL2) { 4376 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4377 bt->frame, last_idx, first_idx, subseq_idx); 4378 } 4379 4380 /* If some register with scalar ID is marked as precise, 4381 * make sure that all registers sharing this ID are also precise. 4382 * This is needed to estimate effect of find_equal_scalars(). 4383 * Do this at the last instruction of each state, 4384 * bpf_reg_state::id fields are valid for these instructions. 4385 * 4386 * Allows to track precision in situation like below: 4387 * 4388 * r2 = unknown value 4389 * ... 4390 * --- state #0 --- 4391 * ... 4392 * r1 = r2 // r1 and r2 now share the same ID 4393 * ... 4394 * --- state #1 {r1.id = A, r2.id = A} --- 4395 * ... 4396 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4397 * ... 4398 * --- state #2 {r1.id = A, r2.id = A} --- 4399 * r3 = r10 4400 * r3 += r1 // need to mark both r1 and r2 4401 */ 4402 if (mark_precise_scalar_ids(env, st)) 4403 return -EFAULT; 4404 4405 if (last_idx < 0) { 4406 /* we are at the entry into subprog, which 4407 * is expected for global funcs, but only if 4408 * requested precise registers are R1-R5 4409 * (which are global func's input arguments) 4410 */ 4411 if (st->curframe == 0 && 4412 st->frame[0]->subprogno > 0 && 4413 st->frame[0]->callsite == BPF_MAIN_FUNC && 4414 bt_stack_mask(bt) == 0 && 4415 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4416 bitmap_from_u64(mask, bt_reg_mask(bt)); 4417 for_each_set_bit(i, mask, 32) { 4418 reg = &st->frame[0]->regs[i]; 4419 bt_clear_reg(bt, i); 4420 if (reg->type == SCALAR_VALUE) 4421 reg->precise = true; 4422 } 4423 return 0; 4424 } 4425 4426 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4427 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4428 WARN_ONCE(1, "verifier backtracking bug"); 4429 return -EFAULT; 4430 } 4431 4432 for (i = last_idx;;) { 4433 if (skip_first) { 4434 err = 0; 4435 skip_first = false; 4436 } else { 4437 err = backtrack_insn(env, i, subseq_idx, bt); 4438 } 4439 if (err == -ENOTSUPP) { 4440 mark_all_scalars_precise(env, env->cur_state); 4441 bt_reset(bt); 4442 return 0; 4443 } else if (err) { 4444 return err; 4445 } 4446 if (bt_empty(bt)) 4447 /* Found assignment(s) into tracked register in this state. 4448 * Since this state is already marked, just return. 4449 * Nothing to be tracked further in the parent state. 4450 */ 4451 return 0; 4452 subseq_idx = i; 4453 i = get_prev_insn_idx(st, i, &history); 4454 if (i == -ENOENT) 4455 break; 4456 if (i >= env->prog->len) { 4457 /* This can happen if backtracking reached insn 0 4458 * and there are still reg_mask or stack_mask 4459 * to backtrack. 4460 * It means the backtracking missed the spot where 4461 * particular register was initialized with a constant. 4462 */ 4463 verbose(env, "BUG backtracking idx %d\n", i); 4464 WARN_ONCE(1, "verifier backtracking bug"); 4465 return -EFAULT; 4466 } 4467 } 4468 st = st->parent; 4469 if (!st) 4470 break; 4471 4472 for (fr = bt->frame; fr >= 0; fr--) { 4473 func = st->frame[fr]; 4474 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4475 for_each_set_bit(i, mask, 32) { 4476 reg = &func->regs[i]; 4477 if (reg->type != SCALAR_VALUE) { 4478 bt_clear_frame_reg(bt, fr, i); 4479 continue; 4480 } 4481 if (reg->precise) 4482 bt_clear_frame_reg(bt, fr, i); 4483 else 4484 reg->precise = true; 4485 } 4486 4487 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4488 for_each_set_bit(i, mask, 64) { 4489 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4490 /* the sequence of instructions: 4491 * 2: (bf) r3 = r10 4492 * 3: (7b) *(u64 *)(r3 -8) = r0 4493 * 4: (79) r4 = *(u64 *)(r10 -8) 4494 * doesn't contain jmps. It's backtracked 4495 * as a single block. 4496 * During backtracking insn 3 is not recognized as 4497 * stack access, so at the end of backtracking 4498 * stack slot fp-8 is still marked in stack_mask. 4499 * However the parent state may not have accessed 4500 * fp-8 and it's "unallocated" stack space. 4501 * In such case fallback to conservative. 4502 */ 4503 mark_all_scalars_precise(env, env->cur_state); 4504 bt_reset(bt); 4505 return 0; 4506 } 4507 4508 if (!is_spilled_scalar_reg(&func->stack[i])) { 4509 bt_clear_frame_slot(bt, fr, i); 4510 continue; 4511 } 4512 reg = &func->stack[i].spilled_ptr; 4513 if (reg->precise) 4514 bt_clear_frame_slot(bt, fr, i); 4515 else 4516 reg->precise = true; 4517 } 4518 if (env->log.level & BPF_LOG_LEVEL2) { 4519 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4520 bt_frame_reg_mask(bt, fr)); 4521 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4522 fr, env->tmp_str_buf); 4523 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4524 bt_frame_stack_mask(bt, fr)); 4525 verbose(env, "stack=%s: ", env->tmp_str_buf); 4526 print_verifier_state(env, func, true); 4527 } 4528 } 4529 4530 if (bt_empty(bt)) 4531 return 0; 4532 4533 subseq_idx = first_idx; 4534 last_idx = st->last_insn_idx; 4535 first_idx = st->first_insn_idx; 4536 } 4537 4538 /* if we still have requested precise regs or slots, we missed 4539 * something (e.g., stack access through non-r10 register), so 4540 * fallback to marking all precise 4541 */ 4542 if (!bt_empty(bt)) { 4543 mark_all_scalars_precise(env, env->cur_state); 4544 bt_reset(bt); 4545 } 4546 4547 return 0; 4548 } 4549 4550 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4551 { 4552 return __mark_chain_precision(env, regno); 4553 } 4554 4555 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4556 * desired reg and stack masks across all relevant frames 4557 */ 4558 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4559 { 4560 return __mark_chain_precision(env, -1); 4561 } 4562 4563 static bool is_spillable_regtype(enum bpf_reg_type type) 4564 { 4565 switch (base_type(type)) { 4566 case PTR_TO_MAP_VALUE: 4567 case PTR_TO_STACK: 4568 case PTR_TO_CTX: 4569 case PTR_TO_PACKET: 4570 case PTR_TO_PACKET_META: 4571 case PTR_TO_PACKET_END: 4572 case PTR_TO_FLOW_KEYS: 4573 case CONST_PTR_TO_MAP: 4574 case PTR_TO_SOCKET: 4575 case PTR_TO_SOCK_COMMON: 4576 case PTR_TO_TCP_SOCK: 4577 case PTR_TO_XDP_SOCK: 4578 case PTR_TO_BTF_ID: 4579 case PTR_TO_BUF: 4580 case PTR_TO_MEM: 4581 case PTR_TO_FUNC: 4582 case PTR_TO_MAP_KEY: 4583 return true; 4584 default: 4585 return false; 4586 } 4587 } 4588 4589 /* Does this register contain a constant zero? */ 4590 static bool register_is_null(struct bpf_reg_state *reg) 4591 { 4592 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4593 } 4594 4595 static bool register_is_const(struct bpf_reg_state *reg) 4596 { 4597 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4598 } 4599 4600 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4601 { 4602 return tnum_is_unknown(reg->var_off) && 4603 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4604 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4605 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4606 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4607 } 4608 4609 static bool register_is_bounded(struct bpf_reg_state *reg) 4610 { 4611 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4612 } 4613 4614 static bool __is_pointer_value(bool allow_ptr_leaks, 4615 const struct bpf_reg_state *reg) 4616 { 4617 if (allow_ptr_leaks) 4618 return false; 4619 4620 return reg->type != SCALAR_VALUE; 4621 } 4622 4623 /* Copy src state preserving dst->parent and dst->live fields */ 4624 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4625 { 4626 struct bpf_reg_state *parent = dst->parent; 4627 enum bpf_reg_liveness live = dst->live; 4628 4629 *dst = *src; 4630 dst->parent = parent; 4631 dst->live = live; 4632 } 4633 4634 static void save_register_state(struct bpf_func_state *state, 4635 int spi, struct bpf_reg_state *reg, 4636 int size) 4637 { 4638 int i; 4639 4640 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4641 if (size == BPF_REG_SIZE) 4642 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4643 4644 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4645 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4646 4647 /* size < 8 bytes spill */ 4648 for (; i; i--) 4649 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4650 } 4651 4652 static bool is_bpf_st_mem(struct bpf_insn *insn) 4653 { 4654 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4655 } 4656 4657 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4658 * stack boundary and alignment are checked in check_mem_access() 4659 */ 4660 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4661 /* stack frame we're writing to */ 4662 struct bpf_func_state *state, 4663 int off, int size, int value_regno, 4664 int insn_idx) 4665 { 4666 struct bpf_func_state *cur; /* state of the current function */ 4667 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4668 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4669 struct bpf_reg_state *reg = NULL; 4670 u32 dst_reg = insn->dst_reg; 4671 4672 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4673 if (err) 4674 return err; 4675 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4676 * so it's aligned access and [off, off + size) are within stack limits 4677 */ 4678 if (!env->allow_ptr_leaks && 4679 state->stack[spi].slot_type[0] == STACK_SPILL && 4680 size != BPF_REG_SIZE) { 4681 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4682 return -EACCES; 4683 } 4684 4685 cur = env->cur_state->frame[env->cur_state->curframe]; 4686 if (value_regno >= 0) 4687 reg = &cur->regs[value_regno]; 4688 if (!env->bypass_spec_v4) { 4689 bool sanitize = reg && is_spillable_regtype(reg->type); 4690 4691 for (i = 0; i < size; i++) { 4692 u8 type = state->stack[spi].slot_type[i]; 4693 4694 if (type != STACK_MISC && type != STACK_ZERO) { 4695 sanitize = true; 4696 break; 4697 } 4698 } 4699 4700 if (sanitize) 4701 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4702 } 4703 4704 err = destroy_if_dynptr_stack_slot(env, state, spi); 4705 if (err) 4706 return err; 4707 4708 mark_stack_slot_scratched(env, spi); 4709 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4710 !register_is_null(reg) && env->bpf_capable) { 4711 if (dst_reg != BPF_REG_FP) { 4712 /* The backtracking logic can only recognize explicit 4713 * stack slot address like [fp - 8]. Other spill of 4714 * scalar via different register has to be conservative. 4715 * Backtrack from here and mark all registers as precise 4716 * that contributed into 'reg' being a constant. 4717 */ 4718 err = mark_chain_precision(env, value_regno); 4719 if (err) 4720 return err; 4721 } 4722 save_register_state(state, spi, reg, size); 4723 /* Break the relation on a narrowing spill. */ 4724 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4725 state->stack[spi].spilled_ptr.id = 0; 4726 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4727 insn->imm != 0 && env->bpf_capable) { 4728 struct bpf_reg_state fake_reg = {}; 4729 4730 __mark_reg_known(&fake_reg, insn->imm); 4731 fake_reg.type = SCALAR_VALUE; 4732 save_register_state(state, spi, &fake_reg, size); 4733 } else if (reg && is_spillable_regtype(reg->type)) { 4734 /* register containing pointer is being spilled into stack */ 4735 if (size != BPF_REG_SIZE) { 4736 verbose_linfo(env, insn_idx, "; "); 4737 verbose(env, "invalid size of register spill\n"); 4738 return -EACCES; 4739 } 4740 if (state != cur && reg->type == PTR_TO_STACK) { 4741 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4742 return -EINVAL; 4743 } 4744 save_register_state(state, spi, reg, size); 4745 } else { 4746 u8 type = STACK_MISC; 4747 4748 /* regular write of data into stack destroys any spilled ptr */ 4749 state->stack[spi].spilled_ptr.type = NOT_INIT; 4750 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4751 if (is_stack_slot_special(&state->stack[spi])) 4752 for (i = 0; i < BPF_REG_SIZE; i++) 4753 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4754 4755 /* only mark the slot as written if all 8 bytes were written 4756 * otherwise read propagation may incorrectly stop too soon 4757 * when stack slots are partially written. 4758 * This heuristic means that read propagation will be 4759 * conservative, since it will add reg_live_read marks 4760 * to stack slots all the way to first state when programs 4761 * writes+reads less than 8 bytes 4762 */ 4763 if (size == BPF_REG_SIZE) 4764 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4765 4766 /* when we zero initialize stack slots mark them as such */ 4767 if ((reg && register_is_null(reg)) || 4768 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4769 /* backtracking doesn't work for STACK_ZERO yet. */ 4770 err = mark_chain_precision(env, value_regno); 4771 if (err) 4772 return err; 4773 type = STACK_ZERO; 4774 } 4775 4776 /* Mark slots affected by this stack write. */ 4777 for (i = 0; i < size; i++) 4778 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4779 type; 4780 } 4781 return 0; 4782 } 4783 4784 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4785 * known to contain a variable offset. 4786 * This function checks whether the write is permitted and conservatively 4787 * tracks the effects of the write, considering that each stack slot in the 4788 * dynamic range is potentially written to. 4789 * 4790 * 'off' includes 'regno->off'. 4791 * 'value_regno' can be -1, meaning that an unknown value is being written to 4792 * the stack. 4793 * 4794 * Spilled pointers in range are not marked as written because we don't know 4795 * what's going to be actually written. This means that read propagation for 4796 * future reads cannot be terminated by this write. 4797 * 4798 * For privileged programs, uninitialized stack slots are considered 4799 * initialized by this write (even though we don't know exactly what offsets 4800 * are going to be written to). The idea is that we don't want the verifier to 4801 * reject future reads that access slots written to through variable offsets. 4802 */ 4803 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4804 /* func where register points to */ 4805 struct bpf_func_state *state, 4806 int ptr_regno, int off, int size, 4807 int value_regno, int insn_idx) 4808 { 4809 struct bpf_func_state *cur; /* state of the current function */ 4810 int min_off, max_off; 4811 int i, err; 4812 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4813 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4814 bool writing_zero = false; 4815 /* set if the fact that we're writing a zero is used to let any 4816 * stack slots remain STACK_ZERO 4817 */ 4818 bool zero_used = false; 4819 4820 cur = env->cur_state->frame[env->cur_state->curframe]; 4821 ptr_reg = &cur->regs[ptr_regno]; 4822 min_off = ptr_reg->smin_value + off; 4823 max_off = ptr_reg->smax_value + off + size; 4824 if (value_regno >= 0) 4825 value_reg = &cur->regs[value_regno]; 4826 if ((value_reg && register_is_null(value_reg)) || 4827 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4828 writing_zero = true; 4829 4830 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4831 if (err) 4832 return err; 4833 4834 for (i = min_off; i < max_off; i++) { 4835 int spi; 4836 4837 spi = __get_spi(i); 4838 err = destroy_if_dynptr_stack_slot(env, state, spi); 4839 if (err) 4840 return err; 4841 } 4842 4843 /* Variable offset writes destroy any spilled pointers in range. */ 4844 for (i = min_off; i < max_off; i++) { 4845 u8 new_type, *stype; 4846 int slot, spi; 4847 4848 slot = -i - 1; 4849 spi = slot / BPF_REG_SIZE; 4850 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4851 mark_stack_slot_scratched(env, spi); 4852 4853 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4854 /* Reject the write if range we may write to has not 4855 * been initialized beforehand. If we didn't reject 4856 * here, the ptr status would be erased below (even 4857 * though not all slots are actually overwritten), 4858 * possibly opening the door to leaks. 4859 * 4860 * We do however catch STACK_INVALID case below, and 4861 * only allow reading possibly uninitialized memory 4862 * later for CAP_PERFMON, as the write may not happen to 4863 * that slot. 4864 */ 4865 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4866 insn_idx, i); 4867 return -EINVAL; 4868 } 4869 4870 /* Erase all spilled pointers. */ 4871 state->stack[spi].spilled_ptr.type = NOT_INIT; 4872 4873 /* Update the slot type. */ 4874 new_type = STACK_MISC; 4875 if (writing_zero && *stype == STACK_ZERO) { 4876 new_type = STACK_ZERO; 4877 zero_used = true; 4878 } 4879 /* If the slot is STACK_INVALID, we check whether it's OK to 4880 * pretend that it will be initialized by this write. The slot 4881 * might not actually be written to, and so if we mark it as 4882 * initialized future reads might leak uninitialized memory. 4883 * For privileged programs, we will accept such reads to slots 4884 * that may or may not be written because, if we're reject 4885 * them, the error would be too confusing. 4886 */ 4887 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4888 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4889 insn_idx, i); 4890 return -EINVAL; 4891 } 4892 *stype = new_type; 4893 } 4894 if (zero_used) { 4895 /* backtracking doesn't work for STACK_ZERO yet. */ 4896 err = mark_chain_precision(env, value_regno); 4897 if (err) 4898 return err; 4899 } 4900 return 0; 4901 } 4902 4903 /* When register 'dst_regno' is assigned some values from stack[min_off, 4904 * max_off), we set the register's type according to the types of the 4905 * respective stack slots. If all the stack values are known to be zeros, then 4906 * so is the destination reg. Otherwise, the register is considered to be 4907 * SCALAR. This function does not deal with register filling; the caller must 4908 * ensure that all spilled registers in the stack range have been marked as 4909 * read. 4910 */ 4911 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4912 /* func where src register points to */ 4913 struct bpf_func_state *ptr_state, 4914 int min_off, int max_off, int dst_regno) 4915 { 4916 struct bpf_verifier_state *vstate = env->cur_state; 4917 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4918 int i, slot, spi; 4919 u8 *stype; 4920 int zeros = 0; 4921 4922 for (i = min_off; i < max_off; i++) { 4923 slot = -i - 1; 4924 spi = slot / BPF_REG_SIZE; 4925 mark_stack_slot_scratched(env, spi); 4926 stype = ptr_state->stack[spi].slot_type; 4927 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4928 break; 4929 zeros++; 4930 } 4931 if (zeros == max_off - min_off) { 4932 /* any access_size read into register is zero extended, 4933 * so the whole register == const_zero 4934 */ 4935 __mark_reg_const_zero(&state->regs[dst_regno]); 4936 /* backtracking doesn't support STACK_ZERO yet, 4937 * so mark it precise here, so that later 4938 * backtracking can stop here. 4939 * Backtracking may not need this if this register 4940 * doesn't participate in pointer adjustment. 4941 * Forward propagation of precise flag is not 4942 * necessary either. This mark is only to stop 4943 * backtracking. Any register that contributed 4944 * to const 0 was marked precise before spill. 4945 */ 4946 state->regs[dst_regno].precise = true; 4947 } else { 4948 /* have read misc data from the stack */ 4949 mark_reg_unknown(env, state->regs, dst_regno); 4950 } 4951 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4952 } 4953 4954 /* Read the stack at 'off' and put the results into the register indicated by 4955 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4956 * spilled reg. 4957 * 4958 * 'dst_regno' can be -1, meaning that the read value is not going to a 4959 * register. 4960 * 4961 * The access is assumed to be within the current stack bounds. 4962 */ 4963 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4964 /* func where src register points to */ 4965 struct bpf_func_state *reg_state, 4966 int off, int size, int dst_regno) 4967 { 4968 struct bpf_verifier_state *vstate = env->cur_state; 4969 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4970 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4971 struct bpf_reg_state *reg; 4972 u8 *stype, type; 4973 4974 stype = reg_state->stack[spi].slot_type; 4975 reg = ®_state->stack[spi].spilled_ptr; 4976 4977 mark_stack_slot_scratched(env, spi); 4978 4979 if (is_spilled_reg(®_state->stack[spi])) { 4980 u8 spill_size = 1; 4981 4982 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4983 spill_size++; 4984 4985 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4986 if (reg->type != SCALAR_VALUE) { 4987 verbose_linfo(env, env->insn_idx, "; "); 4988 verbose(env, "invalid size of register fill\n"); 4989 return -EACCES; 4990 } 4991 4992 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4993 if (dst_regno < 0) 4994 return 0; 4995 4996 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4997 /* The earlier check_reg_arg() has decided the 4998 * subreg_def for this insn. Save it first. 4999 */ 5000 s32 subreg_def = state->regs[dst_regno].subreg_def; 5001 5002 copy_register_state(&state->regs[dst_regno], reg); 5003 state->regs[dst_regno].subreg_def = subreg_def; 5004 } else { 5005 for (i = 0; i < size; i++) { 5006 type = stype[(slot - i) % BPF_REG_SIZE]; 5007 if (type == STACK_SPILL) 5008 continue; 5009 if (type == STACK_MISC) 5010 continue; 5011 if (type == STACK_INVALID && env->allow_uninit_stack) 5012 continue; 5013 verbose(env, "invalid read from stack off %d+%d size %d\n", 5014 off, i, size); 5015 return -EACCES; 5016 } 5017 mark_reg_unknown(env, state->regs, dst_regno); 5018 } 5019 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5020 return 0; 5021 } 5022 5023 if (dst_regno >= 0) { 5024 /* restore register state from stack */ 5025 copy_register_state(&state->regs[dst_regno], reg); 5026 /* mark reg as written since spilled pointer state likely 5027 * has its liveness marks cleared by is_state_visited() 5028 * which resets stack/reg liveness for state transitions 5029 */ 5030 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5031 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5032 /* If dst_regno==-1, the caller is asking us whether 5033 * it is acceptable to use this value as a SCALAR_VALUE 5034 * (e.g. for XADD). 5035 * We must not allow unprivileged callers to do that 5036 * with spilled pointers. 5037 */ 5038 verbose(env, "leaking pointer from stack off %d\n", 5039 off); 5040 return -EACCES; 5041 } 5042 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5043 } else { 5044 for (i = 0; i < size; i++) { 5045 type = stype[(slot - i) % BPF_REG_SIZE]; 5046 if (type == STACK_MISC) 5047 continue; 5048 if (type == STACK_ZERO) 5049 continue; 5050 if (type == STACK_INVALID && env->allow_uninit_stack) 5051 continue; 5052 verbose(env, "invalid read from stack off %d+%d size %d\n", 5053 off, i, size); 5054 return -EACCES; 5055 } 5056 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5057 if (dst_regno >= 0) 5058 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5059 } 5060 return 0; 5061 } 5062 5063 enum bpf_access_src { 5064 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5065 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5066 }; 5067 5068 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5069 int regno, int off, int access_size, 5070 bool zero_size_allowed, 5071 enum bpf_access_src type, 5072 struct bpf_call_arg_meta *meta); 5073 5074 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5075 { 5076 return cur_regs(env) + regno; 5077 } 5078 5079 /* Read the stack at 'ptr_regno + off' and put the result into the register 5080 * 'dst_regno'. 5081 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5082 * but not its variable offset. 5083 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5084 * 5085 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5086 * filling registers (i.e. reads of spilled register cannot be detected when 5087 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5088 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5089 * offset; for a fixed offset check_stack_read_fixed_off should be used 5090 * instead. 5091 */ 5092 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5093 int ptr_regno, int off, int size, int dst_regno) 5094 { 5095 /* The state of the source register. */ 5096 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5097 struct bpf_func_state *ptr_state = func(env, reg); 5098 int err; 5099 int min_off, max_off; 5100 5101 /* Note that we pass a NULL meta, so raw access will not be permitted. 5102 */ 5103 err = check_stack_range_initialized(env, ptr_regno, off, size, 5104 false, ACCESS_DIRECT, NULL); 5105 if (err) 5106 return err; 5107 5108 min_off = reg->smin_value + off; 5109 max_off = reg->smax_value + off; 5110 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5111 return 0; 5112 } 5113 5114 /* check_stack_read dispatches to check_stack_read_fixed_off or 5115 * check_stack_read_var_off. 5116 * 5117 * The caller must ensure that the offset falls within the allocated stack 5118 * bounds. 5119 * 5120 * 'dst_regno' is a register which will receive the value from the stack. It 5121 * can be -1, meaning that the read value is not going to a register. 5122 */ 5123 static int check_stack_read(struct bpf_verifier_env *env, 5124 int ptr_regno, int off, int size, 5125 int dst_regno) 5126 { 5127 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5128 struct bpf_func_state *state = func(env, reg); 5129 int err; 5130 /* Some accesses are only permitted with a static offset. */ 5131 bool var_off = !tnum_is_const(reg->var_off); 5132 5133 /* The offset is required to be static when reads don't go to a 5134 * register, in order to not leak pointers (see 5135 * check_stack_read_fixed_off). 5136 */ 5137 if (dst_regno < 0 && var_off) { 5138 char tn_buf[48]; 5139 5140 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5141 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5142 tn_buf, off, size); 5143 return -EACCES; 5144 } 5145 /* Variable offset is prohibited for unprivileged mode for simplicity 5146 * since it requires corresponding support in Spectre masking for stack 5147 * ALU. See also retrieve_ptr_limit(). The check in 5148 * check_stack_access_for_ptr_arithmetic() called by 5149 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5150 * with variable offsets, therefore no check is required here. Further, 5151 * just checking it here would be insufficient as speculative stack 5152 * writes could still lead to unsafe speculative behaviour. 5153 */ 5154 if (!var_off) { 5155 off += reg->var_off.value; 5156 err = check_stack_read_fixed_off(env, state, off, size, 5157 dst_regno); 5158 } else { 5159 /* Variable offset stack reads need more conservative handling 5160 * than fixed offset ones. Note that dst_regno >= 0 on this 5161 * branch. 5162 */ 5163 err = check_stack_read_var_off(env, ptr_regno, off, size, 5164 dst_regno); 5165 } 5166 return err; 5167 } 5168 5169 5170 /* check_stack_write dispatches to check_stack_write_fixed_off or 5171 * check_stack_write_var_off. 5172 * 5173 * 'ptr_regno' is the register used as a pointer into the stack. 5174 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5175 * 'value_regno' is the register whose value we're writing to the stack. It can 5176 * be -1, meaning that we're not writing from a register. 5177 * 5178 * The caller must ensure that the offset falls within the maximum stack size. 5179 */ 5180 static int check_stack_write(struct bpf_verifier_env *env, 5181 int ptr_regno, int off, int size, 5182 int value_regno, int insn_idx) 5183 { 5184 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5185 struct bpf_func_state *state = func(env, reg); 5186 int err; 5187 5188 if (tnum_is_const(reg->var_off)) { 5189 off += reg->var_off.value; 5190 err = check_stack_write_fixed_off(env, state, off, size, 5191 value_regno, insn_idx); 5192 } else { 5193 /* Variable offset stack reads need more conservative handling 5194 * than fixed offset ones. 5195 */ 5196 err = check_stack_write_var_off(env, state, 5197 ptr_regno, off, size, 5198 value_regno, insn_idx); 5199 } 5200 return err; 5201 } 5202 5203 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5204 int off, int size, enum bpf_access_type type) 5205 { 5206 struct bpf_reg_state *regs = cur_regs(env); 5207 struct bpf_map *map = regs[regno].map_ptr; 5208 u32 cap = bpf_map_flags_to_cap(map); 5209 5210 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5211 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5212 map->value_size, off, size); 5213 return -EACCES; 5214 } 5215 5216 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5217 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5218 map->value_size, off, size); 5219 return -EACCES; 5220 } 5221 5222 return 0; 5223 } 5224 5225 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5226 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5227 int off, int size, u32 mem_size, 5228 bool zero_size_allowed) 5229 { 5230 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5231 struct bpf_reg_state *reg; 5232 5233 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5234 return 0; 5235 5236 reg = &cur_regs(env)[regno]; 5237 switch (reg->type) { 5238 case PTR_TO_MAP_KEY: 5239 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5240 mem_size, off, size); 5241 break; 5242 case PTR_TO_MAP_VALUE: 5243 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5244 mem_size, off, size); 5245 break; 5246 case PTR_TO_PACKET: 5247 case PTR_TO_PACKET_META: 5248 case PTR_TO_PACKET_END: 5249 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5250 off, size, regno, reg->id, off, mem_size); 5251 break; 5252 case PTR_TO_MEM: 5253 default: 5254 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5255 mem_size, off, size); 5256 } 5257 5258 return -EACCES; 5259 } 5260 5261 /* check read/write into a memory region with possible variable offset */ 5262 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5263 int off, int size, u32 mem_size, 5264 bool zero_size_allowed) 5265 { 5266 struct bpf_verifier_state *vstate = env->cur_state; 5267 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5268 struct bpf_reg_state *reg = &state->regs[regno]; 5269 int err; 5270 5271 /* We may have adjusted the register pointing to memory region, so we 5272 * need to try adding each of min_value and max_value to off 5273 * to make sure our theoretical access will be safe. 5274 * 5275 * The minimum value is only important with signed 5276 * comparisons where we can't assume the floor of a 5277 * value is 0. If we are using signed variables for our 5278 * index'es we need to make sure that whatever we use 5279 * will have a set floor within our range. 5280 */ 5281 if (reg->smin_value < 0 && 5282 (reg->smin_value == S64_MIN || 5283 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5284 reg->smin_value + off < 0)) { 5285 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5286 regno); 5287 return -EACCES; 5288 } 5289 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5290 mem_size, zero_size_allowed); 5291 if (err) { 5292 verbose(env, "R%d min value is outside of the allowed memory range\n", 5293 regno); 5294 return err; 5295 } 5296 5297 /* If we haven't set a max value then we need to bail since we can't be 5298 * sure we won't do bad things. 5299 * If reg->umax_value + off could overflow, treat that as unbounded too. 5300 */ 5301 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5302 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5303 regno); 5304 return -EACCES; 5305 } 5306 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5307 mem_size, zero_size_allowed); 5308 if (err) { 5309 verbose(env, "R%d max value is outside of the allowed memory range\n", 5310 regno); 5311 return err; 5312 } 5313 5314 return 0; 5315 } 5316 5317 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5318 const struct bpf_reg_state *reg, int regno, 5319 bool fixed_off_ok) 5320 { 5321 /* Access to this pointer-typed register or passing it to a helper 5322 * is only allowed in its original, unmodified form. 5323 */ 5324 5325 if (reg->off < 0) { 5326 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5327 reg_type_str(env, reg->type), regno, reg->off); 5328 return -EACCES; 5329 } 5330 5331 if (!fixed_off_ok && reg->off) { 5332 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5333 reg_type_str(env, reg->type), regno, reg->off); 5334 return -EACCES; 5335 } 5336 5337 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5338 char tn_buf[48]; 5339 5340 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5341 verbose(env, "variable %s access var_off=%s disallowed\n", 5342 reg_type_str(env, reg->type), tn_buf); 5343 return -EACCES; 5344 } 5345 5346 return 0; 5347 } 5348 5349 int check_ptr_off_reg(struct bpf_verifier_env *env, 5350 const struct bpf_reg_state *reg, int regno) 5351 { 5352 return __check_ptr_off_reg(env, reg, regno, false); 5353 } 5354 5355 static int map_kptr_match_type(struct bpf_verifier_env *env, 5356 struct btf_field *kptr_field, 5357 struct bpf_reg_state *reg, u32 regno) 5358 { 5359 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5360 int perm_flags; 5361 const char *reg_name = ""; 5362 5363 if (btf_is_kernel(reg->btf)) { 5364 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5365 5366 /* Only unreferenced case accepts untrusted pointers */ 5367 if (kptr_field->type == BPF_KPTR_UNREF) 5368 perm_flags |= PTR_UNTRUSTED; 5369 } else { 5370 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5371 if (kptr_field->type == BPF_KPTR_PERCPU) 5372 perm_flags |= MEM_PERCPU; 5373 } 5374 5375 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5376 goto bad_type; 5377 5378 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5379 reg_name = btf_type_name(reg->btf, reg->btf_id); 5380 5381 /* For ref_ptr case, release function check should ensure we get one 5382 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5383 * normal store of unreferenced kptr, we must ensure var_off is zero. 5384 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5385 * reg->off and reg->ref_obj_id are not needed here. 5386 */ 5387 if (__check_ptr_off_reg(env, reg, regno, true)) 5388 return -EACCES; 5389 5390 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5391 * we also need to take into account the reg->off. 5392 * 5393 * We want to support cases like: 5394 * 5395 * struct foo { 5396 * struct bar br; 5397 * struct baz bz; 5398 * }; 5399 * 5400 * struct foo *v; 5401 * v = func(); // PTR_TO_BTF_ID 5402 * val->foo = v; // reg->off is zero, btf and btf_id match type 5403 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5404 * // first member type of struct after comparison fails 5405 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5406 * // to match type 5407 * 5408 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5409 * is zero. We must also ensure that btf_struct_ids_match does not walk 5410 * the struct to match type against first member of struct, i.e. reject 5411 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5412 * strict mode to true for type match. 5413 */ 5414 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5415 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5416 kptr_field->type != BPF_KPTR_UNREF)) 5417 goto bad_type; 5418 return 0; 5419 bad_type: 5420 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5421 reg_type_str(env, reg->type), reg_name); 5422 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5423 if (kptr_field->type == BPF_KPTR_UNREF) 5424 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5425 targ_name); 5426 else 5427 verbose(env, "\n"); 5428 return -EINVAL; 5429 } 5430 5431 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5432 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5433 */ 5434 static bool in_rcu_cs(struct bpf_verifier_env *env) 5435 { 5436 return env->cur_state->active_rcu_lock || 5437 env->cur_state->active_lock.ptr || 5438 !env->prog->aux->sleepable; 5439 } 5440 5441 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5442 BTF_SET_START(rcu_protected_types) 5443 BTF_ID(struct, prog_test_ref_kfunc) 5444 #ifdef CONFIG_CGROUPS 5445 BTF_ID(struct, cgroup) 5446 #endif 5447 BTF_ID(struct, bpf_cpumask) 5448 BTF_ID(struct, task_struct) 5449 BTF_SET_END(rcu_protected_types) 5450 5451 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5452 { 5453 if (!btf_is_kernel(btf)) 5454 return false; 5455 return btf_id_set_contains(&rcu_protected_types, btf_id); 5456 } 5457 5458 static bool rcu_safe_kptr(const struct btf_field *field) 5459 { 5460 const struct btf_field_kptr *kptr = &field->kptr; 5461 5462 return field->type == BPF_KPTR_PERCPU || 5463 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5464 } 5465 5466 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5467 { 5468 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5469 if (kptr_field->type != BPF_KPTR_PERCPU) 5470 return PTR_MAYBE_NULL | MEM_RCU; 5471 return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU; 5472 } 5473 return PTR_MAYBE_NULL | PTR_UNTRUSTED; 5474 } 5475 5476 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5477 int value_regno, int insn_idx, 5478 struct btf_field *kptr_field) 5479 { 5480 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5481 int class = BPF_CLASS(insn->code); 5482 struct bpf_reg_state *val_reg; 5483 5484 /* Things we already checked for in check_map_access and caller: 5485 * - Reject cases where variable offset may touch kptr 5486 * - size of access (must be BPF_DW) 5487 * - tnum_is_const(reg->var_off) 5488 * - kptr_field->offset == off + reg->var_off.value 5489 */ 5490 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5491 if (BPF_MODE(insn->code) != BPF_MEM) { 5492 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5493 return -EACCES; 5494 } 5495 5496 /* We only allow loading referenced kptr, since it will be marked as 5497 * untrusted, similar to unreferenced kptr. 5498 */ 5499 if (class != BPF_LDX && 5500 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5501 verbose(env, "store to referenced kptr disallowed\n"); 5502 return -EACCES; 5503 } 5504 5505 if (class == BPF_LDX) { 5506 val_reg = reg_state(env, value_regno); 5507 /* We can simply mark the value_regno receiving the pointer 5508 * value from map as PTR_TO_BTF_ID, with the correct type. 5509 */ 5510 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5511 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5512 /* For mark_ptr_or_null_reg */ 5513 val_reg->id = ++env->id_gen; 5514 } else if (class == BPF_STX) { 5515 val_reg = reg_state(env, value_regno); 5516 if (!register_is_null(val_reg) && 5517 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5518 return -EACCES; 5519 } else if (class == BPF_ST) { 5520 if (insn->imm) { 5521 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5522 kptr_field->offset); 5523 return -EACCES; 5524 } 5525 } else { 5526 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5527 return -EACCES; 5528 } 5529 return 0; 5530 } 5531 5532 /* check read/write into a map element with possible variable offset */ 5533 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5534 int off, int size, bool zero_size_allowed, 5535 enum bpf_access_src src) 5536 { 5537 struct bpf_verifier_state *vstate = env->cur_state; 5538 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5539 struct bpf_reg_state *reg = &state->regs[regno]; 5540 struct bpf_map *map = reg->map_ptr; 5541 struct btf_record *rec; 5542 int err, i; 5543 5544 err = check_mem_region_access(env, regno, off, size, map->value_size, 5545 zero_size_allowed); 5546 if (err) 5547 return err; 5548 5549 if (IS_ERR_OR_NULL(map->record)) 5550 return 0; 5551 rec = map->record; 5552 for (i = 0; i < rec->cnt; i++) { 5553 struct btf_field *field = &rec->fields[i]; 5554 u32 p = field->offset; 5555 5556 /* If any part of a field can be touched by load/store, reject 5557 * this program. To check that [x1, x2) overlaps with [y1, y2), 5558 * it is sufficient to check x1 < y2 && y1 < x2. 5559 */ 5560 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5561 p < reg->umax_value + off + size) { 5562 switch (field->type) { 5563 case BPF_KPTR_UNREF: 5564 case BPF_KPTR_REF: 5565 case BPF_KPTR_PERCPU: 5566 if (src != ACCESS_DIRECT) { 5567 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5568 return -EACCES; 5569 } 5570 if (!tnum_is_const(reg->var_off)) { 5571 verbose(env, "kptr access cannot have variable offset\n"); 5572 return -EACCES; 5573 } 5574 if (p != off + reg->var_off.value) { 5575 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5576 p, off + reg->var_off.value); 5577 return -EACCES; 5578 } 5579 if (size != bpf_size_to_bytes(BPF_DW)) { 5580 verbose(env, "kptr access size must be BPF_DW\n"); 5581 return -EACCES; 5582 } 5583 break; 5584 default: 5585 verbose(env, "%s cannot be accessed directly by load/store\n", 5586 btf_field_type_name(field->type)); 5587 return -EACCES; 5588 } 5589 } 5590 } 5591 return 0; 5592 } 5593 5594 #define MAX_PACKET_OFF 0xffff 5595 5596 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5597 const struct bpf_call_arg_meta *meta, 5598 enum bpf_access_type t) 5599 { 5600 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5601 5602 switch (prog_type) { 5603 /* Program types only with direct read access go here! */ 5604 case BPF_PROG_TYPE_LWT_IN: 5605 case BPF_PROG_TYPE_LWT_OUT: 5606 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5607 case BPF_PROG_TYPE_SK_REUSEPORT: 5608 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5609 case BPF_PROG_TYPE_CGROUP_SKB: 5610 if (t == BPF_WRITE) 5611 return false; 5612 fallthrough; 5613 5614 /* Program types with direct read + write access go here! */ 5615 case BPF_PROG_TYPE_SCHED_CLS: 5616 case BPF_PROG_TYPE_SCHED_ACT: 5617 case BPF_PROG_TYPE_XDP: 5618 case BPF_PROG_TYPE_LWT_XMIT: 5619 case BPF_PROG_TYPE_SK_SKB: 5620 case BPF_PROG_TYPE_SK_MSG: 5621 if (meta) 5622 return meta->pkt_access; 5623 5624 env->seen_direct_write = true; 5625 return true; 5626 5627 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5628 if (t == BPF_WRITE) 5629 env->seen_direct_write = true; 5630 5631 return true; 5632 5633 default: 5634 return false; 5635 } 5636 } 5637 5638 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5639 int size, bool zero_size_allowed) 5640 { 5641 struct bpf_reg_state *regs = cur_regs(env); 5642 struct bpf_reg_state *reg = ®s[regno]; 5643 int err; 5644 5645 /* We may have added a variable offset to the packet pointer; but any 5646 * reg->range we have comes after that. We are only checking the fixed 5647 * offset. 5648 */ 5649 5650 /* We don't allow negative numbers, because we aren't tracking enough 5651 * detail to prove they're safe. 5652 */ 5653 if (reg->smin_value < 0) { 5654 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5655 regno); 5656 return -EACCES; 5657 } 5658 5659 err = reg->range < 0 ? -EINVAL : 5660 __check_mem_access(env, regno, off, size, reg->range, 5661 zero_size_allowed); 5662 if (err) { 5663 verbose(env, "R%d offset is outside of the packet\n", regno); 5664 return err; 5665 } 5666 5667 /* __check_mem_access has made sure "off + size - 1" is within u16. 5668 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5669 * otherwise find_good_pkt_pointers would have refused to set range info 5670 * that __check_mem_access would have rejected this pkt access. 5671 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5672 */ 5673 env->prog->aux->max_pkt_offset = 5674 max_t(u32, env->prog->aux->max_pkt_offset, 5675 off + reg->umax_value + size - 1); 5676 5677 return err; 5678 } 5679 5680 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5681 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5682 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5683 struct btf **btf, u32 *btf_id) 5684 { 5685 struct bpf_insn_access_aux info = { 5686 .reg_type = *reg_type, 5687 .log = &env->log, 5688 }; 5689 5690 if (env->ops->is_valid_access && 5691 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5692 /* A non zero info.ctx_field_size indicates that this field is a 5693 * candidate for later verifier transformation to load the whole 5694 * field and then apply a mask when accessed with a narrower 5695 * access than actual ctx access size. A zero info.ctx_field_size 5696 * will only allow for whole field access and rejects any other 5697 * type of narrower access. 5698 */ 5699 *reg_type = info.reg_type; 5700 5701 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5702 *btf = info.btf; 5703 *btf_id = info.btf_id; 5704 } else { 5705 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5706 } 5707 /* remember the offset of last byte accessed in ctx */ 5708 if (env->prog->aux->max_ctx_offset < off + size) 5709 env->prog->aux->max_ctx_offset = off + size; 5710 return 0; 5711 } 5712 5713 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5714 return -EACCES; 5715 } 5716 5717 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5718 int size) 5719 { 5720 if (size < 0 || off < 0 || 5721 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5722 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5723 off, size); 5724 return -EACCES; 5725 } 5726 return 0; 5727 } 5728 5729 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5730 u32 regno, int off, int size, 5731 enum bpf_access_type t) 5732 { 5733 struct bpf_reg_state *regs = cur_regs(env); 5734 struct bpf_reg_state *reg = ®s[regno]; 5735 struct bpf_insn_access_aux info = {}; 5736 bool valid; 5737 5738 if (reg->smin_value < 0) { 5739 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5740 regno); 5741 return -EACCES; 5742 } 5743 5744 switch (reg->type) { 5745 case PTR_TO_SOCK_COMMON: 5746 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5747 break; 5748 case PTR_TO_SOCKET: 5749 valid = bpf_sock_is_valid_access(off, size, t, &info); 5750 break; 5751 case PTR_TO_TCP_SOCK: 5752 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5753 break; 5754 case PTR_TO_XDP_SOCK: 5755 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5756 break; 5757 default: 5758 valid = false; 5759 } 5760 5761 5762 if (valid) { 5763 env->insn_aux_data[insn_idx].ctx_field_size = 5764 info.ctx_field_size; 5765 return 0; 5766 } 5767 5768 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5769 regno, reg_type_str(env, reg->type), off, size); 5770 5771 return -EACCES; 5772 } 5773 5774 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5775 { 5776 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5777 } 5778 5779 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5780 { 5781 const struct bpf_reg_state *reg = reg_state(env, regno); 5782 5783 return reg->type == PTR_TO_CTX; 5784 } 5785 5786 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5787 { 5788 const struct bpf_reg_state *reg = reg_state(env, regno); 5789 5790 return type_is_sk_pointer(reg->type); 5791 } 5792 5793 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5794 { 5795 const struct bpf_reg_state *reg = reg_state(env, regno); 5796 5797 return type_is_pkt_pointer(reg->type); 5798 } 5799 5800 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5801 { 5802 const struct bpf_reg_state *reg = reg_state(env, regno); 5803 5804 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5805 return reg->type == PTR_TO_FLOW_KEYS; 5806 } 5807 5808 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5809 #ifdef CONFIG_NET 5810 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5811 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5812 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5813 #endif 5814 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5815 }; 5816 5817 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5818 { 5819 /* A referenced register is always trusted. */ 5820 if (reg->ref_obj_id) 5821 return true; 5822 5823 /* Types listed in the reg2btf_ids are always trusted */ 5824 if (reg2btf_ids[base_type(reg->type)]) 5825 return true; 5826 5827 /* If a register is not referenced, it is trusted if it has the 5828 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5829 * other type modifiers may be safe, but we elect to take an opt-in 5830 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5831 * not. 5832 * 5833 * Eventually, we should make PTR_TRUSTED the single source of truth 5834 * for whether a register is trusted. 5835 */ 5836 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5837 !bpf_type_has_unsafe_modifiers(reg->type); 5838 } 5839 5840 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5841 { 5842 return reg->type & MEM_RCU; 5843 } 5844 5845 static void clear_trusted_flags(enum bpf_type_flag *flag) 5846 { 5847 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5848 } 5849 5850 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5851 const struct bpf_reg_state *reg, 5852 int off, int size, bool strict) 5853 { 5854 struct tnum reg_off; 5855 int ip_align; 5856 5857 /* Byte size accesses are always allowed. */ 5858 if (!strict || size == 1) 5859 return 0; 5860 5861 /* For platforms that do not have a Kconfig enabling 5862 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5863 * NET_IP_ALIGN is universally set to '2'. And on platforms 5864 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5865 * to this code only in strict mode where we want to emulate 5866 * the NET_IP_ALIGN==2 checking. Therefore use an 5867 * unconditional IP align value of '2'. 5868 */ 5869 ip_align = 2; 5870 5871 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5872 if (!tnum_is_aligned(reg_off, size)) { 5873 char tn_buf[48]; 5874 5875 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5876 verbose(env, 5877 "misaligned packet access off %d+%s+%d+%d size %d\n", 5878 ip_align, tn_buf, reg->off, off, size); 5879 return -EACCES; 5880 } 5881 5882 return 0; 5883 } 5884 5885 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5886 const struct bpf_reg_state *reg, 5887 const char *pointer_desc, 5888 int off, int size, bool strict) 5889 { 5890 struct tnum reg_off; 5891 5892 /* Byte size accesses are always allowed. */ 5893 if (!strict || size == 1) 5894 return 0; 5895 5896 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5897 if (!tnum_is_aligned(reg_off, size)) { 5898 char tn_buf[48]; 5899 5900 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5901 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5902 pointer_desc, tn_buf, reg->off, off, size); 5903 return -EACCES; 5904 } 5905 5906 return 0; 5907 } 5908 5909 static int check_ptr_alignment(struct bpf_verifier_env *env, 5910 const struct bpf_reg_state *reg, int off, 5911 int size, bool strict_alignment_once) 5912 { 5913 bool strict = env->strict_alignment || strict_alignment_once; 5914 const char *pointer_desc = ""; 5915 5916 switch (reg->type) { 5917 case PTR_TO_PACKET: 5918 case PTR_TO_PACKET_META: 5919 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5920 * right in front, treat it the very same way. 5921 */ 5922 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5923 case PTR_TO_FLOW_KEYS: 5924 pointer_desc = "flow keys "; 5925 break; 5926 case PTR_TO_MAP_KEY: 5927 pointer_desc = "key "; 5928 break; 5929 case PTR_TO_MAP_VALUE: 5930 pointer_desc = "value "; 5931 break; 5932 case PTR_TO_CTX: 5933 pointer_desc = "context "; 5934 break; 5935 case PTR_TO_STACK: 5936 pointer_desc = "stack "; 5937 /* The stack spill tracking logic in check_stack_write_fixed_off() 5938 * and check_stack_read_fixed_off() relies on stack accesses being 5939 * aligned. 5940 */ 5941 strict = true; 5942 break; 5943 case PTR_TO_SOCKET: 5944 pointer_desc = "sock "; 5945 break; 5946 case PTR_TO_SOCK_COMMON: 5947 pointer_desc = "sock_common "; 5948 break; 5949 case PTR_TO_TCP_SOCK: 5950 pointer_desc = "tcp_sock "; 5951 break; 5952 case PTR_TO_XDP_SOCK: 5953 pointer_desc = "xdp_sock "; 5954 break; 5955 default: 5956 break; 5957 } 5958 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5959 strict); 5960 } 5961 5962 static int update_stack_depth(struct bpf_verifier_env *env, 5963 const struct bpf_func_state *func, 5964 int off) 5965 { 5966 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5967 5968 if (stack >= -off) 5969 return 0; 5970 5971 /* update known max for given subprogram */ 5972 env->subprog_info[func->subprogno].stack_depth = -off; 5973 return 0; 5974 } 5975 5976 /* starting from main bpf function walk all instructions of the function 5977 * and recursively walk all callees that given function can call. 5978 * Ignore jump and exit insns. 5979 * Since recursion is prevented by check_cfg() this algorithm 5980 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5981 */ 5982 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5983 { 5984 struct bpf_subprog_info *subprog = env->subprog_info; 5985 struct bpf_insn *insn = env->prog->insnsi; 5986 int depth = 0, frame = 0, i, subprog_end; 5987 bool tail_call_reachable = false; 5988 int ret_insn[MAX_CALL_FRAMES]; 5989 int ret_prog[MAX_CALL_FRAMES]; 5990 int j; 5991 5992 i = subprog[idx].start; 5993 process_func: 5994 /* protect against potential stack overflow that might happen when 5995 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5996 * depth for such case down to 256 so that the worst case scenario 5997 * would result in 8k stack size (32 which is tailcall limit * 256 = 5998 * 8k). 5999 * 6000 * To get the idea what might happen, see an example: 6001 * func1 -> sub rsp, 128 6002 * subfunc1 -> sub rsp, 256 6003 * tailcall1 -> add rsp, 256 6004 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6005 * subfunc2 -> sub rsp, 64 6006 * subfunc22 -> sub rsp, 128 6007 * tailcall2 -> add rsp, 128 6008 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6009 * 6010 * tailcall will unwind the current stack frame but it will not get rid 6011 * of caller's stack as shown on the example above. 6012 */ 6013 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6014 verbose(env, 6015 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6016 depth); 6017 return -EACCES; 6018 } 6019 /* round up to 32-bytes, since this is granularity 6020 * of interpreter stack size 6021 */ 6022 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 6023 if (depth > MAX_BPF_STACK) { 6024 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6025 frame + 1, depth); 6026 return -EACCES; 6027 } 6028 continue_func: 6029 subprog_end = subprog[idx + 1].start; 6030 for (; i < subprog_end; i++) { 6031 int next_insn, sidx; 6032 6033 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6034 bool err = false; 6035 6036 if (!is_bpf_throw_kfunc(insn + i)) 6037 continue; 6038 if (subprog[idx].is_cb) 6039 err = true; 6040 for (int c = 0; c < frame && !err; c++) { 6041 if (subprog[ret_prog[c]].is_cb) { 6042 err = true; 6043 break; 6044 } 6045 } 6046 if (!err) 6047 continue; 6048 verbose(env, 6049 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6050 i, idx); 6051 return -EINVAL; 6052 } 6053 6054 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6055 continue; 6056 /* remember insn and function to return to */ 6057 ret_insn[frame] = i + 1; 6058 ret_prog[frame] = idx; 6059 6060 /* find the callee */ 6061 next_insn = i + insn[i].imm + 1; 6062 sidx = find_subprog(env, next_insn); 6063 if (sidx < 0) { 6064 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6065 next_insn); 6066 return -EFAULT; 6067 } 6068 if (subprog[sidx].is_async_cb) { 6069 if (subprog[sidx].has_tail_call) { 6070 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6071 return -EFAULT; 6072 } 6073 /* async callbacks don't increase bpf prog stack size unless called directly */ 6074 if (!bpf_pseudo_call(insn + i)) 6075 continue; 6076 if (subprog[sidx].is_exception_cb) { 6077 verbose(env, "insn %d cannot call exception cb directly\n", i); 6078 return -EINVAL; 6079 } 6080 } 6081 i = next_insn; 6082 idx = sidx; 6083 6084 if (subprog[idx].has_tail_call) 6085 tail_call_reachable = true; 6086 6087 frame++; 6088 if (frame >= MAX_CALL_FRAMES) { 6089 verbose(env, "the call stack of %d frames is too deep !\n", 6090 frame); 6091 return -E2BIG; 6092 } 6093 goto process_func; 6094 } 6095 /* if tail call got detected across bpf2bpf calls then mark each of the 6096 * currently present subprog frames as tail call reachable subprogs; 6097 * this info will be utilized by JIT so that we will be preserving the 6098 * tail call counter throughout bpf2bpf calls combined with tailcalls 6099 */ 6100 if (tail_call_reachable) 6101 for (j = 0; j < frame; j++) { 6102 if (subprog[ret_prog[j]].is_exception_cb) { 6103 verbose(env, "cannot tail call within exception cb\n"); 6104 return -EINVAL; 6105 } 6106 subprog[ret_prog[j]].tail_call_reachable = true; 6107 } 6108 if (subprog[0].tail_call_reachable) 6109 env->prog->aux->tail_call_reachable = true; 6110 6111 /* end of for() loop means the last insn of the 'subprog' 6112 * was reached. Doesn't matter whether it was JA or EXIT 6113 */ 6114 if (frame == 0) 6115 return 0; 6116 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 6117 frame--; 6118 i = ret_insn[frame]; 6119 idx = ret_prog[frame]; 6120 goto continue_func; 6121 } 6122 6123 static int check_max_stack_depth(struct bpf_verifier_env *env) 6124 { 6125 struct bpf_subprog_info *si = env->subprog_info; 6126 int ret; 6127 6128 for (int i = 0; i < env->subprog_cnt; i++) { 6129 if (!i || si[i].is_async_cb) { 6130 ret = check_max_stack_depth_subprog(env, i); 6131 if (ret < 0) 6132 return ret; 6133 } 6134 continue; 6135 } 6136 return 0; 6137 } 6138 6139 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6140 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6141 const struct bpf_insn *insn, int idx) 6142 { 6143 int start = idx + insn->imm + 1, subprog; 6144 6145 subprog = find_subprog(env, start); 6146 if (subprog < 0) { 6147 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6148 start); 6149 return -EFAULT; 6150 } 6151 return env->subprog_info[subprog].stack_depth; 6152 } 6153 #endif 6154 6155 static int __check_buffer_access(struct bpf_verifier_env *env, 6156 const char *buf_info, 6157 const struct bpf_reg_state *reg, 6158 int regno, int off, int size) 6159 { 6160 if (off < 0) { 6161 verbose(env, 6162 "R%d invalid %s buffer access: off=%d, size=%d\n", 6163 regno, buf_info, off, size); 6164 return -EACCES; 6165 } 6166 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6167 char tn_buf[48]; 6168 6169 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6170 verbose(env, 6171 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6172 regno, off, tn_buf); 6173 return -EACCES; 6174 } 6175 6176 return 0; 6177 } 6178 6179 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6180 const struct bpf_reg_state *reg, 6181 int regno, int off, int size) 6182 { 6183 int err; 6184 6185 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6186 if (err) 6187 return err; 6188 6189 if (off + size > env->prog->aux->max_tp_access) 6190 env->prog->aux->max_tp_access = off + size; 6191 6192 return 0; 6193 } 6194 6195 static int check_buffer_access(struct bpf_verifier_env *env, 6196 const struct bpf_reg_state *reg, 6197 int regno, int off, int size, 6198 bool zero_size_allowed, 6199 u32 *max_access) 6200 { 6201 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6202 int err; 6203 6204 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6205 if (err) 6206 return err; 6207 6208 if (off + size > *max_access) 6209 *max_access = off + size; 6210 6211 return 0; 6212 } 6213 6214 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6215 static void zext_32_to_64(struct bpf_reg_state *reg) 6216 { 6217 reg->var_off = tnum_subreg(reg->var_off); 6218 __reg_assign_32_into_64(reg); 6219 } 6220 6221 /* truncate register to smaller size (in bytes) 6222 * must be called with size < BPF_REG_SIZE 6223 */ 6224 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6225 { 6226 u64 mask; 6227 6228 /* clear high bits in bit representation */ 6229 reg->var_off = tnum_cast(reg->var_off, size); 6230 6231 /* fix arithmetic bounds */ 6232 mask = ((u64)1 << (size * 8)) - 1; 6233 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6234 reg->umin_value &= mask; 6235 reg->umax_value &= mask; 6236 } else { 6237 reg->umin_value = 0; 6238 reg->umax_value = mask; 6239 } 6240 reg->smin_value = reg->umin_value; 6241 reg->smax_value = reg->umax_value; 6242 6243 /* If size is smaller than 32bit register the 32bit register 6244 * values are also truncated so we push 64-bit bounds into 6245 * 32-bit bounds. Above were truncated < 32-bits already. 6246 */ 6247 if (size >= 4) 6248 return; 6249 __reg_combine_64_into_32(reg); 6250 } 6251 6252 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6253 { 6254 if (size == 1) { 6255 reg->smin_value = reg->s32_min_value = S8_MIN; 6256 reg->smax_value = reg->s32_max_value = S8_MAX; 6257 } else if (size == 2) { 6258 reg->smin_value = reg->s32_min_value = S16_MIN; 6259 reg->smax_value = reg->s32_max_value = S16_MAX; 6260 } else { 6261 /* size == 4 */ 6262 reg->smin_value = reg->s32_min_value = S32_MIN; 6263 reg->smax_value = reg->s32_max_value = S32_MAX; 6264 } 6265 reg->umin_value = reg->u32_min_value = 0; 6266 reg->umax_value = U64_MAX; 6267 reg->u32_max_value = U32_MAX; 6268 reg->var_off = tnum_unknown; 6269 } 6270 6271 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6272 { 6273 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6274 u64 top_smax_value, top_smin_value; 6275 u64 num_bits = size * 8; 6276 6277 if (tnum_is_const(reg->var_off)) { 6278 u64_cval = reg->var_off.value; 6279 if (size == 1) 6280 reg->var_off = tnum_const((s8)u64_cval); 6281 else if (size == 2) 6282 reg->var_off = tnum_const((s16)u64_cval); 6283 else 6284 /* size == 4 */ 6285 reg->var_off = tnum_const((s32)u64_cval); 6286 6287 u64_cval = reg->var_off.value; 6288 reg->smax_value = reg->smin_value = u64_cval; 6289 reg->umax_value = reg->umin_value = u64_cval; 6290 reg->s32_max_value = reg->s32_min_value = u64_cval; 6291 reg->u32_max_value = reg->u32_min_value = u64_cval; 6292 return; 6293 } 6294 6295 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6296 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6297 6298 if (top_smax_value != top_smin_value) 6299 goto out; 6300 6301 /* find the s64_min and s64_min after sign extension */ 6302 if (size == 1) { 6303 init_s64_max = (s8)reg->smax_value; 6304 init_s64_min = (s8)reg->smin_value; 6305 } else if (size == 2) { 6306 init_s64_max = (s16)reg->smax_value; 6307 init_s64_min = (s16)reg->smin_value; 6308 } else { 6309 init_s64_max = (s32)reg->smax_value; 6310 init_s64_min = (s32)reg->smin_value; 6311 } 6312 6313 s64_max = max(init_s64_max, init_s64_min); 6314 s64_min = min(init_s64_max, init_s64_min); 6315 6316 /* both of s64_max/s64_min positive or negative */ 6317 if ((s64_max >= 0) == (s64_min >= 0)) { 6318 reg->smin_value = reg->s32_min_value = s64_min; 6319 reg->smax_value = reg->s32_max_value = s64_max; 6320 reg->umin_value = reg->u32_min_value = s64_min; 6321 reg->umax_value = reg->u32_max_value = s64_max; 6322 reg->var_off = tnum_range(s64_min, s64_max); 6323 return; 6324 } 6325 6326 out: 6327 set_sext64_default_val(reg, size); 6328 } 6329 6330 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6331 { 6332 if (size == 1) { 6333 reg->s32_min_value = S8_MIN; 6334 reg->s32_max_value = S8_MAX; 6335 } else { 6336 /* size == 2 */ 6337 reg->s32_min_value = S16_MIN; 6338 reg->s32_max_value = S16_MAX; 6339 } 6340 reg->u32_min_value = 0; 6341 reg->u32_max_value = U32_MAX; 6342 } 6343 6344 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6345 { 6346 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6347 u32 top_smax_value, top_smin_value; 6348 u32 num_bits = size * 8; 6349 6350 if (tnum_is_const(reg->var_off)) { 6351 u32_val = reg->var_off.value; 6352 if (size == 1) 6353 reg->var_off = tnum_const((s8)u32_val); 6354 else 6355 reg->var_off = tnum_const((s16)u32_val); 6356 6357 u32_val = reg->var_off.value; 6358 reg->s32_min_value = reg->s32_max_value = u32_val; 6359 reg->u32_min_value = reg->u32_max_value = u32_val; 6360 return; 6361 } 6362 6363 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6364 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6365 6366 if (top_smax_value != top_smin_value) 6367 goto out; 6368 6369 /* find the s32_min and s32_min after sign extension */ 6370 if (size == 1) { 6371 init_s32_max = (s8)reg->s32_max_value; 6372 init_s32_min = (s8)reg->s32_min_value; 6373 } else { 6374 /* size == 2 */ 6375 init_s32_max = (s16)reg->s32_max_value; 6376 init_s32_min = (s16)reg->s32_min_value; 6377 } 6378 s32_max = max(init_s32_max, init_s32_min); 6379 s32_min = min(init_s32_max, init_s32_min); 6380 6381 if ((s32_min >= 0) == (s32_max >= 0)) { 6382 reg->s32_min_value = s32_min; 6383 reg->s32_max_value = s32_max; 6384 reg->u32_min_value = (u32)s32_min; 6385 reg->u32_max_value = (u32)s32_max; 6386 return; 6387 } 6388 6389 out: 6390 set_sext32_default_val(reg, size); 6391 } 6392 6393 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6394 { 6395 /* A map is considered read-only if the following condition are true: 6396 * 6397 * 1) BPF program side cannot change any of the map content. The 6398 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6399 * and was set at map creation time. 6400 * 2) The map value(s) have been initialized from user space by a 6401 * loader and then "frozen", such that no new map update/delete 6402 * operations from syscall side are possible for the rest of 6403 * the map's lifetime from that point onwards. 6404 * 3) Any parallel/pending map update/delete operations from syscall 6405 * side have been completed. Only after that point, it's safe to 6406 * assume that map value(s) are immutable. 6407 */ 6408 return (map->map_flags & BPF_F_RDONLY_PROG) && 6409 READ_ONCE(map->frozen) && 6410 !bpf_map_write_active(map); 6411 } 6412 6413 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6414 bool is_ldsx) 6415 { 6416 void *ptr; 6417 u64 addr; 6418 int err; 6419 6420 err = map->ops->map_direct_value_addr(map, &addr, off); 6421 if (err) 6422 return err; 6423 ptr = (void *)(long)addr + off; 6424 6425 switch (size) { 6426 case sizeof(u8): 6427 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6428 break; 6429 case sizeof(u16): 6430 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6431 break; 6432 case sizeof(u32): 6433 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6434 break; 6435 case sizeof(u64): 6436 *val = *(u64 *)ptr; 6437 break; 6438 default: 6439 return -EINVAL; 6440 } 6441 return 0; 6442 } 6443 6444 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6445 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6446 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6447 6448 /* 6449 * Allow list few fields as RCU trusted or full trusted. 6450 * This logic doesn't allow mix tagging and will be removed once GCC supports 6451 * btf_type_tag. 6452 */ 6453 6454 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6455 BTF_TYPE_SAFE_RCU(struct task_struct) { 6456 const cpumask_t *cpus_ptr; 6457 struct css_set __rcu *cgroups; 6458 struct task_struct __rcu *real_parent; 6459 struct task_struct *group_leader; 6460 }; 6461 6462 BTF_TYPE_SAFE_RCU(struct cgroup) { 6463 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6464 struct kernfs_node *kn; 6465 }; 6466 6467 BTF_TYPE_SAFE_RCU(struct css_set) { 6468 struct cgroup *dfl_cgrp; 6469 }; 6470 6471 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6472 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6473 struct file __rcu *exe_file; 6474 }; 6475 6476 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6477 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6478 */ 6479 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6480 struct sock *sk; 6481 }; 6482 6483 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6484 struct sock *sk; 6485 }; 6486 6487 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6488 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6489 struct seq_file *seq; 6490 }; 6491 6492 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6493 struct bpf_iter_meta *meta; 6494 struct task_struct *task; 6495 }; 6496 6497 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6498 struct file *file; 6499 }; 6500 6501 BTF_TYPE_SAFE_TRUSTED(struct file) { 6502 struct inode *f_inode; 6503 }; 6504 6505 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6506 /* no negative dentry-s in places where bpf can see it */ 6507 struct inode *d_inode; 6508 }; 6509 6510 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6511 struct sock *sk; 6512 }; 6513 6514 static bool type_is_rcu(struct bpf_verifier_env *env, 6515 struct bpf_reg_state *reg, 6516 const char *field_name, u32 btf_id) 6517 { 6518 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6519 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6520 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6521 6522 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6523 } 6524 6525 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6526 struct bpf_reg_state *reg, 6527 const char *field_name, u32 btf_id) 6528 { 6529 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6530 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6531 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6532 6533 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6534 } 6535 6536 static bool type_is_trusted(struct bpf_verifier_env *env, 6537 struct bpf_reg_state *reg, 6538 const char *field_name, u32 btf_id) 6539 { 6540 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6541 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6542 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6543 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6544 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6545 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6546 6547 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6548 } 6549 6550 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6551 struct bpf_reg_state *regs, 6552 int regno, int off, int size, 6553 enum bpf_access_type atype, 6554 int value_regno) 6555 { 6556 struct bpf_reg_state *reg = regs + regno; 6557 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6558 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6559 const char *field_name = NULL; 6560 enum bpf_type_flag flag = 0; 6561 u32 btf_id = 0; 6562 int ret; 6563 6564 if (!env->allow_ptr_leaks) { 6565 verbose(env, 6566 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6567 tname); 6568 return -EPERM; 6569 } 6570 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6571 verbose(env, 6572 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6573 tname); 6574 return -EINVAL; 6575 } 6576 if (off < 0) { 6577 verbose(env, 6578 "R%d is ptr_%s invalid negative access: off=%d\n", 6579 regno, tname, off); 6580 return -EACCES; 6581 } 6582 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6583 char tn_buf[48]; 6584 6585 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6586 verbose(env, 6587 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6588 regno, tname, off, tn_buf); 6589 return -EACCES; 6590 } 6591 6592 if (reg->type & MEM_USER) { 6593 verbose(env, 6594 "R%d is ptr_%s access user memory: off=%d\n", 6595 regno, tname, off); 6596 return -EACCES; 6597 } 6598 6599 if (reg->type & MEM_PERCPU) { 6600 verbose(env, 6601 "R%d is ptr_%s access percpu memory: off=%d\n", 6602 regno, tname, off); 6603 return -EACCES; 6604 } 6605 6606 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6607 if (!btf_is_kernel(reg->btf)) { 6608 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6609 return -EFAULT; 6610 } 6611 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6612 } else { 6613 /* Writes are permitted with default btf_struct_access for 6614 * program allocated objects (which always have ref_obj_id > 0), 6615 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6616 */ 6617 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6618 verbose(env, "only read is supported\n"); 6619 return -EACCES; 6620 } 6621 6622 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6623 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6624 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6625 return -EFAULT; 6626 } 6627 6628 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6629 } 6630 6631 if (ret < 0) 6632 return ret; 6633 6634 if (ret != PTR_TO_BTF_ID) { 6635 /* just mark; */ 6636 6637 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6638 /* If this is an untrusted pointer, all pointers formed by walking it 6639 * also inherit the untrusted flag. 6640 */ 6641 flag = PTR_UNTRUSTED; 6642 6643 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6644 /* By default any pointer obtained from walking a trusted pointer is no 6645 * longer trusted, unless the field being accessed has explicitly been 6646 * marked as inheriting its parent's state of trust (either full or RCU). 6647 * For example: 6648 * 'cgroups' pointer is untrusted if task->cgroups dereference 6649 * happened in a sleepable program outside of bpf_rcu_read_lock() 6650 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6651 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6652 * 6653 * A regular RCU-protected pointer with __rcu tag can also be deemed 6654 * trusted if we are in an RCU CS. Such pointer can be NULL. 6655 */ 6656 if (type_is_trusted(env, reg, field_name, btf_id)) { 6657 flag |= PTR_TRUSTED; 6658 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6659 if (type_is_rcu(env, reg, field_name, btf_id)) { 6660 /* ignore __rcu tag and mark it MEM_RCU */ 6661 flag |= MEM_RCU; 6662 } else if (flag & MEM_RCU || 6663 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6664 /* __rcu tagged pointers can be NULL */ 6665 flag |= MEM_RCU | PTR_MAYBE_NULL; 6666 6667 /* We always trust them */ 6668 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6669 flag & PTR_UNTRUSTED) 6670 flag &= ~PTR_UNTRUSTED; 6671 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6672 /* keep as-is */ 6673 } else { 6674 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6675 clear_trusted_flags(&flag); 6676 } 6677 } else { 6678 /* 6679 * If not in RCU CS or MEM_RCU pointer can be NULL then 6680 * aggressively mark as untrusted otherwise such 6681 * pointers will be plain PTR_TO_BTF_ID without flags 6682 * and will be allowed to be passed into helpers for 6683 * compat reasons. 6684 */ 6685 flag = PTR_UNTRUSTED; 6686 } 6687 } else { 6688 /* Old compat. Deprecated */ 6689 clear_trusted_flags(&flag); 6690 } 6691 6692 if (atype == BPF_READ && value_regno >= 0) 6693 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6694 6695 return 0; 6696 } 6697 6698 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6699 struct bpf_reg_state *regs, 6700 int regno, int off, int size, 6701 enum bpf_access_type atype, 6702 int value_regno) 6703 { 6704 struct bpf_reg_state *reg = regs + regno; 6705 struct bpf_map *map = reg->map_ptr; 6706 struct bpf_reg_state map_reg; 6707 enum bpf_type_flag flag = 0; 6708 const struct btf_type *t; 6709 const char *tname; 6710 u32 btf_id; 6711 int ret; 6712 6713 if (!btf_vmlinux) { 6714 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6715 return -ENOTSUPP; 6716 } 6717 6718 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6719 verbose(env, "map_ptr access not supported for map type %d\n", 6720 map->map_type); 6721 return -ENOTSUPP; 6722 } 6723 6724 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6725 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6726 6727 if (!env->allow_ptr_leaks) { 6728 verbose(env, 6729 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6730 tname); 6731 return -EPERM; 6732 } 6733 6734 if (off < 0) { 6735 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6736 regno, tname, off); 6737 return -EACCES; 6738 } 6739 6740 if (atype != BPF_READ) { 6741 verbose(env, "only read from %s is supported\n", tname); 6742 return -EACCES; 6743 } 6744 6745 /* Simulate access to a PTR_TO_BTF_ID */ 6746 memset(&map_reg, 0, sizeof(map_reg)); 6747 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6748 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6749 if (ret < 0) 6750 return ret; 6751 6752 if (value_regno >= 0) 6753 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6754 6755 return 0; 6756 } 6757 6758 /* Check that the stack access at the given offset is within bounds. The 6759 * maximum valid offset is -1. 6760 * 6761 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6762 * -state->allocated_stack for reads. 6763 */ 6764 static int check_stack_slot_within_bounds(int off, 6765 struct bpf_func_state *state, 6766 enum bpf_access_type t) 6767 { 6768 int min_valid_off; 6769 6770 if (t == BPF_WRITE) 6771 min_valid_off = -MAX_BPF_STACK; 6772 else 6773 min_valid_off = -state->allocated_stack; 6774 6775 if (off < min_valid_off || off > -1) 6776 return -EACCES; 6777 return 0; 6778 } 6779 6780 /* Check that the stack access at 'regno + off' falls within the maximum stack 6781 * bounds. 6782 * 6783 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6784 */ 6785 static int check_stack_access_within_bounds( 6786 struct bpf_verifier_env *env, 6787 int regno, int off, int access_size, 6788 enum bpf_access_src src, enum bpf_access_type type) 6789 { 6790 struct bpf_reg_state *regs = cur_regs(env); 6791 struct bpf_reg_state *reg = regs + regno; 6792 struct bpf_func_state *state = func(env, reg); 6793 int min_off, max_off; 6794 int err; 6795 char *err_extra; 6796 6797 if (src == ACCESS_HELPER) 6798 /* We don't know if helpers are reading or writing (or both). */ 6799 err_extra = " indirect access to"; 6800 else if (type == BPF_READ) 6801 err_extra = " read from"; 6802 else 6803 err_extra = " write to"; 6804 6805 if (tnum_is_const(reg->var_off)) { 6806 min_off = reg->var_off.value + off; 6807 if (access_size > 0) 6808 max_off = min_off + access_size - 1; 6809 else 6810 max_off = min_off; 6811 } else { 6812 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6813 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6814 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6815 err_extra, regno); 6816 return -EACCES; 6817 } 6818 min_off = reg->smin_value + off; 6819 if (access_size > 0) 6820 max_off = reg->smax_value + off + access_size - 1; 6821 else 6822 max_off = min_off; 6823 } 6824 6825 err = check_stack_slot_within_bounds(min_off, state, type); 6826 if (!err) 6827 err = check_stack_slot_within_bounds(max_off, state, type); 6828 6829 if (err) { 6830 if (tnum_is_const(reg->var_off)) { 6831 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6832 err_extra, regno, off, access_size); 6833 } else { 6834 char tn_buf[48]; 6835 6836 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6837 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6838 err_extra, regno, tn_buf, access_size); 6839 } 6840 } 6841 return err; 6842 } 6843 6844 /* check whether memory at (regno + off) is accessible for t = (read | write) 6845 * if t==write, value_regno is a register which value is stored into memory 6846 * if t==read, value_regno is a register which will receive the value from memory 6847 * if t==write && value_regno==-1, some unknown value is stored into memory 6848 * if t==read && value_regno==-1, don't care what we read from memory 6849 */ 6850 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6851 int off, int bpf_size, enum bpf_access_type t, 6852 int value_regno, bool strict_alignment_once, bool is_ldsx) 6853 { 6854 struct bpf_reg_state *regs = cur_regs(env); 6855 struct bpf_reg_state *reg = regs + regno; 6856 struct bpf_func_state *state; 6857 int size, err = 0; 6858 6859 size = bpf_size_to_bytes(bpf_size); 6860 if (size < 0) 6861 return size; 6862 6863 /* alignment checks will add in reg->off themselves */ 6864 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6865 if (err) 6866 return err; 6867 6868 /* for access checks, reg->off is just part of off */ 6869 off += reg->off; 6870 6871 if (reg->type == PTR_TO_MAP_KEY) { 6872 if (t == BPF_WRITE) { 6873 verbose(env, "write to change key R%d not allowed\n", regno); 6874 return -EACCES; 6875 } 6876 6877 err = check_mem_region_access(env, regno, off, size, 6878 reg->map_ptr->key_size, false); 6879 if (err) 6880 return err; 6881 if (value_regno >= 0) 6882 mark_reg_unknown(env, regs, value_regno); 6883 } else if (reg->type == PTR_TO_MAP_VALUE) { 6884 struct btf_field *kptr_field = NULL; 6885 6886 if (t == BPF_WRITE && value_regno >= 0 && 6887 is_pointer_value(env, value_regno)) { 6888 verbose(env, "R%d leaks addr into map\n", value_regno); 6889 return -EACCES; 6890 } 6891 err = check_map_access_type(env, regno, off, size, t); 6892 if (err) 6893 return err; 6894 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6895 if (err) 6896 return err; 6897 if (tnum_is_const(reg->var_off)) 6898 kptr_field = btf_record_find(reg->map_ptr->record, 6899 off + reg->var_off.value, BPF_KPTR); 6900 if (kptr_field) { 6901 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6902 } else if (t == BPF_READ && value_regno >= 0) { 6903 struct bpf_map *map = reg->map_ptr; 6904 6905 /* if map is read-only, track its contents as scalars */ 6906 if (tnum_is_const(reg->var_off) && 6907 bpf_map_is_rdonly(map) && 6908 map->ops->map_direct_value_addr) { 6909 int map_off = off + reg->var_off.value; 6910 u64 val = 0; 6911 6912 err = bpf_map_direct_read(map, map_off, size, 6913 &val, is_ldsx); 6914 if (err) 6915 return err; 6916 6917 regs[value_regno].type = SCALAR_VALUE; 6918 __mark_reg_known(®s[value_regno], val); 6919 } else { 6920 mark_reg_unknown(env, regs, value_regno); 6921 } 6922 } 6923 } else if (base_type(reg->type) == PTR_TO_MEM) { 6924 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6925 6926 if (type_may_be_null(reg->type)) { 6927 verbose(env, "R%d invalid mem access '%s'\n", regno, 6928 reg_type_str(env, reg->type)); 6929 return -EACCES; 6930 } 6931 6932 if (t == BPF_WRITE && rdonly_mem) { 6933 verbose(env, "R%d cannot write into %s\n", 6934 regno, reg_type_str(env, reg->type)); 6935 return -EACCES; 6936 } 6937 6938 if (t == BPF_WRITE && value_regno >= 0 && 6939 is_pointer_value(env, value_regno)) { 6940 verbose(env, "R%d leaks addr into mem\n", value_regno); 6941 return -EACCES; 6942 } 6943 6944 err = check_mem_region_access(env, regno, off, size, 6945 reg->mem_size, false); 6946 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6947 mark_reg_unknown(env, regs, value_regno); 6948 } else if (reg->type == PTR_TO_CTX) { 6949 enum bpf_reg_type reg_type = SCALAR_VALUE; 6950 struct btf *btf = NULL; 6951 u32 btf_id = 0; 6952 6953 if (t == BPF_WRITE && value_regno >= 0 && 6954 is_pointer_value(env, value_regno)) { 6955 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6956 return -EACCES; 6957 } 6958 6959 err = check_ptr_off_reg(env, reg, regno); 6960 if (err < 0) 6961 return err; 6962 6963 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6964 &btf_id); 6965 if (err) 6966 verbose_linfo(env, insn_idx, "; "); 6967 if (!err && t == BPF_READ && value_regno >= 0) { 6968 /* ctx access returns either a scalar, or a 6969 * PTR_TO_PACKET[_META,_END]. In the latter 6970 * case, we know the offset is zero. 6971 */ 6972 if (reg_type == SCALAR_VALUE) { 6973 mark_reg_unknown(env, regs, value_regno); 6974 } else { 6975 mark_reg_known_zero(env, regs, 6976 value_regno); 6977 if (type_may_be_null(reg_type)) 6978 regs[value_regno].id = ++env->id_gen; 6979 /* A load of ctx field could have different 6980 * actual load size with the one encoded in the 6981 * insn. When the dst is PTR, it is for sure not 6982 * a sub-register. 6983 */ 6984 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6985 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6986 regs[value_regno].btf = btf; 6987 regs[value_regno].btf_id = btf_id; 6988 } 6989 } 6990 regs[value_regno].type = reg_type; 6991 } 6992 6993 } else if (reg->type == PTR_TO_STACK) { 6994 /* Basic bounds checks. */ 6995 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6996 if (err) 6997 return err; 6998 6999 state = func(env, reg); 7000 err = update_stack_depth(env, state, off); 7001 if (err) 7002 return err; 7003 7004 if (t == BPF_READ) 7005 err = check_stack_read(env, regno, off, size, 7006 value_regno); 7007 else 7008 err = check_stack_write(env, regno, off, size, 7009 value_regno, insn_idx); 7010 } else if (reg_is_pkt_pointer(reg)) { 7011 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7012 verbose(env, "cannot write into packet\n"); 7013 return -EACCES; 7014 } 7015 if (t == BPF_WRITE && value_regno >= 0 && 7016 is_pointer_value(env, value_regno)) { 7017 verbose(env, "R%d leaks addr into packet\n", 7018 value_regno); 7019 return -EACCES; 7020 } 7021 err = check_packet_access(env, regno, off, size, false); 7022 if (!err && t == BPF_READ && value_regno >= 0) 7023 mark_reg_unknown(env, regs, value_regno); 7024 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7025 if (t == BPF_WRITE && value_regno >= 0 && 7026 is_pointer_value(env, value_regno)) { 7027 verbose(env, "R%d leaks addr into flow keys\n", 7028 value_regno); 7029 return -EACCES; 7030 } 7031 7032 err = check_flow_keys_access(env, off, size); 7033 if (!err && t == BPF_READ && value_regno >= 0) 7034 mark_reg_unknown(env, regs, value_regno); 7035 } else if (type_is_sk_pointer(reg->type)) { 7036 if (t == BPF_WRITE) { 7037 verbose(env, "R%d cannot write into %s\n", 7038 regno, reg_type_str(env, reg->type)); 7039 return -EACCES; 7040 } 7041 err = check_sock_access(env, insn_idx, regno, off, size, t); 7042 if (!err && value_regno >= 0) 7043 mark_reg_unknown(env, regs, value_regno); 7044 } else if (reg->type == PTR_TO_TP_BUFFER) { 7045 err = check_tp_buffer_access(env, reg, regno, off, size); 7046 if (!err && t == BPF_READ && value_regno >= 0) 7047 mark_reg_unknown(env, regs, value_regno); 7048 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7049 !type_may_be_null(reg->type)) { 7050 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7051 value_regno); 7052 } else if (reg->type == CONST_PTR_TO_MAP) { 7053 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7054 value_regno); 7055 } else if (base_type(reg->type) == PTR_TO_BUF) { 7056 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7057 u32 *max_access; 7058 7059 if (rdonly_mem) { 7060 if (t == BPF_WRITE) { 7061 verbose(env, "R%d cannot write into %s\n", 7062 regno, reg_type_str(env, reg->type)); 7063 return -EACCES; 7064 } 7065 max_access = &env->prog->aux->max_rdonly_access; 7066 } else { 7067 max_access = &env->prog->aux->max_rdwr_access; 7068 } 7069 7070 err = check_buffer_access(env, reg, regno, off, size, false, 7071 max_access); 7072 7073 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7074 mark_reg_unknown(env, regs, value_regno); 7075 } else { 7076 verbose(env, "R%d invalid mem access '%s'\n", regno, 7077 reg_type_str(env, reg->type)); 7078 return -EACCES; 7079 } 7080 7081 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7082 regs[value_regno].type == SCALAR_VALUE) { 7083 if (!is_ldsx) 7084 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7085 coerce_reg_to_size(®s[value_regno], size); 7086 else 7087 coerce_reg_to_size_sx(®s[value_regno], size); 7088 } 7089 return err; 7090 } 7091 7092 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7093 { 7094 int load_reg; 7095 int err; 7096 7097 switch (insn->imm) { 7098 case BPF_ADD: 7099 case BPF_ADD | BPF_FETCH: 7100 case BPF_AND: 7101 case BPF_AND | BPF_FETCH: 7102 case BPF_OR: 7103 case BPF_OR | BPF_FETCH: 7104 case BPF_XOR: 7105 case BPF_XOR | BPF_FETCH: 7106 case BPF_XCHG: 7107 case BPF_CMPXCHG: 7108 break; 7109 default: 7110 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7111 return -EINVAL; 7112 } 7113 7114 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7115 verbose(env, "invalid atomic operand size\n"); 7116 return -EINVAL; 7117 } 7118 7119 /* check src1 operand */ 7120 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7121 if (err) 7122 return err; 7123 7124 /* check src2 operand */ 7125 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7126 if (err) 7127 return err; 7128 7129 if (insn->imm == BPF_CMPXCHG) { 7130 /* Check comparison of R0 with memory location */ 7131 const u32 aux_reg = BPF_REG_0; 7132 7133 err = check_reg_arg(env, aux_reg, SRC_OP); 7134 if (err) 7135 return err; 7136 7137 if (is_pointer_value(env, aux_reg)) { 7138 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7139 return -EACCES; 7140 } 7141 } 7142 7143 if (is_pointer_value(env, insn->src_reg)) { 7144 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7145 return -EACCES; 7146 } 7147 7148 if (is_ctx_reg(env, insn->dst_reg) || 7149 is_pkt_reg(env, insn->dst_reg) || 7150 is_flow_key_reg(env, insn->dst_reg) || 7151 is_sk_reg(env, insn->dst_reg)) { 7152 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7153 insn->dst_reg, 7154 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7155 return -EACCES; 7156 } 7157 7158 if (insn->imm & BPF_FETCH) { 7159 if (insn->imm == BPF_CMPXCHG) 7160 load_reg = BPF_REG_0; 7161 else 7162 load_reg = insn->src_reg; 7163 7164 /* check and record load of old value */ 7165 err = check_reg_arg(env, load_reg, DST_OP); 7166 if (err) 7167 return err; 7168 } else { 7169 /* This instruction accesses a memory location but doesn't 7170 * actually load it into a register. 7171 */ 7172 load_reg = -1; 7173 } 7174 7175 /* Check whether we can read the memory, with second call for fetch 7176 * case to simulate the register fill. 7177 */ 7178 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7179 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7180 if (!err && load_reg >= 0) 7181 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7182 BPF_SIZE(insn->code), BPF_READ, load_reg, 7183 true, false); 7184 if (err) 7185 return err; 7186 7187 /* Check whether we can write into the same memory. */ 7188 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7189 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7190 if (err) 7191 return err; 7192 7193 return 0; 7194 } 7195 7196 /* When register 'regno' is used to read the stack (either directly or through 7197 * a helper function) make sure that it's within stack boundary and, depending 7198 * on the access type, that all elements of the stack are initialized. 7199 * 7200 * 'off' includes 'regno->off', but not its dynamic part (if any). 7201 * 7202 * All registers that have been spilled on the stack in the slots within the 7203 * read offsets are marked as read. 7204 */ 7205 static int check_stack_range_initialized( 7206 struct bpf_verifier_env *env, int regno, int off, 7207 int access_size, bool zero_size_allowed, 7208 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7209 { 7210 struct bpf_reg_state *reg = reg_state(env, regno); 7211 struct bpf_func_state *state = func(env, reg); 7212 int err, min_off, max_off, i, j, slot, spi; 7213 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7214 enum bpf_access_type bounds_check_type; 7215 /* Some accesses can write anything into the stack, others are 7216 * read-only. 7217 */ 7218 bool clobber = false; 7219 7220 if (access_size == 0 && !zero_size_allowed) { 7221 verbose(env, "invalid zero-sized read\n"); 7222 return -EACCES; 7223 } 7224 7225 if (type == ACCESS_HELPER) { 7226 /* The bounds checks for writes are more permissive than for 7227 * reads. However, if raw_mode is not set, we'll do extra 7228 * checks below. 7229 */ 7230 bounds_check_type = BPF_WRITE; 7231 clobber = true; 7232 } else { 7233 bounds_check_type = BPF_READ; 7234 } 7235 err = check_stack_access_within_bounds(env, regno, off, access_size, 7236 type, bounds_check_type); 7237 if (err) 7238 return err; 7239 7240 7241 if (tnum_is_const(reg->var_off)) { 7242 min_off = max_off = reg->var_off.value + off; 7243 } else { 7244 /* Variable offset is prohibited for unprivileged mode for 7245 * simplicity since it requires corresponding support in 7246 * Spectre masking for stack ALU. 7247 * See also retrieve_ptr_limit(). 7248 */ 7249 if (!env->bypass_spec_v1) { 7250 char tn_buf[48]; 7251 7252 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7253 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7254 regno, err_extra, tn_buf); 7255 return -EACCES; 7256 } 7257 /* Only initialized buffer on stack is allowed to be accessed 7258 * with variable offset. With uninitialized buffer it's hard to 7259 * guarantee that whole memory is marked as initialized on 7260 * helper return since specific bounds are unknown what may 7261 * cause uninitialized stack leaking. 7262 */ 7263 if (meta && meta->raw_mode) 7264 meta = NULL; 7265 7266 min_off = reg->smin_value + off; 7267 max_off = reg->smax_value + off; 7268 } 7269 7270 if (meta && meta->raw_mode) { 7271 /* Ensure we won't be overwriting dynptrs when simulating byte 7272 * by byte access in check_helper_call using meta.access_size. 7273 * This would be a problem if we have a helper in the future 7274 * which takes: 7275 * 7276 * helper(uninit_mem, len, dynptr) 7277 * 7278 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7279 * may end up writing to dynptr itself when touching memory from 7280 * arg 1. This can be relaxed on a case by case basis for known 7281 * safe cases, but reject due to the possibilitiy of aliasing by 7282 * default. 7283 */ 7284 for (i = min_off; i < max_off + access_size; i++) { 7285 int stack_off = -i - 1; 7286 7287 spi = __get_spi(i); 7288 /* raw_mode may write past allocated_stack */ 7289 if (state->allocated_stack <= stack_off) 7290 continue; 7291 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7292 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7293 return -EACCES; 7294 } 7295 } 7296 meta->access_size = access_size; 7297 meta->regno = regno; 7298 return 0; 7299 } 7300 7301 for (i = min_off; i < max_off + access_size; i++) { 7302 u8 *stype; 7303 7304 slot = -i - 1; 7305 spi = slot / BPF_REG_SIZE; 7306 if (state->allocated_stack <= slot) 7307 goto err; 7308 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7309 if (*stype == STACK_MISC) 7310 goto mark; 7311 if ((*stype == STACK_ZERO) || 7312 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7313 if (clobber) { 7314 /* helper can write anything into the stack */ 7315 *stype = STACK_MISC; 7316 } 7317 goto mark; 7318 } 7319 7320 if (is_spilled_reg(&state->stack[spi]) && 7321 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7322 env->allow_ptr_leaks)) { 7323 if (clobber) { 7324 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7325 for (j = 0; j < BPF_REG_SIZE; j++) 7326 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7327 } 7328 goto mark; 7329 } 7330 7331 err: 7332 if (tnum_is_const(reg->var_off)) { 7333 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7334 err_extra, regno, min_off, i - min_off, access_size); 7335 } else { 7336 char tn_buf[48]; 7337 7338 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7339 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7340 err_extra, regno, tn_buf, i - min_off, access_size); 7341 } 7342 return -EACCES; 7343 mark: 7344 /* reading any byte out of 8-byte 'spill_slot' will cause 7345 * the whole slot to be marked as 'read' 7346 */ 7347 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7348 state->stack[spi].spilled_ptr.parent, 7349 REG_LIVE_READ64); 7350 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7351 * be sure that whether stack slot is written to or not. Hence, 7352 * we must still conservatively propagate reads upwards even if 7353 * helper may write to the entire memory range. 7354 */ 7355 } 7356 return update_stack_depth(env, state, min_off); 7357 } 7358 7359 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7360 int access_size, bool zero_size_allowed, 7361 struct bpf_call_arg_meta *meta) 7362 { 7363 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7364 u32 *max_access; 7365 7366 switch (base_type(reg->type)) { 7367 case PTR_TO_PACKET: 7368 case PTR_TO_PACKET_META: 7369 return check_packet_access(env, regno, reg->off, access_size, 7370 zero_size_allowed); 7371 case PTR_TO_MAP_KEY: 7372 if (meta && meta->raw_mode) { 7373 verbose(env, "R%d cannot write into %s\n", regno, 7374 reg_type_str(env, reg->type)); 7375 return -EACCES; 7376 } 7377 return check_mem_region_access(env, regno, reg->off, access_size, 7378 reg->map_ptr->key_size, false); 7379 case PTR_TO_MAP_VALUE: 7380 if (check_map_access_type(env, regno, reg->off, access_size, 7381 meta && meta->raw_mode ? BPF_WRITE : 7382 BPF_READ)) 7383 return -EACCES; 7384 return check_map_access(env, regno, reg->off, access_size, 7385 zero_size_allowed, ACCESS_HELPER); 7386 case PTR_TO_MEM: 7387 if (type_is_rdonly_mem(reg->type)) { 7388 if (meta && meta->raw_mode) { 7389 verbose(env, "R%d cannot write into %s\n", regno, 7390 reg_type_str(env, reg->type)); 7391 return -EACCES; 7392 } 7393 } 7394 return check_mem_region_access(env, regno, reg->off, 7395 access_size, reg->mem_size, 7396 zero_size_allowed); 7397 case PTR_TO_BUF: 7398 if (type_is_rdonly_mem(reg->type)) { 7399 if (meta && meta->raw_mode) { 7400 verbose(env, "R%d cannot write into %s\n", regno, 7401 reg_type_str(env, reg->type)); 7402 return -EACCES; 7403 } 7404 7405 max_access = &env->prog->aux->max_rdonly_access; 7406 } else { 7407 max_access = &env->prog->aux->max_rdwr_access; 7408 } 7409 return check_buffer_access(env, reg, regno, reg->off, 7410 access_size, zero_size_allowed, 7411 max_access); 7412 case PTR_TO_STACK: 7413 return check_stack_range_initialized( 7414 env, 7415 regno, reg->off, access_size, 7416 zero_size_allowed, ACCESS_HELPER, meta); 7417 case PTR_TO_BTF_ID: 7418 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7419 access_size, BPF_READ, -1); 7420 case PTR_TO_CTX: 7421 /* in case the function doesn't know how to access the context, 7422 * (because we are in a program of type SYSCALL for example), we 7423 * can not statically check its size. 7424 * Dynamically check it now. 7425 */ 7426 if (!env->ops->convert_ctx_access) { 7427 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7428 int offset = access_size - 1; 7429 7430 /* Allow zero-byte read from PTR_TO_CTX */ 7431 if (access_size == 0) 7432 return zero_size_allowed ? 0 : -EACCES; 7433 7434 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7435 atype, -1, false, false); 7436 } 7437 7438 fallthrough; 7439 default: /* scalar_value or invalid ptr */ 7440 /* Allow zero-byte read from NULL, regardless of pointer type */ 7441 if (zero_size_allowed && access_size == 0 && 7442 register_is_null(reg)) 7443 return 0; 7444 7445 verbose(env, "R%d type=%s ", regno, 7446 reg_type_str(env, reg->type)); 7447 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7448 return -EACCES; 7449 } 7450 } 7451 7452 static int check_mem_size_reg(struct bpf_verifier_env *env, 7453 struct bpf_reg_state *reg, u32 regno, 7454 bool zero_size_allowed, 7455 struct bpf_call_arg_meta *meta) 7456 { 7457 int err; 7458 7459 /* This is used to refine r0 return value bounds for helpers 7460 * that enforce this value as an upper bound on return values. 7461 * See do_refine_retval_range() for helpers that can refine 7462 * the return value. C type of helper is u32 so we pull register 7463 * bound from umax_value however, if negative verifier errors 7464 * out. Only upper bounds can be learned because retval is an 7465 * int type and negative retvals are allowed. 7466 */ 7467 meta->msize_max_value = reg->umax_value; 7468 7469 /* The register is SCALAR_VALUE; the access check 7470 * happens using its boundaries. 7471 */ 7472 if (!tnum_is_const(reg->var_off)) 7473 /* For unprivileged variable accesses, disable raw 7474 * mode so that the program is required to 7475 * initialize all the memory that the helper could 7476 * just partially fill up. 7477 */ 7478 meta = NULL; 7479 7480 if (reg->smin_value < 0) { 7481 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7482 regno); 7483 return -EACCES; 7484 } 7485 7486 if (reg->umin_value == 0) { 7487 err = check_helper_mem_access(env, regno - 1, 0, 7488 zero_size_allowed, 7489 meta); 7490 if (err) 7491 return err; 7492 } 7493 7494 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7495 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7496 regno); 7497 return -EACCES; 7498 } 7499 err = check_helper_mem_access(env, regno - 1, 7500 reg->umax_value, 7501 zero_size_allowed, meta); 7502 if (!err) 7503 err = mark_chain_precision(env, regno); 7504 return err; 7505 } 7506 7507 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7508 u32 regno, u32 mem_size) 7509 { 7510 bool may_be_null = type_may_be_null(reg->type); 7511 struct bpf_reg_state saved_reg; 7512 struct bpf_call_arg_meta meta; 7513 int err; 7514 7515 if (register_is_null(reg)) 7516 return 0; 7517 7518 memset(&meta, 0, sizeof(meta)); 7519 /* Assuming that the register contains a value check if the memory 7520 * access is safe. Temporarily save and restore the register's state as 7521 * the conversion shouldn't be visible to a caller. 7522 */ 7523 if (may_be_null) { 7524 saved_reg = *reg; 7525 mark_ptr_not_null_reg(reg); 7526 } 7527 7528 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7529 /* Check access for BPF_WRITE */ 7530 meta.raw_mode = true; 7531 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7532 7533 if (may_be_null) 7534 *reg = saved_reg; 7535 7536 return err; 7537 } 7538 7539 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7540 u32 regno) 7541 { 7542 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7543 bool may_be_null = type_may_be_null(mem_reg->type); 7544 struct bpf_reg_state saved_reg; 7545 struct bpf_call_arg_meta meta; 7546 int err; 7547 7548 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7549 7550 memset(&meta, 0, sizeof(meta)); 7551 7552 if (may_be_null) { 7553 saved_reg = *mem_reg; 7554 mark_ptr_not_null_reg(mem_reg); 7555 } 7556 7557 err = check_mem_size_reg(env, reg, regno, true, &meta); 7558 /* Check access for BPF_WRITE */ 7559 meta.raw_mode = true; 7560 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7561 7562 if (may_be_null) 7563 *mem_reg = saved_reg; 7564 return err; 7565 } 7566 7567 /* Implementation details: 7568 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7569 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7570 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7571 * Two separate bpf_obj_new will also have different reg->id. 7572 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7573 * clears reg->id after value_or_null->value transition, since the verifier only 7574 * cares about the range of access to valid map value pointer and doesn't care 7575 * about actual address of the map element. 7576 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7577 * reg->id > 0 after value_or_null->value transition. By doing so 7578 * two bpf_map_lookups will be considered two different pointers that 7579 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7580 * returned from bpf_obj_new. 7581 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7582 * dead-locks. 7583 * Since only one bpf_spin_lock is allowed the checks are simpler than 7584 * reg_is_refcounted() logic. The verifier needs to remember only 7585 * one spin_lock instead of array of acquired_refs. 7586 * cur_state->active_lock remembers which map value element or allocated 7587 * object got locked and clears it after bpf_spin_unlock. 7588 */ 7589 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7590 bool is_lock) 7591 { 7592 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7593 struct bpf_verifier_state *cur = env->cur_state; 7594 bool is_const = tnum_is_const(reg->var_off); 7595 u64 val = reg->var_off.value; 7596 struct bpf_map *map = NULL; 7597 struct btf *btf = NULL; 7598 struct btf_record *rec; 7599 7600 if (!is_const) { 7601 verbose(env, 7602 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7603 regno); 7604 return -EINVAL; 7605 } 7606 if (reg->type == PTR_TO_MAP_VALUE) { 7607 map = reg->map_ptr; 7608 if (!map->btf) { 7609 verbose(env, 7610 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7611 map->name); 7612 return -EINVAL; 7613 } 7614 } else { 7615 btf = reg->btf; 7616 } 7617 7618 rec = reg_btf_record(reg); 7619 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7620 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7621 map ? map->name : "kptr"); 7622 return -EINVAL; 7623 } 7624 if (rec->spin_lock_off != val + reg->off) { 7625 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7626 val + reg->off, rec->spin_lock_off); 7627 return -EINVAL; 7628 } 7629 if (is_lock) { 7630 if (cur->active_lock.ptr) { 7631 verbose(env, 7632 "Locking two bpf_spin_locks are not allowed\n"); 7633 return -EINVAL; 7634 } 7635 if (map) 7636 cur->active_lock.ptr = map; 7637 else 7638 cur->active_lock.ptr = btf; 7639 cur->active_lock.id = reg->id; 7640 } else { 7641 void *ptr; 7642 7643 if (map) 7644 ptr = map; 7645 else 7646 ptr = btf; 7647 7648 if (!cur->active_lock.ptr) { 7649 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7650 return -EINVAL; 7651 } 7652 if (cur->active_lock.ptr != ptr || 7653 cur->active_lock.id != reg->id) { 7654 verbose(env, "bpf_spin_unlock of different lock\n"); 7655 return -EINVAL; 7656 } 7657 7658 invalidate_non_owning_refs(env); 7659 7660 cur->active_lock.ptr = NULL; 7661 cur->active_lock.id = 0; 7662 } 7663 return 0; 7664 } 7665 7666 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7667 struct bpf_call_arg_meta *meta) 7668 { 7669 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7670 bool is_const = tnum_is_const(reg->var_off); 7671 struct bpf_map *map = reg->map_ptr; 7672 u64 val = reg->var_off.value; 7673 7674 if (!is_const) { 7675 verbose(env, 7676 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7677 regno); 7678 return -EINVAL; 7679 } 7680 if (!map->btf) { 7681 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7682 map->name); 7683 return -EINVAL; 7684 } 7685 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7686 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7687 return -EINVAL; 7688 } 7689 if (map->record->timer_off != val + reg->off) { 7690 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7691 val + reg->off, map->record->timer_off); 7692 return -EINVAL; 7693 } 7694 if (meta->map_ptr) { 7695 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7696 return -EFAULT; 7697 } 7698 meta->map_uid = reg->map_uid; 7699 meta->map_ptr = map; 7700 return 0; 7701 } 7702 7703 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7704 struct bpf_call_arg_meta *meta) 7705 { 7706 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7707 struct bpf_map *map_ptr = reg->map_ptr; 7708 struct btf_field *kptr_field; 7709 u32 kptr_off; 7710 7711 if (!tnum_is_const(reg->var_off)) { 7712 verbose(env, 7713 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7714 regno); 7715 return -EINVAL; 7716 } 7717 if (!map_ptr->btf) { 7718 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7719 map_ptr->name); 7720 return -EINVAL; 7721 } 7722 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7723 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7724 return -EINVAL; 7725 } 7726 7727 meta->map_ptr = map_ptr; 7728 kptr_off = reg->off + reg->var_off.value; 7729 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7730 if (!kptr_field) { 7731 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7732 return -EACCES; 7733 } 7734 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7735 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7736 return -EACCES; 7737 } 7738 meta->kptr_field = kptr_field; 7739 return 0; 7740 } 7741 7742 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7743 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7744 * 7745 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7746 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7747 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7748 * 7749 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7750 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7751 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7752 * mutate the view of the dynptr and also possibly destroy it. In the latter 7753 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7754 * memory that dynptr points to. 7755 * 7756 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7757 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7758 * readonly dynptr view yet, hence only the first case is tracked and checked. 7759 * 7760 * This is consistent with how C applies the const modifier to a struct object, 7761 * where the pointer itself inside bpf_dynptr becomes const but not what it 7762 * points to. 7763 * 7764 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7765 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7766 */ 7767 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7768 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7769 { 7770 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7771 int err; 7772 7773 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7774 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7775 */ 7776 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7777 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7778 return -EFAULT; 7779 } 7780 7781 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7782 * constructing a mutable bpf_dynptr object. 7783 * 7784 * Currently, this is only possible with PTR_TO_STACK 7785 * pointing to a region of at least 16 bytes which doesn't 7786 * contain an existing bpf_dynptr. 7787 * 7788 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7789 * mutated or destroyed. However, the memory it points to 7790 * may be mutated. 7791 * 7792 * None - Points to a initialized dynptr that can be mutated and 7793 * destroyed, including mutation of the memory it points 7794 * to. 7795 */ 7796 if (arg_type & MEM_UNINIT) { 7797 int i; 7798 7799 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7800 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7801 return -EINVAL; 7802 } 7803 7804 /* we write BPF_DW bits (8 bytes) at a time */ 7805 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7806 err = check_mem_access(env, insn_idx, regno, 7807 i, BPF_DW, BPF_WRITE, -1, false, false); 7808 if (err) 7809 return err; 7810 } 7811 7812 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7813 } else /* MEM_RDONLY and None case from above */ { 7814 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7815 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7816 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7817 return -EINVAL; 7818 } 7819 7820 if (!is_dynptr_reg_valid_init(env, reg)) { 7821 verbose(env, 7822 "Expected an initialized dynptr as arg #%d\n", 7823 regno); 7824 return -EINVAL; 7825 } 7826 7827 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7828 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7829 verbose(env, 7830 "Expected a dynptr of type %s as arg #%d\n", 7831 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7832 return -EINVAL; 7833 } 7834 7835 err = mark_dynptr_read(env, reg); 7836 } 7837 return err; 7838 } 7839 7840 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7841 { 7842 struct bpf_func_state *state = func(env, reg); 7843 7844 return state->stack[spi].spilled_ptr.ref_obj_id; 7845 } 7846 7847 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7848 { 7849 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7850 } 7851 7852 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7853 { 7854 return meta->kfunc_flags & KF_ITER_NEW; 7855 } 7856 7857 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7858 { 7859 return meta->kfunc_flags & KF_ITER_NEXT; 7860 } 7861 7862 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7863 { 7864 return meta->kfunc_flags & KF_ITER_DESTROY; 7865 } 7866 7867 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7868 { 7869 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7870 * kfunc is iter state pointer 7871 */ 7872 return arg == 0 && is_iter_kfunc(meta); 7873 } 7874 7875 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7876 struct bpf_kfunc_call_arg_meta *meta) 7877 { 7878 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7879 const struct btf_type *t; 7880 const struct btf_param *arg; 7881 int spi, err, i, nr_slots; 7882 u32 btf_id; 7883 7884 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7885 arg = &btf_params(meta->func_proto)[0]; 7886 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7887 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7888 nr_slots = t->size / BPF_REG_SIZE; 7889 7890 if (is_iter_new_kfunc(meta)) { 7891 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7892 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7893 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7894 iter_type_str(meta->btf, btf_id), regno); 7895 return -EINVAL; 7896 } 7897 7898 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7899 err = check_mem_access(env, insn_idx, regno, 7900 i, BPF_DW, BPF_WRITE, -1, false, false); 7901 if (err) 7902 return err; 7903 } 7904 7905 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7906 if (err) 7907 return err; 7908 } else { 7909 /* iter_next() or iter_destroy() expect initialized iter state*/ 7910 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7911 switch (err) { 7912 case 0: 7913 break; 7914 case -EINVAL: 7915 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7916 iter_type_str(meta->btf, btf_id), regno); 7917 return err; 7918 case -EPROTO: 7919 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7920 return err; 7921 default: 7922 return err; 7923 } 7924 7925 spi = iter_get_spi(env, reg, nr_slots); 7926 if (spi < 0) 7927 return spi; 7928 7929 err = mark_iter_read(env, reg, spi, nr_slots); 7930 if (err) 7931 return err; 7932 7933 /* remember meta->iter info for process_iter_next_call() */ 7934 meta->iter.spi = spi; 7935 meta->iter.frameno = reg->frameno; 7936 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7937 7938 if (is_iter_destroy_kfunc(meta)) { 7939 err = unmark_stack_slots_iter(env, reg, nr_slots); 7940 if (err) 7941 return err; 7942 } 7943 } 7944 7945 return 0; 7946 } 7947 7948 /* Look for a previous loop entry at insn_idx: nearest parent state 7949 * stopped at insn_idx with callsites matching those in cur->frame. 7950 */ 7951 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7952 struct bpf_verifier_state *cur, 7953 int insn_idx) 7954 { 7955 struct bpf_verifier_state_list *sl; 7956 struct bpf_verifier_state *st; 7957 7958 /* Explored states are pushed in stack order, most recent states come first */ 7959 sl = *explored_state(env, insn_idx); 7960 for (; sl; sl = sl->next) { 7961 /* If st->branches != 0 state is a part of current DFS verification path, 7962 * hence cur & st for a loop. 7963 */ 7964 st = &sl->state; 7965 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7966 st->dfs_depth < cur->dfs_depth) 7967 return st; 7968 } 7969 7970 return NULL; 7971 } 7972 7973 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7974 static bool regs_exact(const struct bpf_reg_state *rold, 7975 const struct bpf_reg_state *rcur, 7976 struct bpf_idmap *idmap); 7977 7978 static void maybe_widen_reg(struct bpf_verifier_env *env, 7979 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7980 struct bpf_idmap *idmap) 7981 { 7982 if (rold->type != SCALAR_VALUE) 7983 return; 7984 if (rold->type != rcur->type) 7985 return; 7986 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7987 return; 7988 __mark_reg_unknown(env, rcur); 7989 } 7990 7991 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7992 struct bpf_verifier_state *old, 7993 struct bpf_verifier_state *cur) 7994 { 7995 struct bpf_func_state *fold, *fcur; 7996 int i, fr; 7997 7998 reset_idmap_scratch(env); 7999 for (fr = old->curframe; fr >= 0; fr--) { 8000 fold = old->frame[fr]; 8001 fcur = cur->frame[fr]; 8002 8003 for (i = 0; i < MAX_BPF_REG; i++) 8004 maybe_widen_reg(env, 8005 &fold->regs[i], 8006 &fcur->regs[i], 8007 &env->idmap_scratch); 8008 8009 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8010 if (!is_spilled_reg(&fold->stack[i]) || 8011 !is_spilled_reg(&fcur->stack[i])) 8012 continue; 8013 8014 maybe_widen_reg(env, 8015 &fold->stack[i].spilled_ptr, 8016 &fcur->stack[i].spilled_ptr, 8017 &env->idmap_scratch); 8018 } 8019 } 8020 return 0; 8021 } 8022 8023 /* process_iter_next_call() is called when verifier gets to iterator's next 8024 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8025 * to it as just "iter_next()" in comments below. 8026 * 8027 * BPF verifier relies on a crucial contract for any iter_next() 8028 * implementation: it should *eventually* return NULL, and once that happens 8029 * it should keep returning NULL. That is, once iterator exhausts elements to 8030 * iterate, it should never reset or spuriously return new elements. 8031 * 8032 * With the assumption of such contract, process_iter_next_call() simulates 8033 * a fork in the verifier state to validate loop logic correctness and safety 8034 * without having to simulate infinite amount of iterations. 8035 * 8036 * In current state, we first assume that iter_next() returned NULL and 8037 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8038 * conditions we should not form an infinite loop and should eventually reach 8039 * exit. 8040 * 8041 * Besides that, we also fork current state and enqueue it for later 8042 * verification. In a forked state we keep iterator state as ACTIVE 8043 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8044 * also bump iteration depth to prevent erroneous infinite loop detection 8045 * later on (see iter_active_depths_differ() comment for details). In this 8046 * state we assume that we'll eventually loop back to another iter_next() 8047 * calls (it could be in exactly same location or in some other instruction, 8048 * it doesn't matter, we don't make any unnecessary assumptions about this, 8049 * everything revolves around iterator state in a stack slot, not which 8050 * instruction is calling iter_next()). When that happens, we either will come 8051 * to iter_next() with equivalent state and can conclude that next iteration 8052 * will proceed in exactly the same way as we just verified, so it's safe to 8053 * assume that loop converges. If not, we'll go on another iteration 8054 * simulation with a different input state, until all possible starting states 8055 * are validated or we reach maximum number of instructions limit. 8056 * 8057 * This way, we will either exhaustively discover all possible input states 8058 * that iterator loop can start with and eventually will converge, or we'll 8059 * effectively regress into bounded loop simulation logic and either reach 8060 * maximum number of instructions if loop is not provably convergent, or there 8061 * is some statically known limit on number of iterations (e.g., if there is 8062 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8063 * 8064 * Iteration convergence logic in is_state_visited() relies on exact 8065 * states comparison, which ignores read and precision marks. 8066 * This is necessary because read and precision marks are not finalized 8067 * while in the loop. Exact comparison might preclude convergence for 8068 * simple programs like below: 8069 * 8070 * i = 0; 8071 * while(iter_next(&it)) 8072 * i++; 8073 * 8074 * At each iteration step i++ would produce a new distinct state and 8075 * eventually instruction processing limit would be reached. 8076 * 8077 * To avoid such behavior speculatively forget (widen) range for 8078 * imprecise scalar registers, if those registers were not precise at the 8079 * end of the previous iteration and do not match exactly. 8080 * 8081 * This is a conservative heuristic that allows to verify wide range of programs, 8082 * however it precludes verification of programs that conjure an 8083 * imprecise value on the first loop iteration and use it as precise on a second. 8084 * For example, the following safe program would fail to verify: 8085 * 8086 * struct bpf_num_iter it; 8087 * int arr[10]; 8088 * int i = 0, a = 0; 8089 * bpf_iter_num_new(&it, 0, 10); 8090 * while (bpf_iter_num_next(&it)) { 8091 * if (a == 0) { 8092 * a = 1; 8093 * i = 7; // Because i changed verifier would forget 8094 * // it's range on second loop entry. 8095 * } else { 8096 * arr[i] = 42; // This would fail to verify. 8097 * } 8098 * } 8099 * bpf_iter_num_destroy(&it); 8100 */ 8101 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8102 struct bpf_kfunc_call_arg_meta *meta) 8103 { 8104 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8105 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8106 struct bpf_reg_state *cur_iter, *queued_iter; 8107 int iter_frameno = meta->iter.frameno; 8108 int iter_spi = meta->iter.spi; 8109 8110 BTF_TYPE_EMIT(struct bpf_iter); 8111 8112 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8113 8114 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8115 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8116 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8117 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8118 return -EFAULT; 8119 } 8120 8121 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8122 /* Because iter_next() call is a checkpoint is_state_visitied() 8123 * should guarantee parent state with same call sites and insn_idx. 8124 */ 8125 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8126 !same_callsites(cur_st->parent, cur_st)) { 8127 verbose(env, "bug: bad parent state for iter next call"); 8128 return -EFAULT; 8129 } 8130 /* Note cur_st->parent in the call below, it is necessary to skip 8131 * checkpoint created for cur_st by is_state_visited() 8132 * right at this instruction. 8133 */ 8134 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8135 /* branch out active iter state */ 8136 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8137 if (!queued_st) 8138 return -ENOMEM; 8139 8140 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8141 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8142 queued_iter->iter.depth++; 8143 if (prev_st) 8144 widen_imprecise_scalars(env, prev_st, queued_st); 8145 8146 queued_fr = queued_st->frame[queued_st->curframe]; 8147 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8148 } 8149 8150 /* switch to DRAINED state, but keep the depth unchanged */ 8151 /* mark current iter state as drained and assume returned NULL */ 8152 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8153 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 8154 8155 return 0; 8156 } 8157 8158 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8159 { 8160 return type == ARG_CONST_SIZE || 8161 type == ARG_CONST_SIZE_OR_ZERO; 8162 } 8163 8164 static bool arg_type_is_release(enum bpf_arg_type type) 8165 { 8166 return type & OBJ_RELEASE; 8167 } 8168 8169 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8170 { 8171 return base_type(type) == ARG_PTR_TO_DYNPTR; 8172 } 8173 8174 static int int_ptr_type_to_size(enum bpf_arg_type type) 8175 { 8176 if (type == ARG_PTR_TO_INT) 8177 return sizeof(u32); 8178 else if (type == ARG_PTR_TO_LONG) 8179 return sizeof(u64); 8180 8181 return -EINVAL; 8182 } 8183 8184 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8185 const struct bpf_call_arg_meta *meta, 8186 enum bpf_arg_type *arg_type) 8187 { 8188 if (!meta->map_ptr) { 8189 /* kernel subsystem misconfigured verifier */ 8190 verbose(env, "invalid map_ptr to access map->type\n"); 8191 return -EACCES; 8192 } 8193 8194 switch (meta->map_ptr->map_type) { 8195 case BPF_MAP_TYPE_SOCKMAP: 8196 case BPF_MAP_TYPE_SOCKHASH: 8197 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8198 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8199 } else { 8200 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8201 return -EINVAL; 8202 } 8203 break; 8204 case BPF_MAP_TYPE_BLOOM_FILTER: 8205 if (meta->func_id == BPF_FUNC_map_peek_elem) 8206 *arg_type = ARG_PTR_TO_MAP_VALUE; 8207 break; 8208 default: 8209 break; 8210 } 8211 return 0; 8212 } 8213 8214 struct bpf_reg_types { 8215 const enum bpf_reg_type types[10]; 8216 u32 *btf_id; 8217 }; 8218 8219 static const struct bpf_reg_types sock_types = { 8220 .types = { 8221 PTR_TO_SOCK_COMMON, 8222 PTR_TO_SOCKET, 8223 PTR_TO_TCP_SOCK, 8224 PTR_TO_XDP_SOCK, 8225 }, 8226 }; 8227 8228 #ifdef CONFIG_NET 8229 static const struct bpf_reg_types btf_id_sock_common_types = { 8230 .types = { 8231 PTR_TO_SOCK_COMMON, 8232 PTR_TO_SOCKET, 8233 PTR_TO_TCP_SOCK, 8234 PTR_TO_XDP_SOCK, 8235 PTR_TO_BTF_ID, 8236 PTR_TO_BTF_ID | PTR_TRUSTED, 8237 }, 8238 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8239 }; 8240 #endif 8241 8242 static const struct bpf_reg_types mem_types = { 8243 .types = { 8244 PTR_TO_STACK, 8245 PTR_TO_PACKET, 8246 PTR_TO_PACKET_META, 8247 PTR_TO_MAP_KEY, 8248 PTR_TO_MAP_VALUE, 8249 PTR_TO_MEM, 8250 PTR_TO_MEM | MEM_RINGBUF, 8251 PTR_TO_BUF, 8252 PTR_TO_BTF_ID | PTR_TRUSTED, 8253 }, 8254 }; 8255 8256 static const struct bpf_reg_types int_ptr_types = { 8257 .types = { 8258 PTR_TO_STACK, 8259 PTR_TO_PACKET, 8260 PTR_TO_PACKET_META, 8261 PTR_TO_MAP_KEY, 8262 PTR_TO_MAP_VALUE, 8263 }, 8264 }; 8265 8266 static const struct bpf_reg_types spin_lock_types = { 8267 .types = { 8268 PTR_TO_MAP_VALUE, 8269 PTR_TO_BTF_ID | MEM_ALLOC, 8270 } 8271 }; 8272 8273 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8274 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8275 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8276 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8277 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8278 static const struct bpf_reg_types btf_ptr_types = { 8279 .types = { 8280 PTR_TO_BTF_ID, 8281 PTR_TO_BTF_ID | PTR_TRUSTED, 8282 PTR_TO_BTF_ID | MEM_RCU, 8283 }, 8284 }; 8285 static const struct bpf_reg_types percpu_btf_ptr_types = { 8286 .types = { 8287 PTR_TO_BTF_ID | MEM_PERCPU, 8288 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8289 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8290 } 8291 }; 8292 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8293 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8294 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8295 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8296 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8297 static const struct bpf_reg_types dynptr_types = { 8298 .types = { 8299 PTR_TO_STACK, 8300 CONST_PTR_TO_DYNPTR, 8301 } 8302 }; 8303 8304 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8305 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8306 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8307 [ARG_CONST_SIZE] = &scalar_types, 8308 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8309 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8310 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8311 [ARG_PTR_TO_CTX] = &context_types, 8312 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8313 #ifdef CONFIG_NET 8314 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8315 #endif 8316 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8317 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8318 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8319 [ARG_PTR_TO_MEM] = &mem_types, 8320 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8321 [ARG_PTR_TO_INT] = &int_ptr_types, 8322 [ARG_PTR_TO_LONG] = &int_ptr_types, 8323 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8324 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8325 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8326 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8327 [ARG_PTR_TO_TIMER] = &timer_types, 8328 [ARG_PTR_TO_KPTR] = &kptr_types, 8329 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8330 }; 8331 8332 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8333 enum bpf_arg_type arg_type, 8334 const u32 *arg_btf_id, 8335 struct bpf_call_arg_meta *meta) 8336 { 8337 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8338 enum bpf_reg_type expected, type = reg->type; 8339 const struct bpf_reg_types *compatible; 8340 int i, j; 8341 8342 compatible = compatible_reg_types[base_type(arg_type)]; 8343 if (!compatible) { 8344 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8345 return -EFAULT; 8346 } 8347 8348 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8349 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8350 * 8351 * Same for MAYBE_NULL: 8352 * 8353 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8354 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8355 * 8356 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8357 * 8358 * Therefore we fold these flags depending on the arg_type before comparison. 8359 */ 8360 if (arg_type & MEM_RDONLY) 8361 type &= ~MEM_RDONLY; 8362 if (arg_type & PTR_MAYBE_NULL) 8363 type &= ~PTR_MAYBE_NULL; 8364 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8365 type &= ~DYNPTR_TYPE_FLAG_MASK; 8366 8367 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8368 type &= ~MEM_ALLOC; 8369 type &= ~MEM_PERCPU; 8370 } 8371 8372 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8373 expected = compatible->types[i]; 8374 if (expected == NOT_INIT) 8375 break; 8376 8377 if (type == expected) 8378 goto found; 8379 } 8380 8381 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8382 for (j = 0; j + 1 < i; j++) 8383 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8384 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8385 return -EACCES; 8386 8387 found: 8388 if (base_type(reg->type) != PTR_TO_BTF_ID) 8389 return 0; 8390 8391 if (compatible == &mem_types) { 8392 if (!(arg_type & MEM_RDONLY)) { 8393 verbose(env, 8394 "%s() may write into memory pointed by R%d type=%s\n", 8395 func_id_name(meta->func_id), 8396 regno, reg_type_str(env, reg->type)); 8397 return -EACCES; 8398 } 8399 return 0; 8400 } 8401 8402 switch ((int)reg->type) { 8403 case PTR_TO_BTF_ID: 8404 case PTR_TO_BTF_ID | PTR_TRUSTED: 8405 case PTR_TO_BTF_ID | MEM_RCU: 8406 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8407 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8408 { 8409 /* For bpf_sk_release, it needs to match against first member 8410 * 'struct sock_common', hence make an exception for it. This 8411 * allows bpf_sk_release to work for multiple socket types. 8412 */ 8413 bool strict_type_match = arg_type_is_release(arg_type) && 8414 meta->func_id != BPF_FUNC_sk_release; 8415 8416 if (type_may_be_null(reg->type) && 8417 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8418 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8419 return -EACCES; 8420 } 8421 8422 if (!arg_btf_id) { 8423 if (!compatible->btf_id) { 8424 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8425 return -EFAULT; 8426 } 8427 arg_btf_id = compatible->btf_id; 8428 } 8429 8430 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8431 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8432 return -EACCES; 8433 } else { 8434 if (arg_btf_id == BPF_PTR_POISON) { 8435 verbose(env, "verifier internal error:"); 8436 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8437 regno); 8438 return -EACCES; 8439 } 8440 8441 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8442 btf_vmlinux, *arg_btf_id, 8443 strict_type_match)) { 8444 verbose(env, "R%d is of type %s but %s is expected\n", 8445 regno, btf_type_name(reg->btf, reg->btf_id), 8446 btf_type_name(btf_vmlinux, *arg_btf_id)); 8447 return -EACCES; 8448 } 8449 } 8450 break; 8451 } 8452 case PTR_TO_BTF_ID | MEM_ALLOC: 8453 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8454 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8455 meta->func_id != BPF_FUNC_kptr_xchg) { 8456 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8457 return -EFAULT; 8458 } 8459 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8460 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8461 return -EACCES; 8462 } 8463 break; 8464 case PTR_TO_BTF_ID | MEM_PERCPU: 8465 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8466 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8467 /* Handled by helper specific checks */ 8468 break; 8469 default: 8470 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8471 return -EFAULT; 8472 } 8473 return 0; 8474 } 8475 8476 static struct btf_field * 8477 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8478 { 8479 struct btf_field *field; 8480 struct btf_record *rec; 8481 8482 rec = reg_btf_record(reg); 8483 if (!rec) 8484 return NULL; 8485 8486 field = btf_record_find(rec, off, fields); 8487 if (!field) 8488 return NULL; 8489 8490 return field; 8491 } 8492 8493 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8494 const struct bpf_reg_state *reg, int regno, 8495 enum bpf_arg_type arg_type) 8496 { 8497 u32 type = reg->type; 8498 8499 /* When referenced register is passed to release function, its fixed 8500 * offset must be 0. 8501 * 8502 * We will check arg_type_is_release reg has ref_obj_id when storing 8503 * meta->release_regno. 8504 */ 8505 if (arg_type_is_release(arg_type)) { 8506 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8507 * may not directly point to the object being released, but to 8508 * dynptr pointing to such object, which might be at some offset 8509 * on the stack. In that case, we simply to fallback to the 8510 * default handling. 8511 */ 8512 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8513 return 0; 8514 8515 /* Doing check_ptr_off_reg check for the offset will catch this 8516 * because fixed_off_ok is false, but checking here allows us 8517 * to give the user a better error message. 8518 */ 8519 if (reg->off) { 8520 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8521 regno); 8522 return -EINVAL; 8523 } 8524 return __check_ptr_off_reg(env, reg, regno, false); 8525 } 8526 8527 switch (type) { 8528 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8529 case PTR_TO_STACK: 8530 case PTR_TO_PACKET: 8531 case PTR_TO_PACKET_META: 8532 case PTR_TO_MAP_KEY: 8533 case PTR_TO_MAP_VALUE: 8534 case PTR_TO_MEM: 8535 case PTR_TO_MEM | MEM_RDONLY: 8536 case PTR_TO_MEM | MEM_RINGBUF: 8537 case PTR_TO_BUF: 8538 case PTR_TO_BUF | MEM_RDONLY: 8539 case SCALAR_VALUE: 8540 return 0; 8541 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8542 * fixed offset. 8543 */ 8544 case PTR_TO_BTF_ID: 8545 case PTR_TO_BTF_ID | MEM_ALLOC: 8546 case PTR_TO_BTF_ID | PTR_TRUSTED: 8547 case PTR_TO_BTF_ID | MEM_RCU: 8548 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8549 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8550 /* When referenced PTR_TO_BTF_ID is passed to release function, 8551 * its fixed offset must be 0. In the other cases, fixed offset 8552 * can be non-zero. This was already checked above. So pass 8553 * fixed_off_ok as true to allow fixed offset for all other 8554 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8555 * still need to do checks instead of returning. 8556 */ 8557 return __check_ptr_off_reg(env, reg, regno, true); 8558 default: 8559 return __check_ptr_off_reg(env, reg, regno, false); 8560 } 8561 } 8562 8563 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8564 const struct bpf_func_proto *fn, 8565 struct bpf_reg_state *regs) 8566 { 8567 struct bpf_reg_state *state = NULL; 8568 int i; 8569 8570 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8571 if (arg_type_is_dynptr(fn->arg_type[i])) { 8572 if (state) { 8573 verbose(env, "verifier internal error: multiple dynptr args\n"); 8574 return NULL; 8575 } 8576 state = ®s[BPF_REG_1 + i]; 8577 } 8578 8579 if (!state) 8580 verbose(env, "verifier internal error: no dynptr arg found\n"); 8581 8582 return state; 8583 } 8584 8585 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8586 { 8587 struct bpf_func_state *state = func(env, reg); 8588 int spi; 8589 8590 if (reg->type == CONST_PTR_TO_DYNPTR) 8591 return reg->id; 8592 spi = dynptr_get_spi(env, reg); 8593 if (spi < 0) 8594 return spi; 8595 return state->stack[spi].spilled_ptr.id; 8596 } 8597 8598 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8599 { 8600 struct bpf_func_state *state = func(env, reg); 8601 int spi; 8602 8603 if (reg->type == CONST_PTR_TO_DYNPTR) 8604 return reg->ref_obj_id; 8605 spi = dynptr_get_spi(env, reg); 8606 if (spi < 0) 8607 return spi; 8608 return state->stack[spi].spilled_ptr.ref_obj_id; 8609 } 8610 8611 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8612 struct bpf_reg_state *reg) 8613 { 8614 struct bpf_func_state *state = func(env, reg); 8615 int spi; 8616 8617 if (reg->type == CONST_PTR_TO_DYNPTR) 8618 return reg->dynptr.type; 8619 8620 spi = __get_spi(reg->off); 8621 if (spi < 0) { 8622 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8623 return BPF_DYNPTR_TYPE_INVALID; 8624 } 8625 8626 return state->stack[spi].spilled_ptr.dynptr.type; 8627 } 8628 8629 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8630 struct bpf_call_arg_meta *meta, 8631 const struct bpf_func_proto *fn, 8632 int insn_idx) 8633 { 8634 u32 regno = BPF_REG_1 + arg; 8635 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8636 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8637 enum bpf_reg_type type = reg->type; 8638 u32 *arg_btf_id = NULL; 8639 int err = 0; 8640 8641 if (arg_type == ARG_DONTCARE) 8642 return 0; 8643 8644 err = check_reg_arg(env, regno, SRC_OP); 8645 if (err) 8646 return err; 8647 8648 if (arg_type == ARG_ANYTHING) { 8649 if (is_pointer_value(env, regno)) { 8650 verbose(env, "R%d leaks addr into helper function\n", 8651 regno); 8652 return -EACCES; 8653 } 8654 return 0; 8655 } 8656 8657 if (type_is_pkt_pointer(type) && 8658 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8659 verbose(env, "helper access to the packet is not allowed\n"); 8660 return -EACCES; 8661 } 8662 8663 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8664 err = resolve_map_arg_type(env, meta, &arg_type); 8665 if (err) 8666 return err; 8667 } 8668 8669 if (register_is_null(reg) && type_may_be_null(arg_type)) 8670 /* A NULL register has a SCALAR_VALUE type, so skip 8671 * type checking. 8672 */ 8673 goto skip_type_check; 8674 8675 /* arg_btf_id and arg_size are in a union. */ 8676 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8677 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8678 arg_btf_id = fn->arg_btf_id[arg]; 8679 8680 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8681 if (err) 8682 return err; 8683 8684 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8685 if (err) 8686 return err; 8687 8688 skip_type_check: 8689 if (arg_type_is_release(arg_type)) { 8690 if (arg_type_is_dynptr(arg_type)) { 8691 struct bpf_func_state *state = func(env, reg); 8692 int spi; 8693 8694 /* Only dynptr created on stack can be released, thus 8695 * the get_spi and stack state checks for spilled_ptr 8696 * should only be done before process_dynptr_func for 8697 * PTR_TO_STACK. 8698 */ 8699 if (reg->type == PTR_TO_STACK) { 8700 spi = dynptr_get_spi(env, reg); 8701 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8702 verbose(env, "arg %d is an unacquired reference\n", regno); 8703 return -EINVAL; 8704 } 8705 } else { 8706 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8707 return -EINVAL; 8708 } 8709 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8710 verbose(env, "R%d must be referenced when passed to release function\n", 8711 regno); 8712 return -EINVAL; 8713 } 8714 if (meta->release_regno) { 8715 verbose(env, "verifier internal error: more than one release argument\n"); 8716 return -EFAULT; 8717 } 8718 meta->release_regno = regno; 8719 } 8720 8721 if (reg->ref_obj_id) { 8722 if (meta->ref_obj_id) { 8723 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8724 regno, reg->ref_obj_id, 8725 meta->ref_obj_id); 8726 return -EFAULT; 8727 } 8728 meta->ref_obj_id = reg->ref_obj_id; 8729 } 8730 8731 switch (base_type(arg_type)) { 8732 case ARG_CONST_MAP_PTR: 8733 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8734 if (meta->map_ptr) { 8735 /* Use map_uid (which is unique id of inner map) to reject: 8736 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8737 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8738 * if (inner_map1 && inner_map2) { 8739 * timer = bpf_map_lookup_elem(inner_map1); 8740 * if (timer) 8741 * // mismatch would have been allowed 8742 * bpf_timer_init(timer, inner_map2); 8743 * } 8744 * 8745 * Comparing map_ptr is enough to distinguish normal and outer maps. 8746 */ 8747 if (meta->map_ptr != reg->map_ptr || 8748 meta->map_uid != reg->map_uid) { 8749 verbose(env, 8750 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8751 meta->map_uid, reg->map_uid); 8752 return -EINVAL; 8753 } 8754 } 8755 meta->map_ptr = reg->map_ptr; 8756 meta->map_uid = reg->map_uid; 8757 break; 8758 case ARG_PTR_TO_MAP_KEY: 8759 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8760 * check that [key, key + map->key_size) are within 8761 * stack limits and initialized 8762 */ 8763 if (!meta->map_ptr) { 8764 /* in function declaration map_ptr must come before 8765 * map_key, so that it's verified and known before 8766 * we have to check map_key here. Otherwise it means 8767 * that kernel subsystem misconfigured verifier 8768 */ 8769 verbose(env, "invalid map_ptr to access map->key\n"); 8770 return -EACCES; 8771 } 8772 err = check_helper_mem_access(env, regno, 8773 meta->map_ptr->key_size, false, 8774 NULL); 8775 break; 8776 case ARG_PTR_TO_MAP_VALUE: 8777 if (type_may_be_null(arg_type) && register_is_null(reg)) 8778 return 0; 8779 8780 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8781 * check [value, value + map->value_size) validity 8782 */ 8783 if (!meta->map_ptr) { 8784 /* kernel subsystem misconfigured verifier */ 8785 verbose(env, "invalid map_ptr to access map->value\n"); 8786 return -EACCES; 8787 } 8788 meta->raw_mode = arg_type & MEM_UNINIT; 8789 err = check_helper_mem_access(env, regno, 8790 meta->map_ptr->value_size, false, 8791 meta); 8792 break; 8793 case ARG_PTR_TO_PERCPU_BTF_ID: 8794 if (!reg->btf_id) { 8795 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8796 return -EACCES; 8797 } 8798 meta->ret_btf = reg->btf; 8799 meta->ret_btf_id = reg->btf_id; 8800 break; 8801 case ARG_PTR_TO_SPIN_LOCK: 8802 if (in_rbtree_lock_required_cb(env)) { 8803 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8804 return -EACCES; 8805 } 8806 if (meta->func_id == BPF_FUNC_spin_lock) { 8807 err = process_spin_lock(env, regno, true); 8808 if (err) 8809 return err; 8810 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8811 err = process_spin_lock(env, regno, false); 8812 if (err) 8813 return err; 8814 } else { 8815 verbose(env, "verifier internal error\n"); 8816 return -EFAULT; 8817 } 8818 break; 8819 case ARG_PTR_TO_TIMER: 8820 err = process_timer_func(env, regno, meta); 8821 if (err) 8822 return err; 8823 break; 8824 case ARG_PTR_TO_FUNC: 8825 meta->subprogno = reg->subprogno; 8826 break; 8827 case ARG_PTR_TO_MEM: 8828 /* The access to this pointer is only checked when we hit the 8829 * next is_mem_size argument below. 8830 */ 8831 meta->raw_mode = arg_type & MEM_UNINIT; 8832 if (arg_type & MEM_FIXED_SIZE) { 8833 err = check_helper_mem_access(env, regno, 8834 fn->arg_size[arg], false, 8835 meta); 8836 } 8837 break; 8838 case ARG_CONST_SIZE: 8839 err = check_mem_size_reg(env, reg, regno, false, meta); 8840 break; 8841 case ARG_CONST_SIZE_OR_ZERO: 8842 err = check_mem_size_reg(env, reg, regno, true, meta); 8843 break; 8844 case ARG_PTR_TO_DYNPTR: 8845 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8846 if (err) 8847 return err; 8848 break; 8849 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8850 if (!tnum_is_const(reg->var_off)) { 8851 verbose(env, "R%d is not a known constant'\n", 8852 regno); 8853 return -EACCES; 8854 } 8855 meta->mem_size = reg->var_off.value; 8856 err = mark_chain_precision(env, regno); 8857 if (err) 8858 return err; 8859 break; 8860 case ARG_PTR_TO_INT: 8861 case ARG_PTR_TO_LONG: 8862 { 8863 int size = int_ptr_type_to_size(arg_type); 8864 8865 err = check_helper_mem_access(env, regno, size, false, meta); 8866 if (err) 8867 return err; 8868 err = check_ptr_alignment(env, reg, 0, size, true); 8869 break; 8870 } 8871 case ARG_PTR_TO_CONST_STR: 8872 { 8873 struct bpf_map *map = reg->map_ptr; 8874 int map_off; 8875 u64 map_addr; 8876 char *str_ptr; 8877 8878 if (!bpf_map_is_rdonly(map)) { 8879 verbose(env, "R%d does not point to a readonly map'\n", regno); 8880 return -EACCES; 8881 } 8882 8883 if (!tnum_is_const(reg->var_off)) { 8884 verbose(env, "R%d is not a constant address'\n", regno); 8885 return -EACCES; 8886 } 8887 8888 if (!map->ops->map_direct_value_addr) { 8889 verbose(env, "no direct value access support for this map type\n"); 8890 return -EACCES; 8891 } 8892 8893 err = check_map_access(env, regno, reg->off, 8894 map->value_size - reg->off, false, 8895 ACCESS_HELPER); 8896 if (err) 8897 return err; 8898 8899 map_off = reg->off + reg->var_off.value; 8900 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8901 if (err) { 8902 verbose(env, "direct value access on string failed\n"); 8903 return err; 8904 } 8905 8906 str_ptr = (char *)(long)(map_addr); 8907 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8908 verbose(env, "string is not zero-terminated\n"); 8909 return -EINVAL; 8910 } 8911 break; 8912 } 8913 case ARG_PTR_TO_KPTR: 8914 err = process_kptr_func(env, regno, meta); 8915 if (err) 8916 return err; 8917 break; 8918 } 8919 8920 return err; 8921 } 8922 8923 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8924 { 8925 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8926 enum bpf_prog_type type = resolve_prog_type(env->prog); 8927 8928 if (func_id != BPF_FUNC_map_update_elem) 8929 return false; 8930 8931 /* It's not possible to get access to a locked struct sock in these 8932 * contexts, so updating is safe. 8933 */ 8934 switch (type) { 8935 case BPF_PROG_TYPE_TRACING: 8936 if (eatype == BPF_TRACE_ITER) 8937 return true; 8938 break; 8939 case BPF_PROG_TYPE_SOCKET_FILTER: 8940 case BPF_PROG_TYPE_SCHED_CLS: 8941 case BPF_PROG_TYPE_SCHED_ACT: 8942 case BPF_PROG_TYPE_XDP: 8943 case BPF_PROG_TYPE_SK_REUSEPORT: 8944 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8945 case BPF_PROG_TYPE_SK_LOOKUP: 8946 return true; 8947 default: 8948 break; 8949 } 8950 8951 verbose(env, "cannot update sockmap in this context\n"); 8952 return false; 8953 } 8954 8955 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8956 { 8957 return env->prog->jit_requested && 8958 bpf_jit_supports_subprog_tailcalls(); 8959 } 8960 8961 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8962 struct bpf_map *map, int func_id) 8963 { 8964 if (!map) 8965 return 0; 8966 8967 /* We need a two way check, first is from map perspective ... */ 8968 switch (map->map_type) { 8969 case BPF_MAP_TYPE_PROG_ARRAY: 8970 if (func_id != BPF_FUNC_tail_call) 8971 goto error; 8972 break; 8973 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8974 if (func_id != BPF_FUNC_perf_event_read && 8975 func_id != BPF_FUNC_perf_event_output && 8976 func_id != BPF_FUNC_skb_output && 8977 func_id != BPF_FUNC_perf_event_read_value && 8978 func_id != BPF_FUNC_xdp_output) 8979 goto error; 8980 break; 8981 case BPF_MAP_TYPE_RINGBUF: 8982 if (func_id != BPF_FUNC_ringbuf_output && 8983 func_id != BPF_FUNC_ringbuf_reserve && 8984 func_id != BPF_FUNC_ringbuf_query && 8985 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8986 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8987 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8988 goto error; 8989 break; 8990 case BPF_MAP_TYPE_USER_RINGBUF: 8991 if (func_id != BPF_FUNC_user_ringbuf_drain) 8992 goto error; 8993 break; 8994 case BPF_MAP_TYPE_STACK_TRACE: 8995 if (func_id != BPF_FUNC_get_stackid) 8996 goto error; 8997 break; 8998 case BPF_MAP_TYPE_CGROUP_ARRAY: 8999 if (func_id != BPF_FUNC_skb_under_cgroup && 9000 func_id != BPF_FUNC_current_task_under_cgroup) 9001 goto error; 9002 break; 9003 case BPF_MAP_TYPE_CGROUP_STORAGE: 9004 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9005 if (func_id != BPF_FUNC_get_local_storage) 9006 goto error; 9007 break; 9008 case BPF_MAP_TYPE_DEVMAP: 9009 case BPF_MAP_TYPE_DEVMAP_HASH: 9010 if (func_id != BPF_FUNC_redirect_map && 9011 func_id != BPF_FUNC_map_lookup_elem) 9012 goto error; 9013 break; 9014 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9015 * appear. 9016 */ 9017 case BPF_MAP_TYPE_CPUMAP: 9018 if (func_id != BPF_FUNC_redirect_map) 9019 goto error; 9020 break; 9021 case BPF_MAP_TYPE_XSKMAP: 9022 if (func_id != BPF_FUNC_redirect_map && 9023 func_id != BPF_FUNC_map_lookup_elem) 9024 goto error; 9025 break; 9026 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9027 case BPF_MAP_TYPE_HASH_OF_MAPS: 9028 if (func_id != BPF_FUNC_map_lookup_elem) 9029 goto error; 9030 break; 9031 case BPF_MAP_TYPE_SOCKMAP: 9032 if (func_id != BPF_FUNC_sk_redirect_map && 9033 func_id != BPF_FUNC_sock_map_update && 9034 func_id != BPF_FUNC_map_delete_elem && 9035 func_id != BPF_FUNC_msg_redirect_map && 9036 func_id != BPF_FUNC_sk_select_reuseport && 9037 func_id != BPF_FUNC_map_lookup_elem && 9038 !may_update_sockmap(env, func_id)) 9039 goto error; 9040 break; 9041 case BPF_MAP_TYPE_SOCKHASH: 9042 if (func_id != BPF_FUNC_sk_redirect_hash && 9043 func_id != BPF_FUNC_sock_hash_update && 9044 func_id != BPF_FUNC_map_delete_elem && 9045 func_id != BPF_FUNC_msg_redirect_hash && 9046 func_id != BPF_FUNC_sk_select_reuseport && 9047 func_id != BPF_FUNC_map_lookup_elem && 9048 !may_update_sockmap(env, func_id)) 9049 goto error; 9050 break; 9051 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9052 if (func_id != BPF_FUNC_sk_select_reuseport) 9053 goto error; 9054 break; 9055 case BPF_MAP_TYPE_QUEUE: 9056 case BPF_MAP_TYPE_STACK: 9057 if (func_id != BPF_FUNC_map_peek_elem && 9058 func_id != BPF_FUNC_map_pop_elem && 9059 func_id != BPF_FUNC_map_push_elem) 9060 goto error; 9061 break; 9062 case BPF_MAP_TYPE_SK_STORAGE: 9063 if (func_id != BPF_FUNC_sk_storage_get && 9064 func_id != BPF_FUNC_sk_storage_delete && 9065 func_id != BPF_FUNC_kptr_xchg) 9066 goto error; 9067 break; 9068 case BPF_MAP_TYPE_INODE_STORAGE: 9069 if (func_id != BPF_FUNC_inode_storage_get && 9070 func_id != BPF_FUNC_inode_storage_delete && 9071 func_id != BPF_FUNC_kptr_xchg) 9072 goto error; 9073 break; 9074 case BPF_MAP_TYPE_TASK_STORAGE: 9075 if (func_id != BPF_FUNC_task_storage_get && 9076 func_id != BPF_FUNC_task_storage_delete && 9077 func_id != BPF_FUNC_kptr_xchg) 9078 goto error; 9079 break; 9080 case BPF_MAP_TYPE_CGRP_STORAGE: 9081 if (func_id != BPF_FUNC_cgrp_storage_get && 9082 func_id != BPF_FUNC_cgrp_storage_delete && 9083 func_id != BPF_FUNC_kptr_xchg) 9084 goto error; 9085 break; 9086 case BPF_MAP_TYPE_BLOOM_FILTER: 9087 if (func_id != BPF_FUNC_map_peek_elem && 9088 func_id != BPF_FUNC_map_push_elem) 9089 goto error; 9090 break; 9091 default: 9092 break; 9093 } 9094 9095 /* ... and second from the function itself. */ 9096 switch (func_id) { 9097 case BPF_FUNC_tail_call: 9098 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9099 goto error; 9100 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9101 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9102 return -EINVAL; 9103 } 9104 break; 9105 case BPF_FUNC_perf_event_read: 9106 case BPF_FUNC_perf_event_output: 9107 case BPF_FUNC_perf_event_read_value: 9108 case BPF_FUNC_skb_output: 9109 case BPF_FUNC_xdp_output: 9110 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9111 goto error; 9112 break; 9113 case BPF_FUNC_ringbuf_output: 9114 case BPF_FUNC_ringbuf_reserve: 9115 case BPF_FUNC_ringbuf_query: 9116 case BPF_FUNC_ringbuf_reserve_dynptr: 9117 case BPF_FUNC_ringbuf_submit_dynptr: 9118 case BPF_FUNC_ringbuf_discard_dynptr: 9119 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9120 goto error; 9121 break; 9122 case BPF_FUNC_user_ringbuf_drain: 9123 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9124 goto error; 9125 break; 9126 case BPF_FUNC_get_stackid: 9127 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9128 goto error; 9129 break; 9130 case BPF_FUNC_current_task_under_cgroup: 9131 case BPF_FUNC_skb_under_cgroup: 9132 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9133 goto error; 9134 break; 9135 case BPF_FUNC_redirect_map: 9136 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9137 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9138 map->map_type != BPF_MAP_TYPE_CPUMAP && 9139 map->map_type != BPF_MAP_TYPE_XSKMAP) 9140 goto error; 9141 break; 9142 case BPF_FUNC_sk_redirect_map: 9143 case BPF_FUNC_msg_redirect_map: 9144 case BPF_FUNC_sock_map_update: 9145 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9146 goto error; 9147 break; 9148 case BPF_FUNC_sk_redirect_hash: 9149 case BPF_FUNC_msg_redirect_hash: 9150 case BPF_FUNC_sock_hash_update: 9151 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9152 goto error; 9153 break; 9154 case BPF_FUNC_get_local_storage: 9155 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9156 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9157 goto error; 9158 break; 9159 case BPF_FUNC_sk_select_reuseport: 9160 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9161 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9162 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9163 goto error; 9164 break; 9165 case BPF_FUNC_map_pop_elem: 9166 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9167 map->map_type != BPF_MAP_TYPE_STACK) 9168 goto error; 9169 break; 9170 case BPF_FUNC_map_peek_elem: 9171 case BPF_FUNC_map_push_elem: 9172 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9173 map->map_type != BPF_MAP_TYPE_STACK && 9174 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9175 goto error; 9176 break; 9177 case BPF_FUNC_map_lookup_percpu_elem: 9178 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9179 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9180 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9181 goto error; 9182 break; 9183 case BPF_FUNC_sk_storage_get: 9184 case BPF_FUNC_sk_storage_delete: 9185 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9186 goto error; 9187 break; 9188 case BPF_FUNC_inode_storage_get: 9189 case BPF_FUNC_inode_storage_delete: 9190 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9191 goto error; 9192 break; 9193 case BPF_FUNC_task_storage_get: 9194 case BPF_FUNC_task_storage_delete: 9195 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9196 goto error; 9197 break; 9198 case BPF_FUNC_cgrp_storage_get: 9199 case BPF_FUNC_cgrp_storage_delete: 9200 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9201 goto error; 9202 break; 9203 default: 9204 break; 9205 } 9206 9207 return 0; 9208 error: 9209 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9210 map->map_type, func_id_name(func_id), func_id); 9211 return -EINVAL; 9212 } 9213 9214 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9215 { 9216 int count = 0; 9217 9218 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9219 count++; 9220 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9221 count++; 9222 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9223 count++; 9224 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9225 count++; 9226 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9227 count++; 9228 9229 /* We only support one arg being in raw mode at the moment, 9230 * which is sufficient for the helper functions we have 9231 * right now. 9232 */ 9233 return count <= 1; 9234 } 9235 9236 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9237 { 9238 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9239 bool has_size = fn->arg_size[arg] != 0; 9240 bool is_next_size = false; 9241 9242 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9243 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9244 9245 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9246 return is_next_size; 9247 9248 return has_size == is_next_size || is_next_size == is_fixed; 9249 } 9250 9251 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9252 { 9253 /* bpf_xxx(..., buf, len) call will access 'len' 9254 * bytes from memory 'buf'. Both arg types need 9255 * to be paired, so make sure there's no buggy 9256 * helper function specification. 9257 */ 9258 if (arg_type_is_mem_size(fn->arg1_type) || 9259 check_args_pair_invalid(fn, 0) || 9260 check_args_pair_invalid(fn, 1) || 9261 check_args_pair_invalid(fn, 2) || 9262 check_args_pair_invalid(fn, 3) || 9263 check_args_pair_invalid(fn, 4)) 9264 return false; 9265 9266 return true; 9267 } 9268 9269 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9270 { 9271 int i; 9272 9273 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9274 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9275 return !!fn->arg_btf_id[i]; 9276 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9277 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9278 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9279 /* arg_btf_id and arg_size are in a union. */ 9280 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9281 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9282 return false; 9283 } 9284 9285 return true; 9286 } 9287 9288 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9289 { 9290 return check_raw_mode_ok(fn) && 9291 check_arg_pair_ok(fn) && 9292 check_btf_id_ok(fn) ? 0 : -EINVAL; 9293 } 9294 9295 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9296 * are now invalid, so turn them into unknown SCALAR_VALUE. 9297 * 9298 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9299 * since these slices point to packet data. 9300 */ 9301 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9302 { 9303 struct bpf_func_state *state; 9304 struct bpf_reg_state *reg; 9305 9306 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9307 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9308 mark_reg_invalid(env, reg); 9309 })); 9310 } 9311 9312 enum { 9313 AT_PKT_END = -1, 9314 BEYOND_PKT_END = -2, 9315 }; 9316 9317 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9318 { 9319 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9320 struct bpf_reg_state *reg = &state->regs[regn]; 9321 9322 if (reg->type != PTR_TO_PACKET) 9323 /* PTR_TO_PACKET_META is not supported yet */ 9324 return; 9325 9326 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9327 * How far beyond pkt_end it goes is unknown. 9328 * if (!range_open) it's the case of pkt >= pkt_end 9329 * if (range_open) it's the case of pkt > pkt_end 9330 * hence this pointer is at least 1 byte bigger than pkt_end 9331 */ 9332 if (range_open) 9333 reg->range = BEYOND_PKT_END; 9334 else 9335 reg->range = AT_PKT_END; 9336 } 9337 9338 /* The pointer with the specified id has released its reference to kernel 9339 * resources. Identify all copies of the same pointer and clear the reference. 9340 */ 9341 static int release_reference(struct bpf_verifier_env *env, 9342 int ref_obj_id) 9343 { 9344 struct bpf_func_state *state; 9345 struct bpf_reg_state *reg; 9346 int err; 9347 9348 err = release_reference_state(cur_func(env), ref_obj_id); 9349 if (err) 9350 return err; 9351 9352 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9353 if (reg->ref_obj_id == ref_obj_id) 9354 mark_reg_invalid(env, reg); 9355 })); 9356 9357 return 0; 9358 } 9359 9360 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9361 { 9362 struct bpf_func_state *unused; 9363 struct bpf_reg_state *reg; 9364 9365 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9366 if (type_is_non_owning_ref(reg->type)) 9367 mark_reg_invalid(env, reg); 9368 })); 9369 } 9370 9371 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9372 struct bpf_reg_state *regs) 9373 { 9374 int i; 9375 9376 /* after the call registers r0 - r5 were scratched */ 9377 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9378 mark_reg_not_init(env, regs, caller_saved[i]); 9379 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9380 } 9381 } 9382 9383 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9384 struct bpf_func_state *caller, 9385 struct bpf_func_state *callee, 9386 int insn_idx); 9387 9388 static int set_callee_state(struct bpf_verifier_env *env, 9389 struct bpf_func_state *caller, 9390 struct bpf_func_state *callee, int insn_idx); 9391 9392 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9393 set_callee_state_fn set_callee_state_cb, 9394 struct bpf_verifier_state *state) 9395 { 9396 struct bpf_func_state *caller, *callee; 9397 int err; 9398 9399 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9400 verbose(env, "the call stack of %d frames is too deep\n", 9401 state->curframe + 2); 9402 return -E2BIG; 9403 } 9404 9405 if (state->frame[state->curframe + 1]) { 9406 verbose(env, "verifier bug. Frame %d already allocated\n", 9407 state->curframe + 1); 9408 return -EFAULT; 9409 } 9410 9411 caller = state->frame[state->curframe]; 9412 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9413 if (!callee) 9414 return -ENOMEM; 9415 state->frame[state->curframe + 1] = callee; 9416 9417 /* callee cannot access r0, r6 - r9 for reading and has to write 9418 * into its own stack before reading from it. 9419 * callee can read/write into caller's stack 9420 */ 9421 init_func_state(env, callee, 9422 /* remember the callsite, it will be used by bpf_exit */ 9423 callsite, 9424 state->curframe + 1 /* frameno within this callchain */, 9425 subprog /* subprog number within this prog */); 9426 /* Transfer references to the callee */ 9427 err = copy_reference_state(callee, caller); 9428 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9429 if (err) 9430 goto err_out; 9431 9432 /* only increment it after check_reg_arg() finished */ 9433 state->curframe++; 9434 9435 return 0; 9436 9437 err_out: 9438 free_func_state(callee); 9439 state->frame[state->curframe + 1] = NULL; 9440 return err; 9441 } 9442 9443 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9444 int insn_idx, int subprog, 9445 set_callee_state_fn set_callee_state_cb) 9446 { 9447 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9448 struct bpf_func_state *caller, *callee; 9449 int err; 9450 9451 caller = state->frame[state->curframe]; 9452 err = btf_check_subprog_call(env, subprog, caller->regs); 9453 if (err == -EFAULT) 9454 return err; 9455 9456 /* set_callee_state is used for direct subprog calls, but we are 9457 * interested in validating only BPF helpers that can call subprogs as 9458 * callbacks 9459 */ 9460 env->subprog_info[subprog].is_cb = true; 9461 if (bpf_pseudo_kfunc_call(insn) && 9462 !is_sync_callback_calling_kfunc(insn->imm)) { 9463 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9464 func_id_name(insn->imm), insn->imm); 9465 return -EFAULT; 9466 } else if (!bpf_pseudo_kfunc_call(insn) && 9467 !is_callback_calling_function(insn->imm)) { /* helper */ 9468 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9469 func_id_name(insn->imm), insn->imm); 9470 return -EFAULT; 9471 } 9472 9473 if (insn->code == (BPF_JMP | BPF_CALL) && 9474 insn->src_reg == 0 && 9475 insn->imm == BPF_FUNC_timer_set_callback) { 9476 struct bpf_verifier_state *async_cb; 9477 9478 /* there is no real recursion here. timer callbacks are async */ 9479 env->subprog_info[subprog].is_async_cb = true; 9480 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9481 insn_idx, subprog); 9482 if (!async_cb) 9483 return -EFAULT; 9484 callee = async_cb->frame[0]; 9485 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9486 9487 /* Convert bpf_timer_set_callback() args into timer callback args */ 9488 err = set_callee_state_cb(env, caller, callee, insn_idx); 9489 if (err) 9490 return err; 9491 9492 return 0; 9493 } 9494 9495 /* for callback functions enqueue entry to callback and 9496 * proceed with next instruction within current frame. 9497 */ 9498 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9499 if (!callback_state) 9500 return -ENOMEM; 9501 9502 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9503 callback_state); 9504 if (err) 9505 return err; 9506 9507 callback_state->callback_unroll_depth++; 9508 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9509 caller->callback_depth = 0; 9510 return 0; 9511 } 9512 9513 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9514 int *insn_idx) 9515 { 9516 struct bpf_verifier_state *state = env->cur_state; 9517 struct bpf_func_state *caller; 9518 int err, subprog, target_insn; 9519 9520 target_insn = *insn_idx + insn->imm + 1; 9521 subprog = find_subprog(env, target_insn); 9522 if (subprog < 0) { 9523 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9524 return -EFAULT; 9525 } 9526 9527 caller = state->frame[state->curframe]; 9528 err = btf_check_subprog_call(env, subprog, caller->regs); 9529 if (err == -EFAULT) 9530 return err; 9531 if (subprog_is_global(env, subprog)) { 9532 if (err) { 9533 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9534 return err; 9535 } 9536 9537 if (env->log.level & BPF_LOG_LEVEL) 9538 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9539 clear_caller_saved_regs(env, caller->regs); 9540 9541 /* All global functions return a 64-bit SCALAR_VALUE */ 9542 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9543 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9544 9545 /* continue with next insn after call */ 9546 return 0; 9547 } 9548 9549 /* for regular function entry setup new frame and continue 9550 * from that frame. 9551 */ 9552 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9553 if (err) 9554 return err; 9555 9556 clear_caller_saved_regs(env, caller->regs); 9557 9558 /* and go analyze first insn of the callee */ 9559 *insn_idx = env->subprog_info[subprog].start - 1; 9560 9561 if (env->log.level & BPF_LOG_LEVEL) { 9562 verbose(env, "caller:\n"); 9563 print_verifier_state(env, caller, true); 9564 verbose(env, "callee:\n"); 9565 print_verifier_state(env, state->frame[state->curframe], true); 9566 } 9567 9568 return 0; 9569 } 9570 9571 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9572 struct bpf_func_state *caller, 9573 struct bpf_func_state *callee) 9574 { 9575 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9576 * void *callback_ctx, u64 flags); 9577 * callback_fn(struct bpf_map *map, void *key, void *value, 9578 * void *callback_ctx); 9579 */ 9580 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9581 9582 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9583 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9584 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9585 9586 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9587 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9588 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9589 9590 /* pointer to stack or null */ 9591 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9592 9593 /* unused */ 9594 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9595 return 0; 9596 } 9597 9598 static int set_callee_state(struct bpf_verifier_env *env, 9599 struct bpf_func_state *caller, 9600 struct bpf_func_state *callee, int insn_idx) 9601 { 9602 int i; 9603 9604 /* copy r1 - r5 args that callee can access. The copy includes parent 9605 * pointers, which connects us up to the liveness chain 9606 */ 9607 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9608 callee->regs[i] = caller->regs[i]; 9609 return 0; 9610 } 9611 9612 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9613 struct bpf_func_state *caller, 9614 struct bpf_func_state *callee, 9615 int insn_idx) 9616 { 9617 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9618 struct bpf_map *map; 9619 int err; 9620 9621 if (bpf_map_ptr_poisoned(insn_aux)) { 9622 verbose(env, "tail_call abusing map_ptr\n"); 9623 return -EINVAL; 9624 } 9625 9626 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9627 if (!map->ops->map_set_for_each_callback_args || 9628 !map->ops->map_for_each_callback) { 9629 verbose(env, "callback function not allowed for map\n"); 9630 return -ENOTSUPP; 9631 } 9632 9633 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9634 if (err) 9635 return err; 9636 9637 callee->in_callback_fn = true; 9638 callee->callback_ret_range = tnum_range(0, 1); 9639 return 0; 9640 } 9641 9642 static int set_loop_callback_state(struct bpf_verifier_env *env, 9643 struct bpf_func_state *caller, 9644 struct bpf_func_state *callee, 9645 int insn_idx) 9646 { 9647 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9648 * u64 flags); 9649 * callback_fn(u32 index, void *callback_ctx); 9650 */ 9651 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9652 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9653 9654 /* unused */ 9655 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9656 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9657 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9658 9659 callee->in_callback_fn = true; 9660 callee->callback_ret_range = tnum_range(0, 1); 9661 return 0; 9662 } 9663 9664 static int set_timer_callback_state(struct bpf_verifier_env *env, 9665 struct bpf_func_state *caller, 9666 struct bpf_func_state *callee, 9667 int insn_idx) 9668 { 9669 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9670 9671 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9672 * callback_fn(struct bpf_map *map, void *key, void *value); 9673 */ 9674 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9675 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9676 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9677 9678 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9679 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9680 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9681 9682 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9683 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9684 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9685 9686 /* unused */ 9687 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9688 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9689 callee->in_async_callback_fn = true; 9690 callee->callback_ret_range = tnum_range(0, 1); 9691 return 0; 9692 } 9693 9694 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9695 struct bpf_func_state *caller, 9696 struct bpf_func_state *callee, 9697 int insn_idx) 9698 { 9699 /* bpf_find_vma(struct task_struct *task, u64 addr, 9700 * void *callback_fn, void *callback_ctx, u64 flags) 9701 * (callback_fn)(struct task_struct *task, 9702 * struct vm_area_struct *vma, void *callback_ctx); 9703 */ 9704 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9705 9706 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9707 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9708 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9709 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9710 9711 /* pointer to stack or null */ 9712 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9713 9714 /* unused */ 9715 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9716 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9717 callee->in_callback_fn = true; 9718 callee->callback_ret_range = tnum_range(0, 1); 9719 return 0; 9720 } 9721 9722 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9723 struct bpf_func_state *caller, 9724 struct bpf_func_state *callee, 9725 int insn_idx) 9726 { 9727 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9728 * callback_ctx, u64 flags); 9729 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9730 */ 9731 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9732 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9733 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9734 9735 /* unused */ 9736 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9737 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9738 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9739 9740 callee->in_callback_fn = true; 9741 callee->callback_ret_range = tnum_range(0, 1); 9742 return 0; 9743 } 9744 9745 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9746 struct bpf_func_state *caller, 9747 struct bpf_func_state *callee, 9748 int insn_idx) 9749 { 9750 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9751 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9752 * 9753 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9754 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9755 * by this point, so look at 'root' 9756 */ 9757 struct btf_field *field; 9758 9759 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9760 BPF_RB_ROOT); 9761 if (!field || !field->graph_root.value_btf_id) 9762 return -EFAULT; 9763 9764 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9765 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9766 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9767 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9768 9769 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9770 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9771 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9772 callee->in_callback_fn = true; 9773 callee->callback_ret_range = tnum_range(0, 1); 9774 return 0; 9775 } 9776 9777 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9778 9779 /* Are we currently verifying the callback for a rbtree helper that must 9780 * be called with lock held? If so, no need to complain about unreleased 9781 * lock 9782 */ 9783 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9784 { 9785 struct bpf_verifier_state *state = env->cur_state; 9786 struct bpf_insn *insn = env->prog->insnsi; 9787 struct bpf_func_state *callee; 9788 int kfunc_btf_id; 9789 9790 if (!state->curframe) 9791 return false; 9792 9793 callee = state->frame[state->curframe]; 9794 9795 if (!callee->in_callback_fn) 9796 return false; 9797 9798 kfunc_btf_id = insn[callee->callsite].imm; 9799 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9800 } 9801 9802 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9803 { 9804 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9805 struct bpf_func_state *caller, *callee; 9806 struct bpf_reg_state *r0; 9807 bool in_callback_fn; 9808 int err; 9809 9810 callee = state->frame[state->curframe]; 9811 r0 = &callee->regs[BPF_REG_0]; 9812 if (r0->type == PTR_TO_STACK) { 9813 /* technically it's ok to return caller's stack pointer 9814 * (or caller's caller's pointer) back to the caller, 9815 * since these pointers are valid. Only current stack 9816 * pointer will be invalid as soon as function exits, 9817 * but let's be conservative 9818 */ 9819 verbose(env, "cannot return stack pointer to the caller\n"); 9820 return -EINVAL; 9821 } 9822 9823 caller = state->frame[state->curframe - 1]; 9824 if (callee->in_callback_fn) { 9825 /* enforce R0 return value range [0, 1]. */ 9826 struct tnum range = callee->callback_ret_range; 9827 9828 if (r0->type != SCALAR_VALUE) { 9829 verbose(env, "R0 not a scalar value\n"); 9830 return -EACCES; 9831 } 9832 if (!tnum_in(range, r0->var_off)) { 9833 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9834 return -EINVAL; 9835 } 9836 if (!calls_callback(env, callee->callsite)) { 9837 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9838 *insn_idx, callee->callsite); 9839 return -EFAULT; 9840 } 9841 } else { 9842 /* return to the caller whatever r0 had in the callee */ 9843 caller->regs[BPF_REG_0] = *r0; 9844 } 9845 9846 /* callback_fn frame should have released its own additions to parent's 9847 * reference state at this point, or check_reference_leak would 9848 * complain, hence it must be the same as the caller. There is no need 9849 * to copy it back. 9850 */ 9851 if (!callee->in_callback_fn) { 9852 /* Transfer references to the caller */ 9853 err = copy_reference_state(caller, callee); 9854 if (err) 9855 return err; 9856 } 9857 9858 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9859 * there function call logic would reschedule callback visit. If iteration 9860 * converges is_state_visited() would prune that visit eventually. 9861 */ 9862 in_callback_fn = callee->in_callback_fn; 9863 if (in_callback_fn) 9864 *insn_idx = callee->callsite; 9865 else 9866 *insn_idx = callee->callsite + 1; 9867 9868 if (env->log.level & BPF_LOG_LEVEL) { 9869 verbose(env, "returning from callee:\n"); 9870 print_verifier_state(env, callee, true); 9871 verbose(env, "to caller at %d:\n", *insn_idx); 9872 print_verifier_state(env, caller, true); 9873 } 9874 /* clear everything in the callee. In case of exceptional exits using 9875 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9876 free_func_state(callee); 9877 state->frame[state->curframe--] = NULL; 9878 9879 /* for callbacks widen imprecise scalars to make programs like below verify: 9880 * 9881 * struct ctx { int i; } 9882 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9883 * ... 9884 * struct ctx = { .i = 0; } 9885 * bpf_loop(100, cb, &ctx, 0); 9886 * 9887 * This is similar to what is done in process_iter_next_call() for open 9888 * coded iterators. 9889 */ 9890 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9891 if (prev_st) { 9892 err = widen_imprecise_scalars(env, prev_st, state); 9893 if (err) 9894 return err; 9895 } 9896 return 0; 9897 } 9898 9899 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9900 int func_id, 9901 struct bpf_call_arg_meta *meta) 9902 { 9903 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9904 9905 if (ret_type != RET_INTEGER) 9906 return; 9907 9908 switch (func_id) { 9909 case BPF_FUNC_get_stack: 9910 case BPF_FUNC_get_task_stack: 9911 case BPF_FUNC_probe_read_str: 9912 case BPF_FUNC_probe_read_kernel_str: 9913 case BPF_FUNC_probe_read_user_str: 9914 ret_reg->smax_value = meta->msize_max_value; 9915 ret_reg->s32_max_value = meta->msize_max_value; 9916 ret_reg->smin_value = -MAX_ERRNO; 9917 ret_reg->s32_min_value = -MAX_ERRNO; 9918 reg_bounds_sync(ret_reg); 9919 break; 9920 case BPF_FUNC_get_smp_processor_id: 9921 ret_reg->umax_value = nr_cpu_ids - 1; 9922 ret_reg->u32_max_value = nr_cpu_ids - 1; 9923 ret_reg->smax_value = nr_cpu_ids - 1; 9924 ret_reg->s32_max_value = nr_cpu_ids - 1; 9925 ret_reg->umin_value = 0; 9926 ret_reg->u32_min_value = 0; 9927 ret_reg->smin_value = 0; 9928 ret_reg->s32_min_value = 0; 9929 reg_bounds_sync(ret_reg); 9930 break; 9931 } 9932 } 9933 9934 static int 9935 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9936 int func_id, int insn_idx) 9937 { 9938 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9939 struct bpf_map *map = meta->map_ptr; 9940 9941 if (func_id != BPF_FUNC_tail_call && 9942 func_id != BPF_FUNC_map_lookup_elem && 9943 func_id != BPF_FUNC_map_update_elem && 9944 func_id != BPF_FUNC_map_delete_elem && 9945 func_id != BPF_FUNC_map_push_elem && 9946 func_id != BPF_FUNC_map_pop_elem && 9947 func_id != BPF_FUNC_map_peek_elem && 9948 func_id != BPF_FUNC_for_each_map_elem && 9949 func_id != BPF_FUNC_redirect_map && 9950 func_id != BPF_FUNC_map_lookup_percpu_elem) 9951 return 0; 9952 9953 if (map == NULL) { 9954 verbose(env, "kernel subsystem misconfigured verifier\n"); 9955 return -EINVAL; 9956 } 9957 9958 /* In case of read-only, some additional restrictions 9959 * need to be applied in order to prevent altering the 9960 * state of the map from program side. 9961 */ 9962 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9963 (func_id == BPF_FUNC_map_delete_elem || 9964 func_id == BPF_FUNC_map_update_elem || 9965 func_id == BPF_FUNC_map_push_elem || 9966 func_id == BPF_FUNC_map_pop_elem)) { 9967 verbose(env, "write into map forbidden\n"); 9968 return -EACCES; 9969 } 9970 9971 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9972 bpf_map_ptr_store(aux, meta->map_ptr, 9973 !meta->map_ptr->bypass_spec_v1); 9974 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9975 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9976 !meta->map_ptr->bypass_spec_v1); 9977 return 0; 9978 } 9979 9980 static int 9981 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9982 int func_id, int insn_idx) 9983 { 9984 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9985 struct bpf_reg_state *regs = cur_regs(env), *reg; 9986 struct bpf_map *map = meta->map_ptr; 9987 u64 val, max; 9988 int err; 9989 9990 if (func_id != BPF_FUNC_tail_call) 9991 return 0; 9992 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9993 verbose(env, "kernel subsystem misconfigured verifier\n"); 9994 return -EINVAL; 9995 } 9996 9997 reg = ®s[BPF_REG_3]; 9998 val = reg->var_off.value; 9999 max = map->max_entries; 10000 10001 if (!(register_is_const(reg) && val < max)) { 10002 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10003 return 0; 10004 } 10005 10006 err = mark_chain_precision(env, BPF_REG_3); 10007 if (err) 10008 return err; 10009 if (bpf_map_key_unseen(aux)) 10010 bpf_map_key_store(aux, val); 10011 else if (!bpf_map_key_poisoned(aux) && 10012 bpf_map_key_immediate(aux) != val) 10013 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10014 return 0; 10015 } 10016 10017 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10018 { 10019 struct bpf_func_state *state = cur_func(env); 10020 bool refs_lingering = false; 10021 int i; 10022 10023 if (!exception_exit && state->frameno && !state->in_callback_fn) 10024 return 0; 10025 10026 for (i = 0; i < state->acquired_refs; i++) { 10027 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 10028 continue; 10029 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10030 state->refs[i].id, state->refs[i].insn_idx); 10031 refs_lingering = true; 10032 } 10033 return refs_lingering ? -EINVAL : 0; 10034 } 10035 10036 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10037 struct bpf_reg_state *regs) 10038 { 10039 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10040 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10041 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10042 struct bpf_bprintf_data data = {}; 10043 int err, fmt_map_off, num_args; 10044 u64 fmt_addr; 10045 char *fmt; 10046 10047 /* data must be an array of u64 */ 10048 if (data_len_reg->var_off.value % 8) 10049 return -EINVAL; 10050 num_args = data_len_reg->var_off.value / 8; 10051 10052 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10053 * and map_direct_value_addr is set. 10054 */ 10055 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10056 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10057 fmt_map_off); 10058 if (err) { 10059 verbose(env, "verifier bug\n"); 10060 return -EFAULT; 10061 } 10062 fmt = (char *)(long)fmt_addr + fmt_map_off; 10063 10064 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10065 * can focus on validating the format specifiers. 10066 */ 10067 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10068 if (err < 0) 10069 verbose(env, "Invalid format string\n"); 10070 10071 return err; 10072 } 10073 10074 static int check_get_func_ip(struct bpf_verifier_env *env) 10075 { 10076 enum bpf_prog_type type = resolve_prog_type(env->prog); 10077 int func_id = BPF_FUNC_get_func_ip; 10078 10079 if (type == BPF_PROG_TYPE_TRACING) { 10080 if (!bpf_prog_has_trampoline(env->prog)) { 10081 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10082 func_id_name(func_id), func_id); 10083 return -ENOTSUPP; 10084 } 10085 return 0; 10086 } else if (type == BPF_PROG_TYPE_KPROBE) { 10087 return 0; 10088 } 10089 10090 verbose(env, "func %s#%d not supported for program type %d\n", 10091 func_id_name(func_id), func_id, type); 10092 return -ENOTSUPP; 10093 } 10094 10095 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10096 { 10097 return &env->insn_aux_data[env->insn_idx]; 10098 } 10099 10100 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10101 { 10102 struct bpf_reg_state *regs = cur_regs(env); 10103 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10104 bool reg_is_null = register_is_null(reg); 10105 10106 if (reg_is_null) 10107 mark_chain_precision(env, BPF_REG_4); 10108 10109 return reg_is_null; 10110 } 10111 10112 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10113 { 10114 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10115 10116 if (!state->initialized) { 10117 state->initialized = 1; 10118 state->fit_for_inline = loop_flag_is_zero(env); 10119 state->callback_subprogno = subprogno; 10120 return; 10121 } 10122 10123 if (!state->fit_for_inline) 10124 return; 10125 10126 state->fit_for_inline = (loop_flag_is_zero(env) && 10127 state->callback_subprogno == subprogno); 10128 } 10129 10130 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10131 int *insn_idx_p) 10132 { 10133 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10134 bool returns_cpu_specific_alloc_ptr = false; 10135 const struct bpf_func_proto *fn = NULL; 10136 enum bpf_return_type ret_type; 10137 enum bpf_type_flag ret_flag; 10138 struct bpf_reg_state *regs; 10139 struct bpf_call_arg_meta meta; 10140 int insn_idx = *insn_idx_p; 10141 bool changes_data; 10142 int i, err, func_id; 10143 10144 /* find function prototype */ 10145 func_id = insn->imm; 10146 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 10147 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 10148 func_id); 10149 return -EINVAL; 10150 } 10151 10152 if (env->ops->get_func_proto) 10153 fn = env->ops->get_func_proto(func_id, env->prog); 10154 if (!fn) { 10155 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 10156 func_id); 10157 return -EINVAL; 10158 } 10159 10160 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10161 if (!env->prog->gpl_compatible && fn->gpl_only) { 10162 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10163 return -EINVAL; 10164 } 10165 10166 if (fn->allowed && !fn->allowed(env->prog)) { 10167 verbose(env, "helper call is not allowed in probe\n"); 10168 return -EINVAL; 10169 } 10170 10171 if (!env->prog->aux->sleepable && fn->might_sleep) { 10172 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10173 return -EINVAL; 10174 } 10175 10176 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10177 changes_data = bpf_helper_changes_pkt_data(fn->func); 10178 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10179 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10180 func_id_name(func_id), func_id); 10181 return -EINVAL; 10182 } 10183 10184 memset(&meta, 0, sizeof(meta)); 10185 meta.pkt_access = fn->pkt_access; 10186 10187 err = check_func_proto(fn, func_id); 10188 if (err) { 10189 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10190 func_id_name(func_id), func_id); 10191 return err; 10192 } 10193 10194 if (env->cur_state->active_rcu_lock) { 10195 if (fn->might_sleep) { 10196 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10197 func_id_name(func_id), func_id); 10198 return -EINVAL; 10199 } 10200 10201 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10202 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10203 } 10204 10205 meta.func_id = func_id; 10206 /* check args */ 10207 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10208 err = check_func_arg(env, i, &meta, fn, insn_idx); 10209 if (err) 10210 return err; 10211 } 10212 10213 err = record_func_map(env, &meta, func_id, insn_idx); 10214 if (err) 10215 return err; 10216 10217 err = record_func_key(env, &meta, func_id, insn_idx); 10218 if (err) 10219 return err; 10220 10221 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10222 * is inferred from register state. 10223 */ 10224 for (i = 0; i < meta.access_size; i++) { 10225 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10226 BPF_WRITE, -1, false, false); 10227 if (err) 10228 return err; 10229 } 10230 10231 regs = cur_regs(env); 10232 10233 if (meta.release_regno) { 10234 err = -EINVAL; 10235 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10236 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10237 * is safe to do directly. 10238 */ 10239 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10240 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10241 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10242 return -EFAULT; 10243 } 10244 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10245 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10246 u32 ref_obj_id = meta.ref_obj_id; 10247 bool in_rcu = in_rcu_cs(env); 10248 struct bpf_func_state *state; 10249 struct bpf_reg_state *reg; 10250 10251 err = release_reference_state(cur_func(env), ref_obj_id); 10252 if (!err) { 10253 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10254 if (reg->ref_obj_id == ref_obj_id) { 10255 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10256 reg->ref_obj_id = 0; 10257 reg->type &= ~MEM_ALLOC; 10258 reg->type |= MEM_RCU; 10259 } else { 10260 mark_reg_invalid(env, reg); 10261 } 10262 } 10263 })); 10264 } 10265 } else if (meta.ref_obj_id) { 10266 err = release_reference(env, meta.ref_obj_id); 10267 } else if (register_is_null(®s[meta.release_regno])) { 10268 /* meta.ref_obj_id can only be 0 if register that is meant to be 10269 * released is NULL, which must be > R0. 10270 */ 10271 err = 0; 10272 } 10273 if (err) { 10274 verbose(env, "func %s#%d reference has not been acquired before\n", 10275 func_id_name(func_id), func_id); 10276 return err; 10277 } 10278 } 10279 10280 switch (func_id) { 10281 case BPF_FUNC_tail_call: 10282 err = check_reference_leak(env, false); 10283 if (err) { 10284 verbose(env, "tail_call would lead to reference leak\n"); 10285 return err; 10286 } 10287 break; 10288 case BPF_FUNC_get_local_storage: 10289 /* check that flags argument in get_local_storage(map, flags) is 0, 10290 * this is required because get_local_storage() can't return an error. 10291 */ 10292 if (!register_is_null(®s[BPF_REG_2])) { 10293 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10294 return -EINVAL; 10295 } 10296 break; 10297 case BPF_FUNC_for_each_map_elem: 10298 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10299 set_map_elem_callback_state); 10300 break; 10301 case BPF_FUNC_timer_set_callback: 10302 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10303 set_timer_callback_state); 10304 break; 10305 case BPF_FUNC_find_vma: 10306 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10307 set_find_vma_callback_state); 10308 break; 10309 case BPF_FUNC_snprintf: 10310 err = check_bpf_snprintf_call(env, regs); 10311 break; 10312 case BPF_FUNC_loop: 10313 update_loop_inline_state(env, meta.subprogno); 10314 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10315 * is finished, thus mark it precise. 10316 */ 10317 err = mark_chain_precision(env, BPF_REG_1); 10318 if (err) 10319 return err; 10320 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10321 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10322 set_loop_callback_state); 10323 } else { 10324 cur_func(env)->callback_depth = 0; 10325 if (env->log.level & BPF_LOG_LEVEL2) 10326 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10327 env->cur_state->curframe); 10328 } 10329 break; 10330 case BPF_FUNC_dynptr_from_mem: 10331 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10332 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10333 reg_type_str(env, regs[BPF_REG_1].type)); 10334 return -EACCES; 10335 } 10336 break; 10337 case BPF_FUNC_set_retval: 10338 if (prog_type == BPF_PROG_TYPE_LSM && 10339 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10340 if (!env->prog->aux->attach_func_proto->type) { 10341 /* Make sure programs that attach to void 10342 * hooks don't try to modify return value. 10343 */ 10344 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10345 return -EINVAL; 10346 } 10347 } 10348 break; 10349 case BPF_FUNC_dynptr_data: 10350 { 10351 struct bpf_reg_state *reg; 10352 int id, ref_obj_id; 10353 10354 reg = get_dynptr_arg_reg(env, fn, regs); 10355 if (!reg) 10356 return -EFAULT; 10357 10358 10359 if (meta.dynptr_id) { 10360 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10361 return -EFAULT; 10362 } 10363 if (meta.ref_obj_id) { 10364 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10365 return -EFAULT; 10366 } 10367 10368 id = dynptr_id(env, reg); 10369 if (id < 0) { 10370 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10371 return id; 10372 } 10373 10374 ref_obj_id = dynptr_ref_obj_id(env, reg); 10375 if (ref_obj_id < 0) { 10376 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10377 return ref_obj_id; 10378 } 10379 10380 meta.dynptr_id = id; 10381 meta.ref_obj_id = ref_obj_id; 10382 10383 break; 10384 } 10385 case BPF_FUNC_dynptr_write: 10386 { 10387 enum bpf_dynptr_type dynptr_type; 10388 struct bpf_reg_state *reg; 10389 10390 reg = get_dynptr_arg_reg(env, fn, regs); 10391 if (!reg) 10392 return -EFAULT; 10393 10394 dynptr_type = dynptr_get_type(env, reg); 10395 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10396 return -EFAULT; 10397 10398 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10399 /* this will trigger clear_all_pkt_pointers(), which will 10400 * invalidate all dynptr slices associated with the skb 10401 */ 10402 changes_data = true; 10403 10404 break; 10405 } 10406 case BPF_FUNC_per_cpu_ptr: 10407 case BPF_FUNC_this_cpu_ptr: 10408 { 10409 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10410 const struct btf_type *type; 10411 10412 if (reg->type & MEM_RCU) { 10413 type = btf_type_by_id(reg->btf, reg->btf_id); 10414 if (!type || !btf_type_is_struct(type)) { 10415 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10416 return -EFAULT; 10417 } 10418 returns_cpu_specific_alloc_ptr = true; 10419 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10420 } 10421 break; 10422 } 10423 case BPF_FUNC_user_ringbuf_drain: 10424 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10425 set_user_ringbuf_callback_state); 10426 break; 10427 } 10428 10429 if (err) 10430 return err; 10431 10432 /* reset caller saved regs */ 10433 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10434 mark_reg_not_init(env, regs, caller_saved[i]); 10435 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10436 } 10437 10438 /* helper call returns 64-bit value. */ 10439 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10440 10441 /* update return register (already marked as written above) */ 10442 ret_type = fn->ret_type; 10443 ret_flag = type_flag(ret_type); 10444 10445 switch (base_type(ret_type)) { 10446 case RET_INTEGER: 10447 /* sets type to SCALAR_VALUE */ 10448 mark_reg_unknown(env, regs, BPF_REG_0); 10449 break; 10450 case RET_VOID: 10451 regs[BPF_REG_0].type = NOT_INIT; 10452 break; 10453 case RET_PTR_TO_MAP_VALUE: 10454 /* There is no offset yet applied, variable or fixed */ 10455 mark_reg_known_zero(env, regs, BPF_REG_0); 10456 /* remember map_ptr, so that check_map_access() 10457 * can check 'value_size' boundary of memory access 10458 * to map element returned from bpf_map_lookup_elem() 10459 */ 10460 if (meta.map_ptr == NULL) { 10461 verbose(env, 10462 "kernel subsystem misconfigured verifier\n"); 10463 return -EINVAL; 10464 } 10465 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10466 regs[BPF_REG_0].map_uid = meta.map_uid; 10467 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10468 if (!type_may_be_null(ret_type) && 10469 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10470 regs[BPF_REG_0].id = ++env->id_gen; 10471 } 10472 break; 10473 case RET_PTR_TO_SOCKET: 10474 mark_reg_known_zero(env, regs, BPF_REG_0); 10475 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10476 break; 10477 case RET_PTR_TO_SOCK_COMMON: 10478 mark_reg_known_zero(env, regs, BPF_REG_0); 10479 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10480 break; 10481 case RET_PTR_TO_TCP_SOCK: 10482 mark_reg_known_zero(env, regs, BPF_REG_0); 10483 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10484 break; 10485 case RET_PTR_TO_MEM: 10486 mark_reg_known_zero(env, regs, BPF_REG_0); 10487 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10488 regs[BPF_REG_0].mem_size = meta.mem_size; 10489 break; 10490 case RET_PTR_TO_MEM_OR_BTF_ID: 10491 { 10492 const struct btf_type *t; 10493 10494 mark_reg_known_zero(env, regs, BPF_REG_0); 10495 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10496 if (!btf_type_is_struct(t)) { 10497 u32 tsize; 10498 const struct btf_type *ret; 10499 const char *tname; 10500 10501 /* resolve the type size of ksym. */ 10502 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10503 if (IS_ERR(ret)) { 10504 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10505 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10506 tname, PTR_ERR(ret)); 10507 return -EINVAL; 10508 } 10509 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10510 regs[BPF_REG_0].mem_size = tsize; 10511 } else { 10512 if (returns_cpu_specific_alloc_ptr) { 10513 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10514 } else { 10515 /* MEM_RDONLY may be carried from ret_flag, but it 10516 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10517 * it will confuse the check of PTR_TO_BTF_ID in 10518 * check_mem_access(). 10519 */ 10520 ret_flag &= ~MEM_RDONLY; 10521 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10522 } 10523 10524 regs[BPF_REG_0].btf = meta.ret_btf; 10525 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10526 } 10527 break; 10528 } 10529 case RET_PTR_TO_BTF_ID: 10530 { 10531 struct btf *ret_btf; 10532 int ret_btf_id; 10533 10534 mark_reg_known_zero(env, regs, BPF_REG_0); 10535 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10536 if (func_id == BPF_FUNC_kptr_xchg) { 10537 ret_btf = meta.kptr_field->kptr.btf; 10538 ret_btf_id = meta.kptr_field->kptr.btf_id; 10539 if (!btf_is_kernel(ret_btf)) { 10540 regs[BPF_REG_0].type |= MEM_ALLOC; 10541 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10542 regs[BPF_REG_0].type |= MEM_PERCPU; 10543 } 10544 } else { 10545 if (fn->ret_btf_id == BPF_PTR_POISON) { 10546 verbose(env, "verifier internal error:"); 10547 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10548 func_id_name(func_id)); 10549 return -EINVAL; 10550 } 10551 ret_btf = btf_vmlinux; 10552 ret_btf_id = *fn->ret_btf_id; 10553 } 10554 if (ret_btf_id == 0) { 10555 verbose(env, "invalid return type %u of func %s#%d\n", 10556 base_type(ret_type), func_id_name(func_id), 10557 func_id); 10558 return -EINVAL; 10559 } 10560 regs[BPF_REG_0].btf = ret_btf; 10561 regs[BPF_REG_0].btf_id = ret_btf_id; 10562 break; 10563 } 10564 default: 10565 verbose(env, "unknown return type %u of func %s#%d\n", 10566 base_type(ret_type), func_id_name(func_id), func_id); 10567 return -EINVAL; 10568 } 10569 10570 if (type_may_be_null(regs[BPF_REG_0].type)) 10571 regs[BPF_REG_0].id = ++env->id_gen; 10572 10573 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10574 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10575 func_id_name(func_id), func_id); 10576 return -EFAULT; 10577 } 10578 10579 if (is_dynptr_ref_function(func_id)) 10580 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10581 10582 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10583 /* For release_reference() */ 10584 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10585 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10586 int id = acquire_reference_state(env, insn_idx); 10587 10588 if (id < 0) 10589 return id; 10590 /* For mark_ptr_or_null_reg() */ 10591 regs[BPF_REG_0].id = id; 10592 /* For release_reference() */ 10593 regs[BPF_REG_0].ref_obj_id = id; 10594 } 10595 10596 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10597 10598 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10599 if (err) 10600 return err; 10601 10602 if ((func_id == BPF_FUNC_get_stack || 10603 func_id == BPF_FUNC_get_task_stack) && 10604 !env->prog->has_callchain_buf) { 10605 const char *err_str; 10606 10607 #ifdef CONFIG_PERF_EVENTS 10608 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10609 err_str = "cannot get callchain buffer for func %s#%d\n"; 10610 #else 10611 err = -ENOTSUPP; 10612 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10613 #endif 10614 if (err) { 10615 verbose(env, err_str, func_id_name(func_id), func_id); 10616 return err; 10617 } 10618 10619 env->prog->has_callchain_buf = true; 10620 } 10621 10622 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10623 env->prog->call_get_stack = true; 10624 10625 if (func_id == BPF_FUNC_get_func_ip) { 10626 if (check_get_func_ip(env)) 10627 return -ENOTSUPP; 10628 env->prog->call_get_func_ip = true; 10629 } 10630 10631 if (changes_data) 10632 clear_all_pkt_pointers(env); 10633 return 0; 10634 } 10635 10636 /* mark_btf_func_reg_size() is used when the reg size is determined by 10637 * the BTF func_proto's return value size and argument. 10638 */ 10639 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10640 size_t reg_size) 10641 { 10642 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10643 10644 if (regno == BPF_REG_0) { 10645 /* Function return value */ 10646 reg->live |= REG_LIVE_WRITTEN; 10647 reg->subreg_def = reg_size == sizeof(u64) ? 10648 DEF_NOT_SUBREG : env->insn_idx + 1; 10649 } else { 10650 /* Function argument */ 10651 if (reg_size == sizeof(u64)) { 10652 mark_insn_zext(env, reg); 10653 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10654 } else { 10655 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10656 } 10657 } 10658 } 10659 10660 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10661 { 10662 return meta->kfunc_flags & KF_ACQUIRE; 10663 } 10664 10665 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10666 { 10667 return meta->kfunc_flags & KF_RELEASE; 10668 } 10669 10670 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10671 { 10672 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10673 } 10674 10675 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10676 { 10677 return meta->kfunc_flags & KF_SLEEPABLE; 10678 } 10679 10680 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10681 { 10682 return meta->kfunc_flags & KF_DESTRUCTIVE; 10683 } 10684 10685 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10686 { 10687 return meta->kfunc_flags & KF_RCU; 10688 } 10689 10690 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10691 { 10692 return meta->kfunc_flags & KF_RCU_PROTECTED; 10693 } 10694 10695 static bool __kfunc_param_match_suffix(const struct btf *btf, 10696 const struct btf_param *arg, 10697 const char *suffix) 10698 { 10699 int suffix_len = strlen(suffix), len; 10700 const char *param_name; 10701 10702 /* In the future, this can be ported to use BTF tagging */ 10703 param_name = btf_name_by_offset(btf, arg->name_off); 10704 if (str_is_empty(param_name)) 10705 return false; 10706 len = strlen(param_name); 10707 if (len < suffix_len) 10708 return false; 10709 param_name += len - suffix_len; 10710 return !strncmp(param_name, suffix, suffix_len); 10711 } 10712 10713 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10714 const struct btf_param *arg, 10715 const struct bpf_reg_state *reg) 10716 { 10717 const struct btf_type *t; 10718 10719 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10720 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10721 return false; 10722 10723 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10724 } 10725 10726 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10727 const struct btf_param *arg, 10728 const struct bpf_reg_state *reg) 10729 { 10730 const struct btf_type *t; 10731 10732 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10733 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10734 return false; 10735 10736 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10737 } 10738 10739 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10740 { 10741 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10742 } 10743 10744 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10745 { 10746 return __kfunc_param_match_suffix(btf, arg, "__k"); 10747 } 10748 10749 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10750 { 10751 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10752 } 10753 10754 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10755 { 10756 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10757 } 10758 10759 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10760 { 10761 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10762 } 10763 10764 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10765 { 10766 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10767 } 10768 10769 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10770 { 10771 return __kfunc_param_match_suffix(btf, arg, "__nullable"); 10772 } 10773 10774 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10775 const struct btf_param *arg, 10776 const char *name) 10777 { 10778 int len, target_len = strlen(name); 10779 const char *param_name; 10780 10781 param_name = btf_name_by_offset(btf, arg->name_off); 10782 if (str_is_empty(param_name)) 10783 return false; 10784 len = strlen(param_name); 10785 if (len != target_len) 10786 return false; 10787 if (strcmp(param_name, name)) 10788 return false; 10789 10790 return true; 10791 } 10792 10793 enum { 10794 KF_ARG_DYNPTR_ID, 10795 KF_ARG_LIST_HEAD_ID, 10796 KF_ARG_LIST_NODE_ID, 10797 KF_ARG_RB_ROOT_ID, 10798 KF_ARG_RB_NODE_ID, 10799 }; 10800 10801 BTF_ID_LIST(kf_arg_btf_ids) 10802 BTF_ID(struct, bpf_dynptr_kern) 10803 BTF_ID(struct, bpf_list_head) 10804 BTF_ID(struct, bpf_list_node) 10805 BTF_ID(struct, bpf_rb_root) 10806 BTF_ID(struct, bpf_rb_node) 10807 10808 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10809 const struct btf_param *arg, int type) 10810 { 10811 const struct btf_type *t; 10812 u32 res_id; 10813 10814 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10815 if (!t) 10816 return false; 10817 if (!btf_type_is_ptr(t)) 10818 return false; 10819 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10820 if (!t) 10821 return false; 10822 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10823 } 10824 10825 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10826 { 10827 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10828 } 10829 10830 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10831 { 10832 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10833 } 10834 10835 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10836 { 10837 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10838 } 10839 10840 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10841 { 10842 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10843 } 10844 10845 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10846 { 10847 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10848 } 10849 10850 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10851 const struct btf_param *arg) 10852 { 10853 const struct btf_type *t; 10854 10855 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10856 if (!t) 10857 return false; 10858 10859 return true; 10860 } 10861 10862 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10863 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10864 const struct btf *btf, 10865 const struct btf_type *t, int rec) 10866 { 10867 const struct btf_type *member_type; 10868 const struct btf_member *member; 10869 u32 i; 10870 10871 if (!btf_type_is_struct(t)) 10872 return false; 10873 10874 for_each_member(i, t, member) { 10875 const struct btf_array *array; 10876 10877 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10878 if (btf_type_is_struct(member_type)) { 10879 if (rec >= 3) { 10880 verbose(env, "max struct nesting depth exceeded\n"); 10881 return false; 10882 } 10883 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10884 return false; 10885 continue; 10886 } 10887 if (btf_type_is_array(member_type)) { 10888 array = btf_array(member_type); 10889 if (!array->nelems) 10890 return false; 10891 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10892 if (!btf_type_is_scalar(member_type)) 10893 return false; 10894 continue; 10895 } 10896 if (!btf_type_is_scalar(member_type)) 10897 return false; 10898 } 10899 return true; 10900 } 10901 10902 enum kfunc_ptr_arg_type { 10903 KF_ARG_PTR_TO_CTX, 10904 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10905 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10906 KF_ARG_PTR_TO_DYNPTR, 10907 KF_ARG_PTR_TO_ITER, 10908 KF_ARG_PTR_TO_LIST_HEAD, 10909 KF_ARG_PTR_TO_LIST_NODE, 10910 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10911 KF_ARG_PTR_TO_MEM, 10912 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10913 KF_ARG_PTR_TO_CALLBACK, 10914 KF_ARG_PTR_TO_RB_ROOT, 10915 KF_ARG_PTR_TO_RB_NODE, 10916 KF_ARG_PTR_TO_NULL, 10917 }; 10918 10919 enum special_kfunc_type { 10920 KF_bpf_obj_new_impl, 10921 KF_bpf_obj_drop_impl, 10922 KF_bpf_refcount_acquire_impl, 10923 KF_bpf_list_push_front_impl, 10924 KF_bpf_list_push_back_impl, 10925 KF_bpf_list_pop_front, 10926 KF_bpf_list_pop_back, 10927 KF_bpf_cast_to_kern_ctx, 10928 KF_bpf_rdonly_cast, 10929 KF_bpf_rcu_read_lock, 10930 KF_bpf_rcu_read_unlock, 10931 KF_bpf_rbtree_remove, 10932 KF_bpf_rbtree_add_impl, 10933 KF_bpf_rbtree_first, 10934 KF_bpf_dynptr_from_skb, 10935 KF_bpf_dynptr_from_xdp, 10936 KF_bpf_dynptr_slice, 10937 KF_bpf_dynptr_slice_rdwr, 10938 KF_bpf_dynptr_clone, 10939 KF_bpf_percpu_obj_new_impl, 10940 KF_bpf_percpu_obj_drop_impl, 10941 KF_bpf_throw, 10942 KF_bpf_iter_css_task_new, 10943 }; 10944 10945 BTF_SET_START(special_kfunc_set) 10946 BTF_ID(func, bpf_obj_new_impl) 10947 BTF_ID(func, bpf_obj_drop_impl) 10948 BTF_ID(func, bpf_refcount_acquire_impl) 10949 BTF_ID(func, bpf_list_push_front_impl) 10950 BTF_ID(func, bpf_list_push_back_impl) 10951 BTF_ID(func, bpf_list_pop_front) 10952 BTF_ID(func, bpf_list_pop_back) 10953 BTF_ID(func, bpf_cast_to_kern_ctx) 10954 BTF_ID(func, bpf_rdonly_cast) 10955 BTF_ID(func, bpf_rbtree_remove) 10956 BTF_ID(func, bpf_rbtree_add_impl) 10957 BTF_ID(func, bpf_rbtree_first) 10958 BTF_ID(func, bpf_dynptr_from_skb) 10959 BTF_ID(func, bpf_dynptr_from_xdp) 10960 BTF_ID(func, bpf_dynptr_slice) 10961 BTF_ID(func, bpf_dynptr_slice_rdwr) 10962 BTF_ID(func, bpf_dynptr_clone) 10963 BTF_ID(func, bpf_percpu_obj_new_impl) 10964 BTF_ID(func, bpf_percpu_obj_drop_impl) 10965 BTF_ID(func, bpf_throw) 10966 #ifdef CONFIG_CGROUPS 10967 BTF_ID(func, bpf_iter_css_task_new) 10968 #endif 10969 BTF_SET_END(special_kfunc_set) 10970 10971 BTF_ID_LIST(special_kfunc_list) 10972 BTF_ID(func, bpf_obj_new_impl) 10973 BTF_ID(func, bpf_obj_drop_impl) 10974 BTF_ID(func, bpf_refcount_acquire_impl) 10975 BTF_ID(func, bpf_list_push_front_impl) 10976 BTF_ID(func, bpf_list_push_back_impl) 10977 BTF_ID(func, bpf_list_pop_front) 10978 BTF_ID(func, bpf_list_pop_back) 10979 BTF_ID(func, bpf_cast_to_kern_ctx) 10980 BTF_ID(func, bpf_rdonly_cast) 10981 BTF_ID(func, bpf_rcu_read_lock) 10982 BTF_ID(func, bpf_rcu_read_unlock) 10983 BTF_ID(func, bpf_rbtree_remove) 10984 BTF_ID(func, bpf_rbtree_add_impl) 10985 BTF_ID(func, bpf_rbtree_first) 10986 BTF_ID(func, bpf_dynptr_from_skb) 10987 BTF_ID(func, bpf_dynptr_from_xdp) 10988 BTF_ID(func, bpf_dynptr_slice) 10989 BTF_ID(func, bpf_dynptr_slice_rdwr) 10990 BTF_ID(func, bpf_dynptr_clone) 10991 BTF_ID(func, bpf_percpu_obj_new_impl) 10992 BTF_ID(func, bpf_percpu_obj_drop_impl) 10993 BTF_ID(func, bpf_throw) 10994 #ifdef CONFIG_CGROUPS 10995 BTF_ID(func, bpf_iter_css_task_new) 10996 #else 10997 BTF_ID_UNUSED 10998 #endif 10999 11000 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11001 { 11002 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11003 meta->arg_owning_ref) { 11004 return false; 11005 } 11006 11007 return meta->kfunc_flags & KF_RET_NULL; 11008 } 11009 11010 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11011 { 11012 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11013 } 11014 11015 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11016 { 11017 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11018 } 11019 11020 static enum kfunc_ptr_arg_type 11021 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11022 struct bpf_kfunc_call_arg_meta *meta, 11023 const struct btf_type *t, const struct btf_type *ref_t, 11024 const char *ref_tname, const struct btf_param *args, 11025 int argno, int nargs) 11026 { 11027 u32 regno = argno + 1; 11028 struct bpf_reg_state *regs = cur_regs(env); 11029 struct bpf_reg_state *reg = ®s[regno]; 11030 bool arg_mem_size = false; 11031 11032 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11033 return KF_ARG_PTR_TO_CTX; 11034 11035 /* In this function, we verify the kfunc's BTF as per the argument type, 11036 * leaving the rest of the verification with respect to the register 11037 * type to our caller. When a set of conditions hold in the BTF type of 11038 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11039 */ 11040 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11041 return KF_ARG_PTR_TO_CTX; 11042 11043 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11044 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11045 11046 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11047 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11048 11049 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11050 return KF_ARG_PTR_TO_DYNPTR; 11051 11052 if (is_kfunc_arg_iter(meta, argno)) 11053 return KF_ARG_PTR_TO_ITER; 11054 11055 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11056 return KF_ARG_PTR_TO_LIST_HEAD; 11057 11058 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11059 return KF_ARG_PTR_TO_LIST_NODE; 11060 11061 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11062 return KF_ARG_PTR_TO_RB_ROOT; 11063 11064 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11065 return KF_ARG_PTR_TO_RB_NODE; 11066 11067 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11068 if (!btf_type_is_struct(ref_t)) { 11069 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11070 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11071 return -EINVAL; 11072 } 11073 return KF_ARG_PTR_TO_BTF_ID; 11074 } 11075 11076 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11077 return KF_ARG_PTR_TO_CALLBACK; 11078 11079 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11080 return KF_ARG_PTR_TO_NULL; 11081 11082 if (argno + 1 < nargs && 11083 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11084 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11085 arg_mem_size = true; 11086 11087 /* This is the catch all argument type of register types supported by 11088 * check_helper_mem_access. However, we only allow when argument type is 11089 * pointer to scalar, or struct composed (recursively) of scalars. When 11090 * arg_mem_size is true, the pointer can be void *. 11091 */ 11092 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11093 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11094 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11095 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11096 return -EINVAL; 11097 } 11098 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11099 } 11100 11101 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11102 struct bpf_reg_state *reg, 11103 const struct btf_type *ref_t, 11104 const char *ref_tname, u32 ref_id, 11105 struct bpf_kfunc_call_arg_meta *meta, 11106 int argno) 11107 { 11108 const struct btf_type *reg_ref_t; 11109 bool strict_type_match = false; 11110 const struct btf *reg_btf; 11111 const char *reg_ref_tname; 11112 u32 reg_ref_id; 11113 11114 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11115 reg_btf = reg->btf; 11116 reg_ref_id = reg->btf_id; 11117 } else { 11118 reg_btf = btf_vmlinux; 11119 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11120 } 11121 11122 /* Enforce strict type matching for calls to kfuncs that are acquiring 11123 * or releasing a reference, or are no-cast aliases. We do _not_ 11124 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11125 * as we want to enable BPF programs to pass types that are bitwise 11126 * equivalent without forcing them to explicitly cast with something 11127 * like bpf_cast_to_kern_ctx(). 11128 * 11129 * For example, say we had a type like the following: 11130 * 11131 * struct bpf_cpumask { 11132 * cpumask_t cpumask; 11133 * refcount_t usage; 11134 * }; 11135 * 11136 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11137 * to a struct cpumask, so it would be safe to pass a struct 11138 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11139 * 11140 * The philosophy here is similar to how we allow scalars of different 11141 * types to be passed to kfuncs as long as the size is the same. The 11142 * only difference here is that we're simply allowing 11143 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11144 * resolve types. 11145 */ 11146 if (is_kfunc_acquire(meta) || 11147 (is_kfunc_release(meta) && reg->ref_obj_id) || 11148 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11149 strict_type_match = true; 11150 11151 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 11152 11153 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11154 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11155 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 11156 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11157 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11158 btf_type_str(reg_ref_t), reg_ref_tname); 11159 return -EINVAL; 11160 } 11161 return 0; 11162 } 11163 11164 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11165 { 11166 struct bpf_verifier_state *state = env->cur_state; 11167 struct btf_record *rec = reg_btf_record(reg); 11168 11169 if (!state->active_lock.ptr) { 11170 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11171 return -EFAULT; 11172 } 11173 11174 if (type_flag(reg->type) & NON_OWN_REF) { 11175 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11176 return -EFAULT; 11177 } 11178 11179 reg->type |= NON_OWN_REF; 11180 if (rec->refcount_off >= 0) 11181 reg->type |= MEM_RCU; 11182 11183 return 0; 11184 } 11185 11186 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11187 { 11188 struct bpf_func_state *state, *unused; 11189 struct bpf_reg_state *reg; 11190 int i; 11191 11192 state = cur_func(env); 11193 11194 if (!ref_obj_id) { 11195 verbose(env, "verifier internal error: ref_obj_id is zero for " 11196 "owning -> non-owning conversion\n"); 11197 return -EFAULT; 11198 } 11199 11200 for (i = 0; i < state->acquired_refs; i++) { 11201 if (state->refs[i].id != ref_obj_id) 11202 continue; 11203 11204 /* Clear ref_obj_id here so release_reference doesn't clobber 11205 * the whole reg 11206 */ 11207 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11208 if (reg->ref_obj_id == ref_obj_id) { 11209 reg->ref_obj_id = 0; 11210 ref_set_non_owning(env, reg); 11211 } 11212 })); 11213 return 0; 11214 } 11215 11216 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11217 return -EFAULT; 11218 } 11219 11220 /* Implementation details: 11221 * 11222 * Each register points to some region of memory, which we define as an 11223 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11224 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11225 * allocation. The lock and the data it protects are colocated in the same 11226 * memory region. 11227 * 11228 * Hence, everytime a register holds a pointer value pointing to such 11229 * allocation, the verifier preserves a unique reg->id for it. 11230 * 11231 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11232 * bpf_spin_lock is called. 11233 * 11234 * To enable this, lock state in the verifier captures two values: 11235 * active_lock.ptr = Register's type specific pointer 11236 * active_lock.id = A unique ID for each register pointer value 11237 * 11238 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11239 * supported register types. 11240 * 11241 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11242 * allocated objects is the reg->btf pointer. 11243 * 11244 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11245 * can establish the provenance of the map value statically for each distinct 11246 * lookup into such maps. They always contain a single map value hence unique 11247 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11248 * 11249 * So, in case of global variables, they use array maps with max_entries = 1, 11250 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11251 * into the same map value as max_entries is 1, as described above). 11252 * 11253 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11254 * outer map pointer (in verifier context), but each lookup into an inner map 11255 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11256 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11257 * will get different reg->id assigned to each lookup, hence different 11258 * active_lock.id. 11259 * 11260 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11261 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11262 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11263 */ 11264 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11265 { 11266 void *ptr; 11267 u32 id; 11268 11269 switch ((int)reg->type) { 11270 case PTR_TO_MAP_VALUE: 11271 ptr = reg->map_ptr; 11272 break; 11273 case PTR_TO_BTF_ID | MEM_ALLOC: 11274 ptr = reg->btf; 11275 break; 11276 default: 11277 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11278 return -EFAULT; 11279 } 11280 id = reg->id; 11281 11282 if (!env->cur_state->active_lock.ptr) 11283 return -EINVAL; 11284 if (env->cur_state->active_lock.ptr != ptr || 11285 env->cur_state->active_lock.id != id) { 11286 verbose(env, "held lock and object are not in the same allocation\n"); 11287 return -EINVAL; 11288 } 11289 return 0; 11290 } 11291 11292 static bool is_bpf_list_api_kfunc(u32 btf_id) 11293 { 11294 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11295 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11296 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11297 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11298 } 11299 11300 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11301 { 11302 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11303 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11304 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11305 } 11306 11307 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11308 { 11309 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11310 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11311 } 11312 11313 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11314 { 11315 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11316 } 11317 11318 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11319 { 11320 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11321 insn->imm == special_kfunc_list[KF_bpf_throw]; 11322 } 11323 11324 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11325 { 11326 return is_bpf_rbtree_api_kfunc(btf_id); 11327 } 11328 11329 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11330 enum btf_field_type head_field_type, 11331 u32 kfunc_btf_id) 11332 { 11333 bool ret; 11334 11335 switch (head_field_type) { 11336 case BPF_LIST_HEAD: 11337 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11338 break; 11339 case BPF_RB_ROOT: 11340 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11341 break; 11342 default: 11343 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11344 btf_field_type_name(head_field_type)); 11345 return false; 11346 } 11347 11348 if (!ret) 11349 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11350 btf_field_type_name(head_field_type)); 11351 return ret; 11352 } 11353 11354 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11355 enum btf_field_type node_field_type, 11356 u32 kfunc_btf_id) 11357 { 11358 bool ret; 11359 11360 switch (node_field_type) { 11361 case BPF_LIST_NODE: 11362 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11363 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11364 break; 11365 case BPF_RB_NODE: 11366 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11367 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11368 break; 11369 default: 11370 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11371 btf_field_type_name(node_field_type)); 11372 return false; 11373 } 11374 11375 if (!ret) 11376 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11377 btf_field_type_name(node_field_type)); 11378 return ret; 11379 } 11380 11381 static int 11382 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11383 struct bpf_reg_state *reg, u32 regno, 11384 struct bpf_kfunc_call_arg_meta *meta, 11385 enum btf_field_type head_field_type, 11386 struct btf_field **head_field) 11387 { 11388 const char *head_type_name; 11389 struct btf_field *field; 11390 struct btf_record *rec; 11391 u32 head_off; 11392 11393 if (meta->btf != btf_vmlinux) { 11394 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11395 return -EFAULT; 11396 } 11397 11398 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11399 return -EFAULT; 11400 11401 head_type_name = btf_field_type_name(head_field_type); 11402 if (!tnum_is_const(reg->var_off)) { 11403 verbose(env, 11404 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11405 regno, head_type_name); 11406 return -EINVAL; 11407 } 11408 11409 rec = reg_btf_record(reg); 11410 head_off = reg->off + reg->var_off.value; 11411 field = btf_record_find(rec, head_off, head_field_type); 11412 if (!field) { 11413 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11414 return -EINVAL; 11415 } 11416 11417 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11418 if (check_reg_allocation_locked(env, reg)) { 11419 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11420 rec->spin_lock_off, head_type_name); 11421 return -EINVAL; 11422 } 11423 11424 if (*head_field) { 11425 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11426 return -EFAULT; 11427 } 11428 *head_field = field; 11429 return 0; 11430 } 11431 11432 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11433 struct bpf_reg_state *reg, u32 regno, 11434 struct bpf_kfunc_call_arg_meta *meta) 11435 { 11436 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11437 &meta->arg_list_head.field); 11438 } 11439 11440 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11441 struct bpf_reg_state *reg, u32 regno, 11442 struct bpf_kfunc_call_arg_meta *meta) 11443 { 11444 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11445 &meta->arg_rbtree_root.field); 11446 } 11447 11448 static int 11449 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11450 struct bpf_reg_state *reg, u32 regno, 11451 struct bpf_kfunc_call_arg_meta *meta, 11452 enum btf_field_type head_field_type, 11453 enum btf_field_type node_field_type, 11454 struct btf_field **node_field) 11455 { 11456 const char *node_type_name; 11457 const struct btf_type *et, *t; 11458 struct btf_field *field; 11459 u32 node_off; 11460 11461 if (meta->btf != btf_vmlinux) { 11462 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11463 return -EFAULT; 11464 } 11465 11466 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11467 return -EFAULT; 11468 11469 node_type_name = btf_field_type_name(node_field_type); 11470 if (!tnum_is_const(reg->var_off)) { 11471 verbose(env, 11472 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11473 regno, node_type_name); 11474 return -EINVAL; 11475 } 11476 11477 node_off = reg->off + reg->var_off.value; 11478 field = reg_find_field_offset(reg, node_off, node_field_type); 11479 if (!field || field->offset != node_off) { 11480 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11481 return -EINVAL; 11482 } 11483 11484 field = *node_field; 11485 11486 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11487 t = btf_type_by_id(reg->btf, reg->btf_id); 11488 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11489 field->graph_root.value_btf_id, true)) { 11490 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11491 "in struct %s, but arg is at offset=%d in struct %s\n", 11492 btf_field_type_name(head_field_type), 11493 btf_field_type_name(node_field_type), 11494 field->graph_root.node_offset, 11495 btf_name_by_offset(field->graph_root.btf, et->name_off), 11496 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11497 return -EINVAL; 11498 } 11499 meta->arg_btf = reg->btf; 11500 meta->arg_btf_id = reg->btf_id; 11501 11502 if (node_off != field->graph_root.node_offset) { 11503 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11504 node_off, btf_field_type_name(node_field_type), 11505 field->graph_root.node_offset, 11506 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11507 return -EINVAL; 11508 } 11509 11510 return 0; 11511 } 11512 11513 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11514 struct bpf_reg_state *reg, u32 regno, 11515 struct bpf_kfunc_call_arg_meta *meta) 11516 { 11517 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11518 BPF_LIST_HEAD, BPF_LIST_NODE, 11519 &meta->arg_list_head.field); 11520 } 11521 11522 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11523 struct bpf_reg_state *reg, u32 regno, 11524 struct bpf_kfunc_call_arg_meta *meta) 11525 { 11526 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11527 BPF_RB_ROOT, BPF_RB_NODE, 11528 &meta->arg_rbtree_root.field); 11529 } 11530 11531 /* 11532 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11533 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11534 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11535 * them can only be attached to some specific hook points. 11536 */ 11537 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11538 { 11539 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11540 11541 switch (prog_type) { 11542 case BPF_PROG_TYPE_LSM: 11543 return true; 11544 case BPF_PROG_TYPE_TRACING: 11545 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11546 return true; 11547 fallthrough; 11548 default: 11549 return env->prog->aux->sleepable; 11550 } 11551 } 11552 11553 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11554 int insn_idx) 11555 { 11556 const char *func_name = meta->func_name, *ref_tname; 11557 const struct btf *btf = meta->btf; 11558 const struct btf_param *args; 11559 struct btf_record *rec; 11560 u32 i, nargs; 11561 int ret; 11562 11563 args = (const struct btf_param *)(meta->func_proto + 1); 11564 nargs = btf_type_vlen(meta->func_proto); 11565 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11566 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11567 MAX_BPF_FUNC_REG_ARGS); 11568 return -EINVAL; 11569 } 11570 11571 /* Check that BTF function arguments match actual types that the 11572 * verifier sees. 11573 */ 11574 for (i = 0; i < nargs; i++) { 11575 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11576 const struct btf_type *t, *ref_t, *resolve_ret; 11577 enum bpf_arg_type arg_type = ARG_DONTCARE; 11578 u32 regno = i + 1, ref_id, type_size; 11579 bool is_ret_buf_sz = false; 11580 int kf_arg_type; 11581 11582 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11583 11584 if (is_kfunc_arg_ignore(btf, &args[i])) 11585 continue; 11586 11587 if (btf_type_is_scalar(t)) { 11588 if (reg->type != SCALAR_VALUE) { 11589 verbose(env, "R%d is not a scalar\n", regno); 11590 return -EINVAL; 11591 } 11592 11593 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11594 if (meta->arg_constant.found) { 11595 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11596 return -EFAULT; 11597 } 11598 if (!tnum_is_const(reg->var_off)) { 11599 verbose(env, "R%d must be a known constant\n", regno); 11600 return -EINVAL; 11601 } 11602 ret = mark_chain_precision(env, regno); 11603 if (ret < 0) 11604 return ret; 11605 meta->arg_constant.found = true; 11606 meta->arg_constant.value = reg->var_off.value; 11607 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11608 meta->r0_rdonly = true; 11609 is_ret_buf_sz = true; 11610 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11611 is_ret_buf_sz = true; 11612 } 11613 11614 if (is_ret_buf_sz) { 11615 if (meta->r0_size) { 11616 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11617 return -EINVAL; 11618 } 11619 11620 if (!tnum_is_const(reg->var_off)) { 11621 verbose(env, "R%d is not a const\n", regno); 11622 return -EINVAL; 11623 } 11624 11625 meta->r0_size = reg->var_off.value; 11626 ret = mark_chain_precision(env, regno); 11627 if (ret) 11628 return ret; 11629 } 11630 continue; 11631 } 11632 11633 if (!btf_type_is_ptr(t)) { 11634 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11635 return -EINVAL; 11636 } 11637 11638 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11639 (register_is_null(reg) || type_may_be_null(reg->type)) && 11640 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11641 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11642 return -EACCES; 11643 } 11644 11645 if (reg->ref_obj_id) { 11646 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11647 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11648 regno, reg->ref_obj_id, 11649 meta->ref_obj_id); 11650 return -EFAULT; 11651 } 11652 meta->ref_obj_id = reg->ref_obj_id; 11653 if (is_kfunc_release(meta)) 11654 meta->release_regno = regno; 11655 } 11656 11657 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11658 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11659 11660 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11661 if (kf_arg_type < 0) 11662 return kf_arg_type; 11663 11664 switch (kf_arg_type) { 11665 case KF_ARG_PTR_TO_NULL: 11666 continue; 11667 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11668 case KF_ARG_PTR_TO_BTF_ID: 11669 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11670 break; 11671 11672 if (!is_trusted_reg(reg)) { 11673 if (!is_kfunc_rcu(meta)) { 11674 verbose(env, "R%d must be referenced or trusted\n", regno); 11675 return -EINVAL; 11676 } 11677 if (!is_rcu_reg(reg)) { 11678 verbose(env, "R%d must be a rcu pointer\n", regno); 11679 return -EINVAL; 11680 } 11681 } 11682 11683 fallthrough; 11684 case KF_ARG_PTR_TO_CTX: 11685 /* Trusted arguments have the same offset checks as release arguments */ 11686 arg_type |= OBJ_RELEASE; 11687 break; 11688 case KF_ARG_PTR_TO_DYNPTR: 11689 case KF_ARG_PTR_TO_ITER: 11690 case KF_ARG_PTR_TO_LIST_HEAD: 11691 case KF_ARG_PTR_TO_LIST_NODE: 11692 case KF_ARG_PTR_TO_RB_ROOT: 11693 case KF_ARG_PTR_TO_RB_NODE: 11694 case KF_ARG_PTR_TO_MEM: 11695 case KF_ARG_PTR_TO_MEM_SIZE: 11696 case KF_ARG_PTR_TO_CALLBACK: 11697 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11698 /* Trusted by default */ 11699 break; 11700 default: 11701 WARN_ON_ONCE(1); 11702 return -EFAULT; 11703 } 11704 11705 if (is_kfunc_release(meta) && reg->ref_obj_id) 11706 arg_type |= OBJ_RELEASE; 11707 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11708 if (ret < 0) 11709 return ret; 11710 11711 switch (kf_arg_type) { 11712 case KF_ARG_PTR_TO_CTX: 11713 if (reg->type != PTR_TO_CTX) { 11714 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11715 return -EINVAL; 11716 } 11717 11718 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11719 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11720 if (ret < 0) 11721 return -EINVAL; 11722 meta->ret_btf_id = ret; 11723 } 11724 break; 11725 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11726 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11727 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11728 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11729 return -EINVAL; 11730 } 11731 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11732 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11733 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11734 return -EINVAL; 11735 } 11736 } else { 11737 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11738 return -EINVAL; 11739 } 11740 if (!reg->ref_obj_id) { 11741 verbose(env, "allocated object must be referenced\n"); 11742 return -EINVAL; 11743 } 11744 if (meta->btf == btf_vmlinux) { 11745 meta->arg_btf = reg->btf; 11746 meta->arg_btf_id = reg->btf_id; 11747 } 11748 break; 11749 case KF_ARG_PTR_TO_DYNPTR: 11750 { 11751 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11752 int clone_ref_obj_id = 0; 11753 11754 if (reg->type != PTR_TO_STACK && 11755 reg->type != CONST_PTR_TO_DYNPTR) { 11756 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11757 return -EINVAL; 11758 } 11759 11760 if (reg->type == CONST_PTR_TO_DYNPTR) 11761 dynptr_arg_type |= MEM_RDONLY; 11762 11763 if (is_kfunc_arg_uninit(btf, &args[i])) 11764 dynptr_arg_type |= MEM_UNINIT; 11765 11766 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11767 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11768 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11769 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11770 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11771 (dynptr_arg_type & MEM_UNINIT)) { 11772 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11773 11774 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11775 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11776 return -EFAULT; 11777 } 11778 11779 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11780 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11781 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11782 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11783 return -EFAULT; 11784 } 11785 } 11786 11787 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11788 if (ret < 0) 11789 return ret; 11790 11791 if (!(dynptr_arg_type & MEM_UNINIT)) { 11792 int id = dynptr_id(env, reg); 11793 11794 if (id < 0) { 11795 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11796 return id; 11797 } 11798 meta->initialized_dynptr.id = id; 11799 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11800 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11801 } 11802 11803 break; 11804 } 11805 case KF_ARG_PTR_TO_ITER: 11806 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 11807 if (!check_css_task_iter_allowlist(env)) { 11808 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 11809 return -EINVAL; 11810 } 11811 } 11812 ret = process_iter_arg(env, regno, insn_idx, meta); 11813 if (ret < 0) 11814 return ret; 11815 break; 11816 case KF_ARG_PTR_TO_LIST_HEAD: 11817 if (reg->type != PTR_TO_MAP_VALUE && 11818 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11819 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11820 return -EINVAL; 11821 } 11822 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11823 verbose(env, "allocated object must be referenced\n"); 11824 return -EINVAL; 11825 } 11826 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11827 if (ret < 0) 11828 return ret; 11829 break; 11830 case KF_ARG_PTR_TO_RB_ROOT: 11831 if (reg->type != PTR_TO_MAP_VALUE && 11832 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11833 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11834 return -EINVAL; 11835 } 11836 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11837 verbose(env, "allocated object must be referenced\n"); 11838 return -EINVAL; 11839 } 11840 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11841 if (ret < 0) 11842 return ret; 11843 break; 11844 case KF_ARG_PTR_TO_LIST_NODE: 11845 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11846 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11847 return -EINVAL; 11848 } 11849 if (!reg->ref_obj_id) { 11850 verbose(env, "allocated object must be referenced\n"); 11851 return -EINVAL; 11852 } 11853 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11854 if (ret < 0) 11855 return ret; 11856 break; 11857 case KF_ARG_PTR_TO_RB_NODE: 11858 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11859 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11860 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11861 return -EINVAL; 11862 } 11863 if (in_rbtree_lock_required_cb(env)) { 11864 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11865 return -EINVAL; 11866 } 11867 } else { 11868 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11869 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11870 return -EINVAL; 11871 } 11872 if (!reg->ref_obj_id) { 11873 verbose(env, "allocated object must be referenced\n"); 11874 return -EINVAL; 11875 } 11876 } 11877 11878 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11879 if (ret < 0) 11880 return ret; 11881 break; 11882 case KF_ARG_PTR_TO_BTF_ID: 11883 /* Only base_type is checked, further checks are done here */ 11884 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11885 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11886 !reg2btf_ids[base_type(reg->type)]) { 11887 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11888 verbose(env, "expected %s or socket\n", 11889 reg_type_str(env, base_type(reg->type) | 11890 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11891 return -EINVAL; 11892 } 11893 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11894 if (ret < 0) 11895 return ret; 11896 break; 11897 case KF_ARG_PTR_TO_MEM: 11898 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11899 if (IS_ERR(resolve_ret)) { 11900 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11901 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11902 return -EINVAL; 11903 } 11904 ret = check_mem_reg(env, reg, regno, type_size); 11905 if (ret < 0) 11906 return ret; 11907 break; 11908 case KF_ARG_PTR_TO_MEM_SIZE: 11909 { 11910 struct bpf_reg_state *buff_reg = ®s[regno]; 11911 const struct btf_param *buff_arg = &args[i]; 11912 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11913 const struct btf_param *size_arg = &args[i + 1]; 11914 11915 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11916 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11917 if (ret < 0) { 11918 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11919 return ret; 11920 } 11921 } 11922 11923 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11924 if (meta->arg_constant.found) { 11925 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11926 return -EFAULT; 11927 } 11928 if (!tnum_is_const(size_reg->var_off)) { 11929 verbose(env, "R%d must be a known constant\n", regno + 1); 11930 return -EINVAL; 11931 } 11932 meta->arg_constant.found = true; 11933 meta->arg_constant.value = size_reg->var_off.value; 11934 } 11935 11936 /* Skip next '__sz' or '__szk' argument */ 11937 i++; 11938 break; 11939 } 11940 case KF_ARG_PTR_TO_CALLBACK: 11941 if (reg->type != PTR_TO_FUNC) { 11942 verbose(env, "arg%d expected pointer to func\n", i); 11943 return -EINVAL; 11944 } 11945 meta->subprogno = reg->subprogno; 11946 break; 11947 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11948 if (!type_is_ptr_alloc_obj(reg->type)) { 11949 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11950 return -EINVAL; 11951 } 11952 if (!type_is_non_owning_ref(reg->type)) 11953 meta->arg_owning_ref = true; 11954 11955 rec = reg_btf_record(reg); 11956 if (!rec) { 11957 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11958 return -EFAULT; 11959 } 11960 11961 if (rec->refcount_off < 0) { 11962 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11963 return -EINVAL; 11964 } 11965 11966 meta->arg_btf = reg->btf; 11967 meta->arg_btf_id = reg->btf_id; 11968 break; 11969 } 11970 } 11971 11972 if (is_kfunc_release(meta) && !meta->release_regno) { 11973 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11974 func_name); 11975 return -EINVAL; 11976 } 11977 11978 return 0; 11979 } 11980 11981 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11982 struct bpf_insn *insn, 11983 struct bpf_kfunc_call_arg_meta *meta, 11984 const char **kfunc_name) 11985 { 11986 const struct btf_type *func, *func_proto; 11987 u32 func_id, *kfunc_flags; 11988 const char *func_name; 11989 struct btf *desc_btf; 11990 11991 if (kfunc_name) 11992 *kfunc_name = NULL; 11993 11994 if (!insn->imm) 11995 return -EINVAL; 11996 11997 desc_btf = find_kfunc_desc_btf(env, insn->off); 11998 if (IS_ERR(desc_btf)) 11999 return PTR_ERR(desc_btf); 12000 12001 func_id = insn->imm; 12002 func = btf_type_by_id(desc_btf, func_id); 12003 func_name = btf_name_by_offset(desc_btf, func->name_off); 12004 if (kfunc_name) 12005 *kfunc_name = func_name; 12006 func_proto = btf_type_by_id(desc_btf, func->type); 12007 12008 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12009 if (!kfunc_flags) { 12010 return -EACCES; 12011 } 12012 12013 memset(meta, 0, sizeof(*meta)); 12014 meta->btf = desc_btf; 12015 meta->func_id = func_id; 12016 meta->kfunc_flags = *kfunc_flags; 12017 meta->func_proto = func_proto; 12018 meta->func_name = func_name; 12019 12020 return 0; 12021 } 12022 12023 static int check_return_code(struct bpf_verifier_env *env, int regno); 12024 12025 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12026 int *insn_idx_p) 12027 { 12028 const struct btf_type *t, *ptr_type; 12029 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12030 struct bpf_reg_state *regs = cur_regs(env); 12031 const char *func_name, *ptr_type_name; 12032 bool sleepable, rcu_lock, rcu_unlock; 12033 struct bpf_kfunc_call_arg_meta meta; 12034 struct bpf_insn_aux_data *insn_aux; 12035 int err, insn_idx = *insn_idx_p; 12036 const struct btf_param *args; 12037 const struct btf_type *ret_t; 12038 struct btf *desc_btf; 12039 12040 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12041 if (!insn->imm) 12042 return 0; 12043 12044 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12045 if (err == -EACCES && func_name) 12046 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12047 if (err) 12048 return err; 12049 desc_btf = meta.btf; 12050 insn_aux = &env->insn_aux_data[insn_idx]; 12051 12052 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12053 12054 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12055 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12056 return -EACCES; 12057 } 12058 12059 sleepable = is_kfunc_sleepable(&meta); 12060 if (sleepable && !env->prog->aux->sleepable) { 12061 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12062 return -EACCES; 12063 } 12064 12065 /* Check the arguments */ 12066 err = check_kfunc_args(env, &meta, insn_idx); 12067 if (err < 0) 12068 return err; 12069 12070 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12071 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12072 set_rbtree_add_callback_state); 12073 if (err) { 12074 verbose(env, "kfunc %s#%d failed callback verification\n", 12075 func_name, meta.func_id); 12076 return err; 12077 } 12078 } 12079 12080 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12081 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12082 12083 if (env->cur_state->active_rcu_lock) { 12084 struct bpf_func_state *state; 12085 struct bpf_reg_state *reg; 12086 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12087 12088 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12089 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12090 return -EACCES; 12091 } 12092 12093 if (rcu_lock) { 12094 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12095 return -EINVAL; 12096 } else if (rcu_unlock) { 12097 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12098 if (reg->type & MEM_RCU) { 12099 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12100 reg->type |= PTR_UNTRUSTED; 12101 } 12102 })); 12103 env->cur_state->active_rcu_lock = false; 12104 } else if (sleepable) { 12105 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12106 return -EACCES; 12107 } 12108 } else if (rcu_lock) { 12109 env->cur_state->active_rcu_lock = true; 12110 } else if (rcu_unlock) { 12111 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12112 return -EINVAL; 12113 } 12114 12115 /* In case of release function, we get register number of refcounted 12116 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12117 */ 12118 if (meta.release_regno) { 12119 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12120 if (err) { 12121 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12122 func_name, meta.func_id); 12123 return err; 12124 } 12125 } 12126 12127 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12128 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12129 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12130 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12131 insn_aux->insert_off = regs[BPF_REG_2].off; 12132 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12133 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12134 if (err) { 12135 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12136 func_name, meta.func_id); 12137 return err; 12138 } 12139 12140 err = release_reference(env, release_ref_obj_id); 12141 if (err) { 12142 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12143 func_name, meta.func_id); 12144 return err; 12145 } 12146 } 12147 12148 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12149 if (!bpf_jit_supports_exceptions()) { 12150 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12151 func_name, meta.func_id); 12152 return -ENOTSUPP; 12153 } 12154 env->seen_exception = true; 12155 12156 /* In the case of the default callback, the cookie value passed 12157 * to bpf_throw becomes the return value of the program. 12158 */ 12159 if (!env->exception_callback_subprog) { 12160 err = check_return_code(env, BPF_REG_1); 12161 if (err < 0) 12162 return err; 12163 } 12164 } 12165 12166 for (i = 0; i < CALLER_SAVED_REGS; i++) 12167 mark_reg_not_init(env, regs, caller_saved[i]); 12168 12169 /* Check return type */ 12170 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12171 12172 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12173 /* Only exception is bpf_obj_new_impl */ 12174 if (meta.btf != btf_vmlinux || 12175 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12176 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12177 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12178 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12179 return -EINVAL; 12180 } 12181 } 12182 12183 if (btf_type_is_scalar(t)) { 12184 mark_reg_unknown(env, regs, BPF_REG_0); 12185 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12186 } else if (btf_type_is_ptr(t)) { 12187 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12188 12189 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12190 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12191 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12192 struct btf_struct_meta *struct_meta; 12193 struct btf *ret_btf; 12194 u32 ret_btf_id; 12195 12196 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12197 return -ENOMEM; 12198 12199 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12200 if (!bpf_global_percpu_ma_set) { 12201 mutex_lock(&bpf_percpu_ma_lock); 12202 if (!bpf_global_percpu_ma_set) { 12203 err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true); 12204 if (!err) 12205 bpf_global_percpu_ma_set = true; 12206 } 12207 mutex_unlock(&bpf_percpu_ma_lock); 12208 if (err) 12209 return err; 12210 } 12211 } 12212 12213 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12214 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12215 return -EINVAL; 12216 } 12217 12218 ret_btf = env->prog->aux->btf; 12219 ret_btf_id = meta.arg_constant.value; 12220 12221 /* This may be NULL due to user not supplying a BTF */ 12222 if (!ret_btf) { 12223 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12224 return -EINVAL; 12225 } 12226 12227 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12228 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12229 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12230 return -EINVAL; 12231 } 12232 12233 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12234 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12235 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12236 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12237 return -EINVAL; 12238 } 12239 12240 if (struct_meta) { 12241 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12242 return -EINVAL; 12243 } 12244 } 12245 12246 mark_reg_known_zero(env, regs, BPF_REG_0); 12247 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12248 regs[BPF_REG_0].btf = ret_btf; 12249 regs[BPF_REG_0].btf_id = ret_btf_id; 12250 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12251 regs[BPF_REG_0].type |= MEM_PERCPU; 12252 12253 insn_aux->obj_new_size = ret_t->size; 12254 insn_aux->kptr_struct_meta = struct_meta; 12255 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12256 mark_reg_known_zero(env, regs, BPF_REG_0); 12257 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12258 regs[BPF_REG_0].btf = meta.arg_btf; 12259 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12260 12261 insn_aux->kptr_struct_meta = 12262 btf_find_struct_meta(meta.arg_btf, 12263 meta.arg_btf_id); 12264 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12265 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12266 struct btf_field *field = meta.arg_list_head.field; 12267 12268 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12269 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12270 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12271 struct btf_field *field = meta.arg_rbtree_root.field; 12272 12273 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12274 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12275 mark_reg_known_zero(env, regs, BPF_REG_0); 12276 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12277 regs[BPF_REG_0].btf = desc_btf; 12278 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12279 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12280 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12281 if (!ret_t || !btf_type_is_struct(ret_t)) { 12282 verbose(env, 12283 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12284 return -EINVAL; 12285 } 12286 12287 mark_reg_known_zero(env, regs, BPF_REG_0); 12288 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12289 regs[BPF_REG_0].btf = desc_btf; 12290 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12291 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12292 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12293 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12294 12295 mark_reg_known_zero(env, regs, BPF_REG_0); 12296 12297 if (!meta.arg_constant.found) { 12298 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12299 return -EFAULT; 12300 } 12301 12302 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12303 12304 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12305 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12306 12307 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12308 regs[BPF_REG_0].type |= MEM_RDONLY; 12309 } else { 12310 /* this will set env->seen_direct_write to true */ 12311 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12312 verbose(env, "the prog does not allow writes to packet data\n"); 12313 return -EINVAL; 12314 } 12315 } 12316 12317 if (!meta.initialized_dynptr.id) { 12318 verbose(env, "verifier internal error: no dynptr id\n"); 12319 return -EFAULT; 12320 } 12321 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12322 12323 /* we don't need to set BPF_REG_0's ref obj id 12324 * because packet slices are not refcounted (see 12325 * dynptr_type_refcounted) 12326 */ 12327 } else { 12328 verbose(env, "kernel function %s unhandled dynamic return type\n", 12329 meta.func_name); 12330 return -EFAULT; 12331 } 12332 } else if (!__btf_type_is_struct(ptr_type)) { 12333 if (!meta.r0_size) { 12334 __u32 sz; 12335 12336 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12337 meta.r0_size = sz; 12338 meta.r0_rdonly = true; 12339 } 12340 } 12341 if (!meta.r0_size) { 12342 ptr_type_name = btf_name_by_offset(desc_btf, 12343 ptr_type->name_off); 12344 verbose(env, 12345 "kernel function %s returns pointer type %s %s is not supported\n", 12346 func_name, 12347 btf_type_str(ptr_type), 12348 ptr_type_name); 12349 return -EINVAL; 12350 } 12351 12352 mark_reg_known_zero(env, regs, BPF_REG_0); 12353 regs[BPF_REG_0].type = PTR_TO_MEM; 12354 regs[BPF_REG_0].mem_size = meta.r0_size; 12355 12356 if (meta.r0_rdonly) 12357 regs[BPF_REG_0].type |= MEM_RDONLY; 12358 12359 /* Ensures we don't access the memory after a release_reference() */ 12360 if (meta.ref_obj_id) 12361 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12362 } else { 12363 mark_reg_known_zero(env, regs, BPF_REG_0); 12364 regs[BPF_REG_0].btf = desc_btf; 12365 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12366 regs[BPF_REG_0].btf_id = ptr_type_id; 12367 } 12368 12369 if (is_kfunc_ret_null(&meta)) { 12370 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12371 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12372 regs[BPF_REG_0].id = ++env->id_gen; 12373 } 12374 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12375 if (is_kfunc_acquire(&meta)) { 12376 int id = acquire_reference_state(env, insn_idx); 12377 12378 if (id < 0) 12379 return id; 12380 if (is_kfunc_ret_null(&meta)) 12381 regs[BPF_REG_0].id = id; 12382 regs[BPF_REG_0].ref_obj_id = id; 12383 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12384 ref_set_non_owning(env, ®s[BPF_REG_0]); 12385 } 12386 12387 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12388 regs[BPF_REG_0].id = ++env->id_gen; 12389 } else if (btf_type_is_void(t)) { 12390 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12391 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12392 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12393 insn_aux->kptr_struct_meta = 12394 btf_find_struct_meta(meta.arg_btf, 12395 meta.arg_btf_id); 12396 } 12397 } 12398 } 12399 12400 nargs = btf_type_vlen(meta.func_proto); 12401 args = (const struct btf_param *)(meta.func_proto + 1); 12402 for (i = 0; i < nargs; i++) { 12403 u32 regno = i + 1; 12404 12405 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12406 if (btf_type_is_ptr(t)) 12407 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12408 else 12409 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12410 mark_btf_func_reg_size(env, regno, t->size); 12411 } 12412 12413 if (is_iter_next_kfunc(&meta)) { 12414 err = process_iter_next_call(env, insn_idx, &meta); 12415 if (err) 12416 return err; 12417 } 12418 12419 return 0; 12420 } 12421 12422 static bool signed_add_overflows(s64 a, s64 b) 12423 { 12424 /* Do the add in u64, where overflow is well-defined */ 12425 s64 res = (s64)((u64)a + (u64)b); 12426 12427 if (b < 0) 12428 return res > a; 12429 return res < a; 12430 } 12431 12432 static bool signed_add32_overflows(s32 a, s32 b) 12433 { 12434 /* Do the add in u32, where overflow is well-defined */ 12435 s32 res = (s32)((u32)a + (u32)b); 12436 12437 if (b < 0) 12438 return res > a; 12439 return res < a; 12440 } 12441 12442 static bool signed_sub_overflows(s64 a, s64 b) 12443 { 12444 /* Do the sub in u64, where overflow is well-defined */ 12445 s64 res = (s64)((u64)a - (u64)b); 12446 12447 if (b < 0) 12448 return res < a; 12449 return res > a; 12450 } 12451 12452 static bool signed_sub32_overflows(s32 a, s32 b) 12453 { 12454 /* Do the sub in u32, where overflow is well-defined */ 12455 s32 res = (s32)((u32)a - (u32)b); 12456 12457 if (b < 0) 12458 return res < a; 12459 return res > a; 12460 } 12461 12462 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12463 const struct bpf_reg_state *reg, 12464 enum bpf_reg_type type) 12465 { 12466 bool known = tnum_is_const(reg->var_off); 12467 s64 val = reg->var_off.value; 12468 s64 smin = reg->smin_value; 12469 12470 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12471 verbose(env, "math between %s pointer and %lld is not allowed\n", 12472 reg_type_str(env, type), val); 12473 return false; 12474 } 12475 12476 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12477 verbose(env, "%s pointer offset %d is not allowed\n", 12478 reg_type_str(env, type), reg->off); 12479 return false; 12480 } 12481 12482 if (smin == S64_MIN) { 12483 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12484 reg_type_str(env, type)); 12485 return false; 12486 } 12487 12488 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12489 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12490 smin, reg_type_str(env, type)); 12491 return false; 12492 } 12493 12494 return true; 12495 } 12496 12497 enum { 12498 REASON_BOUNDS = -1, 12499 REASON_TYPE = -2, 12500 REASON_PATHS = -3, 12501 REASON_LIMIT = -4, 12502 REASON_STACK = -5, 12503 }; 12504 12505 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12506 u32 *alu_limit, bool mask_to_left) 12507 { 12508 u32 max = 0, ptr_limit = 0; 12509 12510 switch (ptr_reg->type) { 12511 case PTR_TO_STACK: 12512 /* Offset 0 is out-of-bounds, but acceptable start for the 12513 * left direction, see BPF_REG_FP. Also, unknown scalar 12514 * offset where we would need to deal with min/max bounds is 12515 * currently prohibited for unprivileged. 12516 */ 12517 max = MAX_BPF_STACK + mask_to_left; 12518 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12519 break; 12520 case PTR_TO_MAP_VALUE: 12521 max = ptr_reg->map_ptr->value_size; 12522 ptr_limit = (mask_to_left ? 12523 ptr_reg->smin_value : 12524 ptr_reg->umax_value) + ptr_reg->off; 12525 break; 12526 default: 12527 return REASON_TYPE; 12528 } 12529 12530 if (ptr_limit >= max) 12531 return REASON_LIMIT; 12532 *alu_limit = ptr_limit; 12533 return 0; 12534 } 12535 12536 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12537 const struct bpf_insn *insn) 12538 { 12539 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12540 } 12541 12542 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12543 u32 alu_state, u32 alu_limit) 12544 { 12545 /* If we arrived here from different branches with different 12546 * state or limits to sanitize, then this won't work. 12547 */ 12548 if (aux->alu_state && 12549 (aux->alu_state != alu_state || 12550 aux->alu_limit != alu_limit)) 12551 return REASON_PATHS; 12552 12553 /* Corresponding fixup done in do_misc_fixups(). */ 12554 aux->alu_state = alu_state; 12555 aux->alu_limit = alu_limit; 12556 return 0; 12557 } 12558 12559 static int sanitize_val_alu(struct bpf_verifier_env *env, 12560 struct bpf_insn *insn) 12561 { 12562 struct bpf_insn_aux_data *aux = cur_aux(env); 12563 12564 if (can_skip_alu_sanitation(env, insn)) 12565 return 0; 12566 12567 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12568 } 12569 12570 static bool sanitize_needed(u8 opcode) 12571 { 12572 return opcode == BPF_ADD || opcode == BPF_SUB; 12573 } 12574 12575 struct bpf_sanitize_info { 12576 struct bpf_insn_aux_data aux; 12577 bool mask_to_left; 12578 }; 12579 12580 static struct bpf_verifier_state * 12581 sanitize_speculative_path(struct bpf_verifier_env *env, 12582 const struct bpf_insn *insn, 12583 u32 next_idx, u32 curr_idx) 12584 { 12585 struct bpf_verifier_state *branch; 12586 struct bpf_reg_state *regs; 12587 12588 branch = push_stack(env, next_idx, curr_idx, true); 12589 if (branch && insn) { 12590 regs = branch->frame[branch->curframe]->regs; 12591 if (BPF_SRC(insn->code) == BPF_K) { 12592 mark_reg_unknown(env, regs, insn->dst_reg); 12593 } else if (BPF_SRC(insn->code) == BPF_X) { 12594 mark_reg_unknown(env, regs, insn->dst_reg); 12595 mark_reg_unknown(env, regs, insn->src_reg); 12596 } 12597 } 12598 return branch; 12599 } 12600 12601 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12602 struct bpf_insn *insn, 12603 const struct bpf_reg_state *ptr_reg, 12604 const struct bpf_reg_state *off_reg, 12605 struct bpf_reg_state *dst_reg, 12606 struct bpf_sanitize_info *info, 12607 const bool commit_window) 12608 { 12609 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12610 struct bpf_verifier_state *vstate = env->cur_state; 12611 bool off_is_imm = tnum_is_const(off_reg->var_off); 12612 bool off_is_neg = off_reg->smin_value < 0; 12613 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12614 u8 opcode = BPF_OP(insn->code); 12615 u32 alu_state, alu_limit; 12616 struct bpf_reg_state tmp; 12617 bool ret; 12618 int err; 12619 12620 if (can_skip_alu_sanitation(env, insn)) 12621 return 0; 12622 12623 /* We already marked aux for masking from non-speculative 12624 * paths, thus we got here in the first place. We only care 12625 * to explore bad access from here. 12626 */ 12627 if (vstate->speculative) 12628 goto do_sim; 12629 12630 if (!commit_window) { 12631 if (!tnum_is_const(off_reg->var_off) && 12632 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12633 return REASON_BOUNDS; 12634 12635 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12636 (opcode == BPF_SUB && !off_is_neg); 12637 } 12638 12639 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12640 if (err < 0) 12641 return err; 12642 12643 if (commit_window) { 12644 /* In commit phase we narrow the masking window based on 12645 * the observed pointer move after the simulated operation. 12646 */ 12647 alu_state = info->aux.alu_state; 12648 alu_limit = abs(info->aux.alu_limit - alu_limit); 12649 } else { 12650 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12651 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12652 alu_state |= ptr_is_dst_reg ? 12653 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12654 12655 /* Limit pruning on unknown scalars to enable deep search for 12656 * potential masking differences from other program paths. 12657 */ 12658 if (!off_is_imm) 12659 env->explore_alu_limits = true; 12660 } 12661 12662 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12663 if (err < 0) 12664 return err; 12665 do_sim: 12666 /* If we're in commit phase, we're done here given we already 12667 * pushed the truncated dst_reg into the speculative verification 12668 * stack. 12669 * 12670 * Also, when register is a known constant, we rewrite register-based 12671 * operation to immediate-based, and thus do not need masking (and as 12672 * a consequence, do not need to simulate the zero-truncation either). 12673 */ 12674 if (commit_window || off_is_imm) 12675 return 0; 12676 12677 /* Simulate and find potential out-of-bounds access under 12678 * speculative execution from truncation as a result of 12679 * masking when off was not within expected range. If off 12680 * sits in dst, then we temporarily need to move ptr there 12681 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12682 * for cases where we use K-based arithmetic in one direction 12683 * and truncated reg-based in the other in order to explore 12684 * bad access. 12685 */ 12686 if (!ptr_is_dst_reg) { 12687 tmp = *dst_reg; 12688 copy_register_state(dst_reg, ptr_reg); 12689 } 12690 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12691 env->insn_idx); 12692 if (!ptr_is_dst_reg && ret) 12693 *dst_reg = tmp; 12694 return !ret ? REASON_STACK : 0; 12695 } 12696 12697 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12698 { 12699 struct bpf_verifier_state *vstate = env->cur_state; 12700 12701 /* If we simulate paths under speculation, we don't update the 12702 * insn as 'seen' such that when we verify unreachable paths in 12703 * the non-speculative domain, sanitize_dead_code() can still 12704 * rewrite/sanitize them. 12705 */ 12706 if (!vstate->speculative) 12707 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12708 } 12709 12710 static int sanitize_err(struct bpf_verifier_env *env, 12711 const struct bpf_insn *insn, int reason, 12712 const struct bpf_reg_state *off_reg, 12713 const struct bpf_reg_state *dst_reg) 12714 { 12715 static const char *err = "pointer arithmetic with it prohibited for !root"; 12716 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12717 u32 dst = insn->dst_reg, src = insn->src_reg; 12718 12719 switch (reason) { 12720 case REASON_BOUNDS: 12721 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12722 off_reg == dst_reg ? dst : src, err); 12723 break; 12724 case REASON_TYPE: 12725 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12726 off_reg == dst_reg ? src : dst, err); 12727 break; 12728 case REASON_PATHS: 12729 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12730 dst, op, err); 12731 break; 12732 case REASON_LIMIT: 12733 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12734 dst, op, err); 12735 break; 12736 case REASON_STACK: 12737 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12738 dst, err); 12739 break; 12740 default: 12741 verbose(env, "verifier internal error: unknown reason (%d)\n", 12742 reason); 12743 break; 12744 } 12745 12746 return -EACCES; 12747 } 12748 12749 /* check that stack access falls within stack limits and that 'reg' doesn't 12750 * have a variable offset. 12751 * 12752 * Variable offset is prohibited for unprivileged mode for simplicity since it 12753 * requires corresponding support in Spectre masking for stack ALU. See also 12754 * retrieve_ptr_limit(). 12755 * 12756 * 12757 * 'off' includes 'reg->off'. 12758 */ 12759 static int check_stack_access_for_ptr_arithmetic( 12760 struct bpf_verifier_env *env, 12761 int regno, 12762 const struct bpf_reg_state *reg, 12763 int off) 12764 { 12765 if (!tnum_is_const(reg->var_off)) { 12766 char tn_buf[48]; 12767 12768 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12769 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12770 regno, tn_buf, off); 12771 return -EACCES; 12772 } 12773 12774 if (off >= 0 || off < -MAX_BPF_STACK) { 12775 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12776 "prohibited for !root; off=%d\n", regno, off); 12777 return -EACCES; 12778 } 12779 12780 return 0; 12781 } 12782 12783 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12784 const struct bpf_insn *insn, 12785 const struct bpf_reg_state *dst_reg) 12786 { 12787 u32 dst = insn->dst_reg; 12788 12789 /* For unprivileged we require that resulting offset must be in bounds 12790 * in order to be able to sanitize access later on. 12791 */ 12792 if (env->bypass_spec_v1) 12793 return 0; 12794 12795 switch (dst_reg->type) { 12796 case PTR_TO_STACK: 12797 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12798 dst_reg->off + dst_reg->var_off.value)) 12799 return -EACCES; 12800 break; 12801 case PTR_TO_MAP_VALUE: 12802 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12803 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12804 "prohibited for !root\n", dst); 12805 return -EACCES; 12806 } 12807 break; 12808 default: 12809 break; 12810 } 12811 12812 return 0; 12813 } 12814 12815 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12816 * Caller should also handle BPF_MOV case separately. 12817 * If we return -EACCES, caller may want to try again treating pointer as a 12818 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12819 */ 12820 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12821 struct bpf_insn *insn, 12822 const struct bpf_reg_state *ptr_reg, 12823 const struct bpf_reg_state *off_reg) 12824 { 12825 struct bpf_verifier_state *vstate = env->cur_state; 12826 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12827 struct bpf_reg_state *regs = state->regs, *dst_reg; 12828 bool known = tnum_is_const(off_reg->var_off); 12829 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12830 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12831 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12832 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12833 struct bpf_sanitize_info info = {}; 12834 u8 opcode = BPF_OP(insn->code); 12835 u32 dst = insn->dst_reg; 12836 int ret; 12837 12838 dst_reg = ®s[dst]; 12839 12840 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12841 smin_val > smax_val || umin_val > umax_val) { 12842 /* Taint dst register if offset had invalid bounds derived from 12843 * e.g. dead branches. 12844 */ 12845 __mark_reg_unknown(env, dst_reg); 12846 return 0; 12847 } 12848 12849 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12850 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12851 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12852 __mark_reg_unknown(env, dst_reg); 12853 return 0; 12854 } 12855 12856 verbose(env, 12857 "R%d 32-bit pointer arithmetic prohibited\n", 12858 dst); 12859 return -EACCES; 12860 } 12861 12862 if (ptr_reg->type & PTR_MAYBE_NULL) { 12863 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12864 dst, reg_type_str(env, ptr_reg->type)); 12865 return -EACCES; 12866 } 12867 12868 switch (base_type(ptr_reg->type)) { 12869 case CONST_PTR_TO_MAP: 12870 /* smin_val represents the known value */ 12871 if (known && smin_val == 0 && opcode == BPF_ADD) 12872 break; 12873 fallthrough; 12874 case PTR_TO_PACKET_END: 12875 case PTR_TO_SOCKET: 12876 case PTR_TO_SOCK_COMMON: 12877 case PTR_TO_TCP_SOCK: 12878 case PTR_TO_XDP_SOCK: 12879 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12880 dst, reg_type_str(env, ptr_reg->type)); 12881 return -EACCES; 12882 default: 12883 break; 12884 } 12885 12886 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12887 * The id may be overwritten later if we create a new variable offset. 12888 */ 12889 dst_reg->type = ptr_reg->type; 12890 dst_reg->id = ptr_reg->id; 12891 12892 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12893 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12894 return -EINVAL; 12895 12896 /* pointer types do not carry 32-bit bounds at the moment. */ 12897 __mark_reg32_unbounded(dst_reg); 12898 12899 if (sanitize_needed(opcode)) { 12900 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12901 &info, false); 12902 if (ret < 0) 12903 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12904 } 12905 12906 switch (opcode) { 12907 case BPF_ADD: 12908 /* We can take a fixed offset as long as it doesn't overflow 12909 * the s32 'off' field 12910 */ 12911 if (known && (ptr_reg->off + smin_val == 12912 (s64)(s32)(ptr_reg->off + smin_val))) { 12913 /* pointer += K. Accumulate it into fixed offset */ 12914 dst_reg->smin_value = smin_ptr; 12915 dst_reg->smax_value = smax_ptr; 12916 dst_reg->umin_value = umin_ptr; 12917 dst_reg->umax_value = umax_ptr; 12918 dst_reg->var_off = ptr_reg->var_off; 12919 dst_reg->off = ptr_reg->off + smin_val; 12920 dst_reg->raw = ptr_reg->raw; 12921 break; 12922 } 12923 /* A new variable offset is created. Note that off_reg->off 12924 * == 0, since it's a scalar. 12925 * dst_reg gets the pointer type and since some positive 12926 * integer value was added to the pointer, give it a new 'id' 12927 * if it's a PTR_TO_PACKET. 12928 * this creates a new 'base' pointer, off_reg (variable) gets 12929 * added into the variable offset, and we copy the fixed offset 12930 * from ptr_reg. 12931 */ 12932 if (signed_add_overflows(smin_ptr, smin_val) || 12933 signed_add_overflows(smax_ptr, smax_val)) { 12934 dst_reg->smin_value = S64_MIN; 12935 dst_reg->smax_value = S64_MAX; 12936 } else { 12937 dst_reg->smin_value = smin_ptr + smin_val; 12938 dst_reg->smax_value = smax_ptr + smax_val; 12939 } 12940 if (umin_ptr + umin_val < umin_ptr || 12941 umax_ptr + umax_val < umax_ptr) { 12942 dst_reg->umin_value = 0; 12943 dst_reg->umax_value = U64_MAX; 12944 } else { 12945 dst_reg->umin_value = umin_ptr + umin_val; 12946 dst_reg->umax_value = umax_ptr + umax_val; 12947 } 12948 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12949 dst_reg->off = ptr_reg->off; 12950 dst_reg->raw = ptr_reg->raw; 12951 if (reg_is_pkt_pointer(ptr_reg)) { 12952 dst_reg->id = ++env->id_gen; 12953 /* something was added to pkt_ptr, set range to zero */ 12954 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12955 } 12956 break; 12957 case BPF_SUB: 12958 if (dst_reg == off_reg) { 12959 /* scalar -= pointer. Creates an unknown scalar */ 12960 verbose(env, "R%d tried to subtract pointer from scalar\n", 12961 dst); 12962 return -EACCES; 12963 } 12964 /* We don't allow subtraction from FP, because (according to 12965 * test_verifier.c test "invalid fp arithmetic", JITs might not 12966 * be able to deal with it. 12967 */ 12968 if (ptr_reg->type == PTR_TO_STACK) { 12969 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12970 dst); 12971 return -EACCES; 12972 } 12973 if (known && (ptr_reg->off - smin_val == 12974 (s64)(s32)(ptr_reg->off - smin_val))) { 12975 /* pointer -= K. Subtract it from fixed offset */ 12976 dst_reg->smin_value = smin_ptr; 12977 dst_reg->smax_value = smax_ptr; 12978 dst_reg->umin_value = umin_ptr; 12979 dst_reg->umax_value = umax_ptr; 12980 dst_reg->var_off = ptr_reg->var_off; 12981 dst_reg->id = ptr_reg->id; 12982 dst_reg->off = ptr_reg->off - smin_val; 12983 dst_reg->raw = ptr_reg->raw; 12984 break; 12985 } 12986 /* A new variable offset is created. If the subtrahend is known 12987 * nonnegative, then any reg->range we had before is still good. 12988 */ 12989 if (signed_sub_overflows(smin_ptr, smax_val) || 12990 signed_sub_overflows(smax_ptr, smin_val)) { 12991 /* Overflow possible, we know nothing */ 12992 dst_reg->smin_value = S64_MIN; 12993 dst_reg->smax_value = S64_MAX; 12994 } else { 12995 dst_reg->smin_value = smin_ptr - smax_val; 12996 dst_reg->smax_value = smax_ptr - smin_val; 12997 } 12998 if (umin_ptr < umax_val) { 12999 /* Overflow possible, we know nothing */ 13000 dst_reg->umin_value = 0; 13001 dst_reg->umax_value = U64_MAX; 13002 } else { 13003 /* Cannot overflow (as long as bounds are consistent) */ 13004 dst_reg->umin_value = umin_ptr - umax_val; 13005 dst_reg->umax_value = umax_ptr - umin_val; 13006 } 13007 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13008 dst_reg->off = ptr_reg->off; 13009 dst_reg->raw = ptr_reg->raw; 13010 if (reg_is_pkt_pointer(ptr_reg)) { 13011 dst_reg->id = ++env->id_gen; 13012 /* something was added to pkt_ptr, set range to zero */ 13013 if (smin_val < 0) 13014 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13015 } 13016 break; 13017 case BPF_AND: 13018 case BPF_OR: 13019 case BPF_XOR: 13020 /* bitwise ops on pointers are troublesome, prohibit. */ 13021 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13022 dst, bpf_alu_string[opcode >> 4]); 13023 return -EACCES; 13024 default: 13025 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13026 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13027 dst, bpf_alu_string[opcode >> 4]); 13028 return -EACCES; 13029 } 13030 13031 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13032 return -EINVAL; 13033 reg_bounds_sync(dst_reg); 13034 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13035 return -EACCES; 13036 if (sanitize_needed(opcode)) { 13037 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13038 &info, true); 13039 if (ret < 0) 13040 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13041 } 13042 13043 return 0; 13044 } 13045 13046 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13047 struct bpf_reg_state *src_reg) 13048 { 13049 s32 smin_val = src_reg->s32_min_value; 13050 s32 smax_val = src_reg->s32_max_value; 13051 u32 umin_val = src_reg->u32_min_value; 13052 u32 umax_val = src_reg->u32_max_value; 13053 13054 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 13055 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 13056 dst_reg->s32_min_value = S32_MIN; 13057 dst_reg->s32_max_value = S32_MAX; 13058 } else { 13059 dst_reg->s32_min_value += smin_val; 13060 dst_reg->s32_max_value += smax_val; 13061 } 13062 if (dst_reg->u32_min_value + umin_val < umin_val || 13063 dst_reg->u32_max_value + umax_val < umax_val) { 13064 dst_reg->u32_min_value = 0; 13065 dst_reg->u32_max_value = U32_MAX; 13066 } else { 13067 dst_reg->u32_min_value += umin_val; 13068 dst_reg->u32_max_value += umax_val; 13069 } 13070 } 13071 13072 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13073 struct bpf_reg_state *src_reg) 13074 { 13075 s64 smin_val = src_reg->smin_value; 13076 s64 smax_val = src_reg->smax_value; 13077 u64 umin_val = src_reg->umin_value; 13078 u64 umax_val = src_reg->umax_value; 13079 13080 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 13081 signed_add_overflows(dst_reg->smax_value, smax_val)) { 13082 dst_reg->smin_value = S64_MIN; 13083 dst_reg->smax_value = S64_MAX; 13084 } else { 13085 dst_reg->smin_value += smin_val; 13086 dst_reg->smax_value += smax_val; 13087 } 13088 if (dst_reg->umin_value + umin_val < umin_val || 13089 dst_reg->umax_value + umax_val < umax_val) { 13090 dst_reg->umin_value = 0; 13091 dst_reg->umax_value = U64_MAX; 13092 } else { 13093 dst_reg->umin_value += umin_val; 13094 dst_reg->umax_value += umax_val; 13095 } 13096 } 13097 13098 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13099 struct bpf_reg_state *src_reg) 13100 { 13101 s32 smin_val = src_reg->s32_min_value; 13102 s32 smax_val = src_reg->s32_max_value; 13103 u32 umin_val = src_reg->u32_min_value; 13104 u32 umax_val = src_reg->u32_max_value; 13105 13106 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 13107 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 13108 /* Overflow possible, we know nothing */ 13109 dst_reg->s32_min_value = S32_MIN; 13110 dst_reg->s32_max_value = S32_MAX; 13111 } else { 13112 dst_reg->s32_min_value -= smax_val; 13113 dst_reg->s32_max_value -= smin_val; 13114 } 13115 if (dst_reg->u32_min_value < umax_val) { 13116 /* Overflow possible, we know nothing */ 13117 dst_reg->u32_min_value = 0; 13118 dst_reg->u32_max_value = U32_MAX; 13119 } else { 13120 /* Cannot overflow (as long as bounds are consistent) */ 13121 dst_reg->u32_min_value -= umax_val; 13122 dst_reg->u32_max_value -= umin_val; 13123 } 13124 } 13125 13126 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13127 struct bpf_reg_state *src_reg) 13128 { 13129 s64 smin_val = src_reg->smin_value; 13130 s64 smax_val = src_reg->smax_value; 13131 u64 umin_val = src_reg->umin_value; 13132 u64 umax_val = src_reg->umax_value; 13133 13134 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 13135 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 13136 /* Overflow possible, we know nothing */ 13137 dst_reg->smin_value = S64_MIN; 13138 dst_reg->smax_value = S64_MAX; 13139 } else { 13140 dst_reg->smin_value -= smax_val; 13141 dst_reg->smax_value -= smin_val; 13142 } 13143 if (dst_reg->umin_value < umax_val) { 13144 /* Overflow possible, we know nothing */ 13145 dst_reg->umin_value = 0; 13146 dst_reg->umax_value = U64_MAX; 13147 } else { 13148 /* Cannot overflow (as long as bounds are consistent) */ 13149 dst_reg->umin_value -= umax_val; 13150 dst_reg->umax_value -= umin_val; 13151 } 13152 } 13153 13154 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13155 struct bpf_reg_state *src_reg) 13156 { 13157 s32 smin_val = src_reg->s32_min_value; 13158 u32 umin_val = src_reg->u32_min_value; 13159 u32 umax_val = src_reg->u32_max_value; 13160 13161 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13162 /* Ain't nobody got time to multiply that sign */ 13163 __mark_reg32_unbounded(dst_reg); 13164 return; 13165 } 13166 /* Both values are positive, so we can work with unsigned and 13167 * copy the result to signed (unless it exceeds S32_MAX). 13168 */ 13169 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13170 /* Potential overflow, we know nothing */ 13171 __mark_reg32_unbounded(dst_reg); 13172 return; 13173 } 13174 dst_reg->u32_min_value *= umin_val; 13175 dst_reg->u32_max_value *= umax_val; 13176 if (dst_reg->u32_max_value > S32_MAX) { 13177 /* Overflow possible, we know nothing */ 13178 dst_reg->s32_min_value = S32_MIN; 13179 dst_reg->s32_max_value = S32_MAX; 13180 } else { 13181 dst_reg->s32_min_value = dst_reg->u32_min_value; 13182 dst_reg->s32_max_value = dst_reg->u32_max_value; 13183 } 13184 } 13185 13186 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13187 struct bpf_reg_state *src_reg) 13188 { 13189 s64 smin_val = src_reg->smin_value; 13190 u64 umin_val = src_reg->umin_value; 13191 u64 umax_val = src_reg->umax_value; 13192 13193 if (smin_val < 0 || dst_reg->smin_value < 0) { 13194 /* Ain't nobody got time to multiply that sign */ 13195 __mark_reg64_unbounded(dst_reg); 13196 return; 13197 } 13198 /* Both values are positive, so we can work with unsigned and 13199 * copy the result to signed (unless it exceeds S64_MAX). 13200 */ 13201 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13202 /* Potential overflow, we know nothing */ 13203 __mark_reg64_unbounded(dst_reg); 13204 return; 13205 } 13206 dst_reg->umin_value *= umin_val; 13207 dst_reg->umax_value *= umax_val; 13208 if (dst_reg->umax_value > S64_MAX) { 13209 /* Overflow possible, we know nothing */ 13210 dst_reg->smin_value = S64_MIN; 13211 dst_reg->smax_value = S64_MAX; 13212 } else { 13213 dst_reg->smin_value = dst_reg->umin_value; 13214 dst_reg->smax_value = dst_reg->umax_value; 13215 } 13216 } 13217 13218 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13219 struct bpf_reg_state *src_reg) 13220 { 13221 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13222 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13223 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13224 s32 smin_val = src_reg->s32_min_value; 13225 u32 umax_val = src_reg->u32_max_value; 13226 13227 if (src_known && dst_known) { 13228 __mark_reg32_known(dst_reg, var32_off.value); 13229 return; 13230 } 13231 13232 /* We get our minimum from the var_off, since that's inherently 13233 * bitwise. Our maximum is the minimum of the operands' maxima. 13234 */ 13235 dst_reg->u32_min_value = var32_off.value; 13236 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13237 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13238 /* Lose signed bounds when ANDing negative numbers, 13239 * ain't nobody got time for that. 13240 */ 13241 dst_reg->s32_min_value = S32_MIN; 13242 dst_reg->s32_max_value = S32_MAX; 13243 } else { 13244 /* ANDing two positives gives a positive, so safe to 13245 * cast result into s64. 13246 */ 13247 dst_reg->s32_min_value = dst_reg->u32_min_value; 13248 dst_reg->s32_max_value = dst_reg->u32_max_value; 13249 } 13250 } 13251 13252 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13253 struct bpf_reg_state *src_reg) 13254 { 13255 bool src_known = tnum_is_const(src_reg->var_off); 13256 bool dst_known = tnum_is_const(dst_reg->var_off); 13257 s64 smin_val = src_reg->smin_value; 13258 u64 umax_val = src_reg->umax_value; 13259 13260 if (src_known && dst_known) { 13261 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13262 return; 13263 } 13264 13265 /* We get our minimum from the var_off, since that's inherently 13266 * bitwise. Our maximum is the minimum of the operands' maxima. 13267 */ 13268 dst_reg->umin_value = dst_reg->var_off.value; 13269 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13270 if (dst_reg->smin_value < 0 || smin_val < 0) { 13271 /* Lose signed bounds when ANDing negative numbers, 13272 * ain't nobody got time for that. 13273 */ 13274 dst_reg->smin_value = S64_MIN; 13275 dst_reg->smax_value = S64_MAX; 13276 } else { 13277 /* ANDing two positives gives a positive, so safe to 13278 * cast result into s64. 13279 */ 13280 dst_reg->smin_value = dst_reg->umin_value; 13281 dst_reg->smax_value = dst_reg->umax_value; 13282 } 13283 /* We may learn something more from the var_off */ 13284 __update_reg_bounds(dst_reg); 13285 } 13286 13287 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13288 struct bpf_reg_state *src_reg) 13289 { 13290 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13291 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13292 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13293 s32 smin_val = src_reg->s32_min_value; 13294 u32 umin_val = src_reg->u32_min_value; 13295 13296 if (src_known && dst_known) { 13297 __mark_reg32_known(dst_reg, var32_off.value); 13298 return; 13299 } 13300 13301 /* We get our maximum from the var_off, and our minimum is the 13302 * maximum of the operands' minima 13303 */ 13304 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13305 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13306 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13307 /* Lose signed bounds when ORing negative numbers, 13308 * ain't nobody got time for that. 13309 */ 13310 dst_reg->s32_min_value = S32_MIN; 13311 dst_reg->s32_max_value = S32_MAX; 13312 } else { 13313 /* ORing two positives gives a positive, so safe to 13314 * cast result into s64. 13315 */ 13316 dst_reg->s32_min_value = dst_reg->u32_min_value; 13317 dst_reg->s32_max_value = dst_reg->u32_max_value; 13318 } 13319 } 13320 13321 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13322 struct bpf_reg_state *src_reg) 13323 { 13324 bool src_known = tnum_is_const(src_reg->var_off); 13325 bool dst_known = tnum_is_const(dst_reg->var_off); 13326 s64 smin_val = src_reg->smin_value; 13327 u64 umin_val = src_reg->umin_value; 13328 13329 if (src_known && dst_known) { 13330 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13331 return; 13332 } 13333 13334 /* We get our maximum from the var_off, and our minimum is the 13335 * maximum of the operands' minima 13336 */ 13337 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13338 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13339 if (dst_reg->smin_value < 0 || smin_val < 0) { 13340 /* Lose signed bounds when ORing negative numbers, 13341 * ain't nobody got time for that. 13342 */ 13343 dst_reg->smin_value = S64_MIN; 13344 dst_reg->smax_value = S64_MAX; 13345 } else { 13346 /* ORing two positives gives a positive, so safe to 13347 * cast result into s64. 13348 */ 13349 dst_reg->smin_value = dst_reg->umin_value; 13350 dst_reg->smax_value = dst_reg->umax_value; 13351 } 13352 /* We may learn something more from the var_off */ 13353 __update_reg_bounds(dst_reg); 13354 } 13355 13356 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13357 struct bpf_reg_state *src_reg) 13358 { 13359 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13360 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13361 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13362 s32 smin_val = src_reg->s32_min_value; 13363 13364 if (src_known && dst_known) { 13365 __mark_reg32_known(dst_reg, var32_off.value); 13366 return; 13367 } 13368 13369 /* We get both minimum and maximum from the var32_off. */ 13370 dst_reg->u32_min_value = var32_off.value; 13371 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13372 13373 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13374 /* XORing two positive sign numbers gives a positive, 13375 * so safe to cast u32 result into s32. 13376 */ 13377 dst_reg->s32_min_value = dst_reg->u32_min_value; 13378 dst_reg->s32_max_value = dst_reg->u32_max_value; 13379 } else { 13380 dst_reg->s32_min_value = S32_MIN; 13381 dst_reg->s32_max_value = S32_MAX; 13382 } 13383 } 13384 13385 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13386 struct bpf_reg_state *src_reg) 13387 { 13388 bool src_known = tnum_is_const(src_reg->var_off); 13389 bool dst_known = tnum_is_const(dst_reg->var_off); 13390 s64 smin_val = src_reg->smin_value; 13391 13392 if (src_known && dst_known) { 13393 /* dst_reg->var_off.value has been updated earlier */ 13394 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13395 return; 13396 } 13397 13398 /* We get both minimum and maximum from the var_off. */ 13399 dst_reg->umin_value = dst_reg->var_off.value; 13400 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13401 13402 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13403 /* XORing two positive sign numbers gives a positive, 13404 * so safe to cast u64 result into s64. 13405 */ 13406 dst_reg->smin_value = dst_reg->umin_value; 13407 dst_reg->smax_value = dst_reg->umax_value; 13408 } else { 13409 dst_reg->smin_value = S64_MIN; 13410 dst_reg->smax_value = S64_MAX; 13411 } 13412 13413 __update_reg_bounds(dst_reg); 13414 } 13415 13416 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13417 u64 umin_val, u64 umax_val) 13418 { 13419 /* We lose all sign bit information (except what we can pick 13420 * up from var_off) 13421 */ 13422 dst_reg->s32_min_value = S32_MIN; 13423 dst_reg->s32_max_value = S32_MAX; 13424 /* If we might shift our top bit out, then we know nothing */ 13425 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13426 dst_reg->u32_min_value = 0; 13427 dst_reg->u32_max_value = U32_MAX; 13428 } else { 13429 dst_reg->u32_min_value <<= umin_val; 13430 dst_reg->u32_max_value <<= umax_val; 13431 } 13432 } 13433 13434 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13435 struct bpf_reg_state *src_reg) 13436 { 13437 u32 umax_val = src_reg->u32_max_value; 13438 u32 umin_val = src_reg->u32_min_value; 13439 /* u32 alu operation will zext upper bits */ 13440 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13441 13442 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13443 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13444 /* Not required but being careful mark reg64 bounds as unknown so 13445 * that we are forced to pick them up from tnum and zext later and 13446 * if some path skips this step we are still safe. 13447 */ 13448 __mark_reg64_unbounded(dst_reg); 13449 __update_reg32_bounds(dst_reg); 13450 } 13451 13452 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13453 u64 umin_val, u64 umax_val) 13454 { 13455 /* Special case <<32 because it is a common compiler pattern to sign 13456 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13457 * positive we know this shift will also be positive so we can track 13458 * bounds correctly. Otherwise we lose all sign bit information except 13459 * what we can pick up from var_off. Perhaps we can generalize this 13460 * later to shifts of any length. 13461 */ 13462 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13463 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13464 else 13465 dst_reg->smax_value = S64_MAX; 13466 13467 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13468 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13469 else 13470 dst_reg->smin_value = S64_MIN; 13471 13472 /* If we might shift our top bit out, then we know nothing */ 13473 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13474 dst_reg->umin_value = 0; 13475 dst_reg->umax_value = U64_MAX; 13476 } else { 13477 dst_reg->umin_value <<= umin_val; 13478 dst_reg->umax_value <<= umax_val; 13479 } 13480 } 13481 13482 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13483 struct bpf_reg_state *src_reg) 13484 { 13485 u64 umax_val = src_reg->umax_value; 13486 u64 umin_val = src_reg->umin_value; 13487 13488 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13489 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13490 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13491 13492 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13493 /* We may learn something more from the var_off */ 13494 __update_reg_bounds(dst_reg); 13495 } 13496 13497 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13498 struct bpf_reg_state *src_reg) 13499 { 13500 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13501 u32 umax_val = src_reg->u32_max_value; 13502 u32 umin_val = src_reg->u32_min_value; 13503 13504 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13505 * be negative, then either: 13506 * 1) src_reg might be zero, so the sign bit of the result is 13507 * unknown, so we lose our signed bounds 13508 * 2) it's known negative, thus the unsigned bounds capture the 13509 * signed bounds 13510 * 3) the signed bounds cross zero, so they tell us nothing 13511 * about the result 13512 * If the value in dst_reg is known nonnegative, then again the 13513 * unsigned bounds capture the signed bounds. 13514 * Thus, in all cases it suffices to blow away our signed bounds 13515 * and rely on inferring new ones from the unsigned bounds and 13516 * var_off of the result. 13517 */ 13518 dst_reg->s32_min_value = S32_MIN; 13519 dst_reg->s32_max_value = S32_MAX; 13520 13521 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13522 dst_reg->u32_min_value >>= umax_val; 13523 dst_reg->u32_max_value >>= umin_val; 13524 13525 __mark_reg64_unbounded(dst_reg); 13526 __update_reg32_bounds(dst_reg); 13527 } 13528 13529 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13530 struct bpf_reg_state *src_reg) 13531 { 13532 u64 umax_val = src_reg->umax_value; 13533 u64 umin_val = src_reg->umin_value; 13534 13535 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13536 * be negative, then either: 13537 * 1) src_reg might be zero, so the sign bit of the result is 13538 * unknown, so we lose our signed bounds 13539 * 2) it's known negative, thus the unsigned bounds capture the 13540 * signed bounds 13541 * 3) the signed bounds cross zero, so they tell us nothing 13542 * about the result 13543 * If the value in dst_reg is known nonnegative, then again the 13544 * unsigned bounds capture the signed bounds. 13545 * Thus, in all cases it suffices to blow away our signed bounds 13546 * and rely on inferring new ones from the unsigned bounds and 13547 * var_off of the result. 13548 */ 13549 dst_reg->smin_value = S64_MIN; 13550 dst_reg->smax_value = S64_MAX; 13551 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13552 dst_reg->umin_value >>= umax_val; 13553 dst_reg->umax_value >>= umin_val; 13554 13555 /* Its not easy to operate on alu32 bounds here because it depends 13556 * on bits being shifted in. Take easy way out and mark unbounded 13557 * so we can recalculate later from tnum. 13558 */ 13559 __mark_reg32_unbounded(dst_reg); 13560 __update_reg_bounds(dst_reg); 13561 } 13562 13563 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13564 struct bpf_reg_state *src_reg) 13565 { 13566 u64 umin_val = src_reg->u32_min_value; 13567 13568 /* Upon reaching here, src_known is true and 13569 * umax_val is equal to umin_val. 13570 */ 13571 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13572 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13573 13574 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13575 13576 /* blow away the dst_reg umin_value/umax_value and rely on 13577 * dst_reg var_off to refine the result. 13578 */ 13579 dst_reg->u32_min_value = 0; 13580 dst_reg->u32_max_value = U32_MAX; 13581 13582 __mark_reg64_unbounded(dst_reg); 13583 __update_reg32_bounds(dst_reg); 13584 } 13585 13586 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13587 struct bpf_reg_state *src_reg) 13588 { 13589 u64 umin_val = src_reg->umin_value; 13590 13591 /* Upon reaching here, src_known is true and umax_val is equal 13592 * to umin_val. 13593 */ 13594 dst_reg->smin_value >>= umin_val; 13595 dst_reg->smax_value >>= umin_val; 13596 13597 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13598 13599 /* blow away the dst_reg umin_value/umax_value and rely on 13600 * dst_reg var_off to refine the result. 13601 */ 13602 dst_reg->umin_value = 0; 13603 dst_reg->umax_value = U64_MAX; 13604 13605 /* Its not easy to operate on alu32 bounds here because it depends 13606 * on bits being shifted in from upper 32-bits. Take easy way out 13607 * and mark unbounded so we can recalculate later from tnum. 13608 */ 13609 __mark_reg32_unbounded(dst_reg); 13610 __update_reg_bounds(dst_reg); 13611 } 13612 13613 /* WARNING: This function does calculations on 64-bit values, but the actual 13614 * execution may occur on 32-bit values. Therefore, things like bitshifts 13615 * need extra checks in the 32-bit case. 13616 */ 13617 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13618 struct bpf_insn *insn, 13619 struct bpf_reg_state *dst_reg, 13620 struct bpf_reg_state src_reg) 13621 { 13622 struct bpf_reg_state *regs = cur_regs(env); 13623 u8 opcode = BPF_OP(insn->code); 13624 bool src_known; 13625 s64 smin_val, smax_val; 13626 u64 umin_val, umax_val; 13627 s32 s32_min_val, s32_max_val; 13628 u32 u32_min_val, u32_max_val; 13629 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13630 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13631 int ret; 13632 13633 smin_val = src_reg.smin_value; 13634 smax_val = src_reg.smax_value; 13635 umin_val = src_reg.umin_value; 13636 umax_val = src_reg.umax_value; 13637 13638 s32_min_val = src_reg.s32_min_value; 13639 s32_max_val = src_reg.s32_max_value; 13640 u32_min_val = src_reg.u32_min_value; 13641 u32_max_val = src_reg.u32_max_value; 13642 13643 if (alu32) { 13644 src_known = tnum_subreg_is_const(src_reg.var_off); 13645 if ((src_known && 13646 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13647 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13648 /* Taint dst register if offset had invalid bounds 13649 * derived from e.g. dead branches. 13650 */ 13651 __mark_reg_unknown(env, dst_reg); 13652 return 0; 13653 } 13654 } else { 13655 src_known = tnum_is_const(src_reg.var_off); 13656 if ((src_known && 13657 (smin_val != smax_val || umin_val != umax_val)) || 13658 smin_val > smax_val || umin_val > umax_val) { 13659 /* Taint dst register if offset had invalid bounds 13660 * derived from e.g. dead branches. 13661 */ 13662 __mark_reg_unknown(env, dst_reg); 13663 return 0; 13664 } 13665 } 13666 13667 if (!src_known && 13668 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13669 __mark_reg_unknown(env, dst_reg); 13670 return 0; 13671 } 13672 13673 if (sanitize_needed(opcode)) { 13674 ret = sanitize_val_alu(env, insn); 13675 if (ret < 0) 13676 return sanitize_err(env, insn, ret, NULL, NULL); 13677 } 13678 13679 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13680 * There are two classes of instructions: The first class we track both 13681 * alu32 and alu64 sign/unsigned bounds independently this provides the 13682 * greatest amount of precision when alu operations are mixed with jmp32 13683 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13684 * and BPF_OR. This is possible because these ops have fairly easy to 13685 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13686 * See alu32 verifier tests for examples. The second class of 13687 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13688 * with regards to tracking sign/unsigned bounds because the bits may 13689 * cross subreg boundaries in the alu64 case. When this happens we mark 13690 * the reg unbounded in the subreg bound space and use the resulting 13691 * tnum to calculate an approximation of the sign/unsigned bounds. 13692 */ 13693 switch (opcode) { 13694 case BPF_ADD: 13695 scalar32_min_max_add(dst_reg, &src_reg); 13696 scalar_min_max_add(dst_reg, &src_reg); 13697 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13698 break; 13699 case BPF_SUB: 13700 scalar32_min_max_sub(dst_reg, &src_reg); 13701 scalar_min_max_sub(dst_reg, &src_reg); 13702 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13703 break; 13704 case BPF_MUL: 13705 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13706 scalar32_min_max_mul(dst_reg, &src_reg); 13707 scalar_min_max_mul(dst_reg, &src_reg); 13708 break; 13709 case BPF_AND: 13710 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13711 scalar32_min_max_and(dst_reg, &src_reg); 13712 scalar_min_max_and(dst_reg, &src_reg); 13713 break; 13714 case BPF_OR: 13715 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13716 scalar32_min_max_or(dst_reg, &src_reg); 13717 scalar_min_max_or(dst_reg, &src_reg); 13718 break; 13719 case BPF_XOR: 13720 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13721 scalar32_min_max_xor(dst_reg, &src_reg); 13722 scalar_min_max_xor(dst_reg, &src_reg); 13723 break; 13724 case BPF_LSH: 13725 if (umax_val >= insn_bitness) { 13726 /* Shifts greater than 31 or 63 are undefined. 13727 * This includes shifts by a negative number. 13728 */ 13729 mark_reg_unknown(env, regs, insn->dst_reg); 13730 break; 13731 } 13732 if (alu32) 13733 scalar32_min_max_lsh(dst_reg, &src_reg); 13734 else 13735 scalar_min_max_lsh(dst_reg, &src_reg); 13736 break; 13737 case BPF_RSH: 13738 if (umax_val >= insn_bitness) { 13739 /* Shifts greater than 31 or 63 are undefined. 13740 * This includes shifts by a negative number. 13741 */ 13742 mark_reg_unknown(env, regs, insn->dst_reg); 13743 break; 13744 } 13745 if (alu32) 13746 scalar32_min_max_rsh(dst_reg, &src_reg); 13747 else 13748 scalar_min_max_rsh(dst_reg, &src_reg); 13749 break; 13750 case BPF_ARSH: 13751 if (umax_val >= insn_bitness) { 13752 /* Shifts greater than 31 or 63 are undefined. 13753 * This includes shifts by a negative number. 13754 */ 13755 mark_reg_unknown(env, regs, insn->dst_reg); 13756 break; 13757 } 13758 if (alu32) 13759 scalar32_min_max_arsh(dst_reg, &src_reg); 13760 else 13761 scalar_min_max_arsh(dst_reg, &src_reg); 13762 break; 13763 default: 13764 mark_reg_unknown(env, regs, insn->dst_reg); 13765 break; 13766 } 13767 13768 /* ALU32 ops are zero extended into 64bit register */ 13769 if (alu32) 13770 zext_32_to_64(dst_reg); 13771 reg_bounds_sync(dst_reg); 13772 return 0; 13773 } 13774 13775 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13776 * and var_off. 13777 */ 13778 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13779 struct bpf_insn *insn) 13780 { 13781 struct bpf_verifier_state *vstate = env->cur_state; 13782 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13783 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13784 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13785 u8 opcode = BPF_OP(insn->code); 13786 int err; 13787 13788 dst_reg = ®s[insn->dst_reg]; 13789 src_reg = NULL; 13790 if (dst_reg->type != SCALAR_VALUE) 13791 ptr_reg = dst_reg; 13792 else 13793 /* Make sure ID is cleared otherwise dst_reg min/max could be 13794 * incorrectly propagated into other registers by find_equal_scalars() 13795 */ 13796 dst_reg->id = 0; 13797 if (BPF_SRC(insn->code) == BPF_X) { 13798 src_reg = ®s[insn->src_reg]; 13799 if (src_reg->type != SCALAR_VALUE) { 13800 if (dst_reg->type != SCALAR_VALUE) { 13801 /* Combining two pointers by any ALU op yields 13802 * an arbitrary scalar. Disallow all math except 13803 * pointer subtraction 13804 */ 13805 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13806 mark_reg_unknown(env, regs, insn->dst_reg); 13807 return 0; 13808 } 13809 verbose(env, "R%d pointer %s pointer prohibited\n", 13810 insn->dst_reg, 13811 bpf_alu_string[opcode >> 4]); 13812 return -EACCES; 13813 } else { 13814 /* scalar += pointer 13815 * This is legal, but we have to reverse our 13816 * src/dest handling in computing the range 13817 */ 13818 err = mark_chain_precision(env, insn->dst_reg); 13819 if (err) 13820 return err; 13821 return adjust_ptr_min_max_vals(env, insn, 13822 src_reg, dst_reg); 13823 } 13824 } else if (ptr_reg) { 13825 /* pointer += scalar */ 13826 err = mark_chain_precision(env, insn->src_reg); 13827 if (err) 13828 return err; 13829 return adjust_ptr_min_max_vals(env, insn, 13830 dst_reg, src_reg); 13831 } else if (dst_reg->precise) { 13832 /* if dst_reg is precise, src_reg should be precise as well */ 13833 err = mark_chain_precision(env, insn->src_reg); 13834 if (err) 13835 return err; 13836 } 13837 } else { 13838 /* Pretend the src is a reg with a known value, since we only 13839 * need to be able to read from this state. 13840 */ 13841 off_reg.type = SCALAR_VALUE; 13842 __mark_reg_known(&off_reg, insn->imm); 13843 src_reg = &off_reg; 13844 if (ptr_reg) /* pointer += K */ 13845 return adjust_ptr_min_max_vals(env, insn, 13846 ptr_reg, src_reg); 13847 } 13848 13849 /* Got here implies adding two SCALAR_VALUEs */ 13850 if (WARN_ON_ONCE(ptr_reg)) { 13851 print_verifier_state(env, state, true); 13852 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13853 return -EINVAL; 13854 } 13855 if (WARN_ON(!src_reg)) { 13856 print_verifier_state(env, state, true); 13857 verbose(env, "verifier internal error: no src_reg\n"); 13858 return -EINVAL; 13859 } 13860 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13861 } 13862 13863 /* check validity of 32-bit and 64-bit arithmetic operations */ 13864 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13865 { 13866 struct bpf_reg_state *regs = cur_regs(env); 13867 u8 opcode = BPF_OP(insn->code); 13868 int err; 13869 13870 if (opcode == BPF_END || opcode == BPF_NEG) { 13871 if (opcode == BPF_NEG) { 13872 if (BPF_SRC(insn->code) != BPF_K || 13873 insn->src_reg != BPF_REG_0 || 13874 insn->off != 0 || insn->imm != 0) { 13875 verbose(env, "BPF_NEG uses reserved fields\n"); 13876 return -EINVAL; 13877 } 13878 } else { 13879 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13880 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13881 (BPF_CLASS(insn->code) == BPF_ALU64 && 13882 BPF_SRC(insn->code) != BPF_TO_LE)) { 13883 verbose(env, "BPF_END uses reserved fields\n"); 13884 return -EINVAL; 13885 } 13886 } 13887 13888 /* check src operand */ 13889 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13890 if (err) 13891 return err; 13892 13893 if (is_pointer_value(env, insn->dst_reg)) { 13894 verbose(env, "R%d pointer arithmetic prohibited\n", 13895 insn->dst_reg); 13896 return -EACCES; 13897 } 13898 13899 /* check dest operand */ 13900 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13901 if (err) 13902 return err; 13903 13904 } else if (opcode == BPF_MOV) { 13905 13906 if (BPF_SRC(insn->code) == BPF_X) { 13907 if (insn->imm != 0) { 13908 verbose(env, "BPF_MOV uses reserved fields\n"); 13909 return -EINVAL; 13910 } 13911 13912 if (BPF_CLASS(insn->code) == BPF_ALU) { 13913 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13914 verbose(env, "BPF_MOV uses reserved fields\n"); 13915 return -EINVAL; 13916 } 13917 } else { 13918 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13919 insn->off != 32) { 13920 verbose(env, "BPF_MOV uses reserved fields\n"); 13921 return -EINVAL; 13922 } 13923 } 13924 13925 /* check src operand */ 13926 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13927 if (err) 13928 return err; 13929 } else { 13930 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13931 verbose(env, "BPF_MOV uses reserved fields\n"); 13932 return -EINVAL; 13933 } 13934 } 13935 13936 /* check dest operand, mark as required later */ 13937 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13938 if (err) 13939 return err; 13940 13941 if (BPF_SRC(insn->code) == BPF_X) { 13942 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13943 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13944 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13945 !tnum_is_const(src_reg->var_off); 13946 13947 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13948 if (insn->off == 0) { 13949 /* case: R1 = R2 13950 * copy register state to dest reg 13951 */ 13952 if (need_id) 13953 /* Assign src and dst registers the same ID 13954 * that will be used by find_equal_scalars() 13955 * to propagate min/max range. 13956 */ 13957 src_reg->id = ++env->id_gen; 13958 copy_register_state(dst_reg, src_reg); 13959 dst_reg->live |= REG_LIVE_WRITTEN; 13960 dst_reg->subreg_def = DEF_NOT_SUBREG; 13961 } else { 13962 /* case: R1 = (s8, s16 s32)R2 */ 13963 if (is_pointer_value(env, insn->src_reg)) { 13964 verbose(env, 13965 "R%d sign-extension part of pointer\n", 13966 insn->src_reg); 13967 return -EACCES; 13968 } else if (src_reg->type == SCALAR_VALUE) { 13969 bool no_sext; 13970 13971 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13972 if (no_sext && need_id) 13973 src_reg->id = ++env->id_gen; 13974 copy_register_state(dst_reg, src_reg); 13975 if (!no_sext) 13976 dst_reg->id = 0; 13977 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13978 dst_reg->live |= REG_LIVE_WRITTEN; 13979 dst_reg->subreg_def = DEF_NOT_SUBREG; 13980 } else { 13981 mark_reg_unknown(env, regs, insn->dst_reg); 13982 } 13983 } 13984 } else { 13985 /* R1 = (u32) R2 */ 13986 if (is_pointer_value(env, insn->src_reg)) { 13987 verbose(env, 13988 "R%d partial copy of pointer\n", 13989 insn->src_reg); 13990 return -EACCES; 13991 } else if (src_reg->type == SCALAR_VALUE) { 13992 if (insn->off == 0) { 13993 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13994 13995 if (is_src_reg_u32 && need_id) 13996 src_reg->id = ++env->id_gen; 13997 copy_register_state(dst_reg, src_reg); 13998 /* Make sure ID is cleared if src_reg is not in u32 13999 * range otherwise dst_reg min/max could be incorrectly 14000 * propagated into src_reg by find_equal_scalars() 14001 */ 14002 if (!is_src_reg_u32) 14003 dst_reg->id = 0; 14004 dst_reg->live |= REG_LIVE_WRITTEN; 14005 dst_reg->subreg_def = env->insn_idx + 1; 14006 } else { 14007 /* case: W1 = (s8, s16)W2 */ 14008 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14009 14010 if (no_sext && need_id) 14011 src_reg->id = ++env->id_gen; 14012 copy_register_state(dst_reg, src_reg); 14013 if (!no_sext) 14014 dst_reg->id = 0; 14015 dst_reg->live |= REG_LIVE_WRITTEN; 14016 dst_reg->subreg_def = env->insn_idx + 1; 14017 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14018 } 14019 } else { 14020 mark_reg_unknown(env, regs, 14021 insn->dst_reg); 14022 } 14023 zext_32_to_64(dst_reg); 14024 reg_bounds_sync(dst_reg); 14025 } 14026 } else { 14027 /* case: R = imm 14028 * remember the value we stored into this reg 14029 */ 14030 /* clear any state __mark_reg_known doesn't set */ 14031 mark_reg_unknown(env, regs, insn->dst_reg); 14032 regs[insn->dst_reg].type = SCALAR_VALUE; 14033 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14034 __mark_reg_known(regs + insn->dst_reg, 14035 insn->imm); 14036 } else { 14037 __mark_reg_known(regs + insn->dst_reg, 14038 (u32)insn->imm); 14039 } 14040 } 14041 14042 } else if (opcode > BPF_END) { 14043 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14044 return -EINVAL; 14045 14046 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14047 14048 if (BPF_SRC(insn->code) == BPF_X) { 14049 if (insn->imm != 0 || insn->off > 1 || 14050 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14051 verbose(env, "BPF_ALU uses reserved fields\n"); 14052 return -EINVAL; 14053 } 14054 /* check src1 operand */ 14055 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14056 if (err) 14057 return err; 14058 } else { 14059 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14060 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14061 verbose(env, "BPF_ALU uses reserved fields\n"); 14062 return -EINVAL; 14063 } 14064 } 14065 14066 /* check src2 operand */ 14067 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14068 if (err) 14069 return err; 14070 14071 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14072 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14073 verbose(env, "div by zero\n"); 14074 return -EINVAL; 14075 } 14076 14077 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14078 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14079 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14080 14081 if (insn->imm < 0 || insn->imm >= size) { 14082 verbose(env, "invalid shift %d\n", insn->imm); 14083 return -EINVAL; 14084 } 14085 } 14086 14087 /* check dest operand */ 14088 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14089 if (err) 14090 return err; 14091 14092 return adjust_reg_min_max_vals(env, insn); 14093 } 14094 14095 return 0; 14096 } 14097 14098 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14099 struct bpf_reg_state *dst_reg, 14100 enum bpf_reg_type type, 14101 bool range_right_open) 14102 { 14103 struct bpf_func_state *state; 14104 struct bpf_reg_state *reg; 14105 int new_range; 14106 14107 if (dst_reg->off < 0 || 14108 (dst_reg->off == 0 && range_right_open)) 14109 /* This doesn't give us any range */ 14110 return; 14111 14112 if (dst_reg->umax_value > MAX_PACKET_OFF || 14113 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14114 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14115 * than pkt_end, but that's because it's also less than pkt. 14116 */ 14117 return; 14118 14119 new_range = dst_reg->off; 14120 if (range_right_open) 14121 new_range++; 14122 14123 /* Examples for register markings: 14124 * 14125 * pkt_data in dst register: 14126 * 14127 * r2 = r3; 14128 * r2 += 8; 14129 * if (r2 > pkt_end) goto <handle exception> 14130 * <access okay> 14131 * 14132 * r2 = r3; 14133 * r2 += 8; 14134 * if (r2 < pkt_end) goto <access okay> 14135 * <handle exception> 14136 * 14137 * Where: 14138 * r2 == dst_reg, pkt_end == src_reg 14139 * r2=pkt(id=n,off=8,r=0) 14140 * r3=pkt(id=n,off=0,r=0) 14141 * 14142 * pkt_data in src register: 14143 * 14144 * r2 = r3; 14145 * r2 += 8; 14146 * if (pkt_end >= r2) goto <access okay> 14147 * <handle exception> 14148 * 14149 * r2 = r3; 14150 * r2 += 8; 14151 * if (pkt_end <= r2) goto <handle exception> 14152 * <access okay> 14153 * 14154 * Where: 14155 * pkt_end == dst_reg, r2 == src_reg 14156 * r2=pkt(id=n,off=8,r=0) 14157 * r3=pkt(id=n,off=0,r=0) 14158 * 14159 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14160 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14161 * and [r3, r3 + 8-1) respectively is safe to access depending on 14162 * the check. 14163 */ 14164 14165 /* If our ids match, then we must have the same max_value. And we 14166 * don't care about the other reg's fixed offset, since if it's too big 14167 * the range won't allow anything. 14168 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14169 */ 14170 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14171 if (reg->type == type && reg->id == dst_reg->id) 14172 /* keep the maximum range already checked */ 14173 reg->range = max(reg->range, new_range); 14174 })); 14175 } 14176 14177 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 14178 { 14179 struct tnum subreg = tnum_subreg(reg->var_off); 14180 s32 sval = (s32)val; 14181 14182 switch (opcode) { 14183 case BPF_JEQ: 14184 if (tnum_is_const(subreg)) 14185 return !!tnum_equals_const(subreg, val); 14186 else if (val < reg->u32_min_value || val > reg->u32_max_value) 14187 return 0; 14188 else if (sval < reg->s32_min_value || sval > reg->s32_max_value) 14189 return 0; 14190 break; 14191 case BPF_JNE: 14192 if (tnum_is_const(subreg)) 14193 return !tnum_equals_const(subreg, val); 14194 else if (val < reg->u32_min_value || val > reg->u32_max_value) 14195 return 1; 14196 else if (sval < reg->s32_min_value || sval > reg->s32_max_value) 14197 return 1; 14198 break; 14199 case BPF_JSET: 14200 if ((~subreg.mask & subreg.value) & val) 14201 return 1; 14202 if (!((subreg.mask | subreg.value) & val)) 14203 return 0; 14204 break; 14205 case BPF_JGT: 14206 if (reg->u32_min_value > val) 14207 return 1; 14208 else if (reg->u32_max_value <= val) 14209 return 0; 14210 break; 14211 case BPF_JSGT: 14212 if (reg->s32_min_value > sval) 14213 return 1; 14214 else if (reg->s32_max_value <= sval) 14215 return 0; 14216 break; 14217 case BPF_JLT: 14218 if (reg->u32_max_value < val) 14219 return 1; 14220 else if (reg->u32_min_value >= val) 14221 return 0; 14222 break; 14223 case BPF_JSLT: 14224 if (reg->s32_max_value < sval) 14225 return 1; 14226 else if (reg->s32_min_value >= sval) 14227 return 0; 14228 break; 14229 case BPF_JGE: 14230 if (reg->u32_min_value >= val) 14231 return 1; 14232 else if (reg->u32_max_value < val) 14233 return 0; 14234 break; 14235 case BPF_JSGE: 14236 if (reg->s32_min_value >= sval) 14237 return 1; 14238 else if (reg->s32_max_value < sval) 14239 return 0; 14240 break; 14241 case BPF_JLE: 14242 if (reg->u32_max_value <= val) 14243 return 1; 14244 else if (reg->u32_min_value > val) 14245 return 0; 14246 break; 14247 case BPF_JSLE: 14248 if (reg->s32_max_value <= sval) 14249 return 1; 14250 else if (reg->s32_min_value > sval) 14251 return 0; 14252 break; 14253 } 14254 14255 return -1; 14256 } 14257 14258 14259 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 14260 { 14261 s64 sval = (s64)val; 14262 14263 switch (opcode) { 14264 case BPF_JEQ: 14265 if (tnum_is_const(reg->var_off)) 14266 return !!tnum_equals_const(reg->var_off, val); 14267 else if (val < reg->umin_value || val > reg->umax_value) 14268 return 0; 14269 else if (sval < reg->smin_value || sval > reg->smax_value) 14270 return 0; 14271 break; 14272 case BPF_JNE: 14273 if (tnum_is_const(reg->var_off)) 14274 return !tnum_equals_const(reg->var_off, val); 14275 else if (val < reg->umin_value || val > reg->umax_value) 14276 return 1; 14277 else if (sval < reg->smin_value || sval > reg->smax_value) 14278 return 1; 14279 break; 14280 case BPF_JSET: 14281 if ((~reg->var_off.mask & reg->var_off.value) & val) 14282 return 1; 14283 if (!((reg->var_off.mask | reg->var_off.value) & val)) 14284 return 0; 14285 break; 14286 case BPF_JGT: 14287 if (reg->umin_value > val) 14288 return 1; 14289 else if (reg->umax_value <= val) 14290 return 0; 14291 break; 14292 case BPF_JSGT: 14293 if (reg->smin_value > sval) 14294 return 1; 14295 else if (reg->smax_value <= sval) 14296 return 0; 14297 break; 14298 case BPF_JLT: 14299 if (reg->umax_value < val) 14300 return 1; 14301 else if (reg->umin_value >= val) 14302 return 0; 14303 break; 14304 case BPF_JSLT: 14305 if (reg->smax_value < sval) 14306 return 1; 14307 else if (reg->smin_value >= sval) 14308 return 0; 14309 break; 14310 case BPF_JGE: 14311 if (reg->umin_value >= val) 14312 return 1; 14313 else if (reg->umax_value < val) 14314 return 0; 14315 break; 14316 case BPF_JSGE: 14317 if (reg->smin_value >= sval) 14318 return 1; 14319 else if (reg->smax_value < sval) 14320 return 0; 14321 break; 14322 case BPF_JLE: 14323 if (reg->umax_value <= val) 14324 return 1; 14325 else if (reg->umin_value > val) 14326 return 0; 14327 break; 14328 case BPF_JSLE: 14329 if (reg->smax_value <= sval) 14330 return 1; 14331 else if (reg->smin_value > sval) 14332 return 0; 14333 break; 14334 } 14335 14336 return -1; 14337 } 14338 14339 /* compute branch direction of the expression "if (reg opcode val) goto target;" 14340 * and return: 14341 * 1 - branch will be taken and "goto target" will be executed 14342 * 0 - branch will not be taken and fall-through to next insn 14343 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 14344 * range [0,10] 14345 */ 14346 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 14347 bool is_jmp32) 14348 { 14349 if (__is_pointer_value(false, reg)) { 14350 if (!reg_not_null(reg)) 14351 return -1; 14352 14353 /* If pointer is valid tests against zero will fail so we can 14354 * use this to direct branch taken. 14355 */ 14356 if (val != 0) 14357 return -1; 14358 14359 switch (opcode) { 14360 case BPF_JEQ: 14361 return 0; 14362 case BPF_JNE: 14363 return 1; 14364 default: 14365 return -1; 14366 } 14367 } 14368 14369 if (is_jmp32) 14370 return is_branch32_taken(reg, val, opcode); 14371 return is_branch64_taken(reg, val, opcode); 14372 } 14373 14374 static int flip_opcode(u32 opcode) 14375 { 14376 /* How can we transform "a <op> b" into "b <op> a"? */ 14377 static const u8 opcode_flip[16] = { 14378 /* these stay the same */ 14379 [BPF_JEQ >> 4] = BPF_JEQ, 14380 [BPF_JNE >> 4] = BPF_JNE, 14381 [BPF_JSET >> 4] = BPF_JSET, 14382 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14383 [BPF_JGE >> 4] = BPF_JLE, 14384 [BPF_JGT >> 4] = BPF_JLT, 14385 [BPF_JLE >> 4] = BPF_JGE, 14386 [BPF_JLT >> 4] = BPF_JGT, 14387 [BPF_JSGE >> 4] = BPF_JSLE, 14388 [BPF_JSGT >> 4] = BPF_JSLT, 14389 [BPF_JSLE >> 4] = BPF_JSGE, 14390 [BPF_JSLT >> 4] = BPF_JSGT 14391 }; 14392 return opcode_flip[opcode >> 4]; 14393 } 14394 14395 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14396 struct bpf_reg_state *src_reg, 14397 u8 opcode) 14398 { 14399 struct bpf_reg_state *pkt; 14400 14401 if (src_reg->type == PTR_TO_PACKET_END) { 14402 pkt = dst_reg; 14403 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14404 pkt = src_reg; 14405 opcode = flip_opcode(opcode); 14406 } else { 14407 return -1; 14408 } 14409 14410 if (pkt->range >= 0) 14411 return -1; 14412 14413 switch (opcode) { 14414 case BPF_JLE: 14415 /* pkt <= pkt_end */ 14416 fallthrough; 14417 case BPF_JGT: 14418 /* pkt > pkt_end */ 14419 if (pkt->range == BEYOND_PKT_END) 14420 /* pkt has at last one extra byte beyond pkt_end */ 14421 return opcode == BPF_JGT; 14422 break; 14423 case BPF_JLT: 14424 /* pkt < pkt_end */ 14425 fallthrough; 14426 case BPF_JGE: 14427 /* pkt >= pkt_end */ 14428 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14429 return opcode == BPF_JGE; 14430 break; 14431 } 14432 return -1; 14433 } 14434 14435 /* Adjusts the register min/max values in the case that the dst_reg is the 14436 * variable register that we are working on, and src_reg is a constant or we're 14437 * simply doing a BPF_K check. 14438 * In JEQ/JNE cases we also adjust the var_off values. 14439 */ 14440 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14441 struct bpf_reg_state *false_reg, 14442 u64 val, u32 val32, 14443 u8 opcode, bool is_jmp32) 14444 { 14445 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14446 struct tnum false_64off = false_reg->var_off; 14447 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14448 struct tnum true_64off = true_reg->var_off; 14449 s64 sval = (s64)val; 14450 s32 sval32 = (s32)val32; 14451 14452 /* If the dst_reg is a pointer, we can't learn anything about its 14453 * variable offset from the compare (unless src_reg were a pointer into 14454 * the same object, but we don't bother with that. 14455 * Since false_reg and true_reg have the same type by construction, we 14456 * only need to check one of them for pointerness. 14457 */ 14458 if (__is_pointer_value(false, false_reg)) 14459 return; 14460 14461 switch (opcode) { 14462 /* JEQ/JNE comparison doesn't change the register equivalence. 14463 * 14464 * r1 = r2; 14465 * if (r1 == 42) goto label; 14466 * ... 14467 * label: // here both r1 and r2 are known to be 42. 14468 * 14469 * Hence when marking register as known preserve it's ID. 14470 */ 14471 case BPF_JEQ: 14472 if (is_jmp32) { 14473 __mark_reg32_known(true_reg, val32); 14474 true_32off = tnum_subreg(true_reg->var_off); 14475 } else { 14476 ___mark_reg_known(true_reg, val); 14477 true_64off = true_reg->var_off; 14478 } 14479 break; 14480 case BPF_JNE: 14481 if (is_jmp32) { 14482 __mark_reg32_known(false_reg, val32); 14483 false_32off = tnum_subreg(false_reg->var_off); 14484 } else { 14485 ___mark_reg_known(false_reg, val); 14486 false_64off = false_reg->var_off; 14487 } 14488 break; 14489 case BPF_JSET: 14490 if (is_jmp32) { 14491 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14492 if (is_power_of_2(val32)) 14493 true_32off = tnum_or(true_32off, 14494 tnum_const(val32)); 14495 } else { 14496 false_64off = tnum_and(false_64off, tnum_const(~val)); 14497 if (is_power_of_2(val)) 14498 true_64off = tnum_or(true_64off, 14499 tnum_const(val)); 14500 } 14501 break; 14502 case BPF_JGE: 14503 case BPF_JGT: 14504 { 14505 if (is_jmp32) { 14506 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14507 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14508 14509 false_reg->u32_max_value = min(false_reg->u32_max_value, 14510 false_umax); 14511 true_reg->u32_min_value = max(true_reg->u32_min_value, 14512 true_umin); 14513 } else { 14514 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14515 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14516 14517 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14518 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14519 } 14520 break; 14521 } 14522 case BPF_JSGE: 14523 case BPF_JSGT: 14524 { 14525 if (is_jmp32) { 14526 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14527 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14528 14529 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14530 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14531 } else { 14532 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14533 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14534 14535 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14536 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14537 } 14538 break; 14539 } 14540 case BPF_JLE: 14541 case BPF_JLT: 14542 { 14543 if (is_jmp32) { 14544 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14545 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14546 14547 false_reg->u32_min_value = max(false_reg->u32_min_value, 14548 false_umin); 14549 true_reg->u32_max_value = min(true_reg->u32_max_value, 14550 true_umax); 14551 } else { 14552 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14553 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14554 14555 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14556 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14557 } 14558 break; 14559 } 14560 case BPF_JSLE: 14561 case BPF_JSLT: 14562 { 14563 if (is_jmp32) { 14564 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14565 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14566 14567 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14568 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14569 } else { 14570 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14571 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14572 14573 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14574 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14575 } 14576 break; 14577 } 14578 default: 14579 return; 14580 } 14581 14582 if (is_jmp32) { 14583 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14584 tnum_subreg(false_32off)); 14585 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14586 tnum_subreg(true_32off)); 14587 __reg_combine_32_into_64(false_reg); 14588 __reg_combine_32_into_64(true_reg); 14589 } else { 14590 false_reg->var_off = false_64off; 14591 true_reg->var_off = true_64off; 14592 __reg_combine_64_into_32(false_reg); 14593 __reg_combine_64_into_32(true_reg); 14594 } 14595 } 14596 14597 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14598 * the variable reg. 14599 */ 14600 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14601 struct bpf_reg_state *false_reg, 14602 u64 val, u32 val32, 14603 u8 opcode, bool is_jmp32) 14604 { 14605 opcode = flip_opcode(opcode); 14606 /* This uses zero as "not present in table"; luckily the zero opcode, 14607 * BPF_JA, can't get here. 14608 */ 14609 if (opcode) 14610 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14611 } 14612 14613 /* Regs are known to be equal, so intersect their min/max/var_off */ 14614 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14615 struct bpf_reg_state *dst_reg) 14616 { 14617 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14618 dst_reg->umin_value); 14619 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14620 dst_reg->umax_value); 14621 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14622 dst_reg->smin_value); 14623 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14624 dst_reg->smax_value); 14625 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14626 dst_reg->var_off); 14627 reg_bounds_sync(src_reg); 14628 reg_bounds_sync(dst_reg); 14629 } 14630 14631 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14632 struct bpf_reg_state *true_dst, 14633 struct bpf_reg_state *false_src, 14634 struct bpf_reg_state *false_dst, 14635 u8 opcode) 14636 { 14637 switch (opcode) { 14638 case BPF_JEQ: 14639 __reg_combine_min_max(true_src, true_dst); 14640 break; 14641 case BPF_JNE: 14642 __reg_combine_min_max(false_src, false_dst); 14643 break; 14644 } 14645 } 14646 14647 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14648 struct bpf_reg_state *reg, u32 id, 14649 bool is_null) 14650 { 14651 if (type_may_be_null(reg->type) && reg->id == id && 14652 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14653 /* Old offset (both fixed and variable parts) should have been 14654 * known-zero, because we don't allow pointer arithmetic on 14655 * pointers that might be NULL. If we see this happening, don't 14656 * convert the register. 14657 * 14658 * But in some cases, some helpers that return local kptrs 14659 * advance offset for the returned pointer. In those cases, it 14660 * is fine to expect to see reg->off. 14661 */ 14662 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14663 return; 14664 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14665 WARN_ON_ONCE(reg->off)) 14666 return; 14667 14668 if (is_null) { 14669 reg->type = SCALAR_VALUE; 14670 /* We don't need id and ref_obj_id from this point 14671 * onwards anymore, thus we should better reset it, 14672 * so that state pruning has chances to take effect. 14673 */ 14674 reg->id = 0; 14675 reg->ref_obj_id = 0; 14676 14677 return; 14678 } 14679 14680 mark_ptr_not_null_reg(reg); 14681 14682 if (!reg_may_point_to_spin_lock(reg)) { 14683 /* For not-NULL ptr, reg->ref_obj_id will be reset 14684 * in release_reference(). 14685 * 14686 * reg->id is still used by spin_lock ptr. Other 14687 * than spin_lock ptr type, reg->id can be reset. 14688 */ 14689 reg->id = 0; 14690 } 14691 } 14692 } 14693 14694 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14695 * be folded together at some point. 14696 */ 14697 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14698 bool is_null) 14699 { 14700 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14701 struct bpf_reg_state *regs = state->regs, *reg; 14702 u32 ref_obj_id = regs[regno].ref_obj_id; 14703 u32 id = regs[regno].id; 14704 14705 if (ref_obj_id && ref_obj_id == id && is_null) 14706 /* regs[regno] is in the " == NULL" branch. 14707 * No one could have freed the reference state before 14708 * doing the NULL check. 14709 */ 14710 WARN_ON_ONCE(release_reference_state(state, id)); 14711 14712 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14713 mark_ptr_or_null_reg(state, reg, id, is_null); 14714 })); 14715 } 14716 14717 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14718 struct bpf_reg_state *dst_reg, 14719 struct bpf_reg_state *src_reg, 14720 struct bpf_verifier_state *this_branch, 14721 struct bpf_verifier_state *other_branch) 14722 { 14723 if (BPF_SRC(insn->code) != BPF_X) 14724 return false; 14725 14726 /* Pointers are always 64-bit. */ 14727 if (BPF_CLASS(insn->code) == BPF_JMP32) 14728 return false; 14729 14730 switch (BPF_OP(insn->code)) { 14731 case BPF_JGT: 14732 if ((dst_reg->type == PTR_TO_PACKET && 14733 src_reg->type == PTR_TO_PACKET_END) || 14734 (dst_reg->type == PTR_TO_PACKET_META && 14735 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14736 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14737 find_good_pkt_pointers(this_branch, dst_reg, 14738 dst_reg->type, false); 14739 mark_pkt_end(other_branch, insn->dst_reg, true); 14740 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14741 src_reg->type == PTR_TO_PACKET) || 14742 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14743 src_reg->type == PTR_TO_PACKET_META)) { 14744 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14745 find_good_pkt_pointers(other_branch, src_reg, 14746 src_reg->type, true); 14747 mark_pkt_end(this_branch, insn->src_reg, false); 14748 } else { 14749 return false; 14750 } 14751 break; 14752 case BPF_JLT: 14753 if ((dst_reg->type == PTR_TO_PACKET && 14754 src_reg->type == PTR_TO_PACKET_END) || 14755 (dst_reg->type == PTR_TO_PACKET_META && 14756 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14757 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14758 find_good_pkt_pointers(other_branch, dst_reg, 14759 dst_reg->type, true); 14760 mark_pkt_end(this_branch, insn->dst_reg, false); 14761 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14762 src_reg->type == PTR_TO_PACKET) || 14763 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14764 src_reg->type == PTR_TO_PACKET_META)) { 14765 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14766 find_good_pkt_pointers(this_branch, src_reg, 14767 src_reg->type, false); 14768 mark_pkt_end(other_branch, insn->src_reg, true); 14769 } else { 14770 return false; 14771 } 14772 break; 14773 case BPF_JGE: 14774 if ((dst_reg->type == PTR_TO_PACKET && 14775 src_reg->type == PTR_TO_PACKET_END) || 14776 (dst_reg->type == PTR_TO_PACKET_META && 14777 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14778 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14779 find_good_pkt_pointers(this_branch, dst_reg, 14780 dst_reg->type, true); 14781 mark_pkt_end(other_branch, insn->dst_reg, false); 14782 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14783 src_reg->type == PTR_TO_PACKET) || 14784 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14785 src_reg->type == PTR_TO_PACKET_META)) { 14786 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14787 find_good_pkt_pointers(other_branch, src_reg, 14788 src_reg->type, false); 14789 mark_pkt_end(this_branch, insn->src_reg, true); 14790 } else { 14791 return false; 14792 } 14793 break; 14794 case BPF_JLE: 14795 if ((dst_reg->type == PTR_TO_PACKET && 14796 src_reg->type == PTR_TO_PACKET_END) || 14797 (dst_reg->type == PTR_TO_PACKET_META && 14798 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14799 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14800 find_good_pkt_pointers(other_branch, dst_reg, 14801 dst_reg->type, false); 14802 mark_pkt_end(this_branch, insn->dst_reg, true); 14803 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14804 src_reg->type == PTR_TO_PACKET) || 14805 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14806 src_reg->type == PTR_TO_PACKET_META)) { 14807 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14808 find_good_pkt_pointers(this_branch, src_reg, 14809 src_reg->type, true); 14810 mark_pkt_end(other_branch, insn->src_reg, false); 14811 } else { 14812 return false; 14813 } 14814 break; 14815 default: 14816 return false; 14817 } 14818 14819 return true; 14820 } 14821 14822 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14823 struct bpf_reg_state *known_reg) 14824 { 14825 struct bpf_func_state *state; 14826 struct bpf_reg_state *reg; 14827 14828 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14829 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14830 copy_register_state(reg, known_reg); 14831 })); 14832 } 14833 14834 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14835 struct bpf_insn *insn, int *insn_idx) 14836 { 14837 struct bpf_verifier_state *this_branch = env->cur_state; 14838 struct bpf_verifier_state *other_branch; 14839 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14840 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14841 struct bpf_reg_state *eq_branch_regs; 14842 u8 opcode = BPF_OP(insn->code); 14843 bool is_jmp32; 14844 int pred = -1; 14845 int err; 14846 14847 /* Only conditional jumps are expected to reach here. */ 14848 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14849 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14850 return -EINVAL; 14851 } 14852 14853 /* check src2 operand */ 14854 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14855 if (err) 14856 return err; 14857 14858 dst_reg = ®s[insn->dst_reg]; 14859 if (BPF_SRC(insn->code) == BPF_X) { 14860 if (insn->imm != 0) { 14861 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14862 return -EINVAL; 14863 } 14864 14865 /* check src1 operand */ 14866 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14867 if (err) 14868 return err; 14869 14870 src_reg = ®s[insn->src_reg]; 14871 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14872 is_pointer_value(env, insn->src_reg)) { 14873 verbose(env, "R%d pointer comparison prohibited\n", 14874 insn->src_reg); 14875 return -EACCES; 14876 } 14877 } else { 14878 if (insn->src_reg != BPF_REG_0) { 14879 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14880 return -EINVAL; 14881 } 14882 } 14883 14884 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14885 14886 if (BPF_SRC(insn->code) == BPF_K) { 14887 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14888 } else if (src_reg->type == SCALAR_VALUE && 14889 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14890 pred = is_branch_taken(dst_reg, 14891 tnum_subreg(src_reg->var_off).value, 14892 opcode, 14893 is_jmp32); 14894 } else if (src_reg->type == SCALAR_VALUE && 14895 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14896 pred = is_branch_taken(dst_reg, 14897 src_reg->var_off.value, 14898 opcode, 14899 is_jmp32); 14900 } else if (dst_reg->type == SCALAR_VALUE && 14901 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14902 pred = is_branch_taken(src_reg, 14903 tnum_subreg(dst_reg->var_off).value, 14904 flip_opcode(opcode), 14905 is_jmp32); 14906 } else if (dst_reg->type == SCALAR_VALUE && 14907 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14908 pred = is_branch_taken(src_reg, 14909 dst_reg->var_off.value, 14910 flip_opcode(opcode), 14911 is_jmp32); 14912 } else if (reg_is_pkt_pointer_any(dst_reg) && 14913 reg_is_pkt_pointer_any(src_reg) && 14914 !is_jmp32) { 14915 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14916 } 14917 14918 if (pred >= 0) { 14919 /* If we get here with a dst_reg pointer type it is because 14920 * above is_branch_taken() special cased the 0 comparison. 14921 */ 14922 if (!__is_pointer_value(false, dst_reg)) 14923 err = mark_chain_precision(env, insn->dst_reg); 14924 if (BPF_SRC(insn->code) == BPF_X && !err && 14925 !__is_pointer_value(false, src_reg)) 14926 err = mark_chain_precision(env, insn->src_reg); 14927 if (err) 14928 return err; 14929 } 14930 14931 if (pred == 1) { 14932 /* Only follow the goto, ignore fall-through. If needed, push 14933 * the fall-through branch for simulation under speculative 14934 * execution. 14935 */ 14936 if (!env->bypass_spec_v1 && 14937 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14938 *insn_idx)) 14939 return -EFAULT; 14940 if (env->log.level & BPF_LOG_LEVEL) 14941 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14942 *insn_idx += insn->off; 14943 return 0; 14944 } else if (pred == 0) { 14945 /* Only follow the fall-through branch, since that's where the 14946 * program will go. If needed, push the goto branch for 14947 * simulation under speculative execution. 14948 */ 14949 if (!env->bypass_spec_v1 && 14950 !sanitize_speculative_path(env, insn, 14951 *insn_idx + insn->off + 1, 14952 *insn_idx)) 14953 return -EFAULT; 14954 if (env->log.level & BPF_LOG_LEVEL) 14955 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14956 return 0; 14957 } 14958 14959 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14960 false); 14961 if (!other_branch) 14962 return -EFAULT; 14963 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14964 14965 /* detect if we are comparing against a constant value so we can adjust 14966 * our min/max values for our dst register. 14967 * this is only legit if both are scalars (or pointers to the same 14968 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14969 * because otherwise the different base pointers mean the offsets aren't 14970 * comparable. 14971 */ 14972 if (BPF_SRC(insn->code) == BPF_X) { 14973 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14974 14975 if (dst_reg->type == SCALAR_VALUE && 14976 src_reg->type == SCALAR_VALUE) { 14977 if (tnum_is_const(src_reg->var_off) || 14978 (is_jmp32 && 14979 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14980 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14981 dst_reg, 14982 src_reg->var_off.value, 14983 tnum_subreg(src_reg->var_off).value, 14984 opcode, is_jmp32); 14985 else if (tnum_is_const(dst_reg->var_off) || 14986 (is_jmp32 && 14987 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14988 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14989 src_reg, 14990 dst_reg->var_off.value, 14991 tnum_subreg(dst_reg->var_off).value, 14992 opcode, is_jmp32); 14993 else if (!is_jmp32 && 14994 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14995 /* Comparing for equality, we can combine knowledge */ 14996 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14997 &other_branch_regs[insn->dst_reg], 14998 src_reg, dst_reg, opcode); 14999 if (src_reg->id && 15000 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15001 find_equal_scalars(this_branch, src_reg); 15002 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 15003 } 15004 15005 } 15006 } else if (dst_reg->type == SCALAR_VALUE) { 15007 reg_set_min_max(&other_branch_regs[insn->dst_reg], 15008 dst_reg, insn->imm, (u32)insn->imm, 15009 opcode, is_jmp32); 15010 } 15011 15012 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15013 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15014 find_equal_scalars(this_branch, dst_reg); 15015 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 15016 } 15017 15018 /* if one pointer register is compared to another pointer 15019 * register check if PTR_MAYBE_NULL could be lifted. 15020 * E.g. register A - maybe null 15021 * register B - not null 15022 * for JNE A, B, ... - A is not null in the false branch; 15023 * for JEQ A, B, ... - A is not null in the true branch. 15024 * 15025 * Since PTR_TO_BTF_ID points to a kernel struct that does 15026 * not need to be null checked by the BPF program, i.e., 15027 * could be null even without PTR_MAYBE_NULL marking, so 15028 * only propagate nullness when neither reg is that type. 15029 */ 15030 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15031 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15032 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15033 base_type(src_reg->type) != PTR_TO_BTF_ID && 15034 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15035 eq_branch_regs = NULL; 15036 switch (opcode) { 15037 case BPF_JEQ: 15038 eq_branch_regs = other_branch_regs; 15039 break; 15040 case BPF_JNE: 15041 eq_branch_regs = regs; 15042 break; 15043 default: 15044 /* do nothing */ 15045 break; 15046 } 15047 if (eq_branch_regs) { 15048 if (type_may_be_null(src_reg->type)) 15049 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15050 else 15051 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15052 } 15053 } 15054 15055 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15056 * NOTE: these optimizations below are related with pointer comparison 15057 * which will never be JMP32. 15058 */ 15059 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15060 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15061 type_may_be_null(dst_reg->type)) { 15062 /* Mark all identical registers in each branch as either 15063 * safe or unknown depending R == 0 or R != 0 conditional. 15064 */ 15065 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15066 opcode == BPF_JNE); 15067 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15068 opcode == BPF_JEQ); 15069 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15070 this_branch, other_branch) && 15071 is_pointer_value(env, insn->dst_reg)) { 15072 verbose(env, "R%d pointer comparison prohibited\n", 15073 insn->dst_reg); 15074 return -EACCES; 15075 } 15076 if (env->log.level & BPF_LOG_LEVEL) 15077 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15078 return 0; 15079 } 15080 15081 /* verify BPF_LD_IMM64 instruction */ 15082 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15083 { 15084 struct bpf_insn_aux_data *aux = cur_aux(env); 15085 struct bpf_reg_state *regs = cur_regs(env); 15086 struct bpf_reg_state *dst_reg; 15087 struct bpf_map *map; 15088 int err; 15089 15090 if (BPF_SIZE(insn->code) != BPF_DW) { 15091 verbose(env, "invalid BPF_LD_IMM insn\n"); 15092 return -EINVAL; 15093 } 15094 if (insn->off != 0) { 15095 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15096 return -EINVAL; 15097 } 15098 15099 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15100 if (err) 15101 return err; 15102 15103 dst_reg = ®s[insn->dst_reg]; 15104 if (insn->src_reg == 0) { 15105 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15106 15107 dst_reg->type = SCALAR_VALUE; 15108 __mark_reg_known(®s[insn->dst_reg], imm); 15109 return 0; 15110 } 15111 15112 /* All special src_reg cases are listed below. From this point onwards 15113 * we either succeed and assign a corresponding dst_reg->type after 15114 * zeroing the offset, or fail and reject the program. 15115 */ 15116 mark_reg_known_zero(env, regs, insn->dst_reg); 15117 15118 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15119 dst_reg->type = aux->btf_var.reg_type; 15120 switch (base_type(dst_reg->type)) { 15121 case PTR_TO_MEM: 15122 dst_reg->mem_size = aux->btf_var.mem_size; 15123 break; 15124 case PTR_TO_BTF_ID: 15125 dst_reg->btf = aux->btf_var.btf; 15126 dst_reg->btf_id = aux->btf_var.btf_id; 15127 break; 15128 default: 15129 verbose(env, "bpf verifier is misconfigured\n"); 15130 return -EFAULT; 15131 } 15132 return 0; 15133 } 15134 15135 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15136 struct bpf_prog_aux *aux = env->prog->aux; 15137 u32 subprogno = find_subprog(env, 15138 env->insn_idx + insn->imm + 1); 15139 15140 if (!aux->func_info) { 15141 verbose(env, "missing btf func_info\n"); 15142 return -EINVAL; 15143 } 15144 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15145 verbose(env, "callback function not static\n"); 15146 return -EINVAL; 15147 } 15148 15149 dst_reg->type = PTR_TO_FUNC; 15150 dst_reg->subprogno = subprogno; 15151 return 0; 15152 } 15153 15154 map = env->used_maps[aux->map_index]; 15155 dst_reg->map_ptr = map; 15156 15157 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15158 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15159 dst_reg->type = PTR_TO_MAP_VALUE; 15160 dst_reg->off = aux->map_off; 15161 WARN_ON_ONCE(map->max_entries != 1); 15162 /* We want reg->id to be same (0) as map_value is not distinct */ 15163 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15164 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15165 dst_reg->type = CONST_PTR_TO_MAP; 15166 } else { 15167 verbose(env, "bpf verifier is misconfigured\n"); 15168 return -EINVAL; 15169 } 15170 15171 return 0; 15172 } 15173 15174 static bool may_access_skb(enum bpf_prog_type type) 15175 { 15176 switch (type) { 15177 case BPF_PROG_TYPE_SOCKET_FILTER: 15178 case BPF_PROG_TYPE_SCHED_CLS: 15179 case BPF_PROG_TYPE_SCHED_ACT: 15180 return true; 15181 default: 15182 return false; 15183 } 15184 } 15185 15186 /* verify safety of LD_ABS|LD_IND instructions: 15187 * - they can only appear in the programs where ctx == skb 15188 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15189 * preserve R6-R9, and store return value into R0 15190 * 15191 * Implicit input: 15192 * ctx == skb == R6 == CTX 15193 * 15194 * Explicit input: 15195 * SRC == any register 15196 * IMM == 32-bit immediate 15197 * 15198 * Output: 15199 * R0 - 8/16/32-bit skb data converted to cpu endianness 15200 */ 15201 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15202 { 15203 struct bpf_reg_state *regs = cur_regs(env); 15204 static const int ctx_reg = BPF_REG_6; 15205 u8 mode = BPF_MODE(insn->code); 15206 int i, err; 15207 15208 if (!may_access_skb(resolve_prog_type(env->prog))) { 15209 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15210 return -EINVAL; 15211 } 15212 15213 if (!env->ops->gen_ld_abs) { 15214 verbose(env, "bpf verifier is misconfigured\n"); 15215 return -EINVAL; 15216 } 15217 15218 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15219 BPF_SIZE(insn->code) == BPF_DW || 15220 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15221 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15222 return -EINVAL; 15223 } 15224 15225 /* check whether implicit source operand (register R6) is readable */ 15226 err = check_reg_arg(env, ctx_reg, SRC_OP); 15227 if (err) 15228 return err; 15229 15230 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15231 * gen_ld_abs() may terminate the program at runtime, leading to 15232 * reference leak. 15233 */ 15234 err = check_reference_leak(env, false); 15235 if (err) { 15236 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15237 return err; 15238 } 15239 15240 if (env->cur_state->active_lock.ptr) { 15241 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15242 return -EINVAL; 15243 } 15244 15245 if (env->cur_state->active_rcu_lock) { 15246 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15247 return -EINVAL; 15248 } 15249 15250 if (regs[ctx_reg].type != PTR_TO_CTX) { 15251 verbose(env, 15252 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15253 return -EINVAL; 15254 } 15255 15256 if (mode == BPF_IND) { 15257 /* check explicit source operand */ 15258 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15259 if (err) 15260 return err; 15261 } 15262 15263 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15264 if (err < 0) 15265 return err; 15266 15267 /* reset caller saved regs to unreadable */ 15268 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15269 mark_reg_not_init(env, regs, caller_saved[i]); 15270 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15271 } 15272 15273 /* mark destination R0 register as readable, since it contains 15274 * the value fetched from the packet. 15275 * Already marked as written above. 15276 */ 15277 mark_reg_unknown(env, regs, BPF_REG_0); 15278 /* ld_abs load up to 32-bit skb data. */ 15279 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15280 return 0; 15281 } 15282 15283 static int check_return_code(struct bpf_verifier_env *env, int regno) 15284 { 15285 struct tnum enforce_attach_type_range = tnum_unknown; 15286 const struct bpf_prog *prog = env->prog; 15287 struct bpf_reg_state *reg; 15288 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 15289 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15290 int err; 15291 struct bpf_func_state *frame = env->cur_state->frame[0]; 15292 const bool is_subprog = frame->subprogno; 15293 15294 /* LSM and struct_ops func-ptr's return type could be "void" */ 15295 if (!is_subprog || frame->in_exception_callback_fn) { 15296 switch (prog_type) { 15297 case BPF_PROG_TYPE_LSM: 15298 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15299 /* See below, can be 0 or 0-1 depending on hook. */ 15300 break; 15301 fallthrough; 15302 case BPF_PROG_TYPE_STRUCT_OPS: 15303 if (!prog->aux->attach_func_proto->type) 15304 return 0; 15305 break; 15306 default: 15307 break; 15308 } 15309 } 15310 15311 /* eBPF calling convention is such that R0 is used 15312 * to return the value from eBPF program. 15313 * Make sure that it's readable at this time 15314 * of bpf_exit, which means that program wrote 15315 * something into it earlier 15316 */ 15317 err = check_reg_arg(env, regno, SRC_OP); 15318 if (err) 15319 return err; 15320 15321 if (is_pointer_value(env, regno)) { 15322 verbose(env, "R%d leaks addr as return value\n", regno); 15323 return -EACCES; 15324 } 15325 15326 reg = cur_regs(env) + regno; 15327 15328 if (frame->in_async_callback_fn) { 15329 /* enforce return zero from async callbacks like timer */ 15330 if (reg->type != SCALAR_VALUE) { 15331 verbose(env, "In async callback the register R%d is not a known value (%s)\n", 15332 regno, reg_type_str(env, reg->type)); 15333 return -EINVAL; 15334 } 15335 15336 if (!tnum_in(const_0, reg->var_off)) { 15337 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 15338 return -EINVAL; 15339 } 15340 return 0; 15341 } 15342 15343 if (is_subprog && !frame->in_exception_callback_fn) { 15344 if (reg->type != SCALAR_VALUE) { 15345 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15346 regno, reg_type_str(env, reg->type)); 15347 return -EINVAL; 15348 } 15349 return 0; 15350 } 15351 15352 switch (prog_type) { 15353 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15354 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15355 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15356 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15357 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15358 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15359 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15360 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15361 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15362 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15363 range = tnum_range(1, 1); 15364 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15365 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15366 range = tnum_range(0, 3); 15367 break; 15368 case BPF_PROG_TYPE_CGROUP_SKB: 15369 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15370 range = tnum_range(0, 3); 15371 enforce_attach_type_range = tnum_range(2, 3); 15372 } 15373 break; 15374 case BPF_PROG_TYPE_CGROUP_SOCK: 15375 case BPF_PROG_TYPE_SOCK_OPS: 15376 case BPF_PROG_TYPE_CGROUP_DEVICE: 15377 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15378 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15379 break; 15380 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15381 if (!env->prog->aux->attach_btf_id) 15382 return 0; 15383 range = tnum_const(0); 15384 break; 15385 case BPF_PROG_TYPE_TRACING: 15386 switch (env->prog->expected_attach_type) { 15387 case BPF_TRACE_FENTRY: 15388 case BPF_TRACE_FEXIT: 15389 range = tnum_const(0); 15390 break; 15391 case BPF_TRACE_RAW_TP: 15392 case BPF_MODIFY_RETURN: 15393 return 0; 15394 case BPF_TRACE_ITER: 15395 break; 15396 default: 15397 return -ENOTSUPP; 15398 } 15399 break; 15400 case BPF_PROG_TYPE_SK_LOOKUP: 15401 range = tnum_range(SK_DROP, SK_PASS); 15402 break; 15403 15404 case BPF_PROG_TYPE_LSM: 15405 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15406 /* Regular BPF_PROG_TYPE_LSM programs can return 15407 * any value. 15408 */ 15409 return 0; 15410 } 15411 if (!env->prog->aux->attach_func_proto->type) { 15412 /* Make sure programs that attach to void 15413 * hooks don't try to modify return value. 15414 */ 15415 range = tnum_range(1, 1); 15416 } 15417 break; 15418 15419 case BPF_PROG_TYPE_NETFILTER: 15420 range = tnum_range(NF_DROP, NF_ACCEPT); 15421 break; 15422 case BPF_PROG_TYPE_EXT: 15423 /* freplace program can return anything as its return value 15424 * depends on the to-be-replaced kernel func or bpf program. 15425 */ 15426 default: 15427 return 0; 15428 } 15429 15430 if (reg->type != SCALAR_VALUE) { 15431 verbose(env, "At program exit the register R%d is not a known value (%s)\n", 15432 regno, reg_type_str(env, reg->type)); 15433 return -EINVAL; 15434 } 15435 15436 if (!tnum_in(range, reg->var_off)) { 15437 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15438 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15439 prog_type == BPF_PROG_TYPE_LSM && 15440 !prog->aux->attach_func_proto->type) 15441 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15442 return -EINVAL; 15443 } 15444 15445 if (!tnum_is_unknown(enforce_attach_type_range) && 15446 tnum_in(enforce_attach_type_range, reg->var_off)) 15447 env->prog->enforce_expected_attach_type = 1; 15448 return 0; 15449 } 15450 15451 /* non-recursive DFS pseudo code 15452 * 1 procedure DFS-iterative(G,v): 15453 * 2 label v as discovered 15454 * 3 let S be a stack 15455 * 4 S.push(v) 15456 * 5 while S is not empty 15457 * 6 t <- S.peek() 15458 * 7 if t is what we're looking for: 15459 * 8 return t 15460 * 9 for all edges e in G.adjacentEdges(t) do 15461 * 10 if edge e is already labelled 15462 * 11 continue with the next edge 15463 * 12 w <- G.adjacentVertex(t,e) 15464 * 13 if vertex w is not discovered and not explored 15465 * 14 label e as tree-edge 15466 * 15 label w as discovered 15467 * 16 S.push(w) 15468 * 17 continue at 5 15469 * 18 else if vertex w is discovered 15470 * 19 label e as back-edge 15471 * 20 else 15472 * 21 // vertex w is explored 15473 * 22 label e as forward- or cross-edge 15474 * 23 label t as explored 15475 * 24 S.pop() 15476 * 15477 * convention: 15478 * 0x10 - discovered 15479 * 0x11 - discovered and fall-through edge labelled 15480 * 0x12 - discovered and fall-through and branch edges labelled 15481 * 0x20 - explored 15482 */ 15483 15484 enum { 15485 DISCOVERED = 0x10, 15486 EXPLORED = 0x20, 15487 FALLTHROUGH = 1, 15488 BRANCH = 2, 15489 }; 15490 15491 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15492 { 15493 env->insn_aux_data[idx].prune_point = true; 15494 } 15495 15496 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15497 { 15498 return env->insn_aux_data[insn_idx].prune_point; 15499 } 15500 15501 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15502 { 15503 env->insn_aux_data[idx].force_checkpoint = true; 15504 } 15505 15506 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15507 { 15508 return env->insn_aux_data[insn_idx].force_checkpoint; 15509 } 15510 15511 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15512 { 15513 env->insn_aux_data[idx].calls_callback = true; 15514 } 15515 15516 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15517 { 15518 return env->insn_aux_data[insn_idx].calls_callback; 15519 } 15520 15521 enum { 15522 DONE_EXPLORING = 0, 15523 KEEP_EXPLORING = 1, 15524 }; 15525 15526 /* t, w, e - match pseudo-code above: 15527 * t - index of current instruction 15528 * w - next instruction 15529 * e - edge 15530 */ 15531 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15532 { 15533 int *insn_stack = env->cfg.insn_stack; 15534 int *insn_state = env->cfg.insn_state; 15535 15536 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15537 return DONE_EXPLORING; 15538 15539 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15540 return DONE_EXPLORING; 15541 15542 if (w < 0 || w >= env->prog->len) { 15543 verbose_linfo(env, t, "%d: ", t); 15544 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15545 return -EINVAL; 15546 } 15547 15548 if (e == BRANCH) { 15549 /* mark branch target for state pruning */ 15550 mark_prune_point(env, w); 15551 mark_jmp_point(env, w); 15552 } 15553 15554 if (insn_state[w] == 0) { 15555 /* tree-edge */ 15556 insn_state[t] = DISCOVERED | e; 15557 insn_state[w] = DISCOVERED; 15558 if (env->cfg.cur_stack >= env->prog->len) 15559 return -E2BIG; 15560 insn_stack[env->cfg.cur_stack++] = w; 15561 return KEEP_EXPLORING; 15562 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15563 if (env->bpf_capable) 15564 return DONE_EXPLORING; 15565 verbose_linfo(env, t, "%d: ", t); 15566 verbose_linfo(env, w, "%d: ", w); 15567 verbose(env, "back-edge from insn %d to %d\n", t, w); 15568 return -EINVAL; 15569 } else if (insn_state[w] == EXPLORED) { 15570 /* forward- or cross-edge */ 15571 insn_state[t] = DISCOVERED | e; 15572 } else { 15573 verbose(env, "insn state internal bug\n"); 15574 return -EFAULT; 15575 } 15576 return DONE_EXPLORING; 15577 } 15578 15579 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15580 struct bpf_verifier_env *env, 15581 bool visit_callee) 15582 { 15583 int ret, insn_sz; 15584 15585 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15586 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15587 if (ret) 15588 return ret; 15589 15590 mark_prune_point(env, t + insn_sz); 15591 /* when we exit from subprog, we need to record non-linear history */ 15592 mark_jmp_point(env, t + insn_sz); 15593 15594 if (visit_callee) { 15595 mark_prune_point(env, t); 15596 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15597 } 15598 return ret; 15599 } 15600 15601 /* Visits the instruction at index t and returns one of the following: 15602 * < 0 - an error occurred 15603 * DONE_EXPLORING - the instruction was fully explored 15604 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15605 */ 15606 static int visit_insn(int t, struct bpf_verifier_env *env) 15607 { 15608 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15609 int ret, off, insn_sz; 15610 15611 if (bpf_pseudo_func(insn)) 15612 return visit_func_call_insn(t, insns, env, true); 15613 15614 /* All non-branch instructions have a single fall-through edge. */ 15615 if (BPF_CLASS(insn->code) != BPF_JMP && 15616 BPF_CLASS(insn->code) != BPF_JMP32) { 15617 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15618 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15619 } 15620 15621 switch (BPF_OP(insn->code)) { 15622 case BPF_EXIT: 15623 return DONE_EXPLORING; 15624 15625 case BPF_CALL: 15626 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15627 /* Mark this call insn as a prune point to trigger 15628 * is_state_visited() check before call itself is 15629 * processed by __check_func_call(). Otherwise new 15630 * async state will be pushed for further exploration. 15631 */ 15632 mark_prune_point(env, t); 15633 /* For functions that invoke callbacks it is not known how many times 15634 * callback would be called. Verifier models callback calling functions 15635 * by repeatedly visiting callback bodies and returning to origin call 15636 * instruction. 15637 * In order to stop such iteration verifier needs to identify when a 15638 * state identical some state from a previous iteration is reached. 15639 * Check below forces creation of checkpoint before callback calling 15640 * instruction to allow search for such identical states. 15641 */ 15642 if (is_sync_callback_calling_insn(insn)) { 15643 mark_calls_callback(env, t); 15644 mark_force_checkpoint(env, t); 15645 mark_prune_point(env, t); 15646 mark_jmp_point(env, t); 15647 } 15648 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15649 struct bpf_kfunc_call_arg_meta meta; 15650 15651 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15652 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15653 mark_prune_point(env, t); 15654 /* Checking and saving state checkpoints at iter_next() call 15655 * is crucial for fast convergence of open-coded iterator loop 15656 * logic, so we need to force it. If we don't do that, 15657 * is_state_visited() might skip saving a checkpoint, causing 15658 * unnecessarily long sequence of not checkpointed 15659 * instructions and jumps, leading to exhaustion of jump 15660 * history buffer, and potentially other undesired outcomes. 15661 * It is expected that with correct open-coded iterators 15662 * convergence will happen quickly, so we don't run a risk of 15663 * exhausting memory. 15664 */ 15665 mark_force_checkpoint(env, t); 15666 } 15667 } 15668 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15669 15670 case BPF_JA: 15671 if (BPF_SRC(insn->code) != BPF_K) 15672 return -EINVAL; 15673 15674 if (BPF_CLASS(insn->code) == BPF_JMP) 15675 off = insn->off; 15676 else 15677 off = insn->imm; 15678 15679 /* unconditional jump with single edge */ 15680 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15681 if (ret) 15682 return ret; 15683 15684 mark_prune_point(env, t + off + 1); 15685 mark_jmp_point(env, t + off + 1); 15686 15687 return ret; 15688 15689 default: 15690 /* conditional jump with two edges */ 15691 mark_prune_point(env, t); 15692 15693 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15694 if (ret) 15695 return ret; 15696 15697 return push_insn(t, t + insn->off + 1, BRANCH, env); 15698 } 15699 } 15700 15701 /* non-recursive depth-first-search to detect loops in BPF program 15702 * loop == back-edge in directed graph 15703 */ 15704 static int check_cfg(struct bpf_verifier_env *env) 15705 { 15706 int insn_cnt = env->prog->len; 15707 int *insn_stack, *insn_state; 15708 int ex_insn_beg, i, ret = 0; 15709 bool ex_done = false; 15710 15711 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15712 if (!insn_state) 15713 return -ENOMEM; 15714 15715 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15716 if (!insn_stack) { 15717 kvfree(insn_state); 15718 return -ENOMEM; 15719 } 15720 15721 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15722 insn_stack[0] = 0; /* 0 is the first instruction */ 15723 env->cfg.cur_stack = 1; 15724 15725 walk_cfg: 15726 while (env->cfg.cur_stack > 0) { 15727 int t = insn_stack[env->cfg.cur_stack - 1]; 15728 15729 ret = visit_insn(t, env); 15730 switch (ret) { 15731 case DONE_EXPLORING: 15732 insn_state[t] = EXPLORED; 15733 env->cfg.cur_stack--; 15734 break; 15735 case KEEP_EXPLORING: 15736 break; 15737 default: 15738 if (ret > 0) { 15739 verbose(env, "visit_insn internal bug\n"); 15740 ret = -EFAULT; 15741 } 15742 goto err_free; 15743 } 15744 } 15745 15746 if (env->cfg.cur_stack < 0) { 15747 verbose(env, "pop stack internal bug\n"); 15748 ret = -EFAULT; 15749 goto err_free; 15750 } 15751 15752 if (env->exception_callback_subprog && !ex_done) { 15753 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 15754 15755 insn_state[ex_insn_beg] = DISCOVERED; 15756 insn_stack[0] = ex_insn_beg; 15757 env->cfg.cur_stack = 1; 15758 ex_done = true; 15759 goto walk_cfg; 15760 } 15761 15762 for (i = 0; i < insn_cnt; i++) { 15763 struct bpf_insn *insn = &env->prog->insnsi[i]; 15764 15765 if (insn_state[i] != EXPLORED) { 15766 verbose(env, "unreachable insn %d\n", i); 15767 ret = -EINVAL; 15768 goto err_free; 15769 } 15770 if (bpf_is_ldimm64(insn)) { 15771 if (insn_state[i + 1] != 0) { 15772 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15773 ret = -EINVAL; 15774 goto err_free; 15775 } 15776 i++; /* skip second half of ldimm64 */ 15777 } 15778 } 15779 ret = 0; /* cfg looks good */ 15780 15781 err_free: 15782 kvfree(insn_state); 15783 kvfree(insn_stack); 15784 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15785 return ret; 15786 } 15787 15788 static int check_abnormal_return(struct bpf_verifier_env *env) 15789 { 15790 int i; 15791 15792 for (i = 1; i < env->subprog_cnt; i++) { 15793 if (env->subprog_info[i].has_ld_abs) { 15794 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15795 return -EINVAL; 15796 } 15797 if (env->subprog_info[i].has_tail_call) { 15798 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15799 return -EINVAL; 15800 } 15801 } 15802 return 0; 15803 } 15804 15805 /* The minimum supported BTF func info size */ 15806 #define MIN_BPF_FUNCINFO_SIZE 8 15807 #define MAX_FUNCINFO_REC_SIZE 252 15808 15809 static int check_btf_func_early(struct bpf_verifier_env *env, 15810 const union bpf_attr *attr, 15811 bpfptr_t uattr) 15812 { 15813 u32 krec_size = sizeof(struct bpf_func_info); 15814 const struct btf_type *type, *func_proto; 15815 u32 i, nfuncs, urec_size, min_size; 15816 struct bpf_func_info *krecord; 15817 struct bpf_prog *prog; 15818 const struct btf *btf; 15819 u32 prev_offset = 0; 15820 bpfptr_t urecord; 15821 int ret = -ENOMEM; 15822 15823 nfuncs = attr->func_info_cnt; 15824 if (!nfuncs) { 15825 if (check_abnormal_return(env)) 15826 return -EINVAL; 15827 return 0; 15828 } 15829 15830 urec_size = attr->func_info_rec_size; 15831 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15832 urec_size > MAX_FUNCINFO_REC_SIZE || 15833 urec_size % sizeof(u32)) { 15834 verbose(env, "invalid func info rec size %u\n", urec_size); 15835 return -EINVAL; 15836 } 15837 15838 prog = env->prog; 15839 btf = prog->aux->btf; 15840 15841 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15842 min_size = min_t(u32, krec_size, urec_size); 15843 15844 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15845 if (!krecord) 15846 return -ENOMEM; 15847 15848 for (i = 0; i < nfuncs; i++) { 15849 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15850 if (ret) { 15851 if (ret == -E2BIG) { 15852 verbose(env, "nonzero tailing record in func info"); 15853 /* set the size kernel expects so loader can zero 15854 * out the rest of the record. 15855 */ 15856 if (copy_to_bpfptr_offset(uattr, 15857 offsetof(union bpf_attr, func_info_rec_size), 15858 &min_size, sizeof(min_size))) 15859 ret = -EFAULT; 15860 } 15861 goto err_free; 15862 } 15863 15864 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15865 ret = -EFAULT; 15866 goto err_free; 15867 } 15868 15869 /* check insn_off */ 15870 ret = -EINVAL; 15871 if (i == 0) { 15872 if (krecord[i].insn_off) { 15873 verbose(env, 15874 "nonzero insn_off %u for the first func info record", 15875 krecord[i].insn_off); 15876 goto err_free; 15877 } 15878 } else if (krecord[i].insn_off <= prev_offset) { 15879 verbose(env, 15880 "same or smaller insn offset (%u) than previous func info record (%u)", 15881 krecord[i].insn_off, prev_offset); 15882 goto err_free; 15883 } 15884 15885 /* check type_id */ 15886 type = btf_type_by_id(btf, krecord[i].type_id); 15887 if (!type || !btf_type_is_func(type)) { 15888 verbose(env, "invalid type id %d in func info", 15889 krecord[i].type_id); 15890 goto err_free; 15891 } 15892 15893 func_proto = btf_type_by_id(btf, type->type); 15894 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15895 /* btf_func_check() already verified it during BTF load */ 15896 goto err_free; 15897 15898 prev_offset = krecord[i].insn_off; 15899 bpfptr_add(&urecord, urec_size); 15900 } 15901 15902 prog->aux->func_info = krecord; 15903 prog->aux->func_info_cnt = nfuncs; 15904 return 0; 15905 15906 err_free: 15907 kvfree(krecord); 15908 return ret; 15909 } 15910 15911 static int check_btf_func(struct bpf_verifier_env *env, 15912 const union bpf_attr *attr, 15913 bpfptr_t uattr) 15914 { 15915 const struct btf_type *type, *func_proto, *ret_type; 15916 u32 i, nfuncs, urec_size; 15917 struct bpf_func_info *krecord; 15918 struct bpf_func_info_aux *info_aux = NULL; 15919 struct bpf_prog *prog; 15920 const struct btf *btf; 15921 bpfptr_t urecord; 15922 bool scalar_return; 15923 int ret = -ENOMEM; 15924 15925 nfuncs = attr->func_info_cnt; 15926 if (!nfuncs) { 15927 if (check_abnormal_return(env)) 15928 return -EINVAL; 15929 return 0; 15930 } 15931 if (nfuncs != env->subprog_cnt) { 15932 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15933 return -EINVAL; 15934 } 15935 15936 urec_size = attr->func_info_rec_size; 15937 15938 prog = env->prog; 15939 btf = prog->aux->btf; 15940 15941 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15942 15943 krecord = prog->aux->func_info; 15944 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15945 if (!info_aux) 15946 return -ENOMEM; 15947 15948 for (i = 0; i < nfuncs; i++) { 15949 /* check insn_off */ 15950 ret = -EINVAL; 15951 15952 if (env->subprog_info[i].start != krecord[i].insn_off) { 15953 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15954 goto err_free; 15955 } 15956 15957 /* Already checked type_id */ 15958 type = btf_type_by_id(btf, krecord[i].type_id); 15959 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15960 /* Already checked func_proto */ 15961 func_proto = btf_type_by_id(btf, type->type); 15962 15963 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15964 scalar_return = 15965 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15966 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15967 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15968 goto err_free; 15969 } 15970 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15971 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15972 goto err_free; 15973 } 15974 15975 bpfptr_add(&urecord, urec_size); 15976 } 15977 15978 prog->aux->func_info_aux = info_aux; 15979 return 0; 15980 15981 err_free: 15982 kfree(info_aux); 15983 return ret; 15984 } 15985 15986 static void adjust_btf_func(struct bpf_verifier_env *env) 15987 { 15988 struct bpf_prog_aux *aux = env->prog->aux; 15989 int i; 15990 15991 if (!aux->func_info) 15992 return; 15993 15994 /* func_info is not available for hidden subprogs */ 15995 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 15996 aux->func_info[i].insn_off = env->subprog_info[i].start; 15997 } 15998 15999 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 16000 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 16001 16002 static int check_btf_line(struct bpf_verifier_env *env, 16003 const union bpf_attr *attr, 16004 bpfptr_t uattr) 16005 { 16006 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 16007 struct bpf_subprog_info *sub; 16008 struct bpf_line_info *linfo; 16009 struct bpf_prog *prog; 16010 const struct btf *btf; 16011 bpfptr_t ulinfo; 16012 int err; 16013 16014 nr_linfo = attr->line_info_cnt; 16015 if (!nr_linfo) 16016 return 0; 16017 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 16018 return -EINVAL; 16019 16020 rec_size = attr->line_info_rec_size; 16021 if (rec_size < MIN_BPF_LINEINFO_SIZE || 16022 rec_size > MAX_LINEINFO_REC_SIZE || 16023 rec_size & (sizeof(u32) - 1)) 16024 return -EINVAL; 16025 16026 /* Need to zero it in case the userspace may 16027 * pass in a smaller bpf_line_info object. 16028 */ 16029 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 16030 GFP_KERNEL | __GFP_NOWARN); 16031 if (!linfo) 16032 return -ENOMEM; 16033 16034 prog = env->prog; 16035 btf = prog->aux->btf; 16036 16037 s = 0; 16038 sub = env->subprog_info; 16039 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 16040 expected_size = sizeof(struct bpf_line_info); 16041 ncopy = min_t(u32, expected_size, rec_size); 16042 for (i = 0; i < nr_linfo; i++) { 16043 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 16044 if (err) { 16045 if (err == -E2BIG) { 16046 verbose(env, "nonzero tailing record in line_info"); 16047 if (copy_to_bpfptr_offset(uattr, 16048 offsetof(union bpf_attr, line_info_rec_size), 16049 &expected_size, sizeof(expected_size))) 16050 err = -EFAULT; 16051 } 16052 goto err_free; 16053 } 16054 16055 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16056 err = -EFAULT; 16057 goto err_free; 16058 } 16059 16060 /* 16061 * Check insn_off to ensure 16062 * 1) strictly increasing AND 16063 * 2) bounded by prog->len 16064 * 16065 * The linfo[0].insn_off == 0 check logically falls into 16066 * the later "missing bpf_line_info for func..." case 16067 * because the first linfo[0].insn_off must be the 16068 * first sub also and the first sub must have 16069 * subprog_info[0].start == 0. 16070 */ 16071 if ((i && linfo[i].insn_off <= prev_offset) || 16072 linfo[i].insn_off >= prog->len) { 16073 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16074 i, linfo[i].insn_off, prev_offset, 16075 prog->len); 16076 err = -EINVAL; 16077 goto err_free; 16078 } 16079 16080 if (!prog->insnsi[linfo[i].insn_off].code) { 16081 verbose(env, 16082 "Invalid insn code at line_info[%u].insn_off\n", 16083 i); 16084 err = -EINVAL; 16085 goto err_free; 16086 } 16087 16088 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16089 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16090 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16091 err = -EINVAL; 16092 goto err_free; 16093 } 16094 16095 if (s != env->subprog_cnt) { 16096 if (linfo[i].insn_off == sub[s].start) { 16097 sub[s].linfo_idx = i; 16098 s++; 16099 } else if (sub[s].start < linfo[i].insn_off) { 16100 verbose(env, "missing bpf_line_info for func#%u\n", s); 16101 err = -EINVAL; 16102 goto err_free; 16103 } 16104 } 16105 16106 prev_offset = linfo[i].insn_off; 16107 bpfptr_add(&ulinfo, rec_size); 16108 } 16109 16110 if (s != env->subprog_cnt) { 16111 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16112 env->subprog_cnt - s, s); 16113 err = -EINVAL; 16114 goto err_free; 16115 } 16116 16117 prog->aux->linfo = linfo; 16118 prog->aux->nr_linfo = nr_linfo; 16119 16120 return 0; 16121 16122 err_free: 16123 kvfree(linfo); 16124 return err; 16125 } 16126 16127 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16128 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16129 16130 static int check_core_relo(struct bpf_verifier_env *env, 16131 const union bpf_attr *attr, 16132 bpfptr_t uattr) 16133 { 16134 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16135 struct bpf_core_relo core_relo = {}; 16136 struct bpf_prog *prog = env->prog; 16137 const struct btf *btf = prog->aux->btf; 16138 struct bpf_core_ctx ctx = { 16139 .log = &env->log, 16140 .btf = btf, 16141 }; 16142 bpfptr_t u_core_relo; 16143 int err; 16144 16145 nr_core_relo = attr->core_relo_cnt; 16146 if (!nr_core_relo) 16147 return 0; 16148 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16149 return -EINVAL; 16150 16151 rec_size = attr->core_relo_rec_size; 16152 if (rec_size < MIN_CORE_RELO_SIZE || 16153 rec_size > MAX_CORE_RELO_SIZE || 16154 rec_size % sizeof(u32)) 16155 return -EINVAL; 16156 16157 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16158 expected_size = sizeof(struct bpf_core_relo); 16159 ncopy = min_t(u32, expected_size, rec_size); 16160 16161 /* Unlike func_info and line_info, copy and apply each CO-RE 16162 * relocation record one at a time. 16163 */ 16164 for (i = 0; i < nr_core_relo; i++) { 16165 /* future proofing when sizeof(bpf_core_relo) changes */ 16166 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16167 if (err) { 16168 if (err == -E2BIG) { 16169 verbose(env, "nonzero tailing record in core_relo"); 16170 if (copy_to_bpfptr_offset(uattr, 16171 offsetof(union bpf_attr, core_relo_rec_size), 16172 &expected_size, sizeof(expected_size))) 16173 err = -EFAULT; 16174 } 16175 break; 16176 } 16177 16178 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16179 err = -EFAULT; 16180 break; 16181 } 16182 16183 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16184 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16185 i, core_relo.insn_off, prog->len); 16186 err = -EINVAL; 16187 break; 16188 } 16189 16190 err = bpf_core_apply(&ctx, &core_relo, i, 16191 &prog->insnsi[core_relo.insn_off / 8]); 16192 if (err) 16193 break; 16194 bpfptr_add(&u_core_relo, rec_size); 16195 } 16196 return err; 16197 } 16198 16199 static int check_btf_info_early(struct bpf_verifier_env *env, 16200 const union bpf_attr *attr, 16201 bpfptr_t uattr) 16202 { 16203 struct btf *btf; 16204 int err; 16205 16206 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16207 if (check_abnormal_return(env)) 16208 return -EINVAL; 16209 return 0; 16210 } 16211 16212 btf = btf_get_by_fd(attr->prog_btf_fd); 16213 if (IS_ERR(btf)) 16214 return PTR_ERR(btf); 16215 if (btf_is_kernel(btf)) { 16216 btf_put(btf); 16217 return -EACCES; 16218 } 16219 env->prog->aux->btf = btf; 16220 16221 err = check_btf_func_early(env, attr, uattr); 16222 if (err) 16223 return err; 16224 return 0; 16225 } 16226 16227 static int check_btf_info(struct bpf_verifier_env *env, 16228 const union bpf_attr *attr, 16229 bpfptr_t uattr) 16230 { 16231 int err; 16232 16233 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16234 if (check_abnormal_return(env)) 16235 return -EINVAL; 16236 return 0; 16237 } 16238 16239 err = check_btf_func(env, attr, uattr); 16240 if (err) 16241 return err; 16242 16243 err = check_btf_line(env, attr, uattr); 16244 if (err) 16245 return err; 16246 16247 err = check_core_relo(env, attr, uattr); 16248 if (err) 16249 return err; 16250 16251 return 0; 16252 } 16253 16254 /* check %cur's range satisfies %old's */ 16255 static bool range_within(struct bpf_reg_state *old, 16256 struct bpf_reg_state *cur) 16257 { 16258 return old->umin_value <= cur->umin_value && 16259 old->umax_value >= cur->umax_value && 16260 old->smin_value <= cur->smin_value && 16261 old->smax_value >= cur->smax_value && 16262 old->u32_min_value <= cur->u32_min_value && 16263 old->u32_max_value >= cur->u32_max_value && 16264 old->s32_min_value <= cur->s32_min_value && 16265 old->s32_max_value >= cur->s32_max_value; 16266 } 16267 16268 /* If in the old state two registers had the same id, then they need to have 16269 * the same id in the new state as well. But that id could be different from 16270 * the old state, so we need to track the mapping from old to new ids. 16271 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 16272 * regs with old id 5 must also have new id 9 for the new state to be safe. But 16273 * regs with a different old id could still have new id 9, we don't care about 16274 * that. 16275 * So we look through our idmap to see if this old id has been seen before. If 16276 * so, we require the new id to match; otherwise, we add the id pair to the map. 16277 */ 16278 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16279 { 16280 struct bpf_id_pair *map = idmap->map; 16281 unsigned int i; 16282 16283 /* either both IDs should be set or both should be zero */ 16284 if (!!old_id != !!cur_id) 16285 return false; 16286 16287 if (old_id == 0) /* cur_id == 0 as well */ 16288 return true; 16289 16290 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 16291 if (!map[i].old) { 16292 /* Reached an empty slot; haven't seen this id before */ 16293 map[i].old = old_id; 16294 map[i].cur = cur_id; 16295 return true; 16296 } 16297 if (map[i].old == old_id) 16298 return map[i].cur == cur_id; 16299 if (map[i].cur == cur_id) 16300 return false; 16301 } 16302 /* We ran out of idmap slots, which should be impossible */ 16303 WARN_ON_ONCE(1); 16304 return false; 16305 } 16306 16307 /* Similar to check_ids(), but allocate a unique temporary ID 16308 * for 'old_id' or 'cur_id' of zero. 16309 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16310 */ 16311 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16312 { 16313 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16314 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16315 16316 return check_ids(old_id, cur_id, idmap); 16317 } 16318 16319 static void clean_func_state(struct bpf_verifier_env *env, 16320 struct bpf_func_state *st) 16321 { 16322 enum bpf_reg_liveness live; 16323 int i, j; 16324 16325 for (i = 0; i < BPF_REG_FP; i++) { 16326 live = st->regs[i].live; 16327 /* liveness must not touch this register anymore */ 16328 st->regs[i].live |= REG_LIVE_DONE; 16329 if (!(live & REG_LIVE_READ)) 16330 /* since the register is unused, clear its state 16331 * to make further comparison simpler 16332 */ 16333 __mark_reg_not_init(env, &st->regs[i]); 16334 } 16335 16336 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16337 live = st->stack[i].spilled_ptr.live; 16338 /* liveness must not touch this stack slot anymore */ 16339 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16340 if (!(live & REG_LIVE_READ)) { 16341 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16342 for (j = 0; j < BPF_REG_SIZE; j++) 16343 st->stack[i].slot_type[j] = STACK_INVALID; 16344 } 16345 } 16346 } 16347 16348 static void clean_verifier_state(struct bpf_verifier_env *env, 16349 struct bpf_verifier_state *st) 16350 { 16351 int i; 16352 16353 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16354 /* all regs in this state in all frames were already marked */ 16355 return; 16356 16357 for (i = 0; i <= st->curframe; i++) 16358 clean_func_state(env, st->frame[i]); 16359 } 16360 16361 /* the parentage chains form a tree. 16362 * the verifier states are added to state lists at given insn and 16363 * pushed into state stack for future exploration. 16364 * when the verifier reaches bpf_exit insn some of the verifer states 16365 * stored in the state lists have their final liveness state already, 16366 * but a lot of states will get revised from liveness point of view when 16367 * the verifier explores other branches. 16368 * Example: 16369 * 1: r0 = 1 16370 * 2: if r1 == 100 goto pc+1 16371 * 3: r0 = 2 16372 * 4: exit 16373 * when the verifier reaches exit insn the register r0 in the state list of 16374 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16375 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16376 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16377 * 16378 * Since the verifier pushes the branch states as it sees them while exploring 16379 * the program the condition of walking the branch instruction for the second 16380 * time means that all states below this branch were already explored and 16381 * their final liveness marks are already propagated. 16382 * Hence when the verifier completes the search of state list in is_state_visited() 16383 * we can call this clean_live_states() function to mark all liveness states 16384 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16385 * will not be used. 16386 * This function also clears the registers and stack for states that !READ 16387 * to simplify state merging. 16388 * 16389 * Important note here that walking the same branch instruction in the callee 16390 * doesn't meant that the states are DONE. The verifier has to compare 16391 * the callsites 16392 */ 16393 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16394 struct bpf_verifier_state *cur) 16395 { 16396 struct bpf_verifier_state_list *sl; 16397 16398 sl = *explored_state(env, insn); 16399 while (sl) { 16400 if (sl->state.branches) 16401 goto next; 16402 if (sl->state.insn_idx != insn || 16403 !same_callsites(&sl->state, cur)) 16404 goto next; 16405 clean_verifier_state(env, &sl->state); 16406 next: 16407 sl = sl->next; 16408 } 16409 } 16410 16411 static bool regs_exact(const struct bpf_reg_state *rold, 16412 const struct bpf_reg_state *rcur, 16413 struct bpf_idmap *idmap) 16414 { 16415 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16416 check_ids(rold->id, rcur->id, idmap) && 16417 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16418 } 16419 16420 /* Returns true if (rold safe implies rcur safe) */ 16421 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16422 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 16423 { 16424 if (exact) 16425 return regs_exact(rold, rcur, idmap); 16426 16427 if (!(rold->live & REG_LIVE_READ)) 16428 /* explored state didn't use this */ 16429 return true; 16430 if (rold->type == NOT_INIT) 16431 /* explored state can't have used this */ 16432 return true; 16433 if (rcur->type == NOT_INIT) 16434 return false; 16435 16436 /* Enforce that register types have to match exactly, including their 16437 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16438 * rule. 16439 * 16440 * One can make a point that using a pointer register as unbounded 16441 * SCALAR would be technically acceptable, but this could lead to 16442 * pointer leaks because scalars are allowed to leak while pointers 16443 * are not. We could make this safe in special cases if root is 16444 * calling us, but it's probably not worth the hassle. 16445 * 16446 * Also, register types that are *not* MAYBE_NULL could technically be 16447 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16448 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16449 * to the same map). 16450 * However, if the old MAYBE_NULL register then got NULL checked, 16451 * doing so could have affected others with the same id, and we can't 16452 * check for that because we lost the id when we converted to 16453 * a non-MAYBE_NULL variant. 16454 * So, as a general rule we don't allow mixing MAYBE_NULL and 16455 * non-MAYBE_NULL registers as well. 16456 */ 16457 if (rold->type != rcur->type) 16458 return false; 16459 16460 switch (base_type(rold->type)) { 16461 case SCALAR_VALUE: 16462 if (env->explore_alu_limits) { 16463 /* explore_alu_limits disables tnum_in() and range_within() 16464 * logic and requires everything to be strict 16465 */ 16466 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16467 check_scalar_ids(rold->id, rcur->id, idmap); 16468 } 16469 if (!rold->precise) 16470 return true; 16471 /* Why check_ids() for scalar registers? 16472 * 16473 * Consider the following BPF code: 16474 * 1: r6 = ... unbound scalar, ID=a ... 16475 * 2: r7 = ... unbound scalar, ID=b ... 16476 * 3: if (r6 > r7) goto +1 16477 * 4: r6 = r7 16478 * 5: if (r6 > X) goto ... 16479 * 6: ... memory operation using r7 ... 16480 * 16481 * First verification path is [1-6]: 16482 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16483 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16484 * r7 <= X, because r6 and r7 share same id. 16485 * Next verification path is [1-4, 6]. 16486 * 16487 * Instruction (6) would be reached in two states: 16488 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16489 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16490 * 16491 * Use check_ids() to distinguish these states. 16492 * --- 16493 * Also verify that new value satisfies old value range knowledge. 16494 */ 16495 return range_within(rold, rcur) && 16496 tnum_in(rold->var_off, rcur->var_off) && 16497 check_scalar_ids(rold->id, rcur->id, idmap); 16498 case PTR_TO_MAP_KEY: 16499 case PTR_TO_MAP_VALUE: 16500 case PTR_TO_MEM: 16501 case PTR_TO_BUF: 16502 case PTR_TO_TP_BUFFER: 16503 /* If the new min/max/var_off satisfy the old ones and 16504 * everything else matches, we are OK. 16505 */ 16506 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16507 range_within(rold, rcur) && 16508 tnum_in(rold->var_off, rcur->var_off) && 16509 check_ids(rold->id, rcur->id, idmap) && 16510 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16511 case PTR_TO_PACKET_META: 16512 case PTR_TO_PACKET: 16513 /* We must have at least as much range as the old ptr 16514 * did, so that any accesses which were safe before are 16515 * still safe. This is true even if old range < old off, 16516 * since someone could have accessed through (ptr - k), or 16517 * even done ptr -= k in a register, to get a safe access. 16518 */ 16519 if (rold->range > rcur->range) 16520 return false; 16521 /* If the offsets don't match, we can't trust our alignment; 16522 * nor can we be sure that we won't fall out of range. 16523 */ 16524 if (rold->off != rcur->off) 16525 return false; 16526 /* id relations must be preserved */ 16527 if (!check_ids(rold->id, rcur->id, idmap)) 16528 return false; 16529 /* new val must satisfy old val knowledge */ 16530 return range_within(rold, rcur) && 16531 tnum_in(rold->var_off, rcur->var_off); 16532 case PTR_TO_STACK: 16533 /* two stack pointers are equal only if they're pointing to 16534 * the same stack frame, since fp-8 in foo != fp-8 in bar 16535 */ 16536 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16537 default: 16538 return regs_exact(rold, rcur, idmap); 16539 } 16540 } 16541 16542 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16543 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16544 { 16545 int i, spi; 16546 16547 /* walk slots of the explored stack and ignore any additional 16548 * slots in the current stack, since explored(safe) state 16549 * didn't use them 16550 */ 16551 for (i = 0; i < old->allocated_stack; i++) { 16552 struct bpf_reg_state *old_reg, *cur_reg; 16553 16554 spi = i / BPF_REG_SIZE; 16555 16556 if (exact && 16557 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16558 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16559 return false; 16560 16561 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16562 i += BPF_REG_SIZE - 1; 16563 /* explored state didn't use this */ 16564 continue; 16565 } 16566 16567 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16568 continue; 16569 16570 if (env->allow_uninit_stack && 16571 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16572 continue; 16573 16574 /* explored stack has more populated slots than current stack 16575 * and these slots were used 16576 */ 16577 if (i >= cur->allocated_stack) 16578 return false; 16579 16580 /* if old state was safe with misc data in the stack 16581 * it will be safe with zero-initialized stack. 16582 * The opposite is not true 16583 */ 16584 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16585 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16586 continue; 16587 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16588 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16589 /* Ex: old explored (safe) state has STACK_SPILL in 16590 * this stack slot, but current has STACK_MISC -> 16591 * this verifier states are not equivalent, 16592 * return false to continue verification of this path 16593 */ 16594 return false; 16595 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16596 continue; 16597 /* Both old and cur are having same slot_type */ 16598 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16599 case STACK_SPILL: 16600 /* when explored and current stack slot are both storing 16601 * spilled registers, check that stored pointers types 16602 * are the same as well. 16603 * Ex: explored safe path could have stored 16604 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16605 * but current path has stored: 16606 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16607 * such verifier states are not equivalent. 16608 * return false to continue verification of this path 16609 */ 16610 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16611 &cur->stack[spi].spilled_ptr, idmap, exact)) 16612 return false; 16613 break; 16614 case STACK_DYNPTR: 16615 old_reg = &old->stack[spi].spilled_ptr; 16616 cur_reg = &cur->stack[spi].spilled_ptr; 16617 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16618 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16619 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16620 return false; 16621 break; 16622 case STACK_ITER: 16623 old_reg = &old->stack[spi].spilled_ptr; 16624 cur_reg = &cur->stack[spi].spilled_ptr; 16625 /* iter.depth is not compared between states as it 16626 * doesn't matter for correctness and would otherwise 16627 * prevent convergence; we maintain it only to prevent 16628 * infinite loop check triggering, see 16629 * iter_active_depths_differ() 16630 */ 16631 if (old_reg->iter.btf != cur_reg->iter.btf || 16632 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16633 old_reg->iter.state != cur_reg->iter.state || 16634 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16635 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16636 return false; 16637 break; 16638 case STACK_MISC: 16639 case STACK_ZERO: 16640 case STACK_INVALID: 16641 continue; 16642 /* Ensure that new unhandled slot types return false by default */ 16643 default: 16644 return false; 16645 } 16646 } 16647 return true; 16648 } 16649 16650 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16651 struct bpf_idmap *idmap) 16652 { 16653 int i; 16654 16655 if (old->acquired_refs != cur->acquired_refs) 16656 return false; 16657 16658 for (i = 0; i < old->acquired_refs; i++) { 16659 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16660 return false; 16661 } 16662 16663 return true; 16664 } 16665 16666 /* compare two verifier states 16667 * 16668 * all states stored in state_list are known to be valid, since 16669 * verifier reached 'bpf_exit' instruction through them 16670 * 16671 * this function is called when verifier exploring different branches of 16672 * execution popped from the state stack. If it sees an old state that has 16673 * more strict register state and more strict stack state then this execution 16674 * branch doesn't need to be explored further, since verifier already 16675 * concluded that more strict state leads to valid finish. 16676 * 16677 * Therefore two states are equivalent if register state is more conservative 16678 * and explored stack state is more conservative than the current one. 16679 * Example: 16680 * explored current 16681 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16682 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16683 * 16684 * In other words if current stack state (one being explored) has more 16685 * valid slots than old one that already passed validation, it means 16686 * the verifier can stop exploring and conclude that current state is valid too 16687 * 16688 * Similarly with registers. If explored state has register type as invalid 16689 * whereas register type in current state is meaningful, it means that 16690 * the current state will reach 'bpf_exit' instruction safely 16691 */ 16692 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16693 struct bpf_func_state *cur, bool exact) 16694 { 16695 int i; 16696 16697 for (i = 0; i < MAX_BPF_REG; i++) 16698 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16699 &env->idmap_scratch, exact)) 16700 return false; 16701 16702 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16703 return false; 16704 16705 if (!refsafe(old, cur, &env->idmap_scratch)) 16706 return false; 16707 16708 return true; 16709 } 16710 16711 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16712 { 16713 env->idmap_scratch.tmp_id_gen = env->id_gen; 16714 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16715 } 16716 16717 static bool states_equal(struct bpf_verifier_env *env, 16718 struct bpf_verifier_state *old, 16719 struct bpf_verifier_state *cur, 16720 bool exact) 16721 { 16722 int i; 16723 16724 if (old->curframe != cur->curframe) 16725 return false; 16726 16727 reset_idmap_scratch(env); 16728 16729 /* Verification state from speculative execution simulation 16730 * must never prune a non-speculative execution one. 16731 */ 16732 if (old->speculative && !cur->speculative) 16733 return false; 16734 16735 if (old->active_lock.ptr != cur->active_lock.ptr) 16736 return false; 16737 16738 /* Old and cur active_lock's have to be either both present 16739 * or both absent. 16740 */ 16741 if (!!old->active_lock.id != !!cur->active_lock.id) 16742 return false; 16743 16744 if (old->active_lock.id && 16745 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16746 return false; 16747 16748 if (old->active_rcu_lock != cur->active_rcu_lock) 16749 return false; 16750 16751 /* for states to be equal callsites have to be the same 16752 * and all frame states need to be equivalent 16753 */ 16754 for (i = 0; i <= old->curframe; i++) { 16755 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16756 return false; 16757 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16758 return false; 16759 } 16760 return true; 16761 } 16762 16763 /* Return 0 if no propagation happened. Return negative error code if error 16764 * happened. Otherwise, return the propagated bit. 16765 */ 16766 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16767 struct bpf_reg_state *reg, 16768 struct bpf_reg_state *parent_reg) 16769 { 16770 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16771 u8 flag = reg->live & REG_LIVE_READ; 16772 int err; 16773 16774 /* When comes here, read flags of PARENT_REG or REG could be any of 16775 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16776 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16777 */ 16778 if (parent_flag == REG_LIVE_READ64 || 16779 /* Or if there is no read flag from REG. */ 16780 !flag || 16781 /* Or if the read flag from REG is the same as PARENT_REG. */ 16782 parent_flag == flag) 16783 return 0; 16784 16785 err = mark_reg_read(env, reg, parent_reg, flag); 16786 if (err) 16787 return err; 16788 16789 return flag; 16790 } 16791 16792 /* A write screens off any subsequent reads; but write marks come from the 16793 * straight-line code between a state and its parent. When we arrive at an 16794 * equivalent state (jump target or such) we didn't arrive by the straight-line 16795 * code, so read marks in the state must propagate to the parent regardless 16796 * of the state's write marks. That's what 'parent == state->parent' comparison 16797 * in mark_reg_read() is for. 16798 */ 16799 static int propagate_liveness(struct bpf_verifier_env *env, 16800 const struct bpf_verifier_state *vstate, 16801 struct bpf_verifier_state *vparent) 16802 { 16803 struct bpf_reg_state *state_reg, *parent_reg; 16804 struct bpf_func_state *state, *parent; 16805 int i, frame, err = 0; 16806 16807 if (vparent->curframe != vstate->curframe) { 16808 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16809 vparent->curframe, vstate->curframe); 16810 return -EFAULT; 16811 } 16812 /* Propagate read liveness of registers... */ 16813 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16814 for (frame = 0; frame <= vstate->curframe; frame++) { 16815 parent = vparent->frame[frame]; 16816 state = vstate->frame[frame]; 16817 parent_reg = parent->regs; 16818 state_reg = state->regs; 16819 /* We don't need to worry about FP liveness, it's read-only */ 16820 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16821 err = propagate_liveness_reg(env, &state_reg[i], 16822 &parent_reg[i]); 16823 if (err < 0) 16824 return err; 16825 if (err == REG_LIVE_READ64) 16826 mark_insn_zext(env, &parent_reg[i]); 16827 } 16828 16829 /* Propagate stack slots. */ 16830 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16831 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16832 parent_reg = &parent->stack[i].spilled_ptr; 16833 state_reg = &state->stack[i].spilled_ptr; 16834 err = propagate_liveness_reg(env, state_reg, 16835 parent_reg); 16836 if (err < 0) 16837 return err; 16838 } 16839 } 16840 return 0; 16841 } 16842 16843 /* find precise scalars in the previous equivalent state and 16844 * propagate them into the current state 16845 */ 16846 static int propagate_precision(struct bpf_verifier_env *env, 16847 const struct bpf_verifier_state *old) 16848 { 16849 struct bpf_reg_state *state_reg; 16850 struct bpf_func_state *state; 16851 int i, err = 0, fr; 16852 bool first; 16853 16854 for (fr = old->curframe; fr >= 0; fr--) { 16855 state = old->frame[fr]; 16856 state_reg = state->regs; 16857 first = true; 16858 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16859 if (state_reg->type != SCALAR_VALUE || 16860 !state_reg->precise || 16861 !(state_reg->live & REG_LIVE_READ)) 16862 continue; 16863 if (env->log.level & BPF_LOG_LEVEL2) { 16864 if (first) 16865 verbose(env, "frame %d: propagating r%d", fr, i); 16866 else 16867 verbose(env, ",r%d", i); 16868 } 16869 bt_set_frame_reg(&env->bt, fr, i); 16870 first = false; 16871 } 16872 16873 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16874 if (!is_spilled_reg(&state->stack[i])) 16875 continue; 16876 state_reg = &state->stack[i].spilled_ptr; 16877 if (state_reg->type != SCALAR_VALUE || 16878 !state_reg->precise || 16879 !(state_reg->live & REG_LIVE_READ)) 16880 continue; 16881 if (env->log.level & BPF_LOG_LEVEL2) { 16882 if (first) 16883 verbose(env, "frame %d: propagating fp%d", 16884 fr, (-i - 1) * BPF_REG_SIZE); 16885 else 16886 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16887 } 16888 bt_set_frame_slot(&env->bt, fr, i); 16889 first = false; 16890 } 16891 if (!first) 16892 verbose(env, "\n"); 16893 } 16894 16895 err = mark_chain_precision_batch(env); 16896 if (err < 0) 16897 return err; 16898 16899 return 0; 16900 } 16901 16902 static bool states_maybe_looping(struct bpf_verifier_state *old, 16903 struct bpf_verifier_state *cur) 16904 { 16905 struct bpf_func_state *fold, *fcur; 16906 int i, fr = cur->curframe; 16907 16908 if (old->curframe != fr) 16909 return false; 16910 16911 fold = old->frame[fr]; 16912 fcur = cur->frame[fr]; 16913 for (i = 0; i < MAX_BPF_REG; i++) 16914 if (memcmp(&fold->regs[i], &fcur->regs[i], 16915 offsetof(struct bpf_reg_state, parent))) 16916 return false; 16917 return true; 16918 } 16919 16920 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16921 { 16922 return env->insn_aux_data[insn_idx].is_iter_next; 16923 } 16924 16925 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16926 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16927 * states to match, which otherwise would look like an infinite loop. So while 16928 * iter_next() calls are taken care of, we still need to be careful and 16929 * prevent erroneous and too eager declaration of "ininite loop", when 16930 * iterators are involved. 16931 * 16932 * Here's a situation in pseudo-BPF assembly form: 16933 * 16934 * 0: again: ; set up iter_next() call args 16935 * 1: r1 = &it ; <CHECKPOINT HERE> 16936 * 2: call bpf_iter_num_next ; this is iter_next() call 16937 * 3: if r0 == 0 goto done 16938 * 4: ... something useful here ... 16939 * 5: goto again ; another iteration 16940 * 6: done: 16941 * 7: r1 = &it 16942 * 8: call bpf_iter_num_destroy ; clean up iter state 16943 * 9: exit 16944 * 16945 * This is a typical loop. Let's assume that we have a prune point at 1:, 16946 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16947 * again`, assuming other heuristics don't get in a way). 16948 * 16949 * When we first time come to 1:, let's say we have some state X. We proceed 16950 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16951 * Now we come back to validate that forked ACTIVE state. We proceed through 16952 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16953 * are converging. But the problem is that we don't know that yet, as this 16954 * convergence has to happen at iter_next() call site only. So if nothing is 16955 * done, at 1: verifier will use bounded loop logic and declare infinite 16956 * looping (and would be *technically* correct, if not for iterator's 16957 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16958 * don't want that. So what we do in process_iter_next_call() when we go on 16959 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16960 * a different iteration. So when we suspect an infinite loop, we additionally 16961 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16962 * pretend we are not looping and wait for next iter_next() call. 16963 * 16964 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16965 * loop, because that would actually mean infinite loop, as DRAINED state is 16966 * "sticky", and so we'll keep returning into the same instruction with the 16967 * same state (at least in one of possible code paths). 16968 * 16969 * This approach allows to keep infinite loop heuristic even in the face of 16970 * active iterator. E.g., C snippet below is and will be detected as 16971 * inifintely looping: 16972 * 16973 * struct bpf_iter_num it; 16974 * int *p, x; 16975 * 16976 * bpf_iter_num_new(&it, 0, 10); 16977 * while ((p = bpf_iter_num_next(&t))) { 16978 * x = p; 16979 * while (x--) {} // <<-- infinite loop here 16980 * } 16981 * 16982 */ 16983 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16984 { 16985 struct bpf_reg_state *slot, *cur_slot; 16986 struct bpf_func_state *state; 16987 int i, fr; 16988 16989 for (fr = old->curframe; fr >= 0; fr--) { 16990 state = old->frame[fr]; 16991 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16992 if (state->stack[i].slot_type[0] != STACK_ITER) 16993 continue; 16994 16995 slot = &state->stack[i].spilled_ptr; 16996 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16997 continue; 16998 16999 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 17000 if (cur_slot->iter.depth != slot->iter.depth) 17001 return true; 17002 } 17003 } 17004 return false; 17005 } 17006 17007 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 17008 { 17009 struct bpf_verifier_state_list *new_sl; 17010 struct bpf_verifier_state_list *sl, **pprev; 17011 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 17012 int i, j, n, err, states_cnt = 0; 17013 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 17014 bool add_new_state = force_new_state; 17015 bool force_exact; 17016 17017 /* bpf progs typically have pruning point every 4 instructions 17018 * http://vger.kernel.org/bpfconf2019.html#session-1 17019 * Do not add new state for future pruning if the verifier hasn't seen 17020 * at least 2 jumps and at least 8 instructions. 17021 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 17022 * In tests that amounts to up to 50% reduction into total verifier 17023 * memory consumption and 20% verifier time speedup. 17024 */ 17025 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 17026 env->insn_processed - env->prev_insn_processed >= 8) 17027 add_new_state = true; 17028 17029 pprev = explored_state(env, insn_idx); 17030 sl = *pprev; 17031 17032 clean_live_states(env, insn_idx, cur); 17033 17034 while (sl) { 17035 states_cnt++; 17036 if (sl->state.insn_idx != insn_idx) 17037 goto next; 17038 17039 if (sl->state.branches) { 17040 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 17041 17042 if (frame->in_async_callback_fn && 17043 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 17044 /* Different async_entry_cnt means that the verifier is 17045 * processing another entry into async callback. 17046 * Seeing the same state is not an indication of infinite 17047 * loop or infinite recursion. 17048 * But finding the same state doesn't mean that it's safe 17049 * to stop processing the current state. The previous state 17050 * hasn't yet reached bpf_exit, since state.branches > 0. 17051 * Checking in_async_callback_fn alone is not enough either. 17052 * Since the verifier still needs to catch infinite loops 17053 * inside async callbacks. 17054 */ 17055 goto skip_inf_loop_check; 17056 } 17057 /* BPF open-coded iterators loop detection is special. 17058 * states_maybe_looping() logic is too simplistic in detecting 17059 * states that *might* be equivalent, because it doesn't know 17060 * about ID remapping, so don't even perform it. 17061 * See process_iter_next_call() and iter_active_depths_differ() 17062 * for overview of the logic. When current and one of parent 17063 * states are detected as equivalent, it's a good thing: we prove 17064 * convergence and can stop simulating further iterations. 17065 * It's safe to assume that iterator loop will finish, taking into 17066 * account iter_next() contract of eventually returning 17067 * sticky NULL result. 17068 * 17069 * Note, that states have to be compared exactly in this case because 17070 * read and precision marks might not be finalized inside the loop. 17071 * E.g. as in the program below: 17072 * 17073 * 1. r7 = -16 17074 * 2. r6 = bpf_get_prandom_u32() 17075 * 3. while (bpf_iter_num_next(&fp[-8])) { 17076 * 4. if (r6 != 42) { 17077 * 5. r7 = -32 17078 * 6. r6 = bpf_get_prandom_u32() 17079 * 7. continue 17080 * 8. } 17081 * 9. r0 = r10 17082 * 10. r0 += r7 17083 * 11. r8 = *(u64 *)(r0 + 0) 17084 * 12. r6 = bpf_get_prandom_u32() 17085 * 13. } 17086 * 17087 * Here verifier would first visit path 1-3, create a checkpoint at 3 17088 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17089 * not have read or precision mark for r7 yet, thus inexact states 17090 * comparison would discard current state with r7=-32 17091 * => unsafe memory access at 11 would not be caught. 17092 */ 17093 if (is_iter_next_insn(env, insn_idx)) { 17094 if (states_equal(env, &sl->state, cur, true)) { 17095 struct bpf_func_state *cur_frame; 17096 struct bpf_reg_state *iter_state, *iter_reg; 17097 int spi; 17098 17099 cur_frame = cur->frame[cur->curframe]; 17100 /* btf_check_iter_kfuncs() enforces that 17101 * iter state pointer is always the first arg 17102 */ 17103 iter_reg = &cur_frame->regs[BPF_REG_1]; 17104 /* current state is valid due to states_equal(), 17105 * so we can assume valid iter and reg state, 17106 * no need for extra (re-)validations 17107 */ 17108 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17109 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17110 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17111 update_loop_entry(cur, &sl->state); 17112 goto hit; 17113 } 17114 } 17115 goto skip_inf_loop_check; 17116 } 17117 if (calls_callback(env, insn_idx)) { 17118 if (states_equal(env, &sl->state, cur, true)) 17119 goto hit; 17120 goto skip_inf_loop_check; 17121 } 17122 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 17123 if (states_maybe_looping(&sl->state, cur) && 17124 states_equal(env, &sl->state, cur, false) && 17125 !iter_active_depths_differ(&sl->state, cur) && 17126 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 17127 verbose_linfo(env, insn_idx, "; "); 17128 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 17129 verbose(env, "cur state:"); 17130 print_verifier_state(env, cur->frame[cur->curframe], true); 17131 verbose(env, "old state:"); 17132 print_verifier_state(env, sl->state.frame[cur->curframe], true); 17133 return -EINVAL; 17134 } 17135 /* if the verifier is processing a loop, avoid adding new state 17136 * too often, since different loop iterations have distinct 17137 * states and may not help future pruning. 17138 * This threshold shouldn't be too low to make sure that 17139 * a loop with large bound will be rejected quickly. 17140 * The most abusive loop will be: 17141 * r1 += 1 17142 * if r1 < 1000000 goto pc-2 17143 * 1M insn_procssed limit / 100 == 10k peak states. 17144 * This threshold shouldn't be too high either, since states 17145 * at the end of the loop are likely to be useful in pruning. 17146 */ 17147 skip_inf_loop_check: 17148 if (!force_new_state && 17149 env->jmps_processed - env->prev_jmps_processed < 20 && 17150 env->insn_processed - env->prev_insn_processed < 100) 17151 add_new_state = false; 17152 goto miss; 17153 } 17154 /* If sl->state is a part of a loop and this loop's entry is a part of 17155 * current verification path then states have to be compared exactly. 17156 * 'force_exact' is needed to catch the following case: 17157 * 17158 * initial Here state 'succ' was processed first, 17159 * | it was eventually tracked to produce a 17160 * V state identical to 'hdr'. 17161 * .---------> hdr All branches from 'succ' had been explored 17162 * | | and thus 'succ' has its .branches == 0. 17163 * | V 17164 * | .------... Suppose states 'cur' and 'succ' correspond 17165 * | | | to the same instruction + callsites. 17166 * | V V In such case it is necessary to check 17167 * | ... ... if 'succ' and 'cur' are states_equal(). 17168 * | | | If 'succ' and 'cur' are a part of the 17169 * | V V same loop exact flag has to be set. 17170 * | succ <- cur To check if that is the case, verify 17171 * | | if loop entry of 'succ' is in current 17172 * | V DFS path. 17173 * | ... 17174 * | | 17175 * '----' 17176 * 17177 * Additional details are in the comment before get_loop_entry(). 17178 */ 17179 loop_entry = get_loop_entry(&sl->state); 17180 force_exact = loop_entry && loop_entry->branches > 0; 17181 if (states_equal(env, &sl->state, cur, force_exact)) { 17182 if (force_exact) 17183 update_loop_entry(cur, loop_entry); 17184 hit: 17185 sl->hit_cnt++; 17186 /* reached equivalent register/stack state, 17187 * prune the search. 17188 * Registers read by the continuation are read by us. 17189 * If we have any write marks in env->cur_state, they 17190 * will prevent corresponding reads in the continuation 17191 * from reaching our parent (an explored_state). Our 17192 * own state will get the read marks recorded, but 17193 * they'll be immediately forgotten as we're pruning 17194 * this state and will pop a new one. 17195 */ 17196 err = propagate_liveness(env, &sl->state, cur); 17197 17198 /* if previous state reached the exit with precision and 17199 * current state is equivalent to it (except precsion marks) 17200 * the precision needs to be propagated back in 17201 * the current state. 17202 */ 17203 err = err ? : push_jmp_history(env, cur); 17204 err = err ? : propagate_precision(env, &sl->state); 17205 if (err) 17206 return err; 17207 return 1; 17208 } 17209 miss: 17210 /* when new state is not going to be added do not increase miss count. 17211 * Otherwise several loop iterations will remove the state 17212 * recorded earlier. The goal of these heuristics is to have 17213 * states from some iterations of the loop (some in the beginning 17214 * and some at the end) to help pruning. 17215 */ 17216 if (add_new_state) 17217 sl->miss_cnt++; 17218 /* heuristic to determine whether this state is beneficial 17219 * to keep checking from state equivalence point of view. 17220 * Higher numbers increase max_states_per_insn and verification time, 17221 * but do not meaningfully decrease insn_processed. 17222 * 'n' controls how many times state could miss before eviction. 17223 * Use bigger 'n' for checkpoints because evicting checkpoint states 17224 * too early would hinder iterator convergence. 17225 */ 17226 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 17227 if (sl->miss_cnt > sl->hit_cnt * n + n) { 17228 /* the state is unlikely to be useful. Remove it to 17229 * speed up verification 17230 */ 17231 *pprev = sl->next; 17232 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 17233 !sl->state.used_as_loop_entry) { 17234 u32 br = sl->state.branches; 17235 17236 WARN_ONCE(br, 17237 "BUG live_done but branches_to_explore %d\n", 17238 br); 17239 free_verifier_state(&sl->state, false); 17240 kfree(sl); 17241 env->peak_states--; 17242 } else { 17243 /* cannot free this state, since parentage chain may 17244 * walk it later. Add it for free_list instead to 17245 * be freed at the end of verification 17246 */ 17247 sl->next = env->free_list; 17248 env->free_list = sl; 17249 } 17250 sl = *pprev; 17251 continue; 17252 } 17253 next: 17254 pprev = &sl->next; 17255 sl = *pprev; 17256 } 17257 17258 if (env->max_states_per_insn < states_cnt) 17259 env->max_states_per_insn = states_cnt; 17260 17261 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 17262 return 0; 17263 17264 if (!add_new_state) 17265 return 0; 17266 17267 /* There were no equivalent states, remember the current one. 17268 * Technically the current state is not proven to be safe yet, 17269 * but it will either reach outer most bpf_exit (which means it's safe) 17270 * or it will be rejected. When there are no loops the verifier won't be 17271 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 17272 * again on the way to bpf_exit. 17273 * When looping the sl->state.branches will be > 0 and this state 17274 * will not be considered for equivalence until branches == 0. 17275 */ 17276 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 17277 if (!new_sl) 17278 return -ENOMEM; 17279 env->total_states++; 17280 env->peak_states++; 17281 env->prev_jmps_processed = env->jmps_processed; 17282 env->prev_insn_processed = env->insn_processed; 17283 17284 /* forget precise markings we inherited, see __mark_chain_precision */ 17285 if (env->bpf_capable) 17286 mark_all_scalars_imprecise(env, cur); 17287 17288 /* add new state to the head of linked list */ 17289 new = &new_sl->state; 17290 err = copy_verifier_state(new, cur); 17291 if (err) { 17292 free_verifier_state(new, false); 17293 kfree(new_sl); 17294 return err; 17295 } 17296 new->insn_idx = insn_idx; 17297 WARN_ONCE(new->branches != 1, 17298 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 17299 17300 cur->parent = new; 17301 cur->first_insn_idx = insn_idx; 17302 cur->dfs_depth = new->dfs_depth + 1; 17303 clear_jmp_history(cur); 17304 new_sl->next = *explored_state(env, insn_idx); 17305 *explored_state(env, insn_idx) = new_sl; 17306 /* connect new state to parentage chain. Current frame needs all 17307 * registers connected. Only r6 - r9 of the callers are alive (pushed 17308 * to the stack implicitly by JITs) so in callers' frames connect just 17309 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17310 * the state of the call instruction (with WRITTEN set), and r0 comes 17311 * from callee with its full parentage chain, anyway. 17312 */ 17313 /* clear write marks in current state: the writes we did are not writes 17314 * our child did, so they don't screen off its reads from us. 17315 * (There are no read marks in current state, because reads always mark 17316 * their parent and current state never has children yet. Only 17317 * explored_states can get read marks.) 17318 */ 17319 for (j = 0; j <= cur->curframe; j++) { 17320 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17321 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17322 for (i = 0; i < BPF_REG_FP; i++) 17323 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17324 } 17325 17326 /* all stack frames are accessible from callee, clear them all */ 17327 for (j = 0; j <= cur->curframe; j++) { 17328 struct bpf_func_state *frame = cur->frame[j]; 17329 struct bpf_func_state *newframe = new->frame[j]; 17330 17331 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17332 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17333 frame->stack[i].spilled_ptr.parent = 17334 &newframe->stack[i].spilled_ptr; 17335 } 17336 } 17337 return 0; 17338 } 17339 17340 /* Return true if it's OK to have the same insn return a different type. */ 17341 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17342 { 17343 switch (base_type(type)) { 17344 case PTR_TO_CTX: 17345 case PTR_TO_SOCKET: 17346 case PTR_TO_SOCK_COMMON: 17347 case PTR_TO_TCP_SOCK: 17348 case PTR_TO_XDP_SOCK: 17349 case PTR_TO_BTF_ID: 17350 return false; 17351 default: 17352 return true; 17353 } 17354 } 17355 17356 /* If an instruction was previously used with particular pointer types, then we 17357 * need to be careful to avoid cases such as the below, where it may be ok 17358 * for one branch accessing the pointer, but not ok for the other branch: 17359 * 17360 * R1 = sock_ptr 17361 * goto X; 17362 * ... 17363 * R1 = some_other_valid_ptr; 17364 * goto X; 17365 * ... 17366 * R2 = *(u32 *)(R1 + 0); 17367 */ 17368 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17369 { 17370 return src != prev && (!reg_type_mismatch_ok(src) || 17371 !reg_type_mismatch_ok(prev)); 17372 } 17373 17374 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17375 bool allow_trust_missmatch) 17376 { 17377 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17378 17379 if (*prev_type == NOT_INIT) { 17380 /* Saw a valid insn 17381 * dst_reg = *(u32 *)(src_reg + off) 17382 * save type to validate intersecting paths 17383 */ 17384 *prev_type = type; 17385 } else if (reg_type_mismatch(type, *prev_type)) { 17386 /* Abuser program is trying to use the same insn 17387 * dst_reg = *(u32*) (src_reg + off) 17388 * with different pointer types: 17389 * src_reg == ctx in one branch and 17390 * src_reg == stack|map in some other branch. 17391 * Reject it. 17392 */ 17393 if (allow_trust_missmatch && 17394 base_type(type) == PTR_TO_BTF_ID && 17395 base_type(*prev_type) == PTR_TO_BTF_ID) { 17396 /* 17397 * Have to support a use case when one path through 17398 * the program yields TRUSTED pointer while another 17399 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17400 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17401 */ 17402 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17403 } else { 17404 verbose(env, "same insn cannot be used with different pointers\n"); 17405 return -EINVAL; 17406 } 17407 } 17408 17409 return 0; 17410 } 17411 17412 static int do_check(struct bpf_verifier_env *env) 17413 { 17414 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17415 struct bpf_verifier_state *state = env->cur_state; 17416 struct bpf_insn *insns = env->prog->insnsi; 17417 struct bpf_reg_state *regs; 17418 int insn_cnt = env->prog->len; 17419 bool do_print_state = false; 17420 int prev_insn_idx = -1; 17421 17422 for (;;) { 17423 bool exception_exit = false; 17424 struct bpf_insn *insn; 17425 u8 class; 17426 int err; 17427 17428 env->prev_insn_idx = prev_insn_idx; 17429 if (env->insn_idx >= insn_cnt) { 17430 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17431 env->insn_idx, insn_cnt); 17432 return -EFAULT; 17433 } 17434 17435 insn = &insns[env->insn_idx]; 17436 class = BPF_CLASS(insn->code); 17437 17438 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17439 verbose(env, 17440 "BPF program is too large. Processed %d insn\n", 17441 env->insn_processed); 17442 return -E2BIG; 17443 } 17444 17445 state->last_insn_idx = env->prev_insn_idx; 17446 17447 if (is_prune_point(env, env->insn_idx)) { 17448 err = is_state_visited(env, env->insn_idx); 17449 if (err < 0) 17450 return err; 17451 if (err == 1) { 17452 /* found equivalent state, can prune the search */ 17453 if (env->log.level & BPF_LOG_LEVEL) { 17454 if (do_print_state) 17455 verbose(env, "\nfrom %d to %d%s: safe\n", 17456 env->prev_insn_idx, env->insn_idx, 17457 env->cur_state->speculative ? 17458 " (speculative execution)" : ""); 17459 else 17460 verbose(env, "%d: safe\n", env->insn_idx); 17461 } 17462 goto process_bpf_exit; 17463 } 17464 } 17465 17466 if (is_jmp_point(env, env->insn_idx)) { 17467 err = push_jmp_history(env, state); 17468 if (err) 17469 return err; 17470 } 17471 17472 if (signal_pending(current)) 17473 return -EAGAIN; 17474 17475 if (need_resched()) 17476 cond_resched(); 17477 17478 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17479 verbose(env, "\nfrom %d to %d%s:", 17480 env->prev_insn_idx, env->insn_idx, 17481 env->cur_state->speculative ? 17482 " (speculative execution)" : ""); 17483 print_verifier_state(env, state->frame[state->curframe], true); 17484 do_print_state = false; 17485 } 17486 17487 if (env->log.level & BPF_LOG_LEVEL) { 17488 const struct bpf_insn_cbs cbs = { 17489 .cb_call = disasm_kfunc_name, 17490 .cb_print = verbose, 17491 .private_data = env, 17492 }; 17493 17494 if (verifier_state_scratched(env)) 17495 print_insn_state(env, state->frame[state->curframe]); 17496 17497 verbose_linfo(env, env->insn_idx, "; "); 17498 env->prev_log_pos = env->log.end_pos; 17499 verbose(env, "%d: ", env->insn_idx); 17500 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17501 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17502 env->prev_log_pos = env->log.end_pos; 17503 } 17504 17505 if (bpf_prog_is_offloaded(env->prog->aux)) { 17506 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17507 env->prev_insn_idx); 17508 if (err) 17509 return err; 17510 } 17511 17512 regs = cur_regs(env); 17513 sanitize_mark_insn_seen(env); 17514 prev_insn_idx = env->insn_idx; 17515 17516 if (class == BPF_ALU || class == BPF_ALU64) { 17517 err = check_alu_op(env, insn); 17518 if (err) 17519 return err; 17520 17521 } else if (class == BPF_LDX) { 17522 enum bpf_reg_type src_reg_type; 17523 17524 /* check for reserved fields is already done */ 17525 17526 /* check src operand */ 17527 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17528 if (err) 17529 return err; 17530 17531 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17532 if (err) 17533 return err; 17534 17535 src_reg_type = regs[insn->src_reg].type; 17536 17537 /* check that memory (src_reg + off) is readable, 17538 * the state of dst_reg will be updated by this func 17539 */ 17540 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17541 insn->off, BPF_SIZE(insn->code), 17542 BPF_READ, insn->dst_reg, false, 17543 BPF_MODE(insn->code) == BPF_MEMSX); 17544 if (err) 17545 return err; 17546 17547 err = save_aux_ptr_type(env, src_reg_type, true); 17548 if (err) 17549 return err; 17550 } else if (class == BPF_STX) { 17551 enum bpf_reg_type dst_reg_type; 17552 17553 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17554 err = check_atomic(env, env->insn_idx, insn); 17555 if (err) 17556 return err; 17557 env->insn_idx++; 17558 continue; 17559 } 17560 17561 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17562 verbose(env, "BPF_STX uses reserved fields\n"); 17563 return -EINVAL; 17564 } 17565 17566 /* check src1 operand */ 17567 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17568 if (err) 17569 return err; 17570 /* check src2 operand */ 17571 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17572 if (err) 17573 return err; 17574 17575 dst_reg_type = regs[insn->dst_reg].type; 17576 17577 /* check that memory (dst_reg + off) is writeable */ 17578 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17579 insn->off, BPF_SIZE(insn->code), 17580 BPF_WRITE, insn->src_reg, false, false); 17581 if (err) 17582 return err; 17583 17584 err = save_aux_ptr_type(env, dst_reg_type, false); 17585 if (err) 17586 return err; 17587 } else if (class == BPF_ST) { 17588 enum bpf_reg_type dst_reg_type; 17589 17590 if (BPF_MODE(insn->code) != BPF_MEM || 17591 insn->src_reg != BPF_REG_0) { 17592 verbose(env, "BPF_ST uses reserved fields\n"); 17593 return -EINVAL; 17594 } 17595 /* check src operand */ 17596 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17597 if (err) 17598 return err; 17599 17600 dst_reg_type = regs[insn->dst_reg].type; 17601 17602 /* check that memory (dst_reg + off) is writeable */ 17603 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17604 insn->off, BPF_SIZE(insn->code), 17605 BPF_WRITE, -1, false, false); 17606 if (err) 17607 return err; 17608 17609 err = save_aux_ptr_type(env, dst_reg_type, false); 17610 if (err) 17611 return err; 17612 } else if (class == BPF_JMP || class == BPF_JMP32) { 17613 u8 opcode = BPF_OP(insn->code); 17614 17615 env->jmps_processed++; 17616 if (opcode == BPF_CALL) { 17617 if (BPF_SRC(insn->code) != BPF_K || 17618 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17619 && insn->off != 0) || 17620 (insn->src_reg != BPF_REG_0 && 17621 insn->src_reg != BPF_PSEUDO_CALL && 17622 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17623 insn->dst_reg != BPF_REG_0 || 17624 class == BPF_JMP32) { 17625 verbose(env, "BPF_CALL uses reserved fields\n"); 17626 return -EINVAL; 17627 } 17628 17629 if (env->cur_state->active_lock.ptr) { 17630 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17631 (insn->src_reg == BPF_PSEUDO_CALL) || 17632 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17633 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17634 verbose(env, "function calls are not allowed while holding a lock\n"); 17635 return -EINVAL; 17636 } 17637 } 17638 if (insn->src_reg == BPF_PSEUDO_CALL) { 17639 err = check_func_call(env, insn, &env->insn_idx); 17640 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17641 err = check_kfunc_call(env, insn, &env->insn_idx); 17642 if (!err && is_bpf_throw_kfunc(insn)) { 17643 exception_exit = true; 17644 goto process_bpf_exit_full; 17645 } 17646 } else { 17647 err = check_helper_call(env, insn, &env->insn_idx); 17648 } 17649 if (err) 17650 return err; 17651 17652 mark_reg_scratched(env, BPF_REG_0); 17653 } else if (opcode == BPF_JA) { 17654 if (BPF_SRC(insn->code) != BPF_K || 17655 insn->src_reg != BPF_REG_0 || 17656 insn->dst_reg != BPF_REG_0 || 17657 (class == BPF_JMP && insn->imm != 0) || 17658 (class == BPF_JMP32 && insn->off != 0)) { 17659 verbose(env, "BPF_JA uses reserved fields\n"); 17660 return -EINVAL; 17661 } 17662 17663 if (class == BPF_JMP) 17664 env->insn_idx += insn->off + 1; 17665 else 17666 env->insn_idx += insn->imm + 1; 17667 continue; 17668 17669 } else if (opcode == BPF_EXIT) { 17670 if (BPF_SRC(insn->code) != BPF_K || 17671 insn->imm != 0 || 17672 insn->src_reg != BPF_REG_0 || 17673 insn->dst_reg != BPF_REG_0 || 17674 class == BPF_JMP32) { 17675 verbose(env, "BPF_EXIT uses reserved fields\n"); 17676 return -EINVAL; 17677 } 17678 process_bpf_exit_full: 17679 if (env->cur_state->active_lock.ptr && 17680 !in_rbtree_lock_required_cb(env)) { 17681 verbose(env, "bpf_spin_unlock is missing\n"); 17682 return -EINVAL; 17683 } 17684 17685 if (env->cur_state->active_rcu_lock && 17686 !in_rbtree_lock_required_cb(env)) { 17687 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17688 return -EINVAL; 17689 } 17690 17691 /* We must do check_reference_leak here before 17692 * prepare_func_exit to handle the case when 17693 * state->curframe > 0, it may be a callback 17694 * function, for which reference_state must 17695 * match caller reference state when it exits. 17696 */ 17697 err = check_reference_leak(env, exception_exit); 17698 if (err) 17699 return err; 17700 17701 /* The side effect of the prepare_func_exit 17702 * which is being skipped is that it frees 17703 * bpf_func_state. Typically, process_bpf_exit 17704 * will only be hit with outermost exit. 17705 * copy_verifier_state in pop_stack will handle 17706 * freeing of any extra bpf_func_state left over 17707 * from not processing all nested function 17708 * exits. We also skip return code checks as 17709 * they are not needed for exceptional exits. 17710 */ 17711 if (exception_exit) 17712 goto process_bpf_exit; 17713 17714 if (state->curframe) { 17715 /* exit from nested function */ 17716 err = prepare_func_exit(env, &env->insn_idx); 17717 if (err) 17718 return err; 17719 do_print_state = true; 17720 continue; 17721 } 17722 17723 err = check_return_code(env, BPF_REG_0); 17724 if (err) 17725 return err; 17726 process_bpf_exit: 17727 mark_verifier_state_scratched(env); 17728 update_branch_counts(env, env->cur_state); 17729 err = pop_stack(env, &prev_insn_idx, 17730 &env->insn_idx, pop_log); 17731 if (err < 0) { 17732 if (err != -ENOENT) 17733 return err; 17734 break; 17735 } else { 17736 do_print_state = true; 17737 continue; 17738 } 17739 } else { 17740 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17741 if (err) 17742 return err; 17743 } 17744 } else if (class == BPF_LD) { 17745 u8 mode = BPF_MODE(insn->code); 17746 17747 if (mode == BPF_ABS || mode == BPF_IND) { 17748 err = check_ld_abs(env, insn); 17749 if (err) 17750 return err; 17751 17752 } else if (mode == BPF_IMM) { 17753 err = check_ld_imm(env, insn); 17754 if (err) 17755 return err; 17756 17757 env->insn_idx++; 17758 sanitize_mark_insn_seen(env); 17759 } else { 17760 verbose(env, "invalid BPF_LD mode\n"); 17761 return -EINVAL; 17762 } 17763 } else { 17764 verbose(env, "unknown insn class %d\n", class); 17765 return -EINVAL; 17766 } 17767 17768 env->insn_idx++; 17769 } 17770 17771 return 0; 17772 } 17773 17774 static int find_btf_percpu_datasec(struct btf *btf) 17775 { 17776 const struct btf_type *t; 17777 const char *tname; 17778 int i, n; 17779 17780 /* 17781 * Both vmlinux and module each have their own ".data..percpu" 17782 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17783 * types to look at only module's own BTF types. 17784 */ 17785 n = btf_nr_types(btf); 17786 if (btf_is_module(btf)) 17787 i = btf_nr_types(btf_vmlinux); 17788 else 17789 i = 1; 17790 17791 for(; i < n; i++) { 17792 t = btf_type_by_id(btf, i); 17793 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17794 continue; 17795 17796 tname = btf_name_by_offset(btf, t->name_off); 17797 if (!strcmp(tname, ".data..percpu")) 17798 return i; 17799 } 17800 17801 return -ENOENT; 17802 } 17803 17804 /* replace pseudo btf_id with kernel symbol address */ 17805 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17806 struct bpf_insn *insn, 17807 struct bpf_insn_aux_data *aux) 17808 { 17809 const struct btf_var_secinfo *vsi; 17810 const struct btf_type *datasec; 17811 struct btf_mod_pair *btf_mod; 17812 const struct btf_type *t; 17813 const char *sym_name; 17814 bool percpu = false; 17815 u32 type, id = insn->imm; 17816 struct btf *btf; 17817 s32 datasec_id; 17818 u64 addr; 17819 int i, btf_fd, err; 17820 17821 btf_fd = insn[1].imm; 17822 if (btf_fd) { 17823 btf = btf_get_by_fd(btf_fd); 17824 if (IS_ERR(btf)) { 17825 verbose(env, "invalid module BTF object FD specified.\n"); 17826 return -EINVAL; 17827 } 17828 } else { 17829 if (!btf_vmlinux) { 17830 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17831 return -EINVAL; 17832 } 17833 btf = btf_vmlinux; 17834 btf_get(btf); 17835 } 17836 17837 t = btf_type_by_id(btf, id); 17838 if (!t) { 17839 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17840 err = -ENOENT; 17841 goto err_put; 17842 } 17843 17844 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17845 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17846 err = -EINVAL; 17847 goto err_put; 17848 } 17849 17850 sym_name = btf_name_by_offset(btf, t->name_off); 17851 addr = kallsyms_lookup_name(sym_name); 17852 if (!addr) { 17853 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17854 sym_name); 17855 err = -ENOENT; 17856 goto err_put; 17857 } 17858 insn[0].imm = (u32)addr; 17859 insn[1].imm = addr >> 32; 17860 17861 if (btf_type_is_func(t)) { 17862 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17863 aux->btf_var.mem_size = 0; 17864 goto check_btf; 17865 } 17866 17867 datasec_id = find_btf_percpu_datasec(btf); 17868 if (datasec_id > 0) { 17869 datasec = btf_type_by_id(btf, datasec_id); 17870 for_each_vsi(i, datasec, vsi) { 17871 if (vsi->type == id) { 17872 percpu = true; 17873 break; 17874 } 17875 } 17876 } 17877 17878 type = t->type; 17879 t = btf_type_skip_modifiers(btf, type, NULL); 17880 if (percpu) { 17881 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17882 aux->btf_var.btf = btf; 17883 aux->btf_var.btf_id = type; 17884 } else if (!btf_type_is_struct(t)) { 17885 const struct btf_type *ret; 17886 const char *tname; 17887 u32 tsize; 17888 17889 /* resolve the type size of ksym. */ 17890 ret = btf_resolve_size(btf, t, &tsize); 17891 if (IS_ERR(ret)) { 17892 tname = btf_name_by_offset(btf, t->name_off); 17893 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17894 tname, PTR_ERR(ret)); 17895 err = -EINVAL; 17896 goto err_put; 17897 } 17898 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17899 aux->btf_var.mem_size = tsize; 17900 } else { 17901 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17902 aux->btf_var.btf = btf; 17903 aux->btf_var.btf_id = type; 17904 } 17905 check_btf: 17906 /* check whether we recorded this BTF (and maybe module) already */ 17907 for (i = 0; i < env->used_btf_cnt; i++) { 17908 if (env->used_btfs[i].btf == btf) { 17909 btf_put(btf); 17910 return 0; 17911 } 17912 } 17913 17914 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17915 err = -E2BIG; 17916 goto err_put; 17917 } 17918 17919 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17920 btf_mod->btf = btf; 17921 btf_mod->module = NULL; 17922 17923 /* if we reference variables from kernel module, bump its refcount */ 17924 if (btf_is_module(btf)) { 17925 btf_mod->module = btf_try_get_module(btf); 17926 if (!btf_mod->module) { 17927 err = -ENXIO; 17928 goto err_put; 17929 } 17930 } 17931 17932 env->used_btf_cnt++; 17933 17934 return 0; 17935 err_put: 17936 btf_put(btf); 17937 return err; 17938 } 17939 17940 static bool is_tracing_prog_type(enum bpf_prog_type type) 17941 { 17942 switch (type) { 17943 case BPF_PROG_TYPE_KPROBE: 17944 case BPF_PROG_TYPE_TRACEPOINT: 17945 case BPF_PROG_TYPE_PERF_EVENT: 17946 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17947 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17948 return true; 17949 default: 17950 return false; 17951 } 17952 } 17953 17954 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17955 struct bpf_map *map, 17956 struct bpf_prog *prog) 17957 17958 { 17959 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17960 17961 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17962 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17963 if (is_tracing_prog_type(prog_type)) { 17964 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17965 return -EINVAL; 17966 } 17967 } 17968 17969 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17970 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17971 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17972 return -EINVAL; 17973 } 17974 17975 if (is_tracing_prog_type(prog_type)) { 17976 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17977 return -EINVAL; 17978 } 17979 } 17980 17981 if (btf_record_has_field(map->record, BPF_TIMER)) { 17982 if (is_tracing_prog_type(prog_type)) { 17983 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17984 return -EINVAL; 17985 } 17986 } 17987 17988 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17989 !bpf_offload_prog_map_match(prog, map)) { 17990 verbose(env, "offload device mismatch between prog and map\n"); 17991 return -EINVAL; 17992 } 17993 17994 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17995 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17996 return -EINVAL; 17997 } 17998 17999 if (prog->aux->sleepable) 18000 switch (map->map_type) { 18001 case BPF_MAP_TYPE_HASH: 18002 case BPF_MAP_TYPE_LRU_HASH: 18003 case BPF_MAP_TYPE_ARRAY: 18004 case BPF_MAP_TYPE_PERCPU_HASH: 18005 case BPF_MAP_TYPE_PERCPU_ARRAY: 18006 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 18007 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 18008 case BPF_MAP_TYPE_HASH_OF_MAPS: 18009 case BPF_MAP_TYPE_RINGBUF: 18010 case BPF_MAP_TYPE_USER_RINGBUF: 18011 case BPF_MAP_TYPE_INODE_STORAGE: 18012 case BPF_MAP_TYPE_SK_STORAGE: 18013 case BPF_MAP_TYPE_TASK_STORAGE: 18014 case BPF_MAP_TYPE_CGRP_STORAGE: 18015 break; 18016 default: 18017 verbose(env, 18018 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 18019 return -EINVAL; 18020 } 18021 18022 return 0; 18023 } 18024 18025 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 18026 { 18027 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 18028 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 18029 } 18030 18031 /* find and rewrite pseudo imm in ld_imm64 instructions: 18032 * 18033 * 1. if it accesses map FD, replace it with actual map pointer. 18034 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 18035 * 18036 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 18037 */ 18038 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 18039 { 18040 struct bpf_insn *insn = env->prog->insnsi; 18041 int insn_cnt = env->prog->len; 18042 int i, j, err; 18043 18044 err = bpf_prog_calc_tag(env->prog); 18045 if (err) 18046 return err; 18047 18048 for (i = 0; i < insn_cnt; i++, insn++) { 18049 if (BPF_CLASS(insn->code) == BPF_LDX && 18050 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 18051 insn->imm != 0)) { 18052 verbose(env, "BPF_LDX uses reserved fields\n"); 18053 return -EINVAL; 18054 } 18055 18056 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 18057 struct bpf_insn_aux_data *aux; 18058 struct bpf_map *map; 18059 struct fd f; 18060 u64 addr; 18061 u32 fd; 18062 18063 if (i == insn_cnt - 1 || insn[1].code != 0 || 18064 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 18065 insn[1].off != 0) { 18066 verbose(env, "invalid bpf_ld_imm64 insn\n"); 18067 return -EINVAL; 18068 } 18069 18070 if (insn[0].src_reg == 0) 18071 /* valid generic load 64-bit imm */ 18072 goto next_insn; 18073 18074 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 18075 aux = &env->insn_aux_data[i]; 18076 err = check_pseudo_btf_id(env, insn, aux); 18077 if (err) 18078 return err; 18079 goto next_insn; 18080 } 18081 18082 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 18083 aux = &env->insn_aux_data[i]; 18084 aux->ptr_type = PTR_TO_FUNC; 18085 goto next_insn; 18086 } 18087 18088 /* In final convert_pseudo_ld_imm64() step, this is 18089 * converted into regular 64-bit imm load insn. 18090 */ 18091 switch (insn[0].src_reg) { 18092 case BPF_PSEUDO_MAP_VALUE: 18093 case BPF_PSEUDO_MAP_IDX_VALUE: 18094 break; 18095 case BPF_PSEUDO_MAP_FD: 18096 case BPF_PSEUDO_MAP_IDX: 18097 if (insn[1].imm == 0) 18098 break; 18099 fallthrough; 18100 default: 18101 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 18102 return -EINVAL; 18103 } 18104 18105 switch (insn[0].src_reg) { 18106 case BPF_PSEUDO_MAP_IDX_VALUE: 18107 case BPF_PSEUDO_MAP_IDX: 18108 if (bpfptr_is_null(env->fd_array)) { 18109 verbose(env, "fd_idx without fd_array is invalid\n"); 18110 return -EPROTO; 18111 } 18112 if (copy_from_bpfptr_offset(&fd, env->fd_array, 18113 insn[0].imm * sizeof(fd), 18114 sizeof(fd))) 18115 return -EFAULT; 18116 break; 18117 default: 18118 fd = insn[0].imm; 18119 break; 18120 } 18121 18122 f = fdget(fd); 18123 map = __bpf_map_get(f); 18124 if (IS_ERR(map)) { 18125 verbose(env, "fd %d is not pointing to valid bpf_map\n", 18126 insn[0].imm); 18127 return PTR_ERR(map); 18128 } 18129 18130 err = check_map_prog_compatibility(env, map, env->prog); 18131 if (err) { 18132 fdput(f); 18133 return err; 18134 } 18135 18136 aux = &env->insn_aux_data[i]; 18137 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 18138 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 18139 addr = (unsigned long)map; 18140 } else { 18141 u32 off = insn[1].imm; 18142 18143 if (off >= BPF_MAX_VAR_OFF) { 18144 verbose(env, "direct value offset of %u is not allowed\n", off); 18145 fdput(f); 18146 return -EINVAL; 18147 } 18148 18149 if (!map->ops->map_direct_value_addr) { 18150 verbose(env, "no direct value access support for this map type\n"); 18151 fdput(f); 18152 return -EINVAL; 18153 } 18154 18155 err = map->ops->map_direct_value_addr(map, &addr, off); 18156 if (err) { 18157 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 18158 map->value_size, off); 18159 fdput(f); 18160 return err; 18161 } 18162 18163 aux->map_off = off; 18164 addr += off; 18165 } 18166 18167 insn[0].imm = (u32)addr; 18168 insn[1].imm = addr >> 32; 18169 18170 /* check whether we recorded this map already */ 18171 for (j = 0; j < env->used_map_cnt; j++) { 18172 if (env->used_maps[j] == map) { 18173 aux->map_index = j; 18174 fdput(f); 18175 goto next_insn; 18176 } 18177 } 18178 18179 if (env->used_map_cnt >= MAX_USED_MAPS) { 18180 fdput(f); 18181 return -E2BIG; 18182 } 18183 18184 /* hold the map. If the program is rejected by verifier, 18185 * the map will be released by release_maps() or it 18186 * will be used by the valid program until it's unloaded 18187 * and all maps are released in free_used_maps() 18188 */ 18189 bpf_map_inc(map); 18190 18191 aux->map_index = env->used_map_cnt; 18192 env->used_maps[env->used_map_cnt++] = map; 18193 18194 if (bpf_map_is_cgroup_storage(map) && 18195 bpf_cgroup_storage_assign(env->prog->aux, map)) { 18196 verbose(env, "only one cgroup storage of each type is allowed\n"); 18197 fdput(f); 18198 return -EBUSY; 18199 } 18200 18201 fdput(f); 18202 next_insn: 18203 insn++; 18204 i++; 18205 continue; 18206 } 18207 18208 /* Basic sanity check before we invest more work here. */ 18209 if (!bpf_opcode_in_insntable(insn->code)) { 18210 verbose(env, "unknown opcode %02x\n", insn->code); 18211 return -EINVAL; 18212 } 18213 } 18214 18215 /* now all pseudo BPF_LD_IMM64 instructions load valid 18216 * 'struct bpf_map *' into a register instead of user map_fd. 18217 * These pointers will be used later by verifier to validate map access. 18218 */ 18219 return 0; 18220 } 18221 18222 /* drop refcnt of maps used by the rejected program */ 18223 static void release_maps(struct bpf_verifier_env *env) 18224 { 18225 __bpf_free_used_maps(env->prog->aux, env->used_maps, 18226 env->used_map_cnt); 18227 } 18228 18229 /* drop refcnt of maps used by the rejected program */ 18230 static void release_btfs(struct bpf_verifier_env *env) 18231 { 18232 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 18233 env->used_btf_cnt); 18234 } 18235 18236 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 18237 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 18238 { 18239 struct bpf_insn *insn = env->prog->insnsi; 18240 int insn_cnt = env->prog->len; 18241 int i; 18242 18243 for (i = 0; i < insn_cnt; i++, insn++) { 18244 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 18245 continue; 18246 if (insn->src_reg == BPF_PSEUDO_FUNC) 18247 continue; 18248 insn->src_reg = 0; 18249 } 18250 } 18251 18252 /* single env->prog->insni[off] instruction was replaced with the range 18253 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 18254 * [0, off) and [off, end) to new locations, so the patched range stays zero 18255 */ 18256 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 18257 struct bpf_insn_aux_data *new_data, 18258 struct bpf_prog *new_prog, u32 off, u32 cnt) 18259 { 18260 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 18261 struct bpf_insn *insn = new_prog->insnsi; 18262 u32 old_seen = old_data[off].seen; 18263 u32 prog_len; 18264 int i; 18265 18266 /* aux info at OFF always needs adjustment, no matter fast path 18267 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 18268 * original insn at old prog. 18269 */ 18270 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 18271 18272 if (cnt == 1) 18273 return; 18274 prog_len = new_prog->len; 18275 18276 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 18277 memcpy(new_data + off + cnt - 1, old_data + off, 18278 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 18279 for (i = off; i < off + cnt - 1; i++) { 18280 /* Expand insni[off]'s seen count to the patched range. */ 18281 new_data[i].seen = old_seen; 18282 new_data[i].zext_dst = insn_has_def32(env, insn + i); 18283 } 18284 env->insn_aux_data = new_data; 18285 vfree(old_data); 18286 } 18287 18288 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 18289 { 18290 int i; 18291 18292 if (len == 1) 18293 return; 18294 /* NOTE: fake 'exit' subprog should be updated as well. */ 18295 for (i = 0; i <= env->subprog_cnt; i++) { 18296 if (env->subprog_info[i].start <= off) 18297 continue; 18298 env->subprog_info[i].start += len - 1; 18299 } 18300 } 18301 18302 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 18303 { 18304 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 18305 int i, sz = prog->aux->size_poke_tab; 18306 struct bpf_jit_poke_descriptor *desc; 18307 18308 for (i = 0; i < sz; i++) { 18309 desc = &tab[i]; 18310 if (desc->insn_idx <= off) 18311 continue; 18312 desc->insn_idx += len - 1; 18313 } 18314 } 18315 18316 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18317 const struct bpf_insn *patch, u32 len) 18318 { 18319 struct bpf_prog *new_prog; 18320 struct bpf_insn_aux_data *new_data = NULL; 18321 18322 if (len > 1) { 18323 new_data = vzalloc(array_size(env->prog->len + len - 1, 18324 sizeof(struct bpf_insn_aux_data))); 18325 if (!new_data) 18326 return NULL; 18327 } 18328 18329 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18330 if (IS_ERR(new_prog)) { 18331 if (PTR_ERR(new_prog) == -ERANGE) 18332 verbose(env, 18333 "insn %d cannot be patched due to 16-bit range\n", 18334 env->insn_aux_data[off].orig_idx); 18335 vfree(new_data); 18336 return NULL; 18337 } 18338 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18339 adjust_subprog_starts(env, off, len); 18340 adjust_poke_descs(new_prog, off, len); 18341 return new_prog; 18342 } 18343 18344 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18345 u32 off, u32 cnt) 18346 { 18347 int i, j; 18348 18349 /* find first prog starting at or after off (first to remove) */ 18350 for (i = 0; i < env->subprog_cnt; i++) 18351 if (env->subprog_info[i].start >= off) 18352 break; 18353 /* find first prog starting at or after off + cnt (first to stay) */ 18354 for (j = i; j < env->subprog_cnt; j++) 18355 if (env->subprog_info[j].start >= off + cnt) 18356 break; 18357 /* if j doesn't start exactly at off + cnt, we are just removing 18358 * the front of previous prog 18359 */ 18360 if (env->subprog_info[j].start != off + cnt) 18361 j--; 18362 18363 if (j > i) { 18364 struct bpf_prog_aux *aux = env->prog->aux; 18365 int move; 18366 18367 /* move fake 'exit' subprog as well */ 18368 move = env->subprog_cnt + 1 - j; 18369 18370 memmove(env->subprog_info + i, 18371 env->subprog_info + j, 18372 sizeof(*env->subprog_info) * move); 18373 env->subprog_cnt -= j - i; 18374 18375 /* remove func_info */ 18376 if (aux->func_info) { 18377 move = aux->func_info_cnt - j; 18378 18379 memmove(aux->func_info + i, 18380 aux->func_info + j, 18381 sizeof(*aux->func_info) * move); 18382 aux->func_info_cnt -= j - i; 18383 /* func_info->insn_off is set after all code rewrites, 18384 * in adjust_btf_func() - no need to adjust 18385 */ 18386 } 18387 } else { 18388 /* convert i from "first prog to remove" to "first to adjust" */ 18389 if (env->subprog_info[i].start == off) 18390 i++; 18391 } 18392 18393 /* update fake 'exit' subprog as well */ 18394 for (; i <= env->subprog_cnt; i++) 18395 env->subprog_info[i].start -= cnt; 18396 18397 return 0; 18398 } 18399 18400 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18401 u32 cnt) 18402 { 18403 struct bpf_prog *prog = env->prog; 18404 u32 i, l_off, l_cnt, nr_linfo; 18405 struct bpf_line_info *linfo; 18406 18407 nr_linfo = prog->aux->nr_linfo; 18408 if (!nr_linfo) 18409 return 0; 18410 18411 linfo = prog->aux->linfo; 18412 18413 /* find first line info to remove, count lines to be removed */ 18414 for (i = 0; i < nr_linfo; i++) 18415 if (linfo[i].insn_off >= off) 18416 break; 18417 18418 l_off = i; 18419 l_cnt = 0; 18420 for (; i < nr_linfo; i++) 18421 if (linfo[i].insn_off < off + cnt) 18422 l_cnt++; 18423 else 18424 break; 18425 18426 /* First live insn doesn't match first live linfo, it needs to "inherit" 18427 * last removed linfo. prog is already modified, so prog->len == off 18428 * means no live instructions after (tail of the program was removed). 18429 */ 18430 if (prog->len != off && l_cnt && 18431 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18432 l_cnt--; 18433 linfo[--i].insn_off = off + cnt; 18434 } 18435 18436 /* remove the line info which refer to the removed instructions */ 18437 if (l_cnt) { 18438 memmove(linfo + l_off, linfo + i, 18439 sizeof(*linfo) * (nr_linfo - i)); 18440 18441 prog->aux->nr_linfo -= l_cnt; 18442 nr_linfo = prog->aux->nr_linfo; 18443 } 18444 18445 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18446 for (i = l_off; i < nr_linfo; i++) 18447 linfo[i].insn_off -= cnt; 18448 18449 /* fix up all subprogs (incl. 'exit') which start >= off */ 18450 for (i = 0; i <= env->subprog_cnt; i++) 18451 if (env->subprog_info[i].linfo_idx > l_off) { 18452 /* program may have started in the removed region but 18453 * may not be fully removed 18454 */ 18455 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18456 env->subprog_info[i].linfo_idx -= l_cnt; 18457 else 18458 env->subprog_info[i].linfo_idx = l_off; 18459 } 18460 18461 return 0; 18462 } 18463 18464 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18465 { 18466 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18467 unsigned int orig_prog_len = env->prog->len; 18468 int err; 18469 18470 if (bpf_prog_is_offloaded(env->prog->aux)) 18471 bpf_prog_offload_remove_insns(env, off, cnt); 18472 18473 err = bpf_remove_insns(env->prog, off, cnt); 18474 if (err) 18475 return err; 18476 18477 err = adjust_subprog_starts_after_remove(env, off, cnt); 18478 if (err) 18479 return err; 18480 18481 err = bpf_adj_linfo_after_remove(env, off, cnt); 18482 if (err) 18483 return err; 18484 18485 memmove(aux_data + off, aux_data + off + cnt, 18486 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18487 18488 return 0; 18489 } 18490 18491 /* The verifier does more data flow analysis than llvm and will not 18492 * explore branches that are dead at run time. Malicious programs can 18493 * have dead code too. Therefore replace all dead at-run-time code 18494 * with 'ja -1'. 18495 * 18496 * Just nops are not optimal, e.g. if they would sit at the end of the 18497 * program and through another bug we would manage to jump there, then 18498 * we'd execute beyond program memory otherwise. Returning exception 18499 * code also wouldn't work since we can have subprogs where the dead 18500 * code could be located. 18501 */ 18502 static void sanitize_dead_code(struct bpf_verifier_env *env) 18503 { 18504 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18505 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18506 struct bpf_insn *insn = env->prog->insnsi; 18507 const int insn_cnt = env->prog->len; 18508 int i; 18509 18510 for (i = 0; i < insn_cnt; i++) { 18511 if (aux_data[i].seen) 18512 continue; 18513 memcpy(insn + i, &trap, sizeof(trap)); 18514 aux_data[i].zext_dst = false; 18515 } 18516 } 18517 18518 static bool insn_is_cond_jump(u8 code) 18519 { 18520 u8 op; 18521 18522 op = BPF_OP(code); 18523 if (BPF_CLASS(code) == BPF_JMP32) 18524 return op != BPF_JA; 18525 18526 if (BPF_CLASS(code) != BPF_JMP) 18527 return false; 18528 18529 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18530 } 18531 18532 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18533 { 18534 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18535 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18536 struct bpf_insn *insn = env->prog->insnsi; 18537 const int insn_cnt = env->prog->len; 18538 int i; 18539 18540 for (i = 0; i < insn_cnt; i++, insn++) { 18541 if (!insn_is_cond_jump(insn->code)) 18542 continue; 18543 18544 if (!aux_data[i + 1].seen) 18545 ja.off = insn->off; 18546 else if (!aux_data[i + 1 + insn->off].seen) 18547 ja.off = 0; 18548 else 18549 continue; 18550 18551 if (bpf_prog_is_offloaded(env->prog->aux)) 18552 bpf_prog_offload_replace_insn(env, i, &ja); 18553 18554 memcpy(insn, &ja, sizeof(ja)); 18555 } 18556 } 18557 18558 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18559 { 18560 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18561 int insn_cnt = env->prog->len; 18562 int i, err; 18563 18564 for (i = 0; i < insn_cnt; i++) { 18565 int j; 18566 18567 j = 0; 18568 while (i + j < insn_cnt && !aux_data[i + j].seen) 18569 j++; 18570 if (!j) 18571 continue; 18572 18573 err = verifier_remove_insns(env, i, j); 18574 if (err) 18575 return err; 18576 insn_cnt = env->prog->len; 18577 } 18578 18579 return 0; 18580 } 18581 18582 static int opt_remove_nops(struct bpf_verifier_env *env) 18583 { 18584 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18585 struct bpf_insn *insn = env->prog->insnsi; 18586 int insn_cnt = env->prog->len; 18587 int i, err; 18588 18589 for (i = 0; i < insn_cnt; i++) { 18590 if (memcmp(&insn[i], &ja, sizeof(ja))) 18591 continue; 18592 18593 err = verifier_remove_insns(env, i, 1); 18594 if (err) 18595 return err; 18596 insn_cnt--; 18597 i--; 18598 } 18599 18600 return 0; 18601 } 18602 18603 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18604 const union bpf_attr *attr) 18605 { 18606 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18607 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18608 int i, patch_len, delta = 0, len = env->prog->len; 18609 struct bpf_insn *insns = env->prog->insnsi; 18610 struct bpf_prog *new_prog; 18611 bool rnd_hi32; 18612 18613 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18614 zext_patch[1] = BPF_ZEXT_REG(0); 18615 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18616 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18617 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18618 for (i = 0; i < len; i++) { 18619 int adj_idx = i + delta; 18620 struct bpf_insn insn; 18621 int load_reg; 18622 18623 insn = insns[adj_idx]; 18624 load_reg = insn_def_regno(&insn); 18625 if (!aux[adj_idx].zext_dst) { 18626 u8 code, class; 18627 u32 imm_rnd; 18628 18629 if (!rnd_hi32) 18630 continue; 18631 18632 code = insn.code; 18633 class = BPF_CLASS(code); 18634 if (load_reg == -1) 18635 continue; 18636 18637 /* NOTE: arg "reg" (the fourth one) is only used for 18638 * BPF_STX + SRC_OP, so it is safe to pass NULL 18639 * here. 18640 */ 18641 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18642 if (class == BPF_LD && 18643 BPF_MODE(code) == BPF_IMM) 18644 i++; 18645 continue; 18646 } 18647 18648 /* ctx load could be transformed into wider load. */ 18649 if (class == BPF_LDX && 18650 aux[adj_idx].ptr_type == PTR_TO_CTX) 18651 continue; 18652 18653 imm_rnd = get_random_u32(); 18654 rnd_hi32_patch[0] = insn; 18655 rnd_hi32_patch[1].imm = imm_rnd; 18656 rnd_hi32_patch[3].dst_reg = load_reg; 18657 patch = rnd_hi32_patch; 18658 patch_len = 4; 18659 goto apply_patch_buffer; 18660 } 18661 18662 /* Add in an zero-extend instruction if a) the JIT has requested 18663 * it or b) it's a CMPXCHG. 18664 * 18665 * The latter is because: BPF_CMPXCHG always loads a value into 18666 * R0, therefore always zero-extends. However some archs' 18667 * equivalent instruction only does this load when the 18668 * comparison is successful. This detail of CMPXCHG is 18669 * orthogonal to the general zero-extension behaviour of the 18670 * CPU, so it's treated independently of bpf_jit_needs_zext. 18671 */ 18672 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18673 continue; 18674 18675 /* Zero-extension is done by the caller. */ 18676 if (bpf_pseudo_kfunc_call(&insn)) 18677 continue; 18678 18679 if (WARN_ON(load_reg == -1)) { 18680 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18681 return -EFAULT; 18682 } 18683 18684 zext_patch[0] = insn; 18685 zext_patch[1].dst_reg = load_reg; 18686 zext_patch[1].src_reg = load_reg; 18687 patch = zext_patch; 18688 patch_len = 2; 18689 apply_patch_buffer: 18690 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18691 if (!new_prog) 18692 return -ENOMEM; 18693 env->prog = new_prog; 18694 insns = new_prog->insnsi; 18695 aux = env->insn_aux_data; 18696 delta += patch_len - 1; 18697 } 18698 18699 return 0; 18700 } 18701 18702 /* convert load instructions that access fields of a context type into a 18703 * sequence of instructions that access fields of the underlying structure: 18704 * struct __sk_buff -> struct sk_buff 18705 * struct bpf_sock_ops -> struct sock 18706 */ 18707 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18708 { 18709 const struct bpf_verifier_ops *ops = env->ops; 18710 int i, cnt, size, ctx_field_size, delta = 0; 18711 const int insn_cnt = env->prog->len; 18712 struct bpf_insn insn_buf[16], *insn; 18713 u32 target_size, size_default, off; 18714 struct bpf_prog *new_prog; 18715 enum bpf_access_type type; 18716 bool is_narrower_load; 18717 18718 if (ops->gen_prologue || env->seen_direct_write) { 18719 if (!ops->gen_prologue) { 18720 verbose(env, "bpf verifier is misconfigured\n"); 18721 return -EINVAL; 18722 } 18723 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18724 env->prog); 18725 if (cnt >= ARRAY_SIZE(insn_buf)) { 18726 verbose(env, "bpf verifier is misconfigured\n"); 18727 return -EINVAL; 18728 } else if (cnt) { 18729 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18730 if (!new_prog) 18731 return -ENOMEM; 18732 18733 env->prog = new_prog; 18734 delta += cnt - 1; 18735 } 18736 } 18737 18738 if (bpf_prog_is_offloaded(env->prog->aux)) 18739 return 0; 18740 18741 insn = env->prog->insnsi + delta; 18742 18743 for (i = 0; i < insn_cnt; i++, insn++) { 18744 bpf_convert_ctx_access_t convert_ctx_access; 18745 u8 mode; 18746 18747 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18748 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18749 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18750 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18751 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18752 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18753 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18754 type = BPF_READ; 18755 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18756 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18757 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18758 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18759 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18760 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18761 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18762 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18763 type = BPF_WRITE; 18764 } else { 18765 continue; 18766 } 18767 18768 if (type == BPF_WRITE && 18769 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18770 struct bpf_insn patch[] = { 18771 *insn, 18772 BPF_ST_NOSPEC(), 18773 }; 18774 18775 cnt = ARRAY_SIZE(patch); 18776 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18777 if (!new_prog) 18778 return -ENOMEM; 18779 18780 delta += cnt - 1; 18781 env->prog = new_prog; 18782 insn = new_prog->insnsi + i + delta; 18783 continue; 18784 } 18785 18786 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18787 case PTR_TO_CTX: 18788 if (!ops->convert_ctx_access) 18789 continue; 18790 convert_ctx_access = ops->convert_ctx_access; 18791 break; 18792 case PTR_TO_SOCKET: 18793 case PTR_TO_SOCK_COMMON: 18794 convert_ctx_access = bpf_sock_convert_ctx_access; 18795 break; 18796 case PTR_TO_TCP_SOCK: 18797 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18798 break; 18799 case PTR_TO_XDP_SOCK: 18800 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18801 break; 18802 case PTR_TO_BTF_ID: 18803 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18804 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18805 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18806 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18807 * any faults for loads into such types. BPF_WRITE is disallowed 18808 * for this case. 18809 */ 18810 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18811 if (type == BPF_READ) { 18812 if (BPF_MODE(insn->code) == BPF_MEM) 18813 insn->code = BPF_LDX | BPF_PROBE_MEM | 18814 BPF_SIZE((insn)->code); 18815 else 18816 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18817 BPF_SIZE((insn)->code); 18818 env->prog->aux->num_exentries++; 18819 } 18820 continue; 18821 default: 18822 continue; 18823 } 18824 18825 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18826 size = BPF_LDST_BYTES(insn); 18827 mode = BPF_MODE(insn->code); 18828 18829 /* If the read access is a narrower load of the field, 18830 * convert to a 4/8-byte load, to minimum program type specific 18831 * convert_ctx_access changes. If conversion is successful, 18832 * we will apply proper mask to the result. 18833 */ 18834 is_narrower_load = size < ctx_field_size; 18835 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18836 off = insn->off; 18837 if (is_narrower_load) { 18838 u8 size_code; 18839 18840 if (type == BPF_WRITE) { 18841 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18842 return -EINVAL; 18843 } 18844 18845 size_code = BPF_H; 18846 if (ctx_field_size == 4) 18847 size_code = BPF_W; 18848 else if (ctx_field_size == 8) 18849 size_code = BPF_DW; 18850 18851 insn->off = off & ~(size_default - 1); 18852 insn->code = BPF_LDX | BPF_MEM | size_code; 18853 } 18854 18855 target_size = 0; 18856 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18857 &target_size); 18858 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18859 (ctx_field_size && !target_size)) { 18860 verbose(env, "bpf verifier is misconfigured\n"); 18861 return -EINVAL; 18862 } 18863 18864 if (is_narrower_load && size < target_size) { 18865 u8 shift = bpf_ctx_narrow_access_offset( 18866 off, size, size_default) * 8; 18867 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18868 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18869 return -EINVAL; 18870 } 18871 if (ctx_field_size <= 4) { 18872 if (shift) 18873 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18874 insn->dst_reg, 18875 shift); 18876 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18877 (1 << size * 8) - 1); 18878 } else { 18879 if (shift) 18880 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18881 insn->dst_reg, 18882 shift); 18883 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18884 (1ULL << size * 8) - 1); 18885 } 18886 } 18887 if (mode == BPF_MEMSX) 18888 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18889 insn->dst_reg, insn->dst_reg, 18890 size * 8, 0); 18891 18892 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18893 if (!new_prog) 18894 return -ENOMEM; 18895 18896 delta += cnt - 1; 18897 18898 /* keep walking new program and skip insns we just inserted */ 18899 env->prog = new_prog; 18900 insn = new_prog->insnsi + i + delta; 18901 } 18902 18903 return 0; 18904 } 18905 18906 static int jit_subprogs(struct bpf_verifier_env *env) 18907 { 18908 struct bpf_prog *prog = env->prog, **func, *tmp; 18909 int i, j, subprog_start, subprog_end = 0, len, subprog; 18910 struct bpf_map *map_ptr; 18911 struct bpf_insn *insn; 18912 void *old_bpf_func; 18913 int err, num_exentries; 18914 18915 if (env->subprog_cnt <= 1) 18916 return 0; 18917 18918 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18919 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18920 continue; 18921 18922 /* Upon error here we cannot fall back to interpreter but 18923 * need a hard reject of the program. Thus -EFAULT is 18924 * propagated in any case. 18925 */ 18926 subprog = find_subprog(env, i + insn->imm + 1); 18927 if (subprog < 0) { 18928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18929 i + insn->imm + 1); 18930 return -EFAULT; 18931 } 18932 /* temporarily remember subprog id inside insn instead of 18933 * aux_data, since next loop will split up all insns into funcs 18934 */ 18935 insn->off = subprog; 18936 /* remember original imm in case JIT fails and fallback 18937 * to interpreter will be needed 18938 */ 18939 env->insn_aux_data[i].call_imm = insn->imm; 18940 /* point imm to __bpf_call_base+1 from JITs point of view */ 18941 insn->imm = 1; 18942 if (bpf_pseudo_func(insn)) 18943 /* jit (e.g. x86_64) may emit fewer instructions 18944 * if it learns a u32 imm is the same as a u64 imm. 18945 * Force a non zero here. 18946 */ 18947 insn[1].imm = 1; 18948 } 18949 18950 err = bpf_prog_alloc_jited_linfo(prog); 18951 if (err) 18952 goto out_undo_insn; 18953 18954 err = -ENOMEM; 18955 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18956 if (!func) 18957 goto out_undo_insn; 18958 18959 for (i = 0; i < env->subprog_cnt; i++) { 18960 subprog_start = subprog_end; 18961 subprog_end = env->subprog_info[i + 1].start; 18962 18963 len = subprog_end - subprog_start; 18964 /* bpf_prog_run() doesn't call subprogs directly, 18965 * hence main prog stats include the runtime of subprogs. 18966 * subprogs don't have IDs and not reachable via prog_get_next_id 18967 * func[i]->stats will never be accessed and stays NULL 18968 */ 18969 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18970 if (!func[i]) 18971 goto out_free; 18972 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18973 len * sizeof(struct bpf_insn)); 18974 func[i]->type = prog->type; 18975 func[i]->len = len; 18976 if (bpf_prog_calc_tag(func[i])) 18977 goto out_free; 18978 func[i]->is_func = 1; 18979 func[i]->aux->func_idx = i; 18980 /* Below members will be freed only at prog->aux */ 18981 func[i]->aux->btf = prog->aux->btf; 18982 func[i]->aux->func_info = prog->aux->func_info; 18983 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18984 func[i]->aux->poke_tab = prog->aux->poke_tab; 18985 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18986 18987 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18988 struct bpf_jit_poke_descriptor *poke; 18989 18990 poke = &prog->aux->poke_tab[j]; 18991 if (poke->insn_idx < subprog_end && 18992 poke->insn_idx >= subprog_start) 18993 poke->aux = func[i]->aux; 18994 } 18995 18996 func[i]->aux->name[0] = 'F'; 18997 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18998 func[i]->jit_requested = 1; 18999 func[i]->blinding_requested = prog->blinding_requested; 19000 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 19001 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 19002 func[i]->aux->linfo = prog->aux->linfo; 19003 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 19004 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 19005 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 19006 num_exentries = 0; 19007 insn = func[i]->insnsi; 19008 for (j = 0; j < func[i]->len; j++, insn++) { 19009 if (BPF_CLASS(insn->code) == BPF_LDX && 19010 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 19011 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 19012 num_exentries++; 19013 } 19014 func[i]->aux->num_exentries = num_exentries; 19015 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 19016 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 19017 if (!i) 19018 func[i]->aux->exception_boundary = env->seen_exception; 19019 func[i] = bpf_int_jit_compile(func[i]); 19020 if (!func[i]->jited) { 19021 err = -ENOTSUPP; 19022 goto out_free; 19023 } 19024 cond_resched(); 19025 } 19026 19027 /* at this point all bpf functions were successfully JITed 19028 * now populate all bpf_calls with correct addresses and 19029 * run last pass of JIT 19030 */ 19031 for (i = 0; i < env->subprog_cnt; i++) { 19032 insn = func[i]->insnsi; 19033 for (j = 0; j < func[i]->len; j++, insn++) { 19034 if (bpf_pseudo_func(insn)) { 19035 subprog = insn->off; 19036 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 19037 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 19038 continue; 19039 } 19040 if (!bpf_pseudo_call(insn)) 19041 continue; 19042 subprog = insn->off; 19043 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 19044 } 19045 19046 /* we use the aux data to keep a list of the start addresses 19047 * of the JITed images for each function in the program 19048 * 19049 * for some architectures, such as powerpc64, the imm field 19050 * might not be large enough to hold the offset of the start 19051 * address of the callee's JITed image from __bpf_call_base 19052 * 19053 * in such cases, we can lookup the start address of a callee 19054 * by using its subprog id, available from the off field of 19055 * the call instruction, as an index for this list 19056 */ 19057 func[i]->aux->func = func; 19058 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19059 func[i]->aux->real_func_cnt = env->subprog_cnt; 19060 } 19061 for (i = 0; i < env->subprog_cnt; i++) { 19062 old_bpf_func = func[i]->bpf_func; 19063 tmp = bpf_int_jit_compile(func[i]); 19064 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 19065 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 19066 err = -ENOTSUPP; 19067 goto out_free; 19068 } 19069 cond_resched(); 19070 } 19071 19072 /* finally lock prog and jit images for all functions and 19073 * populate kallsysm. Begin at the first subprogram, since 19074 * bpf_prog_load will add the kallsyms for the main program. 19075 */ 19076 for (i = 1; i < env->subprog_cnt; i++) { 19077 bpf_prog_lock_ro(func[i]); 19078 bpf_prog_kallsyms_add(func[i]); 19079 } 19080 19081 /* Last step: make now unused interpreter insns from main 19082 * prog consistent for later dump requests, so they can 19083 * later look the same as if they were interpreted only. 19084 */ 19085 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19086 if (bpf_pseudo_func(insn)) { 19087 insn[0].imm = env->insn_aux_data[i].call_imm; 19088 insn[1].imm = insn->off; 19089 insn->off = 0; 19090 continue; 19091 } 19092 if (!bpf_pseudo_call(insn)) 19093 continue; 19094 insn->off = env->insn_aux_data[i].call_imm; 19095 subprog = find_subprog(env, i + insn->off + 1); 19096 insn->imm = subprog; 19097 } 19098 19099 prog->jited = 1; 19100 prog->bpf_func = func[0]->bpf_func; 19101 prog->jited_len = func[0]->jited_len; 19102 prog->aux->extable = func[0]->aux->extable; 19103 prog->aux->num_exentries = func[0]->aux->num_exentries; 19104 prog->aux->func = func; 19105 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19106 prog->aux->real_func_cnt = env->subprog_cnt; 19107 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 19108 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 19109 bpf_prog_jit_attempt_done(prog); 19110 return 0; 19111 out_free: 19112 /* We failed JIT'ing, so at this point we need to unregister poke 19113 * descriptors from subprogs, so that kernel is not attempting to 19114 * patch it anymore as we're freeing the subprog JIT memory. 19115 */ 19116 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19117 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19118 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 19119 } 19120 /* At this point we're guaranteed that poke descriptors are not 19121 * live anymore. We can just unlink its descriptor table as it's 19122 * released with the main prog. 19123 */ 19124 for (i = 0; i < env->subprog_cnt; i++) { 19125 if (!func[i]) 19126 continue; 19127 func[i]->aux->poke_tab = NULL; 19128 bpf_jit_free(func[i]); 19129 } 19130 kfree(func); 19131 out_undo_insn: 19132 /* cleanup main prog to be interpreted */ 19133 prog->jit_requested = 0; 19134 prog->blinding_requested = 0; 19135 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19136 if (!bpf_pseudo_call(insn)) 19137 continue; 19138 insn->off = 0; 19139 insn->imm = env->insn_aux_data[i].call_imm; 19140 } 19141 bpf_prog_jit_attempt_done(prog); 19142 return err; 19143 } 19144 19145 static int fixup_call_args(struct bpf_verifier_env *env) 19146 { 19147 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19148 struct bpf_prog *prog = env->prog; 19149 struct bpf_insn *insn = prog->insnsi; 19150 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 19151 int i, depth; 19152 #endif 19153 int err = 0; 19154 19155 if (env->prog->jit_requested && 19156 !bpf_prog_is_offloaded(env->prog->aux)) { 19157 err = jit_subprogs(env); 19158 if (err == 0) 19159 return 0; 19160 if (err == -EFAULT) 19161 return err; 19162 } 19163 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19164 if (has_kfunc_call) { 19165 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 19166 return -EINVAL; 19167 } 19168 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 19169 /* When JIT fails the progs with bpf2bpf calls and tail_calls 19170 * have to be rejected, since interpreter doesn't support them yet. 19171 */ 19172 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 19173 return -EINVAL; 19174 } 19175 for (i = 0; i < prog->len; i++, insn++) { 19176 if (bpf_pseudo_func(insn)) { 19177 /* When JIT fails the progs with callback calls 19178 * have to be rejected, since interpreter doesn't support them yet. 19179 */ 19180 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 19181 return -EINVAL; 19182 } 19183 19184 if (!bpf_pseudo_call(insn)) 19185 continue; 19186 depth = get_callee_stack_depth(env, insn, i); 19187 if (depth < 0) 19188 return depth; 19189 bpf_patch_call_args(insn, depth); 19190 } 19191 err = 0; 19192 #endif 19193 return err; 19194 } 19195 19196 /* replace a generic kfunc with a specialized version if necessary */ 19197 static void specialize_kfunc(struct bpf_verifier_env *env, 19198 u32 func_id, u16 offset, unsigned long *addr) 19199 { 19200 struct bpf_prog *prog = env->prog; 19201 bool seen_direct_write; 19202 void *xdp_kfunc; 19203 bool is_rdonly; 19204 19205 if (bpf_dev_bound_kfunc_id(func_id)) { 19206 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 19207 if (xdp_kfunc) { 19208 *addr = (unsigned long)xdp_kfunc; 19209 return; 19210 } 19211 /* fallback to default kfunc when not supported by netdev */ 19212 } 19213 19214 if (offset) 19215 return; 19216 19217 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 19218 seen_direct_write = env->seen_direct_write; 19219 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 19220 19221 if (is_rdonly) 19222 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 19223 19224 /* restore env->seen_direct_write to its original value, since 19225 * may_access_direct_pkt_data mutates it 19226 */ 19227 env->seen_direct_write = seen_direct_write; 19228 } 19229 } 19230 19231 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 19232 u16 struct_meta_reg, 19233 u16 node_offset_reg, 19234 struct bpf_insn *insn, 19235 struct bpf_insn *insn_buf, 19236 int *cnt) 19237 { 19238 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 19239 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 19240 19241 insn_buf[0] = addr[0]; 19242 insn_buf[1] = addr[1]; 19243 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 19244 insn_buf[3] = *insn; 19245 *cnt = 4; 19246 } 19247 19248 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 19249 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 19250 { 19251 const struct bpf_kfunc_desc *desc; 19252 19253 if (!insn->imm) { 19254 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 19255 return -EINVAL; 19256 } 19257 19258 *cnt = 0; 19259 19260 /* insn->imm has the btf func_id. Replace it with an offset relative to 19261 * __bpf_call_base, unless the JIT needs to call functions that are 19262 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 19263 */ 19264 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 19265 if (!desc) { 19266 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 19267 insn->imm); 19268 return -EFAULT; 19269 } 19270 19271 if (!bpf_jit_supports_far_kfunc_call()) 19272 insn->imm = BPF_CALL_IMM(desc->addr); 19273 if (insn->off) 19274 return 0; 19275 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 19276 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 19277 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19278 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19279 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 19280 19281 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 19282 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19283 insn_idx); 19284 return -EFAULT; 19285 } 19286 19287 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 19288 insn_buf[1] = addr[0]; 19289 insn_buf[2] = addr[1]; 19290 insn_buf[3] = *insn; 19291 *cnt = 4; 19292 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 19293 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 19294 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 19295 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19296 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19297 19298 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 19299 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19300 insn_idx); 19301 return -EFAULT; 19302 } 19303 19304 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 19305 !kptr_struct_meta) { 19306 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19307 insn_idx); 19308 return -EFAULT; 19309 } 19310 19311 insn_buf[0] = addr[0]; 19312 insn_buf[1] = addr[1]; 19313 insn_buf[2] = *insn; 19314 *cnt = 3; 19315 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19316 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19317 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19318 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19319 int struct_meta_reg = BPF_REG_3; 19320 int node_offset_reg = BPF_REG_4; 19321 19322 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19323 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19324 struct_meta_reg = BPF_REG_4; 19325 node_offset_reg = BPF_REG_5; 19326 } 19327 19328 if (!kptr_struct_meta) { 19329 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19330 insn_idx); 19331 return -EFAULT; 19332 } 19333 19334 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19335 node_offset_reg, insn, insn_buf, cnt); 19336 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19337 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19338 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19339 *cnt = 1; 19340 } 19341 return 0; 19342 } 19343 19344 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19345 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19346 { 19347 struct bpf_subprog_info *info = env->subprog_info; 19348 int cnt = env->subprog_cnt; 19349 struct bpf_prog *prog; 19350 19351 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19352 if (env->hidden_subprog_cnt) { 19353 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19354 return -EFAULT; 19355 } 19356 /* We're not patching any existing instruction, just appending the new 19357 * ones for the hidden subprog. Hence all of the adjustment operations 19358 * in bpf_patch_insn_data are no-ops. 19359 */ 19360 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19361 if (!prog) 19362 return -ENOMEM; 19363 env->prog = prog; 19364 info[cnt + 1].start = info[cnt].start; 19365 info[cnt].start = prog->len - len + 1; 19366 env->subprog_cnt++; 19367 env->hidden_subprog_cnt++; 19368 return 0; 19369 } 19370 19371 /* Do various post-verification rewrites in a single program pass. 19372 * These rewrites simplify JIT and interpreter implementations. 19373 */ 19374 static int do_misc_fixups(struct bpf_verifier_env *env) 19375 { 19376 struct bpf_prog *prog = env->prog; 19377 enum bpf_attach_type eatype = prog->expected_attach_type; 19378 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19379 struct bpf_insn *insn = prog->insnsi; 19380 const struct bpf_func_proto *fn; 19381 const int insn_cnt = prog->len; 19382 const struct bpf_map_ops *ops; 19383 struct bpf_insn_aux_data *aux; 19384 struct bpf_insn insn_buf[16]; 19385 struct bpf_prog *new_prog; 19386 struct bpf_map *map_ptr; 19387 int i, ret, cnt, delta = 0; 19388 19389 if (env->seen_exception && !env->exception_callback_subprog) { 19390 struct bpf_insn patch[] = { 19391 env->prog->insnsi[insn_cnt - 1], 19392 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19393 BPF_EXIT_INSN(), 19394 }; 19395 19396 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19397 if (ret < 0) 19398 return ret; 19399 prog = env->prog; 19400 insn = prog->insnsi; 19401 19402 env->exception_callback_subprog = env->subprog_cnt - 1; 19403 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19404 env->subprog_info[env->exception_callback_subprog].is_cb = true; 19405 env->subprog_info[env->exception_callback_subprog].is_async_cb = true; 19406 env->subprog_info[env->exception_callback_subprog].is_exception_cb = true; 19407 } 19408 19409 for (i = 0; i < insn_cnt; i++, insn++) { 19410 /* Make divide-by-zero exceptions impossible. */ 19411 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19412 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19413 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19414 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19415 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19416 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19417 struct bpf_insn *patchlet; 19418 struct bpf_insn chk_and_div[] = { 19419 /* [R,W]x div 0 -> 0 */ 19420 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19421 BPF_JNE | BPF_K, insn->src_reg, 19422 0, 2, 0), 19423 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19424 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19425 *insn, 19426 }; 19427 struct bpf_insn chk_and_mod[] = { 19428 /* [R,W]x mod 0 -> [R,W]x */ 19429 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19430 BPF_JEQ | BPF_K, insn->src_reg, 19431 0, 1 + (is64 ? 0 : 1), 0), 19432 *insn, 19433 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19434 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19435 }; 19436 19437 patchlet = isdiv ? chk_and_div : chk_and_mod; 19438 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19439 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19440 19441 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19442 if (!new_prog) 19443 return -ENOMEM; 19444 19445 delta += cnt - 1; 19446 env->prog = prog = new_prog; 19447 insn = new_prog->insnsi + i + delta; 19448 continue; 19449 } 19450 19451 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19452 if (BPF_CLASS(insn->code) == BPF_LD && 19453 (BPF_MODE(insn->code) == BPF_ABS || 19454 BPF_MODE(insn->code) == BPF_IND)) { 19455 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19456 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19457 verbose(env, "bpf verifier is misconfigured\n"); 19458 return -EINVAL; 19459 } 19460 19461 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19462 if (!new_prog) 19463 return -ENOMEM; 19464 19465 delta += cnt - 1; 19466 env->prog = prog = new_prog; 19467 insn = new_prog->insnsi + i + delta; 19468 continue; 19469 } 19470 19471 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19472 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19473 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19474 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19475 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19476 struct bpf_insn *patch = &insn_buf[0]; 19477 bool issrc, isneg, isimm; 19478 u32 off_reg; 19479 19480 aux = &env->insn_aux_data[i + delta]; 19481 if (!aux->alu_state || 19482 aux->alu_state == BPF_ALU_NON_POINTER) 19483 continue; 19484 19485 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19486 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19487 BPF_ALU_SANITIZE_SRC; 19488 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19489 19490 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19491 if (isimm) { 19492 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19493 } else { 19494 if (isneg) 19495 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19496 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19497 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19498 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19499 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19500 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19501 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19502 } 19503 if (!issrc) 19504 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19505 insn->src_reg = BPF_REG_AX; 19506 if (isneg) 19507 insn->code = insn->code == code_add ? 19508 code_sub : code_add; 19509 *patch++ = *insn; 19510 if (issrc && isneg && !isimm) 19511 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19512 cnt = patch - insn_buf; 19513 19514 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19515 if (!new_prog) 19516 return -ENOMEM; 19517 19518 delta += cnt - 1; 19519 env->prog = prog = new_prog; 19520 insn = new_prog->insnsi + i + delta; 19521 continue; 19522 } 19523 19524 if (insn->code != (BPF_JMP | BPF_CALL)) 19525 continue; 19526 if (insn->src_reg == BPF_PSEUDO_CALL) 19527 continue; 19528 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19529 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19530 if (ret) 19531 return ret; 19532 if (cnt == 0) 19533 continue; 19534 19535 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19536 if (!new_prog) 19537 return -ENOMEM; 19538 19539 delta += cnt - 1; 19540 env->prog = prog = new_prog; 19541 insn = new_prog->insnsi + i + delta; 19542 continue; 19543 } 19544 19545 if (insn->imm == BPF_FUNC_get_route_realm) 19546 prog->dst_needed = 1; 19547 if (insn->imm == BPF_FUNC_get_prandom_u32) 19548 bpf_user_rnd_init_once(); 19549 if (insn->imm == BPF_FUNC_override_return) 19550 prog->kprobe_override = 1; 19551 if (insn->imm == BPF_FUNC_tail_call) { 19552 /* If we tail call into other programs, we 19553 * cannot make any assumptions since they can 19554 * be replaced dynamically during runtime in 19555 * the program array. 19556 */ 19557 prog->cb_access = 1; 19558 if (!allow_tail_call_in_subprogs(env)) 19559 prog->aux->stack_depth = MAX_BPF_STACK; 19560 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19561 19562 /* mark bpf_tail_call as different opcode to avoid 19563 * conditional branch in the interpreter for every normal 19564 * call and to prevent accidental JITing by JIT compiler 19565 * that doesn't support bpf_tail_call yet 19566 */ 19567 insn->imm = 0; 19568 insn->code = BPF_JMP | BPF_TAIL_CALL; 19569 19570 aux = &env->insn_aux_data[i + delta]; 19571 if (env->bpf_capable && !prog->blinding_requested && 19572 prog->jit_requested && 19573 !bpf_map_key_poisoned(aux) && 19574 !bpf_map_ptr_poisoned(aux) && 19575 !bpf_map_ptr_unpriv(aux)) { 19576 struct bpf_jit_poke_descriptor desc = { 19577 .reason = BPF_POKE_REASON_TAIL_CALL, 19578 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19579 .tail_call.key = bpf_map_key_immediate(aux), 19580 .insn_idx = i + delta, 19581 }; 19582 19583 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19584 if (ret < 0) { 19585 verbose(env, "adding tail call poke descriptor failed\n"); 19586 return ret; 19587 } 19588 19589 insn->imm = ret + 1; 19590 continue; 19591 } 19592 19593 if (!bpf_map_ptr_unpriv(aux)) 19594 continue; 19595 19596 /* instead of changing every JIT dealing with tail_call 19597 * emit two extra insns: 19598 * if (index >= max_entries) goto out; 19599 * index &= array->index_mask; 19600 * to avoid out-of-bounds cpu speculation 19601 */ 19602 if (bpf_map_ptr_poisoned(aux)) { 19603 verbose(env, "tail_call abusing map_ptr\n"); 19604 return -EINVAL; 19605 } 19606 19607 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19608 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19609 map_ptr->max_entries, 2); 19610 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19611 container_of(map_ptr, 19612 struct bpf_array, 19613 map)->index_mask); 19614 insn_buf[2] = *insn; 19615 cnt = 3; 19616 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19617 if (!new_prog) 19618 return -ENOMEM; 19619 19620 delta += cnt - 1; 19621 env->prog = prog = new_prog; 19622 insn = new_prog->insnsi + i + delta; 19623 continue; 19624 } 19625 19626 if (insn->imm == BPF_FUNC_timer_set_callback) { 19627 /* The verifier will process callback_fn as many times as necessary 19628 * with different maps and the register states prepared by 19629 * set_timer_callback_state will be accurate. 19630 * 19631 * The following use case is valid: 19632 * map1 is shared by prog1, prog2, prog3. 19633 * prog1 calls bpf_timer_init for some map1 elements 19634 * prog2 calls bpf_timer_set_callback for some map1 elements. 19635 * Those that were not bpf_timer_init-ed will return -EINVAL. 19636 * prog3 calls bpf_timer_start for some map1 elements. 19637 * Those that were not both bpf_timer_init-ed and 19638 * bpf_timer_set_callback-ed will return -EINVAL. 19639 */ 19640 struct bpf_insn ld_addrs[2] = { 19641 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19642 }; 19643 19644 insn_buf[0] = ld_addrs[0]; 19645 insn_buf[1] = ld_addrs[1]; 19646 insn_buf[2] = *insn; 19647 cnt = 3; 19648 19649 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19650 if (!new_prog) 19651 return -ENOMEM; 19652 19653 delta += cnt - 1; 19654 env->prog = prog = new_prog; 19655 insn = new_prog->insnsi + i + delta; 19656 goto patch_call_imm; 19657 } 19658 19659 if (is_storage_get_function(insn->imm)) { 19660 if (!env->prog->aux->sleepable || 19661 env->insn_aux_data[i + delta].storage_get_func_atomic) 19662 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19663 else 19664 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19665 insn_buf[1] = *insn; 19666 cnt = 2; 19667 19668 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19669 if (!new_prog) 19670 return -ENOMEM; 19671 19672 delta += cnt - 1; 19673 env->prog = prog = new_prog; 19674 insn = new_prog->insnsi + i + delta; 19675 goto patch_call_imm; 19676 } 19677 19678 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 19679 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 19680 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 19681 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 19682 */ 19683 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 19684 insn_buf[1] = *insn; 19685 cnt = 2; 19686 19687 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19688 if (!new_prog) 19689 return -ENOMEM; 19690 19691 delta += cnt - 1; 19692 env->prog = prog = new_prog; 19693 insn = new_prog->insnsi + i + delta; 19694 goto patch_call_imm; 19695 } 19696 19697 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19698 * and other inlining handlers are currently limited to 64 bit 19699 * only. 19700 */ 19701 if (prog->jit_requested && BITS_PER_LONG == 64 && 19702 (insn->imm == BPF_FUNC_map_lookup_elem || 19703 insn->imm == BPF_FUNC_map_update_elem || 19704 insn->imm == BPF_FUNC_map_delete_elem || 19705 insn->imm == BPF_FUNC_map_push_elem || 19706 insn->imm == BPF_FUNC_map_pop_elem || 19707 insn->imm == BPF_FUNC_map_peek_elem || 19708 insn->imm == BPF_FUNC_redirect_map || 19709 insn->imm == BPF_FUNC_for_each_map_elem || 19710 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19711 aux = &env->insn_aux_data[i + delta]; 19712 if (bpf_map_ptr_poisoned(aux)) 19713 goto patch_call_imm; 19714 19715 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19716 ops = map_ptr->ops; 19717 if (insn->imm == BPF_FUNC_map_lookup_elem && 19718 ops->map_gen_lookup) { 19719 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19720 if (cnt == -EOPNOTSUPP) 19721 goto patch_map_ops_generic; 19722 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19723 verbose(env, "bpf verifier is misconfigured\n"); 19724 return -EINVAL; 19725 } 19726 19727 new_prog = bpf_patch_insn_data(env, i + delta, 19728 insn_buf, cnt); 19729 if (!new_prog) 19730 return -ENOMEM; 19731 19732 delta += cnt - 1; 19733 env->prog = prog = new_prog; 19734 insn = new_prog->insnsi + i + delta; 19735 continue; 19736 } 19737 19738 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19739 (void *(*)(struct bpf_map *map, void *key))NULL)); 19740 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19741 (long (*)(struct bpf_map *map, void *key))NULL)); 19742 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19743 (long (*)(struct bpf_map *map, void *key, void *value, 19744 u64 flags))NULL)); 19745 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19746 (long (*)(struct bpf_map *map, void *value, 19747 u64 flags))NULL)); 19748 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19749 (long (*)(struct bpf_map *map, void *value))NULL)); 19750 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19751 (long (*)(struct bpf_map *map, void *value))NULL)); 19752 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19753 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19754 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19755 (long (*)(struct bpf_map *map, 19756 bpf_callback_t callback_fn, 19757 void *callback_ctx, 19758 u64 flags))NULL)); 19759 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19760 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19761 19762 patch_map_ops_generic: 19763 switch (insn->imm) { 19764 case BPF_FUNC_map_lookup_elem: 19765 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19766 continue; 19767 case BPF_FUNC_map_update_elem: 19768 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19769 continue; 19770 case BPF_FUNC_map_delete_elem: 19771 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19772 continue; 19773 case BPF_FUNC_map_push_elem: 19774 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19775 continue; 19776 case BPF_FUNC_map_pop_elem: 19777 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19778 continue; 19779 case BPF_FUNC_map_peek_elem: 19780 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19781 continue; 19782 case BPF_FUNC_redirect_map: 19783 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19784 continue; 19785 case BPF_FUNC_for_each_map_elem: 19786 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19787 continue; 19788 case BPF_FUNC_map_lookup_percpu_elem: 19789 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19790 continue; 19791 } 19792 19793 goto patch_call_imm; 19794 } 19795 19796 /* Implement bpf_jiffies64 inline. */ 19797 if (prog->jit_requested && BITS_PER_LONG == 64 && 19798 insn->imm == BPF_FUNC_jiffies64) { 19799 struct bpf_insn ld_jiffies_addr[2] = { 19800 BPF_LD_IMM64(BPF_REG_0, 19801 (unsigned long)&jiffies), 19802 }; 19803 19804 insn_buf[0] = ld_jiffies_addr[0]; 19805 insn_buf[1] = ld_jiffies_addr[1]; 19806 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19807 BPF_REG_0, 0); 19808 cnt = 3; 19809 19810 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19811 cnt); 19812 if (!new_prog) 19813 return -ENOMEM; 19814 19815 delta += cnt - 1; 19816 env->prog = prog = new_prog; 19817 insn = new_prog->insnsi + i + delta; 19818 continue; 19819 } 19820 19821 /* Implement bpf_get_func_arg inline. */ 19822 if (prog_type == BPF_PROG_TYPE_TRACING && 19823 insn->imm == BPF_FUNC_get_func_arg) { 19824 /* Load nr_args from ctx - 8 */ 19825 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19826 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19827 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19828 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19829 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19830 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19831 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19832 insn_buf[7] = BPF_JMP_A(1); 19833 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19834 cnt = 9; 19835 19836 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19837 if (!new_prog) 19838 return -ENOMEM; 19839 19840 delta += cnt - 1; 19841 env->prog = prog = new_prog; 19842 insn = new_prog->insnsi + i + delta; 19843 continue; 19844 } 19845 19846 /* Implement bpf_get_func_ret inline. */ 19847 if (prog_type == BPF_PROG_TYPE_TRACING && 19848 insn->imm == BPF_FUNC_get_func_ret) { 19849 if (eatype == BPF_TRACE_FEXIT || 19850 eatype == BPF_MODIFY_RETURN) { 19851 /* Load nr_args from ctx - 8 */ 19852 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19853 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19854 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19855 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19856 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19857 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19858 cnt = 6; 19859 } else { 19860 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19861 cnt = 1; 19862 } 19863 19864 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19865 if (!new_prog) 19866 return -ENOMEM; 19867 19868 delta += cnt - 1; 19869 env->prog = prog = new_prog; 19870 insn = new_prog->insnsi + i + delta; 19871 continue; 19872 } 19873 19874 /* Implement get_func_arg_cnt inline. */ 19875 if (prog_type == BPF_PROG_TYPE_TRACING && 19876 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19877 /* Load nr_args from ctx - 8 */ 19878 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19879 19880 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19881 if (!new_prog) 19882 return -ENOMEM; 19883 19884 env->prog = prog = new_prog; 19885 insn = new_prog->insnsi + i + delta; 19886 continue; 19887 } 19888 19889 /* Implement bpf_get_func_ip inline. */ 19890 if (prog_type == BPF_PROG_TYPE_TRACING && 19891 insn->imm == BPF_FUNC_get_func_ip) { 19892 /* Load IP address from ctx - 16 */ 19893 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19894 19895 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19896 if (!new_prog) 19897 return -ENOMEM; 19898 19899 env->prog = prog = new_prog; 19900 insn = new_prog->insnsi + i + delta; 19901 continue; 19902 } 19903 19904 patch_call_imm: 19905 fn = env->ops->get_func_proto(insn->imm, env->prog); 19906 /* all functions that have prototype and verifier allowed 19907 * programs to call them, must be real in-kernel functions 19908 */ 19909 if (!fn->func) { 19910 verbose(env, 19911 "kernel subsystem misconfigured func %s#%d\n", 19912 func_id_name(insn->imm), insn->imm); 19913 return -EFAULT; 19914 } 19915 insn->imm = fn->func - __bpf_call_base; 19916 } 19917 19918 /* Since poke tab is now finalized, publish aux to tracker. */ 19919 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19920 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19921 if (!map_ptr->ops->map_poke_track || 19922 !map_ptr->ops->map_poke_untrack || 19923 !map_ptr->ops->map_poke_run) { 19924 verbose(env, "bpf verifier is misconfigured\n"); 19925 return -EINVAL; 19926 } 19927 19928 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19929 if (ret < 0) { 19930 verbose(env, "tracking tail call prog failed\n"); 19931 return ret; 19932 } 19933 } 19934 19935 sort_kfunc_descs_by_imm_off(env->prog); 19936 19937 return 0; 19938 } 19939 19940 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19941 int position, 19942 s32 stack_base, 19943 u32 callback_subprogno, 19944 u32 *cnt) 19945 { 19946 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19947 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19948 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19949 int reg_loop_max = BPF_REG_6; 19950 int reg_loop_cnt = BPF_REG_7; 19951 int reg_loop_ctx = BPF_REG_8; 19952 19953 struct bpf_prog *new_prog; 19954 u32 callback_start; 19955 u32 call_insn_offset; 19956 s32 callback_offset; 19957 19958 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19959 * be careful to modify this code in sync. 19960 */ 19961 struct bpf_insn insn_buf[] = { 19962 /* Return error and jump to the end of the patch if 19963 * expected number of iterations is too big. 19964 */ 19965 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19966 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19967 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19968 /* spill R6, R7, R8 to use these as loop vars */ 19969 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19970 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19971 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19972 /* initialize loop vars */ 19973 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19974 BPF_MOV32_IMM(reg_loop_cnt, 0), 19975 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19976 /* loop header, 19977 * if reg_loop_cnt >= reg_loop_max skip the loop body 19978 */ 19979 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19980 /* callback call, 19981 * correct callback offset would be set after patching 19982 */ 19983 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19984 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19985 BPF_CALL_REL(0), 19986 /* increment loop counter */ 19987 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19988 /* jump to loop header if callback returned 0 */ 19989 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19990 /* return value of bpf_loop, 19991 * set R0 to the number of iterations 19992 */ 19993 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19994 /* restore original values of R6, R7, R8 */ 19995 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19996 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19997 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19998 }; 19999 20000 *cnt = ARRAY_SIZE(insn_buf); 20001 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 20002 if (!new_prog) 20003 return new_prog; 20004 20005 /* callback start is known only after patching */ 20006 callback_start = env->subprog_info[callback_subprogno].start; 20007 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 20008 call_insn_offset = position + 12; 20009 callback_offset = callback_start - call_insn_offset - 1; 20010 new_prog->insnsi[call_insn_offset].imm = callback_offset; 20011 20012 return new_prog; 20013 } 20014 20015 static bool is_bpf_loop_call(struct bpf_insn *insn) 20016 { 20017 return insn->code == (BPF_JMP | BPF_CALL) && 20018 insn->src_reg == 0 && 20019 insn->imm == BPF_FUNC_loop; 20020 } 20021 20022 /* For all sub-programs in the program (including main) check 20023 * insn_aux_data to see if there are bpf_loop calls that require 20024 * inlining. If such calls are found the calls are replaced with a 20025 * sequence of instructions produced by `inline_bpf_loop` function and 20026 * subprog stack_depth is increased by the size of 3 registers. 20027 * This stack space is used to spill values of the R6, R7, R8. These 20028 * registers are used to store the loop bound, counter and context 20029 * variables. 20030 */ 20031 static int optimize_bpf_loop(struct bpf_verifier_env *env) 20032 { 20033 struct bpf_subprog_info *subprogs = env->subprog_info; 20034 int i, cur_subprog = 0, cnt, delta = 0; 20035 struct bpf_insn *insn = env->prog->insnsi; 20036 int insn_cnt = env->prog->len; 20037 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20038 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20039 u16 stack_depth_extra = 0; 20040 20041 for (i = 0; i < insn_cnt; i++, insn++) { 20042 struct bpf_loop_inline_state *inline_state = 20043 &env->insn_aux_data[i + delta].loop_inline_state; 20044 20045 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 20046 struct bpf_prog *new_prog; 20047 20048 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 20049 new_prog = inline_bpf_loop(env, 20050 i + delta, 20051 -(stack_depth + stack_depth_extra), 20052 inline_state->callback_subprogno, 20053 &cnt); 20054 if (!new_prog) 20055 return -ENOMEM; 20056 20057 delta += cnt - 1; 20058 env->prog = new_prog; 20059 insn = new_prog->insnsi + i + delta; 20060 } 20061 20062 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20063 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20064 cur_subprog++; 20065 stack_depth = subprogs[cur_subprog].stack_depth; 20066 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20067 stack_depth_extra = 0; 20068 } 20069 } 20070 20071 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20072 20073 return 0; 20074 } 20075 20076 static void free_states(struct bpf_verifier_env *env) 20077 { 20078 struct bpf_verifier_state_list *sl, *sln; 20079 int i; 20080 20081 sl = env->free_list; 20082 while (sl) { 20083 sln = sl->next; 20084 free_verifier_state(&sl->state, false); 20085 kfree(sl); 20086 sl = sln; 20087 } 20088 env->free_list = NULL; 20089 20090 if (!env->explored_states) 20091 return; 20092 20093 for (i = 0; i < state_htab_size(env); i++) { 20094 sl = env->explored_states[i]; 20095 20096 while (sl) { 20097 sln = sl->next; 20098 free_verifier_state(&sl->state, false); 20099 kfree(sl); 20100 sl = sln; 20101 } 20102 env->explored_states[i] = NULL; 20103 } 20104 } 20105 20106 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb) 20107 { 20108 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20109 struct bpf_verifier_state *state; 20110 struct bpf_reg_state *regs; 20111 int ret, i; 20112 20113 env->prev_linfo = NULL; 20114 env->pass_cnt++; 20115 20116 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 20117 if (!state) 20118 return -ENOMEM; 20119 state->curframe = 0; 20120 state->speculative = false; 20121 state->branches = 1; 20122 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 20123 if (!state->frame[0]) { 20124 kfree(state); 20125 return -ENOMEM; 20126 } 20127 env->cur_state = state; 20128 init_func_state(env, state->frame[0], 20129 BPF_MAIN_FUNC /* callsite */, 20130 0 /* frameno */, 20131 subprog); 20132 state->first_insn_idx = env->subprog_info[subprog].start; 20133 state->last_insn_idx = -1; 20134 20135 regs = state->frame[state->curframe]->regs; 20136 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 20137 ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb); 20138 if (ret) 20139 goto out; 20140 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 20141 if (regs[i].type == PTR_TO_CTX) 20142 mark_reg_known_zero(env, regs, i); 20143 else if (regs[i].type == SCALAR_VALUE) 20144 mark_reg_unknown(env, regs, i); 20145 else if (base_type(regs[i].type) == PTR_TO_MEM) { 20146 const u32 mem_size = regs[i].mem_size; 20147 20148 mark_reg_known_zero(env, regs, i); 20149 regs[i].mem_size = mem_size; 20150 regs[i].id = ++env->id_gen; 20151 } 20152 } 20153 if (is_ex_cb) { 20154 state->frame[0]->in_exception_callback_fn = true; 20155 env->subprog_info[subprog].is_cb = true; 20156 env->subprog_info[subprog].is_async_cb = true; 20157 env->subprog_info[subprog].is_exception_cb = true; 20158 } 20159 } else { 20160 /* 1st arg to a function */ 20161 regs[BPF_REG_1].type = PTR_TO_CTX; 20162 mark_reg_known_zero(env, regs, BPF_REG_1); 20163 ret = btf_check_subprog_arg_match(env, subprog, regs); 20164 if (ret == -EFAULT) 20165 /* unlikely verifier bug. abort. 20166 * ret == 0 and ret < 0 are sadly acceptable for 20167 * main() function due to backward compatibility. 20168 * Like socket filter program may be written as: 20169 * int bpf_prog(struct pt_regs *ctx) 20170 * and never dereference that ctx in the program. 20171 * 'struct pt_regs' is a type mismatch for socket 20172 * filter that should be using 'struct __sk_buff'. 20173 */ 20174 goto out; 20175 } 20176 20177 ret = do_check(env); 20178 out: 20179 /* check for NULL is necessary, since cur_state can be freed inside 20180 * do_check() under memory pressure. 20181 */ 20182 if (env->cur_state) { 20183 free_verifier_state(env->cur_state, true); 20184 env->cur_state = NULL; 20185 } 20186 while (!pop_stack(env, NULL, NULL, false)); 20187 if (!ret && pop_log) 20188 bpf_vlog_reset(&env->log, 0); 20189 free_states(env); 20190 return ret; 20191 } 20192 20193 /* Verify all global functions in a BPF program one by one based on their BTF. 20194 * All global functions must pass verification. Otherwise the whole program is rejected. 20195 * Consider: 20196 * int bar(int); 20197 * int foo(int f) 20198 * { 20199 * return bar(f); 20200 * } 20201 * int bar(int b) 20202 * { 20203 * ... 20204 * } 20205 * foo() will be verified first for R1=any_scalar_value. During verification it 20206 * will be assumed that bar() already verified successfully and call to bar() 20207 * from foo() will be checked for type match only. Later bar() will be verified 20208 * independently to check that it's safe for R1=any_scalar_value. 20209 */ 20210 static int do_check_subprogs(struct bpf_verifier_env *env) 20211 { 20212 struct bpf_prog_aux *aux = env->prog->aux; 20213 int i, ret; 20214 20215 if (!aux->func_info) 20216 return 0; 20217 20218 for (i = 1; i < env->subprog_cnt; i++) { 20219 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 20220 continue; 20221 env->insn_idx = env->subprog_info[i].start; 20222 WARN_ON_ONCE(env->insn_idx == 0); 20223 ret = do_check_common(env, i, env->exception_callback_subprog == i); 20224 if (ret) { 20225 return ret; 20226 } else if (env->log.level & BPF_LOG_LEVEL) { 20227 verbose(env, 20228 "Func#%d is safe for any args that match its prototype\n", 20229 i); 20230 } 20231 } 20232 return 0; 20233 } 20234 20235 static int do_check_main(struct bpf_verifier_env *env) 20236 { 20237 int ret; 20238 20239 env->insn_idx = 0; 20240 ret = do_check_common(env, 0, false); 20241 if (!ret) 20242 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20243 return ret; 20244 } 20245 20246 20247 static void print_verification_stats(struct bpf_verifier_env *env) 20248 { 20249 int i; 20250 20251 if (env->log.level & BPF_LOG_STATS) { 20252 verbose(env, "verification time %lld usec\n", 20253 div_u64(env->verification_time, 1000)); 20254 verbose(env, "stack depth "); 20255 for (i = 0; i < env->subprog_cnt; i++) { 20256 u32 depth = env->subprog_info[i].stack_depth; 20257 20258 verbose(env, "%d", depth); 20259 if (i + 1 < env->subprog_cnt) 20260 verbose(env, "+"); 20261 } 20262 verbose(env, "\n"); 20263 } 20264 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 20265 "total_states %d peak_states %d mark_read %d\n", 20266 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 20267 env->max_states_per_insn, env->total_states, 20268 env->peak_states, env->longest_mark_read_walk); 20269 } 20270 20271 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 20272 { 20273 const struct btf_type *t, *func_proto; 20274 const struct bpf_struct_ops *st_ops; 20275 const struct btf_member *member; 20276 struct bpf_prog *prog = env->prog; 20277 u32 btf_id, member_idx; 20278 const char *mname; 20279 20280 if (!prog->gpl_compatible) { 20281 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20282 return -EINVAL; 20283 } 20284 20285 btf_id = prog->aux->attach_btf_id; 20286 st_ops = bpf_struct_ops_find(btf_id); 20287 if (!st_ops) { 20288 verbose(env, "attach_btf_id %u is not a supported struct\n", 20289 btf_id); 20290 return -ENOTSUPP; 20291 } 20292 20293 t = st_ops->type; 20294 member_idx = prog->expected_attach_type; 20295 if (member_idx >= btf_type_vlen(t)) { 20296 verbose(env, "attach to invalid member idx %u of struct %s\n", 20297 member_idx, st_ops->name); 20298 return -EINVAL; 20299 } 20300 20301 member = &btf_type_member(t)[member_idx]; 20302 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 20303 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 20304 NULL); 20305 if (!func_proto) { 20306 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 20307 mname, member_idx, st_ops->name); 20308 return -EINVAL; 20309 } 20310 20311 if (st_ops->check_member) { 20312 int err = st_ops->check_member(t, member, prog); 20313 20314 if (err) { 20315 verbose(env, "attach to unsupported member %s of struct %s\n", 20316 mname, st_ops->name); 20317 return err; 20318 } 20319 } 20320 20321 prog->aux->attach_func_proto = func_proto; 20322 prog->aux->attach_func_name = mname; 20323 env->ops = st_ops->verifier_ops; 20324 20325 return 0; 20326 } 20327 #define SECURITY_PREFIX "security_" 20328 20329 static int check_attach_modify_return(unsigned long addr, const char *func_name) 20330 { 20331 if (within_error_injection_list(addr) || 20332 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 20333 return 0; 20334 20335 return -EINVAL; 20336 } 20337 20338 /* list of non-sleepable functions that are otherwise on 20339 * ALLOW_ERROR_INJECTION list 20340 */ 20341 BTF_SET_START(btf_non_sleepable_error_inject) 20342 /* Three functions below can be called from sleepable and non-sleepable context. 20343 * Assume non-sleepable from bpf safety point of view. 20344 */ 20345 BTF_ID(func, __filemap_add_folio) 20346 BTF_ID(func, should_fail_alloc_page) 20347 BTF_ID(func, should_failslab) 20348 BTF_SET_END(btf_non_sleepable_error_inject) 20349 20350 static int check_non_sleepable_error_inject(u32 btf_id) 20351 { 20352 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 20353 } 20354 20355 int bpf_check_attach_target(struct bpf_verifier_log *log, 20356 const struct bpf_prog *prog, 20357 const struct bpf_prog *tgt_prog, 20358 u32 btf_id, 20359 struct bpf_attach_target_info *tgt_info) 20360 { 20361 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 20362 const char prefix[] = "btf_trace_"; 20363 int ret = 0, subprog = -1, i; 20364 const struct btf_type *t; 20365 bool conservative = true; 20366 const char *tname; 20367 struct btf *btf; 20368 long addr = 0; 20369 struct module *mod = NULL; 20370 20371 if (!btf_id) { 20372 bpf_log(log, "Tracing programs must provide btf_id\n"); 20373 return -EINVAL; 20374 } 20375 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 20376 if (!btf) { 20377 bpf_log(log, 20378 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 20379 return -EINVAL; 20380 } 20381 t = btf_type_by_id(btf, btf_id); 20382 if (!t) { 20383 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 20384 return -EINVAL; 20385 } 20386 tname = btf_name_by_offset(btf, t->name_off); 20387 if (!tname) { 20388 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 20389 return -EINVAL; 20390 } 20391 if (tgt_prog) { 20392 struct bpf_prog_aux *aux = tgt_prog->aux; 20393 20394 if (bpf_prog_is_dev_bound(prog->aux) && 20395 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 20396 bpf_log(log, "Target program bound device mismatch"); 20397 return -EINVAL; 20398 } 20399 20400 for (i = 0; i < aux->func_info_cnt; i++) 20401 if (aux->func_info[i].type_id == btf_id) { 20402 subprog = i; 20403 break; 20404 } 20405 if (subprog == -1) { 20406 bpf_log(log, "Subprog %s doesn't exist\n", tname); 20407 return -EINVAL; 20408 } 20409 if (aux->func && aux->func[subprog]->aux->exception_cb) { 20410 bpf_log(log, 20411 "%s programs cannot attach to exception callback\n", 20412 prog_extension ? "Extension" : "FENTRY/FEXIT"); 20413 return -EINVAL; 20414 } 20415 conservative = aux->func_info_aux[subprog].unreliable; 20416 if (prog_extension) { 20417 if (conservative) { 20418 bpf_log(log, 20419 "Cannot replace static functions\n"); 20420 return -EINVAL; 20421 } 20422 if (!prog->jit_requested) { 20423 bpf_log(log, 20424 "Extension programs should be JITed\n"); 20425 return -EINVAL; 20426 } 20427 } 20428 if (!tgt_prog->jited) { 20429 bpf_log(log, "Can attach to only JITed progs\n"); 20430 return -EINVAL; 20431 } 20432 if (tgt_prog->type == prog->type) { 20433 /* Cannot fentry/fexit another fentry/fexit program. 20434 * Cannot attach program extension to another extension. 20435 * It's ok to attach fentry/fexit to extension program. 20436 */ 20437 bpf_log(log, "Cannot recursively attach\n"); 20438 return -EINVAL; 20439 } 20440 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 20441 prog_extension && 20442 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 20443 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 20444 /* Program extensions can extend all program types 20445 * except fentry/fexit. The reason is the following. 20446 * The fentry/fexit programs are used for performance 20447 * analysis, stats and can be attached to any program 20448 * type except themselves. When extension program is 20449 * replacing XDP function it is necessary to allow 20450 * performance analysis of all functions. Both original 20451 * XDP program and its program extension. Hence 20452 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 20453 * allowed. If extending of fentry/fexit was allowed it 20454 * would be possible to create long call chain 20455 * fentry->extension->fentry->extension beyond 20456 * reasonable stack size. Hence extending fentry is not 20457 * allowed. 20458 */ 20459 bpf_log(log, "Cannot extend fentry/fexit\n"); 20460 return -EINVAL; 20461 } 20462 } else { 20463 if (prog_extension) { 20464 bpf_log(log, "Cannot replace kernel functions\n"); 20465 return -EINVAL; 20466 } 20467 } 20468 20469 switch (prog->expected_attach_type) { 20470 case BPF_TRACE_RAW_TP: 20471 if (tgt_prog) { 20472 bpf_log(log, 20473 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 20474 return -EINVAL; 20475 } 20476 if (!btf_type_is_typedef(t)) { 20477 bpf_log(log, "attach_btf_id %u is not a typedef\n", 20478 btf_id); 20479 return -EINVAL; 20480 } 20481 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 20482 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 20483 btf_id, tname); 20484 return -EINVAL; 20485 } 20486 tname += sizeof(prefix) - 1; 20487 t = btf_type_by_id(btf, t->type); 20488 if (!btf_type_is_ptr(t)) 20489 /* should never happen in valid vmlinux build */ 20490 return -EINVAL; 20491 t = btf_type_by_id(btf, t->type); 20492 if (!btf_type_is_func_proto(t)) 20493 /* should never happen in valid vmlinux build */ 20494 return -EINVAL; 20495 20496 break; 20497 case BPF_TRACE_ITER: 20498 if (!btf_type_is_func(t)) { 20499 bpf_log(log, "attach_btf_id %u is not a function\n", 20500 btf_id); 20501 return -EINVAL; 20502 } 20503 t = btf_type_by_id(btf, t->type); 20504 if (!btf_type_is_func_proto(t)) 20505 return -EINVAL; 20506 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20507 if (ret) 20508 return ret; 20509 break; 20510 default: 20511 if (!prog_extension) 20512 return -EINVAL; 20513 fallthrough; 20514 case BPF_MODIFY_RETURN: 20515 case BPF_LSM_MAC: 20516 case BPF_LSM_CGROUP: 20517 case BPF_TRACE_FENTRY: 20518 case BPF_TRACE_FEXIT: 20519 if (!btf_type_is_func(t)) { 20520 bpf_log(log, "attach_btf_id %u is not a function\n", 20521 btf_id); 20522 return -EINVAL; 20523 } 20524 if (prog_extension && 20525 btf_check_type_match(log, prog, btf, t)) 20526 return -EINVAL; 20527 t = btf_type_by_id(btf, t->type); 20528 if (!btf_type_is_func_proto(t)) 20529 return -EINVAL; 20530 20531 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 20532 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 20533 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 20534 return -EINVAL; 20535 20536 if (tgt_prog && conservative) 20537 t = NULL; 20538 20539 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20540 if (ret < 0) 20541 return ret; 20542 20543 if (tgt_prog) { 20544 if (subprog == 0) 20545 addr = (long) tgt_prog->bpf_func; 20546 else 20547 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20548 } else { 20549 if (btf_is_module(btf)) { 20550 mod = btf_try_get_module(btf); 20551 if (mod) 20552 addr = find_kallsyms_symbol_value(mod, tname); 20553 else 20554 addr = 0; 20555 } else { 20556 addr = kallsyms_lookup_name(tname); 20557 } 20558 if (!addr) { 20559 module_put(mod); 20560 bpf_log(log, 20561 "The address of function %s cannot be found\n", 20562 tname); 20563 return -ENOENT; 20564 } 20565 } 20566 20567 if (prog->aux->sleepable) { 20568 ret = -EINVAL; 20569 switch (prog->type) { 20570 case BPF_PROG_TYPE_TRACING: 20571 20572 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20573 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20574 */ 20575 if (!check_non_sleepable_error_inject(btf_id) && 20576 within_error_injection_list(addr)) 20577 ret = 0; 20578 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20579 * in the fmodret id set with the KF_SLEEPABLE flag. 20580 */ 20581 else { 20582 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20583 prog); 20584 20585 if (flags && (*flags & KF_SLEEPABLE)) 20586 ret = 0; 20587 } 20588 break; 20589 case BPF_PROG_TYPE_LSM: 20590 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20591 * Only some of them are sleepable. 20592 */ 20593 if (bpf_lsm_is_sleepable_hook(btf_id)) 20594 ret = 0; 20595 break; 20596 default: 20597 break; 20598 } 20599 if (ret) { 20600 module_put(mod); 20601 bpf_log(log, "%s is not sleepable\n", tname); 20602 return ret; 20603 } 20604 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20605 if (tgt_prog) { 20606 module_put(mod); 20607 bpf_log(log, "can't modify return codes of BPF programs\n"); 20608 return -EINVAL; 20609 } 20610 ret = -EINVAL; 20611 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20612 !check_attach_modify_return(addr, tname)) 20613 ret = 0; 20614 if (ret) { 20615 module_put(mod); 20616 bpf_log(log, "%s() is not modifiable\n", tname); 20617 return ret; 20618 } 20619 } 20620 20621 break; 20622 } 20623 tgt_info->tgt_addr = addr; 20624 tgt_info->tgt_name = tname; 20625 tgt_info->tgt_type = t; 20626 tgt_info->tgt_mod = mod; 20627 return 0; 20628 } 20629 20630 BTF_SET_START(btf_id_deny) 20631 BTF_ID_UNUSED 20632 #ifdef CONFIG_SMP 20633 BTF_ID(func, migrate_disable) 20634 BTF_ID(func, migrate_enable) 20635 #endif 20636 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20637 BTF_ID(func, rcu_read_unlock_strict) 20638 #endif 20639 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20640 BTF_ID(func, preempt_count_add) 20641 BTF_ID(func, preempt_count_sub) 20642 #endif 20643 #ifdef CONFIG_PREEMPT_RCU 20644 BTF_ID(func, __rcu_read_lock) 20645 BTF_ID(func, __rcu_read_unlock) 20646 #endif 20647 BTF_SET_END(btf_id_deny) 20648 20649 static bool can_be_sleepable(struct bpf_prog *prog) 20650 { 20651 if (prog->type == BPF_PROG_TYPE_TRACING) { 20652 switch (prog->expected_attach_type) { 20653 case BPF_TRACE_FENTRY: 20654 case BPF_TRACE_FEXIT: 20655 case BPF_MODIFY_RETURN: 20656 case BPF_TRACE_ITER: 20657 return true; 20658 default: 20659 return false; 20660 } 20661 } 20662 return prog->type == BPF_PROG_TYPE_LSM || 20663 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20664 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20665 } 20666 20667 static int check_attach_btf_id(struct bpf_verifier_env *env) 20668 { 20669 struct bpf_prog *prog = env->prog; 20670 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20671 struct bpf_attach_target_info tgt_info = {}; 20672 u32 btf_id = prog->aux->attach_btf_id; 20673 struct bpf_trampoline *tr; 20674 int ret; 20675 u64 key; 20676 20677 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20678 if (prog->aux->sleepable) 20679 /* attach_btf_id checked to be zero already */ 20680 return 0; 20681 verbose(env, "Syscall programs can only be sleepable\n"); 20682 return -EINVAL; 20683 } 20684 20685 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20686 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20687 return -EINVAL; 20688 } 20689 20690 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20691 return check_struct_ops_btf_id(env); 20692 20693 if (prog->type != BPF_PROG_TYPE_TRACING && 20694 prog->type != BPF_PROG_TYPE_LSM && 20695 prog->type != BPF_PROG_TYPE_EXT) 20696 return 0; 20697 20698 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20699 if (ret) 20700 return ret; 20701 20702 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20703 /* to make freplace equivalent to their targets, they need to 20704 * inherit env->ops and expected_attach_type for the rest of the 20705 * verification 20706 */ 20707 env->ops = bpf_verifier_ops[tgt_prog->type]; 20708 prog->expected_attach_type = tgt_prog->expected_attach_type; 20709 } 20710 20711 /* store info about the attachment target that will be used later */ 20712 prog->aux->attach_func_proto = tgt_info.tgt_type; 20713 prog->aux->attach_func_name = tgt_info.tgt_name; 20714 prog->aux->mod = tgt_info.tgt_mod; 20715 20716 if (tgt_prog) { 20717 prog->aux->saved_dst_prog_type = tgt_prog->type; 20718 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20719 } 20720 20721 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20722 prog->aux->attach_btf_trace = true; 20723 return 0; 20724 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20725 if (!bpf_iter_prog_supported(prog)) 20726 return -EINVAL; 20727 return 0; 20728 } 20729 20730 if (prog->type == BPF_PROG_TYPE_LSM) { 20731 ret = bpf_lsm_verify_prog(&env->log, prog); 20732 if (ret < 0) 20733 return ret; 20734 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20735 btf_id_set_contains(&btf_id_deny, btf_id)) { 20736 return -EINVAL; 20737 } 20738 20739 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20740 tr = bpf_trampoline_get(key, &tgt_info); 20741 if (!tr) 20742 return -ENOMEM; 20743 20744 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20745 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20746 20747 prog->aux->dst_trampoline = tr; 20748 return 0; 20749 } 20750 20751 struct btf *bpf_get_btf_vmlinux(void) 20752 { 20753 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20754 mutex_lock(&bpf_verifier_lock); 20755 if (!btf_vmlinux) 20756 btf_vmlinux = btf_parse_vmlinux(); 20757 mutex_unlock(&bpf_verifier_lock); 20758 } 20759 return btf_vmlinux; 20760 } 20761 20762 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20763 { 20764 u64 start_time = ktime_get_ns(); 20765 struct bpf_verifier_env *env; 20766 int i, len, ret = -EINVAL, err; 20767 u32 log_true_size; 20768 bool is_priv; 20769 20770 /* no program is valid */ 20771 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20772 return -EINVAL; 20773 20774 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20775 * allocate/free it every time bpf_check() is called 20776 */ 20777 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20778 if (!env) 20779 return -ENOMEM; 20780 20781 env->bt.env = env; 20782 20783 len = (*prog)->len; 20784 env->insn_aux_data = 20785 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20786 ret = -ENOMEM; 20787 if (!env->insn_aux_data) 20788 goto err_free_env; 20789 for (i = 0; i < len; i++) 20790 env->insn_aux_data[i].orig_idx = i; 20791 env->prog = *prog; 20792 env->ops = bpf_verifier_ops[env->prog->type]; 20793 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20794 is_priv = bpf_capable(); 20795 20796 bpf_get_btf_vmlinux(); 20797 20798 /* grab the mutex to protect few globals used by verifier */ 20799 if (!is_priv) 20800 mutex_lock(&bpf_verifier_lock); 20801 20802 /* user could have requested verbose verifier output 20803 * and supplied buffer to store the verification trace 20804 */ 20805 ret = bpf_vlog_init(&env->log, attr->log_level, 20806 (char __user *) (unsigned long) attr->log_buf, 20807 attr->log_size); 20808 if (ret) 20809 goto err_unlock; 20810 20811 mark_verifier_state_clean(env); 20812 20813 if (IS_ERR(btf_vmlinux)) { 20814 /* Either gcc or pahole or kernel are broken. */ 20815 verbose(env, "in-kernel BTF is malformed\n"); 20816 ret = PTR_ERR(btf_vmlinux); 20817 goto skip_full_check; 20818 } 20819 20820 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20821 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20822 env->strict_alignment = true; 20823 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20824 env->strict_alignment = false; 20825 20826 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20827 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20828 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20829 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20830 env->bpf_capable = bpf_capable(); 20831 20832 if (is_priv) 20833 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20834 20835 env->explored_states = kvcalloc(state_htab_size(env), 20836 sizeof(struct bpf_verifier_state_list *), 20837 GFP_USER); 20838 ret = -ENOMEM; 20839 if (!env->explored_states) 20840 goto skip_full_check; 20841 20842 ret = check_btf_info_early(env, attr, uattr); 20843 if (ret < 0) 20844 goto skip_full_check; 20845 20846 ret = add_subprog_and_kfunc(env); 20847 if (ret < 0) 20848 goto skip_full_check; 20849 20850 ret = check_subprogs(env); 20851 if (ret < 0) 20852 goto skip_full_check; 20853 20854 ret = check_btf_info(env, attr, uattr); 20855 if (ret < 0) 20856 goto skip_full_check; 20857 20858 ret = check_attach_btf_id(env); 20859 if (ret) 20860 goto skip_full_check; 20861 20862 ret = resolve_pseudo_ldimm64(env); 20863 if (ret < 0) 20864 goto skip_full_check; 20865 20866 if (bpf_prog_is_offloaded(env->prog->aux)) { 20867 ret = bpf_prog_offload_verifier_prep(env->prog); 20868 if (ret) 20869 goto skip_full_check; 20870 } 20871 20872 ret = check_cfg(env); 20873 if (ret < 0) 20874 goto skip_full_check; 20875 20876 ret = do_check_subprogs(env); 20877 ret = ret ?: do_check_main(env); 20878 20879 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20880 ret = bpf_prog_offload_finalize(env); 20881 20882 skip_full_check: 20883 kvfree(env->explored_states); 20884 20885 if (ret == 0) 20886 ret = check_max_stack_depth(env); 20887 20888 /* instruction rewrites happen after this point */ 20889 if (ret == 0) 20890 ret = optimize_bpf_loop(env); 20891 20892 if (is_priv) { 20893 if (ret == 0) 20894 opt_hard_wire_dead_code_branches(env); 20895 if (ret == 0) 20896 ret = opt_remove_dead_code(env); 20897 if (ret == 0) 20898 ret = opt_remove_nops(env); 20899 } else { 20900 if (ret == 0) 20901 sanitize_dead_code(env); 20902 } 20903 20904 if (ret == 0) 20905 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20906 ret = convert_ctx_accesses(env); 20907 20908 if (ret == 0) 20909 ret = do_misc_fixups(env); 20910 20911 /* do 32-bit optimization after insn patching has done so those patched 20912 * insns could be handled correctly. 20913 */ 20914 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20915 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20916 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20917 : false; 20918 } 20919 20920 if (ret == 0) 20921 ret = fixup_call_args(env); 20922 20923 env->verification_time = ktime_get_ns() - start_time; 20924 print_verification_stats(env); 20925 env->prog->aux->verified_insns = env->insn_processed; 20926 20927 /* preserve original error even if log finalization is successful */ 20928 err = bpf_vlog_finalize(&env->log, &log_true_size); 20929 if (err) 20930 ret = err; 20931 20932 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20933 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20934 &log_true_size, sizeof(log_true_size))) { 20935 ret = -EFAULT; 20936 goto err_release_maps; 20937 } 20938 20939 if (ret) 20940 goto err_release_maps; 20941 20942 if (env->used_map_cnt) { 20943 /* if program passed verifier, update used_maps in bpf_prog_info */ 20944 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20945 sizeof(env->used_maps[0]), 20946 GFP_KERNEL); 20947 20948 if (!env->prog->aux->used_maps) { 20949 ret = -ENOMEM; 20950 goto err_release_maps; 20951 } 20952 20953 memcpy(env->prog->aux->used_maps, env->used_maps, 20954 sizeof(env->used_maps[0]) * env->used_map_cnt); 20955 env->prog->aux->used_map_cnt = env->used_map_cnt; 20956 } 20957 if (env->used_btf_cnt) { 20958 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20959 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20960 sizeof(env->used_btfs[0]), 20961 GFP_KERNEL); 20962 if (!env->prog->aux->used_btfs) { 20963 ret = -ENOMEM; 20964 goto err_release_maps; 20965 } 20966 20967 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20968 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20969 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20970 } 20971 if (env->used_map_cnt || env->used_btf_cnt) { 20972 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20973 * bpf_ld_imm64 instructions 20974 */ 20975 convert_pseudo_ld_imm64(env); 20976 } 20977 20978 adjust_btf_func(env); 20979 20980 err_release_maps: 20981 if (!env->prog->aux->used_maps) 20982 /* if we didn't copy map pointers into bpf_prog_info, release 20983 * them now. Otherwise free_used_maps() will release them. 20984 */ 20985 release_maps(env); 20986 if (!env->prog->aux->used_btfs) 20987 release_btfs(env); 20988 20989 /* extension progs temporarily inherit the attach_type of their targets 20990 for verification purposes, so set it back to zero before returning 20991 */ 20992 if (env->prog->type == BPF_PROG_TYPE_EXT) 20993 env->prog->expected_attach_type = 0; 20994 20995 *prog = env->prog; 20996 err_unlock: 20997 if (!is_priv) 20998 mutex_unlock(&bpf_verifier_lock); 20999 vfree(env->insn_aux_data); 21000 err_free_env: 21001 kfree(env); 21002 return ret; 21003 } 21004