xref: /linux/kernel/bpf/verifier.c (revision cbaf84e73811ed0ff7ff6d7f52b73fd7ed082d65)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
202 static int ref_set_non_owning(struct bpf_verifier_env *env,
203 			      struct bpf_reg_state *reg);
204 static void specialize_kfunc(struct bpf_verifier_env *env,
205 			     u32 func_id, u16 offset, unsigned long *addr);
206 static bool is_trusted_reg(const struct bpf_reg_state *reg);
207 
208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
211 }
212 
213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
216 }
217 
218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
219 			      const struct bpf_map *map, bool unpriv)
220 {
221 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
222 	unpriv |= bpf_map_ptr_unpriv(aux);
223 	aux->map_ptr_state = (unsigned long)map |
224 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
225 }
226 
227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231 
232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236 
237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241 
242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 	bool poisoned = bpf_map_key_poisoned(aux);
245 
246 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249 
250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == 0;
254 }
255 
256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_CALL;
260 }
261 
262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 	return insn->code == (BPF_JMP | BPF_CALL) &&
265 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267 
268 struct bpf_call_arg_meta {
269 	struct bpf_map *map_ptr;
270 	bool raw_mode;
271 	bool pkt_access;
272 	u8 release_regno;
273 	int regno;
274 	int access_size;
275 	int mem_size;
276 	u64 msize_max_value;
277 	int ref_obj_id;
278 	int dynptr_id;
279 	int map_uid;
280 	int func_id;
281 	struct btf *btf;
282 	u32 btf_id;
283 	struct btf *ret_btf;
284 	u32 ret_btf_id;
285 	u32 subprogno;
286 	struct btf_field *kptr_field;
287 };
288 
289 struct bpf_kfunc_call_arg_meta {
290 	/* In parameters */
291 	struct btf *btf;
292 	u32 func_id;
293 	u32 kfunc_flags;
294 	const struct btf_type *func_proto;
295 	const char *func_name;
296 	/* Out parameters */
297 	u32 ref_obj_id;
298 	u8 release_regno;
299 	bool r0_rdonly;
300 	u32 ret_btf_id;
301 	u64 r0_size;
302 	u32 subprogno;
303 	struct {
304 		u64 value;
305 		bool found;
306 	} arg_constant;
307 
308 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 	 * generally to pass info about user-defined local kptr types to later
310 	 * verification logic
311 	 *   bpf_obj_drop/bpf_percpu_obj_drop
312 	 *     Record the local kptr type to be drop'd
313 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 	 *     Record the local kptr type to be refcount_incr'd and use
315 	 *     arg_owning_ref to determine whether refcount_acquire should be
316 	 *     fallible
317 	 */
318 	struct btf *arg_btf;
319 	u32 arg_btf_id;
320 	bool arg_owning_ref;
321 
322 	struct {
323 		struct btf_field *field;
324 	} arg_list_head;
325 	struct {
326 		struct btf_field *field;
327 	} arg_rbtree_root;
328 	struct {
329 		enum bpf_dynptr_type type;
330 		u32 id;
331 		u32 ref_obj_id;
332 	} initialized_dynptr;
333 	struct {
334 		u8 spi;
335 		u8 frameno;
336 	} iter;
337 	u64 mem_size;
338 };
339 
340 struct btf *btf_vmlinux;
341 
342 static DEFINE_MUTEX(bpf_verifier_lock);
343 static DEFINE_MUTEX(bpf_percpu_ma_lock);
344 
345 static const struct bpf_line_info *
346 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
347 {
348 	const struct bpf_line_info *linfo;
349 	const struct bpf_prog *prog;
350 	u32 i, nr_linfo;
351 
352 	prog = env->prog;
353 	nr_linfo = prog->aux->nr_linfo;
354 
355 	if (!nr_linfo || insn_off >= prog->len)
356 		return NULL;
357 
358 	linfo = prog->aux->linfo;
359 	for (i = 1; i < nr_linfo; i++)
360 		if (insn_off < linfo[i].insn_off)
361 			break;
362 
363 	return &linfo[i - 1];
364 }
365 
366 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
367 {
368 	struct bpf_verifier_env *env = private_data;
369 	va_list args;
370 
371 	if (!bpf_verifier_log_needed(&env->log))
372 		return;
373 
374 	va_start(args, fmt);
375 	bpf_verifier_vlog(&env->log, fmt, args);
376 	va_end(args);
377 }
378 
379 static const char *ltrim(const char *s)
380 {
381 	while (isspace(*s))
382 		s++;
383 
384 	return s;
385 }
386 
387 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
388 					 u32 insn_off,
389 					 const char *prefix_fmt, ...)
390 {
391 	const struct bpf_line_info *linfo;
392 
393 	if (!bpf_verifier_log_needed(&env->log))
394 		return;
395 
396 	linfo = find_linfo(env, insn_off);
397 	if (!linfo || linfo == env->prev_linfo)
398 		return;
399 
400 	if (prefix_fmt) {
401 		va_list args;
402 
403 		va_start(args, prefix_fmt);
404 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
405 		va_end(args);
406 	}
407 
408 	verbose(env, "%s\n",
409 		ltrim(btf_name_by_offset(env->prog->aux->btf,
410 					 linfo->line_off)));
411 
412 	env->prev_linfo = linfo;
413 }
414 
415 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
416 				   struct bpf_reg_state *reg,
417 				   struct tnum *range, const char *ctx,
418 				   const char *reg_name)
419 {
420 	char tn_buf[48];
421 
422 	verbose(env, "At %s the register %s ", ctx, reg_name);
423 	if (!tnum_is_unknown(reg->var_off)) {
424 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
425 		verbose(env, "has value %s", tn_buf);
426 	} else {
427 		verbose(env, "has unknown scalar value");
428 	}
429 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
430 	verbose(env, " should have been in %s\n", tn_buf);
431 }
432 
433 static bool type_is_pkt_pointer(enum bpf_reg_type type)
434 {
435 	type = base_type(type);
436 	return type == PTR_TO_PACKET ||
437 	       type == PTR_TO_PACKET_META;
438 }
439 
440 static bool type_is_sk_pointer(enum bpf_reg_type type)
441 {
442 	return type == PTR_TO_SOCKET ||
443 		type == PTR_TO_SOCK_COMMON ||
444 		type == PTR_TO_TCP_SOCK ||
445 		type == PTR_TO_XDP_SOCK;
446 }
447 
448 static bool type_may_be_null(u32 type)
449 {
450 	return type & PTR_MAYBE_NULL;
451 }
452 
453 static bool reg_not_null(const struct bpf_reg_state *reg)
454 {
455 	enum bpf_reg_type type;
456 
457 	type = reg->type;
458 	if (type_may_be_null(type))
459 		return false;
460 
461 	type = base_type(type);
462 	return type == PTR_TO_SOCKET ||
463 		type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_MAP_VALUE ||
465 		type == PTR_TO_MAP_KEY ||
466 		type == PTR_TO_SOCK_COMMON ||
467 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
468 		type == PTR_TO_MEM;
469 }
470 
471 static bool type_is_ptr_alloc_obj(u32 type)
472 {
473 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
474 }
475 
476 static bool type_is_non_owning_ref(u32 type)
477 {
478 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
479 }
480 
481 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
482 {
483 	struct btf_record *rec = NULL;
484 	struct btf_struct_meta *meta;
485 
486 	if (reg->type == PTR_TO_MAP_VALUE) {
487 		rec = reg->map_ptr->record;
488 	} else if (type_is_ptr_alloc_obj(reg->type)) {
489 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
490 		if (meta)
491 			rec = meta->record;
492 	}
493 	return rec;
494 }
495 
496 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
497 {
498 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
499 
500 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
501 }
502 
503 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
504 {
505 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
506 }
507 
508 static bool type_is_rdonly_mem(u32 type)
509 {
510 	return type & MEM_RDONLY;
511 }
512 
513 static bool is_acquire_function(enum bpf_func_id func_id,
514 				const struct bpf_map *map)
515 {
516 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
517 
518 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
519 	    func_id == BPF_FUNC_sk_lookup_udp ||
520 	    func_id == BPF_FUNC_skc_lookup_tcp ||
521 	    func_id == BPF_FUNC_ringbuf_reserve ||
522 	    func_id == BPF_FUNC_kptr_xchg)
523 		return true;
524 
525 	if (func_id == BPF_FUNC_map_lookup_elem &&
526 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
527 	     map_type == BPF_MAP_TYPE_SOCKHASH))
528 		return true;
529 
530 	return false;
531 }
532 
533 static bool is_ptr_cast_function(enum bpf_func_id func_id)
534 {
535 	return func_id == BPF_FUNC_tcp_sock ||
536 		func_id == BPF_FUNC_sk_fullsock ||
537 		func_id == BPF_FUNC_skc_to_tcp_sock ||
538 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
539 		func_id == BPF_FUNC_skc_to_udp6_sock ||
540 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
541 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
542 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
543 }
544 
545 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
546 {
547 	return func_id == BPF_FUNC_dynptr_data;
548 }
549 
550 static bool is_sync_callback_calling_kfunc(u32 btf_id);
551 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
552 
553 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
554 {
555 	return func_id == BPF_FUNC_for_each_map_elem ||
556 	       func_id == BPF_FUNC_find_vma ||
557 	       func_id == BPF_FUNC_loop ||
558 	       func_id == BPF_FUNC_user_ringbuf_drain;
559 }
560 
561 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
562 {
563 	return func_id == BPF_FUNC_timer_set_callback;
564 }
565 
566 static bool is_callback_calling_function(enum bpf_func_id func_id)
567 {
568 	return is_sync_callback_calling_function(func_id) ||
569 	       is_async_callback_calling_function(func_id);
570 }
571 
572 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
573 {
574 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
575 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
576 }
577 
578 static bool is_storage_get_function(enum bpf_func_id func_id)
579 {
580 	return func_id == BPF_FUNC_sk_storage_get ||
581 	       func_id == BPF_FUNC_inode_storage_get ||
582 	       func_id == BPF_FUNC_task_storage_get ||
583 	       func_id == BPF_FUNC_cgrp_storage_get;
584 }
585 
586 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
587 					const struct bpf_map *map)
588 {
589 	int ref_obj_uses = 0;
590 
591 	if (is_ptr_cast_function(func_id))
592 		ref_obj_uses++;
593 	if (is_acquire_function(func_id, map))
594 		ref_obj_uses++;
595 	if (is_dynptr_ref_function(func_id))
596 		ref_obj_uses++;
597 
598 	return ref_obj_uses > 1;
599 }
600 
601 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
602 {
603 	return BPF_CLASS(insn->code) == BPF_STX &&
604 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
605 	       insn->imm == BPF_CMPXCHG;
606 }
607 
608 /* string representation of 'enum bpf_reg_type'
609  *
610  * Note that reg_type_str() can not appear more than once in a single verbose()
611  * statement.
612  */
613 static const char *reg_type_str(struct bpf_verifier_env *env,
614 				enum bpf_reg_type type)
615 {
616 	char postfix[16] = {0}, prefix[64] = {0};
617 	static const char * const str[] = {
618 		[NOT_INIT]		= "?",
619 		[SCALAR_VALUE]		= "scalar",
620 		[PTR_TO_CTX]		= "ctx",
621 		[CONST_PTR_TO_MAP]	= "map_ptr",
622 		[PTR_TO_MAP_VALUE]	= "map_value",
623 		[PTR_TO_STACK]		= "fp",
624 		[PTR_TO_PACKET]		= "pkt",
625 		[PTR_TO_PACKET_META]	= "pkt_meta",
626 		[PTR_TO_PACKET_END]	= "pkt_end",
627 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
628 		[PTR_TO_SOCKET]		= "sock",
629 		[PTR_TO_SOCK_COMMON]	= "sock_common",
630 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
631 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
632 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
633 		[PTR_TO_BTF_ID]		= "ptr_",
634 		[PTR_TO_MEM]		= "mem",
635 		[PTR_TO_BUF]		= "buf",
636 		[PTR_TO_FUNC]		= "func",
637 		[PTR_TO_MAP_KEY]	= "map_key",
638 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
639 	};
640 
641 	if (type & PTR_MAYBE_NULL) {
642 		if (base_type(type) == PTR_TO_BTF_ID)
643 			strncpy(postfix, "or_null_", 16);
644 		else
645 			strncpy(postfix, "_or_null", 16);
646 	}
647 
648 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
649 		 type & MEM_RDONLY ? "rdonly_" : "",
650 		 type & MEM_RINGBUF ? "ringbuf_" : "",
651 		 type & MEM_USER ? "user_" : "",
652 		 type & MEM_PERCPU ? "percpu_" : "",
653 		 type & MEM_RCU ? "rcu_" : "",
654 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
655 		 type & PTR_TRUSTED ? "trusted_" : ""
656 	);
657 
658 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
659 		 prefix, str[base_type(type)], postfix);
660 	return env->tmp_str_buf;
661 }
662 
663 static char slot_type_char[] = {
664 	[STACK_INVALID]	= '?',
665 	[STACK_SPILL]	= 'r',
666 	[STACK_MISC]	= 'm',
667 	[STACK_ZERO]	= '0',
668 	[STACK_DYNPTR]	= 'd',
669 	[STACK_ITER]	= 'i',
670 };
671 
672 static void print_liveness(struct bpf_verifier_env *env,
673 			   enum bpf_reg_liveness live)
674 {
675 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
676 	    verbose(env, "_");
677 	if (live & REG_LIVE_READ)
678 		verbose(env, "r");
679 	if (live & REG_LIVE_WRITTEN)
680 		verbose(env, "w");
681 	if (live & REG_LIVE_DONE)
682 		verbose(env, "D");
683 }
684 
685 static int __get_spi(s32 off)
686 {
687 	return (-off - 1) / BPF_REG_SIZE;
688 }
689 
690 static struct bpf_func_state *func(struct bpf_verifier_env *env,
691 				   const struct bpf_reg_state *reg)
692 {
693 	struct bpf_verifier_state *cur = env->cur_state;
694 
695 	return cur->frame[reg->frameno];
696 }
697 
698 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
699 {
700        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
701 
702        /* We need to check that slots between [spi - nr_slots + 1, spi] are
703 	* within [0, allocated_stack).
704 	*
705 	* Please note that the spi grows downwards. For example, a dynptr
706 	* takes the size of two stack slots; the first slot will be at
707 	* spi and the second slot will be at spi - 1.
708 	*/
709        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
710 }
711 
712 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
713 			          const char *obj_kind, int nr_slots)
714 {
715 	int off, spi;
716 
717 	if (!tnum_is_const(reg->var_off)) {
718 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
719 		return -EINVAL;
720 	}
721 
722 	off = reg->off + reg->var_off.value;
723 	if (off % BPF_REG_SIZE) {
724 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 		return -EINVAL;
726 	}
727 
728 	spi = __get_spi(off);
729 	if (spi + 1 < nr_slots) {
730 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
731 		return -EINVAL;
732 	}
733 
734 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
735 		return -ERANGE;
736 	return spi;
737 }
738 
739 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
740 {
741 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
742 }
743 
744 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
745 {
746 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
747 }
748 
749 static const char *btf_type_name(const struct btf *btf, u32 id)
750 {
751 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
752 }
753 
754 static const char *dynptr_type_str(enum bpf_dynptr_type type)
755 {
756 	switch (type) {
757 	case BPF_DYNPTR_TYPE_LOCAL:
758 		return "local";
759 	case BPF_DYNPTR_TYPE_RINGBUF:
760 		return "ringbuf";
761 	case BPF_DYNPTR_TYPE_SKB:
762 		return "skb";
763 	case BPF_DYNPTR_TYPE_XDP:
764 		return "xdp";
765 	case BPF_DYNPTR_TYPE_INVALID:
766 		return "<invalid>";
767 	default:
768 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
769 		return "<unknown>";
770 	}
771 }
772 
773 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
774 {
775 	if (!btf || btf_id == 0)
776 		return "<invalid>";
777 
778 	/* we already validated that type is valid and has conforming name */
779 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
780 }
781 
782 static const char *iter_state_str(enum bpf_iter_state state)
783 {
784 	switch (state) {
785 	case BPF_ITER_STATE_ACTIVE:
786 		return "active";
787 	case BPF_ITER_STATE_DRAINED:
788 		return "drained";
789 	case BPF_ITER_STATE_INVALID:
790 		return "<invalid>";
791 	default:
792 		WARN_ONCE(1, "unknown iter state %d\n", state);
793 		return "<unknown>";
794 	}
795 }
796 
797 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
798 {
799 	env->scratched_regs |= 1U << regno;
800 }
801 
802 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
803 {
804 	env->scratched_stack_slots |= 1ULL << spi;
805 }
806 
807 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
808 {
809 	return (env->scratched_regs >> regno) & 1;
810 }
811 
812 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
813 {
814 	return (env->scratched_stack_slots >> regno) & 1;
815 }
816 
817 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
818 {
819 	return env->scratched_regs || env->scratched_stack_slots;
820 }
821 
822 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
823 {
824 	env->scratched_regs = 0U;
825 	env->scratched_stack_slots = 0ULL;
826 }
827 
828 /* Used for printing the entire verifier state. */
829 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
830 {
831 	env->scratched_regs = ~0U;
832 	env->scratched_stack_slots = ~0ULL;
833 }
834 
835 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
836 {
837 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
838 	case DYNPTR_TYPE_LOCAL:
839 		return BPF_DYNPTR_TYPE_LOCAL;
840 	case DYNPTR_TYPE_RINGBUF:
841 		return BPF_DYNPTR_TYPE_RINGBUF;
842 	case DYNPTR_TYPE_SKB:
843 		return BPF_DYNPTR_TYPE_SKB;
844 	case DYNPTR_TYPE_XDP:
845 		return BPF_DYNPTR_TYPE_XDP;
846 	default:
847 		return BPF_DYNPTR_TYPE_INVALID;
848 	}
849 }
850 
851 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
852 {
853 	switch (type) {
854 	case BPF_DYNPTR_TYPE_LOCAL:
855 		return DYNPTR_TYPE_LOCAL;
856 	case BPF_DYNPTR_TYPE_RINGBUF:
857 		return DYNPTR_TYPE_RINGBUF;
858 	case BPF_DYNPTR_TYPE_SKB:
859 		return DYNPTR_TYPE_SKB;
860 	case BPF_DYNPTR_TYPE_XDP:
861 		return DYNPTR_TYPE_XDP;
862 	default:
863 		return 0;
864 	}
865 }
866 
867 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
868 {
869 	return type == BPF_DYNPTR_TYPE_RINGBUF;
870 }
871 
872 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
873 			      enum bpf_dynptr_type type,
874 			      bool first_slot, int dynptr_id);
875 
876 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
877 				struct bpf_reg_state *reg);
878 
879 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
880 				   struct bpf_reg_state *sreg1,
881 				   struct bpf_reg_state *sreg2,
882 				   enum bpf_dynptr_type type)
883 {
884 	int id = ++env->id_gen;
885 
886 	__mark_dynptr_reg(sreg1, type, true, id);
887 	__mark_dynptr_reg(sreg2, type, false, id);
888 }
889 
890 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
891 			       struct bpf_reg_state *reg,
892 			       enum bpf_dynptr_type type)
893 {
894 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
895 }
896 
897 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
898 				        struct bpf_func_state *state, int spi);
899 
900 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
901 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
902 {
903 	struct bpf_func_state *state = func(env, reg);
904 	enum bpf_dynptr_type type;
905 	int spi, i, err;
906 
907 	spi = dynptr_get_spi(env, reg);
908 	if (spi < 0)
909 		return spi;
910 
911 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
912 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
913 	 * to ensure that for the following example:
914 	 *	[d1][d1][d2][d2]
915 	 * spi    3   2   1   0
916 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
917 	 * case they do belong to same dynptr, second call won't see slot_type
918 	 * as STACK_DYNPTR and will simply skip destruction.
919 	 */
920 	err = destroy_if_dynptr_stack_slot(env, state, spi);
921 	if (err)
922 		return err;
923 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
924 	if (err)
925 		return err;
926 
927 	for (i = 0; i < BPF_REG_SIZE; i++) {
928 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
929 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
930 	}
931 
932 	type = arg_to_dynptr_type(arg_type);
933 	if (type == BPF_DYNPTR_TYPE_INVALID)
934 		return -EINVAL;
935 
936 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
937 			       &state->stack[spi - 1].spilled_ptr, type);
938 
939 	if (dynptr_type_refcounted(type)) {
940 		/* The id is used to track proper releasing */
941 		int id;
942 
943 		if (clone_ref_obj_id)
944 			id = clone_ref_obj_id;
945 		else
946 			id = acquire_reference_state(env, insn_idx);
947 
948 		if (id < 0)
949 			return id;
950 
951 		state->stack[spi].spilled_ptr.ref_obj_id = id;
952 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
953 	}
954 
955 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
956 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
957 
958 	return 0;
959 }
960 
961 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
962 {
963 	int i;
964 
965 	for (i = 0; i < BPF_REG_SIZE; i++) {
966 		state->stack[spi].slot_type[i] = STACK_INVALID;
967 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
968 	}
969 
970 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
971 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
972 
973 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
974 	 *
975 	 * While we don't allow reading STACK_INVALID, it is still possible to
976 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
977 	 * helpers or insns can do partial read of that part without failing,
978 	 * but check_stack_range_initialized, check_stack_read_var_off, and
979 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
980 	 * the slot conservatively. Hence we need to prevent those liveness
981 	 * marking walks.
982 	 *
983 	 * This was not a problem before because STACK_INVALID is only set by
984 	 * default (where the default reg state has its reg->parent as NULL), or
985 	 * in clean_live_states after REG_LIVE_DONE (at which point
986 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
987 	 * verifier state exploration (like we did above). Hence, for our case
988 	 * parentage chain will still be live (i.e. reg->parent may be
989 	 * non-NULL), while earlier reg->parent was NULL, so we need
990 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
991 	 * done later on reads or by mark_dynptr_read as well to unnecessary
992 	 * mark registers in verifier state.
993 	 */
994 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
995 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
996 }
997 
998 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
999 {
1000 	struct bpf_func_state *state = func(env, reg);
1001 	int spi, ref_obj_id, i;
1002 
1003 	spi = dynptr_get_spi(env, reg);
1004 	if (spi < 0)
1005 		return spi;
1006 
1007 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1008 		invalidate_dynptr(env, state, spi);
1009 		return 0;
1010 	}
1011 
1012 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1013 
1014 	/* If the dynptr has a ref_obj_id, then we need to invalidate
1015 	 * two things:
1016 	 *
1017 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1018 	 * 2) Any slices derived from this dynptr.
1019 	 */
1020 
1021 	/* Invalidate any slices associated with this dynptr */
1022 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1023 
1024 	/* Invalidate any dynptr clones */
1025 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1026 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1027 			continue;
1028 
1029 		/* it should always be the case that if the ref obj id
1030 		 * matches then the stack slot also belongs to a
1031 		 * dynptr
1032 		 */
1033 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1034 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1035 			return -EFAULT;
1036 		}
1037 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1038 			invalidate_dynptr(env, state, i);
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1045 			       struct bpf_reg_state *reg);
1046 
1047 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1048 {
1049 	if (!env->allow_ptr_leaks)
1050 		__mark_reg_not_init(env, reg);
1051 	else
1052 		__mark_reg_unknown(env, reg);
1053 }
1054 
1055 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1056 				        struct bpf_func_state *state, int spi)
1057 {
1058 	struct bpf_func_state *fstate;
1059 	struct bpf_reg_state *dreg;
1060 	int i, dynptr_id;
1061 
1062 	/* We always ensure that STACK_DYNPTR is never set partially,
1063 	 * hence just checking for slot_type[0] is enough. This is
1064 	 * different for STACK_SPILL, where it may be only set for
1065 	 * 1 byte, so code has to use is_spilled_reg.
1066 	 */
1067 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1068 		return 0;
1069 
1070 	/* Reposition spi to first slot */
1071 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1072 		spi = spi + 1;
1073 
1074 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1075 		verbose(env, "cannot overwrite referenced dynptr\n");
1076 		return -EINVAL;
1077 	}
1078 
1079 	mark_stack_slot_scratched(env, spi);
1080 	mark_stack_slot_scratched(env, spi - 1);
1081 
1082 	/* Writing partially to one dynptr stack slot destroys both. */
1083 	for (i = 0; i < BPF_REG_SIZE; i++) {
1084 		state->stack[spi].slot_type[i] = STACK_INVALID;
1085 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1086 	}
1087 
1088 	dynptr_id = state->stack[spi].spilled_ptr.id;
1089 	/* Invalidate any slices associated with this dynptr */
1090 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1091 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1092 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1093 			continue;
1094 		if (dreg->dynptr_id == dynptr_id)
1095 			mark_reg_invalid(env, dreg);
1096 	}));
1097 
1098 	/* Do not release reference state, we are destroying dynptr on stack,
1099 	 * not using some helper to release it. Just reset register.
1100 	 */
1101 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1102 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1103 
1104 	/* Same reason as unmark_stack_slots_dynptr above */
1105 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1106 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1107 
1108 	return 0;
1109 }
1110 
1111 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1112 {
1113 	int spi;
1114 
1115 	if (reg->type == CONST_PTR_TO_DYNPTR)
1116 		return false;
1117 
1118 	spi = dynptr_get_spi(env, reg);
1119 
1120 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1121 	 * error because this just means the stack state hasn't been updated yet.
1122 	 * We will do check_mem_access to check and update stack bounds later.
1123 	 */
1124 	if (spi < 0 && spi != -ERANGE)
1125 		return false;
1126 
1127 	/* We don't need to check if the stack slots are marked by previous
1128 	 * dynptr initializations because we allow overwriting existing unreferenced
1129 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1130 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1131 	 * touching are completely destructed before we reinitialize them for a new
1132 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1133 	 * instead of delaying it until the end where the user will get "Unreleased
1134 	 * reference" error.
1135 	 */
1136 	return true;
1137 }
1138 
1139 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1140 {
1141 	struct bpf_func_state *state = func(env, reg);
1142 	int i, spi;
1143 
1144 	/* This already represents first slot of initialized bpf_dynptr.
1145 	 *
1146 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1147 	 * check_func_arg_reg_off's logic, so we don't need to check its
1148 	 * offset and alignment.
1149 	 */
1150 	if (reg->type == CONST_PTR_TO_DYNPTR)
1151 		return true;
1152 
1153 	spi = dynptr_get_spi(env, reg);
1154 	if (spi < 0)
1155 		return false;
1156 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1157 		return false;
1158 
1159 	for (i = 0; i < BPF_REG_SIZE; i++) {
1160 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1161 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1162 			return false;
1163 	}
1164 
1165 	return true;
1166 }
1167 
1168 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1169 				    enum bpf_arg_type arg_type)
1170 {
1171 	struct bpf_func_state *state = func(env, reg);
1172 	enum bpf_dynptr_type dynptr_type;
1173 	int spi;
1174 
1175 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1176 	if (arg_type == ARG_PTR_TO_DYNPTR)
1177 		return true;
1178 
1179 	dynptr_type = arg_to_dynptr_type(arg_type);
1180 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1181 		return reg->dynptr.type == dynptr_type;
1182 	} else {
1183 		spi = dynptr_get_spi(env, reg);
1184 		if (spi < 0)
1185 			return false;
1186 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1187 	}
1188 }
1189 
1190 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1191 
1192 static bool in_rcu_cs(struct bpf_verifier_env *env);
1193 
1194 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1195 
1196 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1197 				 struct bpf_kfunc_call_arg_meta *meta,
1198 				 struct bpf_reg_state *reg, int insn_idx,
1199 				 struct btf *btf, u32 btf_id, int nr_slots)
1200 {
1201 	struct bpf_func_state *state = func(env, reg);
1202 	int spi, i, j, id;
1203 
1204 	spi = iter_get_spi(env, reg, nr_slots);
1205 	if (spi < 0)
1206 		return spi;
1207 
1208 	id = acquire_reference_state(env, insn_idx);
1209 	if (id < 0)
1210 		return id;
1211 
1212 	for (i = 0; i < nr_slots; i++) {
1213 		struct bpf_stack_state *slot = &state->stack[spi - i];
1214 		struct bpf_reg_state *st = &slot->spilled_ptr;
1215 
1216 		__mark_reg_known_zero(st);
1217 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1218 		if (is_kfunc_rcu_protected(meta)) {
1219 			if (in_rcu_cs(env))
1220 				st->type |= MEM_RCU;
1221 			else
1222 				st->type |= PTR_UNTRUSTED;
1223 		}
1224 		st->live |= REG_LIVE_WRITTEN;
1225 		st->ref_obj_id = i == 0 ? id : 0;
1226 		st->iter.btf = btf;
1227 		st->iter.btf_id = btf_id;
1228 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1229 		st->iter.depth = 0;
1230 
1231 		for (j = 0; j < BPF_REG_SIZE; j++)
1232 			slot->slot_type[j] = STACK_ITER;
1233 
1234 		mark_stack_slot_scratched(env, spi - i);
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1241 				   struct bpf_reg_state *reg, int nr_slots)
1242 {
1243 	struct bpf_func_state *state = func(env, reg);
1244 	int spi, i, j;
1245 
1246 	spi = iter_get_spi(env, reg, nr_slots);
1247 	if (spi < 0)
1248 		return spi;
1249 
1250 	for (i = 0; i < nr_slots; i++) {
1251 		struct bpf_stack_state *slot = &state->stack[spi - i];
1252 		struct bpf_reg_state *st = &slot->spilled_ptr;
1253 
1254 		if (i == 0)
1255 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1256 
1257 		__mark_reg_not_init(env, st);
1258 
1259 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1260 		st->live |= REG_LIVE_WRITTEN;
1261 
1262 		for (j = 0; j < BPF_REG_SIZE; j++)
1263 			slot->slot_type[j] = STACK_INVALID;
1264 
1265 		mark_stack_slot_scratched(env, spi - i);
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1272 				     struct bpf_reg_state *reg, int nr_slots)
1273 {
1274 	struct bpf_func_state *state = func(env, reg);
1275 	int spi, i, j;
1276 
1277 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1278 	 * will do check_mem_access to check and update stack bounds later, so
1279 	 * return true for that case.
1280 	 */
1281 	spi = iter_get_spi(env, reg, nr_slots);
1282 	if (spi == -ERANGE)
1283 		return true;
1284 	if (spi < 0)
1285 		return false;
1286 
1287 	for (i = 0; i < nr_slots; i++) {
1288 		struct bpf_stack_state *slot = &state->stack[spi - i];
1289 
1290 		for (j = 0; j < BPF_REG_SIZE; j++)
1291 			if (slot->slot_type[j] == STACK_ITER)
1292 				return false;
1293 	}
1294 
1295 	return true;
1296 }
1297 
1298 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1299 				   struct btf *btf, u32 btf_id, int nr_slots)
1300 {
1301 	struct bpf_func_state *state = func(env, reg);
1302 	int spi, i, j;
1303 
1304 	spi = iter_get_spi(env, reg, nr_slots);
1305 	if (spi < 0)
1306 		return -EINVAL;
1307 
1308 	for (i = 0; i < nr_slots; i++) {
1309 		struct bpf_stack_state *slot = &state->stack[spi - i];
1310 		struct bpf_reg_state *st = &slot->spilled_ptr;
1311 
1312 		if (st->type & PTR_UNTRUSTED)
1313 			return -EPROTO;
1314 		/* only main (first) slot has ref_obj_id set */
1315 		if (i == 0 && !st->ref_obj_id)
1316 			return -EINVAL;
1317 		if (i != 0 && st->ref_obj_id)
1318 			return -EINVAL;
1319 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1320 			return -EINVAL;
1321 
1322 		for (j = 0; j < BPF_REG_SIZE; j++)
1323 			if (slot->slot_type[j] != STACK_ITER)
1324 				return -EINVAL;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /* Check if given stack slot is "special":
1331  *   - spilled register state (STACK_SPILL);
1332  *   - dynptr state (STACK_DYNPTR);
1333  *   - iter state (STACK_ITER).
1334  */
1335 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1336 {
1337 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1338 
1339 	switch (type) {
1340 	case STACK_SPILL:
1341 	case STACK_DYNPTR:
1342 	case STACK_ITER:
1343 		return true;
1344 	case STACK_INVALID:
1345 	case STACK_MISC:
1346 	case STACK_ZERO:
1347 		return false;
1348 	default:
1349 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1350 		return true;
1351 	}
1352 }
1353 
1354 /* The reg state of a pointer or a bounded scalar was saved when
1355  * it was spilled to the stack.
1356  */
1357 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1358 {
1359 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1360 }
1361 
1362 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1363 {
1364 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1365 	       stack->spilled_ptr.type == SCALAR_VALUE;
1366 }
1367 
1368 static void scrub_spilled_slot(u8 *stype)
1369 {
1370 	if (*stype != STACK_INVALID)
1371 		*stype = STACK_MISC;
1372 }
1373 
1374 static void print_scalar_ranges(struct bpf_verifier_env *env,
1375 				const struct bpf_reg_state *reg,
1376 				const char **sep)
1377 {
1378 	struct {
1379 		const char *name;
1380 		u64 val;
1381 		bool omit;
1382 	} minmaxs[] = {
1383 		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
1384 		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
1385 		{"umin",   reg->umin_value,         reg->umin_value == 0},
1386 		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
1387 		{"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN},
1388 		{"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX},
1389 		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
1390 		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
1391 	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
1392 	bool neg1, neg2;
1393 
1394 	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
1395 		if (m1->omit)
1396 			continue;
1397 
1398 		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
1399 
1400 		verbose(env, "%s%s=", *sep, m1->name);
1401 		*sep = ",";
1402 
1403 		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
1404 			if (m2->omit || m2->val != m1->val)
1405 				continue;
1406 			/* don't mix negatives with positives */
1407 			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
1408 			if (neg2 != neg1)
1409 				continue;
1410 			m2->omit = true;
1411 			verbose(env, "%s=", m2->name);
1412 		}
1413 
1414 		verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val);
1415 	}
1416 }
1417 
1418 static void print_verifier_state(struct bpf_verifier_env *env,
1419 				 const struct bpf_func_state *state,
1420 				 bool print_all)
1421 {
1422 	const struct bpf_reg_state *reg;
1423 	enum bpf_reg_type t;
1424 	int i;
1425 
1426 	if (state->frameno)
1427 		verbose(env, " frame%d:", state->frameno);
1428 	for (i = 0; i < MAX_BPF_REG; i++) {
1429 		reg = &state->regs[i];
1430 		t = reg->type;
1431 		if (t == NOT_INIT)
1432 			continue;
1433 		if (!print_all && !reg_scratched(env, i))
1434 			continue;
1435 		verbose(env, " R%d", i);
1436 		print_liveness(env, reg->live);
1437 		verbose(env, "=");
1438 		if (t == SCALAR_VALUE && reg->precise)
1439 			verbose(env, "P");
1440 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1441 		    tnum_is_const(reg->var_off)) {
1442 			/* reg->off should be 0 for SCALAR_VALUE */
1443 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1444 			verbose(env, "%lld", reg->var_off.value + reg->off);
1445 		} else {
1446 			const char *sep = "";
1447 
1448 			verbose(env, "%s", reg_type_str(env, t));
1449 			if (base_type(t) == PTR_TO_BTF_ID)
1450 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1451 			verbose(env, "(");
1452 /*
1453  * _a stands for append, was shortened to avoid multiline statements below.
1454  * This macro is used to output a comma separated list of attributes.
1455  */
1456 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1457 
1458 			if (reg->id)
1459 				verbose_a("id=%d", reg->id);
1460 			if (reg->ref_obj_id)
1461 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1462 			if (type_is_non_owning_ref(reg->type))
1463 				verbose_a("%s", "non_own_ref");
1464 			if (t != SCALAR_VALUE)
1465 				verbose_a("off=%d", reg->off);
1466 			if (type_is_pkt_pointer(t))
1467 				verbose_a("r=%d", reg->range);
1468 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1469 				 base_type(t) == PTR_TO_MAP_KEY ||
1470 				 base_type(t) == PTR_TO_MAP_VALUE)
1471 				verbose_a("ks=%d,vs=%d",
1472 					  reg->map_ptr->key_size,
1473 					  reg->map_ptr->value_size);
1474 			if (tnum_is_const(reg->var_off)) {
1475 				/* Typically an immediate SCALAR_VALUE, but
1476 				 * could be a pointer whose offset is too big
1477 				 * for reg->off
1478 				 */
1479 				verbose_a("imm=%llx", reg->var_off.value);
1480 			} else {
1481 				print_scalar_ranges(env, reg, &sep);
1482 				if (!tnum_is_unknown(reg->var_off)) {
1483 					char tn_buf[48];
1484 
1485 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1486 					verbose_a("var_off=%s", tn_buf);
1487 				}
1488 			}
1489 #undef verbose_a
1490 
1491 			verbose(env, ")");
1492 		}
1493 	}
1494 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1495 		char types_buf[BPF_REG_SIZE + 1];
1496 		bool valid = false;
1497 		int j;
1498 
1499 		for (j = 0; j < BPF_REG_SIZE; j++) {
1500 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1501 				valid = true;
1502 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1503 		}
1504 		types_buf[BPF_REG_SIZE] = 0;
1505 		if (!valid)
1506 			continue;
1507 		if (!print_all && !stack_slot_scratched(env, i))
1508 			continue;
1509 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1510 		case STACK_SPILL:
1511 			reg = &state->stack[i].spilled_ptr;
1512 			t = reg->type;
1513 
1514 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1515 			print_liveness(env, reg->live);
1516 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1517 			if (t == SCALAR_VALUE && reg->precise)
1518 				verbose(env, "P");
1519 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1520 				verbose(env, "%lld", reg->var_off.value + reg->off);
1521 			break;
1522 		case STACK_DYNPTR:
1523 			i += BPF_DYNPTR_NR_SLOTS - 1;
1524 			reg = &state->stack[i].spilled_ptr;
1525 
1526 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1527 			print_liveness(env, reg->live);
1528 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1529 			if (reg->ref_obj_id)
1530 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1531 			break;
1532 		case STACK_ITER:
1533 			/* only main slot has ref_obj_id set; skip others */
1534 			reg = &state->stack[i].spilled_ptr;
1535 			if (!reg->ref_obj_id)
1536 				continue;
1537 
1538 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1539 			print_liveness(env, reg->live);
1540 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1541 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1542 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1543 				reg->iter.depth);
1544 			break;
1545 		case STACK_MISC:
1546 		case STACK_ZERO:
1547 		default:
1548 			reg = &state->stack[i].spilled_ptr;
1549 
1550 			for (j = 0; j < BPF_REG_SIZE; j++)
1551 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1552 			types_buf[BPF_REG_SIZE] = 0;
1553 
1554 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1555 			print_liveness(env, reg->live);
1556 			verbose(env, "=%s", types_buf);
1557 			break;
1558 		}
1559 	}
1560 	if (state->acquired_refs && state->refs[0].id) {
1561 		verbose(env, " refs=%d", state->refs[0].id);
1562 		for (i = 1; i < state->acquired_refs; i++)
1563 			if (state->refs[i].id)
1564 				verbose(env, ",%d", state->refs[i].id);
1565 	}
1566 	if (state->in_callback_fn)
1567 		verbose(env, " cb");
1568 	if (state->in_async_callback_fn)
1569 		verbose(env, " async_cb");
1570 	verbose(env, "\n");
1571 	if (!print_all)
1572 		mark_verifier_state_clean(env);
1573 }
1574 
1575 static inline u32 vlog_alignment(u32 pos)
1576 {
1577 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1578 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1579 }
1580 
1581 static void print_insn_state(struct bpf_verifier_env *env,
1582 			     const struct bpf_func_state *state)
1583 {
1584 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1585 		/* remove new line character */
1586 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1587 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1588 	} else {
1589 		verbose(env, "%d:", env->insn_idx);
1590 	}
1591 	print_verifier_state(env, state, false);
1592 }
1593 
1594 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1595  * small to hold src. This is different from krealloc since we don't want to preserve
1596  * the contents of dst.
1597  *
1598  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1599  * not be allocated.
1600  */
1601 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1602 {
1603 	size_t alloc_bytes;
1604 	void *orig = dst;
1605 	size_t bytes;
1606 
1607 	if (ZERO_OR_NULL_PTR(src))
1608 		goto out;
1609 
1610 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1611 		return NULL;
1612 
1613 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1614 	dst = krealloc(orig, alloc_bytes, flags);
1615 	if (!dst) {
1616 		kfree(orig);
1617 		return NULL;
1618 	}
1619 
1620 	memcpy(dst, src, bytes);
1621 out:
1622 	return dst ? dst : ZERO_SIZE_PTR;
1623 }
1624 
1625 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1626  * small to hold new_n items. new items are zeroed out if the array grows.
1627  *
1628  * Contrary to krealloc_array, does not free arr if new_n is zero.
1629  */
1630 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1631 {
1632 	size_t alloc_size;
1633 	void *new_arr;
1634 
1635 	if (!new_n || old_n == new_n)
1636 		goto out;
1637 
1638 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1639 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1640 	if (!new_arr) {
1641 		kfree(arr);
1642 		return NULL;
1643 	}
1644 	arr = new_arr;
1645 
1646 	if (new_n > old_n)
1647 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1648 
1649 out:
1650 	return arr ? arr : ZERO_SIZE_PTR;
1651 }
1652 
1653 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1654 {
1655 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1656 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1657 	if (!dst->refs)
1658 		return -ENOMEM;
1659 
1660 	dst->acquired_refs = src->acquired_refs;
1661 	return 0;
1662 }
1663 
1664 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1665 {
1666 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1667 
1668 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1669 				GFP_KERNEL);
1670 	if (!dst->stack)
1671 		return -ENOMEM;
1672 
1673 	dst->allocated_stack = src->allocated_stack;
1674 	return 0;
1675 }
1676 
1677 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1678 {
1679 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1680 				    sizeof(struct bpf_reference_state));
1681 	if (!state->refs)
1682 		return -ENOMEM;
1683 
1684 	state->acquired_refs = n;
1685 	return 0;
1686 }
1687 
1688 static int grow_stack_state(struct bpf_func_state *state, int size)
1689 {
1690 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1691 
1692 	if (old_n >= n)
1693 		return 0;
1694 
1695 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1696 	if (!state->stack)
1697 		return -ENOMEM;
1698 
1699 	state->allocated_stack = size;
1700 	return 0;
1701 }
1702 
1703 /* Acquire a pointer id from the env and update the state->refs to include
1704  * this new pointer reference.
1705  * On success, returns a valid pointer id to associate with the register
1706  * On failure, returns a negative errno.
1707  */
1708 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1709 {
1710 	struct bpf_func_state *state = cur_func(env);
1711 	int new_ofs = state->acquired_refs;
1712 	int id, err;
1713 
1714 	err = resize_reference_state(state, state->acquired_refs + 1);
1715 	if (err)
1716 		return err;
1717 	id = ++env->id_gen;
1718 	state->refs[new_ofs].id = id;
1719 	state->refs[new_ofs].insn_idx = insn_idx;
1720 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1721 
1722 	return id;
1723 }
1724 
1725 /* release function corresponding to acquire_reference_state(). Idempotent. */
1726 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1727 {
1728 	int i, last_idx;
1729 
1730 	last_idx = state->acquired_refs - 1;
1731 	for (i = 0; i < state->acquired_refs; i++) {
1732 		if (state->refs[i].id == ptr_id) {
1733 			/* Cannot release caller references in callbacks */
1734 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1735 				return -EINVAL;
1736 			if (last_idx && i != last_idx)
1737 				memcpy(&state->refs[i], &state->refs[last_idx],
1738 				       sizeof(*state->refs));
1739 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1740 			state->acquired_refs--;
1741 			return 0;
1742 		}
1743 	}
1744 	return -EINVAL;
1745 }
1746 
1747 static void free_func_state(struct bpf_func_state *state)
1748 {
1749 	if (!state)
1750 		return;
1751 	kfree(state->refs);
1752 	kfree(state->stack);
1753 	kfree(state);
1754 }
1755 
1756 static void clear_jmp_history(struct bpf_verifier_state *state)
1757 {
1758 	kfree(state->jmp_history);
1759 	state->jmp_history = NULL;
1760 	state->jmp_history_cnt = 0;
1761 }
1762 
1763 static void free_verifier_state(struct bpf_verifier_state *state,
1764 				bool free_self)
1765 {
1766 	int i;
1767 
1768 	for (i = 0; i <= state->curframe; i++) {
1769 		free_func_state(state->frame[i]);
1770 		state->frame[i] = NULL;
1771 	}
1772 	clear_jmp_history(state);
1773 	if (free_self)
1774 		kfree(state);
1775 }
1776 
1777 /* copy verifier state from src to dst growing dst stack space
1778  * when necessary to accommodate larger src stack
1779  */
1780 static int copy_func_state(struct bpf_func_state *dst,
1781 			   const struct bpf_func_state *src)
1782 {
1783 	int err;
1784 
1785 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1786 	err = copy_reference_state(dst, src);
1787 	if (err)
1788 		return err;
1789 	return copy_stack_state(dst, src);
1790 }
1791 
1792 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1793 			       const struct bpf_verifier_state *src)
1794 {
1795 	struct bpf_func_state *dst;
1796 	int i, err;
1797 
1798 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1799 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1800 					    GFP_USER);
1801 	if (!dst_state->jmp_history)
1802 		return -ENOMEM;
1803 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1804 
1805 	/* if dst has more stack frames then src frame, free them, this is also
1806 	 * necessary in case of exceptional exits using bpf_throw.
1807 	 */
1808 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1809 		free_func_state(dst_state->frame[i]);
1810 		dst_state->frame[i] = NULL;
1811 	}
1812 	dst_state->speculative = src->speculative;
1813 	dst_state->active_rcu_lock = src->active_rcu_lock;
1814 	dst_state->curframe = src->curframe;
1815 	dst_state->active_lock.ptr = src->active_lock.ptr;
1816 	dst_state->active_lock.id = src->active_lock.id;
1817 	dst_state->branches = src->branches;
1818 	dst_state->parent = src->parent;
1819 	dst_state->first_insn_idx = src->first_insn_idx;
1820 	dst_state->last_insn_idx = src->last_insn_idx;
1821 	dst_state->dfs_depth = src->dfs_depth;
1822 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1823 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1824 	for (i = 0; i <= src->curframe; i++) {
1825 		dst = dst_state->frame[i];
1826 		if (!dst) {
1827 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1828 			if (!dst)
1829 				return -ENOMEM;
1830 			dst_state->frame[i] = dst;
1831 		}
1832 		err = copy_func_state(dst, src->frame[i]);
1833 		if (err)
1834 			return err;
1835 	}
1836 	return 0;
1837 }
1838 
1839 static u32 state_htab_size(struct bpf_verifier_env *env)
1840 {
1841 	return env->prog->len;
1842 }
1843 
1844 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1845 {
1846 	struct bpf_verifier_state *cur = env->cur_state;
1847 	struct bpf_func_state *state = cur->frame[cur->curframe];
1848 
1849 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1850 }
1851 
1852 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1853 {
1854 	int fr;
1855 
1856 	if (a->curframe != b->curframe)
1857 		return false;
1858 
1859 	for (fr = a->curframe; fr >= 0; fr--)
1860 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1861 			return false;
1862 
1863 	return true;
1864 }
1865 
1866 /* Open coded iterators allow back-edges in the state graph in order to
1867  * check unbounded loops that iterators.
1868  *
1869  * In is_state_visited() it is necessary to know if explored states are
1870  * part of some loops in order to decide whether non-exact states
1871  * comparison could be used:
1872  * - non-exact states comparison establishes sub-state relation and uses
1873  *   read and precision marks to do so, these marks are propagated from
1874  *   children states and thus are not guaranteed to be final in a loop;
1875  * - exact states comparison just checks if current and explored states
1876  *   are identical (and thus form a back-edge).
1877  *
1878  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1879  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1880  * algorithm for loop structure detection and gives an overview of
1881  * relevant terminology. It also has helpful illustrations.
1882  *
1883  * [1] https://api.semanticscholar.org/CorpusID:15784067
1884  *
1885  * We use a similar algorithm but because loop nested structure is
1886  * irrelevant for verifier ours is significantly simpler and resembles
1887  * strongly connected components algorithm from Sedgewick's textbook.
1888  *
1889  * Define topmost loop entry as a first node of the loop traversed in a
1890  * depth first search starting from initial state. The goal of the loop
1891  * tracking algorithm is to associate topmost loop entries with states
1892  * derived from these entries.
1893  *
1894  * For each step in the DFS states traversal algorithm needs to identify
1895  * the following situations:
1896  *
1897  *          initial                     initial                   initial
1898  *            |                           |                         |
1899  *            V                           V                         V
1900  *           ...                         ...           .---------> hdr
1901  *            |                           |            |            |
1902  *            V                           V            |            V
1903  *           cur                     .-> succ          |    .------...
1904  *            |                      |    |            |    |       |
1905  *            V                      |    V            |    V       V
1906  *           succ                    '-- cur           |   ...     ...
1907  *                                                     |    |       |
1908  *                                                     |    V       V
1909  *                                                     |   succ <- cur
1910  *                                                     |    |
1911  *                                                     |    V
1912  *                                                     |   ...
1913  *                                                     |    |
1914  *                                                     '----'
1915  *
1916  *  (A) successor state of cur   (B) successor state of cur or it's entry
1917  *      not yet traversed            are in current DFS path, thus cur and succ
1918  *                                   are members of the same outermost loop
1919  *
1920  *                      initial                  initial
1921  *                        |                        |
1922  *                        V                        V
1923  *                       ...                      ...
1924  *                        |                        |
1925  *                        V                        V
1926  *                .------...               .------...
1927  *                |       |                |       |
1928  *                V       V                V       V
1929  *           .-> hdr     ...              ...     ...
1930  *           |    |       |                |       |
1931  *           |    V       V                V       V
1932  *           |   succ <- cur              succ <- cur
1933  *           |    |                        |
1934  *           |    V                        V
1935  *           |   ...                      ...
1936  *           |    |                        |
1937  *           '----'                       exit
1938  *
1939  * (C) successor state of cur is a part of some loop but this loop
1940  *     does not include cur or successor state is not in a loop at all.
1941  *
1942  * Algorithm could be described as the following python code:
1943  *
1944  *     traversed = set()   # Set of traversed nodes
1945  *     entries = {}        # Mapping from node to loop entry
1946  *     depths = {}         # Depth level assigned to graph node
1947  *     path = set()        # Current DFS path
1948  *
1949  *     # Find outermost loop entry known for n
1950  *     def get_loop_entry(n):
1951  *         h = entries.get(n, None)
1952  *         while h in entries and entries[h] != h:
1953  *             h = entries[h]
1954  *         return h
1955  *
1956  *     # Update n's loop entry if h's outermost entry comes
1957  *     # before n's outermost entry in current DFS path.
1958  *     def update_loop_entry(n, h):
1959  *         n1 = get_loop_entry(n) or n
1960  *         h1 = get_loop_entry(h) or h
1961  *         if h1 in path and depths[h1] <= depths[n1]:
1962  *             entries[n] = h1
1963  *
1964  *     def dfs(n, depth):
1965  *         traversed.add(n)
1966  *         path.add(n)
1967  *         depths[n] = depth
1968  *         for succ in G.successors(n):
1969  *             if succ not in traversed:
1970  *                 # Case A: explore succ and update cur's loop entry
1971  *                 #         only if succ's entry is in current DFS path.
1972  *                 dfs(succ, depth + 1)
1973  *                 h = get_loop_entry(succ)
1974  *                 update_loop_entry(n, h)
1975  *             else:
1976  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1977  *                 update_loop_entry(n, succ)
1978  *         path.remove(n)
1979  *
1980  * To adapt this algorithm for use with verifier:
1981  * - use st->branch == 0 as a signal that DFS of succ had been finished
1982  *   and cur's loop entry has to be updated (case A), handle this in
1983  *   update_branch_counts();
1984  * - use st->branch > 0 as a signal that st is in the current DFS path;
1985  * - handle cases B and C in is_state_visited();
1986  * - update topmost loop entry for intermediate states in get_loop_entry().
1987  */
1988 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1989 {
1990 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1991 
1992 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1993 		topmost = topmost->loop_entry;
1994 	/* Update loop entries for intermediate states to avoid this
1995 	 * traversal in future get_loop_entry() calls.
1996 	 */
1997 	while (st && st->loop_entry != topmost) {
1998 		old = st->loop_entry;
1999 		st->loop_entry = topmost;
2000 		st = old;
2001 	}
2002 	return topmost;
2003 }
2004 
2005 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
2006 {
2007 	struct bpf_verifier_state *cur1, *hdr1;
2008 
2009 	cur1 = get_loop_entry(cur) ?: cur;
2010 	hdr1 = get_loop_entry(hdr) ?: hdr;
2011 	/* The head1->branches check decides between cases B and C in
2012 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
2013 	 * head's topmost loop entry is not in current DFS path,
2014 	 * hence 'cur' and 'hdr' are not in the same loop and there is
2015 	 * no need to update cur->loop_entry.
2016 	 */
2017 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
2018 		cur->loop_entry = hdr;
2019 		hdr->used_as_loop_entry = true;
2020 	}
2021 }
2022 
2023 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2024 {
2025 	while (st) {
2026 		u32 br = --st->branches;
2027 
2028 		/* br == 0 signals that DFS exploration for 'st' is finished,
2029 		 * thus it is necessary to update parent's loop entry if it
2030 		 * turned out that st is a part of some loop.
2031 		 * This is a part of 'case A' in get_loop_entry() comment.
2032 		 */
2033 		if (br == 0 && st->parent && st->loop_entry)
2034 			update_loop_entry(st->parent, st->loop_entry);
2035 
2036 		/* WARN_ON(br > 1) technically makes sense here,
2037 		 * but see comment in push_stack(), hence:
2038 		 */
2039 		WARN_ONCE((int)br < 0,
2040 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2041 			  br);
2042 		if (br)
2043 			break;
2044 		st = st->parent;
2045 	}
2046 }
2047 
2048 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2049 		     int *insn_idx, bool pop_log)
2050 {
2051 	struct bpf_verifier_state *cur = env->cur_state;
2052 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2053 	int err;
2054 
2055 	if (env->head == NULL)
2056 		return -ENOENT;
2057 
2058 	if (cur) {
2059 		err = copy_verifier_state(cur, &head->st);
2060 		if (err)
2061 			return err;
2062 	}
2063 	if (pop_log)
2064 		bpf_vlog_reset(&env->log, head->log_pos);
2065 	if (insn_idx)
2066 		*insn_idx = head->insn_idx;
2067 	if (prev_insn_idx)
2068 		*prev_insn_idx = head->prev_insn_idx;
2069 	elem = head->next;
2070 	free_verifier_state(&head->st, false);
2071 	kfree(head);
2072 	env->head = elem;
2073 	env->stack_size--;
2074 	return 0;
2075 }
2076 
2077 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2078 					     int insn_idx, int prev_insn_idx,
2079 					     bool speculative)
2080 {
2081 	struct bpf_verifier_state *cur = env->cur_state;
2082 	struct bpf_verifier_stack_elem *elem;
2083 	int err;
2084 
2085 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2086 	if (!elem)
2087 		goto err;
2088 
2089 	elem->insn_idx = insn_idx;
2090 	elem->prev_insn_idx = prev_insn_idx;
2091 	elem->next = env->head;
2092 	elem->log_pos = env->log.end_pos;
2093 	env->head = elem;
2094 	env->stack_size++;
2095 	err = copy_verifier_state(&elem->st, cur);
2096 	if (err)
2097 		goto err;
2098 	elem->st.speculative |= speculative;
2099 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2100 		verbose(env, "The sequence of %d jumps is too complex.\n",
2101 			env->stack_size);
2102 		goto err;
2103 	}
2104 	if (elem->st.parent) {
2105 		++elem->st.parent->branches;
2106 		/* WARN_ON(branches > 2) technically makes sense here,
2107 		 * but
2108 		 * 1. speculative states will bump 'branches' for non-branch
2109 		 * instructions
2110 		 * 2. is_state_visited() heuristics may decide not to create
2111 		 * a new state for a sequence of branches and all such current
2112 		 * and cloned states will be pointing to a single parent state
2113 		 * which might have large 'branches' count.
2114 		 */
2115 	}
2116 	return &elem->st;
2117 err:
2118 	free_verifier_state(env->cur_state, true);
2119 	env->cur_state = NULL;
2120 	/* pop all elements and return */
2121 	while (!pop_stack(env, NULL, NULL, false));
2122 	return NULL;
2123 }
2124 
2125 #define CALLER_SAVED_REGS 6
2126 static const int caller_saved[CALLER_SAVED_REGS] = {
2127 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2128 };
2129 
2130 /* This helper doesn't clear reg->id */
2131 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2132 {
2133 	reg->var_off = tnum_const(imm);
2134 	reg->smin_value = (s64)imm;
2135 	reg->smax_value = (s64)imm;
2136 	reg->umin_value = imm;
2137 	reg->umax_value = imm;
2138 
2139 	reg->s32_min_value = (s32)imm;
2140 	reg->s32_max_value = (s32)imm;
2141 	reg->u32_min_value = (u32)imm;
2142 	reg->u32_max_value = (u32)imm;
2143 }
2144 
2145 /* Mark the unknown part of a register (variable offset or scalar value) as
2146  * known to have the value @imm.
2147  */
2148 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2149 {
2150 	/* Clear off and union(map_ptr, range) */
2151 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2152 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2153 	reg->id = 0;
2154 	reg->ref_obj_id = 0;
2155 	___mark_reg_known(reg, imm);
2156 }
2157 
2158 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2159 {
2160 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2161 	reg->s32_min_value = (s32)imm;
2162 	reg->s32_max_value = (s32)imm;
2163 	reg->u32_min_value = (u32)imm;
2164 	reg->u32_max_value = (u32)imm;
2165 }
2166 
2167 /* Mark the 'variable offset' part of a register as zero.  This should be
2168  * used only on registers holding a pointer type.
2169  */
2170 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2171 {
2172 	__mark_reg_known(reg, 0);
2173 }
2174 
2175 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2176 {
2177 	__mark_reg_known(reg, 0);
2178 	reg->type = SCALAR_VALUE;
2179 }
2180 
2181 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2182 				struct bpf_reg_state *regs, u32 regno)
2183 {
2184 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2185 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2186 		/* Something bad happened, let's kill all regs */
2187 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2188 			__mark_reg_not_init(env, regs + regno);
2189 		return;
2190 	}
2191 	__mark_reg_known_zero(regs + regno);
2192 }
2193 
2194 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2195 			      bool first_slot, int dynptr_id)
2196 {
2197 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2198 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2199 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2200 	 */
2201 	__mark_reg_known_zero(reg);
2202 	reg->type = CONST_PTR_TO_DYNPTR;
2203 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2204 	reg->id = dynptr_id;
2205 	reg->dynptr.type = type;
2206 	reg->dynptr.first_slot = first_slot;
2207 }
2208 
2209 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2210 {
2211 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2212 		const struct bpf_map *map = reg->map_ptr;
2213 
2214 		if (map->inner_map_meta) {
2215 			reg->type = CONST_PTR_TO_MAP;
2216 			reg->map_ptr = map->inner_map_meta;
2217 			/* transfer reg's id which is unique for every map_lookup_elem
2218 			 * as UID of the inner map.
2219 			 */
2220 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2221 				reg->map_uid = reg->id;
2222 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2223 			reg->type = PTR_TO_XDP_SOCK;
2224 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2225 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2226 			reg->type = PTR_TO_SOCKET;
2227 		} else {
2228 			reg->type = PTR_TO_MAP_VALUE;
2229 		}
2230 		return;
2231 	}
2232 
2233 	reg->type &= ~PTR_MAYBE_NULL;
2234 }
2235 
2236 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2237 				struct btf_field_graph_root *ds_head)
2238 {
2239 	__mark_reg_known_zero(&regs[regno]);
2240 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2241 	regs[regno].btf = ds_head->btf;
2242 	regs[regno].btf_id = ds_head->value_btf_id;
2243 	regs[regno].off = ds_head->node_offset;
2244 }
2245 
2246 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2247 {
2248 	return type_is_pkt_pointer(reg->type);
2249 }
2250 
2251 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2252 {
2253 	return reg_is_pkt_pointer(reg) ||
2254 	       reg->type == PTR_TO_PACKET_END;
2255 }
2256 
2257 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2258 {
2259 	return base_type(reg->type) == PTR_TO_MEM &&
2260 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2261 }
2262 
2263 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2264 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2265 				    enum bpf_reg_type which)
2266 {
2267 	/* The register can already have a range from prior markings.
2268 	 * This is fine as long as it hasn't been advanced from its
2269 	 * origin.
2270 	 */
2271 	return reg->type == which &&
2272 	       reg->id == 0 &&
2273 	       reg->off == 0 &&
2274 	       tnum_equals_const(reg->var_off, 0);
2275 }
2276 
2277 /* Reset the min/max bounds of a register */
2278 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2279 {
2280 	reg->smin_value = S64_MIN;
2281 	reg->smax_value = S64_MAX;
2282 	reg->umin_value = 0;
2283 	reg->umax_value = U64_MAX;
2284 
2285 	reg->s32_min_value = S32_MIN;
2286 	reg->s32_max_value = S32_MAX;
2287 	reg->u32_min_value = 0;
2288 	reg->u32_max_value = U32_MAX;
2289 }
2290 
2291 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2292 {
2293 	reg->smin_value = S64_MIN;
2294 	reg->smax_value = S64_MAX;
2295 	reg->umin_value = 0;
2296 	reg->umax_value = U64_MAX;
2297 }
2298 
2299 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2300 {
2301 	reg->s32_min_value = S32_MIN;
2302 	reg->s32_max_value = S32_MAX;
2303 	reg->u32_min_value = 0;
2304 	reg->u32_max_value = U32_MAX;
2305 }
2306 
2307 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2308 {
2309 	struct tnum var32_off = tnum_subreg(reg->var_off);
2310 
2311 	/* min signed is max(sign bit) | min(other bits) */
2312 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2313 			var32_off.value | (var32_off.mask & S32_MIN));
2314 	/* max signed is min(sign bit) | max(other bits) */
2315 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2316 			var32_off.value | (var32_off.mask & S32_MAX));
2317 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2318 	reg->u32_max_value = min(reg->u32_max_value,
2319 				 (u32)(var32_off.value | var32_off.mask));
2320 }
2321 
2322 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2323 {
2324 	/* min signed is max(sign bit) | min(other bits) */
2325 	reg->smin_value = max_t(s64, reg->smin_value,
2326 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2327 	/* max signed is min(sign bit) | max(other bits) */
2328 	reg->smax_value = min_t(s64, reg->smax_value,
2329 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2330 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2331 	reg->umax_value = min(reg->umax_value,
2332 			      reg->var_off.value | reg->var_off.mask);
2333 }
2334 
2335 static void __update_reg_bounds(struct bpf_reg_state *reg)
2336 {
2337 	__update_reg32_bounds(reg);
2338 	__update_reg64_bounds(reg);
2339 }
2340 
2341 /* Uses signed min/max values to inform unsigned, and vice-versa */
2342 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2343 {
2344 	/* Learn sign from signed bounds.
2345 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2346 	 * are the same, so combine.  This works even in the negative case, e.g.
2347 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2348 	 */
2349 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2350 		reg->s32_min_value = reg->u32_min_value =
2351 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2352 		reg->s32_max_value = reg->u32_max_value =
2353 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2354 		return;
2355 	}
2356 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2357 	 * boundary, so we must be careful.
2358 	 */
2359 	if ((s32)reg->u32_max_value >= 0) {
2360 		/* Positive.  We can't learn anything from the smin, but smax
2361 		 * is positive, hence safe.
2362 		 */
2363 		reg->s32_min_value = reg->u32_min_value;
2364 		reg->s32_max_value = reg->u32_max_value =
2365 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2366 	} else if ((s32)reg->u32_min_value < 0) {
2367 		/* Negative.  We can't learn anything from the smax, but smin
2368 		 * is negative, hence safe.
2369 		 */
2370 		reg->s32_min_value = reg->u32_min_value =
2371 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2372 		reg->s32_max_value = reg->u32_max_value;
2373 	}
2374 }
2375 
2376 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2377 {
2378 	/* Learn sign from signed bounds.
2379 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2380 	 * are the same, so combine.  This works even in the negative case, e.g.
2381 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2382 	 */
2383 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2384 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2385 							  reg->umin_value);
2386 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2387 							  reg->umax_value);
2388 		return;
2389 	}
2390 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2391 	 * boundary, so we must be careful.
2392 	 */
2393 	if ((s64)reg->umax_value >= 0) {
2394 		/* Positive.  We can't learn anything from the smin, but smax
2395 		 * is positive, hence safe.
2396 		 */
2397 		reg->smin_value = reg->umin_value;
2398 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2399 							  reg->umax_value);
2400 	} else if ((s64)reg->umin_value < 0) {
2401 		/* Negative.  We can't learn anything from the smax, but smin
2402 		 * is negative, hence safe.
2403 		 */
2404 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2405 							  reg->umin_value);
2406 		reg->smax_value = reg->umax_value;
2407 	}
2408 }
2409 
2410 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2411 {
2412 	__reg32_deduce_bounds(reg);
2413 	__reg64_deduce_bounds(reg);
2414 }
2415 
2416 /* Attempts to improve var_off based on unsigned min/max information */
2417 static void __reg_bound_offset(struct bpf_reg_state *reg)
2418 {
2419 	struct tnum var64_off = tnum_intersect(reg->var_off,
2420 					       tnum_range(reg->umin_value,
2421 							  reg->umax_value));
2422 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2423 					       tnum_range(reg->u32_min_value,
2424 							  reg->u32_max_value));
2425 
2426 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2427 }
2428 
2429 static void reg_bounds_sync(struct bpf_reg_state *reg)
2430 {
2431 	/* We might have learned new bounds from the var_off. */
2432 	__update_reg_bounds(reg);
2433 	/* We might have learned something about the sign bit. */
2434 	__reg_deduce_bounds(reg);
2435 	/* We might have learned some bits from the bounds. */
2436 	__reg_bound_offset(reg);
2437 	/* Intersecting with the old var_off might have improved our bounds
2438 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2439 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2440 	 */
2441 	__update_reg_bounds(reg);
2442 }
2443 
2444 static bool __reg32_bound_s64(s32 a)
2445 {
2446 	return a >= 0 && a <= S32_MAX;
2447 }
2448 
2449 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2450 {
2451 	reg->umin_value = reg->u32_min_value;
2452 	reg->umax_value = reg->u32_max_value;
2453 
2454 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2455 	 * be positive otherwise set to worse case bounds and refine later
2456 	 * from tnum.
2457 	 */
2458 	if (__reg32_bound_s64(reg->s32_min_value) &&
2459 	    __reg32_bound_s64(reg->s32_max_value)) {
2460 		reg->smin_value = reg->s32_min_value;
2461 		reg->smax_value = reg->s32_max_value;
2462 	} else {
2463 		reg->smin_value = 0;
2464 		reg->smax_value = U32_MAX;
2465 	}
2466 }
2467 
2468 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2469 {
2470 	/* special case when 64-bit register has upper 32-bit register
2471 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2472 	 * allowing us to use 32-bit bounds directly,
2473 	 */
2474 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2475 		__reg_assign_32_into_64(reg);
2476 	} else {
2477 		/* Otherwise the best we can do is push lower 32bit known and
2478 		 * unknown bits into register (var_off set from jmp logic)
2479 		 * then learn as much as possible from the 64-bit tnum
2480 		 * known and unknown bits. The previous smin/smax bounds are
2481 		 * invalid here because of jmp32 compare so mark them unknown
2482 		 * so they do not impact tnum bounds calculation.
2483 		 */
2484 		__mark_reg64_unbounded(reg);
2485 	}
2486 	reg_bounds_sync(reg);
2487 }
2488 
2489 static bool __reg64_bound_s32(s64 a)
2490 {
2491 	return a >= S32_MIN && a <= S32_MAX;
2492 }
2493 
2494 static bool __reg64_bound_u32(u64 a)
2495 {
2496 	return a >= U32_MIN && a <= U32_MAX;
2497 }
2498 
2499 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2500 {
2501 	__mark_reg32_unbounded(reg);
2502 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2503 		reg->s32_min_value = (s32)reg->smin_value;
2504 		reg->s32_max_value = (s32)reg->smax_value;
2505 	}
2506 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2507 		reg->u32_min_value = (u32)reg->umin_value;
2508 		reg->u32_max_value = (u32)reg->umax_value;
2509 	}
2510 	reg_bounds_sync(reg);
2511 }
2512 
2513 /* Mark a register as having a completely unknown (scalar) value. */
2514 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2515 			       struct bpf_reg_state *reg)
2516 {
2517 	/*
2518 	 * Clear type, off, and union(map_ptr, range) and
2519 	 * padding between 'type' and union
2520 	 */
2521 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2522 	reg->type = SCALAR_VALUE;
2523 	reg->id = 0;
2524 	reg->ref_obj_id = 0;
2525 	reg->var_off = tnum_unknown;
2526 	reg->frameno = 0;
2527 	reg->precise = !env->bpf_capable;
2528 	__mark_reg_unbounded(reg);
2529 }
2530 
2531 static void mark_reg_unknown(struct bpf_verifier_env *env,
2532 			     struct bpf_reg_state *regs, u32 regno)
2533 {
2534 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2535 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2536 		/* Something bad happened, let's kill all regs except FP */
2537 		for (regno = 0; regno < BPF_REG_FP; regno++)
2538 			__mark_reg_not_init(env, regs + regno);
2539 		return;
2540 	}
2541 	__mark_reg_unknown(env, regs + regno);
2542 }
2543 
2544 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2545 				struct bpf_reg_state *reg)
2546 {
2547 	__mark_reg_unknown(env, reg);
2548 	reg->type = NOT_INIT;
2549 }
2550 
2551 static void mark_reg_not_init(struct bpf_verifier_env *env,
2552 			      struct bpf_reg_state *regs, u32 regno)
2553 {
2554 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2555 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2556 		/* Something bad happened, let's kill all regs except FP */
2557 		for (regno = 0; regno < BPF_REG_FP; regno++)
2558 			__mark_reg_not_init(env, regs + regno);
2559 		return;
2560 	}
2561 	__mark_reg_not_init(env, regs + regno);
2562 }
2563 
2564 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2565 			    struct bpf_reg_state *regs, u32 regno,
2566 			    enum bpf_reg_type reg_type,
2567 			    struct btf *btf, u32 btf_id,
2568 			    enum bpf_type_flag flag)
2569 {
2570 	if (reg_type == SCALAR_VALUE) {
2571 		mark_reg_unknown(env, regs, regno);
2572 		return;
2573 	}
2574 	mark_reg_known_zero(env, regs, regno);
2575 	regs[regno].type = PTR_TO_BTF_ID | flag;
2576 	regs[regno].btf = btf;
2577 	regs[regno].btf_id = btf_id;
2578 }
2579 
2580 #define DEF_NOT_SUBREG	(0)
2581 static void init_reg_state(struct bpf_verifier_env *env,
2582 			   struct bpf_func_state *state)
2583 {
2584 	struct bpf_reg_state *regs = state->regs;
2585 	int i;
2586 
2587 	for (i = 0; i < MAX_BPF_REG; i++) {
2588 		mark_reg_not_init(env, regs, i);
2589 		regs[i].live = REG_LIVE_NONE;
2590 		regs[i].parent = NULL;
2591 		regs[i].subreg_def = DEF_NOT_SUBREG;
2592 	}
2593 
2594 	/* frame pointer */
2595 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2596 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2597 	regs[BPF_REG_FP].frameno = state->frameno;
2598 }
2599 
2600 #define BPF_MAIN_FUNC (-1)
2601 static void init_func_state(struct bpf_verifier_env *env,
2602 			    struct bpf_func_state *state,
2603 			    int callsite, int frameno, int subprogno)
2604 {
2605 	state->callsite = callsite;
2606 	state->frameno = frameno;
2607 	state->subprogno = subprogno;
2608 	state->callback_ret_range = tnum_range(0, 0);
2609 	init_reg_state(env, state);
2610 	mark_verifier_state_scratched(env);
2611 }
2612 
2613 /* Similar to push_stack(), but for async callbacks */
2614 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2615 						int insn_idx, int prev_insn_idx,
2616 						int subprog)
2617 {
2618 	struct bpf_verifier_stack_elem *elem;
2619 	struct bpf_func_state *frame;
2620 
2621 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2622 	if (!elem)
2623 		goto err;
2624 
2625 	elem->insn_idx = insn_idx;
2626 	elem->prev_insn_idx = prev_insn_idx;
2627 	elem->next = env->head;
2628 	elem->log_pos = env->log.end_pos;
2629 	env->head = elem;
2630 	env->stack_size++;
2631 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2632 		verbose(env,
2633 			"The sequence of %d jumps is too complex for async cb.\n",
2634 			env->stack_size);
2635 		goto err;
2636 	}
2637 	/* Unlike push_stack() do not copy_verifier_state().
2638 	 * The caller state doesn't matter.
2639 	 * This is async callback. It starts in a fresh stack.
2640 	 * Initialize it similar to do_check_common().
2641 	 */
2642 	elem->st.branches = 1;
2643 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2644 	if (!frame)
2645 		goto err;
2646 	init_func_state(env, frame,
2647 			BPF_MAIN_FUNC /* callsite */,
2648 			0 /* frameno within this callchain */,
2649 			subprog /* subprog number within this prog */);
2650 	elem->st.frame[0] = frame;
2651 	return &elem->st;
2652 err:
2653 	free_verifier_state(env->cur_state, true);
2654 	env->cur_state = NULL;
2655 	/* pop all elements and return */
2656 	while (!pop_stack(env, NULL, NULL, false));
2657 	return NULL;
2658 }
2659 
2660 
2661 enum reg_arg_type {
2662 	SRC_OP,		/* register is used as source operand */
2663 	DST_OP,		/* register is used as destination operand */
2664 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2665 };
2666 
2667 static int cmp_subprogs(const void *a, const void *b)
2668 {
2669 	return ((struct bpf_subprog_info *)a)->start -
2670 	       ((struct bpf_subprog_info *)b)->start;
2671 }
2672 
2673 static int find_subprog(struct bpf_verifier_env *env, int off)
2674 {
2675 	struct bpf_subprog_info *p;
2676 
2677 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2678 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2679 	if (!p)
2680 		return -ENOENT;
2681 	return p - env->subprog_info;
2682 
2683 }
2684 
2685 static int add_subprog(struct bpf_verifier_env *env, int off)
2686 {
2687 	int insn_cnt = env->prog->len;
2688 	int ret;
2689 
2690 	if (off >= insn_cnt || off < 0) {
2691 		verbose(env, "call to invalid destination\n");
2692 		return -EINVAL;
2693 	}
2694 	ret = find_subprog(env, off);
2695 	if (ret >= 0)
2696 		return ret;
2697 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2698 		verbose(env, "too many subprograms\n");
2699 		return -E2BIG;
2700 	}
2701 	/* determine subprog starts. The end is one before the next starts */
2702 	env->subprog_info[env->subprog_cnt++].start = off;
2703 	sort(env->subprog_info, env->subprog_cnt,
2704 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2705 	return env->subprog_cnt - 1;
2706 }
2707 
2708 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2709 {
2710 	struct bpf_prog_aux *aux = env->prog->aux;
2711 	struct btf *btf = aux->btf;
2712 	const struct btf_type *t;
2713 	u32 main_btf_id, id;
2714 	const char *name;
2715 	int ret, i;
2716 
2717 	/* Non-zero func_info_cnt implies valid btf */
2718 	if (!aux->func_info_cnt)
2719 		return 0;
2720 	main_btf_id = aux->func_info[0].type_id;
2721 
2722 	t = btf_type_by_id(btf, main_btf_id);
2723 	if (!t) {
2724 		verbose(env, "invalid btf id for main subprog in func_info\n");
2725 		return -EINVAL;
2726 	}
2727 
2728 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2729 	if (IS_ERR(name)) {
2730 		ret = PTR_ERR(name);
2731 		/* If there is no tag present, there is no exception callback */
2732 		if (ret == -ENOENT)
2733 			ret = 0;
2734 		else if (ret == -EEXIST)
2735 			verbose(env, "multiple exception callback tags for main subprog\n");
2736 		return ret;
2737 	}
2738 
2739 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2740 	if (ret < 0) {
2741 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2742 		return ret;
2743 	}
2744 	id = ret;
2745 	t = btf_type_by_id(btf, id);
2746 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2747 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2748 		return -EINVAL;
2749 	}
2750 	ret = 0;
2751 	for (i = 0; i < aux->func_info_cnt; i++) {
2752 		if (aux->func_info[i].type_id != id)
2753 			continue;
2754 		ret = aux->func_info[i].insn_off;
2755 		/* Further func_info and subprog checks will also happen
2756 		 * later, so assume this is the right insn_off for now.
2757 		 */
2758 		if (!ret) {
2759 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2760 			ret = -EINVAL;
2761 		}
2762 	}
2763 	if (!ret) {
2764 		verbose(env, "exception callback type id not found in func_info\n");
2765 		ret = -EINVAL;
2766 	}
2767 	return ret;
2768 }
2769 
2770 #define MAX_KFUNC_DESCS 256
2771 #define MAX_KFUNC_BTFS	256
2772 
2773 struct bpf_kfunc_desc {
2774 	struct btf_func_model func_model;
2775 	u32 func_id;
2776 	s32 imm;
2777 	u16 offset;
2778 	unsigned long addr;
2779 };
2780 
2781 struct bpf_kfunc_btf {
2782 	struct btf *btf;
2783 	struct module *module;
2784 	u16 offset;
2785 };
2786 
2787 struct bpf_kfunc_desc_tab {
2788 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2789 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2790 	 * available, therefore at the end of verification do_misc_fixups()
2791 	 * sorts this by imm and offset.
2792 	 */
2793 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2794 	u32 nr_descs;
2795 };
2796 
2797 struct bpf_kfunc_btf_tab {
2798 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2799 	u32 nr_descs;
2800 };
2801 
2802 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2803 {
2804 	const struct bpf_kfunc_desc *d0 = a;
2805 	const struct bpf_kfunc_desc *d1 = b;
2806 
2807 	/* func_id is not greater than BTF_MAX_TYPE */
2808 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2809 }
2810 
2811 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2812 {
2813 	const struct bpf_kfunc_btf *d0 = a;
2814 	const struct bpf_kfunc_btf *d1 = b;
2815 
2816 	return d0->offset - d1->offset;
2817 }
2818 
2819 static const struct bpf_kfunc_desc *
2820 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2821 {
2822 	struct bpf_kfunc_desc desc = {
2823 		.func_id = func_id,
2824 		.offset = offset,
2825 	};
2826 	struct bpf_kfunc_desc_tab *tab;
2827 
2828 	tab = prog->aux->kfunc_tab;
2829 	return bsearch(&desc, tab->descs, tab->nr_descs,
2830 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2831 }
2832 
2833 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2834 		       u16 btf_fd_idx, u8 **func_addr)
2835 {
2836 	const struct bpf_kfunc_desc *desc;
2837 
2838 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2839 	if (!desc)
2840 		return -EFAULT;
2841 
2842 	*func_addr = (u8 *)desc->addr;
2843 	return 0;
2844 }
2845 
2846 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2847 					 s16 offset)
2848 {
2849 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2850 	struct bpf_kfunc_btf_tab *tab;
2851 	struct bpf_kfunc_btf *b;
2852 	struct module *mod;
2853 	struct btf *btf;
2854 	int btf_fd;
2855 
2856 	tab = env->prog->aux->kfunc_btf_tab;
2857 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2858 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2859 	if (!b) {
2860 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2861 			verbose(env, "too many different module BTFs\n");
2862 			return ERR_PTR(-E2BIG);
2863 		}
2864 
2865 		if (bpfptr_is_null(env->fd_array)) {
2866 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2867 			return ERR_PTR(-EPROTO);
2868 		}
2869 
2870 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2871 					    offset * sizeof(btf_fd),
2872 					    sizeof(btf_fd)))
2873 			return ERR_PTR(-EFAULT);
2874 
2875 		btf = btf_get_by_fd(btf_fd);
2876 		if (IS_ERR(btf)) {
2877 			verbose(env, "invalid module BTF fd specified\n");
2878 			return btf;
2879 		}
2880 
2881 		if (!btf_is_module(btf)) {
2882 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2883 			btf_put(btf);
2884 			return ERR_PTR(-EINVAL);
2885 		}
2886 
2887 		mod = btf_try_get_module(btf);
2888 		if (!mod) {
2889 			btf_put(btf);
2890 			return ERR_PTR(-ENXIO);
2891 		}
2892 
2893 		b = &tab->descs[tab->nr_descs++];
2894 		b->btf = btf;
2895 		b->module = mod;
2896 		b->offset = offset;
2897 
2898 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2899 		     kfunc_btf_cmp_by_off, NULL);
2900 	}
2901 	return b->btf;
2902 }
2903 
2904 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2905 {
2906 	if (!tab)
2907 		return;
2908 
2909 	while (tab->nr_descs--) {
2910 		module_put(tab->descs[tab->nr_descs].module);
2911 		btf_put(tab->descs[tab->nr_descs].btf);
2912 	}
2913 	kfree(tab);
2914 }
2915 
2916 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2917 {
2918 	if (offset) {
2919 		if (offset < 0) {
2920 			/* In the future, this can be allowed to increase limit
2921 			 * of fd index into fd_array, interpreted as u16.
2922 			 */
2923 			verbose(env, "negative offset disallowed for kernel module function call\n");
2924 			return ERR_PTR(-EINVAL);
2925 		}
2926 
2927 		return __find_kfunc_desc_btf(env, offset);
2928 	}
2929 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2930 }
2931 
2932 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2933 {
2934 	const struct btf_type *func, *func_proto;
2935 	struct bpf_kfunc_btf_tab *btf_tab;
2936 	struct bpf_kfunc_desc_tab *tab;
2937 	struct bpf_prog_aux *prog_aux;
2938 	struct bpf_kfunc_desc *desc;
2939 	const char *func_name;
2940 	struct btf *desc_btf;
2941 	unsigned long call_imm;
2942 	unsigned long addr;
2943 	int err;
2944 
2945 	prog_aux = env->prog->aux;
2946 	tab = prog_aux->kfunc_tab;
2947 	btf_tab = prog_aux->kfunc_btf_tab;
2948 	if (!tab) {
2949 		if (!btf_vmlinux) {
2950 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2951 			return -ENOTSUPP;
2952 		}
2953 
2954 		if (!env->prog->jit_requested) {
2955 			verbose(env, "JIT is required for calling kernel function\n");
2956 			return -ENOTSUPP;
2957 		}
2958 
2959 		if (!bpf_jit_supports_kfunc_call()) {
2960 			verbose(env, "JIT does not support calling kernel function\n");
2961 			return -ENOTSUPP;
2962 		}
2963 
2964 		if (!env->prog->gpl_compatible) {
2965 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2966 			return -EINVAL;
2967 		}
2968 
2969 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2970 		if (!tab)
2971 			return -ENOMEM;
2972 		prog_aux->kfunc_tab = tab;
2973 	}
2974 
2975 	/* func_id == 0 is always invalid, but instead of returning an error, be
2976 	 * conservative and wait until the code elimination pass before returning
2977 	 * error, so that invalid calls that get pruned out can be in BPF programs
2978 	 * loaded from userspace.  It is also required that offset be untouched
2979 	 * for such calls.
2980 	 */
2981 	if (!func_id && !offset)
2982 		return 0;
2983 
2984 	if (!btf_tab && offset) {
2985 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2986 		if (!btf_tab)
2987 			return -ENOMEM;
2988 		prog_aux->kfunc_btf_tab = btf_tab;
2989 	}
2990 
2991 	desc_btf = find_kfunc_desc_btf(env, offset);
2992 	if (IS_ERR(desc_btf)) {
2993 		verbose(env, "failed to find BTF for kernel function\n");
2994 		return PTR_ERR(desc_btf);
2995 	}
2996 
2997 	if (find_kfunc_desc(env->prog, func_id, offset))
2998 		return 0;
2999 
3000 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
3001 		verbose(env, "too many different kernel function calls\n");
3002 		return -E2BIG;
3003 	}
3004 
3005 	func = btf_type_by_id(desc_btf, func_id);
3006 	if (!func || !btf_type_is_func(func)) {
3007 		verbose(env, "kernel btf_id %u is not a function\n",
3008 			func_id);
3009 		return -EINVAL;
3010 	}
3011 	func_proto = btf_type_by_id(desc_btf, func->type);
3012 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3013 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3014 			func_id);
3015 		return -EINVAL;
3016 	}
3017 
3018 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3019 	addr = kallsyms_lookup_name(func_name);
3020 	if (!addr) {
3021 		verbose(env, "cannot find address for kernel function %s\n",
3022 			func_name);
3023 		return -EINVAL;
3024 	}
3025 	specialize_kfunc(env, func_id, offset, &addr);
3026 
3027 	if (bpf_jit_supports_far_kfunc_call()) {
3028 		call_imm = func_id;
3029 	} else {
3030 		call_imm = BPF_CALL_IMM(addr);
3031 		/* Check whether the relative offset overflows desc->imm */
3032 		if ((unsigned long)(s32)call_imm != call_imm) {
3033 			verbose(env, "address of kernel function %s is out of range\n",
3034 				func_name);
3035 			return -EINVAL;
3036 		}
3037 	}
3038 
3039 	if (bpf_dev_bound_kfunc_id(func_id)) {
3040 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3041 		if (err)
3042 			return err;
3043 	}
3044 
3045 	desc = &tab->descs[tab->nr_descs++];
3046 	desc->func_id = func_id;
3047 	desc->imm = call_imm;
3048 	desc->offset = offset;
3049 	desc->addr = addr;
3050 	err = btf_distill_func_proto(&env->log, desc_btf,
3051 				     func_proto, func_name,
3052 				     &desc->func_model);
3053 	if (!err)
3054 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3055 		     kfunc_desc_cmp_by_id_off, NULL);
3056 	return err;
3057 }
3058 
3059 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3060 {
3061 	const struct bpf_kfunc_desc *d0 = a;
3062 	const struct bpf_kfunc_desc *d1 = b;
3063 
3064 	if (d0->imm != d1->imm)
3065 		return d0->imm < d1->imm ? -1 : 1;
3066 	if (d0->offset != d1->offset)
3067 		return d0->offset < d1->offset ? -1 : 1;
3068 	return 0;
3069 }
3070 
3071 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3072 {
3073 	struct bpf_kfunc_desc_tab *tab;
3074 
3075 	tab = prog->aux->kfunc_tab;
3076 	if (!tab)
3077 		return;
3078 
3079 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3080 	     kfunc_desc_cmp_by_imm_off, NULL);
3081 }
3082 
3083 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3084 {
3085 	return !!prog->aux->kfunc_tab;
3086 }
3087 
3088 const struct btf_func_model *
3089 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3090 			 const struct bpf_insn *insn)
3091 {
3092 	const struct bpf_kfunc_desc desc = {
3093 		.imm = insn->imm,
3094 		.offset = insn->off,
3095 	};
3096 	const struct bpf_kfunc_desc *res;
3097 	struct bpf_kfunc_desc_tab *tab;
3098 
3099 	tab = prog->aux->kfunc_tab;
3100 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3101 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3102 
3103 	return res ? &res->func_model : NULL;
3104 }
3105 
3106 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3107 {
3108 	struct bpf_subprog_info *subprog = env->subprog_info;
3109 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3110 	struct bpf_insn *insn = env->prog->insnsi;
3111 
3112 	/* Add entry function. */
3113 	ret = add_subprog(env, 0);
3114 	if (ret)
3115 		return ret;
3116 
3117 	for (i = 0; i < insn_cnt; i++, insn++) {
3118 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3119 		    !bpf_pseudo_kfunc_call(insn))
3120 			continue;
3121 
3122 		if (!env->bpf_capable) {
3123 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3124 			return -EPERM;
3125 		}
3126 
3127 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3128 			ret = add_subprog(env, i + insn->imm + 1);
3129 		else
3130 			ret = add_kfunc_call(env, insn->imm, insn->off);
3131 
3132 		if (ret < 0)
3133 			return ret;
3134 	}
3135 
3136 	ret = bpf_find_exception_callback_insn_off(env);
3137 	if (ret < 0)
3138 		return ret;
3139 	ex_cb_insn = ret;
3140 
3141 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3142 	 * marked using BTF decl tag to serve as the exception callback.
3143 	 */
3144 	if (ex_cb_insn) {
3145 		ret = add_subprog(env, ex_cb_insn);
3146 		if (ret < 0)
3147 			return ret;
3148 		for (i = 1; i < env->subprog_cnt; i++) {
3149 			if (env->subprog_info[i].start != ex_cb_insn)
3150 				continue;
3151 			env->exception_callback_subprog = i;
3152 			break;
3153 		}
3154 	}
3155 
3156 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3157 	 * logic. 'subprog_cnt' should not be increased.
3158 	 */
3159 	subprog[env->subprog_cnt].start = insn_cnt;
3160 
3161 	if (env->log.level & BPF_LOG_LEVEL2)
3162 		for (i = 0; i < env->subprog_cnt; i++)
3163 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3164 
3165 	return 0;
3166 }
3167 
3168 static int check_subprogs(struct bpf_verifier_env *env)
3169 {
3170 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3171 	struct bpf_subprog_info *subprog = env->subprog_info;
3172 	struct bpf_insn *insn = env->prog->insnsi;
3173 	int insn_cnt = env->prog->len;
3174 
3175 	/* now check that all jumps are within the same subprog */
3176 	subprog_start = subprog[cur_subprog].start;
3177 	subprog_end = subprog[cur_subprog + 1].start;
3178 	for (i = 0; i < insn_cnt; i++) {
3179 		u8 code = insn[i].code;
3180 
3181 		if (code == (BPF_JMP | BPF_CALL) &&
3182 		    insn[i].src_reg == 0 &&
3183 		    insn[i].imm == BPF_FUNC_tail_call)
3184 			subprog[cur_subprog].has_tail_call = true;
3185 		if (BPF_CLASS(code) == BPF_LD &&
3186 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3187 			subprog[cur_subprog].has_ld_abs = true;
3188 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3189 			goto next;
3190 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3191 			goto next;
3192 		if (code == (BPF_JMP32 | BPF_JA))
3193 			off = i + insn[i].imm + 1;
3194 		else
3195 			off = i + insn[i].off + 1;
3196 		if (off < subprog_start || off >= subprog_end) {
3197 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3198 			return -EINVAL;
3199 		}
3200 next:
3201 		if (i == subprog_end - 1) {
3202 			/* to avoid fall-through from one subprog into another
3203 			 * the last insn of the subprog should be either exit
3204 			 * or unconditional jump back or bpf_throw call
3205 			 */
3206 			if (code != (BPF_JMP | BPF_EXIT) &&
3207 			    code != (BPF_JMP32 | BPF_JA) &&
3208 			    code != (BPF_JMP | BPF_JA)) {
3209 				verbose(env, "last insn is not an exit or jmp\n");
3210 				return -EINVAL;
3211 			}
3212 			subprog_start = subprog_end;
3213 			cur_subprog++;
3214 			if (cur_subprog < env->subprog_cnt)
3215 				subprog_end = subprog[cur_subprog + 1].start;
3216 		}
3217 	}
3218 	return 0;
3219 }
3220 
3221 /* Parentage chain of this register (or stack slot) should take care of all
3222  * issues like callee-saved registers, stack slot allocation time, etc.
3223  */
3224 static int mark_reg_read(struct bpf_verifier_env *env,
3225 			 const struct bpf_reg_state *state,
3226 			 struct bpf_reg_state *parent, u8 flag)
3227 {
3228 	bool writes = parent == state->parent; /* Observe write marks */
3229 	int cnt = 0;
3230 
3231 	while (parent) {
3232 		/* if read wasn't screened by an earlier write ... */
3233 		if (writes && state->live & REG_LIVE_WRITTEN)
3234 			break;
3235 		if (parent->live & REG_LIVE_DONE) {
3236 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3237 				reg_type_str(env, parent->type),
3238 				parent->var_off.value, parent->off);
3239 			return -EFAULT;
3240 		}
3241 		/* The first condition is more likely to be true than the
3242 		 * second, checked it first.
3243 		 */
3244 		if ((parent->live & REG_LIVE_READ) == flag ||
3245 		    parent->live & REG_LIVE_READ64)
3246 			/* The parentage chain never changes and
3247 			 * this parent was already marked as LIVE_READ.
3248 			 * There is no need to keep walking the chain again and
3249 			 * keep re-marking all parents as LIVE_READ.
3250 			 * This case happens when the same register is read
3251 			 * multiple times without writes into it in-between.
3252 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3253 			 * then no need to set the weak REG_LIVE_READ32.
3254 			 */
3255 			break;
3256 		/* ... then we depend on parent's value */
3257 		parent->live |= flag;
3258 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3259 		if (flag == REG_LIVE_READ64)
3260 			parent->live &= ~REG_LIVE_READ32;
3261 		state = parent;
3262 		parent = state->parent;
3263 		writes = true;
3264 		cnt++;
3265 	}
3266 
3267 	if (env->longest_mark_read_walk < cnt)
3268 		env->longest_mark_read_walk = cnt;
3269 	return 0;
3270 }
3271 
3272 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3273 {
3274 	struct bpf_func_state *state = func(env, reg);
3275 	int spi, ret;
3276 
3277 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3278 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3279 	 * check_kfunc_call.
3280 	 */
3281 	if (reg->type == CONST_PTR_TO_DYNPTR)
3282 		return 0;
3283 	spi = dynptr_get_spi(env, reg);
3284 	if (spi < 0)
3285 		return spi;
3286 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3287 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3288 	 * read.
3289 	 */
3290 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3291 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3292 	if (ret)
3293 		return ret;
3294 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3295 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3296 }
3297 
3298 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3299 			  int spi, int nr_slots)
3300 {
3301 	struct bpf_func_state *state = func(env, reg);
3302 	int err, i;
3303 
3304 	for (i = 0; i < nr_slots; i++) {
3305 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3306 
3307 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3308 		if (err)
3309 			return err;
3310 
3311 		mark_stack_slot_scratched(env, spi - i);
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 /* This function is supposed to be used by the following 32-bit optimization
3318  * code only. It returns TRUE if the source or destination register operates
3319  * on 64-bit, otherwise return FALSE.
3320  */
3321 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3322 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3323 {
3324 	u8 code, class, op;
3325 
3326 	code = insn->code;
3327 	class = BPF_CLASS(code);
3328 	op = BPF_OP(code);
3329 	if (class == BPF_JMP) {
3330 		/* BPF_EXIT for "main" will reach here. Return TRUE
3331 		 * conservatively.
3332 		 */
3333 		if (op == BPF_EXIT)
3334 			return true;
3335 		if (op == BPF_CALL) {
3336 			/* BPF to BPF call will reach here because of marking
3337 			 * caller saved clobber with DST_OP_NO_MARK for which we
3338 			 * don't care the register def because they are anyway
3339 			 * marked as NOT_INIT already.
3340 			 */
3341 			if (insn->src_reg == BPF_PSEUDO_CALL)
3342 				return false;
3343 			/* Helper call will reach here because of arg type
3344 			 * check, conservatively return TRUE.
3345 			 */
3346 			if (t == SRC_OP)
3347 				return true;
3348 
3349 			return false;
3350 		}
3351 	}
3352 
3353 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3354 		return false;
3355 
3356 	if (class == BPF_ALU64 || class == BPF_JMP ||
3357 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3358 		return true;
3359 
3360 	if (class == BPF_ALU || class == BPF_JMP32)
3361 		return false;
3362 
3363 	if (class == BPF_LDX) {
3364 		if (t != SRC_OP)
3365 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3366 		/* LDX source must be ptr. */
3367 		return true;
3368 	}
3369 
3370 	if (class == BPF_STX) {
3371 		/* BPF_STX (including atomic variants) has multiple source
3372 		 * operands, one of which is a ptr. Check whether the caller is
3373 		 * asking about it.
3374 		 */
3375 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3376 			return true;
3377 		return BPF_SIZE(code) == BPF_DW;
3378 	}
3379 
3380 	if (class == BPF_LD) {
3381 		u8 mode = BPF_MODE(code);
3382 
3383 		/* LD_IMM64 */
3384 		if (mode == BPF_IMM)
3385 			return true;
3386 
3387 		/* Both LD_IND and LD_ABS return 32-bit data. */
3388 		if (t != SRC_OP)
3389 			return  false;
3390 
3391 		/* Implicit ctx ptr. */
3392 		if (regno == BPF_REG_6)
3393 			return true;
3394 
3395 		/* Explicit source could be any width. */
3396 		return true;
3397 	}
3398 
3399 	if (class == BPF_ST)
3400 		/* The only source register for BPF_ST is a ptr. */
3401 		return true;
3402 
3403 	/* Conservatively return true at default. */
3404 	return true;
3405 }
3406 
3407 /* Return the regno defined by the insn, or -1. */
3408 static int insn_def_regno(const struct bpf_insn *insn)
3409 {
3410 	switch (BPF_CLASS(insn->code)) {
3411 	case BPF_JMP:
3412 	case BPF_JMP32:
3413 	case BPF_ST:
3414 		return -1;
3415 	case BPF_STX:
3416 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3417 		    (insn->imm & BPF_FETCH)) {
3418 			if (insn->imm == BPF_CMPXCHG)
3419 				return BPF_REG_0;
3420 			else
3421 				return insn->src_reg;
3422 		} else {
3423 			return -1;
3424 		}
3425 	default:
3426 		return insn->dst_reg;
3427 	}
3428 }
3429 
3430 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3431 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3432 {
3433 	int dst_reg = insn_def_regno(insn);
3434 
3435 	if (dst_reg == -1)
3436 		return false;
3437 
3438 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3439 }
3440 
3441 static void mark_insn_zext(struct bpf_verifier_env *env,
3442 			   struct bpf_reg_state *reg)
3443 {
3444 	s32 def_idx = reg->subreg_def;
3445 
3446 	if (def_idx == DEF_NOT_SUBREG)
3447 		return;
3448 
3449 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3450 	/* The dst will be zero extended, so won't be sub-register anymore. */
3451 	reg->subreg_def = DEF_NOT_SUBREG;
3452 }
3453 
3454 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3455 			   enum reg_arg_type t)
3456 {
3457 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3458 	struct bpf_reg_state *reg;
3459 	bool rw64;
3460 
3461 	if (regno >= MAX_BPF_REG) {
3462 		verbose(env, "R%d is invalid\n", regno);
3463 		return -EINVAL;
3464 	}
3465 
3466 	mark_reg_scratched(env, regno);
3467 
3468 	reg = &regs[regno];
3469 	rw64 = is_reg64(env, insn, regno, reg, t);
3470 	if (t == SRC_OP) {
3471 		/* check whether register used as source operand can be read */
3472 		if (reg->type == NOT_INIT) {
3473 			verbose(env, "R%d !read_ok\n", regno);
3474 			return -EACCES;
3475 		}
3476 		/* We don't need to worry about FP liveness because it's read-only */
3477 		if (regno == BPF_REG_FP)
3478 			return 0;
3479 
3480 		if (rw64)
3481 			mark_insn_zext(env, reg);
3482 
3483 		return mark_reg_read(env, reg, reg->parent,
3484 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3485 	} else {
3486 		/* check whether register used as dest operand can be written to */
3487 		if (regno == BPF_REG_FP) {
3488 			verbose(env, "frame pointer is read only\n");
3489 			return -EACCES;
3490 		}
3491 		reg->live |= REG_LIVE_WRITTEN;
3492 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3493 		if (t == DST_OP)
3494 			mark_reg_unknown(env, regs, regno);
3495 	}
3496 	return 0;
3497 }
3498 
3499 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3500 			 enum reg_arg_type t)
3501 {
3502 	struct bpf_verifier_state *vstate = env->cur_state;
3503 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3504 
3505 	return __check_reg_arg(env, state->regs, regno, t);
3506 }
3507 
3508 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3509 {
3510 	env->insn_aux_data[idx].jmp_point = true;
3511 }
3512 
3513 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3514 {
3515 	return env->insn_aux_data[insn_idx].jmp_point;
3516 }
3517 
3518 /* for any branch, call, exit record the history of jmps in the given state */
3519 static int push_jmp_history(struct bpf_verifier_env *env,
3520 			    struct bpf_verifier_state *cur)
3521 {
3522 	u32 cnt = cur->jmp_history_cnt;
3523 	struct bpf_idx_pair *p;
3524 	size_t alloc_size;
3525 
3526 	if (!is_jmp_point(env, env->insn_idx))
3527 		return 0;
3528 
3529 	cnt++;
3530 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3531 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3532 	if (!p)
3533 		return -ENOMEM;
3534 	p[cnt - 1].idx = env->insn_idx;
3535 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3536 	cur->jmp_history = p;
3537 	cur->jmp_history_cnt = cnt;
3538 	return 0;
3539 }
3540 
3541 /* Backtrack one insn at a time. If idx is not at the top of recorded
3542  * history then previous instruction came from straight line execution.
3543  * Return -ENOENT if we exhausted all instructions within given state.
3544  *
3545  * It's legal to have a bit of a looping with the same starting and ending
3546  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3547  * instruction index is the same as state's first_idx doesn't mean we are
3548  * done. If there is still some jump history left, we should keep going. We
3549  * need to take into account that we might have a jump history between given
3550  * state's parent and itself, due to checkpointing. In this case, we'll have
3551  * history entry recording a jump from last instruction of parent state and
3552  * first instruction of given state.
3553  */
3554 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3555 			     u32 *history)
3556 {
3557 	u32 cnt = *history;
3558 
3559 	if (i == st->first_insn_idx) {
3560 		if (cnt == 0)
3561 			return -ENOENT;
3562 		if (cnt == 1 && st->jmp_history[0].idx == i)
3563 			return -ENOENT;
3564 	}
3565 
3566 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3567 		i = st->jmp_history[cnt - 1].prev_idx;
3568 		(*history)--;
3569 	} else {
3570 		i--;
3571 	}
3572 	return i;
3573 }
3574 
3575 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3576 {
3577 	const struct btf_type *func;
3578 	struct btf *desc_btf;
3579 
3580 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3581 		return NULL;
3582 
3583 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3584 	if (IS_ERR(desc_btf))
3585 		return "<error>";
3586 
3587 	func = btf_type_by_id(desc_btf, insn->imm);
3588 	return btf_name_by_offset(desc_btf, func->name_off);
3589 }
3590 
3591 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3592 {
3593 	bt->frame = frame;
3594 }
3595 
3596 static inline void bt_reset(struct backtrack_state *bt)
3597 {
3598 	struct bpf_verifier_env *env = bt->env;
3599 
3600 	memset(bt, 0, sizeof(*bt));
3601 	bt->env = env;
3602 }
3603 
3604 static inline u32 bt_empty(struct backtrack_state *bt)
3605 {
3606 	u64 mask = 0;
3607 	int i;
3608 
3609 	for (i = 0; i <= bt->frame; i++)
3610 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3611 
3612 	return mask == 0;
3613 }
3614 
3615 static inline int bt_subprog_enter(struct backtrack_state *bt)
3616 {
3617 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3618 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3619 		WARN_ONCE(1, "verifier backtracking bug");
3620 		return -EFAULT;
3621 	}
3622 	bt->frame++;
3623 	return 0;
3624 }
3625 
3626 static inline int bt_subprog_exit(struct backtrack_state *bt)
3627 {
3628 	if (bt->frame == 0) {
3629 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3630 		WARN_ONCE(1, "verifier backtracking bug");
3631 		return -EFAULT;
3632 	}
3633 	bt->frame--;
3634 	return 0;
3635 }
3636 
3637 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3638 {
3639 	bt->reg_masks[frame] |= 1 << reg;
3640 }
3641 
3642 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3643 {
3644 	bt->reg_masks[frame] &= ~(1 << reg);
3645 }
3646 
3647 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3648 {
3649 	bt_set_frame_reg(bt, bt->frame, reg);
3650 }
3651 
3652 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3653 {
3654 	bt_clear_frame_reg(bt, bt->frame, reg);
3655 }
3656 
3657 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3658 {
3659 	bt->stack_masks[frame] |= 1ull << slot;
3660 }
3661 
3662 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3663 {
3664 	bt->stack_masks[frame] &= ~(1ull << slot);
3665 }
3666 
3667 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3668 {
3669 	bt_set_frame_slot(bt, bt->frame, slot);
3670 }
3671 
3672 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3673 {
3674 	bt_clear_frame_slot(bt, bt->frame, slot);
3675 }
3676 
3677 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3678 {
3679 	return bt->reg_masks[frame];
3680 }
3681 
3682 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3683 {
3684 	return bt->reg_masks[bt->frame];
3685 }
3686 
3687 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3688 {
3689 	return bt->stack_masks[frame];
3690 }
3691 
3692 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3693 {
3694 	return bt->stack_masks[bt->frame];
3695 }
3696 
3697 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3698 {
3699 	return bt->reg_masks[bt->frame] & (1 << reg);
3700 }
3701 
3702 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3703 {
3704 	return bt->stack_masks[bt->frame] & (1ull << slot);
3705 }
3706 
3707 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3708 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3709 {
3710 	DECLARE_BITMAP(mask, 64);
3711 	bool first = true;
3712 	int i, n;
3713 
3714 	buf[0] = '\0';
3715 
3716 	bitmap_from_u64(mask, reg_mask);
3717 	for_each_set_bit(i, mask, 32) {
3718 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3719 		first = false;
3720 		buf += n;
3721 		buf_sz -= n;
3722 		if (buf_sz < 0)
3723 			break;
3724 	}
3725 }
3726 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3727 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3728 {
3729 	DECLARE_BITMAP(mask, 64);
3730 	bool first = true;
3731 	int i, n;
3732 
3733 	buf[0] = '\0';
3734 
3735 	bitmap_from_u64(mask, stack_mask);
3736 	for_each_set_bit(i, mask, 64) {
3737 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3738 		first = false;
3739 		buf += n;
3740 		buf_sz -= n;
3741 		if (buf_sz < 0)
3742 			break;
3743 	}
3744 }
3745 
3746 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3747 
3748 /* For given verifier state backtrack_insn() is called from the last insn to
3749  * the first insn. Its purpose is to compute a bitmask of registers and
3750  * stack slots that needs precision in the parent verifier state.
3751  *
3752  * @idx is an index of the instruction we are currently processing;
3753  * @subseq_idx is an index of the subsequent instruction that:
3754  *   - *would be* executed next, if jump history is viewed in forward order;
3755  *   - *was* processed previously during backtracking.
3756  */
3757 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3758 			  struct backtrack_state *bt)
3759 {
3760 	const struct bpf_insn_cbs cbs = {
3761 		.cb_call	= disasm_kfunc_name,
3762 		.cb_print	= verbose,
3763 		.private_data	= env,
3764 	};
3765 	struct bpf_insn *insn = env->prog->insnsi + idx;
3766 	u8 class = BPF_CLASS(insn->code);
3767 	u8 opcode = BPF_OP(insn->code);
3768 	u8 mode = BPF_MODE(insn->code);
3769 	u32 dreg = insn->dst_reg;
3770 	u32 sreg = insn->src_reg;
3771 	u32 spi, i;
3772 
3773 	if (insn->code == 0)
3774 		return 0;
3775 	if (env->log.level & BPF_LOG_LEVEL2) {
3776 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3777 		verbose(env, "mark_precise: frame%d: regs=%s ",
3778 			bt->frame, env->tmp_str_buf);
3779 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3780 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3781 		verbose(env, "%d: ", idx);
3782 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3783 	}
3784 
3785 	if (class == BPF_ALU || class == BPF_ALU64) {
3786 		if (!bt_is_reg_set(bt, dreg))
3787 			return 0;
3788 		if (opcode == BPF_END || opcode == BPF_NEG) {
3789 			/* sreg is reserved and unused
3790 			 * dreg still need precision before this insn
3791 			 */
3792 			return 0;
3793 		} else if (opcode == BPF_MOV) {
3794 			if (BPF_SRC(insn->code) == BPF_X) {
3795 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3796 				 * dreg needs precision after this insn
3797 				 * sreg needs precision before this insn
3798 				 */
3799 				bt_clear_reg(bt, dreg);
3800 				bt_set_reg(bt, sreg);
3801 			} else {
3802 				/* dreg = K
3803 				 * dreg needs precision after this insn.
3804 				 * Corresponding register is already marked
3805 				 * as precise=true in this verifier state.
3806 				 * No further markings in parent are necessary
3807 				 */
3808 				bt_clear_reg(bt, dreg);
3809 			}
3810 		} else {
3811 			if (BPF_SRC(insn->code) == BPF_X) {
3812 				/* dreg += sreg
3813 				 * both dreg and sreg need precision
3814 				 * before this insn
3815 				 */
3816 				bt_set_reg(bt, sreg);
3817 			} /* else dreg += K
3818 			   * dreg still needs precision before this insn
3819 			   */
3820 		}
3821 	} else if (class == BPF_LDX) {
3822 		if (!bt_is_reg_set(bt, dreg))
3823 			return 0;
3824 		bt_clear_reg(bt, dreg);
3825 
3826 		/* scalars can only be spilled into stack w/o losing precision.
3827 		 * Load from any other memory can be zero extended.
3828 		 * The desire to keep that precision is already indicated
3829 		 * by 'precise' mark in corresponding register of this state.
3830 		 * No further tracking necessary.
3831 		 */
3832 		if (insn->src_reg != BPF_REG_FP)
3833 			return 0;
3834 
3835 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3836 		 * that [fp - off] slot contains scalar that needs to be
3837 		 * tracked with precision
3838 		 */
3839 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3840 		if (spi >= 64) {
3841 			verbose(env, "BUG spi %d\n", spi);
3842 			WARN_ONCE(1, "verifier backtracking bug");
3843 			return -EFAULT;
3844 		}
3845 		bt_set_slot(bt, spi);
3846 	} else if (class == BPF_STX || class == BPF_ST) {
3847 		if (bt_is_reg_set(bt, dreg))
3848 			/* stx & st shouldn't be using _scalar_ dst_reg
3849 			 * to access memory. It means backtracking
3850 			 * encountered a case of pointer subtraction.
3851 			 */
3852 			return -ENOTSUPP;
3853 		/* scalars can only be spilled into stack */
3854 		if (insn->dst_reg != BPF_REG_FP)
3855 			return 0;
3856 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3857 		if (spi >= 64) {
3858 			verbose(env, "BUG spi %d\n", spi);
3859 			WARN_ONCE(1, "verifier backtracking bug");
3860 			return -EFAULT;
3861 		}
3862 		if (!bt_is_slot_set(bt, spi))
3863 			return 0;
3864 		bt_clear_slot(bt, spi);
3865 		if (class == BPF_STX)
3866 			bt_set_reg(bt, sreg);
3867 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3868 		if (bpf_pseudo_call(insn)) {
3869 			int subprog_insn_idx, subprog;
3870 
3871 			subprog_insn_idx = idx + insn->imm + 1;
3872 			subprog = find_subprog(env, subprog_insn_idx);
3873 			if (subprog < 0)
3874 				return -EFAULT;
3875 
3876 			if (subprog_is_global(env, subprog)) {
3877 				/* check that jump history doesn't have any
3878 				 * extra instructions from subprog; the next
3879 				 * instruction after call to global subprog
3880 				 * should be literally next instruction in
3881 				 * caller program
3882 				 */
3883 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3884 				/* r1-r5 are invalidated after subprog call,
3885 				 * so for global func call it shouldn't be set
3886 				 * anymore
3887 				 */
3888 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3889 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3890 					WARN_ONCE(1, "verifier backtracking bug");
3891 					return -EFAULT;
3892 				}
3893 				/* global subprog always sets R0 */
3894 				bt_clear_reg(bt, BPF_REG_0);
3895 				return 0;
3896 			} else {
3897 				/* static subprog call instruction, which
3898 				 * means that we are exiting current subprog,
3899 				 * so only r1-r5 could be still requested as
3900 				 * precise, r0 and r6-r10 or any stack slot in
3901 				 * the current frame should be zero by now
3902 				 */
3903 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3904 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3905 					WARN_ONCE(1, "verifier backtracking bug");
3906 					return -EFAULT;
3907 				}
3908 				/* we don't track register spills perfectly,
3909 				 * so fallback to force-precise instead of failing */
3910 				if (bt_stack_mask(bt) != 0)
3911 					return -ENOTSUPP;
3912 				/* propagate r1-r5 to the caller */
3913 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3914 					if (bt_is_reg_set(bt, i)) {
3915 						bt_clear_reg(bt, i);
3916 						bt_set_frame_reg(bt, bt->frame - 1, i);
3917 					}
3918 				}
3919 				if (bt_subprog_exit(bt))
3920 					return -EFAULT;
3921 				return 0;
3922 			}
3923 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3924 			/* exit from callback subprog to callback-calling helper or
3925 			 * kfunc call. Use idx/subseq_idx check to discern it from
3926 			 * straight line code backtracking.
3927 			 * Unlike the subprog call handling above, we shouldn't
3928 			 * propagate precision of r1-r5 (if any requested), as they are
3929 			 * not actually arguments passed directly to callback subprogs
3930 			 */
3931 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3932 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3933 				WARN_ONCE(1, "verifier backtracking bug");
3934 				return -EFAULT;
3935 			}
3936 			if (bt_stack_mask(bt) != 0)
3937 				return -ENOTSUPP;
3938 			/* clear r1-r5 in callback subprog's mask */
3939 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3940 				bt_clear_reg(bt, i);
3941 			if (bt_subprog_exit(bt))
3942 				return -EFAULT;
3943 			return 0;
3944 		} else if (opcode == BPF_CALL) {
3945 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3946 			 * catch this error later. Make backtracking conservative
3947 			 * with ENOTSUPP.
3948 			 */
3949 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3950 				return -ENOTSUPP;
3951 			/* regular helper call sets R0 */
3952 			bt_clear_reg(bt, BPF_REG_0);
3953 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3954 				/* if backtracing was looking for registers R1-R5
3955 				 * they should have been found already.
3956 				 */
3957 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3958 				WARN_ONCE(1, "verifier backtracking bug");
3959 				return -EFAULT;
3960 			}
3961 		} else if (opcode == BPF_EXIT) {
3962 			bool r0_precise;
3963 
3964 			/* Backtracking to a nested function call, 'idx' is a part of
3965 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3966 			 * In case of a regular function call, instructions giving
3967 			 * precision to registers R1-R5 should have been found already.
3968 			 * In case of a callback, it is ok to have R1-R5 marked for
3969 			 * backtracking, as these registers are set by the function
3970 			 * invoking callback.
3971 			 */
3972 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3973 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3974 					bt_clear_reg(bt, i);
3975 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3976 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3977 				WARN_ONCE(1, "verifier backtracking bug");
3978 				return -EFAULT;
3979 			}
3980 
3981 			/* BPF_EXIT in subprog or callback always returns
3982 			 * right after the call instruction, so by checking
3983 			 * whether the instruction at subseq_idx-1 is subprog
3984 			 * call or not we can distinguish actual exit from
3985 			 * *subprog* from exit from *callback*. In the former
3986 			 * case, we need to propagate r0 precision, if
3987 			 * necessary. In the former we never do that.
3988 			 */
3989 			r0_precise = subseq_idx - 1 >= 0 &&
3990 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3991 				     bt_is_reg_set(bt, BPF_REG_0);
3992 
3993 			bt_clear_reg(bt, BPF_REG_0);
3994 			if (bt_subprog_enter(bt))
3995 				return -EFAULT;
3996 
3997 			if (r0_precise)
3998 				bt_set_reg(bt, BPF_REG_0);
3999 			/* r6-r9 and stack slots will stay set in caller frame
4000 			 * bitmasks until we return back from callee(s)
4001 			 */
4002 			return 0;
4003 		} else if (BPF_SRC(insn->code) == BPF_X) {
4004 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4005 				return 0;
4006 			/* dreg <cond> sreg
4007 			 * Both dreg and sreg need precision before
4008 			 * this insn. If only sreg was marked precise
4009 			 * before it would be equally necessary to
4010 			 * propagate it to dreg.
4011 			 */
4012 			bt_set_reg(bt, dreg);
4013 			bt_set_reg(bt, sreg);
4014 			 /* else dreg <cond> K
4015 			  * Only dreg still needs precision before
4016 			  * this insn, so for the K-based conditional
4017 			  * there is nothing new to be marked.
4018 			  */
4019 		}
4020 	} else if (class == BPF_LD) {
4021 		if (!bt_is_reg_set(bt, dreg))
4022 			return 0;
4023 		bt_clear_reg(bt, dreg);
4024 		/* It's ld_imm64 or ld_abs or ld_ind.
4025 		 * For ld_imm64 no further tracking of precision
4026 		 * into parent is necessary
4027 		 */
4028 		if (mode == BPF_IND || mode == BPF_ABS)
4029 			/* to be analyzed */
4030 			return -ENOTSUPP;
4031 	}
4032 	return 0;
4033 }
4034 
4035 /* the scalar precision tracking algorithm:
4036  * . at the start all registers have precise=false.
4037  * . scalar ranges are tracked as normal through alu and jmp insns.
4038  * . once precise value of the scalar register is used in:
4039  *   .  ptr + scalar alu
4040  *   . if (scalar cond K|scalar)
4041  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4042  *   backtrack through the verifier states and mark all registers and
4043  *   stack slots with spilled constants that these scalar regisers
4044  *   should be precise.
4045  * . during state pruning two registers (or spilled stack slots)
4046  *   are equivalent if both are not precise.
4047  *
4048  * Note the verifier cannot simply walk register parentage chain,
4049  * since many different registers and stack slots could have been
4050  * used to compute single precise scalar.
4051  *
4052  * The approach of starting with precise=true for all registers and then
4053  * backtrack to mark a register as not precise when the verifier detects
4054  * that program doesn't care about specific value (e.g., when helper
4055  * takes register as ARG_ANYTHING parameter) is not safe.
4056  *
4057  * It's ok to walk single parentage chain of the verifier states.
4058  * It's possible that this backtracking will go all the way till 1st insn.
4059  * All other branches will be explored for needing precision later.
4060  *
4061  * The backtracking needs to deal with cases like:
4062  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4063  * r9 -= r8
4064  * r5 = r9
4065  * if r5 > 0x79f goto pc+7
4066  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4067  * r5 += 1
4068  * ...
4069  * call bpf_perf_event_output#25
4070  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4071  *
4072  * and this case:
4073  * r6 = 1
4074  * call foo // uses callee's r6 inside to compute r0
4075  * r0 += r6
4076  * if r0 == 0 goto
4077  *
4078  * to track above reg_mask/stack_mask needs to be independent for each frame.
4079  *
4080  * Also if parent's curframe > frame where backtracking started,
4081  * the verifier need to mark registers in both frames, otherwise callees
4082  * may incorrectly prune callers. This is similar to
4083  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4084  *
4085  * For now backtracking falls back into conservative marking.
4086  */
4087 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4088 				     struct bpf_verifier_state *st)
4089 {
4090 	struct bpf_func_state *func;
4091 	struct bpf_reg_state *reg;
4092 	int i, j;
4093 
4094 	if (env->log.level & BPF_LOG_LEVEL2) {
4095 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4096 			st->curframe);
4097 	}
4098 
4099 	/* big hammer: mark all scalars precise in this path.
4100 	 * pop_stack may still get !precise scalars.
4101 	 * We also skip current state and go straight to first parent state,
4102 	 * because precision markings in current non-checkpointed state are
4103 	 * not needed. See why in the comment in __mark_chain_precision below.
4104 	 */
4105 	for (st = st->parent; st; st = st->parent) {
4106 		for (i = 0; i <= st->curframe; i++) {
4107 			func = st->frame[i];
4108 			for (j = 0; j < BPF_REG_FP; j++) {
4109 				reg = &func->regs[j];
4110 				if (reg->type != SCALAR_VALUE || reg->precise)
4111 					continue;
4112 				reg->precise = true;
4113 				if (env->log.level & BPF_LOG_LEVEL2) {
4114 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4115 						i, j);
4116 				}
4117 			}
4118 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4119 				if (!is_spilled_reg(&func->stack[j]))
4120 					continue;
4121 				reg = &func->stack[j].spilled_ptr;
4122 				if (reg->type != SCALAR_VALUE || reg->precise)
4123 					continue;
4124 				reg->precise = true;
4125 				if (env->log.level & BPF_LOG_LEVEL2) {
4126 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4127 						i, -(j + 1) * 8);
4128 				}
4129 			}
4130 		}
4131 	}
4132 }
4133 
4134 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4135 {
4136 	struct bpf_func_state *func;
4137 	struct bpf_reg_state *reg;
4138 	int i, j;
4139 
4140 	for (i = 0; i <= st->curframe; i++) {
4141 		func = st->frame[i];
4142 		for (j = 0; j < BPF_REG_FP; j++) {
4143 			reg = &func->regs[j];
4144 			if (reg->type != SCALAR_VALUE)
4145 				continue;
4146 			reg->precise = false;
4147 		}
4148 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4149 			if (!is_spilled_reg(&func->stack[j]))
4150 				continue;
4151 			reg = &func->stack[j].spilled_ptr;
4152 			if (reg->type != SCALAR_VALUE)
4153 				continue;
4154 			reg->precise = false;
4155 		}
4156 	}
4157 }
4158 
4159 static bool idset_contains(struct bpf_idset *s, u32 id)
4160 {
4161 	u32 i;
4162 
4163 	for (i = 0; i < s->count; ++i)
4164 		if (s->ids[i] == id)
4165 			return true;
4166 
4167 	return false;
4168 }
4169 
4170 static int idset_push(struct bpf_idset *s, u32 id)
4171 {
4172 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4173 		return -EFAULT;
4174 	s->ids[s->count++] = id;
4175 	return 0;
4176 }
4177 
4178 static void idset_reset(struct bpf_idset *s)
4179 {
4180 	s->count = 0;
4181 }
4182 
4183 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4184  * Mark all registers with these IDs as precise.
4185  */
4186 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4187 {
4188 	struct bpf_idset *precise_ids = &env->idset_scratch;
4189 	struct backtrack_state *bt = &env->bt;
4190 	struct bpf_func_state *func;
4191 	struct bpf_reg_state *reg;
4192 	DECLARE_BITMAP(mask, 64);
4193 	int i, fr;
4194 
4195 	idset_reset(precise_ids);
4196 
4197 	for (fr = bt->frame; fr >= 0; fr--) {
4198 		func = st->frame[fr];
4199 
4200 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4201 		for_each_set_bit(i, mask, 32) {
4202 			reg = &func->regs[i];
4203 			if (!reg->id || reg->type != SCALAR_VALUE)
4204 				continue;
4205 			if (idset_push(precise_ids, reg->id))
4206 				return -EFAULT;
4207 		}
4208 
4209 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4210 		for_each_set_bit(i, mask, 64) {
4211 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4212 				break;
4213 			if (!is_spilled_scalar_reg(&func->stack[i]))
4214 				continue;
4215 			reg = &func->stack[i].spilled_ptr;
4216 			if (!reg->id)
4217 				continue;
4218 			if (idset_push(precise_ids, reg->id))
4219 				return -EFAULT;
4220 		}
4221 	}
4222 
4223 	for (fr = 0; fr <= st->curframe; ++fr) {
4224 		func = st->frame[fr];
4225 
4226 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4227 			reg = &func->regs[i];
4228 			if (!reg->id)
4229 				continue;
4230 			if (!idset_contains(precise_ids, reg->id))
4231 				continue;
4232 			bt_set_frame_reg(bt, fr, i);
4233 		}
4234 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4235 			if (!is_spilled_scalar_reg(&func->stack[i]))
4236 				continue;
4237 			reg = &func->stack[i].spilled_ptr;
4238 			if (!reg->id)
4239 				continue;
4240 			if (!idset_contains(precise_ids, reg->id))
4241 				continue;
4242 			bt_set_frame_slot(bt, fr, i);
4243 		}
4244 	}
4245 
4246 	return 0;
4247 }
4248 
4249 /*
4250  * __mark_chain_precision() backtracks BPF program instruction sequence and
4251  * chain of verifier states making sure that register *regno* (if regno >= 0)
4252  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4253  * SCALARS, as well as any other registers and slots that contribute to
4254  * a tracked state of given registers/stack slots, depending on specific BPF
4255  * assembly instructions (see backtrack_insns() for exact instruction handling
4256  * logic). This backtracking relies on recorded jmp_history and is able to
4257  * traverse entire chain of parent states. This process ends only when all the
4258  * necessary registers/slots and their transitive dependencies are marked as
4259  * precise.
4260  *
4261  * One important and subtle aspect is that precise marks *do not matter* in
4262  * the currently verified state (current state). It is important to understand
4263  * why this is the case.
4264  *
4265  * First, note that current state is the state that is not yet "checkpointed",
4266  * i.e., it is not yet put into env->explored_states, and it has no children
4267  * states as well. It's ephemeral, and can end up either a) being discarded if
4268  * compatible explored state is found at some point or BPF_EXIT instruction is
4269  * reached or b) checkpointed and put into env->explored_states, branching out
4270  * into one or more children states.
4271  *
4272  * In the former case, precise markings in current state are completely
4273  * ignored by state comparison code (see regsafe() for details). Only
4274  * checkpointed ("old") state precise markings are important, and if old
4275  * state's register/slot is precise, regsafe() assumes current state's
4276  * register/slot as precise and checks value ranges exactly and precisely. If
4277  * states turn out to be compatible, current state's necessary precise
4278  * markings and any required parent states' precise markings are enforced
4279  * after the fact with propagate_precision() logic, after the fact. But it's
4280  * important to realize that in this case, even after marking current state
4281  * registers/slots as precise, we immediately discard current state. So what
4282  * actually matters is any of the precise markings propagated into current
4283  * state's parent states, which are always checkpointed (due to b) case above).
4284  * As such, for scenario a) it doesn't matter if current state has precise
4285  * markings set or not.
4286  *
4287  * Now, for the scenario b), checkpointing and forking into child(ren)
4288  * state(s). Note that before current state gets to checkpointing step, any
4289  * processed instruction always assumes precise SCALAR register/slot
4290  * knowledge: if precise value or range is useful to prune jump branch, BPF
4291  * verifier takes this opportunity enthusiastically. Similarly, when
4292  * register's value is used to calculate offset or memory address, exact
4293  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4294  * what we mentioned above about state comparison ignoring precise markings
4295  * during state comparison, BPF verifier ignores and also assumes precise
4296  * markings *at will* during instruction verification process. But as verifier
4297  * assumes precision, it also propagates any precision dependencies across
4298  * parent states, which are not yet finalized, so can be further restricted
4299  * based on new knowledge gained from restrictions enforced by their children
4300  * states. This is so that once those parent states are finalized, i.e., when
4301  * they have no more active children state, state comparison logic in
4302  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4303  * required for correctness.
4304  *
4305  * To build a bit more intuition, note also that once a state is checkpointed,
4306  * the path we took to get to that state is not important. This is crucial
4307  * property for state pruning. When state is checkpointed and finalized at
4308  * some instruction index, it can be correctly and safely used to "short
4309  * circuit" any *compatible* state that reaches exactly the same instruction
4310  * index. I.e., if we jumped to that instruction from a completely different
4311  * code path than original finalized state was derived from, it doesn't
4312  * matter, current state can be discarded because from that instruction
4313  * forward having a compatible state will ensure we will safely reach the
4314  * exit. States describe preconditions for further exploration, but completely
4315  * forget the history of how we got here.
4316  *
4317  * This also means that even if we needed precise SCALAR range to get to
4318  * finalized state, but from that point forward *that same* SCALAR register is
4319  * never used in a precise context (i.e., it's precise value is not needed for
4320  * correctness), it's correct and safe to mark such register as "imprecise"
4321  * (i.e., precise marking set to false). This is what we rely on when we do
4322  * not set precise marking in current state. If no child state requires
4323  * precision for any given SCALAR register, it's safe to dictate that it can
4324  * be imprecise. If any child state does require this register to be precise,
4325  * we'll mark it precise later retroactively during precise markings
4326  * propagation from child state to parent states.
4327  *
4328  * Skipping precise marking setting in current state is a mild version of
4329  * relying on the above observation. But we can utilize this property even
4330  * more aggressively by proactively forgetting any precise marking in the
4331  * current state (which we inherited from the parent state), right before we
4332  * checkpoint it and branch off into new child state. This is done by
4333  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4334  * finalized states which help in short circuiting more future states.
4335  */
4336 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4337 {
4338 	struct backtrack_state *bt = &env->bt;
4339 	struct bpf_verifier_state *st = env->cur_state;
4340 	int first_idx = st->first_insn_idx;
4341 	int last_idx = env->insn_idx;
4342 	int subseq_idx = -1;
4343 	struct bpf_func_state *func;
4344 	struct bpf_reg_state *reg;
4345 	bool skip_first = true;
4346 	int i, fr, err;
4347 
4348 	if (!env->bpf_capable)
4349 		return 0;
4350 
4351 	/* set frame number from which we are starting to backtrack */
4352 	bt_init(bt, env->cur_state->curframe);
4353 
4354 	/* Do sanity checks against current state of register and/or stack
4355 	 * slot, but don't set precise flag in current state, as precision
4356 	 * tracking in the current state is unnecessary.
4357 	 */
4358 	func = st->frame[bt->frame];
4359 	if (regno >= 0) {
4360 		reg = &func->regs[regno];
4361 		if (reg->type != SCALAR_VALUE) {
4362 			WARN_ONCE(1, "backtracing misuse");
4363 			return -EFAULT;
4364 		}
4365 		bt_set_reg(bt, regno);
4366 	}
4367 
4368 	if (bt_empty(bt))
4369 		return 0;
4370 
4371 	for (;;) {
4372 		DECLARE_BITMAP(mask, 64);
4373 		u32 history = st->jmp_history_cnt;
4374 
4375 		if (env->log.level & BPF_LOG_LEVEL2) {
4376 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4377 				bt->frame, last_idx, first_idx, subseq_idx);
4378 		}
4379 
4380 		/* If some register with scalar ID is marked as precise,
4381 		 * make sure that all registers sharing this ID are also precise.
4382 		 * This is needed to estimate effect of find_equal_scalars().
4383 		 * Do this at the last instruction of each state,
4384 		 * bpf_reg_state::id fields are valid for these instructions.
4385 		 *
4386 		 * Allows to track precision in situation like below:
4387 		 *
4388 		 *     r2 = unknown value
4389 		 *     ...
4390 		 *   --- state #0 ---
4391 		 *     ...
4392 		 *     r1 = r2                 // r1 and r2 now share the same ID
4393 		 *     ...
4394 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4395 		 *     ...
4396 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4397 		 *     ...
4398 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4399 		 *     r3 = r10
4400 		 *     r3 += r1                // need to mark both r1 and r2
4401 		 */
4402 		if (mark_precise_scalar_ids(env, st))
4403 			return -EFAULT;
4404 
4405 		if (last_idx < 0) {
4406 			/* we are at the entry into subprog, which
4407 			 * is expected for global funcs, but only if
4408 			 * requested precise registers are R1-R5
4409 			 * (which are global func's input arguments)
4410 			 */
4411 			if (st->curframe == 0 &&
4412 			    st->frame[0]->subprogno > 0 &&
4413 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4414 			    bt_stack_mask(bt) == 0 &&
4415 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4416 				bitmap_from_u64(mask, bt_reg_mask(bt));
4417 				for_each_set_bit(i, mask, 32) {
4418 					reg = &st->frame[0]->regs[i];
4419 					bt_clear_reg(bt, i);
4420 					if (reg->type == SCALAR_VALUE)
4421 						reg->precise = true;
4422 				}
4423 				return 0;
4424 			}
4425 
4426 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4427 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4428 			WARN_ONCE(1, "verifier backtracking bug");
4429 			return -EFAULT;
4430 		}
4431 
4432 		for (i = last_idx;;) {
4433 			if (skip_first) {
4434 				err = 0;
4435 				skip_first = false;
4436 			} else {
4437 				err = backtrack_insn(env, i, subseq_idx, bt);
4438 			}
4439 			if (err == -ENOTSUPP) {
4440 				mark_all_scalars_precise(env, env->cur_state);
4441 				bt_reset(bt);
4442 				return 0;
4443 			} else if (err) {
4444 				return err;
4445 			}
4446 			if (bt_empty(bt))
4447 				/* Found assignment(s) into tracked register in this state.
4448 				 * Since this state is already marked, just return.
4449 				 * Nothing to be tracked further in the parent state.
4450 				 */
4451 				return 0;
4452 			subseq_idx = i;
4453 			i = get_prev_insn_idx(st, i, &history);
4454 			if (i == -ENOENT)
4455 				break;
4456 			if (i >= env->prog->len) {
4457 				/* This can happen if backtracking reached insn 0
4458 				 * and there are still reg_mask or stack_mask
4459 				 * to backtrack.
4460 				 * It means the backtracking missed the spot where
4461 				 * particular register was initialized with a constant.
4462 				 */
4463 				verbose(env, "BUG backtracking idx %d\n", i);
4464 				WARN_ONCE(1, "verifier backtracking bug");
4465 				return -EFAULT;
4466 			}
4467 		}
4468 		st = st->parent;
4469 		if (!st)
4470 			break;
4471 
4472 		for (fr = bt->frame; fr >= 0; fr--) {
4473 			func = st->frame[fr];
4474 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4475 			for_each_set_bit(i, mask, 32) {
4476 				reg = &func->regs[i];
4477 				if (reg->type != SCALAR_VALUE) {
4478 					bt_clear_frame_reg(bt, fr, i);
4479 					continue;
4480 				}
4481 				if (reg->precise)
4482 					bt_clear_frame_reg(bt, fr, i);
4483 				else
4484 					reg->precise = true;
4485 			}
4486 
4487 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4488 			for_each_set_bit(i, mask, 64) {
4489 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4490 					/* the sequence of instructions:
4491 					 * 2: (bf) r3 = r10
4492 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4493 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4494 					 * doesn't contain jmps. It's backtracked
4495 					 * as a single block.
4496 					 * During backtracking insn 3 is not recognized as
4497 					 * stack access, so at the end of backtracking
4498 					 * stack slot fp-8 is still marked in stack_mask.
4499 					 * However the parent state may not have accessed
4500 					 * fp-8 and it's "unallocated" stack space.
4501 					 * In such case fallback to conservative.
4502 					 */
4503 					mark_all_scalars_precise(env, env->cur_state);
4504 					bt_reset(bt);
4505 					return 0;
4506 				}
4507 
4508 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4509 					bt_clear_frame_slot(bt, fr, i);
4510 					continue;
4511 				}
4512 				reg = &func->stack[i].spilled_ptr;
4513 				if (reg->precise)
4514 					bt_clear_frame_slot(bt, fr, i);
4515 				else
4516 					reg->precise = true;
4517 			}
4518 			if (env->log.level & BPF_LOG_LEVEL2) {
4519 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4520 					     bt_frame_reg_mask(bt, fr));
4521 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4522 					fr, env->tmp_str_buf);
4523 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4524 					       bt_frame_stack_mask(bt, fr));
4525 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4526 				print_verifier_state(env, func, true);
4527 			}
4528 		}
4529 
4530 		if (bt_empty(bt))
4531 			return 0;
4532 
4533 		subseq_idx = first_idx;
4534 		last_idx = st->last_insn_idx;
4535 		first_idx = st->first_insn_idx;
4536 	}
4537 
4538 	/* if we still have requested precise regs or slots, we missed
4539 	 * something (e.g., stack access through non-r10 register), so
4540 	 * fallback to marking all precise
4541 	 */
4542 	if (!bt_empty(bt)) {
4543 		mark_all_scalars_precise(env, env->cur_state);
4544 		bt_reset(bt);
4545 	}
4546 
4547 	return 0;
4548 }
4549 
4550 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4551 {
4552 	return __mark_chain_precision(env, regno);
4553 }
4554 
4555 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4556  * desired reg and stack masks across all relevant frames
4557  */
4558 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4559 {
4560 	return __mark_chain_precision(env, -1);
4561 }
4562 
4563 static bool is_spillable_regtype(enum bpf_reg_type type)
4564 {
4565 	switch (base_type(type)) {
4566 	case PTR_TO_MAP_VALUE:
4567 	case PTR_TO_STACK:
4568 	case PTR_TO_CTX:
4569 	case PTR_TO_PACKET:
4570 	case PTR_TO_PACKET_META:
4571 	case PTR_TO_PACKET_END:
4572 	case PTR_TO_FLOW_KEYS:
4573 	case CONST_PTR_TO_MAP:
4574 	case PTR_TO_SOCKET:
4575 	case PTR_TO_SOCK_COMMON:
4576 	case PTR_TO_TCP_SOCK:
4577 	case PTR_TO_XDP_SOCK:
4578 	case PTR_TO_BTF_ID:
4579 	case PTR_TO_BUF:
4580 	case PTR_TO_MEM:
4581 	case PTR_TO_FUNC:
4582 	case PTR_TO_MAP_KEY:
4583 		return true;
4584 	default:
4585 		return false;
4586 	}
4587 }
4588 
4589 /* Does this register contain a constant zero? */
4590 static bool register_is_null(struct bpf_reg_state *reg)
4591 {
4592 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4593 }
4594 
4595 static bool register_is_const(struct bpf_reg_state *reg)
4596 {
4597 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4598 }
4599 
4600 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4601 {
4602 	return tnum_is_unknown(reg->var_off) &&
4603 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4604 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4605 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4606 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4607 }
4608 
4609 static bool register_is_bounded(struct bpf_reg_state *reg)
4610 {
4611 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4612 }
4613 
4614 static bool __is_pointer_value(bool allow_ptr_leaks,
4615 			       const struct bpf_reg_state *reg)
4616 {
4617 	if (allow_ptr_leaks)
4618 		return false;
4619 
4620 	return reg->type != SCALAR_VALUE;
4621 }
4622 
4623 /* Copy src state preserving dst->parent and dst->live fields */
4624 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4625 {
4626 	struct bpf_reg_state *parent = dst->parent;
4627 	enum bpf_reg_liveness live = dst->live;
4628 
4629 	*dst = *src;
4630 	dst->parent = parent;
4631 	dst->live = live;
4632 }
4633 
4634 static void save_register_state(struct bpf_func_state *state,
4635 				int spi, struct bpf_reg_state *reg,
4636 				int size)
4637 {
4638 	int i;
4639 
4640 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4641 	if (size == BPF_REG_SIZE)
4642 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4643 
4644 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4645 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4646 
4647 	/* size < 8 bytes spill */
4648 	for (; i; i--)
4649 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4650 }
4651 
4652 static bool is_bpf_st_mem(struct bpf_insn *insn)
4653 {
4654 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4655 }
4656 
4657 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4658  * stack boundary and alignment are checked in check_mem_access()
4659  */
4660 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4661 				       /* stack frame we're writing to */
4662 				       struct bpf_func_state *state,
4663 				       int off, int size, int value_regno,
4664 				       int insn_idx)
4665 {
4666 	struct bpf_func_state *cur; /* state of the current function */
4667 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4668 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4669 	struct bpf_reg_state *reg = NULL;
4670 	u32 dst_reg = insn->dst_reg;
4671 
4672 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4673 	if (err)
4674 		return err;
4675 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4676 	 * so it's aligned access and [off, off + size) are within stack limits
4677 	 */
4678 	if (!env->allow_ptr_leaks &&
4679 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4680 	    size != BPF_REG_SIZE) {
4681 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4682 		return -EACCES;
4683 	}
4684 
4685 	cur = env->cur_state->frame[env->cur_state->curframe];
4686 	if (value_regno >= 0)
4687 		reg = &cur->regs[value_regno];
4688 	if (!env->bypass_spec_v4) {
4689 		bool sanitize = reg && is_spillable_regtype(reg->type);
4690 
4691 		for (i = 0; i < size; i++) {
4692 			u8 type = state->stack[spi].slot_type[i];
4693 
4694 			if (type != STACK_MISC && type != STACK_ZERO) {
4695 				sanitize = true;
4696 				break;
4697 			}
4698 		}
4699 
4700 		if (sanitize)
4701 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4702 	}
4703 
4704 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4705 	if (err)
4706 		return err;
4707 
4708 	mark_stack_slot_scratched(env, spi);
4709 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4710 	    !register_is_null(reg) && env->bpf_capable) {
4711 		if (dst_reg != BPF_REG_FP) {
4712 			/* The backtracking logic can only recognize explicit
4713 			 * stack slot address like [fp - 8]. Other spill of
4714 			 * scalar via different register has to be conservative.
4715 			 * Backtrack from here and mark all registers as precise
4716 			 * that contributed into 'reg' being a constant.
4717 			 */
4718 			err = mark_chain_precision(env, value_regno);
4719 			if (err)
4720 				return err;
4721 		}
4722 		save_register_state(state, spi, reg, size);
4723 		/* Break the relation on a narrowing spill. */
4724 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4725 			state->stack[spi].spilled_ptr.id = 0;
4726 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4727 		   insn->imm != 0 && env->bpf_capable) {
4728 		struct bpf_reg_state fake_reg = {};
4729 
4730 		__mark_reg_known(&fake_reg, insn->imm);
4731 		fake_reg.type = SCALAR_VALUE;
4732 		save_register_state(state, spi, &fake_reg, size);
4733 	} else if (reg && is_spillable_regtype(reg->type)) {
4734 		/* register containing pointer is being spilled into stack */
4735 		if (size != BPF_REG_SIZE) {
4736 			verbose_linfo(env, insn_idx, "; ");
4737 			verbose(env, "invalid size of register spill\n");
4738 			return -EACCES;
4739 		}
4740 		if (state != cur && reg->type == PTR_TO_STACK) {
4741 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4742 			return -EINVAL;
4743 		}
4744 		save_register_state(state, spi, reg, size);
4745 	} else {
4746 		u8 type = STACK_MISC;
4747 
4748 		/* regular write of data into stack destroys any spilled ptr */
4749 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4750 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4751 		if (is_stack_slot_special(&state->stack[spi]))
4752 			for (i = 0; i < BPF_REG_SIZE; i++)
4753 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4754 
4755 		/* only mark the slot as written if all 8 bytes were written
4756 		 * otherwise read propagation may incorrectly stop too soon
4757 		 * when stack slots are partially written.
4758 		 * This heuristic means that read propagation will be
4759 		 * conservative, since it will add reg_live_read marks
4760 		 * to stack slots all the way to first state when programs
4761 		 * writes+reads less than 8 bytes
4762 		 */
4763 		if (size == BPF_REG_SIZE)
4764 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4765 
4766 		/* when we zero initialize stack slots mark them as such */
4767 		if ((reg && register_is_null(reg)) ||
4768 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4769 			/* backtracking doesn't work for STACK_ZERO yet. */
4770 			err = mark_chain_precision(env, value_regno);
4771 			if (err)
4772 				return err;
4773 			type = STACK_ZERO;
4774 		}
4775 
4776 		/* Mark slots affected by this stack write. */
4777 		for (i = 0; i < size; i++)
4778 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4779 				type;
4780 	}
4781 	return 0;
4782 }
4783 
4784 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4785  * known to contain a variable offset.
4786  * This function checks whether the write is permitted and conservatively
4787  * tracks the effects of the write, considering that each stack slot in the
4788  * dynamic range is potentially written to.
4789  *
4790  * 'off' includes 'regno->off'.
4791  * 'value_regno' can be -1, meaning that an unknown value is being written to
4792  * the stack.
4793  *
4794  * Spilled pointers in range are not marked as written because we don't know
4795  * what's going to be actually written. This means that read propagation for
4796  * future reads cannot be terminated by this write.
4797  *
4798  * For privileged programs, uninitialized stack slots are considered
4799  * initialized by this write (even though we don't know exactly what offsets
4800  * are going to be written to). The idea is that we don't want the verifier to
4801  * reject future reads that access slots written to through variable offsets.
4802  */
4803 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4804 				     /* func where register points to */
4805 				     struct bpf_func_state *state,
4806 				     int ptr_regno, int off, int size,
4807 				     int value_regno, int insn_idx)
4808 {
4809 	struct bpf_func_state *cur; /* state of the current function */
4810 	int min_off, max_off;
4811 	int i, err;
4812 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4813 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4814 	bool writing_zero = false;
4815 	/* set if the fact that we're writing a zero is used to let any
4816 	 * stack slots remain STACK_ZERO
4817 	 */
4818 	bool zero_used = false;
4819 
4820 	cur = env->cur_state->frame[env->cur_state->curframe];
4821 	ptr_reg = &cur->regs[ptr_regno];
4822 	min_off = ptr_reg->smin_value + off;
4823 	max_off = ptr_reg->smax_value + off + size;
4824 	if (value_regno >= 0)
4825 		value_reg = &cur->regs[value_regno];
4826 	if ((value_reg && register_is_null(value_reg)) ||
4827 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4828 		writing_zero = true;
4829 
4830 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4831 	if (err)
4832 		return err;
4833 
4834 	for (i = min_off; i < max_off; i++) {
4835 		int spi;
4836 
4837 		spi = __get_spi(i);
4838 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4839 		if (err)
4840 			return err;
4841 	}
4842 
4843 	/* Variable offset writes destroy any spilled pointers in range. */
4844 	for (i = min_off; i < max_off; i++) {
4845 		u8 new_type, *stype;
4846 		int slot, spi;
4847 
4848 		slot = -i - 1;
4849 		spi = slot / BPF_REG_SIZE;
4850 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4851 		mark_stack_slot_scratched(env, spi);
4852 
4853 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4854 			/* Reject the write if range we may write to has not
4855 			 * been initialized beforehand. If we didn't reject
4856 			 * here, the ptr status would be erased below (even
4857 			 * though not all slots are actually overwritten),
4858 			 * possibly opening the door to leaks.
4859 			 *
4860 			 * We do however catch STACK_INVALID case below, and
4861 			 * only allow reading possibly uninitialized memory
4862 			 * later for CAP_PERFMON, as the write may not happen to
4863 			 * that slot.
4864 			 */
4865 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4866 				insn_idx, i);
4867 			return -EINVAL;
4868 		}
4869 
4870 		/* Erase all spilled pointers. */
4871 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4872 
4873 		/* Update the slot type. */
4874 		new_type = STACK_MISC;
4875 		if (writing_zero && *stype == STACK_ZERO) {
4876 			new_type = STACK_ZERO;
4877 			zero_used = true;
4878 		}
4879 		/* If the slot is STACK_INVALID, we check whether it's OK to
4880 		 * pretend that it will be initialized by this write. The slot
4881 		 * might not actually be written to, and so if we mark it as
4882 		 * initialized future reads might leak uninitialized memory.
4883 		 * For privileged programs, we will accept such reads to slots
4884 		 * that may or may not be written because, if we're reject
4885 		 * them, the error would be too confusing.
4886 		 */
4887 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4888 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4889 					insn_idx, i);
4890 			return -EINVAL;
4891 		}
4892 		*stype = new_type;
4893 	}
4894 	if (zero_used) {
4895 		/* backtracking doesn't work for STACK_ZERO yet. */
4896 		err = mark_chain_precision(env, value_regno);
4897 		if (err)
4898 			return err;
4899 	}
4900 	return 0;
4901 }
4902 
4903 /* When register 'dst_regno' is assigned some values from stack[min_off,
4904  * max_off), we set the register's type according to the types of the
4905  * respective stack slots. If all the stack values are known to be zeros, then
4906  * so is the destination reg. Otherwise, the register is considered to be
4907  * SCALAR. This function does not deal with register filling; the caller must
4908  * ensure that all spilled registers in the stack range have been marked as
4909  * read.
4910  */
4911 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4912 				/* func where src register points to */
4913 				struct bpf_func_state *ptr_state,
4914 				int min_off, int max_off, int dst_regno)
4915 {
4916 	struct bpf_verifier_state *vstate = env->cur_state;
4917 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4918 	int i, slot, spi;
4919 	u8 *stype;
4920 	int zeros = 0;
4921 
4922 	for (i = min_off; i < max_off; i++) {
4923 		slot = -i - 1;
4924 		spi = slot / BPF_REG_SIZE;
4925 		mark_stack_slot_scratched(env, spi);
4926 		stype = ptr_state->stack[spi].slot_type;
4927 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4928 			break;
4929 		zeros++;
4930 	}
4931 	if (zeros == max_off - min_off) {
4932 		/* any access_size read into register is zero extended,
4933 		 * so the whole register == const_zero
4934 		 */
4935 		__mark_reg_const_zero(&state->regs[dst_regno]);
4936 		/* backtracking doesn't support STACK_ZERO yet,
4937 		 * so mark it precise here, so that later
4938 		 * backtracking can stop here.
4939 		 * Backtracking may not need this if this register
4940 		 * doesn't participate in pointer adjustment.
4941 		 * Forward propagation of precise flag is not
4942 		 * necessary either. This mark is only to stop
4943 		 * backtracking. Any register that contributed
4944 		 * to const 0 was marked precise before spill.
4945 		 */
4946 		state->regs[dst_regno].precise = true;
4947 	} else {
4948 		/* have read misc data from the stack */
4949 		mark_reg_unknown(env, state->regs, dst_regno);
4950 	}
4951 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4952 }
4953 
4954 /* Read the stack at 'off' and put the results into the register indicated by
4955  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4956  * spilled reg.
4957  *
4958  * 'dst_regno' can be -1, meaning that the read value is not going to a
4959  * register.
4960  *
4961  * The access is assumed to be within the current stack bounds.
4962  */
4963 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4964 				      /* func where src register points to */
4965 				      struct bpf_func_state *reg_state,
4966 				      int off, int size, int dst_regno)
4967 {
4968 	struct bpf_verifier_state *vstate = env->cur_state;
4969 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4970 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4971 	struct bpf_reg_state *reg;
4972 	u8 *stype, type;
4973 
4974 	stype = reg_state->stack[spi].slot_type;
4975 	reg = &reg_state->stack[spi].spilled_ptr;
4976 
4977 	mark_stack_slot_scratched(env, spi);
4978 
4979 	if (is_spilled_reg(&reg_state->stack[spi])) {
4980 		u8 spill_size = 1;
4981 
4982 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4983 			spill_size++;
4984 
4985 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4986 			if (reg->type != SCALAR_VALUE) {
4987 				verbose_linfo(env, env->insn_idx, "; ");
4988 				verbose(env, "invalid size of register fill\n");
4989 				return -EACCES;
4990 			}
4991 
4992 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4993 			if (dst_regno < 0)
4994 				return 0;
4995 
4996 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4997 				/* The earlier check_reg_arg() has decided the
4998 				 * subreg_def for this insn.  Save it first.
4999 				 */
5000 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5001 
5002 				copy_register_state(&state->regs[dst_regno], reg);
5003 				state->regs[dst_regno].subreg_def = subreg_def;
5004 			} else {
5005 				for (i = 0; i < size; i++) {
5006 					type = stype[(slot - i) % BPF_REG_SIZE];
5007 					if (type == STACK_SPILL)
5008 						continue;
5009 					if (type == STACK_MISC)
5010 						continue;
5011 					if (type == STACK_INVALID && env->allow_uninit_stack)
5012 						continue;
5013 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5014 						off, i, size);
5015 					return -EACCES;
5016 				}
5017 				mark_reg_unknown(env, state->regs, dst_regno);
5018 			}
5019 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5020 			return 0;
5021 		}
5022 
5023 		if (dst_regno >= 0) {
5024 			/* restore register state from stack */
5025 			copy_register_state(&state->regs[dst_regno], reg);
5026 			/* mark reg as written since spilled pointer state likely
5027 			 * has its liveness marks cleared by is_state_visited()
5028 			 * which resets stack/reg liveness for state transitions
5029 			 */
5030 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5031 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5032 			/* If dst_regno==-1, the caller is asking us whether
5033 			 * it is acceptable to use this value as a SCALAR_VALUE
5034 			 * (e.g. for XADD).
5035 			 * We must not allow unprivileged callers to do that
5036 			 * with spilled pointers.
5037 			 */
5038 			verbose(env, "leaking pointer from stack off %d\n",
5039 				off);
5040 			return -EACCES;
5041 		}
5042 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5043 	} else {
5044 		for (i = 0; i < size; i++) {
5045 			type = stype[(slot - i) % BPF_REG_SIZE];
5046 			if (type == STACK_MISC)
5047 				continue;
5048 			if (type == STACK_ZERO)
5049 				continue;
5050 			if (type == STACK_INVALID && env->allow_uninit_stack)
5051 				continue;
5052 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5053 				off, i, size);
5054 			return -EACCES;
5055 		}
5056 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5057 		if (dst_regno >= 0)
5058 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5059 	}
5060 	return 0;
5061 }
5062 
5063 enum bpf_access_src {
5064 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5065 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5066 };
5067 
5068 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5069 					 int regno, int off, int access_size,
5070 					 bool zero_size_allowed,
5071 					 enum bpf_access_src type,
5072 					 struct bpf_call_arg_meta *meta);
5073 
5074 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5075 {
5076 	return cur_regs(env) + regno;
5077 }
5078 
5079 /* Read the stack at 'ptr_regno + off' and put the result into the register
5080  * 'dst_regno'.
5081  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5082  * but not its variable offset.
5083  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5084  *
5085  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5086  * filling registers (i.e. reads of spilled register cannot be detected when
5087  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5088  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5089  * offset; for a fixed offset check_stack_read_fixed_off should be used
5090  * instead.
5091  */
5092 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5093 				    int ptr_regno, int off, int size, int dst_regno)
5094 {
5095 	/* The state of the source register. */
5096 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5097 	struct bpf_func_state *ptr_state = func(env, reg);
5098 	int err;
5099 	int min_off, max_off;
5100 
5101 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5102 	 */
5103 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5104 					    false, ACCESS_DIRECT, NULL);
5105 	if (err)
5106 		return err;
5107 
5108 	min_off = reg->smin_value + off;
5109 	max_off = reg->smax_value + off;
5110 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5111 	return 0;
5112 }
5113 
5114 /* check_stack_read dispatches to check_stack_read_fixed_off or
5115  * check_stack_read_var_off.
5116  *
5117  * The caller must ensure that the offset falls within the allocated stack
5118  * bounds.
5119  *
5120  * 'dst_regno' is a register which will receive the value from the stack. It
5121  * can be -1, meaning that the read value is not going to a register.
5122  */
5123 static int check_stack_read(struct bpf_verifier_env *env,
5124 			    int ptr_regno, int off, int size,
5125 			    int dst_regno)
5126 {
5127 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5128 	struct bpf_func_state *state = func(env, reg);
5129 	int err;
5130 	/* Some accesses are only permitted with a static offset. */
5131 	bool var_off = !tnum_is_const(reg->var_off);
5132 
5133 	/* The offset is required to be static when reads don't go to a
5134 	 * register, in order to not leak pointers (see
5135 	 * check_stack_read_fixed_off).
5136 	 */
5137 	if (dst_regno < 0 && var_off) {
5138 		char tn_buf[48];
5139 
5140 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5141 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5142 			tn_buf, off, size);
5143 		return -EACCES;
5144 	}
5145 	/* Variable offset is prohibited for unprivileged mode for simplicity
5146 	 * since it requires corresponding support in Spectre masking for stack
5147 	 * ALU. See also retrieve_ptr_limit(). The check in
5148 	 * check_stack_access_for_ptr_arithmetic() called by
5149 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5150 	 * with variable offsets, therefore no check is required here. Further,
5151 	 * just checking it here would be insufficient as speculative stack
5152 	 * writes could still lead to unsafe speculative behaviour.
5153 	 */
5154 	if (!var_off) {
5155 		off += reg->var_off.value;
5156 		err = check_stack_read_fixed_off(env, state, off, size,
5157 						 dst_regno);
5158 	} else {
5159 		/* Variable offset stack reads need more conservative handling
5160 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5161 		 * branch.
5162 		 */
5163 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5164 					       dst_regno);
5165 	}
5166 	return err;
5167 }
5168 
5169 
5170 /* check_stack_write dispatches to check_stack_write_fixed_off or
5171  * check_stack_write_var_off.
5172  *
5173  * 'ptr_regno' is the register used as a pointer into the stack.
5174  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5175  * 'value_regno' is the register whose value we're writing to the stack. It can
5176  * be -1, meaning that we're not writing from a register.
5177  *
5178  * The caller must ensure that the offset falls within the maximum stack size.
5179  */
5180 static int check_stack_write(struct bpf_verifier_env *env,
5181 			     int ptr_regno, int off, int size,
5182 			     int value_regno, int insn_idx)
5183 {
5184 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5185 	struct bpf_func_state *state = func(env, reg);
5186 	int err;
5187 
5188 	if (tnum_is_const(reg->var_off)) {
5189 		off += reg->var_off.value;
5190 		err = check_stack_write_fixed_off(env, state, off, size,
5191 						  value_regno, insn_idx);
5192 	} else {
5193 		/* Variable offset stack reads need more conservative handling
5194 		 * than fixed offset ones.
5195 		 */
5196 		err = check_stack_write_var_off(env, state,
5197 						ptr_regno, off, size,
5198 						value_regno, insn_idx);
5199 	}
5200 	return err;
5201 }
5202 
5203 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5204 				 int off, int size, enum bpf_access_type type)
5205 {
5206 	struct bpf_reg_state *regs = cur_regs(env);
5207 	struct bpf_map *map = regs[regno].map_ptr;
5208 	u32 cap = bpf_map_flags_to_cap(map);
5209 
5210 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5211 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5212 			map->value_size, off, size);
5213 		return -EACCES;
5214 	}
5215 
5216 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5217 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5218 			map->value_size, off, size);
5219 		return -EACCES;
5220 	}
5221 
5222 	return 0;
5223 }
5224 
5225 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5226 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5227 			      int off, int size, u32 mem_size,
5228 			      bool zero_size_allowed)
5229 {
5230 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5231 	struct bpf_reg_state *reg;
5232 
5233 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5234 		return 0;
5235 
5236 	reg = &cur_regs(env)[regno];
5237 	switch (reg->type) {
5238 	case PTR_TO_MAP_KEY:
5239 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5240 			mem_size, off, size);
5241 		break;
5242 	case PTR_TO_MAP_VALUE:
5243 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5244 			mem_size, off, size);
5245 		break;
5246 	case PTR_TO_PACKET:
5247 	case PTR_TO_PACKET_META:
5248 	case PTR_TO_PACKET_END:
5249 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5250 			off, size, regno, reg->id, off, mem_size);
5251 		break;
5252 	case PTR_TO_MEM:
5253 	default:
5254 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5255 			mem_size, off, size);
5256 	}
5257 
5258 	return -EACCES;
5259 }
5260 
5261 /* check read/write into a memory region with possible variable offset */
5262 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5263 				   int off, int size, u32 mem_size,
5264 				   bool zero_size_allowed)
5265 {
5266 	struct bpf_verifier_state *vstate = env->cur_state;
5267 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5268 	struct bpf_reg_state *reg = &state->regs[regno];
5269 	int err;
5270 
5271 	/* We may have adjusted the register pointing to memory region, so we
5272 	 * need to try adding each of min_value and max_value to off
5273 	 * to make sure our theoretical access will be safe.
5274 	 *
5275 	 * The minimum value is only important with signed
5276 	 * comparisons where we can't assume the floor of a
5277 	 * value is 0.  If we are using signed variables for our
5278 	 * index'es we need to make sure that whatever we use
5279 	 * will have a set floor within our range.
5280 	 */
5281 	if (reg->smin_value < 0 &&
5282 	    (reg->smin_value == S64_MIN ||
5283 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5284 	      reg->smin_value + off < 0)) {
5285 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5286 			regno);
5287 		return -EACCES;
5288 	}
5289 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5290 				 mem_size, zero_size_allowed);
5291 	if (err) {
5292 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5293 			regno);
5294 		return err;
5295 	}
5296 
5297 	/* If we haven't set a max value then we need to bail since we can't be
5298 	 * sure we won't do bad things.
5299 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5300 	 */
5301 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5302 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5303 			regno);
5304 		return -EACCES;
5305 	}
5306 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5307 				 mem_size, zero_size_allowed);
5308 	if (err) {
5309 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5310 			regno);
5311 		return err;
5312 	}
5313 
5314 	return 0;
5315 }
5316 
5317 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5318 			       const struct bpf_reg_state *reg, int regno,
5319 			       bool fixed_off_ok)
5320 {
5321 	/* Access to this pointer-typed register or passing it to a helper
5322 	 * is only allowed in its original, unmodified form.
5323 	 */
5324 
5325 	if (reg->off < 0) {
5326 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5327 			reg_type_str(env, reg->type), regno, reg->off);
5328 		return -EACCES;
5329 	}
5330 
5331 	if (!fixed_off_ok && reg->off) {
5332 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5333 			reg_type_str(env, reg->type), regno, reg->off);
5334 		return -EACCES;
5335 	}
5336 
5337 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5338 		char tn_buf[48];
5339 
5340 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5341 		verbose(env, "variable %s access var_off=%s disallowed\n",
5342 			reg_type_str(env, reg->type), tn_buf);
5343 		return -EACCES;
5344 	}
5345 
5346 	return 0;
5347 }
5348 
5349 int check_ptr_off_reg(struct bpf_verifier_env *env,
5350 		      const struct bpf_reg_state *reg, int regno)
5351 {
5352 	return __check_ptr_off_reg(env, reg, regno, false);
5353 }
5354 
5355 static int map_kptr_match_type(struct bpf_verifier_env *env,
5356 			       struct btf_field *kptr_field,
5357 			       struct bpf_reg_state *reg, u32 regno)
5358 {
5359 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5360 	int perm_flags;
5361 	const char *reg_name = "";
5362 
5363 	if (btf_is_kernel(reg->btf)) {
5364 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5365 
5366 		/* Only unreferenced case accepts untrusted pointers */
5367 		if (kptr_field->type == BPF_KPTR_UNREF)
5368 			perm_flags |= PTR_UNTRUSTED;
5369 	} else {
5370 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5371 		if (kptr_field->type == BPF_KPTR_PERCPU)
5372 			perm_flags |= MEM_PERCPU;
5373 	}
5374 
5375 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5376 		goto bad_type;
5377 
5378 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5379 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5380 
5381 	/* For ref_ptr case, release function check should ensure we get one
5382 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5383 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5384 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5385 	 * reg->off and reg->ref_obj_id are not needed here.
5386 	 */
5387 	if (__check_ptr_off_reg(env, reg, regno, true))
5388 		return -EACCES;
5389 
5390 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5391 	 * we also need to take into account the reg->off.
5392 	 *
5393 	 * We want to support cases like:
5394 	 *
5395 	 * struct foo {
5396 	 *         struct bar br;
5397 	 *         struct baz bz;
5398 	 * };
5399 	 *
5400 	 * struct foo *v;
5401 	 * v = func();	      // PTR_TO_BTF_ID
5402 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5403 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5404 	 *                    // first member type of struct after comparison fails
5405 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5406 	 *                    // to match type
5407 	 *
5408 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5409 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5410 	 * the struct to match type against first member of struct, i.e. reject
5411 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5412 	 * strict mode to true for type match.
5413 	 */
5414 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5415 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5416 				  kptr_field->type != BPF_KPTR_UNREF))
5417 		goto bad_type;
5418 	return 0;
5419 bad_type:
5420 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5421 		reg_type_str(env, reg->type), reg_name);
5422 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5423 	if (kptr_field->type == BPF_KPTR_UNREF)
5424 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5425 			targ_name);
5426 	else
5427 		verbose(env, "\n");
5428 	return -EINVAL;
5429 }
5430 
5431 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5432  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5433  */
5434 static bool in_rcu_cs(struct bpf_verifier_env *env)
5435 {
5436 	return env->cur_state->active_rcu_lock ||
5437 	       env->cur_state->active_lock.ptr ||
5438 	       !env->prog->aux->sleepable;
5439 }
5440 
5441 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5442 BTF_SET_START(rcu_protected_types)
5443 BTF_ID(struct, prog_test_ref_kfunc)
5444 #ifdef CONFIG_CGROUPS
5445 BTF_ID(struct, cgroup)
5446 #endif
5447 BTF_ID(struct, bpf_cpumask)
5448 BTF_ID(struct, task_struct)
5449 BTF_SET_END(rcu_protected_types)
5450 
5451 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5452 {
5453 	if (!btf_is_kernel(btf))
5454 		return false;
5455 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5456 }
5457 
5458 static bool rcu_safe_kptr(const struct btf_field *field)
5459 {
5460 	const struct btf_field_kptr *kptr = &field->kptr;
5461 
5462 	return field->type == BPF_KPTR_PERCPU ||
5463 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5464 }
5465 
5466 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5467 {
5468 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5469 		if (kptr_field->type != BPF_KPTR_PERCPU)
5470 			return PTR_MAYBE_NULL | MEM_RCU;
5471 		return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5472 	}
5473 	return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5474 }
5475 
5476 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5477 				 int value_regno, int insn_idx,
5478 				 struct btf_field *kptr_field)
5479 {
5480 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5481 	int class = BPF_CLASS(insn->code);
5482 	struct bpf_reg_state *val_reg;
5483 
5484 	/* Things we already checked for in check_map_access and caller:
5485 	 *  - Reject cases where variable offset may touch kptr
5486 	 *  - size of access (must be BPF_DW)
5487 	 *  - tnum_is_const(reg->var_off)
5488 	 *  - kptr_field->offset == off + reg->var_off.value
5489 	 */
5490 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5491 	if (BPF_MODE(insn->code) != BPF_MEM) {
5492 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5493 		return -EACCES;
5494 	}
5495 
5496 	/* We only allow loading referenced kptr, since it will be marked as
5497 	 * untrusted, similar to unreferenced kptr.
5498 	 */
5499 	if (class != BPF_LDX &&
5500 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5501 		verbose(env, "store to referenced kptr disallowed\n");
5502 		return -EACCES;
5503 	}
5504 
5505 	if (class == BPF_LDX) {
5506 		val_reg = reg_state(env, value_regno);
5507 		/* We can simply mark the value_regno receiving the pointer
5508 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5509 		 */
5510 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5511 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5512 		/* For mark_ptr_or_null_reg */
5513 		val_reg->id = ++env->id_gen;
5514 	} else if (class == BPF_STX) {
5515 		val_reg = reg_state(env, value_regno);
5516 		if (!register_is_null(val_reg) &&
5517 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5518 			return -EACCES;
5519 	} else if (class == BPF_ST) {
5520 		if (insn->imm) {
5521 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5522 				kptr_field->offset);
5523 			return -EACCES;
5524 		}
5525 	} else {
5526 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5527 		return -EACCES;
5528 	}
5529 	return 0;
5530 }
5531 
5532 /* check read/write into a map element with possible variable offset */
5533 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5534 			    int off, int size, bool zero_size_allowed,
5535 			    enum bpf_access_src src)
5536 {
5537 	struct bpf_verifier_state *vstate = env->cur_state;
5538 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5539 	struct bpf_reg_state *reg = &state->regs[regno];
5540 	struct bpf_map *map = reg->map_ptr;
5541 	struct btf_record *rec;
5542 	int err, i;
5543 
5544 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5545 				      zero_size_allowed);
5546 	if (err)
5547 		return err;
5548 
5549 	if (IS_ERR_OR_NULL(map->record))
5550 		return 0;
5551 	rec = map->record;
5552 	for (i = 0; i < rec->cnt; i++) {
5553 		struct btf_field *field = &rec->fields[i];
5554 		u32 p = field->offset;
5555 
5556 		/* If any part of a field  can be touched by load/store, reject
5557 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5558 		 * it is sufficient to check x1 < y2 && y1 < x2.
5559 		 */
5560 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5561 		    p < reg->umax_value + off + size) {
5562 			switch (field->type) {
5563 			case BPF_KPTR_UNREF:
5564 			case BPF_KPTR_REF:
5565 			case BPF_KPTR_PERCPU:
5566 				if (src != ACCESS_DIRECT) {
5567 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5568 					return -EACCES;
5569 				}
5570 				if (!tnum_is_const(reg->var_off)) {
5571 					verbose(env, "kptr access cannot have variable offset\n");
5572 					return -EACCES;
5573 				}
5574 				if (p != off + reg->var_off.value) {
5575 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5576 						p, off + reg->var_off.value);
5577 					return -EACCES;
5578 				}
5579 				if (size != bpf_size_to_bytes(BPF_DW)) {
5580 					verbose(env, "kptr access size must be BPF_DW\n");
5581 					return -EACCES;
5582 				}
5583 				break;
5584 			default:
5585 				verbose(env, "%s cannot be accessed directly by load/store\n",
5586 					btf_field_type_name(field->type));
5587 				return -EACCES;
5588 			}
5589 		}
5590 	}
5591 	return 0;
5592 }
5593 
5594 #define MAX_PACKET_OFF 0xffff
5595 
5596 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5597 				       const struct bpf_call_arg_meta *meta,
5598 				       enum bpf_access_type t)
5599 {
5600 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5601 
5602 	switch (prog_type) {
5603 	/* Program types only with direct read access go here! */
5604 	case BPF_PROG_TYPE_LWT_IN:
5605 	case BPF_PROG_TYPE_LWT_OUT:
5606 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5607 	case BPF_PROG_TYPE_SK_REUSEPORT:
5608 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5609 	case BPF_PROG_TYPE_CGROUP_SKB:
5610 		if (t == BPF_WRITE)
5611 			return false;
5612 		fallthrough;
5613 
5614 	/* Program types with direct read + write access go here! */
5615 	case BPF_PROG_TYPE_SCHED_CLS:
5616 	case BPF_PROG_TYPE_SCHED_ACT:
5617 	case BPF_PROG_TYPE_XDP:
5618 	case BPF_PROG_TYPE_LWT_XMIT:
5619 	case BPF_PROG_TYPE_SK_SKB:
5620 	case BPF_PROG_TYPE_SK_MSG:
5621 		if (meta)
5622 			return meta->pkt_access;
5623 
5624 		env->seen_direct_write = true;
5625 		return true;
5626 
5627 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5628 		if (t == BPF_WRITE)
5629 			env->seen_direct_write = true;
5630 
5631 		return true;
5632 
5633 	default:
5634 		return false;
5635 	}
5636 }
5637 
5638 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5639 			       int size, bool zero_size_allowed)
5640 {
5641 	struct bpf_reg_state *regs = cur_regs(env);
5642 	struct bpf_reg_state *reg = &regs[regno];
5643 	int err;
5644 
5645 	/* We may have added a variable offset to the packet pointer; but any
5646 	 * reg->range we have comes after that.  We are only checking the fixed
5647 	 * offset.
5648 	 */
5649 
5650 	/* We don't allow negative numbers, because we aren't tracking enough
5651 	 * detail to prove they're safe.
5652 	 */
5653 	if (reg->smin_value < 0) {
5654 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5655 			regno);
5656 		return -EACCES;
5657 	}
5658 
5659 	err = reg->range < 0 ? -EINVAL :
5660 	      __check_mem_access(env, regno, off, size, reg->range,
5661 				 zero_size_allowed);
5662 	if (err) {
5663 		verbose(env, "R%d offset is outside of the packet\n", regno);
5664 		return err;
5665 	}
5666 
5667 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5668 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5669 	 * otherwise find_good_pkt_pointers would have refused to set range info
5670 	 * that __check_mem_access would have rejected this pkt access.
5671 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5672 	 */
5673 	env->prog->aux->max_pkt_offset =
5674 		max_t(u32, env->prog->aux->max_pkt_offset,
5675 		      off + reg->umax_value + size - 1);
5676 
5677 	return err;
5678 }
5679 
5680 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5681 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5682 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5683 			    struct btf **btf, u32 *btf_id)
5684 {
5685 	struct bpf_insn_access_aux info = {
5686 		.reg_type = *reg_type,
5687 		.log = &env->log,
5688 	};
5689 
5690 	if (env->ops->is_valid_access &&
5691 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5692 		/* A non zero info.ctx_field_size indicates that this field is a
5693 		 * candidate for later verifier transformation to load the whole
5694 		 * field and then apply a mask when accessed with a narrower
5695 		 * access than actual ctx access size. A zero info.ctx_field_size
5696 		 * will only allow for whole field access and rejects any other
5697 		 * type of narrower access.
5698 		 */
5699 		*reg_type = info.reg_type;
5700 
5701 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5702 			*btf = info.btf;
5703 			*btf_id = info.btf_id;
5704 		} else {
5705 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5706 		}
5707 		/* remember the offset of last byte accessed in ctx */
5708 		if (env->prog->aux->max_ctx_offset < off + size)
5709 			env->prog->aux->max_ctx_offset = off + size;
5710 		return 0;
5711 	}
5712 
5713 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5714 	return -EACCES;
5715 }
5716 
5717 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5718 				  int size)
5719 {
5720 	if (size < 0 || off < 0 ||
5721 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5722 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5723 			off, size);
5724 		return -EACCES;
5725 	}
5726 	return 0;
5727 }
5728 
5729 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5730 			     u32 regno, int off, int size,
5731 			     enum bpf_access_type t)
5732 {
5733 	struct bpf_reg_state *regs = cur_regs(env);
5734 	struct bpf_reg_state *reg = &regs[regno];
5735 	struct bpf_insn_access_aux info = {};
5736 	bool valid;
5737 
5738 	if (reg->smin_value < 0) {
5739 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5740 			regno);
5741 		return -EACCES;
5742 	}
5743 
5744 	switch (reg->type) {
5745 	case PTR_TO_SOCK_COMMON:
5746 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5747 		break;
5748 	case PTR_TO_SOCKET:
5749 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5750 		break;
5751 	case PTR_TO_TCP_SOCK:
5752 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5753 		break;
5754 	case PTR_TO_XDP_SOCK:
5755 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5756 		break;
5757 	default:
5758 		valid = false;
5759 	}
5760 
5761 
5762 	if (valid) {
5763 		env->insn_aux_data[insn_idx].ctx_field_size =
5764 			info.ctx_field_size;
5765 		return 0;
5766 	}
5767 
5768 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5769 		regno, reg_type_str(env, reg->type), off, size);
5770 
5771 	return -EACCES;
5772 }
5773 
5774 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5775 {
5776 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5777 }
5778 
5779 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5780 {
5781 	const struct bpf_reg_state *reg = reg_state(env, regno);
5782 
5783 	return reg->type == PTR_TO_CTX;
5784 }
5785 
5786 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5787 {
5788 	const struct bpf_reg_state *reg = reg_state(env, regno);
5789 
5790 	return type_is_sk_pointer(reg->type);
5791 }
5792 
5793 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5794 {
5795 	const struct bpf_reg_state *reg = reg_state(env, regno);
5796 
5797 	return type_is_pkt_pointer(reg->type);
5798 }
5799 
5800 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5801 {
5802 	const struct bpf_reg_state *reg = reg_state(env, regno);
5803 
5804 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5805 	return reg->type == PTR_TO_FLOW_KEYS;
5806 }
5807 
5808 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5809 #ifdef CONFIG_NET
5810 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5811 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5812 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5813 #endif
5814 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5815 };
5816 
5817 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5818 {
5819 	/* A referenced register is always trusted. */
5820 	if (reg->ref_obj_id)
5821 		return true;
5822 
5823 	/* Types listed in the reg2btf_ids are always trusted */
5824 	if (reg2btf_ids[base_type(reg->type)])
5825 		return true;
5826 
5827 	/* If a register is not referenced, it is trusted if it has the
5828 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5829 	 * other type modifiers may be safe, but we elect to take an opt-in
5830 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5831 	 * not.
5832 	 *
5833 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5834 	 * for whether a register is trusted.
5835 	 */
5836 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5837 	       !bpf_type_has_unsafe_modifiers(reg->type);
5838 }
5839 
5840 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5841 {
5842 	return reg->type & MEM_RCU;
5843 }
5844 
5845 static void clear_trusted_flags(enum bpf_type_flag *flag)
5846 {
5847 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5848 }
5849 
5850 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5851 				   const struct bpf_reg_state *reg,
5852 				   int off, int size, bool strict)
5853 {
5854 	struct tnum reg_off;
5855 	int ip_align;
5856 
5857 	/* Byte size accesses are always allowed. */
5858 	if (!strict || size == 1)
5859 		return 0;
5860 
5861 	/* For platforms that do not have a Kconfig enabling
5862 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5863 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5864 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5865 	 * to this code only in strict mode where we want to emulate
5866 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5867 	 * unconditional IP align value of '2'.
5868 	 */
5869 	ip_align = 2;
5870 
5871 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5872 	if (!tnum_is_aligned(reg_off, size)) {
5873 		char tn_buf[48];
5874 
5875 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5876 		verbose(env,
5877 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5878 			ip_align, tn_buf, reg->off, off, size);
5879 		return -EACCES;
5880 	}
5881 
5882 	return 0;
5883 }
5884 
5885 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5886 				       const struct bpf_reg_state *reg,
5887 				       const char *pointer_desc,
5888 				       int off, int size, bool strict)
5889 {
5890 	struct tnum reg_off;
5891 
5892 	/* Byte size accesses are always allowed. */
5893 	if (!strict || size == 1)
5894 		return 0;
5895 
5896 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5897 	if (!tnum_is_aligned(reg_off, size)) {
5898 		char tn_buf[48];
5899 
5900 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5901 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5902 			pointer_desc, tn_buf, reg->off, off, size);
5903 		return -EACCES;
5904 	}
5905 
5906 	return 0;
5907 }
5908 
5909 static int check_ptr_alignment(struct bpf_verifier_env *env,
5910 			       const struct bpf_reg_state *reg, int off,
5911 			       int size, bool strict_alignment_once)
5912 {
5913 	bool strict = env->strict_alignment || strict_alignment_once;
5914 	const char *pointer_desc = "";
5915 
5916 	switch (reg->type) {
5917 	case PTR_TO_PACKET:
5918 	case PTR_TO_PACKET_META:
5919 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5920 		 * right in front, treat it the very same way.
5921 		 */
5922 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5923 	case PTR_TO_FLOW_KEYS:
5924 		pointer_desc = "flow keys ";
5925 		break;
5926 	case PTR_TO_MAP_KEY:
5927 		pointer_desc = "key ";
5928 		break;
5929 	case PTR_TO_MAP_VALUE:
5930 		pointer_desc = "value ";
5931 		break;
5932 	case PTR_TO_CTX:
5933 		pointer_desc = "context ";
5934 		break;
5935 	case PTR_TO_STACK:
5936 		pointer_desc = "stack ";
5937 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5938 		 * and check_stack_read_fixed_off() relies on stack accesses being
5939 		 * aligned.
5940 		 */
5941 		strict = true;
5942 		break;
5943 	case PTR_TO_SOCKET:
5944 		pointer_desc = "sock ";
5945 		break;
5946 	case PTR_TO_SOCK_COMMON:
5947 		pointer_desc = "sock_common ";
5948 		break;
5949 	case PTR_TO_TCP_SOCK:
5950 		pointer_desc = "tcp_sock ";
5951 		break;
5952 	case PTR_TO_XDP_SOCK:
5953 		pointer_desc = "xdp_sock ";
5954 		break;
5955 	default:
5956 		break;
5957 	}
5958 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5959 					   strict);
5960 }
5961 
5962 static int update_stack_depth(struct bpf_verifier_env *env,
5963 			      const struct bpf_func_state *func,
5964 			      int off)
5965 {
5966 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5967 
5968 	if (stack >= -off)
5969 		return 0;
5970 
5971 	/* update known max for given subprogram */
5972 	env->subprog_info[func->subprogno].stack_depth = -off;
5973 	return 0;
5974 }
5975 
5976 /* starting from main bpf function walk all instructions of the function
5977  * and recursively walk all callees that given function can call.
5978  * Ignore jump and exit insns.
5979  * Since recursion is prevented by check_cfg() this algorithm
5980  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5981  */
5982 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5983 {
5984 	struct bpf_subprog_info *subprog = env->subprog_info;
5985 	struct bpf_insn *insn = env->prog->insnsi;
5986 	int depth = 0, frame = 0, i, subprog_end;
5987 	bool tail_call_reachable = false;
5988 	int ret_insn[MAX_CALL_FRAMES];
5989 	int ret_prog[MAX_CALL_FRAMES];
5990 	int j;
5991 
5992 	i = subprog[idx].start;
5993 process_func:
5994 	/* protect against potential stack overflow that might happen when
5995 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5996 	 * depth for such case down to 256 so that the worst case scenario
5997 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5998 	 * 8k).
5999 	 *
6000 	 * To get the idea what might happen, see an example:
6001 	 * func1 -> sub rsp, 128
6002 	 *  subfunc1 -> sub rsp, 256
6003 	 *  tailcall1 -> add rsp, 256
6004 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6005 	 *   subfunc2 -> sub rsp, 64
6006 	 *   subfunc22 -> sub rsp, 128
6007 	 *   tailcall2 -> add rsp, 128
6008 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6009 	 *
6010 	 * tailcall will unwind the current stack frame but it will not get rid
6011 	 * of caller's stack as shown on the example above.
6012 	 */
6013 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6014 		verbose(env,
6015 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6016 			depth);
6017 		return -EACCES;
6018 	}
6019 	/* round up to 32-bytes, since this is granularity
6020 	 * of interpreter stack size
6021 	 */
6022 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
6023 	if (depth > MAX_BPF_STACK) {
6024 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
6025 			frame + 1, depth);
6026 		return -EACCES;
6027 	}
6028 continue_func:
6029 	subprog_end = subprog[idx + 1].start;
6030 	for (; i < subprog_end; i++) {
6031 		int next_insn, sidx;
6032 
6033 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6034 			bool err = false;
6035 
6036 			if (!is_bpf_throw_kfunc(insn + i))
6037 				continue;
6038 			if (subprog[idx].is_cb)
6039 				err = true;
6040 			for (int c = 0; c < frame && !err; c++) {
6041 				if (subprog[ret_prog[c]].is_cb) {
6042 					err = true;
6043 					break;
6044 				}
6045 			}
6046 			if (!err)
6047 				continue;
6048 			verbose(env,
6049 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6050 				i, idx);
6051 			return -EINVAL;
6052 		}
6053 
6054 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6055 			continue;
6056 		/* remember insn and function to return to */
6057 		ret_insn[frame] = i + 1;
6058 		ret_prog[frame] = idx;
6059 
6060 		/* find the callee */
6061 		next_insn = i + insn[i].imm + 1;
6062 		sidx = find_subprog(env, next_insn);
6063 		if (sidx < 0) {
6064 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6065 				  next_insn);
6066 			return -EFAULT;
6067 		}
6068 		if (subprog[sidx].is_async_cb) {
6069 			if (subprog[sidx].has_tail_call) {
6070 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6071 				return -EFAULT;
6072 			}
6073 			/* async callbacks don't increase bpf prog stack size unless called directly */
6074 			if (!bpf_pseudo_call(insn + i))
6075 				continue;
6076 			if (subprog[sidx].is_exception_cb) {
6077 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6078 				return -EINVAL;
6079 			}
6080 		}
6081 		i = next_insn;
6082 		idx = sidx;
6083 
6084 		if (subprog[idx].has_tail_call)
6085 			tail_call_reachable = true;
6086 
6087 		frame++;
6088 		if (frame >= MAX_CALL_FRAMES) {
6089 			verbose(env, "the call stack of %d frames is too deep !\n",
6090 				frame);
6091 			return -E2BIG;
6092 		}
6093 		goto process_func;
6094 	}
6095 	/* if tail call got detected across bpf2bpf calls then mark each of the
6096 	 * currently present subprog frames as tail call reachable subprogs;
6097 	 * this info will be utilized by JIT so that we will be preserving the
6098 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6099 	 */
6100 	if (tail_call_reachable)
6101 		for (j = 0; j < frame; j++) {
6102 			if (subprog[ret_prog[j]].is_exception_cb) {
6103 				verbose(env, "cannot tail call within exception cb\n");
6104 				return -EINVAL;
6105 			}
6106 			subprog[ret_prog[j]].tail_call_reachable = true;
6107 		}
6108 	if (subprog[0].tail_call_reachable)
6109 		env->prog->aux->tail_call_reachable = true;
6110 
6111 	/* end of for() loop means the last insn of the 'subprog'
6112 	 * was reached. Doesn't matter whether it was JA or EXIT
6113 	 */
6114 	if (frame == 0)
6115 		return 0;
6116 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
6117 	frame--;
6118 	i = ret_insn[frame];
6119 	idx = ret_prog[frame];
6120 	goto continue_func;
6121 }
6122 
6123 static int check_max_stack_depth(struct bpf_verifier_env *env)
6124 {
6125 	struct bpf_subprog_info *si = env->subprog_info;
6126 	int ret;
6127 
6128 	for (int i = 0; i < env->subprog_cnt; i++) {
6129 		if (!i || si[i].is_async_cb) {
6130 			ret = check_max_stack_depth_subprog(env, i);
6131 			if (ret < 0)
6132 				return ret;
6133 		}
6134 		continue;
6135 	}
6136 	return 0;
6137 }
6138 
6139 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6140 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6141 				  const struct bpf_insn *insn, int idx)
6142 {
6143 	int start = idx + insn->imm + 1, subprog;
6144 
6145 	subprog = find_subprog(env, start);
6146 	if (subprog < 0) {
6147 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6148 			  start);
6149 		return -EFAULT;
6150 	}
6151 	return env->subprog_info[subprog].stack_depth;
6152 }
6153 #endif
6154 
6155 static int __check_buffer_access(struct bpf_verifier_env *env,
6156 				 const char *buf_info,
6157 				 const struct bpf_reg_state *reg,
6158 				 int regno, int off, int size)
6159 {
6160 	if (off < 0) {
6161 		verbose(env,
6162 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6163 			regno, buf_info, off, size);
6164 		return -EACCES;
6165 	}
6166 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6167 		char tn_buf[48];
6168 
6169 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6170 		verbose(env,
6171 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6172 			regno, off, tn_buf);
6173 		return -EACCES;
6174 	}
6175 
6176 	return 0;
6177 }
6178 
6179 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6180 				  const struct bpf_reg_state *reg,
6181 				  int regno, int off, int size)
6182 {
6183 	int err;
6184 
6185 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6186 	if (err)
6187 		return err;
6188 
6189 	if (off + size > env->prog->aux->max_tp_access)
6190 		env->prog->aux->max_tp_access = off + size;
6191 
6192 	return 0;
6193 }
6194 
6195 static int check_buffer_access(struct bpf_verifier_env *env,
6196 			       const struct bpf_reg_state *reg,
6197 			       int regno, int off, int size,
6198 			       bool zero_size_allowed,
6199 			       u32 *max_access)
6200 {
6201 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6202 	int err;
6203 
6204 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6205 	if (err)
6206 		return err;
6207 
6208 	if (off + size > *max_access)
6209 		*max_access = off + size;
6210 
6211 	return 0;
6212 }
6213 
6214 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6215 static void zext_32_to_64(struct bpf_reg_state *reg)
6216 {
6217 	reg->var_off = tnum_subreg(reg->var_off);
6218 	__reg_assign_32_into_64(reg);
6219 }
6220 
6221 /* truncate register to smaller size (in bytes)
6222  * must be called with size < BPF_REG_SIZE
6223  */
6224 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6225 {
6226 	u64 mask;
6227 
6228 	/* clear high bits in bit representation */
6229 	reg->var_off = tnum_cast(reg->var_off, size);
6230 
6231 	/* fix arithmetic bounds */
6232 	mask = ((u64)1 << (size * 8)) - 1;
6233 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6234 		reg->umin_value &= mask;
6235 		reg->umax_value &= mask;
6236 	} else {
6237 		reg->umin_value = 0;
6238 		reg->umax_value = mask;
6239 	}
6240 	reg->smin_value = reg->umin_value;
6241 	reg->smax_value = reg->umax_value;
6242 
6243 	/* If size is smaller than 32bit register the 32bit register
6244 	 * values are also truncated so we push 64-bit bounds into
6245 	 * 32-bit bounds. Above were truncated < 32-bits already.
6246 	 */
6247 	if (size >= 4)
6248 		return;
6249 	__reg_combine_64_into_32(reg);
6250 }
6251 
6252 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6253 {
6254 	if (size == 1) {
6255 		reg->smin_value = reg->s32_min_value = S8_MIN;
6256 		reg->smax_value = reg->s32_max_value = S8_MAX;
6257 	} else if (size == 2) {
6258 		reg->smin_value = reg->s32_min_value = S16_MIN;
6259 		reg->smax_value = reg->s32_max_value = S16_MAX;
6260 	} else {
6261 		/* size == 4 */
6262 		reg->smin_value = reg->s32_min_value = S32_MIN;
6263 		reg->smax_value = reg->s32_max_value = S32_MAX;
6264 	}
6265 	reg->umin_value = reg->u32_min_value = 0;
6266 	reg->umax_value = U64_MAX;
6267 	reg->u32_max_value = U32_MAX;
6268 	reg->var_off = tnum_unknown;
6269 }
6270 
6271 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6272 {
6273 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6274 	u64 top_smax_value, top_smin_value;
6275 	u64 num_bits = size * 8;
6276 
6277 	if (tnum_is_const(reg->var_off)) {
6278 		u64_cval = reg->var_off.value;
6279 		if (size == 1)
6280 			reg->var_off = tnum_const((s8)u64_cval);
6281 		else if (size == 2)
6282 			reg->var_off = tnum_const((s16)u64_cval);
6283 		else
6284 			/* size == 4 */
6285 			reg->var_off = tnum_const((s32)u64_cval);
6286 
6287 		u64_cval = reg->var_off.value;
6288 		reg->smax_value = reg->smin_value = u64_cval;
6289 		reg->umax_value = reg->umin_value = u64_cval;
6290 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6291 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6292 		return;
6293 	}
6294 
6295 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6296 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6297 
6298 	if (top_smax_value != top_smin_value)
6299 		goto out;
6300 
6301 	/* find the s64_min and s64_min after sign extension */
6302 	if (size == 1) {
6303 		init_s64_max = (s8)reg->smax_value;
6304 		init_s64_min = (s8)reg->smin_value;
6305 	} else if (size == 2) {
6306 		init_s64_max = (s16)reg->smax_value;
6307 		init_s64_min = (s16)reg->smin_value;
6308 	} else {
6309 		init_s64_max = (s32)reg->smax_value;
6310 		init_s64_min = (s32)reg->smin_value;
6311 	}
6312 
6313 	s64_max = max(init_s64_max, init_s64_min);
6314 	s64_min = min(init_s64_max, init_s64_min);
6315 
6316 	/* both of s64_max/s64_min positive or negative */
6317 	if ((s64_max >= 0) == (s64_min >= 0)) {
6318 		reg->smin_value = reg->s32_min_value = s64_min;
6319 		reg->smax_value = reg->s32_max_value = s64_max;
6320 		reg->umin_value = reg->u32_min_value = s64_min;
6321 		reg->umax_value = reg->u32_max_value = s64_max;
6322 		reg->var_off = tnum_range(s64_min, s64_max);
6323 		return;
6324 	}
6325 
6326 out:
6327 	set_sext64_default_val(reg, size);
6328 }
6329 
6330 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6331 {
6332 	if (size == 1) {
6333 		reg->s32_min_value = S8_MIN;
6334 		reg->s32_max_value = S8_MAX;
6335 	} else {
6336 		/* size == 2 */
6337 		reg->s32_min_value = S16_MIN;
6338 		reg->s32_max_value = S16_MAX;
6339 	}
6340 	reg->u32_min_value = 0;
6341 	reg->u32_max_value = U32_MAX;
6342 }
6343 
6344 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6345 {
6346 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6347 	u32 top_smax_value, top_smin_value;
6348 	u32 num_bits = size * 8;
6349 
6350 	if (tnum_is_const(reg->var_off)) {
6351 		u32_val = reg->var_off.value;
6352 		if (size == 1)
6353 			reg->var_off = tnum_const((s8)u32_val);
6354 		else
6355 			reg->var_off = tnum_const((s16)u32_val);
6356 
6357 		u32_val = reg->var_off.value;
6358 		reg->s32_min_value = reg->s32_max_value = u32_val;
6359 		reg->u32_min_value = reg->u32_max_value = u32_val;
6360 		return;
6361 	}
6362 
6363 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6364 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6365 
6366 	if (top_smax_value != top_smin_value)
6367 		goto out;
6368 
6369 	/* find the s32_min and s32_min after sign extension */
6370 	if (size == 1) {
6371 		init_s32_max = (s8)reg->s32_max_value;
6372 		init_s32_min = (s8)reg->s32_min_value;
6373 	} else {
6374 		/* size == 2 */
6375 		init_s32_max = (s16)reg->s32_max_value;
6376 		init_s32_min = (s16)reg->s32_min_value;
6377 	}
6378 	s32_max = max(init_s32_max, init_s32_min);
6379 	s32_min = min(init_s32_max, init_s32_min);
6380 
6381 	if ((s32_min >= 0) == (s32_max >= 0)) {
6382 		reg->s32_min_value = s32_min;
6383 		reg->s32_max_value = s32_max;
6384 		reg->u32_min_value = (u32)s32_min;
6385 		reg->u32_max_value = (u32)s32_max;
6386 		return;
6387 	}
6388 
6389 out:
6390 	set_sext32_default_val(reg, size);
6391 }
6392 
6393 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6394 {
6395 	/* A map is considered read-only if the following condition are true:
6396 	 *
6397 	 * 1) BPF program side cannot change any of the map content. The
6398 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6399 	 *    and was set at map creation time.
6400 	 * 2) The map value(s) have been initialized from user space by a
6401 	 *    loader and then "frozen", such that no new map update/delete
6402 	 *    operations from syscall side are possible for the rest of
6403 	 *    the map's lifetime from that point onwards.
6404 	 * 3) Any parallel/pending map update/delete operations from syscall
6405 	 *    side have been completed. Only after that point, it's safe to
6406 	 *    assume that map value(s) are immutable.
6407 	 */
6408 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6409 	       READ_ONCE(map->frozen) &&
6410 	       !bpf_map_write_active(map);
6411 }
6412 
6413 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6414 			       bool is_ldsx)
6415 {
6416 	void *ptr;
6417 	u64 addr;
6418 	int err;
6419 
6420 	err = map->ops->map_direct_value_addr(map, &addr, off);
6421 	if (err)
6422 		return err;
6423 	ptr = (void *)(long)addr + off;
6424 
6425 	switch (size) {
6426 	case sizeof(u8):
6427 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6428 		break;
6429 	case sizeof(u16):
6430 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6431 		break;
6432 	case sizeof(u32):
6433 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6434 		break;
6435 	case sizeof(u64):
6436 		*val = *(u64 *)ptr;
6437 		break;
6438 	default:
6439 		return -EINVAL;
6440 	}
6441 	return 0;
6442 }
6443 
6444 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6445 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6446 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6447 
6448 /*
6449  * Allow list few fields as RCU trusted or full trusted.
6450  * This logic doesn't allow mix tagging and will be removed once GCC supports
6451  * btf_type_tag.
6452  */
6453 
6454 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6455 BTF_TYPE_SAFE_RCU(struct task_struct) {
6456 	const cpumask_t *cpus_ptr;
6457 	struct css_set __rcu *cgroups;
6458 	struct task_struct __rcu *real_parent;
6459 	struct task_struct *group_leader;
6460 };
6461 
6462 BTF_TYPE_SAFE_RCU(struct cgroup) {
6463 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6464 	struct kernfs_node *kn;
6465 };
6466 
6467 BTF_TYPE_SAFE_RCU(struct css_set) {
6468 	struct cgroup *dfl_cgrp;
6469 };
6470 
6471 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6472 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6473 	struct file __rcu *exe_file;
6474 };
6475 
6476 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6477  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6478  */
6479 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6480 	struct sock *sk;
6481 };
6482 
6483 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6484 	struct sock *sk;
6485 };
6486 
6487 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6488 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6489 	struct seq_file *seq;
6490 };
6491 
6492 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6493 	struct bpf_iter_meta *meta;
6494 	struct task_struct *task;
6495 };
6496 
6497 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6498 	struct file *file;
6499 };
6500 
6501 BTF_TYPE_SAFE_TRUSTED(struct file) {
6502 	struct inode *f_inode;
6503 };
6504 
6505 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6506 	/* no negative dentry-s in places where bpf can see it */
6507 	struct inode *d_inode;
6508 };
6509 
6510 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6511 	struct sock *sk;
6512 };
6513 
6514 static bool type_is_rcu(struct bpf_verifier_env *env,
6515 			struct bpf_reg_state *reg,
6516 			const char *field_name, u32 btf_id)
6517 {
6518 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6519 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6520 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6521 
6522 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6523 }
6524 
6525 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6526 				struct bpf_reg_state *reg,
6527 				const char *field_name, u32 btf_id)
6528 {
6529 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6530 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6531 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6532 
6533 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6534 }
6535 
6536 static bool type_is_trusted(struct bpf_verifier_env *env,
6537 			    struct bpf_reg_state *reg,
6538 			    const char *field_name, u32 btf_id)
6539 {
6540 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6541 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6542 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6543 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6544 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6545 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6546 
6547 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6548 }
6549 
6550 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6551 				   struct bpf_reg_state *regs,
6552 				   int regno, int off, int size,
6553 				   enum bpf_access_type atype,
6554 				   int value_regno)
6555 {
6556 	struct bpf_reg_state *reg = regs + regno;
6557 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6558 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6559 	const char *field_name = NULL;
6560 	enum bpf_type_flag flag = 0;
6561 	u32 btf_id = 0;
6562 	int ret;
6563 
6564 	if (!env->allow_ptr_leaks) {
6565 		verbose(env,
6566 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6567 			tname);
6568 		return -EPERM;
6569 	}
6570 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6571 		verbose(env,
6572 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6573 			tname);
6574 		return -EINVAL;
6575 	}
6576 	if (off < 0) {
6577 		verbose(env,
6578 			"R%d is ptr_%s invalid negative access: off=%d\n",
6579 			regno, tname, off);
6580 		return -EACCES;
6581 	}
6582 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6583 		char tn_buf[48];
6584 
6585 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6586 		verbose(env,
6587 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6588 			regno, tname, off, tn_buf);
6589 		return -EACCES;
6590 	}
6591 
6592 	if (reg->type & MEM_USER) {
6593 		verbose(env,
6594 			"R%d is ptr_%s access user memory: off=%d\n",
6595 			regno, tname, off);
6596 		return -EACCES;
6597 	}
6598 
6599 	if (reg->type & MEM_PERCPU) {
6600 		verbose(env,
6601 			"R%d is ptr_%s access percpu memory: off=%d\n",
6602 			regno, tname, off);
6603 		return -EACCES;
6604 	}
6605 
6606 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6607 		if (!btf_is_kernel(reg->btf)) {
6608 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6609 			return -EFAULT;
6610 		}
6611 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6612 	} else {
6613 		/* Writes are permitted with default btf_struct_access for
6614 		 * program allocated objects (which always have ref_obj_id > 0),
6615 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6616 		 */
6617 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6618 			verbose(env, "only read is supported\n");
6619 			return -EACCES;
6620 		}
6621 
6622 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6623 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6624 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6625 			return -EFAULT;
6626 		}
6627 
6628 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6629 	}
6630 
6631 	if (ret < 0)
6632 		return ret;
6633 
6634 	if (ret != PTR_TO_BTF_ID) {
6635 		/* just mark; */
6636 
6637 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6638 		/* If this is an untrusted pointer, all pointers formed by walking it
6639 		 * also inherit the untrusted flag.
6640 		 */
6641 		flag = PTR_UNTRUSTED;
6642 
6643 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6644 		/* By default any pointer obtained from walking a trusted pointer is no
6645 		 * longer trusted, unless the field being accessed has explicitly been
6646 		 * marked as inheriting its parent's state of trust (either full or RCU).
6647 		 * For example:
6648 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6649 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6650 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6651 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6652 		 *
6653 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6654 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6655 		 */
6656 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6657 			flag |= PTR_TRUSTED;
6658 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6659 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6660 				/* ignore __rcu tag and mark it MEM_RCU */
6661 				flag |= MEM_RCU;
6662 			} else if (flag & MEM_RCU ||
6663 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6664 				/* __rcu tagged pointers can be NULL */
6665 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6666 
6667 				/* We always trust them */
6668 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6669 				    flag & PTR_UNTRUSTED)
6670 					flag &= ~PTR_UNTRUSTED;
6671 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6672 				/* keep as-is */
6673 			} else {
6674 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6675 				clear_trusted_flags(&flag);
6676 			}
6677 		} else {
6678 			/*
6679 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6680 			 * aggressively mark as untrusted otherwise such
6681 			 * pointers will be plain PTR_TO_BTF_ID without flags
6682 			 * and will be allowed to be passed into helpers for
6683 			 * compat reasons.
6684 			 */
6685 			flag = PTR_UNTRUSTED;
6686 		}
6687 	} else {
6688 		/* Old compat. Deprecated */
6689 		clear_trusted_flags(&flag);
6690 	}
6691 
6692 	if (atype == BPF_READ && value_regno >= 0)
6693 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6694 
6695 	return 0;
6696 }
6697 
6698 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6699 				   struct bpf_reg_state *regs,
6700 				   int regno, int off, int size,
6701 				   enum bpf_access_type atype,
6702 				   int value_regno)
6703 {
6704 	struct bpf_reg_state *reg = regs + regno;
6705 	struct bpf_map *map = reg->map_ptr;
6706 	struct bpf_reg_state map_reg;
6707 	enum bpf_type_flag flag = 0;
6708 	const struct btf_type *t;
6709 	const char *tname;
6710 	u32 btf_id;
6711 	int ret;
6712 
6713 	if (!btf_vmlinux) {
6714 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6715 		return -ENOTSUPP;
6716 	}
6717 
6718 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6719 		verbose(env, "map_ptr access not supported for map type %d\n",
6720 			map->map_type);
6721 		return -ENOTSUPP;
6722 	}
6723 
6724 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6725 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6726 
6727 	if (!env->allow_ptr_leaks) {
6728 		verbose(env,
6729 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6730 			tname);
6731 		return -EPERM;
6732 	}
6733 
6734 	if (off < 0) {
6735 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6736 			regno, tname, off);
6737 		return -EACCES;
6738 	}
6739 
6740 	if (atype != BPF_READ) {
6741 		verbose(env, "only read from %s is supported\n", tname);
6742 		return -EACCES;
6743 	}
6744 
6745 	/* Simulate access to a PTR_TO_BTF_ID */
6746 	memset(&map_reg, 0, sizeof(map_reg));
6747 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6748 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6749 	if (ret < 0)
6750 		return ret;
6751 
6752 	if (value_regno >= 0)
6753 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6754 
6755 	return 0;
6756 }
6757 
6758 /* Check that the stack access at the given offset is within bounds. The
6759  * maximum valid offset is -1.
6760  *
6761  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6762  * -state->allocated_stack for reads.
6763  */
6764 static int check_stack_slot_within_bounds(int off,
6765 					  struct bpf_func_state *state,
6766 					  enum bpf_access_type t)
6767 {
6768 	int min_valid_off;
6769 
6770 	if (t == BPF_WRITE)
6771 		min_valid_off = -MAX_BPF_STACK;
6772 	else
6773 		min_valid_off = -state->allocated_stack;
6774 
6775 	if (off < min_valid_off || off > -1)
6776 		return -EACCES;
6777 	return 0;
6778 }
6779 
6780 /* Check that the stack access at 'regno + off' falls within the maximum stack
6781  * bounds.
6782  *
6783  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6784  */
6785 static int check_stack_access_within_bounds(
6786 		struct bpf_verifier_env *env,
6787 		int regno, int off, int access_size,
6788 		enum bpf_access_src src, enum bpf_access_type type)
6789 {
6790 	struct bpf_reg_state *regs = cur_regs(env);
6791 	struct bpf_reg_state *reg = regs + regno;
6792 	struct bpf_func_state *state = func(env, reg);
6793 	int min_off, max_off;
6794 	int err;
6795 	char *err_extra;
6796 
6797 	if (src == ACCESS_HELPER)
6798 		/* We don't know if helpers are reading or writing (or both). */
6799 		err_extra = " indirect access to";
6800 	else if (type == BPF_READ)
6801 		err_extra = " read from";
6802 	else
6803 		err_extra = " write to";
6804 
6805 	if (tnum_is_const(reg->var_off)) {
6806 		min_off = reg->var_off.value + off;
6807 		if (access_size > 0)
6808 			max_off = min_off + access_size - 1;
6809 		else
6810 			max_off = min_off;
6811 	} else {
6812 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6813 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6814 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6815 				err_extra, regno);
6816 			return -EACCES;
6817 		}
6818 		min_off = reg->smin_value + off;
6819 		if (access_size > 0)
6820 			max_off = reg->smax_value + off + access_size - 1;
6821 		else
6822 			max_off = min_off;
6823 	}
6824 
6825 	err = check_stack_slot_within_bounds(min_off, state, type);
6826 	if (!err)
6827 		err = check_stack_slot_within_bounds(max_off, state, type);
6828 
6829 	if (err) {
6830 		if (tnum_is_const(reg->var_off)) {
6831 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6832 				err_extra, regno, off, access_size);
6833 		} else {
6834 			char tn_buf[48];
6835 
6836 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6837 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6838 				err_extra, regno, tn_buf, access_size);
6839 		}
6840 	}
6841 	return err;
6842 }
6843 
6844 /* check whether memory at (regno + off) is accessible for t = (read | write)
6845  * if t==write, value_regno is a register which value is stored into memory
6846  * if t==read, value_regno is a register which will receive the value from memory
6847  * if t==write && value_regno==-1, some unknown value is stored into memory
6848  * if t==read && value_regno==-1, don't care what we read from memory
6849  */
6850 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6851 			    int off, int bpf_size, enum bpf_access_type t,
6852 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6853 {
6854 	struct bpf_reg_state *regs = cur_regs(env);
6855 	struct bpf_reg_state *reg = regs + regno;
6856 	struct bpf_func_state *state;
6857 	int size, err = 0;
6858 
6859 	size = bpf_size_to_bytes(bpf_size);
6860 	if (size < 0)
6861 		return size;
6862 
6863 	/* alignment checks will add in reg->off themselves */
6864 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6865 	if (err)
6866 		return err;
6867 
6868 	/* for access checks, reg->off is just part of off */
6869 	off += reg->off;
6870 
6871 	if (reg->type == PTR_TO_MAP_KEY) {
6872 		if (t == BPF_WRITE) {
6873 			verbose(env, "write to change key R%d not allowed\n", regno);
6874 			return -EACCES;
6875 		}
6876 
6877 		err = check_mem_region_access(env, regno, off, size,
6878 					      reg->map_ptr->key_size, false);
6879 		if (err)
6880 			return err;
6881 		if (value_regno >= 0)
6882 			mark_reg_unknown(env, regs, value_regno);
6883 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6884 		struct btf_field *kptr_field = NULL;
6885 
6886 		if (t == BPF_WRITE && value_regno >= 0 &&
6887 		    is_pointer_value(env, value_regno)) {
6888 			verbose(env, "R%d leaks addr into map\n", value_regno);
6889 			return -EACCES;
6890 		}
6891 		err = check_map_access_type(env, regno, off, size, t);
6892 		if (err)
6893 			return err;
6894 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6895 		if (err)
6896 			return err;
6897 		if (tnum_is_const(reg->var_off))
6898 			kptr_field = btf_record_find(reg->map_ptr->record,
6899 						     off + reg->var_off.value, BPF_KPTR);
6900 		if (kptr_field) {
6901 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6902 		} else if (t == BPF_READ && value_regno >= 0) {
6903 			struct bpf_map *map = reg->map_ptr;
6904 
6905 			/* if map is read-only, track its contents as scalars */
6906 			if (tnum_is_const(reg->var_off) &&
6907 			    bpf_map_is_rdonly(map) &&
6908 			    map->ops->map_direct_value_addr) {
6909 				int map_off = off + reg->var_off.value;
6910 				u64 val = 0;
6911 
6912 				err = bpf_map_direct_read(map, map_off, size,
6913 							  &val, is_ldsx);
6914 				if (err)
6915 					return err;
6916 
6917 				regs[value_regno].type = SCALAR_VALUE;
6918 				__mark_reg_known(&regs[value_regno], val);
6919 			} else {
6920 				mark_reg_unknown(env, regs, value_regno);
6921 			}
6922 		}
6923 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6924 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6925 
6926 		if (type_may_be_null(reg->type)) {
6927 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6928 				reg_type_str(env, reg->type));
6929 			return -EACCES;
6930 		}
6931 
6932 		if (t == BPF_WRITE && rdonly_mem) {
6933 			verbose(env, "R%d cannot write into %s\n",
6934 				regno, reg_type_str(env, reg->type));
6935 			return -EACCES;
6936 		}
6937 
6938 		if (t == BPF_WRITE && value_regno >= 0 &&
6939 		    is_pointer_value(env, value_regno)) {
6940 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6941 			return -EACCES;
6942 		}
6943 
6944 		err = check_mem_region_access(env, regno, off, size,
6945 					      reg->mem_size, false);
6946 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6947 			mark_reg_unknown(env, regs, value_regno);
6948 	} else if (reg->type == PTR_TO_CTX) {
6949 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6950 		struct btf *btf = NULL;
6951 		u32 btf_id = 0;
6952 
6953 		if (t == BPF_WRITE && value_regno >= 0 &&
6954 		    is_pointer_value(env, value_regno)) {
6955 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6956 			return -EACCES;
6957 		}
6958 
6959 		err = check_ptr_off_reg(env, reg, regno);
6960 		if (err < 0)
6961 			return err;
6962 
6963 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6964 				       &btf_id);
6965 		if (err)
6966 			verbose_linfo(env, insn_idx, "; ");
6967 		if (!err && t == BPF_READ && value_regno >= 0) {
6968 			/* ctx access returns either a scalar, or a
6969 			 * PTR_TO_PACKET[_META,_END]. In the latter
6970 			 * case, we know the offset is zero.
6971 			 */
6972 			if (reg_type == SCALAR_VALUE) {
6973 				mark_reg_unknown(env, regs, value_regno);
6974 			} else {
6975 				mark_reg_known_zero(env, regs,
6976 						    value_regno);
6977 				if (type_may_be_null(reg_type))
6978 					regs[value_regno].id = ++env->id_gen;
6979 				/* A load of ctx field could have different
6980 				 * actual load size with the one encoded in the
6981 				 * insn. When the dst is PTR, it is for sure not
6982 				 * a sub-register.
6983 				 */
6984 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6985 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6986 					regs[value_regno].btf = btf;
6987 					regs[value_regno].btf_id = btf_id;
6988 				}
6989 			}
6990 			regs[value_regno].type = reg_type;
6991 		}
6992 
6993 	} else if (reg->type == PTR_TO_STACK) {
6994 		/* Basic bounds checks. */
6995 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6996 		if (err)
6997 			return err;
6998 
6999 		state = func(env, reg);
7000 		err = update_stack_depth(env, state, off);
7001 		if (err)
7002 			return err;
7003 
7004 		if (t == BPF_READ)
7005 			err = check_stack_read(env, regno, off, size,
7006 					       value_regno);
7007 		else
7008 			err = check_stack_write(env, regno, off, size,
7009 						value_regno, insn_idx);
7010 	} else if (reg_is_pkt_pointer(reg)) {
7011 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7012 			verbose(env, "cannot write into packet\n");
7013 			return -EACCES;
7014 		}
7015 		if (t == BPF_WRITE && value_regno >= 0 &&
7016 		    is_pointer_value(env, value_regno)) {
7017 			verbose(env, "R%d leaks addr into packet\n",
7018 				value_regno);
7019 			return -EACCES;
7020 		}
7021 		err = check_packet_access(env, regno, off, size, false);
7022 		if (!err && t == BPF_READ && value_regno >= 0)
7023 			mark_reg_unknown(env, regs, value_regno);
7024 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7025 		if (t == BPF_WRITE && value_regno >= 0 &&
7026 		    is_pointer_value(env, value_regno)) {
7027 			verbose(env, "R%d leaks addr into flow keys\n",
7028 				value_regno);
7029 			return -EACCES;
7030 		}
7031 
7032 		err = check_flow_keys_access(env, off, size);
7033 		if (!err && t == BPF_READ && value_regno >= 0)
7034 			mark_reg_unknown(env, regs, value_regno);
7035 	} else if (type_is_sk_pointer(reg->type)) {
7036 		if (t == BPF_WRITE) {
7037 			verbose(env, "R%d cannot write into %s\n",
7038 				regno, reg_type_str(env, reg->type));
7039 			return -EACCES;
7040 		}
7041 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7042 		if (!err && value_regno >= 0)
7043 			mark_reg_unknown(env, regs, value_regno);
7044 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7045 		err = check_tp_buffer_access(env, reg, regno, off, size);
7046 		if (!err && t == BPF_READ && value_regno >= 0)
7047 			mark_reg_unknown(env, regs, value_regno);
7048 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7049 		   !type_may_be_null(reg->type)) {
7050 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7051 					      value_regno);
7052 	} else if (reg->type == CONST_PTR_TO_MAP) {
7053 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7054 					      value_regno);
7055 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7056 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7057 		u32 *max_access;
7058 
7059 		if (rdonly_mem) {
7060 			if (t == BPF_WRITE) {
7061 				verbose(env, "R%d cannot write into %s\n",
7062 					regno, reg_type_str(env, reg->type));
7063 				return -EACCES;
7064 			}
7065 			max_access = &env->prog->aux->max_rdonly_access;
7066 		} else {
7067 			max_access = &env->prog->aux->max_rdwr_access;
7068 		}
7069 
7070 		err = check_buffer_access(env, reg, regno, off, size, false,
7071 					  max_access);
7072 
7073 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7074 			mark_reg_unknown(env, regs, value_regno);
7075 	} else {
7076 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7077 			reg_type_str(env, reg->type));
7078 		return -EACCES;
7079 	}
7080 
7081 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7082 	    regs[value_regno].type == SCALAR_VALUE) {
7083 		if (!is_ldsx)
7084 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7085 			coerce_reg_to_size(&regs[value_regno], size);
7086 		else
7087 			coerce_reg_to_size_sx(&regs[value_regno], size);
7088 	}
7089 	return err;
7090 }
7091 
7092 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7093 {
7094 	int load_reg;
7095 	int err;
7096 
7097 	switch (insn->imm) {
7098 	case BPF_ADD:
7099 	case BPF_ADD | BPF_FETCH:
7100 	case BPF_AND:
7101 	case BPF_AND | BPF_FETCH:
7102 	case BPF_OR:
7103 	case BPF_OR | BPF_FETCH:
7104 	case BPF_XOR:
7105 	case BPF_XOR | BPF_FETCH:
7106 	case BPF_XCHG:
7107 	case BPF_CMPXCHG:
7108 		break;
7109 	default:
7110 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7111 		return -EINVAL;
7112 	}
7113 
7114 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7115 		verbose(env, "invalid atomic operand size\n");
7116 		return -EINVAL;
7117 	}
7118 
7119 	/* check src1 operand */
7120 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7121 	if (err)
7122 		return err;
7123 
7124 	/* check src2 operand */
7125 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7126 	if (err)
7127 		return err;
7128 
7129 	if (insn->imm == BPF_CMPXCHG) {
7130 		/* Check comparison of R0 with memory location */
7131 		const u32 aux_reg = BPF_REG_0;
7132 
7133 		err = check_reg_arg(env, aux_reg, SRC_OP);
7134 		if (err)
7135 			return err;
7136 
7137 		if (is_pointer_value(env, aux_reg)) {
7138 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7139 			return -EACCES;
7140 		}
7141 	}
7142 
7143 	if (is_pointer_value(env, insn->src_reg)) {
7144 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7145 		return -EACCES;
7146 	}
7147 
7148 	if (is_ctx_reg(env, insn->dst_reg) ||
7149 	    is_pkt_reg(env, insn->dst_reg) ||
7150 	    is_flow_key_reg(env, insn->dst_reg) ||
7151 	    is_sk_reg(env, insn->dst_reg)) {
7152 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7153 			insn->dst_reg,
7154 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7155 		return -EACCES;
7156 	}
7157 
7158 	if (insn->imm & BPF_FETCH) {
7159 		if (insn->imm == BPF_CMPXCHG)
7160 			load_reg = BPF_REG_0;
7161 		else
7162 			load_reg = insn->src_reg;
7163 
7164 		/* check and record load of old value */
7165 		err = check_reg_arg(env, load_reg, DST_OP);
7166 		if (err)
7167 			return err;
7168 	} else {
7169 		/* This instruction accesses a memory location but doesn't
7170 		 * actually load it into a register.
7171 		 */
7172 		load_reg = -1;
7173 	}
7174 
7175 	/* Check whether we can read the memory, with second call for fetch
7176 	 * case to simulate the register fill.
7177 	 */
7178 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7179 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7180 	if (!err && load_reg >= 0)
7181 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7182 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7183 				       true, false);
7184 	if (err)
7185 		return err;
7186 
7187 	/* Check whether we can write into the same memory. */
7188 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7189 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7190 	if (err)
7191 		return err;
7192 
7193 	return 0;
7194 }
7195 
7196 /* When register 'regno' is used to read the stack (either directly or through
7197  * a helper function) make sure that it's within stack boundary and, depending
7198  * on the access type, that all elements of the stack are initialized.
7199  *
7200  * 'off' includes 'regno->off', but not its dynamic part (if any).
7201  *
7202  * All registers that have been spilled on the stack in the slots within the
7203  * read offsets are marked as read.
7204  */
7205 static int check_stack_range_initialized(
7206 		struct bpf_verifier_env *env, int regno, int off,
7207 		int access_size, bool zero_size_allowed,
7208 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7209 {
7210 	struct bpf_reg_state *reg = reg_state(env, regno);
7211 	struct bpf_func_state *state = func(env, reg);
7212 	int err, min_off, max_off, i, j, slot, spi;
7213 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7214 	enum bpf_access_type bounds_check_type;
7215 	/* Some accesses can write anything into the stack, others are
7216 	 * read-only.
7217 	 */
7218 	bool clobber = false;
7219 
7220 	if (access_size == 0 && !zero_size_allowed) {
7221 		verbose(env, "invalid zero-sized read\n");
7222 		return -EACCES;
7223 	}
7224 
7225 	if (type == ACCESS_HELPER) {
7226 		/* The bounds checks for writes are more permissive than for
7227 		 * reads. However, if raw_mode is not set, we'll do extra
7228 		 * checks below.
7229 		 */
7230 		bounds_check_type = BPF_WRITE;
7231 		clobber = true;
7232 	} else {
7233 		bounds_check_type = BPF_READ;
7234 	}
7235 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7236 					       type, bounds_check_type);
7237 	if (err)
7238 		return err;
7239 
7240 
7241 	if (tnum_is_const(reg->var_off)) {
7242 		min_off = max_off = reg->var_off.value + off;
7243 	} else {
7244 		/* Variable offset is prohibited for unprivileged mode for
7245 		 * simplicity since it requires corresponding support in
7246 		 * Spectre masking for stack ALU.
7247 		 * See also retrieve_ptr_limit().
7248 		 */
7249 		if (!env->bypass_spec_v1) {
7250 			char tn_buf[48];
7251 
7252 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7253 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7254 				regno, err_extra, tn_buf);
7255 			return -EACCES;
7256 		}
7257 		/* Only initialized buffer on stack is allowed to be accessed
7258 		 * with variable offset. With uninitialized buffer it's hard to
7259 		 * guarantee that whole memory is marked as initialized on
7260 		 * helper return since specific bounds are unknown what may
7261 		 * cause uninitialized stack leaking.
7262 		 */
7263 		if (meta && meta->raw_mode)
7264 			meta = NULL;
7265 
7266 		min_off = reg->smin_value + off;
7267 		max_off = reg->smax_value + off;
7268 	}
7269 
7270 	if (meta && meta->raw_mode) {
7271 		/* Ensure we won't be overwriting dynptrs when simulating byte
7272 		 * by byte access in check_helper_call using meta.access_size.
7273 		 * This would be a problem if we have a helper in the future
7274 		 * which takes:
7275 		 *
7276 		 *	helper(uninit_mem, len, dynptr)
7277 		 *
7278 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7279 		 * may end up writing to dynptr itself when touching memory from
7280 		 * arg 1. This can be relaxed on a case by case basis for known
7281 		 * safe cases, but reject due to the possibilitiy of aliasing by
7282 		 * default.
7283 		 */
7284 		for (i = min_off; i < max_off + access_size; i++) {
7285 			int stack_off = -i - 1;
7286 
7287 			spi = __get_spi(i);
7288 			/* raw_mode may write past allocated_stack */
7289 			if (state->allocated_stack <= stack_off)
7290 				continue;
7291 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7292 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7293 				return -EACCES;
7294 			}
7295 		}
7296 		meta->access_size = access_size;
7297 		meta->regno = regno;
7298 		return 0;
7299 	}
7300 
7301 	for (i = min_off; i < max_off + access_size; i++) {
7302 		u8 *stype;
7303 
7304 		slot = -i - 1;
7305 		spi = slot / BPF_REG_SIZE;
7306 		if (state->allocated_stack <= slot)
7307 			goto err;
7308 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7309 		if (*stype == STACK_MISC)
7310 			goto mark;
7311 		if ((*stype == STACK_ZERO) ||
7312 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7313 			if (clobber) {
7314 				/* helper can write anything into the stack */
7315 				*stype = STACK_MISC;
7316 			}
7317 			goto mark;
7318 		}
7319 
7320 		if (is_spilled_reg(&state->stack[spi]) &&
7321 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7322 		     env->allow_ptr_leaks)) {
7323 			if (clobber) {
7324 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7325 				for (j = 0; j < BPF_REG_SIZE; j++)
7326 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7327 			}
7328 			goto mark;
7329 		}
7330 
7331 err:
7332 		if (tnum_is_const(reg->var_off)) {
7333 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7334 				err_extra, regno, min_off, i - min_off, access_size);
7335 		} else {
7336 			char tn_buf[48];
7337 
7338 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7339 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7340 				err_extra, regno, tn_buf, i - min_off, access_size);
7341 		}
7342 		return -EACCES;
7343 mark:
7344 		/* reading any byte out of 8-byte 'spill_slot' will cause
7345 		 * the whole slot to be marked as 'read'
7346 		 */
7347 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7348 			      state->stack[spi].spilled_ptr.parent,
7349 			      REG_LIVE_READ64);
7350 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7351 		 * be sure that whether stack slot is written to or not. Hence,
7352 		 * we must still conservatively propagate reads upwards even if
7353 		 * helper may write to the entire memory range.
7354 		 */
7355 	}
7356 	return update_stack_depth(env, state, min_off);
7357 }
7358 
7359 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7360 				   int access_size, bool zero_size_allowed,
7361 				   struct bpf_call_arg_meta *meta)
7362 {
7363 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7364 	u32 *max_access;
7365 
7366 	switch (base_type(reg->type)) {
7367 	case PTR_TO_PACKET:
7368 	case PTR_TO_PACKET_META:
7369 		return check_packet_access(env, regno, reg->off, access_size,
7370 					   zero_size_allowed);
7371 	case PTR_TO_MAP_KEY:
7372 		if (meta && meta->raw_mode) {
7373 			verbose(env, "R%d cannot write into %s\n", regno,
7374 				reg_type_str(env, reg->type));
7375 			return -EACCES;
7376 		}
7377 		return check_mem_region_access(env, regno, reg->off, access_size,
7378 					       reg->map_ptr->key_size, false);
7379 	case PTR_TO_MAP_VALUE:
7380 		if (check_map_access_type(env, regno, reg->off, access_size,
7381 					  meta && meta->raw_mode ? BPF_WRITE :
7382 					  BPF_READ))
7383 			return -EACCES;
7384 		return check_map_access(env, regno, reg->off, access_size,
7385 					zero_size_allowed, ACCESS_HELPER);
7386 	case PTR_TO_MEM:
7387 		if (type_is_rdonly_mem(reg->type)) {
7388 			if (meta && meta->raw_mode) {
7389 				verbose(env, "R%d cannot write into %s\n", regno,
7390 					reg_type_str(env, reg->type));
7391 				return -EACCES;
7392 			}
7393 		}
7394 		return check_mem_region_access(env, regno, reg->off,
7395 					       access_size, reg->mem_size,
7396 					       zero_size_allowed);
7397 	case PTR_TO_BUF:
7398 		if (type_is_rdonly_mem(reg->type)) {
7399 			if (meta && meta->raw_mode) {
7400 				verbose(env, "R%d cannot write into %s\n", regno,
7401 					reg_type_str(env, reg->type));
7402 				return -EACCES;
7403 			}
7404 
7405 			max_access = &env->prog->aux->max_rdonly_access;
7406 		} else {
7407 			max_access = &env->prog->aux->max_rdwr_access;
7408 		}
7409 		return check_buffer_access(env, reg, regno, reg->off,
7410 					   access_size, zero_size_allowed,
7411 					   max_access);
7412 	case PTR_TO_STACK:
7413 		return check_stack_range_initialized(
7414 				env,
7415 				regno, reg->off, access_size,
7416 				zero_size_allowed, ACCESS_HELPER, meta);
7417 	case PTR_TO_BTF_ID:
7418 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7419 					       access_size, BPF_READ, -1);
7420 	case PTR_TO_CTX:
7421 		/* in case the function doesn't know how to access the context,
7422 		 * (because we are in a program of type SYSCALL for example), we
7423 		 * can not statically check its size.
7424 		 * Dynamically check it now.
7425 		 */
7426 		if (!env->ops->convert_ctx_access) {
7427 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7428 			int offset = access_size - 1;
7429 
7430 			/* Allow zero-byte read from PTR_TO_CTX */
7431 			if (access_size == 0)
7432 				return zero_size_allowed ? 0 : -EACCES;
7433 
7434 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7435 						atype, -1, false, false);
7436 		}
7437 
7438 		fallthrough;
7439 	default: /* scalar_value or invalid ptr */
7440 		/* Allow zero-byte read from NULL, regardless of pointer type */
7441 		if (zero_size_allowed && access_size == 0 &&
7442 		    register_is_null(reg))
7443 			return 0;
7444 
7445 		verbose(env, "R%d type=%s ", regno,
7446 			reg_type_str(env, reg->type));
7447 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7448 		return -EACCES;
7449 	}
7450 }
7451 
7452 static int check_mem_size_reg(struct bpf_verifier_env *env,
7453 			      struct bpf_reg_state *reg, u32 regno,
7454 			      bool zero_size_allowed,
7455 			      struct bpf_call_arg_meta *meta)
7456 {
7457 	int err;
7458 
7459 	/* This is used to refine r0 return value bounds for helpers
7460 	 * that enforce this value as an upper bound on return values.
7461 	 * See do_refine_retval_range() for helpers that can refine
7462 	 * the return value. C type of helper is u32 so we pull register
7463 	 * bound from umax_value however, if negative verifier errors
7464 	 * out. Only upper bounds can be learned because retval is an
7465 	 * int type and negative retvals are allowed.
7466 	 */
7467 	meta->msize_max_value = reg->umax_value;
7468 
7469 	/* The register is SCALAR_VALUE; the access check
7470 	 * happens using its boundaries.
7471 	 */
7472 	if (!tnum_is_const(reg->var_off))
7473 		/* For unprivileged variable accesses, disable raw
7474 		 * mode so that the program is required to
7475 		 * initialize all the memory that the helper could
7476 		 * just partially fill up.
7477 		 */
7478 		meta = NULL;
7479 
7480 	if (reg->smin_value < 0) {
7481 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7482 			regno);
7483 		return -EACCES;
7484 	}
7485 
7486 	if (reg->umin_value == 0) {
7487 		err = check_helper_mem_access(env, regno - 1, 0,
7488 					      zero_size_allowed,
7489 					      meta);
7490 		if (err)
7491 			return err;
7492 	}
7493 
7494 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7495 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7496 			regno);
7497 		return -EACCES;
7498 	}
7499 	err = check_helper_mem_access(env, regno - 1,
7500 				      reg->umax_value,
7501 				      zero_size_allowed, meta);
7502 	if (!err)
7503 		err = mark_chain_precision(env, regno);
7504 	return err;
7505 }
7506 
7507 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7508 		   u32 regno, u32 mem_size)
7509 {
7510 	bool may_be_null = type_may_be_null(reg->type);
7511 	struct bpf_reg_state saved_reg;
7512 	struct bpf_call_arg_meta meta;
7513 	int err;
7514 
7515 	if (register_is_null(reg))
7516 		return 0;
7517 
7518 	memset(&meta, 0, sizeof(meta));
7519 	/* Assuming that the register contains a value check if the memory
7520 	 * access is safe. Temporarily save and restore the register's state as
7521 	 * the conversion shouldn't be visible to a caller.
7522 	 */
7523 	if (may_be_null) {
7524 		saved_reg = *reg;
7525 		mark_ptr_not_null_reg(reg);
7526 	}
7527 
7528 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7529 	/* Check access for BPF_WRITE */
7530 	meta.raw_mode = true;
7531 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7532 
7533 	if (may_be_null)
7534 		*reg = saved_reg;
7535 
7536 	return err;
7537 }
7538 
7539 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7540 				    u32 regno)
7541 {
7542 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7543 	bool may_be_null = type_may_be_null(mem_reg->type);
7544 	struct bpf_reg_state saved_reg;
7545 	struct bpf_call_arg_meta meta;
7546 	int err;
7547 
7548 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7549 
7550 	memset(&meta, 0, sizeof(meta));
7551 
7552 	if (may_be_null) {
7553 		saved_reg = *mem_reg;
7554 		mark_ptr_not_null_reg(mem_reg);
7555 	}
7556 
7557 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7558 	/* Check access for BPF_WRITE */
7559 	meta.raw_mode = true;
7560 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7561 
7562 	if (may_be_null)
7563 		*mem_reg = saved_reg;
7564 	return err;
7565 }
7566 
7567 /* Implementation details:
7568  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7569  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7570  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7571  * Two separate bpf_obj_new will also have different reg->id.
7572  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7573  * clears reg->id after value_or_null->value transition, since the verifier only
7574  * cares about the range of access to valid map value pointer and doesn't care
7575  * about actual address of the map element.
7576  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7577  * reg->id > 0 after value_or_null->value transition. By doing so
7578  * two bpf_map_lookups will be considered two different pointers that
7579  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7580  * returned from bpf_obj_new.
7581  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7582  * dead-locks.
7583  * Since only one bpf_spin_lock is allowed the checks are simpler than
7584  * reg_is_refcounted() logic. The verifier needs to remember only
7585  * one spin_lock instead of array of acquired_refs.
7586  * cur_state->active_lock remembers which map value element or allocated
7587  * object got locked and clears it after bpf_spin_unlock.
7588  */
7589 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7590 			     bool is_lock)
7591 {
7592 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7593 	struct bpf_verifier_state *cur = env->cur_state;
7594 	bool is_const = tnum_is_const(reg->var_off);
7595 	u64 val = reg->var_off.value;
7596 	struct bpf_map *map = NULL;
7597 	struct btf *btf = NULL;
7598 	struct btf_record *rec;
7599 
7600 	if (!is_const) {
7601 		verbose(env,
7602 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7603 			regno);
7604 		return -EINVAL;
7605 	}
7606 	if (reg->type == PTR_TO_MAP_VALUE) {
7607 		map = reg->map_ptr;
7608 		if (!map->btf) {
7609 			verbose(env,
7610 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7611 				map->name);
7612 			return -EINVAL;
7613 		}
7614 	} else {
7615 		btf = reg->btf;
7616 	}
7617 
7618 	rec = reg_btf_record(reg);
7619 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7620 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7621 			map ? map->name : "kptr");
7622 		return -EINVAL;
7623 	}
7624 	if (rec->spin_lock_off != val + reg->off) {
7625 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7626 			val + reg->off, rec->spin_lock_off);
7627 		return -EINVAL;
7628 	}
7629 	if (is_lock) {
7630 		if (cur->active_lock.ptr) {
7631 			verbose(env,
7632 				"Locking two bpf_spin_locks are not allowed\n");
7633 			return -EINVAL;
7634 		}
7635 		if (map)
7636 			cur->active_lock.ptr = map;
7637 		else
7638 			cur->active_lock.ptr = btf;
7639 		cur->active_lock.id = reg->id;
7640 	} else {
7641 		void *ptr;
7642 
7643 		if (map)
7644 			ptr = map;
7645 		else
7646 			ptr = btf;
7647 
7648 		if (!cur->active_lock.ptr) {
7649 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7650 			return -EINVAL;
7651 		}
7652 		if (cur->active_lock.ptr != ptr ||
7653 		    cur->active_lock.id != reg->id) {
7654 			verbose(env, "bpf_spin_unlock of different lock\n");
7655 			return -EINVAL;
7656 		}
7657 
7658 		invalidate_non_owning_refs(env);
7659 
7660 		cur->active_lock.ptr = NULL;
7661 		cur->active_lock.id = 0;
7662 	}
7663 	return 0;
7664 }
7665 
7666 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7667 			      struct bpf_call_arg_meta *meta)
7668 {
7669 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7670 	bool is_const = tnum_is_const(reg->var_off);
7671 	struct bpf_map *map = reg->map_ptr;
7672 	u64 val = reg->var_off.value;
7673 
7674 	if (!is_const) {
7675 		verbose(env,
7676 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7677 			regno);
7678 		return -EINVAL;
7679 	}
7680 	if (!map->btf) {
7681 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7682 			map->name);
7683 		return -EINVAL;
7684 	}
7685 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7686 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7687 		return -EINVAL;
7688 	}
7689 	if (map->record->timer_off != val + reg->off) {
7690 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7691 			val + reg->off, map->record->timer_off);
7692 		return -EINVAL;
7693 	}
7694 	if (meta->map_ptr) {
7695 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7696 		return -EFAULT;
7697 	}
7698 	meta->map_uid = reg->map_uid;
7699 	meta->map_ptr = map;
7700 	return 0;
7701 }
7702 
7703 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7704 			     struct bpf_call_arg_meta *meta)
7705 {
7706 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7707 	struct bpf_map *map_ptr = reg->map_ptr;
7708 	struct btf_field *kptr_field;
7709 	u32 kptr_off;
7710 
7711 	if (!tnum_is_const(reg->var_off)) {
7712 		verbose(env,
7713 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7714 			regno);
7715 		return -EINVAL;
7716 	}
7717 	if (!map_ptr->btf) {
7718 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7719 			map_ptr->name);
7720 		return -EINVAL;
7721 	}
7722 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7723 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7724 		return -EINVAL;
7725 	}
7726 
7727 	meta->map_ptr = map_ptr;
7728 	kptr_off = reg->off + reg->var_off.value;
7729 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7730 	if (!kptr_field) {
7731 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7732 		return -EACCES;
7733 	}
7734 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7735 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7736 		return -EACCES;
7737 	}
7738 	meta->kptr_field = kptr_field;
7739 	return 0;
7740 }
7741 
7742 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7743  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7744  *
7745  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7746  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7747  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7748  *
7749  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7750  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7751  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7752  * mutate the view of the dynptr and also possibly destroy it. In the latter
7753  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7754  * memory that dynptr points to.
7755  *
7756  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7757  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7758  * readonly dynptr view yet, hence only the first case is tracked and checked.
7759  *
7760  * This is consistent with how C applies the const modifier to a struct object,
7761  * where the pointer itself inside bpf_dynptr becomes const but not what it
7762  * points to.
7763  *
7764  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7765  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7766  */
7767 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7768 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7769 {
7770 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7771 	int err;
7772 
7773 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7774 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7775 	 */
7776 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7777 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7778 		return -EFAULT;
7779 	}
7780 
7781 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7782 	 *		 constructing a mutable bpf_dynptr object.
7783 	 *
7784 	 *		 Currently, this is only possible with PTR_TO_STACK
7785 	 *		 pointing to a region of at least 16 bytes which doesn't
7786 	 *		 contain an existing bpf_dynptr.
7787 	 *
7788 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7789 	 *		 mutated or destroyed. However, the memory it points to
7790 	 *		 may be mutated.
7791 	 *
7792 	 *  None       - Points to a initialized dynptr that can be mutated and
7793 	 *		 destroyed, including mutation of the memory it points
7794 	 *		 to.
7795 	 */
7796 	if (arg_type & MEM_UNINIT) {
7797 		int i;
7798 
7799 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7800 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7801 			return -EINVAL;
7802 		}
7803 
7804 		/* we write BPF_DW bits (8 bytes) at a time */
7805 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7806 			err = check_mem_access(env, insn_idx, regno,
7807 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7808 			if (err)
7809 				return err;
7810 		}
7811 
7812 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7813 	} else /* MEM_RDONLY and None case from above */ {
7814 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7815 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7816 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7817 			return -EINVAL;
7818 		}
7819 
7820 		if (!is_dynptr_reg_valid_init(env, reg)) {
7821 			verbose(env,
7822 				"Expected an initialized dynptr as arg #%d\n",
7823 				regno);
7824 			return -EINVAL;
7825 		}
7826 
7827 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7828 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7829 			verbose(env,
7830 				"Expected a dynptr of type %s as arg #%d\n",
7831 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7832 			return -EINVAL;
7833 		}
7834 
7835 		err = mark_dynptr_read(env, reg);
7836 	}
7837 	return err;
7838 }
7839 
7840 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7841 {
7842 	struct bpf_func_state *state = func(env, reg);
7843 
7844 	return state->stack[spi].spilled_ptr.ref_obj_id;
7845 }
7846 
7847 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7848 {
7849 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7850 }
7851 
7852 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7853 {
7854 	return meta->kfunc_flags & KF_ITER_NEW;
7855 }
7856 
7857 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7858 {
7859 	return meta->kfunc_flags & KF_ITER_NEXT;
7860 }
7861 
7862 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7863 {
7864 	return meta->kfunc_flags & KF_ITER_DESTROY;
7865 }
7866 
7867 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7868 {
7869 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7870 	 * kfunc is iter state pointer
7871 	 */
7872 	return arg == 0 && is_iter_kfunc(meta);
7873 }
7874 
7875 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7876 			    struct bpf_kfunc_call_arg_meta *meta)
7877 {
7878 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7879 	const struct btf_type *t;
7880 	const struct btf_param *arg;
7881 	int spi, err, i, nr_slots;
7882 	u32 btf_id;
7883 
7884 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7885 	arg = &btf_params(meta->func_proto)[0];
7886 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7887 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7888 	nr_slots = t->size / BPF_REG_SIZE;
7889 
7890 	if (is_iter_new_kfunc(meta)) {
7891 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7892 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7893 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7894 				iter_type_str(meta->btf, btf_id), regno);
7895 			return -EINVAL;
7896 		}
7897 
7898 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7899 			err = check_mem_access(env, insn_idx, regno,
7900 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7901 			if (err)
7902 				return err;
7903 		}
7904 
7905 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7906 		if (err)
7907 			return err;
7908 	} else {
7909 		/* iter_next() or iter_destroy() expect initialized iter state*/
7910 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7911 		switch (err) {
7912 		case 0:
7913 			break;
7914 		case -EINVAL:
7915 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7916 				iter_type_str(meta->btf, btf_id), regno);
7917 			return err;
7918 		case -EPROTO:
7919 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7920 			return err;
7921 		default:
7922 			return err;
7923 		}
7924 
7925 		spi = iter_get_spi(env, reg, nr_slots);
7926 		if (spi < 0)
7927 			return spi;
7928 
7929 		err = mark_iter_read(env, reg, spi, nr_slots);
7930 		if (err)
7931 			return err;
7932 
7933 		/* remember meta->iter info for process_iter_next_call() */
7934 		meta->iter.spi = spi;
7935 		meta->iter.frameno = reg->frameno;
7936 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7937 
7938 		if (is_iter_destroy_kfunc(meta)) {
7939 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7940 			if (err)
7941 				return err;
7942 		}
7943 	}
7944 
7945 	return 0;
7946 }
7947 
7948 /* Look for a previous loop entry at insn_idx: nearest parent state
7949  * stopped at insn_idx with callsites matching those in cur->frame.
7950  */
7951 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7952 						  struct bpf_verifier_state *cur,
7953 						  int insn_idx)
7954 {
7955 	struct bpf_verifier_state_list *sl;
7956 	struct bpf_verifier_state *st;
7957 
7958 	/* Explored states are pushed in stack order, most recent states come first */
7959 	sl = *explored_state(env, insn_idx);
7960 	for (; sl; sl = sl->next) {
7961 		/* If st->branches != 0 state is a part of current DFS verification path,
7962 		 * hence cur & st for a loop.
7963 		 */
7964 		st = &sl->state;
7965 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7966 		    st->dfs_depth < cur->dfs_depth)
7967 			return st;
7968 	}
7969 
7970 	return NULL;
7971 }
7972 
7973 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7974 static bool regs_exact(const struct bpf_reg_state *rold,
7975 		       const struct bpf_reg_state *rcur,
7976 		       struct bpf_idmap *idmap);
7977 
7978 static void maybe_widen_reg(struct bpf_verifier_env *env,
7979 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7980 			    struct bpf_idmap *idmap)
7981 {
7982 	if (rold->type != SCALAR_VALUE)
7983 		return;
7984 	if (rold->type != rcur->type)
7985 		return;
7986 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7987 		return;
7988 	__mark_reg_unknown(env, rcur);
7989 }
7990 
7991 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7992 				   struct bpf_verifier_state *old,
7993 				   struct bpf_verifier_state *cur)
7994 {
7995 	struct bpf_func_state *fold, *fcur;
7996 	int i, fr;
7997 
7998 	reset_idmap_scratch(env);
7999 	for (fr = old->curframe; fr >= 0; fr--) {
8000 		fold = old->frame[fr];
8001 		fcur = cur->frame[fr];
8002 
8003 		for (i = 0; i < MAX_BPF_REG; i++)
8004 			maybe_widen_reg(env,
8005 					&fold->regs[i],
8006 					&fcur->regs[i],
8007 					&env->idmap_scratch);
8008 
8009 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8010 			if (!is_spilled_reg(&fold->stack[i]) ||
8011 			    !is_spilled_reg(&fcur->stack[i]))
8012 				continue;
8013 
8014 			maybe_widen_reg(env,
8015 					&fold->stack[i].spilled_ptr,
8016 					&fcur->stack[i].spilled_ptr,
8017 					&env->idmap_scratch);
8018 		}
8019 	}
8020 	return 0;
8021 }
8022 
8023 /* process_iter_next_call() is called when verifier gets to iterator's next
8024  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8025  * to it as just "iter_next()" in comments below.
8026  *
8027  * BPF verifier relies on a crucial contract for any iter_next()
8028  * implementation: it should *eventually* return NULL, and once that happens
8029  * it should keep returning NULL. That is, once iterator exhausts elements to
8030  * iterate, it should never reset or spuriously return new elements.
8031  *
8032  * With the assumption of such contract, process_iter_next_call() simulates
8033  * a fork in the verifier state to validate loop logic correctness and safety
8034  * without having to simulate infinite amount of iterations.
8035  *
8036  * In current state, we first assume that iter_next() returned NULL and
8037  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8038  * conditions we should not form an infinite loop and should eventually reach
8039  * exit.
8040  *
8041  * Besides that, we also fork current state and enqueue it for later
8042  * verification. In a forked state we keep iterator state as ACTIVE
8043  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8044  * also bump iteration depth to prevent erroneous infinite loop detection
8045  * later on (see iter_active_depths_differ() comment for details). In this
8046  * state we assume that we'll eventually loop back to another iter_next()
8047  * calls (it could be in exactly same location or in some other instruction,
8048  * it doesn't matter, we don't make any unnecessary assumptions about this,
8049  * everything revolves around iterator state in a stack slot, not which
8050  * instruction is calling iter_next()). When that happens, we either will come
8051  * to iter_next() with equivalent state and can conclude that next iteration
8052  * will proceed in exactly the same way as we just verified, so it's safe to
8053  * assume that loop converges. If not, we'll go on another iteration
8054  * simulation with a different input state, until all possible starting states
8055  * are validated or we reach maximum number of instructions limit.
8056  *
8057  * This way, we will either exhaustively discover all possible input states
8058  * that iterator loop can start with and eventually will converge, or we'll
8059  * effectively regress into bounded loop simulation logic and either reach
8060  * maximum number of instructions if loop is not provably convergent, or there
8061  * is some statically known limit on number of iterations (e.g., if there is
8062  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8063  *
8064  * Iteration convergence logic in is_state_visited() relies on exact
8065  * states comparison, which ignores read and precision marks.
8066  * This is necessary because read and precision marks are not finalized
8067  * while in the loop. Exact comparison might preclude convergence for
8068  * simple programs like below:
8069  *
8070  *     i = 0;
8071  *     while(iter_next(&it))
8072  *       i++;
8073  *
8074  * At each iteration step i++ would produce a new distinct state and
8075  * eventually instruction processing limit would be reached.
8076  *
8077  * To avoid such behavior speculatively forget (widen) range for
8078  * imprecise scalar registers, if those registers were not precise at the
8079  * end of the previous iteration and do not match exactly.
8080  *
8081  * This is a conservative heuristic that allows to verify wide range of programs,
8082  * however it precludes verification of programs that conjure an
8083  * imprecise value on the first loop iteration and use it as precise on a second.
8084  * For example, the following safe program would fail to verify:
8085  *
8086  *     struct bpf_num_iter it;
8087  *     int arr[10];
8088  *     int i = 0, a = 0;
8089  *     bpf_iter_num_new(&it, 0, 10);
8090  *     while (bpf_iter_num_next(&it)) {
8091  *       if (a == 0) {
8092  *         a = 1;
8093  *         i = 7; // Because i changed verifier would forget
8094  *                // it's range on second loop entry.
8095  *       } else {
8096  *         arr[i] = 42; // This would fail to verify.
8097  *       }
8098  *     }
8099  *     bpf_iter_num_destroy(&it);
8100  */
8101 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8102 				  struct bpf_kfunc_call_arg_meta *meta)
8103 {
8104 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8105 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8106 	struct bpf_reg_state *cur_iter, *queued_iter;
8107 	int iter_frameno = meta->iter.frameno;
8108 	int iter_spi = meta->iter.spi;
8109 
8110 	BTF_TYPE_EMIT(struct bpf_iter);
8111 
8112 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8113 
8114 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8115 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8116 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8117 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8118 		return -EFAULT;
8119 	}
8120 
8121 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8122 		/* Because iter_next() call is a checkpoint is_state_visitied()
8123 		 * should guarantee parent state with same call sites and insn_idx.
8124 		 */
8125 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8126 		    !same_callsites(cur_st->parent, cur_st)) {
8127 			verbose(env, "bug: bad parent state for iter next call");
8128 			return -EFAULT;
8129 		}
8130 		/* Note cur_st->parent in the call below, it is necessary to skip
8131 		 * checkpoint created for cur_st by is_state_visited()
8132 		 * right at this instruction.
8133 		 */
8134 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8135 		/* branch out active iter state */
8136 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8137 		if (!queued_st)
8138 			return -ENOMEM;
8139 
8140 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8141 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8142 		queued_iter->iter.depth++;
8143 		if (prev_st)
8144 			widen_imprecise_scalars(env, prev_st, queued_st);
8145 
8146 		queued_fr = queued_st->frame[queued_st->curframe];
8147 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8148 	}
8149 
8150 	/* switch to DRAINED state, but keep the depth unchanged */
8151 	/* mark current iter state as drained and assume returned NULL */
8152 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8153 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8154 
8155 	return 0;
8156 }
8157 
8158 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8159 {
8160 	return type == ARG_CONST_SIZE ||
8161 	       type == ARG_CONST_SIZE_OR_ZERO;
8162 }
8163 
8164 static bool arg_type_is_release(enum bpf_arg_type type)
8165 {
8166 	return type & OBJ_RELEASE;
8167 }
8168 
8169 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8170 {
8171 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8172 }
8173 
8174 static int int_ptr_type_to_size(enum bpf_arg_type type)
8175 {
8176 	if (type == ARG_PTR_TO_INT)
8177 		return sizeof(u32);
8178 	else if (type == ARG_PTR_TO_LONG)
8179 		return sizeof(u64);
8180 
8181 	return -EINVAL;
8182 }
8183 
8184 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8185 				 const struct bpf_call_arg_meta *meta,
8186 				 enum bpf_arg_type *arg_type)
8187 {
8188 	if (!meta->map_ptr) {
8189 		/* kernel subsystem misconfigured verifier */
8190 		verbose(env, "invalid map_ptr to access map->type\n");
8191 		return -EACCES;
8192 	}
8193 
8194 	switch (meta->map_ptr->map_type) {
8195 	case BPF_MAP_TYPE_SOCKMAP:
8196 	case BPF_MAP_TYPE_SOCKHASH:
8197 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8198 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8199 		} else {
8200 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8201 			return -EINVAL;
8202 		}
8203 		break;
8204 	case BPF_MAP_TYPE_BLOOM_FILTER:
8205 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8206 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8207 		break;
8208 	default:
8209 		break;
8210 	}
8211 	return 0;
8212 }
8213 
8214 struct bpf_reg_types {
8215 	const enum bpf_reg_type types[10];
8216 	u32 *btf_id;
8217 };
8218 
8219 static const struct bpf_reg_types sock_types = {
8220 	.types = {
8221 		PTR_TO_SOCK_COMMON,
8222 		PTR_TO_SOCKET,
8223 		PTR_TO_TCP_SOCK,
8224 		PTR_TO_XDP_SOCK,
8225 	},
8226 };
8227 
8228 #ifdef CONFIG_NET
8229 static const struct bpf_reg_types btf_id_sock_common_types = {
8230 	.types = {
8231 		PTR_TO_SOCK_COMMON,
8232 		PTR_TO_SOCKET,
8233 		PTR_TO_TCP_SOCK,
8234 		PTR_TO_XDP_SOCK,
8235 		PTR_TO_BTF_ID,
8236 		PTR_TO_BTF_ID | PTR_TRUSTED,
8237 	},
8238 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8239 };
8240 #endif
8241 
8242 static const struct bpf_reg_types mem_types = {
8243 	.types = {
8244 		PTR_TO_STACK,
8245 		PTR_TO_PACKET,
8246 		PTR_TO_PACKET_META,
8247 		PTR_TO_MAP_KEY,
8248 		PTR_TO_MAP_VALUE,
8249 		PTR_TO_MEM,
8250 		PTR_TO_MEM | MEM_RINGBUF,
8251 		PTR_TO_BUF,
8252 		PTR_TO_BTF_ID | PTR_TRUSTED,
8253 	},
8254 };
8255 
8256 static const struct bpf_reg_types int_ptr_types = {
8257 	.types = {
8258 		PTR_TO_STACK,
8259 		PTR_TO_PACKET,
8260 		PTR_TO_PACKET_META,
8261 		PTR_TO_MAP_KEY,
8262 		PTR_TO_MAP_VALUE,
8263 	},
8264 };
8265 
8266 static const struct bpf_reg_types spin_lock_types = {
8267 	.types = {
8268 		PTR_TO_MAP_VALUE,
8269 		PTR_TO_BTF_ID | MEM_ALLOC,
8270 	}
8271 };
8272 
8273 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8274 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8275 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8276 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8277 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8278 static const struct bpf_reg_types btf_ptr_types = {
8279 	.types = {
8280 		PTR_TO_BTF_ID,
8281 		PTR_TO_BTF_ID | PTR_TRUSTED,
8282 		PTR_TO_BTF_ID | MEM_RCU,
8283 	},
8284 };
8285 static const struct bpf_reg_types percpu_btf_ptr_types = {
8286 	.types = {
8287 		PTR_TO_BTF_ID | MEM_PERCPU,
8288 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8289 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8290 	}
8291 };
8292 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8293 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8294 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8295 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8296 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8297 static const struct bpf_reg_types dynptr_types = {
8298 	.types = {
8299 		PTR_TO_STACK,
8300 		CONST_PTR_TO_DYNPTR,
8301 	}
8302 };
8303 
8304 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8305 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8306 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8307 	[ARG_CONST_SIZE]		= &scalar_types,
8308 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8309 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8310 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8311 	[ARG_PTR_TO_CTX]		= &context_types,
8312 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8313 #ifdef CONFIG_NET
8314 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8315 #endif
8316 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8317 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8318 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8319 	[ARG_PTR_TO_MEM]		= &mem_types,
8320 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8321 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8322 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8323 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8324 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8325 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8326 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8327 	[ARG_PTR_TO_TIMER]		= &timer_types,
8328 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8329 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8330 };
8331 
8332 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8333 			  enum bpf_arg_type arg_type,
8334 			  const u32 *arg_btf_id,
8335 			  struct bpf_call_arg_meta *meta)
8336 {
8337 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8338 	enum bpf_reg_type expected, type = reg->type;
8339 	const struct bpf_reg_types *compatible;
8340 	int i, j;
8341 
8342 	compatible = compatible_reg_types[base_type(arg_type)];
8343 	if (!compatible) {
8344 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8345 		return -EFAULT;
8346 	}
8347 
8348 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8349 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8350 	 *
8351 	 * Same for MAYBE_NULL:
8352 	 *
8353 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8354 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8355 	 *
8356 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8357 	 *
8358 	 * Therefore we fold these flags depending on the arg_type before comparison.
8359 	 */
8360 	if (arg_type & MEM_RDONLY)
8361 		type &= ~MEM_RDONLY;
8362 	if (arg_type & PTR_MAYBE_NULL)
8363 		type &= ~PTR_MAYBE_NULL;
8364 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8365 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8366 
8367 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8368 		type &= ~MEM_ALLOC;
8369 		type &= ~MEM_PERCPU;
8370 	}
8371 
8372 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8373 		expected = compatible->types[i];
8374 		if (expected == NOT_INIT)
8375 			break;
8376 
8377 		if (type == expected)
8378 			goto found;
8379 	}
8380 
8381 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8382 	for (j = 0; j + 1 < i; j++)
8383 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8384 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8385 	return -EACCES;
8386 
8387 found:
8388 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8389 		return 0;
8390 
8391 	if (compatible == &mem_types) {
8392 		if (!(arg_type & MEM_RDONLY)) {
8393 			verbose(env,
8394 				"%s() may write into memory pointed by R%d type=%s\n",
8395 				func_id_name(meta->func_id),
8396 				regno, reg_type_str(env, reg->type));
8397 			return -EACCES;
8398 		}
8399 		return 0;
8400 	}
8401 
8402 	switch ((int)reg->type) {
8403 	case PTR_TO_BTF_ID:
8404 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8405 	case PTR_TO_BTF_ID | MEM_RCU:
8406 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8407 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8408 	{
8409 		/* For bpf_sk_release, it needs to match against first member
8410 		 * 'struct sock_common', hence make an exception for it. This
8411 		 * allows bpf_sk_release to work for multiple socket types.
8412 		 */
8413 		bool strict_type_match = arg_type_is_release(arg_type) &&
8414 					 meta->func_id != BPF_FUNC_sk_release;
8415 
8416 		if (type_may_be_null(reg->type) &&
8417 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8418 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8419 			return -EACCES;
8420 		}
8421 
8422 		if (!arg_btf_id) {
8423 			if (!compatible->btf_id) {
8424 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8425 				return -EFAULT;
8426 			}
8427 			arg_btf_id = compatible->btf_id;
8428 		}
8429 
8430 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8431 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8432 				return -EACCES;
8433 		} else {
8434 			if (arg_btf_id == BPF_PTR_POISON) {
8435 				verbose(env, "verifier internal error:");
8436 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8437 					regno);
8438 				return -EACCES;
8439 			}
8440 
8441 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8442 						  btf_vmlinux, *arg_btf_id,
8443 						  strict_type_match)) {
8444 				verbose(env, "R%d is of type %s but %s is expected\n",
8445 					regno, btf_type_name(reg->btf, reg->btf_id),
8446 					btf_type_name(btf_vmlinux, *arg_btf_id));
8447 				return -EACCES;
8448 			}
8449 		}
8450 		break;
8451 	}
8452 	case PTR_TO_BTF_ID | MEM_ALLOC:
8453 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8454 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8455 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8456 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8457 			return -EFAULT;
8458 		}
8459 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8460 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8461 				return -EACCES;
8462 		}
8463 		break;
8464 	case PTR_TO_BTF_ID | MEM_PERCPU:
8465 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8466 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8467 		/* Handled by helper specific checks */
8468 		break;
8469 	default:
8470 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8471 		return -EFAULT;
8472 	}
8473 	return 0;
8474 }
8475 
8476 static struct btf_field *
8477 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8478 {
8479 	struct btf_field *field;
8480 	struct btf_record *rec;
8481 
8482 	rec = reg_btf_record(reg);
8483 	if (!rec)
8484 		return NULL;
8485 
8486 	field = btf_record_find(rec, off, fields);
8487 	if (!field)
8488 		return NULL;
8489 
8490 	return field;
8491 }
8492 
8493 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8494 			   const struct bpf_reg_state *reg, int regno,
8495 			   enum bpf_arg_type arg_type)
8496 {
8497 	u32 type = reg->type;
8498 
8499 	/* When referenced register is passed to release function, its fixed
8500 	 * offset must be 0.
8501 	 *
8502 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8503 	 * meta->release_regno.
8504 	 */
8505 	if (arg_type_is_release(arg_type)) {
8506 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8507 		 * may not directly point to the object being released, but to
8508 		 * dynptr pointing to such object, which might be at some offset
8509 		 * on the stack. In that case, we simply to fallback to the
8510 		 * default handling.
8511 		 */
8512 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8513 			return 0;
8514 
8515 		/* Doing check_ptr_off_reg check for the offset will catch this
8516 		 * because fixed_off_ok is false, but checking here allows us
8517 		 * to give the user a better error message.
8518 		 */
8519 		if (reg->off) {
8520 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8521 				regno);
8522 			return -EINVAL;
8523 		}
8524 		return __check_ptr_off_reg(env, reg, regno, false);
8525 	}
8526 
8527 	switch (type) {
8528 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8529 	case PTR_TO_STACK:
8530 	case PTR_TO_PACKET:
8531 	case PTR_TO_PACKET_META:
8532 	case PTR_TO_MAP_KEY:
8533 	case PTR_TO_MAP_VALUE:
8534 	case PTR_TO_MEM:
8535 	case PTR_TO_MEM | MEM_RDONLY:
8536 	case PTR_TO_MEM | MEM_RINGBUF:
8537 	case PTR_TO_BUF:
8538 	case PTR_TO_BUF | MEM_RDONLY:
8539 	case SCALAR_VALUE:
8540 		return 0;
8541 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8542 	 * fixed offset.
8543 	 */
8544 	case PTR_TO_BTF_ID:
8545 	case PTR_TO_BTF_ID | MEM_ALLOC:
8546 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8547 	case PTR_TO_BTF_ID | MEM_RCU:
8548 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8549 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8550 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8551 		 * its fixed offset must be 0. In the other cases, fixed offset
8552 		 * can be non-zero. This was already checked above. So pass
8553 		 * fixed_off_ok as true to allow fixed offset for all other
8554 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8555 		 * still need to do checks instead of returning.
8556 		 */
8557 		return __check_ptr_off_reg(env, reg, regno, true);
8558 	default:
8559 		return __check_ptr_off_reg(env, reg, regno, false);
8560 	}
8561 }
8562 
8563 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8564 						const struct bpf_func_proto *fn,
8565 						struct bpf_reg_state *regs)
8566 {
8567 	struct bpf_reg_state *state = NULL;
8568 	int i;
8569 
8570 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8571 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8572 			if (state) {
8573 				verbose(env, "verifier internal error: multiple dynptr args\n");
8574 				return NULL;
8575 			}
8576 			state = &regs[BPF_REG_1 + i];
8577 		}
8578 
8579 	if (!state)
8580 		verbose(env, "verifier internal error: no dynptr arg found\n");
8581 
8582 	return state;
8583 }
8584 
8585 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8586 {
8587 	struct bpf_func_state *state = func(env, reg);
8588 	int spi;
8589 
8590 	if (reg->type == CONST_PTR_TO_DYNPTR)
8591 		return reg->id;
8592 	spi = dynptr_get_spi(env, reg);
8593 	if (spi < 0)
8594 		return spi;
8595 	return state->stack[spi].spilled_ptr.id;
8596 }
8597 
8598 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8599 {
8600 	struct bpf_func_state *state = func(env, reg);
8601 	int spi;
8602 
8603 	if (reg->type == CONST_PTR_TO_DYNPTR)
8604 		return reg->ref_obj_id;
8605 	spi = dynptr_get_spi(env, reg);
8606 	if (spi < 0)
8607 		return spi;
8608 	return state->stack[spi].spilled_ptr.ref_obj_id;
8609 }
8610 
8611 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8612 					    struct bpf_reg_state *reg)
8613 {
8614 	struct bpf_func_state *state = func(env, reg);
8615 	int spi;
8616 
8617 	if (reg->type == CONST_PTR_TO_DYNPTR)
8618 		return reg->dynptr.type;
8619 
8620 	spi = __get_spi(reg->off);
8621 	if (spi < 0) {
8622 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8623 		return BPF_DYNPTR_TYPE_INVALID;
8624 	}
8625 
8626 	return state->stack[spi].spilled_ptr.dynptr.type;
8627 }
8628 
8629 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8630 			  struct bpf_call_arg_meta *meta,
8631 			  const struct bpf_func_proto *fn,
8632 			  int insn_idx)
8633 {
8634 	u32 regno = BPF_REG_1 + arg;
8635 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8636 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8637 	enum bpf_reg_type type = reg->type;
8638 	u32 *arg_btf_id = NULL;
8639 	int err = 0;
8640 
8641 	if (arg_type == ARG_DONTCARE)
8642 		return 0;
8643 
8644 	err = check_reg_arg(env, regno, SRC_OP);
8645 	if (err)
8646 		return err;
8647 
8648 	if (arg_type == ARG_ANYTHING) {
8649 		if (is_pointer_value(env, regno)) {
8650 			verbose(env, "R%d leaks addr into helper function\n",
8651 				regno);
8652 			return -EACCES;
8653 		}
8654 		return 0;
8655 	}
8656 
8657 	if (type_is_pkt_pointer(type) &&
8658 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8659 		verbose(env, "helper access to the packet is not allowed\n");
8660 		return -EACCES;
8661 	}
8662 
8663 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8664 		err = resolve_map_arg_type(env, meta, &arg_type);
8665 		if (err)
8666 			return err;
8667 	}
8668 
8669 	if (register_is_null(reg) && type_may_be_null(arg_type))
8670 		/* A NULL register has a SCALAR_VALUE type, so skip
8671 		 * type checking.
8672 		 */
8673 		goto skip_type_check;
8674 
8675 	/* arg_btf_id and arg_size are in a union. */
8676 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8677 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8678 		arg_btf_id = fn->arg_btf_id[arg];
8679 
8680 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8681 	if (err)
8682 		return err;
8683 
8684 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8685 	if (err)
8686 		return err;
8687 
8688 skip_type_check:
8689 	if (arg_type_is_release(arg_type)) {
8690 		if (arg_type_is_dynptr(arg_type)) {
8691 			struct bpf_func_state *state = func(env, reg);
8692 			int spi;
8693 
8694 			/* Only dynptr created on stack can be released, thus
8695 			 * the get_spi and stack state checks for spilled_ptr
8696 			 * should only be done before process_dynptr_func for
8697 			 * PTR_TO_STACK.
8698 			 */
8699 			if (reg->type == PTR_TO_STACK) {
8700 				spi = dynptr_get_spi(env, reg);
8701 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8702 					verbose(env, "arg %d is an unacquired reference\n", regno);
8703 					return -EINVAL;
8704 				}
8705 			} else {
8706 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8707 				return -EINVAL;
8708 			}
8709 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8710 			verbose(env, "R%d must be referenced when passed to release function\n",
8711 				regno);
8712 			return -EINVAL;
8713 		}
8714 		if (meta->release_regno) {
8715 			verbose(env, "verifier internal error: more than one release argument\n");
8716 			return -EFAULT;
8717 		}
8718 		meta->release_regno = regno;
8719 	}
8720 
8721 	if (reg->ref_obj_id) {
8722 		if (meta->ref_obj_id) {
8723 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8724 				regno, reg->ref_obj_id,
8725 				meta->ref_obj_id);
8726 			return -EFAULT;
8727 		}
8728 		meta->ref_obj_id = reg->ref_obj_id;
8729 	}
8730 
8731 	switch (base_type(arg_type)) {
8732 	case ARG_CONST_MAP_PTR:
8733 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8734 		if (meta->map_ptr) {
8735 			/* Use map_uid (which is unique id of inner map) to reject:
8736 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8737 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8738 			 * if (inner_map1 && inner_map2) {
8739 			 *     timer = bpf_map_lookup_elem(inner_map1);
8740 			 *     if (timer)
8741 			 *         // mismatch would have been allowed
8742 			 *         bpf_timer_init(timer, inner_map2);
8743 			 * }
8744 			 *
8745 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8746 			 */
8747 			if (meta->map_ptr != reg->map_ptr ||
8748 			    meta->map_uid != reg->map_uid) {
8749 				verbose(env,
8750 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8751 					meta->map_uid, reg->map_uid);
8752 				return -EINVAL;
8753 			}
8754 		}
8755 		meta->map_ptr = reg->map_ptr;
8756 		meta->map_uid = reg->map_uid;
8757 		break;
8758 	case ARG_PTR_TO_MAP_KEY:
8759 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8760 		 * check that [key, key + map->key_size) are within
8761 		 * stack limits and initialized
8762 		 */
8763 		if (!meta->map_ptr) {
8764 			/* in function declaration map_ptr must come before
8765 			 * map_key, so that it's verified and known before
8766 			 * we have to check map_key here. Otherwise it means
8767 			 * that kernel subsystem misconfigured verifier
8768 			 */
8769 			verbose(env, "invalid map_ptr to access map->key\n");
8770 			return -EACCES;
8771 		}
8772 		err = check_helper_mem_access(env, regno,
8773 					      meta->map_ptr->key_size, false,
8774 					      NULL);
8775 		break;
8776 	case ARG_PTR_TO_MAP_VALUE:
8777 		if (type_may_be_null(arg_type) && register_is_null(reg))
8778 			return 0;
8779 
8780 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8781 		 * check [value, value + map->value_size) validity
8782 		 */
8783 		if (!meta->map_ptr) {
8784 			/* kernel subsystem misconfigured verifier */
8785 			verbose(env, "invalid map_ptr to access map->value\n");
8786 			return -EACCES;
8787 		}
8788 		meta->raw_mode = arg_type & MEM_UNINIT;
8789 		err = check_helper_mem_access(env, regno,
8790 					      meta->map_ptr->value_size, false,
8791 					      meta);
8792 		break;
8793 	case ARG_PTR_TO_PERCPU_BTF_ID:
8794 		if (!reg->btf_id) {
8795 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8796 			return -EACCES;
8797 		}
8798 		meta->ret_btf = reg->btf;
8799 		meta->ret_btf_id = reg->btf_id;
8800 		break;
8801 	case ARG_PTR_TO_SPIN_LOCK:
8802 		if (in_rbtree_lock_required_cb(env)) {
8803 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8804 			return -EACCES;
8805 		}
8806 		if (meta->func_id == BPF_FUNC_spin_lock) {
8807 			err = process_spin_lock(env, regno, true);
8808 			if (err)
8809 				return err;
8810 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8811 			err = process_spin_lock(env, regno, false);
8812 			if (err)
8813 				return err;
8814 		} else {
8815 			verbose(env, "verifier internal error\n");
8816 			return -EFAULT;
8817 		}
8818 		break;
8819 	case ARG_PTR_TO_TIMER:
8820 		err = process_timer_func(env, regno, meta);
8821 		if (err)
8822 			return err;
8823 		break;
8824 	case ARG_PTR_TO_FUNC:
8825 		meta->subprogno = reg->subprogno;
8826 		break;
8827 	case ARG_PTR_TO_MEM:
8828 		/* The access to this pointer is only checked when we hit the
8829 		 * next is_mem_size argument below.
8830 		 */
8831 		meta->raw_mode = arg_type & MEM_UNINIT;
8832 		if (arg_type & MEM_FIXED_SIZE) {
8833 			err = check_helper_mem_access(env, regno,
8834 						      fn->arg_size[arg], false,
8835 						      meta);
8836 		}
8837 		break;
8838 	case ARG_CONST_SIZE:
8839 		err = check_mem_size_reg(env, reg, regno, false, meta);
8840 		break;
8841 	case ARG_CONST_SIZE_OR_ZERO:
8842 		err = check_mem_size_reg(env, reg, regno, true, meta);
8843 		break;
8844 	case ARG_PTR_TO_DYNPTR:
8845 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8846 		if (err)
8847 			return err;
8848 		break;
8849 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8850 		if (!tnum_is_const(reg->var_off)) {
8851 			verbose(env, "R%d is not a known constant'\n",
8852 				regno);
8853 			return -EACCES;
8854 		}
8855 		meta->mem_size = reg->var_off.value;
8856 		err = mark_chain_precision(env, regno);
8857 		if (err)
8858 			return err;
8859 		break;
8860 	case ARG_PTR_TO_INT:
8861 	case ARG_PTR_TO_LONG:
8862 	{
8863 		int size = int_ptr_type_to_size(arg_type);
8864 
8865 		err = check_helper_mem_access(env, regno, size, false, meta);
8866 		if (err)
8867 			return err;
8868 		err = check_ptr_alignment(env, reg, 0, size, true);
8869 		break;
8870 	}
8871 	case ARG_PTR_TO_CONST_STR:
8872 	{
8873 		struct bpf_map *map = reg->map_ptr;
8874 		int map_off;
8875 		u64 map_addr;
8876 		char *str_ptr;
8877 
8878 		if (!bpf_map_is_rdonly(map)) {
8879 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8880 			return -EACCES;
8881 		}
8882 
8883 		if (!tnum_is_const(reg->var_off)) {
8884 			verbose(env, "R%d is not a constant address'\n", regno);
8885 			return -EACCES;
8886 		}
8887 
8888 		if (!map->ops->map_direct_value_addr) {
8889 			verbose(env, "no direct value access support for this map type\n");
8890 			return -EACCES;
8891 		}
8892 
8893 		err = check_map_access(env, regno, reg->off,
8894 				       map->value_size - reg->off, false,
8895 				       ACCESS_HELPER);
8896 		if (err)
8897 			return err;
8898 
8899 		map_off = reg->off + reg->var_off.value;
8900 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8901 		if (err) {
8902 			verbose(env, "direct value access on string failed\n");
8903 			return err;
8904 		}
8905 
8906 		str_ptr = (char *)(long)(map_addr);
8907 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8908 			verbose(env, "string is not zero-terminated\n");
8909 			return -EINVAL;
8910 		}
8911 		break;
8912 	}
8913 	case ARG_PTR_TO_KPTR:
8914 		err = process_kptr_func(env, regno, meta);
8915 		if (err)
8916 			return err;
8917 		break;
8918 	}
8919 
8920 	return err;
8921 }
8922 
8923 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8924 {
8925 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8926 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8927 
8928 	if (func_id != BPF_FUNC_map_update_elem)
8929 		return false;
8930 
8931 	/* It's not possible to get access to a locked struct sock in these
8932 	 * contexts, so updating is safe.
8933 	 */
8934 	switch (type) {
8935 	case BPF_PROG_TYPE_TRACING:
8936 		if (eatype == BPF_TRACE_ITER)
8937 			return true;
8938 		break;
8939 	case BPF_PROG_TYPE_SOCKET_FILTER:
8940 	case BPF_PROG_TYPE_SCHED_CLS:
8941 	case BPF_PROG_TYPE_SCHED_ACT:
8942 	case BPF_PROG_TYPE_XDP:
8943 	case BPF_PROG_TYPE_SK_REUSEPORT:
8944 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8945 	case BPF_PROG_TYPE_SK_LOOKUP:
8946 		return true;
8947 	default:
8948 		break;
8949 	}
8950 
8951 	verbose(env, "cannot update sockmap in this context\n");
8952 	return false;
8953 }
8954 
8955 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8956 {
8957 	return env->prog->jit_requested &&
8958 	       bpf_jit_supports_subprog_tailcalls();
8959 }
8960 
8961 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8962 					struct bpf_map *map, int func_id)
8963 {
8964 	if (!map)
8965 		return 0;
8966 
8967 	/* We need a two way check, first is from map perspective ... */
8968 	switch (map->map_type) {
8969 	case BPF_MAP_TYPE_PROG_ARRAY:
8970 		if (func_id != BPF_FUNC_tail_call)
8971 			goto error;
8972 		break;
8973 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8974 		if (func_id != BPF_FUNC_perf_event_read &&
8975 		    func_id != BPF_FUNC_perf_event_output &&
8976 		    func_id != BPF_FUNC_skb_output &&
8977 		    func_id != BPF_FUNC_perf_event_read_value &&
8978 		    func_id != BPF_FUNC_xdp_output)
8979 			goto error;
8980 		break;
8981 	case BPF_MAP_TYPE_RINGBUF:
8982 		if (func_id != BPF_FUNC_ringbuf_output &&
8983 		    func_id != BPF_FUNC_ringbuf_reserve &&
8984 		    func_id != BPF_FUNC_ringbuf_query &&
8985 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8986 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8987 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8988 			goto error;
8989 		break;
8990 	case BPF_MAP_TYPE_USER_RINGBUF:
8991 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8992 			goto error;
8993 		break;
8994 	case BPF_MAP_TYPE_STACK_TRACE:
8995 		if (func_id != BPF_FUNC_get_stackid)
8996 			goto error;
8997 		break;
8998 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8999 		if (func_id != BPF_FUNC_skb_under_cgroup &&
9000 		    func_id != BPF_FUNC_current_task_under_cgroup)
9001 			goto error;
9002 		break;
9003 	case BPF_MAP_TYPE_CGROUP_STORAGE:
9004 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9005 		if (func_id != BPF_FUNC_get_local_storage)
9006 			goto error;
9007 		break;
9008 	case BPF_MAP_TYPE_DEVMAP:
9009 	case BPF_MAP_TYPE_DEVMAP_HASH:
9010 		if (func_id != BPF_FUNC_redirect_map &&
9011 		    func_id != BPF_FUNC_map_lookup_elem)
9012 			goto error;
9013 		break;
9014 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
9015 	 * appear.
9016 	 */
9017 	case BPF_MAP_TYPE_CPUMAP:
9018 		if (func_id != BPF_FUNC_redirect_map)
9019 			goto error;
9020 		break;
9021 	case BPF_MAP_TYPE_XSKMAP:
9022 		if (func_id != BPF_FUNC_redirect_map &&
9023 		    func_id != BPF_FUNC_map_lookup_elem)
9024 			goto error;
9025 		break;
9026 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9027 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9028 		if (func_id != BPF_FUNC_map_lookup_elem)
9029 			goto error;
9030 		break;
9031 	case BPF_MAP_TYPE_SOCKMAP:
9032 		if (func_id != BPF_FUNC_sk_redirect_map &&
9033 		    func_id != BPF_FUNC_sock_map_update &&
9034 		    func_id != BPF_FUNC_map_delete_elem &&
9035 		    func_id != BPF_FUNC_msg_redirect_map &&
9036 		    func_id != BPF_FUNC_sk_select_reuseport &&
9037 		    func_id != BPF_FUNC_map_lookup_elem &&
9038 		    !may_update_sockmap(env, func_id))
9039 			goto error;
9040 		break;
9041 	case BPF_MAP_TYPE_SOCKHASH:
9042 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9043 		    func_id != BPF_FUNC_sock_hash_update &&
9044 		    func_id != BPF_FUNC_map_delete_elem &&
9045 		    func_id != BPF_FUNC_msg_redirect_hash &&
9046 		    func_id != BPF_FUNC_sk_select_reuseport &&
9047 		    func_id != BPF_FUNC_map_lookup_elem &&
9048 		    !may_update_sockmap(env, func_id))
9049 			goto error;
9050 		break;
9051 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9052 		if (func_id != BPF_FUNC_sk_select_reuseport)
9053 			goto error;
9054 		break;
9055 	case BPF_MAP_TYPE_QUEUE:
9056 	case BPF_MAP_TYPE_STACK:
9057 		if (func_id != BPF_FUNC_map_peek_elem &&
9058 		    func_id != BPF_FUNC_map_pop_elem &&
9059 		    func_id != BPF_FUNC_map_push_elem)
9060 			goto error;
9061 		break;
9062 	case BPF_MAP_TYPE_SK_STORAGE:
9063 		if (func_id != BPF_FUNC_sk_storage_get &&
9064 		    func_id != BPF_FUNC_sk_storage_delete &&
9065 		    func_id != BPF_FUNC_kptr_xchg)
9066 			goto error;
9067 		break;
9068 	case BPF_MAP_TYPE_INODE_STORAGE:
9069 		if (func_id != BPF_FUNC_inode_storage_get &&
9070 		    func_id != BPF_FUNC_inode_storage_delete &&
9071 		    func_id != BPF_FUNC_kptr_xchg)
9072 			goto error;
9073 		break;
9074 	case BPF_MAP_TYPE_TASK_STORAGE:
9075 		if (func_id != BPF_FUNC_task_storage_get &&
9076 		    func_id != BPF_FUNC_task_storage_delete &&
9077 		    func_id != BPF_FUNC_kptr_xchg)
9078 			goto error;
9079 		break;
9080 	case BPF_MAP_TYPE_CGRP_STORAGE:
9081 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9082 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9083 		    func_id != BPF_FUNC_kptr_xchg)
9084 			goto error;
9085 		break;
9086 	case BPF_MAP_TYPE_BLOOM_FILTER:
9087 		if (func_id != BPF_FUNC_map_peek_elem &&
9088 		    func_id != BPF_FUNC_map_push_elem)
9089 			goto error;
9090 		break;
9091 	default:
9092 		break;
9093 	}
9094 
9095 	/* ... and second from the function itself. */
9096 	switch (func_id) {
9097 	case BPF_FUNC_tail_call:
9098 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9099 			goto error;
9100 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9101 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9102 			return -EINVAL;
9103 		}
9104 		break;
9105 	case BPF_FUNC_perf_event_read:
9106 	case BPF_FUNC_perf_event_output:
9107 	case BPF_FUNC_perf_event_read_value:
9108 	case BPF_FUNC_skb_output:
9109 	case BPF_FUNC_xdp_output:
9110 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9111 			goto error;
9112 		break;
9113 	case BPF_FUNC_ringbuf_output:
9114 	case BPF_FUNC_ringbuf_reserve:
9115 	case BPF_FUNC_ringbuf_query:
9116 	case BPF_FUNC_ringbuf_reserve_dynptr:
9117 	case BPF_FUNC_ringbuf_submit_dynptr:
9118 	case BPF_FUNC_ringbuf_discard_dynptr:
9119 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9120 			goto error;
9121 		break;
9122 	case BPF_FUNC_user_ringbuf_drain:
9123 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9124 			goto error;
9125 		break;
9126 	case BPF_FUNC_get_stackid:
9127 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9128 			goto error;
9129 		break;
9130 	case BPF_FUNC_current_task_under_cgroup:
9131 	case BPF_FUNC_skb_under_cgroup:
9132 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9133 			goto error;
9134 		break;
9135 	case BPF_FUNC_redirect_map:
9136 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9137 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9138 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9139 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9140 			goto error;
9141 		break;
9142 	case BPF_FUNC_sk_redirect_map:
9143 	case BPF_FUNC_msg_redirect_map:
9144 	case BPF_FUNC_sock_map_update:
9145 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9146 			goto error;
9147 		break;
9148 	case BPF_FUNC_sk_redirect_hash:
9149 	case BPF_FUNC_msg_redirect_hash:
9150 	case BPF_FUNC_sock_hash_update:
9151 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9152 			goto error;
9153 		break;
9154 	case BPF_FUNC_get_local_storage:
9155 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9156 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9157 			goto error;
9158 		break;
9159 	case BPF_FUNC_sk_select_reuseport:
9160 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9161 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9162 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9163 			goto error;
9164 		break;
9165 	case BPF_FUNC_map_pop_elem:
9166 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9167 		    map->map_type != BPF_MAP_TYPE_STACK)
9168 			goto error;
9169 		break;
9170 	case BPF_FUNC_map_peek_elem:
9171 	case BPF_FUNC_map_push_elem:
9172 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9173 		    map->map_type != BPF_MAP_TYPE_STACK &&
9174 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9175 			goto error;
9176 		break;
9177 	case BPF_FUNC_map_lookup_percpu_elem:
9178 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9179 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9180 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9181 			goto error;
9182 		break;
9183 	case BPF_FUNC_sk_storage_get:
9184 	case BPF_FUNC_sk_storage_delete:
9185 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9186 			goto error;
9187 		break;
9188 	case BPF_FUNC_inode_storage_get:
9189 	case BPF_FUNC_inode_storage_delete:
9190 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9191 			goto error;
9192 		break;
9193 	case BPF_FUNC_task_storage_get:
9194 	case BPF_FUNC_task_storage_delete:
9195 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9196 			goto error;
9197 		break;
9198 	case BPF_FUNC_cgrp_storage_get:
9199 	case BPF_FUNC_cgrp_storage_delete:
9200 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9201 			goto error;
9202 		break;
9203 	default:
9204 		break;
9205 	}
9206 
9207 	return 0;
9208 error:
9209 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9210 		map->map_type, func_id_name(func_id), func_id);
9211 	return -EINVAL;
9212 }
9213 
9214 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9215 {
9216 	int count = 0;
9217 
9218 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9219 		count++;
9220 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9221 		count++;
9222 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9223 		count++;
9224 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9225 		count++;
9226 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9227 		count++;
9228 
9229 	/* We only support one arg being in raw mode at the moment,
9230 	 * which is sufficient for the helper functions we have
9231 	 * right now.
9232 	 */
9233 	return count <= 1;
9234 }
9235 
9236 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9237 {
9238 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9239 	bool has_size = fn->arg_size[arg] != 0;
9240 	bool is_next_size = false;
9241 
9242 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9243 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9244 
9245 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9246 		return is_next_size;
9247 
9248 	return has_size == is_next_size || is_next_size == is_fixed;
9249 }
9250 
9251 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9252 {
9253 	/* bpf_xxx(..., buf, len) call will access 'len'
9254 	 * bytes from memory 'buf'. Both arg types need
9255 	 * to be paired, so make sure there's no buggy
9256 	 * helper function specification.
9257 	 */
9258 	if (arg_type_is_mem_size(fn->arg1_type) ||
9259 	    check_args_pair_invalid(fn, 0) ||
9260 	    check_args_pair_invalid(fn, 1) ||
9261 	    check_args_pair_invalid(fn, 2) ||
9262 	    check_args_pair_invalid(fn, 3) ||
9263 	    check_args_pair_invalid(fn, 4))
9264 		return false;
9265 
9266 	return true;
9267 }
9268 
9269 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9270 {
9271 	int i;
9272 
9273 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9274 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9275 			return !!fn->arg_btf_id[i];
9276 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9277 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9278 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9279 		    /* arg_btf_id and arg_size are in a union. */
9280 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9281 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9282 			return false;
9283 	}
9284 
9285 	return true;
9286 }
9287 
9288 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9289 {
9290 	return check_raw_mode_ok(fn) &&
9291 	       check_arg_pair_ok(fn) &&
9292 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9293 }
9294 
9295 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9296  * are now invalid, so turn them into unknown SCALAR_VALUE.
9297  *
9298  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9299  * since these slices point to packet data.
9300  */
9301 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9302 {
9303 	struct bpf_func_state *state;
9304 	struct bpf_reg_state *reg;
9305 
9306 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9307 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9308 			mark_reg_invalid(env, reg);
9309 	}));
9310 }
9311 
9312 enum {
9313 	AT_PKT_END = -1,
9314 	BEYOND_PKT_END = -2,
9315 };
9316 
9317 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9318 {
9319 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9320 	struct bpf_reg_state *reg = &state->regs[regn];
9321 
9322 	if (reg->type != PTR_TO_PACKET)
9323 		/* PTR_TO_PACKET_META is not supported yet */
9324 		return;
9325 
9326 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9327 	 * How far beyond pkt_end it goes is unknown.
9328 	 * if (!range_open) it's the case of pkt >= pkt_end
9329 	 * if (range_open) it's the case of pkt > pkt_end
9330 	 * hence this pointer is at least 1 byte bigger than pkt_end
9331 	 */
9332 	if (range_open)
9333 		reg->range = BEYOND_PKT_END;
9334 	else
9335 		reg->range = AT_PKT_END;
9336 }
9337 
9338 /* The pointer with the specified id has released its reference to kernel
9339  * resources. Identify all copies of the same pointer and clear the reference.
9340  */
9341 static int release_reference(struct bpf_verifier_env *env,
9342 			     int ref_obj_id)
9343 {
9344 	struct bpf_func_state *state;
9345 	struct bpf_reg_state *reg;
9346 	int err;
9347 
9348 	err = release_reference_state(cur_func(env), ref_obj_id);
9349 	if (err)
9350 		return err;
9351 
9352 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9353 		if (reg->ref_obj_id == ref_obj_id)
9354 			mark_reg_invalid(env, reg);
9355 	}));
9356 
9357 	return 0;
9358 }
9359 
9360 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9361 {
9362 	struct bpf_func_state *unused;
9363 	struct bpf_reg_state *reg;
9364 
9365 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9366 		if (type_is_non_owning_ref(reg->type))
9367 			mark_reg_invalid(env, reg);
9368 	}));
9369 }
9370 
9371 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9372 				    struct bpf_reg_state *regs)
9373 {
9374 	int i;
9375 
9376 	/* after the call registers r0 - r5 were scratched */
9377 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9378 		mark_reg_not_init(env, regs, caller_saved[i]);
9379 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9380 	}
9381 }
9382 
9383 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9384 				   struct bpf_func_state *caller,
9385 				   struct bpf_func_state *callee,
9386 				   int insn_idx);
9387 
9388 static int set_callee_state(struct bpf_verifier_env *env,
9389 			    struct bpf_func_state *caller,
9390 			    struct bpf_func_state *callee, int insn_idx);
9391 
9392 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9393 			    set_callee_state_fn set_callee_state_cb,
9394 			    struct bpf_verifier_state *state)
9395 {
9396 	struct bpf_func_state *caller, *callee;
9397 	int err;
9398 
9399 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9400 		verbose(env, "the call stack of %d frames is too deep\n",
9401 			state->curframe + 2);
9402 		return -E2BIG;
9403 	}
9404 
9405 	if (state->frame[state->curframe + 1]) {
9406 		verbose(env, "verifier bug. Frame %d already allocated\n",
9407 			state->curframe + 1);
9408 		return -EFAULT;
9409 	}
9410 
9411 	caller = state->frame[state->curframe];
9412 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9413 	if (!callee)
9414 		return -ENOMEM;
9415 	state->frame[state->curframe + 1] = callee;
9416 
9417 	/* callee cannot access r0, r6 - r9 for reading and has to write
9418 	 * into its own stack before reading from it.
9419 	 * callee can read/write into caller's stack
9420 	 */
9421 	init_func_state(env, callee,
9422 			/* remember the callsite, it will be used by bpf_exit */
9423 			callsite,
9424 			state->curframe + 1 /* frameno within this callchain */,
9425 			subprog /* subprog number within this prog */);
9426 	/* Transfer references to the callee */
9427 	err = copy_reference_state(callee, caller);
9428 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9429 	if (err)
9430 		goto err_out;
9431 
9432 	/* only increment it after check_reg_arg() finished */
9433 	state->curframe++;
9434 
9435 	return 0;
9436 
9437 err_out:
9438 	free_func_state(callee);
9439 	state->frame[state->curframe + 1] = NULL;
9440 	return err;
9441 }
9442 
9443 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9444 			      int insn_idx, int subprog,
9445 			      set_callee_state_fn set_callee_state_cb)
9446 {
9447 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9448 	struct bpf_func_state *caller, *callee;
9449 	int err;
9450 
9451 	caller = state->frame[state->curframe];
9452 	err = btf_check_subprog_call(env, subprog, caller->regs);
9453 	if (err == -EFAULT)
9454 		return err;
9455 
9456 	/* set_callee_state is used for direct subprog calls, but we are
9457 	 * interested in validating only BPF helpers that can call subprogs as
9458 	 * callbacks
9459 	 */
9460 	env->subprog_info[subprog].is_cb = true;
9461 	if (bpf_pseudo_kfunc_call(insn) &&
9462 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9463 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9464 			func_id_name(insn->imm), insn->imm);
9465 		return -EFAULT;
9466 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9467 		   !is_callback_calling_function(insn->imm)) { /* helper */
9468 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9469 			func_id_name(insn->imm), insn->imm);
9470 		return -EFAULT;
9471 	}
9472 
9473 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9474 	    insn->src_reg == 0 &&
9475 	    insn->imm == BPF_FUNC_timer_set_callback) {
9476 		struct bpf_verifier_state *async_cb;
9477 
9478 		/* there is no real recursion here. timer callbacks are async */
9479 		env->subprog_info[subprog].is_async_cb = true;
9480 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9481 					 insn_idx, subprog);
9482 		if (!async_cb)
9483 			return -EFAULT;
9484 		callee = async_cb->frame[0];
9485 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9486 
9487 		/* Convert bpf_timer_set_callback() args into timer callback args */
9488 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9489 		if (err)
9490 			return err;
9491 
9492 		return 0;
9493 	}
9494 
9495 	/* for callback functions enqueue entry to callback and
9496 	 * proceed with next instruction within current frame.
9497 	 */
9498 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9499 	if (!callback_state)
9500 		return -ENOMEM;
9501 
9502 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9503 			       callback_state);
9504 	if (err)
9505 		return err;
9506 
9507 	callback_state->callback_unroll_depth++;
9508 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9509 	caller->callback_depth = 0;
9510 	return 0;
9511 }
9512 
9513 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9514 			   int *insn_idx)
9515 {
9516 	struct bpf_verifier_state *state = env->cur_state;
9517 	struct bpf_func_state *caller;
9518 	int err, subprog, target_insn;
9519 
9520 	target_insn = *insn_idx + insn->imm + 1;
9521 	subprog = find_subprog(env, target_insn);
9522 	if (subprog < 0) {
9523 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9524 		return -EFAULT;
9525 	}
9526 
9527 	caller = state->frame[state->curframe];
9528 	err = btf_check_subprog_call(env, subprog, caller->regs);
9529 	if (err == -EFAULT)
9530 		return err;
9531 	if (subprog_is_global(env, subprog)) {
9532 		if (err) {
9533 			verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9534 			return err;
9535 		}
9536 
9537 		if (env->log.level & BPF_LOG_LEVEL)
9538 			verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9539 		clear_caller_saved_regs(env, caller->regs);
9540 
9541 		/* All global functions return a 64-bit SCALAR_VALUE */
9542 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9543 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9544 
9545 		/* continue with next insn after call */
9546 		return 0;
9547 	}
9548 
9549 	/* for regular function entry setup new frame and continue
9550 	 * from that frame.
9551 	 */
9552 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9553 	if (err)
9554 		return err;
9555 
9556 	clear_caller_saved_regs(env, caller->regs);
9557 
9558 	/* and go analyze first insn of the callee */
9559 	*insn_idx = env->subprog_info[subprog].start - 1;
9560 
9561 	if (env->log.level & BPF_LOG_LEVEL) {
9562 		verbose(env, "caller:\n");
9563 		print_verifier_state(env, caller, true);
9564 		verbose(env, "callee:\n");
9565 		print_verifier_state(env, state->frame[state->curframe], true);
9566 	}
9567 
9568 	return 0;
9569 }
9570 
9571 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9572 				   struct bpf_func_state *caller,
9573 				   struct bpf_func_state *callee)
9574 {
9575 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9576 	 *      void *callback_ctx, u64 flags);
9577 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9578 	 *      void *callback_ctx);
9579 	 */
9580 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9581 
9582 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9583 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9584 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9585 
9586 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9587 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9588 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9589 
9590 	/* pointer to stack or null */
9591 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9592 
9593 	/* unused */
9594 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9595 	return 0;
9596 }
9597 
9598 static int set_callee_state(struct bpf_verifier_env *env,
9599 			    struct bpf_func_state *caller,
9600 			    struct bpf_func_state *callee, int insn_idx)
9601 {
9602 	int i;
9603 
9604 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9605 	 * pointers, which connects us up to the liveness chain
9606 	 */
9607 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9608 		callee->regs[i] = caller->regs[i];
9609 	return 0;
9610 }
9611 
9612 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9613 				       struct bpf_func_state *caller,
9614 				       struct bpf_func_state *callee,
9615 				       int insn_idx)
9616 {
9617 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9618 	struct bpf_map *map;
9619 	int err;
9620 
9621 	if (bpf_map_ptr_poisoned(insn_aux)) {
9622 		verbose(env, "tail_call abusing map_ptr\n");
9623 		return -EINVAL;
9624 	}
9625 
9626 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9627 	if (!map->ops->map_set_for_each_callback_args ||
9628 	    !map->ops->map_for_each_callback) {
9629 		verbose(env, "callback function not allowed for map\n");
9630 		return -ENOTSUPP;
9631 	}
9632 
9633 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9634 	if (err)
9635 		return err;
9636 
9637 	callee->in_callback_fn = true;
9638 	callee->callback_ret_range = tnum_range(0, 1);
9639 	return 0;
9640 }
9641 
9642 static int set_loop_callback_state(struct bpf_verifier_env *env,
9643 				   struct bpf_func_state *caller,
9644 				   struct bpf_func_state *callee,
9645 				   int insn_idx)
9646 {
9647 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9648 	 *	    u64 flags);
9649 	 * callback_fn(u32 index, void *callback_ctx);
9650 	 */
9651 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9652 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9653 
9654 	/* unused */
9655 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9656 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9657 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9658 
9659 	callee->in_callback_fn = true;
9660 	callee->callback_ret_range = tnum_range(0, 1);
9661 	return 0;
9662 }
9663 
9664 static int set_timer_callback_state(struct bpf_verifier_env *env,
9665 				    struct bpf_func_state *caller,
9666 				    struct bpf_func_state *callee,
9667 				    int insn_idx)
9668 {
9669 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9670 
9671 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9672 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9673 	 */
9674 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9675 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9676 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9677 
9678 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9679 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9680 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9681 
9682 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9683 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9684 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9685 
9686 	/* unused */
9687 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9688 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9689 	callee->in_async_callback_fn = true;
9690 	callee->callback_ret_range = tnum_range(0, 1);
9691 	return 0;
9692 }
9693 
9694 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9695 				       struct bpf_func_state *caller,
9696 				       struct bpf_func_state *callee,
9697 				       int insn_idx)
9698 {
9699 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9700 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9701 	 * (callback_fn)(struct task_struct *task,
9702 	 *               struct vm_area_struct *vma, void *callback_ctx);
9703 	 */
9704 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9705 
9706 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9707 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9708 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9709 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9710 
9711 	/* pointer to stack or null */
9712 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9713 
9714 	/* unused */
9715 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9716 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9717 	callee->in_callback_fn = true;
9718 	callee->callback_ret_range = tnum_range(0, 1);
9719 	return 0;
9720 }
9721 
9722 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9723 					   struct bpf_func_state *caller,
9724 					   struct bpf_func_state *callee,
9725 					   int insn_idx)
9726 {
9727 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9728 	 *			  callback_ctx, u64 flags);
9729 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9730 	 */
9731 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9732 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9733 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9734 
9735 	/* unused */
9736 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9737 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9738 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9739 
9740 	callee->in_callback_fn = true;
9741 	callee->callback_ret_range = tnum_range(0, 1);
9742 	return 0;
9743 }
9744 
9745 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9746 					 struct bpf_func_state *caller,
9747 					 struct bpf_func_state *callee,
9748 					 int insn_idx)
9749 {
9750 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9751 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9752 	 *
9753 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9754 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9755 	 * by this point, so look at 'root'
9756 	 */
9757 	struct btf_field *field;
9758 
9759 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9760 				      BPF_RB_ROOT);
9761 	if (!field || !field->graph_root.value_btf_id)
9762 		return -EFAULT;
9763 
9764 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9765 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9766 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9767 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9768 
9769 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9770 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9771 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9772 	callee->in_callback_fn = true;
9773 	callee->callback_ret_range = tnum_range(0, 1);
9774 	return 0;
9775 }
9776 
9777 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9778 
9779 /* Are we currently verifying the callback for a rbtree helper that must
9780  * be called with lock held? If so, no need to complain about unreleased
9781  * lock
9782  */
9783 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9784 {
9785 	struct bpf_verifier_state *state = env->cur_state;
9786 	struct bpf_insn *insn = env->prog->insnsi;
9787 	struct bpf_func_state *callee;
9788 	int kfunc_btf_id;
9789 
9790 	if (!state->curframe)
9791 		return false;
9792 
9793 	callee = state->frame[state->curframe];
9794 
9795 	if (!callee->in_callback_fn)
9796 		return false;
9797 
9798 	kfunc_btf_id = insn[callee->callsite].imm;
9799 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9800 }
9801 
9802 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9803 {
9804 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9805 	struct bpf_func_state *caller, *callee;
9806 	struct bpf_reg_state *r0;
9807 	bool in_callback_fn;
9808 	int err;
9809 
9810 	callee = state->frame[state->curframe];
9811 	r0 = &callee->regs[BPF_REG_0];
9812 	if (r0->type == PTR_TO_STACK) {
9813 		/* technically it's ok to return caller's stack pointer
9814 		 * (or caller's caller's pointer) back to the caller,
9815 		 * since these pointers are valid. Only current stack
9816 		 * pointer will be invalid as soon as function exits,
9817 		 * but let's be conservative
9818 		 */
9819 		verbose(env, "cannot return stack pointer to the caller\n");
9820 		return -EINVAL;
9821 	}
9822 
9823 	caller = state->frame[state->curframe - 1];
9824 	if (callee->in_callback_fn) {
9825 		/* enforce R0 return value range [0, 1]. */
9826 		struct tnum range = callee->callback_ret_range;
9827 
9828 		if (r0->type != SCALAR_VALUE) {
9829 			verbose(env, "R0 not a scalar value\n");
9830 			return -EACCES;
9831 		}
9832 		if (!tnum_in(range, r0->var_off)) {
9833 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9834 			return -EINVAL;
9835 		}
9836 		if (!calls_callback(env, callee->callsite)) {
9837 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9838 				*insn_idx, callee->callsite);
9839 			return -EFAULT;
9840 		}
9841 	} else {
9842 		/* return to the caller whatever r0 had in the callee */
9843 		caller->regs[BPF_REG_0] = *r0;
9844 	}
9845 
9846 	/* callback_fn frame should have released its own additions to parent's
9847 	 * reference state at this point, or check_reference_leak would
9848 	 * complain, hence it must be the same as the caller. There is no need
9849 	 * to copy it back.
9850 	 */
9851 	if (!callee->in_callback_fn) {
9852 		/* Transfer references to the caller */
9853 		err = copy_reference_state(caller, callee);
9854 		if (err)
9855 			return err;
9856 	}
9857 
9858 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9859 	 * there function call logic would reschedule callback visit. If iteration
9860 	 * converges is_state_visited() would prune that visit eventually.
9861 	 */
9862 	in_callback_fn = callee->in_callback_fn;
9863 	if (in_callback_fn)
9864 		*insn_idx = callee->callsite;
9865 	else
9866 		*insn_idx = callee->callsite + 1;
9867 
9868 	if (env->log.level & BPF_LOG_LEVEL) {
9869 		verbose(env, "returning from callee:\n");
9870 		print_verifier_state(env, callee, true);
9871 		verbose(env, "to caller at %d:\n", *insn_idx);
9872 		print_verifier_state(env, caller, true);
9873 	}
9874 	/* clear everything in the callee. In case of exceptional exits using
9875 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9876 	free_func_state(callee);
9877 	state->frame[state->curframe--] = NULL;
9878 
9879 	/* for callbacks widen imprecise scalars to make programs like below verify:
9880 	 *
9881 	 *   struct ctx { int i; }
9882 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9883 	 *   ...
9884 	 *   struct ctx = { .i = 0; }
9885 	 *   bpf_loop(100, cb, &ctx, 0);
9886 	 *
9887 	 * This is similar to what is done in process_iter_next_call() for open
9888 	 * coded iterators.
9889 	 */
9890 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9891 	if (prev_st) {
9892 		err = widen_imprecise_scalars(env, prev_st, state);
9893 		if (err)
9894 			return err;
9895 	}
9896 	return 0;
9897 }
9898 
9899 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9900 				   int func_id,
9901 				   struct bpf_call_arg_meta *meta)
9902 {
9903 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9904 
9905 	if (ret_type != RET_INTEGER)
9906 		return;
9907 
9908 	switch (func_id) {
9909 	case BPF_FUNC_get_stack:
9910 	case BPF_FUNC_get_task_stack:
9911 	case BPF_FUNC_probe_read_str:
9912 	case BPF_FUNC_probe_read_kernel_str:
9913 	case BPF_FUNC_probe_read_user_str:
9914 		ret_reg->smax_value = meta->msize_max_value;
9915 		ret_reg->s32_max_value = meta->msize_max_value;
9916 		ret_reg->smin_value = -MAX_ERRNO;
9917 		ret_reg->s32_min_value = -MAX_ERRNO;
9918 		reg_bounds_sync(ret_reg);
9919 		break;
9920 	case BPF_FUNC_get_smp_processor_id:
9921 		ret_reg->umax_value = nr_cpu_ids - 1;
9922 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9923 		ret_reg->smax_value = nr_cpu_ids - 1;
9924 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9925 		ret_reg->umin_value = 0;
9926 		ret_reg->u32_min_value = 0;
9927 		ret_reg->smin_value = 0;
9928 		ret_reg->s32_min_value = 0;
9929 		reg_bounds_sync(ret_reg);
9930 		break;
9931 	}
9932 }
9933 
9934 static int
9935 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9936 		int func_id, int insn_idx)
9937 {
9938 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9939 	struct bpf_map *map = meta->map_ptr;
9940 
9941 	if (func_id != BPF_FUNC_tail_call &&
9942 	    func_id != BPF_FUNC_map_lookup_elem &&
9943 	    func_id != BPF_FUNC_map_update_elem &&
9944 	    func_id != BPF_FUNC_map_delete_elem &&
9945 	    func_id != BPF_FUNC_map_push_elem &&
9946 	    func_id != BPF_FUNC_map_pop_elem &&
9947 	    func_id != BPF_FUNC_map_peek_elem &&
9948 	    func_id != BPF_FUNC_for_each_map_elem &&
9949 	    func_id != BPF_FUNC_redirect_map &&
9950 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9951 		return 0;
9952 
9953 	if (map == NULL) {
9954 		verbose(env, "kernel subsystem misconfigured verifier\n");
9955 		return -EINVAL;
9956 	}
9957 
9958 	/* In case of read-only, some additional restrictions
9959 	 * need to be applied in order to prevent altering the
9960 	 * state of the map from program side.
9961 	 */
9962 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9963 	    (func_id == BPF_FUNC_map_delete_elem ||
9964 	     func_id == BPF_FUNC_map_update_elem ||
9965 	     func_id == BPF_FUNC_map_push_elem ||
9966 	     func_id == BPF_FUNC_map_pop_elem)) {
9967 		verbose(env, "write into map forbidden\n");
9968 		return -EACCES;
9969 	}
9970 
9971 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9972 		bpf_map_ptr_store(aux, meta->map_ptr,
9973 				  !meta->map_ptr->bypass_spec_v1);
9974 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9975 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9976 				  !meta->map_ptr->bypass_spec_v1);
9977 	return 0;
9978 }
9979 
9980 static int
9981 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9982 		int func_id, int insn_idx)
9983 {
9984 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9985 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9986 	struct bpf_map *map = meta->map_ptr;
9987 	u64 val, max;
9988 	int err;
9989 
9990 	if (func_id != BPF_FUNC_tail_call)
9991 		return 0;
9992 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9993 		verbose(env, "kernel subsystem misconfigured verifier\n");
9994 		return -EINVAL;
9995 	}
9996 
9997 	reg = &regs[BPF_REG_3];
9998 	val = reg->var_off.value;
9999 	max = map->max_entries;
10000 
10001 	if (!(register_is_const(reg) && val < max)) {
10002 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10003 		return 0;
10004 	}
10005 
10006 	err = mark_chain_precision(env, BPF_REG_3);
10007 	if (err)
10008 		return err;
10009 	if (bpf_map_key_unseen(aux))
10010 		bpf_map_key_store(aux, val);
10011 	else if (!bpf_map_key_poisoned(aux) &&
10012 		  bpf_map_key_immediate(aux) != val)
10013 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10014 	return 0;
10015 }
10016 
10017 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10018 {
10019 	struct bpf_func_state *state = cur_func(env);
10020 	bool refs_lingering = false;
10021 	int i;
10022 
10023 	if (!exception_exit && state->frameno && !state->in_callback_fn)
10024 		return 0;
10025 
10026 	for (i = 0; i < state->acquired_refs; i++) {
10027 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10028 			continue;
10029 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10030 			state->refs[i].id, state->refs[i].insn_idx);
10031 		refs_lingering = true;
10032 	}
10033 	return refs_lingering ? -EINVAL : 0;
10034 }
10035 
10036 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10037 				   struct bpf_reg_state *regs)
10038 {
10039 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10040 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10041 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10042 	struct bpf_bprintf_data data = {};
10043 	int err, fmt_map_off, num_args;
10044 	u64 fmt_addr;
10045 	char *fmt;
10046 
10047 	/* data must be an array of u64 */
10048 	if (data_len_reg->var_off.value % 8)
10049 		return -EINVAL;
10050 	num_args = data_len_reg->var_off.value / 8;
10051 
10052 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10053 	 * and map_direct_value_addr is set.
10054 	 */
10055 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10056 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10057 						  fmt_map_off);
10058 	if (err) {
10059 		verbose(env, "verifier bug\n");
10060 		return -EFAULT;
10061 	}
10062 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10063 
10064 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10065 	 * can focus on validating the format specifiers.
10066 	 */
10067 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10068 	if (err < 0)
10069 		verbose(env, "Invalid format string\n");
10070 
10071 	return err;
10072 }
10073 
10074 static int check_get_func_ip(struct bpf_verifier_env *env)
10075 {
10076 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10077 	int func_id = BPF_FUNC_get_func_ip;
10078 
10079 	if (type == BPF_PROG_TYPE_TRACING) {
10080 		if (!bpf_prog_has_trampoline(env->prog)) {
10081 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10082 				func_id_name(func_id), func_id);
10083 			return -ENOTSUPP;
10084 		}
10085 		return 0;
10086 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10087 		return 0;
10088 	}
10089 
10090 	verbose(env, "func %s#%d not supported for program type %d\n",
10091 		func_id_name(func_id), func_id, type);
10092 	return -ENOTSUPP;
10093 }
10094 
10095 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10096 {
10097 	return &env->insn_aux_data[env->insn_idx];
10098 }
10099 
10100 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10101 {
10102 	struct bpf_reg_state *regs = cur_regs(env);
10103 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10104 	bool reg_is_null = register_is_null(reg);
10105 
10106 	if (reg_is_null)
10107 		mark_chain_precision(env, BPF_REG_4);
10108 
10109 	return reg_is_null;
10110 }
10111 
10112 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10113 {
10114 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10115 
10116 	if (!state->initialized) {
10117 		state->initialized = 1;
10118 		state->fit_for_inline = loop_flag_is_zero(env);
10119 		state->callback_subprogno = subprogno;
10120 		return;
10121 	}
10122 
10123 	if (!state->fit_for_inline)
10124 		return;
10125 
10126 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10127 				 state->callback_subprogno == subprogno);
10128 }
10129 
10130 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10131 			     int *insn_idx_p)
10132 {
10133 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10134 	bool returns_cpu_specific_alloc_ptr = false;
10135 	const struct bpf_func_proto *fn = NULL;
10136 	enum bpf_return_type ret_type;
10137 	enum bpf_type_flag ret_flag;
10138 	struct bpf_reg_state *regs;
10139 	struct bpf_call_arg_meta meta;
10140 	int insn_idx = *insn_idx_p;
10141 	bool changes_data;
10142 	int i, err, func_id;
10143 
10144 	/* find function prototype */
10145 	func_id = insn->imm;
10146 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10147 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10148 			func_id);
10149 		return -EINVAL;
10150 	}
10151 
10152 	if (env->ops->get_func_proto)
10153 		fn = env->ops->get_func_proto(func_id, env->prog);
10154 	if (!fn) {
10155 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10156 			func_id);
10157 		return -EINVAL;
10158 	}
10159 
10160 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10161 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10162 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10163 		return -EINVAL;
10164 	}
10165 
10166 	if (fn->allowed && !fn->allowed(env->prog)) {
10167 		verbose(env, "helper call is not allowed in probe\n");
10168 		return -EINVAL;
10169 	}
10170 
10171 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10172 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10173 		return -EINVAL;
10174 	}
10175 
10176 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10177 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10178 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10179 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10180 			func_id_name(func_id), func_id);
10181 		return -EINVAL;
10182 	}
10183 
10184 	memset(&meta, 0, sizeof(meta));
10185 	meta.pkt_access = fn->pkt_access;
10186 
10187 	err = check_func_proto(fn, func_id);
10188 	if (err) {
10189 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10190 			func_id_name(func_id), func_id);
10191 		return err;
10192 	}
10193 
10194 	if (env->cur_state->active_rcu_lock) {
10195 		if (fn->might_sleep) {
10196 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10197 				func_id_name(func_id), func_id);
10198 			return -EINVAL;
10199 		}
10200 
10201 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10202 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10203 	}
10204 
10205 	meta.func_id = func_id;
10206 	/* check args */
10207 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10208 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10209 		if (err)
10210 			return err;
10211 	}
10212 
10213 	err = record_func_map(env, &meta, func_id, insn_idx);
10214 	if (err)
10215 		return err;
10216 
10217 	err = record_func_key(env, &meta, func_id, insn_idx);
10218 	if (err)
10219 		return err;
10220 
10221 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10222 	 * is inferred from register state.
10223 	 */
10224 	for (i = 0; i < meta.access_size; i++) {
10225 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10226 				       BPF_WRITE, -1, false, false);
10227 		if (err)
10228 			return err;
10229 	}
10230 
10231 	regs = cur_regs(env);
10232 
10233 	if (meta.release_regno) {
10234 		err = -EINVAL;
10235 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10236 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10237 		 * is safe to do directly.
10238 		 */
10239 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10240 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10241 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10242 				return -EFAULT;
10243 			}
10244 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10245 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10246 			u32 ref_obj_id = meta.ref_obj_id;
10247 			bool in_rcu = in_rcu_cs(env);
10248 			struct bpf_func_state *state;
10249 			struct bpf_reg_state *reg;
10250 
10251 			err = release_reference_state(cur_func(env), ref_obj_id);
10252 			if (!err) {
10253 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10254 					if (reg->ref_obj_id == ref_obj_id) {
10255 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10256 							reg->ref_obj_id = 0;
10257 							reg->type &= ~MEM_ALLOC;
10258 							reg->type |= MEM_RCU;
10259 						} else {
10260 							mark_reg_invalid(env, reg);
10261 						}
10262 					}
10263 				}));
10264 			}
10265 		} else if (meta.ref_obj_id) {
10266 			err = release_reference(env, meta.ref_obj_id);
10267 		} else if (register_is_null(&regs[meta.release_regno])) {
10268 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10269 			 * released is NULL, which must be > R0.
10270 			 */
10271 			err = 0;
10272 		}
10273 		if (err) {
10274 			verbose(env, "func %s#%d reference has not been acquired before\n",
10275 				func_id_name(func_id), func_id);
10276 			return err;
10277 		}
10278 	}
10279 
10280 	switch (func_id) {
10281 	case BPF_FUNC_tail_call:
10282 		err = check_reference_leak(env, false);
10283 		if (err) {
10284 			verbose(env, "tail_call would lead to reference leak\n");
10285 			return err;
10286 		}
10287 		break;
10288 	case BPF_FUNC_get_local_storage:
10289 		/* check that flags argument in get_local_storage(map, flags) is 0,
10290 		 * this is required because get_local_storage() can't return an error.
10291 		 */
10292 		if (!register_is_null(&regs[BPF_REG_2])) {
10293 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10294 			return -EINVAL;
10295 		}
10296 		break;
10297 	case BPF_FUNC_for_each_map_elem:
10298 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10299 					 set_map_elem_callback_state);
10300 		break;
10301 	case BPF_FUNC_timer_set_callback:
10302 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10303 					 set_timer_callback_state);
10304 		break;
10305 	case BPF_FUNC_find_vma:
10306 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10307 					 set_find_vma_callback_state);
10308 		break;
10309 	case BPF_FUNC_snprintf:
10310 		err = check_bpf_snprintf_call(env, regs);
10311 		break;
10312 	case BPF_FUNC_loop:
10313 		update_loop_inline_state(env, meta.subprogno);
10314 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10315 		 * is finished, thus mark it precise.
10316 		 */
10317 		err = mark_chain_precision(env, BPF_REG_1);
10318 		if (err)
10319 			return err;
10320 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10321 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10322 						 set_loop_callback_state);
10323 		} else {
10324 			cur_func(env)->callback_depth = 0;
10325 			if (env->log.level & BPF_LOG_LEVEL2)
10326 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10327 					env->cur_state->curframe);
10328 		}
10329 		break;
10330 	case BPF_FUNC_dynptr_from_mem:
10331 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10332 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10333 				reg_type_str(env, regs[BPF_REG_1].type));
10334 			return -EACCES;
10335 		}
10336 		break;
10337 	case BPF_FUNC_set_retval:
10338 		if (prog_type == BPF_PROG_TYPE_LSM &&
10339 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10340 			if (!env->prog->aux->attach_func_proto->type) {
10341 				/* Make sure programs that attach to void
10342 				 * hooks don't try to modify return value.
10343 				 */
10344 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10345 				return -EINVAL;
10346 			}
10347 		}
10348 		break;
10349 	case BPF_FUNC_dynptr_data:
10350 	{
10351 		struct bpf_reg_state *reg;
10352 		int id, ref_obj_id;
10353 
10354 		reg = get_dynptr_arg_reg(env, fn, regs);
10355 		if (!reg)
10356 			return -EFAULT;
10357 
10358 
10359 		if (meta.dynptr_id) {
10360 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10361 			return -EFAULT;
10362 		}
10363 		if (meta.ref_obj_id) {
10364 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10365 			return -EFAULT;
10366 		}
10367 
10368 		id = dynptr_id(env, reg);
10369 		if (id < 0) {
10370 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10371 			return id;
10372 		}
10373 
10374 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10375 		if (ref_obj_id < 0) {
10376 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10377 			return ref_obj_id;
10378 		}
10379 
10380 		meta.dynptr_id = id;
10381 		meta.ref_obj_id = ref_obj_id;
10382 
10383 		break;
10384 	}
10385 	case BPF_FUNC_dynptr_write:
10386 	{
10387 		enum bpf_dynptr_type dynptr_type;
10388 		struct bpf_reg_state *reg;
10389 
10390 		reg = get_dynptr_arg_reg(env, fn, regs);
10391 		if (!reg)
10392 			return -EFAULT;
10393 
10394 		dynptr_type = dynptr_get_type(env, reg);
10395 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10396 			return -EFAULT;
10397 
10398 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10399 			/* this will trigger clear_all_pkt_pointers(), which will
10400 			 * invalidate all dynptr slices associated with the skb
10401 			 */
10402 			changes_data = true;
10403 
10404 		break;
10405 	}
10406 	case BPF_FUNC_per_cpu_ptr:
10407 	case BPF_FUNC_this_cpu_ptr:
10408 	{
10409 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10410 		const struct btf_type *type;
10411 
10412 		if (reg->type & MEM_RCU) {
10413 			type = btf_type_by_id(reg->btf, reg->btf_id);
10414 			if (!type || !btf_type_is_struct(type)) {
10415 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10416 				return -EFAULT;
10417 			}
10418 			returns_cpu_specific_alloc_ptr = true;
10419 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10420 		}
10421 		break;
10422 	}
10423 	case BPF_FUNC_user_ringbuf_drain:
10424 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10425 					 set_user_ringbuf_callback_state);
10426 		break;
10427 	}
10428 
10429 	if (err)
10430 		return err;
10431 
10432 	/* reset caller saved regs */
10433 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10434 		mark_reg_not_init(env, regs, caller_saved[i]);
10435 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10436 	}
10437 
10438 	/* helper call returns 64-bit value. */
10439 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10440 
10441 	/* update return register (already marked as written above) */
10442 	ret_type = fn->ret_type;
10443 	ret_flag = type_flag(ret_type);
10444 
10445 	switch (base_type(ret_type)) {
10446 	case RET_INTEGER:
10447 		/* sets type to SCALAR_VALUE */
10448 		mark_reg_unknown(env, regs, BPF_REG_0);
10449 		break;
10450 	case RET_VOID:
10451 		regs[BPF_REG_0].type = NOT_INIT;
10452 		break;
10453 	case RET_PTR_TO_MAP_VALUE:
10454 		/* There is no offset yet applied, variable or fixed */
10455 		mark_reg_known_zero(env, regs, BPF_REG_0);
10456 		/* remember map_ptr, so that check_map_access()
10457 		 * can check 'value_size' boundary of memory access
10458 		 * to map element returned from bpf_map_lookup_elem()
10459 		 */
10460 		if (meta.map_ptr == NULL) {
10461 			verbose(env,
10462 				"kernel subsystem misconfigured verifier\n");
10463 			return -EINVAL;
10464 		}
10465 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10466 		regs[BPF_REG_0].map_uid = meta.map_uid;
10467 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10468 		if (!type_may_be_null(ret_type) &&
10469 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10470 			regs[BPF_REG_0].id = ++env->id_gen;
10471 		}
10472 		break;
10473 	case RET_PTR_TO_SOCKET:
10474 		mark_reg_known_zero(env, regs, BPF_REG_0);
10475 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10476 		break;
10477 	case RET_PTR_TO_SOCK_COMMON:
10478 		mark_reg_known_zero(env, regs, BPF_REG_0);
10479 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10480 		break;
10481 	case RET_PTR_TO_TCP_SOCK:
10482 		mark_reg_known_zero(env, regs, BPF_REG_0);
10483 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10484 		break;
10485 	case RET_PTR_TO_MEM:
10486 		mark_reg_known_zero(env, regs, BPF_REG_0);
10487 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10488 		regs[BPF_REG_0].mem_size = meta.mem_size;
10489 		break;
10490 	case RET_PTR_TO_MEM_OR_BTF_ID:
10491 	{
10492 		const struct btf_type *t;
10493 
10494 		mark_reg_known_zero(env, regs, BPF_REG_0);
10495 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10496 		if (!btf_type_is_struct(t)) {
10497 			u32 tsize;
10498 			const struct btf_type *ret;
10499 			const char *tname;
10500 
10501 			/* resolve the type size of ksym. */
10502 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10503 			if (IS_ERR(ret)) {
10504 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10505 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10506 					tname, PTR_ERR(ret));
10507 				return -EINVAL;
10508 			}
10509 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10510 			regs[BPF_REG_0].mem_size = tsize;
10511 		} else {
10512 			if (returns_cpu_specific_alloc_ptr) {
10513 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10514 			} else {
10515 				/* MEM_RDONLY may be carried from ret_flag, but it
10516 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10517 				 * it will confuse the check of PTR_TO_BTF_ID in
10518 				 * check_mem_access().
10519 				 */
10520 				ret_flag &= ~MEM_RDONLY;
10521 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10522 			}
10523 
10524 			regs[BPF_REG_0].btf = meta.ret_btf;
10525 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10526 		}
10527 		break;
10528 	}
10529 	case RET_PTR_TO_BTF_ID:
10530 	{
10531 		struct btf *ret_btf;
10532 		int ret_btf_id;
10533 
10534 		mark_reg_known_zero(env, regs, BPF_REG_0);
10535 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10536 		if (func_id == BPF_FUNC_kptr_xchg) {
10537 			ret_btf = meta.kptr_field->kptr.btf;
10538 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10539 			if (!btf_is_kernel(ret_btf)) {
10540 				regs[BPF_REG_0].type |= MEM_ALLOC;
10541 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10542 					regs[BPF_REG_0].type |= MEM_PERCPU;
10543 			}
10544 		} else {
10545 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10546 				verbose(env, "verifier internal error:");
10547 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10548 					func_id_name(func_id));
10549 				return -EINVAL;
10550 			}
10551 			ret_btf = btf_vmlinux;
10552 			ret_btf_id = *fn->ret_btf_id;
10553 		}
10554 		if (ret_btf_id == 0) {
10555 			verbose(env, "invalid return type %u of func %s#%d\n",
10556 				base_type(ret_type), func_id_name(func_id),
10557 				func_id);
10558 			return -EINVAL;
10559 		}
10560 		regs[BPF_REG_0].btf = ret_btf;
10561 		regs[BPF_REG_0].btf_id = ret_btf_id;
10562 		break;
10563 	}
10564 	default:
10565 		verbose(env, "unknown return type %u of func %s#%d\n",
10566 			base_type(ret_type), func_id_name(func_id), func_id);
10567 		return -EINVAL;
10568 	}
10569 
10570 	if (type_may_be_null(regs[BPF_REG_0].type))
10571 		regs[BPF_REG_0].id = ++env->id_gen;
10572 
10573 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10574 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10575 			func_id_name(func_id), func_id);
10576 		return -EFAULT;
10577 	}
10578 
10579 	if (is_dynptr_ref_function(func_id))
10580 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10581 
10582 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10583 		/* For release_reference() */
10584 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10585 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10586 		int id = acquire_reference_state(env, insn_idx);
10587 
10588 		if (id < 0)
10589 			return id;
10590 		/* For mark_ptr_or_null_reg() */
10591 		regs[BPF_REG_0].id = id;
10592 		/* For release_reference() */
10593 		regs[BPF_REG_0].ref_obj_id = id;
10594 	}
10595 
10596 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10597 
10598 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10599 	if (err)
10600 		return err;
10601 
10602 	if ((func_id == BPF_FUNC_get_stack ||
10603 	     func_id == BPF_FUNC_get_task_stack) &&
10604 	    !env->prog->has_callchain_buf) {
10605 		const char *err_str;
10606 
10607 #ifdef CONFIG_PERF_EVENTS
10608 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10609 		err_str = "cannot get callchain buffer for func %s#%d\n";
10610 #else
10611 		err = -ENOTSUPP;
10612 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10613 #endif
10614 		if (err) {
10615 			verbose(env, err_str, func_id_name(func_id), func_id);
10616 			return err;
10617 		}
10618 
10619 		env->prog->has_callchain_buf = true;
10620 	}
10621 
10622 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10623 		env->prog->call_get_stack = true;
10624 
10625 	if (func_id == BPF_FUNC_get_func_ip) {
10626 		if (check_get_func_ip(env))
10627 			return -ENOTSUPP;
10628 		env->prog->call_get_func_ip = true;
10629 	}
10630 
10631 	if (changes_data)
10632 		clear_all_pkt_pointers(env);
10633 	return 0;
10634 }
10635 
10636 /* mark_btf_func_reg_size() is used when the reg size is determined by
10637  * the BTF func_proto's return value size and argument.
10638  */
10639 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10640 				   size_t reg_size)
10641 {
10642 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10643 
10644 	if (regno == BPF_REG_0) {
10645 		/* Function return value */
10646 		reg->live |= REG_LIVE_WRITTEN;
10647 		reg->subreg_def = reg_size == sizeof(u64) ?
10648 			DEF_NOT_SUBREG : env->insn_idx + 1;
10649 	} else {
10650 		/* Function argument */
10651 		if (reg_size == sizeof(u64)) {
10652 			mark_insn_zext(env, reg);
10653 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10654 		} else {
10655 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10656 		}
10657 	}
10658 }
10659 
10660 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10661 {
10662 	return meta->kfunc_flags & KF_ACQUIRE;
10663 }
10664 
10665 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10666 {
10667 	return meta->kfunc_flags & KF_RELEASE;
10668 }
10669 
10670 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10671 {
10672 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10673 }
10674 
10675 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10676 {
10677 	return meta->kfunc_flags & KF_SLEEPABLE;
10678 }
10679 
10680 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10681 {
10682 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10683 }
10684 
10685 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10686 {
10687 	return meta->kfunc_flags & KF_RCU;
10688 }
10689 
10690 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10691 {
10692 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10693 }
10694 
10695 static bool __kfunc_param_match_suffix(const struct btf *btf,
10696 				       const struct btf_param *arg,
10697 				       const char *suffix)
10698 {
10699 	int suffix_len = strlen(suffix), len;
10700 	const char *param_name;
10701 
10702 	/* In the future, this can be ported to use BTF tagging */
10703 	param_name = btf_name_by_offset(btf, arg->name_off);
10704 	if (str_is_empty(param_name))
10705 		return false;
10706 	len = strlen(param_name);
10707 	if (len < suffix_len)
10708 		return false;
10709 	param_name += len - suffix_len;
10710 	return !strncmp(param_name, suffix, suffix_len);
10711 }
10712 
10713 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10714 				  const struct btf_param *arg,
10715 				  const struct bpf_reg_state *reg)
10716 {
10717 	const struct btf_type *t;
10718 
10719 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10720 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10721 		return false;
10722 
10723 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10724 }
10725 
10726 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10727 					const struct btf_param *arg,
10728 					const struct bpf_reg_state *reg)
10729 {
10730 	const struct btf_type *t;
10731 
10732 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10733 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10734 		return false;
10735 
10736 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10737 }
10738 
10739 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10740 {
10741 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10742 }
10743 
10744 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10745 {
10746 	return __kfunc_param_match_suffix(btf, arg, "__k");
10747 }
10748 
10749 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10750 {
10751 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10752 }
10753 
10754 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10755 {
10756 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10757 }
10758 
10759 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10760 {
10761 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10762 }
10763 
10764 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10765 {
10766 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10767 }
10768 
10769 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10770 {
10771 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10772 }
10773 
10774 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10775 					  const struct btf_param *arg,
10776 					  const char *name)
10777 {
10778 	int len, target_len = strlen(name);
10779 	const char *param_name;
10780 
10781 	param_name = btf_name_by_offset(btf, arg->name_off);
10782 	if (str_is_empty(param_name))
10783 		return false;
10784 	len = strlen(param_name);
10785 	if (len != target_len)
10786 		return false;
10787 	if (strcmp(param_name, name))
10788 		return false;
10789 
10790 	return true;
10791 }
10792 
10793 enum {
10794 	KF_ARG_DYNPTR_ID,
10795 	KF_ARG_LIST_HEAD_ID,
10796 	KF_ARG_LIST_NODE_ID,
10797 	KF_ARG_RB_ROOT_ID,
10798 	KF_ARG_RB_NODE_ID,
10799 };
10800 
10801 BTF_ID_LIST(kf_arg_btf_ids)
10802 BTF_ID(struct, bpf_dynptr_kern)
10803 BTF_ID(struct, bpf_list_head)
10804 BTF_ID(struct, bpf_list_node)
10805 BTF_ID(struct, bpf_rb_root)
10806 BTF_ID(struct, bpf_rb_node)
10807 
10808 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10809 				    const struct btf_param *arg, int type)
10810 {
10811 	const struct btf_type *t;
10812 	u32 res_id;
10813 
10814 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10815 	if (!t)
10816 		return false;
10817 	if (!btf_type_is_ptr(t))
10818 		return false;
10819 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10820 	if (!t)
10821 		return false;
10822 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10823 }
10824 
10825 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10826 {
10827 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10828 }
10829 
10830 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10831 {
10832 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10833 }
10834 
10835 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10836 {
10837 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10838 }
10839 
10840 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10841 {
10842 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10843 }
10844 
10845 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10846 {
10847 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10848 }
10849 
10850 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10851 				  const struct btf_param *arg)
10852 {
10853 	const struct btf_type *t;
10854 
10855 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10856 	if (!t)
10857 		return false;
10858 
10859 	return true;
10860 }
10861 
10862 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10863 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10864 					const struct btf *btf,
10865 					const struct btf_type *t, int rec)
10866 {
10867 	const struct btf_type *member_type;
10868 	const struct btf_member *member;
10869 	u32 i;
10870 
10871 	if (!btf_type_is_struct(t))
10872 		return false;
10873 
10874 	for_each_member(i, t, member) {
10875 		const struct btf_array *array;
10876 
10877 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10878 		if (btf_type_is_struct(member_type)) {
10879 			if (rec >= 3) {
10880 				verbose(env, "max struct nesting depth exceeded\n");
10881 				return false;
10882 			}
10883 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10884 				return false;
10885 			continue;
10886 		}
10887 		if (btf_type_is_array(member_type)) {
10888 			array = btf_array(member_type);
10889 			if (!array->nelems)
10890 				return false;
10891 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10892 			if (!btf_type_is_scalar(member_type))
10893 				return false;
10894 			continue;
10895 		}
10896 		if (!btf_type_is_scalar(member_type))
10897 			return false;
10898 	}
10899 	return true;
10900 }
10901 
10902 enum kfunc_ptr_arg_type {
10903 	KF_ARG_PTR_TO_CTX,
10904 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10905 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10906 	KF_ARG_PTR_TO_DYNPTR,
10907 	KF_ARG_PTR_TO_ITER,
10908 	KF_ARG_PTR_TO_LIST_HEAD,
10909 	KF_ARG_PTR_TO_LIST_NODE,
10910 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10911 	KF_ARG_PTR_TO_MEM,
10912 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10913 	KF_ARG_PTR_TO_CALLBACK,
10914 	KF_ARG_PTR_TO_RB_ROOT,
10915 	KF_ARG_PTR_TO_RB_NODE,
10916 	KF_ARG_PTR_TO_NULL,
10917 };
10918 
10919 enum special_kfunc_type {
10920 	KF_bpf_obj_new_impl,
10921 	KF_bpf_obj_drop_impl,
10922 	KF_bpf_refcount_acquire_impl,
10923 	KF_bpf_list_push_front_impl,
10924 	KF_bpf_list_push_back_impl,
10925 	KF_bpf_list_pop_front,
10926 	KF_bpf_list_pop_back,
10927 	KF_bpf_cast_to_kern_ctx,
10928 	KF_bpf_rdonly_cast,
10929 	KF_bpf_rcu_read_lock,
10930 	KF_bpf_rcu_read_unlock,
10931 	KF_bpf_rbtree_remove,
10932 	KF_bpf_rbtree_add_impl,
10933 	KF_bpf_rbtree_first,
10934 	KF_bpf_dynptr_from_skb,
10935 	KF_bpf_dynptr_from_xdp,
10936 	KF_bpf_dynptr_slice,
10937 	KF_bpf_dynptr_slice_rdwr,
10938 	KF_bpf_dynptr_clone,
10939 	KF_bpf_percpu_obj_new_impl,
10940 	KF_bpf_percpu_obj_drop_impl,
10941 	KF_bpf_throw,
10942 	KF_bpf_iter_css_task_new,
10943 };
10944 
10945 BTF_SET_START(special_kfunc_set)
10946 BTF_ID(func, bpf_obj_new_impl)
10947 BTF_ID(func, bpf_obj_drop_impl)
10948 BTF_ID(func, bpf_refcount_acquire_impl)
10949 BTF_ID(func, bpf_list_push_front_impl)
10950 BTF_ID(func, bpf_list_push_back_impl)
10951 BTF_ID(func, bpf_list_pop_front)
10952 BTF_ID(func, bpf_list_pop_back)
10953 BTF_ID(func, bpf_cast_to_kern_ctx)
10954 BTF_ID(func, bpf_rdonly_cast)
10955 BTF_ID(func, bpf_rbtree_remove)
10956 BTF_ID(func, bpf_rbtree_add_impl)
10957 BTF_ID(func, bpf_rbtree_first)
10958 BTF_ID(func, bpf_dynptr_from_skb)
10959 BTF_ID(func, bpf_dynptr_from_xdp)
10960 BTF_ID(func, bpf_dynptr_slice)
10961 BTF_ID(func, bpf_dynptr_slice_rdwr)
10962 BTF_ID(func, bpf_dynptr_clone)
10963 BTF_ID(func, bpf_percpu_obj_new_impl)
10964 BTF_ID(func, bpf_percpu_obj_drop_impl)
10965 BTF_ID(func, bpf_throw)
10966 #ifdef CONFIG_CGROUPS
10967 BTF_ID(func, bpf_iter_css_task_new)
10968 #endif
10969 BTF_SET_END(special_kfunc_set)
10970 
10971 BTF_ID_LIST(special_kfunc_list)
10972 BTF_ID(func, bpf_obj_new_impl)
10973 BTF_ID(func, bpf_obj_drop_impl)
10974 BTF_ID(func, bpf_refcount_acquire_impl)
10975 BTF_ID(func, bpf_list_push_front_impl)
10976 BTF_ID(func, bpf_list_push_back_impl)
10977 BTF_ID(func, bpf_list_pop_front)
10978 BTF_ID(func, bpf_list_pop_back)
10979 BTF_ID(func, bpf_cast_to_kern_ctx)
10980 BTF_ID(func, bpf_rdonly_cast)
10981 BTF_ID(func, bpf_rcu_read_lock)
10982 BTF_ID(func, bpf_rcu_read_unlock)
10983 BTF_ID(func, bpf_rbtree_remove)
10984 BTF_ID(func, bpf_rbtree_add_impl)
10985 BTF_ID(func, bpf_rbtree_first)
10986 BTF_ID(func, bpf_dynptr_from_skb)
10987 BTF_ID(func, bpf_dynptr_from_xdp)
10988 BTF_ID(func, bpf_dynptr_slice)
10989 BTF_ID(func, bpf_dynptr_slice_rdwr)
10990 BTF_ID(func, bpf_dynptr_clone)
10991 BTF_ID(func, bpf_percpu_obj_new_impl)
10992 BTF_ID(func, bpf_percpu_obj_drop_impl)
10993 BTF_ID(func, bpf_throw)
10994 #ifdef CONFIG_CGROUPS
10995 BTF_ID(func, bpf_iter_css_task_new)
10996 #else
10997 BTF_ID_UNUSED
10998 #endif
10999 
11000 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11001 {
11002 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11003 	    meta->arg_owning_ref) {
11004 		return false;
11005 	}
11006 
11007 	return meta->kfunc_flags & KF_RET_NULL;
11008 }
11009 
11010 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11011 {
11012 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11013 }
11014 
11015 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11016 {
11017 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11018 }
11019 
11020 static enum kfunc_ptr_arg_type
11021 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11022 		       struct bpf_kfunc_call_arg_meta *meta,
11023 		       const struct btf_type *t, const struct btf_type *ref_t,
11024 		       const char *ref_tname, const struct btf_param *args,
11025 		       int argno, int nargs)
11026 {
11027 	u32 regno = argno + 1;
11028 	struct bpf_reg_state *regs = cur_regs(env);
11029 	struct bpf_reg_state *reg = &regs[regno];
11030 	bool arg_mem_size = false;
11031 
11032 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11033 		return KF_ARG_PTR_TO_CTX;
11034 
11035 	/* In this function, we verify the kfunc's BTF as per the argument type,
11036 	 * leaving the rest of the verification with respect to the register
11037 	 * type to our caller. When a set of conditions hold in the BTF type of
11038 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11039 	 */
11040 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11041 		return KF_ARG_PTR_TO_CTX;
11042 
11043 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11044 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11045 
11046 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11047 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11048 
11049 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11050 		return KF_ARG_PTR_TO_DYNPTR;
11051 
11052 	if (is_kfunc_arg_iter(meta, argno))
11053 		return KF_ARG_PTR_TO_ITER;
11054 
11055 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11056 		return KF_ARG_PTR_TO_LIST_HEAD;
11057 
11058 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11059 		return KF_ARG_PTR_TO_LIST_NODE;
11060 
11061 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11062 		return KF_ARG_PTR_TO_RB_ROOT;
11063 
11064 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11065 		return KF_ARG_PTR_TO_RB_NODE;
11066 
11067 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11068 		if (!btf_type_is_struct(ref_t)) {
11069 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11070 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11071 			return -EINVAL;
11072 		}
11073 		return KF_ARG_PTR_TO_BTF_ID;
11074 	}
11075 
11076 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11077 		return KF_ARG_PTR_TO_CALLBACK;
11078 
11079 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11080 		return KF_ARG_PTR_TO_NULL;
11081 
11082 	if (argno + 1 < nargs &&
11083 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11084 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11085 		arg_mem_size = true;
11086 
11087 	/* This is the catch all argument type of register types supported by
11088 	 * check_helper_mem_access. However, we only allow when argument type is
11089 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11090 	 * arg_mem_size is true, the pointer can be void *.
11091 	 */
11092 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11093 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11094 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11095 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11096 		return -EINVAL;
11097 	}
11098 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11099 }
11100 
11101 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11102 					struct bpf_reg_state *reg,
11103 					const struct btf_type *ref_t,
11104 					const char *ref_tname, u32 ref_id,
11105 					struct bpf_kfunc_call_arg_meta *meta,
11106 					int argno)
11107 {
11108 	const struct btf_type *reg_ref_t;
11109 	bool strict_type_match = false;
11110 	const struct btf *reg_btf;
11111 	const char *reg_ref_tname;
11112 	u32 reg_ref_id;
11113 
11114 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11115 		reg_btf = reg->btf;
11116 		reg_ref_id = reg->btf_id;
11117 	} else {
11118 		reg_btf = btf_vmlinux;
11119 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11120 	}
11121 
11122 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11123 	 * or releasing a reference, or are no-cast aliases. We do _not_
11124 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11125 	 * as we want to enable BPF programs to pass types that are bitwise
11126 	 * equivalent without forcing them to explicitly cast with something
11127 	 * like bpf_cast_to_kern_ctx().
11128 	 *
11129 	 * For example, say we had a type like the following:
11130 	 *
11131 	 * struct bpf_cpumask {
11132 	 *	cpumask_t cpumask;
11133 	 *	refcount_t usage;
11134 	 * };
11135 	 *
11136 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11137 	 * to a struct cpumask, so it would be safe to pass a struct
11138 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11139 	 *
11140 	 * The philosophy here is similar to how we allow scalars of different
11141 	 * types to be passed to kfuncs as long as the size is the same. The
11142 	 * only difference here is that we're simply allowing
11143 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11144 	 * resolve types.
11145 	 */
11146 	if (is_kfunc_acquire(meta) ||
11147 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11148 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11149 		strict_type_match = true;
11150 
11151 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11152 
11153 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11154 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11155 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11156 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11157 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11158 			btf_type_str(reg_ref_t), reg_ref_tname);
11159 		return -EINVAL;
11160 	}
11161 	return 0;
11162 }
11163 
11164 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11165 {
11166 	struct bpf_verifier_state *state = env->cur_state;
11167 	struct btf_record *rec = reg_btf_record(reg);
11168 
11169 	if (!state->active_lock.ptr) {
11170 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11171 		return -EFAULT;
11172 	}
11173 
11174 	if (type_flag(reg->type) & NON_OWN_REF) {
11175 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11176 		return -EFAULT;
11177 	}
11178 
11179 	reg->type |= NON_OWN_REF;
11180 	if (rec->refcount_off >= 0)
11181 		reg->type |= MEM_RCU;
11182 
11183 	return 0;
11184 }
11185 
11186 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11187 {
11188 	struct bpf_func_state *state, *unused;
11189 	struct bpf_reg_state *reg;
11190 	int i;
11191 
11192 	state = cur_func(env);
11193 
11194 	if (!ref_obj_id) {
11195 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11196 			     "owning -> non-owning conversion\n");
11197 		return -EFAULT;
11198 	}
11199 
11200 	for (i = 0; i < state->acquired_refs; i++) {
11201 		if (state->refs[i].id != ref_obj_id)
11202 			continue;
11203 
11204 		/* Clear ref_obj_id here so release_reference doesn't clobber
11205 		 * the whole reg
11206 		 */
11207 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11208 			if (reg->ref_obj_id == ref_obj_id) {
11209 				reg->ref_obj_id = 0;
11210 				ref_set_non_owning(env, reg);
11211 			}
11212 		}));
11213 		return 0;
11214 	}
11215 
11216 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11217 	return -EFAULT;
11218 }
11219 
11220 /* Implementation details:
11221  *
11222  * Each register points to some region of memory, which we define as an
11223  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11224  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11225  * allocation. The lock and the data it protects are colocated in the same
11226  * memory region.
11227  *
11228  * Hence, everytime a register holds a pointer value pointing to such
11229  * allocation, the verifier preserves a unique reg->id for it.
11230  *
11231  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11232  * bpf_spin_lock is called.
11233  *
11234  * To enable this, lock state in the verifier captures two values:
11235  *	active_lock.ptr = Register's type specific pointer
11236  *	active_lock.id  = A unique ID for each register pointer value
11237  *
11238  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11239  * supported register types.
11240  *
11241  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11242  * allocated objects is the reg->btf pointer.
11243  *
11244  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11245  * can establish the provenance of the map value statically for each distinct
11246  * lookup into such maps. They always contain a single map value hence unique
11247  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11248  *
11249  * So, in case of global variables, they use array maps with max_entries = 1,
11250  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11251  * into the same map value as max_entries is 1, as described above).
11252  *
11253  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11254  * outer map pointer (in verifier context), but each lookup into an inner map
11255  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11256  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11257  * will get different reg->id assigned to each lookup, hence different
11258  * active_lock.id.
11259  *
11260  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11261  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11262  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11263  */
11264 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11265 {
11266 	void *ptr;
11267 	u32 id;
11268 
11269 	switch ((int)reg->type) {
11270 	case PTR_TO_MAP_VALUE:
11271 		ptr = reg->map_ptr;
11272 		break;
11273 	case PTR_TO_BTF_ID | MEM_ALLOC:
11274 		ptr = reg->btf;
11275 		break;
11276 	default:
11277 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11278 		return -EFAULT;
11279 	}
11280 	id = reg->id;
11281 
11282 	if (!env->cur_state->active_lock.ptr)
11283 		return -EINVAL;
11284 	if (env->cur_state->active_lock.ptr != ptr ||
11285 	    env->cur_state->active_lock.id != id) {
11286 		verbose(env, "held lock and object are not in the same allocation\n");
11287 		return -EINVAL;
11288 	}
11289 	return 0;
11290 }
11291 
11292 static bool is_bpf_list_api_kfunc(u32 btf_id)
11293 {
11294 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11295 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11296 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11297 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11298 }
11299 
11300 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11301 {
11302 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11303 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11304 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11305 }
11306 
11307 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11308 {
11309 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11310 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11311 }
11312 
11313 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11314 {
11315 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11316 }
11317 
11318 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11319 {
11320 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11321 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11322 }
11323 
11324 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11325 {
11326 	return is_bpf_rbtree_api_kfunc(btf_id);
11327 }
11328 
11329 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11330 					  enum btf_field_type head_field_type,
11331 					  u32 kfunc_btf_id)
11332 {
11333 	bool ret;
11334 
11335 	switch (head_field_type) {
11336 	case BPF_LIST_HEAD:
11337 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11338 		break;
11339 	case BPF_RB_ROOT:
11340 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11341 		break;
11342 	default:
11343 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11344 			btf_field_type_name(head_field_type));
11345 		return false;
11346 	}
11347 
11348 	if (!ret)
11349 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11350 			btf_field_type_name(head_field_type));
11351 	return ret;
11352 }
11353 
11354 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11355 					  enum btf_field_type node_field_type,
11356 					  u32 kfunc_btf_id)
11357 {
11358 	bool ret;
11359 
11360 	switch (node_field_type) {
11361 	case BPF_LIST_NODE:
11362 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11363 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11364 		break;
11365 	case BPF_RB_NODE:
11366 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11367 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11368 		break;
11369 	default:
11370 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11371 			btf_field_type_name(node_field_type));
11372 		return false;
11373 	}
11374 
11375 	if (!ret)
11376 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11377 			btf_field_type_name(node_field_type));
11378 	return ret;
11379 }
11380 
11381 static int
11382 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11383 				   struct bpf_reg_state *reg, u32 regno,
11384 				   struct bpf_kfunc_call_arg_meta *meta,
11385 				   enum btf_field_type head_field_type,
11386 				   struct btf_field **head_field)
11387 {
11388 	const char *head_type_name;
11389 	struct btf_field *field;
11390 	struct btf_record *rec;
11391 	u32 head_off;
11392 
11393 	if (meta->btf != btf_vmlinux) {
11394 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11395 		return -EFAULT;
11396 	}
11397 
11398 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11399 		return -EFAULT;
11400 
11401 	head_type_name = btf_field_type_name(head_field_type);
11402 	if (!tnum_is_const(reg->var_off)) {
11403 		verbose(env,
11404 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11405 			regno, head_type_name);
11406 		return -EINVAL;
11407 	}
11408 
11409 	rec = reg_btf_record(reg);
11410 	head_off = reg->off + reg->var_off.value;
11411 	field = btf_record_find(rec, head_off, head_field_type);
11412 	if (!field) {
11413 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11414 		return -EINVAL;
11415 	}
11416 
11417 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11418 	if (check_reg_allocation_locked(env, reg)) {
11419 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11420 			rec->spin_lock_off, head_type_name);
11421 		return -EINVAL;
11422 	}
11423 
11424 	if (*head_field) {
11425 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11426 		return -EFAULT;
11427 	}
11428 	*head_field = field;
11429 	return 0;
11430 }
11431 
11432 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11433 					   struct bpf_reg_state *reg, u32 regno,
11434 					   struct bpf_kfunc_call_arg_meta *meta)
11435 {
11436 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11437 							  &meta->arg_list_head.field);
11438 }
11439 
11440 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11441 					     struct bpf_reg_state *reg, u32 regno,
11442 					     struct bpf_kfunc_call_arg_meta *meta)
11443 {
11444 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11445 							  &meta->arg_rbtree_root.field);
11446 }
11447 
11448 static int
11449 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11450 				   struct bpf_reg_state *reg, u32 regno,
11451 				   struct bpf_kfunc_call_arg_meta *meta,
11452 				   enum btf_field_type head_field_type,
11453 				   enum btf_field_type node_field_type,
11454 				   struct btf_field **node_field)
11455 {
11456 	const char *node_type_name;
11457 	const struct btf_type *et, *t;
11458 	struct btf_field *field;
11459 	u32 node_off;
11460 
11461 	if (meta->btf != btf_vmlinux) {
11462 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11463 		return -EFAULT;
11464 	}
11465 
11466 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11467 		return -EFAULT;
11468 
11469 	node_type_name = btf_field_type_name(node_field_type);
11470 	if (!tnum_is_const(reg->var_off)) {
11471 		verbose(env,
11472 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11473 			regno, node_type_name);
11474 		return -EINVAL;
11475 	}
11476 
11477 	node_off = reg->off + reg->var_off.value;
11478 	field = reg_find_field_offset(reg, node_off, node_field_type);
11479 	if (!field || field->offset != node_off) {
11480 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11481 		return -EINVAL;
11482 	}
11483 
11484 	field = *node_field;
11485 
11486 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11487 	t = btf_type_by_id(reg->btf, reg->btf_id);
11488 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11489 				  field->graph_root.value_btf_id, true)) {
11490 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11491 			"in struct %s, but arg is at offset=%d in struct %s\n",
11492 			btf_field_type_name(head_field_type),
11493 			btf_field_type_name(node_field_type),
11494 			field->graph_root.node_offset,
11495 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11496 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11497 		return -EINVAL;
11498 	}
11499 	meta->arg_btf = reg->btf;
11500 	meta->arg_btf_id = reg->btf_id;
11501 
11502 	if (node_off != field->graph_root.node_offset) {
11503 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11504 			node_off, btf_field_type_name(node_field_type),
11505 			field->graph_root.node_offset,
11506 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11507 		return -EINVAL;
11508 	}
11509 
11510 	return 0;
11511 }
11512 
11513 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11514 					   struct bpf_reg_state *reg, u32 regno,
11515 					   struct bpf_kfunc_call_arg_meta *meta)
11516 {
11517 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11518 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11519 						  &meta->arg_list_head.field);
11520 }
11521 
11522 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11523 					     struct bpf_reg_state *reg, u32 regno,
11524 					     struct bpf_kfunc_call_arg_meta *meta)
11525 {
11526 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11527 						  BPF_RB_ROOT, BPF_RB_NODE,
11528 						  &meta->arg_rbtree_root.field);
11529 }
11530 
11531 /*
11532  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11533  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11534  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11535  * them can only be attached to some specific hook points.
11536  */
11537 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11538 {
11539 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11540 
11541 	switch (prog_type) {
11542 	case BPF_PROG_TYPE_LSM:
11543 		return true;
11544 	case BPF_PROG_TYPE_TRACING:
11545 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11546 			return true;
11547 		fallthrough;
11548 	default:
11549 		return env->prog->aux->sleepable;
11550 	}
11551 }
11552 
11553 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11554 			    int insn_idx)
11555 {
11556 	const char *func_name = meta->func_name, *ref_tname;
11557 	const struct btf *btf = meta->btf;
11558 	const struct btf_param *args;
11559 	struct btf_record *rec;
11560 	u32 i, nargs;
11561 	int ret;
11562 
11563 	args = (const struct btf_param *)(meta->func_proto + 1);
11564 	nargs = btf_type_vlen(meta->func_proto);
11565 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11566 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11567 			MAX_BPF_FUNC_REG_ARGS);
11568 		return -EINVAL;
11569 	}
11570 
11571 	/* Check that BTF function arguments match actual types that the
11572 	 * verifier sees.
11573 	 */
11574 	for (i = 0; i < nargs; i++) {
11575 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11576 		const struct btf_type *t, *ref_t, *resolve_ret;
11577 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11578 		u32 regno = i + 1, ref_id, type_size;
11579 		bool is_ret_buf_sz = false;
11580 		int kf_arg_type;
11581 
11582 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11583 
11584 		if (is_kfunc_arg_ignore(btf, &args[i]))
11585 			continue;
11586 
11587 		if (btf_type_is_scalar(t)) {
11588 			if (reg->type != SCALAR_VALUE) {
11589 				verbose(env, "R%d is not a scalar\n", regno);
11590 				return -EINVAL;
11591 			}
11592 
11593 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11594 				if (meta->arg_constant.found) {
11595 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11596 					return -EFAULT;
11597 				}
11598 				if (!tnum_is_const(reg->var_off)) {
11599 					verbose(env, "R%d must be a known constant\n", regno);
11600 					return -EINVAL;
11601 				}
11602 				ret = mark_chain_precision(env, regno);
11603 				if (ret < 0)
11604 					return ret;
11605 				meta->arg_constant.found = true;
11606 				meta->arg_constant.value = reg->var_off.value;
11607 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11608 				meta->r0_rdonly = true;
11609 				is_ret_buf_sz = true;
11610 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11611 				is_ret_buf_sz = true;
11612 			}
11613 
11614 			if (is_ret_buf_sz) {
11615 				if (meta->r0_size) {
11616 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11617 					return -EINVAL;
11618 				}
11619 
11620 				if (!tnum_is_const(reg->var_off)) {
11621 					verbose(env, "R%d is not a const\n", regno);
11622 					return -EINVAL;
11623 				}
11624 
11625 				meta->r0_size = reg->var_off.value;
11626 				ret = mark_chain_precision(env, regno);
11627 				if (ret)
11628 					return ret;
11629 			}
11630 			continue;
11631 		}
11632 
11633 		if (!btf_type_is_ptr(t)) {
11634 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11635 			return -EINVAL;
11636 		}
11637 
11638 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11639 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11640 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11641 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11642 			return -EACCES;
11643 		}
11644 
11645 		if (reg->ref_obj_id) {
11646 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11647 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11648 					regno, reg->ref_obj_id,
11649 					meta->ref_obj_id);
11650 				return -EFAULT;
11651 			}
11652 			meta->ref_obj_id = reg->ref_obj_id;
11653 			if (is_kfunc_release(meta))
11654 				meta->release_regno = regno;
11655 		}
11656 
11657 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11658 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11659 
11660 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11661 		if (kf_arg_type < 0)
11662 			return kf_arg_type;
11663 
11664 		switch (kf_arg_type) {
11665 		case KF_ARG_PTR_TO_NULL:
11666 			continue;
11667 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11668 		case KF_ARG_PTR_TO_BTF_ID:
11669 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11670 				break;
11671 
11672 			if (!is_trusted_reg(reg)) {
11673 				if (!is_kfunc_rcu(meta)) {
11674 					verbose(env, "R%d must be referenced or trusted\n", regno);
11675 					return -EINVAL;
11676 				}
11677 				if (!is_rcu_reg(reg)) {
11678 					verbose(env, "R%d must be a rcu pointer\n", regno);
11679 					return -EINVAL;
11680 				}
11681 			}
11682 
11683 			fallthrough;
11684 		case KF_ARG_PTR_TO_CTX:
11685 			/* Trusted arguments have the same offset checks as release arguments */
11686 			arg_type |= OBJ_RELEASE;
11687 			break;
11688 		case KF_ARG_PTR_TO_DYNPTR:
11689 		case KF_ARG_PTR_TO_ITER:
11690 		case KF_ARG_PTR_TO_LIST_HEAD:
11691 		case KF_ARG_PTR_TO_LIST_NODE:
11692 		case KF_ARG_PTR_TO_RB_ROOT:
11693 		case KF_ARG_PTR_TO_RB_NODE:
11694 		case KF_ARG_PTR_TO_MEM:
11695 		case KF_ARG_PTR_TO_MEM_SIZE:
11696 		case KF_ARG_PTR_TO_CALLBACK:
11697 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11698 			/* Trusted by default */
11699 			break;
11700 		default:
11701 			WARN_ON_ONCE(1);
11702 			return -EFAULT;
11703 		}
11704 
11705 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11706 			arg_type |= OBJ_RELEASE;
11707 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11708 		if (ret < 0)
11709 			return ret;
11710 
11711 		switch (kf_arg_type) {
11712 		case KF_ARG_PTR_TO_CTX:
11713 			if (reg->type != PTR_TO_CTX) {
11714 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11715 				return -EINVAL;
11716 			}
11717 
11718 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11719 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11720 				if (ret < 0)
11721 					return -EINVAL;
11722 				meta->ret_btf_id  = ret;
11723 			}
11724 			break;
11725 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11726 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11727 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11728 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11729 					return -EINVAL;
11730 				}
11731 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11732 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11733 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11734 					return -EINVAL;
11735 				}
11736 			} else {
11737 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11738 				return -EINVAL;
11739 			}
11740 			if (!reg->ref_obj_id) {
11741 				verbose(env, "allocated object must be referenced\n");
11742 				return -EINVAL;
11743 			}
11744 			if (meta->btf == btf_vmlinux) {
11745 				meta->arg_btf = reg->btf;
11746 				meta->arg_btf_id = reg->btf_id;
11747 			}
11748 			break;
11749 		case KF_ARG_PTR_TO_DYNPTR:
11750 		{
11751 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11752 			int clone_ref_obj_id = 0;
11753 
11754 			if (reg->type != PTR_TO_STACK &&
11755 			    reg->type != CONST_PTR_TO_DYNPTR) {
11756 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11757 				return -EINVAL;
11758 			}
11759 
11760 			if (reg->type == CONST_PTR_TO_DYNPTR)
11761 				dynptr_arg_type |= MEM_RDONLY;
11762 
11763 			if (is_kfunc_arg_uninit(btf, &args[i]))
11764 				dynptr_arg_type |= MEM_UNINIT;
11765 
11766 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11767 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11768 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11769 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11770 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11771 				   (dynptr_arg_type & MEM_UNINIT)) {
11772 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11773 
11774 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11775 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11776 					return -EFAULT;
11777 				}
11778 
11779 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11780 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11781 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11782 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11783 					return -EFAULT;
11784 				}
11785 			}
11786 
11787 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11788 			if (ret < 0)
11789 				return ret;
11790 
11791 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11792 				int id = dynptr_id(env, reg);
11793 
11794 				if (id < 0) {
11795 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11796 					return id;
11797 				}
11798 				meta->initialized_dynptr.id = id;
11799 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11800 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11801 			}
11802 
11803 			break;
11804 		}
11805 		case KF_ARG_PTR_TO_ITER:
11806 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11807 				if (!check_css_task_iter_allowlist(env)) {
11808 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11809 					return -EINVAL;
11810 				}
11811 			}
11812 			ret = process_iter_arg(env, regno, insn_idx, meta);
11813 			if (ret < 0)
11814 				return ret;
11815 			break;
11816 		case KF_ARG_PTR_TO_LIST_HEAD:
11817 			if (reg->type != PTR_TO_MAP_VALUE &&
11818 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11819 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11820 				return -EINVAL;
11821 			}
11822 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11823 				verbose(env, "allocated object must be referenced\n");
11824 				return -EINVAL;
11825 			}
11826 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11827 			if (ret < 0)
11828 				return ret;
11829 			break;
11830 		case KF_ARG_PTR_TO_RB_ROOT:
11831 			if (reg->type != PTR_TO_MAP_VALUE &&
11832 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11833 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11834 				return -EINVAL;
11835 			}
11836 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11837 				verbose(env, "allocated object must be referenced\n");
11838 				return -EINVAL;
11839 			}
11840 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11841 			if (ret < 0)
11842 				return ret;
11843 			break;
11844 		case KF_ARG_PTR_TO_LIST_NODE:
11845 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11846 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11847 				return -EINVAL;
11848 			}
11849 			if (!reg->ref_obj_id) {
11850 				verbose(env, "allocated object must be referenced\n");
11851 				return -EINVAL;
11852 			}
11853 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11854 			if (ret < 0)
11855 				return ret;
11856 			break;
11857 		case KF_ARG_PTR_TO_RB_NODE:
11858 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11859 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11860 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11861 					return -EINVAL;
11862 				}
11863 				if (in_rbtree_lock_required_cb(env)) {
11864 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11865 					return -EINVAL;
11866 				}
11867 			} else {
11868 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11869 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11870 					return -EINVAL;
11871 				}
11872 				if (!reg->ref_obj_id) {
11873 					verbose(env, "allocated object must be referenced\n");
11874 					return -EINVAL;
11875 				}
11876 			}
11877 
11878 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11879 			if (ret < 0)
11880 				return ret;
11881 			break;
11882 		case KF_ARG_PTR_TO_BTF_ID:
11883 			/* Only base_type is checked, further checks are done here */
11884 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11885 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11886 			    !reg2btf_ids[base_type(reg->type)]) {
11887 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11888 				verbose(env, "expected %s or socket\n",
11889 					reg_type_str(env, base_type(reg->type) |
11890 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11891 				return -EINVAL;
11892 			}
11893 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11894 			if (ret < 0)
11895 				return ret;
11896 			break;
11897 		case KF_ARG_PTR_TO_MEM:
11898 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11899 			if (IS_ERR(resolve_ret)) {
11900 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11901 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11902 				return -EINVAL;
11903 			}
11904 			ret = check_mem_reg(env, reg, regno, type_size);
11905 			if (ret < 0)
11906 				return ret;
11907 			break;
11908 		case KF_ARG_PTR_TO_MEM_SIZE:
11909 		{
11910 			struct bpf_reg_state *buff_reg = &regs[regno];
11911 			const struct btf_param *buff_arg = &args[i];
11912 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11913 			const struct btf_param *size_arg = &args[i + 1];
11914 
11915 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11916 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11917 				if (ret < 0) {
11918 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11919 					return ret;
11920 				}
11921 			}
11922 
11923 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11924 				if (meta->arg_constant.found) {
11925 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11926 					return -EFAULT;
11927 				}
11928 				if (!tnum_is_const(size_reg->var_off)) {
11929 					verbose(env, "R%d must be a known constant\n", regno + 1);
11930 					return -EINVAL;
11931 				}
11932 				meta->arg_constant.found = true;
11933 				meta->arg_constant.value = size_reg->var_off.value;
11934 			}
11935 
11936 			/* Skip next '__sz' or '__szk' argument */
11937 			i++;
11938 			break;
11939 		}
11940 		case KF_ARG_PTR_TO_CALLBACK:
11941 			if (reg->type != PTR_TO_FUNC) {
11942 				verbose(env, "arg%d expected pointer to func\n", i);
11943 				return -EINVAL;
11944 			}
11945 			meta->subprogno = reg->subprogno;
11946 			break;
11947 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11948 			if (!type_is_ptr_alloc_obj(reg->type)) {
11949 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11950 				return -EINVAL;
11951 			}
11952 			if (!type_is_non_owning_ref(reg->type))
11953 				meta->arg_owning_ref = true;
11954 
11955 			rec = reg_btf_record(reg);
11956 			if (!rec) {
11957 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11958 				return -EFAULT;
11959 			}
11960 
11961 			if (rec->refcount_off < 0) {
11962 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11963 				return -EINVAL;
11964 			}
11965 
11966 			meta->arg_btf = reg->btf;
11967 			meta->arg_btf_id = reg->btf_id;
11968 			break;
11969 		}
11970 	}
11971 
11972 	if (is_kfunc_release(meta) && !meta->release_regno) {
11973 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11974 			func_name);
11975 		return -EINVAL;
11976 	}
11977 
11978 	return 0;
11979 }
11980 
11981 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11982 			    struct bpf_insn *insn,
11983 			    struct bpf_kfunc_call_arg_meta *meta,
11984 			    const char **kfunc_name)
11985 {
11986 	const struct btf_type *func, *func_proto;
11987 	u32 func_id, *kfunc_flags;
11988 	const char *func_name;
11989 	struct btf *desc_btf;
11990 
11991 	if (kfunc_name)
11992 		*kfunc_name = NULL;
11993 
11994 	if (!insn->imm)
11995 		return -EINVAL;
11996 
11997 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11998 	if (IS_ERR(desc_btf))
11999 		return PTR_ERR(desc_btf);
12000 
12001 	func_id = insn->imm;
12002 	func = btf_type_by_id(desc_btf, func_id);
12003 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12004 	if (kfunc_name)
12005 		*kfunc_name = func_name;
12006 	func_proto = btf_type_by_id(desc_btf, func->type);
12007 
12008 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12009 	if (!kfunc_flags) {
12010 		return -EACCES;
12011 	}
12012 
12013 	memset(meta, 0, sizeof(*meta));
12014 	meta->btf = desc_btf;
12015 	meta->func_id = func_id;
12016 	meta->kfunc_flags = *kfunc_flags;
12017 	meta->func_proto = func_proto;
12018 	meta->func_name = func_name;
12019 
12020 	return 0;
12021 }
12022 
12023 static int check_return_code(struct bpf_verifier_env *env, int regno);
12024 
12025 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12026 			    int *insn_idx_p)
12027 {
12028 	const struct btf_type *t, *ptr_type;
12029 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12030 	struct bpf_reg_state *regs = cur_regs(env);
12031 	const char *func_name, *ptr_type_name;
12032 	bool sleepable, rcu_lock, rcu_unlock;
12033 	struct bpf_kfunc_call_arg_meta meta;
12034 	struct bpf_insn_aux_data *insn_aux;
12035 	int err, insn_idx = *insn_idx_p;
12036 	const struct btf_param *args;
12037 	const struct btf_type *ret_t;
12038 	struct btf *desc_btf;
12039 
12040 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12041 	if (!insn->imm)
12042 		return 0;
12043 
12044 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12045 	if (err == -EACCES && func_name)
12046 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12047 	if (err)
12048 		return err;
12049 	desc_btf = meta.btf;
12050 	insn_aux = &env->insn_aux_data[insn_idx];
12051 
12052 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12053 
12054 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12055 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12056 		return -EACCES;
12057 	}
12058 
12059 	sleepable = is_kfunc_sleepable(&meta);
12060 	if (sleepable && !env->prog->aux->sleepable) {
12061 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12062 		return -EACCES;
12063 	}
12064 
12065 	/* Check the arguments */
12066 	err = check_kfunc_args(env, &meta, insn_idx);
12067 	if (err < 0)
12068 		return err;
12069 
12070 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12071 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12072 					 set_rbtree_add_callback_state);
12073 		if (err) {
12074 			verbose(env, "kfunc %s#%d failed callback verification\n",
12075 				func_name, meta.func_id);
12076 			return err;
12077 		}
12078 	}
12079 
12080 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12081 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12082 
12083 	if (env->cur_state->active_rcu_lock) {
12084 		struct bpf_func_state *state;
12085 		struct bpf_reg_state *reg;
12086 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12087 
12088 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12089 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12090 			return -EACCES;
12091 		}
12092 
12093 		if (rcu_lock) {
12094 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12095 			return -EINVAL;
12096 		} else if (rcu_unlock) {
12097 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12098 				if (reg->type & MEM_RCU) {
12099 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12100 					reg->type |= PTR_UNTRUSTED;
12101 				}
12102 			}));
12103 			env->cur_state->active_rcu_lock = false;
12104 		} else if (sleepable) {
12105 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12106 			return -EACCES;
12107 		}
12108 	} else if (rcu_lock) {
12109 		env->cur_state->active_rcu_lock = true;
12110 	} else if (rcu_unlock) {
12111 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12112 		return -EINVAL;
12113 	}
12114 
12115 	/* In case of release function, we get register number of refcounted
12116 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12117 	 */
12118 	if (meta.release_regno) {
12119 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12120 		if (err) {
12121 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12122 				func_name, meta.func_id);
12123 			return err;
12124 		}
12125 	}
12126 
12127 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12128 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12129 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12130 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12131 		insn_aux->insert_off = regs[BPF_REG_2].off;
12132 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12133 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12134 		if (err) {
12135 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12136 				func_name, meta.func_id);
12137 			return err;
12138 		}
12139 
12140 		err = release_reference(env, release_ref_obj_id);
12141 		if (err) {
12142 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12143 				func_name, meta.func_id);
12144 			return err;
12145 		}
12146 	}
12147 
12148 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12149 		if (!bpf_jit_supports_exceptions()) {
12150 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12151 				func_name, meta.func_id);
12152 			return -ENOTSUPP;
12153 		}
12154 		env->seen_exception = true;
12155 
12156 		/* In the case of the default callback, the cookie value passed
12157 		 * to bpf_throw becomes the return value of the program.
12158 		 */
12159 		if (!env->exception_callback_subprog) {
12160 			err = check_return_code(env, BPF_REG_1);
12161 			if (err < 0)
12162 				return err;
12163 		}
12164 	}
12165 
12166 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12167 		mark_reg_not_init(env, regs, caller_saved[i]);
12168 
12169 	/* Check return type */
12170 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12171 
12172 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12173 		/* Only exception is bpf_obj_new_impl */
12174 		if (meta.btf != btf_vmlinux ||
12175 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12176 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12177 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12178 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12179 			return -EINVAL;
12180 		}
12181 	}
12182 
12183 	if (btf_type_is_scalar(t)) {
12184 		mark_reg_unknown(env, regs, BPF_REG_0);
12185 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12186 	} else if (btf_type_is_ptr(t)) {
12187 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12188 
12189 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12190 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12191 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12192 				struct btf_struct_meta *struct_meta;
12193 				struct btf *ret_btf;
12194 				u32 ret_btf_id;
12195 
12196 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12197 					return -ENOMEM;
12198 
12199 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12200 					if (!bpf_global_percpu_ma_set) {
12201 						mutex_lock(&bpf_percpu_ma_lock);
12202 						if (!bpf_global_percpu_ma_set) {
12203 							err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true);
12204 							if (!err)
12205 								bpf_global_percpu_ma_set = true;
12206 						}
12207 						mutex_unlock(&bpf_percpu_ma_lock);
12208 						if (err)
12209 							return err;
12210 					}
12211 				}
12212 
12213 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12214 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12215 					return -EINVAL;
12216 				}
12217 
12218 				ret_btf = env->prog->aux->btf;
12219 				ret_btf_id = meta.arg_constant.value;
12220 
12221 				/* This may be NULL due to user not supplying a BTF */
12222 				if (!ret_btf) {
12223 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12224 					return -EINVAL;
12225 				}
12226 
12227 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12228 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12229 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12230 					return -EINVAL;
12231 				}
12232 
12233 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12234 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12235 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12236 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12237 						return -EINVAL;
12238 					}
12239 
12240 					if (struct_meta) {
12241 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12242 						return -EINVAL;
12243 					}
12244 				}
12245 
12246 				mark_reg_known_zero(env, regs, BPF_REG_0);
12247 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12248 				regs[BPF_REG_0].btf = ret_btf;
12249 				regs[BPF_REG_0].btf_id = ret_btf_id;
12250 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12251 					regs[BPF_REG_0].type |= MEM_PERCPU;
12252 
12253 				insn_aux->obj_new_size = ret_t->size;
12254 				insn_aux->kptr_struct_meta = struct_meta;
12255 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12256 				mark_reg_known_zero(env, regs, BPF_REG_0);
12257 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12258 				regs[BPF_REG_0].btf = meta.arg_btf;
12259 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12260 
12261 				insn_aux->kptr_struct_meta =
12262 					btf_find_struct_meta(meta.arg_btf,
12263 							     meta.arg_btf_id);
12264 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12265 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12266 				struct btf_field *field = meta.arg_list_head.field;
12267 
12268 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12269 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12270 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12271 				struct btf_field *field = meta.arg_rbtree_root.field;
12272 
12273 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12274 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12275 				mark_reg_known_zero(env, regs, BPF_REG_0);
12276 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12277 				regs[BPF_REG_0].btf = desc_btf;
12278 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12279 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12280 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12281 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12282 					verbose(env,
12283 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12284 					return -EINVAL;
12285 				}
12286 
12287 				mark_reg_known_zero(env, regs, BPF_REG_0);
12288 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12289 				regs[BPF_REG_0].btf = desc_btf;
12290 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12291 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12292 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12293 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12294 
12295 				mark_reg_known_zero(env, regs, BPF_REG_0);
12296 
12297 				if (!meta.arg_constant.found) {
12298 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12299 					return -EFAULT;
12300 				}
12301 
12302 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12303 
12304 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12305 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12306 
12307 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12308 					regs[BPF_REG_0].type |= MEM_RDONLY;
12309 				} else {
12310 					/* this will set env->seen_direct_write to true */
12311 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12312 						verbose(env, "the prog does not allow writes to packet data\n");
12313 						return -EINVAL;
12314 					}
12315 				}
12316 
12317 				if (!meta.initialized_dynptr.id) {
12318 					verbose(env, "verifier internal error: no dynptr id\n");
12319 					return -EFAULT;
12320 				}
12321 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12322 
12323 				/* we don't need to set BPF_REG_0's ref obj id
12324 				 * because packet slices are not refcounted (see
12325 				 * dynptr_type_refcounted)
12326 				 */
12327 			} else {
12328 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12329 					meta.func_name);
12330 				return -EFAULT;
12331 			}
12332 		} else if (!__btf_type_is_struct(ptr_type)) {
12333 			if (!meta.r0_size) {
12334 				__u32 sz;
12335 
12336 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12337 					meta.r0_size = sz;
12338 					meta.r0_rdonly = true;
12339 				}
12340 			}
12341 			if (!meta.r0_size) {
12342 				ptr_type_name = btf_name_by_offset(desc_btf,
12343 								   ptr_type->name_off);
12344 				verbose(env,
12345 					"kernel function %s returns pointer type %s %s is not supported\n",
12346 					func_name,
12347 					btf_type_str(ptr_type),
12348 					ptr_type_name);
12349 				return -EINVAL;
12350 			}
12351 
12352 			mark_reg_known_zero(env, regs, BPF_REG_0);
12353 			regs[BPF_REG_0].type = PTR_TO_MEM;
12354 			regs[BPF_REG_0].mem_size = meta.r0_size;
12355 
12356 			if (meta.r0_rdonly)
12357 				regs[BPF_REG_0].type |= MEM_RDONLY;
12358 
12359 			/* Ensures we don't access the memory after a release_reference() */
12360 			if (meta.ref_obj_id)
12361 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12362 		} else {
12363 			mark_reg_known_zero(env, regs, BPF_REG_0);
12364 			regs[BPF_REG_0].btf = desc_btf;
12365 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12366 			regs[BPF_REG_0].btf_id = ptr_type_id;
12367 		}
12368 
12369 		if (is_kfunc_ret_null(&meta)) {
12370 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12371 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12372 			regs[BPF_REG_0].id = ++env->id_gen;
12373 		}
12374 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12375 		if (is_kfunc_acquire(&meta)) {
12376 			int id = acquire_reference_state(env, insn_idx);
12377 
12378 			if (id < 0)
12379 				return id;
12380 			if (is_kfunc_ret_null(&meta))
12381 				regs[BPF_REG_0].id = id;
12382 			regs[BPF_REG_0].ref_obj_id = id;
12383 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12384 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12385 		}
12386 
12387 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12388 			regs[BPF_REG_0].id = ++env->id_gen;
12389 	} else if (btf_type_is_void(t)) {
12390 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12391 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12392 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12393 				insn_aux->kptr_struct_meta =
12394 					btf_find_struct_meta(meta.arg_btf,
12395 							     meta.arg_btf_id);
12396 			}
12397 		}
12398 	}
12399 
12400 	nargs = btf_type_vlen(meta.func_proto);
12401 	args = (const struct btf_param *)(meta.func_proto + 1);
12402 	for (i = 0; i < nargs; i++) {
12403 		u32 regno = i + 1;
12404 
12405 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12406 		if (btf_type_is_ptr(t))
12407 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12408 		else
12409 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12410 			mark_btf_func_reg_size(env, regno, t->size);
12411 	}
12412 
12413 	if (is_iter_next_kfunc(&meta)) {
12414 		err = process_iter_next_call(env, insn_idx, &meta);
12415 		if (err)
12416 			return err;
12417 	}
12418 
12419 	return 0;
12420 }
12421 
12422 static bool signed_add_overflows(s64 a, s64 b)
12423 {
12424 	/* Do the add in u64, where overflow is well-defined */
12425 	s64 res = (s64)((u64)a + (u64)b);
12426 
12427 	if (b < 0)
12428 		return res > a;
12429 	return res < a;
12430 }
12431 
12432 static bool signed_add32_overflows(s32 a, s32 b)
12433 {
12434 	/* Do the add in u32, where overflow is well-defined */
12435 	s32 res = (s32)((u32)a + (u32)b);
12436 
12437 	if (b < 0)
12438 		return res > a;
12439 	return res < a;
12440 }
12441 
12442 static bool signed_sub_overflows(s64 a, s64 b)
12443 {
12444 	/* Do the sub in u64, where overflow is well-defined */
12445 	s64 res = (s64)((u64)a - (u64)b);
12446 
12447 	if (b < 0)
12448 		return res < a;
12449 	return res > a;
12450 }
12451 
12452 static bool signed_sub32_overflows(s32 a, s32 b)
12453 {
12454 	/* Do the sub in u32, where overflow is well-defined */
12455 	s32 res = (s32)((u32)a - (u32)b);
12456 
12457 	if (b < 0)
12458 		return res < a;
12459 	return res > a;
12460 }
12461 
12462 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12463 				  const struct bpf_reg_state *reg,
12464 				  enum bpf_reg_type type)
12465 {
12466 	bool known = tnum_is_const(reg->var_off);
12467 	s64 val = reg->var_off.value;
12468 	s64 smin = reg->smin_value;
12469 
12470 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12471 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12472 			reg_type_str(env, type), val);
12473 		return false;
12474 	}
12475 
12476 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12477 		verbose(env, "%s pointer offset %d is not allowed\n",
12478 			reg_type_str(env, type), reg->off);
12479 		return false;
12480 	}
12481 
12482 	if (smin == S64_MIN) {
12483 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12484 			reg_type_str(env, type));
12485 		return false;
12486 	}
12487 
12488 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12489 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12490 			smin, reg_type_str(env, type));
12491 		return false;
12492 	}
12493 
12494 	return true;
12495 }
12496 
12497 enum {
12498 	REASON_BOUNDS	= -1,
12499 	REASON_TYPE	= -2,
12500 	REASON_PATHS	= -3,
12501 	REASON_LIMIT	= -4,
12502 	REASON_STACK	= -5,
12503 };
12504 
12505 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12506 			      u32 *alu_limit, bool mask_to_left)
12507 {
12508 	u32 max = 0, ptr_limit = 0;
12509 
12510 	switch (ptr_reg->type) {
12511 	case PTR_TO_STACK:
12512 		/* Offset 0 is out-of-bounds, but acceptable start for the
12513 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12514 		 * offset where we would need to deal with min/max bounds is
12515 		 * currently prohibited for unprivileged.
12516 		 */
12517 		max = MAX_BPF_STACK + mask_to_left;
12518 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12519 		break;
12520 	case PTR_TO_MAP_VALUE:
12521 		max = ptr_reg->map_ptr->value_size;
12522 		ptr_limit = (mask_to_left ?
12523 			     ptr_reg->smin_value :
12524 			     ptr_reg->umax_value) + ptr_reg->off;
12525 		break;
12526 	default:
12527 		return REASON_TYPE;
12528 	}
12529 
12530 	if (ptr_limit >= max)
12531 		return REASON_LIMIT;
12532 	*alu_limit = ptr_limit;
12533 	return 0;
12534 }
12535 
12536 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12537 				    const struct bpf_insn *insn)
12538 {
12539 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12540 }
12541 
12542 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12543 				       u32 alu_state, u32 alu_limit)
12544 {
12545 	/* If we arrived here from different branches with different
12546 	 * state or limits to sanitize, then this won't work.
12547 	 */
12548 	if (aux->alu_state &&
12549 	    (aux->alu_state != alu_state ||
12550 	     aux->alu_limit != alu_limit))
12551 		return REASON_PATHS;
12552 
12553 	/* Corresponding fixup done in do_misc_fixups(). */
12554 	aux->alu_state = alu_state;
12555 	aux->alu_limit = alu_limit;
12556 	return 0;
12557 }
12558 
12559 static int sanitize_val_alu(struct bpf_verifier_env *env,
12560 			    struct bpf_insn *insn)
12561 {
12562 	struct bpf_insn_aux_data *aux = cur_aux(env);
12563 
12564 	if (can_skip_alu_sanitation(env, insn))
12565 		return 0;
12566 
12567 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12568 }
12569 
12570 static bool sanitize_needed(u8 opcode)
12571 {
12572 	return opcode == BPF_ADD || opcode == BPF_SUB;
12573 }
12574 
12575 struct bpf_sanitize_info {
12576 	struct bpf_insn_aux_data aux;
12577 	bool mask_to_left;
12578 };
12579 
12580 static struct bpf_verifier_state *
12581 sanitize_speculative_path(struct bpf_verifier_env *env,
12582 			  const struct bpf_insn *insn,
12583 			  u32 next_idx, u32 curr_idx)
12584 {
12585 	struct bpf_verifier_state *branch;
12586 	struct bpf_reg_state *regs;
12587 
12588 	branch = push_stack(env, next_idx, curr_idx, true);
12589 	if (branch && insn) {
12590 		regs = branch->frame[branch->curframe]->regs;
12591 		if (BPF_SRC(insn->code) == BPF_K) {
12592 			mark_reg_unknown(env, regs, insn->dst_reg);
12593 		} else if (BPF_SRC(insn->code) == BPF_X) {
12594 			mark_reg_unknown(env, regs, insn->dst_reg);
12595 			mark_reg_unknown(env, regs, insn->src_reg);
12596 		}
12597 	}
12598 	return branch;
12599 }
12600 
12601 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12602 			    struct bpf_insn *insn,
12603 			    const struct bpf_reg_state *ptr_reg,
12604 			    const struct bpf_reg_state *off_reg,
12605 			    struct bpf_reg_state *dst_reg,
12606 			    struct bpf_sanitize_info *info,
12607 			    const bool commit_window)
12608 {
12609 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12610 	struct bpf_verifier_state *vstate = env->cur_state;
12611 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12612 	bool off_is_neg = off_reg->smin_value < 0;
12613 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12614 	u8 opcode = BPF_OP(insn->code);
12615 	u32 alu_state, alu_limit;
12616 	struct bpf_reg_state tmp;
12617 	bool ret;
12618 	int err;
12619 
12620 	if (can_skip_alu_sanitation(env, insn))
12621 		return 0;
12622 
12623 	/* We already marked aux for masking from non-speculative
12624 	 * paths, thus we got here in the first place. We only care
12625 	 * to explore bad access from here.
12626 	 */
12627 	if (vstate->speculative)
12628 		goto do_sim;
12629 
12630 	if (!commit_window) {
12631 		if (!tnum_is_const(off_reg->var_off) &&
12632 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12633 			return REASON_BOUNDS;
12634 
12635 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12636 				     (opcode == BPF_SUB && !off_is_neg);
12637 	}
12638 
12639 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12640 	if (err < 0)
12641 		return err;
12642 
12643 	if (commit_window) {
12644 		/* In commit phase we narrow the masking window based on
12645 		 * the observed pointer move after the simulated operation.
12646 		 */
12647 		alu_state = info->aux.alu_state;
12648 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12649 	} else {
12650 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12651 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12652 		alu_state |= ptr_is_dst_reg ?
12653 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12654 
12655 		/* Limit pruning on unknown scalars to enable deep search for
12656 		 * potential masking differences from other program paths.
12657 		 */
12658 		if (!off_is_imm)
12659 			env->explore_alu_limits = true;
12660 	}
12661 
12662 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12663 	if (err < 0)
12664 		return err;
12665 do_sim:
12666 	/* If we're in commit phase, we're done here given we already
12667 	 * pushed the truncated dst_reg into the speculative verification
12668 	 * stack.
12669 	 *
12670 	 * Also, when register is a known constant, we rewrite register-based
12671 	 * operation to immediate-based, and thus do not need masking (and as
12672 	 * a consequence, do not need to simulate the zero-truncation either).
12673 	 */
12674 	if (commit_window || off_is_imm)
12675 		return 0;
12676 
12677 	/* Simulate and find potential out-of-bounds access under
12678 	 * speculative execution from truncation as a result of
12679 	 * masking when off was not within expected range. If off
12680 	 * sits in dst, then we temporarily need to move ptr there
12681 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12682 	 * for cases where we use K-based arithmetic in one direction
12683 	 * and truncated reg-based in the other in order to explore
12684 	 * bad access.
12685 	 */
12686 	if (!ptr_is_dst_reg) {
12687 		tmp = *dst_reg;
12688 		copy_register_state(dst_reg, ptr_reg);
12689 	}
12690 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12691 					env->insn_idx);
12692 	if (!ptr_is_dst_reg && ret)
12693 		*dst_reg = tmp;
12694 	return !ret ? REASON_STACK : 0;
12695 }
12696 
12697 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12698 {
12699 	struct bpf_verifier_state *vstate = env->cur_state;
12700 
12701 	/* If we simulate paths under speculation, we don't update the
12702 	 * insn as 'seen' such that when we verify unreachable paths in
12703 	 * the non-speculative domain, sanitize_dead_code() can still
12704 	 * rewrite/sanitize them.
12705 	 */
12706 	if (!vstate->speculative)
12707 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12708 }
12709 
12710 static int sanitize_err(struct bpf_verifier_env *env,
12711 			const struct bpf_insn *insn, int reason,
12712 			const struct bpf_reg_state *off_reg,
12713 			const struct bpf_reg_state *dst_reg)
12714 {
12715 	static const char *err = "pointer arithmetic with it prohibited for !root";
12716 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12717 	u32 dst = insn->dst_reg, src = insn->src_reg;
12718 
12719 	switch (reason) {
12720 	case REASON_BOUNDS:
12721 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12722 			off_reg == dst_reg ? dst : src, err);
12723 		break;
12724 	case REASON_TYPE:
12725 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12726 			off_reg == dst_reg ? src : dst, err);
12727 		break;
12728 	case REASON_PATHS:
12729 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12730 			dst, op, err);
12731 		break;
12732 	case REASON_LIMIT:
12733 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12734 			dst, op, err);
12735 		break;
12736 	case REASON_STACK:
12737 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12738 			dst, err);
12739 		break;
12740 	default:
12741 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12742 			reason);
12743 		break;
12744 	}
12745 
12746 	return -EACCES;
12747 }
12748 
12749 /* check that stack access falls within stack limits and that 'reg' doesn't
12750  * have a variable offset.
12751  *
12752  * Variable offset is prohibited for unprivileged mode for simplicity since it
12753  * requires corresponding support in Spectre masking for stack ALU.  See also
12754  * retrieve_ptr_limit().
12755  *
12756  *
12757  * 'off' includes 'reg->off'.
12758  */
12759 static int check_stack_access_for_ptr_arithmetic(
12760 				struct bpf_verifier_env *env,
12761 				int regno,
12762 				const struct bpf_reg_state *reg,
12763 				int off)
12764 {
12765 	if (!tnum_is_const(reg->var_off)) {
12766 		char tn_buf[48];
12767 
12768 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12769 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12770 			regno, tn_buf, off);
12771 		return -EACCES;
12772 	}
12773 
12774 	if (off >= 0 || off < -MAX_BPF_STACK) {
12775 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12776 			"prohibited for !root; off=%d\n", regno, off);
12777 		return -EACCES;
12778 	}
12779 
12780 	return 0;
12781 }
12782 
12783 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12784 				 const struct bpf_insn *insn,
12785 				 const struct bpf_reg_state *dst_reg)
12786 {
12787 	u32 dst = insn->dst_reg;
12788 
12789 	/* For unprivileged we require that resulting offset must be in bounds
12790 	 * in order to be able to sanitize access later on.
12791 	 */
12792 	if (env->bypass_spec_v1)
12793 		return 0;
12794 
12795 	switch (dst_reg->type) {
12796 	case PTR_TO_STACK:
12797 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12798 					dst_reg->off + dst_reg->var_off.value))
12799 			return -EACCES;
12800 		break;
12801 	case PTR_TO_MAP_VALUE:
12802 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12803 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12804 				"prohibited for !root\n", dst);
12805 			return -EACCES;
12806 		}
12807 		break;
12808 	default:
12809 		break;
12810 	}
12811 
12812 	return 0;
12813 }
12814 
12815 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12816  * Caller should also handle BPF_MOV case separately.
12817  * If we return -EACCES, caller may want to try again treating pointer as a
12818  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12819  */
12820 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12821 				   struct bpf_insn *insn,
12822 				   const struct bpf_reg_state *ptr_reg,
12823 				   const struct bpf_reg_state *off_reg)
12824 {
12825 	struct bpf_verifier_state *vstate = env->cur_state;
12826 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12827 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12828 	bool known = tnum_is_const(off_reg->var_off);
12829 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12830 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12831 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12832 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12833 	struct bpf_sanitize_info info = {};
12834 	u8 opcode = BPF_OP(insn->code);
12835 	u32 dst = insn->dst_reg;
12836 	int ret;
12837 
12838 	dst_reg = &regs[dst];
12839 
12840 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12841 	    smin_val > smax_val || umin_val > umax_val) {
12842 		/* Taint dst register if offset had invalid bounds derived from
12843 		 * e.g. dead branches.
12844 		 */
12845 		__mark_reg_unknown(env, dst_reg);
12846 		return 0;
12847 	}
12848 
12849 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12850 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12851 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12852 			__mark_reg_unknown(env, dst_reg);
12853 			return 0;
12854 		}
12855 
12856 		verbose(env,
12857 			"R%d 32-bit pointer arithmetic prohibited\n",
12858 			dst);
12859 		return -EACCES;
12860 	}
12861 
12862 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12863 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12864 			dst, reg_type_str(env, ptr_reg->type));
12865 		return -EACCES;
12866 	}
12867 
12868 	switch (base_type(ptr_reg->type)) {
12869 	case CONST_PTR_TO_MAP:
12870 		/* smin_val represents the known value */
12871 		if (known && smin_val == 0 && opcode == BPF_ADD)
12872 			break;
12873 		fallthrough;
12874 	case PTR_TO_PACKET_END:
12875 	case PTR_TO_SOCKET:
12876 	case PTR_TO_SOCK_COMMON:
12877 	case PTR_TO_TCP_SOCK:
12878 	case PTR_TO_XDP_SOCK:
12879 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12880 			dst, reg_type_str(env, ptr_reg->type));
12881 		return -EACCES;
12882 	default:
12883 		break;
12884 	}
12885 
12886 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12887 	 * The id may be overwritten later if we create a new variable offset.
12888 	 */
12889 	dst_reg->type = ptr_reg->type;
12890 	dst_reg->id = ptr_reg->id;
12891 
12892 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12893 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12894 		return -EINVAL;
12895 
12896 	/* pointer types do not carry 32-bit bounds at the moment. */
12897 	__mark_reg32_unbounded(dst_reg);
12898 
12899 	if (sanitize_needed(opcode)) {
12900 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12901 				       &info, false);
12902 		if (ret < 0)
12903 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12904 	}
12905 
12906 	switch (opcode) {
12907 	case BPF_ADD:
12908 		/* We can take a fixed offset as long as it doesn't overflow
12909 		 * the s32 'off' field
12910 		 */
12911 		if (known && (ptr_reg->off + smin_val ==
12912 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12913 			/* pointer += K.  Accumulate it into fixed offset */
12914 			dst_reg->smin_value = smin_ptr;
12915 			dst_reg->smax_value = smax_ptr;
12916 			dst_reg->umin_value = umin_ptr;
12917 			dst_reg->umax_value = umax_ptr;
12918 			dst_reg->var_off = ptr_reg->var_off;
12919 			dst_reg->off = ptr_reg->off + smin_val;
12920 			dst_reg->raw = ptr_reg->raw;
12921 			break;
12922 		}
12923 		/* A new variable offset is created.  Note that off_reg->off
12924 		 * == 0, since it's a scalar.
12925 		 * dst_reg gets the pointer type and since some positive
12926 		 * integer value was added to the pointer, give it a new 'id'
12927 		 * if it's a PTR_TO_PACKET.
12928 		 * this creates a new 'base' pointer, off_reg (variable) gets
12929 		 * added into the variable offset, and we copy the fixed offset
12930 		 * from ptr_reg.
12931 		 */
12932 		if (signed_add_overflows(smin_ptr, smin_val) ||
12933 		    signed_add_overflows(smax_ptr, smax_val)) {
12934 			dst_reg->smin_value = S64_MIN;
12935 			dst_reg->smax_value = S64_MAX;
12936 		} else {
12937 			dst_reg->smin_value = smin_ptr + smin_val;
12938 			dst_reg->smax_value = smax_ptr + smax_val;
12939 		}
12940 		if (umin_ptr + umin_val < umin_ptr ||
12941 		    umax_ptr + umax_val < umax_ptr) {
12942 			dst_reg->umin_value = 0;
12943 			dst_reg->umax_value = U64_MAX;
12944 		} else {
12945 			dst_reg->umin_value = umin_ptr + umin_val;
12946 			dst_reg->umax_value = umax_ptr + umax_val;
12947 		}
12948 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12949 		dst_reg->off = ptr_reg->off;
12950 		dst_reg->raw = ptr_reg->raw;
12951 		if (reg_is_pkt_pointer(ptr_reg)) {
12952 			dst_reg->id = ++env->id_gen;
12953 			/* something was added to pkt_ptr, set range to zero */
12954 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12955 		}
12956 		break;
12957 	case BPF_SUB:
12958 		if (dst_reg == off_reg) {
12959 			/* scalar -= pointer.  Creates an unknown scalar */
12960 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12961 				dst);
12962 			return -EACCES;
12963 		}
12964 		/* We don't allow subtraction from FP, because (according to
12965 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12966 		 * be able to deal with it.
12967 		 */
12968 		if (ptr_reg->type == PTR_TO_STACK) {
12969 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12970 				dst);
12971 			return -EACCES;
12972 		}
12973 		if (known && (ptr_reg->off - smin_val ==
12974 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12975 			/* pointer -= K.  Subtract it from fixed offset */
12976 			dst_reg->smin_value = smin_ptr;
12977 			dst_reg->smax_value = smax_ptr;
12978 			dst_reg->umin_value = umin_ptr;
12979 			dst_reg->umax_value = umax_ptr;
12980 			dst_reg->var_off = ptr_reg->var_off;
12981 			dst_reg->id = ptr_reg->id;
12982 			dst_reg->off = ptr_reg->off - smin_val;
12983 			dst_reg->raw = ptr_reg->raw;
12984 			break;
12985 		}
12986 		/* A new variable offset is created.  If the subtrahend is known
12987 		 * nonnegative, then any reg->range we had before is still good.
12988 		 */
12989 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12990 		    signed_sub_overflows(smax_ptr, smin_val)) {
12991 			/* Overflow possible, we know nothing */
12992 			dst_reg->smin_value = S64_MIN;
12993 			dst_reg->smax_value = S64_MAX;
12994 		} else {
12995 			dst_reg->smin_value = smin_ptr - smax_val;
12996 			dst_reg->smax_value = smax_ptr - smin_val;
12997 		}
12998 		if (umin_ptr < umax_val) {
12999 			/* Overflow possible, we know nothing */
13000 			dst_reg->umin_value = 0;
13001 			dst_reg->umax_value = U64_MAX;
13002 		} else {
13003 			/* Cannot overflow (as long as bounds are consistent) */
13004 			dst_reg->umin_value = umin_ptr - umax_val;
13005 			dst_reg->umax_value = umax_ptr - umin_val;
13006 		}
13007 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13008 		dst_reg->off = ptr_reg->off;
13009 		dst_reg->raw = ptr_reg->raw;
13010 		if (reg_is_pkt_pointer(ptr_reg)) {
13011 			dst_reg->id = ++env->id_gen;
13012 			/* something was added to pkt_ptr, set range to zero */
13013 			if (smin_val < 0)
13014 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13015 		}
13016 		break;
13017 	case BPF_AND:
13018 	case BPF_OR:
13019 	case BPF_XOR:
13020 		/* bitwise ops on pointers are troublesome, prohibit. */
13021 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13022 			dst, bpf_alu_string[opcode >> 4]);
13023 		return -EACCES;
13024 	default:
13025 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13026 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13027 			dst, bpf_alu_string[opcode >> 4]);
13028 		return -EACCES;
13029 	}
13030 
13031 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13032 		return -EINVAL;
13033 	reg_bounds_sync(dst_reg);
13034 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13035 		return -EACCES;
13036 	if (sanitize_needed(opcode)) {
13037 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13038 				       &info, true);
13039 		if (ret < 0)
13040 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13041 	}
13042 
13043 	return 0;
13044 }
13045 
13046 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13047 				 struct bpf_reg_state *src_reg)
13048 {
13049 	s32 smin_val = src_reg->s32_min_value;
13050 	s32 smax_val = src_reg->s32_max_value;
13051 	u32 umin_val = src_reg->u32_min_value;
13052 	u32 umax_val = src_reg->u32_max_value;
13053 
13054 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
13055 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
13056 		dst_reg->s32_min_value = S32_MIN;
13057 		dst_reg->s32_max_value = S32_MAX;
13058 	} else {
13059 		dst_reg->s32_min_value += smin_val;
13060 		dst_reg->s32_max_value += smax_val;
13061 	}
13062 	if (dst_reg->u32_min_value + umin_val < umin_val ||
13063 	    dst_reg->u32_max_value + umax_val < umax_val) {
13064 		dst_reg->u32_min_value = 0;
13065 		dst_reg->u32_max_value = U32_MAX;
13066 	} else {
13067 		dst_reg->u32_min_value += umin_val;
13068 		dst_reg->u32_max_value += umax_val;
13069 	}
13070 }
13071 
13072 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13073 			       struct bpf_reg_state *src_reg)
13074 {
13075 	s64 smin_val = src_reg->smin_value;
13076 	s64 smax_val = src_reg->smax_value;
13077 	u64 umin_val = src_reg->umin_value;
13078 	u64 umax_val = src_reg->umax_value;
13079 
13080 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
13081 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
13082 		dst_reg->smin_value = S64_MIN;
13083 		dst_reg->smax_value = S64_MAX;
13084 	} else {
13085 		dst_reg->smin_value += smin_val;
13086 		dst_reg->smax_value += smax_val;
13087 	}
13088 	if (dst_reg->umin_value + umin_val < umin_val ||
13089 	    dst_reg->umax_value + umax_val < umax_val) {
13090 		dst_reg->umin_value = 0;
13091 		dst_reg->umax_value = U64_MAX;
13092 	} else {
13093 		dst_reg->umin_value += umin_val;
13094 		dst_reg->umax_value += umax_val;
13095 	}
13096 }
13097 
13098 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13099 				 struct bpf_reg_state *src_reg)
13100 {
13101 	s32 smin_val = src_reg->s32_min_value;
13102 	s32 smax_val = src_reg->s32_max_value;
13103 	u32 umin_val = src_reg->u32_min_value;
13104 	u32 umax_val = src_reg->u32_max_value;
13105 
13106 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13107 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13108 		/* Overflow possible, we know nothing */
13109 		dst_reg->s32_min_value = S32_MIN;
13110 		dst_reg->s32_max_value = S32_MAX;
13111 	} else {
13112 		dst_reg->s32_min_value -= smax_val;
13113 		dst_reg->s32_max_value -= smin_val;
13114 	}
13115 	if (dst_reg->u32_min_value < umax_val) {
13116 		/* Overflow possible, we know nothing */
13117 		dst_reg->u32_min_value = 0;
13118 		dst_reg->u32_max_value = U32_MAX;
13119 	} else {
13120 		/* Cannot overflow (as long as bounds are consistent) */
13121 		dst_reg->u32_min_value -= umax_val;
13122 		dst_reg->u32_max_value -= umin_val;
13123 	}
13124 }
13125 
13126 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13127 			       struct bpf_reg_state *src_reg)
13128 {
13129 	s64 smin_val = src_reg->smin_value;
13130 	s64 smax_val = src_reg->smax_value;
13131 	u64 umin_val = src_reg->umin_value;
13132 	u64 umax_val = src_reg->umax_value;
13133 
13134 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13135 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13136 		/* Overflow possible, we know nothing */
13137 		dst_reg->smin_value = S64_MIN;
13138 		dst_reg->smax_value = S64_MAX;
13139 	} else {
13140 		dst_reg->smin_value -= smax_val;
13141 		dst_reg->smax_value -= smin_val;
13142 	}
13143 	if (dst_reg->umin_value < umax_val) {
13144 		/* Overflow possible, we know nothing */
13145 		dst_reg->umin_value = 0;
13146 		dst_reg->umax_value = U64_MAX;
13147 	} else {
13148 		/* Cannot overflow (as long as bounds are consistent) */
13149 		dst_reg->umin_value -= umax_val;
13150 		dst_reg->umax_value -= umin_val;
13151 	}
13152 }
13153 
13154 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13155 				 struct bpf_reg_state *src_reg)
13156 {
13157 	s32 smin_val = src_reg->s32_min_value;
13158 	u32 umin_val = src_reg->u32_min_value;
13159 	u32 umax_val = src_reg->u32_max_value;
13160 
13161 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13162 		/* Ain't nobody got time to multiply that sign */
13163 		__mark_reg32_unbounded(dst_reg);
13164 		return;
13165 	}
13166 	/* Both values are positive, so we can work with unsigned and
13167 	 * copy the result to signed (unless it exceeds S32_MAX).
13168 	 */
13169 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13170 		/* Potential overflow, we know nothing */
13171 		__mark_reg32_unbounded(dst_reg);
13172 		return;
13173 	}
13174 	dst_reg->u32_min_value *= umin_val;
13175 	dst_reg->u32_max_value *= umax_val;
13176 	if (dst_reg->u32_max_value > S32_MAX) {
13177 		/* Overflow possible, we know nothing */
13178 		dst_reg->s32_min_value = S32_MIN;
13179 		dst_reg->s32_max_value = S32_MAX;
13180 	} else {
13181 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13182 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13183 	}
13184 }
13185 
13186 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13187 			       struct bpf_reg_state *src_reg)
13188 {
13189 	s64 smin_val = src_reg->smin_value;
13190 	u64 umin_val = src_reg->umin_value;
13191 	u64 umax_val = src_reg->umax_value;
13192 
13193 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13194 		/* Ain't nobody got time to multiply that sign */
13195 		__mark_reg64_unbounded(dst_reg);
13196 		return;
13197 	}
13198 	/* Both values are positive, so we can work with unsigned and
13199 	 * copy the result to signed (unless it exceeds S64_MAX).
13200 	 */
13201 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13202 		/* Potential overflow, we know nothing */
13203 		__mark_reg64_unbounded(dst_reg);
13204 		return;
13205 	}
13206 	dst_reg->umin_value *= umin_val;
13207 	dst_reg->umax_value *= umax_val;
13208 	if (dst_reg->umax_value > S64_MAX) {
13209 		/* Overflow possible, we know nothing */
13210 		dst_reg->smin_value = S64_MIN;
13211 		dst_reg->smax_value = S64_MAX;
13212 	} else {
13213 		dst_reg->smin_value = dst_reg->umin_value;
13214 		dst_reg->smax_value = dst_reg->umax_value;
13215 	}
13216 }
13217 
13218 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13219 				 struct bpf_reg_state *src_reg)
13220 {
13221 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13222 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13223 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13224 	s32 smin_val = src_reg->s32_min_value;
13225 	u32 umax_val = src_reg->u32_max_value;
13226 
13227 	if (src_known && dst_known) {
13228 		__mark_reg32_known(dst_reg, var32_off.value);
13229 		return;
13230 	}
13231 
13232 	/* We get our minimum from the var_off, since that's inherently
13233 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13234 	 */
13235 	dst_reg->u32_min_value = var32_off.value;
13236 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13237 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13238 		/* Lose signed bounds when ANDing negative numbers,
13239 		 * ain't nobody got time for that.
13240 		 */
13241 		dst_reg->s32_min_value = S32_MIN;
13242 		dst_reg->s32_max_value = S32_MAX;
13243 	} else {
13244 		/* ANDing two positives gives a positive, so safe to
13245 		 * cast result into s64.
13246 		 */
13247 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13248 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13249 	}
13250 }
13251 
13252 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13253 			       struct bpf_reg_state *src_reg)
13254 {
13255 	bool src_known = tnum_is_const(src_reg->var_off);
13256 	bool dst_known = tnum_is_const(dst_reg->var_off);
13257 	s64 smin_val = src_reg->smin_value;
13258 	u64 umax_val = src_reg->umax_value;
13259 
13260 	if (src_known && dst_known) {
13261 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13262 		return;
13263 	}
13264 
13265 	/* We get our minimum from the var_off, since that's inherently
13266 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13267 	 */
13268 	dst_reg->umin_value = dst_reg->var_off.value;
13269 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13270 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13271 		/* Lose signed bounds when ANDing negative numbers,
13272 		 * ain't nobody got time for that.
13273 		 */
13274 		dst_reg->smin_value = S64_MIN;
13275 		dst_reg->smax_value = S64_MAX;
13276 	} else {
13277 		/* ANDing two positives gives a positive, so safe to
13278 		 * cast result into s64.
13279 		 */
13280 		dst_reg->smin_value = dst_reg->umin_value;
13281 		dst_reg->smax_value = dst_reg->umax_value;
13282 	}
13283 	/* We may learn something more from the var_off */
13284 	__update_reg_bounds(dst_reg);
13285 }
13286 
13287 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13288 				struct bpf_reg_state *src_reg)
13289 {
13290 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13291 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13292 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13293 	s32 smin_val = src_reg->s32_min_value;
13294 	u32 umin_val = src_reg->u32_min_value;
13295 
13296 	if (src_known && dst_known) {
13297 		__mark_reg32_known(dst_reg, var32_off.value);
13298 		return;
13299 	}
13300 
13301 	/* We get our maximum from the var_off, and our minimum is the
13302 	 * maximum of the operands' minima
13303 	 */
13304 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13305 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13306 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13307 		/* Lose signed bounds when ORing negative numbers,
13308 		 * ain't nobody got time for that.
13309 		 */
13310 		dst_reg->s32_min_value = S32_MIN;
13311 		dst_reg->s32_max_value = S32_MAX;
13312 	} else {
13313 		/* ORing two positives gives a positive, so safe to
13314 		 * cast result into s64.
13315 		 */
13316 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13317 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13318 	}
13319 }
13320 
13321 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13322 			      struct bpf_reg_state *src_reg)
13323 {
13324 	bool src_known = tnum_is_const(src_reg->var_off);
13325 	bool dst_known = tnum_is_const(dst_reg->var_off);
13326 	s64 smin_val = src_reg->smin_value;
13327 	u64 umin_val = src_reg->umin_value;
13328 
13329 	if (src_known && dst_known) {
13330 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13331 		return;
13332 	}
13333 
13334 	/* We get our maximum from the var_off, and our minimum is the
13335 	 * maximum of the operands' minima
13336 	 */
13337 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13338 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13339 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13340 		/* Lose signed bounds when ORing negative numbers,
13341 		 * ain't nobody got time for that.
13342 		 */
13343 		dst_reg->smin_value = S64_MIN;
13344 		dst_reg->smax_value = S64_MAX;
13345 	} else {
13346 		/* ORing two positives gives a positive, so safe to
13347 		 * cast result into s64.
13348 		 */
13349 		dst_reg->smin_value = dst_reg->umin_value;
13350 		dst_reg->smax_value = dst_reg->umax_value;
13351 	}
13352 	/* We may learn something more from the var_off */
13353 	__update_reg_bounds(dst_reg);
13354 }
13355 
13356 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13357 				 struct bpf_reg_state *src_reg)
13358 {
13359 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13360 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13361 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13362 	s32 smin_val = src_reg->s32_min_value;
13363 
13364 	if (src_known && dst_known) {
13365 		__mark_reg32_known(dst_reg, var32_off.value);
13366 		return;
13367 	}
13368 
13369 	/* We get both minimum and maximum from the var32_off. */
13370 	dst_reg->u32_min_value = var32_off.value;
13371 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13372 
13373 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13374 		/* XORing two positive sign numbers gives a positive,
13375 		 * so safe to cast u32 result into s32.
13376 		 */
13377 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13378 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13379 	} else {
13380 		dst_reg->s32_min_value = S32_MIN;
13381 		dst_reg->s32_max_value = S32_MAX;
13382 	}
13383 }
13384 
13385 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13386 			       struct bpf_reg_state *src_reg)
13387 {
13388 	bool src_known = tnum_is_const(src_reg->var_off);
13389 	bool dst_known = tnum_is_const(dst_reg->var_off);
13390 	s64 smin_val = src_reg->smin_value;
13391 
13392 	if (src_known && dst_known) {
13393 		/* dst_reg->var_off.value has been updated earlier */
13394 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13395 		return;
13396 	}
13397 
13398 	/* We get both minimum and maximum from the var_off. */
13399 	dst_reg->umin_value = dst_reg->var_off.value;
13400 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13401 
13402 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13403 		/* XORing two positive sign numbers gives a positive,
13404 		 * so safe to cast u64 result into s64.
13405 		 */
13406 		dst_reg->smin_value = dst_reg->umin_value;
13407 		dst_reg->smax_value = dst_reg->umax_value;
13408 	} else {
13409 		dst_reg->smin_value = S64_MIN;
13410 		dst_reg->smax_value = S64_MAX;
13411 	}
13412 
13413 	__update_reg_bounds(dst_reg);
13414 }
13415 
13416 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13417 				   u64 umin_val, u64 umax_val)
13418 {
13419 	/* We lose all sign bit information (except what we can pick
13420 	 * up from var_off)
13421 	 */
13422 	dst_reg->s32_min_value = S32_MIN;
13423 	dst_reg->s32_max_value = S32_MAX;
13424 	/* If we might shift our top bit out, then we know nothing */
13425 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13426 		dst_reg->u32_min_value = 0;
13427 		dst_reg->u32_max_value = U32_MAX;
13428 	} else {
13429 		dst_reg->u32_min_value <<= umin_val;
13430 		dst_reg->u32_max_value <<= umax_val;
13431 	}
13432 }
13433 
13434 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13435 				 struct bpf_reg_state *src_reg)
13436 {
13437 	u32 umax_val = src_reg->u32_max_value;
13438 	u32 umin_val = src_reg->u32_min_value;
13439 	/* u32 alu operation will zext upper bits */
13440 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13441 
13442 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13443 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13444 	/* Not required but being careful mark reg64 bounds as unknown so
13445 	 * that we are forced to pick them up from tnum and zext later and
13446 	 * if some path skips this step we are still safe.
13447 	 */
13448 	__mark_reg64_unbounded(dst_reg);
13449 	__update_reg32_bounds(dst_reg);
13450 }
13451 
13452 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13453 				   u64 umin_val, u64 umax_val)
13454 {
13455 	/* Special case <<32 because it is a common compiler pattern to sign
13456 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13457 	 * positive we know this shift will also be positive so we can track
13458 	 * bounds correctly. Otherwise we lose all sign bit information except
13459 	 * what we can pick up from var_off. Perhaps we can generalize this
13460 	 * later to shifts of any length.
13461 	 */
13462 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13463 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13464 	else
13465 		dst_reg->smax_value = S64_MAX;
13466 
13467 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13468 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13469 	else
13470 		dst_reg->smin_value = S64_MIN;
13471 
13472 	/* If we might shift our top bit out, then we know nothing */
13473 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13474 		dst_reg->umin_value = 0;
13475 		dst_reg->umax_value = U64_MAX;
13476 	} else {
13477 		dst_reg->umin_value <<= umin_val;
13478 		dst_reg->umax_value <<= umax_val;
13479 	}
13480 }
13481 
13482 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13483 			       struct bpf_reg_state *src_reg)
13484 {
13485 	u64 umax_val = src_reg->umax_value;
13486 	u64 umin_val = src_reg->umin_value;
13487 
13488 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13489 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13490 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13491 
13492 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13493 	/* We may learn something more from the var_off */
13494 	__update_reg_bounds(dst_reg);
13495 }
13496 
13497 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13498 				 struct bpf_reg_state *src_reg)
13499 {
13500 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13501 	u32 umax_val = src_reg->u32_max_value;
13502 	u32 umin_val = src_reg->u32_min_value;
13503 
13504 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13505 	 * be negative, then either:
13506 	 * 1) src_reg might be zero, so the sign bit of the result is
13507 	 *    unknown, so we lose our signed bounds
13508 	 * 2) it's known negative, thus the unsigned bounds capture the
13509 	 *    signed bounds
13510 	 * 3) the signed bounds cross zero, so they tell us nothing
13511 	 *    about the result
13512 	 * If the value in dst_reg is known nonnegative, then again the
13513 	 * unsigned bounds capture the signed bounds.
13514 	 * Thus, in all cases it suffices to blow away our signed bounds
13515 	 * and rely on inferring new ones from the unsigned bounds and
13516 	 * var_off of the result.
13517 	 */
13518 	dst_reg->s32_min_value = S32_MIN;
13519 	dst_reg->s32_max_value = S32_MAX;
13520 
13521 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13522 	dst_reg->u32_min_value >>= umax_val;
13523 	dst_reg->u32_max_value >>= umin_val;
13524 
13525 	__mark_reg64_unbounded(dst_reg);
13526 	__update_reg32_bounds(dst_reg);
13527 }
13528 
13529 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13530 			       struct bpf_reg_state *src_reg)
13531 {
13532 	u64 umax_val = src_reg->umax_value;
13533 	u64 umin_val = src_reg->umin_value;
13534 
13535 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13536 	 * be negative, then either:
13537 	 * 1) src_reg might be zero, so the sign bit of the result is
13538 	 *    unknown, so we lose our signed bounds
13539 	 * 2) it's known negative, thus the unsigned bounds capture the
13540 	 *    signed bounds
13541 	 * 3) the signed bounds cross zero, so they tell us nothing
13542 	 *    about the result
13543 	 * If the value in dst_reg is known nonnegative, then again the
13544 	 * unsigned bounds capture the signed bounds.
13545 	 * Thus, in all cases it suffices to blow away our signed bounds
13546 	 * and rely on inferring new ones from the unsigned bounds and
13547 	 * var_off of the result.
13548 	 */
13549 	dst_reg->smin_value = S64_MIN;
13550 	dst_reg->smax_value = S64_MAX;
13551 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13552 	dst_reg->umin_value >>= umax_val;
13553 	dst_reg->umax_value >>= umin_val;
13554 
13555 	/* Its not easy to operate on alu32 bounds here because it depends
13556 	 * on bits being shifted in. Take easy way out and mark unbounded
13557 	 * so we can recalculate later from tnum.
13558 	 */
13559 	__mark_reg32_unbounded(dst_reg);
13560 	__update_reg_bounds(dst_reg);
13561 }
13562 
13563 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13564 				  struct bpf_reg_state *src_reg)
13565 {
13566 	u64 umin_val = src_reg->u32_min_value;
13567 
13568 	/* Upon reaching here, src_known is true and
13569 	 * umax_val is equal to umin_val.
13570 	 */
13571 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13572 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13573 
13574 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13575 
13576 	/* blow away the dst_reg umin_value/umax_value and rely on
13577 	 * dst_reg var_off to refine the result.
13578 	 */
13579 	dst_reg->u32_min_value = 0;
13580 	dst_reg->u32_max_value = U32_MAX;
13581 
13582 	__mark_reg64_unbounded(dst_reg);
13583 	__update_reg32_bounds(dst_reg);
13584 }
13585 
13586 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13587 				struct bpf_reg_state *src_reg)
13588 {
13589 	u64 umin_val = src_reg->umin_value;
13590 
13591 	/* Upon reaching here, src_known is true and umax_val is equal
13592 	 * to umin_val.
13593 	 */
13594 	dst_reg->smin_value >>= umin_val;
13595 	dst_reg->smax_value >>= umin_val;
13596 
13597 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13598 
13599 	/* blow away the dst_reg umin_value/umax_value and rely on
13600 	 * dst_reg var_off to refine the result.
13601 	 */
13602 	dst_reg->umin_value = 0;
13603 	dst_reg->umax_value = U64_MAX;
13604 
13605 	/* Its not easy to operate on alu32 bounds here because it depends
13606 	 * on bits being shifted in from upper 32-bits. Take easy way out
13607 	 * and mark unbounded so we can recalculate later from tnum.
13608 	 */
13609 	__mark_reg32_unbounded(dst_reg);
13610 	__update_reg_bounds(dst_reg);
13611 }
13612 
13613 /* WARNING: This function does calculations on 64-bit values, but the actual
13614  * execution may occur on 32-bit values. Therefore, things like bitshifts
13615  * need extra checks in the 32-bit case.
13616  */
13617 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13618 				      struct bpf_insn *insn,
13619 				      struct bpf_reg_state *dst_reg,
13620 				      struct bpf_reg_state src_reg)
13621 {
13622 	struct bpf_reg_state *regs = cur_regs(env);
13623 	u8 opcode = BPF_OP(insn->code);
13624 	bool src_known;
13625 	s64 smin_val, smax_val;
13626 	u64 umin_val, umax_val;
13627 	s32 s32_min_val, s32_max_val;
13628 	u32 u32_min_val, u32_max_val;
13629 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13630 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13631 	int ret;
13632 
13633 	smin_val = src_reg.smin_value;
13634 	smax_val = src_reg.smax_value;
13635 	umin_val = src_reg.umin_value;
13636 	umax_val = src_reg.umax_value;
13637 
13638 	s32_min_val = src_reg.s32_min_value;
13639 	s32_max_val = src_reg.s32_max_value;
13640 	u32_min_val = src_reg.u32_min_value;
13641 	u32_max_val = src_reg.u32_max_value;
13642 
13643 	if (alu32) {
13644 		src_known = tnum_subreg_is_const(src_reg.var_off);
13645 		if ((src_known &&
13646 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13647 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13648 			/* Taint dst register if offset had invalid bounds
13649 			 * derived from e.g. dead branches.
13650 			 */
13651 			__mark_reg_unknown(env, dst_reg);
13652 			return 0;
13653 		}
13654 	} else {
13655 		src_known = tnum_is_const(src_reg.var_off);
13656 		if ((src_known &&
13657 		     (smin_val != smax_val || umin_val != umax_val)) ||
13658 		    smin_val > smax_val || umin_val > umax_val) {
13659 			/* Taint dst register if offset had invalid bounds
13660 			 * derived from e.g. dead branches.
13661 			 */
13662 			__mark_reg_unknown(env, dst_reg);
13663 			return 0;
13664 		}
13665 	}
13666 
13667 	if (!src_known &&
13668 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13669 		__mark_reg_unknown(env, dst_reg);
13670 		return 0;
13671 	}
13672 
13673 	if (sanitize_needed(opcode)) {
13674 		ret = sanitize_val_alu(env, insn);
13675 		if (ret < 0)
13676 			return sanitize_err(env, insn, ret, NULL, NULL);
13677 	}
13678 
13679 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13680 	 * There are two classes of instructions: The first class we track both
13681 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13682 	 * greatest amount of precision when alu operations are mixed with jmp32
13683 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13684 	 * and BPF_OR. This is possible because these ops have fairly easy to
13685 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13686 	 * See alu32 verifier tests for examples. The second class of
13687 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13688 	 * with regards to tracking sign/unsigned bounds because the bits may
13689 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13690 	 * the reg unbounded in the subreg bound space and use the resulting
13691 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13692 	 */
13693 	switch (opcode) {
13694 	case BPF_ADD:
13695 		scalar32_min_max_add(dst_reg, &src_reg);
13696 		scalar_min_max_add(dst_reg, &src_reg);
13697 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13698 		break;
13699 	case BPF_SUB:
13700 		scalar32_min_max_sub(dst_reg, &src_reg);
13701 		scalar_min_max_sub(dst_reg, &src_reg);
13702 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13703 		break;
13704 	case BPF_MUL:
13705 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13706 		scalar32_min_max_mul(dst_reg, &src_reg);
13707 		scalar_min_max_mul(dst_reg, &src_reg);
13708 		break;
13709 	case BPF_AND:
13710 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13711 		scalar32_min_max_and(dst_reg, &src_reg);
13712 		scalar_min_max_and(dst_reg, &src_reg);
13713 		break;
13714 	case BPF_OR:
13715 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13716 		scalar32_min_max_or(dst_reg, &src_reg);
13717 		scalar_min_max_or(dst_reg, &src_reg);
13718 		break;
13719 	case BPF_XOR:
13720 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13721 		scalar32_min_max_xor(dst_reg, &src_reg);
13722 		scalar_min_max_xor(dst_reg, &src_reg);
13723 		break;
13724 	case BPF_LSH:
13725 		if (umax_val >= insn_bitness) {
13726 			/* Shifts greater than 31 or 63 are undefined.
13727 			 * This includes shifts by a negative number.
13728 			 */
13729 			mark_reg_unknown(env, regs, insn->dst_reg);
13730 			break;
13731 		}
13732 		if (alu32)
13733 			scalar32_min_max_lsh(dst_reg, &src_reg);
13734 		else
13735 			scalar_min_max_lsh(dst_reg, &src_reg);
13736 		break;
13737 	case BPF_RSH:
13738 		if (umax_val >= insn_bitness) {
13739 			/* Shifts greater than 31 or 63 are undefined.
13740 			 * This includes shifts by a negative number.
13741 			 */
13742 			mark_reg_unknown(env, regs, insn->dst_reg);
13743 			break;
13744 		}
13745 		if (alu32)
13746 			scalar32_min_max_rsh(dst_reg, &src_reg);
13747 		else
13748 			scalar_min_max_rsh(dst_reg, &src_reg);
13749 		break;
13750 	case BPF_ARSH:
13751 		if (umax_val >= insn_bitness) {
13752 			/* Shifts greater than 31 or 63 are undefined.
13753 			 * This includes shifts by a negative number.
13754 			 */
13755 			mark_reg_unknown(env, regs, insn->dst_reg);
13756 			break;
13757 		}
13758 		if (alu32)
13759 			scalar32_min_max_arsh(dst_reg, &src_reg);
13760 		else
13761 			scalar_min_max_arsh(dst_reg, &src_reg);
13762 		break;
13763 	default:
13764 		mark_reg_unknown(env, regs, insn->dst_reg);
13765 		break;
13766 	}
13767 
13768 	/* ALU32 ops are zero extended into 64bit register */
13769 	if (alu32)
13770 		zext_32_to_64(dst_reg);
13771 	reg_bounds_sync(dst_reg);
13772 	return 0;
13773 }
13774 
13775 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13776  * and var_off.
13777  */
13778 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13779 				   struct bpf_insn *insn)
13780 {
13781 	struct bpf_verifier_state *vstate = env->cur_state;
13782 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13783 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13784 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13785 	u8 opcode = BPF_OP(insn->code);
13786 	int err;
13787 
13788 	dst_reg = &regs[insn->dst_reg];
13789 	src_reg = NULL;
13790 	if (dst_reg->type != SCALAR_VALUE)
13791 		ptr_reg = dst_reg;
13792 	else
13793 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13794 		 * incorrectly propagated into other registers by find_equal_scalars()
13795 		 */
13796 		dst_reg->id = 0;
13797 	if (BPF_SRC(insn->code) == BPF_X) {
13798 		src_reg = &regs[insn->src_reg];
13799 		if (src_reg->type != SCALAR_VALUE) {
13800 			if (dst_reg->type != SCALAR_VALUE) {
13801 				/* Combining two pointers by any ALU op yields
13802 				 * an arbitrary scalar. Disallow all math except
13803 				 * pointer subtraction
13804 				 */
13805 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13806 					mark_reg_unknown(env, regs, insn->dst_reg);
13807 					return 0;
13808 				}
13809 				verbose(env, "R%d pointer %s pointer prohibited\n",
13810 					insn->dst_reg,
13811 					bpf_alu_string[opcode >> 4]);
13812 				return -EACCES;
13813 			} else {
13814 				/* scalar += pointer
13815 				 * This is legal, but we have to reverse our
13816 				 * src/dest handling in computing the range
13817 				 */
13818 				err = mark_chain_precision(env, insn->dst_reg);
13819 				if (err)
13820 					return err;
13821 				return adjust_ptr_min_max_vals(env, insn,
13822 							       src_reg, dst_reg);
13823 			}
13824 		} else if (ptr_reg) {
13825 			/* pointer += scalar */
13826 			err = mark_chain_precision(env, insn->src_reg);
13827 			if (err)
13828 				return err;
13829 			return adjust_ptr_min_max_vals(env, insn,
13830 						       dst_reg, src_reg);
13831 		} else if (dst_reg->precise) {
13832 			/* if dst_reg is precise, src_reg should be precise as well */
13833 			err = mark_chain_precision(env, insn->src_reg);
13834 			if (err)
13835 				return err;
13836 		}
13837 	} else {
13838 		/* Pretend the src is a reg with a known value, since we only
13839 		 * need to be able to read from this state.
13840 		 */
13841 		off_reg.type = SCALAR_VALUE;
13842 		__mark_reg_known(&off_reg, insn->imm);
13843 		src_reg = &off_reg;
13844 		if (ptr_reg) /* pointer += K */
13845 			return adjust_ptr_min_max_vals(env, insn,
13846 						       ptr_reg, src_reg);
13847 	}
13848 
13849 	/* Got here implies adding two SCALAR_VALUEs */
13850 	if (WARN_ON_ONCE(ptr_reg)) {
13851 		print_verifier_state(env, state, true);
13852 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13853 		return -EINVAL;
13854 	}
13855 	if (WARN_ON(!src_reg)) {
13856 		print_verifier_state(env, state, true);
13857 		verbose(env, "verifier internal error: no src_reg\n");
13858 		return -EINVAL;
13859 	}
13860 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13861 }
13862 
13863 /* check validity of 32-bit and 64-bit arithmetic operations */
13864 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13865 {
13866 	struct bpf_reg_state *regs = cur_regs(env);
13867 	u8 opcode = BPF_OP(insn->code);
13868 	int err;
13869 
13870 	if (opcode == BPF_END || opcode == BPF_NEG) {
13871 		if (opcode == BPF_NEG) {
13872 			if (BPF_SRC(insn->code) != BPF_K ||
13873 			    insn->src_reg != BPF_REG_0 ||
13874 			    insn->off != 0 || insn->imm != 0) {
13875 				verbose(env, "BPF_NEG uses reserved fields\n");
13876 				return -EINVAL;
13877 			}
13878 		} else {
13879 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13880 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13881 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13882 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13883 				verbose(env, "BPF_END uses reserved fields\n");
13884 				return -EINVAL;
13885 			}
13886 		}
13887 
13888 		/* check src operand */
13889 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13890 		if (err)
13891 			return err;
13892 
13893 		if (is_pointer_value(env, insn->dst_reg)) {
13894 			verbose(env, "R%d pointer arithmetic prohibited\n",
13895 				insn->dst_reg);
13896 			return -EACCES;
13897 		}
13898 
13899 		/* check dest operand */
13900 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13901 		if (err)
13902 			return err;
13903 
13904 	} else if (opcode == BPF_MOV) {
13905 
13906 		if (BPF_SRC(insn->code) == BPF_X) {
13907 			if (insn->imm != 0) {
13908 				verbose(env, "BPF_MOV uses reserved fields\n");
13909 				return -EINVAL;
13910 			}
13911 
13912 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13913 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13914 					verbose(env, "BPF_MOV uses reserved fields\n");
13915 					return -EINVAL;
13916 				}
13917 			} else {
13918 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13919 				    insn->off != 32) {
13920 					verbose(env, "BPF_MOV uses reserved fields\n");
13921 					return -EINVAL;
13922 				}
13923 			}
13924 
13925 			/* check src operand */
13926 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13927 			if (err)
13928 				return err;
13929 		} else {
13930 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13931 				verbose(env, "BPF_MOV uses reserved fields\n");
13932 				return -EINVAL;
13933 			}
13934 		}
13935 
13936 		/* check dest operand, mark as required later */
13937 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13938 		if (err)
13939 			return err;
13940 
13941 		if (BPF_SRC(insn->code) == BPF_X) {
13942 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13943 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13944 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13945 				       !tnum_is_const(src_reg->var_off);
13946 
13947 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13948 				if (insn->off == 0) {
13949 					/* case: R1 = R2
13950 					 * copy register state to dest reg
13951 					 */
13952 					if (need_id)
13953 						/* Assign src and dst registers the same ID
13954 						 * that will be used by find_equal_scalars()
13955 						 * to propagate min/max range.
13956 						 */
13957 						src_reg->id = ++env->id_gen;
13958 					copy_register_state(dst_reg, src_reg);
13959 					dst_reg->live |= REG_LIVE_WRITTEN;
13960 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13961 				} else {
13962 					/* case: R1 = (s8, s16 s32)R2 */
13963 					if (is_pointer_value(env, insn->src_reg)) {
13964 						verbose(env,
13965 							"R%d sign-extension part of pointer\n",
13966 							insn->src_reg);
13967 						return -EACCES;
13968 					} else if (src_reg->type == SCALAR_VALUE) {
13969 						bool no_sext;
13970 
13971 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13972 						if (no_sext && need_id)
13973 							src_reg->id = ++env->id_gen;
13974 						copy_register_state(dst_reg, src_reg);
13975 						if (!no_sext)
13976 							dst_reg->id = 0;
13977 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13978 						dst_reg->live |= REG_LIVE_WRITTEN;
13979 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13980 					} else {
13981 						mark_reg_unknown(env, regs, insn->dst_reg);
13982 					}
13983 				}
13984 			} else {
13985 				/* R1 = (u32) R2 */
13986 				if (is_pointer_value(env, insn->src_reg)) {
13987 					verbose(env,
13988 						"R%d partial copy of pointer\n",
13989 						insn->src_reg);
13990 					return -EACCES;
13991 				} else if (src_reg->type == SCALAR_VALUE) {
13992 					if (insn->off == 0) {
13993 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13994 
13995 						if (is_src_reg_u32 && need_id)
13996 							src_reg->id = ++env->id_gen;
13997 						copy_register_state(dst_reg, src_reg);
13998 						/* Make sure ID is cleared if src_reg is not in u32
13999 						 * range otherwise dst_reg min/max could be incorrectly
14000 						 * propagated into src_reg by find_equal_scalars()
14001 						 */
14002 						if (!is_src_reg_u32)
14003 							dst_reg->id = 0;
14004 						dst_reg->live |= REG_LIVE_WRITTEN;
14005 						dst_reg->subreg_def = env->insn_idx + 1;
14006 					} else {
14007 						/* case: W1 = (s8, s16)W2 */
14008 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14009 
14010 						if (no_sext && need_id)
14011 							src_reg->id = ++env->id_gen;
14012 						copy_register_state(dst_reg, src_reg);
14013 						if (!no_sext)
14014 							dst_reg->id = 0;
14015 						dst_reg->live |= REG_LIVE_WRITTEN;
14016 						dst_reg->subreg_def = env->insn_idx + 1;
14017 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14018 					}
14019 				} else {
14020 					mark_reg_unknown(env, regs,
14021 							 insn->dst_reg);
14022 				}
14023 				zext_32_to_64(dst_reg);
14024 				reg_bounds_sync(dst_reg);
14025 			}
14026 		} else {
14027 			/* case: R = imm
14028 			 * remember the value we stored into this reg
14029 			 */
14030 			/* clear any state __mark_reg_known doesn't set */
14031 			mark_reg_unknown(env, regs, insn->dst_reg);
14032 			regs[insn->dst_reg].type = SCALAR_VALUE;
14033 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14034 				__mark_reg_known(regs + insn->dst_reg,
14035 						 insn->imm);
14036 			} else {
14037 				__mark_reg_known(regs + insn->dst_reg,
14038 						 (u32)insn->imm);
14039 			}
14040 		}
14041 
14042 	} else if (opcode > BPF_END) {
14043 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14044 		return -EINVAL;
14045 
14046 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14047 
14048 		if (BPF_SRC(insn->code) == BPF_X) {
14049 			if (insn->imm != 0 || insn->off > 1 ||
14050 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14051 				verbose(env, "BPF_ALU uses reserved fields\n");
14052 				return -EINVAL;
14053 			}
14054 			/* check src1 operand */
14055 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14056 			if (err)
14057 				return err;
14058 		} else {
14059 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14060 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14061 				verbose(env, "BPF_ALU uses reserved fields\n");
14062 				return -EINVAL;
14063 			}
14064 		}
14065 
14066 		/* check src2 operand */
14067 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14068 		if (err)
14069 			return err;
14070 
14071 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14072 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14073 			verbose(env, "div by zero\n");
14074 			return -EINVAL;
14075 		}
14076 
14077 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14078 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14079 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14080 
14081 			if (insn->imm < 0 || insn->imm >= size) {
14082 				verbose(env, "invalid shift %d\n", insn->imm);
14083 				return -EINVAL;
14084 			}
14085 		}
14086 
14087 		/* check dest operand */
14088 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14089 		if (err)
14090 			return err;
14091 
14092 		return adjust_reg_min_max_vals(env, insn);
14093 	}
14094 
14095 	return 0;
14096 }
14097 
14098 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14099 				   struct bpf_reg_state *dst_reg,
14100 				   enum bpf_reg_type type,
14101 				   bool range_right_open)
14102 {
14103 	struct bpf_func_state *state;
14104 	struct bpf_reg_state *reg;
14105 	int new_range;
14106 
14107 	if (dst_reg->off < 0 ||
14108 	    (dst_reg->off == 0 && range_right_open))
14109 		/* This doesn't give us any range */
14110 		return;
14111 
14112 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14113 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14114 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14115 		 * than pkt_end, but that's because it's also less than pkt.
14116 		 */
14117 		return;
14118 
14119 	new_range = dst_reg->off;
14120 	if (range_right_open)
14121 		new_range++;
14122 
14123 	/* Examples for register markings:
14124 	 *
14125 	 * pkt_data in dst register:
14126 	 *
14127 	 *   r2 = r3;
14128 	 *   r2 += 8;
14129 	 *   if (r2 > pkt_end) goto <handle exception>
14130 	 *   <access okay>
14131 	 *
14132 	 *   r2 = r3;
14133 	 *   r2 += 8;
14134 	 *   if (r2 < pkt_end) goto <access okay>
14135 	 *   <handle exception>
14136 	 *
14137 	 *   Where:
14138 	 *     r2 == dst_reg, pkt_end == src_reg
14139 	 *     r2=pkt(id=n,off=8,r=0)
14140 	 *     r3=pkt(id=n,off=0,r=0)
14141 	 *
14142 	 * pkt_data in src register:
14143 	 *
14144 	 *   r2 = r3;
14145 	 *   r2 += 8;
14146 	 *   if (pkt_end >= r2) goto <access okay>
14147 	 *   <handle exception>
14148 	 *
14149 	 *   r2 = r3;
14150 	 *   r2 += 8;
14151 	 *   if (pkt_end <= r2) goto <handle exception>
14152 	 *   <access okay>
14153 	 *
14154 	 *   Where:
14155 	 *     pkt_end == dst_reg, r2 == src_reg
14156 	 *     r2=pkt(id=n,off=8,r=0)
14157 	 *     r3=pkt(id=n,off=0,r=0)
14158 	 *
14159 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14160 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14161 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14162 	 * the check.
14163 	 */
14164 
14165 	/* If our ids match, then we must have the same max_value.  And we
14166 	 * don't care about the other reg's fixed offset, since if it's too big
14167 	 * the range won't allow anything.
14168 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14169 	 */
14170 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14171 		if (reg->type == type && reg->id == dst_reg->id)
14172 			/* keep the maximum range already checked */
14173 			reg->range = max(reg->range, new_range);
14174 	}));
14175 }
14176 
14177 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
14178 {
14179 	struct tnum subreg = tnum_subreg(reg->var_off);
14180 	s32 sval = (s32)val;
14181 
14182 	switch (opcode) {
14183 	case BPF_JEQ:
14184 		if (tnum_is_const(subreg))
14185 			return !!tnum_equals_const(subreg, val);
14186 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14187 			return 0;
14188 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14189 			return 0;
14190 		break;
14191 	case BPF_JNE:
14192 		if (tnum_is_const(subreg))
14193 			return !tnum_equals_const(subreg, val);
14194 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14195 			return 1;
14196 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14197 			return 1;
14198 		break;
14199 	case BPF_JSET:
14200 		if ((~subreg.mask & subreg.value) & val)
14201 			return 1;
14202 		if (!((subreg.mask | subreg.value) & val))
14203 			return 0;
14204 		break;
14205 	case BPF_JGT:
14206 		if (reg->u32_min_value > val)
14207 			return 1;
14208 		else if (reg->u32_max_value <= val)
14209 			return 0;
14210 		break;
14211 	case BPF_JSGT:
14212 		if (reg->s32_min_value > sval)
14213 			return 1;
14214 		else if (reg->s32_max_value <= sval)
14215 			return 0;
14216 		break;
14217 	case BPF_JLT:
14218 		if (reg->u32_max_value < val)
14219 			return 1;
14220 		else if (reg->u32_min_value >= val)
14221 			return 0;
14222 		break;
14223 	case BPF_JSLT:
14224 		if (reg->s32_max_value < sval)
14225 			return 1;
14226 		else if (reg->s32_min_value >= sval)
14227 			return 0;
14228 		break;
14229 	case BPF_JGE:
14230 		if (reg->u32_min_value >= val)
14231 			return 1;
14232 		else if (reg->u32_max_value < val)
14233 			return 0;
14234 		break;
14235 	case BPF_JSGE:
14236 		if (reg->s32_min_value >= sval)
14237 			return 1;
14238 		else if (reg->s32_max_value < sval)
14239 			return 0;
14240 		break;
14241 	case BPF_JLE:
14242 		if (reg->u32_max_value <= val)
14243 			return 1;
14244 		else if (reg->u32_min_value > val)
14245 			return 0;
14246 		break;
14247 	case BPF_JSLE:
14248 		if (reg->s32_max_value <= sval)
14249 			return 1;
14250 		else if (reg->s32_min_value > sval)
14251 			return 0;
14252 		break;
14253 	}
14254 
14255 	return -1;
14256 }
14257 
14258 
14259 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
14260 {
14261 	s64 sval = (s64)val;
14262 
14263 	switch (opcode) {
14264 	case BPF_JEQ:
14265 		if (tnum_is_const(reg->var_off))
14266 			return !!tnum_equals_const(reg->var_off, val);
14267 		else if (val < reg->umin_value || val > reg->umax_value)
14268 			return 0;
14269 		else if (sval < reg->smin_value || sval > reg->smax_value)
14270 			return 0;
14271 		break;
14272 	case BPF_JNE:
14273 		if (tnum_is_const(reg->var_off))
14274 			return !tnum_equals_const(reg->var_off, val);
14275 		else if (val < reg->umin_value || val > reg->umax_value)
14276 			return 1;
14277 		else if (sval < reg->smin_value || sval > reg->smax_value)
14278 			return 1;
14279 		break;
14280 	case BPF_JSET:
14281 		if ((~reg->var_off.mask & reg->var_off.value) & val)
14282 			return 1;
14283 		if (!((reg->var_off.mask | reg->var_off.value) & val))
14284 			return 0;
14285 		break;
14286 	case BPF_JGT:
14287 		if (reg->umin_value > val)
14288 			return 1;
14289 		else if (reg->umax_value <= val)
14290 			return 0;
14291 		break;
14292 	case BPF_JSGT:
14293 		if (reg->smin_value > sval)
14294 			return 1;
14295 		else if (reg->smax_value <= sval)
14296 			return 0;
14297 		break;
14298 	case BPF_JLT:
14299 		if (reg->umax_value < val)
14300 			return 1;
14301 		else if (reg->umin_value >= val)
14302 			return 0;
14303 		break;
14304 	case BPF_JSLT:
14305 		if (reg->smax_value < sval)
14306 			return 1;
14307 		else if (reg->smin_value >= sval)
14308 			return 0;
14309 		break;
14310 	case BPF_JGE:
14311 		if (reg->umin_value >= val)
14312 			return 1;
14313 		else if (reg->umax_value < val)
14314 			return 0;
14315 		break;
14316 	case BPF_JSGE:
14317 		if (reg->smin_value >= sval)
14318 			return 1;
14319 		else if (reg->smax_value < sval)
14320 			return 0;
14321 		break;
14322 	case BPF_JLE:
14323 		if (reg->umax_value <= val)
14324 			return 1;
14325 		else if (reg->umin_value > val)
14326 			return 0;
14327 		break;
14328 	case BPF_JSLE:
14329 		if (reg->smax_value <= sval)
14330 			return 1;
14331 		else if (reg->smin_value > sval)
14332 			return 0;
14333 		break;
14334 	}
14335 
14336 	return -1;
14337 }
14338 
14339 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14340  * and return:
14341  *  1 - branch will be taken and "goto target" will be executed
14342  *  0 - branch will not be taken and fall-through to next insn
14343  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14344  *      range [0,10]
14345  */
14346 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14347 			   bool is_jmp32)
14348 {
14349 	if (__is_pointer_value(false, reg)) {
14350 		if (!reg_not_null(reg))
14351 			return -1;
14352 
14353 		/* If pointer is valid tests against zero will fail so we can
14354 		 * use this to direct branch taken.
14355 		 */
14356 		if (val != 0)
14357 			return -1;
14358 
14359 		switch (opcode) {
14360 		case BPF_JEQ:
14361 			return 0;
14362 		case BPF_JNE:
14363 			return 1;
14364 		default:
14365 			return -1;
14366 		}
14367 	}
14368 
14369 	if (is_jmp32)
14370 		return is_branch32_taken(reg, val, opcode);
14371 	return is_branch64_taken(reg, val, opcode);
14372 }
14373 
14374 static int flip_opcode(u32 opcode)
14375 {
14376 	/* How can we transform "a <op> b" into "b <op> a"? */
14377 	static const u8 opcode_flip[16] = {
14378 		/* these stay the same */
14379 		[BPF_JEQ  >> 4] = BPF_JEQ,
14380 		[BPF_JNE  >> 4] = BPF_JNE,
14381 		[BPF_JSET >> 4] = BPF_JSET,
14382 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14383 		[BPF_JGE  >> 4] = BPF_JLE,
14384 		[BPF_JGT  >> 4] = BPF_JLT,
14385 		[BPF_JLE  >> 4] = BPF_JGE,
14386 		[BPF_JLT  >> 4] = BPF_JGT,
14387 		[BPF_JSGE >> 4] = BPF_JSLE,
14388 		[BPF_JSGT >> 4] = BPF_JSLT,
14389 		[BPF_JSLE >> 4] = BPF_JSGE,
14390 		[BPF_JSLT >> 4] = BPF_JSGT
14391 	};
14392 	return opcode_flip[opcode >> 4];
14393 }
14394 
14395 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14396 				   struct bpf_reg_state *src_reg,
14397 				   u8 opcode)
14398 {
14399 	struct bpf_reg_state *pkt;
14400 
14401 	if (src_reg->type == PTR_TO_PACKET_END) {
14402 		pkt = dst_reg;
14403 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14404 		pkt = src_reg;
14405 		opcode = flip_opcode(opcode);
14406 	} else {
14407 		return -1;
14408 	}
14409 
14410 	if (pkt->range >= 0)
14411 		return -1;
14412 
14413 	switch (opcode) {
14414 	case BPF_JLE:
14415 		/* pkt <= pkt_end */
14416 		fallthrough;
14417 	case BPF_JGT:
14418 		/* pkt > pkt_end */
14419 		if (pkt->range == BEYOND_PKT_END)
14420 			/* pkt has at last one extra byte beyond pkt_end */
14421 			return opcode == BPF_JGT;
14422 		break;
14423 	case BPF_JLT:
14424 		/* pkt < pkt_end */
14425 		fallthrough;
14426 	case BPF_JGE:
14427 		/* pkt >= pkt_end */
14428 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14429 			return opcode == BPF_JGE;
14430 		break;
14431 	}
14432 	return -1;
14433 }
14434 
14435 /* Adjusts the register min/max values in the case that the dst_reg is the
14436  * variable register that we are working on, and src_reg is a constant or we're
14437  * simply doing a BPF_K check.
14438  * In JEQ/JNE cases we also adjust the var_off values.
14439  */
14440 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14441 			    struct bpf_reg_state *false_reg,
14442 			    u64 val, u32 val32,
14443 			    u8 opcode, bool is_jmp32)
14444 {
14445 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14446 	struct tnum false_64off = false_reg->var_off;
14447 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14448 	struct tnum true_64off = true_reg->var_off;
14449 	s64 sval = (s64)val;
14450 	s32 sval32 = (s32)val32;
14451 
14452 	/* If the dst_reg is a pointer, we can't learn anything about its
14453 	 * variable offset from the compare (unless src_reg were a pointer into
14454 	 * the same object, but we don't bother with that.
14455 	 * Since false_reg and true_reg have the same type by construction, we
14456 	 * only need to check one of them for pointerness.
14457 	 */
14458 	if (__is_pointer_value(false, false_reg))
14459 		return;
14460 
14461 	switch (opcode) {
14462 	/* JEQ/JNE comparison doesn't change the register equivalence.
14463 	 *
14464 	 * r1 = r2;
14465 	 * if (r1 == 42) goto label;
14466 	 * ...
14467 	 * label: // here both r1 and r2 are known to be 42.
14468 	 *
14469 	 * Hence when marking register as known preserve it's ID.
14470 	 */
14471 	case BPF_JEQ:
14472 		if (is_jmp32) {
14473 			__mark_reg32_known(true_reg, val32);
14474 			true_32off = tnum_subreg(true_reg->var_off);
14475 		} else {
14476 			___mark_reg_known(true_reg, val);
14477 			true_64off = true_reg->var_off;
14478 		}
14479 		break;
14480 	case BPF_JNE:
14481 		if (is_jmp32) {
14482 			__mark_reg32_known(false_reg, val32);
14483 			false_32off = tnum_subreg(false_reg->var_off);
14484 		} else {
14485 			___mark_reg_known(false_reg, val);
14486 			false_64off = false_reg->var_off;
14487 		}
14488 		break;
14489 	case BPF_JSET:
14490 		if (is_jmp32) {
14491 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14492 			if (is_power_of_2(val32))
14493 				true_32off = tnum_or(true_32off,
14494 						     tnum_const(val32));
14495 		} else {
14496 			false_64off = tnum_and(false_64off, tnum_const(~val));
14497 			if (is_power_of_2(val))
14498 				true_64off = tnum_or(true_64off,
14499 						     tnum_const(val));
14500 		}
14501 		break;
14502 	case BPF_JGE:
14503 	case BPF_JGT:
14504 	{
14505 		if (is_jmp32) {
14506 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14507 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14508 
14509 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14510 						       false_umax);
14511 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14512 						      true_umin);
14513 		} else {
14514 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14515 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14516 
14517 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14518 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14519 		}
14520 		break;
14521 	}
14522 	case BPF_JSGE:
14523 	case BPF_JSGT:
14524 	{
14525 		if (is_jmp32) {
14526 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14527 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14528 
14529 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14530 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14531 		} else {
14532 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14533 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14534 
14535 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14536 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14537 		}
14538 		break;
14539 	}
14540 	case BPF_JLE:
14541 	case BPF_JLT:
14542 	{
14543 		if (is_jmp32) {
14544 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14545 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14546 
14547 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14548 						       false_umin);
14549 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14550 						      true_umax);
14551 		} else {
14552 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14553 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14554 
14555 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14556 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14557 		}
14558 		break;
14559 	}
14560 	case BPF_JSLE:
14561 	case BPF_JSLT:
14562 	{
14563 		if (is_jmp32) {
14564 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14565 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14566 
14567 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14568 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14569 		} else {
14570 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14571 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14572 
14573 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14574 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14575 		}
14576 		break;
14577 	}
14578 	default:
14579 		return;
14580 	}
14581 
14582 	if (is_jmp32) {
14583 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14584 					     tnum_subreg(false_32off));
14585 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14586 					    tnum_subreg(true_32off));
14587 		__reg_combine_32_into_64(false_reg);
14588 		__reg_combine_32_into_64(true_reg);
14589 	} else {
14590 		false_reg->var_off = false_64off;
14591 		true_reg->var_off = true_64off;
14592 		__reg_combine_64_into_32(false_reg);
14593 		__reg_combine_64_into_32(true_reg);
14594 	}
14595 }
14596 
14597 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14598  * the variable reg.
14599  */
14600 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14601 				struct bpf_reg_state *false_reg,
14602 				u64 val, u32 val32,
14603 				u8 opcode, bool is_jmp32)
14604 {
14605 	opcode = flip_opcode(opcode);
14606 	/* This uses zero as "not present in table"; luckily the zero opcode,
14607 	 * BPF_JA, can't get here.
14608 	 */
14609 	if (opcode)
14610 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14611 }
14612 
14613 /* Regs are known to be equal, so intersect their min/max/var_off */
14614 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14615 				  struct bpf_reg_state *dst_reg)
14616 {
14617 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14618 							dst_reg->umin_value);
14619 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14620 							dst_reg->umax_value);
14621 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14622 							dst_reg->smin_value);
14623 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14624 							dst_reg->smax_value);
14625 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14626 							     dst_reg->var_off);
14627 	reg_bounds_sync(src_reg);
14628 	reg_bounds_sync(dst_reg);
14629 }
14630 
14631 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14632 				struct bpf_reg_state *true_dst,
14633 				struct bpf_reg_state *false_src,
14634 				struct bpf_reg_state *false_dst,
14635 				u8 opcode)
14636 {
14637 	switch (opcode) {
14638 	case BPF_JEQ:
14639 		__reg_combine_min_max(true_src, true_dst);
14640 		break;
14641 	case BPF_JNE:
14642 		__reg_combine_min_max(false_src, false_dst);
14643 		break;
14644 	}
14645 }
14646 
14647 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14648 				 struct bpf_reg_state *reg, u32 id,
14649 				 bool is_null)
14650 {
14651 	if (type_may_be_null(reg->type) && reg->id == id &&
14652 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14653 		/* Old offset (both fixed and variable parts) should have been
14654 		 * known-zero, because we don't allow pointer arithmetic on
14655 		 * pointers that might be NULL. If we see this happening, don't
14656 		 * convert the register.
14657 		 *
14658 		 * But in some cases, some helpers that return local kptrs
14659 		 * advance offset for the returned pointer. In those cases, it
14660 		 * is fine to expect to see reg->off.
14661 		 */
14662 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14663 			return;
14664 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14665 		    WARN_ON_ONCE(reg->off))
14666 			return;
14667 
14668 		if (is_null) {
14669 			reg->type = SCALAR_VALUE;
14670 			/* We don't need id and ref_obj_id from this point
14671 			 * onwards anymore, thus we should better reset it,
14672 			 * so that state pruning has chances to take effect.
14673 			 */
14674 			reg->id = 0;
14675 			reg->ref_obj_id = 0;
14676 
14677 			return;
14678 		}
14679 
14680 		mark_ptr_not_null_reg(reg);
14681 
14682 		if (!reg_may_point_to_spin_lock(reg)) {
14683 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14684 			 * in release_reference().
14685 			 *
14686 			 * reg->id is still used by spin_lock ptr. Other
14687 			 * than spin_lock ptr type, reg->id can be reset.
14688 			 */
14689 			reg->id = 0;
14690 		}
14691 	}
14692 }
14693 
14694 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14695  * be folded together at some point.
14696  */
14697 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14698 				  bool is_null)
14699 {
14700 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14701 	struct bpf_reg_state *regs = state->regs, *reg;
14702 	u32 ref_obj_id = regs[regno].ref_obj_id;
14703 	u32 id = regs[regno].id;
14704 
14705 	if (ref_obj_id && ref_obj_id == id && is_null)
14706 		/* regs[regno] is in the " == NULL" branch.
14707 		 * No one could have freed the reference state before
14708 		 * doing the NULL check.
14709 		 */
14710 		WARN_ON_ONCE(release_reference_state(state, id));
14711 
14712 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14713 		mark_ptr_or_null_reg(state, reg, id, is_null);
14714 	}));
14715 }
14716 
14717 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14718 				   struct bpf_reg_state *dst_reg,
14719 				   struct bpf_reg_state *src_reg,
14720 				   struct bpf_verifier_state *this_branch,
14721 				   struct bpf_verifier_state *other_branch)
14722 {
14723 	if (BPF_SRC(insn->code) != BPF_X)
14724 		return false;
14725 
14726 	/* Pointers are always 64-bit. */
14727 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14728 		return false;
14729 
14730 	switch (BPF_OP(insn->code)) {
14731 	case BPF_JGT:
14732 		if ((dst_reg->type == PTR_TO_PACKET &&
14733 		     src_reg->type == PTR_TO_PACKET_END) ||
14734 		    (dst_reg->type == PTR_TO_PACKET_META &&
14735 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14736 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14737 			find_good_pkt_pointers(this_branch, dst_reg,
14738 					       dst_reg->type, false);
14739 			mark_pkt_end(other_branch, insn->dst_reg, true);
14740 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14741 			    src_reg->type == PTR_TO_PACKET) ||
14742 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14743 			    src_reg->type == PTR_TO_PACKET_META)) {
14744 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14745 			find_good_pkt_pointers(other_branch, src_reg,
14746 					       src_reg->type, true);
14747 			mark_pkt_end(this_branch, insn->src_reg, false);
14748 		} else {
14749 			return false;
14750 		}
14751 		break;
14752 	case BPF_JLT:
14753 		if ((dst_reg->type == PTR_TO_PACKET &&
14754 		     src_reg->type == PTR_TO_PACKET_END) ||
14755 		    (dst_reg->type == PTR_TO_PACKET_META &&
14756 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14757 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14758 			find_good_pkt_pointers(other_branch, dst_reg,
14759 					       dst_reg->type, true);
14760 			mark_pkt_end(this_branch, insn->dst_reg, false);
14761 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14762 			    src_reg->type == PTR_TO_PACKET) ||
14763 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14764 			    src_reg->type == PTR_TO_PACKET_META)) {
14765 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14766 			find_good_pkt_pointers(this_branch, src_reg,
14767 					       src_reg->type, false);
14768 			mark_pkt_end(other_branch, insn->src_reg, true);
14769 		} else {
14770 			return false;
14771 		}
14772 		break;
14773 	case BPF_JGE:
14774 		if ((dst_reg->type == PTR_TO_PACKET &&
14775 		     src_reg->type == PTR_TO_PACKET_END) ||
14776 		    (dst_reg->type == PTR_TO_PACKET_META &&
14777 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14778 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14779 			find_good_pkt_pointers(this_branch, dst_reg,
14780 					       dst_reg->type, true);
14781 			mark_pkt_end(other_branch, insn->dst_reg, false);
14782 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14783 			    src_reg->type == PTR_TO_PACKET) ||
14784 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14785 			    src_reg->type == PTR_TO_PACKET_META)) {
14786 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14787 			find_good_pkt_pointers(other_branch, src_reg,
14788 					       src_reg->type, false);
14789 			mark_pkt_end(this_branch, insn->src_reg, true);
14790 		} else {
14791 			return false;
14792 		}
14793 		break;
14794 	case BPF_JLE:
14795 		if ((dst_reg->type == PTR_TO_PACKET &&
14796 		     src_reg->type == PTR_TO_PACKET_END) ||
14797 		    (dst_reg->type == PTR_TO_PACKET_META &&
14798 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14799 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14800 			find_good_pkt_pointers(other_branch, dst_reg,
14801 					       dst_reg->type, false);
14802 			mark_pkt_end(this_branch, insn->dst_reg, true);
14803 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14804 			    src_reg->type == PTR_TO_PACKET) ||
14805 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14806 			    src_reg->type == PTR_TO_PACKET_META)) {
14807 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14808 			find_good_pkt_pointers(this_branch, src_reg,
14809 					       src_reg->type, true);
14810 			mark_pkt_end(other_branch, insn->src_reg, false);
14811 		} else {
14812 			return false;
14813 		}
14814 		break;
14815 	default:
14816 		return false;
14817 	}
14818 
14819 	return true;
14820 }
14821 
14822 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14823 			       struct bpf_reg_state *known_reg)
14824 {
14825 	struct bpf_func_state *state;
14826 	struct bpf_reg_state *reg;
14827 
14828 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14829 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14830 			copy_register_state(reg, known_reg);
14831 	}));
14832 }
14833 
14834 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14835 			     struct bpf_insn *insn, int *insn_idx)
14836 {
14837 	struct bpf_verifier_state *this_branch = env->cur_state;
14838 	struct bpf_verifier_state *other_branch;
14839 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14840 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14841 	struct bpf_reg_state *eq_branch_regs;
14842 	u8 opcode = BPF_OP(insn->code);
14843 	bool is_jmp32;
14844 	int pred = -1;
14845 	int err;
14846 
14847 	/* Only conditional jumps are expected to reach here. */
14848 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14849 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14850 		return -EINVAL;
14851 	}
14852 
14853 	/* check src2 operand */
14854 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14855 	if (err)
14856 		return err;
14857 
14858 	dst_reg = &regs[insn->dst_reg];
14859 	if (BPF_SRC(insn->code) == BPF_X) {
14860 		if (insn->imm != 0) {
14861 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14862 			return -EINVAL;
14863 		}
14864 
14865 		/* check src1 operand */
14866 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14867 		if (err)
14868 			return err;
14869 
14870 		src_reg = &regs[insn->src_reg];
14871 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14872 		    is_pointer_value(env, insn->src_reg)) {
14873 			verbose(env, "R%d pointer comparison prohibited\n",
14874 				insn->src_reg);
14875 			return -EACCES;
14876 		}
14877 	} else {
14878 		if (insn->src_reg != BPF_REG_0) {
14879 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14880 			return -EINVAL;
14881 		}
14882 	}
14883 
14884 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14885 
14886 	if (BPF_SRC(insn->code) == BPF_K) {
14887 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14888 	} else if (src_reg->type == SCALAR_VALUE &&
14889 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14890 		pred = is_branch_taken(dst_reg,
14891 				       tnum_subreg(src_reg->var_off).value,
14892 				       opcode,
14893 				       is_jmp32);
14894 	} else if (src_reg->type == SCALAR_VALUE &&
14895 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14896 		pred = is_branch_taken(dst_reg,
14897 				       src_reg->var_off.value,
14898 				       opcode,
14899 				       is_jmp32);
14900 	} else if (dst_reg->type == SCALAR_VALUE &&
14901 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14902 		pred = is_branch_taken(src_reg,
14903 				       tnum_subreg(dst_reg->var_off).value,
14904 				       flip_opcode(opcode),
14905 				       is_jmp32);
14906 	} else if (dst_reg->type == SCALAR_VALUE &&
14907 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14908 		pred = is_branch_taken(src_reg,
14909 				       dst_reg->var_off.value,
14910 				       flip_opcode(opcode),
14911 				       is_jmp32);
14912 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14913 		   reg_is_pkt_pointer_any(src_reg) &&
14914 		   !is_jmp32) {
14915 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14916 	}
14917 
14918 	if (pred >= 0) {
14919 		/* If we get here with a dst_reg pointer type it is because
14920 		 * above is_branch_taken() special cased the 0 comparison.
14921 		 */
14922 		if (!__is_pointer_value(false, dst_reg))
14923 			err = mark_chain_precision(env, insn->dst_reg);
14924 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14925 		    !__is_pointer_value(false, src_reg))
14926 			err = mark_chain_precision(env, insn->src_reg);
14927 		if (err)
14928 			return err;
14929 	}
14930 
14931 	if (pred == 1) {
14932 		/* Only follow the goto, ignore fall-through. If needed, push
14933 		 * the fall-through branch for simulation under speculative
14934 		 * execution.
14935 		 */
14936 		if (!env->bypass_spec_v1 &&
14937 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14938 					       *insn_idx))
14939 			return -EFAULT;
14940 		if (env->log.level & BPF_LOG_LEVEL)
14941 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14942 		*insn_idx += insn->off;
14943 		return 0;
14944 	} else if (pred == 0) {
14945 		/* Only follow the fall-through branch, since that's where the
14946 		 * program will go. If needed, push the goto branch for
14947 		 * simulation under speculative execution.
14948 		 */
14949 		if (!env->bypass_spec_v1 &&
14950 		    !sanitize_speculative_path(env, insn,
14951 					       *insn_idx + insn->off + 1,
14952 					       *insn_idx))
14953 			return -EFAULT;
14954 		if (env->log.level & BPF_LOG_LEVEL)
14955 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14956 		return 0;
14957 	}
14958 
14959 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14960 				  false);
14961 	if (!other_branch)
14962 		return -EFAULT;
14963 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14964 
14965 	/* detect if we are comparing against a constant value so we can adjust
14966 	 * our min/max values for our dst register.
14967 	 * this is only legit if both are scalars (or pointers to the same
14968 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14969 	 * because otherwise the different base pointers mean the offsets aren't
14970 	 * comparable.
14971 	 */
14972 	if (BPF_SRC(insn->code) == BPF_X) {
14973 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14974 
14975 		if (dst_reg->type == SCALAR_VALUE &&
14976 		    src_reg->type == SCALAR_VALUE) {
14977 			if (tnum_is_const(src_reg->var_off) ||
14978 			    (is_jmp32 &&
14979 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14980 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14981 						dst_reg,
14982 						src_reg->var_off.value,
14983 						tnum_subreg(src_reg->var_off).value,
14984 						opcode, is_jmp32);
14985 			else if (tnum_is_const(dst_reg->var_off) ||
14986 				 (is_jmp32 &&
14987 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14988 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14989 						    src_reg,
14990 						    dst_reg->var_off.value,
14991 						    tnum_subreg(dst_reg->var_off).value,
14992 						    opcode, is_jmp32);
14993 			else if (!is_jmp32 &&
14994 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14995 				/* Comparing for equality, we can combine knowledge */
14996 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14997 						    &other_branch_regs[insn->dst_reg],
14998 						    src_reg, dst_reg, opcode);
14999 			if (src_reg->id &&
15000 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15001 				find_equal_scalars(this_branch, src_reg);
15002 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
15003 			}
15004 
15005 		}
15006 	} else if (dst_reg->type == SCALAR_VALUE) {
15007 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
15008 					dst_reg, insn->imm, (u32)insn->imm,
15009 					opcode, is_jmp32);
15010 	}
15011 
15012 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15013 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15014 		find_equal_scalars(this_branch, dst_reg);
15015 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
15016 	}
15017 
15018 	/* if one pointer register is compared to another pointer
15019 	 * register check if PTR_MAYBE_NULL could be lifted.
15020 	 * E.g. register A - maybe null
15021 	 *      register B - not null
15022 	 * for JNE A, B, ... - A is not null in the false branch;
15023 	 * for JEQ A, B, ... - A is not null in the true branch.
15024 	 *
15025 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15026 	 * not need to be null checked by the BPF program, i.e.,
15027 	 * could be null even without PTR_MAYBE_NULL marking, so
15028 	 * only propagate nullness when neither reg is that type.
15029 	 */
15030 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15031 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15032 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15033 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15034 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15035 		eq_branch_regs = NULL;
15036 		switch (opcode) {
15037 		case BPF_JEQ:
15038 			eq_branch_regs = other_branch_regs;
15039 			break;
15040 		case BPF_JNE:
15041 			eq_branch_regs = regs;
15042 			break;
15043 		default:
15044 			/* do nothing */
15045 			break;
15046 		}
15047 		if (eq_branch_regs) {
15048 			if (type_may_be_null(src_reg->type))
15049 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15050 			else
15051 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15052 		}
15053 	}
15054 
15055 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15056 	 * NOTE: these optimizations below are related with pointer comparison
15057 	 *       which will never be JMP32.
15058 	 */
15059 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15060 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15061 	    type_may_be_null(dst_reg->type)) {
15062 		/* Mark all identical registers in each branch as either
15063 		 * safe or unknown depending R == 0 or R != 0 conditional.
15064 		 */
15065 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15066 				      opcode == BPF_JNE);
15067 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15068 				      opcode == BPF_JEQ);
15069 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15070 					   this_branch, other_branch) &&
15071 		   is_pointer_value(env, insn->dst_reg)) {
15072 		verbose(env, "R%d pointer comparison prohibited\n",
15073 			insn->dst_reg);
15074 		return -EACCES;
15075 	}
15076 	if (env->log.level & BPF_LOG_LEVEL)
15077 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15078 	return 0;
15079 }
15080 
15081 /* verify BPF_LD_IMM64 instruction */
15082 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15083 {
15084 	struct bpf_insn_aux_data *aux = cur_aux(env);
15085 	struct bpf_reg_state *regs = cur_regs(env);
15086 	struct bpf_reg_state *dst_reg;
15087 	struct bpf_map *map;
15088 	int err;
15089 
15090 	if (BPF_SIZE(insn->code) != BPF_DW) {
15091 		verbose(env, "invalid BPF_LD_IMM insn\n");
15092 		return -EINVAL;
15093 	}
15094 	if (insn->off != 0) {
15095 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15096 		return -EINVAL;
15097 	}
15098 
15099 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15100 	if (err)
15101 		return err;
15102 
15103 	dst_reg = &regs[insn->dst_reg];
15104 	if (insn->src_reg == 0) {
15105 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15106 
15107 		dst_reg->type = SCALAR_VALUE;
15108 		__mark_reg_known(&regs[insn->dst_reg], imm);
15109 		return 0;
15110 	}
15111 
15112 	/* All special src_reg cases are listed below. From this point onwards
15113 	 * we either succeed and assign a corresponding dst_reg->type after
15114 	 * zeroing the offset, or fail and reject the program.
15115 	 */
15116 	mark_reg_known_zero(env, regs, insn->dst_reg);
15117 
15118 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15119 		dst_reg->type = aux->btf_var.reg_type;
15120 		switch (base_type(dst_reg->type)) {
15121 		case PTR_TO_MEM:
15122 			dst_reg->mem_size = aux->btf_var.mem_size;
15123 			break;
15124 		case PTR_TO_BTF_ID:
15125 			dst_reg->btf = aux->btf_var.btf;
15126 			dst_reg->btf_id = aux->btf_var.btf_id;
15127 			break;
15128 		default:
15129 			verbose(env, "bpf verifier is misconfigured\n");
15130 			return -EFAULT;
15131 		}
15132 		return 0;
15133 	}
15134 
15135 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15136 		struct bpf_prog_aux *aux = env->prog->aux;
15137 		u32 subprogno = find_subprog(env,
15138 					     env->insn_idx + insn->imm + 1);
15139 
15140 		if (!aux->func_info) {
15141 			verbose(env, "missing btf func_info\n");
15142 			return -EINVAL;
15143 		}
15144 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15145 			verbose(env, "callback function not static\n");
15146 			return -EINVAL;
15147 		}
15148 
15149 		dst_reg->type = PTR_TO_FUNC;
15150 		dst_reg->subprogno = subprogno;
15151 		return 0;
15152 	}
15153 
15154 	map = env->used_maps[aux->map_index];
15155 	dst_reg->map_ptr = map;
15156 
15157 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15158 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15159 		dst_reg->type = PTR_TO_MAP_VALUE;
15160 		dst_reg->off = aux->map_off;
15161 		WARN_ON_ONCE(map->max_entries != 1);
15162 		/* We want reg->id to be same (0) as map_value is not distinct */
15163 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15164 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15165 		dst_reg->type = CONST_PTR_TO_MAP;
15166 	} else {
15167 		verbose(env, "bpf verifier is misconfigured\n");
15168 		return -EINVAL;
15169 	}
15170 
15171 	return 0;
15172 }
15173 
15174 static bool may_access_skb(enum bpf_prog_type type)
15175 {
15176 	switch (type) {
15177 	case BPF_PROG_TYPE_SOCKET_FILTER:
15178 	case BPF_PROG_TYPE_SCHED_CLS:
15179 	case BPF_PROG_TYPE_SCHED_ACT:
15180 		return true;
15181 	default:
15182 		return false;
15183 	}
15184 }
15185 
15186 /* verify safety of LD_ABS|LD_IND instructions:
15187  * - they can only appear in the programs where ctx == skb
15188  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15189  *   preserve R6-R9, and store return value into R0
15190  *
15191  * Implicit input:
15192  *   ctx == skb == R6 == CTX
15193  *
15194  * Explicit input:
15195  *   SRC == any register
15196  *   IMM == 32-bit immediate
15197  *
15198  * Output:
15199  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15200  */
15201 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15202 {
15203 	struct bpf_reg_state *regs = cur_regs(env);
15204 	static const int ctx_reg = BPF_REG_6;
15205 	u8 mode = BPF_MODE(insn->code);
15206 	int i, err;
15207 
15208 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15209 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15210 		return -EINVAL;
15211 	}
15212 
15213 	if (!env->ops->gen_ld_abs) {
15214 		verbose(env, "bpf verifier is misconfigured\n");
15215 		return -EINVAL;
15216 	}
15217 
15218 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15219 	    BPF_SIZE(insn->code) == BPF_DW ||
15220 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15221 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15222 		return -EINVAL;
15223 	}
15224 
15225 	/* check whether implicit source operand (register R6) is readable */
15226 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15227 	if (err)
15228 		return err;
15229 
15230 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15231 	 * gen_ld_abs() may terminate the program at runtime, leading to
15232 	 * reference leak.
15233 	 */
15234 	err = check_reference_leak(env, false);
15235 	if (err) {
15236 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15237 		return err;
15238 	}
15239 
15240 	if (env->cur_state->active_lock.ptr) {
15241 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15242 		return -EINVAL;
15243 	}
15244 
15245 	if (env->cur_state->active_rcu_lock) {
15246 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15247 		return -EINVAL;
15248 	}
15249 
15250 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15251 		verbose(env,
15252 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15253 		return -EINVAL;
15254 	}
15255 
15256 	if (mode == BPF_IND) {
15257 		/* check explicit source operand */
15258 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15259 		if (err)
15260 			return err;
15261 	}
15262 
15263 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15264 	if (err < 0)
15265 		return err;
15266 
15267 	/* reset caller saved regs to unreadable */
15268 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15269 		mark_reg_not_init(env, regs, caller_saved[i]);
15270 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15271 	}
15272 
15273 	/* mark destination R0 register as readable, since it contains
15274 	 * the value fetched from the packet.
15275 	 * Already marked as written above.
15276 	 */
15277 	mark_reg_unknown(env, regs, BPF_REG_0);
15278 	/* ld_abs load up to 32-bit skb data. */
15279 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15280 	return 0;
15281 }
15282 
15283 static int check_return_code(struct bpf_verifier_env *env, int regno)
15284 {
15285 	struct tnum enforce_attach_type_range = tnum_unknown;
15286 	const struct bpf_prog *prog = env->prog;
15287 	struct bpf_reg_state *reg;
15288 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
15289 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15290 	int err;
15291 	struct bpf_func_state *frame = env->cur_state->frame[0];
15292 	const bool is_subprog = frame->subprogno;
15293 
15294 	/* LSM and struct_ops func-ptr's return type could be "void" */
15295 	if (!is_subprog || frame->in_exception_callback_fn) {
15296 		switch (prog_type) {
15297 		case BPF_PROG_TYPE_LSM:
15298 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15299 				/* See below, can be 0 or 0-1 depending on hook. */
15300 				break;
15301 			fallthrough;
15302 		case BPF_PROG_TYPE_STRUCT_OPS:
15303 			if (!prog->aux->attach_func_proto->type)
15304 				return 0;
15305 			break;
15306 		default:
15307 			break;
15308 		}
15309 	}
15310 
15311 	/* eBPF calling convention is such that R0 is used
15312 	 * to return the value from eBPF program.
15313 	 * Make sure that it's readable at this time
15314 	 * of bpf_exit, which means that program wrote
15315 	 * something into it earlier
15316 	 */
15317 	err = check_reg_arg(env, regno, SRC_OP);
15318 	if (err)
15319 		return err;
15320 
15321 	if (is_pointer_value(env, regno)) {
15322 		verbose(env, "R%d leaks addr as return value\n", regno);
15323 		return -EACCES;
15324 	}
15325 
15326 	reg = cur_regs(env) + regno;
15327 
15328 	if (frame->in_async_callback_fn) {
15329 		/* enforce return zero from async callbacks like timer */
15330 		if (reg->type != SCALAR_VALUE) {
15331 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
15332 				regno, reg_type_str(env, reg->type));
15333 			return -EINVAL;
15334 		}
15335 
15336 		if (!tnum_in(const_0, reg->var_off)) {
15337 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15338 			return -EINVAL;
15339 		}
15340 		return 0;
15341 	}
15342 
15343 	if (is_subprog && !frame->in_exception_callback_fn) {
15344 		if (reg->type != SCALAR_VALUE) {
15345 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15346 				regno, reg_type_str(env, reg->type));
15347 			return -EINVAL;
15348 		}
15349 		return 0;
15350 	}
15351 
15352 	switch (prog_type) {
15353 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15354 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15355 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15356 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15357 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15358 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15359 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15360 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15361 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15362 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15363 			range = tnum_range(1, 1);
15364 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15365 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15366 			range = tnum_range(0, 3);
15367 		break;
15368 	case BPF_PROG_TYPE_CGROUP_SKB:
15369 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15370 			range = tnum_range(0, 3);
15371 			enforce_attach_type_range = tnum_range(2, 3);
15372 		}
15373 		break;
15374 	case BPF_PROG_TYPE_CGROUP_SOCK:
15375 	case BPF_PROG_TYPE_SOCK_OPS:
15376 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15377 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15378 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15379 		break;
15380 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15381 		if (!env->prog->aux->attach_btf_id)
15382 			return 0;
15383 		range = tnum_const(0);
15384 		break;
15385 	case BPF_PROG_TYPE_TRACING:
15386 		switch (env->prog->expected_attach_type) {
15387 		case BPF_TRACE_FENTRY:
15388 		case BPF_TRACE_FEXIT:
15389 			range = tnum_const(0);
15390 			break;
15391 		case BPF_TRACE_RAW_TP:
15392 		case BPF_MODIFY_RETURN:
15393 			return 0;
15394 		case BPF_TRACE_ITER:
15395 			break;
15396 		default:
15397 			return -ENOTSUPP;
15398 		}
15399 		break;
15400 	case BPF_PROG_TYPE_SK_LOOKUP:
15401 		range = tnum_range(SK_DROP, SK_PASS);
15402 		break;
15403 
15404 	case BPF_PROG_TYPE_LSM:
15405 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15406 			/* Regular BPF_PROG_TYPE_LSM programs can return
15407 			 * any value.
15408 			 */
15409 			return 0;
15410 		}
15411 		if (!env->prog->aux->attach_func_proto->type) {
15412 			/* Make sure programs that attach to void
15413 			 * hooks don't try to modify return value.
15414 			 */
15415 			range = tnum_range(1, 1);
15416 		}
15417 		break;
15418 
15419 	case BPF_PROG_TYPE_NETFILTER:
15420 		range = tnum_range(NF_DROP, NF_ACCEPT);
15421 		break;
15422 	case BPF_PROG_TYPE_EXT:
15423 		/* freplace program can return anything as its return value
15424 		 * depends on the to-be-replaced kernel func or bpf program.
15425 		 */
15426 	default:
15427 		return 0;
15428 	}
15429 
15430 	if (reg->type != SCALAR_VALUE) {
15431 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
15432 			regno, reg_type_str(env, reg->type));
15433 		return -EINVAL;
15434 	}
15435 
15436 	if (!tnum_in(range, reg->var_off)) {
15437 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15438 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15439 		    prog_type == BPF_PROG_TYPE_LSM &&
15440 		    !prog->aux->attach_func_proto->type)
15441 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15442 		return -EINVAL;
15443 	}
15444 
15445 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15446 	    tnum_in(enforce_attach_type_range, reg->var_off))
15447 		env->prog->enforce_expected_attach_type = 1;
15448 	return 0;
15449 }
15450 
15451 /* non-recursive DFS pseudo code
15452  * 1  procedure DFS-iterative(G,v):
15453  * 2      label v as discovered
15454  * 3      let S be a stack
15455  * 4      S.push(v)
15456  * 5      while S is not empty
15457  * 6            t <- S.peek()
15458  * 7            if t is what we're looking for:
15459  * 8                return t
15460  * 9            for all edges e in G.adjacentEdges(t) do
15461  * 10               if edge e is already labelled
15462  * 11                   continue with the next edge
15463  * 12               w <- G.adjacentVertex(t,e)
15464  * 13               if vertex w is not discovered and not explored
15465  * 14                   label e as tree-edge
15466  * 15                   label w as discovered
15467  * 16                   S.push(w)
15468  * 17                   continue at 5
15469  * 18               else if vertex w is discovered
15470  * 19                   label e as back-edge
15471  * 20               else
15472  * 21                   // vertex w is explored
15473  * 22                   label e as forward- or cross-edge
15474  * 23           label t as explored
15475  * 24           S.pop()
15476  *
15477  * convention:
15478  * 0x10 - discovered
15479  * 0x11 - discovered and fall-through edge labelled
15480  * 0x12 - discovered and fall-through and branch edges labelled
15481  * 0x20 - explored
15482  */
15483 
15484 enum {
15485 	DISCOVERED = 0x10,
15486 	EXPLORED = 0x20,
15487 	FALLTHROUGH = 1,
15488 	BRANCH = 2,
15489 };
15490 
15491 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15492 {
15493 	env->insn_aux_data[idx].prune_point = true;
15494 }
15495 
15496 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15497 {
15498 	return env->insn_aux_data[insn_idx].prune_point;
15499 }
15500 
15501 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15502 {
15503 	env->insn_aux_data[idx].force_checkpoint = true;
15504 }
15505 
15506 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15507 {
15508 	return env->insn_aux_data[insn_idx].force_checkpoint;
15509 }
15510 
15511 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15512 {
15513 	env->insn_aux_data[idx].calls_callback = true;
15514 }
15515 
15516 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15517 {
15518 	return env->insn_aux_data[insn_idx].calls_callback;
15519 }
15520 
15521 enum {
15522 	DONE_EXPLORING = 0,
15523 	KEEP_EXPLORING = 1,
15524 };
15525 
15526 /* t, w, e - match pseudo-code above:
15527  * t - index of current instruction
15528  * w - next instruction
15529  * e - edge
15530  */
15531 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15532 {
15533 	int *insn_stack = env->cfg.insn_stack;
15534 	int *insn_state = env->cfg.insn_state;
15535 
15536 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15537 		return DONE_EXPLORING;
15538 
15539 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15540 		return DONE_EXPLORING;
15541 
15542 	if (w < 0 || w >= env->prog->len) {
15543 		verbose_linfo(env, t, "%d: ", t);
15544 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15545 		return -EINVAL;
15546 	}
15547 
15548 	if (e == BRANCH) {
15549 		/* mark branch target for state pruning */
15550 		mark_prune_point(env, w);
15551 		mark_jmp_point(env, w);
15552 	}
15553 
15554 	if (insn_state[w] == 0) {
15555 		/* tree-edge */
15556 		insn_state[t] = DISCOVERED | e;
15557 		insn_state[w] = DISCOVERED;
15558 		if (env->cfg.cur_stack >= env->prog->len)
15559 			return -E2BIG;
15560 		insn_stack[env->cfg.cur_stack++] = w;
15561 		return KEEP_EXPLORING;
15562 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15563 		if (env->bpf_capable)
15564 			return DONE_EXPLORING;
15565 		verbose_linfo(env, t, "%d: ", t);
15566 		verbose_linfo(env, w, "%d: ", w);
15567 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15568 		return -EINVAL;
15569 	} else if (insn_state[w] == EXPLORED) {
15570 		/* forward- or cross-edge */
15571 		insn_state[t] = DISCOVERED | e;
15572 	} else {
15573 		verbose(env, "insn state internal bug\n");
15574 		return -EFAULT;
15575 	}
15576 	return DONE_EXPLORING;
15577 }
15578 
15579 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15580 				struct bpf_verifier_env *env,
15581 				bool visit_callee)
15582 {
15583 	int ret, insn_sz;
15584 
15585 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15586 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15587 	if (ret)
15588 		return ret;
15589 
15590 	mark_prune_point(env, t + insn_sz);
15591 	/* when we exit from subprog, we need to record non-linear history */
15592 	mark_jmp_point(env, t + insn_sz);
15593 
15594 	if (visit_callee) {
15595 		mark_prune_point(env, t);
15596 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15597 	}
15598 	return ret;
15599 }
15600 
15601 /* Visits the instruction at index t and returns one of the following:
15602  *  < 0 - an error occurred
15603  *  DONE_EXPLORING - the instruction was fully explored
15604  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15605  */
15606 static int visit_insn(int t, struct bpf_verifier_env *env)
15607 {
15608 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15609 	int ret, off, insn_sz;
15610 
15611 	if (bpf_pseudo_func(insn))
15612 		return visit_func_call_insn(t, insns, env, true);
15613 
15614 	/* All non-branch instructions have a single fall-through edge. */
15615 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15616 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15617 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15618 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15619 	}
15620 
15621 	switch (BPF_OP(insn->code)) {
15622 	case BPF_EXIT:
15623 		return DONE_EXPLORING;
15624 
15625 	case BPF_CALL:
15626 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15627 			/* Mark this call insn as a prune point to trigger
15628 			 * is_state_visited() check before call itself is
15629 			 * processed by __check_func_call(). Otherwise new
15630 			 * async state will be pushed for further exploration.
15631 			 */
15632 			mark_prune_point(env, t);
15633 		/* For functions that invoke callbacks it is not known how many times
15634 		 * callback would be called. Verifier models callback calling functions
15635 		 * by repeatedly visiting callback bodies and returning to origin call
15636 		 * instruction.
15637 		 * In order to stop such iteration verifier needs to identify when a
15638 		 * state identical some state from a previous iteration is reached.
15639 		 * Check below forces creation of checkpoint before callback calling
15640 		 * instruction to allow search for such identical states.
15641 		 */
15642 		if (is_sync_callback_calling_insn(insn)) {
15643 			mark_calls_callback(env, t);
15644 			mark_force_checkpoint(env, t);
15645 			mark_prune_point(env, t);
15646 			mark_jmp_point(env, t);
15647 		}
15648 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15649 			struct bpf_kfunc_call_arg_meta meta;
15650 
15651 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15652 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15653 				mark_prune_point(env, t);
15654 				/* Checking and saving state checkpoints at iter_next() call
15655 				 * is crucial for fast convergence of open-coded iterator loop
15656 				 * logic, so we need to force it. If we don't do that,
15657 				 * is_state_visited() might skip saving a checkpoint, causing
15658 				 * unnecessarily long sequence of not checkpointed
15659 				 * instructions and jumps, leading to exhaustion of jump
15660 				 * history buffer, and potentially other undesired outcomes.
15661 				 * It is expected that with correct open-coded iterators
15662 				 * convergence will happen quickly, so we don't run a risk of
15663 				 * exhausting memory.
15664 				 */
15665 				mark_force_checkpoint(env, t);
15666 			}
15667 		}
15668 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15669 
15670 	case BPF_JA:
15671 		if (BPF_SRC(insn->code) != BPF_K)
15672 			return -EINVAL;
15673 
15674 		if (BPF_CLASS(insn->code) == BPF_JMP)
15675 			off = insn->off;
15676 		else
15677 			off = insn->imm;
15678 
15679 		/* unconditional jump with single edge */
15680 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15681 		if (ret)
15682 			return ret;
15683 
15684 		mark_prune_point(env, t + off + 1);
15685 		mark_jmp_point(env, t + off + 1);
15686 
15687 		return ret;
15688 
15689 	default:
15690 		/* conditional jump with two edges */
15691 		mark_prune_point(env, t);
15692 
15693 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15694 		if (ret)
15695 			return ret;
15696 
15697 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15698 	}
15699 }
15700 
15701 /* non-recursive depth-first-search to detect loops in BPF program
15702  * loop == back-edge in directed graph
15703  */
15704 static int check_cfg(struct bpf_verifier_env *env)
15705 {
15706 	int insn_cnt = env->prog->len;
15707 	int *insn_stack, *insn_state;
15708 	int ex_insn_beg, i, ret = 0;
15709 	bool ex_done = false;
15710 
15711 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15712 	if (!insn_state)
15713 		return -ENOMEM;
15714 
15715 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15716 	if (!insn_stack) {
15717 		kvfree(insn_state);
15718 		return -ENOMEM;
15719 	}
15720 
15721 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15722 	insn_stack[0] = 0; /* 0 is the first instruction */
15723 	env->cfg.cur_stack = 1;
15724 
15725 walk_cfg:
15726 	while (env->cfg.cur_stack > 0) {
15727 		int t = insn_stack[env->cfg.cur_stack - 1];
15728 
15729 		ret = visit_insn(t, env);
15730 		switch (ret) {
15731 		case DONE_EXPLORING:
15732 			insn_state[t] = EXPLORED;
15733 			env->cfg.cur_stack--;
15734 			break;
15735 		case KEEP_EXPLORING:
15736 			break;
15737 		default:
15738 			if (ret > 0) {
15739 				verbose(env, "visit_insn internal bug\n");
15740 				ret = -EFAULT;
15741 			}
15742 			goto err_free;
15743 		}
15744 	}
15745 
15746 	if (env->cfg.cur_stack < 0) {
15747 		verbose(env, "pop stack internal bug\n");
15748 		ret = -EFAULT;
15749 		goto err_free;
15750 	}
15751 
15752 	if (env->exception_callback_subprog && !ex_done) {
15753 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15754 
15755 		insn_state[ex_insn_beg] = DISCOVERED;
15756 		insn_stack[0] = ex_insn_beg;
15757 		env->cfg.cur_stack = 1;
15758 		ex_done = true;
15759 		goto walk_cfg;
15760 	}
15761 
15762 	for (i = 0; i < insn_cnt; i++) {
15763 		struct bpf_insn *insn = &env->prog->insnsi[i];
15764 
15765 		if (insn_state[i] != EXPLORED) {
15766 			verbose(env, "unreachable insn %d\n", i);
15767 			ret = -EINVAL;
15768 			goto err_free;
15769 		}
15770 		if (bpf_is_ldimm64(insn)) {
15771 			if (insn_state[i + 1] != 0) {
15772 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15773 				ret = -EINVAL;
15774 				goto err_free;
15775 			}
15776 			i++; /* skip second half of ldimm64 */
15777 		}
15778 	}
15779 	ret = 0; /* cfg looks good */
15780 
15781 err_free:
15782 	kvfree(insn_state);
15783 	kvfree(insn_stack);
15784 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15785 	return ret;
15786 }
15787 
15788 static int check_abnormal_return(struct bpf_verifier_env *env)
15789 {
15790 	int i;
15791 
15792 	for (i = 1; i < env->subprog_cnt; i++) {
15793 		if (env->subprog_info[i].has_ld_abs) {
15794 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15795 			return -EINVAL;
15796 		}
15797 		if (env->subprog_info[i].has_tail_call) {
15798 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15799 			return -EINVAL;
15800 		}
15801 	}
15802 	return 0;
15803 }
15804 
15805 /* The minimum supported BTF func info size */
15806 #define MIN_BPF_FUNCINFO_SIZE	8
15807 #define MAX_FUNCINFO_REC_SIZE	252
15808 
15809 static int check_btf_func_early(struct bpf_verifier_env *env,
15810 				const union bpf_attr *attr,
15811 				bpfptr_t uattr)
15812 {
15813 	u32 krec_size = sizeof(struct bpf_func_info);
15814 	const struct btf_type *type, *func_proto;
15815 	u32 i, nfuncs, urec_size, min_size;
15816 	struct bpf_func_info *krecord;
15817 	struct bpf_prog *prog;
15818 	const struct btf *btf;
15819 	u32 prev_offset = 0;
15820 	bpfptr_t urecord;
15821 	int ret = -ENOMEM;
15822 
15823 	nfuncs = attr->func_info_cnt;
15824 	if (!nfuncs) {
15825 		if (check_abnormal_return(env))
15826 			return -EINVAL;
15827 		return 0;
15828 	}
15829 
15830 	urec_size = attr->func_info_rec_size;
15831 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15832 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15833 	    urec_size % sizeof(u32)) {
15834 		verbose(env, "invalid func info rec size %u\n", urec_size);
15835 		return -EINVAL;
15836 	}
15837 
15838 	prog = env->prog;
15839 	btf = prog->aux->btf;
15840 
15841 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15842 	min_size = min_t(u32, krec_size, urec_size);
15843 
15844 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15845 	if (!krecord)
15846 		return -ENOMEM;
15847 
15848 	for (i = 0; i < nfuncs; i++) {
15849 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15850 		if (ret) {
15851 			if (ret == -E2BIG) {
15852 				verbose(env, "nonzero tailing record in func info");
15853 				/* set the size kernel expects so loader can zero
15854 				 * out the rest of the record.
15855 				 */
15856 				if (copy_to_bpfptr_offset(uattr,
15857 							  offsetof(union bpf_attr, func_info_rec_size),
15858 							  &min_size, sizeof(min_size)))
15859 					ret = -EFAULT;
15860 			}
15861 			goto err_free;
15862 		}
15863 
15864 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15865 			ret = -EFAULT;
15866 			goto err_free;
15867 		}
15868 
15869 		/* check insn_off */
15870 		ret = -EINVAL;
15871 		if (i == 0) {
15872 			if (krecord[i].insn_off) {
15873 				verbose(env,
15874 					"nonzero insn_off %u for the first func info record",
15875 					krecord[i].insn_off);
15876 				goto err_free;
15877 			}
15878 		} else if (krecord[i].insn_off <= prev_offset) {
15879 			verbose(env,
15880 				"same or smaller insn offset (%u) than previous func info record (%u)",
15881 				krecord[i].insn_off, prev_offset);
15882 			goto err_free;
15883 		}
15884 
15885 		/* check type_id */
15886 		type = btf_type_by_id(btf, krecord[i].type_id);
15887 		if (!type || !btf_type_is_func(type)) {
15888 			verbose(env, "invalid type id %d in func info",
15889 				krecord[i].type_id);
15890 			goto err_free;
15891 		}
15892 
15893 		func_proto = btf_type_by_id(btf, type->type);
15894 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15895 			/* btf_func_check() already verified it during BTF load */
15896 			goto err_free;
15897 
15898 		prev_offset = krecord[i].insn_off;
15899 		bpfptr_add(&urecord, urec_size);
15900 	}
15901 
15902 	prog->aux->func_info = krecord;
15903 	prog->aux->func_info_cnt = nfuncs;
15904 	return 0;
15905 
15906 err_free:
15907 	kvfree(krecord);
15908 	return ret;
15909 }
15910 
15911 static int check_btf_func(struct bpf_verifier_env *env,
15912 			  const union bpf_attr *attr,
15913 			  bpfptr_t uattr)
15914 {
15915 	const struct btf_type *type, *func_proto, *ret_type;
15916 	u32 i, nfuncs, urec_size;
15917 	struct bpf_func_info *krecord;
15918 	struct bpf_func_info_aux *info_aux = NULL;
15919 	struct bpf_prog *prog;
15920 	const struct btf *btf;
15921 	bpfptr_t urecord;
15922 	bool scalar_return;
15923 	int ret = -ENOMEM;
15924 
15925 	nfuncs = attr->func_info_cnt;
15926 	if (!nfuncs) {
15927 		if (check_abnormal_return(env))
15928 			return -EINVAL;
15929 		return 0;
15930 	}
15931 	if (nfuncs != env->subprog_cnt) {
15932 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15933 		return -EINVAL;
15934 	}
15935 
15936 	urec_size = attr->func_info_rec_size;
15937 
15938 	prog = env->prog;
15939 	btf = prog->aux->btf;
15940 
15941 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15942 
15943 	krecord = prog->aux->func_info;
15944 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15945 	if (!info_aux)
15946 		return -ENOMEM;
15947 
15948 	for (i = 0; i < nfuncs; i++) {
15949 		/* check insn_off */
15950 		ret = -EINVAL;
15951 
15952 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15953 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15954 			goto err_free;
15955 		}
15956 
15957 		/* Already checked type_id */
15958 		type = btf_type_by_id(btf, krecord[i].type_id);
15959 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15960 		/* Already checked func_proto */
15961 		func_proto = btf_type_by_id(btf, type->type);
15962 
15963 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15964 		scalar_return =
15965 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15966 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15967 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15968 			goto err_free;
15969 		}
15970 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15971 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15972 			goto err_free;
15973 		}
15974 
15975 		bpfptr_add(&urecord, urec_size);
15976 	}
15977 
15978 	prog->aux->func_info_aux = info_aux;
15979 	return 0;
15980 
15981 err_free:
15982 	kfree(info_aux);
15983 	return ret;
15984 }
15985 
15986 static void adjust_btf_func(struct bpf_verifier_env *env)
15987 {
15988 	struct bpf_prog_aux *aux = env->prog->aux;
15989 	int i;
15990 
15991 	if (!aux->func_info)
15992 		return;
15993 
15994 	/* func_info is not available for hidden subprogs */
15995 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15996 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15997 }
15998 
15999 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
16000 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
16001 
16002 static int check_btf_line(struct bpf_verifier_env *env,
16003 			  const union bpf_attr *attr,
16004 			  bpfptr_t uattr)
16005 {
16006 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16007 	struct bpf_subprog_info *sub;
16008 	struct bpf_line_info *linfo;
16009 	struct bpf_prog *prog;
16010 	const struct btf *btf;
16011 	bpfptr_t ulinfo;
16012 	int err;
16013 
16014 	nr_linfo = attr->line_info_cnt;
16015 	if (!nr_linfo)
16016 		return 0;
16017 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16018 		return -EINVAL;
16019 
16020 	rec_size = attr->line_info_rec_size;
16021 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16022 	    rec_size > MAX_LINEINFO_REC_SIZE ||
16023 	    rec_size & (sizeof(u32) - 1))
16024 		return -EINVAL;
16025 
16026 	/* Need to zero it in case the userspace may
16027 	 * pass in a smaller bpf_line_info object.
16028 	 */
16029 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16030 			 GFP_KERNEL | __GFP_NOWARN);
16031 	if (!linfo)
16032 		return -ENOMEM;
16033 
16034 	prog = env->prog;
16035 	btf = prog->aux->btf;
16036 
16037 	s = 0;
16038 	sub = env->subprog_info;
16039 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16040 	expected_size = sizeof(struct bpf_line_info);
16041 	ncopy = min_t(u32, expected_size, rec_size);
16042 	for (i = 0; i < nr_linfo; i++) {
16043 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16044 		if (err) {
16045 			if (err == -E2BIG) {
16046 				verbose(env, "nonzero tailing record in line_info");
16047 				if (copy_to_bpfptr_offset(uattr,
16048 							  offsetof(union bpf_attr, line_info_rec_size),
16049 							  &expected_size, sizeof(expected_size)))
16050 					err = -EFAULT;
16051 			}
16052 			goto err_free;
16053 		}
16054 
16055 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16056 			err = -EFAULT;
16057 			goto err_free;
16058 		}
16059 
16060 		/*
16061 		 * Check insn_off to ensure
16062 		 * 1) strictly increasing AND
16063 		 * 2) bounded by prog->len
16064 		 *
16065 		 * The linfo[0].insn_off == 0 check logically falls into
16066 		 * the later "missing bpf_line_info for func..." case
16067 		 * because the first linfo[0].insn_off must be the
16068 		 * first sub also and the first sub must have
16069 		 * subprog_info[0].start == 0.
16070 		 */
16071 		if ((i && linfo[i].insn_off <= prev_offset) ||
16072 		    linfo[i].insn_off >= prog->len) {
16073 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16074 				i, linfo[i].insn_off, prev_offset,
16075 				prog->len);
16076 			err = -EINVAL;
16077 			goto err_free;
16078 		}
16079 
16080 		if (!prog->insnsi[linfo[i].insn_off].code) {
16081 			verbose(env,
16082 				"Invalid insn code at line_info[%u].insn_off\n",
16083 				i);
16084 			err = -EINVAL;
16085 			goto err_free;
16086 		}
16087 
16088 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16089 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16090 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16091 			err = -EINVAL;
16092 			goto err_free;
16093 		}
16094 
16095 		if (s != env->subprog_cnt) {
16096 			if (linfo[i].insn_off == sub[s].start) {
16097 				sub[s].linfo_idx = i;
16098 				s++;
16099 			} else if (sub[s].start < linfo[i].insn_off) {
16100 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16101 				err = -EINVAL;
16102 				goto err_free;
16103 			}
16104 		}
16105 
16106 		prev_offset = linfo[i].insn_off;
16107 		bpfptr_add(&ulinfo, rec_size);
16108 	}
16109 
16110 	if (s != env->subprog_cnt) {
16111 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16112 			env->subprog_cnt - s, s);
16113 		err = -EINVAL;
16114 		goto err_free;
16115 	}
16116 
16117 	prog->aux->linfo = linfo;
16118 	prog->aux->nr_linfo = nr_linfo;
16119 
16120 	return 0;
16121 
16122 err_free:
16123 	kvfree(linfo);
16124 	return err;
16125 }
16126 
16127 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16128 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16129 
16130 static int check_core_relo(struct bpf_verifier_env *env,
16131 			   const union bpf_attr *attr,
16132 			   bpfptr_t uattr)
16133 {
16134 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16135 	struct bpf_core_relo core_relo = {};
16136 	struct bpf_prog *prog = env->prog;
16137 	const struct btf *btf = prog->aux->btf;
16138 	struct bpf_core_ctx ctx = {
16139 		.log = &env->log,
16140 		.btf = btf,
16141 	};
16142 	bpfptr_t u_core_relo;
16143 	int err;
16144 
16145 	nr_core_relo = attr->core_relo_cnt;
16146 	if (!nr_core_relo)
16147 		return 0;
16148 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16149 		return -EINVAL;
16150 
16151 	rec_size = attr->core_relo_rec_size;
16152 	if (rec_size < MIN_CORE_RELO_SIZE ||
16153 	    rec_size > MAX_CORE_RELO_SIZE ||
16154 	    rec_size % sizeof(u32))
16155 		return -EINVAL;
16156 
16157 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16158 	expected_size = sizeof(struct bpf_core_relo);
16159 	ncopy = min_t(u32, expected_size, rec_size);
16160 
16161 	/* Unlike func_info and line_info, copy and apply each CO-RE
16162 	 * relocation record one at a time.
16163 	 */
16164 	for (i = 0; i < nr_core_relo; i++) {
16165 		/* future proofing when sizeof(bpf_core_relo) changes */
16166 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16167 		if (err) {
16168 			if (err == -E2BIG) {
16169 				verbose(env, "nonzero tailing record in core_relo");
16170 				if (copy_to_bpfptr_offset(uattr,
16171 							  offsetof(union bpf_attr, core_relo_rec_size),
16172 							  &expected_size, sizeof(expected_size)))
16173 					err = -EFAULT;
16174 			}
16175 			break;
16176 		}
16177 
16178 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16179 			err = -EFAULT;
16180 			break;
16181 		}
16182 
16183 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16184 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16185 				i, core_relo.insn_off, prog->len);
16186 			err = -EINVAL;
16187 			break;
16188 		}
16189 
16190 		err = bpf_core_apply(&ctx, &core_relo, i,
16191 				     &prog->insnsi[core_relo.insn_off / 8]);
16192 		if (err)
16193 			break;
16194 		bpfptr_add(&u_core_relo, rec_size);
16195 	}
16196 	return err;
16197 }
16198 
16199 static int check_btf_info_early(struct bpf_verifier_env *env,
16200 				const union bpf_attr *attr,
16201 				bpfptr_t uattr)
16202 {
16203 	struct btf *btf;
16204 	int err;
16205 
16206 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16207 		if (check_abnormal_return(env))
16208 			return -EINVAL;
16209 		return 0;
16210 	}
16211 
16212 	btf = btf_get_by_fd(attr->prog_btf_fd);
16213 	if (IS_ERR(btf))
16214 		return PTR_ERR(btf);
16215 	if (btf_is_kernel(btf)) {
16216 		btf_put(btf);
16217 		return -EACCES;
16218 	}
16219 	env->prog->aux->btf = btf;
16220 
16221 	err = check_btf_func_early(env, attr, uattr);
16222 	if (err)
16223 		return err;
16224 	return 0;
16225 }
16226 
16227 static int check_btf_info(struct bpf_verifier_env *env,
16228 			  const union bpf_attr *attr,
16229 			  bpfptr_t uattr)
16230 {
16231 	int err;
16232 
16233 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16234 		if (check_abnormal_return(env))
16235 			return -EINVAL;
16236 		return 0;
16237 	}
16238 
16239 	err = check_btf_func(env, attr, uattr);
16240 	if (err)
16241 		return err;
16242 
16243 	err = check_btf_line(env, attr, uattr);
16244 	if (err)
16245 		return err;
16246 
16247 	err = check_core_relo(env, attr, uattr);
16248 	if (err)
16249 		return err;
16250 
16251 	return 0;
16252 }
16253 
16254 /* check %cur's range satisfies %old's */
16255 static bool range_within(struct bpf_reg_state *old,
16256 			 struct bpf_reg_state *cur)
16257 {
16258 	return old->umin_value <= cur->umin_value &&
16259 	       old->umax_value >= cur->umax_value &&
16260 	       old->smin_value <= cur->smin_value &&
16261 	       old->smax_value >= cur->smax_value &&
16262 	       old->u32_min_value <= cur->u32_min_value &&
16263 	       old->u32_max_value >= cur->u32_max_value &&
16264 	       old->s32_min_value <= cur->s32_min_value &&
16265 	       old->s32_max_value >= cur->s32_max_value;
16266 }
16267 
16268 /* If in the old state two registers had the same id, then they need to have
16269  * the same id in the new state as well.  But that id could be different from
16270  * the old state, so we need to track the mapping from old to new ids.
16271  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16272  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16273  * regs with a different old id could still have new id 9, we don't care about
16274  * that.
16275  * So we look through our idmap to see if this old id has been seen before.  If
16276  * so, we require the new id to match; otherwise, we add the id pair to the map.
16277  */
16278 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16279 {
16280 	struct bpf_id_pair *map = idmap->map;
16281 	unsigned int i;
16282 
16283 	/* either both IDs should be set or both should be zero */
16284 	if (!!old_id != !!cur_id)
16285 		return false;
16286 
16287 	if (old_id == 0) /* cur_id == 0 as well */
16288 		return true;
16289 
16290 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16291 		if (!map[i].old) {
16292 			/* Reached an empty slot; haven't seen this id before */
16293 			map[i].old = old_id;
16294 			map[i].cur = cur_id;
16295 			return true;
16296 		}
16297 		if (map[i].old == old_id)
16298 			return map[i].cur == cur_id;
16299 		if (map[i].cur == cur_id)
16300 			return false;
16301 	}
16302 	/* We ran out of idmap slots, which should be impossible */
16303 	WARN_ON_ONCE(1);
16304 	return false;
16305 }
16306 
16307 /* Similar to check_ids(), but allocate a unique temporary ID
16308  * for 'old_id' or 'cur_id' of zero.
16309  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16310  */
16311 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16312 {
16313 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16314 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16315 
16316 	return check_ids(old_id, cur_id, idmap);
16317 }
16318 
16319 static void clean_func_state(struct bpf_verifier_env *env,
16320 			     struct bpf_func_state *st)
16321 {
16322 	enum bpf_reg_liveness live;
16323 	int i, j;
16324 
16325 	for (i = 0; i < BPF_REG_FP; i++) {
16326 		live = st->regs[i].live;
16327 		/* liveness must not touch this register anymore */
16328 		st->regs[i].live |= REG_LIVE_DONE;
16329 		if (!(live & REG_LIVE_READ))
16330 			/* since the register is unused, clear its state
16331 			 * to make further comparison simpler
16332 			 */
16333 			__mark_reg_not_init(env, &st->regs[i]);
16334 	}
16335 
16336 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16337 		live = st->stack[i].spilled_ptr.live;
16338 		/* liveness must not touch this stack slot anymore */
16339 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16340 		if (!(live & REG_LIVE_READ)) {
16341 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16342 			for (j = 0; j < BPF_REG_SIZE; j++)
16343 				st->stack[i].slot_type[j] = STACK_INVALID;
16344 		}
16345 	}
16346 }
16347 
16348 static void clean_verifier_state(struct bpf_verifier_env *env,
16349 				 struct bpf_verifier_state *st)
16350 {
16351 	int i;
16352 
16353 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16354 		/* all regs in this state in all frames were already marked */
16355 		return;
16356 
16357 	for (i = 0; i <= st->curframe; i++)
16358 		clean_func_state(env, st->frame[i]);
16359 }
16360 
16361 /* the parentage chains form a tree.
16362  * the verifier states are added to state lists at given insn and
16363  * pushed into state stack for future exploration.
16364  * when the verifier reaches bpf_exit insn some of the verifer states
16365  * stored in the state lists have their final liveness state already,
16366  * but a lot of states will get revised from liveness point of view when
16367  * the verifier explores other branches.
16368  * Example:
16369  * 1: r0 = 1
16370  * 2: if r1 == 100 goto pc+1
16371  * 3: r0 = 2
16372  * 4: exit
16373  * when the verifier reaches exit insn the register r0 in the state list of
16374  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16375  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16376  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16377  *
16378  * Since the verifier pushes the branch states as it sees them while exploring
16379  * the program the condition of walking the branch instruction for the second
16380  * time means that all states below this branch were already explored and
16381  * their final liveness marks are already propagated.
16382  * Hence when the verifier completes the search of state list in is_state_visited()
16383  * we can call this clean_live_states() function to mark all liveness states
16384  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16385  * will not be used.
16386  * This function also clears the registers and stack for states that !READ
16387  * to simplify state merging.
16388  *
16389  * Important note here that walking the same branch instruction in the callee
16390  * doesn't meant that the states are DONE. The verifier has to compare
16391  * the callsites
16392  */
16393 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16394 			      struct bpf_verifier_state *cur)
16395 {
16396 	struct bpf_verifier_state_list *sl;
16397 
16398 	sl = *explored_state(env, insn);
16399 	while (sl) {
16400 		if (sl->state.branches)
16401 			goto next;
16402 		if (sl->state.insn_idx != insn ||
16403 		    !same_callsites(&sl->state, cur))
16404 			goto next;
16405 		clean_verifier_state(env, &sl->state);
16406 next:
16407 		sl = sl->next;
16408 	}
16409 }
16410 
16411 static bool regs_exact(const struct bpf_reg_state *rold,
16412 		       const struct bpf_reg_state *rcur,
16413 		       struct bpf_idmap *idmap)
16414 {
16415 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16416 	       check_ids(rold->id, rcur->id, idmap) &&
16417 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16418 }
16419 
16420 /* Returns true if (rold safe implies rcur safe) */
16421 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16422 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16423 {
16424 	if (exact)
16425 		return regs_exact(rold, rcur, idmap);
16426 
16427 	if (!(rold->live & REG_LIVE_READ))
16428 		/* explored state didn't use this */
16429 		return true;
16430 	if (rold->type == NOT_INIT)
16431 		/* explored state can't have used this */
16432 		return true;
16433 	if (rcur->type == NOT_INIT)
16434 		return false;
16435 
16436 	/* Enforce that register types have to match exactly, including their
16437 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16438 	 * rule.
16439 	 *
16440 	 * One can make a point that using a pointer register as unbounded
16441 	 * SCALAR would be technically acceptable, but this could lead to
16442 	 * pointer leaks because scalars are allowed to leak while pointers
16443 	 * are not. We could make this safe in special cases if root is
16444 	 * calling us, but it's probably not worth the hassle.
16445 	 *
16446 	 * Also, register types that are *not* MAYBE_NULL could technically be
16447 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16448 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16449 	 * to the same map).
16450 	 * However, if the old MAYBE_NULL register then got NULL checked,
16451 	 * doing so could have affected others with the same id, and we can't
16452 	 * check for that because we lost the id when we converted to
16453 	 * a non-MAYBE_NULL variant.
16454 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16455 	 * non-MAYBE_NULL registers as well.
16456 	 */
16457 	if (rold->type != rcur->type)
16458 		return false;
16459 
16460 	switch (base_type(rold->type)) {
16461 	case SCALAR_VALUE:
16462 		if (env->explore_alu_limits) {
16463 			/* explore_alu_limits disables tnum_in() and range_within()
16464 			 * logic and requires everything to be strict
16465 			 */
16466 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16467 			       check_scalar_ids(rold->id, rcur->id, idmap);
16468 		}
16469 		if (!rold->precise)
16470 			return true;
16471 		/* Why check_ids() for scalar registers?
16472 		 *
16473 		 * Consider the following BPF code:
16474 		 *   1: r6 = ... unbound scalar, ID=a ...
16475 		 *   2: r7 = ... unbound scalar, ID=b ...
16476 		 *   3: if (r6 > r7) goto +1
16477 		 *   4: r6 = r7
16478 		 *   5: if (r6 > X) goto ...
16479 		 *   6: ... memory operation using r7 ...
16480 		 *
16481 		 * First verification path is [1-6]:
16482 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16483 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16484 		 *   r7 <= X, because r6 and r7 share same id.
16485 		 * Next verification path is [1-4, 6].
16486 		 *
16487 		 * Instruction (6) would be reached in two states:
16488 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16489 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16490 		 *
16491 		 * Use check_ids() to distinguish these states.
16492 		 * ---
16493 		 * Also verify that new value satisfies old value range knowledge.
16494 		 */
16495 		return range_within(rold, rcur) &&
16496 		       tnum_in(rold->var_off, rcur->var_off) &&
16497 		       check_scalar_ids(rold->id, rcur->id, idmap);
16498 	case PTR_TO_MAP_KEY:
16499 	case PTR_TO_MAP_VALUE:
16500 	case PTR_TO_MEM:
16501 	case PTR_TO_BUF:
16502 	case PTR_TO_TP_BUFFER:
16503 		/* If the new min/max/var_off satisfy the old ones and
16504 		 * everything else matches, we are OK.
16505 		 */
16506 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16507 		       range_within(rold, rcur) &&
16508 		       tnum_in(rold->var_off, rcur->var_off) &&
16509 		       check_ids(rold->id, rcur->id, idmap) &&
16510 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16511 	case PTR_TO_PACKET_META:
16512 	case PTR_TO_PACKET:
16513 		/* We must have at least as much range as the old ptr
16514 		 * did, so that any accesses which were safe before are
16515 		 * still safe.  This is true even if old range < old off,
16516 		 * since someone could have accessed through (ptr - k), or
16517 		 * even done ptr -= k in a register, to get a safe access.
16518 		 */
16519 		if (rold->range > rcur->range)
16520 			return false;
16521 		/* If the offsets don't match, we can't trust our alignment;
16522 		 * nor can we be sure that we won't fall out of range.
16523 		 */
16524 		if (rold->off != rcur->off)
16525 			return false;
16526 		/* id relations must be preserved */
16527 		if (!check_ids(rold->id, rcur->id, idmap))
16528 			return false;
16529 		/* new val must satisfy old val knowledge */
16530 		return range_within(rold, rcur) &&
16531 		       tnum_in(rold->var_off, rcur->var_off);
16532 	case PTR_TO_STACK:
16533 		/* two stack pointers are equal only if they're pointing to
16534 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16535 		 */
16536 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16537 	default:
16538 		return regs_exact(rold, rcur, idmap);
16539 	}
16540 }
16541 
16542 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16543 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16544 {
16545 	int i, spi;
16546 
16547 	/* walk slots of the explored stack and ignore any additional
16548 	 * slots in the current stack, since explored(safe) state
16549 	 * didn't use them
16550 	 */
16551 	for (i = 0; i < old->allocated_stack; i++) {
16552 		struct bpf_reg_state *old_reg, *cur_reg;
16553 
16554 		spi = i / BPF_REG_SIZE;
16555 
16556 		if (exact &&
16557 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16558 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16559 			return false;
16560 
16561 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16562 			i += BPF_REG_SIZE - 1;
16563 			/* explored state didn't use this */
16564 			continue;
16565 		}
16566 
16567 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16568 			continue;
16569 
16570 		if (env->allow_uninit_stack &&
16571 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16572 			continue;
16573 
16574 		/* explored stack has more populated slots than current stack
16575 		 * and these slots were used
16576 		 */
16577 		if (i >= cur->allocated_stack)
16578 			return false;
16579 
16580 		/* if old state was safe with misc data in the stack
16581 		 * it will be safe with zero-initialized stack.
16582 		 * The opposite is not true
16583 		 */
16584 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16585 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16586 			continue;
16587 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16588 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16589 			/* Ex: old explored (safe) state has STACK_SPILL in
16590 			 * this stack slot, but current has STACK_MISC ->
16591 			 * this verifier states are not equivalent,
16592 			 * return false to continue verification of this path
16593 			 */
16594 			return false;
16595 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16596 			continue;
16597 		/* Both old and cur are having same slot_type */
16598 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16599 		case STACK_SPILL:
16600 			/* when explored and current stack slot are both storing
16601 			 * spilled registers, check that stored pointers types
16602 			 * are the same as well.
16603 			 * Ex: explored safe path could have stored
16604 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16605 			 * but current path has stored:
16606 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16607 			 * such verifier states are not equivalent.
16608 			 * return false to continue verification of this path
16609 			 */
16610 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16611 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16612 				return false;
16613 			break;
16614 		case STACK_DYNPTR:
16615 			old_reg = &old->stack[spi].spilled_ptr;
16616 			cur_reg = &cur->stack[spi].spilled_ptr;
16617 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16618 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16619 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16620 				return false;
16621 			break;
16622 		case STACK_ITER:
16623 			old_reg = &old->stack[spi].spilled_ptr;
16624 			cur_reg = &cur->stack[spi].spilled_ptr;
16625 			/* iter.depth is not compared between states as it
16626 			 * doesn't matter for correctness and would otherwise
16627 			 * prevent convergence; we maintain it only to prevent
16628 			 * infinite loop check triggering, see
16629 			 * iter_active_depths_differ()
16630 			 */
16631 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16632 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16633 			    old_reg->iter.state != cur_reg->iter.state ||
16634 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16635 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16636 				return false;
16637 			break;
16638 		case STACK_MISC:
16639 		case STACK_ZERO:
16640 		case STACK_INVALID:
16641 			continue;
16642 		/* Ensure that new unhandled slot types return false by default */
16643 		default:
16644 			return false;
16645 		}
16646 	}
16647 	return true;
16648 }
16649 
16650 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16651 		    struct bpf_idmap *idmap)
16652 {
16653 	int i;
16654 
16655 	if (old->acquired_refs != cur->acquired_refs)
16656 		return false;
16657 
16658 	for (i = 0; i < old->acquired_refs; i++) {
16659 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16660 			return false;
16661 	}
16662 
16663 	return true;
16664 }
16665 
16666 /* compare two verifier states
16667  *
16668  * all states stored in state_list are known to be valid, since
16669  * verifier reached 'bpf_exit' instruction through them
16670  *
16671  * this function is called when verifier exploring different branches of
16672  * execution popped from the state stack. If it sees an old state that has
16673  * more strict register state and more strict stack state then this execution
16674  * branch doesn't need to be explored further, since verifier already
16675  * concluded that more strict state leads to valid finish.
16676  *
16677  * Therefore two states are equivalent if register state is more conservative
16678  * and explored stack state is more conservative than the current one.
16679  * Example:
16680  *       explored                   current
16681  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16682  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16683  *
16684  * In other words if current stack state (one being explored) has more
16685  * valid slots than old one that already passed validation, it means
16686  * the verifier can stop exploring and conclude that current state is valid too
16687  *
16688  * Similarly with registers. If explored state has register type as invalid
16689  * whereas register type in current state is meaningful, it means that
16690  * the current state will reach 'bpf_exit' instruction safely
16691  */
16692 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16693 			      struct bpf_func_state *cur, bool exact)
16694 {
16695 	int i;
16696 
16697 	for (i = 0; i < MAX_BPF_REG; i++)
16698 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16699 			     &env->idmap_scratch, exact))
16700 			return false;
16701 
16702 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16703 		return false;
16704 
16705 	if (!refsafe(old, cur, &env->idmap_scratch))
16706 		return false;
16707 
16708 	return true;
16709 }
16710 
16711 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16712 {
16713 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16714 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16715 }
16716 
16717 static bool states_equal(struct bpf_verifier_env *env,
16718 			 struct bpf_verifier_state *old,
16719 			 struct bpf_verifier_state *cur,
16720 			 bool exact)
16721 {
16722 	int i;
16723 
16724 	if (old->curframe != cur->curframe)
16725 		return false;
16726 
16727 	reset_idmap_scratch(env);
16728 
16729 	/* Verification state from speculative execution simulation
16730 	 * must never prune a non-speculative execution one.
16731 	 */
16732 	if (old->speculative && !cur->speculative)
16733 		return false;
16734 
16735 	if (old->active_lock.ptr != cur->active_lock.ptr)
16736 		return false;
16737 
16738 	/* Old and cur active_lock's have to be either both present
16739 	 * or both absent.
16740 	 */
16741 	if (!!old->active_lock.id != !!cur->active_lock.id)
16742 		return false;
16743 
16744 	if (old->active_lock.id &&
16745 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16746 		return false;
16747 
16748 	if (old->active_rcu_lock != cur->active_rcu_lock)
16749 		return false;
16750 
16751 	/* for states to be equal callsites have to be the same
16752 	 * and all frame states need to be equivalent
16753 	 */
16754 	for (i = 0; i <= old->curframe; i++) {
16755 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16756 			return false;
16757 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16758 			return false;
16759 	}
16760 	return true;
16761 }
16762 
16763 /* Return 0 if no propagation happened. Return negative error code if error
16764  * happened. Otherwise, return the propagated bit.
16765  */
16766 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16767 				  struct bpf_reg_state *reg,
16768 				  struct bpf_reg_state *parent_reg)
16769 {
16770 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16771 	u8 flag = reg->live & REG_LIVE_READ;
16772 	int err;
16773 
16774 	/* When comes here, read flags of PARENT_REG or REG could be any of
16775 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16776 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16777 	 */
16778 	if (parent_flag == REG_LIVE_READ64 ||
16779 	    /* Or if there is no read flag from REG. */
16780 	    !flag ||
16781 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16782 	    parent_flag == flag)
16783 		return 0;
16784 
16785 	err = mark_reg_read(env, reg, parent_reg, flag);
16786 	if (err)
16787 		return err;
16788 
16789 	return flag;
16790 }
16791 
16792 /* A write screens off any subsequent reads; but write marks come from the
16793  * straight-line code between a state and its parent.  When we arrive at an
16794  * equivalent state (jump target or such) we didn't arrive by the straight-line
16795  * code, so read marks in the state must propagate to the parent regardless
16796  * of the state's write marks. That's what 'parent == state->parent' comparison
16797  * in mark_reg_read() is for.
16798  */
16799 static int propagate_liveness(struct bpf_verifier_env *env,
16800 			      const struct bpf_verifier_state *vstate,
16801 			      struct bpf_verifier_state *vparent)
16802 {
16803 	struct bpf_reg_state *state_reg, *parent_reg;
16804 	struct bpf_func_state *state, *parent;
16805 	int i, frame, err = 0;
16806 
16807 	if (vparent->curframe != vstate->curframe) {
16808 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16809 		     vparent->curframe, vstate->curframe);
16810 		return -EFAULT;
16811 	}
16812 	/* Propagate read liveness of registers... */
16813 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16814 	for (frame = 0; frame <= vstate->curframe; frame++) {
16815 		parent = vparent->frame[frame];
16816 		state = vstate->frame[frame];
16817 		parent_reg = parent->regs;
16818 		state_reg = state->regs;
16819 		/* We don't need to worry about FP liveness, it's read-only */
16820 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16821 			err = propagate_liveness_reg(env, &state_reg[i],
16822 						     &parent_reg[i]);
16823 			if (err < 0)
16824 				return err;
16825 			if (err == REG_LIVE_READ64)
16826 				mark_insn_zext(env, &parent_reg[i]);
16827 		}
16828 
16829 		/* Propagate stack slots. */
16830 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16831 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16832 			parent_reg = &parent->stack[i].spilled_ptr;
16833 			state_reg = &state->stack[i].spilled_ptr;
16834 			err = propagate_liveness_reg(env, state_reg,
16835 						     parent_reg);
16836 			if (err < 0)
16837 				return err;
16838 		}
16839 	}
16840 	return 0;
16841 }
16842 
16843 /* find precise scalars in the previous equivalent state and
16844  * propagate them into the current state
16845  */
16846 static int propagate_precision(struct bpf_verifier_env *env,
16847 			       const struct bpf_verifier_state *old)
16848 {
16849 	struct bpf_reg_state *state_reg;
16850 	struct bpf_func_state *state;
16851 	int i, err = 0, fr;
16852 	bool first;
16853 
16854 	for (fr = old->curframe; fr >= 0; fr--) {
16855 		state = old->frame[fr];
16856 		state_reg = state->regs;
16857 		first = true;
16858 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16859 			if (state_reg->type != SCALAR_VALUE ||
16860 			    !state_reg->precise ||
16861 			    !(state_reg->live & REG_LIVE_READ))
16862 				continue;
16863 			if (env->log.level & BPF_LOG_LEVEL2) {
16864 				if (first)
16865 					verbose(env, "frame %d: propagating r%d", fr, i);
16866 				else
16867 					verbose(env, ",r%d", i);
16868 			}
16869 			bt_set_frame_reg(&env->bt, fr, i);
16870 			first = false;
16871 		}
16872 
16873 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16874 			if (!is_spilled_reg(&state->stack[i]))
16875 				continue;
16876 			state_reg = &state->stack[i].spilled_ptr;
16877 			if (state_reg->type != SCALAR_VALUE ||
16878 			    !state_reg->precise ||
16879 			    !(state_reg->live & REG_LIVE_READ))
16880 				continue;
16881 			if (env->log.level & BPF_LOG_LEVEL2) {
16882 				if (first)
16883 					verbose(env, "frame %d: propagating fp%d",
16884 						fr, (-i - 1) * BPF_REG_SIZE);
16885 				else
16886 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16887 			}
16888 			bt_set_frame_slot(&env->bt, fr, i);
16889 			first = false;
16890 		}
16891 		if (!first)
16892 			verbose(env, "\n");
16893 	}
16894 
16895 	err = mark_chain_precision_batch(env);
16896 	if (err < 0)
16897 		return err;
16898 
16899 	return 0;
16900 }
16901 
16902 static bool states_maybe_looping(struct bpf_verifier_state *old,
16903 				 struct bpf_verifier_state *cur)
16904 {
16905 	struct bpf_func_state *fold, *fcur;
16906 	int i, fr = cur->curframe;
16907 
16908 	if (old->curframe != fr)
16909 		return false;
16910 
16911 	fold = old->frame[fr];
16912 	fcur = cur->frame[fr];
16913 	for (i = 0; i < MAX_BPF_REG; i++)
16914 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16915 			   offsetof(struct bpf_reg_state, parent)))
16916 			return false;
16917 	return true;
16918 }
16919 
16920 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16921 {
16922 	return env->insn_aux_data[insn_idx].is_iter_next;
16923 }
16924 
16925 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16926  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16927  * states to match, which otherwise would look like an infinite loop. So while
16928  * iter_next() calls are taken care of, we still need to be careful and
16929  * prevent erroneous and too eager declaration of "ininite loop", when
16930  * iterators are involved.
16931  *
16932  * Here's a situation in pseudo-BPF assembly form:
16933  *
16934  *   0: again:                          ; set up iter_next() call args
16935  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16936  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16937  *   3:   if r0 == 0 goto done
16938  *   4:   ... something useful here ...
16939  *   5:   goto again                    ; another iteration
16940  *   6: done:
16941  *   7:   r1 = &it
16942  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16943  *   9:   exit
16944  *
16945  * This is a typical loop. Let's assume that we have a prune point at 1:,
16946  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16947  * again`, assuming other heuristics don't get in a way).
16948  *
16949  * When we first time come to 1:, let's say we have some state X. We proceed
16950  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16951  * Now we come back to validate that forked ACTIVE state. We proceed through
16952  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16953  * are converging. But the problem is that we don't know that yet, as this
16954  * convergence has to happen at iter_next() call site only. So if nothing is
16955  * done, at 1: verifier will use bounded loop logic and declare infinite
16956  * looping (and would be *technically* correct, if not for iterator's
16957  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16958  * don't want that. So what we do in process_iter_next_call() when we go on
16959  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16960  * a different iteration. So when we suspect an infinite loop, we additionally
16961  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16962  * pretend we are not looping and wait for next iter_next() call.
16963  *
16964  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16965  * loop, because that would actually mean infinite loop, as DRAINED state is
16966  * "sticky", and so we'll keep returning into the same instruction with the
16967  * same state (at least in one of possible code paths).
16968  *
16969  * This approach allows to keep infinite loop heuristic even in the face of
16970  * active iterator. E.g., C snippet below is and will be detected as
16971  * inifintely looping:
16972  *
16973  *   struct bpf_iter_num it;
16974  *   int *p, x;
16975  *
16976  *   bpf_iter_num_new(&it, 0, 10);
16977  *   while ((p = bpf_iter_num_next(&t))) {
16978  *       x = p;
16979  *       while (x--) {} // <<-- infinite loop here
16980  *   }
16981  *
16982  */
16983 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16984 {
16985 	struct bpf_reg_state *slot, *cur_slot;
16986 	struct bpf_func_state *state;
16987 	int i, fr;
16988 
16989 	for (fr = old->curframe; fr >= 0; fr--) {
16990 		state = old->frame[fr];
16991 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16992 			if (state->stack[i].slot_type[0] != STACK_ITER)
16993 				continue;
16994 
16995 			slot = &state->stack[i].spilled_ptr;
16996 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16997 				continue;
16998 
16999 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17000 			if (cur_slot->iter.depth != slot->iter.depth)
17001 				return true;
17002 		}
17003 	}
17004 	return false;
17005 }
17006 
17007 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17008 {
17009 	struct bpf_verifier_state_list *new_sl;
17010 	struct bpf_verifier_state_list *sl, **pprev;
17011 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17012 	int i, j, n, err, states_cnt = 0;
17013 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
17014 	bool add_new_state = force_new_state;
17015 	bool force_exact;
17016 
17017 	/* bpf progs typically have pruning point every 4 instructions
17018 	 * http://vger.kernel.org/bpfconf2019.html#session-1
17019 	 * Do not add new state for future pruning if the verifier hasn't seen
17020 	 * at least 2 jumps and at least 8 instructions.
17021 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17022 	 * In tests that amounts to up to 50% reduction into total verifier
17023 	 * memory consumption and 20% verifier time speedup.
17024 	 */
17025 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17026 	    env->insn_processed - env->prev_insn_processed >= 8)
17027 		add_new_state = true;
17028 
17029 	pprev = explored_state(env, insn_idx);
17030 	sl = *pprev;
17031 
17032 	clean_live_states(env, insn_idx, cur);
17033 
17034 	while (sl) {
17035 		states_cnt++;
17036 		if (sl->state.insn_idx != insn_idx)
17037 			goto next;
17038 
17039 		if (sl->state.branches) {
17040 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17041 
17042 			if (frame->in_async_callback_fn &&
17043 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17044 				/* Different async_entry_cnt means that the verifier is
17045 				 * processing another entry into async callback.
17046 				 * Seeing the same state is not an indication of infinite
17047 				 * loop or infinite recursion.
17048 				 * But finding the same state doesn't mean that it's safe
17049 				 * to stop processing the current state. The previous state
17050 				 * hasn't yet reached bpf_exit, since state.branches > 0.
17051 				 * Checking in_async_callback_fn alone is not enough either.
17052 				 * Since the verifier still needs to catch infinite loops
17053 				 * inside async callbacks.
17054 				 */
17055 				goto skip_inf_loop_check;
17056 			}
17057 			/* BPF open-coded iterators loop detection is special.
17058 			 * states_maybe_looping() logic is too simplistic in detecting
17059 			 * states that *might* be equivalent, because it doesn't know
17060 			 * about ID remapping, so don't even perform it.
17061 			 * See process_iter_next_call() and iter_active_depths_differ()
17062 			 * for overview of the logic. When current and one of parent
17063 			 * states are detected as equivalent, it's a good thing: we prove
17064 			 * convergence and can stop simulating further iterations.
17065 			 * It's safe to assume that iterator loop will finish, taking into
17066 			 * account iter_next() contract of eventually returning
17067 			 * sticky NULL result.
17068 			 *
17069 			 * Note, that states have to be compared exactly in this case because
17070 			 * read and precision marks might not be finalized inside the loop.
17071 			 * E.g. as in the program below:
17072 			 *
17073 			 *     1. r7 = -16
17074 			 *     2. r6 = bpf_get_prandom_u32()
17075 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17076 			 *     4.   if (r6 != 42) {
17077 			 *     5.     r7 = -32
17078 			 *     6.     r6 = bpf_get_prandom_u32()
17079 			 *     7.     continue
17080 			 *     8.   }
17081 			 *     9.   r0 = r10
17082 			 *    10.   r0 += r7
17083 			 *    11.   r8 = *(u64 *)(r0 + 0)
17084 			 *    12.   r6 = bpf_get_prandom_u32()
17085 			 *    13. }
17086 			 *
17087 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17088 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17089 			 * not have read or precision mark for r7 yet, thus inexact states
17090 			 * comparison would discard current state with r7=-32
17091 			 * => unsafe memory access at 11 would not be caught.
17092 			 */
17093 			if (is_iter_next_insn(env, insn_idx)) {
17094 				if (states_equal(env, &sl->state, cur, true)) {
17095 					struct bpf_func_state *cur_frame;
17096 					struct bpf_reg_state *iter_state, *iter_reg;
17097 					int spi;
17098 
17099 					cur_frame = cur->frame[cur->curframe];
17100 					/* btf_check_iter_kfuncs() enforces that
17101 					 * iter state pointer is always the first arg
17102 					 */
17103 					iter_reg = &cur_frame->regs[BPF_REG_1];
17104 					/* current state is valid due to states_equal(),
17105 					 * so we can assume valid iter and reg state,
17106 					 * no need for extra (re-)validations
17107 					 */
17108 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17109 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17110 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17111 						update_loop_entry(cur, &sl->state);
17112 						goto hit;
17113 					}
17114 				}
17115 				goto skip_inf_loop_check;
17116 			}
17117 			if (calls_callback(env, insn_idx)) {
17118 				if (states_equal(env, &sl->state, cur, true))
17119 					goto hit;
17120 				goto skip_inf_loop_check;
17121 			}
17122 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17123 			if (states_maybe_looping(&sl->state, cur) &&
17124 			    states_equal(env, &sl->state, cur, false) &&
17125 			    !iter_active_depths_differ(&sl->state, cur) &&
17126 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
17127 				verbose_linfo(env, insn_idx, "; ");
17128 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
17129 				verbose(env, "cur state:");
17130 				print_verifier_state(env, cur->frame[cur->curframe], true);
17131 				verbose(env, "old state:");
17132 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17133 				return -EINVAL;
17134 			}
17135 			/* if the verifier is processing a loop, avoid adding new state
17136 			 * too often, since different loop iterations have distinct
17137 			 * states and may not help future pruning.
17138 			 * This threshold shouldn't be too low to make sure that
17139 			 * a loop with large bound will be rejected quickly.
17140 			 * The most abusive loop will be:
17141 			 * r1 += 1
17142 			 * if r1 < 1000000 goto pc-2
17143 			 * 1M insn_procssed limit / 100 == 10k peak states.
17144 			 * This threshold shouldn't be too high either, since states
17145 			 * at the end of the loop are likely to be useful in pruning.
17146 			 */
17147 skip_inf_loop_check:
17148 			if (!force_new_state &&
17149 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17150 			    env->insn_processed - env->prev_insn_processed < 100)
17151 				add_new_state = false;
17152 			goto miss;
17153 		}
17154 		/* If sl->state is a part of a loop and this loop's entry is a part of
17155 		 * current verification path then states have to be compared exactly.
17156 		 * 'force_exact' is needed to catch the following case:
17157 		 *
17158 		 *                initial     Here state 'succ' was processed first,
17159 		 *                  |         it was eventually tracked to produce a
17160 		 *                  V         state identical to 'hdr'.
17161 		 *     .---------> hdr        All branches from 'succ' had been explored
17162 		 *     |            |         and thus 'succ' has its .branches == 0.
17163 		 *     |            V
17164 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17165 		 *     |    |       |         to the same instruction + callsites.
17166 		 *     |    V       V         In such case it is necessary to check
17167 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17168 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17169 		 *     |    V       V         same loop exact flag has to be set.
17170 		 *     |   succ <- cur        To check if that is the case, verify
17171 		 *     |    |                 if loop entry of 'succ' is in current
17172 		 *     |    V                 DFS path.
17173 		 *     |   ...
17174 		 *     |    |
17175 		 *     '----'
17176 		 *
17177 		 * Additional details are in the comment before get_loop_entry().
17178 		 */
17179 		loop_entry = get_loop_entry(&sl->state);
17180 		force_exact = loop_entry && loop_entry->branches > 0;
17181 		if (states_equal(env, &sl->state, cur, force_exact)) {
17182 			if (force_exact)
17183 				update_loop_entry(cur, loop_entry);
17184 hit:
17185 			sl->hit_cnt++;
17186 			/* reached equivalent register/stack state,
17187 			 * prune the search.
17188 			 * Registers read by the continuation are read by us.
17189 			 * If we have any write marks in env->cur_state, they
17190 			 * will prevent corresponding reads in the continuation
17191 			 * from reaching our parent (an explored_state).  Our
17192 			 * own state will get the read marks recorded, but
17193 			 * they'll be immediately forgotten as we're pruning
17194 			 * this state and will pop a new one.
17195 			 */
17196 			err = propagate_liveness(env, &sl->state, cur);
17197 
17198 			/* if previous state reached the exit with precision and
17199 			 * current state is equivalent to it (except precsion marks)
17200 			 * the precision needs to be propagated back in
17201 			 * the current state.
17202 			 */
17203 			err = err ? : push_jmp_history(env, cur);
17204 			err = err ? : propagate_precision(env, &sl->state);
17205 			if (err)
17206 				return err;
17207 			return 1;
17208 		}
17209 miss:
17210 		/* when new state is not going to be added do not increase miss count.
17211 		 * Otherwise several loop iterations will remove the state
17212 		 * recorded earlier. The goal of these heuristics is to have
17213 		 * states from some iterations of the loop (some in the beginning
17214 		 * and some at the end) to help pruning.
17215 		 */
17216 		if (add_new_state)
17217 			sl->miss_cnt++;
17218 		/* heuristic to determine whether this state is beneficial
17219 		 * to keep checking from state equivalence point of view.
17220 		 * Higher numbers increase max_states_per_insn and verification time,
17221 		 * but do not meaningfully decrease insn_processed.
17222 		 * 'n' controls how many times state could miss before eviction.
17223 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17224 		 * too early would hinder iterator convergence.
17225 		 */
17226 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17227 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17228 			/* the state is unlikely to be useful. Remove it to
17229 			 * speed up verification
17230 			 */
17231 			*pprev = sl->next;
17232 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17233 			    !sl->state.used_as_loop_entry) {
17234 				u32 br = sl->state.branches;
17235 
17236 				WARN_ONCE(br,
17237 					  "BUG live_done but branches_to_explore %d\n",
17238 					  br);
17239 				free_verifier_state(&sl->state, false);
17240 				kfree(sl);
17241 				env->peak_states--;
17242 			} else {
17243 				/* cannot free this state, since parentage chain may
17244 				 * walk it later. Add it for free_list instead to
17245 				 * be freed at the end of verification
17246 				 */
17247 				sl->next = env->free_list;
17248 				env->free_list = sl;
17249 			}
17250 			sl = *pprev;
17251 			continue;
17252 		}
17253 next:
17254 		pprev = &sl->next;
17255 		sl = *pprev;
17256 	}
17257 
17258 	if (env->max_states_per_insn < states_cnt)
17259 		env->max_states_per_insn = states_cnt;
17260 
17261 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17262 		return 0;
17263 
17264 	if (!add_new_state)
17265 		return 0;
17266 
17267 	/* There were no equivalent states, remember the current one.
17268 	 * Technically the current state is not proven to be safe yet,
17269 	 * but it will either reach outer most bpf_exit (which means it's safe)
17270 	 * or it will be rejected. When there are no loops the verifier won't be
17271 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17272 	 * again on the way to bpf_exit.
17273 	 * When looping the sl->state.branches will be > 0 and this state
17274 	 * will not be considered for equivalence until branches == 0.
17275 	 */
17276 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17277 	if (!new_sl)
17278 		return -ENOMEM;
17279 	env->total_states++;
17280 	env->peak_states++;
17281 	env->prev_jmps_processed = env->jmps_processed;
17282 	env->prev_insn_processed = env->insn_processed;
17283 
17284 	/* forget precise markings we inherited, see __mark_chain_precision */
17285 	if (env->bpf_capable)
17286 		mark_all_scalars_imprecise(env, cur);
17287 
17288 	/* add new state to the head of linked list */
17289 	new = &new_sl->state;
17290 	err = copy_verifier_state(new, cur);
17291 	if (err) {
17292 		free_verifier_state(new, false);
17293 		kfree(new_sl);
17294 		return err;
17295 	}
17296 	new->insn_idx = insn_idx;
17297 	WARN_ONCE(new->branches != 1,
17298 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17299 
17300 	cur->parent = new;
17301 	cur->first_insn_idx = insn_idx;
17302 	cur->dfs_depth = new->dfs_depth + 1;
17303 	clear_jmp_history(cur);
17304 	new_sl->next = *explored_state(env, insn_idx);
17305 	*explored_state(env, insn_idx) = new_sl;
17306 	/* connect new state to parentage chain. Current frame needs all
17307 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17308 	 * to the stack implicitly by JITs) so in callers' frames connect just
17309 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17310 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17311 	 * from callee with its full parentage chain, anyway.
17312 	 */
17313 	/* clear write marks in current state: the writes we did are not writes
17314 	 * our child did, so they don't screen off its reads from us.
17315 	 * (There are no read marks in current state, because reads always mark
17316 	 * their parent and current state never has children yet.  Only
17317 	 * explored_states can get read marks.)
17318 	 */
17319 	for (j = 0; j <= cur->curframe; j++) {
17320 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17321 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17322 		for (i = 0; i < BPF_REG_FP; i++)
17323 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17324 	}
17325 
17326 	/* all stack frames are accessible from callee, clear them all */
17327 	for (j = 0; j <= cur->curframe; j++) {
17328 		struct bpf_func_state *frame = cur->frame[j];
17329 		struct bpf_func_state *newframe = new->frame[j];
17330 
17331 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17332 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17333 			frame->stack[i].spilled_ptr.parent =
17334 						&newframe->stack[i].spilled_ptr;
17335 		}
17336 	}
17337 	return 0;
17338 }
17339 
17340 /* Return true if it's OK to have the same insn return a different type. */
17341 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17342 {
17343 	switch (base_type(type)) {
17344 	case PTR_TO_CTX:
17345 	case PTR_TO_SOCKET:
17346 	case PTR_TO_SOCK_COMMON:
17347 	case PTR_TO_TCP_SOCK:
17348 	case PTR_TO_XDP_SOCK:
17349 	case PTR_TO_BTF_ID:
17350 		return false;
17351 	default:
17352 		return true;
17353 	}
17354 }
17355 
17356 /* If an instruction was previously used with particular pointer types, then we
17357  * need to be careful to avoid cases such as the below, where it may be ok
17358  * for one branch accessing the pointer, but not ok for the other branch:
17359  *
17360  * R1 = sock_ptr
17361  * goto X;
17362  * ...
17363  * R1 = some_other_valid_ptr;
17364  * goto X;
17365  * ...
17366  * R2 = *(u32 *)(R1 + 0);
17367  */
17368 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17369 {
17370 	return src != prev && (!reg_type_mismatch_ok(src) ||
17371 			       !reg_type_mismatch_ok(prev));
17372 }
17373 
17374 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17375 			     bool allow_trust_missmatch)
17376 {
17377 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17378 
17379 	if (*prev_type == NOT_INIT) {
17380 		/* Saw a valid insn
17381 		 * dst_reg = *(u32 *)(src_reg + off)
17382 		 * save type to validate intersecting paths
17383 		 */
17384 		*prev_type = type;
17385 	} else if (reg_type_mismatch(type, *prev_type)) {
17386 		/* Abuser program is trying to use the same insn
17387 		 * dst_reg = *(u32*) (src_reg + off)
17388 		 * with different pointer types:
17389 		 * src_reg == ctx in one branch and
17390 		 * src_reg == stack|map in some other branch.
17391 		 * Reject it.
17392 		 */
17393 		if (allow_trust_missmatch &&
17394 		    base_type(type) == PTR_TO_BTF_ID &&
17395 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17396 			/*
17397 			 * Have to support a use case when one path through
17398 			 * the program yields TRUSTED pointer while another
17399 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17400 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17401 			 */
17402 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17403 		} else {
17404 			verbose(env, "same insn cannot be used with different pointers\n");
17405 			return -EINVAL;
17406 		}
17407 	}
17408 
17409 	return 0;
17410 }
17411 
17412 static int do_check(struct bpf_verifier_env *env)
17413 {
17414 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17415 	struct bpf_verifier_state *state = env->cur_state;
17416 	struct bpf_insn *insns = env->prog->insnsi;
17417 	struct bpf_reg_state *regs;
17418 	int insn_cnt = env->prog->len;
17419 	bool do_print_state = false;
17420 	int prev_insn_idx = -1;
17421 
17422 	for (;;) {
17423 		bool exception_exit = false;
17424 		struct bpf_insn *insn;
17425 		u8 class;
17426 		int err;
17427 
17428 		env->prev_insn_idx = prev_insn_idx;
17429 		if (env->insn_idx >= insn_cnt) {
17430 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17431 				env->insn_idx, insn_cnt);
17432 			return -EFAULT;
17433 		}
17434 
17435 		insn = &insns[env->insn_idx];
17436 		class = BPF_CLASS(insn->code);
17437 
17438 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17439 			verbose(env,
17440 				"BPF program is too large. Processed %d insn\n",
17441 				env->insn_processed);
17442 			return -E2BIG;
17443 		}
17444 
17445 		state->last_insn_idx = env->prev_insn_idx;
17446 
17447 		if (is_prune_point(env, env->insn_idx)) {
17448 			err = is_state_visited(env, env->insn_idx);
17449 			if (err < 0)
17450 				return err;
17451 			if (err == 1) {
17452 				/* found equivalent state, can prune the search */
17453 				if (env->log.level & BPF_LOG_LEVEL) {
17454 					if (do_print_state)
17455 						verbose(env, "\nfrom %d to %d%s: safe\n",
17456 							env->prev_insn_idx, env->insn_idx,
17457 							env->cur_state->speculative ?
17458 							" (speculative execution)" : "");
17459 					else
17460 						verbose(env, "%d: safe\n", env->insn_idx);
17461 				}
17462 				goto process_bpf_exit;
17463 			}
17464 		}
17465 
17466 		if (is_jmp_point(env, env->insn_idx)) {
17467 			err = push_jmp_history(env, state);
17468 			if (err)
17469 				return err;
17470 		}
17471 
17472 		if (signal_pending(current))
17473 			return -EAGAIN;
17474 
17475 		if (need_resched())
17476 			cond_resched();
17477 
17478 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17479 			verbose(env, "\nfrom %d to %d%s:",
17480 				env->prev_insn_idx, env->insn_idx,
17481 				env->cur_state->speculative ?
17482 				" (speculative execution)" : "");
17483 			print_verifier_state(env, state->frame[state->curframe], true);
17484 			do_print_state = false;
17485 		}
17486 
17487 		if (env->log.level & BPF_LOG_LEVEL) {
17488 			const struct bpf_insn_cbs cbs = {
17489 				.cb_call	= disasm_kfunc_name,
17490 				.cb_print	= verbose,
17491 				.private_data	= env,
17492 			};
17493 
17494 			if (verifier_state_scratched(env))
17495 				print_insn_state(env, state->frame[state->curframe]);
17496 
17497 			verbose_linfo(env, env->insn_idx, "; ");
17498 			env->prev_log_pos = env->log.end_pos;
17499 			verbose(env, "%d: ", env->insn_idx);
17500 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17501 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17502 			env->prev_log_pos = env->log.end_pos;
17503 		}
17504 
17505 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17506 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17507 							   env->prev_insn_idx);
17508 			if (err)
17509 				return err;
17510 		}
17511 
17512 		regs = cur_regs(env);
17513 		sanitize_mark_insn_seen(env);
17514 		prev_insn_idx = env->insn_idx;
17515 
17516 		if (class == BPF_ALU || class == BPF_ALU64) {
17517 			err = check_alu_op(env, insn);
17518 			if (err)
17519 				return err;
17520 
17521 		} else if (class == BPF_LDX) {
17522 			enum bpf_reg_type src_reg_type;
17523 
17524 			/* check for reserved fields is already done */
17525 
17526 			/* check src operand */
17527 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17528 			if (err)
17529 				return err;
17530 
17531 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17532 			if (err)
17533 				return err;
17534 
17535 			src_reg_type = regs[insn->src_reg].type;
17536 
17537 			/* check that memory (src_reg + off) is readable,
17538 			 * the state of dst_reg will be updated by this func
17539 			 */
17540 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17541 					       insn->off, BPF_SIZE(insn->code),
17542 					       BPF_READ, insn->dst_reg, false,
17543 					       BPF_MODE(insn->code) == BPF_MEMSX);
17544 			if (err)
17545 				return err;
17546 
17547 			err = save_aux_ptr_type(env, src_reg_type, true);
17548 			if (err)
17549 				return err;
17550 		} else if (class == BPF_STX) {
17551 			enum bpf_reg_type dst_reg_type;
17552 
17553 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17554 				err = check_atomic(env, env->insn_idx, insn);
17555 				if (err)
17556 					return err;
17557 				env->insn_idx++;
17558 				continue;
17559 			}
17560 
17561 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17562 				verbose(env, "BPF_STX uses reserved fields\n");
17563 				return -EINVAL;
17564 			}
17565 
17566 			/* check src1 operand */
17567 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17568 			if (err)
17569 				return err;
17570 			/* check src2 operand */
17571 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17572 			if (err)
17573 				return err;
17574 
17575 			dst_reg_type = regs[insn->dst_reg].type;
17576 
17577 			/* check that memory (dst_reg + off) is writeable */
17578 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17579 					       insn->off, BPF_SIZE(insn->code),
17580 					       BPF_WRITE, insn->src_reg, false, false);
17581 			if (err)
17582 				return err;
17583 
17584 			err = save_aux_ptr_type(env, dst_reg_type, false);
17585 			if (err)
17586 				return err;
17587 		} else if (class == BPF_ST) {
17588 			enum bpf_reg_type dst_reg_type;
17589 
17590 			if (BPF_MODE(insn->code) != BPF_MEM ||
17591 			    insn->src_reg != BPF_REG_0) {
17592 				verbose(env, "BPF_ST uses reserved fields\n");
17593 				return -EINVAL;
17594 			}
17595 			/* check src operand */
17596 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17597 			if (err)
17598 				return err;
17599 
17600 			dst_reg_type = regs[insn->dst_reg].type;
17601 
17602 			/* check that memory (dst_reg + off) is writeable */
17603 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17604 					       insn->off, BPF_SIZE(insn->code),
17605 					       BPF_WRITE, -1, false, false);
17606 			if (err)
17607 				return err;
17608 
17609 			err = save_aux_ptr_type(env, dst_reg_type, false);
17610 			if (err)
17611 				return err;
17612 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17613 			u8 opcode = BPF_OP(insn->code);
17614 
17615 			env->jmps_processed++;
17616 			if (opcode == BPF_CALL) {
17617 				if (BPF_SRC(insn->code) != BPF_K ||
17618 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17619 				     && insn->off != 0) ||
17620 				    (insn->src_reg != BPF_REG_0 &&
17621 				     insn->src_reg != BPF_PSEUDO_CALL &&
17622 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17623 				    insn->dst_reg != BPF_REG_0 ||
17624 				    class == BPF_JMP32) {
17625 					verbose(env, "BPF_CALL uses reserved fields\n");
17626 					return -EINVAL;
17627 				}
17628 
17629 				if (env->cur_state->active_lock.ptr) {
17630 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17631 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17632 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17633 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17634 						verbose(env, "function calls are not allowed while holding a lock\n");
17635 						return -EINVAL;
17636 					}
17637 				}
17638 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17639 					err = check_func_call(env, insn, &env->insn_idx);
17640 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17641 					err = check_kfunc_call(env, insn, &env->insn_idx);
17642 					if (!err && is_bpf_throw_kfunc(insn)) {
17643 						exception_exit = true;
17644 						goto process_bpf_exit_full;
17645 					}
17646 				} else {
17647 					err = check_helper_call(env, insn, &env->insn_idx);
17648 				}
17649 				if (err)
17650 					return err;
17651 
17652 				mark_reg_scratched(env, BPF_REG_0);
17653 			} else if (opcode == BPF_JA) {
17654 				if (BPF_SRC(insn->code) != BPF_K ||
17655 				    insn->src_reg != BPF_REG_0 ||
17656 				    insn->dst_reg != BPF_REG_0 ||
17657 				    (class == BPF_JMP && insn->imm != 0) ||
17658 				    (class == BPF_JMP32 && insn->off != 0)) {
17659 					verbose(env, "BPF_JA uses reserved fields\n");
17660 					return -EINVAL;
17661 				}
17662 
17663 				if (class == BPF_JMP)
17664 					env->insn_idx += insn->off + 1;
17665 				else
17666 					env->insn_idx += insn->imm + 1;
17667 				continue;
17668 
17669 			} else if (opcode == BPF_EXIT) {
17670 				if (BPF_SRC(insn->code) != BPF_K ||
17671 				    insn->imm != 0 ||
17672 				    insn->src_reg != BPF_REG_0 ||
17673 				    insn->dst_reg != BPF_REG_0 ||
17674 				    class == BPF_JMP32) {
17675 					verbose(env, "BPF_EXIT uses reserved fields\n");
17676 					return -EINVAL;
17677 				}
17678 process_bpf_exit_full:
17679 				if (env->cur_state->active_lock.ptr &&
17680 				    !in_rbtree_lock_required_cb(env)) {
17681 					verbose(env, "bpf_spin_unlock is missing\n");
17682 					return -EINVAL;
17683 				}
17684 
17685 				if (env->cur_state->active_rcu_lock &&
17686 				    !in_rbtree_lock_required_cb(env)) {
17687 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17688 					return -EINVAL;
17689 				}
17690 
17691 				/* We must do check_reference_leak here before
17692 				 * prepare_func_exit to handle the case when
17693 				 * state->curframe > 0, it may be a callback
17694 				 * function, for which reference_state must
17695 				 * match caller reference state when it exits.
17696 				 */
17697 				err = check_reference_leak(env, exception_exit);
17698 				if (err)
17699 					return err;
17700 
17701 				/* The side effect of the prepare_func_exit
17702 				 * which is being skipped is that it frees
17703 				 * bpf_func_state. Typically, process_bpf_exit
17704 				 * will only be hit with outermost exit.
17705 				 * copy_verifier_state in pop_stack will handle
17706 				 * freeing of any extra bpf_func_state left over
17707 				 * from not processing all nested function
17708 				 * exits. We also skip return code checks as
17709 				 * they are not needed for exceptional exits.
17710 				 */
17711 				if (exception_exit)
17712 					goto process_bpf_exit;
17713 
17714 				if (state->curframe) {
17715 					/* exit from nested function */
17716 					err = prepare_func_exit(env, &env->insn_idx);
17717 					if (err)
17718 						return err;
17719 					do_print_state = true;
17720 					continue;
17721 				}
17722 
17723 				err = check_return_code(env, BPF_REG_0);
17724 				if (err)
17725 					return err;
17726 process_bpf_exit:
17727 				mark_verifier_state_scratched(env);
17728 				update_branch_counts(env, env->cur_state);
17729 				err = pop_stack(env, &prev_insn_idx,
17730 						&env->insn_idx, pop_log);
17731 				if (err < 0) {
17732 					if (err != -ENOENT)
17733 						return err;
17734 					break;
17735 				} else {
17736 					do_print_state = true;
17737 					continue;
17738 				}
17739 			} else {
17740 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17741 				if (err)
17742 					return err;
17743 			}
17744 		} else if (class == BPF_LD) {
17745 			u8 mode = BPF_MODE(insn->code);
17746 
17747 			if (mode == BPF_ABS || mode == BPF_IND) {
17748 				err = check_ld_abs(env, insn);
17749 				if (err)
17750 					return err;
17751 
17752 			} else if (mode == BPF_IMM) {
17753 				err = check_ld_imm(env, insn);
17754 				if (err)
17755 					return err;
17756 
17757 				env->insn_idx++;
17758 				sanitize_mark_insn_seen(env);
17759 			} else {
17760 				verbose(env, "invalid BPF_LD mode\n");
17761 				return -EINVAL;
17762 			}
17763 		} else {
17764 			verbose(env, "unknown insn class %d\n", class);
17765 			return -EINVAL;
17766 		}
17767 
17768 		env->insn_idx++;
17769 	}
17770 
17771 	return 0;
17772 }
17773 
17774 static int find_btf_percpu_datasec(struct btf *btf)
17775 {
17776 	const struct btf_type *t;
17777 	const char *tname;
17778 	int i, n;
17779 
17780 	/*
17781 	 * Both vmlinux and module each have their own ".data..percpu"
17782 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17783 	 * types to look at only module's own BTF types.
17784 	 */
17785 	n = btf_nr_types(btf);
17786 	if (btf_is_module(btf))
17787 		i = btf_nr_types(btf_vmlinux);
17788 	else
17789 		i = 1;
17790 
17791 	for(; i < n; i++) {
17792 		t = btf_type_by_id(btf, i);
17793 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17794 			continue;
17795 
17796 		tname = btf_name_by_offset(btf, t->name_off);
17797 		if (!strcmp(tname, ".data..percpu"))
17798 			return i;
17799 	}
17800 
17801 	return -ENOENT;
17802 }
17803 
17804 /* replace pseudo btf_id with kernel symbol address */
17805 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17806 			       struct bpf_insn *insn,
17807 			       struct bpf_insn_aux_data *aux)
17808 {
17809 	const struct btf_var_secinfo *vsi;
17810 	const struct btf_type *datasec;
17811 	struct btf_mod_pair *btf_mod;
17812 	const struct btf_type *t;
17813 	const char *sym_name;
17814 	bool percpu = false;
17815 	u32 type, id = insn->imm;
17816 	struct btf *btf;
17817 	s32 datasec_id;
17818 	u64 addr;
17819 	int i, btf_fd, err;
17820 
17821 	btf_fd = insn[1].imm;
17822 	if (btf_fd) {
17823 		btf = btf_get_by_fd(btf_fd);
17824 		if (IS_ERR(btf)) {
17825 			verbose(env, "invalid module BTF object FD specified.\n");
17826 			return -EINVAL;
17827 		}
17828 	} else {
17829 		if (!btf_vmlinux) {
17830 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17831 			return -EINVAL;
17832 		}
17833 		btf = btf_vmlinux;
17834 		btf_get(btf);
17835 	}
17836 
17837 	t = btf_type_by_id(btf, id);
17838 	if (!t) {
17839 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17840 		err = -ENOENT;
17841 		goto err_put;
17842 	}
17843 
17844 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17845 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17846 		err = -EINVAL;
17847 		goto err_put;
17848 	}
17849 
17850 	sym_name = btf_name_by_offset(btf, t->name_off);
17851 	addr = kallsyms_lookup_name(sym_name);
17852 	if (!addr) {
17853 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17854 			sym_name);
17855 		err = -ENOENT;
17856 		goto err_put;
17857 	}
17858 	insn[0].imm = (u32)addr;
17859 	insn[1].imm = addr >> 32;
17860 
17861 	if (btf_type_is_func(t)) {
17862 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17863 		aux->btf_var.mem_size = 0;
17864 		goto check_btf;
17865 	}
17866 
17867 	datasec_id = find_btf_percpu_datasec(btf);
17868 	if (datasec_id > 0) {
17869 		datasec = btf_type_by_id(btf, datasec_id);
17870 		for_each_vsi(i, datasec, vsi) {
17871 			if (vsi->type == id) {
17872 				percpu = true;
17873 				break;
17874 			}
17875 		}
17876 	}
17877 
17878 	type = t->type;
17879 	t = btf_type_skip_modifiers(btf, type, NULL);
17880 	if (percpu) {
17881 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17882 		aux->btf_var.btf = btf;
17883 		aux->btf_var.btf_id = type;
17884 	} else if (!btf_type_is_struct(t)) {
17885 		const struct btf_type *ret;
17886 		const char *tname;
17887 		u32 tsize;
17888 
17889 		/* resolve the type size of ksym. */
17890 		ret = btf_resolve_size(btf, t, &tsize);
17891 		if (IS_ERR(ret)) {
17892 			tname = btf_name_by_offset(btf, t->name_off);
17893 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17894 				tname, PTR_ERR(ret));
17895 			err = -EINVAL;
17896 			goto err_put;
17897 		}
17898 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17899 		aux->btf_var.mem_size = tsize;
17900 	} else {
17901 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17902 		aux->btf_var.btf = btf;
17903 		aux->btf_var.btf_id = type;
17904 	}
17905 check_btf:
17906 	/* check whether we recorded this BTF (and maybe module) already */
17907 	for (i = 0; i < env->used_btf_cnt; i++) {
17908 		if (env->used_btfs[i].btf == btf) {
17909 			btf_put(btf);
17910 			return 0;
17911 		}
17912 	}
17913 
17914 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17915 		err = -E2BIG;
17916 		goto err_put;
17917 	}
17918 
17919 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17920 	btf_mod->btf = btf;
17921 	btf_mod->module = NULL;
17922 
17923 	/* if we reference variables from kernel module, bump its refcount */
17924 	if (btf_is_module(btf)) {
17925 		btf_mod->module = btf_try_get_module(btf);
17926 		if (!btf_mod->module) {
17927 			err = -ENXIO;
17928 			goto err_put;
17929 		}
17930 	}
17931 
17932 	env->used_btf_cnt++;
17933 
17934 	return 0;
17935 err_put:
17936 	btf_put(btf);
17937 	return err;
17938 }
17939 
17940 static bool is_tracing_prog_type(enum bpf_prog_type type)
17941 {
17942 	switch (type) {
17943 	case BPF_PROG_TYPE_KPROBE:
17944 	case BPF_PROG_TYPE_TRACEPOINT:
17945 	case BPF_PROG_TYPE_PERF_EVENT:
17946 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17947 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17948 		return true;
17949 	default:
17950 		return false;
17951 	}
17952 }
17953 
17954 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17955 					struct bpf_map *map,
17956 					struct bpf_prog *prog)
17957 
17958 {
17959 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17960 
17961 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17962 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17963 		if (is_tracing_prog_type(prog_type)) {
17964 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17965 			return -EINVAL;
17966 		}
17967 	}
17968 
17969 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17970 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17971 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17972 			return -EINVAL;
17973 		}
17974 
17975 		if (is_tracing_prog_type(prog_type)) {
17976 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17977 			return -EINVAL;
17978 		}
17979 	}
17980 
17981 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17982 		if (is_tracing_prog_type(prog_type)) {
17983 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17984 			return -EINVAL;
17985 		}
17986 	}
17987 
17988 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17989 	    !bpf_offload_prog_map_match(prog, map)) {
17990 		verbose(env, "offload device mismatch between prog and map\n");
17991 		return -EINVAL;
17992 	}
17993 
17994 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17995 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17996 		return -EINVAL;
17997 	}
17998 
17999 	if (prog->aux->sleepable)
18000 		switch (map->map_type) {
18001 		case BPF_MAP_TYPE_HASH:
18002 		case BPF_MAP_TYPE_LRU_HASH:
18003 		case BPF_MAP_TYPE_ARRAY:
18004 		case BPF_MAP_TYPE_PERCPU_HASH:
18005 		case BPF_MAP_TYPE_PERCPU_ARRAY:
18006 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18007 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18008 		case BPF_MAP_TYPE_HASH_OF_MAPS:
18009 		case BPF_MAP_TYPE_RINGBUF:
18010 		case BPF_MAP_TYPE_USER_RINGBUF:
18011 		case BPF_MAP_TYPE_INODE_STORAGE:
18012 		case BPF_MAP_TYPE_SK_STORAGE:
18013 		case BPF_MAP_TYPE_TASK_STORAGE:
18014 		case BPF_MAP_TYPE_CGRP_STORAGE:
18015 			break;
18016 		default:
18017 			verbose(env,
18018 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18019 			return -EINVAL;
18020 		}
18021 
18022 	return 0;
18023 }
18024 
18025 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18026 {
18027 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18028 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18029 }
18030 
18031 /* find and rewrite pseudo imm in ld_imm64 instructions:
18032  *
18033  * 1. if it accesses map FD, replace it with actual map pointer.
18034  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18035  *
18036  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18037  */
18038 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18039 {
18040 	struct bpf_insn *insn = env->prog->insnsi;
18041 	int insn_cnt = env->prog->len;
18042 	int i, j, err;
18043 
18044 	err = bpf_prog_calc_tag(env->prog);
18045 	if (err)
18046 		return err;
18047 
18048 	for (i = 0; i < insn_cnt; i++, insn++) {
18049 		if (BPF_CLASS(insn->code) == BPF_LDX &&
18050 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18051 		    insn->imm != 0)) {
18052 			verbose(env, "BPF_LDX uses reserved fields\n");
18053 			return -EINVAL;
18054 		}
18055 
18056 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18057 			struct bpf_insn_aux_data *aux;
18058 			struct bpf_map *map;
18059 			struct fd f;
18060 			u64 addr;
18061 			u32 fd;
18062 
18063 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
18064 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
18065 			    insn[1].off != 0) {
18066 				verbose(env, "invalid bpf_ld_imm64 insn\n");
18067 				return -EINVAL;
18068 			}
18069 
18070 			if (insn[0].src_reg == 0)
18071 				/* valid generic load 64-bit imm */
18072 				goto next_insn;
18073 
18074 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
18075 				aux = &env->insn_aux_data[i];
18076 				err = check_pseudo_btf_id(env, insn, aux);
18077 				if (err)
18078 					return err;
18079 				goto next_insn;
18080 			}
18081 
18082 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
18083 				aux = &env->insn_aux_data[i];
18084 				aux->ptr_type = PTR_TO_FUNC;
18085 				goto next_insn;
18086 			}
18087 
18088 			/* In final convert_pseudo_ld_imm64() step, this is
18089 			 * converted into regular 64-bit imm load insn.
18090 			 */
18091 			switch (insn[0].src_reg) {
18092 			case BPF_PSEUDO_MAP_VALUE:
18093 			case BPF_PSEUDO_MAP_IDX_VALUE:
18094 				break;
18095 			case BPF_PSEUDO_MAP_FD:
18096 			case BPF_PSEUDO_MAP_IDX:
18097 				if (insn[1].imm == 0)
18098 					break;
18099 				fallthrough;
18100 			default:
18101 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
18102 				return -EINVAL;
18103 			}
18104 
18105 			switch (insn[0].src_reg) {
18106 			case BPF_PSEUDO_MAP_IDX_VALUE:
18107 			case BPF_PSEUDO_MAP_IDX:
18108 				if (bpfptr_is_null(env->fd_array)) {
18109 					verbose(env, "fd_idx without fd_array is invalid\n");
18110 					return -EPROTO;
18111 				}
18112 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
18113 							    insn[0].imm * sizeof(fd),
18114 							    sizeof(fd)))
18115 					return -EFAULT;
18116 				break;
18117 			default:
18118 				fd = insn[0].imm;
18119 				break;
18120 			}
18121 
18122 			f = fdget(fd);
18123 			map = __bpf_map_get(f);
18124 			if (IS_ERR(map)) {
18125 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
18126 					insn[0].imm);
18127 				return PTR_ERR(map);
18128 			}
18129 
18130 			err = check_map_prog_compatibility(env, map, env->prog);
18131 			if (err) {
18132 				fdput(f);
18133 				return err;
18134 			}
18135 
18136 			aux = &env->insn_aux_data[i];
18137 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18138 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18139 				addr = (unsigned long)map;
18140 			} else {
18141 				u32 off = insn[1].imm;
18142 
18143 				if (off >= BPF_MAX_VAR_OFF) {
18144 					verbose(env, "direct value offset of %u is not allowed\n", off);
18145 					fdput(f);
18146 					return -EINVAL;
18147 				}
18148 
18149 				if (!map->ops->map_direct_value_addr) {
18150 					verbose(env, "no direct value access support for this map type\n");
18151 					fdput(f);
18152 					return -EINVAL;
18153 				}
18154 
18155 				err = map->ops->map_direct_value_addr(map, &addr, off);
18156 				if (err) {
18157 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18158 						map->value_size, off);
18159 					fdput(f);
18160 					return err;
18161 				}
18162 
18163 				aux->map_off = off;
18164 				addr += off;
18165 			}
18166 
18167 			insn[0].imm = (u32)addr;
18168 			insn[1].imm = addr >> 32;
18169 
18170 			/* check whether we recorded this map already */
18171 			for (j = 0; j < env->used_map_cnt; j++) {
18172 				if (env->used_maps[j] == map) {
18173 					aux->map_index = j;
18174 					fdput(f);
18175 					goto next_insn;
18176 				}
18177 			}
18178 
18179 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18180 				fdput(f);
18181 				return -E2BIG;
18182 			}
18183 
18184 			/* hold the map. If the program is rejected by verifier,
18185 			 * the map will be released by release_maps() or it
18186 			 * will be used by the valid program until it's unloaded
18187 			 * and all maps are released in free_used_maps()
18188 			 */
18189 			bpf_map_inc(map);
18190 
18191 			aux->map_index = env->used_map_cnt;
18192 			env->used_maps[env->used_map_cnt++] = map;
18193 
18194 			if (bpf_map_is_cgroup_storage(map) &&
18195 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18196 				verbose(env, "only one cgroup storage of each type is allowed\n");
18197 				fdput(f);
18198 				return -EBUSY;
18199 			}
18200 
18201 			fdput(f);
18202 next_insn:
18203 			insn++;
18204 			i++;
18205 			continue;
18206 		}
18207 
18208 		/* Basic sanity check before we invest more work here. */
18209 		if (!bpf_opcode_in_insntable(insn->code)) {
18210 			verbose(env, "unknown opcode %02x\n", insn->code);
18211 			return -EINVAL;
18212 		}
18213 	}
18214 
18215 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18216 	 * 'struct bpf_map *' into a register instead of user map_fd.
18217 	 * These pointers will be used later by verifier to validate map access.
18218 	 */
18219 	return 0;
18220 }
18221 
18222 /* drop refcnt of maps used by the rejected program */
18223 static void release_maps(struct bpf_verifier_env *env)
18224 {
18225 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18226 			     env->used_map_cnt);
18227 }
18228 
18229 /* drop refcnt of maps used by the rejected program */
18230 static void release_btfs(struct bpf_verifier_env *env)
18231 {
18232 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18233 			     env->used_btf_cnt);
18234 }
18235 
18236 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18237 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18238 {
18239 	struct bpf_insn *insn = env->prog->insnsi;
18240 	int insn_cnt = env->prog->len;
18241 	int i;
18242 
18243 	for (i = 0; i < insn_cnt; i++, insn++) {
18244 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18245 			continue;
18246 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18247 			continue;
18248 		insn->src_reg = 0;
18249 	}
18250 }
18251 
18252 /* single env->prog->insni[off] instruction was replaced with the range
18253  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18254  * [0, off) and [off, end) to new locations, so the patched range stays zero
18255  */
18256 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18257 				 struct bpf_insn_aux_data *new_data,
18258 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18259 {
18260 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18261 	struct bpf_insn *insn = new_prog->insnsi;
18262 	u32 old_seen = old_data[off].seen;
18263 	u32 prog_len;
18264 	int i;
18265 
18266 	/* aux info at OFF always needs adjustment, no matter fast path
18267 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18268 	 * original insn at old prog.
18269 	 */
18270 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18271 
18272 	if (cnt == 1)
18273 		return;
18274 	prog_len = new_prog->len;
18275 
18276 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18277 	memcpy(new_data + off + cnt - 1, old_data + off,
18278 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18279 	for (i = off; i < off + cnt - 1; i++) {
18280 		/* Expand insni[off]'s seen count to the patched range. */
18281 		new_data[i].seen = old_seen;
18282 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18283 	}
18284 	env->insn_aux_data = new_data;
18285 	vfree(old_data);
18286 }
18287 
18288 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18289 {
18290 	int i;
18291 
18292 	if (len == 1)
18293 		return;
18294 	/* NOTE: fake 'exit' subprog should be updated as well. */
18295 	for (i = 0; i <= env->subprog_cnt; i++) {
18296 		if (env->subprog_info[i].start <= off)
18297 			continue;
18298 		env->subprog_info[i].start += len - 1;
18299 	}
18300 }
18301 
18302 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18303 {
18304 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18305 	int i, sz = prog->aux->size_poke_tab;
18306 	struct bpf_jit_poke_descriptor *desc;
18307 
18308 	for (i = 0; i < sz; i++) {
18309 		desc = &tab[i];
18310 		if (desc->insn_idx <= off)
18311 			continue;
18312 		desc->insn_idx += len - 1;
18313 	}
18314 }
18315 
18316 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18317 					    const struct bpf_insn *patch, u32 len)
18318 {
18319 	struct bpf_prog *new_prog;
18320 	struct bpf_insn_aux_data *new_data = NULL;
18321 
18322 	if (len > 1) {
18323 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18324 					      sizeof(struct bpf_insn_aux_data)));
18325 		if (!new_data)
18326 			return NULL;
18327 	}
18328 
18329 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18330 	if (IS_ERR(new_prog)) {
18331 		if (PTR_ERR(new_prog) == -ERANGE)
18332 			verbose(env,
18333 				"insn %d cannot be patched due to 16-bit range\n",
18334 				env->insn_aux_data[off].orig_idx);
18335 		vfree(new_data);
18336 		return NULL;
18337 	}
18338 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18339 	adjust_subprog_starts(env, off, len);
18340 	adjust_poke_descs(new_prog, off, len);
18341 	return new_prog;
18342 }
18343 
18344 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18345 					      u32 off, u32 cnt)
18346 {
18347 	int i, j;
18348 
18349 	/* find first prog starting at or after off (first to remove) */
18350 	for (i = 0; i < env->subprog_cnt; i++)
18351 		if (env->subprog_info[i].start >= off)
18352 			break;
18353 	/* find first prog starting at or after off + cnt (first to stay) */
18354 	for (j = i; j < env->subprog_cnt; j++)
18355 		if (env->subprog_info[j].start >= off + cnt)
18356 			break;
18357 	/* if j doesn't start exactly at off + cnt, we are just removing
18358 	 * the front of previous prog
18359 	 */
18360 	if (env->subprog_info[j].start != off + cnt)
18361 		j--;
18362 
18363 	if (j > i) {
18364 		struct bpf_prog_aux *aux = env->prog->aux;
18365 		int move;
18366 
18367 		/* move fake 'exit' subprog as well */
18368 		move = env->subprog_cnt + 1 - j;
18369 
18370 		memmove(env->subprog_info + i,
18371 			env->subprog_info + j,
18372 			sizeof(*env->subprog_info) * move);
18373 		env->subprog_cnt -= j - i;
18374 
18375 		/* remove func_info */
18376 		if (aux->func_info) {
18377 			move = aux->func_info_cnt - j;
18378 
18379 			memmove(aux->func_info + i,
18380 				aux->func_info + j,
18381 				sizeof(*aux->func_info) * move);
18382 			aux->func_info_cnt -= j - i;
18383 			/* func_info->insn_off is set after all code rewrites,
18384 			 * in adjust_btf_func() - no need to adjust
18385 			 */
18386 		}
18387 	} else {
18388 		/* convert i from "first prog to remove" to "first to adjust" */
18389 		if (env->subprog_info[i].start == off)
18390 			i++;
18391 	}
18392 
18393 	/* update fake 'exit' subprog as well */
18394 	for (; i <= env->subprog_cnt; i++)
18395 		env->subprog_info[i].start -= cnt;
18396 
18397 	return 0;
18398 }
18399 
18400 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18401 				      u32 cnt)
18402 {
18403 	struct bpf_prog *prog = env->prog;
18404 	u32 i, l_off, l_cnt, nr_linfo;
18405 	struct bpf_line_info *linfo;
18406 
18407 	nr_linfo = prog->aux->nr_linfo;
18408 	if (!nr_linfo)
18409 		return 0;
18410 
18411 	linfo = prog->aux->linfo;
18412 
18413 	/* find first line info to remove, count lines to be removed */
18414 	for (i = 0; i < nr_linfo; i++)
18415 		if (linfo[i].insn_off >= off)
18416 			break;
18417 
18418 	l_off = i;
18419 	l_cnt = 0;
18420 	for (; i < nr_linfo; i++)
18421 		if (linfo[i].insn_off < off + cnt)
18422 			l_cnt++;
18423 		else
18424 			break;
18425 
18426 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18427 	 * last removed linfo.  prog is already modified, so prog->len == off
18428 	 * means no live instructions after (tail of the program was removed).
18429 	 */
18430 	if (prog->len != off && l_cnt &&
18431 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18432 		l_cnt--;
18433 		linfo[--i].insn_off = off + cnt;
18434 	}
18435 
18436 	/* remove the line info which refer to the removed instructions */
18437 	if (l_cnt) {
18438 		memmove(linfo + l_off, linfo + i,
18439 			sizeof(*linfo) * (nr_linfo - i));
18440 
18441 		prog->aux->nr_linfo -= l_cnt;
18442 		nr_linfo = prog->aux->nr_linfo;
18443 	}
18444 
18445 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18446 	for (i = l_off; i < nr_linfo; i++)
18447 		linfo[i].insn_off -= cnt;
18448 
18449 	/* fix up all subprogs (incl. 'exit') which start >= off */
18450 	for (i = 0; i <= env->subprog_cnt; i++)
18451 		if (env->subprog_info[i].linfo_idx > l_off) {
18452 			/* program may have started in the removed region but
18453 			 * may not be fully removed
18454 			 */
18455 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18456 				env->subprog_info[i].linfo_idx -= l_cnt;
18457 			else
18458 				env->subprog_info[i].linfo_idx = l_off;
18459 		}
18460 
18461 	return 0;
18462 }
18463 
18464 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18465 {
18466 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18467 	unsigned int orig_prog_len = env->prog->len;
18468 	int err;
18469 
18470 	if (bpf_prog_is_offloaded(env->prog->aux))
18471 		bpf_prog_offload_remove_insns(env, off, cnt);
18472 
18473 	err = bpf_remove_insns(env->prog, off, cnt);
18474 	if (err)
18475 		return err;
18476 
18477 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18478 	if (err)
18479 		return err;
18480 
18481 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18482 	if (err)
18483 		return err;
18484 
18485 	memmove(aux_data + off,	aux_data + off + cnt,
18486 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18487 
18488 	return 0;
18489 }
18490 
18491 /* The verifier does more data flow analysis than llvm and will not
18492  * explore branches that are dead at run time. Malicious programs can
18493  * have dead code too. Therefore replace all dead at-run-time code
18494  * with 'ja -1'.
18495  *
18496  * Just nops are not optimal, e.g. if they would sit at the end of the
18497  * program and through another bug we would manage to jump there, then
18498  * we'd execute beyond program memory otherwise. Returning exception
18499  * code also wouldn't work since we can have subprogs where the dead
18500  * code could be located.
18501  */
18502 static void sanitize_dead_code(struct bpf_verifier_env *env)
18503 {
18504 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18505 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18506 	struct bpf_insn *insn = env->prog->insnsi;
18507 	const int insn_cnt = env->prog->len;
18508 	int i;
18509 
18510 	for (i = 0; i < insn_cnt; i++) {
18511 		if (aux_data[i].seen)
18512 			continue;
18513 		memcpy(insn + i, &trap, sizeof(trap));
18514 		aux_data[i].zext_dst = false;
18515 	}
18516 }
18517 
18518 static bool insn_is_cond_jump(u8 code)
18519 {
18520 	u8 op;
18521 
18522 	op = BPF_OP(code);
18523 	if (BPF_CLASS(code) == BPF_JMP32)
18524 		return op != BPF_JA;
18525 
18526 	if (BPF_CLASS(code) != BPF_JMP)
18527 		return false;
18528 
18529 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18530 }
18531 
18532 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18533 {
18534 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18535 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18536 	struct bpf_insn *insn = env->prog->insnsi;
18537 	const int insn_cnt = env->prog->len;
18538 	int i;
18539 
18540 	for (i = 0; i < insn_cnt; i++, insn++) {
18541 		if (!insn_is_cond_jump(insn->code))
18542 			continue;
18543 
18544 		if (!aux_data[i + 1].seen)
18545 			ja.off = insn->off;
18546 		else if (!aux_data[i + 1 + insn->off].seen)
18547 			ja.off = 0;
18548 		else
18549 			continue;
18550 
18551 		if (bpf_prog_is_offloaded(env->prog->aux))
18552 			bpf_prog_offload_replace_insn(env, i, &ja);
18553 
18554 		memcpy(insn, &ja, sizeof(ja));
18555 	}
18556 }
18557 
18558 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18559 {
18560 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18561 	int insn_cnt = env->prog->len;
18562 	int i, err;
18563 
18564 	for (i = 0; i < insn_cnt; i++) {
18565 		int j;
18566 
18567 		j = 0;
18568 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18569 			j++;
18570 		if (!j)
18571 			continue;
18572 
18573 		err = verifier_remove_insns(env, i, j);
18574 		if (err)
18575 			return err;
18576 		insn_cnt = env->prog->len;
18577 	}
18578 
18579 	return 0;
18580 }
18581 
18582 static int opt_remove_nops(struct bpf_verifier_env *env)
18583 {
18584 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18585 	struct bpf_insn *insn = env->prog->insnsi;
18586 	int insn_cnt = env->prog->len;
18587 	int i, err;
18588 
18589 	for (i = 0; i < insn_cnt; i++) {
18590 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18591 			continue;
18592 
18593 		err = verifier_remove_insns(env, i, 1);
18594 		if (err)
18595 			return err;
18596 		insn_cnt--;
18597 		i--;
18598 	}
18599 
18600 	return 0;
18601 }
18602 
18603 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18604 					 const union bpf_attr *attr)
18605 {
18606 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18607 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18608 	int i, patch_len, delta = 0, len = env->prog->len;
18609 	struct bpf_insn *insns = env->prog->insnsi;
18610 	struct bpf_prog *new_prog;
18611 	bool rnd_hi32;
18612 
18613 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18614 	zext_patch[1] = BPF_ZEXT_REG(0);
18615 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18616 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18617 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18618 	for (i = 0; i < len; i++) {
18619 		int adj_idx = i + delta;
18620 		struct bpf_insn insn;
18621 		int load_reg;
18622 
18623 		insn = insns[adj_idx];
18624 		load_reg = insn_def_regno(&insn);
18625 		if (!aux[adj_idx].zext_dst) {
18626 			u8 code, class;
18627 			u32 imm_rnd;
18628 
18629 			if (!rnd_hi32)
18630 				continue;
18631 
18632 			code = insn.code;
18633 			class = BPF_CLASS(code);
18634 			if (load_reg == -1)
18635 				continue;
18636 
18637 			/* NOTE: arg "reg" (the fourth one) is only used for
18638 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18639 			 *       here.
18640 			 */
18641 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18642 				if (class == BPF_LD &&
18643 				    BPF_MODE(code) == BPF_IMM)
18644 					i++;
18645 				continue;
18646 			}
18647 
18648 			/* ctx load could be transformed into wider load. */
18649 			if (class == BPF_LDX &&
18650 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18651 				continue;
18652 
18653 			imm_rnd = get_random_u32();
18654 			rnd_hi32_patch[0] = insn;
18655 			rnd_hi32_patch[1].imm = imm_rnd;
18656 			rnd_hi32_patch[3].dst_reg = load_reg;
18657 			patch = rnd_hi32_patch;
18658 			patch_len = 4;
18659 			goto apply_patch_buffer;
18660 		}
18661 
18662 		/* Add in an zero-extend instruction if a) the JIT has requested
18663 		 * it or b) it's a CMPXCHG.
18664 		 *
18665 		 * The latter is because: BPF_CMPXCHG always loads a value into
18666 		 * R0, therefore always zero-extends. However some archs'
18667 		 * equivalent instruction only does this load when the
18668 		 * comparison is successful. This detail of CMPXCHG is
18669 		 * orthogonal to the general zero-extension behaviour of the
18670 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18671 		 */
18672 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18673 			continue;
18674 
18675 		/* Zero-extension is done by the caller. */
18676 		if (bpf_pseudo_kfunc_call(&insn))
18677 			continue;
18678 
18679 		if (WARN_ON(load_reg == -1)) {
18680 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18681 			return -EFAULT;
18682 		}
18683 
18684 		zext_patch[0] = insn;
18685 		zext_patch[1].dst_reg = load_reg;
18686 		zext_patch[1].src_reg = load_reg;
18687 		patch = zext_patch;
18688 		patch_len = 2;
18689 apply_patch_buffer:
18690 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18691 		if (!new_prog)
18692 			return -ENOMEM;
18693 		env->prog = new_prog;
18694 		insns = new_prog->insnsi;
18695 		aux = env->insn_aux_data;
18696 		delta += patch_len - 1;
18697 	}
18698 
18699 	return 0;
18700 }
18701 
18702 /* convert load instructions that access fields of a context type into a
18703  * sequence of instructions that access fields of the underlying structure:
18704  *     struct __sk_buff    -> struct sk_buff
18705  *     struct bpf_sock_ops -> struct sock
18706  */
18707 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18708 {
18709 	const struct bpf_verifier_ops *ops = env->ops;
18710 	int i, cnt, size, ctx_field_size, delta = 0;
18711 	const int insn_cnt = env->prog->len;
18712 	struct bpf_insn insn_buf[16], *insn;
18713 	u32 target_size, size_default, off;
18714 	struct bpf_prog *new_prog;
18715 	enum bpf_access_type type;
18716 	bool is_narrower_load;
18717 
18718 	if (ops->gen_prologue || env->seen_direct_write) {
18719 		if (!ops->gen_prologue) {
18720 			verbose(env, "bpf verifier is misconfigured\n");
18721 			return -EINVAL;
18722 		}
18723 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18724 					env->prog);
18725 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18726 			verbose(env, "bpf verifier is misconfigured\n");
18727 			return -EINVAL;
18728 		} else if (cnt) {
18729 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18730 			if (!new_prog)
18731 				return -ENOMEM;
18732 
18733 			env->prog = new_prog;
18734 			delta += cnt - 1;
18735 		}
18736 	}
18737 
18738 	if (bpf_prog_is_offloaded(env->prog->aux))
18739 		return 0;
18740 
18741 	insn = env->prog->insnsi + delta;
18742 
18743 	for (i = 0; i < insn_cnt; i++, insn++) {
18744 		bpf_convert_ctx_access_t convert_ctx_access;
18745 		u8 mode;
18746 
18747 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18748 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18749 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18750 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18751 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18752 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18753 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18754 			type = BPF_READ;
18755 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18756 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18757 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18758 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18759 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18760 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18761 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18762 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18763 			type = BPF_WRITE;
18764 		} else {
18765 			continue;
18766 		}
18767 
18768 		if (type == BPF_WRITE &&
18769 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18770 			struct bpf_insn patch[] = {
18771 				*insn,
18772 				BPF_ST_NOSPEC(),
18773 			};
18774 
18775 			cnt = ARRAY_SIZE(patch);
18776 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18777 			if (!new_prog)
18778 				return -ENOMEM;
18779 
18780 			delta    += cnt - 1;
18781 			env->prog = new_prog;
18782 			insn      = new_prog->insnsi + i + delta;
18783 			continue;
18784 		}
18785 
18786 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18787 		case PTR_TO_CTX:
18788 			if (!ops->convert_ctx_access)
18789 				continue;
18790 			convert_ctx_access = ops->convert_ctx_access;
18791 			break;
18792 		case PTR_TO_SOCKET:
18793 		case PTR_TO_SOCK_COMMON:
18794 			convert_ctx_access = bpf_sock_convert_ctx_access;
18795 			break;
18796 		case PTR_TO_TCP_SOCK:
18797 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18798 			break;
18799 		case PTR_TO_XDP_SOCK:
18800 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18801 			break;
18802 		case PTR_TO_BTF_ID:
18803 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18804 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18805 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18806 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18807 		 * any faults for loads into such types. BPF_WRITE is disallowed
18808 		 * for this case.
18809 		 */
18810 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18811 			if (type == BPF_READ) {
18812 				if (BPF_MODE(insn->code) == BPF_MEM)
18813 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18814 						     BPF_SIZE((insn)->code);
18815 				else
18816 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18817 						     BPF_SIZE((insn)->code);
18818 				env->prog->aux->num_exentries++;
18819 			}
18820 			continue;
18821 		default:
18822 			continue;
18823 		}
18824 
18825 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18826 		size = BPF_LDST_BYTES(insn);
18827 		mode = BPF_MODE(insn->code);
18828 
18829 		/* If the read access is a narrower load of the field,
18830 		 * convert to a 4/8-byte load, to minimum program type specific
18831 		 * convert_ctx_access changes. If conversion is successful,
18832 		 * we will apply proper mask to the result.
18833 		 */
18834 		is_narrower_load = size < ctx_field_size;
18835 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18836 		off = insn->off;
18837 		if (is_narrower_load) {
18838 			u8 size_code;
18839 
18840 			if (type == BPF_WRITE) {
18841 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18842 				return -EINVAL;
18843 			}
18844 
18845 			size_code = BPF_H;
18846 			if (ctx_field_size == 4)
18847 				size_code = BPF_W;
18848 			else if (ctx_field_size == 8)
18849 				size_code = BPF_DW;
18850 
18851 			insn->off = off & ~(size_default - 1);
18852 			insn->code = BPF_LDX | BPF_MEM | size_code;
18853 		}
18854 
18855 		target_size = 0;
18856 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18857 					 &target_size);
18858 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18859 		    (ctx_field_size && !target_size)) {
18860 			verbose(env, "bpf verifier is misconfigured\n");
18861 			return -EINVAL;
18862 		}
18863 
18864 		if (is_narrower_load && size < target_size) {
18865 			u8 shift = bpf_ctx_narrow_access_offset(
18866 				off, size, size_default) * 8;
18867 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18868 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18869 				return -EINVAL;
18870 			}
18871 			if (ctx_field_size <= 4) {
18872 				if (shift)
18873 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18874 									insn->dst_reg,
18875 									shift);
18876 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18877 								(1 << size * 8) - 1);
18878 			} else {
18879 				if (shift)
18880 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18881 									insn->dst_reg,
18882 									shift);
18883 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18884 								(1ULL << size * 8) - 1);
18885 			}
18886 		}
18887 		if (mode == BPF_MEMSX)
18888 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18889 						       insn->dst_reg, insn->dst_reg,
18890 						       size * 8, 0);
18891 
18892 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18893 		if (!new_prog)
18894 			return -ENOMEM;
18895 
18896 		delta += cnt - 1;
18897 
18898 		/* keep walking new program and skip insns we just inserted */
18899 		env->prog = new_prog;
18900 		insn      = new_prog->insnsi + i + delta;
18901 	}
18902 
18903 	return 0;
18904 }
18905 
18906 static int jit_subprogs(struct bpf_verifier_env *env)
18907 {
18908 	struct bpf_prog *prog = env->prog, **func, *tmp;
18909 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18910 	struct bpf_map *map_ptr;
18911 	struct bpf_insn *insn;
18912 	void *old_bpf_func;
18913 	int err, num_exentries;
18914 
18915 	if (env->subprog_cnt <= 1)
18916 		return 0;
18917 
18918 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18919 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18920 			continue;
18921 
18922 		/* Upon error here we cannot fall back to interpreter but
18923 		 * need a hard reject of the program. Thus -EFAULT is
18924 		 * propagated in any case.
18925 		 */
18926 		subprog = find_subprog(env, i + insn->imm + 1);
18927 		if (subprog < 0) {
18928 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18929 				  i + insn->imm + 1);
18930 			return -EFAULT;
18931 		}
18932 		/* temporarily remember subprog id inside insn instead of
18933 		 * aux_data, since next loop will split up all insns into funcs
18934 		 */
18935 		insn->off = subprog;
18936 		/* remember original imm in case JIT fails and fallback
18937 		 * to interpreter will be needed
18938 		 */
18939 		env->insn_aux_data[i].call_imm = insn->imm;
18940 		/* point imm to __bpf_call_base+1 from JITs point of view */
18941 		insn->imm = 1;
18942 		if (bpf_pseudo_func(insn))
18943 			/* jit (e.g. x86_64) may emit fewer instructions
18944 			 * if it learns a u32 imm is the same as a u64 imm.
18945 			 * Force a non zero here.
18946 			 */
18947 			insn[1].imm = 1;
18948 	}
18949 
18950 	err = bpf_prog_alloc_jited_linfo(prog);
18951 	if (err)
18952 		goto out_undo_insn;
18953 
18954 	err = -ENOMEM;
18955 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18956 	if (!func)
18957 		goto out_undo_insn;
18958 
18959 	for (i = 0; i < env->subprog_cnt; i++) {
18960 		subprog_start = subprog_end;
18961 		subprog_end = env->subprog_info[i + 1].start;
18962 
18963 		len = subprog_end - subprog_start;
18964 		/* bpf_prog_run() doesn't call subprogs directly,
18965 		 * hence main prog stats include the runtime of subprogs.
18966 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18967 		 * func[i]->stats will never be accessed and stays NULL
18968 		 */
18969 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18970 		if (!func[i])
18971 			goto out_free;
18972 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18973 		       len * sizeof(struct bpf_insn));
18974 		func[i]->type = prog->type;
18975 		func[i]->len = len;
18976 		if (bpf_prog_calc_tag(func[i]))
18977 			goto out_free;
18978 		func[i]->is_func = 1;
18979 		func[i]->aux->func_idx = i;
18980 		/* Below members will be freed only at prog->aux */
18981 		func[i]->aux->btf = prog->aux->btf;
18982 		func[i]->aux->func_info = prog->aux->func_info;
18983 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18984 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18985 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18986 
18987 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18988 			struct bpf_jit_poke_descriptor *poke;
18989 
18990 			poke = &prog->aux->poke_tab[j];
18991 			if (poke->insn_idx < subprog_end &&
18992 			    poke->insn_idx >= subprog_start)
18993 				poke->aux = func[i]->aux;
18994 		}
18995 
18996 		func[i]->aux->name[0] = 'F';
18997 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18998 		func[i]->jit_requested = 1;
18999 		func[i]->blinding_requested = prog->blinding_requested;
19000 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
19001 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
19002 		func[i]->aux->linfo = prog->aux->linfo;
19003 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
19004 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
19005 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
19006 		num_exentries = 0;
19007 		insn = func[i]->insnsi;
19008 		for (j = 0; j < func[i]->len; j++, insn++) {
19009 			if (BPF_CLASS(insn->code) == BPF_LDX &&
19010 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
19011 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
19012 				num_exentries++;
19013 		}
19014 		func[i]->aux->num_exentries = num_exentries;
19015 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
19016 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
19017 		if (!i)
19018 			func[i]->aux->exception_boundary = env->seen_exception;
19019 		func[i] = bpf_int_jit_compile(func[i]);
19020 		if (!func[i]->jited) {
19021 			err = -ENOTSUPP;
19022 			goto out_free;
19023 		}
19024 		cond_resched();
19025 	}
19026 
19027 	/* at this point all bpf functions were successfully JITed
19028 	 * now populate all bpf_calls with correct addresses and
19029 	 * run last pass of JIT
19030 	 */
19031 	for (i = 0; i < env->subprog_cnt; i++) {
19032 		insn = func[i]->insnsi;
19033 		for (j = 0; j < func[i]->len; j++, insn++) {
19034 			if (bpf_pseudo_func(insn)) {
19035 				subprog = insn->off;
19036 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
19037 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
19038 				continue;
19039 			}
19040 			if (!bpf_pseudo_call(insn))
19041 				continue;
19042 			subprog = insn->off;
19043 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
19044 		}
19045 
19046 		/* we use the aux data to keep a list of the start addresses
19047 		 * of the JITed images for each function in the program
19048 		 *
19049 		 * for some architectures, such as powerpc64, the imm field
19050 		 * might not be large enough to hold the offset of the start
19051 		 * address of the callee's JITed image from __bpf_call_base
19052 		 *
19053 		 * in such cases, we can lookup the start address of a callee
19054 		 * by using its subprog id, available from the off field of
19055 		 * the call instruction, as an index for this list
19056 		 */
19057 		func[i]->aux->func = func;
19058 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19059 		func[i]->aux->real_func_cnt = env->subprog_cnt;
19060 	}
19061 	for (i = 0; i < env->subprog_cnt; i++) {
19062 		old_bpf_func = func[i]->bpf_func;
19063 		tmp = bpf_int_jit_compile(func[i]);
19064 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
19065 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
19066 			err = -ENOTSUPP;
19067 			goto out_free;
19068 		}
19069 		cond_resched();
19070 	}
19071 
19072 	/* finally lock prog and jit images for all functions and
19073 	 * populate kallsysm. Begin at the first subprogram, since
19074 	 * bpf_prog_load will add the kallsyms for the main program.
19075 	 */
19076 	for (i = 1; i < env->subprog_cnt; i++) {
19077 		bpf_prog_lock_ro(func[i]);
19078 		bpf_prog_kallsyms_add(func[i]);
19079 	}
19080 
19081 	/* Last step: make now unused interpreter insns from main
19082 	 * prog consistent for later dump requests, so they can
19083 	 * later look the same as if they were interpreted only.
19084 	 */
19085 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19086 		if (bpf_pseudo_func(insn)) {
19087 			insn[0].imm = env->insn_aux_data[i].call_imm;
19088 			insn[1].imm = insn->off;
19089 			insn->off = 0;
19090 			continue;
19091 		}
19092 		if (!bpf_pseudo_call(insn))
19093 			continue;
19094 		insn->off = env->insn_aux_data[i].call_imm;
19095 		subprog = find_subprog(env, i + insn->off + 1);
19096 		insn->imm = subprog;
19097 	}
19098 
19099 	prog->jited = 1;
19100 	prog->bpf_func = func[0]->bpf_func;
19101 	prog->jited_len = func[0]->jited_len;
19102 	prog->aux->extable = func[0]->aux->extable;
19103 	prog->aux->num_exentries = func[0]->aux->num_exentries;
19104 	prog->aux->func = func;
19105 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19106 	prog->aux->real_func_cnt = env->subprog_cnt;
19107 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
19108 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
19109 	bpf_prog_jit_attempt_done(prog);
19110 	return 0;
19111 out_free:
19112 	/* We failed JIT'ing, so at this point we need to unregister poke
19113 	 * descriptors from subprogs, so that kernel is not attempting to
19114 	 * patch it anymore as we're freeing the subprog JIT memory.
19115 	 */
19116 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19117 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19118 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
19119 	}
19120 	/* At this point we're guaranteed that poke descriptors are not
19121 	 * live anymore. We can just unlink its descriptor table as it's
19122 	 * released with the main prog.
19123 	 */
19124 	for (i = 0; i < env->subprog_cnt; i++) {
19125 		if (!func[i])
19126 			continue;
19127 		func[i]->aux->poke_tab = NULL;
19128 		bpf_jit_free(func[i]);
19129 	}
19130 	kfree(func);
19131 out_undo_insn:
19132 	/* cleanup main prog to be interpreted */
19133 	prog->jit_requested = 0;
19134 	prog->blinding_requested = 0;
19135 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19136 		if (!bpf_pseudo_call(insn))
19137 			continue;
19138 		insn->off = 0;
19139 		insn->imm = env->insn_aux_data[i].call_imm;
19140 	}
19141 	bpf_prog_jit_attempt_done(prog);
19142 	return err;
19143 }
19144 
19145 static int fixup_call_args(struct bpf_verifier_env *env)
19146 {
19147 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19148 	struct bpf_prog *prog = env->prog;
19149 	struct bpf_insn *insn = prog->insnsi;
19150 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19151 	int i, depth;
19152 #endif
19153 	int err = 0;
19154 
19155 	if (env->prog->jit_requested &&
19156 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19157 		err = jit_subprogs(env);
19158 		if (err == 0)
19159 			return 0;
19160 		if (err == -EFAULT)
19161 			return err;
19162 	}
19163 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19164 	if (has_kfunc_call) {
19165 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19166 		return -EINVAL;
19167 	}
19168 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19169 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19170 		 * have to be rejected, since interpreter doesn't support them yet.
19171 		 */
19172 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19173 		return -EINVAL;
19174 	}
19175 	for (i = 0; i < prog->len; i++, insn++) {
19176 		if (bpf_pseudo_func(insn)) {
19177 			/* When JIT fails the progs with callback calls
19178 			 * have to be rejected, since interpreter doesn't support them yet.
19179 			 */
19180 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19181 			return -EINVAL;
19182 		}
19183 
19184 		if (!bpf_pseudo_call(insn))
19185 			continue;
19186 		depth = get_callee_stack_depth(env, insn, i);
19187 		if (depth < 0)
19188 			return depth;
19189 		bpf_patch_call_args(insn, depth);
19190 	}
19191 	err = 0;
19192 #endif
19193 	return err;
19194 }
19195 
19196 /* replace a generic kfunc with a specialized version if necessary */
19197 static void specialize_kfunc(struct bpf_verifier_env *env,
19198 			     u32 func_id, u16 offset, unsigned long *addr)
19199 {
19200 	struct bpf_prog *prog = env->prog;
19201 	bool seen_direct_write;
19202 	void *xdp_kfunc;
19203 	bool is_rdonly;
19204 
19205 	if (bpf_dev_bound_kfunc_id(func_id)) {
19206 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19207 		if (xdp_kfunc) {
19208 			*addr = (unsigned long)xdp_kfunc;
19209 			return;
19210 		}
19211 		/* fallback to default kfunc when not supported by netdev */
19212 	}
19213 
19214 	if (offset)
19215 		return;
19216 
19217 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19218 		seen_direct_write = env->seen_direct_write;
19219 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19220 
19221 		if (is_rdonly)
19222 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19223 
19224 		/* restore env->seen_direct_write to its original value, since
19225 		 * may_access_direct_pkt_data mutates it
19226 		 */
19227 		env->seen_direct_write = seen_direct_write;
19228 	}
19229 }
19230 
19231 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19232 					    u16 struct_meta_reg,
19233 					    u16 node_offset_reg,
19234 					    struct bpf_insn *insn,
19235 					    struct bpf_insn *insn_buf,
19236 					    int *cnt)
19237 {
19238 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19239 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19240 
19241 	insn_buf[0] = addr[0];
19242 	insn_buf[1] = addr[1];
19243 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19244 	insn_buf[3] = *insn;
19245 	*cnt = 4;
19246 }
19247 
19248 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19249 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19250 {
19251 	const struct bpf_kfunc_desc *desc;
19252 
19253 	if (!insn->imm) {
19254 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19255 		return -EINVAL;
19256 	}
19257 
19258 	*cnt = 0;
19259 
19260 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19261 	 * __bpf_call_base, unless the JIT needs to call functions that are
19262 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19263 	 */
19264 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19265 	if (!desc) {
19266 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19267 			insn->imm);
19268 		return -EFAULT;
19269 	}
19270 
19271 	if (!bpf_jit_supports_far_kfunc_call())
19272 		insn->imm = BPF_CALL_IMM(desc->addr);
19273 	if (insn->off)
19274 		return 0;
19275 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19276 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19277 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19278 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19279 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19280 
19281 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19282 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19283 				insn_idx);
19284 			return -EFAULT;
19285 		}
19286 
19287 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19288 		insn_buf[1] = addr[0];
19289 		insn_buf[2] = addr[1];
19290 		insn_buf[3] = *insn;
19291 		*cnt = 4;
19292 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19293 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19294 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19295 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19296 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19297 
19298 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19299 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19300 				insn_idx);
19301 			return -EFAULT;
19302 		}
19303 
19304 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19305 		    !kptr_struct_meta) {
19306 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19307 				insn_idx);
19308 			return -EFAULT;
19309 		}
19310 
19311 		insn_buf[0] = addr[0];
19312 		insn_buf[1] = addr[1];
19313 		insn_buf[2] = *insn;
19314 		*cnt = 3;
19315 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19316 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19317 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19318 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19319 		int struct_meta_reg = BPF_REG_3;
19320 		int node_offset_reg = BPF_REG_4;
19321 
19322 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19323 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19324 			struct_meta_reg = BPF_REG_4;
19325 			node_offset_reg = BPF_REG_5;
19326 		}
19327 
19328 		if (!kptr_struct_meta) {
19329 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19330 				insn_idx);
19331 			return -EFAULT;
19332 		}
19333 
19334 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19335 						node_offset_reg, insn, insn_buf, cnt);
19336 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19337 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19338 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19339 		*cnt = 1;
19340 	}
19341 	return 0;
19342 }
19343 
19344 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19345 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19346 {
19347 	struct bpf_subprog_info *info = env->subprog_info;
19348 	int cnt = env->subprog_cnt;
19349 	struct bpf_prog *prog;
19350 
19351 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19352 	if (env->hidden_subprog_cnt) {
19353 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19354 		return -EFAULT;
19355 	}
19356 	/* We're not patching any existing instruction, just appending the new
19357 	 * ones for the hidden subprog. Hence all of the adjustment operations
19358 	 * in bpf_patch_insn_data are no-ops.
19359 	 */
19360 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19361 	if (!prog)
19362 		return -ENOMEM;
19363 	env->prog = prog;
19364 	info[cnt + 1].start = info[cnt].start;
19365 	info[cnt].start = prog->len - len + 1;
19366 	env->subprog_cnt++;
19367 	env->hidden_subprog_cnt++;
19368 	return 0;
19369 }
19370 
19371 /* Do various post-verification rewrites in a single program pass.
19372  * These rewrites simplify JIT and interpreter implementations.
19373  */
19374 static int do_misc_fixups(struct bpf_verifier_env *env)
19375 {
19376 	struct bpf_prog *prog = env->prog;
19377 	enum bpf_attach_type eatype = prog->expected_attach_type;
19378 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19379 	struct bpf_insn *insn = prog->insnsi;
19380 	const struct bpf_func_proto *fn;
19381 	const int insn_cnt = prog->len;
19382 	const struct bpf_map_ops *ops;
19383 	struct bpf_insn_aux_data *aux;
19384 	struct bpf_insn insn_buf[16];
19385 	struct bpf_prog *new_prog;
19386 	struct bpf_map *map_ptr;
19387 	int i, ret, cnt, delta = 0;
19388 
19389 	if (env->seen_exception && !env->exception_callback_subprog) {
19390 		struct bpf_insn patch[] = {
19391 			env->prog->insnsi[insn_cnt - 1],
19392 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19393 			BPF_EXIT_INSN(),
19394 		};
19395 
19396 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19397 		if (ret < 0)
19398 			return ret;
19399 		prog = env->prog;
19400 		insn = prog->insnsi;
19401 
19402 		env->exception_callback_subprog = env->subprog_cnt - 1;
19403 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19404 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
19405 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
19406 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
19407 	}
19408 
19409 	for (i = 0; i < insn_cnt; i++, insn++) {
19410 		/* Make divide-by-zero exceptions impossible. */
19411 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19412 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19413 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19414 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19415 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19416 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19417 			struct bpf_insn *patchlet;
19418 			struct bpf_insn chk_and_div[] = {
19419 				/* [R,W]x div 0 -> 0 */
19420 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19421 					     BPF_JNE | BPF_K, insn->src_reg,
19422 					     0, 2, 0),
19423 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19424 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19425 				*insn,
19426 			};
19427 			struct bpf_insn chk_and_mod[] = {
19428 				/* [R,W]x mod 0 -> [R,W]x */
19429 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19430 					     BPF_JEQ | BPF_K, insn->src_reg,
19431 					     0, 1 + (is64 ? 0 : 1), 0),
19432 				*insn,
19433 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19434 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19435 			};
19436 
19437 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19438 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19439 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19440 
19441 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19442 			if (!new_prog)
19443 				return -ENOMEM;
19444 
19445 			delta    += cnt - 1;
19446 			env->prog = prog = new_prog;
19447 			insn      = new_prog->insnsi + i + delta;
19448 			continue;
19449 		}
19450 
19451 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19452 		if (BPF_CLASS(insn->code) == BPF_LD &&
19453 		    (BPF_MODE(insn->code) == BPF_ABS ||
19454 		     BPF_MODE(insn->code) == BPF_IND)) {
19455 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19456 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19457 				verbose(env, "bpf verifier is misconfigured\n");
19458 				return -EINVAL;
19459 			}
19460 
19461 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19462 			if (!new_prog)
19463 				return -ENOMEM;
19464 
19465 			delta    += cnt - 1;
19466 			env->prog = prog = new_prog;
19467 			insn      = new_prog->insnsi + i + delta;
19468 			continue;
19469 		}
19470 
19471 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19472 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19473 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19474 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19475 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19476 			struct bpf_insn *patch = &insn_buf[0];
19477 			bool issrc, isneg, isimm;
19478 			u32 off_reg;
19479 
19480 			aux = &env->insn_aux_data[i + delta];
19481 			if (!aux->alu_state ||
19482 			    aux->alu_state == BPF_ALU_NON_POINTER)
19483 				continue;
19484 
19485 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19486 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19487 				BPF_ALU_SANITIZE_SRC;
19488 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19489 
19490 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19491 			if (isimm) {
19492 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19493 			} else {
19494 				if (isneg)
19495 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19496 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19497 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19498 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19499 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19500 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19501 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19502 			}
19503 			if (!issrc)
19504 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19505 			insn->src_reg = BPF_REG_AX;
19506 			if (isneg)
19507 				insn->code = insn->code == code_add ?
19508 					     code_sub : code_add;
19509 			*patch++ = *insn;
19510 			if (issrc && isneg && !isimm)
19511 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19512 			cnt = patch - insn_buf;
19513 
19514 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19515 			if (!new_prog)
19516 				return -ENOMEM;
19517 
19518 			delta    += cnt - 1;
19519 			env->prog = prog = new_prog;
19520 			insn      = new_prog->insnsi + i + delta;
19521 			continue;
19522 		}
19523 
19524 		if (insn->code != (BPF_JMP | BPF_CALL))
19525 			continue;
19526 		if (insn->src_reg == BPF_PSEUDO_CALL)
19527 			continue;
19528 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19529 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19530 			if (ret)
19531 				return ret;
19532 			if (cnt == 0)
19533 				continue;
19534 
19535 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19536 			if (!new_prog)
19537 				return -ENOMEM;
19538 
19539 			delta	 += cnt - 1;
19540 			env->prog = prog = new_prog;
19541 			insn	  = new_prog->insnsi + i + delta;
19542 			continue;
19543 		}
19544 
19545 		if (insn->imm == BPF_FUNC_get_route_realm)
19546 			prog->dst_needed = 1;
19547 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19548 			bpf_user_rnd_init_once();
19549 		if (insn->imm == BPF_FUNC_override_return)
19550 			prog->kprobe_override = 1;
19551 		if (insn->imm == BPF_FUNC_tail_call) {
19552 			/* If we tail call into other programs, we
19553 			 * cannot make any assumptions since they can
19554 			 * be replaced dynamically during runtime in
19555 			 * the program array.
19556 			 */
19557 			prog->cb_access = 1;
19558 			if (!allow_tail_call_in_subprogs(env))
19559 				prog->aux->stack_depth = MAX_BPF_STACK;
19560 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19561 
19562 			/* mark bpf_tail_call as different opcode to avoid
19563 			 * conditional branch in the interpreter for every normal
19564 			 * call and to prevent accidental JITing by JIT compiler
19565 			 * that doesn't support bpf_tail_call yet
19566 			 */
19567 			insn->imm = 0;
19568 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19569 
19570 			aux = &env->insn_aux_data[i + delta];
19571 			if (env->bpf_capable && !prog->blinding_requested &&
19572 			    prog->jit_requested &&
19573 			    !bpf_map_key_poisoned(aux) &&
19574 			    !bpf_map_ptr_poisoned(aux) &&
19575 			    !bpf_map_ptr_unpriv(aux)) {
19576 				struct bpf_jit_poke_descriptor desc = {
19577 					.reason = BPF_POKE_REASON_TAIL_CALL,
19578 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19579 					.tail_call.key = bpf_map_key_immediate(aux),
19580 					.insn_idx = i + delta,
19581 				};
19582 
19583 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19584 				if (ret < 0) {
19585 					verbose(env, "adding tail call poke descriptor failed\n");
19586 					return ret;
19587 				}
19588 
19589 				insn->imm = ret + 1;
19590 				continue;
19591 			}
19592 
19593 			if (!bpf_map_ptr_unpriv(aux))
19594 				continue;
19595 
19596 			/* instead of changing every JIT dealing with tail_call
19597 			 * emit two extra insns:
19598 			 * if (index >= max_entries) goto out;
19599 			 * index &= array->index_mask;
19600 			 * to avoid out-of-bounds cpu speculation
19601 			 */
19602 			if (bpf_map_ptr_poisoned(aux)) {
19603 				verbose(env, "tail_call abusing map_ptr\n");
19604 				return -EINVAL;
19605 			}
19606 
19607 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19608 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19609 						  map_ptr->max_entries, 2);
19610 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19611 						    container_of(map_ptr,
19612 								 struct bpf_array,
19613 								 map)->index_mask);
19614 			insn_buf[2] = *insn;
19615 			cnt = 3;
19616 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19617 			if (!new_prog)
19618 				return -ENOMEM;
19619 
19620 			delta    += cnt - 1;
19621 			env->prog = prog = new_prog;
19622 			insn      = new_prog->insnsi + i + delta;
19623 			continue;
19624 		}
19625 
19626 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19627 			/* The verifier will process callback_fn as many times as necessary
19628 			 * with different maps and the register states prepared by
19629 			 * set_timer_callback_state will be accurate.
19630 			 *
19631 			 * The following use case is valid:
19632 			 *   map1 is shared by prog1, prog2, prog3.
19633 			 *   prog1 calls bpf_timer_init for some map1 elements
19634 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19635 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19636 			 *   prog3 calls bpf_timer_start for some map1 elements.
19637 			 *     Those that were not both bpf_timer_init-ed and
19638 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19639 			 */
19640 			struct bpf_insn ld_addrs[2] = {
19641 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19642 			};
19643 
19644 			insn_buf[0] = ld_addrs[0];
19645 			insn_buf[1] = ld_addrs[1];
19646 			insn_buf[2] = *insn;
19647 			cnt = 3;
19648 
19649 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19650 			if (!new_prog)
19651 				return -ENOMEM;
19652 
19653 			delta    += cnt - 1;
19654 			env->prog = prog = new_prog;
19655 			insn      = new_prog->insnsi + i + delta;
19656 			goto patch_call_imm;
19657 		}
19658 
19659 		if (is_storage_get_function(insn->imm)) {
19660 			if (!env->prog->aux->sleepable ||
19661 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19662 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19663 			else
19664 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19665 			insn_buf[1] = *insn;
19666 			cnt = 2;
19667 
19668 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19669 			if (!new_prog)
19670 				return -ENOMEM;
19671 
19672 			delta += cnt - 1;
19673 			env->prog = prog = new_prog;
19674 			insn = new_prog->insnsi + i + delta;
19675 			goto patch_call_imm;
19676 		}
19677 
19678 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19679 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19680 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19681 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19682 			 */
19683 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19684 			insn_buf[1] = *insn;
19685 			cnt = 2;
19686 
19687 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19688 			if (!new_prog)
19689 				return -ENOMEM;
19690 
19691 			delta += cnt - 1;
19692 			env->prog = prog = new_prog;
19693 			insn = new_prog->insnsi + i + delta;
19694 			goto patch_call_imm;
19695 		}
19696 
19697 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19698 		 * and other inlining handlers are currently limited to 64 bit
19699 		 * only.
19700 		 */
19701 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19702 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19703 		     insn->imm == BPF_FUNC_map_update_elem ||
19704 		     insn->imm == BPF_FUNC_map_delete_elem ||
19705 		     insn->imm == BPF_FUNC_map_push_elem   ||
19706 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19707 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19708 		     insn->imm == BPF_FUNC_redirect_map    ||
19709 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19710 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19711 			aux = &env->insn_aux_data[i + delta];
19712 			if (bpf_map_ptr_poisoned(aux))
19713 				goto patch_call_imm;
19714 
19715 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19716 			ops = map_ptr->ops;
19717 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19718 			    ops->map_gen_lookup) {
19719 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19720 				if (cnt == -EOPNOTSUPP)
19721 					goto patch_map_ops_generic;
19722 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19723 					verbose(env, "bpf verifier is misconfigured\n");
19724 					return -EINVAL;
19725 				}
19726 
19727 				new_prog = bpf_patch_insn_data(env, i + delta,
19728 							       insn_buf, cnt);
19729 				if (!new_prog)
19730 					return -ENOMEM;
19731 
19732 				delta    += cnt - 1;
19733 				env->prog = prog = new_prog;
19734 				insn      = new_prog->insnsi + i + delta;
19735 				continue;
19736 			}
19737 
19738 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19739 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19740 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19741 				     (long (*)(struct bpf_map *map, void *key))NULL));
19742 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19743 				     (long (*)(struct bpf_map *map, void *key, void *value,
19744 					      u64 flags))NULL));
19745 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19746 				     (long (*)(struct bpf_map *map, void *value,
19747 					      u64 flags))NULL));
19748 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19749 				     (long (*)(struct bpf_map *map, void *value))NULL));
19750 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19751 				     (long (*)(struct bpf_map *map, void *value))NULL));
19752 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19753 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19754 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19755 				     (long (*)(struct bpf_map *map,
19756 					      bpf_callback_t callback_fn,
19757 					      void *callback_ctx,
19758 					      u64 flags))NULL));
19759 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19760 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19761 
19762 patch_map_ops_generic:
19763 			switch (insn->imm) {
19764 			case BPF_FUNC_map_lookup_elem:
19765 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19766 				continue;
19767 			case BPF_FUNC_map_update_elem:
19768 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19769 				continue;
19770 			case BPF_FUNC_map_delete_elem:
19771 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19772 				continue;
19773 			case BPF_FUNC_map_push_elem:
19774 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19775 				continue;
19776 			case BPF_FUNC_map_pop_elem:
19777 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19778 				continue;
19779 			case BPF_FUNC_map_peek_elem:
19780 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19781 				continue;
19782 			case BPF_FUNC_redirect_map:
19783 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19784 				continue;
19785 			case BPF_FUNC_for_each_map_elem:
19786 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19787 				continue;
19788 			case BPF_FUNC_map_lookup_percpu_elem:
19789 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19790 				continue;
19791 			}
19792 
19793 			goto patch_call_imm;
19794 		}
19795 
19796 		/* Implement bpf_jiffies64 inline. */
19797 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19798 		    insn->imm == BPF_FUNC_jiffies64) {
19799 			struct bpf_insn ld_jiffies_addr[2] = {
19800 				BPF_LD_IMM64(BPF_REG_0,
19801 					     (unsigned long)&jiffies),
19802 			};
19803 
19804 			insn_buf[0] = ld_jiffies_addr[0];
19805 			insn_buf[1] = ld_jiffies_addr[1];
19806 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19807 						  BPF_REG_0, 0);
19808 			cnt = 3;
19809 
19810 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19811 						       cnt);
19812 			if (!new_prog)
19813 				return -ENOMEM;
19814 
19815 			delta    += cnt - 1;
19816 			env->prog = prog = new_prog;
19817 			insn      = new_prog->insnsi + i + delta;
19818 			continue;
19819 		}
19820 
19821 		/* Implement bpf_get_func_arg inline. */
19822 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19823 		    insn->imm == BPF_FUNC_get_func_arg) {
19824 			/* Load nr_args from ctx - 8 */
19825 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19826 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19827 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19828 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19829 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19830 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19831 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19832 			insn_buf[7] = BPF_JMP_A(1);
19833 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19834 			cnt = 9;
19835 
19836 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19837 			if (!new_prog)
19838 				return -ENOMEM;
19839 
19840 			delta    += cnt - 1;
19841 			env->prog = prog = new_prog;
19842 			insn      = new_prog->insnsi + i + delta;
19843 			continue;
19844 		}
19845 
19846 		/* Implement bpf_get_func_ret inline. */
19847 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19848 		    insn->imm == BPF_FUNC_get_func_ret) {
19849 			if (eatype == BPF_TRACE_FEXIT ||
19850 			    eatype == BPF_MODIFY_RETURN) {
19851 				/* Load nr_args from ctx - 8 */
19852 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19853 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19854 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19855 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19856 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19857 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19858 				cnt = 6;
19859 			} else {
19860 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19861 				cnt = 1;
19862 			}
19863 
19864 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19865 			if (!new_prog)
19866 				return -ENOMEM;
19867 
19868 			delta    += cnt - 1;
19869 			env->prog = prog = new_prog;
19870 			insn      = new_prog->insnsi + i + delta;
19871 			continue;
19872 		}
19873 
19874 		/* Implement get_func_arg_cnt inline. */
19875 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19876 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19877 			/* Load nr_args from ctx - 8 */
19878 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19879 
19880 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19881 			if (!new_prog)
19882 				return -ENOMEM;
19883 
19884 			env->prog = prog = new_prog;
19885 			insn      = new_prog->insnsi + i + delta;
19886 			continue;
19887 		}
19888 
19889 		/* Implement bpf_get_func_ip inline. */
19890 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19891 		    insn->imm == BPF_FUNC_get_func_ip) {
19892 			/* Load IP address from ctx - 16 */
19893 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19894 
19895 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19896 			if (!new_prog)
19897 				return -ENOMEM;
19898 
19899 			env->prog = prog = new_prog;
19900 			insn      = new_prog->insnsi + i + delta;
19901 			continue;
19902 		}
19903 
19904 patch_call_imm:
19905 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19906 		/* all functions that have prototype and verifier allowed
19907 		 * programs to call them, must be real in-kernel functions
19908 		 */
19909 		if (!fn->func) {
19910 			verbose(env,
19911 				"kernel subsystem misconfigured func %s#%d\n",
19912 				func_id_name(insn->imm), insn->imm);
19913 			return -EFAULT;
19914 		}
19915 		insn->imm = fn->func - __bpf_call_base;
19916 	}
19917 
19918 	/* Since poke tab is now finalized, publish aux to tracker. */
19919 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19920 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19921 		if (!map_ptr->ops->map_poke_track ||
19922 		    !map_ptr->ops->map_poke_untrack ||
19923 		    !map_ptr->ops->map_poke_run) {
19924 			verbose(env, "bpf verifier is misconfigured\n");
19925 			return -EINVAL;
19926 		}
19927 
19928 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19929 		if (ret < 0) {
19930 			verbose(env, "tracking tail call prog failed\n");
19931 			return ret;
19932 		}
19933 	}
19934 
19935 	sort_kfunc_descs_by_imm_off(env->prog);
19936 
19937 	return 0;
19938 }
19939 
19940 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19941 					int position,
19942 					s32 stack_base,
19943 					u32 callback_subprogno,
19944 					u32 *cnt)
19945 {
19946 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19947 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19948 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19949 	int reg_loop_max = BPF_REG_6;
19950 	int reg_loop_cnt = BPF_REG_7;
19951 	int reg_loop_ctx = BPF_REG_8;
19952 
19953 	struct bpf_prog *new_prog;
19954 	u32 callback_start;
19955 	u32 call_insn_offset;
19956 	s32 callback_offset;
19957 
19958 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19959 	 * be careful to modify this code in sync.
19960 	 */
19961 	struct bpf_insn insn_buf[] = {
19962 		/* Return error and jump to the end of the patch if
19963 		 * expected number of iterations is too big.
19964 		 */
19965 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19966 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19967 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19968 		/* spill R6, R7, R8 to use these as loop vars */
19969 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19970 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19971 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19972 		/* initialize loop vars */
19973 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19974 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19975 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19976 		/* loop header,
19977 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19978 		 */
19979 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19980 		/* callback call,
19981 		 * correct callback offset would be set after patching
19982 		 */
19983 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19984 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19985 		BPF_CALL_REL(0),
19986 		/* increment loop counter */
19987 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19988 		/* jump to loop header if callback returned 0 */
19989 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19990 		/* return value of bpf_loop,
19991 		 * set R0 to the number of iterations
19992 		 */
19993 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19994 		/* restore original values of R6, R7, R8 */
19995 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19996 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19997 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19998 	};
19999 
20000 	*cnt = ARRAY_SIZE(insn_buf);
20001 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
20002 	if (!new_prog)
20003 		return new_prog;
20004 
20005 	/* callback start is known only after patching */
20006 	callback_start = env->subprog_info[callback_subprogno].start;
20007 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
20008 	call_insn_offset = position + 12;
20009 	callback_offset = callback_start - call_insn_offset - 1;
20010 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
20011 
20012 	return new_prog;
20013 }
20014 
20015 static bool is_bpf_loop_call(struct bpf_insn *insn)
20016 {
20017 	return insn->code == (BPF_JMP | BPF_CALL) &&
20018 		insn->src_reg == 0 &&
20019 		insn->imm == BPF_FUNC_loop;
20020 }
20021 
20022 /* For all sub-programs in the program (including main) check
20023  * insn_aux_data to see if there are bpf_loop calls that require
20024  * inlining. If such calls are found the calls are replaced with a
20025  * sequence of instructions produced by `inline_bpf_loop` function and
20026  * subprog stack_depth is increased by the size of 3 registers.
20027  * This stack space is used to spill values of the R6, R7, R8.  These
20028  * registers are used to store the loop bound, counter and context
20029  * variables.
20030  */
20031 static int optimize_bpf_loop(struct bpf_verifier_env *env)
20032 {
20033 	struct bpf_subprog_info *subprogs = env->subprog_info;
20034 	int i, cur_subprog = 0, cnt, delta = 0;
20035 	struct bpf_insn *insn = env->prog->insnsi;
20036 	int insn_cnt = env->prog->len;
20037 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20038 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20039 	u16 stack_depth_extra = 0;
20040 
20041 	for (i = 0; i < insn_cnt; i++, insn++) {
20042 		struct bpf_loop_inline_state *inline_state =
20043 			&env->insn_aux_data[i + delta].loop_inline_state;
20044 
20045 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
20046 			struct bpf_prog *new_prog;
20047 
20048 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
20049 			new_prog = inline_bpf_loop(env,
20050 						   i + delta,
20051 						   -(stack_depth + stack_depth_extra),
20052 						   inline_state->callback_subprogno,
20053 						   &cnt);
20054 			if (!new_prog)
20055 				return -ENOMEM;
20056 
20057 			delta     += cnt - 1;
20058 			env->prog  = new_prog;
20059 			insn       = new_prog->insnsi + i + delta;
20060 		}
20061 
20062 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20063 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20064 			cur_subprog++;
20065 			stack_depth = subprogs[cur_subprog].stack_depth;
20066 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20067 			stack_depth_extra = 0;
20068 		}
20069 	}
20070 
20071 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20072 
20073 	return 0;
20074 }
20075 
20076 static void free_states(struct bpf_verifier_env *env)
20077 {
20078 	struct bpf_verifier_state_list *sl, *sln;
20079 	int i;
20080 
20081 	sl = env->free_list;
20082 	while (sl) {
20083 		sln = sl->next;
20084 		free_verifier_state(&sl->state, false);
20085 		kfree(sl);
20086 		sl = sln;
20087 	}
20088 	env->free_list = NULL;
20089 
20090 	if (!env->explored_states)
20091 		return;
20092 
20093 	for (i = 0; i < state_htab_size(env); i++) {
20094 		sl = env->explored_states[i];
20095 
20096 		while (sl) {
20097 			sln = sl->next;
20098 			free_verifier_state(&sl->state, false);
20099 			kfree(sl);
20100 			sl = sln;
20101 		}
20102 		env->explored_states[i] = NULL;
20103 	}
20104 }
20105 
20106 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
20107 {
20108 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20109 	struct bpf_verifier_state *state;
20110 	struct bpf_reg_state *regs;
20111 	int ret, i;
20112 
20113 	env->prev_linfo = NULL;
20114 	env->pass_cnt++;
20115 
20116 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
20117 	if (!state)
20118 		return -ENOMEM;
20119 	state->curframe = 0;
20120 	state->speculative = false;
20121 	state->branches = 1;
20122 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
20123 	if (!state->frame[0]) {
20124 		kfree(state);
20125 		return -ENOMEM;
20126 	}
20127 	env->cur_state = state;
20128 	init_func_state(env, state->frame[0],
20129 			BPF_MAIN_FUNC /* callsite */,
20130 			0 /* frameno */,
20131 			subprog);
20132 	state->first_insn_idx = env->subprog_info[subprog].start;
20133 	state->last_insn_idx = -1;
20134 
20135 	regs = state->frame[state->curframe]->regs;
20136 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20137 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
20138 		if (ret)
20139 			goto out;
20140 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
20141 			if (regs[i].type == PTR_TO_CTX)
20142 				mark_reg_known_zero(env, regs, i);
20143 			else if (regs[i].type == SCALAR_VALUE)
20144 				mark_reg_unknown(env, regs, i);
20145 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
20146 				const u32 mem_size = regs[i].mem_size;
20147 
20148 				mark_reg_known_zero(env, regs, i);
20149 				regs[i].mem_size = mem_size;
20150 				regs[i].id = ++env->id_gen;
20151 			}
20152 		}
20153 		if (is_ex_cb) {
20154 			state->frame[0]->in_exception_callback_fn = true;
20155 			env->subprog_info[subprog].is_cb = true;
20156 			env->subprog_info[subprog].is_async_cb = true;
20157 			env->subprog_info[subprog].is_exception_cb = true;
20158 		}
20159 	} else {
20160 		/* 1st arg to a function */
20161 		regs[BPF_REG_1].type = PTR_TO_CTX;
20162 		mark_reg_known_zero(env, regs, BPF_REG_1);
20163 		ret = btf_check_subprog_arg_match(env, subprog, regs);
20164 		if (ret == -EFAULT)
20165 			/* unlikely verifier bug. abort.
20166 			 * ret == 0 and ret < 0 are sadly acceptable for
20167 			 * main() function due to backward compatibility.
20168 			 * Like socket filter program may be written as:
20169 			 * int bpf_prog(struct pt_regs *ctx)
20170 			 * and never dereference that ctx in the program.
20171 			 * 'struct pt_regs' is a type mismatch for socket
20172 			 * filter that should be using 'struct __sk_buff'.
20173 			 */
20174 			goto out;
20175 	}
20176 
20177 	ret = do_check(env);
20178 out:
20179 	/* check for NULL is necessary, since cur_state can be freed inside
20180 	 * do_check() under memory pressure.
20181 	 */
20182 	if (env->cur_state) {
20183 		free_verifier_state(env->cur_state, true);
20184 		env->cur_state = NULL;
20185 	}
20186 	while (!pop_stack(env, NULL, NULL, false));
20187 	if (!ret && pop_log)
20188 		bpf_vlog_reset(&env->log, 0);
20189 	free_states(env);
20190 	return ret;
20191 }
20192 
20193 /* Verify all global functions in a BPF program one by one based on their BTF.
20194  * All global functions must pass verification. Otherwise the whole program is rejected.
20195  * Consider:
20196  * int bar(int);
20197  * int foo(int f)
20198  * {
20199  *    return bar(f);
20200  * }
20201  * int bar(int b)
20202  * {
20203  *    ...
20204  * }
20205  * foo() will be verified first for R1=any_scalar_value. During verification it
20206  * will be assumed that bar() already verified successfully and call to bar()
20207  * from foo() will be checked for type match only. Later bar() will be verified
20208  * independently to check that it's safe for R1=any_scalar_value.
20209  */
20210 static int do_check_subprogs(struct bpf_verifier_env *env)
20211 {
20212 	struct bpf_prog_aux *aux = env->prog->aux;
20213 	int i, ret;
20214 
20215 	if (!aux->func_info)
20216 		return 0;
20217 
20218 	for (i = 1; i < env->subprog_cnt; i++) {
20219 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
20220 			continue;
20221 		env->insn_idx = env->subprog_info[i].start;
20222 		WARN_ON_ONCE(env->insn_idx == 0);
20223 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
20224 		if (ret) {
20225 			return ret;
20226 		} else if (env->log.level & BPF_LOG_LEVEL) {
20227 			verbose(env,
20228 				"Func#%d is safe for any args that match its prototype\n",
20229 				i);
20230 		}
20231 	}
20232 	return 0;
20233 }
20234 
20235 static int do_check_main(struct bpf_verifier_env *env)
20236 {
20237 	int ret;
20238 
20239 	env->insn_idx = 0;
20240 	ret = do_check_common(env, 0, false);
20241 	if (!ret)
20242 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20243 	return ret;
20244 }
20245 
20246 
20247 static void print_verification_stats(struct bpf_verifier_env *env)
20248 {
20249 	int i;
20250 
20251 	if (env->log.level & BPF_LOG_STATS) {
20252 		verbose(env, "verification time %lld usec\n",
20253 			div_u64(env->verification_time, 1000));
20254 		verbose(env, "stack depth ");
20255 		for (i = 0; i < env->subprog_cnt; i++) {
20256 			u32 depth = env->subprog_info[i].stack_depth;
20257 
20258 			verbose(env, "%d", depth);
20259 			if (i + 1 < env->subprog_cnt)
20260 				verbose(env, "+");
20261 		}
20262 		verbose(env, "\n");
20263 	}
20264 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20265 		"total_states %d peak_states %d mark_read %d\n",
20266 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20267 		env->max_states_per_insn, env->total_states,
20268 		env->peak_states, env->longest_mark_read_walk);
20269 }
20270 
20271 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20272 {
20273 	const struct btf_type *t, *func_proto;
20274 	const struct bpf_struct_ops *st_ops;
20275 	const struct btf_member *member;
20276 	struct bpf_prog *prog = env->prog;
20277 	u32 btf_id, member_idx;
20278 	const char *mname;
20279 
20280 	if (!prog->gpl_compatible) {
20281 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20282 		return -EINVAL;
20283 	}
20284 
20285 	btf_id = prog->aux->attach_btf_id;
20286 	st_ops = bpf_struct_ops_find(btf_id);
20287 	if (!st_ops) {
20288 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20289 			btf_id);
20290 		return -ENOTSUPP;
20291 	}
20292 
20293 	t = st_ops->type;
20294 	member_idx = prog->expected_attach_type;
20295 	if (member_idx >= btf_type_vlen(t)) {
20296 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20297 			member_idx, st_ops->name);
20298 		return -EINVAL;
20299 	}
20300 
20301 	member = &btf_type_member(t)[member_idx];
20302 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20303 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20304 					       NULL);
20305 	if (!func_proto) {
20306 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20307 			mname, member_idx, st_ops->name);
20308 		return -EINVAL;
20309 	}
20310 
20311 	if (st_ops->check_member) {
20312 		int err = st_ops->check_member(t, member, prog);
20313 
20314 		if (err) {
20315 			verbose(env, "attach to unsupported member %s of struct %s\n",
20316 				mname, st_ops->name);
20317 			return err;
20318 		}
20319 	}
20320 
20321 	prog->aux->attach_func_proto = func_proto;
20322 	prog->aux->attach_func_name = mname;
20323 	env->ops = st_ops->verifier_ops;
20324 
20325 	return 0;
20326 }
20327 #define SECURITY_PREFIX "security_"
20328 
20329 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20330 {
20331 	if (within_error_injection_list(addr) ||
20332 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20333 		return 0;
20334 
20335 	return -EINVAL;
20336 }
20337 
20338 /* list of non-sleepable functions that are otherwise on
20339  * ALLOW_ERROR_INJECTION list
20340  */
20341 BTF_SET_START(btf_non_sleepable_error_inject)
20342 /* Three functions below can be called from sleepable and non-sleepable context.
20343  * Assume non-sleepable from bpf safety point of view.
20344  */
20345 BTF_ID(func, __filemap_add_folio)
20346 BTF_ID(func, should_fail_alloc_page)
20347 BTF_ID(func, should_failslab)
20348 BTF_SET_END(btf_non_sleepable_error_inject)
20349 
20350 static int check_non_sleepable_error_inject(u32 btf_id)
20351 {
20352 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20353 }
20354 
20355 int bpf_check_attach_target(struct bpf_verifier_log *log,
20356 			    const struct bpf_prog *prog,
20357 			    const struct bpf_prog *tgt_prog,
20358 			    u32 btf_id,
20359 			    struct bpf_attach_target_info *tgt_info)
20360 {
20361 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20362 	const char prefix[] = "btf_trace_";
20363 	int ret = 0, subprog = -1, i;
20364 	const struct btf_type *t;
20365 	bool conservative = true;
20366 	const char *tname;
20367 	struct btf *btf;
20368 	long addr = 0;
20369 	struct module *mod = NULL;
20370 
20371 	if (!btf_id) {
20372 		bpf_log(log, "Tracing programs must provide btf_id\n");
20373 		return -EINVAL;
20374 	}
20375 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20376 	if (!btf) {
20377 		bpf_log(log,
20378 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20379 		return -EINVAL;
20380 	}
20381 	t = btf_type_by_id(btf, btf_id);
20382 	if (!t) {
20383 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20384 		return -EINVAL;
20385 	}
20386 	tname = btf_name_by_offset(btf, t->name_off);
20387 	if (!tname) {
20388 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20389 		return -EINVAL;
20390 	}
20391 	if (tgt_prog) {
20392 		struct bpf_prog_aux *aux = tgt_prog->aux;
20393 
20394 		if (bpf_prog_is_dev_bound(prog->aux) &&
20395 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20396 			bpf_log(log, "Target program bound device mismatch");
20397 			return -EINVAL;
20398 		}
20399 
20400 		for (i = 0; i < aux->func_info_cnt; i++)
20401 			if (aux->func_info[i].type_id == btf_id) {
20402 				subprog = i;
20403 				break;
20404 			}
20405 		if (subprog == -1) {
20406 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20407 			return -EINVAL;
20408 		}
20409 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20410 			bpf_log(log,
20411 				"%s programs cannot attach to exception callback\n",
20412 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20413 			return -EINVAL;
20414 		}
20415 		conservative = aux->func_info_aux[subprog].unreliable;
20416 		if (prog_extension) {
20417 			if (conservative) {
20418 				bpf_log(log,
20419 					"Cannot replace static functions\n");
20420 				return -EINVAL;
20421 			}
20422 			if (!prog->jit_requested) {
20423 				bpf_log(log,
20424 					"Extension programs should be JITed\n");
20425 				return -EINVAL;
20426 			}
20427 		}
20428 		if (!tgt_prog->jited) {
20429 			bpf_log(log, "Can attach to only JITed progs\n");
20430 			return -EINVAL;
20431 		}
20432 		if (tgt_prog->type == prog->type) {
20433 			/* Cannot fentry/fexit another fentry/fexit program.
20434 			 * Cannot attach program extension to another extension.
20435 			 * It's ok to attach fentry/fexit to extension program.
20436 			 */
20437 			bpf_log(log, "Cannot recursively attach\n");
20438 			return -EINVAL;
20439 		}
20440 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20441 		    prog_extension &&
20442 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20443 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20444 			/* Program extensions can extend all program types
20445 			 * except fentry/fexit. The reason is the following.
20446 			 * The fentry/fexit programs are used for performance
20447 			 * analysis, stats and can be attached to any program
20448 			 * type except themselves. When extension program is
20449 			 * replacing XDP function it is necessary to allow
20450 			 * performance analysis of all functions. Both original
20451 			 * XDP program and its program extension. Hence
20452 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20453 			 * allowed. If extending of fentry/fexit was allowed it
20454 			 * would be possible to create long call chain
20455 			 * fentry->extension->fentry->extension beyond
20456 			 * reasonable stack size. Hence extending fentry is not
20457 			 * allowed.
20458 			 */
20459 			bpf_log(log, "Cannot extend fentry/fexit\n");
20460 			return -EINVAL;
20461 		}
20462 	} else {
20463 		if (prog_extension) {
20464 			bpf_log(log, "Cannot replace kernel functions\n");
20465 			return -EINVAL;
20466 		}
20467 	}
20468 
20469 	switch (prog->expected_attach_type) {
20470 	case BPF_TRACE_RAW_TP:
20471 		if (tgt_prog) {
20472 			bpf_log(log,
20473 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20474 			return -EINVAL;
20475 		}
20476 		if (!btf_type_is_typedef(t)) {
20477 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20478 				btf_id);
20479 			return -EINVAL;
20480 		}
20481 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20482 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20483 				btf_id, tname);
20484 			return -EINVAL;
20485 		}
20486 		tname += sizeof(prefix) - 1;
20487 		t = btf_type_by_id(btf, t->type);
20488 		if (!btf_type_is_ptr(t))
20489 			/* should never happen in valid vmlinux build */
20490 			return -EINVAL;
20491 		t = btf_type_by_id(btf, t->type);
20492 		if (!btf_type_is_func_proto(t))
20493 			/* should never happen in valid vmlinux build */
20494 			return -EINVAL;
20495 
20496 		break;
20497 	case BPF_TRACE_ITER:
20498 		if (!btf_type_is_func(t)) {
20499 			bpf_log(log, "attach_btf_id %u is not a function\n",
20500 				btf_id);
20501 			return -EINVAL;
20502 		}
20503 		t = btf_type_by_id(btf, t->type);
20504 		if (!btf_type_is_func_proto(t))
20505 			return -EINVAL;
20506 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20507 		if (ret)
20508 			return ret;
20509 		break;
20510 	default:
20511 		if (!prog_extension)
20512 			return -EINVAL;
20513 		fallthrough;
20514 	case BPF_MODIFY_RETURN:
20515 	case BPF_LSM_MAC:
20516 	case BPF_LSM_CGROUP:
20517 	case BPF_TRACE_FENTRY:
20518 	case BPF_TRACE_FEXIT:
20519 		if (!btf_type_is_func(t)) {
20520 			bpf_log(log, "attach_btf_id %u is not a function\n",
20521 				btf_id);
20522 			return -EINVAL;
20523 		}
20524 		if (prog_extension &&
20525 		    btf_check_type_match(log, prog, btf, t))
20526 			return -EINVAL;
20527 		t = btf_type_by_id(btf, t->type);
20528 		if (!btf_type_is_func_proto(t))
20529 			return -EINVAL;
20530 
20531 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20532 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20533 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20534 			return -EINVAL;
20535 
20536 		if (tgt_prog && conservative)
20537 			t = NULL;
20538 
20539 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20540 		if (ret < 0)
20541 			return ret;
20542 
20543 		if (tgt_prog) {
20544 			if (subprog == 0)
20545 				addr = (long) tgt_prog->bpf_func;
20546 			else
20547 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20548 		} else {
20549 			if (btf_is_module(btf)) {
20550 				mod = btf_try_get_module(btf);
20551 				if (mod)
20552 					addr = find_kallsyms_symbol_value(mod, tname);
20553 				else
20554 					addr = 0;
20555 			} else {
20556 				addr = kallsyms_lookup_name(tname);
20557 			}
20558 			if (!addr) {
20559 				module_put(mod);
20560 				bpf_log(log,
20561 					"The address of function %s cannot be found\n",
20562 					tname);
20563 				return -ENOENT;
20564 			}
20565 		}
20566 
20567 		if (prog->aux->sleepable) {
20568 			ret = -EINVAL;
20569 			switch (prog->type) {
20570 			case BPF_PROG_TYPE_TRACING:
20571 
20572 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20573 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20574 				 */
20575 				if (!check_non_sleepable_error_inject(btf_id) &&
20576 				    within_error_injection_list(addr))
20577 					ret = 0;
20578 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20579 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20580 				 */
20581 				else {
20582 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20583 										prog);
20584 
20585 					if (flags && (*flags & KF_SLEEPABLE))
20586 						ret = 0;
20587 				}
20588 				break;
20589 			case BPF_PROG_TYPE_LSM:
20590 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20591 				 * Only some of them are sleepable.
20592 				 */
20593 				if (bpf_lsm_is_sleepable_hook(btf_id))
20594 					ret = 0;
20595 				break;
20596 			default:
20597 				break;
20598 			}
20599 			if (ret) {
20600 				module_put(mod);
20601 				bpf_log(log, "%s is not sleepable\n", tname);
20602 				return ret;
20603 			}
20604 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20605 			if (tgt_prog) {
20606 				module_put(mod);
20607 				bpf_log(log, "can't modify return codes of BPF programs\n");
20608 				return -EINVAL;
20609 			}
20610 			ret = -EINVAL;
20611 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20612 			    !check_attach_modify_return(addr, tname))
20613 				ret = 0;
20614 			if (ret) {
20615 				module_put(mod);
20616 				bpf_log(log, "%s() is not modifiable\n", tname);
20617 				return ret;
20618 			}
20619 		}
20620 
20621 		break;
20622 	}
20623 	tgt_info->tgt_addr = addr;
20624 	tgt_info->tgt_name = tname;
20625 	tgt_info->tgt_type = t;
20626 	tgt_info->tgt_mod = mod;
20627 	return 0;
20628 }
20629 
20630 BTF_SET_START(btf_id_deny)
20631 BTF_ID_UNUSED
20632 #ifdef CONFIG_SMP
20633 BTF_ID(func, migrate_disable)
20634 BTF_ID(func, migrate_enable)
20635 #endif
20636 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20637 BTF_ID(func, rcu_read_unlock_strict)
20638 #endif
20639 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20640 BTF_ID(func, preempt_count_add)
20641 BTF_ID(func, preempt_count_sub)
20642 #endif
20643 #ifdef CONFIG_PREEMPT_RCU
20644 BTF_ID(func, __rcu_read_lock)
20645 BTF_ID(func, __rcu_read_unlock)
20646 #endif
20647 BTF_SET_END(btf_id_deny)
20648 
20649 static bool can_be_sleepable(struct bpf_prog *prog)
20650 {
20651 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20652 		switch (prog->expected_attach_type) {
20653 		case BPF_TRACE_FENTRY:
20654 		case BPF_TRACE_FEXIT:
20655 		case BPF_MODIFY_RETURN:
20656 		case BPF_TRACE_ITER:
20657 			return true;
20658 		default:
20659 			return false;
20660 		}
20661 	}
20662 	return prog->type == BPF_PROG_TYPE_LSM ||
20663 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20664 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20665 }
20666 
20667 static int check_attach_btf_id(struct bpf_verifier_env *env)
20668 {
20669 	struct bpf_prog *prog = env->prog;
20670 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20671 	struct bpf_attach_target_info tgt_info = {};
20672 	u32 btf_id = prog->aux->attach_btf_id;
20673 	struct bpf_trampoline *tr;
20674 	int ret;
20675 	u64 key;
20676 
20677 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20678 		if (prog->aux->sleepable)
20679 			/* attach_btf_id checked to be zero already */
20680 			return 0;
20681 		verbose(env, "Syscall programs can only be sleepable\n");
20682 		return -EINVAL;
20683 	}
20684 
20685 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20686 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20687 		return -EINVAL;
20688 	}
20689 
20690 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20691 		return check_struct_ops_btf_id(env);
20692 
20693 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20694 	    prog->type != BPF_PROG_TYPE_LSM &&
20695 	    prog->type != BPF_PROG_TYPE_EXT)
20696 		return 0;
20697 
20698 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20699 	if (ret)
20700 		return ret;
20701 
20702 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20703 		/* to make freplace equivalent to their targets, they need to
20704 		 * inherit env->ops and expected_attach_type for the rest of the
20705 		 * verification
20706 		 */
20707 		env->ops = bpf_verifier_ops[tgt_prog->type];
20708 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20709 	}
20710 
20711 	/* store info about the attachment target that will be used later */
20712 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20713 	prog->aux->attach_func_name = tgt_info.tgt_name;
20714 	prog->aux->mod = tgt_info.tgt_mod;
20715 
20716 	if (tgt_prog) {
20717 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20718 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20719 	}
20720 
20721 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20722 		prog->aux->attach_btf_trace = true;
20723 		return 0;
20724 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20725 		if (!bpf_iter_prog_supported(prog))
20726 			return -EINVAL;
20727 		return 0;
20728 	}
20729 
20730 	if (prog->type == BPF_PROG_TYPE_LSM) {
20731 		ret = bpf_lsm_verify_prog(&env->log, prog);
20732 		if (ret < 0)
20733 			return ret;
20734 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20735 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20736 		return -EINVAL;
20737 	}
20738 
20739 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20740 	tr = bpf_trampoline_get(key, &tgt_info);
20741 	if (!tr)
20742 		return -ENOMEM;
20743 
20744 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20745 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20746 
20747 	prog->aux->dst_trampoline = tr;
20748 	return 0;
20749 }
20750 
20751 struct btf *bpf_get_btf_vmlinux(void)
20752 {
20753 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20754 		mutex_lock(&bpf_verifier_lock);
20755 		if (!btf_vmlinux)
20756 			btf_vmlinux = btf_parse_vmlinux();
20757 		mutex_unlock(&bpf_verifier_lock);
20758 	}
20759 	return btf_vmlinux;
20760 }
20761 
20762 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20763 {
20764 	u64 start_time = ktime_get_ns();
20765 	struct bpf_verifier_env *env;
20766 	int i, len, ret = -EINVAL, err;
20767 	u32 log_true_size;
20768 	bool is_priv;
20769 
20770 	/* no program is valid */
20771 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20772 		return -EINVAL;
20773 
20774 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20775 	 * allocate/free it every time bpf_check() is called
20776 	 */
20777 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20778 	if (!env)
20779 		return -ENOMEM;
20780 
20781 	env->bt.env = env;
20782 
20783 	len = (*prog)->len;
20784 	env->insn_aux_data =
20785 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20786 	ret = -ENOMEM;
20787 	if (!env->insn_aux_data)
20788 		goto err_free_env;
20789 	for (i = 0; i < len; i++)
20790 		env->insn_aux_data[i].orig_idx = i;
20791 	env->prog = *prog;
20792 	env->ops = bpf_verifier_ops[env->prog->type];
20793 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20794 	is_priv = bpf_capable();
20795 
20796 	bpf_get_btf_vmlinux();
20797 
20798 	/* grab the mutex to protect few globals used by verifier */
20799 	if (!is_priv)
20800 		mutex_lock(&bpf_verifier_lock);
20801 
20802 	/* user could have requested verbose verifier output
20803 	 * and supplied buffer to store the verification trace
20804 	 */
20805 	ret = bpf_vlog_init(&env->log, attr->log_level,
20806 			    (char __user *) (unsigned long) attr->log_buf,
20807 			    attr->log_size);
20808 	if (ret)
20809 		goto err_unlock;
20810 
20811 	mark_verifier_state_clean(env);
20812 
20813 	if (IS_ERR(btf_vmlinux)) {
20814 		/* Either gcc or pahole or kernel are broken. */
20815 		verbose(env, "in-kernel BTF is malformed\n");
20816 		ret = PTR_ERR(btf_vmlinux);
20817 		goto skip_full_check;
20818 	}
20819 
20820 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20821 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20822 		env->strict_alignment = true;
20823 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20824 		env->strict_alignment = false;
20825 
20826 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20827 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20828 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20829 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20830 	env->bpf_capable = bpf_capable();
20831 
20832 	if (is_priv)
20833 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20834 
20835 	env->explored_states = kvcalloc(state_htab_size(env),
20836 				       sizeof(struct bpf_verifier_state_list *),
20837 				       GFP_USER);
20838 	ret = -ENOMEM;
20839 	if (!env->explored_states)
20840 		goto skip_full_check;
20841 
20842 	ret = check_btf_info_early(env, attr, uattr);
20843 	if (ret < 0)
20844 		goto skip_full_check;
20845 
20846 	ret = add_subprog_and_kfunc(env);
20847 	if (ret < 0)
20848 		goto skip_full_check;
20849 
20850 	ret = check_subprogs(env);
20851 	if (ret < 0)
20852 		goto skip_full_check;
20853 
20854 	ret = check_btf_info(env, attr, uattr);
20855 	if (ret < 0)
20856 		goto skip_full_check;
20857 
20858 	ret = check_attach_btf_id(env);
20859 	if (ret)
20860 		goto skip_full_check;
20861 
20862 	ret = resolve_pseudo_ldimm64(env);
20863 	if (ret < 0)
20864 		goto skip_full_check;
20865 
20866 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20867 		ret = bpf_prog_offload_verifier_prep(env->prog);
20868 		if (ret)
20869 			goto skip_full_check;
20870 	}
20871 
20872 	ret = check_cfg(env);
20873 	if (ret < 0)
20874 		goto skip_full_check;
20875 
20876 	ret = do_check_subprogs(env);
20877 	ret = ret ?: do_check_main(env);
20878 
20879 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20880 		ret = bpf_prog_offload_finalize(env);
20881 
20882 skip_full_check:
20883 	kvfree(env->explored_states);
20884 
20885 	if (ret == 0)
20886 		ret = check_max_stack_depth(env);
20887 
20888 	/* instruction rewrites happen after this point */
20889 	if (ret == 0)
20890 		ret = optimize_bpf_loop(env);
20891 
20892 	if (is_priv) {
20893 		if (ret == 0)
20894 			opt_hard_wire_dead_code_branches(env);
20895 		if (ret == 0)
20896 			ret = opt_remove_dead_code(env);
20897 		if (ret == 0)
20898 			ret = opt_remove_nops(env);
20899 	} else {
20900 		if (ret == 0)
20901 			sanitize_dead_code(env);
20902 	}
20903 
20904 	if (ret == 0)
20905 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20906 		ret = convert_ctx_accesses(env);
20907 
20908 	if (ret == 0)
20909 		ret = do_misc_fixups(env);
20910 
20911 	/* do 32-bit optimization after insn patching has done so those patched
20912 	 * insns could be handled correctly.
20913 	 */
20914 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20915 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20916 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20917 								     : false;
20918 	}
20919 
20920 	if (ret == 0)
20921 		ret = fixup_call_args(env);
20922 
20923 	env->verification_time = ktime_get_ns() - start_time;
20924 	print_verification_stats(env);
20925 	env->prog->aux->verified_insns = env->insn_processed;
20926 
20927 	/* preserve original error even if log finalization is successful */
20928 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20929 	if (err)
20930 		ret = err;
20931 
20932 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20933 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20934 				  &log_true_size, sizeof(log_true_size))) {
20935 		ret = -EFAULT;
20936 		goto err_release_maps;
20937 	}
20938 
20939 	if (ret)
20940 		goto err_release_maps;
20941 
20942 	if (env->used_map_cnt) {
20943 		/* if program passed verifier, update used_maps in bpf_prog_info */
20944 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20945 							  sizeof(env->used_maps[0]),
20946 							  GFP_KERNEL);
20947 
20948 		if (!env->prog->aux->used_maps) {
20949 			ret = -ENOMEM;
20950 			goto err_release_maps;
20951 		}
20952 
20953 		memcpy(env->prog->aux->used_maps, env->used_maps,
20954 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20955 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20956 	}
20957 	if (env->used_btf_cnt) {
20958 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20959 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20960 							  sizeof(env->used_btfs[0]),
20961 							  GFP_KERNEL);
20962 		if (!env->prog->aux->used_btfs) {
20963 			ret = -ENOMEM;
20964 			goto err_release_maps;
20965 		}
20966 
20967 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20968 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20969 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20970 	}
20971 	if (env->used_map_cnt || env->used_btf_cnt) {
20972 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20973 		 * bpf_ld_imm64 instructions
20974 		 */
20975 		convert_pseudo_ld_imm64(env);
20976 	}
20977 
20978 	adjust_btf_func(env);
20979 
20980 err_release_maps:
20981 	if (!env->prog->aux->used_maps)
20982 		/* if we didn't copy map pointers into bpf_prog_info, release
20983 		 * them now. Otherwise free_used_maps() will release them.
20984 		 */
20985 		release_maps(env);
20986 	if (!env->prog->aux->used_btfs)
20987 		release_btfs(env);
20988 
20989 	/* extension progs temporarily inherit the attach_type of their targets
20990 	   for verification purposes, so set it back to zero before returning
20991 	 */
20992 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20993 		env->prog->expected_attach_type = 0;
20994 
20995 	*prog = env->prog;
20996 err_unlock:
20997 	if (!is_priv)
20998 		mutex_unlock(&bpf_verifier_lock);
20999 	vfree(env->insn_aux_data);
21000 err_free_env:
21001 	kfree(env);
21002 	return ret;
21003 }
21004