1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 194 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 195 static int ref_set_non_owning(struct bpf_verifier_env *env, 196 struct bpf_reg_state *reg); 197 198 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 199 { 200 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 201 } 202 203 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 206 } 207 208 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 209 const struct bpf_map *map, bool unpriv) 210 { 211 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 212 unpriv |= bpf_map_ptr_unpriv(aux); 213 aux->map_ptr_state = (unsigned long)map | 214 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 215 } 216 217 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & BPF_MAP_KEY_POISON; 220 } 221 222 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 223 { 224 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 225 } 226 227 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 230 } 231 232 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 233 { 234 bool poisoned = bpf_map_key_poisoned(aux); 235 236 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 237 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 238 } 239 240 static bool bpf_pseudo_call(const struct bpf_insn *insn) 241 { 242 return insn->code == (BPF_JMP | BPF_CALL) && 243 insn->src_reg == BPF_PSEUDO_CALL; 244 } 245 246 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 250 } 251 252 struct bpf_call_arg_meta { 253 struct bpf_map *map_ptr; 254 bool raw_mode; 255 bool pkt_access; 256 u8 release_regno; 257 int regno; 258 int access_size; 259 int mem_size; 260 u64 msize_max_value; 261 int ref_obj_id; 262 int dynptr_id; 263 int map_uid; 264 int func_id; 265 struct btf *btf; 266 u32 btf_id; 267 struct btf *ret_btf; 268 u32 ret_btf_id; 269 u32 subprogno; 270 struct btf_field *kptr_field; 271 }; 272 273 struct bpf_kfunc_call_arg_meta { 274 /* In parameters */ 275 struct btf *btf; 276 u32 func_id; 277 u32 kfunc_flags; 278 const struct btf_type *func_proto; 279 const char *func_name; 280 /* Out parameters */ 281 u32 ref_obj_id; 282 u8 release_regno; 283 bool r0_rdonly; 284 u32 ret_btf_id; 285 u64 r0_size; 286 u32 subprogno; 287 struct { 288 u64 value; 289 bool found; 290 } arg_constant; 291 struct { 292 struct btf *btf; 293 u32 btf_id; 294 } arg_obj_drop; 295 struct { 296 struct btf_field *field; 297 } arg_list_head; 298 struct { 299 struct btf_field *field; 300 } arg_rbtree_root; 301 struct { 302 enum bpf_dynptr_type type; 303 u32 id; 304 } initialized_dynptr; 305 u64 mem_size; 306 }; 307 308 struct btf *btf_vmlinux; 309 310 static DEFINE_MUTEX(bpf_verifier_lock); 311 312 static const struct bpf_line_info * 313 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 314 { 315 const struct bpf_line_info *linfo; 316 const struct bpf_prog *prog; 317 u32 i, nr_linfo; 318 319 prog = env->prog; 320 nr_linfo = prog->aux->nr_linfo; 321 322 if (!nr_linfo || insn_off >= prog->len) 323 return NULL; 324 325 linfo = prog->aux->linfo; 326 for (i = 1; i < nr_linfo; i++) 327 if (insn_off < linfo[i].insn_off) 328 break; 329 330 return &linfo[i - 1]; 331 } 332 333 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 334 va_list args) 335 { 336 unsigned int n; 337 338 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 339 340 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 341 "verifier log line truncated - local buffer too short\n"); 342 343 if (log->level == BPF_LOG_KERNEL) { 344 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 345 346 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 347 return; 348 } 349 350 n = min(log->len_total - log->len_used - 1, n); 351 log->kbuf[n] = '\0'; 352 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 353 log->len_used += n; 354 else 355 log->ubuf = NULL; 356 } 357 358 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 359 { 360 char zero = 0; 361 362 if (!bpf_verifier_log_needed(log)) 363 return; 364 365 log->len_used = new_pos; 366 if (put_user(zero, log->ubuf + new_pos)) 367 log->ubuf = NULL; 368 } 369 370 /* log_level controls verbosity level of eBPF verifier. 371 * bpf_verifier_log_write() is used to dump the verification trace to the log, 372 * so the user can figure out what's wrong with the program 373 */ 374 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 375 const char *fmt, ...) 376 { 377 va_list args; 378 379 if (!bpf_verifier_log_needed(&env->log)) 380 return; 381 382 va_start(args, fmt); 383 bpf_verifier_vlog(&env->log, fmt, args); 384 va_end(args); 385 } 386 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 387 388 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 389 { 390 struct bpf_verifier_env *env = private_data; 391 va_list args; 392 393 if (!bpf_verifier_log_needed(&env->log)) 394 return; 395 396 va_start(args, fmt); 397 bpf_verifier_vlog(&env->log, fmt, args); 398 va_end(args); 399 } 400 401 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 402 const char *fmt, ...) 403 { 404 va_list args; 405 406 if (!bpf_verifier_log_needed(log)) 407 return; 408 409 va_start(args, fmt); 410 bpf_verifier_vlog(log, fmt, args); 411 va_end(args); 412 } 413 EXPORT_SYMBOL_GPL(bpf_log); 414 415 static const char *ltrim(const char *s) 416 { 417 while (isspace(*s)) 418 s++; 419 420 return s; 421 } 422 423 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 424 u32 insn_off, 425 const char *prefix_fmt, ...) 426 { 427 const struct bpf_line_info *linfo; 428 429 if (!bpf_verifier_log_needed(&env->log)) 430 return; 431 432 linfo = find_linfo(env, insn_off); 433 if (!linfo || linfo == env->prev_linfo) 434 return; 435 436 if (prefix_fmt) { 437 va_list args; 438 439 va_start(args, prefix_fmt); 440 bpf_verifier_vlog(&env->log, prefix_fmt, args); 441 va_end(args); 442 } 443 444 verbose(env, "%s\n", 445 ltrim(btf_name_by_offset(env->prog->aux->btf, 446 linfo->line_off))); 447 448 env->prev_linfo = linfo; 449 } 450 451 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 452 struct bpf_reg_state *reg, 453 struct tnum *range, const char *ctx, 454 const char *reg_name) 455 { 456 char tn_buf[48]; 457 458 verbose(env, "At %s the register %s ", ctx, reg_name); 459 if (!tnum_is_unknown(reg->var_off)) { 460 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 461 verbose(env, "has value %s", tn_buf); 462 } else { 463 verbose(env, "has unknown scalar value"); 464 } 465 tnum_strn(tn_buf, sizeof(tn_buf), *range); 466 verbose(env, " should have been in %s\n", tn_buf); 467 } 468 469 static bool type_is_pkt_pointer(enum bpf_reg_type type) 470 { 471 type = base_type(type); 472 return type == PTR_TO_PACKET || 473 type == PTR_TO_PACKET_META; 474 } 475 476 static bool type_is_sk_pointer(enum bpf_reg_type type) 477 { 478 return type == PTR_TO_SOCKET || 479 type == PTR_TO_SOCK_COMMON || 480 type == PTR_TO_TCP_SOCK || 481 type == PTR_TO_XDP_SOCK; 482 } 483 484 static bool reg_type_not_null(enum bpf_reg_type type) 485 { 486 return type == PTR_TO_SOCKET || 487 type == PTR_TO_TCP_SOCK || 488 type == PTR_TO_MAP_VALUE || 489 type == PTR_TO_MAP_KEY || 490 type == PTR_TO_SOCK_COMMON || 491 type == PTR_TO_MEM; 492 } 493 494 static bool type_is_ptr_alloc_obj(u32 type) 495 { 496 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 497 } 498 499 static bool type_is_non_owning_ref(u32 type) 500 { 501 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 502 } 503 504 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 505 { 506 struct btf_record *rec = NULL; 507 struct btf_struct_meta *meta; 508 509 if (reg->type == PTR_TO_MAP_VALUE) { 510 rec = reg->map_ptr->record; 511 } else if (type_is_ptr_alloc_obj(reg->type)) { 512 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 513 if (meta) 514 rec = meta->record; 515 } 516 return rec; 517 } 518 519 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 520 { 521 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 522 } 523 524 static bool type_is_rdonly_mem(u32 type) 525 { 526 return type & MEM_RDONLY; 527 } 528 529 static bool type_may_be_null(u32 type) 530 { 531 return type & PTR_MAYBE_NULL; 532 } 533 534 static bool is_acquire_function(enum bpf_func_id func_id, 535 const struct bpf_map *map) 536 { 537 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 538 539 if (func_id == BPF_FUNC_sk_lookup_tcp || 540 func_id == BPF_FUNC_sk_lookup_udp || 541 func_id == BPF_FUNC_skc_lookup_tcp || 542 func_id == BPF_FUNC_ringbuf_reserve || 543 func_id == BPF_FUNC_kptr_xchg) 544 return true; 545 546 if (func_id == BPF_FUNC_map_lookup_elem && 547 (map_type == BPF_MAP_TYPE_SOCKMAP || 548 map_type == BPF_MAP_TYPE_SOCKHASH)) 549 return true; 550 551 return false; 552 } 553 554 static bool is_ptr_cast_function(enum bpf_func_id func_id) 555 { 556 return func_id == BPF_FUNC_tcp_sock || 557 func_id == BPF_FUNC_sk_fullsock || 558 func_id == BPF_FUNC_skc_to_tcp_sock || 559 func_id == BPF_FUNC_skc_to_tcp6_sock || 560 func_id == BPF_FUNC_skc_to_udp6_sock || 561 func_id == BPF_FUNC_skc_to_mptcp_sock || 562 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 563 func_id == BPF_FUNC_skc_to_tcp_request_sock; 564 } 565 566 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 567 { 568 return func_id == BPF_FUNC_dynptr_data; 569 } 570 571 static bool is_callback_calling_function(enum bpf_func_id func_id) 572 { 573 return func_id == BPF_FUNC_for_each_map_elem || 574 func_id == BPF_FUNC_timer_set_callback || 575 func_id == BPF_FUNC_find_vma || 576 func_id == BPF_FUNC_loop || 577 func_id == BPF_FUNC_user_ringbuf_drain; 578 } 579 580 static bool is_storage_get_function(enum bpf_func_id func_id) 581 { 582 return func_id == BPF_FUNC_sk_storage_get || 583 func_id == BPF_FUNC_inode_storage_get || 584 func_id == BPF_FUNC_task_storage_get || 585 func_id == BPF_FUNC_cgrp_storage_get; 586 } 587 588 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 589 const struct bpf_map *map) 590 { 591 int ref_obj_uses = 0; 592 593 if (is_ptr_cast_function(func_id)) 594 ref_obj_uses++; 595 if (is_acquire_function(func_id, map)) 596 ref_obj_uses++; 597 if (is_dynptr_ref_function(func_id)) 598 ref_obj_uses++; 599 600 return ref_obj_uses > 1; 601 } 602 603 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 604 { 605 return BPF_CLASS(insn->code) == BPF_STX && 606 BPF_MODE(insn->code) == BPF_ATOMIC && 607 insn->imm == BPF_CMPXCHG; 608 } 609 610 /* string representation of 'enum bpf_reg_type' 611 * 612 * Note that reg_type_str() can not appear more than once in a single verbose() 613 * statement. 614 */ 615 static const char *reg_type_str(struct bpf_verifier_env *env, 616 enum bpf_reg_type type) 617 { 618 char postfix[16] = {0}, prefix[64] = {0}; 619 static const char * const str[] = { 620 [NOT_INIT] = "?", 621 [SCALAR_VALUE] = "scalar", 622 [PTR_TO_CTX] = "ctx", 623 [CONST_PTR_TO_MAP] = "map_ptr", 624 [PTR_TO_MAP_VALUE] = "map_value", 625 [PTR_TO_STACK] = "fp", 626 [PTR_TO_PACKET] = "pkt", 627 [PTR_TO_PACKET_META] = "pkt_meta", 628 [PTR_TO_PACKET_END] = "pkt_end", 629 [PTR_TO_FLOW_KEYS] = "flow_keys", 630 [PTR_TO_SOCKET] = "sock", 631 [PTR_TO_SOCK_COMMON] = "sock_common", 632 [PTR_TO_TCP_SOCK] = "tcp_sock", 633 [PTR_TO_TP_BUFFER] = "tp_buffer", 634 [PTR_TO_XDP_SOCK] = "xdp_sock", 635 [PTR_TO_BTF_ID] = "ptr_", 636 [PTR_TO_MEM] = "mem", 637 [PTR_TO_BUF] = "buf", 638 [PTR_TO_FUNC] = "func", 639 [PTR_TO_MAP_KEY] = "map_key", 640 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 641 }; 642 643 if (type & PTR_MAYBE_NULL) { 644 if (base_type(type) == PTR_TO_BTF_ID) 645 strncpy(postfix, "or_null_", 16); 646 else 647 strncpy(postfix, "_or_null", 16); 648 } 649 650 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 651 type & MEM_RDONLY ? "rdonly_" : "", 652 type & MEM_RINGBUF ? "ringbuf_" : "", 653 type & MEM_USER ? "user_" : "", 654 type & MEM_PERCPU ? "percpu_" : "", 655 type & MEM_RCU ? "rcu_" : "", 656 type & PTR_UNTRUSTED ? "untrusted_" : "", 657 type & PTR_TRUSTED ? "trusted_" : "" 658 ); 659 660 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 661 prefix, str[base_type(type)], postfix); 662 return env->type_str_buf; 663 } 664 665 static char slot_type_char[] = { 666 [STACK_INVALID] = '?', 667 [STACK_SPILL] = 'r', 668 [STACK_MISC] = 'm', 669 [STACK_ZERO] = '0', 670 [STACK_DYNPTR] = 'd', 671 }; 672 673 static void print_liveness(struct bpf_verifier_env *env, 674 enum bpf_reg_liveness live) 675 { 676 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 677 verbose(env, "_"); 678 if (live & REG_LIVE_READ) 679 verbose(env, "r"); 680 if (live & REG_LIVE_WRITTEN) 681 verbose(env, "w"); 682 if (live & REG_LIVE_DONE) 683 verbose(env, "D"); 684 } 685 686 static int __get_spi(s32 off) 687 { 688 return (-off - 1) / BPF_REG_SIZE; 689 } 690 691 static struct bpf_func_state *func(struct bpf_verifier_env *env, 692 const struct bpf_reg_state *reg) 693 { 694 struct bpf_verifier_state *cur = env->cur_state; 695 696 return cur->frame[reg->frameno]; 697 } 698 699 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 700 { 701 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 702 703 /* We need to check that slots between [spi - nr_slots + 1, spi] are 704 * within [0, allocated_stack). 705 * 706 * Please note that the spi grows downwards. For example, a dynptr 707 * takes the size of two stack slots; the first slot will be at 708 * spi and the second slot will be at spi - 1. 709 */ 710 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 711 } 712 713 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 714 const char *obj_kind, int nr_slots) 715 { 716 int off, spi; 717 718 if (!tnum_is_const(reg->var_off)) { 719 verbose(env, "%s has to be at a constant offset\n", obj_kind); 720 return -EINVAL; 721 } 722 723 off = reg->off + reg->var_off.value; 724 if (off % BPF_REG_SIZE) { 725 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 726 return -EINVAL; 727 } 728 729 spi = __get_spi(off); 730 if (spi + 1 < nr_slots) { 731 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 732 return -EINVAL; 733 } 734 735 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 736 return -ERANGE; 737 return spi; 738 } 739 740 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 741 { 742 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 743 } 744 745 static const char *kernel_type_name(const struct btf* btf, u32 id) 746 { 747 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 748 } 749 750 static const char *dynptr_type_str(enum bpf_dynptr_type type) 751 { 752 switch (type) { 753 case BPF_DYNPTR_TYPE_LOCAL: 754 return "local"; 755 case BPF_DYNPTR_TYPE_RINGBUF: 756 return "ringbuf"; 757 case BPF_DYNPTR_TYPE_SKB: 758 return "skb"; 759 case BPF_DYNPTR_TYPE_XDP: 760 return "xdp"; 761 case BPF_DYNPTR_TYPE_INVALID: 762 return "<invalid>"; 763 default: 764 WARN_ONCE(1, "unknown dynptr type %d\n", type); 765 return "<unknown>"; 766 } 767 } 768 769 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 770 { 771 env->scratched_regs |= 1U << regno; 772 } 773 774 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 775 { 776 env->scratched_stack_slots |= 1ULL << spi; 777 } 778 779 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 780 { 781 return (env->scratched_regs >> regno) & 1; 782 } 783 784 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 785 { 786 return (env->scratched_stack_slots >> regno) & 1; 787 } 788 789 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 790 { 791 return env->scratched_regs || env->scratched_stack_slots; 792 } 793 794 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 795 { 796 env->scratched_regs = 0U; 797 env->scratched_stack_slots = 0ULL; 798 } 799 800 /* Used for printing the entire verifier state. */ 801 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 802 { 803 env->scratched_regs = ~0U; 804 env->scratched_stack_slots = ~0ULL; 805 } 806 807 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 808 { 809 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 810 case DYNPTR_TYPE_LOCAL: 811 return BPF_DYNPTR_TYPE_LOCAL; 812 case DYNPTR_TYPE_RINGBUF: 813 return BPF_DYNPTR_TYPE_RINGBUF; 814 case DYNPTR_TYPE_SKB: 815 return BPF_DYNPTR_TYPE_SKB; 816 case DYNPTR_TYPE_XDP: 817 return BPF_DYNPTR_TYPE_XDP; 818 default: 819 return BPF_DYNPTR_TYPE_INVALID; 820 } 821 } 822 823 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 824 { 825 switch (type) { 826 case BPF_DYNPTR_TYPE_LOCAL: 827 return DYNPTR_TYPE_LOCAL; 828 case BPF_DYNPTR_TYPE_RINGBUF: 829 return DYNPTR_TYPE_RINGBUF; 830 case BPF_DYNPTR_TYPE_SKB: 831 return DYNPTR_TYPE_SKB; 832 case BPF_DYNPTR_TYPE_XDP: 833 return DYNPTR_TYPE_XDP; 834 default: 835 return 0; 836 } 837 } 838 839 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 840 { 841 return type == BPF_DYNPTR_TYPE_RINGBUF; 842 } 843 844 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 845 enum bpf_dynptr_type type, 846 bool first_slot, int dynptr_id); 847 848 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 849 struct bpf_reg_state *reg); 850 851 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 852 struct bpf_reg_state *sreg1, 853 struct bpf_reg_state *sreg2, 854 enum bpf_dynptr_type type) 855 { 856 int id = ++env->id_gen; 857 858 __mark_dynptr_reg(sreg1, type, true, id); 859 __mark_dynptr_reg(sreg2, type, false, id); 860 } 861 862 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 863 struct bpf_reg_state *reg, 864 enum bpf_dynptr_type type) 865 { 866 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 867 } 868 869 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 870 struct bpf_func_state *state, int spi); 871 872 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 873 enum bpf_arg_type arg_type, int insn_idx) 874 { 875 struct bpf_func_state *state = func(env, reg); 876 enum bpf_dynptr_type type; 877 int spi, i, id, err; 878 879 spi = dynptr_get_spi(env, reg); 880 if (spi < 0) 881 return spi; 882 883 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 884 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 885 * to ensure that for the following example: 886 * [d1][d1][d2][d2] 887 * spi 3 2 1 0 888 * So marking spi = 2 should lead to destruction of both d1 and d2. In 889 * case they do belong to same dynptr, second call won't see slot_type 890 * as STACK_DYNPTR and will simply skip destruction. 891 */ 892 err = destroy_if_dynptr_stack_slot(env, state, spi); 893 if (err) 894 return err; 895 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 896 if (err) 897 return err; 898 899 for (i = 0; i < BPF_REG_SIZE; i++) { 900 state->stack[spi].slot_type[i] = STACK_DYNPTR; 901 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 902 } 903 904 type = arg_to_dynptr_type(arg_type); 905 if (type == BPF_DYNPTR_TYPE_INVALID) 906 return -EINVAL; 907 908 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 909 &state->stack[spi - 1].spilled_ptr, type); 910 911 if (dynptr_type_refcounted(type)) { 912 /* The id is used to track proper releasing */ 913 id = acquire_reference_state(env, insn_idx); 914 if (id < 0) 915 return id; 916 917 state->stack[spi].spilled_ptr.ref_obj_id = id; 918 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 919 } 920 921 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 922 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 923 924 return 0; 925 } 926 927 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 928 { 929 struct bpf_func_state *state = func(env, reg); 930 int spi, i; 931 932 spi = dynptr_get_spi(env, reg); 933 if (spi < 0) 934 return spi; 935 936 for (i = 0; i < BPF_REG_SIZE; i++) { 937 state->stack[spi].slot_type[i] = STACK_INVALID; 938 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 939 } 940 941 /* Invalidate any slices associated with this dynptr */ 942 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 943 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 944 945 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 946 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 947 948 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 949 * 950 * While we don't allow reading STACK_INVALID, it is still possible to 951 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 952 * helpers or insns can do partial read of that part without failing, 953 * but check_stack_range_initialized, check_stack_read_var_off, and 954 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 955 * the slot conservatively. Hence we need to prevent those liveness 956 * marking walks. 957 * 958 * This was not a problem before because STACK_INVALID is only set by 959 * default (where the default reg state has its reg->parent as NULL), or 960 * in clean_live_states after REG_LIVE_DONE (at which point 961 * mark_reg_read won't walk reg->parent chain), but not randomly during 962 * verifier state exploration (like we did above). Hence, for our case 963 * parentage chain will still be live (i.e. reg->parent may be 964 * non-NULL), while earlier reg->parent was NULL, so we need 965 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 966 * done later on reads or by mark_dynptr_read as well to unnecessary 967 * mark registers in verifier state. 968 */ 969 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 970 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 971 972 return 0; 973 } 974 975 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 976 struct bpf_reg_state *reg); 977 978 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 979 { 980 if (!env->allow_ptr_leaks) 981 __mark_reg_not_init(env, reg); 982 else 983 __mark_reg_unknown(env, reg); 984 } 985 986 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 987 struct bpf_func_state *state, int spi) 988 { 989 struct bpf_func_state *fstate; 990 struct bpf_reg_state *dreg; 991 int i, dynptr_id; 992 993 /* We always ensure that STACK_DYNPTR is never set partially, 994 * hence just checking for slot_type[0] is enough. This is 995 * different for STACK_SPILL, where it may be only set for 996 * 1 byte, so code has to use is_spilled_reg. 997 */ 998 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 999 return 0; 1000 1001 /* Reposition spi to first slot */ 1002 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1003 spi = spi + 1; 1004 1005 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1006 verbose(env, "cannot overwrite referenced dynptr\n"); 1007 return -EINVAL; 1008 } 1009 1010 mark_stack_slot_scratched(env, spi); 1011 mark_stack_slot_scratched(env, spi - 1); 1012 1013 /* Writing partially to one dynptr stack slot destroys both. */ 1014 for (i = 0; i < BPF_REG_SIZE; i++) { 1015 state->stack[spi].slot_type[i] = STACK_INVALID; 1016 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1017 } 1018 1019 dynptr_id = state->stack[spi].spilled_ptr.id; 1020 /* Invalidate any slices associated with this dynptr */ 1021 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1022 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1023 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1024 continue; 1025 if (dreg->dynptr_id == dynptr_id) 1026 mark_reg_invalid(env, dreg); 1027 })); 1028 1029 /* Do not release reference state, we are destroying dynptr on stack, 1030 * not using some helper to release it. Just reset register. 1031 */ 1032 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1033 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1034 1035 /* Same reason as unmark_stack_slots_dynptr above */ 1036 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1037 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1038 1039 return 0; 1040 } 1041 1042 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1043 { 1044 int spi; 1045 1046 if (reg->type == CONST_PTR_TO_DYNPTR) 1047 return false; 1048 1049 spi = dynptr_get_spi(env, reg); 1050 1051 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1052 * error because this just means the stack state hasn't been updated yet. 1053 * We will do check_mem_access to check and update stack bounds later. 1054 */ 1055 if (spi < 0 && spi != -ERANGE) 1056 return false; 1057 1058 /* We don't need to check if the stack slots are marked by previous 1059 * dynptr initializations because we allow overwriting existing unreferenced 1060 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1061 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1062 * touching are completely destructed before we reinitialize them for a new 1063 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1064 * instead of delaying it until the end where the user will get "Unreleased 1065 * reference" error. 1066 */ 1067 return true; 1068 } 1069 1070 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1071 { 1072 struct bpf_func_state *state = func(env, reg); 1073 int i, spi; 1074 1075 /* This already represents first slot of initialized bpf_dynptr. 1076 * 1077 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1078 * check_func_arg_reg_off's logic, so we don't need to check its 1079 * offset and alignment. 1080 */ 1081 if (reg->type == CONST_PTR_TO_DYNPTR) 1082 return true; 1083 1084 spi = dynptr_get_spi(env, reg); 1085 if (spi < 0) 1086 return false; 1087 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1088 return false; 1089 1090 for (i = 0; i < BPF_REG_SIZE; i++) { 1091 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1092 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1093 return false; 1094 } 1095 1096 return true; 1097 } 1098 1099 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1100 enum bpf_arg_type arg_type) 1101 { 1102 struct bpf_func_state *state = func(env, reg); 1103 enum bpf_dynptr_type dynptr_type; 1104 int spi; 1105 1106 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1107 if (arg_type == ARG_PTR_TO_DYNPTR) 1108 return true; 1109 1110 dynptr_type = arg_to_dynptr_type(arg_type); 1111 if (reg->type == CONST_PTR_TO_DYNPTR) { 1112 return reg->dynptr.type == dynptr_type; 1113 } else { 1114 spi = dynptr_get_spi(env, reg); 1115 if (spi < 0) 1116 return false; 1117 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1118 } 1119 } 1120 1121 /* The reg state of a pointer or a bounded scalar was saved when 1122 * it was spilled to the stack. 1123 */ 1124 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1125 { 1126 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1127 } 1128 1129 static void scrub_spilled_slot(u8 *stype) 1130 { 1131 if (*stype != STACK_INVALID) 1132 *stype = STACK_MISC; 1133 } 1134 1135 static void print_verifier_state(struct bpf_verifier_env *env, 1136 const struct bpf_func_state *state, 1137 bool print_all) 1138 { 1139 const struct bpf_reg_state *reg; 1140 enum bpf_reg_type t; 1141 int i; 1142 1143 if (state->frameno) 1144 verbose(env, " frame%d:", state->frameno); 1145 for (i = 0; i < MAX_BPF_REG; i++) { 1146 reg = &state->regs[i]; 1147 t = reg->type; 1148 if (t == NOT_INIT) 1149 continue; 1150 if (!print_all && !reg_scratched(env, i)) 1151 continue; 1152 verbose(env, " R%d", i); 1153 print_liveness(env, reg->live); 1154 verbose(env, "="); 1155 if (t == SCALAR_VALUE && reg->precise) 1156 verbose(env, "P"); 1157 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1158 tnum_is_const(reg->var_off)) { 1159 /* reg->off should be 0 for SCALAR_VALUE */ 1160 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1161 verbose(env, "%lld", reg->var_off.value + reg->off); 1162 } else { 1163 const char *sep = ""; 1164 1165 verbose(env, "%s", reg_type_str(env, t)); 1166 if (base_type(t) == PTR_TO_BTF_ID) 1167 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 1168 verbose(env, "("); 1169 /* 1170 * _a stands for append, was shortened to avoid multiline statements below. 1171 * This macro is used to output a comma separated list of attributes. 1172 */ 1173 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1174 1175 if (reg->id) 1176 verbose_a("id=%d", reg->id); 1177 if (reg->ref_obj_id) 1178 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1179 if (type_is_non_owning_ref(reg->type)) 1180 verbose_a("%s", "non_own_ref"); 1181 if (t != SCALAR_VALUE) 1182 verbose_a("off=%d", reg->off); 1183 if (type_is_pkt_pointer(t)) 1184 verbose_a("r=%d", reg->range); 1185 else if (base_type(t) == CONST_PTR_TO_MAP || 1186 base_type(t) == PTR_TO_MAP_KEY || 1187 base_type(t) == PTR_TO_MAP_VALUE) 1188 verbose_a("ks=%d,vs=%d", 1189 reg->map_ptr->key_size, 1190 reg->map_ptr->value_size); 1191 if (tnum_is_const(reg->var_off)) { 1192 /* Typically an immediate SCALAR_VALUE, but 1193 * could be a pointer whose offset is too big 1194 * for reg->off 1195 */ 1196 verbose_a("imm=%llx", reg->var_off.value); 1197 } else { 1198 if (reg->smin_value != reg->umin_value && 1199 reg->smin_value != S64_MIN) 1200 verbose_a("smin=%lld", (long long)reg->smin_value); 1201 if (reg->smax_value != reg->umax_value && 1202 reg->smax_value != S64_MAX) 1203 verbose_a("smax=%lld", (long long)reg->smax_value); 1204 if (reg->umin_value != 0) 1205 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1206 if (reg->umax_value != U64_MAX) 1207 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1208 if (!tnum_is_unknown(reg->var_off)) { 1209 char tn_buf[48]; 1210 1211 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1212 verbose_a("var_off=%s", tn_buf); 1213 } 1214 if (reg->s32_min_value != reg->smin_value && 1215 reg->s32_min_value != S32_MIN) 1216 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1217 if (reg->s32_max_value != reg->smax_value && 1218 reg->s32_max_value != S32_MAX) 1219 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1220 if (reg->u32_min_value != reg->umin_value && 1221 reg->u32_min_value != U32_MIN) 1222 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1223 if (reg->u32_max_value != reg->umax_value && 1224 reg->u32_max_value != U32_MAX) 1225 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1226 } 1227 #undef verbose_a 1228 1229 verbose(env, ")"); 1230 } 1231 } 1232 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1233 char types_buf[BPF_REG_SIZE + 1]; 1234 bool valid = false; 1235 int j; 1236 1237 for (j = 0; j < BPF_REG_SIZE; j++) { 1238 if (state->stack[i].slot_type[j] != STACK_INVALID) 1239 valid = true; 1240 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1241 } 1242 types_buf[BPF_REG_SIZE] = 0; 1243 if (!valid) 1244 continue; 1245 if (!print_all && !stack_slot_scratched(env, i)) 1246 continue; 1247 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1248 case STACK_SPILL: 1249 reg = &state->stack[i].spilled_ptr; 1250 t = reg->type; 1251 1252 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1253 print_liveness(env, reg->live); 1254 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1255 if (t == SCALAR_VALUE && reg->precise) 1256 verbose(env, "P"); 1257 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1258 verbose(env, "%lld", reg->var_off.value + reg->off); 1259 break; 1260 case STACK_DYNPTR: 1261 i += BPF_DYNPTR_NR_SLOTS - 1; 1262 reg = &state->stack[i].spilled_ptr; 1263 1264 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1265 print_liveness(env, reg->live); 1266 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1267 if (reg->ref_obj_id) 1268 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1269 break; 1270 case STACK_MISC: 1271 case STACK_ZERO: 1272 default: 1273 reg = &state->stack[i].spilled_ptr; 1274 1275 for (j = 0; j < BPF_REG_SIZE; j++) 1276 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1277 types_buf[BPF_REG_SIZE] = 0; 1278 1279 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1280 print_liveness(env, reg->live); 1281 verbose(env, "=%s", types_buf); 1282 break; 1283 } 1284 } 1285 if (state->acquired_refs && state->refs[0].id) { 1286 verbose(env, " refs=%d", state->refs[0].id); 1287 for (i = 1; i < state->acquired_refs; i++) 1288 if (state->refs[i].id) 1289 verbose(env, ",%d", state->refs[i].id); 1290 } 1291 if (state->in_callback_fn) 1292 verbose(env, " cb"); 1293 if (state->in_async_callback_fn) 1294 verbose(env, " async_cb"); 1295 verbose(env, "\n"); 1296 mark_verifier_state_clean(env); 1297 } 1298 1299 static inline u32 vlog_alignment(u32 pos) 1300 { 1301 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1302 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1303 } 1304 1305 static void print_insn_state(struct bpf_verifier_env *env, 1306 const struct bpf_func_state *state) 1307 { 1308 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1309 /* remove new line character */ 1310 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1311 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1312 } else { 1313 verbose(env, "%d:", env->insn_idx); 1314 } 1315 print_verifier_state(env, state, false); 1316 } 1317 1318 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1319 * small to hold src. This is different from krealloc since we don't want to preserve 1320 * the contents of dst. 1321 * 1322 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1323 * not be allocated. 1324 */ 1325 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1326 { 1327 size_t alloc_bytes; 1328 void *orig = dst; 1329 size_t bytes; 1330 1331 if (ZERO_OR_NULL_PTR(src)) 1332 goto out; 1333 1334 if (unlikely(check_mul_overflow(n, size, &bytes))) 1335 return NULL; 1336 1337 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1338 dst = krealloc(orig, alloc_bytes, flags); 1339 if (!dst) { 1340 kfree(orig); 1341 return NULL; 1342 } 1343 1344 memcpy(dst, src, bytes); 1345 out: 1346 return dst ? dst : ZERO_SIZE_PTR; 1347 } 1348 1349 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1350 * small to hold new_n items. new items are zeroed out if the array grows. 1351 * 1352 * Contrary to krealloc_array, does not free arr if new_n is zero. 1353 */ 1354 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1355 { 1356 size_t alloc_size; 1357 void *new_arr; 1358 1359 if (!new_n || old_n == new_n) 1360 goto out; 1361 1362 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1363 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1364 if (!new_arr) { 1365 kfree(arr); 1366 return NULL; 1367 } 1368 arr = new_arr; 1369 1370 if (new_n > old_n) 1371 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1372 1373 out: 1374 return arr ? arr : ZERO_SIZE_PTR; 1375 } 1376 1377 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1378 { 1379 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1380 sizeof(struct bpf_reference_state), GFP_KERNEL); 1381 if (!dst->refs) 1382 return -ENOMEM; 1383 1384 dst->acquired_refs = src->acquired_refs; 1385 return 0; 1386 } 1387 1388 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1389 { 1390 size_t n = src->allocated_stack / BPF_REG_SIZE; 1391 1392 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1393 GFP_KERNEL); 1394 if (!dst->stack) 1395 return -ENOMEM; 1396 1397 dst->allocated_stack = src->allocated_stack; 1398 return 0; 1399 } 1400 1401 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1402 { 1403 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1404 sizeof(struct bpf_reference_state)); 1405 if (!state->refs) 1406 return -ENOMEM; 1407 1408 state->acquired_refs = n; 1409 return 0; 1410 } 1411 1412 static int grow_stack_state(struct bpf_func_state *state, int size) 1413 { 1414 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1415 1416 if (old_n >= n) 1417 return 0; 1418 1419 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1420 if (!state->stack) 1421 return -ENOMEM; 1422 1423 state->allocated_stack = size; 1424 return 0; 1425 } 1426 1427 /* Acquire a pointer id from the env and update the state->refs to include 1428 * this new pointer reference. 1429 * On success, returns a valid pointer id to associate with the register 1430 * On failure, returns a negative errno. 1431 */ 1432 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1433 { 1434 struct bpf_func_state *state = cur_func(env); 1435 int new_ofs = state->acquired_refs; 1436 int id, err; 1437 1438 err = resize_reference_state(state, state->acquired_refs + 1); 1439 if (err) 1440 return err; 1441 id = ++env->id_gen; 1442 state->refs[new_ofs].id = id; 1443 state->refs[new_ofs].insn_idx = insn_idx; 1444 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1445 1446 return id; 1447 } 1448 1449 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1450 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1451 { 1452 int i, last_idx; 1453 1454 last_idx = state->acquired_refs - 1; 1455 for (i = 0; i < state->acquired_refs; i++) { 1456 if (state->refs[i].id == ptr_id) { 1457 /* Cannot release caller references in callbacks */ 1458 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1459 return -EINVAL; 1460 if (last_idx && i != last_idx) 1461 memcpy(&state->refs[i], &state->refs[last_idx], 1462 sizeof(*state->refs)); 1463 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1464 state->acquired_refs--; 1465 return 0; 1466 } 1467 } 1468 return -EINVAL; 1469 } 1470 1471 static void free_func_state(struct bpf_func_state *state) 1472 { 1473 if (!state) 1474 return; 1475 kfree(state->refs); 1476 kfree(state->stack); 1477 kfree(state); 1478 } 1479 1480 static void clear_jmp_history(struct bpf_verifier_state *state) 1481 { 1482 kfree(state->jmp_history); 1483 state->jmp_history = NULL; 1484 state->jmp_history_cnt = 0; 1485 } 1486 1487 static void free_verifier_state(struct bpf_verifier_state *state, 1488 bool free_self) 1489 { 1490 int i; 1491 1492 for (i = 0; i <= state->curframe; i++) { 1493 free_func_state(state->frame[i]); 1494 state->frame[i] = NULL; 1495 } 1496 clear_jmp_history(state); 1497 if (free_self) 1498 kfree(state); 1499 } 1500 1501 /* copy verifier state from src to dst growing dst stack space 1502 * when necessary to accommodate larger src stack 1503 */ 1504 static int copy_func_state(struct bpf_func_state *dst, 1505 const struct bpf_func_state *src) 1506 { 1507 int err; 1508 1509 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1510 err = copy_reference_state(dst, src); 1511 if (err) 1512 return err; 1513 return copy_stack_state(dst, src); 1514 } 1515 1516 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1517 const struct bpf_verifier_state *src) 1518 { 1519 struct bpf_func_state *dst; 1520 int i, err; 1521 1522 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1523 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1524 GFP_USER); 1525 if (!dst_state->jmp_history) 1526 return -ENOMEM; 1527 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1528 1529 /* if dst has more stack frames then src frame, free them */ 1530 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1531 free_func_state(dst_state->frame[i]); 1532 dst_state->frame[i] = NULL; 1533 } 1534 dst_state->speculative = src->speculative; 1535 dst_state->active_rcu_lock = src->active_rcu_lock; 1536 dst_state->curframe = src->curframe; 1537 dst_state->active_lock.ptr = src->active_lock.ptr; 1538 dst_state->active_lock.id = src->active_lock.id; 1539 dst_state->branches = src->branches; 1540 dst_state->parent = src->parent; 1541 dst_state->first_insn_idx = src->first_insn_idx; 1542 dst_state->last_insn_idx = src->last_insn_idx; 1543 for (i = 0; i <= src->curframe; i++) { 1544 dst = dst_state->frame[i]; 1545 if (!dst) { 1546 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1547 if (!dst) 1548 return -ENOMEM; 1549 dst_state->frame[i] = dst; 1550 } 1551 err = copy_func_state(dst, src->frame[i]); 1552 if (err) 1553 return err; 1554 } 1555 return 0; 1556 } 1557 1558 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1559 { 1560 while (st) { 1561 u32 br = --st->branches; 1562 1563 /* WARN_ON(br > 1) technically makes sense here, 1564 * but see comment in push_stack(), hence: 1565 */ 1566 WARN_ONCE((int)br < 0, 1567 "BUG update_branch_counts:branches_to_explore=%d\n", 1568 br); 1569 if (br) 1570 break; 1571 st = st->parent; 1572 } 1573 } 1574 1575 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1576 int *insn_idx, bool pop_log) 1577 { 1578 struct bpf_verifier_state *cur = env->cur_state; 1579 struct bpf_verifier_stack_elem *elem, *head = env->head; 1580 int err; 1581 1582 if (env->head == NULL) 1583 return -ENOENT; 1584 1585 if (cur) { 1586 err = copy_verifier_state(cur, &head->st); 1587 if (err) 1588 return err; 1589 } 1590 if (pop_log) 1591 bpf_vlog_reset(&env->log, head->log_pos); 1592 if (insn_idx) 1593 *insn_idx = head->insn_idx; 1594 if (prev_insn_idx) 1595 *prev_insn_idx = head->prev_insn_idx; 1596 elem = head->next; 1597 free_verifier_state(&head->st, false); 1598 kfree(head); 1599 env->head = elem; 1600 env->stack_size--; 1601 return 0; 1602 } 1603 1604 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1605 int insn_idx, int prev_insn_idx, 1606 bool speculative) 1607 { 1608 struct bpf_verifier_state *cur = env->cur_state; 1609 struct bpf_verifier_stack_elem *elem; 1610 int err; 1611 1612 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1613 if (!elem) 1614 goto err; 1615 1616 elem->insn_idx = insn_idx; 1617 elem->prev_insn_idx = prev_insn_idx; 1618 elem->next = env->head; 1619 elem->log_pos = env->log.len_used; 1620 env->head = elem; 1621 env->stack_size++; 1622 err = copy_verifier_state(&elem->st, cur); 1623 if (err) 1624 goto err; 1625 elem->st.speculative |= speculative; 1626 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1627 verbose(env, "The sequence of %d jumps is too complex.\n", 1628 env->stack_size); 1629 goto err; 1630 } 1631 if (elem->st.parent) { 1632 ++elem->st.parent->branches; 1633 /* WARN_ON(branches > 2) technically makes sense here, 1634 * but 1635 * 1. speculative states will bump 'branches' for non-branch 1636 * instructions 1637 * 2. is_state_visited() heuristics may decide not to create 1638 * a new state for a sequence of branches and all such current 1639 * and cloned states will be pointing to a single parent state 1640 * which might have large 'branches' count. 1641 */ 1642 } 1643 return &elem->st; 1644 err: 1645 free_verifier_state(env->cur_state, true); 1646 env->cur_state = NULL; 1647 /* pop all elements and return */ 1648 while (!pop_stack(env, NULL, NULL, false)); 1649 return NULL; 1650 } 1651 1652 #define CALLER_SAVED_REGS 6 1653 static const int caller_saved[CALLER_SAVED_REGS] = { 1654 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1655 }; 1656 1657 /* This helper doesn't clear reg->id */ 1658 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1659 { 1660 reg->var_off = tnum_const(imm); 1661 reg->smin_value = (s64)imm; 1662 reg->smax_value = (s64)imm; 1663 reg->umin_value = imm; 1664 reg->umax_value = imm; 1665 1666 reg->s32_min_value = (s32)imm; 1667 reg->s32_max_value = (s32)imm; 1668 reg->u32_min_value = (u32)imm; 1669 reg->u32_max_value = (u32)imm; 1670 } 1671 1672 /* Mark the unknown part of a register (variable offset or scalar value) as 1673 * known to have the value @imm. 1674 */ 1675 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1676 { 1677 /* Clear off and union(map_ptr, range) */ 1678 memset(((u8 *)reg) + sizeof(reg->type), 0, 1679 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1680 reg->id = 0; 1681 reg->ref_obj_id = 0; 1682 ___mark_reg_known(reg, imm); 1683 } 1684 1685 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1686 { 1687 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1688 reg->s32_min_value = (s32)imm; 1689 reg->s32_max_value = (s32)imm; 1690 reg->u32_min_value = (u32)imm; 1691 reg->u32_max_value = (u32)imm; 1692 } 1693 1694 /* Mark the 'variable offset' part of a register as zero. This should be 1695 * used only on registers holding a pointer type. 1696 */ 1697 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1698 { 1699 __mark_reg_known(reg, 0); 1700 } 1701 1702 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1703 { 1704 __mark_reg_known(reg, 0); 1705 reg->type = SCALAR_VALUE; 1706 } 1707 1708 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1709 struct bpf_reg_state *regs, u32 regno) 1710 { 1711 if (WARN_ON(regno >= MAX_BPF_REG)) { 1712 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1713 /* Something bad happened, let's kill all regs */ 1714 for (regno = 0; regno < MAX_BPF_REG; regno++) 1715 __mark_reg_not_init(env, regs + regno); 1716 return; 1717 } 1718 __mark_reg_known_zero(regs + regno); 1719 } 1720 1721 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1722 bool first_slot, int dynptr_id) 1723 { 1724 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1725 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1726 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1727 */ 1728 __mark_reg_known_zero(reg); 1729 reg->type = CONST_PTR_TO_DYNPTR; 1730 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1731 reg->id = dynptr_id; 1732 reg->dynptr.type = type; 1733 reg->dynptr.first_slot = first_slot; 1734 } 1735 1736 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1737 { 1738 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1739 const struct bpf_map *map = reg->map_ptr; 1740 1741 if (map->inner_map_meta) { 1742 reg->type = CONST_PTR_TO_MAP; 1743 reg->map_ptr = map->inner_map_meta; 1744 /* transfer reg's id which is unique for every map_lookup_elem 1745 * as UID of the inner map. 1746 */ 1747 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1748 reg->map_uid = reg->id; 1749 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1750 reg->type = PTR_TO_XDP_SOCK; 1751 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1752 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1753 reg->type = PTR_TO_SOCKET; 1754 } else { 1755 reg->type = PTR_TO_MAP_VALUE; 1756 } 1757 return; 1758 } 1759 1760 reg->type &= ~PTR_MAYBE_NULL; 1761 } 1762 1763 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1764 struct btf_field_graph_root *ds_head) 1765 { 1766 __mark_reg_known_zero(®s[regno]); 1767 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1768 regs[regno].btf = ds_head->btf; 1769 regs[regno].btf_id = ds_head->value_btf_id; 1770 regs[regno].off = ds_head->node_offset; 1771 } 1772 1773 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1774 { 1775 return type_is_pkt_pointer(reg->type); 1776 } 1777 1778 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1779 { 1780 return reg_is_pkt_pointer(reg) || 1781 reg->type == PTR_TO_PACKET_END; 1782 } 1783 1784 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1785 { 1786 return base_type(reg->type) == PTR_TO_MEM && 1787 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1788 } 1789 1790 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1791 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1792 enum bpf_reg_type which) 1793 { 1794 /* The register can already have a range from prior markings. 1795 * This is fine as long as it hasn't been advanced from its 1796 * origin. 1797 */ 1798 return reg->type == which && 1799 reg->id == 0 && 1800 reg->off == 0 && 1801 tnum_equals_const(reg->var_off, 0); 1802 } 1803 1804 /* Reset the min/max bounds of a register */ 1805 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1806 { 1807 reg->smin_value = S64_MIN; 1808 reg->smax_value = S64_MAX; 1809 reg->umin_value = 0; 1810 reg->umax_value = U64_MAX; 1811 1812 reg->s32_min_value = S32_MIN; 1813 reg->s32_max_value = S32_MAX; 1814 reg->u32_min_value = 0; 1815 reg->u32_max_value = U32_MAX; 1816 } 1817 1818 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1819 { 1820 reg->smin_value = S64_MIN; 1821 reg->smax_value = S64_MAX; 1822 reg->umin_value = 0; 1823 reg->umax_value = U64_MAX; 1824 } 1825 1826 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1827 { 1828 reg->s32_min_value = S32_MIN; 1829 reg->s32_max_value = S32_MAX; 1830 reg->u32_min_value = 0; 1831 reg->u32_max_value = U32_MAX; 1832 } 1833 1834 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1835 { 1836 struct tnum var32_off = tnum_subreg(reg->var_off); 1837 1838 /* min signed is max(sign bit) | min(other bits) */ 1839 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1840 var32_off.value | (var32_off.mask & S32_MIN)); 1841 /* max signed is min(sign bit) | max(other bits) */ 1842 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1843 var32_off.value | (var32_off.mask & S32_MAX)); 1844 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1845 reg->u32_max_value = min(reg->u32_max_value, 1846 (u32)(var32_off.value | var32_off.mask)); 1847 } 1848 1849 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1850 { 1851 /* min signed is max(sign bit) | min(other bits) */ 1852 reg->smin_value = max_t(s64, reg->smin_value, 1853 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1854 /* max signed is min(sign bit) | max(other bits) */ 1855 reg->smax_value = min_t(s64, reg->smax_value, 1856 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1857 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1858 reg->umax_value = min(reg->umax_value, 1859 reg->var_off.value | reg->var_off.mask); 1860 } 1861 1862 static void __update_reg_bounds(struct bpf_reg_state *reg) 1863 { 1864 __update_reg32_bounds(reg); 1865 __update_reg64_bounds(reg); 1866 } 1867 1868 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1869 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1870 { 1871 /* Learn sign from signed bounds. 1872 * If we cannot cross the sign boundary, then signed and unsigned bounds 1873 * are the same, so combine. This works even in the negative case, e.g. 1874 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1875 */ 1876 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1877 reg->s32_min_value = reg->u32_min_value = 1878 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1879 reg->s32_max_value = reg->u32_max_value = 1880 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1881 return; 1882 } 1883 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1884 * boundary, so we must be careful. 1885 */ 1886 if ((s32)reg->u32_max_value >= 0) { 1887 /* Positive. We can't learn anything from the smin, but smax 1888 * is positive, hence safe. 1889 */ 1890 reg->s32_min_value = reg->u32_min_value; 1891 reg->s32_max_value = reg->u32_max_value = 1892 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1893 } else if ((s32)reg->u32_min_value < 0) { 1894 /* Negative. We can't learn anything from the smax, but smin 1895 * is negative, hence safe. 1896 */ 1897 reg->s32_min_value = reg->u32_min_value = 1898 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1899 reg->s32_max_value = reg->u32_max_value; 1900 } 1901 } 1902 1903 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1904 { 1905 /* Learn sign from signed bounds. 1906 * If we cannot cross the sign boundary, then signed and unsigned bounds 1907 * are the same, so combine. This works even in the negative case, e.g. 1908 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1909 */ 1910 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1911 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1912 reg->umin_value); 1913 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1914 reg->umax_value); 1915 return; 1916 } 1917 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1918 * boundary, so we must be careful. 1919 */ 1920 if ((s64)reg->umax_value >= 0) { 1921 /* Positive. We can't learn anything from the smin, but smax 1922 * is positive, hence safe. 1923 */ 1924 reg->smin_value = reg->umin_value; 1925 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1926 reg->umax_value); 1927 } else if ((s64)reg->umin_value < 0) { 1928 /* Negative. We can't learn anything from the smax, but smin 1929 * is negative, hence safe. 1930 */ 1931 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1932 reg->umin_value); 1933 reg->smax_value = reg->umax_value; 1934 } 1935 } 1936 1937 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1938 { 1939 __reg32_deduce_bounds(reg); 1940 __reg64_deduce_bounds(reg); 1941 } 1942 1943 /* Attempts to improve var_off based on unsigned min/max information */ 1944 static void __reg_bound_offset(struct bpf_reg_state *reg) 1945 { 1946 struct tnum var64_off = tnum_intersect(reg->var_off, 1947 tnum_range(reg->umin_value, 1948 reg->umax_value)); 1949 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1950 tnum_range(reg->u32_min_value, 1951 reg->u32_max_value)); 1952 1953 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1954 } 1955 1956 static void reg_bounds_sync(struct bpf_reg_state *reg) 1957 { 1958 /* We might have learned new bounds from the var_off. */ 1959 __update_reg_bounds(reg); 1960 /* We might have learned something about the sign bit. */ 1961 __reg_deduce_bounds(reg); 1962 /* We might have learned some bits from the bounds. */ 1963 __reg_bound_offset(reg); 1964 /* Intersecting with the old var_off might have improved our bounds 1965 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1966 * then new var_off is (0; 0x7f...fc) which improves our umax. 1967 */ 1968 __update_reg_bounds(reg); 1969 } 1970 1971 static bool __reg32_bound_s64(s32 a) 1972 { 1973 return a >= 0 && a <= S32_MAX; 1974 } 1975 1976 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1977 { 1978 reg->umin_value = reg->u32_min_value; 1979 reg->umax_value = reg->u32_max_value; 1980 1981 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1982 * be positive otherwise set to worse case bounds and refine later 1983 * from tnum. 1984 */ 1985 if (__reg32_bound_s64(reg->s32_min_value) && 1986 __reg32_bound_s64(reg->s32_max_value)) { 1987 reg->smin_value = reg->s32_min_value; 1988 reg->smax_value = reg->s32_max_value; 1989 } else { 1990 reg->smin_value = 0; 1991 reg->smax_value = U32_MAX; 1992 } 1993 } 1994 1995 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1996 { 1997 /* special case when 64-bit register has upper 32-bit register 1998 * zeroed. Typically happens after zext or <<32, >>32 sequence 1999 * allowing us to use 32-bit bounds directly, 2000 */ 2001 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2002 __reg_assign_32_into_64(reg); 2003 } else { 2004 /* Otherwise the best we can do is push lower 32bit known and 2005 * unknown bits into register (var_off set from jmp logic) 2006 * then learn as much as possible from the 64-bit tnum 2007 * known and unknown bits. The previous smin/smax bounds are 2008 * invalid here because of jmp32 compare so mark them unknown 2009 * so they do not impact tnum bounds calculation. 2010 */ 2011 __mark_reg64_unbounded(reg); 2012 } 2013 reg_bounds_sync(reg); 2014 } 2015 2016 static bool __reg64_bound_s32(s64 a) 2017 { 2018 return a >= S32_MIN && a <= S32_MAX; 2019 } 2020 2021 static bool __reg64_bound_u32(u64 a) 2022 { 2023 return a >= U32_MIN && a <= U32_MAX; 2024 } 2025 2026 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2027 { 2028 __mark_reg32_unbounded(reg); 2029 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2030 reg->s32_min_value = (s32)reg->smin_value; 2031 reg->s32_max_value = (s32)reg->smax_value; 2032 } 2033 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2034 reg->u32_min_value = (u32)reg->umin_value; 2035 reg->u32_max_value = (u32)reg->umax_value; 2036 } 2037 reg_bounds_sync(reg); 2038 } 2039 2040 /* Mark a register as having a completely unknown (scalar) value. */ 2041 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2042 struct bpf_reg_state *reg) 2043 { 2044 /* 2045 * Clear type, off, and union(map_ptr, range) and 2046 * padding between 'type' and union 2047 */ 2048 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2049 reg->type = SCALAR_VALUE; 2050 reg->id = 0; 2051 reg->ref_obj_id = 0; 2052 reg->var_off = tnum_unknown; 2053 reg->frameno = 0; 2054 reg->precise = !env->bpf_capable; 2055 __mark_reg_unbounded(reg); 2056 } 2057 2058 static void mark_reg_unknown(struct bpf_verifier_env *env, 2059 struct bpf_reg_state *regs, u32 regno) 2060 { 2061 if (WARN_ON(regno >= MAX_BPF_REG)) { 2062 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2063 /* Something bad happened, let's kill all regs except FP */ 2064 for (regno = 0; regno < BPF_REG_FP; regno++) 2065 __mark_reg_not_init(env, regs + regno); 2066 return; 2067 } 2068 __mark_reg_unknown(env, regs + regno); 2069 } 2070 2071 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2072 struct bpf_reg_state *reg) 2073 { 2074 __mark_reg_unknown(env, reg); 2075 reg->type = NOT_INIT; 2076 } 2077 2078 static void mark_reg_not_init(struct bpf_verifier_env *env, 2079 struct bpf_reg_state *regs, u32 regno) 2080 { 2081 if (WARN_ON(regno >= MAX_BPF_REG)) { 2082 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2083 /* Something bad happened, let's kill all regs except FP */ 2084 for (regno = 0; regno < BPF_REG_FP; regno++) 2085 __mark_reg_not_init(env, regs + regno); 2086 return; 2087 } 2088 __mark_reg_not_init(env, regs + regno); 2089 } 2090 2091 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2092 struct bpf_reg_state *regs, u32 regno, 2093 enum bpf_reg_type reg_type, 2094 struct btf *btf, u32 btf_id, 2095 enum bpf_type_flag flag) 2096 { 2097 if (reg_type == SCALAR_VALUE) { 2098 mark_reg_unknown(env, regs, regno); 2099 return; 2100 } 2101 mark_reg_known_zero(env, regs, regno); 2102 regs[regno].type = PTR_TO_BTF_ID | flag; 2103 regs[regno].btf = btf; 2104 regs[regno].btf_id = btf_id; 2105 } 2106 2107 #define DEF_NOT_SUBREG (0) 2108 static void init_reg_state(struct bpf_verifier_env *env, 2109 struct bpf_func_state *state) 2110 { 2111 struct bpf_reg_state *regs = state->regs; 2112 int i; 2113 2114 for (i = 0; i < MAX_BPF_REG; i++) { 2115 mark_reg_not_init(env, regs, i); 2116 regs[i].live = REG_LIVE_NONE; 2117 regs[i].parent = NULL; 2118 regs[i].subreg_def = DEF_NOT_SUBREG; 2119 } 2120 2121 /* frame pointer */ 2122 regs[BPF_REG_FP].type = PTR_TO_STACK; 2123 mark_reg_known_zero(env, regs, BPF_REG_FP); 2124 regs[BPF_REG_FP].frameno = state->frameno; 2125 } 2126 2127 #define BPF_MAIN_FUNC (-1) 2128 static void init_func_state(struct bpf_verifier_env *env, 2129 struct bpf_func_state *state, 2130 int callsite, int frameno, int subprogno) 2131 { 2132 state->callsite = callsite; 2133 state->frameno = frameno; 2134 state->subprogno = subprogno; 2135 state->callback_ret_range = tnum_range(0, 0); 2136 init_reg_state(env, state); 2137 mark_verifier_state_scratched(env); 2138 } 2139 2140 /* Similar to push_stack(), but for async callbacks */ 2141 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2142 int insn_idx, int prev_insn_idx, 2143 int subprog) 2144 { 2145 struct bpf_verifier_stack_elem *elem; 2146 struct bpf_func_state *frame; 2147 2148 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2149 if (!elem) 2150 goto err; 2151 2152 elem->insn_idx = insn_idx; 2153 elem->prev_insn_idx = prev_insn_idx; 2154 elem->next = env->head; 2155 elem->log_pos = env->log.len_used; 2156 env->head = elem; 2157 env->stack_size++; 2158 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2159 verbose(env, 2160 "The sequence of %d jumps is too complex for async cb.\n", 2161 env->stack_size); 2162 goto err; 2163 } 2164 /* Unlike push_stack() do not copy_verifier_state(). 2165 * The caller state doesn't matter. 2166 * This is async callback. It starts in a fresh stack. 2167 * Initialize it similar to do_check_common(). 2168 */ 2169 elem->st.branches = 1; 2170 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2171 if (!frame) 2172 goto err; 2173 init_func_state(env, frame, 2174 BPF_MAIN_FUNC /* callsite */, 2175 0 /* frameno within this callchain */, 2176 subprog /* subprog number within this prog */); 2177 elem->st.frame[0] = frame; 2178 return &elem->st; 2179 err: 2180 free_verifier_state(env->cur_state, true); 2181 env->cur_state = NULL; 2182 /* pop all elements and return */ 2183 while (!pop_stack(env, NULL, NULL, false)); 2184 return NULL; 2185 } 2186 2187 2188 enum reg_arg_type { 2189 SRC_OP, /* register is used as source operand */ 2190 DST_OP, /* register is used as destination operand */ 2191 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2192 }; 2193 2194 static int cmp_subprogs(const void *a, const void *b) 2195 { 2196 return ((struct bpf_subprog_info *)a)->start - 2197 ((struct bpf_subprog_info *)b)->start; 2198 } 2199 2200 static int find_subprog(struct bpf_verifier_env *env, int off) 2201 { 2202 struct bpf_subprog_info *p; 2203 2204 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2205 sizeof(env->subprog_info[0]), cmp_subprogs); 2206 if (!p) 2207 return -ENOENT; 2208 return p - env->subprog_info; 2209 2210 } 2211 2212 static int add_subprog(struct bpf_verifier_env *env, int off) 2213 { 2214 int insn_cnt = env->prog->len; 2215 int ret; 2216 2217 if (off >= insn_cnt || off < 0) { 2218 verbose(env, "call to invalid destination\n"); 2219 return -EINVAL; 2220 } 2221 ret = find_subprog(env, off); 2222 if (ret >= 0) 2223 return ret; 2224 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2225 verbose(env, "too many subprograms\n"); 2226 return -E2BIG; 2227 } 2228 /* determine subprog starts. The end is one before the next starts */ 2229 env->subprog_info[env->subprog_cnt++].start = off; 2230 sort(env->subprog_info, env->subprog_cnt, 2231 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2232 return env->subprog_cnt - 1; 2233 } 2234 2235 #define MAX_KFUNC_DESCS 256 2236 #define MAX_KFUNC_BTFS 256 2237 2238 struct bpf_kfunc_desc { 2239 struct btf_func_model func_model; 2240 u32 func_id; 2241 s32 imm; 2242 u16 offset; 2243 }; 2244 2245 struct bpf_kfunc_btf { 2246 struct btf *btf; 2247 struct module *module; 2248 u16 offset; 2249 }; 2250 2251 struct bpf_kfunc_desc_tab { 2252 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2253 u32 nr_descs; 2254 }; 2255 2256 struct bpf_kfunc_btf_tab { 2257 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2258 u32 nr_descs; 2259 }; 2260 2261 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2262 { 2263 const struct bpf_kfunc_desc *d0 = a; 2264 const struct bpf_kfunc_desc *d1 = b; 2265 2266 /* func_id is not greater than BTF_MAX_TYPE */ 2267 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2268 } 2269 2270 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2271 { 2272 const struct bpf_kfunc_btf *d0 = a; 2273 const struct bpf_kfunc_btf *d1 = b; 2274 2275 return d0->offset - d1->offset; 2276 } 2277 2278 static const struct bpf_kfunc_desc * 2279 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2280 { 2281 struct bpf_kfunc_desc desc = { 2282 .func_id = func_id, 2283 .offset = offset, 2284 }; 2285 struct bpf_kfunc_desc_tab *tab; 2286 2287 tab = prog->aux->kfunc_tab; 2288 return bsearch(&desc, tab->descs, tab->nr_descs, 2289 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2290 } 2291 2292 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2293 s16 offset) 2294 { 2295 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2296 struct bpf_kfunc_btf_tab *tab; 2297 struct bpf_kfunc_btf *b; 2298 struct module *mod; 2299 struct btf *btf; 2300 int btf_fd; 2301 2302 tab = env->prog->aux->kfunc_btf_tab; 2303 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2304 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2305 if (!b) { 2306 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2307 verbose(env, "too many different module BTFs\n"); 2308 return ERR_PTR(-E2BIG); 2309 } 2310 2311 if (bpfptr_is_null(env->fd_array)) { 2312 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2313 return ERR_PTR(-EPROTO); 2314 } 2315 2316 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2317 offset * sizeof(btf_fd), 2318 sizeof(btf_fd))) 2319 return ERR_PTR(-EFAULT); 2320 2321 btf = btf_get_by_fd(btf_fd); 2322 if (IS_ERR(btf)) { 2323 verbose(env, "invalid module BTF fd specified\n"); 2324 return btf; 2325 } 2326 2327 if (!btf_is_module(btf)) { 2328 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2329 btf_put(btf); 2330 return ERR_PTR(-EINVAL); 2331 } 2332 2333 mod = btf_try_get_module(btf); 2334 if (!mod) { 2335 btf_put(btf); 2336 return ERR_PTR(-ENXIO); 2337 } 2338 2339 b = &tab->descs[tab->nr_descs++]; 2340 b->btf = btf; 2341 b->module = mod; 2342 b->offset = offset; 2343 2344 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2345 kfunc_btf_cmp_by_off, NULL); 2346 } 2347 return b->btf; 2348 } 2349 2350 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2351 { 2352 if (!tab) 2353 return; 2354 2355 while (tab->nr_descs--) { 2356 module_put(tab->descs[tab->nr_descs].module); 2357 btf_put(tab->descs[tab->nr_descs].btf); 2358 } 2359 kfree(tab); 2360 } 2361 2362 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2363 { 2364 if (offset) { 2365 if (offset < 0) { 2366 /* In the future, this can be allowed to increase limit 2367 * of fd index into fd_array, interpreted as u16. 2368 */ 2369 verbose(env, "negative offset disallowed for kernel module function call\n"); 2370 return ERR_PTR(-EINVAL); 2371 } 2372 2373 return __find_kfunc_desc_btf(env, offset); 2374 } 2375 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2376 } 2377 2378 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2379 { 2380 const struct btf_type *func, *func_proto; 2381 struct bpf_kfunc_btf_tab *btf_tab; 2382 struct bpf_kfunc_desc_tab *tab; 2383 struct bpf_prog_aux *prog_aux; 2384 struct bpf_kfunc_desc *desc; 2385 const char *func_name; 2386 struct btf *desc_btf; 2387 unsigned long call_imm; 2388 unsigned long addr; 2389 int err; 2390 2391 prog_aux = env->prog->aux; 2392 tab = prog_aux->kfunc_tab; 2393 btf_tab = prog_aux->kfunc_btf_tab; 2394 if (!tab) { 2395 if (!btf_vmlinux) { 2396 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2397 return -ENOTSUPP; 2398 } 2399 2400 if (!env->prog->jit_requested) { 2401 verbose(env, "JIT is required for calling kernel function\n"); 2402 return -ENOTSUPP; 2403 } 2404 2405 if (!bpf_jit_supports_kfunc_call()) { 2406 verbose(env, "JIT does not support calling kernel function\n"); 2407 return -ENOTSUPP; 2408 } 2409 2410 if (!env->prog->gpl_compatible) { 2411 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2412 return -EINVAL; 2413 } 2414 2415 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2416 if (!tab) 2417 return -ENOMEM; 2418 prog_aux->kfunc_tab = tab; 2419 } 2420 2421 /* func_id == 0 is always invalid, but instead of returning an error, be 2422 * conservative and wait until the code elimination pass before returning 2423 * error, so that invalid calls that get pruned out can be in BPF programs 2424 * loaded from userspace. It is also required that offset be untouched 2425 * for such calls. 2426 */ 2427 if (!func_id && !offset) 2428 return 0; 2429 2430 if (!btf_tab && offset) { 2431 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2432 if (!btf_tab) 2433 return -ENOMEM; 2434 prog_aux->kfunc_btf_tab = btf_tab; 2435 } 2436 2437 desc_btf = find_kfunc_desc_btf(env, offset); 2438 if (IS_ERR(desc_btf)) { 2439 verbose(env, "failed to find BTF for kernel function\n"); 2440 return PTR_ERR(desc_btf); 2441 } 2442 2443 if (find_kfunc_desc(env->prog, func_id, offset)) 2444 return 0; 2445 2446 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2447 verbose(env, "too many different kernel function calls\n"); 2448 return -E2BIG; 2449 } 2450 2451 func = btf_type_by_id(desc_btf, func_id); 2452 if (!func || !btf_type_is_func(func)) { 2453 verbose(env, "kernel btf_id %u is not a function\n", 2454 func_id); 2455 return -EINVAL; 2456 } 2457 func_proto = btf_type_by_id(desc_btf, func->type); 2458 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2459 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2460 func_id); 2461 return -EINVAL; 2462 } 2463 2464 func_name = btf_name_by_offset(desc_btf, func->name_off); 2465 addr = kallsyms_lookup_name(func_name); 2466 if (!addr) { 2467 verbose(env, "cannot find address for kernel function %s\n", 2468 func_name); 2469 return -EINVAL; 2470 } 2471 2472 call_imm = BPF_CALL_IMM(addr); 2473 /* Check whether or not the relative offset overflows desc->imm */ 2474 if ((unsigned long)(s32)call_imm != call_imm) { 2475 verbose(env, "address of kernel function %s is out of range\n", 2476 func_name); 2477 return -EINVAL; 2478 } 2479 2480 if (bpf_dev_bound_kfunc_id(func_id)) { 2481 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2482 if (err) 2483 return err; 2484 } 2485 2486 desc = &tab->descs[tab->nr_descs++]; 2487 desc->func_id = func_id; 2488 desc->imm = call_imm; 2489 desc->offset = offset; 2490 err = btf_distill_func_proto(&env->log, desc_btf, 2491 func_proto, func_name, 2492 &desc->func_model); 2493 if (!err) 2494 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2495 kfunc_desc_cmp_by_id_off, NULL); 2496 return err; 2497 } 2498 2499 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2500 { 2501 const struct bpf_kfunc_desc *d0 = a; 2502 const struct bpf_kfunc_desc *d1 = b; 2503 2504 if (d0->imm > d1->imm) 2505 return 1; 2506 else if (d0->imm < d1->imm) 2507 return -1; 2508 return 0; 2509 } 2510 2511 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2512 { 2513 struct bpf_kfunc_desc_tab *tab; 2514 2515 tab = prog->aux->kfunc_tab; 2516 if (!tab) 2517 return; 2518 2519 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2520 kfunc_desc_cmp_by_imm, NULL); 2521 } 2522 2523 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2524 { 2525 return !!prog->aux->kfunc_tab; 2526 } 2527 2528 const struct btf_func_model * 2529 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2530 const struct bpf_insn *insn) 2531 { 2532 const struct bpf_kfunc_desc desc = { 2533 .imm = insn->imm, 2534 }; 2535 const struct bpf_kfunc_desc *res; 2536 struct bpf_kfunc_desc_tab *tab; 2537 2538 tab = prog->aux->kfunc_tab; 2539 res = bsearch(&desc, tab->descs, tab->nr_descs, 2540 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2541 2542 return res ? &res->func_model : NULL; 2543 } 2544 2545 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2546 { 2547 struct bpf_subprog_info *subprog = env->subprog_info; 2548 struct bpf_insn *insn = env->prog->insnsi; 2549 int i, ret, insn_cnt = env->prog->len; 2550 2551 /* Add entry function. */ 2552 ret = add_subprog(env, 0); 2553 if (ret) 2554 return ret; 2555 2556 for (i = 0; i < insn_cnt; i++, insn++) { 2557 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2558 !bpf_pseudo_kfunc_call(insn)) 2559 continue; 2560 2561 if (!env->bpf_capable) { 2562 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2563 return -EPERM; 2564 } 2565 2566 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2567 ret = add_subprog(env, i + insn->imm + 1); 2568 else 2569 ret = add_kfunc_call(env, insn->imm, insn->off); 2570 2571 if (ret < 0) 2572 return ret; 2573 } 2574 2575 /* Add a fake 'exit' subprog which could simplify subprog iteration 2576 * logic. 'subprog_cnt' should not be increased. 2577 */ 2578 subprog[env->subprog_cnt].start = insn_cnt; 2579 2580 if (env->log.level & BPF_LOG_LEVEL2) 2581 for (i = 0; i < env->subprog_cnt; i++) 2582 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2583 2584 return 0; 2585 } 2586 2587 static int check_subprogs(struct bpf_verifier_env *env) 2588 { 2589 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2590 struct bpf_subprog_info *subprog = env->subprog_info; 2591 struct bpf_insn *insn = env->prog->insnsi; 2592 int insn_cnt = env->prog->len; 2593 2594 /* now check that all jumps are within the same subprog */ 2595 subprog_start = subprog[cur_subprog].start; 2596 subprog_end = subprog[cur_subprog + 1].start; 2597 for (i = 0; i < insn_cnt; i++) { 2598 u8 code = insn[i].code; 2599 2600 if (code == (BPF_JMP | BPF_CALL) && 2601 insn[i].src_reg == 0 && 2602 insn[i].imm == BPF_FUNC_tail_call) 2603 subprog[cur_subprog].has_tail_call = true; 2604 if (BPF_CLASS(code) == BPF_LD && 2605 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2606 subprog[cur_subprog].has_ld_abs = true; 2607 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2608 goto next; 2609 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2610 goto next; 2611 off = i + insn[i].off + 1; 2612 if (off < subprog_start || off >= subprog_end) { 2613 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2614 return -EINVAL; 2615 } 2616 next: 2617 if (i == subprog_end - 1) { 2618 /* to avoid fall-through from one subprog into another 2619 * the last insn of the subprog should be either exit 2620 * or unconditional jump back 2621 */ 2622 if (code != (BPF_JMP | BPF_EXIT) && 2623 code != (BPF_JMP | BPF_JA)) { 2624 verbose(env, "last insn is not an exit or jmp\n"); 2625 return -EINVAL; 2626 } 2627 subprog_start = subprog_end; 2628 cur_subprog++; 2629 if (cur_subprog < env->subprog_cnt) 2630 subprog_end = subprog[cur_subprog + 1].start; 2631 } 2632 } 2633 return 0; 2634 } 2635 2636 /* Parentage chain of this register (or stack slot) should take care of all 2637 * issues like callee-saved registers, stack slot allocation time, etc. 2638 */ 2639 static int mark_reg_read(struct bpf_verifier_env *env, 2640 const struct bpf_reg_state *state, 2641 struct bpf_reg_state *parent, u8 flag) 2642 { 2643 bool writes = parent == state->parent; /* Observe write marks */ 2644 int cnt = 0; 2645 2646 while (parent) { 2647 /* if read wasn't screened by an earlier write ... */ 2648 if (writes && state->live & REG_LIVE_WRITTEN) 2649 break; 2650 if (parent->live & REG_LIVE_DONE) { 2651 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2652 reg_type_str(env, parent->type), 2653 parent->var_off.value, parent->off); 2654 return -EFAULT; 2655 } 2656 /* The first condition is more likely to be true than the 2657 * second, checked it first. 2658 */ 2659 if ((parent->live & REG_LIVE_READ) == flag || 2660 parent->live & REG_LIVE_READ64) 2661 /* The parentage chain never changes and 2662 * this parent was already marked as LIVE_READ. 2663 * There is no need to keep walking the chain again and 2664 * keep re-marking all parents as LIVE_READ. 2665 * This case happens when the same register is read 2666 * multiple times without writes into it in-between. 2667 * Also, if parent has the stronger REG_LIVE_READ64 set, 2668 * then no need to set the weak REG_LIVE_READ32. 2669 */ 2670 break; 2671 /* ... then we depend on parent's value */ 2672 parent->live |= flag; 2673 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2674 if (flag == REG_LIVE_READ64) 2675 parent->live &= ~REG_LIVE_READ32; 2676 state = parent; 2677 parent = state->parent; 2678 writes = true; 2679 cnt++; 2680 } 2681 2682 if (env->longest_mark_read_walk < cnt) 2683 env->longest_mark_read_walk = cnt; 2684 return 0; 2685 } 2686 2687 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2688 { 2689 struct bpf_func_state *state = func(env, reg); 2690 int spi, ret; 2691 2692 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2693 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2694 * check_kfunc_call. 2695 */ 2696 if (reg->type == CONST_PTR_TO_DYNPTR) 2697 return 0; 2698 spi = dynptr_get_spi(env, reg); 2699 if (spi < 0) 2700 return spi; 2701 /* Caller ensures dynptr is valid and initialized, which means spi is in 2702 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2703 * read. 2704 */ 2705 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2706 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2707 if (ret) 2708 return ret; 2709 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2710 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2711 } 2712 2713 /* This function is supposed to be used by the following 32-bit optimization 2714 * code only. It returns TRUE if the source or destination register operates 2715 * on 64-bit, otherwise return FALSE. 2716 */ 2717 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2718 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2719 { 2720 u8 code, class, op; 2721 2722 code = insn->code; 2723 class = BPF_CLASS(code); 2724 op = BPF_OP(code); 2725 if (class == BPF_JMP) { 2726 /* BPF_EXIT for "main" will reach here. Return TRUE 2727 * conservatively. 2728 */ 2729 if (op == BPF_EXIT) 2730 return true; 2731 if (op == BPF_CALL) { 2732 /* BPF to BPF call will reach here because of marking 2733 * caller saved clobber with DST_OP_NO_MARK for which we 2734 * don't care the register def because they are anyway 2735 * marked as NOT_INIT already. 2736 */ 2737 if (insn->src_reg == BPF_PSEUDO_CALL) 2738 return false; 2739 /* Helper call will reach here because of arg type 2740 * check, conservatively return TRUE. 2741 */ 2742 if (t == SRC_OP) 2743 return true; 2744 2745 return false; 2746 } 2747 } 2748 2749 if (class == BPF_ALU64 || class == BPF_JMP || 2750 /* BPF_END always use BPF_ALU class. */ 2751 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2752 return true; 2753 2754 if (class == BPF_ALU || class == BPF_JMP32) 2755 return false; 2756 2757 if (class == BPF_LDX) { 2758 if (t != SRC_OP) 2759 return BPF_SIZE(code) == BPF_DW; 2760 /* LDX source must be ptr. */ 2761 return true; 2762 } 2763 2764 if (class == BPF_STX) { 2765 /* BPF_STX (including atomic variants) has multiple source 2766 * operands, one of which is a ptr. Check whether the caller is 2767 * asking about it. 2768 */ 2769 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2770 return true; 2771 return BPF_SIZE(code) == BPF_DW; 2772 } 2773 2774 if (class == BPF_LD) { 2775 u8 mode = BPF_MODE(code); 2776 2777 /* LD_IMM64 */ 2778 if (mode == BPF_IMM) 2779 return true; 2780 2781 /* Both LD_IND and LD_ABS return 32-bit data. */ 2782 if (t != SRC_OP) 2783 return false; 2784 2785 /* Implicit ctx ptr. */ 2786 if (regno == BPF_REG_6) 2787 return true; 2788 2789 /* Explicit source could be any width. */ 2790 return true; 2791 } 2792 2793 if (class == BPF_ST) 2794 /* The only source register for BPF_ST is a ptr. */ 2795 return true; 2796 2797 /* Conservatively return true at default. */ 2798 return true; 2799 } 2800 2801 /* Return the regno defined by the insn, or -1. */ 2802 static int insn_def_regno(const struct bpf_insn *insn) 2803 { 2804 switch (BPF_CLASS(insn->code)) { 2805 case BPF_JMP: 2806 case BPF_JMP32: 2807 case BPF_ST: 2808 return -1; 2809 case BPF_STX: 2810 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2811 (insn->imm & BPF_FETCH)) { 2812 if (insn->imm == BPF_CMPXCHG) 2813 return BPF_REG_0; 2814 else 2815 return insn->src_reg; 2816 } else { 2817 return -1; 2818 } 2819 default: 2820 return insn->dst_reg; 2821 } 2822 } 2823 2824 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2825 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2826 { 2827 int dst_reg = insn_def_regno(insn); 2828 2829 if (dst_reg == -1) 2830 return false; 2831 2832 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2833 } 2834 2835 static void mark_insn_zext(struct bpf_verifier_env *env, 2836 struct bpf_reg_state *reg) 2837 { 2838 s32 def_idx = reg->subreg_def; 2839 2840 if (def_idx == DEF_NOT_SUBREG) 2841 return; 2842 2843 env->insn_aux_data[def_idx - 1].zext_dst = true; 2844 /* The dst will be zero extended, so won't be sub-register anymore. */ 2845 reg->subreg_def = DEF_NOT_SUBREG; 2846 } 2847 2848 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2849 enum reg_arg_type t) 2850 { 2851 struct bpf_verifier_state *vstate = env->cur_state; 2852 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2853 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2854 struct bpf_reg_state *reg, *regs = state->regs; 2855 bool rw64; 2856 2857 if (regno >= MAX_BPF_REG) { 2858 verbose(env, "R%d is invalid\n", regno); 2859 return -EINVAL; 2860 } 2861 2862 mark_reg_scratched(env, regno); 2863 2864 reg = ®s[regno]; 2865 rw64 = is_reg64(env, insn, regno, reg, t); 2866 if (t == SRC_OP) { 2867 /* check whether register used as source operand can be read */ 2868 if (reg->type == NOT_INIT) { 2869 verbose(env, "R%d !read_ok\n", regno); 2870 return -EACCES; 2871 } 2872 /* We don't need to worry about FP liveness because it's read-only */ 2873 if (regno == BPF_REG_FP) 2874 return 0; 2875 2876 if (rw64) 2877 mark_insn_zext(env, reg); 2878 2879 return mark_reg_read(env, reg, reg->parent, 2880 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2881 } else { 2882 /* check whether register used as dest operand can be written to */ 2883 if (regno == BPF_REG_FP) { 2884 verbose(env, "frame pointer is read only\n"); 2885 return -EACCES; 2886 } 2887 reg->live |= REG_LIVE_WRITTEN; 2888 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2889 if (t == DST_OP) 2890 mark_reg_unknown(env, regs, regno); 2891 } 2892 return 0; 2893 } 2894 2895 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2896 { 2897 env->insn_aux_data[idx].jmp_point = true; 2898 } 2899 2900 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2901 { 2902 return env->insn_aux_data[insn_idx].jmp_point; 2903 } 2904 2905 /* for any branch, call, exit record the history of jmps in the given state */ 2906 static int push_jmp_history(struct bpf_verifier_env *env, 2907 struct bpf_verifier_state *cur) 2908 { 2909 u32 cnt = cur->jmp_history_cnt; 2910 struct bpf_idx_pair *p; 2911 size_t alloc_size; 2912 2913 if (!is_jmp_point(env, env->insn_idx)) 2914 return 0; 2915 2916 cnt++; 2917 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2918 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2919 if (!p) 2920 return -ENOMEM; 2921 p[cnt - 1].idx = env->insn_idx; 2922 p[cnt - 1].prev_idx = env->prev_insn_idx; 2923 cur->jmp_history = p; 2924 cur->jmp_history_cnt = cnt; 2925 return 0; 2926 } 2927 2928 /* Backtrack one insn at a time. If idx is not at the top of recorded 2929 * history then previous instruction came from straight line execution. 2930 */ 2931 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2932 u32 *history) 2933 { 2934 u32 cnt = *history; 2935 2936 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2937 i = st->jmp_history[cnt - 1].prev_idx; 2938 (*history)--; 2939 } else { 2940 i--; 2941 } 2942 return i; 2943 } 2944 2945 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2946 { 2947 const struct btf_type *func; 2948 struct btf *desc_btf; 2949 2950 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2951 return NULL; 2952 2953 desc_btf = find_kfunc_desc_btf(data, insn->off); 2954 if (IS_ERR(desc_btf)) 2955 return "<error>"; 2956 2957 func = btf_type_by_id(desc_btf, insn->imm); 2958 return btf_name_by_offset(desc_btf, func->name_off); 2959 } 2960 2961 /* For given verifier state backtrack_insn() is called from the last insn to 2962 * the first insn. Its purpose is to compute a bitmask of registers and 2963 * stack slots that needs precision in the parent verifier state. 2964 */ 2965 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2966 u32 *reg_mask, u64 *stack_mask) 2967 { 2968 const struct bpf_insn_cbs cbs = { 2969 .cb_call = disasm_kfunc_name, 2970 .cb_print = verbose, 2971 .private_data = env, 2972 }; 2973 struct bpf_insn *insn = env->prog->insnsi + idx; 2974 u8 class = BPF_CLASS(insn->code); 2975 u8 opcode = BPF_OP(insn->code); 2976 u8 mode = BPF_MODE(insn->code); 2977 u32 dreg = 1u << insn->dst_reg; 2978 u32 sreg = 1u << insn->src_reg; 2979 u32 spi; 2980 2981 if (insn->code == 0) 2982 return 0; 2983 if (env->log.level & BPF_LOG_LEVEL2) { 2984 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2985 verbose(env, "%d: ", idx); 2986 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2987 } 2988 2989 if (class == BPF_ALU || class == BPF_ALU64) { 2990 if (!(*reg_mask & dreg)) 2991 return 0; 2992 if (opcode == BPF_MOV) { 2993 if (BPF_SRC(insn->code) == BPF_X) { 2994 /* dreg = sreg 2995 * dreg needs precision after this insn 2996 * sreg needs precision before this insn 2997 */ 2998 *reg_mask &= ~dreg; 2999 *reg_mask |= sreg; 3000 } else { 3001 /* dreg = K 3002 * dreg needs precision after this insn. 3003 * Corresponding register is already marked 3004 * as precise=true in this verifier state. 3005 * No further markings in parent are necessary 3006 */ 3007 *reg_mask &= ~dreg; 3008 } 3009 } else { 3010 if (BPF_SRC(insn->code) == BPF_X) { 3011 /* dreg += sreg 3012 * both dreg and sreg need precision 3013 * before this insn 3014 */ 3015 *reg_mask |= sreg; 3016 } /* else dreg += K 3017 * dreg still needs precision before this insn 3018 */ 3019 } 3020 } else if (class == BPF_LDX) { 3021 if (!(*reg_mask & dreg)) 3022 return 0; 3023 *reg_mask &= ~dreg; 3024 3025 /* scalars can only be spilled into stack w/o losing precision. 3026 * Load from any other memory can be zero extended. 3027 * The desire to keep that precision is already indicated 3028 * by 'precise' mark in corresponding register of this state. 3029 * No further tracking necessary. 3030 */ 3031 if (insn->src_reg != BPF_REG_FP) 3032 return 0; 3033 3034 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3035 * that [fp - off] slot contains scalar that needs to be 3036 * tracked with precision 3037 */ 3038 spi = (-insn->off - 1) / BPF_REG_SIZE; 3039 if (spi >= 64) { 3040 verbose(env, "BUG spi %d\n", spi); 3041 WARN_ONCE(1, "verifier backtracking bug"); 3042 return -EFAULT; 3043 } 3044 *stack_mask |= 1ull << spi; 3045 } else if (class == BPF_STX || class == BPF_ST) { 3046 if (*reg_mask & dreg) 3047 /* stx & st shouldn't be using _scalar_ dst_reg 3048 * to access memory. It means backtracking 3049 * encountered a case of pointer subtraction. 3050 */ 3051 return -ENOTSUPP; 3052 /* scalars can only be spilled into stack */ 3053 if (insn->dst_reg != BPF_REG_FP) 3054 return 0; 3055 spi = (-insn->off - 1) / BPF_REG_SIZE; 3056 if (spi >= 64) { 3057 verbose(env, "BUG spi %d\n", spi); 3058 WARN_ONCE(1, "verifier backtracking bug"); 3059 return -EFAULT; 3060 } 3061 if (!(*stack_mask & (1ull << spi))) 3062 return 0; 3063 *stack_mask &= ~(1ull << spi); 3064 if (class == BPF_STX) 3065 *reg_mask |= sreg; 3066 } else if (class == BPF_JMP || class == BPF_JMP32) { 3067 if (opcode == BPF_CALL) { 3068 if (insn->src_reg == BPF_PSEUDO_CALL) 3069 return -ENOTSUPP; 3070 /* BPF helpers that invoke callback subprogs are 3071 * equivalent to BPF_PSEUDO_CALL above 3072 */ 3073 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 3074 return -ENOTSUPP; 3075 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3076 * catch this error later. Make backtracking conservative 3077 * with ENOTSUPP. 3078 */ 3079 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3080 return -ENOTSUPP; 3081 /* regular helper call sets R0 */ 3082 *reg_mask &= ~1; 3083 if (*reg_mask & 0x3f) { 3084 /* if backtracing was looking for registers R1-R5 3085 * they should have been found already. 3086 */ 3087 verbose(env, "BUG regs %x\n", *reg_mask); 3088 WARN_ONCE(1, "verifier backtracking bug"); 3089 return -EFAULT; 3090 } 3091 } else if (opcode == BPF_EXIT) { 3092 return -ENOTSUPP; 3093 } 3094 } else if (class == BPF_LD) { 3095 if (!(*reg_mask & dreg)) 3096 return 0; 3097 *reg_mask &= ~dreg; 3098 /* It's ld_imm64 or ld_abs or ld_ind. 3099 * For ld_imm64 no further tracking of precision 3100 * into parent is necessary 3101 */ 3102 if (mode == BPF_IND || mode == BPF_ABS) 3103 /* to be analyzed */ 3104 return -ENOTSUPP; 3105 } 3106 return 0; 3107 } 3108 3109 /* the scalar precision tracking algorithm: 3110 * . at the start all registers have precise=false. 3111 * . scalar ranges are tracked as normal through alu and jmp insns. 3112 * . once precise value of the scalar register is used in: 3113 * . ptr + scalar alu 3114 * . if (scalar cond K|scalar) 3115 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3116 * backtrack through the verifier states and mark all registers and 3117 * stack slots with spilled constants that these scalar regisers 3118 * should be precise. 3119 * . during state pruning two registers (or spilled stack slots) 3120 * are equivalent if both are not precise. 3121 * 3122 * Note the verifier cannot simply walk register parentage chain, 3123 * since many different registers and stack slots could have been 3124 * used to compute single precise scalar. 3125 * 3126 * The approach of starting with precise=true for all registers and then 3127 * backtrack to mark a register as not precise when the verifier detects 3128 * that program doesn't care about specific value (e.g., when helper 3129 * takes register as ARG_ANYTHING parameter) is not safe. 3130 * 3131 * It's ok to walk single parentage chain of the verifier states. 3132 * It's possible that this backtracking will go all the way till 1st insn. 3133 * All other branches will be explored for needing precision later. 3134 * 3135 * The backtracking needs to deal with cases like: 3136 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3137 * r9 -= r8 3138 * r5 = r9 3139 * if r5 > 0x79f goto pc+7 3140 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3141 * r5 += 1 3142 * ... 3143 * call bpf_perf_event_output#25 3144 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3145 * 3146 * and this case: 3147 * r6 = 1 3148 * call foo // uses callee's r6 inside to compute r0 3149 * r0 += r6 3150 * if r0 == 0 goto 3151 * 3152 * to track above reg_mask/stack_mask needs to be independent for each frame. 3153 * 3154 * Also if parent's curframe > frame where backtracking started, 3155 * the verifier need to mark registers in both frames, otherwise callees 3156 * may incorrectly prune callers. This is similar to 3157 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3158 * 3159 * For now backtracking falls back into conservative marking. 3160 */ 3161 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3162 struct bpf_verifier_state *st) 3163 { 3164 struct bpf_func_state *func; 3165 struct bpf_reg_state *reg; 3166 int i, j; 3167 3168 /* big hammer: mark all scalars precise in this path. 3169 * pop_stack may still get !precise scalars. 3170 * We also skip current state and go straight to first parent state, 3171 * because precision markings in current non-checkpointed state are 3172 * not needed. See why in the comment in __mark_chain_precision below. 3173 */ 3174 for (st = st->parent; st; st = st->parent) { 3175 for (i = 0; i <= st->curframe; i++) { 3176 func = st->frame[i]; 3177 for (j = 0; j < BPF_REG_FP; j++) { 3178 reg = &func->regs[j]; 3179 if (reg->type != SCALAR_VALUE) 3180 continue; 3181 reg->precise = true; 3182 } 3183 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3184 if (!is_spilled_reg(&func->stack[j])) 3185 continue; 3186 reg = &func->stack[j].spilled_ptr; 3187 if (reg->type != SCALAR_VALUE) 3188 continue; 3189 reg->precise = true; 3190 } 3191 } 3192 } 3193 } 3194 3195 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3196 { 3197 struct bpf_func_state *func; 3198 struct bpf_reg_state *reg; 3199 int i, j; 3200 3201 for (i = 0; i <= st->curframe; i++) { 3202 func = st->frame[i]; 3203 for (j = 0; j < BPF_REG_FP; j++) { 3204 reg = &func->regs[j]; 3205 if (reg->type != SCALAR_VALUE) 3206 continue; 3207 reg->precise = false; 3208 } 3209 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3210 if (!is_spilled_reg(&func->stack[j])) 3211 continue; 3212 reg = &func->stack[j].spilled_ptr; 3213 if (reg->type != SCALAR_VALUE) 3214 continue; 3215 reg->precise = false; 3216 } 3217 } 3218 } 3219 3220 /* 3221 * __mark_chain_precision() backtracks BPF program instruction sequence and 3222 * chain of verifier states making sure that register *regno* (if regno >= 0) 3223 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3224 * SCALARS, as well as any other registers and slots that contribute to 3225 * a tracked state of given registers/stack slots, depending on specific BPF 3226 * assembly instructions (see backtrack_insns() for exact instruction handling 3227 * logic). This backtracking relies on recorded jmp_history and is able to 3228 * traverse entire chain of parent states. This process ends only when all the 3229 * necessary registers/slots and their transitive dependencies are marked as 3230 * precise. 3231 * 3232 * One important and subtle aspect is that precise marks *do not matter* in 3233 * the currently verified state (current state). It is important to understand 3234 * why this is the case. 3235 * 3236 * First, note that current state is the state that is not yet "checkpointed", 3237 * i.e., it is not yet put into env->explored_states, and it has no children 3238 * states as well. It's ephemeral, and can end up either a) being discarded if 3239 * compatible explored state is found at some point or BPF_EXIT instruction is 3240 * reached or b) checkpointed and put into env->explored_states, branching out 3241 * into one or more children states. 3242 * 3243 * In the former case, precise markings in current state are completely 3244 * ignored by state comparison code (see regsafe() for details). Only 3245 * checkpointed ("old") state precise markings are important, and if old 3246 * state's register/slot is precise, regsafe() assumes current state's 3247 * register/slot as precise and checks value ranges exactly and precisely. If 3248 * states turn out to be compatible, current state's necessary precise 3249 * markings and any required parent states' precise markings are enforced 3250 * after the fact with propagate_precision() logic, after the fact. But it's 3251 * important to realize that in this case, even after marking current state 3252 * registers/slots as precise, we immediately discard current state. So what 3253 * actually matters is any of the precise markings propagated into current 3254 * state's parent states, which are always checkpointed (due to b) case above). 3255 * As such, for scenario a) it doesn't matter if current state has precise 3256 * markings set or not. 3257 * 3258 * Now, for the scenario b), checkpointing and forking into child(ren) 3259 * state(s). Note that before current state gets to checkpointing step, any 3260 * processed instruction always assumes precise SCALAR register/slot 3261 * knowledge: if precise value or range is useful to prune jump branch, BPF 3262 * verifier takes this opportunity enthusiastically. Similarly, when 3263 * register's value is used to calculate offset or memory address, exact 3264 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3265 * what we mentioned above about state comparison ignoring precise markings 3266 * during state comparison, BPF verifier ignores and also assumes precise 3267 * markings *at will* during instruction verification process. But as verifier 3268 * assumes precision, it also propagates any precision dependencies across 3269 * parent states, which are not yet finalized, so can be further restricted 3270 * based on new knowledge gained from restrictions enforced by their children 3271 * states. This is so that once those parent states are finalized, i.e., when 3272 * they have no more active children state, state comparison logic in 3273 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3274 * required for correctness. 3275 * 3276 * To build a bit more intuition, note also that once a state is checkpointed, 3277 * the path we took to get to that state is not important. This is crucial 3278 * property for state pruning. When state is checkpointed and finalized at 3279 * some instruction index, it can be correctly and safely used to "short 3280 * circuit" any *compatible* state that reaches exactly the same instruction 3281 * index. I.e., if we jumped to that instruction from a completely different 3282 * code path than original finalized state was derived from, it doesn't 3283 * matter, current state can be discarded because from that instruction 3284 * forward having a compatible state will ensure we will safely reach the 3285 * exit. States describe preconditions for further exploration, but completely 3286 * forget the history of how we got here. 3287 * 3288 * This also means that even if we needed precise SCALAR range to get to 3289 * finalized state, but from that point forward *that same* SCALAR register is 3290 * never used in a precise context (i.e., it's precise value is not needed for 3291 * correctness), it's correct and safe to mark such register as "imprecise" 3292 * (i.e., precise marking set to false). This is what we rely on when we do 3293 * not set precise marking in current state. If no child state requires 3294 * precision for any given SCALAR register, it's safe to dictate that it can 3295 * be imprecise. If any child state does require this register to be precise, 3296 * we'll mark it precise later retroactively during precise markings 3297 * propagation from child state to parent states. 3298 * 3299 * Skipping precise marking setting in current state is a mild version of 3300 * relying on the above observation. But we can utilize this property even 3301 * more aggressively by proactively forgetting any precise marking in the 3302 * current state (which we inherited from the parent state), right before we 3303 * checkpoint it and branch off into new child state. This is done by 3304 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3305 * finalized states which help in short circuiting more future states. 3306 */ 3307 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 3308 int spi) 3309 { 3310 struct bpf_verifier_state *st = env->cur_state; 3311 int first_idx = st->first_insn_idx; 3312 int last_idx = env->insn_idx; 3313 struct bpf_func_state *func; 3314 struct bpf_reg_state *reg; 3315 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 3316 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 3317 bool skip_first = true; 3318 bool new_marks = false; 3319 int i, err; 3320 3321 if (!env->bpf_capable) 3322 return 0; 3323 3324 /* Do sanity checks against current state of register and/or stack 3325 * slot, but don't set precise flag in current state, as precision 3326 * tracking in the current state is unnecessary. 3327 */ 3328 func = st->frame[frame]; 3329 if (regno >= 0) { 3330 reg = &func->regs[regno]; 3331 if (reg->type != SCALAR_VALUE) { 3332 WARN_ONCE(1, "backtracing misuse"); 3333 return -EFAULT; 3334 } 3335 new_marks = true; 3336 } 3337 3338 while (spi >= 0) { 3339 if (!is_spilled_reg(&func->stack[spi])) { 3340 stack_mask = 0; 3341 break; 3342 } 3343 reg = &func->stack[spi].spilled_ptr; 3344 if (reg->type != SCALAR_VALUE) { 3345 stack_mask = 0; 3346 break; 3347 } 3348 new_marks = true; 3349 break; 3350 } 3351 3352 if (!new_marks) 3353 return 0; 3354 if (!reg_mask && !stack_mask) 3355 return 0; 3356 3357 for (;;) { 3358 DECLARE_BITMAP(mask, 64); 3359 u32 history = st->jmp_history_cnt; 3360 3361 if (env->log.level & BPF_LOG_LEVEL2) 3362 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3363 3364 if (last_idx < 0) { 3365 /* we are at the entry into subprog, which 3366 * is expected for global funcs, but only if 3367 * requested precise registers are R1-R5 3368 * (which are global func's input arguments) 3369 */ 3370 if (st->curframe == 0 && 3371 st->frame[0]->subprogno > 0 && 3372 st->frame[0]->callsite == BPF_MAIN_FUNC && 3373 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3374 bitmap_from_u64(mask, reg_mask); 3375 for_each_set_bit(i, mask, 32) { 3376 reg = &st->frame[0]->regs[i]; 3377 if (reg->type != SCALAR_VALUE) { 3378 reg_mask &= ~(1u << i); 3379 continue; 3380 } 3381 reg->precise = true; 3382 } 3383 return 0; 3384 } 3385 3386 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3387 st->frame[0]->subprogno, reg_mask, stack_mask); 3388 WARN_ONCE(1, "verifier backtracking bug"); 3389 return -EFAULT; 3390 } 3391 3392 for (i = last_idx;;) { 3393 if (skip_first) { 3394 err = 0; 3395 skip_first = false; 3396 } else { 3397 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3398 } 3399 if (err == -ENOTSUPP) { 3400 mark_all_scalars_precise(env, st); 3401 return 0; 3402 } else if (err) { 3403 return err; 3404 } 3405 if (!reg_mask && !stack_mask) 3406 /* Found assignment(s) into tracked register in this state. 3407 * Since this state is already marked, just return. 3408 * Nothing to be tracked further in the parent state. 3409 */ 3410 return 0; 3411 if (i == first_idx) 3412 break; 3413 i = get_prev_insn_idx(st, i, &history); 3414 if (i >= env->prog->len) { 3415 /* This can happen if backtracking reached insn 0 3416 * and there are still reg_mask or stack_mask 3417 * to backtrack. 3418 * It means the backtracking missed the spot where 3419 * particular register was initialized with a constant. 3420 */ 3421 verbose(env, "BUG backtracking idx %d\n", i); 3422 WARN_ONCE(1, "verifier backtracking bug"); 3423 return -EFAULT; 3424 } 3425 } 3426 st = st->parent; 3427 if (!st) 3428 break; 3429 3430 new_marks = false; 3431 func = st->frame[frame]; 3432 bitmap_from_u64(mask, reg_mask); 3433 for_each_set_bit(i, mask, 32) { 3434 reg = &func->regs[i]; 3435 if (reg->type != SCALAR_VALUE) { 3436 reg_mask &= ~(1u << i); 3437 continue; 3438 } 3439 if (!reg->precise) 3440 new_marks = true; 3441 reg->precise = true; 3442 } 3443 3444 bitmap_from_u64(mask, stack_mask); 3445 for_each_set_bit(i, mask, 64) { 3446 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3447 /* the sequence of instructions: 3448 * 2: (bf) r3 = r10 3449 * 3: (7b) *(u64 *)(r3 -8) = r0 3450 * 4: (79) r4 = *(u64 *)(r10 -8) 3451 * doesn't contain jmps. It's backtracked 3452 * as a single block. 3453 * During backtracking insn 3 is not recognized as 3454 * stack access, so at the end of backtracking 3455 * stack slot fp-8 is still marked in stack_mask. 3456 * However the parent state may not have accessed 3457 * fp-8 and it's "unallocated" stack space. 3458 * In such case fallback to conservative. 3459 */ 3460 mark_all_scalars_precise(env, st); 3461 return 0; 3462 } 3463 3464 if (!is_spilled_reg(&func->stack[i])) { 3465 stack_mask &= ~(1ull << i); 3466 continue; 3467 } 3468 reg = &func->stack[i].spilled_ptr; 3469 if (reg->type != SCALAR_VALUE) { 3470 stack_mask &= ~(1ull << i); 3471 continue; 3472 } 3473 if (!reg->precise) 3474 new_marks = true; 3475 reg->precise = true; 3476 } 3477 if (env->log.level & BPF_LOG_LEVEL2) { 3478 verbose(env, "parent %s regs=%x stack=%llx marks:", 3479 new_marks ? "didn't have" : "already had", 3480 reg_mask, stack_mask); 3481 print_verifier_state(env, func, true); 3482 } 3483 3484 if (!reg_mask && !stack_mask) 3485 break; 3486 if (!new_marks) 3487 break; 3488 3489 last_idx = st->last_insn_idx; 3490 first_idx = st->first_insn_idx; 3491 } 3492 return 0; 3493 } 3494 3495 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3496 { 3497 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3498 } 3499 3500 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3501 { 3502 return __mark_chain_precision(env, frame, regno, -1); 3503 } 3504 3505 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3506 { 3507 return __mark_chain_precision(env, frame, -1, spi); 3508 } 3509 3510 static bool is_spillable_regtype(enum bpf_reg_type type) 3511 { 3512 switch (base_type(type)) { 3513 case PTR_TO_MAP_VALUE: 3514 case PTR_TO_STACK: 3515 case PTR_TO_CTX: 3516 case PTR_TO_PACKET: 3517 case PTR_TO_PACKET_META: 3518 case PTR_TO_PACKET_END: 3519 case PTR_TO_FLOW_KEYS: 3520 case CONST_PTR_TO_MAP: 3521 case PTR_TO_SOCKET: 3522 case PTR_TO_SOCK_COMMON: 3523 case PTR_TO_TCP_SOCK: 3524 case PTR_TO_XDP_SOCK: 3525 case PTR_TO_BTF_ID: 3526 case PTR_TO_BUF: 3527 case PTR_TO_MEM: 3528 case PTR_TO_FUNC: 3529 case PTR_TO_MAP_KEY: 3530 return true; 3531 default: 3532 return false; 3533 } 3534 } 3535 3536 /* Does this register contain a constant zero? */ 3537 static bool register_is_null(struct bpf_reg_state *reg) 3538 { 3539 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3540 } 3541 3542 static bool register_is_const(struct bpf_reg_state *reg) 3543 { 3544 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3545 } 3546 3547 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3548 { 3549 return tnum_is_unknown(reg->var_off) && 3550 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3551 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3552 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3553 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3554 } 3555 3556 static bool register_is_bounded(struct bpf_reg_state *reg) 3557 { 3558 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3559 } 3560 3561 static bool __is_pointer_value(bool allow_ptr_leaks, 3562 const struct bpf_reg_state *reg) 3563 { 3564 if (allow_ptr_leaks) 3565 return false; 3566 3567 return reg->type != SCALAR_VALUE; 3568 } 3569 3570 /* Copy src state preserving dst->parent and dst->live fields */ 3571 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 3572 { 3573 struct bpf_reg_state *parent = dst->parent; 3574 enum bpf_reg_liveness live = dst->live; 3575 3576 *dst = *src; 3577 dst->parent = parent; 3578 dst->live = live; 3579 } 3580 3581 static void save_register_state(struct bpf_func_state *state, 3582 int spi, struct bpf_reg_state *reg, 3583 int size) 3584 { 3585 int i; 3586 3587 copy_register_state(&state->stack[spi].spilled_ptr, reg); 3588 if (size == BPF_REG_SIZE) 3589 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3590 3591 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3592 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3593 3594 /* size < 8 bytes spill */ 3595 for (; i; i--) 3596 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3597 } 3598 3599 static bool is_bpf_st_mem(struct bpf_insn *insn) 3600 { 3601 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 3602 } 3603 3604 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3605 * stack boundary and alignment are checked in check_mem_access() 3606 */ 3607 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3608 /* stack frame we're writing to */ 3609 struct bpf_func_state *state, 3610 int off, int size, int value_regno, 3611 int insn_idx) 3612 { 3613 struct bpf_func_state *cur; /* state of the current function */ 3614 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3615 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3616 struct bpf_reg_state *reg = NULL; 3617 u32 dst_reg = insn->dst_reg; 3618 3619 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3620 if (err) 3621 return err; 3622 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3623 * so it's aligned access and [off, off + size) are within stack limits 3624 */ 3625 if (!env->allow_ptr_leaks && 3626 state->stack[spi].slot_type[0] == STACK_SPILL && 3627 size != BPF_REG_SIZE) { 3628 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3629 return -EACCES; 3630 } 3631 3632 cur = env->cur_state->frame[env->cur_state->curframe]; 3633 if (value_regno >= 0) 3634 reg = &cur->regs[value_regno]; 3635 if (!env->bypass_spec_v4) { 3636 bool sanitize = reg && is_spillable_regtype(reg->type); 3637 3638 for (i = 0; i < size; i++) { 3639 u8 type = state->stack[spi].slot_type[i]; 3640 3641 if (type != STACK_MISC && type != STACK_ZERO) { 3642 sanitize = true; 3643 break; 3644 } 3645 } 3646 3647 if (sanitize) 3648 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3649 } 3650 3651 err = destroy_if_dynptr_stack_slot(env, state, spi); 3652 if (err) 3653 return err; 3654 3655 mark_stack_slot_scratched(env, spi); 3656 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3657 !register_is_null(reg) && env->bpf_capable) { 3658 if (dst_reg != BPF_REG_FP) { 3659 /* The backtracking logic can only recognize explicit 3660 * stack slot address like [fp - 8]. Other spill of 3661 * scalar via different register has to be conservative. 3662 * Backtrack from here and mark all registers as precise 3663 * that contributed into 'reg' being a constant. 3664 */ 3665 err = mark_chain_precision(env, value_regno); 3666 if (err) 3667 return err; 3668 } 3669 save_register_state(state, spi, reg, size); 3670 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 3671 insn->imm != 0 && env->bpf_capable) { 3672 struct bpf_reg_state fake_reg = {}; 3673 3674 __mark_reg_known(&fake_reg, (u32)insn->imm); 3675 fake_reg.type = SCALAR_VALUE; 3676 save_register_state(state, spi, &fake_reg, size); 3677 } else if (reg && is_spillable_regtype(reg->type)) { 3678 /* register containing pointer is being spilled into stack */ 3679 if (size != BPF_REG_SIZE) { 3680 verbose_linfo(env, insn_idx, "; "); 3681 verbose(env, "invalid size of register spill\n"); 3682 return -EACCES; 3683 } 3684 if (state != cur && reg->type == PTR_TO_STACK) { 3685 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3686 return -EINVAL; 3687 } 3688 save_register_state(state, spi, reg, size); 3689 } else { 3690 u8 type = STACK_MISC; 3691 3692 /* regular write of data into stack destroys any spilled ptr */ 3693 state->stack[spi].spilled_ptr.type = NOT_INIT; 3694 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3695 if (is_spilled_reg(&state->stack[spi])) 3696 for (i = 0; i < BPF_REG_SIZE; i++) 3697 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3698 3699 /* only mark the slot as written if all 8 bytes were written 3700 * otherwise read propagation may incorrectly stop too soon 3701 * when stack slots are partially written. 3702 * This heuristic means that read propagation will be 3703 * conservative, since it will add reg_live_read marks 3704 * to stack slots all the way to first state when programs 3705 * writes+reads less than 8 bytes 3706 */ 3707 if (size == BPF_REG_SIZE) 3708 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3709 3710 /* when we zero initialize stack slots mark them as such */ 3711 if ((reg && register_is_null(reg)) || 3712 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 3713 /* backtracking doesn't work for STACK_ZERO yet. */ 3714 err = mark_chain_precision(env, value_regno); 3715 if (err) 3716 return err; 3717 type = STACK_ZERO; 3718 } 3719 3720 /* Mark slots affected by this stack write. */ 3721 for (i = 0; i < size; i++) 3722 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3723 type; 3724 } 3725 return 0; 3726 } 3727 3728 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3729 * known to contain a variable offset. 3730 * This function checks whether the write is permitted and conservatively 3731 * tracks the effects of the write, considering that each stack slot in the 3732 * dynamic range is potentially written to. 3733 * 3734 * 'off' includes 'regno->off'. 3735 * 'value_regno' can be -1, meaning that an unknown value is being written to 3736 * the stack. 3737 * 3738 * Spilled pointers in range are not marked as written because we don't know 3739 * what's going to be actually written. This means that read propagation for 3740 * future reads cannot be terminated by this write. 3741 * 3742 * For privileged programs, uninitialized stack slots are considered 3743 * initialized by this write (even though we don't know exactly what offsets 3744 * are going to be written to). The idea is that we don't want the verifier to 3745 * reject future reads that access slots written to through variable offsets. 3746 */ 3747 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3748 /* func where register points to */ 3749 struct bpf_func_state *state, 3750 int ptr_regno, int off, int size, 3751 int value_regno, int insn_idx) 3752 { 3753 struct bpf_func_state *cur; /* state of the current function */ 3754 int min_off, max_off; 3755 int i, err; 3756 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3757 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3758 bool writing_zero = false; 3759 /* set if the fact that we're writing a zero is used to let any 3760 * stack slots remain STACK_ZERO 3761 */ 3762 bool zero_used = false; 3763 3764 cur = env->cur_state->frame[env->cur_state->curframe]; 3765 ptr_reg = &cur->regs[ptr_regno]; 3766 min_off = ptr_reg->smin_value + off; 3767 max_off = ptr_reg->smax_value + off + size; 3768 if (value_regno >= 0) 3769 value_reg = &cur->regs[value_regno]; 3770 if ((value_reg && register_is_null(value_reg)) || 3771 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 3772 writing_zero = true; 3773 3774 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3775 if (err) 3776 return err; 3777 3778 for (i = min_off; i < max_off; i++) { 3779 int spi; 3780 3781 spi = __get_spi(i); 3782 err = destroy_if_dynptr_stack_slot(env, state, spi); 3783 if (err) 3784 return err; 3785 } 3786 3787 /* Variable offset writes destroy any spilled pointers in range. */ 3788 for (i = min_off; i < max_off; i++) { 3789 u8 new_type, *stype; 3790 int slot, spi; 3791 3792 slot = -i - 1; 3793 spi = slot / BPF_REG_SIZE; 3794 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3795 mark_stack_slot_scratched(env, spi); 3796 3797 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3798 /* Reject the write if range we may write to has not 3799 * been initialized beforehand. If we didn't reject 3800 * here, the ptr status would be erased below (even 3801 * though not all slots are actually overwritten), 3802 * possibly opening the door to leaks. 3803 * 3804 * We do however catch STACK_INVALID case below, and 3805 * only allow reading possibly uninitialized memory 3806 * later for CAP_PERFMON, as the write may not happen to 3807 * that slot. 3808 */ 3809 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3810 insn_idx, i); 3811 return -EINVAL; 3812 } 3813 3814 /* Erase all spilled pointers. */ 3815 state->stack[spi].spilled_ptr.type = NOT_INIT; 3816 3817 /* Update the slot type. */ 3818 new_type = STACK_MISC; 3819 if (writing_zero && *stype == STACK_ZERO) { 3820 new_type = STACK_ZERO; 3821 zero_used = true; 3822 } 3823 /* If the slot is STACK_INVALID, we check whether it's OK to 3824 * pretend that it will be initialized by this write. The slot 3825 * might not actually be written to, and so if we mark it as 3826 * initialized future reads might leak uninitialized memory. 3827 * For privileged programs, we will accept such reads to slots 3828 * that may or may not be written because, if we're reject 3829 * them, the error would be too confusing. 3830 */ 3831 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3832 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3833 insn_idx, i); 3834 return -EINVAL; 3835 } 3836 *stype = new_type; 3837 } 3838 if (zero_used) { 3839 /* backtracking doesn't work for STACK_ZERO yet. */ 3840 err = mark_chain_precision(env, value_regno); 3841 if (err) 3842 return err; 3843 } 3844 return 0; 3845 } 3846 3847 /* When register 'dst_regno' is assigned some values from stack[min_off, 3848 * max_off), we set the register's type according to the types of the 3849 * respective stack slots. If all the stack values are known to be zeros, then 3850 * so is the destination reg. Otherwise, the register is considered to be 3851 * SCALAR. This function does not deal with register filling; the caller must 3852 * ensure that all spilled registers in the stack range have been marked as 3853 * read. 3854 */ 3855 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3856 /* func where src register points to */ 3857 struct bpf_func_state *ptr_state, 3858 int min_off, int max_off, int dst_regno) 3859 { 3860 struct bpf_verifier_state *vstate = env->cur_state; 3861 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3862 int i, slot, spi; 3863 u8 *stype; 3864 int zeros = 0; 3865 3866 for (i = min_off; i < max_off; i++) { 3867 slot = -i - 1; 3868 spi = slot / BPF_REG_SIZE; 3869 stype = ptr_state->stack[spi].slot_type; 3870 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3871 break; 3872 zeros++; 3873 } 3874 if (zeros == max_off - min_off) { 3875 /* any access_size read into register is zero extended, 3876 * so the whole register == const_zero 3877 */ 3878 __mark_reg_const_zero(&state->regs[dst_regno]); 3879 /* backtracking doesn't support STACK_ZERO yet, 3880 * so mark it precise here, so that later 3881 * backtracking can stop here. 3882 * Backtracking may not need this if this register 3883 * doesn't participate in pointer adjustment. 3884 * Forward propagation of precise flag is not 3885 * necessary either. This mark is only to stop 3886 * backtracking. Any register that contributed 3887 * to const 0 was marked precise before spill. 3888 */ 3889 state->regs[dst_regno].precise = true; 3890 } else { 3891 /* have read misc data from the stack */ 3892 mark_reg_unknown(env, state->regs, dst_regno); 3893 } 3894 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3895 } 3896 3897 /* Read the stack at 'off' and put the results into the register indicated by 3898 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3899 * spilled reg. 3900 * 3901 * 'dst_regno' can be -1, meaning that the read value is not going to a 3902 * register. 3903 * 3904 * The access is assumed to be within the current stack bounds. 3905 */ 3906 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3907 /* func where src register points to */ 3908 struct bpf_func_state *reg_state, 3909 int off, int size, int dst_regno) 3910 { 3911 struct bpf_verifier_state *vstate = env->cur_state; 3912 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3913 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3914 struct bpf_reg_state *reg; 3915 u8 *stype, type; 3916 3917 stype = reg_state->stack[spi].slot_type; 3918 reg = ®_state->stack[spi].spilled_ptr; 3919 3920 if (is_spilled_reg(®_state->stack[spi])) { 3921 u8 spill_size = 1; 3922 3923 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3924 spill_size++; 3925 3926 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3927 if (reg->type != SCALAR_VALUE) { 3928 verbose_linfo(env, env->insn_idx, "; "); 3929 verbose(env, "invalid size of register fill\n"); 3930 return -EACCES; 3931 } 3932 3933 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3934 if (dst_regno < 0) 3935 return 0; 3936 3937 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3938 /* The earlier check_reg_arg() has decided the 3939 * subreg_def for this insn. Save it first. 3940 */ 3941 s32 subreg_def = state->regs[dst_regno].subreg_def; 3942 3943 copy_register_state(&state->regs[dst_regno], reg); 3944 state->regs[dst_regno].subreg_def = subreg_def; 3945 } else { 3946 for (i = 0; i < size; i++) { 3947 type = stype[(slot - i) % BPF_REG_SIZE]; 3948 if (type == STACK_SPILL) 3949 continue; 3950 if (type == STACK_MISC) 3951 continue; 3952 if (type == STACK_INVALID && env->allow_uninit_stack) 3953 continue; 3954 verbose(env, "invalid read from stack off %d+%d size %d\n", 3955 off, i, size); 3956 return -EACCES; 3957 } 3958 mark_reg_unknown(env, state->regs, dst_regno); 3959 } 3960 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3961 return 0; 3962 } 3963 3964 if (dst_regno >= 0) { 3965 /* restore register state from stack */ 3966 copy_register_state(&state->regs[dst_regno], reg); 3967 /* mark reg as written since spilled pointer state likely 3968 * has its liveness marks cleared by is_state_visited() 3969 * which resets stack/reg liveness for state transitions 3970 */ 3971 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3972 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3973 /* If dst_regno==-1, the caller is asking us whether 3974 * it is acceptable to use this value as a SCALAR_VALUE 3975 * (e.g. for XADD). 3976 * We must not allow unprivileged callers to do that 3977 * with spilled pointers. 3978 */ 3979 verbose(env, "leaking pointer from stack off %d\n", 3980 off); 3981 return -EACCES; 3982 } 3983 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3984 } else { 3985 for (i = 0; i < size; i++) { 3986 type = stype[(slot - i) % BPF_REG_SIZE]; 3987 if (type == STACK_MISC) 3988 continue; 3989 if (type == STACK_ZERO) 3990 continue; 3991 if (type == STACK_INVALID && env->allow_uninit_stack) 3992 continue; 3993 verbose(env, "invalid read from stack off %d+%d size %d\n", 3994 off, i, size); 3995 return -EACCES; 3996 } 3997 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3998 if (dst_regno >= 0) 3999 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4000 } 4001 return 0; 4002 } 4003 4004 enum bpf_access_src { 4005 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4006 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4007 }; 4008 4009 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4010 int regno, int off, int access_size, 4011 bool zero_size_allowed, 4012 enum bpf_access_src type, 4013 struct bpf_call_arg_meta *meta); 4014 4015 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4016 { 4017 return cur_regs(env) + regno; 4018 } 4019 4020 /* Read the stack at 'ptr_regno + off' and put the result into the register 4021 * 'dst_regno'. 4022 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4023 * but not its variable offset. 4024 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4025 * 4026 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4027 * filling registers (i.e. reads of spilled register cannot be detected when 4028 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4029 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4030 * offset; for a fixed offset check_stack_read_fixed_off should be used 4031 * instead. 4032 */ 4033 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4034 int ptr_regno, int off, int size, int dst_regno) 4035 { 4036 /* The state of the source register. */ 4037 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4038 struct bpf_func_state *ptr_state = func(env, reg); 4039 int err; 4040 int min_off, max_off; 4041 4042 /* Note that we pass a NULL meta, so raw access will not be permitted. 4043 */ 4044 err = check_stack_range_initialized(env, ptr_regno, off, size, 4045 false, ACCESS_DIRECT, NULL); 4046 if (err) 4047 return err; 4048 4049 min_off = reg->smin_value + off; 4050 max_off = reg->smax_value + off; 4051 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4052 return 0; 4053 } 4054 4055 /* check_stack_read dispatches to check_stack_read_fixed_off or 4056 * check_stack_read_var_off. 4057 * 4058 * The caller must ensure that the offset falls within the allocated stack 4059 * bounds. 4060 * 4061 * 'dst_regno' is a register which will receive the value from the stack. It 4062 * can be -1, meaning that the read value is not going to a register. 4063 */ 4064 static int check_stack_read(struct bpf_verifier_env *env, 4065 int ptr_regno, int off, int size, 4066 int dst_regno) 4067 { 4068 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4069 struct bpf_func_state *state = func(env, reg); 4070 int err; 4071 /* Some accesses are only permitted with a static offset. */ 4072 bool var_off = !tnum_is_const(reg->var_off); 4073 4074 /* The offset is required to be static when reads don't go to a 4075 * register, in order to not leak pointers (see 4076 * check_stack_read_fixed_off). 4077 */ 4078 if (dst_regno < 0 && var_off) { 4079 char tn_buf[48]; 4080 4081 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4082 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4083 tn_buf, off, size); 4084 return -EACCES; 4085 } 4086 /* Variable offset is prohibited for unprivileged mode for simplicity 4087 * since it requires corresponding support in Spectre masking for stack 4088 * ALU. See also retrieve_ptr_limit(). 4089 */ 4090 if (!env->bypass_spec_v1 && var_off) { 4091 char tn_buf[48]; 4092 4093 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4094 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 4095 ptr_regno, tn_buf); 4096 return -EACCES; 4097 } 4098 4099 if (!var_off) { 4100 off += reg->var_off.value; 4101 err = check_stack_read_fixed_off(env, state, off, size, 4102 dst_regno); 4103 } else { 4104 /* Variable offset stack reads need more conservative handling 4105 * than fixed offset ones. Note that dst_regno >= 0 on this 4106 * branch. 4107 */ 4108 err = check_stack_read_var_off(env, ptr_regno, off, size, 4109 dst_regno); 4110 } 4111 return err; 4112 } 4113 4114 4115 /* check_stack_write dispatches to check_stack_write_fixed_off or 4116 * check_stack_write_var_off. 4117 * 4118 * 'ptr_regno' is the register used as a pointer into the stack. 4119 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4120 * 'value_regno' is the register whose value we're writing to the stack. It can 4121 * be -1, meaning that we're not writing from a register. 4122 * 4123 * The caller must ensure that the offset falls within the maximum stack size. 4124 */ 4125 static int check_stack_write(struct bpf_verifier_env *env, 4126 int ptr_regno, int off, int size, 4127 int value_regno, int insn_idx) 4128 { 4129 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4130 struct bpf_func_state *state = func(env, reg); 4131 int err; 4132 4133 if (tnum_is_const(reg->var_off)) { 4134 off += reg->var_off.value; 4135 err = check_stack_write_fixed_off(env, state, off, size, 4136 value_regno, insn_idx); 4137 } else { 4138 /* Variable offset stack reads need more conservative handling 4139 * than fixed offset ones. 4140 */ 4141 err = check_stack_write_var_off(env, state, 4142 ptr_regno, off, size, 4143 value_regno, insn_idx); 4144 } 4145 return err; 4146 } 4147 4148 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4149 int off, int size, enum bpf_access_type type) 4150 { 4151 struct bpf_reg_state *regs = cur_regs(env); 4152 struct bpf_map *map = regs[regno].map_ptr; 4153 u32 cap = bpf_map_flags_to_cap(map); 4154 4155 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4156 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4157 map->value_size, off, size); 4158 return -EACCES; 4159 } 4160 4161 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4162 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4163 map->value_size, off, size); 4164 return -EACCES; 4165 } 4166 4167 return 0; 4168 } 4169 4170 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4171 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4172 int off, int size, u32 mem_size, 4173 bool zero_size_allowed) 4174 { 4175 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4176 struct bpf_reg_state *reg; 4177 4178 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4179 return 0; 4180 4181 reg = &cur_regs(env)[regno]; 4182 switch (reg->type) { 4183 case PTR_TO_MAP_KEY: 4184 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4185 mem_size, off, size); 4186 break; 4187 case PTR_TO_MAP_VALUE: 4188 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4189 mem_size, off, size); 4190 break; 4191 case PTR_TO_PACKET: 4192 case PTR_TO_PACKET_META: 4193 case PTR_TO_PACKET_END: 4194 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4195 off, size, regno, reg->id, off, mem_size); 4196 break; 4197 case PTR_TO_MEM: 4198 default: 4199 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4200 mem_size, off, size); 4201 } 4202 4203 return -EACCES; 4204 } 4205 4206 /* check read/write into a memory region with possible variable offset */ 4207 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4208 int off, int size, u32 mem_size, 4209 bool zero_size_allowed) 4210 { 4211 struct bpf_verifier_state *vstate = env->cur_state; 4212 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4213 struct bpf_reg_state *reg = &state->regs[regno]; 4214 int err; 4215 4216 /* We may have adjusted the register pointing to memory region, so we 4217 * need to try adding each of min_value and max_value to off 4218 * to make sure our theoretical access will be safe. 4219 * 4220 * The minimum value is only important with signed 4221 * comparisons where we can't assume the floor of a 4222 * value is 0. If we are using signed variables for our 4223 * index'es we need to make sure that whatever we use 4224 * will have a set floor within our range. 4225 */ 4226 if (reg->smin_value < 0 && 4227 (reg->smin_value == S64_MIN || 4228 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4229 reg->smin_value + off < 0)) { 4230 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4231 regno); 4232 return -EACCES; 4233 } 4234 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4235 mem_size, zero_size_allowed); 4236 if (err) { 4237 verbose(env, "R%d min value is outside of the allowed memory range\n", 4238 regno); 4239 return err; 4240 } 4241 4242 /* If we haven't set a max value then we need to bail since we can't be 4243 * sure we won't do bad things. 4244 * If reg->umax_value + off could overflow, treat that as unbounded too. 4245 */ 4246 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4247 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4248 regno); 4249 return -EACCES; 4250 } 4251 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4252 mem_size, zero_size_allowed); 4253 if (err) { 4254 verbose(env, "R%d max value is outside of the allowed memory range\n", 4255 regno); 4256 return err; 4257 } 4258 4259 return 0; 4260 } 4261 4262 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4263 const struct bpf_reg_state *reg, int regno, 4264 bool fixed_off_ok) 4265 { 4266 /* Access to this pointer-typed register or passing it to a helper 4267 * is only allowed in its original, unmodified form. 4268 */ 4269 4270 if (reg->off < 0) { 4271 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4272 reg_type_str(env, reg->type), regno, reg->off); 4273 return -EACCES; 4274 } 4275 4276 if (!fixed_off_ok && reg->off) { 4277 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4278 reg_type_str(env, reg->type), regno, reg->off); 4279 return -EACCES; 4280 } 4281 4282 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4283 char tn_buf[48]; 4284 4285 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4286 verbose(env, "variable %s access var_off=%s disallowed\n", 4287 reg_type_str(env, reg->type), tn_buf); 4288 return -EACCES; 4289 } 4290 4291 return 0; 4292 } 4293 4294 int check_ptr_off_reg(struct bpf_verifier_env *env, 4295 const struct bpf_reg_state *reg, int regno) 4296 { 4297 return __check_ptr_off_reg(env, reg, regno, false); 4298 } 4299 4300 static int map_kptr_match_type(struct bpf_verifier_env *env, 4301 struct btf_field *kptr_field, 4302 struct bpf_reg_state *reg, u32 regno) 4303 { 4304 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4305 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4306 const char *reg_name = ""; 4307 4308 /* Only unreferenced case accepts untrusted pointers */ 4309 if (kptr_field->type == BPF_KPTR_UNREF) 4310 perm_flags |= PTR_UNTRUSTED; 4311 4312 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4313 goto bad_type; 4314 4315 if (!btf_is_kernel(reg->btf)) { 4316 verbose(env, "R%d must point to kernel BTF\n", regno); 4317 return -EINVAL; 4318 } 4319 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4320 reg_name = kernel_type_name(reg->btf, reg->btf_id); 4321 4322 /* For ref_ptr case, release function check should ensure we get one 4323 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4324 * normal store of unreferenced kptr, we must ensure var_off is zero. 4325 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4326 * reg->off and reg->ref_obj_id are not needed here. 4327 */ 4328 if (__check_ptr_off_reg(env, reg, regno, true)) 4329 return -EACCES; 4330 4331 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4332 * we also need to take into account the reg->off. 4333 * 4334 * We want to support cases like: 4335 * 4336 * struct foo { 4337 * struct bar br; 4338 * struct baz bz; 4339 * }; 4340 * 4341 * struct foo *v; 4342 * v = func(); // PTR_TO_BTF_ID 4343 * val->foo = v; // reg->off is zero, btf and btf_id match type 4344 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4345 * // first member type of struct after comparison fails 4346 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4347 * // to match type 4348 * 4349 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4350 * is zero. We must also ensure that btf_struct_ids_match does not walk 4351 * the struct to match type against first member of struct, i.e. reject 4352 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4353 * strict mode to true for type match. 4354 */ 4355 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4356 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4357 kptr_field->type == BPF_KPTR_REF)) 4358 goto bad_type; 4359 return 0; 4360 bad_type: 4361 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4362 reg_type_str(env, reg->type), reg_name); 4363 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4364 if (kptr_field->type == BPF_KPTR_UNREF) 4365 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4366 targ_name); 4367 else 4368 verbose(env, "\n"); 4369 return -EINVAL; 4370 } 4371 4372 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 4373 * can dereference RCU protected pointers and result is PTR_TRUSTED. 4374 */ 4375 static bool in_rcu_cs(struct bpf_verifier_env *env) 4376 { 4377 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 4378 } 4379 4380 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 4381 BTF_SET_START(rcu_protected_types) 4382 BTF_ID(struct, prog_test_ref_kfunc) 4383 BTF_ID(struct, cgroup) 4384 BTF_SET_END(rcu_protected_types) 4385 4386 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 4387 { 4388 if (!btf_is_kernel(btf)) 4389 return false; 4390 return btf_id_set_contains(&rcu_protected_types, btf_id); 4391 } 4392 4393 static bool rcu_safe_kptr(const struct btf_field *field) 4394 { 4395 const struct btf_field_kptr *kptr = &field->kptr; 4396 4397 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 4398 } 4399 4400 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4401 int value_regno, int insn_idx, 4402 struct btf_field *kptr_field) 4403 { 4404 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4405 int class = BPF_CLASS(insn->code); 4406 struct bpf_reg_state *val_reg; 4407 4408 /* Things we already checked for in check_map_access and caller: 4409 * - Reject cases where variable offset may touch kptr 4410 * - size of access (must be BPF_DW) 4411 * - tnum_is_const(reg->var_off) 4412 * - kptr_field->offset == off + reg->var_off.value 4413 */ 4414 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4415 if (BPF_MODE(insn->code) != BPF_MEM) { 4416 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4417 return -EACCES; 4418 } 4419 4420 /* We only allow loading referenced kptr, since it will be marked as 4421 * untrusted, similar to unreferenced kptr. 4422 */ 4423 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4424 verbose(env, "store to referenced kptr disallowed\n"); 4425 return -EACCES; 4426 } 4427 4428 if (class == BPF_LDX) { 4429 val_reg = reg_state(env, value_regno); 4430 /* We can simply mark the value_regno receiving the pointer 4431 * value from map as PTR_TO_BTF_ID, with the correct type. 4432 */ 4433 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4434 kptr_field->kptr.btf_id, 4435 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 4436 PTR_MAYBE_NULL | MEM_RCU : 4437 PTR_MAYBE_NULL | PTR_UNTRUSTED); 4438 /* For mark_ptr_or_null_reg */ 4439 val_reg->id = ++env->id_gen; 4440 } else if (class == BPF_STX) { 4441 val_reg = reg_state(env, value_regno); 4442 if (!register_is_null(val_reg) && 4443 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4444 return -EACCES; 4445 } else if (class == BPF_ST) { 4446 if (insn->imm) { 4447 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4448 kptr_field->offset); 4449 return -EACCES; 4450 } 4451 } else { 4452 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4453 return -EACCES; 4454 } 4455 return 0; 4456 } 4457 4458 /* check read/write into a map element with possible variable offset */ 4459 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4460 int off, int size, bool zero_size_allowed, 4461 enum bpf_access_src src) 4462 { 4463 struct bpf_verifier_state *vstate = env->cur_state; 4464 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4465 struct bpf_reg_state *reg = &state->regs[regno]; 4466 struct bpf_map *map = reg->map_ptr; 4467 struct btf_record *rec; 4468 int err, i; 4469 4470 err = check_mem_region_access(env, regno, off, size, map->value_size, 4471 zero_size_allowed); 4472 if (err) 4473 return err; 4474 4475 if (IS_ERR_OR_NULL(map->record)) 4476 return 0; 4477 rec = map->record; 4478 for (i = 0; i < rec->cnt; i++) { 4479 struct btf_field *field = &rec->fields[i]; 4480 u32 p = field->offset; 4481 4482 /* If any part of a field can be touched by load/store, reject 4483 * this program. To check that [x1, x2) overlaps with [y1, y2), 4484 * it is sufficient to check x1 < y2 && y1 < x2. 4485 */ 4486 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4487 p < reg->umax_value + off + size) { 4488 switch (field->type) { 4489 case BPF_KPTR_UNREF: 4490 case BPF_KPTR_REF: 4491 if (src != ACCESS_DIRECT) { 4492 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4493 return -EACCES; 4494 } 4495 if (!tnum_is_const(reg->var_off)) { 4496 verbose(env, "kptr access cannot have variable offset\n"); 4497 return -EACCES; 4498 } 4499 if (p != off + reg->var_off.value) { 4500 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4501 p, off + reg->var_off.value); 4502 return -EACCES; 4503 } 4504 if (size != bpf_size_to_bytes(BPF_DW)) { 4505 verbose(env, "kptr access size must be BPF_DW\n"); 4506 return -EACCES; 4507 } 4508 break; 4509 default: 4510 verbose(env, "%s cannot be accessed directly by load/store\n", 4511 btf_field_type_name(field->type)); 4512 return -EACCES; 4513 } 4514 } 4515 } 4516 return 0; 4517 } 4518 4519 #define MAX_PACKET_OFF 0xffff 4520 4521 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4522 const struct bpf_call_arg_meta *meta, 4523 enum bpf_access_type t) 4524 { 4525 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4526 4527 switch (prog_type) { 4528 /* Program types only with direct read access go here! */ 4529 case BPF_PROG_TYPE_LWT_IN: 4530 case BPF_PROG_TYPE_LWT_OUT: 4531 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4532 case BPF_PROG_TYPE_SK_REUSEPORT: 4533 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4534 case BPF_PROG_TYPE_CGROUP_SKB: 4535 if (t == BPF_WRITE) 4536 return false; 4537 fallthrough; 4538 4539 /* Program types with direct read + write access go here! */ 4540 case BPF_PROG_TYPE_SCHED_CLS: 4541 case BPF_PROG_TYPE_SCHED_ACT: 4542 case BPF_PROG_TYPE_XDP: 4543 case BPF_PROG_TYPE_LWT_XMIT: 4544 case BPF_PROG_TYPE_SK_SKB: 4545 case BPF_PROG_TYPE_SK_MSG: 4546 if (meta) 4547 return meta->pkt_access; 4548 4549 env->seen_direct_write = true; 4550 return true; 4551 4552 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4553 if (t == BPF_WRITE) 4554 env->seen_direct_write = true; 4555 4556 return true; 4557 4558 default: 4559 return false; 4560 } 4561 } 4562 4563 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4564 int size, bool zero_size_allowed) 4565 { 4566 struct bpf_reg_state *regs = cur_regs(env); 4567 struct bpf_reg_state *reg = ®s[regno]; 4568 int err; 4569 4570 /* We may have added a variable offset to the packet pointer; but any 4571 * reg->range we have comes after that. We are only checking the fixed 4572 * offset. 4573 */ 4574 4575 /* We don't allow negative numbers, because we aren't tracking enough 4576 * detail to prove they're safe. 4577 */ 4578 if (reg->smin_value < 0) { 4579 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4580 regno); 4581 return -EACCES; 4582 } 4583 4584 err = reg->range < 0 ? -EINVAL : 4585 __check_mem_access(env, regno, off, size, reg->range, 4586 zero_size_allowed); 4587 if (err) { 4588 verbose(env, "R%d offset is outside of the packet\n", regno); 4589 return err; 4590 } 4591 4592 /* __check_mem_access has made sure "off + size - 1" is within u16. 4593 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4594 * otherwise find_good_pkt_pointers would have refused to set range info 4595 * that __check_mem_access would have rejected this pkt access. 4596 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4597 */ 4598 env->prog->aux->max_pkt_offset = 4599 max_t(u32, env->prog->aux->max_pkt_offset, 4600 off + reg->umax_value + size - 1); 4601 4602 return err; 4603 } 4604 4605 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4606 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4607 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4608 struct btf **btf, u32 *btf_id) 4609 { 4610 struct bpf_insn_access_aux info = { 4611 .reg_type = *reg_type, 4612 .log = &env->log, 4613 }; 4614 4615 if (env->ops->is_valid_access && 4616 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4617 /* A non zero info.ctx_field_size indicates that this field is a 4618 * candidate for later verifier transformation to load the whole 4619 * field and then apply a mask when accessed with a narrower 4620 * access than actual ctx access size. A zero info.ctx_field_size 4621 * will only allow for whole field access and rejects any other 4622 * type of narrower access. 4623 */ 4624 *reg_type = info.reg_type; 4625 4626 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4627 *btf = info.btf; 4628 *btf_id = info.btf_id; 4629 } else { 4630 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4631 } 4632 /* remember the offset of last byte accessed in ctx */ 4633 if (env->prog->aux->max_ctx_offset < off + size) 4634 env->prog->aux->max_ctx_offset = off + size; 4635 return 0; 4636 } 4637 4638 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4639 return -EACCES; 4640 } 4641 4642 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4643 int size) 4644 { 4645 if (size < 0 || off < 0 || 4646 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4647 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4648 off, size); 4649 return -EACCES; 4650 } 4651 return 0; 4652 } 4653 4654 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4655 u32 regno, int off, int size, 4656 enum bpf_access_type t) 4657 { 4658 struct bpf_reg_state *regs = cur_regs(env); 4659 struct bpf_reg_state *reg = ®s[regno]; 4660 struct bpf_insn_access_aux info = {}; 4661 bool valid; 4662 4663 if (reg->smin_value < 0) { 4664 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4665 regno); 4666 return -EACCES; 4667 } 4668 4669 switch (reg->type) { 4670 case PTR_TO_SOCK_COMMON: 4671 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4672 break; 4673 case PTR_TO_SOCKET: 4674 valid = bpf_sock_is_valid_access(off, size, t, &info); 4675 break; 4676 case PTR_TO_TCP_SOCK: 4677 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4678 break; 4679 case PTR_TO_XDP_SOCK: 4680 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4681 break; 4682 default: 4683 valid = false; 4684 } 4685 4686 4687 if (valid) { 4688 env->insn_aux_data[insn_idx].ctx_field_size = 4689 info.ctx_field_size; 4690 return 0; 4691 } 4692 4693 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4694 regno, reg_type_str(env, reg->type), off, size); 4695 4696 return -EACCES; 4697 } 4698 4699 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4700 { 4701 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4702 } 4703 4704 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4705 { 4706 const struct bpf_reg_state *reg = reg_state(env, regno); 4707 4708 return reg->type == PTR_TO_CTX; 4709 } 4710 4711 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4712 { 4713 const struct bpf_reg_state *reg = reg_state(env, regno); 4714 4715 return type_is_sk_pointer(reg->type); 4716 } 4717 4718 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4719 { 4720 const struct bpf_reg_state *reg = reg_state(env, regno); 4721 4722 return type_is_pkt_pointer(reg->type); 4723 } 4724 4725 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4726 { 4727 const struct bpf_reg_state *reg = reg_state(env, regno); 4728 4729 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4730 return reg->type == PTR_TO_FLOW_KEYS; 4731 } 4732 4733 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4734 { 4735 /* A referenced register is always trusted. */ 4736 if (reg->ref_obj_id) 4737 return true; 4738 4739 /* If a register is not referenced, it is trusted if it has the 4740 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4741 * other type modifiers may be safe, but we elect to take an opt-in 4742 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4743 * not. 4744 * 4745 * Eventually, we should make PTR_TRUSTED the single source of truth 4746 * for whether a register is trusted. 4747 */ 4748 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4749 !bpf_type_has_unsafe_modifiers(reg->type); 4750 } 4751 4752 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4753 { 4754 return reg->type & MEM_RCU; 4755 } 4756 4757 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4758 const struct bpf_reg_state *reg, 4759 int off, int size, bool strict) 4760 { 4761 struct tnum reg_off; 4762 int ip_align; 4763 4764 /* Byte size accesses are always allowed. */ 4765 if (!strict || size == 1) 4766 return 0; 4767 4768 /* For platforms that do not have a Kconfig enabling 4769 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4770 * NET_IP_ALIGN is universally set to '2'. And on platforms 4771 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4772 * to this code only in strict mode where we want to emulate 4773 * the NET_IP_ALIGN==2 checking. Therefore use an 4774 * unconditional IP align value of '2'. 4775 */ 4776 ip_align = 2; 4777 4778 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4779 if (!tnum_is_aligned(reg_off, size)) { 4780 char tn_buf[48]; 4781 4782 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4783 verbose(env, 4784 "misaligned packet access off %d+%s+%d+%d size %d\n", 4785 ip_align, tn_buf, reg->off, off, size); 4786 return -EACCES; 4787 } 4788 4789 return 0; 4790 } 4791 4792 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4793 const struct bpf_reg_state *reg, 4794 const char *pointer_desc, 4795 int off, int size, bool strict) 4796 { 4797 struct tnum reg_off; 4798 4799 /* Byte size accesses are always allowed. */ 4800 if (!strict || size == 1) 4801 return 0; 4802 4803 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4804 if (!tnum_is_aligned(reg_off, size)) { 4805 char tn_buf[48]; 4806 4807 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4808 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4809 pointer_desc, tn_buf, reg->off, off, size); 4810 return -EACCES; 4811 } 4812 4813 return 0; 4814 } 4815 4816 static int check_ptr_alignment(struct bpf_verifier_env *env, 4817 const struct bpf_reg_state *reg, int off, 4818 int size, bool strict_alignment_once) 4819 { 4820 bool strict = env->strict_alignment || strict_alignment_once; 4821 const char *pointer_desc = ""; 4822 4823 switch (reg->type) { 4824 case PTR_TO_PACKET: 4825 case PTR_TO_PACKET_META: 4826 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4827 * right in front, treat it the very same way. 4828 */ 4829 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4830 case PTR_TO_FLOW_KEYS: 4831 pointer_desc = "flow keys "; 4832 break; 4833 case PTR_TO_MAP_KEY: 4834 pointer_desc = "key "; 4835 break; 4836 case PTR_TO_MAP_VALUE: 4837 pointer_desc = "value "; 4838 break; 4839 case PTR_TO_CTX: 4840 pointer_desc = "context "; 4841 break; 4842 case PTR_TO_STACK: 4843 pointer_desc = "stack "; 4844 /* The stack spill tracking logic in check_stack_write_fixed_off() 4845 * and check_stack_read_fixed_off() relies on stack accesses being 4846 * aligned. 4847 */ 4848 strict = true; 4849 break; 4850 case PTR_TO_SOCKET: 4851 pointer_desc = "sock "; 4852 break; 4853 case PTR_TO_SOCK_COMMON: 4854 pointer_desc = "sock_common "; 4855 break; 4856 case PTR_TO_TCP_SOCK: 4857 pointer_desc = "tcp_sock "; 4858 break; 4859 case PTR_TO_XDP_SOCK: 4860 pointer_desc = "xdp_sock "; 4861 break; 4862 default: 4863 break; 4864 } 4865 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4866 strict); 4867 } 4868 4869 static int update_stack_depth(struct bpf_verifier_env *env, 4870 const struct bpf_func_state *func, 4871 int off) 4872 { 4873 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4874 4875 if (stack >= -off) 4876 return 0; 4877 4878 /* update known max for given subprogram */ 4879 env->subprog_info[func->subprogno].stack_depth = -off; 4880 return 0; 4881 } 4882 4883 /* starting from main bpf function walk all instructions of the function 4884 * and recursively walk all callees that given function can call. 4885 * Ignore jump and exit insns. 4886 * Since recursion is prevented by check_cfg() this algorithm 4887 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4888 */ 4889 static int check_max_stack_depth(struct bpf_verifier_env *env) 4890 { 4891 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4892 struct bpf_subprog_info *subprog = env->subprog_info; 4893 struct bpf_insn *insn = env->prog->insnsi; 4894 bool tail_call_reachable = false; 4895 int ret_insn[MAX_CALL_FRAMES]; 4896 int ret_prog[MAX_CALL_FRAMES]; 4897 int j; 4898 4899 process_func: 4900 /* protect against potential stack overflow that might happen when 4901 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4902 * depth for such case down to 256 so that the worst case scenario 4903 * would result in 8k stack size (32 which is tailcall limit * 256 = 4904 * 8k). 4905 * 4906 * To get the idea what might happen, see an example: 4907 * func1 -> sub rsp, 128 4908 * subfunc1 -> sub rsp, 256 4909 * tailcall1 -> add rsp, 256 4910 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4911 * subfunc2 -> sub rsp, 64 4912 * subfunc22 -> sub rsp, 128 4913 * tailcall2 -> add rsp, 128 4914 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4915 * 4916 * tailcall will unwind the current stack frame but it will not get rid 4917 * of caller's stack as shown on the example above. 4918 */ 4919 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4920 verbose(env, 4921 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4922 depth); 4923 return -EACCES; 4924 } 4925 /* round up to 32-bytes, since this is granularity 4926 * of interpreter stack size 4927 */ 4928 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4929 if (depth > MAX_BPF_STACK) { 4930 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4931 frame + 1, depth); 4932 return -EACCES; 4933 } 4934 continue_func: 4935 subprog_end = subprog[idx + 1].start; 4936 for (; i < subprog_end; i++) { 4937 int next_insn; 4938 4939 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4940 continue; 4941 /* remember insn and function to return to */ 4942 ret_insn[frame] = i + 1; 4943 ret_prog[frame] = idx; 4944 4945 /* find the callee */ 4946 next_insn = i + insn[i].imm + 1; 4947 idx = find_subprog(env, next_insn); 4948 if (idx < 0) { 4949 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4950 next_insn); 4951 return -EFAULT; 4952 } 4953 if (subprog[idx].is_async_cb) { 4954 if (subprog[idx].has_tail_call) { 4955 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4956 return -EFAULT; 4957 } 4958 /* async callbacks don't increase bpf prog stack size */ 4959 continue; 4960 } 4961 i = next_insn; 4962 4963 if (subprog[idx].has_tail_call) 4964 tail_call_reachable = true; 4965 4966 frame++; 4967 if (frame >= MAX_CALL_FRAMES) { 4968 verbose(env, "the call stack of %d frames is too deep !\n", 4969 frame); 4970 return -E2BIG; 4971 } 4972 goto process_func; 4973 } 4974 /* if tail call got detected across bpf2bpf calls then mark each of the 4975 * currently present subprog frames as tail call reachable subprogs; 4976 * this info will be utilized by JIT so that we will be preserving the 4977 * tail call counter throughout bpf2bpf calls combined with tailcalls 4978 */ 4979 if (tail_call_reachable) 4980 for (j = 0; j < frame; j++) 4981 subprog[ret_prog[j]].tail_call_reachable = true; 4982 if (subprog[0].tail_call_reachable) 4983 env->prog->aux->tail_call_reachable = true; 4984 4985 /* end of for() loop means the last insn of the 'subprog' 4986 * was reached. Doesn't matter whether it was JA or EXIT 4987 */ 4988 if (frame == 0) 4989 return 0; 4990 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4991 frame--; 4992 i = ret_insn[frame]; 4993 idx = ret_prog[frame]; 4994 goto continue_func; 4995 } 4996 4997 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4998 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4999 const struct bpf_insn *insn, int idx) 5000 { 5001 int start = idx + insn->imm + 1, subprog; 5002 5003 subprog = find_subprog(env, start); 5004 if (subprog < 0) { 5005 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5006 start); 5007 return -EFAULT; 5008 } 5009 return env->subprog_info[subprog].stack_depth; 5010 } 5011 #endif 5012 5013 static int __check_buffer_access(struct bpf_verifier_env *env, 5014 const char *buf_info, 5015 const struct bpf_reg_state *reg, 5016 int regno, int off, int size) 5017 { 5018 if (off < 0) { 5019 verbose(env, 5020 "R%d invalid %s buffer access: off=%d, size=%d\n", 5021 regno, buf_info, off, size); 5022 return -EACCES; 5023 } 5024 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5025 char tn_buf[48]; 5026 5027 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5028 verbose(env, 5029 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5030 regno, off, tn_buf); 5031 return -EACCES; 5032 } 5033 5034 return 0; 5035 } 5036 5037 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5038 const struct bpf_reg_state *reg, 5039 int regno, int off, int size) 5040 { 5041 int err; 5042 5043 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5044 if (err) 5045 return err; 5046 5047 if (off + size > env->prog->aux->max_tp_access) 5048 env->prog->aux->max_tp_access = off + size; 5049 5050 return 0; 5051 } 5052 5053 static int check_buffer_access(struct bpf_verifier_env *env, 5054 const struct bpf_reg_state *reg, 5055 int regno, int off, int size, 5056 bool zero_size_allowed, 5057 u32 *max_access) 5058 { 5059 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5060 int err; 5061 5062 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5063 if (err) 5064 return err; 5065 5066 if (off + size > *max_access) 5067 *max_access = off + size; 5068 5069 return 0; 5070 } 5071 5072 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5073 static void zext_32_to_64(struct bpf_reg_state *reg) 5074 { 5075 reg->var_off = tnum_subreg(reg->var_off); 5076 __reg_assign_32_into_64(reg); 5077 } 5078 5079 /* truncate register to smaller size (in bytes) 5080 * must be called with size < BPF_REG_SIZE 5081 */ 5082 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5083 { 5084 u64 mask; 5085 5086 /* clear high bits in bit representation */ 5087 reg->var_off = tnum_cast(reg->var_off, size); 5088 5089 /* fix arithmetic bounds */ 5090 mask = ((u64)1 << (size * 8)) - 1; 5091 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5092 reg->umin_value &= mask; 5093 reg->umax_value &= mask; 5094 } else { 5095 reg->umin_value = 0; 5096 reg->umax_value = mask; 5097 } 5098 reg->smin_value = reg->umin_value; 5099 reg->smax_value = reg->umax_value; 5100 5101 /* If size is smaller than 32bit register the 32bit register 5102 * values are also truncated so we push 64-bit bounds into 5103 * 32-bit bounds. Above were truncated < 32-bits already. 5104 */ 5105 if (size >= 4) 5106 return; 5107 __reg_combine_64_into_32(reg); 5108 } 5109 5110 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5111 { 5112 /* A map is considered read-only if the following condition are true: 5113 * 5114 * 1) BPF program side cannot change any of the map content. The 5115 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5116 * and was set at map creation time. 5117 * 2) The map value(s) have been initialized from user space by a 5118 * loader and then "frozen", such that no new map update/delete 5119 * operations from syscall side are possible for the rest of 5120 * the map's lifetime from that point onwards. 5121 * 3) Any parallel/pending map update/delete operations from syscall 5122 * side have been completed. Only after that point, it's safe to 5123 * assume that map value(s) are immutable. 5124 */ 5125 return (map->map_flags & BPF_F_RDONLY_PROG) && 5126 READ_ONCE(map->frozen) && 5127 !bpf_map_write_active(map); 5128 } 5129 5130 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5131 { 5132 void *ptr; 5133 u64 addr; 5134 int err; 5135 5136 err = map->ops->map_direct_value_addr(map, &addr, off); 5137 if (err) 5138 return err; 5139 ptr = (void *)(long)addr + off; 5140 5141 switch (size) { 5142 case sizeof(u8): 5143 *val = (u64)*(u8 *)ptr; 5144 break; 5145 case sizeof(u16): 5146 *val = (u64)*(u16 *)ptr; 5147 break; 5148 case sizeof(u32): 5149 *val = (u64)*(u32 *)ptr; 5150 break; 5151 case sizeof(u64): 5152 *val = *(u64 *)ptr; 5153 break; 5154 default: 5155 return -EINVAL; 5156 } 5157 return 0; 5158 } 5159 5160 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5161 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5162 5163 /* 5164 * Allow list few fields as RCU trusted or full trusted. 5165 * This logic doesn't allow mix tagging and will be removed once GCC supports 5166 * btf_type_tag. 5167 */ 5168 5169 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5170 BTF_TYPE_SAFE_RCU(struct task_struct) { 5171 const cpumask_t *cpus_ptr; 5172 struct css_set __rcu *cgroups; 5173 struct task_struct __rcu *real_parent; 5174 struct task_struct *group_leader; 5175 }; 5176 5177 BTF_TYPE_SAFE_RCU(struct css_set) { 5178 struct cgroup *dfl_cgrp; 5179 }; 5180 5181 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5182 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5183 __bpf_md_ptr(struct seq_file *, seq); 5184 }; 5185 5186 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5187 __bpf_md_ptr(struct bpf_iter_meta *, meta); 5188 __bpf_md_ptr(struct task_struct *, task); 5189 }; 5190 5191 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5192 struct file *file; 5193 }; 5194 5195 BTF_TYPE_SAFE_TRUSTED(struct file) { 5196 struct inode *f_inode; 5197 }; 5198 5199 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5200 /* no negative dentry-s in places where bpf can see it */ 5201 struct inode *d_inode; 5202 }; 5203 5204 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5205 struct sock *sk; 5206 }; 5207 5208 static bool type_is_rcu(struct bpf_verifier_env *env, 5209 struct bpf_reg_state *reg, 5210 int off) 5211 { 5212 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5213 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5214 5215 return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_rcu"); 5216 } 5217 5218 static bool type_is_trusted(struct bpf_verifier_env *env, 5219 struct bpf_reg_state *reg, 5220 int off) 5221 { 5222 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5223 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5224 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5225 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5226 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5227 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5228 5229 return btf_nested_type_is_trusted(&env->log, reg, off, "__safe_trusted"); 5230 } 5231 5232 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5233 struct bpf_reg_state *regs, 5234 int regno, int off, int size, 5235 enum bpf_access_type atype, 5236 int value_regno) 5237 { 5238 struct bpf_reg_state *reg = regs + regno; 5239 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5240 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5241 enum bpf_type_flag flag = 0; 5242 u32 btf_id; 5243 int ret; 5244 5245 if (!env->allow_ptr_leaks) { 5246 verbose(env, 5247 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5248 tname); 5249 return -EPERM; 5250 } 5251 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5252 verbose(env, 5253 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5254 tname); 5255 return -EINVAL; 5256 } 5257 if (off < 0) { 5258 verbose(env, 5259 "R%d is ptr_%s invalid negative access: off=%d\n", 5260 regno, tname, off); 5261 return -EACCES; 5262 } 5263 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5264 char tn_buf[48]; 5265 5266 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5267 verbose(env, 5268 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5269 regno, tname, off, tn_buf); 5270 return -EACCES; 5271 } 5272 5273 if (reg->type & MEM_USER) { 5274 verbose(env, 5275 "R%d is ptr_%s access user memory: off=%d\n", 5276 regno, tname, off); 5277 return -EACCES; 5278 } 5279 5280 if (reg->type & MEM_PERCPU) { 5281 verbose(env, 5282 "R%d is ptr_%s access percpu memory: off=%d\n", 5283 regno, tname, off); 5284 return -EACCES; 5285 } 5286 5287 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 5288 if (!btf_is_kernel(reg->btf)) { 5289 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5290 return -EFAULT; 5291 } 5292 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5293 } else { 5294 /* Writes are permitted with default btf_struct_access for 5295 * program allocated objects (which always have ref_obj_id > 0), 5296 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5297 */ 5298 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5299 verbose(env, "only read is supported\n"); 5300 return -EACCES; 5301 } 5302 5303 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5304 !reg->ref_obj_id) { 5305 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5306 return -EFAULT; 5307 } 5308 5309 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5310 } 5311 5312 if (ret < 0) 5313 return ret; 5314 5315 if (ret != PTR_TO_BTF_ID) { 5316 /* just mark; */ 5317 5318 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 5319 /* If this is an untrusted pointer, all pointers formed by walking it 5320 * also inherit the untrusted flag. 5321 */ 5322 flag = PTR_UNTRUSTED; 5323 5324 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 5325 /* By default any pointer obtained from walking a trusted pointer is no 5326 * longer trusted, unless the field being accessed has explicitly been 5327 * marked as inheriting its parent's state of trust (either full or RCU). 5328 * For example: 5329 * 'cgroups' pointer is untrusted if task->cgroups dereference 5330 * happened in a sleepable program outside of bpf_rcu_read_lock() 5331 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 5332 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 5333 * 5334 * A regular RCU-protected pointer with __rcu tag can also be deemed 5335 * trusted if we are in an RCU CS. Such pointer can be NULL. 5336 */ 5337 if (type_is_trusted(env, reg, off)) { 5338 flag |= PTR_TRUSTED; 5339 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 5340 if (type_is_rcu(env, reg, off)) { 5341 /* ignore __rcu tag and mark it MEM_RCU */ 5342 flag |= MEM_RCU; 5343 } else if (flag & MEM_RCU) { 5344 /* __rcu tagged pointers can be NULL */ 5345 flag |= PTR_MAYBE_NULL; 5346 } else if (flag & (MEM_PERCPU | MEM_USER)) { 5347 /* keep as-is */ 5348 } else { 5349 /* walking unknown pointers yields untrusted pointer */ 5350 flag = PTR_UNTRUSTED; 5351 } 5352 } else { 5353 /* 5354 * If not in RCU CS or MEM_RCU pointer can be NULL then 5355 * aggressively mark as untrusted otherwise such 5356 * pointers will be plain PTR_TO_BTF_ID without flags 5357 * and will be allowed to be passed into helpers for 5358 * compat reasons. 5359 */ 5360 flag = PTR_UNTRUSTED; 5361 } 5362 } else { 5363 /* Old compat. Deprecated */ 5364 flag &= ~PTR_TRUSTED; 5365 } 5366 5367 if (atype == BPF_READ && value_regno >= 0) 5368 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5369 5370 return 0; 5371 } 5372 5373 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5374 struct bpf_reg_state *regs, 5375 int regno, int off, int size, 5376 enum bpf_access_type atype, 5377 int value_regno) 5378 { 5379 struct bpf_reg_state *reg = regs + regno; 5380 struct bpf_map *map = reg->map_ptr; 5381 struct bpf_reg_state map_reg; 5382 enum bpf_type_flag flag = 0; 5383 const struct btf_type *t; 5384 const char *tname; 5385 u32 btf_id; 5386 int ret; 5387 5388 if (!btf_vmlinux) { 5389 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5390 return -ENOTSUPP; 5391 } 5392 5393 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5394 verbose(env, "map_ptr access not supported for map type %d\n", 5395 map->map_type); 5396 return -ENOTSUPP; 5397 } 5398 5399 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 5400 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5401 5402 if (!env->allow_ptr_leaks) { 5403 verbose(env, 5404 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5405 tname); 5406 return -EPERM; 5407 } 5408 5409 if (off < 0) { 5410 verbose(env, "R%d is %s invalid negative access: off=%d\n", 5411 regno, tname, off); 5412 return -EACCES; 5413 } 5414 5415 if (atype != BPF_READ) { 5416 verbose(env, "only read from %s is supported\n", tname); 5417 return -EACCES; 5418 } 5419 5420 /* Simulate access to a PTR_TO_BTF_ID */ 5421 memset(&map_reg, 0, sizeof(map_reg)); 5422 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 5423 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 5424 if (ret < 0) 5425 return ret; 5426 5427 if (value_regno >= 0) 5428 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 5429 5430 return 0; 5431 } 5432 5433 /* Check that the stack access at the given offset is within bounds. The 5434 * maximum valid offset is -1. 5435 * 5436 * The minimum valid offset is -MAX_BPF_STACK for writes, and 5437 * -state->allocated_stack for reads. 5438 */ 5439 static int check_stack_slot_within_bounds(int off, 5440 struct bpf_func_state *state, 5441 enum bpf_access_type t) 5442 { 5443 int min_valid_off; 5444 5445 if (t == BPF_WRITE) 5446 min_valid_off = -MAX_BPF_STACK; 5447 else 5448 min_valid_off = -state->allocated_stack; 5449 5450 if (off < min_valid_off || off > -1) 5451 return -EACCES; 5452 return 0; 5453 } 5454 5455 /* Check that the stack access at 'regno + off' falls within the maximum stack 5456 * bounds. 5457 * 5458 * 'off' includes `regno->offset`, but not its dynamic part (if any). 5459 */ 5460 static int check_stack_access_within_bounds( 5461 struct bpf_verifier_env *env, 5462 int regno, int off, int access_size, 5463 enum bpf_access_src src, enum bpf_access_type type) 5464 { 5465 struct bpf_reg_state *regs = cur_regs(env); 5466 struct bpf_reg_state *reg = regs + regno; 5467 struct bpf_func_state *state = func(env, reg); 5468 int min_off, max_off; 5469 int err; 5470 char *err_extra; 5471 5472 if (src == ACCESS_HELPER) 5473 /* We don't know if helpers are reading or writing (or both). */ 5474 err_extra = " indirect access to"; 5475 else if (type == BPF_READ) 5476 err_extra = " read from"; 5477 else 5478 err_extra = " write to"; 5479 5480 if (tnum_is_const(reg->var_off)) { 5481 min_off = reg->var_off.value + off; 5482 if (access_size > 0) 5483 max_off = min_off + access_size - 1; 5484 else 5485 max_off = min_off; 5486 } else { 5487 if (reg->smax_value >= BPF_MAX_VAR_OFF || 5488 reg->smin_value <= -BPF_MAX_VAR_OFF) { 5489 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 5490 err_extra, regno); 5491 return -EACCES; 5492 } 5493 min_off = reg->smin_value + off; 5494 if (access_size > 0) 5495 max_off = reg->smax_value + off + access_size - 1; 5496 else 5497 max_off = min_off; 5498 } 5499 5500 err = check_stack_slot_within_bounds(min_off, state, type); 5501 if (!err) 5502 err = check_stack_slot_within_bounds(max_off, state, type); 5503 5504 if (err) { 5505 if (tnum_is_const(reg->var_off)) { 5506 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5507 err_extra, regno, off, access_size); 5508 } else { 5509 char tn_buf[48]; 5510 5511 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5512 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5513 err_extra, regno, tn_buf, access_size); 5514 } 5515 } 5516 return err; 5517 } 5518 5519 /* check whether memory at (regno + off) is accessible for t = (read | write) 5520 * if t==write, value_regno is a register which value is stored into memory 5521 * if t==read, value_regno is a register which will receive the value from memory 5522 * if t==write && value_regno==-1, some unknown value is stored into memory 5523 * if t==read && value_regno==-1, don't care what we read from memory 5524 */ 5525 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5526 int off, int bpf_size, enum bpf_access_type t, 5527 int value_regno, bool strict_alignment_once) 5528 { 5529 struct bpf_reg_state *regs = cur_regs(env); 5530 struct bpf_reg_state *reg = regs + regno; 5531 struct bpf_func_state *state; 5532 int size, err = 0; 5533 5534 size = bpf_size_to_bytes(bpf_size); 5535 if (size < 0) 5536 return size; 5537 5538 /* alignment checks will add in reg->off themselves */ 5539 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5540 if (err) 5541 return err; 5542 5543 /* for access checks, reg->off is just part of off */ 5544 off += reg->off; 5545 5546 if (reg->type == PTR_TO_MAP_KEY) { 5547 if (t == BPF_WRITE) { 5548 verbose(env, "write to change key R%d not allowed\n", regno); 5549 return -EACCES; 5550 } 5551 5552 err = check_mem_region_access(env, regno, off, size, 5553 reg->map_ptr->key_size, false); 5554 if (err) 5555 return err; 5556 if (value_regno >= 0) 5557 mark_reg_unknown(env, regs, value_regno); 5558 } else if (reg->type == PTR_TO_MAP_VALUE) { 5559 struct btf_field *kptr_field = NULL; 5560 5561 if (t == BPF_WRITE && value_regno >= 0 && 5562 is_pointer_value(env, value_regno)) { 5563 verbose(env, "R%d leaks addr into map\n", value_regno); 5564 return -EACCES; 5565 } 5566 err = check_map_access_type(env, regno, off, size, t); 5567 if (err) 5568 return err; 5569 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5570 if (err) 5571 return err; 5572 if (tnum_is_const(reg->var_off)) 5573 kptr_field = btf_record_find(reg->map_ptr->record, 5574 off + reg->var_off.value, BPF_KPTR); 5575 if (kptr_field) { 5576 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5577 } else if (t == BPF_READ && value_regno >= 0) { 5578 struct bpf_map *map = reg->map_ptr; 5579 5580 /* if map is read-only, track its contents as scalars */ 5581 if (tnum_is_const(reg->var_off) && 5582 bpf_map_is_rdonly(map) && 5583 map->ops->map_direct_value_addr) { 5584 int map_off = off + reg->var_off.value; 5585 u64 val = 0; 5586 5587 err = bpf_map_direct_read(map, map_off, size, 5588 &val); 5589 if (err) 5590 return err; 5591 5592 regs[value_regno].type = SCALAR_VALUE; 5593 __mark_reg_known(®s[value_regno], val); 5594 } else { 5595 mark_reg_unknown(env, regs, value_regno); 5596 } 5597 } 5598 } else if (base_type(reg->type) == PTR_TO_MEM) { 5599 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5600 5601 if (type_may_be_null(reg->type)) { 5602 verbose(env, "R%d invalid mem access '%s'\n", regno, 5603 reg_type_str(env, reg->type)); 5604 return -EACCES; 5605 } 5606 5607 if (t == BPF_WRITE && rdonly_mem) { 5608 verbose(env, "R%d cannot write into %s\n", 5609 regno, reg_type_str(env, reg->type)); 5610 return -EACCES; 5611 } 5612 5613 if (t == BPF_WRITE && value_regno >= 0 && 5614 is_pointer_value(env, value_regno)) { 5615 verbose(env, "R%d leaks addr into mem\n", value_regno); 5616 return -EACCES; 5617 } 5618 5619 err = check_mem_region_access(env, regno, off, size, 5620 reg->mem_size, false); 5621 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5622 mark_reg_unknown(env, regs, value_regno); 5623 } else if (reg->type == PTR_TO_CTX) { 5624 enum bpf_reg_type reg_type = SCALAR_VALUE; 5625 struct btf *btf = NULL; 5626 u32 btf_id = 0; 5627 5628 if (t == BPF_WRITE && value_regno >= 0 && 5629 is_pointer_value(env, value_regno)) { 5630 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5631 return -EACCES; 5632 } 5633 5634 err = check_ptr_off_reg(env, reg, regno); 5635 if (err < 0) 5636 return err; 5637 5638 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5639 &btf_id); 5640 if (err) 5641 verbose_linfo(env, insn_idx, "; "); 5642 if (!err && t == BPF_READ && value_regno >= 0) { 5643 /* ctx access returns either a scalar, or a 5644 * PTR_TO_PACKET[_META,_END]. In the latter 5645 * case, we know the offset is zero. 5646 */ 5647 if (reg_type == SCALAR_VALUE) { 5648 mark_reg_unknown(env, regs, value_regno); 5649 } else { 5650 mark_reg_known_zero(env, regs, 5651 value_regno); 5652 if (type_may_be_null(reg_type)) 5653 regs[value_regno].id = ++env->id_gen; 5654 /* A load of ctx field could have different 5655 * actual load size with the one encoded in the 5656 * insn. When the dst is PTR, it is for sure not 5657 * a sub-register. 5658 */ 5659 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5660 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5661 regs[value_regno].btf = btf; 5662 regs[value_regno].btf_id = btf_id; 5663 } 5664 } 5665 regs[value_regno].type = reg_type; 5666 } 5667 5668 } else if (reg->type == PTR_TO_STACK) { 5669 /* Basic bounds checks. */ 5670 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5671 if (err) 5672 return err; 5673 5674 state = func(env, reg); 5675 err = update_stack_depth(env, state, off); 5676 if (err) 5677 return err; 5678 5679 if (t == BPF_READ) 5680 err = check_stack_read(env, regno, off, size, 5681 value_regno); 5682 else 5683 err = check_stack_write(env, regno, off, size, 5684 value_regno, insn_idx); 5685 } else if (reg_is_pkt_pointer(reg)) { 5686 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5687 verbose(env, "cannot write into packet\n"); 5688 return -EACCES; 5689 } 5690 if (t == BPF_WRITE && value_regno >= 0 && 5691 is_pointer_value(env, value_regno)) { 5692 verbose(env, "R%d leaks addr into packet\n", 5693 value_regno); 5694 return -EACCES; 5695 } 5696 err = check_packet_access(env, regno, off, size, false); 5697 if (!err && t == BPF_READ && value_regno >= 0) 5698 mark_reg_unknown(env, regs, value_regno); 5699 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5700 if (t == BPF_WRITE && value_regno >= 0 && 5701 is_pointer_value(env, value_regno)) { 5702 verbose(env, "R%d leaks addr into flow keys\n", 5703 value_regno); 5704 return -EACCES; 5705 } 5706 5707 err = check_flow_keys_access(env, off, size); 5708 if (!err && t == BPF_READ && value_regno >= 0) 5709 mark_reg_unknown(env, regs, value_regno); 5710 } else if (type_is_sk_pointer(reg->type)) { 5711 if (t == BPF_WRITE) { 5712 verbose(env, "R%d cannot write into %s\n", 5713 regno, reg_type_str(env, reg->type)); 5714 return -EACCES; 5715 } 5716 err = check_sock_access(env, insn_idx, regno, off, size, t); 5717 if (!err && value_regno >= 0) 5718 mark_reg_unknown(env, regs, value_regno); 5719 } else if (reg->type == PTR_TO_TP_BUFFER) { 5720 err = check_tp_buffer_access(env, reg, regno, off, size); 5721 if (!err && t == BPF_READ && value_regno >= 0) 5722 mark_reg_unknown(env, regs, value_regno); 5723 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5724 !type_may_be_null(reg->type)) { 5725 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5726 value_regno); 5727 } else if (reg->type == CONST_PTR_TO_MAP) { 5728 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5729 value_regno); 5730 } else if (base_type(reg->type) == PTR_TO_BUF) { 5731 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5732 u32 *max_access; 5733 5734 if (rdonly_mem) { 5735 if (t == BPF_WRITE) { 5736 verbose(env, "R%d cannot write into %s\n", 5737 regno, reg_type_str(env, reg->type)); 5738 return -EACCES; 5739 } 5740 max_access = &env->prog->aux->max_rdonly_access; 5741 } else { 5742 max_access = &env->prog->aux->max_rdwr_access; 5743 } 5744 5745 err = check_buffer_access(env, reg, regno, off, size, false, 5746 max_access); 5747 5748 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5749 mark_reg_unknown(env, regs, value_regno); 5750 } else { 5751 verbose(env, "R%d invalid mem access '%s'\n", regno, 5752 reg_type_str(env, reg->type)); 5753 return -EACCES; 5754 } 5755 5756 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5757 regs[value_regno].type == SCALAR_VALUE) { 5758 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5759 coerce_reg_to_size(®s[value_regno], size); 5760 } 5761 return err; 5762 } 5763 5764 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5765 { 5766 int load_reg; 5767 int err; 5768 5769 switch (insn->imm) { 5770 case BPF_ADD: 5771 case BPF_ADD | BPF_FETCH: 5772 case BPF_AND: 5773 case BPF_AND | BPF_FETCH: 5774 case BPF_OR: 5775 case BPF_OR | BPF_FETCH: 5776 case BPF_XOR: 5777 case BPF_XOR | BPF_FETCH: 5778 case BPF_XCHG: 5779 case BPF_CMPXCHG: 5780 break; 5781 default: 5782 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5783 return -EINVAL; 5784 } 5785 5786 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5787 verbose(env, "invalid atomic operand size\n"); 5788 return -EINVAL; 5789 } 5790 5791 /* check src1 operand */ 5792 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5793 if (err) 5794 return err; 5795 5796 /* check src2 operand */ 5797 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5798 if (err) 5799 return err; 5800 5801 if (insn->imm == BPF_CMPXCHG) { 5802 /* Check comparison of R0 with memory location */ 5803 const u32 aux_reg = BPF_REG_0; 5804 5805 err = check_reg_arg(env, aux_reg, SRC_OP); 5806 if (err) 5807 return err; 5808 5809 if (is_pointer_value(env, aux_reg)) { 5810 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5811 return -EACCES; 5812 } 5813 } 5814 5815 if (is_pointer_value(env, insn->src_reg)) { 5816 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5817 return -EACCES; 5818 } 5819 5820 if (is_ctx_reg(env, insn->dst_reg) || 5821 is_pkt_reg(env, insn->dst_reg) || 5822 is_flow_key_reg(env, insn->dst_reg) || 5823 is_sk_reg(env, insn->dst_reg)) { 5824 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5825 insn->dst_reg, 5826 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5827 return -EACCES; 5828 } 5829 5830 if (insn->imm & BPF_FETCH) { 5831 if (insn->imm == BPF_CMPXCHG) 5832 load_reg = BPF_REG_0; 5833 else 5834 load_reg = insn->src_reg; 5835 5836 /* check and record load of old value */ 5837 err = check_reg_arg(env, load_reg, DST_OP); 5838 if (err) 5839 return err; 5840 } else { 5841 /* This instruction accesses a memory location but doesn't 5842 * actually load it into a register. 5843 */ 5844 load_reg = -1; 5845 } 5846 5847 /* Check whether we can read the memory, with second call for fetch 5848 * case to simulate the register fill. 5849 */ 5850 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5851 BPF_SIZE(insn->code), BPF_READ, -1, true); 5852 if (!err && load_reg >= 0) 5853 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5854 BPF_SIZE(insn->code), BPF_READ, load_reg, 5855 true); 5856 if (err) 5857 return err; 5858 5859 /* Check whether we can write into the same memory. */ 5860 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5861 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5862 if (err) 5863 return err; 5864 5865 return 0; 5866 } 5867 5868 /* When register 'regno' is used to read the stack (either directly or through 5869 * a helper function) make sure that it's within stack boundary and, depending 5870 * on the access type, that all elements of the stack are initialized. 5871 * 5872 * 'off' includes 'regno->off', but not its dynamic part (if any). 5873 * 5874 * All registers that have been spilled on the stack in the slots within the 5875 * read offsets are marked as read. 5876 */ 5877 static int check_stack_range_initialized( 5878 struct bpf_verifier_env *env, int regno, int off, 5879 int access_size, bool zero_size_allowed, 5880 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5881 { 5882 struct bpf_reg_state *reg = reg_state(env, regno); 5883 struct bpf_func_state *state = func(env, reg); 5884 int err, min_off, max_off, i, j, slot, spi; 5885 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5886 enum bpf_access_type bounds_check_type; 5887 /* Some accesses can write anything into the stack, others are 5888 * read-only. 5889 */ 5890 bool clobber = false; 5891 5892 if (access_size == 0 && !zero_size_allowed) { 5893 verbose(env, "invalid zero-sized read\n"); 5894 return -EACCES; 5895 } 5896 5897 if (type == ACCESS_HELPER) { 5898 /* The bounds checks for writes are more permissive than for 5899 * reads. However, if raw_mode is not set, we'll do extra 5900 * checks below. 5901 */ 5902 bounds_check_type = BPF_WRITE; 5903 clobber = true; 5904 } else { 5905 bounds_check_type = BPF_READ; 5906 } 5907 err = check_stack_access_within_bounds(env, regno, off, access_size, 5908 type, bounds_check_type); 5909 if (err) 5910 return err; 5911 5912 5913 if (tnum_is_const(reg->var_off)) { 5914 min_off = max_off = reg->var_off.value + off; 5915 } else { 5916 /* Variable offset is prohibited for unprivileged mode for 5917 * simplicity since it requires corresponding support in 5918 * Spectre masking for stack ALU. 5919 * See also retrieve_ptr_limit(). 5920 */ 5921 if (!env->bypass_spec_v1) { 5922 char tn_buf[48]; 5923 5924 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5925 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5926 regno, err_extra, tn_buf); 5927 return -EACCES; 5928 } 5929 /* Only initialized buffer on stack is allowed to be accessed 5930 * with variable offset. With uninitialized buffer it's hard to 5931 * guarantee that whole memory is marked as initialized on 5932 * helper return since specific bounds are unknown what may 5933 * cause uninitialized stack leaking. 5934 */ 5935 if (meta && meta->raw_mode) 5936 meta = NULL; 5937 5938 min_off = reg->smin_value + off; 5939 max_off = reg->smax_value + off; 5940 } 5941 5942 if (meta && meta->raw_mode) { 5943 /* Ensure we won't be overwriting dynptrs when simulating byte 5944 * by byte access in check_helper_call using meta.access_size. 5945 * This would be a problem if we have a helper in the future 5946 * which takes: 5947 * 5948 * helper(uninit_mem, len, dynptr) 5949 * 5950 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 5951 * may end up writing to dynptr itself when touching memory from 5952 * arg 1. This can be relaxed on a case by case basis for known 5953 * safe cases, but reject due to the possibilitiy of aliasing by 5954 * default. 5955 */ 5956 for (i = min_off; i < max_off + access_size; i++) { 5957 int stack_off = -i - 1; 5958 5959 spi = __get_spi(i); 5960 /* raw_mode may write past allocated_stack */ 5961 if (state->allocated_stack <= stack_off) 5962 continue; 5963 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 5964 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 5965 return -EACCES; 5966 } 5967 } 5968 meta->access_size = access_size; 5969 meta->regno = regno; 5970 return 0; 5971 } 5972 5973 for (i = min_off; i < max_off + access_size; i++) { 5974 u8 *stype; 5975 5976 slot = -i - 1; 5977 spi = slot / BPF_REG_SIZE; 5978 if (state->allocated_stack <= slot) 5979 goto err; 5980 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5981 if (*stype == STACK_MISC) 5982 goto mark; 5983 if ((*stype == STACK_ZERO) || 5984 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 5985 if (clobber) { 5986 /* helper can write anything into the stack */ 5987 *stype = STACK_MISC; 5988 } 5989 goto mark; 5990 } 5991 5992 if (is_spilled_reg(&state->stack[spi]) && 5993 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5994 env->allow_ptr_leaks)) { 5995 if (clobber) { 5996 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5997 for (j = 0; j < BPF_REG_SIZE; j++) 5998 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5999 } 6000 goto mark; 6001 } 6002 6003 err: 6004 if (tnum_is_const(reg->var_off)) { 6005 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6006 err_extra, regno, min_off, i - min_off, access_size); 6007 } else { 6008 char tn_buf[48]; 6009 6010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6011 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6012 err_extra, regno, tn_buf, i - min_off, access_size); 6013 } 6014 return -EACCES; 6015 mark: 6016 /* reading any byte out of 8-byte 'spill_slot' will cause 6017 * the whole slot to be marked as 'read' 6018 */ 6019 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6020 state->stack[spi].spilled_ptr.parent, 6021 REG_LIVE_READ64); 6022 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6023 * be sure that whether stack slot is written to or not. Hence, 6024 * we must still conservatively propagate reads upwards even if 6025 * helper may write to the entire memory range. 6026 */ 6027 } 6028 return update_stack_depth(env, state, min_off); 6029 } 6030 6031 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6032 int access_size, bool zero_size_allowed, 6033 struct bpf_call_arg_meta *meta) 6034 { 6035 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6036 u32 *max_access; 6037 6038 switch (base_type(reg->type)) { 6039 case PTR_TO_PACKET: 6040 case PTR_TO_PACKET_META: 6041 return check_packet_access(env, regno, reg->off, access_size, 6042 zero_size_allowed); 6043 case PTR_TO_MAP_KEY: 6044 if (meta && meta->raw_mode) { 6045 verbose(env, "R%d cannot write into %s\n", regno, 6046 reg_type_str(env, reg->type)); 6047 return -EACCES; 6048 } 6049 return check_mem_region_access(env, regno, reg->off, access_size, 6050 reg->map_ptr->key_size, false); 6051 case PTR_TO_MAP_VALUE: 6052 if (check_map_access_type(env, regno, reg->off, access_size, 6053 meta && meta->raw_mode ? BPF_WRITE : 6054 BPF_READ)) 6055 return -EACCES; 6056 return check_map_access(env, regno, reg->off, access_size, 6057 zero_size_allowed, ACCESS_HELPER); 6058 case PTR_TO_MEM: 6059 if (type_is_rdonly_mem(reg->type)) { 6060 if (meta && meta->raw_mode) { 6061 verbose(env, "R%d cannot write into %s\n", regno, 6062 reg_type_str(env, reg->type)); 6063 return -EACCES; 6064 } 6065 } 6066 return check_mem_region_access(env, regno, reg->off, 6067 access_size, reg->mem_size, 6068 zero_size_allowed); 6069 case PTR_TO_BUF: 6070 if (type_is_rdonly_mem(reg->type)) { 6071 if (meta && meta->raw_mode) { 6072 verbose(env, "R%d cannot write into %s\n", regno, 6073 reg_type_str(env, reg->type)); 6074 return -EACCES; 6075 } 6076 6077 max_access = &env->prog->aux->max_rdonly_access; 6078 } else { 6079 max_access = &env->prog->aux->max_rdwr_access; 6080 } 6081 return check_buffer_access(env, reg, regno, reg->off, 6082 access_size, zero_size_allowed, 6083 max_access); 6084 case PTR_TO_STACK: 6085 return check_stack_range_initialized( 6086 env, 6087 regno, reg->off, access_size, 6088 zero_size_allowed, ACCESS_HELPER, meta); 6089 case PTR_TO_CTX: 6090 /* in case the function doesn't know how to access the context, 6091 * (because we are in a program of type SYSCALL for example), we 6092 * can not statically check its size. 6093 * Dynamically check it now. 6094 */ 6095 if (!env->ops->convert_ctx_access) { 6096 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6097 int offset = access_size - 1; 6098 6099 /* Allow zero-byte read from PTR_TO_CTX */ 6100 if (access_size == 0) 6101 return zero_size_allowed ? 0 : -EACCES; 6102 6103 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6104 atype, -1, false); 6105 } 6106 6107 fallthrough; 6108 default: /* scalar_value or invalid ptr */ 6109 /* Allow zero-byte read from NULL, regardless of pointer type */ 6110 if (zero_size_allowed && access_size == 0 && 6111 register_is_null(reg)) 6112 return 0; 6113 6114 verbose(env, "R%d type=%s ", regno, 6115 reg_type_str(env, reg->type)); 6116 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6117 return -EACCES; 6118 } 6119 } 6120 6121 static int check_mem_size_reg(struct bpf_verifier_env *env, 6122 struct bpf_reg_state *reg, u32 regno, 6123 bool zero_size_allowed, 6124 struct bpf_call_arg_meta *meta) 6125 { 6126 int err; 6127 6128 /* This is used to refine r0 return value bounds for helpers 6129 * that enforce this value as an upper bound on return values. 6130 * See do_refine_retval_range() for helpers that can refine 6131 * the return value. C type of helper is u32 so we pull register 6132 * bound from umax_value however, if negative verifier errors 6133 * out. Only upper bounds can be learned because retval is an 6134 * int type and negative retvals are allowed. 6135 */ 6136 meta->msize_max_value = reg->umax_value; 6137 6138 /* The register is SCALAR_VALUE; the access check 6139 * happens using its boundaries. 6140 */ 6141 if (!tnum_is_const(reg->var_off)) 6142 /* For unprivileged variable accesses, disable raw 6143 * mode so that the program is required to 6144 * initialize all the memory that the helper could 6145 * just partially fill up. 6146 */ 6147 meta = NULL; 6148 6149 if (reg->smin_value < 0) { 6150 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6151 regno); 6152 return -EACCES; 6153 } 6154 6155 if (reg->umin_value == 0) { 6156 err = check_helper_mem_access(env, regno - 1, 0, 6157 zero_size_allowed, 6158 meta); 6159 if (err) 6160 return err; 6161 } 6162 6163 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6164 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6165 regno); 6166 return -EACCES; 6167 } 6168 err = check_helper_mem_access(env, regno - 1, 6169 reg->umax_value, 6170 zero_size_allowed, meta); 6171 if (!err) 6172 err = mark_chain_precision(env, regno); 6173 return err; 6174 } 6175 6176 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6177 u32 regno, u32 mem_size) 6178 { 6179 bool may_be_null = type_may_be_null(reg->type); 6180 struct bpf_reg_state saved_reg; 6181 struct bpf_call_arg_meta meta; 6182 int err; 6183 6184 if (register_is_null(reg)) 6185 return 0; 6186 6187 memset(&meta, 0, sizeof(meta)); 6188 /* Assuming that the register contains a value check if the memory 6189 * access is safe. Temporarily save and restore the register's state as 6190 * the conversion shouldn't be visible to a caller. 6191 */ 6192 if (may_be_null) { 6193 saved_reg = *reg; 6194 mark_ptr_not_null_reg(reg); 6195 } 6196 6197 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6198 /* Check access for BPF_WRITE */ 6199 meta.raw_mode = true; 6200 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6201 6202 if (may_be_null) 6203 *reg = saved_reg; 6204 6205 return err; 6206 } 6207 6208 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6209 u32 regno) 6210 { 6211 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6212 bool may_be_null = type_may_be_null(mem_reg->type); 6213 struct bpf_reg_state saved_reg; 6214 struct bpf_call_arg_meta meta; 6215 int err; 6216 6217 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6218 6219 memset(&meta, 0, sizeof(meta)); 6220 6221 if (may_be_null) { 6222 saved_reg = *mem_reg; 6223 mark_ptr_not_null_reg(mem_reg); 6224 } 6225 6226 err = check_mem_size_reg(env, reg, regno, true, &meta); 6227 /* Check access for BPF_WRITE */ 6228 meta.raw_mode = true; 6229 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6230 6231 if (may_be_null) 6232 *mem_reg = saved_reg; 6233 return err; 6234 } 6235 6236 /* Implementation details: 6237 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6238 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6239 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6240 * Two separate bpf_obj_new will also have different reg->id. 6241 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6242 * clears reg->id after value_or_null->value transition, since the verifier only 6243 * cares about the range of access to valid map value pointer and doesn't care 6244 * about actual address of the map element. 6245 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6246 * reg->id > 0 after value_or_null->value transition. By doing so 6247 * two bpf_map_lookups will be considered two different pointers that 6248 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6249 * returned from bpf_obj_new. 6250 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6251 * dead-locks. 6252 * Since only one bpf_spin_lock is allowed the checks are simpler than 6253 * reg_is_refcounted() logic. The verifier needs to remember only 6254 * one spin_lock instead of array of acquired_refs. 6255 * cur_state->active_lock remembers which map value element or allocated 6256 * object got locked and clears it after bpf_spin_unlock. 6257 */ 6258 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6259 bool is_lock) 6260 { 6261 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6262 struct bpf_verifier_state *cur = env->cur_state; 6263 bool is_const = tnum_is_const(reg->var_off); 6264 u64 val = reg->var_off.value; 6265 struct bpf_map *map = NULL; 6266 struct btf *btf = NULL; 6267 struct btf_record *rec; 6268 6269 if (!is_const) { 6270 verbose(env, 6271 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6272 regno); 6273 return -EINVAL; 6274 } 6275 if (reg->type == PTR_TO_MAP_VALUE) { 6276 map = reg->map_ptr; 6277 if (!map->btf) { 6278 verbose(env, 6279 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6280 map->name); 6281 return -EINVAL; 6282 } 6283 } else { 6284 btf = reg->btf; 6285 } 6286 6287 rec = reg_btf_record(reg); 6288 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6289 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6290 map ? map->name : "kptr"); 6291 return -EINVAL; 6292 } 6293 if (rec->spin_lock_off != val + reg->off) { 6294 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6295 val + reg->off, rec->spin_lock_off); 6296 return -EINVAL; 6297 } 6298 if (is_lock) { 6299 if (cur->active_lock.ptr) { 6300 verbose(env, 6301 "Locking two bpf_spin_locks are not allowed\n"); 6302 return -EINVAL; 6303 } 6304 if (map) 6305 cur->active_lock.ptr = map; 6306 else 6307 cur->active_lock.ptr = btf; 6308 cur->active_lock.id = reg->id; 6309 } else { 6310 void *ptr; 6311 6312 if (map) 6313 ptr = map; 6314 else 6315 ptr = btf; 6316 6317 if (!cur->active_lock.ptr) { 6318 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6319 return -EINVAL; 6320 } 6321 if (cur->active_lock.ptr != ptr || 6322 cur->active_lock.id != reg->id) { 6323 verbose(env, "bpf_spin_unlock of different lock\n"); 6324 return -EINVAL; 6325 } 6326 6327 invalidate_non_owning_refs(env); 6328 6329 cur->active_lock.ptr = NULL; 6330 cur->active_lock.id = 0; 6331 } 6332 return 0; 6333 } 6334 6335 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6336 struct bpf_call_arg_meta *meta) 6337 { 6338 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6339 bool is_const = tnum_is_const(reg->var_off); 6340 struct bpf_map *map = reg->map_ptr; 6341 u64 val = reg->var_off.value; 6342 6343 if (!is_const) { 6344 verbose(env, 6345 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6346 regno); 6347 return -EINVAL; 6348 } 6349 if (!map->btf) { 6350 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6351 map->name); 6352 return -EINVAL; 6353 } 6354 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6355 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6356 return -EINVAL; 6357 } 6358 if (map->record->timer_off != val + reg->off) { 6359 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6360 val + reg->off, map->record->timer_off); 6361 return -EINVAL; 6362 } 6363 if (meta->map_ptr) { 6364 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6365 return -EFAULT; 6366 } 6367 meta->map_uid = reg->map_uid; 6368 meta->map_ptr = map; 6369 return 0; 6370 } 6371 6372 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6373 struct bpf_call_arg_meta *meta) 6374 { 6375 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6376 struct bpf_map *map_ptr = reg->map_ptr; 6377 struct btf_field *kptr_field; 6378 u32 kptr_off; 6379 6380 if (!tnum_is_const(reg->var_off)) { 6381 verbose(env, 6382 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6383 regno); 6384 return -EINVAL; 6385 } 6386 if (!map_ptr->btf) { 6387 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6388 map_ptr->name); 6389 return -EINVAL; 6390 } 6391 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6392 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6393 return -EINVAL; 6394 } 6395 6396 meta->map_ptr = map_ptr; 6397 kptr_off = reg->off + reg->var_off.value; 6398 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 6399 if (!kptr_field) { 6400 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 6401 return -EACCES; 6402 } 6403 if (kptr_field->type != BPF_KPTR_REF) { 6404 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 6405 return -EACCES; 6406 } 6407 meta->kptr_field = kptr_field; 6408 return 0; 6409 } 6410 6411 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 6412 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 6413 * 6414 * In both cases we deal with the first 8 bytes, but need to mark the next 8 6415 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 6416 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 6417 * 6418 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 6419 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 6420 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 6421 * mutate the view of the dynptr and also possibly destroy it. In the latter 6422 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 6423 * memory that dynptr points to. 6424 * 6425 * The verifier will keep track both levels of mutation (bpf_dynptr's in 6426 * reg->type and the memory's in reg->dynptr.type), but there is no support for 6427 * readonly dynptr view yet, hence only the first case is tracked and checked. 6428 * 6429 * This is consistent with how C applies the const modifier to a struct object, 6430 * where the pointer itself inside bpf_dynptr becomes const but not what it 6431 * points to. 6432 * 6433 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 6434 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 6435 */ 6436 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 6437 enum bpf_arg_type arg_type) 6438 { 6439 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6440 int err; 6441 6442 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 6443 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 6444 */ 6445 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 6446 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 6447 return -EFAULT; 6448 } 6449 6450 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 6451 * constructing a mutable bpf_dynptr object. 6452 * 6453 * Currently, this is only possible with PTR_TO_STACK 6454 * pointing to a region of at least 16 bytes which doesn't 6455 * contain an existing bpf_dynptr. 6456 * 6457 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 6458 * mutated or destroyed. However, the memory it points to 6459 * may be mutated. 6460 * 6461 * None - Points to a initialized dynptr that can be mutated and 6462 * destroyed, including mutation of the memory it points 6463 * to. 6464 */ 6465 if (arg_type & MEM_UNINIT) { 6466 int i; 6467 6468 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6469 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6470 return -EINVAL; 6471 } 6472 6473 /* we write BPF_DW bits (8 bytes) at a time */ 6474 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 6475 err = check_mem_access(env, insn_idx, regno, 6476 i, BPF_DW, BPF_WRITE, -1, false); 6477 if (err) 6478 return err; 6479 } 6480 6481 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx); 6482 } else /* MEM_RDONLY and None case from above */ { 6483 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 6484 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 6485 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 6486 return -EINVAL; 6487 } 6488 6489 if (!is_dynptr_reg_valid_init(env, reg)) { 6490 verbose(env, 6491 "Expected an initialized dynptr as arg #%d\n", 6492 regno); 6493 return -EINVAL; 6494 } 6495 6496 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 6497 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 6498 verbose(env, 6499 "Expected a dynptr of type %s as arg #%d\n", 6500 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 6501 return -EINVAL; 6502 } 6503 6504 err = mark_dynptr_read(env, reg); 6505 } 6506 return err; 6507 } 6508 6509 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6510 { 6511 return type == ARG_CONST_SIZE || 6512 type == ARG_CONST_SIZE_OR_ZERO; 6513 } 6514 6515 static bool arg_type_is_release(enum bpf_arg_type type) 6516 { 6517 return type & OBJ_RELEASE; 6518 } 6519 6520 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6521 { 6522 return base_type(type) == ARG_PTR_TO_DYNPTR; 6523 } 6524 6525 static int int_ptr_type_to_size(enum bpf_arg_type type) 6526 { 6527 if (type == ARG_PTR_TO_INT) 6528 return sizeof(u32); 6529 else if (type == ARG_PTR_TO_LONG) 6530 return sizeof(u64); 6531 6532 return -EINVAL; 6533 } 6534 6535 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6536 const struct bpf_call_arg_meta *meta, 6537 enum bpf_arg_type *arg_type) 6538 { 6539 if (!meta->map_ptr) { 6540 /* kernel subsystem misconfigured verifier */ 6541 verbose(env, "invalid map_ptr to access map->type\n"); 6542 return -EACCES; 6543 } 6544 6545 switch (meta->map_ptr->map_type) { 6546 case BPF_MAP_TYPE_SOCKMAP: 6547 case BPF_MAP_TYPE_SOCKHASH: 6548 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6549 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6550 } else { 6551 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6552 return -EINVAL; 6553 } 6554 break; 6555 case BPF_MAP_TYPE_BLOOM_FILTER: 6556 if (meta->func_id == BPF_FUNC_map_peek_elem) 6557 *arg_type = ARG_PTR_TO_MAP_VALUE; 6558 break; 6559 default: 6560 break; 6561 } 6562 return 0; 6563 } 6564 6565 struct bpf_reg_types { 6566 const enum bpf_reg_type types[10]; 6567 u32 *btf_id; 6568 }; 6569 6570 static const struct bpf_reg_types sock_types = { 6571 .types = { 6572 PTR_TO_SOCK_COMMON, 6573 PTR_TO_SOCKET, 6574 PTR_TO_TCP_SOCK, 6575 PTR_TO_XDP_SOCK, 6576 }, 6577 }; 6578 6579 #ifdef CONFIG_NET 6580 static const struct bpf_reg_types btf_id_sock_common_types = { 6581 .types = { 6582 PTR_TO_SOCK_COMMON, 6583 PTR_TO_SOCKET, 6584 PTR_TO_TCP_SOCK, 6585 PTR_TO_XDP_SOCK, 6586 PTR_TO_BTF_ID, 6587 PTR_TO_BTF_ID | PTR_TRUSTED, 6588 }, 6589 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6590 }; 6591 #endif 6592 6593 static const struct bpf_reg_types mem_types = { 6594 .types = { 6595 PTR_TO_STACK, 6596 PTR_TO_PACKET, 6597 PTR_TO_PACKET_META, 6598 PTR_TO_MAP_KEY, 6599 PTR_TO_MAP_VALUE, 6600 PTR_TO_MEM, 6601 PTR_TO_MEM | MEM_RINGBUF, 6602 PTR_TO_BUF, 6603 }, 6604 }; 6605 6606 static const struct bpf_reg_types int_ptr_types = { 6607 .types = { 6608 PTR_TO_STACK, 6609 PTR_TO_PACKET, 6610 PTR_TO_PACKET_META, 6611 PTR_TO_MAP_KEY, 6612 PTR_TO_MAP_VALUE, 6613 }, 6614 }; 6615 6616 static const struct bpf_reg_types spin_lock_types = { 6617 .types = { 6618 PTR_TO_MAP_VALUE, 6619 PTR_TO_BTF_ID | MEM_ALLOC, 6620 } 6621 }; 6622 6623 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6624 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6625 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6626 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6627 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6628 static const struct bpf_reg_types btf_ptr_types = { 6629 .types = { 6630 PTR_TO_BTF_ID, 6631 PTR_TO_BTF_ID | PTR_TRUSTED, 6632 PTR_TO_BTF_ID | MEM_RCU, 6633 }, 6634 }; 6635 static const struct bpf_reg_types percpu_btf_ptr_types = { 6636 .types = { 6637 PTR_TO_BTF_ID | MEM_PERCPU, 6638 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6639 } 6640 }; 6641 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6642 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6643 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6644 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6645 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6646 static const struct bpf_reg_types dynptr_types = { 6647 .types = { 6648 PTR_TO_STACK, 6649 CONST_PTR_TO_DYNPTR, 6650 } 6651 }; 6652 6653 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6654 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6655 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6656 [ARG_CONST_SIZE] = &scalar_types, 6657 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6658 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6659 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6660 [ARG_PTR_TO_CTX] = &context_types, 6661 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6662 #ifdef CONFIG_NET 6663 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6664 #endif 6665 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6666 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6667 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6668 [ARG_PTR_TO_MEM] = &mem_types, 6669 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6670 [ARG_PTR_TO_INT] = &int_ptr_types, 6671 [ARG_PTR_TO_LONG] = &int_ptr_types, 6672 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6673 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6674 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6675 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6676 [ARG_PTR_TO_TIMER] = &timer_types, 6677 [ARG_PTR_TO_KPTR] = &kptr_types, 6678 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6679 }; 6680 6681 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6682 enum bpf_arg_type arg_type, 6683 const u32 *arg_btf_id, 6684 struct bpf_call_arg_meta *meta) 6685 { 6686 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6687 enum bpf_reg_type expected, type = reg->type; 6688 const struct bpf_reg_types *compatible; 6689 int i, j; 6690 6691 compatible = compatible_reg_types[base_type(arg_type)]; 6692 if (!compatible) { 6693 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6694 return -EFAULT; 6695 } 6696 6697 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6698 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6699 * 6700 * Same for MAYBE_NULL: 6701 * 6702 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6703 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6704 * 6705 * Therefore we fold these flags depending on the arg_type before comparison. 6706 */ 6707 if (arg_type & MEM_RDONLY) 6708 type &= ~MEM_RDONLY; 6709 if (arg_type & PTR_MAYBE_NULL) 6710 type &= ~PTR_MAYBE_NULL; 6711 6712 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6713 expected = compatible->types[i]; 6714 if (expected == NOT_INIT) 6715 break; 6716 6717 if (type == expected) 6718 goto found; 6719 } 6720 6721 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6722 for (j = 0; j + 1 < i; j++) 6723 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6724 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6725 return -EACCES; 6726 6727 found: 6728 if (base_type(reg->type) != PTR_TO_BTF_ID) 6729 return 0; 6730 6731 switch ((int)reg->type) { 6732 case PTR_TO_BTF_ID: 6733 case PTR_TO_BTF_ID | PTR_TRUSTED: 6734 case PTR_TO_BTF_ID | MEM_RCU: 6735 { 6736 /* For bpf_sk_release, it needs to match against first member 6737 * 'struct sock_common', hence make an exception for it. This 6738 * allows bpf_sk_release to work for multiple socket types. 6739 */ 6740 bool strict_type_match = arg_type_is_release(arg_type) && 6741 meta->func_id != BPF_FUNC_sk_release; 6742 6743 if (!arg_btf_id) { 6744 if (!compatible->btf_id) { 6745 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6746 return -EFAULT; 6747 } 6748 arg_btf_id = compatible->btf_id; 6749 } 6750 6751 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6752 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6753 return -EACCES; 6754 } else { 6755 if (arg_btf_id == BPF_PTR_POISON) { 6756 verbose(env, "verifier internal error:"); 6757 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6758 regno); 6759 return -EACCES; 6760 } 6761 6762 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6763 btf_vmlinux, *arg_btf_id, 6764 strict_type_match)) { 6765 verbose(env, "R%d is of type %s but %s is expected\n", 6766 regno, kernel_type_name(reg->btf, reg->btf_id), 6767 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6768 return -EACCES; 6769 } 6770 } 6771 break; 6772 } 6773 case PTR_TO_BTF_ID | MEM_ALLOC: 6774 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6775 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6776 return -EFAULT; 6777 } 6778 /* Handled by helper specific checks */ 6779 break; 6780 case PTR_TO_BTF_ID | MEM_PERCPU: 6781 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 6782 /* Handled by helper specific checks */ 6783 break; 6784 default: 6785 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 6786 return -EFAULT; 6787 } 6788 return 0; 6789 } 6790 6791 static struct btf_field * 6792 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 6793 { 6794 struct btf_field *field; 6795 struct btf_record *rec; 6796 6797 rec = reg_btf_record(reg); 6798 if (!rec) 6799 return NULL; 6800 6801 field = btf_record_find(rec, off, fields); 6802 if (!field) 6803 return NULL; 6804 6805 return field; 6806 } 6807 6808 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6809 const struct bpf_reg_state *reg, int regno, 6810 enum bpf_arg_type arg_type) 6811 { 6812 u32 type = reg->type; 6813 6814 /* When referenced register is passed to release function, its fixed 6815 * offset must be 0. 6816 * 6817 * We will check arg_type_is_release reg has ref_obj_id when storing 6818 * meta->release_regno. 6819 */ 6820 if (arg_type_is_release(arg_type)) { 6821 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6822 * may not directly point to the object being released, but to 6823 * dynptr pointing to such object, which might be at some offset 6824 * on the stack. In that case, we simply to fallback to the 6825 * default handling. 6826 */ 6827 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6828 return 0; 6829 6830 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 6831 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 6832 return __check_ptr_off_reg(env, reg, regno, true); 6833 6834 verbose(env, "R%d must have zero offset when passed to release func\n", 6835 regno); 6836 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 6837 kernel_type_name(reg->btf, reg->btf_id), reg->off); 6838 return -EINVAL; 6839 } 6840 6841 /* Doing check_ptr_off_reg check for the offset will catch this 6842 * because fixed_off_ok is false, but checking here allows us 6843 * to give the user a better error message. 6844 */ 6845 if (reg->off) { 6846 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6847 regno); 6848 return -EINVAL; 6849 } 6850 return __check_ptr_off_reg(env, reg, regno, false); 6851 } 6852 6853 switch (type) { 6854 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6855 case PTR_TO_STACK: 6856 case PTR_TO_PACKET: 6857 case PTR_TO_PACKET_META: 6858 case PTR_TO_MAP_KEY: 6859 case PTR_TO_MAP_VALUE: 6860 case PTR_TO_MEM: 6861 case PTR_TO_MEM | MEM_RDONLY: 6862 case PTR_TO_MEM | MEM_RINGBUF: 6863 case PTR_TO_BUF: 6864 case PTR_TO_BUF | MEM_RDONLY: 6865 case SCALAR_VALUE: 6866 return 0; 6867 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6868 * fixed offset. 6869 */ 6870 case PTR_TO_BTF_ID: 6871 case PTR_TO_BTF_ID | MEM_ALLOC: 6872 case PTR_TO_BTF_ID | PTR_TRUSTED: 6873 case PTR_TO_BTF_ID | MEM_RCU: 6874 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 6875 /* When referenced PTR_TO_BTF_ID is passed to release function, 6876 * its fixed offset must be 0. In the other cases, fixed offset 6877 * can be non-zero. This was already checked above. So pass 6878 * fixed_off_ok as true to allow fixed offset for all other 6879 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6880 * still need to do checks instead of returning. 6881 */ 6882 return __check_ptr_off_reg(env, reg, regno, true); 6883 default: 6884 return __check_ptr_off_reg(env, reg, regno, false); 6885 } 6886 } 6887 6888 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 6889 const struct bpf_func_proto *fn, 6890 struct bpf_reg_state *regs) 6891 { 6892 struct bpf_reg_state *state = NULL; 6893 int i; 6894 6895 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 6896 if (arg_type_is_dynptr(fn->arg_type[i])) { 6897 if (state) { 6898 verbose(env, "verifier internal error: multiple dynptr args\n"); 6899 return NULL; 6900 } 6901 state = ®s[BPF_REG_1 + i]; 6902 } 6903 6904 if (!state) 6905 verbose(env, "verifier internal error: no dynptr arg found\n"); 6906 6907 return state; 6908 } 6909 6910 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6911 { 6912 struct bpf_func_state *state = func(env, reg); 6913 int spi; 6914 6915 if (reg->type == CONST_PTR_TO_DYNPTR) 6916 return reg->id; 6917 spi = dynptr_get_spi(env, reg); 6918 if (spi < 0) 6919 return spi; 6920 return state->stack[spi].spilled_ptr.id; 6921 } 6922 6923 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6924 { 6925 struct bpf_func_state *state = func(env, reg); 6926 int spi; 6927 6928 if (reg->type == CONST_PTR_TO_DYNPTR) 6929 return reg->ref_obj_id; 6930 spi = dynptr_get_spi(env, reg); 6931 if (spi < 0) 6932 return spi; 6933 return state->stack[spi].spilled_ptr.ref_obj_id; 6934 } 6935 6936 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 6937 struct bpf_reg_state *reg) 6938 { 6939 struct bpf_func_state *state = func(env, reg); 6940 int spi; 6941 6942 if (reg->type == CONST_PTR_TO_DYNPTR) 6943 return reg->dynptr.type; 6944 6945 spi = __get_spi(reg->off); 6946 if (spi < 0) { 6947 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 6948 return BPF_DYNPTR_TYPE_INVALID; 6949 } 6950 6951 return state->stack[spi].spilled_ptr.dynptr.type; 6952 } 6953 6954 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6955 struct bpf_call_arg_meta *meta, 6956 const struct bpf_func_proto *fn, 6957 int insn_idx) 6958 { 6959 u32 regno = BPF_REG_1 + arg; 6960 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6961 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6962 enum bpf_reg_type type = reg->type; 6963 u32 *arg_btf_id = NULL; 6964 int err = 0; 6965 6966 if (arg_type == ARG_DONTCARE) 6967 return 0; 6968 6969 err = check_reg_arg(env, regno, SRC_OP); 6970 if (err) 6971 return err; 6972 6973 if (arg_type == ARG_ANYTHING) { 6974 if (is_pointer_value(env, regno)) { 6975 verbose(env, "R%d leaks addr into helper function\n", 6976 regno); 6977 return -EACCES; 6978 } 6979 return 0; 6980 } 6981 6982 if (type_is_pkt_pointer(type) && 6983 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6984 verbose(env, "helper access to the packet is not allowed\n"); 6985 return -EACCES; 6986 } 6987 6988 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6989 err = resolve_map_arg_type(env, meta, &arg_type); 6990 if (err) 6991 return err; 6992 } 6993 6994 if (register_is_null(reg) && type_may_be_null(arg_type)) 6995 /* A NULL register has a SCALAR_VALUE type, so skip 6996 * type checking. 6997 */ 6998 goto skip_type_check; 6999 7000 /* arg_btf_id and arg_size are in a union. */ 7001 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7002 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7003 arg_btf_id = fn->arg_btf_id[arg]; 7004 7005 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7006 if (err) 7007 return err; 7008 7009 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7010 if (err) 7011 return err; 7012 7013 skip_type_check: 7014 if (arg_type_is_release(arg_type)) { 7015 if (arg_type_is_dynptr(arg_type)) { 7016 struct bpf_func_state *state = func(env, reg); 7017 int spi; 7018 7019 /* Only dynptr created on stack can be released, thus 7020 * the get_spi and stack state checks for spilled_ptr 7021 * should only be done before process_dynptr_func for 7022 * PTR_TO_STACK. 7023 */ 7024 if (reg->type == PTR_TO_STACK) { 7025 spi = dynptr_get_spi(env, reg); 7026 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 7027 verbose(env, "arg %d is an unacquired reference\n", regno); 7028 return -EINVAL; 7029 } 7030 } else { 7031 verbose(env, "cannot release unowned const bpf_dynptr\n"); 7032 return -EINVAL; 7033 } 7034 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 7035 verbose(env, "R%d must be referenced when passed to release function\n", 7036 regno); 7037 return -EINVAL; 7038 } 7039 if (meta->release_regno) { 7040 verbose(env, "verifier internal error: more than one release argument\n"); 7041 return -EFAULT; 7042 } 7043 meta->release_regno = regno; 7044 } 7045 7046 if (reg->ref_obj_id) { 7047 if (meta->ref_obj_id) { 7048 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 7049 regno, reg->ref_obj_id, 7050 meta->ref_obj_id); 7051 return -EFAULT; 7052 } 7053 meta->ref_obj_id = reg->ref_obj_id; 7054 } 7055 7056 switch (base_type(arg_type)) { 7057 case ARG_CONST_MAP_PTR: 7058 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 7059 if (meta->map_ptr) { 7060 /* Use map_uid (which is unique id of inner map) to reject: 7061 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 7062 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 7063 * if (inner_map1 && inner_map2) { 7064 * timer = bpf_map_lookup_elem(inner_map1); 7065 * if (timer) 7066 * // mismatch would have been allowed 7067 * bpf_timer_init(timer, inner_map2); 7068 * } 7069 * 7070 * Comparing map_ptr is enough to distinguish normal and outer maps. 7071 */ 7072 if (meta->map_ptr != reg->map_ptr || 7073 meta->map_uid != reg->map_uid) { 7074 verbose(env, 7075 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 7076 meta->map_uid, reg->map_uid); 7077 return -EINVAL; 7078 } 7079 } 7080 meta->map_ptr = reg->map_ptr; 7081 meta->map_uid = reg->map_uid; 7082 break; 7083 case ARG_PTR_TO_MAP_KEY: 7084 /* bpf_map_xxx(..., map_ptr, ..., key) call: 7085 * check that [key, key + map->key_size) are within 7086 * stack limits and initialized 7087 */ 7088 if (!meta->map_ptr) { 7089 /* in function declaration map_ptr must come before 7090 * map_key, so that it's verified and known before 7091 * we have to check map_key here. Otherwise it means 7092 * that kernel subsystem misconfigured verifier 7093 */ 7094 verbose(env, "invalid map_ptr to access map->key\n"); 7095 return -EACCES; 7096 } 7097 err = check_helper_mem_access(env, regno, 7098 meta->map_ptr->key_size, false, 7099 NULL); 7100 break; 7101 case ARG_PTR_TO_MAP_VALUE: 7102 if (type_may_be_null(arg_type) && register_is_null(reg)) 7103 return 0; 7104 7105 /* bpf_map_xxx(..., map_ptr, ..., value) call: 7106 * check [value, value + map->value_size) validity 7107 */ 7108 if (!meta->map_ptr) { 7109 /* kernel subsystem misconfigured verifier */ 7110 verbose(env, "invalid map_ptr to access map->value\n"); 7111 return -EACCES; 7112 } 7113 meta->raw_mode = arg_type & MEM_UNINIT; 7114 err = check_helper_mem_access(env, regno, 7115 meta->map_ptr->value_size, false, 7116 meta); 7117 break; 7118 case ARG_PTR_TO_PERCPU_BTF_ID: 7119 if (!reg->btf_id) { 7120 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 7121 return -EACCES; 7122 } 7123 meta->ret_btf = reg->btf; 7124 meta->ret_btf_id = reg->btf_id; 7125 break; 7126 case ARG_PTR_TO_SPIN_LOCK: 7127 if (in_rbtree_lock_required_cb(env)) { 7128 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 7129 return -EACCES; 7130 } 7131 if (meta->func_id == BPF_FUNC_spin_lock) { 7132 err = process_spin_lock(env, regno, true); 7133 if (err) 7134 return err; 7135 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 7136 err = process_spin_lock(env, regno, false); 7137 if (err) 7138 return err; 7139 } else { 7140 verbose(env, "verifier internal error\n"); 7141 return -EFAULT; 7142 } 7143 break; 7144 case ARG_PTR_TO_TIMER: 7145 err = process_timer_func(env, regno, meta); 7146 if (err) 7147 return err; 7148 break; 7149 case ARG_PTR_TO_FUNC: 7150 meta->subprogno = reg->subprogno; 7151 break; 7152 case ARG_PTR_TO_MEM: 7153 /* The access to this pointer is only checked when we hit the 7154 * next is_mem_size argument below. 7155 */ 7156 meta->raw_mode = arg_type & MEM_UNINIT; 7157 if (arg_type & MEM_FIXED_SIZE) { 7158 err = check_helper_mem_access(env, regno, 7159 fn->arg_size[arg], false, 7160 meta); 7161 } 7162 break; 7163 case ARG_CONST_SIZE: 7164 err = check_mem_size_reg(env, reg, regno, false, meta); 7165 break; 7166 case ARG_CONST_SIZE_OR_ZERO: 7167 err = check_mem_size_reg(env, reg, regno, true, meta); 7168 break; 7169 case ARG_PTR_TO_DYNPTR: 7170 err = process_dynptr_func(env, regno, insn_idx, arg_type); 7171 if (err) 7172 return err; 7173 break; 7174 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 7175 if (!tnum_is_const(reg->var_off)) { 7176 verbose(env, "R%d is not a known constant'\n", 7177 regno); 7178 return -EACCES; 7179 } 7180 meta->mem_size = reg->var_off.value; 7181 err = mark_chain_precision(env, regno); 7182 if (err) 7183 return err; 7184 break; 7185 case ARG_PTR_TO_INT: 7186 case ARG_PTR_TO_LONG: 7187 { 7188 int size = int_ptr_type_to_size(arg_type); 7189 7190 err = check_helper_mem_access(env, regno, size, false, meta); 7191 if (err) 7192 return err; 7193 err = check_ptr_alignment(env, reg, 0, size, true); 7194 break; 7195 } 7196 case ARG_PTR_TO_CONST_STR: 7197 { 7198 struct bpf_map *map = reg->map_ptr; 7199 int map_off; 7200 u64 map_addr; 7201 char *str_ptr; 7202 7203 if (!bpf_map_is_rdonly(map)) { 7204 verbose(env, "R%d does not point to a readonly map'\n", regno); 7205 return -EACCES; 7206 } 7207 7208 if (!tnum_is_const(reg->var_off)) { 7209 verbose(env, "R%d is not a constant address'\n", regno); 7210 return -EACCES; 7211 } 7212 7213 if (!map->ops->map_direct_value_addr) { 7214 verbose(env, "no direct value access support for this map type\n"); 7215 return -EACCES; 7216 } 7217 7218 err = check_map_access(env, regno, reg->off, 7219 map->value_size - reg->off, false, 7220 ACCESS_HELPER); 7221 if (err) 7222 return err; 7223 7224 map_off = reg->off + reg->var_off.value; 7225 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 7226 if (err) { 7227 verbose(env, "direct value access on string failed\n"); 7228 return err; 7229 } 7230 7231 str_ptr = (char *)(long)(map_addr); 7232 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 7233 verbose(env, "string is not zero-terminated\n"); 7234 return -EINVAL; 7235 } 7236 break; 7237 } 7238 case ARG_PTR_TO_KPTR: 7239 err = process_kptr_func(env, regno, meta); 7240 if (err) 7241 return err; 7242 break; 7243 } 7244 7245 return err; 7246 } 7247 7248 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 7249 { 7250 enum bpf_attach_type eatype = env->prog->expected_attach_type; 7251 enum bpf_prog_type type = resolve_prog_type(env->prog); 7252 7253 if (func_id != BPF_FUNC_map_update_elem) 7254 return false; 7255 7256 /* It's not possible to get access to a locked struct sock in these 7257 * contexts, so updating is safe. 7258 */ 7259 switch (type) { 7260 case BPF_PROG_TYPE_TRACING: 7261 if (eatype == BPF_TRACE_ITER) 7262 return true; 7263 break; 7264 case BPF_PROG_TYPE_SOCKET_FILTER: 7265 case BPF_PROG_TYPE_SCHED_CLS: 7266 case BPF_PROG_TYPE_SCHED_ACT: 7267 case BPF_PROG_TYPE_XDP: 7268 case BPF_PROG_TYPE_SK_REUSEPORT: 7269 case BPF_PROG_TYPE_FLOW_DISSECTOR: 7270 case BPF_PROG_TYPE_SK_LOOKUP: 7271 return true; 7272 default: 7273 break; 7274 } 7275 7276 verbose(env, "cannot update sockmap in this context\n"); 7277 return false; 7278 } 7279 7280 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 7281 { 7282 return env->prog->jit_requested && 7283 bpf_jit_supports_subprog_tailcalls(); 7284 } 7285 7286 static int check_map_func_compatibility(struct bpf_verifier_env *env, 7287 struct bpf_map *map, int func_id) 7288 { 7289 if (!map) 7290 return 0; 7291 7292 /* We need a two way check, first is from map perspective ... */ 7293 switch (map->map_type) { 7294 case BPF_MAP_TYPE_PROG_ARRAY: 7295 if (func_id != BPF_FUNC_tail_call) 7296 goto error; 7297 break; 7298 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 7299 if (func_id != BPF_FUNC_perf_event_read && 7300 func_id != BPF_FUNC_perf_event_output && 7301 func_id != BPF_FUNC_skb_output && 7302 func_id != BPF_FUNC_perf_event_read_value && 7303 func_id != BPF_FUNC_xdp_output) 7304 goto error; 7305 break; 7306 case BPF_MAP_TYPE_RINGBUF: 7307 if (func_id != BPF_FUNC_ringbuf_output && 7308 func_id != BPF_FUNC_ringbuf_reserve && 7309 func_id != BPF_FUNC_ringbuf_query && 7310 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 7311 func_id != BPF_FUNC_ringbuf_submit_dynptr && 7312 func_id != BPF_FUNC_ringbuf_discard_dynptr) 7313 goto error; 7314 break; 7315 case BPF_MAP_TYPE_USER_RINGBUF: 7316 if (func_id != BPF_FUNC_user_ringbuf_drain) 7317 goto error; 7318 break; 7319 case BPF_MAP_TYPE_STACK_TRACE: 7320 if (func_id != BPF_FUNC_get_stackid) 7321 goto error; 7322 break; 7323 case BPF_MAP_TYPE_CGROUP_ARRAY: 7324 if (func_id != BPF_FUNC_skb_under_cgroup && 7325 func_id != BPF_FUNC_current_task_under_cgroup) 7326 goto error; 7327 break; 7328 case BPF_MAP_TYPE_CGROUP_STORAGE: 7329 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 7330 if (func_id != BPF_FUNC_get_local_storage) 7331 goto error; 7332 break; 7333 case BPF_MAP_TYPE_DEVMAP: 7334 case BPF_MAP_TYPE_DEVMAP_HASH: 7335 if (func_id != BPF_FUNC_redirect_map && 7336 func_id != BPF_FUNC_map_lookup_elem) 7337 goto error; 7338 break; 7339 /* Restrict bpf side of cpumap and xskmap, open when use-cases 7340 * appear. 7341 */ 7342 case BPF_MAP_TYPE_CPUMAP: 7343 if (func_id != BPF_FUNC_redirect_map) 7344 goto error; 7345 break; 7346 case BPF_MAP_TYPE_XSKMAP: 7347 if (func_id != BPF_FUNC_redirect_map && 7348 func_id != BPF_FUNC_map_lookup_elem) 7349 goto error; 7350 break; 7351 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 7352 case BPF_MAP_TYPE_HASH_OF_MAPS: 7353 if (func_id != BPF_FUNC_map_lookup_elem) 7354 goto error; 7355 break; 7356 case BPF_MAP_TYPE_SOCKMAP: 7357 if (func_id != BPF_FUNC_sk_redirect_map && 7358 func_id != BPF_FUNC_sock_map_update && 7359 func_id != BPF_FUNC_map_delete_elem && 7360 func_id != BPF_FUNC_msg_redirect_map && 7361 func_id != BPF_FUNC_sk_select_reuseport && 7362 func_id != BPF_FUNC_map_lookup_elem && 7363 !may_update_sockmap(env, func_id)) 7364 goto error; 7365 break; 7366 case BPF_MAP_TYPE_SOCKHASH: 7367 if (func_id != BPF_FUNC_sk_redirect_hash && 7368 func_id != BPF_FUNC_sock_hash_update && 7369 func_id != BPF_FUNC_map_delete_elem && 7370 func_id != BPF_FUNC_msg_redirect_hash && 7371 func_id != BPF_FUNC_sk_select_reuseport && 7372 func_id != BPF_FUNC_map_lookup_elem && 7373 !may_update_sockmap(env, func_id)) 7374 goto error; 7375 break; 7376 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 7377 if (func_id != BPF_FUNC_sk_select_reuseport) 7378 goto error; 7379 break; 7380 case BPF_MAP_TYPE_QUEUE: 7381 case BPF_MAP_TYPE_STACK: 7382 if (func_id != BPF_FUNC_map_peek_elem && 7383 func_id != BPF_FUNC_map_pop_elem && 7384 func_id != BPF_FUNC_map_push_elem) 7385 goto error; 7386 break; 7387 case BPF_MAP_TYPE_SK_STORAGE: 7388 if (func_id != BPF_FUNC_sk_storage_get && 7389 func_id != BPF_FUNC_sk_storage_delete && 7390 func_id != BPF_FUNC_kptr_xchg) 7391 goto error; 7392 break; 7393 case BPF_MAP_TYPE_INODE_STORAGE: 7394 if (func_id != BPF_FUNC_inode_storage_get && 7395 func_id != BPF_FUNC_inode_storage_delete && 7396 func_id != BPF_FUNC_kptr_xchg) 7397 goto error; 7398 break; 7399 case BPF_MAP_TYPE_TASK_STORAGE: 7400 if (func_id != BPF_FUNC_task_storage_get && 7401 func_id != BPF_FUNC_task_storage_delete && 7402 func_id != BPF_FUNC_kptr_xchg) 7403 goto error; 7404 break; 7405 case BPF_MAP_TYPE_CGRP_STORAGE: 7406 if (func_id != BPF_FUNC_cgrp_storage_get && 7407 func_id != BPF_FUNC_cgrp_storage_delete && 7408 func_id != BPF_FUNC_kptr_xchg) 7409 goto error; 7410 break; 7411 case BPF_MAP_TYPE_BLOOM_FILTER: 7412 if (func_id != BPF_FUNC_map_peek_elem && 7413 func_id != BPF_FUNC_map_push_elem) 7414 goto error; 7415 break; 7416 default: 7417 break; 7418 } 7419 7420 /* ... and second from the function itself. */ 7421 switch (func_id) { 7422 case BPF_FUNC_tail_call: 7423 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 7424 goto error; 7425 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 7426 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 7427 return -EINVAL; 7428 } 7429 break; 7430 case BPF_FUNC_perf_event_read: 7431 case BPF_FUNC_perf_event_output: 7432 case BPF_FUNC_perf_event_read_value: 7433 case BPF_FUNC_skb_output: 7434 case BPF_FUNC_xdp_output: 7435 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 7436 goto error; 7437 break; 7438 case BPF_FUNC_ringbuf_output: 7439 case BPF_FUNC_ringbuf_reserve: 7440 case BPF_FUNC_ringbuf_query: 7441 case BPF_FUNC_ringbuf_reserve_dynptr: 7442 case BPF_FUNC_ringbuf_submit_dynptr: 7443 case BPF_FUNC_ringbuf_discard_dynptr: 7444 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 7445 goto error; 7446 break; 7447 case BPF_FUNC_user_ringbuf_drain: 7448 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 7449 goto error; 7450 break; 7451 case BPF_FUNC_get_stackid: 7452 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 7453 goto error; 7454 break; 7455 case BPF_FUNC_current_task_under_cgroup: 7456 case BPF_FUNC_skb_under_cgroup: 7457 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 7458 goto error; 7459 break; 7460 case BPF_FUNC_redirect_map: 7461 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 7462 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 7463 map->map_type != BPF_MAP_TYPE_CPUMAP && 7464 map->map_type != BPF_MAP_TYPE_XSKMAP) 7465 goto error; 7466 break; 7467 case BPF_FUNC_sk_redirect_map: 7468 case BPF_FUNC_msg_redirect_map: 7469 case BPF_FUNC_sock_map_update: 7470 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 7471 goto error; 7472 break; 7473 case BPF_FUNC_sk_redirect_hash: 7474 case BPF_FUNC_msg_redirect_hash: 7475 case BPF_FUNC_sock_hash_update: 7476 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 7477 goto error; 7478 break; 7479 case BPF_FUNC_get_local_storage: 7480 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 7481 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 7482 goto error; 7483 break; 7484 case BPF_FUNC_sk_select_reuseport: 7485 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 7486 map->map_type != BPF_MAP_TYPE_SOCKMAP && 7487 map->map_type != BPF_MAP_TYPE_SOCKHASH) 7488 goto error; 7489 break; 7490 case BPF_FUNC_map_pop_elem: 7491 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7492 map->map_type != BPF_MAP_TYPE_STACK) 7493 goto error; 7494 break; 7495 case BPF_FUNC_map_peek_elem: 7496 case BPF_FUNC_map_push_elem: 7497 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7498 map->map_type != BPF_MAP_TYPE_STACK && 7499 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 7500 goto error; 7501 break; 7502 case BPF_FUNC_map_lookup_percpu_elem: 7503 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 7504 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7505 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 7506 goto error; 7507 break; 7508 case BPF_FUNC_sk_storage_get: 7509 case BPF_FUNC_sk_storage_delete: 7510 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 7511 goto error; 7512 break; 7513 case BPF_FUNC_inode_storage_get: 7514 case BPF_FUNC_inode_storage_delete: 7515 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 7516 goto error; 7517 break; 7518 case BPF_FUNC_task_storage_get: 7519 case BPF_FUNC_task_storage_delete: 7520 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 7521 goto error; 7522 break; 7523 case BPF_FUNC_cgrp_storage_get: 7524 case BPF_FUNC_cgrp_storage_delete: 7525 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 7526 goto error; 7527 break; 7528 default: 7529 break; 7530 } 7531 7532 return 0; 7533 error: 7534 verbose(env, "cannot pass map_type %d into func %s#%d\n", 7535 map->map_type, func_id_name(func_id), func_id); 7536 return -EINVAL; 7537 } 7538 7539 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 7540 { 7541 int count = 0; 7542 7543 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 7544 count++; 7545 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 7546 count++; 7547 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 7548 count++; 7549 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 7550 count++; 7551 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 7552 count++; 7553 7554 /* We only support one arg being in raw mode at the moment, 7555 * which is sufficient for the helper functions we have 7556 * right now. 7557 */ 7558 return count <= 1; 7559 } 7560 7561 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 7562 { 7563 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 7564 bool has_size = fn->arg_size[arg] != 0; 7565 bool is_next_size = false; 7566 7567 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 7568 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 7569 7570 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 7571 return is_next_size; 7572 7573 return has_size == is_next_size || is_next_size == is_fixed; 7574 } 7575 7576 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 7577 { 7578 /* bpf_xxx(..., buf, len) call will access 'len' 7579 * bytes from memory 'buf'. Both arg types need 7580 * to be paired, so make sure there's no buggy 7581 * helper function specification. 7582 */ 7583 if (arg_type_is_mem_size(fn->arg1_type) || 7584 check_args_pair_invalid(fn, 0) || 7585 check_args_pair_invalid(fn, 1) || 7586 check_args_pair_invalid(fn, 2) || 7587 check_args_pair_invalid(fn, 3) || 7588 check_args_pair_invalid(fn, 4)) 7589 return false; 7590 7591 return true; 7592 } 7593 7594 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 7595 { 7596 int i; 7597 7598 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 7599 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 7600 return !!fn->arg_btf_id[i]; 7601 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 7602 return fn->arg_btf_id[i] == BPF_PTR_POISON; 7603 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7604 /* arg_btf_id and arg_size are in a union. */ 7605 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7606 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7607 return false; 7608 } 7609 7610 return true; 7611 } 7612 7613 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7614 { 7615 return check_raw_mode_ok(fn) && 7616 check_arg_pair_ok(fn) && 7617 check_btf_id_ok(fn) ? 0 : -EINVAL; 7618 } 7619 7620 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7621 * are now invalid, so turn them into unknown SCALAR_VALUE. 7622 * 7623 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 7624 * since these slices point to packet data. 7625 */ 7626 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7627 { 7628 struct bpf_func_state *state; 7629 struct bpf_reg_state *reg; 7630 7631 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7632 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 7633 mark_reg_invalid(env, reg); 7634 })); 7635 } 7636 7637 enum { 7638 AT_PKT_END = -1, 7639 BEYOND_PKT_END = -2, 7640 }; 7641 7642 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7643 { 7644 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7645 struct bpf_reg_state *reg = &state->regs[regn]; 7646 7647 if (reg->type != PTR_TO_PACKET) 7648 /* PTR_TO_PACKET_META is not supported yet */ 7649 return; 7650 7651 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7652 * How far beyond pkt_end it goes is unknown. 7653 * if (!range_open) it's the case of pkt >= pkt_end 7654 * if (range_open) it's the case of pkt > pkt_end 7655 * hence this pointer is at least 1 byte bigger than pkt_end 7656 */ 7657 if (range_open) 7658 reg->range = BEYOND_PKT_END; 7659 else 7660 reg->range = AT_PKT_END; 7661 } 7662 7663 /* The pointer with the specified id has released its reference to kernel 7664 * resources. Identify all copies of the same pointer and clear the reference. 7665 */ 7666 static int release_reference(struct bpf_verifier_env *env, 7667 int ref_obj_id) 7668 { 7669 struct bpf_func_state *state; 7670 struct bpf_reg_state *reg; 7671 int err; 7672 7673 err = release_reference_state(cur_func(env), ref_obj_id); 7674 if (err) 7675 return err; 7676 7677 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7678 if (reg->ref_obj_id == ref_obj_id) 7679 mark_reg_invalid(env, reg); 7680 })); 7681 7682 return 0; 7683 } 7684 7685 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 7686 { 7687 struct bpf_func_state *unused; 7688 struct bpf_reg_state *reg; 7689 7690 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 7691 if (type_is_non_owning_ref(reg->type)) 7692 mark_reg_invalid(env, reg); 7693 })); 7694 } 7695 7696 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7697 struct bpf_reg_state *regs) 7698 { 7699 int i; 7700 7701 /* after the call registers r0 - r5 were scratched */ 7702 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7703 mark_reg_not_init(env, regs, caller_saved[i]); 7704 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7705 } 7706 } 7707 7708 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7709 struct bpf_func_state *caller, 7710 struct bpf_func_state *callee, 7711 int insn_idx); 7712 7713 static int set_callee_state(struct bpf_verifier_env *env, 7714 struct bpf_func_state *caller, 7715 struct bpf_func_state *callee, int insn_idx); 7716 7717 static bool is_callback_calling_kfunc(u32 btf_id); 7718 7719 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7720 int *insn_idx, int subprog, 7721 set_callee_state_fn set_callee_state_cb) 7722 { 7723 struct bpf_verifier_state *state = env->cur_state; 7724 struct bpf_func_info_aux *func_info_aux; 7725 struct bpf_func_state *caller, *callee; 7726 int err; 7727 bool is_global = false; 7728 7729 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7730 verbose(env, "the call stack of %d frames is too deep\n", 7731 state->curframe + 2); 7732 return -E2BIG; 7733 } 7734 7735 caller = state->frame[state->curframe]; 7736 if (state->frame[state->curframe + 1]) { 7737 verbose(env, "verifier bug. Frame %d already allocated\n", 7738 state->curframe + 1); 7739 return -EFAULT; 7740 } 7741 7742 func_info_aux = env->prog->aux->func_info_aux; 7743 if (func_info_aux) 7744 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7745 err = btf_check_subprog_call(env, subprog, caller->regs); 7746 if (err == -EFAULT) 7747 return err; 7748 if (is_global) { 7749 if (err) { 7750 verbose(env, "Caller passes invalid args into func#%d\n", 7751 subprog); 7752 return err; 7753 } else { 7754 if (env->log.level & BPF_LOG_LEVEL) 7755 verbose(env, 7756 "Func#%d is global and valid. Skipping.\n", 7757 subprog); 7758 clear_caller_saved_regs(env, caller->regs); 7759 7760 /* All global functions return a 64-bit SCALAR_VALUE */ 7761 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7762 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7763 7764 /* continue with next insn after call */ 7765 return 0; 7766 } 7767 } 7768 7769 /* set_callee_state is used for direct subprog calls, but we are 7770 * interested in validating only BPF helpers that can call subprogs as 7771 * callbacks 7772 */ 7773 if (set_callee_state_cb != set_callee_state) { 7774 if (bpf_pseudo_kfunc_call(insn) && 7775 !is_callback_calling_kfunc(insn->imm)) { 7776 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 7777 func_id_name(insn->imm), insn->imm); 7778 return -EFAULT; 7779 } else if (!bpf_pseudo_kfunc_call(insn) && 7780 !is_callback_calling_function(insn->imm)) { /* helper */ 7781 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 7782 func_id_name(insn->imm), insn->imm); 7783 return -EFAULT; 7784 } 7785 } 7786 7787 if (insn->code == (BPF_JMP | BPF_CALL) && 7788 insn->src_reg == 0 && 7789 insn->imm == BPF_FUNC_timer_set_callback) { 7790 struct bpf_verifier_state *async_cb; 7791 7792 /* there is no real recursion here. timer callbacks are async */ 7793 env->subprog_info[subprog].is_async_cb = true; 7794 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7795 *insn_idx, subprog); 7796 if (!async_cb) 7797 return -EFAULT; 7798 callee = async_cb->frame[0]; 7799 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7800 7801 /* Convert bpf_timer_set_callback() args into timer callback args */ 7802 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7803 if (err) 7804 return err; 7805 7806 clear_caller_saved_regs(env, caller->regs); 7807 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7808 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7809 /* continue with next insn after call */ 7810 return 0; 7811 } 7812 7813 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7814 if (!callee) 7815 return -ENOMEM; 7816 state->frame[state->curframe + 1] = callee; 7817 7818 /* callee cannot access r0, r6 - r9 for reading and has to write 7819 * into its own stack before reading from it. 7820 * callee can read/write into caller's stack 7821 */ 7822 init_func_state(env, callee, 7823 /* remember the callsite, it will be used by bpf_exit */ 7824 *insn_idx /* callsite */, 7825 state->curframe + 1 /* frameno within this callchain */, 7826 subprog /* subprog number within this prog */); 7827 7828 /* Transfer references to the callee */ 7829 err = copy_reference_state(callee, caller); 7830 if (err) 7831 goto err_out; 7832 7833 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7834 if (err) 7835 goto err_out; 7836 7837 clear_caller_saved_regs(env, caller->regs); 7838 7839 /* only increment it after check_reg_arg() finished */ 7840 state->curframe++; 7841 7842 /* and go analyze first insn of the callee */ 7843 *insn_idx = env->subprog_info[subprog].start - 1; 7844 7845 if (env->log.level & BPF_LOG_LEVEL) { 7846 verbose(env, "caller:\n"); 7847 print_verifier_state(env, caller, true); 7848 verbose(env, "callee:\n"); 7849 print_verifier_state(env, callee, true); 7850 } 7851 return 0; 7852 7853 err_out: 7854 free_func_state(callee); 7855 state->frame[state->curframe + 1] = NULL; 7856 return err; 7857 } 7858 7859 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7860 struct bpf_func_state *caller, 7861 struct bpf_func_state *callee) 7862 { 7863 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7864 * void *callback_ctx, u64 flags); 7865 * callback_fn(struct bpf_map *map, void *key, void *value, 7866 * void *callback_ctx); 7867 */ 7868 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7869 7870 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7871 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7872 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7873 7874 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7875 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7876 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7877 7878 /* pointer to stack or null */ 7879 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7880 7881 /* unused */ 7882 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7883 return 0; 7884 } 7885 7886 static int set_callee_state(struct bpf_verifier_env *env, 7887 struct bpf_func_state *caller, 7888 struct bpf_func_state *callee, int insn_idx) 7889 { 7890 int i; 7891 7892 /* copy r1 - r5 args that callee can access. The copy includes parent 7893 * pointers, which connects us up to the liveness chain 7894 */ 7895 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7896 callee->regs[i] = caller->regs[i]; 7897 return 0; 7898 } 7899 7900 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7901 int *insn_idx) 7902 { 7903 int subprog, target_insn; 7904 7905 target_insn = *insn_idx + insn->imm + 1; 7906 subprog = find_subprog(env, target_insn); 7907 if (subprog < 0) { 7908 verbose(env, "verifier bug. No program starts at insn %d\n", 7909 target_insn); 7910 return -EFAULT; 7911 } 7912 7913 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7914 } 7915 7916 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7917 struct bpf_func_state *caller, 7918 struct bpf_func_state *callee, 7919 int insn_idx) 7920 { 7921 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7922 struct bpf_map *map; 7923 int err; 7924 7925 if (bpf_map_ptr_poisoned(insn_aux)) { 7926 verbose(env, "tail_call abusing map_ptr\n"); 7927 return -EINVAL; 7928 } 7929 7930 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7931 if (!map->ops->map_set_for_each_callback_args || 7932 !map->ops->map_for_each_callback) { 7933 verbose(env, "callback function not allowed for map\n"); 7934 return -ENOTSUPP; 7935 } 7936 7937 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7938 if (err) 7939 return err; 7940 7941 callee->in_callback_fn = true; 7942 callee->callback_ret_range = tnum_range(0, 1); 7943 return 0; 7944 } 7945 7946 static int set_loop_callback_state(struct bpf_verifier_env *env, 7947 struct bpf_func_state *caller, 7948 struct bpf_func_state *callee, 7949 int insn_idx) 7950 { 7951 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7952 * u64 flags); 7953 * callback_fn(u32 index, void *callback_ctx); 7954 */ 7955 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7956 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7957 7958 /* unused */ 7959 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7960 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7961 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7962 7963 callee->in_callback_fn = true; 7964 callee->callback_ret_range = tnum_range(0, 1); 7965 return 0; 7966 } 7967 7968 static int set_timer_callback_state(struct bpf_verifier_env *env, 7969 struct bpf_func_state *caller, 7970 struct bpf_func_state *callee, 7971 int insn_idx) 7972 { 7973 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7974 7975 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7976 * callback_fn(struct bpf_map *map, void *key, void *value); 7977 */ 7978 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7979 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7980 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7981 7982 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7983 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7984 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7985 7986 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7987 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7988 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7989 7990 /* unused */ 7991 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7992 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7993 callee->in_async_callback_fn = true; 7994 callee->callback_ret_range = tnum_range(0, 1); 7995 return 0; 7996 } 7997 7998 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7999 struct bpf_func_state *caller, 8000 struct bpf_func_state *callee, 8001 int insn_idx) 8002 { 8003 /* bpf_find_vma(struct task_struct *task, u64 addr, 8004 * void *callback_fn, void *callback_ctx, u64 flags) 8005 * (callback_fn)(struct task_struct *task, 8006 * struct vm_area_struct *vma, void *callback_ctx); 8007 */ 8008 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8009 8010 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8011 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8012 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8013 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8014 8015 /* pointer to stack or null */ 8016 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8017 8018 /* unused */ 8019 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8020 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8021 callee->in_callback_fn = true; 8022 callee->callback_ret_range = tnum_range(0, 1); 8023 return 0; 8024 } 8025 8026 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 8027 struct bpf_func_state *caller, 8028 struct bpf_func_state *callee, 8029 int insn_idx) 8030 { 8031 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 8032 * callback_ctx, u64 flags); 8033 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 8034 */ 8035 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 8036 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 8037 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8038 8039 /* unused */ 8040 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8041 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8042 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8043 8044 callee->in_callback_fn = true; 8045 callee->callback_ret_range = tnum_range(0, 1); 8046 return 0; 8047 } 8048 8049 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 8050 struct bpf_func_state *caller, 8051 struct bpf_func_state *callee, 8052 int insn_idx) 8053 { 8054 /* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node, 8055 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 8056 * 8057 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset 8058 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 8059 * by this point, so look at 'root' 8060 */ 8061 struct btf_field *field; 8062 8063 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 8064 BPF_RB_ROOT); 8065 if (!field || !field->graph_root.value_btf_id) 8066 return -EFAULT; 8067 8068 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 8069 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 8070 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 8071 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 8072 8073 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8074 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8075 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8076 callee->in_callback_fn = true; 8077 callee->callback_ret_range = tnum_range(0, 1); 8078 return 0; 8079 } 8080 8081 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 8082 8083 /* Are we currently verifying the callback for a rbtree helper that must 8084 * be called with lock held? If so, no need to complain about unreleased 8085 * lock 8086 */ 8087 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 8088 { 8089 struct bpf_verifier_state *state = env->cur_state; 8090 struct bpf_insn *insn = env->prog->insnsi; 8091 struct bpf_func_state *callee; 8092 int kfunc_btf_id; 8093 8094 if (!state->curframe) 8095 return false; 8096 8097 callee = state->frame[state->curframe]; 8098 8099 if (!callee->in_callback_fn) 8100 return false; 8101 8102 kfunc_btf_id = insn[callee->callsite].imm; 8103 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 8104 } 8105 8106 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 8107 { 8108 struct bpf_verifier_state *state = env->cur_state; 8109 struct bpf_func_state *caller, *callee; 8110 struct bpf_reg_state *r0; 8111 int err; 8112 8113 callee = state->frame[state->curframe]; 8114 r0 = &callee->regs[BPF_REG_0]; 8115 if (r0->type == PTR_TO_STACK) { 8116 /* technically it's ok to return caller's stack pointer 8117 * (or caller's caller's pointer) back to the caller, 8118 * since these pointers are valid. Only current stack 8119 * pointer will be invalid as soon as function exits, 8120 * but let's be conservative 8121 */ 8122 verbose(env, "cannot return stack pointer to the caller\n"); 8123 return -EINVAL; 8124 } 8125 8126 caller = state->frame[state->curframe - 1]; 8127 if (callee->in_callback_fn) { 8128 /* enforce R0 return value range [0, 1]. */ 8129 struct tnum range = callee->callback_ret_range; 8130 8131 if (r0->type != SCALAR_VALUE) { 8132 verbose(env, "R0 not a scalar value\n"); 8133 return -EACCES; 8134 } 8135 if (!tnum_in(range, r0->var_off)) { 8136 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 8137 return -EINVAL; 8138 } 8139 } else { 8140 /* return to the caller whatever r0 had in the callee */ 8141 caller->regs[BPF_REG_0] = *r0; 8142 } 8143 8144 /* callback_fn frame should have released its own additions to parent's 8145 * reference state at this point, or check_reference_leak would 8146 * complain, hence it must be the same as the caller. There is no need 8147 * to copy it back. 8148 */ 8149 if (!callee->in_callback_fn) { 8150 /* Transfer references to the caller */ 8151 err = copy_reference_state(caller, callee); 8152 if (err) 8153 return err; 8154 } 8155 8156 *insn_idx = callee->callsite + 1; 8157 if (env->log.level & BPF_LOG_LEVEL) { 8158 verbose(env, "returning from callee:\n"); 8159 print_verifier_state(env, callee, true); 8160 verbose(env, "to caller at %d:\n", *insn_idx); 8161 print_verifier_state(env, caller, true); 8162 } 8163 /* clear everything in the callee */ 8164 free_func_state(callee); 8165 state->frame[state->curframe--] = NULL; 8166 return 0; 8167 } 8168 8169 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 8170 int func_id, 8171 struct bpf_call_arg_meta *meta) 8172 { 8173 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 8174 8175 if (ret_type != RET_INTEGER || 8176 (func_id != BPF_FUNC_get_stack && 8177 func_id != BPF_FUNC_get_task_stack && 8178 func_id != BPF_FUNC_probe_read_str && 8179 func_id != BPF_FUNC_probe_read_kernel_str && 8180 func_id != BPF_FUNC_probe_read_user_str)) 8181 return; 8182 8183 ret_reg->smax_value = meta->msize_max_value; 8184 ret_reg->s32_max_value = meta->msize_max_value; 8185 ret_reg->smin_value = -MAX_ERRNO; 8186 ret_reg->s32_min_value = -MAX_ERRNO; 8187 reg_bounds_sync(ret_reg); 8188 } 8189 8190 static int 8191 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 8192 int func_id, int insn_idx) 8193 { 8194 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 8195 struct bpf_map *map = meta->map_ptr; 8196 8197 if (func_id != BPF_FUNC_tail_call && 8198 func_id != BPF_FUNC_map_lookup_elem && 8199 func_id != BPF_FUNC_map_update_elem && 8200 func_id != BPF_FUNC_map_delete_elem && 8201 func_id != BPF_FUNC_map_push_elem && 8202 func_id != BPF_FUNC_map_pop_elem && 8203 func_id != BPF_FUNC_map_peek_elem && 8204 func_id != BPF_FUNC_for_each_map_elem && 8205 func_id != BPF_FUNC_redirect_map && 8206 func_id != BPF_FUNC_map_lookup_percpu_elem) 8207 return 0; 8208 8209 if (map == NULL) { 8210 verbose(env, "kernel subsystem misconfigured verifier\n"); 8211 return -EINVAL; 8212 } 8213 8214 /* In case of read-only, some additional restrictions 8215 * need to be applied in order to prevent altering the 8216 * state of the map from program side. 8217 */ 8218 if ((map->map_flags & BPF_F_RDONLY_PROG) && 8219 (func_id == BPF_FUNC_map_delete_elem || 8220 func_id == BPF_FUNC_map_update_elem || 8221 func_id == BPF_FUNC_map_push_elem || 8222 func_id == BPF_FUNC_map_pop_elem)) { 8223 verbose(env, "write into map forbidden\n"); 8224 return -EACCES; 8225 } 8226 8227 if (!BPF_MAP_PTR(aux->map_ptr_state)) 8228 bpf_map_ptr_store(aux, meta->map_ptr, 8229 !meta->map_ptr->bypass_spec_v1); 8230 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 8231 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 8232 !meta->map_ptr->bypass_spec_v1); 8233 return 0; 8234 } 8235 8236 static int 8237 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 8238 int func_id, int insn_idx) 8239 { 8240 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 8241 struct bpf_reg_state *regs = cur_regs(env), *reg; 8242 struct bpf_map *map = meta->map_ptr; 8243 u64 val, max; 8244 int err; 8245 8246 if (func_id != BPF_FUNC_tail_call) 8247 return 0; 8248 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 8249 verbose(env, "kernel subsystem misconfigured verifier\n"); 8250 return -EINVAL; 8251 } 8252 8253 reg = ®s[BPF_REG_3]; 8254 val = reg->var_off.value; 8255 max = map->max_entries; 8256 8257 if (!(register_is_const(reg) && val < max)) { 8258 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8259 return 0; 8260 } 8261 8262 err = mark_chain_precision(env, BPF_REG_3); 8263 if (err) 8264 return err; 8265 if (bpf_map_key_unseen(aux)) 8266 bpf_map_key_store(aux, val); 8267 else if (!bpf_map_key_poisoned(aux) && 8268 bpf_map_key_immediate(aux) != val) 8269 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8270 return 0; 8271 } 8272 8273 static int check_reference_leak(struct bpf_verifier_env *env) 8274 { 8275 struct bpf_func_state *state = cur_func(env); 8276 bool refs_lingering = false; 8277 int i; 8278 8279 if (state->frameno && !state->in_callback_fn) 8280 return 0; 8281 8282 for (i = 0; i < state->acquired_refs; i++) { 8283 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 8284 continue; 8285 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 8286 state->refs[i].id, state->refs[i].insn_idx); 8287 refs_lingering = true; 8288 } 8289 return refs_lingering ? -EINVAL : 0; 8290 } 8291 8292 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 8293 struct bpf_reg_state *regs) 8294 { 8295 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 8296 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 8297 struct bpf_map *fmt_map = fmt_reg->map_ptr; 8298 struct bpf_bprintf_data data = {}; 8299 int err, fmt_map_off, num_args; 8300 u64 fmt_addr; 8301 char *fmt; 8302 8303 /* data must be an array of u64 */ 8304 if (data_len_reg->var_off.value % 8) 8305 return -EINVAL; 8306 num_args = data_len_reg->var_off.value / 8; 8307 8308 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 8309 * and map_direct_value_addr is set. 8310 */ 8311 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 8312 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 8313 fmt_map_off); 8314 if (err) { 8315 verbose(env, "verifier bug\n"); 8316 return -EFAULT; 8317 } 8318 fmt = (char *)(long)fmt_addr + fmt_map_off; 8319 8320 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 8321 * can focus on validating the format specifiers. 8322 */ 8323 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 8324 if (err < 0) 8325 verbose(env, "Invalid format string\n"); 8326 8327 return err; 8328 } 8329 8330 static int check_get_func_ip(struct bpf_verifier_env *env) 8331 { 8332 enum bpf_prog_type type = resolve_prog_type(env->prog); 8333 int func_id = BPF_FUNC_get_func_ip; 8334 8335 if (type == BPF_PROG_TYPE_TRACING) { 8336 if (!bpf_prog_has_trampoline(env->prog)) { 8337 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 8338 func_id_name(func_id), func_id); 8339 return -ENOTSUPP; 8340 } 8341 return 0; 8342 } else if (type == BPF_PROG_TYPE_KPROBE) { 8343 return 0; 8344 } 8345 8346 verbose(env, "func %s#%d not supported for program type %d\n", 8347 func_id_name(func_id), func_id, type); 8348 return -ENOTSUPP; 8349 } 8350 8351 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 8352 { 8353 return &env->insn_aux_data[env->insn_idx]; 8354 } 8355 8356 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 8357 { 8358 struct bpf_reg_state *regs = cur_regs(env); 8359 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 8360 bool reg_is_null = register_is_null(reg); 8361 8362 if (reg_is_null) 8363 mark_chain_precision(env, BPF_REG_4); 8364 8365 return reg_is_null; 8366 } 8367 8368 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 8369 { 8370 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 8371 8372 if (!state->initialized) { 8373 state->initialized = 1; 8374 state->fit_for_inline = loop_flag_is_zero(env); 8375 state->callback_subprogno = subprogno; 8376 return; 8377 } 8378 8379 if (!state->fit_for_inline) 8380 return; 8381 8382 state->fit_for_inline = (loop_flag_is_zero(env) && 8383 state->callback_subprogno == subprogno); 8384 } 8385 8386 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8387 int *insn_idx_p) 8388 { 8389 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8390 const struct bpf_func_proto *fn = NULL; 8391 enum bpf_return_type ret_type; 8392 enum bpf_type_flag ret_flag; 8393 struct bpf_reg_state *regs; 8394 struct bpf_call_arg_meta meta; 8395 int insn_idx = *insn_idx_p; 8396 bool changes_data; 8397 int i, err, func_id; 8398 8399 /* find function prototype */ 8400 func_id = insn->imm; 8401 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 8402 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 8403 func_id); 8404 return -EINVAL; 8405 } 8406 8407 if (env->ops->get_func_proto) 8408 fn = env->ops->get_func_proto(func_id, env->prog); 8409 if (!fn) { 8410 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 8411 func_id); 8412 return -EINVAL; 8413 } 8414 8415 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 8416 if (!env->prog->gpl_compatible && fn->gpl_only) { 8417 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 8418 return -EINVAL; 8419 } 8420 8421 if (fn->allowed && !fn->allowed(env->prog)) { 8422 verbose(env, "helper call is not allowed in probe\n"); 8423 return -EINVAL; 8424 } 8425 8426 if (!env->prog->aux->sleepable && fn->might_sleep) { 8427 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 8428 return -EINVAL; 8429 } 8430 8431 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 8432 changes_data = bpf_helper_changes_pkt_data(fn->func); 8433 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 8434 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 8435 func_id_name(func_id), func_id); 8436 return -EINVAL; 8437 } 8438 8439 memset(&meta, 0, sizeof(meta)); 8440 meta.pkt_access = fn->pkt_access; 8441 8442 err = check_func_proto(fn, func_id); 8443 if (err) { 8444 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 8445 func_id_name(func_id), func_id); 8446 return err; 8447 } 8448 8449 if (env->cur_state->active_rcu_lock) { 8450 if (fn->might_sleep) { 8451 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 8452 func_id_name(func_id), func_id); 8453 return -EINVAL; 8454 } 8455 8456 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 8457 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 8458 } 8459 8460 meta.func_id = func_id; 8461 /* check args */ 8462 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8463 err = check_func_arg(env, i, &meta, fn, insn_idx); 8464 if (err) 8465 return err; 8466 } 8467 8468 err = record_func_map(env, &meta, func_id, insn_idx); 8469 if (err) 8470 return err; 8471 8472 err = record_func_key(env, &meta, func_id, insn_idx); 8473 if (err) 8474 return err; 8475 8476 /* Mark slots with STACK_MISC in case of raw mode, stack offset 8477 * is inferred from register state. 8478 */ 8479 for (i = 0; i < meta.access_size; i++) { 8480 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 8481 BPF_WRITE, -1, false); 8482 if (err) 8483 return err; 8484 } 8485 8486 regs = cur_regs(env); 8487 8488 if (meta.release_regno) { 8489 err = -EINVAL; 8490 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8491 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 8492 * is safe to do directly. 8493 */ 8494 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 8495 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 8496 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 8497 return -EFAULT; 8498 } 8499 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 8500 } else if (meta.ref_obj_id) { 8501 err = release_reference(env, meta.ref_obj_id); 8502 } else if (register_is_null(®s[meta.release_regno])) { 8503 /* meta.ref_obj_id can only be 0 if register that is meant to be 8504 * released is NULL, which must be > R0. 8505 */ 8506 err = 0; 8507 } 8508 if (err) { 8509 verbose(env, "func %s#%d reference has not been acquired before\n", 8510 func_id_name(func_id), func_id); 8511 return err; 8512 } 8513 } 8514 8515 switch (func_id) { 8516 case BPF_FUNC_tail_call: 8517 err = check_reference_leak(env); 8518 if (err) { 8519 verbose(env, "tail_call would lead to reference leak\n"); 8520 return err; 8521 } 8522 break; 8523 case BPF_FUNC_get_local_storage: 8524 /* check that flags argument in get_local_storage(map, flags) is 0, 8525 * this is required because get_local_storage() can't return an error. 8526 */ 8527 if (!register_is_null(®s[BPF_REG_2])) { 8528 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 8529 return -EINVAL; 8530 } 8531 break; 8532 case BPF_FUNC_for_each_map_elem: 8533 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8534 set_map_elem_callback_state); 8535 break; 8536 case BPF_FUNC_timer_set_callback: 8537 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8538 set_timer_callback_state); 8539 break; 8540 case BPF_FUNC_find_vma: 8541 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8542 set_find_vma_callback_state); 8543 break; 8544 case BPF_FUNC_snprintf: 8545 err = check_bpf_snprintf_call(env, regs); 8546 break; 8547 case BPF_FUNC_loop: 8548 update_loop_inline_state(env, meta.subprogno); 8549 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8550 set_loop_callback_state); 8551 break; 8552 case BPF_FUNC_dynptr_from_mem: 8553 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 8554 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 8555 reg_type_str(env, regs[BPF_REG_1].type)); 8556 return -EACCES; 8557 } 8558 break; 8559 case BPF_FUNC_set_retval: 8560 if (prog_type == BPF_PROG_TYPE_LSM && 8561 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 8562 if (!env->prog->aux->attach_func_proto->type) { 8563 /* Make sure programs that attach to void 8564 * hooks don't try to modify return value. 8565 */ 8566 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 8567 return -EINVAL; 8568 } 8569 } 8570 break; 8571 case BPF_FUNC_dynptr_data: 8572 { 8573 struct bpf_reg_state *reg; 8574 int id, ref_obj_id; 8575 8576 reg = get_dynptr_arg_reg(env, fn, regs); 8577 if (!reg) 8578 return -EFAULT; 8579 8580 8581 if (meta.dynptr_id) { 8582 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 8583 return -EFAULT; 8584 } 8585 if (meta.ref_obj_id) { 8586 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 8587 return -EFAULT; 8588 } 8589 8590 id = dynptr_id(env, reg); 8591 if (id < 0) { 8592 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 8593 return id; 8594 } 8595 8596 ref_obj_id = dynptr_ref_obj_id(env, reg); 8597 if (ref_obj_id < 0) { 8598 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 8599 return ref_obj_id; 8600 } 8601 8602 meta.dynptr_id = id; 8603 meta.ref_obj_id = ref_obj_id; 8604 8605 break; 8606 } 8607 case BPF_FUNC_dynptr_write: 8608 { 8609 enum bpf_dynptr_type dynptr_type; 8610 struct bpf_reg_state *reg; 8611 8612 reg = get_dynptr_arg_reg(env, fn, regs); 8613 if (!reg) 8614 return -EFAULT; 8615 8616 dynptr_type = dynptr_get_type(env, reg); 8617 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 8618 return -EFAULT; 8619 8620 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 8621 /* this will trigger clear_all_pkt_pointers(), which will 8622 * invalidate all dynptr slices associated with the skb 8623 */ 8624 changes_data = true; 8625 8626 break; 8627 } 8628 case BPF_FUNC_user_ringbuf_drain: 8629 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8630 set_user_ringbuf_callback_state); 8631 break; 8632 } 8633 8634 if (err) 8635 return err; 8636 8637 /* reset caller saved regs */ 8638 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8639 mark_reg_not_init(env, regs, caller_saved[i]); 8640 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8641 } 8642 8643 /* helper call returns 64-bit value. */ 8644 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8645 8646 /* update return register (already marked as written above) */ 8647 ret_type = fn->ret_type; 8648 ret_flag = type_flag(ret_type); 8649 8650 switch (base_type(ret_type)) { 8651 case RET_INTEGER: 8652 /* sets type to SCALAR_VALUE */ 8653 mark_reg_unknown(env, regs, BPF_REG_0); 8654 break; 8655 case RET_VOID: 8656 regs[BPF_REG_0].type = NOT_INIT; 8657 break; 8658 case RET_PTR_TO_MAP_VALUE: 8659 /* There is no offset yet applied, variable or fixed */ 8660 mark_reg_known_zero(env, regs, BPF_REG_0); 8661 /* remember map_ptr, so that check_map_access() 8662 * can check 'value_size' boundary of memory access 8663 * to map element returned from bpf_map_lookup_elem() 8664 */ 8665 if (meta.map_ptr == NULL) { 8666 verbose(env, 8667 "kernel subsystem misconfigured verifier\n"); 8668 return -EINVAL; 8669 } 8670 regs[BPF_REG_0].map_ptr = meta.map_ptr; 8671 regs[BPF_REG_0].map_uid = meta.map_uid; 8672 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 8673 if (!type_may_be_null(ret_type) && 8674 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 8675 regs[BPF_REG_0].id = ++env->id_gen; 8676 } 8677 break; 8678 case RET_PTR_TO_SOCKET: 8679 mark_reg_known_zero(env, regs, BPF_REG_0); 8680 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 8681 break; 8682 case RET_PTR_TO_SOCK_COMMON: 8683 mark_reg_known_zero(env, regs, BPF_REG_0); 8684 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 8685 break; 8686 case RET_PTR_TO_TCP_SOCK: 8687 mark_reg_known_zero(env, regs, BPF_REG_0); 8688 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 8689 break; 8690 case RET_PTR_TO_MEM: 8691 mark_reg_known_zero(env, regs, BPF_REG_0); 8692 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8693 regs[BPF_REG_0].mem_size = meta.mem_size; 8694 break; 8695 case RET_PTR_TO_MEM_OR_BTF_ID: 8696 { 8697 const struct btf_type *t; 8698 8699 mark_reg_known_zero(env, regs, BPF_REG_0); 8700 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8701 if (!btf_type_is_struct(t)) { 8702 u32 tsize; 8703 const struct btf_type *ret; 8704 const char *tname; 8705 8706 /* resolve the type size of ksym. */ 8707 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8708 if (IS_ERR(ret)) { 8709 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8710 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8711 tname, PTR_ERR(ret)); 8712 return -EINVAL; 8713 } 8714 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8715 regs[BPF_REG_0].mem_size = tsize; 8716 } else { 8717 /* MEM_RDONLY may be carried from ret_flag, but it 8718 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8719 * it will confuse the check of PTR_TO_BTF_ID in 8720 * check_mem_access(). 8721 */ 8722 ret_flag &= ~MEM_RDONLY; 8723 8724 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8725 regs[BPF_REG_0].btf = meta.ret_btf; 8726 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8727 } 8728 break; 8729 } 8730 case RET_PTR_TO_BTF_ID: 8731 { 8732 struct btf *ret_btf; 8733 int ret_btf_id; 8734 8735 mark_reg_known_zero(env, regs, BPF_REG_0); 8736 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8737 if (func_id == BPF_FUNC_kptr_xchg) { 8738 ret_btf = meta.kptr_field->kptr.btf; 8739 ret_btf_id = meta.kptr_field->kptr.btf_id; 8740 } else { 8741 if (fn->ret_btf_id == BPF_PTR_POISON) { 8742 verbose(env, "verifier internal error:"); 8743 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8744 func_id_name(func_id)); 8745 return -EINVAL; 8746 } 8747 ret_btf = btf_vmlinux; 8748 ret_btf_id = *fn->ret_btf_id; 8749 } 8750 if (ret_btf_id == 0) { 8751 verbose(env, "invalid return type %u of func %s#%d\n", 8752 base_type(ret_type), func_id_name(func_id), 8753 func_id); 8754 return -EINVAL; 8755 } 8756 regs[BPF_REG_0].btf = ret_btf; 8757 regs[BPF_REG_0].btf_id = ret_btf_id; 8758 break; 8759 } 8760 default: 8761 verbose(env, "unknown return type %u of func %s#%d\n", 8762 base_type(ret_type), func_id_name(func_id), func_id); 8763 return -EINVAL; 8764 } 8765 8766 if (type_may_be_null(regs[BPF_REG_0].type)) 8767 regs[BPF_REG_0].id = ++env->id_gen; 8768 8769 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8770 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8771 func_id_name(func_id), func_id); 8772 return -EFAULT; 8773 } 8774 8775 if (is_dynptr_ref_function(func_id)) 8776 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 8777 8778 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8779 /* For release_reference() */ 8780 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8781 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8782 int id = acquire_reference_state(env, insn_idx); 8783 8784 if (id < 0) 8785 return id; 8786 /* For mark_ptr_or_null_reg() */ 8787 regs[BPF_REG_0].id = id; 8788 /* For release_reference() */ 8789 regs[BPF_REG_0].ref_obj_id = id; 8790 } 8791 8792 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8793 8794 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8795 if (err) 8796 return err; 8797 8798 if ((func_id == BPF_FUNC_get_stack || 8799 func_id == BPF_FUNC_get_task_stack) && 8800 !env->prog->has_callchain_buf) { 8801 const char *err_str; 8802 8803 #ifdef CONFIG_PERF_EVENTS 8804 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8805 err_str = "cannot get callchain buffer for func %s#%d\n"; 8806 #else 8807 err = -ENOTSUPP; 8808 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8809 #endif 8810 if (err) { 8811 verbose(env, err_str, func_id_name(func_id), func_id); 8812 return err; 8813 } 8814 8815 env->prog->has_callchain_buf = true; 8816 } 8817 8818 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8819 env->prog->call_get_stack = true; 8820 8821 if (func_id == BPF_FUNC_get_func_ip) { 8822 if (check_get_func_ip(env)) 8823 return -ENOTSUPP; 8824 env->prog->call_get_func_ip = true; 8825 } 8826 8827 if (changes_data) 8828 clear_all_pkt_pointers(env); 8829 return 0; 8830 } 8831 8832 /* mark_btf_func_reg_size() is used when the reg size is determined by 8833 * the BTF func_proto's return value size and argument. 8834 */ 8835 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8836 size_t reg_size) 8837 { 8838 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8839 8840 if (regno == BPF_REG_0) { 8841 /* Function return value */ 8842 reg->live |= REG_LIVE_WRITTEN; 8843 reg->subreg_def = reg_size == sizeof(u64) ? 8844 DEF_NOT_SUBREG : env->insn_idx + 1; 8845 } else { 8846 /* Function argument */ 8847 if (reg_size == sizeof(u64)) { 8848 mark_insn_zext(env, reg); 8849 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8850 } else { 8851 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8852 } 8853 } 8854 } 8855 8856 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8857 { 8858 return meta->kfunc_flags & KF_ACQUIRE; 8859 } 8860 8861 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8862 { 8863 return meta->kfunc_flags & KF_RET_NULL; 8864 } 8865 8866 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8867 { 8868 return meta->kfunc_flags & KF_RELEASE; 8869 } 8870 8871 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8872 { 8873 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8874 } 8875 8876 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8877 { 8878 return meta->kfunc_flags & KF_SLEEPABLE; 8879 } 8880 8881 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8882 { 8883 return meta->kfunc_flags & KF_DESTRUCTIVE; 8884 } 8885 8886 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8887 { 8888 return meta->kfunc_flags & KF_RCU; 8889 } 8890 8891 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8892 { 8893 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8894 } 8895 8896 static bool __kfunc_param_match_suffix(const struct btf *btf, 8897 const struct btf_param *arg, 8898 const char *suffix) 8899 { 8900 int suffix_len = strlen(suffix), len; 8901 const char *param_name; 8902 8903 /* In the future, this can be ported to use BTF tagging */ 8904 param_name = btf_name_by_offset(btf, arg->name_off); 8905 if (str_is_empty(param_name)) 8906 return false; 8907 len = strlen(param_name); 8908 if (len < suffix_len) 8909 return false; 8910 param_name += len - suffix_len; 8911 return !strncmp(param_name, suffix, suffix_len); 8912 } 8913 8914 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8915 const struct btf_param *arg, 8916 const struct bpf_reg_state *reg) 8917 { 8918 const struct btf_type *t; 8919 8920 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8921 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8922 return false; 8923 8924 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8925 } 8926 8927 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 8928 const struct btf_param *arg, 8929 const struct bpf_reg_state *reg) 8930 { 8931 const struct btf_type *t; 8932 8933 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8934 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8935 return false; 8936 8937 return __kfunc_param_match_suffix(btf, arg, "__szk"); 8938 } 8939 8940 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8941 { 8942 return __kfunc_param_match_suffix(btf, arg, "__k"); 8943 } 8944 8945 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8946 { 8947 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8948 } 8949 8950 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8951 { 8952 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8953 } 8954 8955 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 8956 { 8957 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 8958 } 8959 8960 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8961 const struct btf_param *arg, 8962 const char *name) 8963 { 8964 int len, target_len = strlen(name); 8965 const char *param_name; 8966 8967 param_name = btf_name_by_offset(btf, arg->name_off); 8968 if (str_is_empty(param_name)) 8969 return false; 8970 len = strlen(param_name); 8971 if (len != target_len) 8972 return false; 8973 if (strcmp(param_name, name)) 8974 return false; 8975 8976 return true; 8977 } 8978 8979 enum { 8980 KF_ARG_DYNPTR_ID, 8981 KF_ARG_LIST_HEAD_ID, 8982 KF_ARG_LIST_NODE_ID, 8983 KF_ARG_RB_ROOT_ID, 8984 KF_ARG_RB_NODE_ID, 8985 }; 8986 8987 BTF_ID_LIST(kf_arg_btf_ids) 8988 BTF_ID(struct, bpf_dynptr_kern) 8989 BTF_ID(struct, bpf_list_head) 8990 BTF_ID(struct, bpf_list_node) 8991 BTF_ID(struct, bpf_rb_root) 8992 BTF_ID(struct, bpf_rb_node) 8993 8994 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8995 const struct btf_param *arg, int type) 8996 { 8997 const struct btf_type *t; 8998 u32 res_id; 8999 9000 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9001 if (!t) 9002 return false; 9003 if (!btf_type_is_ptr(t)) 9004 return false; 9005 t = btf_type_skip_modifiers(btf, t->type, &res_id); 9006 if (!t) 9007 return false; 9008 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 9009 } 9010 9011 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 9012 { 9013 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 9014 } 9015 9016 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 9017 { 9018 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 9019 } 9020 9021 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 9022 { 9023 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 9024 } 9025 9026 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 9027 { 9028 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 9029 } 9030 9031 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 9032 { 9033 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 9034 } 9035 9036 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 9037 const struct btf_param *arg) 9038 { 9039 const struct btf_type *t; 9040 9041 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 9042 if (!t) 9043 return false; 9044 9045 return true; 9046 } 9047 9048 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 9049 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 9050 const struct btf *btf, 9051 const struct btf_type *t, int rec) 9052 { 9053 const struct btf_type *member_type; 9054 const struct btf_member *member; 9055 u32 i; 9056 9057 if (!btf_type_is_struct(t)) 9058 return false; 9059 9060 for_each_member(i, t, member) { 9061 const struct btf_array *array; 9062 9063 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 9064 if (btf_type_is_struct(member_type)) { 9065 if (rec >= 3) { 9066 verbose(env, "max struct nesting depth exceeded\n"); 9067 return false; 9068 } 9069 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 9070 return false; 9071 continue; 9072 } 9073 if (btf_type_is_array(member_type)) { 9074 array = btf_array(member_type); 9075 if (!array->nelems) 9076 return false; 9077 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 9078 if (!btf_type_is_scalar(member_type)) 9079 return false; 9080 continue; 9081 } 9082 if (!btf_type_is_scalar(member_type)) 9083 return false; 9084 } 9085 return true; 9086 } 9087 9088 9089 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 9090 #ifdef CONFIG_NET 9091 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 9092 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9093 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 9094 #endif 9095 }; 9096 9097 enum kfunc_ptr_arg_type { 9098 KF_ARG_PTR_TO_CTX, 9099 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 9100 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 9101 KF_ARG_PTR_TO_DYNPTR, 9102 KF_ARG_PTR_TO_LIST_HEAD, 9103 KF_ARG_PTR_TO_LIST_NODE, 9104 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 9105 KF_ARG_PTR_TO_MEM, 9106 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 9107 KF_ARG_PTR_TO_CALLBACK, 9108 KF_ARG_PTR_TO_RB_ROOT, 9109 KF_ARG_PTR_TO_RB_NODE, 9110 }; 9111 9112 enum special_kfunc_type { 9113 KF_bpf_obj_new_impl, 9114 KF_bpf_obj_drop_impl, 9115 KF_bpf_list_push_front, 9116 KF_bpf_list_push_back, 9117 KF_bpf_list_pop_front, 9118 KF_bpf_list_pop_back, 9119 KF_bpf_cast_to_kern_ctx, 9120 KF_bpf_rdonly_cast, 9121 KF_bpf_rcu_read_lock, 9122 KF_bpf_rcu_read_unlock, 9123 KF_bpf_rbtree_remove, 9124 KF_bpf_rbtree_add, 9125 KF_bpf_rbtree_first, 9126 KF_bpf_dynptr_from_skb, 9127 KF_bpf_dynptr_from_xdp, 9128 KF_bpf_dynptr_slice, 9129 KF_bpf_dynptr_slice_rdwr, 9130 }; 9131 9132 BTF_SET_START(special_kfunc_set) 9133 BTF_ID(func, bpf_obj_new_impl) 9134 BTF_ID(func, bpf_obj_drop_impl) 9135 BTF_ID(func, bpf_list_push_front) 9136 BTF_ID(func, bpf_list_push_back) 9137 BTF_ID(func, bpf_list_pop_front) 9138 BTF_ID(func, bpf_list_pop_back) 9139 BTF_ID(func, bpf_cast_to_kern_ctx) 9140 BTF_ID(func, bpf_rdonly_cast) 9141 BTF_ID(func, bpf_rbtree_remove) 9142 BTF_ID(func, bpf_rbtree_add) 9143 BTF_ID(func, bpf_rbtree_first) 9144 BTF_ID(func, bpf_dynptr_from_skb) 9145 BTF_ID(func, bpf_dynptr_from_xdp) 9146 BTF_ID(func, bpf_dynptr_slice) 9147 BTF_ID(func, bpf_dynptr_slice_rdwr) 9148 BTF_SET_END(special_kfunc_set) 9149 9150 BTF_ID_LIST(special_kfunc_list) 9151 BTF_ID(func, bpf_obj_new_impl) 9152 BTF_ID(func, bpf_obj_drop_impl) 9153 BTF_ID(func, bpf_list_push_front) 9154 BTF_ID(func, bpf_list_push_back) 9155 BTF_ID(func, bpf_list_pop_front) 9156 BTF_ID(func, bpf_list_pop_back) 9157 BTF_ID(func, bpf_cast_to_kern_ctx) 9158 BTF_ID(func, bpf_rdonly_cast) 9159 BTF_ID(func, bpf_rcu_read_lock) 9160 BTF_ID(func, bpf_rcu_read_unlock) 9161 BTF_ID(func, bpf_rbtree_remove) 9162 BTF_ID(func, bpf_rbtree_add) 9163 BTF_ID(func, bpf_rbtree_first) 9164 BTF_ID(func, bpf_dynptr_from_skb) 9165 BTF_ID(func, bpf_dynptr_from_xdp) 9166 BTF_ID(func, bpf_dynptr_slice) 9167 BTF_ID(func, bpf_dynptr_slice_rdwr) 9168 9169 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 9170 { 9171 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 9172 } 9173 9174 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 9175 { 9176 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 9177 } 9178 9179 static enum kfunc_ptr_arg_type 9180 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 9181 struct bpf_kfunc_call_arg_meta *meta, 9182 const struct btf_type *t, const struct btf_type *ref_t, 9183 const char *ref_tname, const struct btf_param *args, 9184 int argno, int nargs) 9185 { 9186 u32 regno = argno + 1; 9187 struct bpf_reg_state *regs = cur_regs(env); 9188 struct bpf_reg_state *reg = ®s[regno]; 9189 bool arg_mem_size = false; 9190 9191 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 9192 return KF_ARG_PTR_TO_CTX; 9193 9194 /* In this function, we verify the kfunc's BTF as per the argument type, 9195 * leaving the rest of the verification with respect to the register 9196 * type to our caller. When a set of conditions hold in the BTF type of 9197 * arguments, we resolve it to a known kfunc_ptr_arg_type. 9198 */ 9199 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 9200 return KF_ARG_PTR_TO_CTX; 9201 9202 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 9203 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 9204 9205 if (is_kfunc_arg_kptr_get(meta, argno)) { 9206 if (!btf_type_is_ptr(ref_t)) { 9207 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 9208 return -EINVAL; 9209 } 9210 ref_t = btf_type_by_id(meta->btf, ref_t->type); 9211 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 9212 if (!btf_type_is_struct(ref_t)) { 9213 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 9214 meta->func_name, btf_type_str(ref_t), ref_tname); 9215 return -EINVAL; 9216 } 9217 return KF_ARG_PTR_TO_KPTR; 9218 } 9219 9220 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 9221 return KF_ARG_PTR_TO_DYNPTR; 9222 9223 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 9224 return KF_ARG_PTR_TO_LIST_HEAD; 9225 9226 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 9227 return KF_ARG_PTR_TO_LIST_NODE; 9228 9229 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 9230 return KF_ARG_PTR_TO_RB_ROOT; 9231 9232 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 9233 return KF_ARG_PTR_TO_RB_NODE; 9234 9235 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 9236 if (!btf_type_is_struct(ref_t)) { 9237 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 9238 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 9239 return -EINVAL; 9240 } 9241 return KF_ARG_PTR_TO_BTF_ID; 9242 } 9243 9244 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 9245 return KF_ARG_PTR_TO_CALLBACK; 9246 9247 9248 if (argno + 1 < nargs && 9249 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 9250 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 9251 arg_mem_size = true; 9252 9253 /* This is the catch all argument type of register types supported by 9254 * check_helper_mem_access. However, we only allow when argument type is 9255 * pointer to scalar, or struct composed (recursively) of scalars. When 9256 * arg_mem_size is true, the pointer can be void *. 9257 */ 9258 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 9259 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 9260 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 9261 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 9262 return -EINVAL; 9263 } 9264 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 9265 } 9266 9267 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 9268 struct bpf_reg_state *reg, 9269 const struct btf_type *ref_t, 9270 const char *ref_tname, u32 ref_id, 9271 struct bpf_kfunc_call_arg_meta *meta, 9272 int argno) 9273 { 9274 const struct btf_type *reg_ref_t; 9275 bool strict_type_match = false; 9276 const struct btf *reg_btf; 9277 const char *reg_ref_tname; 9278 u32 reg_ref_id; 9279 9280 if (base_type(reg->type) == PTR_TO_BTF_ID) { 9281 reg_btf = reg->btf; 9282 reg_ref_id = reg->btf_id; 9283 } else { 9284 reg_btf = btf_vmlinux; 9285 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 9286 } 9287 9288 /* Enforce strict type matching for calls to kfuncs that are acquiring 9289 * or releasing a reference, or are no-cast aliases. We do _not_ 9290 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 9291 * as we want to enable BPF programs to pass types that are bitwise 9292 * equivalent without forcing them to explicitly cast with something 9293 * like bpf_cast_to_kern_ctx(). 9294 * 9295 * For example, say we had a type like the following: 9296 * 9297 * struct bpf_cpumask { 9298 * cpumask_t cpumask; 9299 * refcount_t usage; 9300 * }; 9301 * 9302 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 9303 * to a struct cpumask, so it would be safe to pass a struct 9304 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 9305 * 9306 * The philosophy here is similar to how we allow scalars of different 9307 * types to be passed to kfuncs as long as the size is the same. The 9308 * only difference here is that we're simply allowing 9309 * btf_struct_ids_match() to walk the struct at the 0th offset, and 9310 * resolve types. 9311 */ 9312 if (is_kfunc_acquire(meta) || 9313 (is_kfunc_release(meta) && reg->ref_obj_id) || 9314 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 9315 strict_type_match = true; 9316 9317 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 9318 9319 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 9320 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 9321 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 9322 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 9323 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 9324 btf_type_str(reg_ref_t), reg_ref_tname); 9325 return -EINVAL; 9326 } 9327 return 0; 9328 } 9329 9330 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 9331 struct bpf_reg_state *reg, 9332 const struct btf_type *ref_t, 9333 const char *ref_tname, 9334 struct bpf_kfunc_call_arg_meta *meta, 9335 int argno) 9336 { 9337 struct btf_field *kptr_field; 9338 9339 /* check_func_arg_reg_off allows var_off for 9340 * PTR_TO_MAP_VALUE, but we need fixed offset to find 9341 * off_desc. 9342 */ 9343 if (!tnum_is_const(reg->var_off)) { 9344 verbose(env, "arg#0 must have constant offset\n"); 9345 return -EINVAL; 9346 } 9347 9348 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 9349 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 9350 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 9351 reg->off + reg->var_off.value); 9352 return -EINVAL; 9353 } 9354 9355 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 9356 kptr_field->kptr.btf_id, true)) { 9357 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 9358 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 9359 return -EINVAL; 9360 } 9361 return 0; 9362 } 9363 9364 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9365 { 9366 struct bpf_verifier_state *state = env->cur_state; 9367 9368 if (!state->active_lock.ptr) { 9369 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 9370 return -EFAULT; 9371 } 9372 9373 if (type_flag(reg->type) & NON_OWN_REF) { 9374 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 9375 return -EFAULT; 9376 } 9377 9378 reg->type |= NON_OWN_REF; 9379 return 0; 9380 } 9381 9382 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 9383 { 9384 struct bpf_func_state *state, *unused; 9385 struct bpf_reg_state *reg; 9386 int i; 9387 9388 state = cur_func(env); 9389 9390 if (!ref_obj_id) { 9391 verbose(env, "verifier internal error: ref_obj_id is zero for " 9392 "owning -> non-owning conversion\n"); 9393 return -EFAULT; 9394 } 9395 9396 for (i = 0; i < state->acquired_refs; i++) { 9397 if (state->refs[i].id != ref_obj_id) 9398 continue; 9399 9400 /* Clear ref_obj_id here so release_reference doesn't clobber 9401 * the whole reg 9402 */ 9403 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9404 if (reg->ref_obj_id == ref_obj_id) { 9405 reg->ref_obj_id = 0; 9406 ref_set_non_owning(env, reg); 9407 } 9408 })); 9409 return 0; 9410 } 9411 9412 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 9413 return -EFAULT; 9414 } 9415 9416 /* Implementation details: 9417 * 9418 * Each register points to some region of memory, which we define as an 9419 * allocation. Each allocation may embed a bpf_spin_lock which protects any 9420 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 9421 * allocation. The lock and the data it protects are colocated in the same 9422 * memory region. 9423 * 9424 * Hence, everytime a register holds a pointer value pointing to such 9425 * allocation, the verifier preserves a unique reg->id for it. 9426 * 9427 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 9428 * bpf_spin_lock is called. 9429 * 9430 * To enable this, lock state in the verifier captures two values: 9431 * active_lock.ptr = Register's type specific pointer 9432 * active_lock.id = A unique ID for each register pointer value 9433 * 9434 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 9435 * supported register types. 9436 * 9437 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 9438 * allocated objects is the reg->btf pointer. 9439 * 9440 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 9441 * can establish the provenance of the map value statically for each distinct 9442 * lookup into such maps. They always contain a single map value hence unique 9443 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 9444 * 9445 * So, in case of global variables, they use array maps with max_entries = 1, 9446 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 9447 * into the same map value as max_entries is 1, as described above). 9448 * 9449 * In case of inner map lookups, the inner map pointer has same map_ptr as the 9450 * outer map pointer (in verifier context), but each lookup into an inner map 9451 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 9452 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 9453 * will get different reg->id assigned to each lookup, hence different 9454 * active_lock.id. 9455 * 9456 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 9457 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 9458 * returned from bpf_obj_new. Each allocation receives a new reg->id. 9459 */ 9460 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9461 { 9462 void *ptr; 9463 u32 id; 9464 9465 switch ((int)reg->type) { 9466 case PTR_TO_MAP_VALUE: 9467 ptr = reg->map_ptr; 9468 break; 9469 case PTR_TO_BTF_ID | MEM_ALLOC: 9470 ptr = reg->btf; 9471 break; 9472 default: 9473 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 9474 return -EFAULT; 9475 } 9476 id = reg->id; 9477 9478 if (!env->cur_state->active_lock.ptr) 9479 return -EINVAL; 9480 if (env->cur_state->active_lock.ptr != ptr || 9481 env->cur_state->active_lock.id != id) { 9482 verbose(env, "held lock and object are not in the same allocation\n"); 9483 return -EINVAL; 9484 } 9485 return 0; 9486 } 9487 9488 static bool is_bpf_list_api_kfunc(u32 btf_id) 9489 { 9490 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9491 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 9492 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 9493 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 9494 } 9495 9496 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 9497 { 9498 return btf_id == special_kfunc_list[KF_bpf_rbtree_add] || 9499 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9500 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 9501 } 9502 9503 static bool is_bpf_graph_api_kfunc(u32 btf_id) 9504 { 9505 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id); 9506 } 9507 9508 static bool is_callback_calling_kfunc(u32 btf_id) 9509 { 9510 return btf_id == special_kfunc_list[KF_bpf_rbtree_add]; 9511 } 9512 9513 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 9514 { 9515 return is_bpf_rbtree_api_kfunc(btf_id); 9516 } 9517 9518 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 9519 enum btf_field_type head_field_type, 9520 u32 kfunc_btf_id) 9521 { 9522 bool ret; 9523 9524 switch (head_field_type) { 9525 case BPF_LIST_HEAD: 9526 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 9527 break; 9528 case BPF_RB_ROOT: 9529 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 9530 break; 9531 default: 9532 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 9533 btf_field_type_name(head_field_type)); 9534 return false; 9535 } 9536 9537 if (!ret) 9538 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 9539 btf_field_type_name(head_field_type)); 9540 return ret; 9541 } 9542 9543 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 9544 enum btf_field_type node_field_type, 9545 u32 kfunc_btf_id) 9546 { 9547 bool ret; 9548 9549 switch (node_field_type) { 9550 case BPF_LIST_NODE: 9551 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9552 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]); 9553 break; 9554 case BPF_RB_NODE: 9555 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9556 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]); 9557 break; 9558 default: 9559 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 9560 btf_field_type_name(node_field_type)); 9561 return false; 9562 } 9563 9564 if (!ret) 9565 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 9566 btf_field_type_name(node_field_type)); 9567 return ret; 9568 } 9569 9570 static int 9571 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 9572 struct bpf_reg_state *reg, u32 regno, 9573 struct bpf_kfunc_call_arg_meta *meta, 9574 enum btf_field_type head_field_type, 9575 struct btf_field **head_field) 9576 { 9577 const char *head_type_name; 9578 struct btf_field *field; 9579 struct btf_record *rec; 9580 u32 head_off; 9581 9582 if (meta->btf != btf_vmlinux) { 9583 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9584 return -EFAULT; 9585 } 9586 9587 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 9588 return -EFAULT; 9589 9590 head_type_name = btf_field_type_name(head_field_type); 9591 if (!tnum_is_const(reg->var_off)) { 9592 verbose(env, 9593 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9594 regno, head_type_name); 9595 return -EINVAL; 9596 } 9597 9598 rec = reg_btf_record(reg); 9599 head_off = reg->off + reg->var_off.value; 9600 field = btf_record_find(rec, head_off, head_field_type); 9601 if (!field) { 9602 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 9603 return -EINVAL; 9604 } 9605 9606 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 9607 if (check_reg_allocation_locked(env, reg)) { 9608 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 9609 rec->spin_lock_off, head_type_name); 9610 return -EINVAL; 9611 } 9612 9613 if (*head_field) { 9614 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 9615 return -EFAULT; 9616 } 9617 *head_field = field; 9618 return 0; 9619 } 9620 9621 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 9622 struct bpf_reg_state *reg, u32 regno, 9623 struct bpf_kfunc_call_arg_meta *meta) 9624 { 9625 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 9626 &meta->arg_list_head.field); 9627 } 9628 9629 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 9630 struct bpf_reg_state *reg, u32 regno, 9631 struct bpf_kfunc_call_arg_meta *meta) 9632 { 9633 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 9634 &meta->arg_rbtree_root.field); 9635 } 9636 9637 static int 9638 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 9639 struct bpf_reg_state *reg, u32 regno, 9640 struct bpf_kfunc_call_arg_meta *meta, 9641 enum btf_field_type head_field_type, 9642 enum btf_field_type node_field_type, 9643 struct btf_field **node_field) 9644 { 9645 const char *node_type_name; 9646 const struct btf_type *et, *t; 9647 struct btf_field *field; 9648 u32 node_off; 9649 9650 if (meta->btf != btf_vmlinux) { 9651 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9652 return -EFAULT; 9653 } 9654 9655 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 9656 return -EFAULT; 9657 9658 node_type_name = btf_field_type_name(node_field_type); 9659 if (!tnum_is_const(reg->var_off)) { 9660 verbose(env, 9661 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9662 regno, node_type_name); 9663 return -EINVAL; 9664 } 9665 9666 node_off = reg->off + reg->var_off.value; 9667 field = reg_find_field_offset(reg, node_off, node_field_type); 9668 if (!field || field->offset != node_off) { 9669 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 9670 return -EINVAL; 9671 } 9672 9673 field = *node_field; 9674 9675 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 9676 t = btf_type_by_id(reg->btf, reg->btf_id); 9677 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 9678 field->graph_root.value_btf_id, true)) { 9679 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 9680 "in struct %s, but arg is at offset=%d in struct %s\n", 9681 btf_field_type_name(head_field_type), 9682 btf_field_type_name(node_field_type), 9683 field->graph_root.node_offset, 9684 btf_name_by_offset(field->graph_root.btf, et->name_off), 9685 node_off, btf_name_by_offset(reg->btf, t->name_off)); 9686 return -EINVAL; 9687 } 9688 9689 if (node_off != field->graph_root.node_offset) { 9690 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 9691 node_off, btf_field_type_name(node_field_type), 9692 field->graph_root.node_offset, 9693 btf_name_by_offset(field->graph_root.btf, et->name_off)); 9694 return -EINVAL; 9695 } 9696 9697 return 0; 9698 } 9699 9700 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 9701 struct bpf_reg_state *reg, u32 regno, 9702 struct bpf_kfunc_call_arg_meta *meta) 9703 { 9704 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9705 BPF_LIST_HEAD, BPF_LIST_NODE, 9706 &meta->arg_list_head.field); 9707 } 9708 9709 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 9710 struct bpf_reg_state *reg, u32 regno, 9711 struct bpf_kfunc_call_arg_meta *meta) 9712 { 9713 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9714 BPF_RB_ROOT, BPF_RB_NODE, 9715 &meta->arg_rbtree_root.field); 9716 } 9717 9718 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 9719 int insn_idx) 9720 { 9721 const char *func_name = meta->func_name, *ref_tname; 9722 const struct btf *btf = meta->btf; 9723 const struct btf_param *args; 9724 u32 i, nargs; 9725 int ret; 9726 9727 args = (const struct btf_param *)(meta->func_proto + 1); 9728 nargs = btf_type_vlen(meta->func_proto); 9729 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 9730 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 9731 MAX_BPF_FUNC_REG_ARGS); 9732 return -EINVAL; 9733 } 9734 9735 /* Check that BTF function arguments match actual types that the 9736 * verifier sees. 9737 */ 9738 for (i = 0; i < nargs; i++) { 9739 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 9740 const struct btf_type *t, *ref_t, *resolve_ret; 9741 enum bpf_arg_type arg_type = ARG_DONTCARE; 9742 u32 regno = i + 1, ref_id, type_size; 9743 bool is_ret_buf_sz = false; 9744 int kf_arg_type; 9745 9746 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 9747 9748 if (is_kfunc_arg_ignore(btf, &args[i])) 9749 continue; 9750 9751 if (btf_type_is_scalar(t)) { 9752 if (reg->type != SCALAR_VALUE) { 9753 verbose(env, "R%d is not a scalar\n", regno); 9754 return -EINVAL; 9755 } 9756 9757 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 9758 if (meta->arg_constant.found) { 9759 verbose(env, "verifier internal error: only one constant argument permitted\n"); 9760 return -EFAULT; 9761 } 9762 if (!tnum_is_const(reg->var_off)) { 9763 verbose(env, "R%d must be a known constant\n", regno); 9764 return -EINVAL; 9765 } 9766 ret = mark_chain_precision(env, regno); 9767 if (ret < 0) 9768 return ret; 9769 meta->arg_constant.found = true; 9770 meta->arg_constant.value = reg->var_off.value; 9771 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 9772 meta->r0_rdonly = true; 9773 is_ret_buf_sz = true; 9774 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 9775 is_ret_buf_sz = true; 9776 } 9777 9778 if (is_ret_buf_sz) { 9779 if (meta->r0_size) { 9780 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 9781 return -EINVAL; 9782 } 9783 9784 if (!tnum_is_const(reg->var_off)) { 9785 verbose(env, "R%d is not a const\n", regno); 9786 return -EINVAL; 9787 } 9788 9789 meta->r0_size = reg->var_off.value; 9790 ret = mark_chain_precision(env, regno); 9791 if (ret) 9792 return ret; 9793 } 9794 continue; 9795 } 9796 9797 if (!btf_type_is_ptr(t)) { 9798 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 9799 return -EINVAL; 9800 } 9801 9802 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 9803 (register_is_null(reg) || type_may_be_null(reg->type))) { 9804 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 9805 return -EACCES; 9806 } 9807 9808 if (reg->ref_obj_id) { 9809 if (is_kfunc_release(meta) && meta->ref_obj_id) { 9810 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9811 regno, reg->ref_obj_id, 9812 meta->ref_obj_id); 9813 return -EFAULT; 9814 } 9815 meta->ref_obj_id = reg->ref_obj_id; 9816 if (is_kfunc_release(meta)) 9817 meta->release_regno = regno; 9818 } 9819 9820 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 9821 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 9822 9823 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 9824 if (kf_arg_type < 0) 9825 return kf_arg_type; 9826 9827 switch (kf_arg_type) { 9828 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9829 case KF_ARG_PTR_TO_BTF_ID: 9830 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 9831 break; 9832 9833 if (!is_trusted_reg(reg)) { 9834 if (!is_kfunc_rcu(meta)) { 9835 verbose(env, "R%d must be referenced or trusted\n", regno); 9836 return -EINVAL; 9837 } 9838 if (!is_rcu_reg(reg)) { 9839 verbose(env, "R%d must be a rcu pointer\n", regno); 9840 return -EINVAL; 9841 } 9842 } 9843 9844 fallthrough; 9845 case KF_ARG_PTR_TO_CTX: 9846 /* Trusted arguments have the same offset checks as release arguments */ 9847 arg_type |= OBJ_RELEASE; 9848 break; 9849 case KF_ARG_PTR_TO_KPTR: 9850 case KF_ARG_PTR_TO_DYNPTR: 9851 case KF_ARG_PTR_TO_LIST_HEAD: 9852 case KF_ARG_PTR_TO_LIST_NODE: 9853 case KF_ARG_PTR_TO_RB_ROOT: 9854 case KF_ARG_PTR_TO_RB_NODE: 9855 case KF_ARG_PTR_TO_MEM: 9856 case KF_ARG_PTR_TO_MEM_SIZE: 9857 case KF_ARG_PTR_TO_CALLBACK: 9858 /* Trusted by default */ 9859 break; 9860 default: 9861 WARN_ON_ONCE(1); 9862 return -EFAULT; 9863 } 9864 9865 if (is_kfunc_release(meta) && reg->ref_obj_id) 9866 arg_type |= OBJ_RELEASE; 9867 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 9868 if (ret < 0) 9869 return ret; 9870 9871 switch (kf_arg_type) { 9872 case KF_ARG_PTR_TO_CTX: 9873 if (reg->type != PTR_TO_CTX) { 9874 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 9875 return -EINVAL; 9876 } 9877 9878 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9879 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 9880 if (ret < 0) 9881 return -EINVAL; 9882 meta->ret_btf_id = ret; 9883 } 9884 break; 9885 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9886 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9887 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9888 return -EINVAL; 9889 } 9890 if (!reg->ref_obj_id) { 9891 verbose(env, "allocated object must be referenced\n"); 9892 return -EINVAL; 9893 } 9894 if (meta->btf == btf_vmlinux && 9895 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9896 meta->arg_obj_drop.btf = reg->btf; 9897 meta->arg_obj_drop.btf_id = reg->btf_id; 9898 } 9899 break; 9900 case KF_ARG_PTR_TO_KPTR: 9901 if (reg->type != PTR_TO_MAP_VALUE) { 9902 verbose(env, "arg#0 expected pointer to map value\n"); 9903 return -EINVAL; 9904 } 9905 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 9906 if (ret < 0) 9907 return ret; 9908 break; 9909 case KF_ARG_PTR_TO_DYNPTR: 9910 { 9911 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 9912 9913 if (reg->type != PTR_TO_STACK && 9914 reg->type != CONST_PTR_TO_DYNPTR) { 9915 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 9916 return -EINVAL; 9917 } 9918 9919 if (reg->type == CONST_PTR_TO_DYNPTR) 9920 dynptr_arg_type |= MEM_RDONLY; 9921 9922 if (is_kfunc_arg_uninit(btf, &args[i])) 9923 dynptr_arg_type |= MEM_UNINIT; 9924 9925 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) 9926 dynptr_arg_type |= DYNPTR_TYPE_SKB; 9927 else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) 9928 dynptr_arg_type |= DYNPTR_TYPE_XDP; 9929 9930 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type); 9931 if (ret < 0) 9932 return ret; 9933 9934 if (!(dynptr_arg_type & MEM_UNINIT)) { 9935 int id = dynptr_id(env, reg); 9936 9937 if (id < 0) { 9938 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9939 return id; 9940 } 9941 meta->initialized_dynptr.id = id; 9942 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 9943 } 9944 9945 break; 9946 } 9947 case KF_ARG_PTR_TO_LIST_HEAD: 9948 if (reg->type != PTR_TO_MAP_VALUE && 9949 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9950 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9951 return -EINVAL; 9952 } 9953 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9954 verbose(env, "allocated object must be referenced\n"); 9955 return -EINVAL; 9956 } 9957 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9958 if (ret < 0) 9959 return ret; 9960 break; 9961 case KF_ARG_PTR_TO_RB_ROOT: 9962 if (reg->type != PTR_TO_MAP_VALUE && 9963 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9964 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9965 return -EINVAL; 9966 } 9967 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9968 verbose(env, "allocated object must be referenced\n"); 9969 return -EINVAL; 9970 } 9971 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 9972 if (ret < 0) 9973 return ret; 9974 break; 9975 case KF_ARG_PTR_TO_LIST_NODE: 9976 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9977 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9978 return -EINVAL; 9979 } 9980 if (!reg->ref_obj_id) { 9981 verbose(env, "allocated object must be referenced\n"); 9982 return -EINVAL; 9983 } 9984 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9985 if (ret < 0) 9986 return ret; 9987 break; 9988 case KF_ARG_PTR_TO_RB_NODE: 9989 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 9990 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 9991 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 9992 return -EINVAL; 9993 } 9994 if (in_rbtree_lock_required_cb(env)) { 9995 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 9996 return -EINVAL; 9997 } 9998 } else { 9999 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10000 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10001 return -EINVAL; 10002 } 10003 if (!reg->ref_obj_id) { 10004 verbose(env, "allocated object must be referenced\n"); 10005 return -EINVAL; 10006 } 10007 } 10008 10009 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10010 if (ret < 0) 10011 return ret; 10012 break; 10013 case KF_ARG_PTR_TO_BTF_ID: 10014 /* Only base_type is checked, further checks are done here */ 10015 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10016 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10017 !reg2btf_ids[base_type(reg->type)]) { 10018 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 10019 verbose(env, "expected %s or socket\n", 10020 reg_type_str(env, base_type(reg->type) | 10021 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 10022 return -EINVAL; 10023 } 10024 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 10025 if (ret < 0) 10026 return ret; 10027 break; 10028 case KF_ARG_PTR_TO_MEM: 10029 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 10030 if (IS_ERR(resolve_ret)) { 10031 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 10032 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 10033 return -EINVAL; 10034 } 10035 ret = check_mem_reg(env, reg, regno, type_size); 10036 if (ret < 0) 10037 return ret; 10038 break; 10039 case KF_ARG_PTR_TO_MEM_SIZE: 10040 { 10041 struct bpf_reg_state *size_reg = ®s[regno + 1]; 10042 const struct btf_param *size_arg = &args[i + 1]; 10043 10044 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 10045 if (ret < 0) { 10046 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 10047 return ret; 10048 } 10049 10050 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 10051 if (meta->arg_constant.found) { 10052 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10053 return -EFAULT; 10054 } 10055 if (!tnum_is_const(size_reg->var_off)) { 10056 verbose(env, "R%d must be a known constant\n", regno + 1); 10057 return -EINVAL; 10058 } 10059 meta->arg_constant.found = true; 10060 meta->arg_constant.value = size_reg->var_off.value; 10061 } 10062 10063 /* Skip next '__sz' or '__szk' argument */ 10064 i++; 10065 break; 10066 } 10067 case KF_ARG_PTR_TO_CALLBACK: 10068 meta->subprogno = reg->subprogno; 10069 break; 10070 } 10071 } 10072 10073 if (is_kfunc_release(meta) && !meta->release_regno) { 10074 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 10075 func_name); 10076 return -EINVAL; 10077 } 10078 10079 return 0; 10080 } 10081 10082 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10083 int *insn_idx_p) 10084 { 10085 const struct btf_type *t, *func, *func_proto, *ptr_type; 10086 u32 i, nargs, func_id, ptr_type_id, release_ref_obj_id; 10087 struct bpf_reg_state *regs = cur_regs(env); 10088 const char *func_name, *ptr_type_name; 10089 bool sleepable, rcu_lock, rcu_unlock; 10090 struct bpf_kfunc_call_arg_meta meta; 10091 int err, insn_idx = *insn_idx_p; 10092 const struct btf_param *args; 10093 const struct btf_type *ret_t; 10094 struct btf *desc_btf; 10095 u32 *kfunc_flags; 10096 10097 /* skip for now, but return error when we find this in fixup_kfunc_call */ 10098 if (!insn->imm) 10099 return 0; 10100 10101 desc_btf = find_kfunc_desc_btf(env, insn->off); 10102 if (IS_ERR(desc_btf)) 10103 return PTR_ERR(desc_btf); 10104 10105 func_id = insn->imm; 10106 func = btf_type_by_id(desc_btf, func_id); 10107 func_name = btf_name_by_offset(desc_btf, func->name_off); 10108 func_proto = btf_type_by_id(desc_btf, func->type); 10109 10110 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 10111 if (!kfunc_flags) { 10112 verbose(env, "calling kernel function %s is not allowed\n", 10113 func_name); 10114 return -EACCES; 10115 } 10116 10117 /* Prepare kfunc call metadata */ 10118 memset(&meta, 0, sizeof(meta)); 10119 meta.btf = desc_btf; 10120 meta.func_id = func_id; 10121 meta.kfunc_flags = *kfunc_flags; 10122 meta.func_proto = func_proto; 10123 meta.func_name = func_name; 10124 10125 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 10126 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 10127 return -EACCES; 10128 } 10129 10130 sleepable = is_kfunc_sleepable(&meta); 10131 if (sleepable && !env->prog->aux->sleepable) { 10132 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 10133 return -EACCES; 10134 } 10135 10136 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 10137 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 10138 10139 if (env->cur_state->active_rcu_lock) { 10140 struct bpf_func_state *state; 10141 struct bpf_reg_state *reg; 10142 10143 if (rcu_lock) { 10144 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 10145 return -EINVAL; 10146 } else if (rcu_unlock) { 10147 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10148 if (reg->type & MEM_RCU) { 10149 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 10150 reg->type |= PTR_UNTRUSTED; 10151 } 10152 })); 10153 env->cur_state->active_rcu_lock = false; 10154 } else if (sleepable) { 10155 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 10156 return -EACCES; 10157 } 10158 } else if (rcu_lock) { 10159 env->cur_state->active_rcu_lock = true; 10160 } else if (rcu_unlock) { 10161 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 10162 return -EINVAL; 10163 } 10164 10165 /* Check the arguments */ 10166 err = check_kfunc_args(env, &meta, insn_idx); 10167 if (err < 0) 10168 return err; 10169 /* In case of release function, we get register number of refcounted 10170 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 10171 */ 10172 if (meta.release_regno) { 10173 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 10174 if (err) { 10175 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 10176 func_name, func_id); 10177 return err; 10178 } 10179 } 10180 10181 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] || 10182 meta.func_id == special_kfunc_list[KF_bpf_list_push_back] || 10183 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 10184 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 10185 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 10186 if (err) { 10187 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 10188 func_name, func_id); 10189 return err; 10190 } 10191 10192 err = release_reference(env, release_ref_obj_id); 10193 if (err) { 10194 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 10195 func_name, func_id); 10196 return err; 10197 } 10198 } 10199 10200 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 10201 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 10202 set_rbtree_add_callback_state); 10203 if (err) { 10204 verbose(env, "kfunc %s#%d failed callback verification\n", 10205 func_name, func_id); 10206 return err; 10207 } 10208 } 10209 10210 for (i = 0; i < CALLER_SAVED_REGS; i++) 10211 mark_reg_not_init(env, regs, caller_saved[i]); 10212 10213 /* Check return type */ 10214 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 10215 10216 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 10217 /* Only exception is bpf_obj_new_impl */ 10218 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 10219 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 10220 return -EINVAL; 10221 } 10222 } 10223 10224 if (btf_type_is_scalar(t)) { 10225 mark_reg_unknown(env, regs, BPF_REG_0); 10226 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 10227 } else if (btf_type_is_ptr(t)) { 10228 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 10229 10230 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 10231 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 10232 struct btf *ret_btf; 10233 u32 ret_btf_id; 10234 10235 if (unlikely(!bpf_global_ma_set)) 10236 return -ENOMEM; 10237 10238 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 10239 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 10240 return -EINVAL; 10241 } 10242 10243 ret_btf = env->prog->aux->btf; 10244 ret_btf_id = meta.arg_constant.value; 10245 10246 /* This may be NULL due to user not supplying a BTF */ 10247 if (!ret_btf) { 10248 verbose(env, "bpf_obj_new requires prog BTF\n"); 10249 return -EINVAL; 10250 } 10251 10252 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 10253 if (!ret_t || !__btf_type_is_struct(ret_t)) { 10254 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 10255 return -EINVAL; 10256 } 10257 10258 mark_reg_known_zero(env, regs, BPF_REG_0); 10259 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 10260 regs[BPF_REG_0].btf = ret_btf; 10261 regs[BPF_REG_0].btf_id = ret_btf_id; 10262 10263 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 10264 env->insn_aux_data[insn_idx].kptr_struct_meta = 10265 btf_find_struct_meta(ret_btf, ret_btf_id); 10266 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10267 env->insn_aux_data[insn_idx].kptr_struct_meta = 10268 btf_find_struct_meta(meta.arg_obj_drop.btf, 10269 meta.arg_obj_drop.btf_id); 10270 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 10271 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 10272 struct btf_field *field = meta.arg_list_head.field; 10273 10274 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 10275 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10276 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 10277 struct btf_field *field = meta.arg_rbtree_root.field; 10278 10279 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 10280 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10281 mark_reg_known_zero(env, regs, BPF_REG_0); 10282 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 10283 regs[BPF_REG_0].btf = desc_btf; 10284 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10285 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 10286 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 10287 if (!ret_t || !btf_type_is_struct(ret_t)) { 10288 verbose(env, 10289 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 10290 return -EINVAL; 10291 } 10292 10293 mark_reg_known_zero(env, regs, BPF_REG_0); 10294 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 10295 regs[BPF_REG_0].btf = desc_btf; 10296 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 10297 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 10298 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 10299 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 10300 10301 mark_reg_known_zero(env, regs, BPF_REG_0); 10302 10303 if (!meta.arg_constant.found) { 10304 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 10305 return -EFAULT; 10306 } 10307 10308 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 10309 10310 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 10311 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 10312 10313 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 10314 regs[BPF_REG_0].type |= MEM_RDONLY; 10315 } else { 10316 /* this will set env->seen_direct_write to true */ 10317 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 10318 verbose(env, "the prog does not allow writes to packet data\n"); 10319 return -EINVAL; 10320 } 10321 } 10322 10323 if (!meta.initialized_dynptr.id) { 10324 verbose(env, "verifier internal error: no dynptr id\n"); 10325 return -EFAULT; 10326 } 10327 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 10328 10329 /* we don't need to set BPF_REG_0's ref obj id 10330 * because packet slices are not refcounted (see 10331 * dynptr_type_refcounted) 10332 */ 10333 } else { 10334 verbose(env, "kernel function %s unhandled dynamic return type\n", 10335 meta.func_name); 10336 return -EFAULT; 10337 } 10338 } else if (!__btf_type_is_struct(ptr_type)) { 10339 if (!meta.r0_size) { 10340 __u32 sz; 10341 10342 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 10343 meta.r0_size = sz; 10344 meta.r0_rdonly = true; 10345 } 10346 } 10347 if (!meta.r0_size) { 10348 ptr_type_name = btf_name_by_offset(desc_btf, 10349 ptr_type->name_off); 10350 verbose(env, 10351 "kernel function %s returns pointer type %s %s is not supported\n", 10352 func_name, 10353 btf_type_str(ptr_type), 10354 ptr_type_name); 10355 return -EINVAL; 10356 } 10357 10358 mark_reg_known_zero(env, regs, BPF_REG_0); 10359 regs[BPF_REG_0].type = PTR_TO_MEM; 10360 regs[BPF_REG_0].mem_size = meta.r0_size; 10361 10362 if (meta.r0_rdonly) 10363 regs[BPF_REG_0].type |= MEM_RDONLY; 10364 10365 /* Ensures we don't access the memory after a release_reference() */ 10366 if (meta.ref_obj_id) 10367 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10368 } else { 10369 mark_reg_known_zero(env, regs, BPF_REG_0); 10370 regs[BPF_REG_0].btf = desc_btf; 10371 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 10372 regs[BPF_REG_0].btf_id = ptr_type_id; 10373 } 10374 10375 if (is_kfunc_ret_null(&meta)) { 10376 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 10377 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 10378 regs[BPF_REG_0].id = ++env->id_gen; 10379 } 10380 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 10381 if (is_kfunc_acquire(&meta)) { 10382 int id = acquire_reference_state(env, insn_idx); 10383 10384 if (id < 0) 10385 return id; 10386 if (is_kfunc_ret_null(&meta)) 10387 regs[BPF_REG_0].id = id; 10388 regs[BPF_REG_0].ref_obj_id = id; 10389 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 10390 ref_set_non_owning(env, ®s[BPF_REG_0]); 10391 } 10392 10393 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove]) 10394 invalidate_non_owning_refs(env); 10395 10396 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 10397 regs[BPF_REG_0].id = ++env->id_gen; 10398 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 10399 10400 nargs = btf_type_vlen(func_proto); 10401 args = (const struct btf_param *)(func_proto + 1); 10402 for (i = 0; i < nargs; i++) { 10403 u32 regno = i + 1; 10404 10405 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 10406 if (btf_type_is_ptr(t)) 10407 mark_btf_func_reg_size(env, regno, sizeof(void *)); 10408 else 10409 /* scalar. ensured by btf_check_kfunc_arg_match() */ 10410 mark_btf_func_reg_size(env, regno, t->size); 10411 } 10412 10413 return 0; 10414 } 10415 10416 static bool signed_add_overflows(s64 a, s64 b) 10417 { 10418 /* Do the add in u64, where overflow is well-defined */ 10419 s64 res = (s64)((u64)a + (u64)b); 10420 10421 if (b < 0) 10422 return res > a; 10423 return res < a; 10424 } 10425 10426 static bool signed_add32_overflows(s32 a, s32 b) 10427 { 10428 /* Do the add in u32, where overflow is well-defined */ 10429 s32 res = (s32)((u32)a + (u32)b); 10430 10431 if (b < 0) 10432 return res > a; 10433 return res < a; 10434 } 10435 10436 static bool signed_sub_overflows(s64 a, s64 b) 10437 { 10438 /* Do the sub in u64, where overflow is well-defined */ 10439 s64 res = (s64)((u64)a - (u64)b); 10440 10441 if (b < 0) 10442 return res < a; 10443 return res > a; 10444 } 10445 10446 static bool signed_sub32_overflows(s32 a, s32 b) 10447 { 10448 /* Do the sub in u32, where overflow is well-defined */ 10449 s32 res = (s32)((u32)a - (u32)b); 10450 10451 if (b < 0) 10452 return res < a; 10453 return res > a; 10454 } 10455 10456 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 10457 const struct bpf_reg_state *reg, 10458 enum bpf_reg_type type) 10459 { 10460 bool known = tnum_is_const(reg->var_off); 10461 s64 val = reg->var_off.value; 10462 s64 smin = reg->smin_value; 10463 10464 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 10465 verbose(env, "math between %s pointer and %lld is not allowed\n", 10466 reg_type_str(env, type), val); 10467 return false; 10468 } 10469 10470 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 10471 verbose(env, "%s pointer offset %d is not allowed\n", 10472 reg_type_str(env, type), reg->off); 10473 return false; 10474 } 10475 10476 if (smin == S64_MIN) { 10477 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 10478 reg_type_str(env, type)); 10479 return false; 10480 } 10481 10482 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 10483 verbose(env, "value %lld makes %s pointer be out of bounds\n", 10484 smin, reg_type_str(env, type)); 10485 return false; 10486 } 10487 10488 return true; 10489 } 10490 10491 enum { 10492 REASON_BOUNDS = -1, 10493 REASON_TYPE = -2, 10494 REASON_PATHS = -3, 10495 REASON_LIMIT = -4, 10496 REASON_STACK = -5, 10497 }; 10498 10499 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 10500 u32 *alu_limit, bool mask_to_left) 10501 { 10502 u32 max = 0, ptr_limit = 0; 10503 10504 switch (ptr_reg->type) { 10505 case PTR_TO_STACK: 10506 /* Offset 0 is out-of-bounds, but acceptable start for the 10507 * left direction, see BPF_REG_FP. Also, unknown scalar 10508 * offset where we would need to deal with min/max bounds is 10509 * currently prohibited for unprivileged. 10510 */ 10511 max = MAX_BPF_STACK + mask_to_left; 10512 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 10513 break; 10514 case PTR_TO_MAP_VALUE: 10515 max = ptr_reg->map_ptr->value_size; 10516 ptr_limit = (mask_to_left ? 10517 ptr_reg->smin_value : 10518 ptr_reg->umax_value) + ptr_reg->off; 10519 break; 10520 default: 10521 return REASON_TYPE; 10522 } 10523 10524 if (ptr_limit >= max) 10525 return REASON_LIMIT; 10526 *alu_limit = ptr_limit; 10527 return 0; 10528 } 10529 10530 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 10531 const struct bpf_insn *insn) 10532 { 10533 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 10534 } 10535 10536 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 10537 u32 alu_state, u32 alu_limit) 10538 { 10539 /* If we arrived here from different branches with different 10540 * state or limits to sanitize, then this won't work. 10541 */ 10542 if (aux->alu_state && 10543 (aux->alu_state != alu_state || 10544 aux->alu_limit != alu_limit)) 10545 return REASON_PATHS; 10546 10547 /* Corresponding fixup done in do_misc_fixups(). */ 10548 aux->alu_state = alu_state; 10549 aux->alu_limit = alu_limit; 10550 return 0; 10551 } 10552 10553 static int sanitize_val_alu(struct bpf_verifier_env *env, 10554 struct bpf_insn *insn) 10555 { 10556 struct bpf_insn_aux_data *aux = cur_aux(env); 10557 10558 if (can_skip_alu_sanitation(env, insn)) 10559 return 0; 10560 10561 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 10562 } 10563 10564 static bool sanitize_needed(u8 opcode) 10565 { 10566 return opcode == BPF_ADD || opcode == BPF_SUB; 10567 } 10568 10569 struct bpf_sanitize_info { 10570 struct bpf_insn_aux_data aux; 10571 bool mask_to_left; 10572 }; 10573 10574 static struct bpf_verifier_state * 10575 sanitize_speculative_path(struct bpf_verifier_env *env, 10576 const struct bpf_insn *insn, 10577 u32 next_idx, u32 curr_idx) 10578 { 10579 struct bpf_verifier_state *branch; 10580 struct bpf_reg_state *regs; 10581 10582 branch = push_stack(env, next_idx, curr_idx, true); 10583 if (branch && insn) { 10584 regs = branch->frame[branch->curframe]->regs; 10585 if (BPF_SRC(insn->code) == BPF_K) { 10586 mark_reg_unknown(env, regs, insn->dst_reg); 10587 } else if (BPF_SRC(insn->code) == BPF_X) { 10588 mark_reg_unknown(env, regs, insn->dst_reg); 10589 mark_reg_unknown(env, regs, insn->src_reg); 10590 } 10591 } 10592 return branch; 10593 } 10594 10595 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 10596 struct bpf_insn *insn, 10597 const struct bpf_reg_state *ptr_reg, 10598 const struct bpf_reg_state *off_reg, 10599 struct bpf_reg_state *dst_reg, 10600 struct bpf_sanitize_info *info, 10601 const bool commit_window) 10602 { 10603 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 10604 struct bpf_verifier_state *vstate = env->cur_state; 10605 bool off_is_imm = tnum_is_const(off_reg->var_off); 10606 bool off_is_neg = off_reg->smin_value < 0; 10607 bool ptr_is_dst_reg = ptr_reg == dst_reg; 10608 u8 opcode = BPF_OP(insn->code); 10609 u32 alu_state, alu_limit; 10610 struct bpf_reg_state tmp; 10611 bool ret; 10612 int err; 10613 10614 if (can_skip_alu_sanitation(env, insn)) 10615 return 0; 10616 10617 /* We already marked aux for masking from non-speculative 10618 * paths, thus we got here in the first place. We only care 10619 * to explore bad access from here. 10620 */ 10621 if (vstate->speculative) 10622 goto do_sim; 10623 10624 if (!commit_window) { 10625 if (!tnum_is_const(off_reg->var_off) && 10626 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 10627 return REASON_BOUNDS; 10628 10629 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 10630 (opcode == BPF_SUB && !off_is_neg); 10631 } 10632 10633 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 10634 if (err < 0) 10635 return err; 10636 10637 if (commit_window) { 10638 /* In commit phase we narrow the masking window based on 10639 * the observed pointer move after the simulated operation. 10640 */ 10641 alu_state = info->aux.alu_state; 10642 alu_limit = abs(info->aux.alu_limit - alu_limit); 10643 } else { 10644 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 10645 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 10646 alu_state |= ptr_is_dst_reg ? 10647 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 10648 10649 /* Limit pruning on unknown scalars to enable deep search for 10650 * potential masking differences from other program paths. 10651 */ 10652 if (!off_is_imm) 10653 env->explore_alu_limits = true; 10654 } 10655 10656 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 10657 if (err < 0) 10658 return err; 10659 do_sim: 10660 /* If we're in commit phase, we're done here given we already 10661 * pushed the truncated dst_reg into the speculative verification 10662 * stack. 10663 * 10664 * Also, when register is a known constant, we rewrite register-based 10665 * operation to immediate-based, and thus do not need masking (and as 10666 * a consequence, do not need to simulate the zero-truncation either). 10667 */ 10668 if (commit_window || off_is_imm) 10669 return 0; 10670 10671 /* Simulate and find potential out-of-bounds access under 10672 * speculative execution from truncation as a result of 10673 * masking when off was not within expected range. If off 10674 * sits in dst, then we temporarily need to move ptr there 10675 * to simulate dst (== 0) +/-= ptr. Needed, for example, 10676 * for cases where we use K-based arithmetic in one direction 10677 * and truncated reg-based in the other in order to explore 10678 * bad access. 10679 */ 10680 if (!ptr_is_dst_reg) { 10681 tmp = *dst_reg; 10682 copy_register_state(dst_reg, ptr_reg); 10683 } 10684 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 10685 env->insn_idx); 10686 if (!ptr_is_dst_reg && ret) 10687 *dst_reg = tmp; 10688 return !ret ? REASON_STACK : 0; 10689 } 10690 10691 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 10692 { 10693 struct bpf_verifier_state *vstate = env->cur_state; 10694 10695 /* If we simulate paths under speculation, we don't update the 10696 * insn as 'seen' such that when we verify unreachable paths in 10697 * the non-speculative domain, sanitize_dead_code() can still 10698 * rewrite/sanitize them. 10699 */ 10700 if (!vstate->speculative) 10701 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10702 } 10703 10704 static int sanitize_err(struct bpf_verifier_env *env, 10705 const struct bpf_insn *insn, int reason, 10706 const struct bpf_reg_state *off_reg, 10707 const struct bpf_reg_state *dst_reg) 10708 { 10709 static const char *err = "pointer arithmetic with it prohibited for !root"; 10710 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 10711 u32 dst = insn->dst_reg, src = insn->src_reg; 10712 10713 switch (reason) { 10714 case REASON_BOUNDS: 10715 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 10716 off_reg == dst_reg ? dst : src, err); 10717 break; 10718 case REASON_TYPE: 10719 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 10720 off_reg == dst_reg ? src : dst, err); 10721 break; 10722 case REASON_PATHS: 10723 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 10724 dst, op, err); 10725 break; 10726 case REASON_LIMIT: 10727 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 10728 dst, op, err); 10729 break; 10730 case REASON_STACK: 10731 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 10732 dst, err); 10733 break; 10734 default: 10735 verbose(env, "verifier internal error: unknown reason (%d)\n", 10736 reason); 10737 break; 10738 } 10739 10740 return -EACCES; 10741 } 10742 10743 /* check that stack access falls within stack limits and that 'reg' doesn't 10744 * have a variable offset. 10745 * 10746 * Variable offset is prohibited for unprivileged mode for simplicity since it 10747 * requires corresponding support in Spectre masking for stack ALU. See also 10748 * retrieve_ptr_limit(). 10749 * 10750 * 10751 * 'off' includes 'reg->off'. 10752 */ 10753 static int check_stack_access_for_ptr_arithmetic( 10754 struct bpf_verifier_env *env, 10755 int regno, 10756 const struct bpf_reg_state *reg, 10757 int off) 10758 { 10759 if (!tnum_is_const(reg->var_off)) { 10760 char tn_buf[48]; 10761 10762 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 10763 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 10764 regno, tn_buf, off); 10765 return -EACCES; 10766 } 10767 10768 if (off >= 0 || off < -MAX_BPF_STACK) { 10769 verbose(env, "R%d stack pointer arithmetic goes out of range, " 10770 "prohibited for !root; off=%d\n", regno, off); 10771 return -EACCES; 10772 } 10773 10774 return 0; 10775 } 10776 10777 static int sanitize_check_bounds(struct bpf_verifier_env *env, 10778 const struct bpf_insn *insn, 10779 const struct bpf_reg_state *dst_reg) 10780 { 10781 u32 dst = insn->dst_reg; 10782 10783 /* For unprivileged we require that resulting offset must be in bounds 10784 * in order to be able to sanitize access later on. 10785 */ 10786 if (env->bypass_spec_v1) 10787 return 0; 10788 10789 switch (dst_reg->type) { 10790 case PTR_TO_STACK: 10791 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 10792 dst_reg->off + dst_reg->var_off.value)) 10793 return -EACCES; 10794 break; 10795 case PTR_TO_MAP_VALUE: 10796 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 10797 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 10798 "prohibited for !root\n", dst); 10799 return -EACCES; 10800 } 10801 break; 10802 default: 10803 break; 10804 } 10805 10806 return 0; 10807 } 10808 10809 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 10810 * Caller should also handle BPF_MOV case separately. 10811 * If we return -EACCES, caller may want to try again treating pointer as a 10812 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 10813 */ 10814 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 10815 struct bpf_insn *insn, 10816 const struct bpf_reg_state *ptr_reg, 10817 const struct bpf_reg_state *off_reg) 10818 { 10819 struct bpf_verifier_state *vstate = env->cur_state; 10820 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10821 struct bpf_reg_state *regs = state->regs, *dst_reg; 10822 bool known = tnum_is_const(off_reg->var_off); 10823 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 10824 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 10825 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 10826 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 10827 struct bpf_sanitize_info info = {}; 10828 u8 opcode = BPF_OP(insn->code); 10829 u32 dst = insn->dst_reg; 10830 int ret; 10831 10832 dst_reg = ®s[dst]; 10833 10834 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 10835 smin_val > smax_val || umin_val > umax_val) { 10836 /* Taint dst register if offset had invalid bounds derived from 10837 * e.g. dead branches. 10838 */ 10839 __mark_reg_unknown(env, dst_reg); 10840 return 0; 10841 } 10842 10843 if (BPF_CLASS(insn->code) != BPF_ALU64) { 10844 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 10845 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10846 __mark_reg_unknown(env, dst_reg); 10847 return 0; 10848 } 10849 10850 verbose(env, 10851 "R%d 32-bit pointer arithmetic prohibited\n", 10852 dst); 10853 return -EACCES; 10854 } 10855 10856 if (ptr_reg->type & PTR_MAYBE_NULL) { 10857 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 10858 dst, reg_type_str(env, ptr_reg->type)); 10859 return -EACCES; 10860 } 10861 10862 switch (base_type(ptr_reg->type)) { 10863 case CONST_PTR_TO_MAP: 10864 /* smin_val represents the known value */ 10865 if (known && smin_val == 0 && opcode == BPF_ADD) 10866 break; 10867 fallthrough; 10868 case PTR_TO_PACKET_END: 10869 case PTR_TO_SOCKET: 10870 case PTR_TO_SOCK_COMMON: 10871 case PTR_TO_TCP_SOCK: 10872 case PTR_TO_XDP_SOCK: 10873 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 10874 dst, reg_type_str(env, ptr_reg->type)); 10875 return -EACCES; 10876 default: 10877 break; 10878 } 10879 10880 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 10881 * The id may be overwritten later if we create a new variable offset. 10882 */ 10883 dst_reg->type = ptr_reg->type; 10884 dst_reg->id = ptr_reg->id; 10885 10886 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 10887 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 10888 return -EINVAL; 10889 10890 /* pointer types do not carry 32-bit bounds at the moment. */ 10891 __mark_reg32_unbounded(dst_reg); 10892 10893 if (sanitize_needed(opcode)) { 10894 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 10895 &info, false); 10896 if (ret < 0) 10897 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10898 } 10899 10900 switch (opcode) { 10901 case BPF_ADD: 10902 /* We can take a fixed offset as long as it doesn't overflow 10903 * the s32 'off' field 10904 */ 10905 if (known && (ptr_reg->off + smin_val == 10906 (s64)(s32)(ptr_reg->off + smin_val))) { 10907 /* pointer += K. Accumulate it into fixed offset */ 10908 dst_reg->smin_value = smin_ptr; 10909 dst_reg->smax_value = smax_ptr; 10910 dst_reg->umin_value = umin_ptr; 10911 dst_reg->umax_value = umax_ptr; 10912 dst_reg->var_off = ptr_reg->var_off; 10913 dst_reg->off = ptr_reg->off + smin_val; 10914 dst_reg->raw = ptr_reg->raw; 10915 break; 10916 } 10917 /* A new variable offset is created. Note that off_reg->off 10918 * == 0, since it's a scalar. 10919 * dst_reg gets the pointer type and since some positive 10920 * integer value was added to the pointer, give it a new 'id' 10921 * if it's a PTR_TO_PACKET. 10922 * this creates a new 'base' pointer, off_reg (variable) gets 10923 * added into the variable offset, and we copy the fixed offset 10924 * from ptr_reg. 10925 */ 10926 if (signed_add_overflows(smin_ptr, smin_val) || 10927 signed_add_overflows(smax_ptr, smax_val)) { 10928 dst_reg->smin_value = S64_MIN; 10929 dst_reg->smax_value = S64_MAX; 10930 } else { 10931 dst_reg->smin_value = smin_ptr + smin_val; 10932 dst_reg->smax_value = smax_ptr + smax_val; 10933 } 10934 if (umin_ptr + umin_val < umin_ptr || 10935 umax_ptr + umax_val < umax_ptr) { 10936 dst_reg->umin_value = 0; 10937 dst_reg->umax_value = U64_MAX; 10938 } else { 10939 dst_reg->umin_value = umin_ptr + umin_val; 10940 dst_reg->umax_value = umax_ptr + umax_val; 10941 } 10942 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 10943 dst_reg->off = ptr_reg->off; 10944 dst_reg->raw = ptr_reg->raw; 10945 if (reg_is_pkt_pointer(ptr_reg)) { 10946 dst_reg->id = ++env->id_gen; 10947 /* something was added to pkt_ptr, set range to zero */ 10948 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10949 } 10950 break; 10951 case BPF_SUB: 10952 if (dst_reg == off_reg) { 10953 /* scalar -= pointer. Creates an unknown scalar */ 10954 verbose(env, "R%d tried to subtract pointer from scalar\n", 10955 dst); 10956 return -EACCES; 10957 } 10958 /* We don't allow subtraction from FP, because (according to 10959 * test_verifier.c test "invalid fp arithmetic", JITs might not 10960 * be able to deal with it. 10961 */ 10962 if (ptr_reg->type == PTR_TO_STACK) { 10963 verbose(env, "R%d subtraction from stack pointer prohibited\n", 10964 dst); 10965 return -EACCES; 10966 } 10967 if (known && (ptr_reg->off - smin_val == 10968 (s64)(s32)(ptr_reg->off - smin_val))) { 10969 /* pointer -= K. Subtract it from fixed offset */ 10970 dst_reg->smin_value = smin_ptr; 10971 dst_reg->smax_value = smax_ptr; 10972 dst_reg->umin_value = umin_ptr; 10973 dst_reg->umax_value = umax_ptr; 10974 dst_reg->var_off = ptr_reg->var_off; 10975 dst_reg->id = ptr_reg->id; 10976 dst_reg->off = ptr_reg->off - smin_val; 10977 dst_reg->raw = ptr_reg->raw; 10978 break; 10979 } 10980 /* A new variable offset is created. If the subtrahend is known 10981 * nonnegative, then any reg->range we had before is still good. 10982 */ 10983 if (signed_sub_overflows(smin_ptr, smax_val) || 10984 signed_sub_overflows(smax_ptr, smin_val)) { 10985 /* Overflow possible, we know nothing */ 10986 dst_reg->smin_value = S64_MIN; 10987 dst_reg->smax_value = S64_MAX; 10988 } else { 10989 dst_reg->smin_value = smin_ptr - smax_val; 10990 dst_reg->smax_value = smax_ptr - smin_val; 10991 } 10992 if (umin_ptr < umax_val) { 10993 /* Overflow possible, we know nothing */ 10994 dst_reg->umin_value = 0; 10995 dst_reg->umax_value = U64_MAX; 10996 } else { 10997 /* Cannot overflow (as long as bounds are consistent) */ 10998 dst_reg->umin_value = umin_ptr - umax_val; 10999 dst_reg->umax_value = umax_ptr - umin_val; 11000 } 11001 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 11002 dst_reg->off = ptr_reg->off; 11003 dst_reg->raw = ptr_reg->raw; 11004 if (reg_is_pkt_pointer(ptr_reg)) { 11005 dst_reg->id = ++env->id_gen; 11006 /* something was added to pkt_ptr, set range to zero */ 11007 if (smin_val < 0) 11008 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11009 } 11010 break; 11011 case BPF_AND: 11012 case BPF_OR: 11013 case BPF_XOR: 11014 /* bitwise ops on pointers are troublesome, prohibit. */ 11015 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 11016 dst, bpf_alu_string[opcode >> 4]); 11017 return -EACCES; 11018 default: 11019 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 11020 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 11021 dst, bpf_alu_string[opcode >> 4]); 11022 return -EACCES; 11023 } 11024 11025 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 11026 return -EINVAL; 11027 reg_bounds_sync(dst_reg); 11028 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 11029 return -EACCES; 11030 if (sanitize_needed(opcode)) { 11031 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 11032 &info, true); 11033 if (ret < 0) 11034 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11035 } 11036 11037 return 0; 11038 } 11039 11040 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 11041 struct bpf_reg_state *src_reg) 11042 { 11043 s32 smin_val = src_reg->s32_min_value; 11044 s32 smax_val = src_reg->s32_max_value; 11045 u32 umin_val = src_reg->u32_min_value; 11046 u32 umax_val = src_reg->u32_max_value; 11047 11048 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 11049 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 11050 dst_reg->s32_min_value = S32_MIN; 11051 dst_reg->s32_max_value = S32_MAX; 11052 } else { 11053 dst_reg->s32_min_value += smin_val; 11054 dst_reg->s32_max_value += smax_val; 11055 } 11056 if (dst_reg->u32_min_value + umin_val < umin_val || 11057 dst_reg->u32_max_value + umax_val < umax_val) { 11058 dst_reg->u32_min_value = 0; 11059 dst_reg->u32_max_value = U32_MAX; 11060 } else { 11061 dst_reg->u32_min_value += umin_val; 11062 dst_reg->u32_max_value += umax_val; 11063 } 11064 } 11065 11066 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 11067 struct bpf_reg_state *src_reg) 11068 { 11069 s64 smin_val = src_reg->smin_value; 11070 s64 smax_val = src_reg->smax_value; 11071 u64 umin_val = src_reg->umin_value; 11072 u64 umax_val = src_reg->umax_value; 11073 11074 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 11075 signed_add_overflows(dst_reg->smax_value, smax_val)) { 11076 dst_reg->smin_value = S64_MIN; 11077 dst_reg->smax_value = S64_MAX; 11078 } else { 11079 dst_reg->smin_value += smin_val; 11080 dst_reg->smax_value += smax_val; 11081 } 11082 if (dst_reg->umin_value + umin_val < umin_val || 11083 dst_reg->umax_value + umax_val < umax_val) { 11084 dst_reg->umin_value = 0; 11085 dst_reg->umax_value = U64_MAX; 11086 } else { 11087 dst_reg->umin_value += umin_val; 11088 dst_reg->umax_value += umax_val; 11089 } 11090 } 11091 11092 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 11093 struct bpf_reg_state *src_reg) 11094 { 11095 s32 smin_val = src_reg->s32_min_value; 11096 s32 smax_val = src_reg->s32_max_value; 11097 u32 umin_val = src_reg->u32_min_value; 11098 u32 umax_val = src_reg->u32_max_value; 11099 11100 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 11101 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 11102 /* Overflow possible, we know nothing */ 11103 dst_reg->s32_min_value = S32_MIN; 11104 dst_reg->s32_max_value = S32_MAX; 11105 } else { 11106 dst_reg->s32_min_value -= smax_val; 11107 dst_reg->s32_max_value -= smin_val; 11108 } 11109 if (dst_reg->u32_min_value < umax_val) { 11110 /* Overflow possible, we know nothing */ 11111 dst_reg->u32_min_value = 0; 11112 dst_reg->u32_max_value = U32_MAX; 11113 } else { 11114 /* Cannot overflow (as long as bounds are consistent) */ 11115 dst_reg->u32_min_value -= umax_val; 11116 dst_reg->u32_max_value -= umin_val; 11117 } 11118 } 11119 11120 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 11121 struct bpf_reg_state *src_reg) 11122 { 11123 s64 smin_val = src_reg->smin_value; 11124 s64 smax_val = src_reg->smax_value; 11125 u64 umin_val = src_reg->umin_value; 11126 u64 umax_val = src_reg->umax_value; 11127 11128 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 11129 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 11130 /* Overflow possible, we know nothing */ 11131 dst_reg->smin_value = S64_MIN; 11132 dst_reg->smax_value = S64_MAX; 11133 } else { 11134 dst_reg->smin_value -= smax_val; 11135 dst_reg->smax_value -= smin_val; 11136 } 11137 if (dst_reg->umin_value < umax_val) { 11138 /* Overflow possible, we know nothing */ 11139 dst_reg->umin_value = 0; 11140 dst_reg->umax_value = U64_MAX; 11141 } else { 11142 /* Cannot overflow (as long as bounds are consistent) */ 11143 dst_reg->umin_value -= umax_val; 11144 dst_reg->umax_value -= umin_val; 11145 } 11146 } 11147 11148 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 11149 struct bpf_reg_state *src_reg) 11150 { 11151 s32 smin_val = src_reg->s32_min_value; 11152 u32 umin_val = src_reg->u32_min_value; 11153 u32 umax_val = src_reg->u32_max_value; 11154 11155 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 11156 /* Ain't nobody got time to multiply that sign */ 11157 __mark_reg32_unbounded(dst_reg); 11158 return; 11159 } 11160 /* Both values are positive, so we can work with unsigned and 11161 * copy the result to signed (unless it exceeds S32_MAX). 11162 */ 11163 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 11164 /* Potential overflow, we know nothing */ 11165 __mark_reg32_unbounded(dst_reg); 11166 return; 11167 } 11168 dst_reg->u32_min_value *= umin_val; 11169 dst_reg->u32_max_value *= umax_val; 11170 if (dst_reg->u32_max_value > S32_MAX) { 11171 /* Overflow possible, we know nothing */ 11172 dst_reg->s32_min_value = S32_MIN; 11173 dst_reg->s32_max_value = S32_MAX; 11174 } else { 11175 dst_reg->s32_min_value = dst_reg->u32_min_value; 11176 dst_reg->s32_max_value = dst_reg->u32_max_value; 11177 } 11178 } 11179 11180 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 11181 struct bpf_reg_state *src_reg) 11182 { 11183 s64 smin_val = src_reg->smin_value; 11184 u64 umin_val = src_reg->umin_value; 11185 u64 umax_val = src_reg->umax_value; 11186 11187 if (smin_val < 0 || dst_reg->smin_value < 0) { 11188 /* Ain't nobody got time to multiply that sign */ 11189 __mark_reg64_unbounded(dst_reg); 11190 return; 11191 } 11192 /* Both values are positive, so we can work with unsigned and 11193 * copy the result to signed (unless it exceeds S64_MAX). 11194 */ 11195 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 11196 /* Potential overflow, we know nothing */ 11197 __mark_reg64_unbounded(dst_reg); 11198 return; 11199 } 11200 dst_reg->umin_value *= umin_val; 11201 dst_reg->umax_value *= umax_val; 11202 if (dst_reg->umax_value > S64_MAX) { 11203 /* Overflow possible, we know nothing */ 11204 dst_reg->smin_value = S64_MIN; 11205 dst_reg->smax_value = S64_MAX; 11206 } else { 11207 dst_reg->smin_value = dst_reg->umin_value; 11208 dst_reg->smax_value = dst_reg->umax_value; 11209 } 11210 } 11211 11212 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 11213 struct bpf_reg_state *src_reg) 11214 { 11215 bool src_known = tnum_subreg_is_const(src_reg->var_off); 11216 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 11217 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 11218 s32 smin_val = src_reg->s32_min_value; 11219 u32 umax_val = src_reg->u32_max_value; 11220 11221 if (src_known && dst_known) { 11222 __mark_reg32_known(dst_reg, var32_off.value); 11223 return; 11224 } 11225 11226 /* We get our minimum from the var_off, since that's inherently 11227 * bitwise. Our maximum is the minimum of the operands' maxima. 11228 */ 11229 dst_reg->u32_min_value = var32_off.value; 11230 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 11231 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 11232 /* Lose signed bounds when ANDing negative numbers, 11233 * ain't nobody got time for that. 11234 */ 11235 dst_reg->s32_min_value = S32_MIN; 11236 dst_reg->s32_max_value = S32_MAX; 11237 } else { 11238 /* ANDing two positives gives a positive, so safe to 11239 * cast result into s64. 11240 */ 11241 dst_reg->s32_min_value = dst_reg->u32_min_value; 11242 dst_reg->s32_max_value = dst_reg->u32_max_value; 11243 } 11244 } 11245 11246 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 11247 struct bpf_reg_state *src_reg) 11248 { 11249 bool src_known = tnum_is_const(src_reg->var_off); 11250 bool dst_known = tnum_is_const(dst_reg->var_off); 11251 s64 smin_val = src_reg->smin_value; 11252 u64 umax_val = src_reg->umax_value; 11253 11254 if (src_known && dst_known) { 11255 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11256 return; 11257 } 11258 11259 /* We get our minimum from the var_off, since that's inherently 11260 * bitwise. Our maximum is the minimum of the operands' maxima. 11261 */ 11262 dst_reg->umin_value = dst_reg->var_off.value; 11263 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 11264 if (dst_reg->smin_value < 0 || smin_val < 0) { 11265 /* Lose signed bounds when ANDing negative numbers, 11266 * ain't nobody got time for that. 11267 */ 11268 dst_reg->smin_value = S64_MIN; 11269 dst_reg->smax_value = S64_MAX; 11270 } else { 11271 /* ANDing two positives gives a positive, so safe to 11272 * cast result into s64. 11273 */ 11274 dst_reg->smin_value = dst_reg->umin_value; 11275 dst_reg->smax_value = dst_reg->umax_value; 11276 } 11277 /* We may learn something more from the var_off */ 11278 __update_reg_bounds(dst_reg); 11279 } 11280 11281 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 11282 struct bpf_reg_state *src_reg) 11283 { 11284 bool src_known = tnum_subreg_is_const(src_reg->var_off); 11285 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 11286 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 11287 s32 smin_val = src_reg->s32_min_value; 11288 u32 umin_val = src_reg->u32_min_value; 11289 11290 if (src_known && dst_known) { 11291 __mark_reg32_known(dst_reg, var32_off.value); 11292 return; 11293 } 11294 11295 /* We get our maximum from the var_off, and our minimum is the 11296 * maximum of the operands' minima 11297 */ 11298 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 11299 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 11300 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 11301 /* Lose signed bounds when ORing negative numbers, 11302 * ain't nobody got time for that. 11303 */ 11304 dst_reg->s32_min_value = S32_MIN; 11305 dst_reg->s32_max_value = S32_MAX; 11306 } else { 11307 /* ORing two positives gives a positive, so safe to 11308 * cast result into s64. 11309 */ 11310 dst_reg->s32_min_value = dst_reg->u32_min_value; 11311 dst_reg->s32_max_value = dst_reg->u32_max_value; 11312 } 11313 } 11314 11315 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 11316 struct bpf_reg_state *src_reg) 11317 { 11318 bool src_known = tnum_is_const(src_reg->var_off); 11319 bool dst_known = tnum_is_const(dst_reg->var_off); 11320 s64 smin_val = src_reg->smin_value; 11321 u64 umin_val = src_reg->umin_value; 11322 11323 if (src_known && dst_known) { 11324 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11325 return; 11326 } 11327 11328 /* We get our maximum from the var_off, and our minimum is the 11329 * maximum of the operands' minima 11330 */ 11331 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 11332 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 11333 if (dst_reg->smin_value < 0 || smin_val < 0) { 11334 /* Lose signed bounds when ORing negative numbers, 11335 * ain't nobody got time for that. 11336 */ 11337 dst_reg->smin_value = S64_MIN; 11338 dst_reg->smax_value = S64_MAX; 11339 } else { 11340 /* ORing two positives gives a positive, so safe to 11341 * cast result into s64. 11342 */ 11343 dst_reg->smin_value = dst_reg->umin_value; 11344 dst_reg->smax_value = dst_reg->umax_value; 11345 } 11346 /* We may learn something more from the var_off */ 11347 __update_reg_bounds(dst_reg); 11348 } 11349 11350 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 11351 struct bpf_reg_state *src_reg) 11352 { 11353 bool src_known = tnum_subreg_is_const(src_reg->var_off); 11354 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 11355 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 11356 s32 smin_val = src_reg->s32_min_value; 11357 11358 if (src_known && dst_known) { 11359 __mark_reg32_known(dst_reg, var32_off.value); 11360 return; 11361 } 11362 11363 /* We get both minimum and maximum from the var32_off. */ 11364 dst_reg->u32_min_value = var32_off.value; 11365 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 11366 11367 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 11368 /* XORing two positive sign numbers gives a positive, 11369 * so safe to cast u32 result into s32. 11370 */ 11371 dst_reg->s32_min_value = dst_reg->u32_min_value; 11372 dst_reg->s32_max_value = dst_reg->u32_max_value; 11373 } else { 11374 dst_reg->s32_min_value = S32_MIN; 11375 dst_reg->s32_max_value = S32_MAX; 11376 } 11377 } 11378 11379 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 11380 struct bpf_reg_state *src_reg) 11381 { 11382 bool src_known = tnum_is_const(src_reg->var_off); 11383 bool dst_known = tnum_is_const(dst_reg->var_off); 11384 s64 smin_val = src_reg->smin_value; 11385 11386 if (src_known && dst_known) { 11387 /* dst_reg->var_off.value has been updated earlier */ 11388 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11389 return; 11390 } 11391 11392 /* We get both minimum and maximum from the var_off. */ 11393 dst_reg->umin_value = dst_reg->var_off.value; 11394 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 11395 11396 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 11397 /* XORing two positive sign numbers gives a positive, 11398 * so safe to cast u64 result into s64. 11399 */ 11400 dst_reg->smin_value = dst_reg->umin_value; 11401 dst_reg->smax_value = dst_reg->umax_value; 11402 } else { 11403 dst_reg->smin_value = S64_MIN; 11404 dst_reg->smax_value = S64_MAX; 11405 } 11406 11407 __update_reg_bounds(dst_reg); 11408 } 11409 11410 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11411 u64 umin_val, u64 umax_val) 11412 { 11413 /* We lose all sign bit information (except what we can pick 11414 * up from var_off) 11415 */ 11416 dst_reg->s32_min_value = S32_MIN; 11417 dst_reg->s32_max_value = S32_MAX; 11418 /* If we might shift our top bit out, then we know nothing */ 11419 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 11420 dst_reg->u32_min_value = 0; 11421 dst_reg->u32_max_value = U32_MAX; 11422 } else { 11423 dst_reg->u32_min_value <<= umin_val; 11424 dst_reg->u32_max_value <<= umax_val; 11425 } 11426 } 11427 11428 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11429 struct bpf_reg_state *src_reg) 11430 { 11431 u32 umax_val = src_reg->u32_max_value; 11432 u32 umin_val = src_reg->u32_min_value; 11433 /* u32 alu operation will zext upper bits */ 11434 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11435 11436 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11437 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 11438 /* Not required but being careful mark reg64 bounds as unknown so 11439 * that we are forced to pick them up from tnum and zext later and 11440 * if some path skips this step we are still safe. 11441 */ 11442 __mark_reg64_unbounded(dst_reg); 11443 __update_reg32_bounds(dst_reg); 11444 } 11445 11446 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 11447 u64 umin_val, u64 umax_val) 11448 { 11449 /* Special case <<32 because it is a common compiler pattern to sign 11450 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 11451 * positive we know this shift will also be positive so we can track 11452 * bounds correctly. Otherwise we lose all sign bit information except 11453 * what we can pick up from var_off. Perhaps we can generalize this 11454 * later to shifts of any length. 11455 */ 11456 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 11457 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 11458 else 11459 dst_reg->smax_value = S64_MAX; 11460 11461 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 11462 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 11463 else 11464 dst_reg->smin_value = S64_MIN; 11465 11466 /* If we might shift our top bit out, then we know nothing */ 11467 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 11468 dst_reg->umin_value = 0; 11469 dst_reg->umax_value = U64_MAX; 11470 } else { 11471 dst_reg->umin_value <<= umin_val; 11472 dst_reg->umax_value <<= umax_val; 11473 } 11474 } 11475 11476 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 11477 struct bpf_reg_state *src_reg) 11478 { 11479 u64 umax_val = src_reg->umax_value; 11480 u64 umin_val = src_reg->umin_value; 11481 11482 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 11483 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 11484 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11485 11486 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 11487 /* We may learn something more from the var_off */ 11488 __update_reg_bounds(dst_reg); 11489 } 11490 11491 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 11492 struct bpf_reg_state *src_reg) 11493 { 11494 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11495 u32 umax_val = src_reg->u32_max_value; 11496 u32 umin_val = src_reg->u32_min_value; 11497 11498 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11499 * be negative, then either: 11500 * 1) src_reg might be zero, so the sign bit of the result is 11501 * unknown, so we lose our signed bounds 11502 * 2) it's known negative, thus the unsigned bounds capture the 11503 * signed bounds 11504 * 3) the signed bounds cross zero, so they tell us nothing 11505 * about the result 11506 * If the value in dst_reg is known nonnegative, then again the 11507 * unsigned bounds capture the signed bounds. 11508 * Thus, in all cases it suffices to blow away our signed bounds 11509 * and rely on inferring new ones from the unsigned bounds and 11510 * var_off of the result. 11511 */ 11512 dst_reg->s32_min_value = S32_MIN; 11513 dst_reg->s32_max_value = S32_MAX; 11514 11515 dst_reg->var_off = tnum_rshift(subreg, umin_val); 11516 dst_reg->u32_min_value >>= umax_val; 11517 dst_reg->u32_max_value >>= umin_val; 11518 11519 __mark_reg64_unbounded(dst_reg); 11520 __update_reg32_bounds(dst_reg); 11521 } 11522 11523 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 11524 struct bpf_reg_state *src_reg) 11525 { 11526 u64 umax_val = src_reg->umax_value; 11527 u64 umin_val = src_reg->umin_value; 11528 11529 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11530 * be negative, then either: 11531 * 1) src_reg might be zero, so the sign bit of the result is 11532 * unknown, so we lose our signed bounds 11533 * 2) it's known negative, thus the unsigned bounds capture the 11534 * signed bounds 11535 * 3) the signed bounds cross zero, so they tell us nothing 11536 * about the result 11537 * If the value in dst_reg is known nonnegative, then again the 11538 * unsigned bounds capture the signed bounds. 11539 * Thus, in all cases it suffices to blow away our signed bounds 11540 * and rely on inferring new ones from the unsigned bounds and 11541 * var_off of the result. 11542 */ 11543 dst_reg->smin_value = S64_MIN; 11544 dst_reg->smax_value = S64_MAX; 11545 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 11546 dst_reg->umin_value >>= umax_val; 11547 dst_reg->umax_value >>= umin_val; 11548 11549 /* Its not easy to operate on alu32 bounds here because it depends 11550 * on bits being shifted in. Take easy way out and mark unbounded 11551 * so we can recalculate later from tnum. 11552 */ 11553 __mark_reg32_unbounded(dst_reg); 11554 __update_reg_bounds(dst_reg); 11555 } 11556 11557 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 11558 struct bpf_reg_state *src_reg) 11559 { 11560 u64 umin_val = src_reg->u32_min_value; 11561 11562 /* Upon reaching here, src_known is true and 11563 * umax_val is equal to umin_val. 11564 */ 11565 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 11566 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 11567 11568 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 11569 11570 /* blow away the dst_reg umin_value/umax_value and rely on 11571 * dst_reg var_off to refine the result. 11572 */ 11573 dst_reg->u32_min_value = 0; 11574 dst_reg->u32_max_value = U32_MAX; 11575 11576 __mark_reg64_unbounded(dst_reg); 11577 __update_reg32_bounds(dst_reg); 11578 } 11579 11580 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 11581 struct bpf_reg_state *src_reg) 11582 { 11583 u64 umin_val = src_reg->umin_value; 11584 11585 /* Upon reaching here, src_known is true and umax_val is equal 11586 * to umin_val. 11587 */ 11588 dst_reg->smin_value >>= umin_val; 11589 dst_reg->smax_value >>= umin_val; 11590 11591 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 11592 11593 /* blow away the dst_reg umin_value/umax_value and rely on 11594 * dst_reg var_off to refine the result. 11595 */ 11596 dst_reg->umin_value = 0; 11597 dst_reg->umax_value = U64_MAX; 11598 11599 /* Its not easy to operate on alu32 bounds here because it depends 11600 * on bits being shifted in from upper 32-bits. Take easy way out 11601 * and mark unbounded so we can recalculate later from tnum. 11602 */ 11603 __mark_reg32_unbounded(dst_reg); 11604 __update_reg_bounds(dst_reg); 11605 } 11606 11607 /* WARNING: This function does calculations on 64-bit values, but the actual 11608 * execution may occur on 32-bit values. Therefore, things like bitshifts 11609 * need extra checks in the 32-bit case. 11610 */ 11611 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 11612 struct bpf_insn *insn, 11613 struct bpf_reg_state *dst_reg, 11614 struct bpf_reg_state src_reg) 11615 { 11616 struct bpf_reg_state *regs = cur_regs(env); 11617 u8 opcode = BPF_OP(insn->code); 11618 bool src_known; 11619 s64 smin_val, smax_val; 11620 u64 umin_val, umax_val; 11621 s32 s32_min_val, s32_max_val; 11622 u32 u32_min_val, u32_max_val; 11623 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 11624 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 11625 int ret; 11626 11627 smin_val = src_reg.smin_value; 11628 smax_val = src_reg.smax_value; 11629 umin_val = src_reg.umin_value; 11630 umax_val = src_reg.umax_value; 11631 11632 s32_min_val = src_reg.s32_min_value; 11633 s32_max_val = src_reg.s32_max_value; 11634 u32_min_val = src_reg.u32_min_value; 11635 u32_max_val = src_reg.u32_max_value; 11636 11637 if (alu32) { 11638 src_known = tnum_subreg_is_const(src_reg.var_off); 11639 if ((src_known && 11640 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 11641 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 11642 /* Taint dst register if offset had invalid bounds 11643 * derived from e.g. dead branches. 11644 */ 11645 __mark_reg_unknown(env, dst_reg); 11646 return 0; 11647 } 11648 } else { 11649 src_known = tnum_is_const(src_reg.var_off); 11650 if ((src_known && 11651 (smin_val != smax_val || umin_val != umax_val)) || 11652 smin_val > smax_val || umin_val > umax_val) { 11653 /* Taint dst register if offset had invalid bounds 11654 * derived from e.g. dead branches. 11655 */ 11656 __mark_reg_unknown(env, dst_reg); 11657 return 0; 11658 } 11659 } 11660 11661 if (!src_known && 11662 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 11663 __mark_reg_unknown(env, dst_reg); 11664 return 0; 11665 } 11666 11667 if (sanitize_needed(opcode)) { 11668 ret = sanitize_val_alu(env, insn); 11669 if (ret < 0) 11670 return sanitize_err(env, insn, ret, NULL, NULL); 11671 } 11672 11673 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 11674 * There are two classes of instructions: The first class we track both 11675 * alu32 and alu64 sign/unsigned bounds independently this provides the 11676 * greatest amount of precision when alu operations are mixed with jmp32 11677 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 11678 * and BPF_OR. This is possible because these ops have fairly easy to 11679 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 11680 * See alu32 verifier tests for examples. The second class of 11681 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 11682 * with regards to tracking sign/unsigned bounds because the bits may 11683 * cross subreg boundaries in the alu64 case. When this happens we mark 11684 * the reg unbounded in the subreg bound space and use the resulting 11685 * tnum to calculate an approximation of the sign/unsigned bounds. 11686 */ 11687 switch (opcode) { 11688 case BPF_ADD: 11689 scalar32_min_max_add(dst_reg, &src_reg); 11690 scalar_min_max_add(dst_reg, &src_reg); 11691 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 11692 break; 11693 case BPF_SUB: 11694 scalar32_min_max_sub(dst_reg, &src_reg); 11695 scalar_min_max_sub(dst_reg, &src_reg); 11696 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 11697 break; 11698 case BPF_MUL: 11699 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 11700 scalar32_min_max_mul(dst_reg, &src_reg); 11701 scalar_min_max_mul(dst_reg, &src_reg); 11702 break; 11703 case BPF_AND: 11704 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 11705 scalar32_min_max_and(dst_reg, &src_reg); 11706 scalar_min_max_and(dst_reg, &src_reg); 11707 break; 11708 case BPF_OR: 11709 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 11710 scalar32_min_max_or(dst_reg, &src_reg); 11711 scalar_min_max_or(dst_reg, &src_reg); 11712 break; 11713 case BPF_XOR: 11714 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 11715 scalar32_min_max_xor(dst_reg, &src_reg); 11716 scalar_min_max_xor(dst_reg, &src_reg); 11717 break; 11718 case BPF_LSH: 11719 if (umax_val >= insn_bitness) { 11720 /* Shifts greater than 31 or 63 are undefined. 11721 * This includes shifts by a negative number. 11722 */ 11723 mark_reg_unknown(env, regs, insn->dst_reg); 11724 break; 11725 } 11726 if (alu32) 11727 scalar32_min_max_lsh(dst_reg, &src_reg); 11728 else 11729 scalar_min_max_lsh(dst_reg, &src_reg); 11730 break; 11731 case BPF_RSH: 11732 if (umax_val >= insn_bitness) { 11733 /* Shifts greater than 31 or 63 are undefined. 11734 * This includes shifts by a negative number. 11735 */ 11736 mark_reg_unknown(env, regs, insn->dst_reg); 11737 break; 11738 } 11739 if (alu32) 11740 scalar32_min_max_rsh(dst_reg, &src_reg); 11741 else 11742 scalar_min_max_rsh(dst_reg, &src_reg); 11743 break; 11744 case BPF_ARSH: 11745 if (umax_val >= insn_bitness) { 11746 /* Shifts greater than 31 or 63 are undefined. 11747 * This includes shifts by a negative number. 11748 */ 11749 mark_reg_unknown(env, regs, insn->dst_reg); 11750 break; 11751 } 11752 if (alu32) 11753 scalar32_min_max_arsh(dst_reg, &src_reg); 11754 else 11755 scalar_min_max_arsh(dst_reg, &src_reg); 11756 break; 11757 default: 11758 mark_reg_unknown(env, regs, insn->dst_reg); 11759 break; 11760 } 11761 11762 /* ALU32 ops are zero extended into 64bit register */ 11763 if (alu32) 11764 zext_32_to_64(dst_reg); 11765 reg_bounds_sync(dst_reg); 11766 return 0; 11767 } 11768 11769 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 11770 * and var_off. 11771 */ 11772 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 11773 struct bpf_insn *insn) 11774 { 11775 struct bpf_verifier_state *vstate = env->cur_state; 11776 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11777 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 11778 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 11779 u8 opcode = BPF_OP(insn->code); 11780 int err; 11781 11782 dst_reg = ®s[insn->dst_reg]; 11783 src_reg = NULL; 11784 if (dst_reg->type != SCALAR_VALUE) 11785 ptr_reg = dst_reg; 11786 else 11787 /* Make sure ID is cleared otherwise dst_reg min/max could be 11788 * incorrectly propagated into other registers by find_equal_scalars() 11789 */ 11790 dst_reg->id = 0; 11791 if (BPF_SRC(insn->code) == BPF_X) { 11792 src_reg = ®s[insn->src_reg]; 11793 if (src_reg->type != SCALAR_VALUE) { 11794 if (dst_reg->type != SCALAR_VALUE) { 11795 /* Combining two pointers by any ALU op yields 11796 * an arbitrary scalar. Disallow all math except 11797 * pointer subtraction 11798 */ 11799 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11800 mark_reg_unknown(env, regs, insn->dst_reg); 11801 return 0; 11802 } 11803 verbose(env, "R%d pointer %s pointer prohibited\n", 11804 insn->dst_reg, 11805 bpf_alu_string[opcode >> 4]); 11806 return -EACCES; 11807 } else { 11808 /* scalar += pointer 11809 * This is legal, but we have to reverse our 11810 * src/dest handling in computing the range 11811 */ 11812 err = mark_chain_precision(env, insn->dst_reg); 11813 if (err) 11814 return err; 11815 return adjust_ptr_min_max_vals(env, insn, 11816 src_reg, dst_reg); 11817 } 11818 } else if (ptr_reg) { 11819 /* pointer += scalar */ 11820 err = mark_chain_precision(env, insn->src_reg); 11821 if (err) 11822 return err; 11823 return adjust_ptr_min_max_vals(env, insn, 11824 dst_reg, src_reg); 11825 } else if (dst_reg->precise) { 11826 /* if dst_reg is precise, src_reg should be precise as well */ 11827 err = mark_chain_precision(env, insn->src_reg); 11828 if (err) 11829 return err; 11830 } 11831 } else { 11832 /* Pretend the src is a reg with a known value, since we only 11833 * need to be able to read from this state. 11834 */ 11835 off_reg.type = SCALAR_VALUE; 11836 __mark_reg_known(&off_reg, insn->imm); 11837 src_reg = &off_reg; 11838 if (ptr_reg) /* pointer += K */ 11839 return adjust_ptr_min_max_vals(env, insn, 11840 ptr_reg, src_reg); 11841 } 11842 11843 /* Got here implies adding two SCALAR_VALUEs */ 11844 if (WARN_ON_ONCE(ptr_reg)) { 11845 print_verifier_state(env, state, true); 11846 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 11847 return -EINVAL; 11848 } 11849 if (WARN_ON(!src_reg)) { 11850 print_verifier_state(env, state, true); 11851 verbose(env, "verifier internal error: no src_reg\n"); 11852 return -EINVAL; 11853 } 11854 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 11855 } 11856 11857 /* check validity of 32-bit and 64-bit arithmetic operations */ 11858 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 11859 { 11860 struct bpf_reg_state *regs = cur_regs(env); 11861 u8 opcode = BPF_OP(insn->code); 11862 int err; 11863 11864 if (opcode == BPF_END || opcode == BPF_NEG) { 11865 if (opcode == BPF_NEG) { 11866 if (BPF_SRC(insn->code) != BPF_K || 11867 insn->src_reg != BPF_REG_0 || 11868 insn->off != 0 || insn->imm != 0) { 11869 verbose(env, "BPF_NEG uses reserved fields\n"); 11870 return -EINVAL; 11871 } 11872 } else { 11873 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 11874 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 11875 BPF_CLASS(insn->code) == BPF_ALU64) { 11876 verbose(env, "BPF_END uses reserved fields\n"); 11877 return -EINVAL; 11878 } 11879 } 11880 11881 /* check src operand */ 11882 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11883 if (err) 11884 return err; 11885 11886 if (is_pointer_value(env, insn->dst_reg)) { 11887 verbose(env, "R%d pointer arithmetic prohibited\n", 11888 insn->dst_reg); 11889 return -EACCES; 11890 } 11891 11892 /* check dest operand */ 11893 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11894 if (err) 11895 return err; 11896 11897 } else if (opcode == BPF_MOV) { 11898 11899 if (BPF_SRC(insn->code) == BPF_X) { 11900 if (insn->imm != 0 || insn->off != 0) { 11901 verbose(env, "BPF_MOV uses reserved fields\n"); 11902 return -EINVAL; 11903 } 11904 11905 /* check src operand */ 11906 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11907 if (err) 11908 return err; 11909 } else { 11910 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11911 verbose(env, "BPF_MOV uses reserved fields\n"); 11912 return -EINVAL; 11913 } 11914 } 11915 11916 /* check dest operand, mark as required later */ 11917 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11918 if (err) 11919 return err; 11920 11921 if (BPF_SRC(insn->code) == BPF_X) { 11922 struct bpf_reg_state *src_reg = regs + insn->src_reg; 11923 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 11924 11925 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11926 /* case: R1 = R2 11927 * copy register state to dest reg 11928 */ 11929 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 11930 /* Assign src and dst registers the same ID 11931 * that will be used by find_equal_scalars() 11932 * to propagate min/max range. 11933 */ 11934 src_reg->id = ++env->id_gen; 11935 copy_register_state(dst_reg, src_reg); 11936 dst_reg->live |= REG_LIVE_WRITTEN; 11937 dst_reg->subreg_def = DEF_NOT_SUBREG; 11938 } else { 11939 /* R1 = (u32) R2 */ 11940 if (is_pointer_value(env, insn->src_reg)) { 11941 verbose(env, 11942 "R%d partial copy of pointer\n", 11943 insn->src_reg); 11944 return -EACCES; 11945 } else if (src_reg->type == SCALAR_VALUE) { 11946 copy_register_state(dst_reg, src_reg); 11947 /* Make sure ID is cleared otherwise 11948 * dst_reg min/max could be incorrectly 11949 * propagated into src_reg by find_equal_scalars() 11950 */ 11951 dst_reg->id = 0; 11952 dst_reg->live |= REG_LIVE_WRITTEN; 11953 dst_reg->subreg_def = env->insn_idx + 1; 11954 } else { 11955 mark_reg_unknown(env, regs, 11956 insn->dst_reg); 11957 } 11958 zext_32_to_64(dst_reg); 11959 reg_bounds_sync(dst_reg); 11960 } 11961 } else { 11962 /* case: R = imm 11963 * remember the value we stored into this reg 11964 */ 11965 /* clear any state __mark_reg_known doesn't set */ 11966 mark_reg_unknown(env, regs, insn->dst_reg); 11967 regs[insn->dst_reg].type = SCALAR_VALUE; 11968 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11969 __mark_reg_known(regs + insn->dst_reg, 11970 insn->imm); 11971 } else { 11972 __mark_reg_known(regs + insn->dst_reg, 11973 (u32)insn->imm); 11974 } 11975 } 11976 11977 } else if (opcode > BPF_END) { 11978 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 11979 return -EINVAL; 11980 11981 } else { /* all other ALU ops: and, sub, xor, add, ... */ 11982 11983 if (BPF_SRC(insn->code) == BPF_X) { 11984 if (insn->imm != 0 || insn->off != 0) { 11985 verbose(env, "BPF_ALU uses reserved fields\n"); 11986 return -EINVAL; 11987 } 11988 /* check src1 operand */ 11989 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11990 if (err) 11991 return err; 11992 } else { 11993 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11994 verbose(env, "BPF_ALU uses reserved fields\n"); 11995 return -EINVAL; 11996 } 11997 } 11998 11999 /* check src2 operand */ 12000 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12001 if (err) 12002 return err; 12003 12004 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 12005 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 12006 verbose(env, "div by zero\n"); 12007 return -EINVAL; 12008 } 12009 12010 if ((opcode == BPF_LSH || opcode == BPF_RSH || 12011 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 12012 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 12013 12014 if (insn->imm < 0 || insn->imm >= size) { 12015 verbose(env, "invalid shift %d\n", insn->imm); 12016 return -EINVAL; 12017 } 12018 } 12019 12020 /* check dest operand */ 12021 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12022 if (err) 12023 return err; 12024 12025 return adjust_reg_min_max_vals(env, insn); 12026 } 12027 12028 return 0; 12029 } 12030 12031 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 12032 struct bpf_reg_state *dst_reg, 12033 enum bpf_reg_type type, 12034 bool range_right_open) 12035 { 12036 struct bpf_func_state *state; 12037 struct bpf_reg_state *reg; 12038 int new_range; 12039 12040 if (dst_reg->off < 0 || 12041 (dst_reg->off == 0 && range_right_open)) 12042 /* This doesn't give us any range */ 12043 return; 12044 12045 if (dst_reg->umax_value > MAX_PACKET_OFF || 12046 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 12047 /* Risk of overflow. For instance, ptr + (1<<63) may be less 12048 * than pkt_end, but that's because it's also less than pkt. 12049 */ 12050 return; 12051 12052 new_range = dst_reg->off; 12053 if (range_right_open) 12054 new_range++; 12055 12056 /* Examples for register markings: 12057 * 12058 * pkt_data in dst register: 12059 * 12060 * r2 = r3; 12061 * r2 += 8; 12062 * if (r2 > pkt_end) goto <handle exception> 12063 * <access okay> 12064 * 12065 * r2 = r3; 12066 * r2 += 8; 12067 * if (r2 < pkt_end) goto <access okay> 12068 * <handle exception> 12069 * 12070 * Where: 12071 * r2 == dst_reg, pkt_end == src_reg 12072 * r2=pkt(id=n,off=8,r=0) 12073 * r3=pkt(id=n,off=0,r=0) 12074 * 12075 * pkt_data in src register: 12076 * 12077 * r2 = r3; 12078 * r2 += 8; 12079 * if (pkt_end >= r2) goto <access okay> 12080 * <handle exception> 12081 * 12082 * r2 = r3; 12083 * r2 += 8; 12084 * if (pkt_end <= r2) goto <handle exception> 12085 * <access okay> 12086 * 12087 * Where: 12088 * pkt_end == dst_reg, r2 == src_reg 12089 * r2=pkt(id=n,off=8,r=0) 12090 * r3=pkt(id=n,off=0,r=0) 12091 * 12092 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 12093 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 12094 * and [r3, r3 + 8-1) respectively is safe to access depending on 12095 * the check. 12096 */ 12097 12098 /* If our ids match, then we must have the same max_value. And we 12099 * don't care about the other reg's fixed offset, since if it's too big 12100 * the range won't allow anything. 12101 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 12102 */ 12103 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12104 if (reg->type == type && reg->id == dst_reg->id) 12105 /* keep the maximum range already checked */ 12106 reg->range = max(reg->range, new_range); 12107 })); 12108 } 12109 12110 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 12111 { 12112 struct tnum subreg = tnum_subreg(reg->var_off); 12113 s32 sval = (s32)val; 12114 12115 switch (opcode) { 12116 case BPF_JEQ: 12117 if (tnum_is_const(subreg)) 12118 return !!tnum_equals_const(subreg, val); 12119 break; 12120 case BPF_JNE: 12121 if (tnum_is_const(subreg)) 12122 return !tnum_equals_const(subreg, val); 12123 break; 12124 case BPF_JSET: 12125 if ((~subreg.mask & subreg.value) & val) 12126 return 1; 12127 if (!((subreg.mask | subreg.value) & val)) 12128 return 0; 12129 break; 12130 case BPF_JGT: 12131 if (reg->u32_min_value > val) 12132 return 1; 12133 else if (reg->u32_max_value <= val) 12134 return 0; 12135 break; 12136 case BPF_JSGT: 12137 if (reg->s32_min_value > sval) 12138 return 1; 12139 else if (reg->s32_max_value <= sval) 12140 return 0; 12141 break; 12142 case BPF_JLT: 12143 if (reg->u32_max_value < val) 12144 return 1; 12145 else if (reg->u32_min_value >= val) 12146 return 0; 12147 break; 12148 case BPF_JSLT: 12149 if (reg->s32_max_value < sval) 12150 return 1; 12151 else if (reg->s32_min_value >= sval) 12152 return 0; 12153 break; 12154 case BPF_JGE: 12155 if (reg->u32_min_value >= val) 12156 return 1; 12157 else if (reg->u32_max_value < val) 12158 return 0; 12159 break; 12160 case BPF_JSGE: 12161 if (reg->s32_min_value >= sval) 12162 return 1; 12163 else if (reg->s32_max_value < sval) 12164 return 0; 12165 break; 12166 case BPF_JLE: 12167 if (reg->u32_max_value <= val) 12168 return 1; 12169 else if (reg->u32_min_value > val) 12170 return 0; 12171 break; 12172 case BPF_JSLE: 12173 if (reg->s32_max_value <= sval) 12174 return 1; 12175 else if (reg->s32_min_value > sval) 12176 return 0; 12177 break; 12178 } 12179 12180 return -1; 12181 } 12182 12183 12184 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 12185 { 12186 s64 sval = (s64)val; 12187 12188 switch (opcode) { 12189 case BPF_JEQ: 12190 if (tnum_is_const(reg->var_off)) 12191 return !!tnum_equals_const(reg->var_off, val); 12192 break; 12193 case BPF_JNE: 12194 if (tnum_is_const(reg->var_off)) 12195 return !tnum_equals_const(reg->var_off, val); 12196 break; 12197 case BPF_JSET: 12198 if ((~reg->var_off.mask & reg->var_off.value) & val) 12199 return 1; 12200 if (!((reg->var_off.mask | reg->var_off.value) & val)) 12201 return 0; 12202 break; 12203 case BPF_JGT: 12204 if (reg->umin_value > val) 12205 return 1; 12206 else if (reg->umax_value <= val) 12207 return 0; 12208 break; 12209 case BPF_JSGT: 12210 if (reg->smin_value > sval) 12211 return 1; 12212 else if (reg->smax_value <= sval) 12213 return 0; 12214 break; 12215 case BPF_JLT: 12216 if (reg->umax_value < val) 12217 return 1; 12218 else if (reg->umin_value >= val) 12219 return 0; 12220 break; 12221 case BPF_JSLT: 12222 if (reg->smax_value < sval) 12223 return 1; 12224 else if (reg->smin_value >= sval) 12225 return 0; 12226 break; 12227 case BPF_JGE: 12228 if (reg->umin_value >= val) 12229 return 1; 12230 else if (reg->umax_value < val) 12231 return 0; 12232 break; 12233 case BPF_JSGE: 12234 if (reg->smin_value >= sval) 12235 return 1; 12236 else if (reg->smax_value < sval) 12237 return 0; 12238 break; 12239 case BPF_JLE: 12240 if (reg->umax_value <= val) 12241 return 1; 12242 else if (reg->umin_value > val) 12243 return 0; 12244 break; 12245 case BPF_JSLE: 12246 if (reg->smax_value <= sval) 12247 return 1; 12248 else if (reg->smin_value > sval) 12249 return 0; 12250 break; 12251 } 12252 12253 return -1; 12254 } 12255 12256 /* compute branch direction of the expression "if (reg opcode val) goto target;" 12257 * and return: 12258 * 1 - branch will be taken and "goto target" will be executed 12259 * 0 - branch will not be taken and fall-through to next insn 12260 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 12261 * range [0,10] 12262 */ 12263 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 12264 bool is_jmp32) 12265 { 12266 if (__is_pointer_value(false, reg)) { 12267 if (!reg_type_not_null(reg->type)) 12268 return -1; 12269 12270 /* If pointer is valid tests against zero will fail so we can 12271 * use this to direct branch taken. 12272 */ 12273 if (val != 0) 12274 return -1; 12275 12276 switch (opcode) { 12277 case BPF_JEQ: 12278 return 0; 12279 case BPF_JNE: 12280 return 1; 12281 default: 12282 return -1; 12283 } 12284 } 12285 12286 if (is_jmp32) 12287 return is_branch32_taken(reg, val, opcode); 12288 return is_branch64_taken(reg, val, opcode); 12289 } 12290 12291 static int flip_opcode(u32 opcode) 12292 { 12293 /* How can we transform "a <op> b" into "b <op> a"? */ 12294 static const u8 opcode_flip[16] = { 12295 /* these stay the same */ 12296 [BPF_JEQ >> 4] = BPF_JEQ, 12297 [BPF_JNE >> 4] = BPF_JNE, 12298 [BPF_JSET >> 4] = BPF_JSET, 12299 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 12300 [BPF_JGE >> 4] = BPF_JLE, 12301 [BPF_JGT >> 4] = BPF_JLT, 12302 [BPF_JLE >> 4] = BPF_JGE, 12303 [BPF_JLT >> 4] = BPF_JGT, 12304 [BPF_JSGE >> 4] = BPF_JSLE, 12305 [BPF_JSGT >> 4] = BPF_JSLT, 12306 [BPF_JSLE >> 4] = BPF_JSGE, 12307 [BPF_JSLT >> 4] = BPF_JSGT 12308 }; 12309 return opcode_flip[opcode >> 4]; 12310 } 12311 12312 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 12313 struct bpf_reg_state *src_reg, 12314 u8 opcode) 12315 { 12316 struct bpf_reg_state *pkt; 12317 12318 if (src_reg->type == PTR_TO_PACKET_END) { 12319 pkt = dst_reg; 12320 } else if (dst_reg->type == PTR_TO_PACKET_END) { 12321 pkt = src_reg; 12322 opcode = flip_opcode(opcode); 12323 } else { 12324 return -1; 12325 } 12326 12327 if (pkt->range >= 0) 12328 return -1; 12329 12330 switch (opcode) { 12331 case BPF_JLE: 12332 /* pkt <= pkt_end */ 12333 fallthrough; 12334 case BPF_JGT: 12335 /* pkt > pkt_end */ 12336 if (pkt->range == BEYOND_PKT_END) 12337 /* pkt has at last one extra byte beyond pkt_end */ 12338 return opcode == BPF_JGT; 12339 break; 12340 case BPF_JLT: 12341 /* pkt < pkt_end */ 12342 fallthrough; 12343 case BPF_JGE: 12344 /* pkt >= pkt_end */ 12345 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 12346 return opcode == BPF_JGE; 12347 break; 12348 } 12349 return -1; 12350 } 12351 12352 /* Adjusts the register min/max values in the case that the dst_reg is the 12353 * variable register that we are working on, and src_reg is a constant or we're 12354 * simply doing a BPF_K check. 12355 * In JEQ/JNE cases we also adjust the var_off values. 12356 */ 12357 static void reg_set_min_max(struct bpf_reg_state *true_reg, 12358 struct bpf_reg_state *false_reg, 12359 u64 val, u32 val32, 12360 u8 opcode, bool is_jmp32) 12361 { 12362 struct tnum false_32off = tnum_subreg(false_reg->var_off); 12363 struct tnum false_64off = false_reg->var_off; 12364 struct tnum true_32off = tnum_subreg(true_reg->var_off); 12365 struct tnum true_64off = true_reg->var_off; 12366 s64 sval = (s64)val; 12367 s32 sval32 = (s32)val32; 12368 12369 /* If the dst_reg is a pointer, we can't learn anything about its 12370 * variable offset from the compare (unless src_reg were a pointer into 12371 * the same object, but we don't bother with that. 12372 * Since false_reg and true_reg have the same type by construction, we 12373 * only need to check one of them for pointerness. 12374 */ 12375 if (__is_pointer_value(false, false_reg)) 12376 return; 12377 12378 switch (opcode) { 12379 /* JEQ/JNE comparison doesn't change the register equivalence. 12380 * 12381 * r1 = r2; 12382 * if (r1 == 42) goto label; 12383 * ... 12384 * label: // here both r1 and r2 are known to be 42. 12385 * 12386 * Hence when marking register as known preserve it's ID. 12387 */ 12388 case BPF_JEQ: 12389 if (is_jmp32) { 12390 __mark_reg32_known(true_reg, val32); 12391 true_32off = tnum_subreg(true_reg->var_off); 12392 } else { 12393 ___mark_reg_known(true_reg, val); 12394 true_64off = true_reg->var_off; 12395 } 12396 break; 12397 case BPF_JNE: 12398 if (is_jmp32) { 12399 __mark_reg32_known(false_reg, val32); 12400 false_32off = tnum_subreg(false_reg->var_off); 12401 } else { 12402 ___mark_reg_known(false_reg, val); 12403 false_64off = false_reg->var_off; 12404 } 12405 break; 12406 case BPF_JSET: 12407 if (is_jmp32) { 12408 false_32off = tnum_and(false_32off, tnum_const(~val32)); 12409 if (is_power_of_2(val32)) 12410 true_32off = tnum_or(true_32off, 12411 tnum_const(val32)); 12412 } else { 12413 false_64off = tnum_and(false_64off, tnum_const(~val)); 12414 if (is_power_of_2(val)) 12415 true_64off = tnum_or(true_64off, 12416 tnum_const(val)); 12417 } 12418 break; 12419 case BPF_JGE: 12420 case BPF_JGT: 12421 { 12422 if (is_jmp32) { 12423 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 12424 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 12425 12426 false_reg->u32_max_value = min(false_reg->u32_max_value, 12427 false_umax); 12428 true_reg->u32_min_value = max(true_reg->u32_min_value, 12429 true_umin); 12430 } else { 12431 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 12432 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 12433 12434 false_reg->umax_value = min(false_reg->umax_value, false_umax); 12435 true_reg->umin_value = max(true_reg->umin_value, true_umin); 12436 } 12437 break; 12438 } 12439 case BPF_JSGE: 12440 case BPF_JSGT: 12441 { 12442 if (is_jmp32) { 12443 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 12444 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 12445 12446 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 12447 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 12448 } else { 12449 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 12450 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 12451 12452 false_reg->smax_value = min(false_reg->smax_value, false_smax); 12453 true_reg->smin_value = max(true_reg->smin_value, true_smin); 12454 } 12455 break; 12456 } 12457 case BPF_JLE: 12458 case BPF_JLT: 12459 { 12460 if (is_jmp32) { 12461 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 12462 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 12463 12464 false_reg->u32_min_value = max(false_reg->u32_min_value, 12465 false_umin); 12466 true_reg->u32_max_value = min(true_reg->u32_max_value, 12467 true_umax); 12468 } else { 12469 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 12470 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 12471 12472 false_reg->umin_value = max(false_reg->umin_value, false_umin); 12473 true_reg->umax_value = min(true_reg->umax_value, true_umax); 12474 } 12475 break; 12476 } 12477 case BPF_JSLE: 12478 case BPF_JSLT: 12479 { 12480 if (is_jmp32) { 12481 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 12482 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 12483 12484 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 12485 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 12486 } else { 12487 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 12488 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 12489 12490 false_reg->smin_value = max(false_reg->smin_value, false_smin); 12491 true_reg->smax_value = min(true_reg->smax_value, true_smax); 12492 } 12493 break; 12494 } 12495 default: 12496 return; 12497 } 12498 12499 if (is_jmp32) { 12500 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 12501 tnum_subreg(false_32off)); 12502 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 12503 tnum_subreg(true_32off)); 12504 __reg_combine_32_into_64(false_reg); 12505 __reg_combine_32_into_64(true_reg); 12506 } else { 12507 false_reg->var_off = false_64off; 12508 true_reg->var_off = true_64off; 12509 __reg_combine_64_into_32(false_reg); 12510 __reg_combine_64_into_32(true_reg); 12511 } 12512 } 12513 12514 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 12515 * the variable reg. 12516 */ 12517 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 12518 struct bpf_reg_state *false_reg, 12519 u64 val, u32 val32, 12520 u8 opcode, bool is_jmp32) 12521 { 12522 opcode = flip_opcode(opcode); 12523 /* This uses zero as "not present in table"; luckily the zero opcode, 12524 * BPF_JA, can't get here. 12525 */ 12526 if (opcode) 12527 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 12528 } 12529 12530 /* Regs are known to be equal, so intersect their min/max/var_off */ 12531 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 12532 struct bpf_reg_state *dst_reg) 12533 { 12534 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 12535 dst_reg->umin_value); 12536 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 12537 dst_reg->umax_value); 12538 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 12539 dst_reg->smin_value); 12540 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 12541 dst_reg->smax_value); 12542 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 12543 dst_reg->var_off); 12544 reg_bounds_sync(src_reg); 12545 reg_bounds_sync(dst_reg); 12546 } 12547 12548 static void reg_combine_min_max(struct bpf_reg_state *true_src, 12549 struct bpf_reg_state *true_dst, 12550 struct bpf_reg_state *false_src, 12551 struct bpf_reg_state *false_dst, 12552 u8 opcode) 12553 { 12554 switch (opcode) { 12555 case BPF_JEQ: 12556 __reg_combine_min_max(true_src, true_dst); 12557 break; 12558 case BPF_JNE: 12559 __reg_combine_min_max(false_src, false_dst); 12560 break; 12561 } 12562 } 12563 12564 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 12565 struct bpf_reg_state *reg, u32 id, 12566 bool is_null) 12567 { 12568 if (type_may_be_null(reg->type) && reg->id == id && 12569 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 12570 /* Old offset (both fixed and variable parts) should have been 12571 * known-zero, because we don't allow pointer arithmetic on 12572 * pointers that might be NULL. If we see this happening, don't 12573 * convert the register. 12574 * 12575 * But in some cases, some helpers that return local kptrs 12576 * advance offset for the returned pointer. In those cases, it 12577 * is fine to expect to see reg->off. 12578 */ 12579 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 12580 return; 12581 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 12582 WARN_ON_ONCE(reg->off)) 12583 return; 12584 12585 if (is_null) { 12586 reg->type = SCALAR_VALUE; 12587 /* We don't need id and ref_obj_id from this point 12588 * onwards anymore, thus we should better reset it, 12589 * so that state pruning has chances to take effect. 12590 */ 12591 reg->id = 0; 12592 reg->ref_obj_id = 0; 12593 12594 return; 12595 } 12596 12597 mark_ptr_not_null_reg(reg); 12598 12599 if (!reg_may_point_to_spin_lock(reg)) { 12600 /* For not-NULL ptr, reg->ref_obj_id will be reset 12601 * in release_reference(). 12602 * 12603 * reg->id is still used by spin_lock ptr. Other 12604 * than spin_lock ptr type, reg->id can be reset. 12605 */ 12606 reg->id = 0; 12607 } 12608 } 12609 } 12610 12611 /* The logic is similar to find_good_pkt_pointers(), both could eventually 12612 * be folded together at some point. 12613 */ 12614 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 12615 bool is_null) 12616 { 12617 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12618 struct bpf_reg_state *regs = state->regs, *reg; 12619 u32 ref_obj_id = regs[regno].ref_obj_id; 12620 u32 id = regs[regno].id; 12621 12622 if (ref_obj_id && ref_obj_id == id && is_null) 12623 /* regs[regno] is in the " == NULL" branch. 12624 * No one could have freed the reference state before 12625 * doing the NULL check. 12626 */ 12627 WARN_ON_ONCE(release_reference_state(state, id)); 12628 12629 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12630 mark_ptr_or_null_reg(state, reg, id, is_null); 12631 })); 12632 } 12633 12634 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 12635 struct bpf_reg_state *dst_reg, 12636 struct bpf_reg_state *src_reg, 12637 struct bpf_verifier_state *this_branch, 12638 struct bpf_verifier_state *other_branch) 12639 { 12640 if (BPF_SRC(insn->code) != BPF_X) 12641 return false; 12642 12643 /* Pointers are always 64-bit. */ 12644 if (BPF_CLASS(insn->code) == BPF_JMP32) 12645 return false; 12646 12647 switch (BPF_OP(insn->code)) { 12648 case BPF_JGT: 12649 if ((dst_reg->type == PTR_TO_PACKET && 12650 src_reg->type == PTR_TO_PACKET_END) || 12651 (dst_reg->type == PTR_TO_PACKET_META && 12652 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12653 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 12654 find_good_pkt_pointers(this_branch, dst_reg, 12655 dst_reg->type, false); 12656 mark_pkt_end(other_branch, insn->dst_reg, true); 12657 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12658 src_reg->type == PTR_TO_PACKET) || 12659 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12660 src_reg->type == PTR_TO_PACKET_META)) { 12661 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 12662 find_good_pkt_pointers(other_branch, src_reg, 12663 src_reg->type, true); 12664 mark_pkt_end(this_branch, insn->src_reg, false); 12665 } else { 12666 return false; 12667 } 12668 break; 12669 case BPF_JLT: 12670 if ((dst_reg->type == PTR_TO_PACKET && 12671 src_reg->type == PTR_TO_PACKET_END) || 12672 (dst_reg->type == PTR_TO_PACKET_META && 12673 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12674 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 12675 find_good_pkt_pointers(other_branch, dst_reg, 12676 dst_reg->type, true); 12677 mark_pkt_end(this_branch, insn->dst_reg, false); 12678 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12679 src_reg->type == PTR_TO_PACKET) || 12680 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12681 src_reg->type == PTR_TO_PACKET_META)) { 12682 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 12683 find_good_pkt_pointers(this_branch, src_reg, 12684 src_reg->type, false); 12685 mark_pkt_end(other_branch, insn->src_reg, true); 12686 } else { 12687 return false; 12688 } 12689 break; 12690 case BPF_JGE: 12691 if ((dst_reg->type == PTR_TO_PACKET && 12692 src_reg->type == PTR_TO_PACKET_END) || 12693 (dst_reg->type == PTR_TO_PACKET_META && 12694 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12695 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 12696 find_good_pkt_pointers(this_branch, dst_reg, 12697 dst_reg->type, true); 12698 mark_pkt_end(other_branch, insn->dst_reg, false); 12699 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12700 src_reg->type == PTR_TO_PACKET) || 12701 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12702 src_reg->type == PTR_TO_PACKET_META)) { 12703 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 12704 find_good_pkt_pointers(other_branch, src_reg, 12705 src_reg->type, false); 12706 mark_pkt_end(this_branch, insn->src_reg, true); 12707 } else { 12708 return false; 12709 } 12710 break; 12711 case BPF_JLE: 12712 if ((dst_reg->type == PTR_TO_PACKET && 12713 src_reg->type == PTR_TO_PACKET_END) || 12714 (dst_reg->type == PTR_TO_PACKET_META && 12715 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12716 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 12717 find_good_pkt_pointers(other_branch, dst_reg, 12718 dst_reg->type, false); 12719 mark_pkt_end(this_branch, insn->dst_reg, true); 12720 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12721 src_reg->type == PTR_TO_PACKET) || 12722 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12723 src_reg->type == PTR_TO_PACKET_META)) { 12724 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 12725 find_good_pkt_pointers(this_branch, src_reg, 12726 src_reg->type, true); 12727 mark_pkt_end(other_branch, insn->src_reg, false); 12728 } else { 12729 return false; 12730 } 12731 break; 12732 default: 12733 return false; 12734 } 12735 12736 return true; 12737 } 12738 12739 static void find_equal_scalars(struct bpf_verifier_state *vstate, 12740 struct bpf_reg_state *known_reg) 12741 { 12742 struct bpf_func_state *state; 12743 struct bpf_reg_state *reg; 12744 12745 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12746 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 12747 copy_register_state(reg, known_reg); 12748 })); 12749 } 12750 12751 static int check_cond_jmp_op(struct bpf_verifier_env *env, 12752 struct bpf_insn *insn, int *insn_idx) 12753 { 12754 struct bpf_verifier_state *this_branch = env->cur_state; 12755 struct bpf_verifier_state *other_branch; 12756 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 12757 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 12758 struct bpf_reg_state *eq_branch_regs; 12759 u8 opcode = BPF_OP(insn->code); 12760 bool is_jmp32; 12761 int pred = -1; 12762 int err; 12763 12764 /* Only conditional jumps are expected to reach here. */ 12765 if (opcode == BPF_JA || opcode > BPF_JSLE) { 12766 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 12767 return -EINVAL; 12768 } 12769 12770 if (BPF_SRC(insn->code) == BPF_X) { 12771 if (insn->imm != 0) { 12772 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12773 return -EINVAL; 12774 } 12775 12776 /* check src1 operand */ 12777 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12778 if (err) 12779 return err; 12780 12781 if (is_pointer_value(env, insn->src_reg)) { 12782 verbose(env, "R%d pointer comparison prohibited\n", 12783 insn->src_reg); 12784 return -EACCES; 12785 } 12786 src_reg = ®s[insn->src_reg]; 12787 } else { 12788 if (insn->src_reg != BPF_REG_0) { 12789 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12790 return -EINVAL; 12791 } 12792 } 12793 12794 /* check src2 operand */ 12795 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12796 if (err) 12797 return err; 12798 12799 dst_reg = ®s[insn->dst_reg]; 12800 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 12801 12802 if (BPF_SRC(insn->code) == BPF_K) { 12803 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 12804 } else if (src_reg->type == SCALAR_VALUE && 12805 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 12806 pred = is_branch_taken(dst_reg, 12807 tnum_subreg(src_reg->var_off).value, 12808 opcode, 12809 is_jmp32); 12810 } else if (src_reg->type == SCALAR_VALUE && 12811 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 12812 pred = is_branch_taken(dst_reg, 12813 src_reg->var_off.value, 12814 opcode, 12815 is_jmp32); 12816 } else if (reg_is_pkt_pointer_any(dst_reg) && 12817 reg_is_pkt_pointer_any(src_reg) && 12818 !is_jmp32) { 12819 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 12820 } 12821 12822 if (pred >= 0) { 12823 /* If we get here with a dst_reg pointer type it is because 12824 * above is_branch_taken() special cased the 0 comparison. 12825 */ 12826 if (!__is_pointer_value(false, dst_reg)) 12827 err = mark_chain_precision(env, insn->dst_reg); 12828 if (BPF_SRC(insn->code) == BPF_X && !err && 12829 !__is_pointer_value(false, src_reg)) 12830 err = mark_chain_precision(env, insn->src_reg); 12831 if (err) 12832 return err; 12833 } 12834 12835 if (pred == 1) { 12836 /* Only follow the goto, ignore fall-through. If needed, push 12837 * the fall-through branch for simulation under speculative 12838 * execution. 12839 */ 12840 if (!env->bypass_spec_v1 && 12841 !sanitize_speculative_path(env, insn, *insn_idx + 1, 12842 *insn_idx)) 12843 return -EFAULT; 12844 *insn_idx += insn->off; 12845 return 0; 12846 } else if (pred == 0) { 12847 /* Only follow the fall-through branch, since that's where the 12848 * program will go. If needed, push the goto branch for 12849 * simulation under speculative execution. 12850 */ 12851 if (!env->bypass_spec_v1 && 12852 !sanitize_speculative_path(env, insn, 12853 *insn_idx + insn->off + 1, 12854 *insn_idx)) 12855 return -EFAULT; 12856 return 0; 12857 } 12858 12859 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 12860 false); 12861 if (!other_branch) 12862 return -EFAULT; 12863 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 12864 12865 /* detect if we are comparing against a constant value so we can adjust 12866 * our min/max values for our dst register. 12867 * this is only legit if both are scalars (or pointers to the same 12868 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 12869 * because otherwise the different base pointers mean the offsets aren't 12870 * comparable. 12871 */ 12872 if (BPF_SRC(insn->code) == BPF_X) { 12873 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 12874 12875 if (dst_reg->type == SCALAR_VALUE && 12876 src_reg->type == SCALAR_VALUE) { 12877 if (tnum_is_const(src_reg->var_off) || 12878 (is_jmp32 && 12879 tnum_is_const(tnum_subreg(src_reg->var_off)))) 12880 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12881 dst_reg, 12882 src_reg->var_off.value, 12883 tnum_subreg(src_reg->var_off).value, 12884 opcode, is_jmp32); 12885 else if (tnum_is_const(dst_reg->var_off) || 12886 (is_jmp32 && 12887 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 12888 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 12889 src_reg, 12890 dst_reg->var_off.value, 12891 tnum_subreg(dst_reg->var_off).value, 12892 opcode, is_jmp32); 12893 else if (!is_jmp32 && 12894 (opcode == BPF_JEQ || opcode == BPF_JNE)) 12895 /* Comparing for equality, we can combine knowledge */ 12896 reg_combine_min_max(&other_branch_regs[insn->src_reg], 12897 &other_branch_regs[insn->dst_reg], 12898 src_reg, dst_reg, opcode); 12899 if (src_reg->id && 12900 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 12901 find_equal_scalars(this_branch, src_reg); 12902 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 12903 } 12904 12905 } 12906 } else if (dst_reg->type == SCALAR_VALUE) { 12907 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12908 dst_reg, insn->imm, (u32)insn->imm, 12909 opcode, is_jmp32); 12910 } 12911 12912 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 12913 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 12914 find_equal_scalars(this_branch, dst_reg); 12915 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 12916 } 12917 12918 /* if one pointer register is compared to another pointer 12919 * register check if PTR_MAYBE_NULL could be lifted. 12920 * E.g. register A - maybe null 12921 * register B - not null 12922 * for JNE A, B, ... - A is not null in the false branch; 12923 * for JEQ A, B, ... - A is not null in the true branch. 12924 * 12925 * Since PTR_TO_BTF_ID points to a kernel struct that does 12926 * not need to be null checked by the BPF program, i.e., 12927 * could be null even without PTR_MAYBE_NULL marking, so 12928 * only propagate nullness when neither reg is that type. 12929 */ 12930 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 12931 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 12932 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 12933 base_type(src_reg->type) != PTR_TO_BTF_ID && 12934 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 12935 eq_branch_regs = NULL; 12936 switch (opcode) { 12937 case BPF_JEQ: 12938 eq_branch_regs = other_branch_regs; 12939 break; 12940 case BPF_JNE: 12941 eq_branch_regs = regs; 12942 break; 12943 default: 12944 /* do nothing */ 12945 break; 12946 } 12947 if (eq_branch_regs) { 12948 if (type_may_be_null(src_reg->type)) 12949 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 12950 else 12951 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 12952 } 12953 } 12954 12955 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 12956 * NOTE: these optimizations below are related with pointer comparison 12957 * which will never be JMP32. 12958 */ 12959 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 12960 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 12961 type_may_be_null(dst_reg->type)) { 12962 /* Mark all identical registers in each branch as either 12963 * safe or unknown depending R == 0 or R != 0 conditional. 12964 */ 12965 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 12966 opcode == BPF_JNE); 12967 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 12968 opcode == BPF_JEQ); 12969 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 12970 this_branch, other_branch) && 12971 is_pointer_value(env, insn->dst_reg)) { 12972 verbose(env, "R%d pointer comparison prohibited\n", 12973 insn->dst_reg); 12974 return -EACCES; 12975 } 12976 if (env->log.level & BPF_LOG_LEVEL) 12977 print_insn_state(env, this_branch->frame[this_branch->curframe]); 12978 return 0; 12979 } 12980 12981 /* verify BPF_LD_IMM64 instruction */ 12982 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 12983 { 12984 struct bpf_insn_aux_data *aux = cur_aux(env); 12985 struct bpf_reg_state *regs = cur_regs(env); 12986 struct bpf_reg_state *dst_reg; 12987 struct bpf_map *map; 12988 int err; 12989 12990 if (BPF_SIZE(insn->code) != BPF_DW) { 12991 verbose(env, "invalid BPF_LD_IMM insn\n"); 12992 return -EINVAL; 12993 } 12994 if (insn->off != 0) { 12995 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 12996 return -EINVAL; 12997 } 12998 12999 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13000 if (err) 13001 return err; 13002 13003 dst_reg = ®s[insn->dst_reg]; 13004 if (insn->src_reg == 0) { 13005 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 13006 13007 dst_reg->type = SCALAR_VALUE; 13008 __mark_reg_known(®s[insn->dst_reg], imm); 13009 return 0; 13010 } 13011 13012 /* All special src_reg cases are listed below. From this point onwards 13013 * we either succeed and assign a corresponding dst_reg->type after 13014 * zeroing the offset, or fail and reject the program. 13015 */ 13016 mark_reg_known_zero(env, regs, insn->dst_reg); 13017 13018 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 13019 dst_reg->type = aux->btf_var.reg_type; 13020 switch (base_type(dst_reg->type)) { 13021 case PTR_TO_MEM: 13022 dst_reg->mem_size = aux->btf_var.mem_size; 13023 break; 13024 case PTR_TO_BTF_ID: 13025 dst_reg->btf = aux->btf_var.btf; 13026 dst_reg->btf_id = aux->btf_var.btf_id; 13027 break; 13028 default: 13029 verbose(env, "bpf verifier is misconfigured\n"); 13030 return -EFAULT; 13031 } 13032 return 0; 13033 } 13034 13035 if (insn->src_reg == BPF_PSEUDO_FUNC) { 13036 struct bpf_prog_aux *aux = env->prog->aux; 13037 u32 subprogno = find_subprog(env, 13038 env->insn_idx + insn->imm + 1); 13039 13040 if (!aux->func_info) { 13041 verbose(env, "missing btf func_info\n"); 13042 return -EINVAL; 13043 } 13044 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 13045 verbose(env, "callback function not static\n"); 13046 return -EINVAL; 13047 } 13048 13049 dst_reg->type = PTR_TO_FUNC; 13050 dst_reg->subprogno = subprogno; 13051 return 0; 13052 } 13053 13054 map = env->used_maps[aux->map_index]; 13055 dst_reg->map_ptr = map; 13056 13057 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 13058 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 13059 dst_reg->type = PTR_TO_MAP_VALUE; 13060 dst_reg->off = aux->map_off; 13061 WARN_ON_ONCE(map->max_entries != 1); 13062 /* We want reg->id to be same (0) as map_value is not distinct */ 13063 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 13064 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 13065 dst_reg->type = CONST_PTR_TO_MAP; 13066 } else { 13067 verbose(env, "bpf verifier is misconfigured\n"); 13068 return -EINVAL; 13069 } 13070 13071 return 0; 13072 } 13073 13074 static bool may_access_skb(enum bpf_prog_type type) 13075 { 13076 switch (type) { 13077 case BPF_PROG_TYPE_SOCKET_FILTER: 13078 case BPF_PROG_TYPE_SCHED_CLS: 13079 case BPF_PROG_TYPE_SCHED_ACT: 13080 return true; 13081 default: 13082 return false; 13083 } 13084 } 13085 13086 /* verify safety of LD_ABS|LD_IND instructions: 13087 * - they can only appear in the programs where ctx == skb 13088 * - since they are wrappers of function calls, they scratch R1-R5 registers, 13089 * preserve R6-R9, and store return value into R0 13090 * 13091 * Implicit input: 13092 * ctx == skb == R6 == CTX 13093 * 13094 * Explicit input: 13095 * SRC == any register 13096 * IMM == 32-bit immediate 13097 * 13098 * Output: 13099 * R0 - 8/16/32-bit skb data converted to cpu endianness 13100 */ 13101 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 13102 { 13103 struct bpf_reg_state *regs = cur_regs(env); 13104 static const int ctx_reg = BPF_REG_6; 13105 u8 mode = BPF_MODE(insn->code); 13106 int i, err; 13107 13108 if (!may_access_skb(resolve_prog_type(env->prog))) { 13109 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 13110 return -EINVAL; 13111 } 13112 13113 if (!env->ops->gen_ld_abs) { 13114 verbose(env, "bpf verifier is misconfigured\n"); 13115 return -EINVAL; 13116 } 13117 13118 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 13119 BPF_SIZE(insn->code) == BPF_DW || 13120 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 13121 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 13122 return -EINVAL; 13123 } 13124 13125 /* check whether implicit source operand (register R6) is readable */ 13126 err = check_reg_arg(env, ctx_reg, SRC_OP); 13127 if (err) 13128 return err; 13129 13130 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 13131 * gen_ld_abs() may terminate the program at runtime, leading to 13132 * reference leak. 13133 */ 13134 err = check_reference_leak(env); 13135 if (err) { 13136 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 13137 return err; 13138 } 13139 13140 if (env->cur_state->active_lock.ptr) { 13141 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 13142 return -EINVAL; 13143 } 13144 13145 if (env->cur_state->active_rcu_lock) { 13146 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 13147 return -EINVAL; 13148 } 13149 13150 if (regs[ctx_reg].type != PTR_TO_CTX) { 13151 verbose(env, 13152 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 13153 return -EINVAL; 13154 } 13155 13156 if (mode == BPF_IND) { 13157 /* check explicit source operand */ 13158 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13159 if (err) 13160 return err; 13161 } 13162 13163 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 13164 if (err < 0) 13165 return err; 13166 13167 /* reset caller saved regs to unreadable */ 13168 for (i = 0; i < CALLER_SAVED_REGS; i++) { 13169 mark_reg_not_init(env, regs, caller_saved[i]); 13170 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 13171 } 13172 13173 /* mark destination R0 register as readable, since it contains 13174 * the value fetched from the packet. 13175 * Already marked as written above. 13176 */ 13177 mark_reg_unknown(env, regs, BPF_REG_0); 13178 /* ld_abs load up to 32-bit skb data. */ 13179 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 13180 return 0; 13181 } 13182 13183 static int check_return_code(struct bpf_verifier_env *env) 13184 { 13185 struct tnum enforce_attach_type_range = tnum_unknown; 13186 const struct bpf_prog *prog = env->prog; 13187 struct bpf_reg_state *reg; 13188 struct tnum range = tnum_range(0, 1); 13189 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13190 int err; 13191 struct bpf_func_state *frame = env->cur_state->frame[0]; 13192 const bool is_subprog = frame->subprogno; 13193 13194 /* LSM and struct_ops func-ptr's return type could be "void" */ 13195 if (!is_subprog) { 13196 switch (prog_type) { 13197 case BPF_PROG_TYPE_LSM: 13198 if (prog->expected_attach_type == BPF_LSM_CGROUP) 13199 /* See below, can be 0 or 0-1 depending on hook. */ 13200 break; 13201 fallthrough; 13202 case BPF_PROG_TYPE_STRUCT_OPS: 13203 if (!prog->aux->attach_func_proto->type) 13204 return 0; 13205 break; 13206 default: 13207 break; 13208 } 13209 } 13210 13211 /* eBPF calling convention is such that R0 is used 13212 * to return the value from eBPF program. 13213 * Make sure that it's readable at this time 13214 * of bpf_exit, which means that program wrote 13215 * something into it earlier 13216 */ 13217 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 13218 if (err) 13219 return err; 13220 13221 if (is_pointer_value(env, BPF_REG_0)) { 13222 verbose(env, "R0 leaks addr as return value\n"); 13223 return -EACCES; 13224 } 13225 13226 reg = cur_regs(env) + BPF_REG_0; 13227 13228 if (frame->in_async_callback_fn) { 13229 /* enforce return zero from async callbacks like timer */ 13230 if (reg->type != SCALAR_VALUE) { 13231 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 13232 reg_type_str(env, reg->type)); 13233 return -EINVAL; 13234 } 13235 13236 if (!tnum_in(tnum_const(0), reg->var_off)) { 13237 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 13238 return -EINVAL; 13239 } 13240 return 0; 13241 } 13242 13243 if (is_subprog) { 13244 if (reg->type != SCALAR_VALUE) { 13245 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 13246 reg_type_str(env, reg->type)); 13247 return -EINVAL; 13248 } 13249 return 0; 13250 } 13251 13252 switch (prog_type) { 13253 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 13254 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 13255 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 13256 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 13257 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 13258 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 13259 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 13260 range = tnum_range(1, 1); 13261 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 13262 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 13263 range = tnum_range(0, 3); 13264 break; 13265 case BPF_PROG_TYPE_CGROUP_SKB: 13266 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 13267 range = tnum_range(0, 3); 13268 enforce_attach_type_range = tnum_range(2, 3); 13269 } 13270 break; 13271 case BPF_PROG_TYPE_CGROUP_SOCK: 13272 case BPF_PROG_TYPE_SOCK_OPS: 13273 case BPF_PROG_TYPE_CGROUP_DEVICE: 13274 case BPF_PROG_TYPE_CGROUP_SYSCTL: 13275 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 13276 break; 13277 case BPF_PROG_TYPE_RAW_TRACEPOINT: 13278 if (!env->prog->aux->attach_btf_id) 13279 return 0; 13280 range = tnum_const(0); 13281 break; 13282 case BPF_PROG_TYPE_TRACING: 13283 switch (env->prog->expected_attach_type) { 13284 case BPF_TRACE_FENTRY: 13285 case BPF_TRACE_FEXIT: 13286 range = tnum_const(0); 13287 break; 13288 case BPF_TRACE_RAW_TP: 13289 case BPF_MODIFY_RETURN: 13290 return 0; 13291 case BPF_TRACE_ITER: 13292 break; 13293 default: 13294 return -ENOTSUPP; 13295 } 13296 break; 13297 case BPF_PROG_TYPE_SK_LOOKUP: 13298 range = tnum_range(SK_DROP, SK_PASS); 13299 break; 13300 13301 case BPF_PROG_TYPE_LSM: 13302 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 13303 /* Regular BPF_PROG_TYPE_LSM programs can return 13304 * any value. 13305 */ 13306 return 0; 13307 } 13308 if (!env->prog->aux->attach_func_proto->type) { 13309 /* Make sure programs that attach to void 13310 * hooks don't try to modify return value. 13311 */ 13312 range = tnum_range(1, 1); 13313 } 13314 break; 13315 13316 case BPF_PROG_TYPE_EXT: 13317 /* freplace program can return anything as its return value 13318 * depends on the to-be-replaced kernel func or bpf program. 13319 */ 13320 default: 13321 return 0; 13322 } 13323 13324 if (reg->type != SCALAR_VALUE) { 13325 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 13326 reg_type_str(env, reg->type)); 13327 return -EINVAL; 13328 } 13329 13330 if (!tnum_in(range, reg->var_off)) { 13331 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 13332 if (prog->expected_attach_type == BPF_LSM_CGROUP && 13333 prog_type == BPF_PROG_TYPE_LSM && 13334 !prog->aux->attach_func_proto->type) 13335 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 13336 return -EINVAL; 13337 } 13338 13339 if (!tnum_is_unknown(enforce_attach_type_range) && 13340 tnum_in(enforce_attach_type_range, reg->var_off)) 13341 env->prog->enforce_expected_attach_type = 1; 13342 return 0; 13343 } 13344 13345 /* non-recursive DFS pseudo code 13346 * 1 procedure DFS-iterative(G,v): 13347 * 2 label v as discovered 13348 * 3 let S be a stack 13349 * 4 S.push(v) 13350 * 5 while S is not empty 13351 * 6 t <- S.peek() 13352 * 7 if t is what we're looking for: 13353 * 8 return t 13354 * 9 for all edges e in G.adjacentEdges(t) do 13355 * 10 if edge e is already labelled 13356 * 11 continue with the next edge 13357 * 12 w <- G.adjacentVertex(t,e) 13358 * 13 if vertex w is not discovered and not explored 13359 * 14 label e as tree-edge 13360 * 15 label w as discovered 13361 * 16 S.push(w) 13362 * 17 continue at 5 13363 * 18 else if vertex w is discovered 13364 * 19 label e as back-edge 13365 * 20 else 13366 * 21 // vertex w is explored 13367 * 22 label e as forward- or cross-edge 13368 * 23 label t as explored 13369 * 24 S.pop() 13370 * 13371 * convention: 13372 * 0x10 - discovered 13373 * 0x11 - discovered and fall-through edge labelled 13374 * 0x12 - discovered and fall-through and branch edges labelled 13375 * 0x20 - explored 13376 */ 13377 13378 enum { 13379 DISCOVERED = 0x10, 13380 EXPLORED = 0x20, 13381 FALLTHROUGH = 1, 13382 BRANCH = 2, 13383 }; 13384 13385 static u32 state_htab_size(struct bpf_verifier_env *env) 13386 { 13387 return env->prog->len; 13388 } 13389 13390 static struct bpf_verifier_state_list **explored_state( 13391 struct bpf_verifier_env *env, 13392 int idx) 13393 { 13394 struct bpf_verifier_state *cur = env->cur_state; 13395 struct bpf_func_state *state = cur->frame[cur->curframe]; 13396 13397 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 13398 } 13399 13400 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 13401 { 13402 env->insn_aux_data[idx].prune_point = true; 13403 } 13404 13405 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 13406 { 13407 return env->insn_aux_data[insn_idx].prune_point; 13408 } 13409 13410 enum { 13411 DONE_EXPLORING = 0, 13412 KEEP_EXPLORING = 1, 13413 }; 13414 13415 /* t, w, e - match pseudo-code above: 13416 * t - index of current instruction 13417 * w - next instruction 13418 * e - edge 13419 */ 13420 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 13421 bool loop_ok) 13422 { 13423 int *insn_stack = env->cfg.insn_stack; 13424 int *insn_state = env->cfg.insn_state; 13425 13426 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 13427 return DONE_EXPLORING; 13428 13429 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 13430 return DONE_EXPLORING; 13431 13432 if (w < 0 || w >= env->prog->len) { 13433 verbose_linfo(env, t, "%d: ", t); 13434 verbose(env, "jump out of range from insn %d to %d\n", t, w); 13435 return -EINVAL; 13436 } 13437 13438 if (e == BRANCH) { 13439 /* mark branch target for state pruning */ 13440 mark_prune_point(env, w); 13441 mark_jmp_point(env, w); 13442 } 13443 13444 if (insn_state[w] == 0) { 13445 /* tree-edge */ 13446 insn_state[t] = DISCOVERED | e; 13447 insn_state[w] = DISCOVERED; 13448 if (env->cfg.cur_stack >= env->prog->len) 13449 return -E2BIG; 13450 insn_stack[env->cfg.cur_stack++] = w; 13451 return KEEP_EXPLORING; 13452 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 13453 if (loop_ok && env->bpf_capable) 13454 return DONE_EXPLORING; 13455 verbose_linfo(env, t, "%d: ", t); 13456 verbose_linfo(env, w, "%d: ", w); 13457 verbose(env, "back-edge from insn %d to %d\n", t, w); 13458 return -EINVAL; 13459 } else if (insn_state[w] == EXPLORED) { 13460 /* forward- or cross-edge */ 13461 insn_state[t] = DISCOVERED | e; 13462 } else { 13463 verbose(env, "insn state internal bug\n"); 13464 return -EFAULT; 13465 } 13466 return DONE_EXPLORING; 13467 } 13468 13469 static int visit_func_call_insn(int t, struct bpf_insn *insns, 13470 struct bpf_verifier_env *env, 13471 bool visit_callee) 13472 { 13473 int ret; 13474 13475 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 13476 if (ret) 13477 return ret; 13478 13479 mark_prune_point(env, t + 1); 13480 /* when we exit from subprog, we need to record non-linear history */ 13481 mark_jmp_point(env, t + 1); 13482 13483 if (visit_callee) { 13484 mark_prune_point(env, t); 13485 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 13486 /* It's ok to allow recursion from CFG point of 13487 * view. __check_func_call() will do the actual 13488 * check. 13489 */ 13490 bpf_pseudo_func(insns + t)); 13491 } 13492 return ret; 13493 } 13494 13495 /* Visits the instruction at index t and returns one of the following: 13496 * < 0 - an error occurred 13497 * DONE_EXPLORING - the instruction was fully explored 13498 * KEEP_EXPLORING - there is still work to be done before it is fully explored 13499 */ 13500 static int visit_insn(int t, struct bpf_verifier_env *env) 13501 { 13502 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 13503 int ret; 13504 13505 if (bpf_pseudo_func(insn)) 13506 return visit_func_call_insn(t, insns, env, true); 13507 13508 /* All non-branch instructions have a single fall-through edge. */ 13509 if (BPF_CLASS(insn->code) != BPF_JMP && 13510 BPF_CLASS(insn->code) != BPF_JMP32) 13511 return push_insn(t, t + 1, FALLTHROUGH, env, false); 13512 13513 switch (BPF_OP(insn->code)) { 13514 case BPF_EXIT: 13515 return DONE_EXPLORING; 13516 13517 case BPF_CALL: 13518 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 13519 /* Mark this call insn as a prune point to trigger 13520 * is_state_visited() check before call itself is 13521 * processed by __check_func_call(). Otherwise new 13522 * async state will be pushed for further exploration. 13523 */ 13524 mark_prune_point(env, t); 13525 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 13526 13527 case BPF_JA: 13528 if (BPF_SRC(insn->code) != BPF_K) 13529 return -EINVAL; 13530 13531 /* unconditional jump with single edge */ 13532 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 13533 true); 13534 if (ret) 13535 return ret; 13536 13537 mark_prune_point(env, t + insn->off + 1); 13538 mark_jmp_point(env, t + insn->off + 1); 13539 13540 return ret; 13541 13542 default: 13543 /* conditional jump with two edges */ 13544 mark_prune_point(env, t); 13545 13546 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 13547 if (ret) 13548 return ret; 13549 13550 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 13551 } 13552 } 13553 13554 /* non-recursive depth-first-search to detect loops in BPF program 13555 * loop == back-edge in directed graph 13556 */ 13557 static int check_cfg(struct bpf_verifier_env *env) 13558 { 13559 int insn_cnt = env->prog->len; 13560 int *insn_stack, *insn_state; 13561 int ret = 0; 13562 int i; 13563 13564 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13565 if (!insn_state) 13566 return -ENOMEM; 13567 13568 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13569 if (!insn_stack) { 13570 kvfree(insn_state); 13571 return -ENOMEM; 13572 } 13573 13574 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 13575 insn_stack[0] = 0; /* 0 is the first instruction */ 13576 env->cfg.cur_stack = 1; 13577 13578 while (env->cfg.cur_stack > 0) { 13579 int t = insn_stack[env->cfg.cur_stack - 1]; 13580 13581 ret = visit_insn(t, env); 13582 switch (ret) { 13583 case DONE_EXPLORING: 13584 insn_state[t] = EXPLORED; 13585 env->cfg.cur_stack--; 13586 break; 13587 case KEEP_EXPLORING: 13588 break; 13589 default: 13590 if (ret > 0) { 13591 verbose(env, "visit_insn internal bug\n"); 13592 ret = -EFAULT; 13593 } 13594 goto err_free; 13595 } 13596 } 13597 13598 if (env->cfg.cur_stack < 0) { 13599 verbose(env, "pop stack internal bug\n"); 13600 ret = -EFAULT; 13601 goto err_free; 13602 } 13603 13604 for (i = 0; i < insn_cnt; i++) { 13605 if (insn_state[i] != EXPLORED) { 13606 verbose(env, "unreachable insn %d\n", i); 13607 ret = -EINVAL; 13608 goto err_free; 13609 } 13610 } 13611 ret = 0; /* cfg looks good */ 13612 13613 err_free: 13614 kvfree(insn_state); 13615 kvfree(insn_stack); 13616 env->cfg.insn_state = env->cfg.insn_stack = NULL; 13617 return ret; 13618 } 13619 13620 static int check_abnormal_return(struct bpf_verifier_env *env) 13621 { 13622 int i; 13623 13624 for (i = 1; i < env->subprog_cnt; i++) { 13625 if (env->subprog_info[i].has_ld_abs) { 13626 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 13627 return -EINVAL; 13628 } 13629 if (env->subprog_info[i].has_tail_call) { 13630 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 13631 return -EINVAL; 13632 } 13633 } 13634 return 0; 13635 } 13636 13637 /* The minimum supported BTF func info size */ 13638 #define MIN_BPF_FUNCINFO_SIZE 8 13639 #define MAX_FUNCINFO_REC_SIZE 252 13640 13641 static int check_btf_func(struct bpf_verifier_env *env, 13642 const union bpf_attr *attr, 13643 bpfptr_t uattr) 13644 { 13645 const struct btf_type *type, *func_proto, *ret_type; 13646 u32 i, nfuncs, urec_size, min_size; 13647 u32 krec_size = sizeof(struct bpf_func_info); 13648 struct bpf_func_info *krecord; 13649 struct bpf_func_info_aux *info_aux = NULL; 13650 struct bpf_prog *prog; 13651 const struct btf *btf; 13652 bpfptr_t urecord; 13653 u32 prev_offset = 0; 13654 bool scalar_return; 13655 int ret = -ENOMEM; 13656 13657 nfuncs = attr->func_info_cnt; 13658 if (!nfuncs) { 13659 if (check_abnormal_return(env)) 13660 return -EINVAL; 13661 return 0; 13662 } 13663 13664 if (nfuncs != env->subprog_cnt) { 13665 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 13666 return -EINVAL; 13667 } 13668 13669 urec_size = attr->func_info_rec_size; 13670 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 13671 urec_size > MAX_FUNCINFO_REC_SIZE || 13672 urec_size % sizeof(u32)) { 13673 verbose(env, "invalid func info rec size %u\n", urec_size); 13674 return -EINVAL; 13675 } 13676 13677 prog = env->prog; 13678 btf = prog->aux->btf; 13679 13680 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 13681 min_size = min_t(u32, krec_size, urec_size); 13682 13683 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 13684 if (!krecord) 13685 return -ENOMEM; 13686 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 13687 if (!info_aux) 13688 goto err_free; 13689 13690 for (i = 0; i < nfuncs; i++) { 13691 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 13692 if (ret) { 13693 if (ret == -E2BIG) { 13694 verbose(env, "nonzero tailing record in func info"); 13695 /* set the size kernel expects so loader can zero 13696 * out the rest of the record. 13697 */ 13698 if (copy_to_bpfptr_offset(uattr, 13699 offsetof(union bpf_attr, func_info_rec_size), 13700 &min_size, sizeof(min_size))) 13701 ret = -EFAULT; 13702 } 13703 goto err_free; 13704 } 13705 13706 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 13707 ret = -EFAULT; 13708 goto err_free; 13709 } 13710 13711 /* check insn_off */ 13712 ret = -EINVAL; 13713 if (i == 0) { 13714 if (krecord[i].insn_off) { 13715 verbose(env, 13716 "nonzero insn_off %u for the first func info record", 13717 krecord[i].insn_off); 13718 goto err_free; 13719 } 13720 } else if (krecord[i].insn_off <= prev_offset) { 13721 verbose(env, 13722 "same or smaller insn offset (%u) than previous func info record (%u)", 13723 krecord[i].insn_off, prev_offset); 13724 goto err_free; 13725 } 13726 13727 if (env->subprog_info[i].start != krecord[i].insn_off) { 13728 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 13729 goto err_free; 13730 } 13731 13732 /* check type_id */ 13733 type = btf_type_by_id(btf, krecord[i].type_id); 13734 if (!type || !btf_type_is_func(type)) { 13735 verbose(env, "invalid type id %d in func info", 13736 krecord[i].type_id); 13737 goto err_free; 13738 } 13739 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 13740 13741 func_proto = btf_type_by_id(btf, type->type); 13742 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 13743 /* btf_func_check() already verified it during BTF load */ 13744 goto err_free; 13745 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 13746 scalar_return = 13747 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 13748 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 13749 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 13750 goto err_free; 13751 } 13752 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 13753 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 13754 goto err_free; 13755 } 13756 13757 prev_offset = krecord[i].insn_off; 13758 bpfptr_add(&urecord, urec_size); 13759 } 13760 13761 prog->aux->func_info = krecord; 13762 prog->aux->func_info_cnt = nfuncs; 13763 prog->aux->func_info_aux = info_aux; 13764 return 0; 13765 13766 err_free: 13767 kvfree(krecord); 13768 kfree(info_aux); 13769 return ret; 13770 } 13771 13772 static void adjust_btf_func(struct bpf_verifier_env *env) 13773 { 13774 struct bpf_prog_aux *aux = env->prog->aux; 13775 int i; 13776 13777 if (!aux->func_info) 13778 return; 13779 13780 for (i = 0; i < env->subprog_cnt; i++) 13781 aux->func_info[i].insn_off = env->subprog_info[i].start; 13782 } 13783 13784 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 13785 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 13786 13787 static int check_btf_line(struct bpf_verifier_env *env, 13788 const union bpf_attr *attr, 13789 bpfptr_t uattr) 13790 { 13791 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 13792 struct bpf_subprog_info *sub; 13793 struct bpf_line_info *linfo; 13794 struct bpf_prog *prog; 13795 const struct btf *btf; 13796 bpfptr_t ulinfo; 13797 int err; 13798 13799 nr_linfo = attr->line_info_cnt; 13800 if (!nr_linfo) 13801 return 0; 13802 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 13803 return -EINVAL; 13804 13805 rec_size = attr->line_info_rec_size; 13806 if (rec_size < MIN_BPF_LINEINFO_SIZE || 13807 rec_size > MAX_LINEINFO_REC_SIZE || 13808 rec_size & (sizeof(u32) - 1)) 13809 return -EINVAL; 13810 13811 /* Need to zero it in case the userspace may 13812 * pass in a smaller bpf_line_info object. 13813 */ 13814 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 13815 GFP_KERNEL | __GFP_NOWARN); 13816 if (!linfo) 13817 return -ENOMEM; 13818 13819 prog = env->prog; 13820 btf = prog->aux->btf; 13821 13822 s = 0; 13823 sub = env->subprog_info; 13824 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 13825 expected_size = sizeof(struct bpf_line_info); 13826 ncopy = min_t(u32, expected_size, rec_size); 13827 for (i = 0; i < nr_linfo; i++) { 13828 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 13829 if (err) { 13830 if (err == -E2BIG) { 13831 verbose(env, "nonzero tailing record in line_info"); 13832 if (copy_to_bpfptr_offset(uattr, 13833 offsetof(union bpf_attr, line_info_rec_size), 13834 &expected_size, sizeof(expected_size))) 13835 err = -EFAULT; 13836 } 13837 goto err_free; 13838 } 13839 13840 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 13841 err = -EFAULT; 13842 goto err_free; 13843 } 13844 13845 /* 13846 * Check insn_off to ensure 13847 * 1) strictly increasing AND 13848 * 2) bounded by prog->len 13849 * 13850 * The linfo[0].insn_off == 0 check logically falls into 13851 * the later "missing bpf_line_info for func..." case 13852 * because the first linfo[0].insn_off must be the 13853 * first sub also and the first sub must have 13854 * subprog_info[0].start == 0. 13855 */ 13856 if ((i && linfo[i].insn_off <= prev_offset) || 13857 linfo[i].insn_off >= prog->len) { 13858 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 13859 i, linfo[i].insn_off, prev_offset, 13860 prog->len); 13861 err = -EINVAL; 13862 goto err_free; 13863 } 13864 13865 if (!prog->insnsi[linfo[i].insn_off].code) { 13866 verbose(env, 13867 "Invalid insn code at line_info[%u].insn_off\n", 13868 i); 13869 err = -EINVAL; 13870 goto err_free; 13871 } 13872 13873 if (!btf_name_by_offset(btf, linfo[i].line_off) || 13874 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 13875 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 13876 err = -EINVAL; 13877 goto err_free; 13878 } 13879 13880 if (s != env->subprog_cnt) { 13881 if (linfo[i].insn_off == sub[s].start) { 13882 sub[s].linfo_idx = i; 13883 s++; 13884 } else if (sub[s].start < linfo[i].insn_off) { 13885 verbose(env, "missing bpf_line_info for func#%u\n", s); 13886 err = -EINVAL; 13887 goto err_free; 13888 } 13889 } 13890 13891 prev_offset = linfo[i].insn_off; 13892 bpfptr_add(&ulinfo, rec_size); 13893 } 13894 13895 if (s != env->subprog_cnt) { 13896 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 13897 env->subprog_cnt - s, s); 13898 err = -EINVAL; 13899 goto err_free; 13900 } 13901 13902 prog->aux->linfo = linfo; 13903 prog->aux->nr_linfo = nr_linfo; 13904 13905 return 0; 13906 13907 err_free: 13908 kvfree(linfo); 13909 return err; 13910 } 13911 13912 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 13913 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 13914 13915 static int check_core_relo(struct bpf_verifier_env *env, 13916 const union bpf_attr *attr, 13917 bpfptr_t uattr) 13918 { 13919 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 13920 struct bpf_core_relo core_relo = {}; 13921 struct bpf_prog *prog = env->prog; 13922 const struct btf *btf = prog->aux->btf; 13923 struct bpf_core_ctx ctx = { 13924 .log = &env->log, 13925 .btf = btf, 13926 }; 13927 bpfptr_t u_core_relo; 13928 int err; 13929 13930 nr_core_relo = attr->core_relo_cnt; 13931 if (!nr_core_relo) 13932 return 0; 13933 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 13934 return -EINVAL; 13935 13936 rec_size = attr->core_relo_rec_size; 13937 if (rec_size < MIN_CORE_RELO_SIZE || 13938 rec_size > MAX_CORE_RELO_SIZE || 13939 rec_size % sizeof(u32)) 13940 return -EINVAL; 13941 13942 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 13943 expected_size = sizeof(struct bpf_core_relo); 13944 ncopy = min_t(u32, expected_size, rec_size); 13945 13946 /* Unlike func_info and line_info, copy and apply each CO-RE 13947 * relocation record one at a time. 13948 */ 13949 for (i = 0; i < nr_core_relo; i++) { 13950 /* future proofing when sizeof(bpf_core_relo) changes */ 13951 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 13952 if (err) { 13953 if (err == -E2BIG) { 13954 verbose(env, "nonzero tailing record in core_relo"); 13955 if (copy_to_bpfptr_offset(uattr, 13956 offsetof(union bpf_attr, core_relo_rec_size), 13957 &expected_size, sizeof(expected_size))) 13958 err = -EFAULT; 13959 } 13960 break; 13961 } 13962 13963 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 13964 err = -EFAULT; 13965 break; 13966 } 13967 13968 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 13969 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 13970 i, core_relo.insn_off, prog->len); 13971 err = -EINVAL; 13972 break; 13973 } 13974 13975 err = bpf_core_apply(&ctx, &core_relo, i, 13976 &prog->insnsi[core_relo.insn_off / 8]); 13977 if (err) 13978 break; 13979 bpfptr_add(&u_core_relo, rec_size); 13980 } 13981 return err; 13982 } 13983 13984 static int check_btf_info(struct bpf_verifier_env *env, 13985 const union bpf_attr *attr, 13986 bpfptr_t uattr) 13987 { 13988 struct btf *btf; 13989 int err; 13990 13991 if (!attr->func_info_cnt && !attr->line_info_cnt) { 13992 if (check_abnormal_return(env)) 13993 return -EINVAL; 13994 return 0; 13995 } 13996 13997 btf = btf_get_by_fd(attr->prog_btf_fd); 13998 if (IS_ERR(btf)) 13999 return PTR_ERR(btf); 14000 if (btf_is_kernel(btf)) { 14001 btf_put(btf); 14002 return -EACCES; 14003 } 14004 env->prog->aux->btf = btf; 14005 14006 err = check_btf_func(env, attr, uattr); 14007 if (err) 14008 return err; 14009 14010 err = check_btf_line(env, attr, uattr); 14011 if (err) 14012 return err; 14013 14014 err = check_core_relo(env, attr, uattr); 14015 if (err) 14016 return err; 14017 14018 return 0; 14019 } 14020 14021 /* check %cur's range satisfies %old's */ 14022 static bool range_within(struct bpf_reg_state *old, 14023 struct bpf_reg_state *cur) 14024 { 14025 return old->umin_value <= cur->umin_value && 14026 old->umax_value >= cur->umax_value && 14027 old->smin_value <= cur->smin_value && 14028 old->smax_value >= cur->smax_value && 14029 old->u32_min_value <= cur->u32_min_value && 14030 old->u32_max_value >= cur->u32_max_value && 14031 old->s32_min_value <= cur->s32_min_value && 14032 old->s32_max_value >= cur->s32_max_value; 14033 } 14034 14035 /* If in the old state two registers had the same id, then they need to have 14036 * the same id in the new state as well. But that id could be different from 14037 * the old state, so we need to track the mapping from old to new ids. 14038 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 14039 * regs with old id 5 must also have new id 9 for the new state to be safe. But 14040 * regs with a different old id could still have new id 9, we don't care about 14041 * that. 14042 * So we look through our idmap to see if this old id has been seen before. If 14043 * so, we require the new id to match; otherwise, we add the id pair to the map. 14044 */ 14045 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 14046 { 14047 unsigned int i; 14048 14049 /* either both IDs should be set or both should be zero */ 14050 if (!!old_id != !!cur_id) 14051 return false; 14052 14053 if (old_id == 0) /* cur_id == 0 as well */ 14054 return true; 14055 14056 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 14057 if (!idmap[i].old) { 14058 /* Reached an empty slot; haven't seen this id before */ 14059 idmap[i].old = old_id; 14060 idmap[i].cur = cur_id; 14061 return true; 14062 } 14063 if (idmap[i].old == old_id) 14064 return idmap[i].cur == cur_id; 14065 } 14066 /* We ran out of idmap slots, which should be impossible */ 14067 WARN_ON_ONCE(1); 14068 return false; 14069 } 14070 14071 static void clean_func_state(struct bpf_verifier_env *env, 14072 struct bpf_func_state *st) 14073 { 14074 enum bpf_reg_liveness live; 14075 int i, j; 14076 14077 for (i = 0; i < BPF_REG_FP; i++) { 14078 live = st->regs[i].live; 14079 /* liveness must not touch this register anymore */ 14080 st->regs[i].live |= REG_LIVE_DONE; 14081 if (!(live & REG_LIVE_READ)) 14082 /* since the register is unused, clear its state 14083 * to make further comparison simpler 14084 */ 14085 __mark_reg_not_init(env, &st->regs[i]); 14086 } 14087 14088 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 14089 live = st->stack[i].spilled_ptr.live; 14090 /* liveness must not touch this stack slot anymore */ 14091 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 14092 if (!(live & REG_LIVE_READ)) { 14093 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 14094 for (j = 0; j < BPF_REG_SIZE; j++) 14095 st->stack[i].slot_type[j] = STACK_INVALID; 14096 } 14097 } 14098 } 14099 14100 static void clean_verifier_state(struct bpf_verifier_env *env, 14101 struct bpf_verifier_state *st) 14102 { 14103 int i; 14104 14105 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 14106 /* all regs in this state in all frames were already marked */ 14107 return; 14108 14109 for (i = 0; i <= st->curframe; i++) 14110 clean_func_state(env, st->frame[i]); 14111 } 14112 14113 /* the parentage chains form a tree. 14114 * the verifier states are added to state lists at given insn and 14115 * pushed into state stack for future exploration. 14116 * when the verifier reaches bpf_exit insn some of the verifer states 14117 * stored in the state lists have their final liveness state already, 14118 * but a lot of states will get revised from liveness point of view when 14119 * the verifier explores other branches. 14120 * Example: 14121 * 1: r0 = 1 14122 * 2: if r1 == 100 goto pc+1 14123 * 3: r0 = 2 14124 * 4: exit 14125 * when the verifier reaches exit insn the register r0 in the state list of 14126 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 14127 * of insn 2 and goes exploring further. At the insn 4 it will walk the 14128 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 14129 * 14130 * Since the verifier pushes the branch states as it sees them while exploring 14131 * the program the condition of walking the branch instruction for the second 14132 * time means that all states below this branch were already explored and 14133 * their final liveness marks are already propagated. 14134 * Hence when the verifier completes the search of state list in is_state_visited() 14135 * we can call this clean_live_states() function to mark all liveness states 14136 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 14137 * will not be used. 14138 * This function also clears the registers and stack for states that !READ 14139 * to simplify state merging. 14140 * 14141 * Important note here that walking the same branch instruction in the callee 14142 * doesn't meant that the states are DONE. The verifier has to compare 14143 * the callsites 14144 */ 14145 static void clean_live_states(struct bpf_verifier_env *env, int insn, 14146 struct bpf_verifier_state *cur) 14147 { 14148 struct bpf_verifier_state_list *sl; 14149 int i; 14150 14151 sl = *explored_state(env, insn); 14152 while (sl) { 14153 if (sl->state.branches) 14154 goto next; 14155 if (sl->state.insn_idx != insn || 14156 sl->state.curframe != cur->curframe) 14157 goto next; 14158 for (i = 0; i <= cur->curframe; i++) 14159 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 14160 goto next; 14161 clean_verifier_state(env, &sl->state); 14162 next: 14163 sl = sl->next; 14164 } 14165 } 14166 14167 static bool regs_exact(const struct bpf_reg_state *rold, 14168 const struct bpf_reg_state *rcur, 14169 struct bpf_id_pair *idmap) 14170 { 14171 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 14172 check_ids(rold->id, rcur->id, idmap) && 14173 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 14174 } 14175 14176 /* Returns true if (rold safe implies rcur safe) */ 14177 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 14178 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 14179 { 14180 if (!(rold->live & REG_LIVE_READ)) 14181 /* explored state didn't use this */ 14182 return true; 14183 if (rold->type == NOT_INIT) 14184 /* explored state can't have used this */ 14185 return true; 14186 if (rcur->type == NOT_INIT) 14187 return false; 14188 14189 /* Enforce that register types have to match exactly, including their 14190 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 14191 * rule. 14192 * 14193 * One can make a point that using a pointer register as unbounded 14194 * SCALAR would be technically acceptable, but this could lead to 14195 * pointer leaks because scalars are allowed to leak while pointers 14196 * are not. We could make this safe in special cases if root is 14197 * calling us, but it's probably not worth the hassle. 14198 * 14199 * Also, register types that are *not* MAYBE_NULL could technically be 14200 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 14201 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 14202 * to the same map). 14203 * However, if the old MAYBE_NULL register then got NULL checked, 14204 * doing so could have affected others with the same id, and we can't 14205 * check for that because we lost the id when we converted to 14206 * a non-MAYBE_NULL variant. 14207 * So, as a general rule we don't allow mixing MAYBE_NULL and 14208 * non-MAYBE_NULL registers as well. 14209 */ 14210 if (rold->type != rcur->type) 14211 return false; 14212 14213 switch (base_type(rold->type)) { 14214 case SCALAR_VALUE: 14215 if (regs_exact(rold, rcur, idmap)) 14216 return true; 14217 if (env->explore_alu_limits) 14218 return false; 14219 if (!rold->precise) 14220 return true; 14221 /* new val must satisfy old val knowledge */ 14222 return range_within(rold, rcur) && 14223 tnum_in(rold->var_off, rcur->var_off); 14224 case PTR_TO_MAP_KEY: 14225 case PTR_TO_MAP_VALUE: 14226 case PTR_TO_MEM: 14227 case PTR_TO_BUF: 14228 case PTR_TO_TP_BUFFER: 14229 /* If the new min/max/var_off satisfy the old ones and 14230 * everything else matches, we are OK. 14231 */ 14232 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 14233 range_within(rold, rcur) && 14234 tnum_in(rold->var_off, rcur->var_off) && 14235 check_ids(rold->id, rcur->id, idmap) && 14236 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 14237 case PTR_TO_PACKET_META: 14238 case PTR_TO_PACKET: 14239 /* We must have at least as much range as the old ptr 14240 * did, so that any accesses which were safe before are 14241 * still safe. This is true even if old range < old off, 14242 * since someone could have accessed through (ptr - k), or 14243 * even done ptr -= k in a register, to get a safe access. 14244 */ 14245 if (rold->range > rcur->range) 14246 return false; 14247 /* If the offsets don't match, we can't trust our alignment; 14248 * nor can we be sure that we won't fall out of range. 14249 */ 14250 if (rold->off != rcur->off) 14251 return false; 14252 /* id relations must be preserved */ 14253 if (!check_ids(rold->id, rcur->id, idmap)) 14254 return false; 14255 /* new val must satisfy old val knowledge */ 14256 return range_within(rold, rcur) && 14257 tnum_in(rold->var_off, rcur->var_off); 14258 case PTR_TO_STACK: 14259 /* two stack pointers are equal only if they're pointing to 14260 * the same stack frame, since fp-8 in foo != fp-8 in bar 14261 */ 14262 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 14263 default: 14264 return regs_exact(rold, rcur, idmap); 14265 } 14266 } 14267 14268 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 14269 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 14270 { 14271 int i, spi; 14272 14273 /* walk slots of the explored stack and ignore any additional 14274 * slots in the current stack, since explored(safe) state 14275 * didn't use them 14276 */ 14277 for (i = 0; i < old->allocated_stack; i++) { 14278 spi = i / BPF_REG_SIZE; 14279 14280 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 14281 i += BPF_REG_SIZE - 1; 14282 /* explored state didn't use this */ 14283 continue; 14284 } 14285 14286 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 14287 continue; 14288 14289 if (env->allow_uninit_stack && 14290 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 14291 continue; 14292 14293 /* explored stack has more populated slots than current stack 14294 * and these slots were used 14295 */ 14296 if (i >= cur->allocated_stack) 14297 return false; 14298 14299 /* if old state was safe with misc data in the stack 14300 * it will be safe with zero-initialized stack. 14301 * The opposite is not true 14302 */ 14303 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 14304 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 14305 continue; 14306 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 14307 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 14308 /* Ex: old explored (safe) state has STACK_SPILL in 14309 * this stack slot, but current has STACK_MISC -> 14310 * this verifier states are not equivalent, 14311 * return false to continue verification of this path 14312 */ 14313 return false; 14314 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 14315 continue; 14316 /* Both old and cur are having same slot_type */ 14317 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 14318 case STACK_SPILL: 14319 /* when explored and current stack slot are both storing 14320 * spilled registers, check that stored pointers types 14321 * are the same as well. 14322 * Ex: explored safe path could have stored 14323 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 14324 * but current path has stored: 14325 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 14326 * such verifier states are not equivalent. 14327 * return false to continue verification of this path 14328 */ 14329 if (!regsafe(env, &old->stack[spi].spilled_ptr, 14330 &cur->stack[spi].spilled_ptr, idmap)) 14331 return false; 14332 break; 14333 case STACK_DYNPTR: 14334 { 14335 const struct bpf_reg_state *old_reg, *cur_reg; 14336 14337 old_reg = &old->stack[spi].spilled_ptr; 14338 cur_reg = &cur->stack[spi].spilled_ptr; 14339 if (old_reg->dynptr.type != cur_reg->dynptr.type || 14340 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 14341 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 14342 return false; 14343 break; 14344 } 14345 case STACK_MISC: 14346 case STACK_ZERO: 14347 case STACK_INVALID: 14348 continue; 14349 /* Ensure that new unhandled slot types return false by default */ 14350 default: 14351 return false; 14352 } 14353 } 14354 return true; 14355 } 14356 14357 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 14358 struct bpf_id_pair *idmap) 14359 { 14360 int i; 14361 14362 if (old->acquired_refs != cur->acquired_refs) 14363 return false; 14364 14365 for (i = 0; i < old->acquired_refs; i++) { 14366 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 14367 return false; 14368 } 14369 14370 return true; 14371 } 14372 14373 /* compare two verifier states 14374 * 14375 * all states stored in state_list are known to be valid, since 14376 * verifier reached 'bpf_exit' instruction through them 14377 * 14378 * this function is called when verifier exploring different branches of 14379 * execution popped from the state stack. If it sees an old state that has 14380 * more strict register state and more strict stack state then this execution 14381 * branch doesn't need to be explored further, since verifier already 14382 * concluded that more strict state leads to valid finish. 14383 * 14384 * Therefore two states are equivalent if register state is more conservative 14385 * and explored stack state is more conservative than the current one. 14386 * Example: 14387 * explored current 14388 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 14389 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 14390 * 14391 * In other words if current stack state (one being explored) has more 14392 * valid slots than old one that already passed validation, it means 14393 * the verifier can stop exploring and conclude that current state is valid too 14394 * 14395 * Similarly with registers. If explored state has register type as invalid 14396 * whereas register type in current state is meaningful, it means that 14397 * the current state will reach 'bpf_exit' instruction safely 14398 */ 14399 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 14400 struct bpf_func_state *cur) 14401 { 14402 int i; 14403 14404 for (i = 0; i < MAX_BPF_REG; i++) 14405 if (!regsafe(env, &old->regs[i], &cur->regs[i], 14406 env->idmap_scratch)) 14407 return false; 14408 14409 if (!stacksafe(env, old, cur, env->idmap_scratch)) 14410 return false; 14411 14412 if (!refsafe(old, cur, env->idmap_scratch)) 14413 return false; 14414 14415 return true; 14416 } 14417 14418 static bool states_equal(struct bpf_verifier_env *env, 14419 struct bpf_verifier_state *old, 14420 struct bpf_verifier_state *cur) 14421 { 14422 int i; 14423 14424 if (old->curframe != cur->curframe) 14425 return false; 14426 14427 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 14428 14429 /* Verification state from speculative execution simulation 14430 * must never prune a non-speculative execution one. 14431 */ 14432 if (old->speculative && !cur->speculative) 14433 return false; 14434 14435 if (old->active_lock.ptr != cur->active_lock.ptr) 14436 return false; 14437 14438 /* Old and cur active_lock's have to be either both present 14439 * or both absent. 14440 */ 14441 if (!!old->active_lock.id != !!cur->active_lock.id) 14442 return false; 14443 14444 if (old->active_lock.id && 14445 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 14446 return false; 14447 14448 if (old->active_rcu_lock != cur->active_rcu_lock) 14449 return false; 14450 14451 /* for states to be equal callsites have to be the same 14452 * and all frame states need to be equivalent 14453 */ 14454 for (i = 0; i <= old->curframe; i++) { 14455 if (old->frame[i]->callsite != cur->frame[i]->callsite) 14456 return false; 14457 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 14458 return false; 14459 } 14460 return true; 14461 } 14462 14463 /* Return 0 if no propagation happened. Return negative error code if error 14464 * happened. Otherwise, return the propagated bit. 14465 */ 14466 static int propagate_liveness_reg(struct bpf_verifier_env *env, 14467 struct bpf_reg_state *reg, 14468 struct bpf_reg_state *parent_reg) 14469 { 14470 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 14471 u8 flag = reg->live & REG_LIVE_READ; 14472 int err; 14473 14474 /* When comes here, read flags of PARENT_REG or REG could be any of 14475 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 14476 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 14477 */ 14478 if (parent_flag == REG_LIVE_READ64 || 14479 /* Or if there is no read flag from REG. */ 14480 !flag || 14481 /* Or if the read flag from REG is the same as PARENT_REG. */ 14482 parent_flag == flag) 14483 return 0; 14484 14485 err = mark_reg_read(env, reg, parent_reg, flag); 14486 if (err) 14487 return err; 14488 14489 return flag; 14490 } 14491 14492 /* A write screens off any subsequent reads; but write marks come from the 14493 * straight-line code between a state and its parent. When we arrive at an 14494 * equivalent state (jump target or such) we didn't arrive by the straight-line 14495 * code, so read marks in the state must propagate to the parent regardless 14496 * of the state's write marks. That's what 'parent == state->parent' comparison 14497 * in mark_reg_read() is for. 14498 */ 14499 static int propagate_liveness(struct bpf_verifier_env *env, 14500 const struct bpf_verifier_state *vstate, 14501 struct bpf_verifier_state *vparent) 14502 { 14503 struct bpf_reg_state *state_reg, *parent_reg; 14504 struct bpf_func_state *state, *parent; 14505 int i, frame, err = 0; 14506 14507 if (vparent->curframe != vstate->curframe) { 14508 WARN(1, "propagate_live: parent frame %d current frame %d\n", 14509 vparent->curframe, vstate->curframe); 14510 return -EFAULT; 14511 } 14512 /* Propagate read liveness of registers... */ 14513 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 14514 for (frame = 0; frame <= vstate->curframe; frame++) { 14515 parent = vparent->frame[frame]; 14516 state = vstate->frame[frame]; 14517 parent_reg = parent->regs; 14518 state_reg = state->regs; 14519 /* We don't need to worry about FP liveness, it's read-only */ 14520 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 14521 err = propagate_liveness_reg(env, &state_reg[i], 14522 &parent_reg[i]); 14523 if (err < 0) 14524 return err; 14525 if (err == REG_LIVE_READ64) 14526 mark_insn_zext(env, &parent_reg[i]); 14527 } 14528 14529 /* Propagate stack slots. */ 14530 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 14531 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 14532 parent_reg = &parent->stack[i].spilled_ptr; 14533 state_reg = &state->stack[i].spilled_ptr; 14534 err = propagate_liveness_reg(env, state_reg, 14535 parent_reg); 14536 if (err < 0) 14537 return err; 14538 } 14539 } 14540 return 0; 14541 } 14542 14543 /* find precise scalars in the previous equivalent state and 14544 * propagate them into the current state 14545 */ 14546 static int propagate_precision(struct bpf_verifier_env *env, 14547 const struct bpf_verifier_state *old) 14548 { 14549 struct bpf_reg_state *state_reg; 14550 struct bpf_func_state *state; 14551 int i, err = 0, fr; 14552 14553 for (fr = old->curframe; fr >= 0; fr--) { 14554 state = old->frame[fr]; 14555 state_reg = state->regs; 14556 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 14557 if (state_reg->type != SCALAR_VALUE || 14558 !state_reg->precise) 14559 continue; 14560 if (env->log.level & BPF_LOG_LEVEL2) 14561 verbose(env, "frame %d: propagating r%d\n", i, fr); 14562 err = mark_chain_precision_frame(env, fr, i); 14563 if (err < 0) 14564 return err; 14565 } 14566 14567 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 14568 if (!is_spilled_reg(&state->stack[i])) 14569 continue; 14570 state_reg = &state->stack[i].spilled_ptr; 14571 if (state_reg->type != SCALAR_VALUE || 14572 !state_reg->precise) 14573 continue; 14574 if (env->log.level & BPF_LOG_LEVEL2) 14575 verbose(env, "frame %d: propagating fp%d\n", 14576 (-i - 1) * BPF_REG_SIZE, fr); 14577 err = mark_chain_precision_stack_frame(env, fr, i); 14578 if (err < 0) 14579 return err; 14580 } 14581 } 14582 return 0; 14583 } 14584 14585 static bool states_maybe_looping(struct bpf_verifier_state *old, 14586 struct bpf_verifier_state *cur) 14587 { 14588 struct bpf_func_state *fold, *fcur; 14589 int i, fr = cur->curframe; 14590 14591 if (old->curframe != fr) 14592 return false; 14593 14594 fold = old->frame[fr]; 14595 fcur = cur->frame[fr]; 14596 for (i = 0; i < MAX_BPF_REG; i++) 14597 if (memcmp(&fold->regs[i], &fcur->regs[i], 14598 offsetof(struct bpf_reg_state, parent))) 14599 return false; 14600 return true; 14601 } 14602 14603 14604 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 14605 { 14606 struct bpf_verifier_state_list *new_sl; 14607 struct bpf_verifier_state_list *sl, **pprev; 14608 struct bpf_verifier_state *cur = env->cur_state, *new; 14609 int i, j, err, states_cnt = 0; 14610 bool add_new_state = env->test_state_freq ? true : false; 14611 14612 /* bpf progs typically have pruning point every 4 instructions 14613 * http://vger.kernel.org/bpfconf2019.html#session-1 14614 * Do not add new state for future pruning if the verifier hasn't seen 14615 * at least 2 jumps and at least 8 instructions. 14616 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 14617 * In tests that amounts to up to 50% reduction into total verifier 14618 * memory consumption and 20% verifier time speedup. 14619 */ 14620 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 14621 env->insn_processed - env->prev_insn_processed >= 8) 14622 add_new_state = true; 14623 14624 pprev = explored_state(env, insn_idx); 14625 sl = *pprev; 14626 14627 clean_live_states(env, insn_idx, cur); 14628 14629 while (sl) { 14630 states_cnt++; 14631 if (sl->state.insn_idx != insn_idx) 14632 goto next; 14633 14634 if (sl->state.branches) { 14635 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 14636 14637 if (frame->in_async_callback_fn && 14638 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 14639 /* Different async_entry_cnt means that the verifier is 14640 * processing another entry into async callback. 14641 * Seeing the same state is not an indication of infinite 14642 * loop or infinite recursion. 14643 * But finding the same state doesn't mean that it's safe 14644 * to stop processing the current state. The previous state 14645 * hasn't yet reached bpf_exit, since state.branches > 0. 14646 * Checking in_async_callback_fn alone is not enough either. 14647 * Since the verifier still needs to catch infinite loops 14648 * inside async callbacks. 14649 */ 14650 } else if (states_maybe_looping(&sl->state, cur) && 14651 states_equal(env, &sl->state, cur)) { 14652 verbose_linfo(env, insn_idx, "; "); 14653 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 14654 return -EINVAL; 14655 } 14656 /* if the verifier is processing a loop, avoid adding new state 14657 * too often, since different loop iterations have distinct 14658 * states and may not help future pruning. 14659 * This threshold shouldn't be too low to make sure that 14660 * a loop with large bound will be rejected quickly. 14661 * The most abusive loop will be: 14662 * r1 += 1 14663 * if r1 < 1000000 goto pc-2 14664 * 1M insn_procssed limit / 100 == 10k peak states. 14665 * This threshold shouldn't be too high either, since states 14666 * at the end of the loop are likely to be useful in pruning. 14667 */ 14668 if (!env->test_state_freq && 14669 env->jmps_processed - env->prev_jmps_processed < 20 && 14670 env->insn_processed - env->prev_insn_processed < 100) 14671 add_new_state = false; 14672 goto miss; 14673 } 14674 if (states_equal(env, &sl->state, cur)) { 14675 sl->hit_cnt++; 14676 /* reached equivalent register/stack state, 14677 * prune the search. 14678 * Registers read by the continuation are read by us. 14679 * If we have any write marks in env->cur_state, they 14680 * will prevent corresponding reads in the continuation 14681 * from reaching our parent (an explored_state). Our 14682 * own state will get the read marks recorded, but 14683 * they'll be immediately forgotten as we're pruning 14684 * this state and will pop a new one. 14685 */ 14686 err = propagate_liveness(env, &sl->state, cur); 14687 14688 /* if previous state reached the exit with precision and 14689 * current state is equivalent to it (except precsion marks) 14690 * the precision needs to be propagated back in 14691 * the current state. 14692 */ 14693 err = err ? : push_jmp_history(env, cur); 14694 err = err ? : propagate_precision(env, &sl->state); 14695 if (err) 14696 return err; 14697 return 1; 14698 } 14699 miss: 14700 /* when new state is not going to be added do not increase miss count. 14701 * Otherwise several loop iterations will remove the state 14702 * recorded earlier. The goal of these heuristics is to have 14703 * states from some iterations of the loop (some in the beginning 14704 * and some at the end) to help pruning. 14705 */ 14706 if (add_new_state) 14707 sl->miss_cnt++; 14708 /* heuristic to determine whether this state is beneficial 14709 * to keep checking from state equivalence point of view. 14710 * Higher numbers increase max_states_per_insn and verification time, 14711 * but do not meaningfully decrease insn_processed. 14712 */ 14713 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 14714 /* the state is unlikely to be useful. Remove it to 14715 * speed up verification 14716 */ 14717 *pprev = sl->next; 14718 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 14719 u32 br = sl->state.branches; 14720 14721 WARN_ONCE(br, 14722 "BUG live_done but branches_to_explore %d\n", 14723 br); 14724 free_verifier_state(&sl->state, false); 14725 kfree(sl); 14726 env->peak_states--; 14727 } else { 14728 /* cannot free this state, since parentage chain may 14729 * walk it later. Add it for free_list instead to 14730 * be freed at the end of verification 14731 */ 14732 sl->next = env->free_list; 14733 env->free_list = sl; 14734 } 14735 sl = *pprev; 14736 continue; 14737 } 14738 next: 14739 pprev = &sl->next; 14740 sl = *pprev; 14741 } 14742 14743 if (env->max_states_per_insn < states_cnt) 14744 env->max_states_per_insn = states_cnt; 14745 14746 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 14747 return 0; 14748 14749 if (!add_new_state) 14750 return 0; 14751 14752 /* There were no equivalent states, remember the current one. 14753 * Technically the current state is not proven to be safe yet, 14754 * but it will either reach outer most bpf_exit (which means it's safe) 14755 * or it will be rejected. When there are no loops the verifier won't be 14756 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 14757 * again on the way to bpf_exit. 14758 * When looping the sl->state.branches will be > 0 and this state 14759 * will not be considered for equivalence until branches == 0. 14760 */ 14761 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 14762 if (!new_sl) 14763 return -ENOMEM; 14764 env->total_states++; 14765 env->peak_states++; 14766 env->prev_jmps_processed = env->jmps_processed; 14767 env->prev_insn_processed = env->insn_processed; 14768 14769 /* forget precise markings we inherited, see __mark_chain_precision */ 14770 if (env->bpf_capable) 14771 mark_all_scalars_imprecise(env, cur); 14772 14773 /* add new state to the head of linked list */ 14774 new = &new_sl->state; 14775 err = copy_verifier_state(new, cur); 14776 if (err) { 14777 free_verifier_state(new, false); 14778 kfree(new_sl); 14779 return err; 14780 } 14781 new->insn_idx = insn_idx; 14782 WARN_ONCE(new->branches != 1, 14783 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 14784 14785 cur->parent = new; 14786 cur->first_insn_idx = insn_idx; 14787 clear_jmp_history(cur); 14788 new_sl->next = *explored_state(env, insn_idx); 14789 *explored_state(env, insn_idx) = new_sl; 14790 /* connect new state to parentage chain. Current frame needs all 14791 * registers connected. Only r6 - r9 of the callers are alive (pushed 14792 * to the stack implicitly by JITs) so in callers' frames connect just 14793 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 14794 * the state of the call instruction (with WRITTEN set), and r0 comes 14795 * from callee with its full parentage chain, anyway. 14796 */ 14797 /* clear write marks in current state: the writes we did are not writes 14798 * our child did, so they don't screen off its reads from us. 14799 * (There are no read marks in current state, because reads always mark 14800 * their parent and current state never has children yet. Only 14801 * explored_states can get read marks.) 14802 */ 14803 for (j = 0; j <= cur->curframe; j++) { 14804 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 14805 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 14806 for (i = 0; i < BPF_REG_FP; i++) 14807 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 14808 } 14809 14810 /* all stack frames are accessible from callee, clear them all */ 14811 for (j = 0; j <= cur->curframe; j++) { 14812 struct bpf_func_state *frame = cur->frame[j]; 14813 struct bpf_func_state *newframe = new->frame[j]; 14814 14815 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 14816 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 14817 frame->stack[i].spilled_ptr.parent = 14818 &newframe->stack[i].spilled_ptr; 14819 } 14820 } 14821 return 0; 14822 } 14823 14824 /* Return true if it's OK to have the same insn return a different type. */ 14825 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 14826 { 14827 switch (base_type(type)) { 14828 case PTR_TO_CTX: 14829 case PTR_TO_SOCKET: 14830 case PTR_TO_SOCK_COMMON: 14831 case PTR_TO_TCP_SOCK: 14832 case PTR_TO_XDP_SOCK: 14833 case PTR_TO_BTF_ID: 14834 return false; 14835 default: 14836 return true; 14837 } 14838 } 14839 14840 /* If an instruction was previously used with particular pointer types, then we 14841 * need to be careful to avoid cases such as the below, where it may be ok 14842 * for one branch accessing the pointer, but not ok for the other branch: 14843 * 14844 * R1 = sock_ptr 14845 * goto X; 14846 * ... 14847 * R1 = some_other_valid_ptr; 14848 * goto X; 14849 * ... 14850 * R2 = *(u32 *)(R1 + 0); 14851 */ 14852 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 14853 { 14854 return src != prev && (!reg_type_mismatch_ok(src) || 14855 !reg_type_mismatch_ok(prev)); 14856 } 14857 14858 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 14859 bool allow_trust_missmatch) 14860 { 14861 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14862 14863 if (*prev_type == NOT_INIT) { 14864 /* Saw a valid insn 14865 * dst_reg = *(u32 *)(src_reg + off) 14866 * save type to validate intersecting paths 14867 */ 14868 *prev_type = type; 14869 } else if (reg_type_mismatch(type, *prev_type)) { 14870 /* Abuser program is trying to use the same insn 14871 * dst_reg = *(u32*) (src_reg + off) 14872 * with different pointer types: 14873 * src_reg == ctx in one branch and 14874 * src_reg == stack|map in some other branch. 14875 * Reject it. 14876 */ 14877 if (allow_trust_missmatch && 14878 base_type(type) == PTR_TO_BTF_ID && 14879 base_type(*prev_type) == PTR_TO_BTF_ID) { 14880 /* 14881 * Have to support a use case when one path through 14882 * the program yields TRUSTED pointer while another 14883 * is UNTRUSTED. Fallback to UNTRUSTED to generate 14884 * BPF_PROBE_MEM. 14885 */ 14886 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 14887 } else { 14888 verbose(env, "same insn cannot be used with different pointers\n"); 14889 return -EINVAL; 14890 } 14891 } 14892 14893 return 0; 14894 } 14895 14896 static int do_check(struct bpf_verifier_env *env) 14897 { 14898 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14899 struct bpf_verifier_state *state = env->cur_state; 14900 struct bpf_insn *insns = env->prog->insnsi; 14901 struct bpf_reg_state *regs; 14902 int insn_cnt = env->prog->len; 14903 bool do_print_state = false; 14904 int prev_insn_idx = -1; 14905 14906 for (;;) { 14907 struct bpf_insn *insn; 14908 u8 class; 14909 int err; 14910 14911 env->prev_insn_idx = prev_insn_idx; 14912 if (env->insn_idx >= insn_cnt) { 14913 verbose(env, "invalid insn idx %d insn_cnt %d\n", 14914 env->insn_idx, insn_cnt); 14915 return -EFAULT; 14916 } 14917 14918 insn = &insns[env->insn_idx]; 14919 class = BPF_CLASS(insn->code); 14920 14921 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 14922 verbose(env, 14923 "BPF program is too large. Processed %d insn\n", 14924 env->insn_processed); 14925 return -E2BIG; 14926 } 14927 14928 state->last_insn_idx = env->prev_insn_idx; 14929 14930 if (is_prune_point(env, env->insn_idx)) { 14931 err = is_state_visited(env, env->insn_idx); 14932 if (err < 0) 14933 return err; 14934 if (err == 1) { 14935 /* found equivalent state, can prune the search */ 14936 if (env->log.level & BPF_LOG_LEVEL) { 14937 if (do_print_state) 14938 verbose(env, "\nfrom %d to %d%s: safe\n", 14939 env->prev_insn_idx, env->insn_idx, 14940 env->cur_state->speculative ? 14941 " (speculative execution)" : ""); 14942 else 14943 verbose(env, "%d: safe\n", env->insn_idx); 14944 } 14945 goto process_bpf_exit; 14946 } 14947 } 14948 14949 if (is_jmp_point(env, env->insn_idx)) { 14950 err = push_jmp_history(env, state); 14951 if (err) 14952 return err; 14953 } 14954 14955 if (signal_pending(current)) 14956 return -EAGAIN; 14957 14958 if (need_resched()) 14959 cond_resched(); 14960 14961 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 14962 verbose(env, "\nfrom %d to %d%s:", 14963 env->prev_insn_idx, env->insn_idx, 14964 env->cur_state->speculative ? 14965 " (speculative execution)" : ""); 14966 print_verifier_state(env, state->frame[state->curframe], true); 14967 do_print_state = false; 14968 } 14969 14970 if (env->log.level & BPF_LOG_LEVEL) { 14971 const struct bpf_insn_cbs cbs = { 14972 .cb_call = disasm_kfunc_name, 14973 .cb_print = verbose, 14974 .private_data = env, 14975 }; 14976 14977 if (verifier_state_scratched(env)) 14978 print_insn_state(env, state->frame[state->curframe]); 14979 14980 verbose_linfo(env, env->insn_idx, "; "); 14981 env->prev_log_len = env->log.len_used; 14982 verbose(env, "%d: ", env->insn_idx); 14983 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 14984 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 14985 env->prev_log_len = env->log.len_used; 14986 } 14987 14988 if (bpf_prog_is_offloaded(env->prog->aux)) { 14989 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 14990 env->prev_insn_idx); 14991 if (err) 14992 return err; 14993 } 14994 14995 regs = cur_regs(env); 14996 sanitize_mark_insn_seen(env); 14997 prev_insn_idx = env->insn_idx; 14998 14999 if (class == BPF_ALU || class == BPF_ALU64) { 15000 err = check_alu_op(env, insn); 15001 if (err) 15002 return err; 15003 15004 } else if (class == BPF_LDX) { 15005 enum bpf_reg_type src_reg_type; 15006 15007 /* check for reserved fields is already done */ 15008 15009 /* check src operand */ 15010 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15011 if (err) 15012 return err; 15013 15014 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15015 if (err) 15016 return err; 15017 15018 src_reg_type = regs[insn->src_reg].type; 15019 15020 /* check that memory (src_reg + off) is readable, 15021 * the state of dst_reg will be updated by this func 15022 */ 15023 err = check_mem_access(env, env->insn_idx, insn->src_reg, 15024 insn->off, BPF_SIZE(insn->code), 15025 BPF_READ, insn->dst_reg, false); 15026 if (err) 15027 return err; 15028 15029 err = save_aux_ptr_type(env, src_reg_type, true); 15030 if (err) 15031 return err; 15032 } else if (class == BPF_STX) { 15033 enum bpf_reg_type dst_reg_type; 15034 15035 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 15036 err = check_atomic(env, env->insn_idx, insn); 15037 if (err) 15038 return err; 15039 env->insn_idx++; 15040 continue; 15041 } 15042 15043 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 15044 verbose(env, "BPF_STX uses reserved fields\n"); 15045 return -EINVAL; 15046 } 15047 15048 /* check src1 operand */ 15049 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15050 if (err) 15051 return err; 15052 /* check src2 operand */ 15053 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15054 if (err) 15055 return err; 15056 15057 dst_reg_type = regs[insn->dst_reg].type; 15058 15059 /* check that memory (dst_reg + off) is writeable */ 15060 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 15061 insn->off, BPF_SIZE(insn->code), 15062 BPF_WRITE, insn->src_reg, false); 15063 if (err) 15064 return err; 15065 15066 err = save_aux_ptr_type(env, dst_reg_type, false); 15067 if (err) 15068 return err; 15069 } else if (class == BPF_ST) { 15070 enum bpf_reg_type dst_reg_type; 15071 15072 if (BPF_MODE(insn->code) != BPF_MEM || 15073 insn->src_reg != BPF_REG_0) { 15074 verbose(env, "BPF_ST uses reserved fields\n"); 15075 return -EINVAL; 15076 } 15077 /* check src operand */ 15078 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15079 if (err) 15080 return err; 15081 15082 dst_reg_type = regs[insn->dst_reg].type; 15083 15084 /* check that memory (dst_reg + off) is writeable */ 15085 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 15086 insn->off, BPF_SIZE(insn->code), 15087 BPF_WRITE, -1, false); 15088 if (err) 15089 return err; 15090 15091 err = save_aux_ptr_type(env, dst_reg_type, false); 15092 if (err) 15093 return err; 15094 } else if (class == BPF_JMP || class == BPF_JMP32) { 15095 u8 opcode = BPF_OP(insn->code); 15096 15097 env->jmps_processed++; 15098 if (opcode == BPF_CALL) { 15099 if (BPF_SRC(insn->code) != BPF_K || 15100 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 15101 && insn->off != 0) || 15102 (insn->src_reg != BPF_REG_0 && 15103 insn->src_reg != BPF_PSEUDO_CALL && 15104 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 15105 insn->dst_reg != BPF_REG_0 || 15106 class == BPF_JMP32) { 15107 verbose(env, "BPF_CALL uses reserved fields\n"); 15108 return -EINVAL; 15109 } 15110 15111 if (env->cur_state->active_lock.ptr) { 15112 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 15113 (insn->src_reg == BPF_PSEUDO_CALL) || 15114 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 15115 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 15116 verbose(env, "function calls are not allowed while holding a lock\n"); 15117 return -EINVAL; 15118 } 15119 } 15120 if (insn->src_reg == BPF_PSEUDO_CALL) 15121 err = check_func_call(env, insn, &env->insn_idx); 15122 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 15123 err = check_kfunc_call(env, insn, &env->insn_idx); 15124 else 15125 err = check_helper_call(env, insn, &env->insn_idx); 15126 if (err) 15127 return err; 15128 15129 mark_reg_scratched(env, BPF_REG_0); 15130 } else if (opcode == BPF_JA) { 15131 if (BPF_SRC(insn->code) != BPF_K || 15132 insn->imm != 0 || 15133 insn->src_reg != BPF_REG_0 || 15134 insn->dst_reg != BPF_REG_0 || 15135 class == BPF_JMP32) { 15136 verbose(env, "BPF_JA uses reserved fields\n"); 15137 return -EINVAL; 15138 } 15139 15140 env->insn_idx += insn->off + 1; 15141 continue; 15142 15143 } else if (opcode == BPF_EXIT) { 15144 if (BPF_SRC(insn->code) != BPF_K || 15145 insn->imm != 0 || 15146 insn->src_reg != BPF_REG_0 || 15147 insn->dst_reg != BPF_REG_0 || 15148 class == BPF_JMP32) { 15149 verbose(env, "BPF_EXIT uses reserved fields\n"); 15150 return -EINVAL; 15151 } 15152 15153 if (env->cur_state->active_lock.ptr && 15154 !in_rbtree_lock_required_cb(env)) { 15155 verbose(env, "bpf_spin_unlock is missing\n"); 15156 return -EINVAL; 15157 } 15158 15159 if (env->cur_state->active_rcu_lock) { 15160 verbose(env, "bpf_rcu_read_unlock is missing\n"); 15161 return -EINVAL; 15162 } 15163 15164 /* We must do check_reference_leak here before 15165 * prepare_func_exit to handle the case when 15166 * state->curframe > 0, it may be a callback 15167 * function, for which reference_state must 15168 * match caller reference state when it exits. 15169 */ 15170 err = check_reference_leak(env); 15171 if (err) 15172 return err; 15173 15174 if (state->curframe) { 15175 /* exit from nested function */ 15176 err = prepare_func_exit(env, &env->insn_idx); 15177 if (err) 15178 return err; 15179 do_print_state = true; 15180 continue; 15181 } 15182 15183 err = check_return_code(env); 15184 if (err) 15185 return err; 15186 process_bpf_exit: 15187 mark_verifier_state_scratched(env); 15188 update_branch_counts(env, env->cur_state); 15189 err = pop_stack(env, &prev_insn_idx, 15190 &env->insn_idx, pop_log); 15191 if (err < 0) { 15192 if (err != -ENOENT) 15193 return err; 15194 break; 15195 } else { 15196 do_print_state = true; 15197 continue; 15198 } 15199 } else { 15200 err = check_cond_jmp_op(env, insn, &env->insn_idx); 15201 if (err) 15202 return err; 15203 } 15204 } else if (class == BPF_LD) { 15205 u8 mode = BPF_MODE(insn->code); 15206 15207 if (mode == BPF_ABS || mode == BPF_IND) { 15208 err = check_ld_abs(env, insn); 15209 if (err) 15210 return err; 15211 15212 } else if (mode == BPF_IMM) { 15213 err = check_ld_imm(env, insn); 15214 if (err) 15215 return err; 15216 15217 env->insn_idx++; 15218 sanitize_mark_insn_seen(env); 15219 } else { 15220 verbose(env, "invalid BPF_LD mode\n"); 15221 return -EINVAL; 15222 } 15223 } else { 15224 verbose(env, "unknown insn class %d\n", class); 15225 return -EINVAL; 15226 } 15227 15228 env->insn_idx++; 15229 } 15230 15231 return 0; 15232 } 15233 15234 static int find_btf_percpu_datasec(struct btf *btf) 15235 { 15236 const struct btf_type *t; 15237 const char *tname; 15238 int i, n; 15239 15240 /* 15241 * Both vmlinux and module each have their own ".data..percpu" 15242 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 15243 * types to look at only module's own BTF types. 15244 */ 15245 n = btf_nr_types(btf); 15246 if (btf_is_module(btf)) 15247 i = btf_nr_types(btf_vmlinux); 15248 else 15249 i = 1; 15250 15251 for(; i < n; i++) { 15252 t = btf_type_by_id(btf, i); 15253 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 15254 continue; 15255 15256 tname = btf_name_by_offset(btf, t->name_off); 15257 if (!strcmp(tname, ".data..percpu")) 15258 return i; 15259 } 15260 15261 return -ENOENT; 15262 } 15263 15264 /* replace pseudo btf_id with kernel symbol address */ 15265 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 15266 struct bpf_insn *insn, 15267 struct bpf_insn_aux_data *aux) 15268 { 15269 const struct btf_var_secinfo *vsi; 15270 const struct btf_type *datasec; 15271 struct btf_mod_pair *btf_mod; 15272 const struct btf_type *t; 15273 const char *sym_name; 15274 bool percpu = false; 15275 u32 type, id = insn->imm; 15276 struct btf *btf; 15277 s32 datasec_id; 15278 u64 addr; 15279 int i, btf_fd, err; 15280 15281 btf_fd = insn[1].imm; 15282 if (btf_fd) { 15283 btf = btf_get_by_fd(btf_fd); 15284 if (IS_ERR(btf)) { 15285 verbose(env, "invalid module BTF object FD specified.\n"); 15286 return -EINVAL; 15287 } 15288 } else { 15289 if (!btf_vmlinux) { 15290 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 15291 return -EINVAL; 15292 } 15293 btf = btf_vmlinux; 15294 btf_get(btf); 15295 } 15296 15297 t = btf_type_by_id(btf, id); 15298 if (!t) { 15299 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 15300 err = -ENOENT; 15301 goto err_put; 15302 } 15303 15304 if (!btf_type_is_var(t)) { 15305 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 15306 err = -EINVAL; 15307 goto err_put; 15308 } 15309 15310 sym_name = btf_name_by_offset(btf, t->name_off); 15311 addr = kallsyms_lookup_name(sym_name); 15312 if (!addr) { 15313 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 15314 sym_name); 15315 err = -ENOENT; 15316 goto err_put; 15317 } 15318 15319 datasec_id = find_btf_percpu_datasec(btf); 15320 if (datasec_id > 0) { 15321 datasec = btf_type_by_id(btf, datasec_id); 15322 for_each_vsi(i, datasec, vsi) { 15323 if (vsi->type == id) { 15324 percpu = true; 15325 break; 15326 } 15327 } 15328 } 15329 15330 insn[0].imm = (u32)addr; 15331 insn[1].imm = addr >> 32; 15332 15333 type = t->type; 15334 t = btf_type_skip_modifiers(btf, type, NULL); 15335 if (percpu) { 15336 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 15337 aux->btf_var.btf = btf; 15338 aux->btf_var.btf_id = type; 15339 } else if (!btf_type_is_struct(t)) { 15340 const struct btf_type *ret; 15341 const char *tname; 15342 u32 tsize; 15343 15344 /* resolve the type size of ksym. */ 15345 ret = btf_resolve_size(btf, t, &tsize); 15346 if (IS_ERR(ret)) { 15347 tname = btf_name_by_offset(btf, t->name_off); 15348 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 15349 tname, PTR_ERR(ret)); 15350 err = -EINVAL; 15351 goto err_put; 15352 } 15353 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 15354 aux->btf_var.mem_size = tsize; 15355 } else { 15356 aux->btf_var.reg_type = PTR_TO_BTF_ID; 15357 aux->btf_var.btf = btf; 15358 aux->btf_var.btf_id = type; 15359 } 15360 15361 /* check whether we recorded this BTF (and maybe module) already */ 15362 for (i = 0; i < env->used_btf_cnt; i++) { 15363 if (env->used_btfs[i].btf == btf) { 15364 btf_put(btf); 15365 return 0; 15366 } 15367 } 15368 15369 if (env->used_btf_cnt >= MAX_USED_BTFS) { 15370 err = -E2BIG; 15371 goto err_put; 15372 } 15373 15374 btf_mod = &env->used_btfs[env->used_btf_cnt]; 15375 btf_mod->btf = btf; 15376 btf_mod->module = NULL; 15377 15378 /* if we reference variables from kernel module, bump its refcount */ 15379 if (btf_is_module(btf)) { 15380 btf_mod->module = btf_try_get_module(btf); 15381 if (!btf_mod->module) { 15382 err = -ENXIO; 15383 goto err_put; 15384 } 15385 } 15386 15387 env->used_btf_cnt++; 15388 15389 return 0; 15390 err_put: 15391 btf_put(btf); 15392 return err; 15393 } 15394 15395 static bool is_tracing_prog_type(enum bpf_prog_type type) 15396 { 15397 switch (type) { 15398 case BPF_PROG_TYPE_KPROBE: 15399 case BPF_PROG_TYPE_TRACEPOINT: 15400 case BPF_PROG_TYPE_PERF_EVENT: 15401 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15402 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 15403 return true; 15404 default: 15405 return false; 15406 } 15407 } 15408 15409 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 15410 struct bpf_map *map, 15411 struct bpf_prog *prog) 15412 15413 { 15414 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15415 15416 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 15417 btf_record_has_field(map->record, BPF_RB_ROOT)) { 15418 if (is_tracing_prog_type(prog_type)) { 15419 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 15420 return -EINVAL; 15421 } 15422 } 15423 15424 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 15425 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 15426 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 15427 return -EINVAL; 15428 } 15429 15430 if (is_tracing_prog_type(prog_type)) { 15431 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 15432 return -EINVAL; 15433 } 15434 15435 if (prog->aux->sleepable) { 15436 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 15437 return -EINVAL; 15438 } 15439 } 15440 15441 if (btf_record_has_field(map->record, BPF_TIMER)) { 15442 if (is_tracing_prog_type(prog_type)) { 15443 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 15444 return -EINVAL; 15445 } 15446 } 15447 15448 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 15449 !bpf_offload_prog_map_match(prog, map)) { 15450 verbose(env, "offload device mismatch between prog and map\n"); 15451 return -EINVAL; 15452 } 15453 15454 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 15455 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 15456 return -EINVAL; 15457 } 15458 15459 if (prog->aux->sleepable) 15460 switch (map->map_type) { 15461 case BPF_MAP_TYPE_HASH: 15462 case BPF_MAP_TYPE_LRU_HASH: 15463 case BPF_MAP_TYPE_ARRAY: 15464 case BPF_MAP_TYPE_PERCPU_HASH: 15465 case BPF_MAP_TYPE_PERCPU_ARRAY: 15466 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 15467 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 15468 case BPF_MAP_TYPE_HASH_OF_MAPS: 15469 case BPF_MAP_TYPE_RINGBUF: 15470 case BPF_MAP_TYPE_USER_RINGBUF: 15471 case BPF_MAP_TYPE_INODE_STORAGE: 15472 case BPF_MAP_TYPE_SK_STORAGE: 15473 case BPF_MAP_TYPE_TASK_STORAGE: 15474 case BPF_MAP_TYPE_CGRP_STORAGE: 15475 break; 15476 default: 15477 verbose(env, 15478 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 15479 return -EINVAL; 15480 } 15481 15482 return 0; 15483 } 15484 15485 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 15486 { 15487 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 15488 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 15489 } 15490 15491 /* find and rewrite pseudo imm in ld_imm64 instructions: 15492 * 15493 * 1. if it accesses map FD, replace it with actual map pointer. 15494 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 15495 * 15496 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 15497 */ 15498 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 15499 { 15500 struct bpf_insn *insn = env->prog->insnsi; 15501 int insn_cnt = env->prog->len; 15502 int i, j, err; 15503 15504 err = bpf_prog_calc_tag(env->prog); 15505 if (err) 15506 return err; 15507 15508 for (i = 0; i < insn_cnt; i++, insn++) { 15509 if (BPF_CLASS(insn->code) == BPF_LDX && 15510 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 15511 verbose(env, "BPF_LDX uses reserved fields\n"); 15512 return -EINVAL; 15513 } 15514 15515 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 15516 struct bpf_insn_aux_data *aux; 15517 struct bpf_map *map; 15518 struct fd f; 15519 u64 addr; 15520 u32 fd; 15521 15522 if (i == insn_cnt - 1 || insn[1].code != 0 || 15523 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 15524 insn[1].off != 0) { 15525 verbose(env, "invalid bpf_ld_imm64 insn\n"); 15526 return -EINVAL; 15527 } 15528 15529 if (insn[0].src_reg == 0) 15530 /* valid generic load 64-bit imm */ 15531 goto next_insn; 15532 15533 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 15534 aux = &env->insn_aux_data[i]; 15535 err = check_pseudo_btf_id(env, insn, aux); 15536 if (err) 15537 return err; 15538 goto next_insn; 15539 } 15540 15541 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 15542 aux = &env->insn_aux_data[i]; 15543 aux->ptr_type = PTR_TO_FUNC; 15544 goto next_insn; 15545 } 15546 15547 /* In final convert_pseudo_ld_imm64() step, this is 15548 * converted into regular 64-bit imm load insn. 15549 */ 15550 switch (insn[0].src_reg) { 15551 case BPF_PSEUDO_MAP_VALUE: 15552 case BPF_PSEUDO_MAP_IDX_VALUE: 15553 break; 15554 case BPF_PSEUDO_MAP_FD: 15555 case BPF_PSEUDO_MAP_IDX: 15556 if (insn[1].imm == 0) 15557 break; 15558 fallthrough; 15559 default: 15560 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 15561 return -EINVAL; 15562 } 15563 15564 switch (insn[0].src_reg) { 15565 case BPF_PSEUDO_MAP_IDX_VALUE: 15566 case BPF_PSEUDO_MAP_IDX: 15567 if (bpfptr_is_null(env->fd_array)) { 15568 verbose(env, "fd_idx without fd_array is invalid\n"); 15569 return -EPROTO; 15570 } 15571 if (copy_from_bpfptr_offset(&fd, env->fd_array, 15572 insn[0].imm * sizeof(fd), 15573 sizeof(fd))) 15574 return -EFAULT; 15575 break; 15576 default: 15577 fd = insn[0].imm; 15578 break; 15579 } 15580 15581 f = fdget(fd); 15582 map = __bpf_map_get(f); 15583 if (IS_ERR(map)) { 15584 verbose(env, "fd %d is not pointing to valid bpf_map\n", 15585 insn[0].imm); 15586 return PTR_ERR(map); 15587 } 15588 15589 err = check_map_prog_compatibility(env, map, env->prog); 15590 if (err) { 15591 fdput(f); 15592 return err; 15593 } 15594 15595 aux = &env->insn_aux_data[i]; 15596 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 15597 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 15598 addr = (unsigned long)map; 15599 } else { 15600 u32 off = insn[1].imm; 15601 15602 if (off >= BPF_MAX_VAR_OFF) { 15603 verbose(env, "direct value offset of %u is not allowed\n", off); 15604 fdput(f); 15605 return -EINVAL; 15606 } 15607 15608 if (!map->ops->map_direct_value_addr) { 15609 verbose(env, "no direct value access support for this map type\n"); 15610 fdput(f); 15611 return -EINVAL; 15612 } 15613 15614 err = map->ops->map_direct_value_addr(map, &addr, off); 15615 if (err) { 15616 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 15617 map->value_size, off); 15618 fdput(f); 15619 return err; 15620 } 15621 15622 aux->map_off = off; 15623 addr += off; 15624 } 15625 15626 insn[0].imm = (u32)addr; 15627 insn[1].imm = addr >> 32; 15628 15629 /* check whether we recorded this map already */ 15630 for (j = 0; j < env->used_map_cnt; j++) { 15631 if (env->used_maps[j] == map) { 15632 aux->map_index = j; 15633 fdput(f); 15634 goto next_insn; 15635 } 15636 } 15637 15638 if (env->used_map_cnt >= MAX_USED_MAPS) { 15639 fdput(f); 15640 return -E2BIG; 15641 } 15642 15643 /* hold the map. If the program is rejected by verifier, 15644 * the map will be released by release_maps() or it 15645 * will be used by the valid program until it's unloaded 15646 * and all maps are released in free_used_maps() 15647 */ 15648 bpf_map_inc(map); 15649 15650 aux->map_index = env->used_map_cnt; 15651 env->used_maps[env->used_map_cnt++] = map; 15652 15653 if (bpf_map_is_cgroup_storage(map) && 15654 bpf_cgroup_storage_assign(env->prog->aux, map)) { 15655 verbose(env, "only one cgroup storage of each type is allowed\n"); 15656 fdput(f); 15657 return -EBUSY; 15658 } 15659 15660 fdput(f); 15661 next_insn: 15662 insn++; 15663 i++; 15664 continue; 15665 } 15666 15667 /* Basic sanity check before we invest more work here. */ 15668 if (!bpf_opcode_in_insntable(insn->code)) { 15669 verbose(env, "unknown opcode %02x\n", insn->code); 15670 return -EINVAL; 15671 } 15672 } 15673 15674 /* now all pseudo BPF_LD_IMM64 instructions load valid 15675 * 'struct bpf_map *' into a register instead of user map_fd. 15676 * These pointers will be used later by verifier to validate map access. 15677 */ 15678 return 0; 15679 } 15680 15681 /* drop refcnt of maps used by the rejected program */ 15682 static void release_maps(struct bpf_verifier_env *env) 15683 { 15684 __bpf_free_used_maps(env->prog->aux, env->used_maps, 15685 env->used_map_cnt); 15686 } 15687 15688 /* drop refcnt of maps used by the rejected program */ 15689 static void release_btfs(struct bpf_verifier_env *env) 15690 { 15691 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 15692 env->used_btf_cnt); 15693 } 15694 15695 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 15696 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 15697 { 15698 struct bpf_insn *insn = env->prog->insnsi; 15699 int insn_cnt = env->prog->len; 15700 int i; 15701 15702 for (i = 0; i < insn_cnt; i++, insn++) { 15703 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 15704 continue; 15705 if (insn->src_reg == BPF_PSEUDO_FUNC) 15706 continue; 15707 insn->src_reg = 0; 15708 } 15709 } 15710 15711 /* single env->prog->insni[off] instruction was replaced with the range 15712 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 15713 * [0, off) and [off, end) to new locations, so the patched range stays zero 15714 */ 15715 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 15716 struct bpf_insn_aux_data *new_data, 15717 struct bpf_prog *new_prog, u32 off, u32 cnt) 15718 { 15719 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 15720 struct bpf_insn *insn = new_prog->insnsi; 15721 u32 old_seen = old_data[off].seen; 15722 u32 prog_len; 15723 int i; 15724 15725 /* aux info at OFF always needs adjustment, no matter fast path 15726 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 15727 * original insn at old prog. 15728 */ 15729 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 15730 15731 if (cnt == 1) 15732 return; 15733 prog_len = new_prog->len; 15734 15735 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 15736 memcpy(new_data + off + cnt - 1, old_data + off, 15737 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 15738 for (i = off; i < off + cnt - 1; i++) { 15739 /* Expand insni[off]'s seen count to the patched range. */ 15740 new_data[i].seen = old_seen; 15741 new_data[i].zext_dst = insn_has_def32(env, insn + i); 15742 } 15743 env->insn_aux_data = new_data; 15744 vfree(old_data); 15745 } 15746 15747 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 15748 { 15749 int i; 15750 15751 if (len == 1) 15752 return; 15753 /* NOTE: fake 'exit' subprog should be updated as well. */ 15754 for (i = 0; i <= env->subprog_cnt; i++) { 15755 if (env->subprog_info[i].start <= off) 15756 continue; 15757 env->subprog_info[i].start += len - 1; 15758 } 15759 } 15760 15761 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 15762 { 15763 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 15764 int i, sz = prog->aux->size_poke_tab; 15765 struct bpf_jit_poke_descriptor *desc; 15766 15767 for (i = 0; i < sz; i++) { 15768 desc = &tab[i]; 15769 if (desc->insn_idx <= off) 15770 continue; 15771 desc->insn_idx += len - 1; 15772 } 15773 } 15774 15775 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 15776 const struct bpf_insn *patch, u32 len) 15777 { 15778 struct bpf_prog *new_prog; 15779 struct bpf_insn_aux_data *new_data = NULL; 15780 15781 if (len > 1) { 15782 new_data = vzalloc(array_size(env->prog->len + len - 1, 15783 sizeof(struct bpf_insn_aux_data))); 15784 if (!new_data) 15785 return NULL; 15786 } 15787 15788 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 15789 if (IS_ERR(new_prog)) { 15790 if (PTR_ERR(new_prog) == -ERANGE) 15791 verbose(env, 15792 "insn %d cannot be patched due to 16-bit range\n", 15793 env->insn_aux_data[off].orig_idx); 15794 vfree(new_data); 15795 return NULL; 15796 } 15797 adjust_insn_aux_data(env, new_data, new_prog, off, len); 15798 adjust_subprog_starts(env, off, len); 15799 adjust_poke_descs(new_prog, off, len); 15800 return new_prog; 15801 } 15802 15803 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 15804 u32 off, u32 cnt) 15805 { 15806 int i, j; 15807 15808 /* find first prog starting at or after off (first to remove) */ 15809 for (i = 0; i < env->subprog_cnt; i++) 15810 if (env->subprog_info[i].start >= off) 15811 break; 15812 /* find first prog starting at or after off + cnt (first to stay) */ 15813 for (j = i; j < env->subprog_cnt; j++) 15814 if (env->subprog_info[j].start >= off + cnt) 15815 break; 15816 /* if j doesn't start exactly at off + cnt, we are just removing 15817 * the front of previous prog 15818 */ 15819 if (env->subprog_info[j].start != off + cnt) 15820 j--; 15821 15822 if (j > i) { 15823 struct bpf_prog_aux *aux = env->prog->aux; 15824 int move; 15825 15826 /* move fake 'exit' subprog as well */ 15827 move = env->subprog_cnt + 1 - j; 15828 15829 memmove(env->subprog_info + i, 15830 env->subprog_info + j, 15831 sizeof(*env->subprog_info) * move); 15832 env->subprog_cnt -= j - i; 15833 15834 /* remove func_info */ 15835 if (aux->func_info) { 15836 move = aux->func_info_cnt - j; 15837 15838 memmove(aux->func_info + i, 15839 aux->func_info + j, 15840 sizeof(*aux->func_info) * move); 15841 aux->func_info_cnt -= j - i; 15842 /* func_info->insn_off is set after all code rewrites, 15843 * in adjust_btf_func() - no need to adjust 15844 */ 15845 } 15846 } else { 15847 /* convert i from "first prog to remove" to "first to adjust" */ 15848 if (env->subprog_info[i].start == off) 15849 i++; 15850 } 15851 15852 /* update fake 'exit' subprog as well */ 15853 for (; i <= env->subprog_cnt; i++) 15854 env->subprog_info[i].start -= cnt; 15855 15856 return 0; 15857 } 15858 15859 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 15860 u32 cnt) 15861 { 15862 struct bpf_prog *prog = env->prog; 15863 u32 i, l_off, l_cnt, nr_linfo; 15864 struct bpf_line_info *linfo; 15865 15866 nr_linfo = prog->aux->nr_linfo; 15867 if (!nr_linfo) 15868 return 0; 15869 15870 linfo = prog->aux->linfo; 15871 15872 /* find first line info to remove, count lines to be removed */ 15873 for (i = 0; i < nr_linfo; i++) 15874 if (linfo[i].insn_off >= off) 15875 break; 15876 15877 l_off = i; 15878 l_cnt = 0; 15879 for (; i < nr_linfo; i++) 15880 if (linfo[i].insn_off < off + cnt) 15881 l_cnt++; 15882 else 15883 break; 15884 15885 /* First live insn doesn't match first live linfo, it needs to "inherit" 15886 * last removed linfo. prog is already modified, so prog->len == off 15887 * means no live instructions after (tail of the program was removed). 15888 */ 15889 if (prog->len != off && l_cnt && 15890 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 15891 l_cnt--; 15892 linfo[--i].insn_off = off + cnt; 15893 } 15894 15895 /* remove the line info which refer to the removed instructions */ 15896 if (l_cnt) { 15897 memmove(linfo + l_off, linfo + i, 15898 sizeof(*linfo) * (nr_linfo - i)); 15899 15900 prog->aux->nr_linfo -= l_cnt; 15901 nr_linfo = prog->aux->nr_linfo; 15902 } 15903 15904 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 15905 for (i = l_off; i < nr_linfo; i++) 15906 linfo[i].insn_off -= cnt; 15907 15908 /* fix up all subprogs (incl. 'exit') which start >= off */ 15909 for (i = 0; i <= env->subprog_cnt; i++) 15910 if (env->subprog_info[i].linfo_idx > l_off) { 15911 /* program may have started in the removed region but 15912 * may not be fully removed 15913 */ 15914 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 15915 env->subprog_info[i].linfo_idx -= l_cnt; 15916 else 15917 env->subprog_info[i].linfo_idx = l_off; 15918 } 15919 15920 return 0; 15921 } 15922 15923 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 15924 { 15925 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15926 unsigned int orig_prog_len = env->prog->len; 15927 int err; 15928 15929 if (bpf_prog_is_offloaded(env->prog->aux)) 15930 bpf_prog_offload_remove_insns(env, off, cnt); 15931 15932 err = bpf_remove_insns(env->prog, off, cnt); 15933 if (err) 15934 return err; 15935 15936 err = adjust_subprog_starts_after_remove(env, off, cnt); 15937 if (err) 15938 return err; 15939 15940 err = bpf_adj_linfo_after_remove(env, off, cnt); 15941 if (err) 15942 return err; 15943 15944 memmove(aux_data + off, aux_data + off + cnt, 15945 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 15946 15947 return 0; 15948 } 15949 15950 /* The verifier does more data flow analysis than llvm and will not 15951 * explore branches that are dead at run time. Malicious programs can 15952 * have dead code too. Therefore replace all dead at-run-time code 15953 * with 'ja -1'. 15954 * 15955 * Just nops are not optimal, e.g. if they would sit at the end of the 15956 * program and through another bug we would manage to jump there, then 15957 * we'd execute beyond program memory otherwise. Returning exception 15958 * code also wouldn't work since we can have subprogs where the dead 15959 * code could be located. 15960 */ 15961 static void sanitize_dead_code(struct bpf_verifier_env *env) 15962 { 15963 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15964 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 15965 struct bpf_insn *insn = env->prog->insnsi; 15966 const int insn_cnt = env->prog->len; 15967 int i; 15968 15969 for (i = 0; i < insn_cnt; i++) { 15970 if (aux_data[i].seen) 15971 continue; 15972 memcpy(insn + i, &trap, sizeof(trap)); 15973 aux_data[i].zext_dst = false; 15974 } 15975 } 15976 15977 static bool insn_is_cond_jump(u8 code) 15978 { 15979 u8 op; 15980 15981 if (BPF_CLASS(code) == BPF_JMP32) 15982 return true; 15983 15984 if (BPF_CLASS(code) != BPF_JMP) 15985 return false; 15986 15987 op = BPF_OP(code); 15988 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 15989 } 15990 15991 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 15992 { 15993 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15994 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15995 struct bpf_insn *insn = env->prog->insnsi; 15996 const int insn_cnt = env->prog->len; 15997 int i; 15998 15999 for (i = 0; i < insn_cnt; i++, insn++) { 16000 if (!insn_is_cond_jump(insn->code)) 16001 continue; 16002 16003 if (!aux_data[i + 1].seen) 16004 ja.off = insn->off; 16005 else if (!aux_data[i + 1 + insn->off].seen) 16006 ja.off = 0; 16007 else 16008 continue; 16009 16010 if (bpf_prog_is_offloaded(env->prog->aux)) 16011 bpf_prog_offload_replace_insn(env, i, &ja); 16012 16013 memcpy(insn, &ja, sizeof(ja)); 16014 } 16015 } 16016 16017 static int opt_remove_dead_code(struct bpf_verifier_env *env) 16018 { 16019 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 16020 int insn_cnt = env->prog->len; 16021 int i, err; 16022 16023 for (i = 0; i < insn_cnt; i++) { 16024 int j; 16025 16026 j = 0; 16027 while (i + j < insn_cnt && !aux_data[i + j].seen) 16028 j++; 16029 if (!j) 16030 continue; 16031 16032 err = verifier_remove_insns(env, i, j); 16033 if (err) 16034 return err; 16035 insn_cnt = env->prog->len; 16036 } 16037 16038 return 0; 16039 } 16040 16041 static int opt_remove_nops(struct bpf_verifier_env *env) 16042 { 16043 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 16044 struct bpf_insn *insn = env->prog->insnsi; 16045 int insn_cnt = env->prog->len; 16046 int i, err; 16047 16048 for (i = 0; i < insn_cnt; i++) { 16049 if (memcmp(&insn[i], &ja, sizeof(ja))) 16050 continue; 16051 16052 err = verifier_remove_insns(env, i, 1); 16053 if (err) 16054 return err; 16055 insn_cnt--; 16056 i--; 16057 } 16058 16059 return 0; 16060 } 16061 16062 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 16063 const union bpf_attr *attr) 16064 { 16065 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 16066 struct bpf_insn_aux_data *aux = env->insn_aux_data; 16067 int i, patch_len, delta = 0, len = env->prog->len; 16068 struct bpf_insn *insns = env->prog->insnsi; 16069 struct bpf_prog *new_prog; 16070 bool rnd_hi32; 16071 16072 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 16073 zext_patch[1] = BPF_ZEXT_REG(0); 16074 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 16075 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 16076 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 16077 for (i = 0; i < len; i++) { 16078 int adj_idx = i + delta; 16079 struct bpf_insn insn; 16080 int load_reg; 16081 16082 insn = insns[adj_idx]; 16083 load_reg = insn_def_regno(&insn); 16084 if (!aux[adj_idx].zext_dst) { 16085 u8 code, class; 16086 u32 imm_rnd; 16087 16088 if (!rnd_hi32) 16089 continue; 16090 16091 code = insn.code; 16092 class = BPF_CLASS(code); 16093 if (load_reg == -1) 16094 continue; 16095 16096 /* NOTE: arg "reg" (the fourth one) is only used for 16097 * BPF_STX + SRC_OP, so it is safe to pass NULL 16098 * here. 16099 */ 16100 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 16101 if (class == BPF_LD && 16102 BPF_MODE(code) == BPF_IMM) 16103 i++; 16104 continue; 16105 } 16106 16107 /* ctx load could be transformed into wider load. */ 16108 if (class == BPF_LDX && 16109 aux[adj_idx].ptr_type == PTR_TO_CTX) 16110 continue; 16111 16112 imm_rnd = get_random_u32(); 16113 rnd_hi32_patch[0] = insn; 16114 rnd_hi32_patch[1].imm = imm_rnd; 16115 rnd_hi32_patch[3].dst_reg = load_reg; 16116 patch = rnd_hi32_patch; 16117 patch_len = 4; 16118 goto apply_patch_buffer; 16119 } 16120 16121 /* Add in an zero-extend instruction if a) the JIT has requested 16122 * it or b) it's a CMPXCHG. 16123 * 16124 * The latter is because: BPF_CMPXCHG always loads a value into 16125 * R0, therefore always zero-extends. However some archs' 16126 * equivalent instruction only does this load when the 16127 * comparison is successful. This detail of CMPXCHG is 16128 * orthogonal to the general zero-extension behaviour of the 16129 * CPU, so it's treated independently of bpf_jit_needs_zext. 16130 */ 16131 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 16132 continue; 16133 16134 /* Zero-extension is done by the caller. */ 16135 if (bpf_pseudo_kfunc_call(&insn)) 16136 continue; 16137 16138 if (WARN_ON(load_reg == -1)) { 16139 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 16140 return -EFAULT; 16141 } 16142 16143 zext_patch[0] = insn; 16144 zext_patch[1].dst_reg = load_reg; 16145 zext_patch[1].src_reg = load_reg; 16146 patch = zext_patch; 16147 patch_len = 2; 16148 apply_patch_buffer: 16149 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 16150 if (!new_prog) 16151 return -ENOMEM; 16152 env->prog = new_prog; 16153 insns = new_prog->insnsi; 16154 aux = env->insn_aux_data; 16155 delta += patch_len - 1; 16156 } 16157 16158 return 0; 16159 } 16160 16161 /* convert load instructions that access fields of a context type into a 16162 * sequence of instructions that access fields of the underlying structure: 16163 * struct __sk_buff -> struct sk_buff 16164 * struct bpf_sock_ops -> struct sock 16165 */ 16166 static int convert_ctx_accesses(struct bpf_verifier_env *env) 16167 { 16168 const struct bpf_verifier_ops *ops = env->ops; 16169 int i, cnt, size, ctx_field_size, delta = 0; 16170 const int insn_cnt = env->prog->len; 16171 struct bpf_insn insn_buf[16], *insn; 16172 u32 target_size, size_default, off; 16173 struct bpf_prog *new_prog; 16174 enum bpf_access_type type; 16175 bool is_narrower_load; 16176 16177 if (ops->gen_prologue || env->seen_direct_write) { 16178 if (!ops->gen_prologue) { 16179 verbose(env, "bpf verifier is misconfigured\n"); 16180 return -EINVAL; 16181 } 16182 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 16183 env->prog); 16184 if (cnt >= ARRAY_SIZE(insn_buf)) { 16185 verbose(env, "bpf verifier is misconfigured\n"); 16186 return -EINVAL; 16187 } else if (cnt) { 16188 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 16189 if (!new_prog) 16190 return -ENOMEM; 16191 16192 env->prog = new_prog; 16193 delta += cnt - 1; 16194 } 16195 } 16196 16197 if (bpf_prog_is_offloaded(env->prog->aux)) 16198 return 0; 16199 16200 insn = env->prog->insnsi + delta; 16201 16202 for (i = 0; i < insn_cnt; i++, insn++) { 16203 bpf_convert_ctx_access_t convert_ctx_access; 16204 16205 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 16206 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 16207 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 16208 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 16209 type = BPF_READ; 16210 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 16211 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 16212 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 16213 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 16214 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 16215 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 16216 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 16217 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 16218 type = BPF_WRITE; 16219 } else { 16220 continue; 16221 } 16222 16223 if (type == BPF_WRITE && 16224 env->insn_aux_data[i + delta].sanitize_stack_spill) { 16225 struct bpf_insn patch[] = { 16226 *insn, 16227 BPF_ST_NOSPEC(), 16228 }; 16229 16230 cnt = ARRAY_SIZE(patch); 16231 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 16232 if (!new_prog) 16233 return -ENOMEM; 16234 16235 delta += cnt - 1; 16236 env->prog = new_prog; 16237 insn = new_prog->insnsi + i + delta; 16238 continue; 16239 } 16240 16241 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 16242 case PTR_TO_CTX: 16243 if (!ops->convert_ctx_access) 16244 continue; 16245 convert_ctx_access = ops->convert_ctx_access; 16246 break; 16247 case PTR_TO_SOCKET: 16248 case PTR_TO_SOCK_COMMON: 16249 convert_ctx_access = bpf_sock_convert_ctx_access; 16250 break; 16251 case PTR_TO_TCP_SOCK: 16252 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 16253 break; 16254 case PTR_TO_XDP_SOCK: 16255 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 16256 break; 16257 case PTR_TO_BTF_ID: 16258 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 16259 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 16260 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 16261 * be said once it is marked PTR_UNTRUSTED, hence we must handle 16262 * any faults for loads into such types. BPF_WRITE is disallowed 16263 * for this case. 16264 */ 16265 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 16266 if (type == BPF_READ) { 16267 insn->code = BPF_LDX | BPF_PROBE_MEM | 16268 BPF_SIZE((insn)->code); 16269 env->prog->aux->num_exentries++; 16270 } 16271 continue; 16272 default: 16273 continue; 16274 } 16275 16276 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 16277 size = BPF_LDST_BYTES(insn); 16278 16279 /* If the read access is a narrower load of the field, 16280 * convert to a 4/8-byte load, to minimum program type specific 16281 * convert_ctx_access changes. If conversion is successful, 16282 * we will apply proper mask to the result. 16283 */ 16284 is_narrower_load = size < ctx_field_size; 16285 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 16286 off = insn->off; 16287 if (is_narrower_load) { 16288 u8 size_code; 16289 16290 if (type == BPF_WRITE) { 16291 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 16292 return -EINVAL; 16293 } 16294 16295 size_code = BPF_H; 16296 if (ctx_field_size == 4) 16297 size_code = BPF_W; 16298 else if (ctx_field_size == 8) 16299 size_code = BPF_DW; 16300 16301 insn->off = off & ~(size_default - 1); 16302 insn->code = BPF_LDX | BPF_MEM | size_code; 16303 } 16304 16305 target_size = 0; 16306 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 16307 &target_size); 16308 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 16309 (ctx_field_size && !target_size)) { 16310 verbose(env, "bpf verifier is misconfigured\n"); 16311 return -EINVAL; 16312 } 16313 16314 if (is_narrower_load && size < target_size) { 16315 u8 shift = bpf_ctx_narrow_access_offset( 16316 off, size, size_default) * 8; 16317 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 16318 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 16319 return -EINVAL; 16320 } 16321 if (ctx_field_size <= 4) { 16322 if (shift) 16323 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 16324 insn->dst_reg, 16325 shift); 16326 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 16327 (1 << size * 8) - 1); 16328 } else { 16329 if (shift) 16330 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 16331 insn->dst_reg, 16332 shift); 16333 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 16334 (1ULL << size * 8) - 1); 16335 } 16336 } 16337 16338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16339 if (!new_prog) 16340 return -ENOMEM; 16341 16342 delta += cnt - 1; 16343 16344 /* keep walking new program and skip insns we just inserted */ 16345 env->prog = new_prog; 16346 insn = new_prog->insnsi + i + delta; 16347 } 16348 16349 return 0; 16350 } 16351 16352 static int jit_subprogs(struct bpf_verifier_env *env) 16353 { 16354 struct bpf_prog *prog = env->prog, **func, *tmp; 16355 int i, j, subprog_start, subprog_end = 0, len, subprog; 16356 struct bpf_map *map_ptr; 16357 struct bpf_insn *insn; 16358 void *old_bpf_func; 16359 int err, num_exentries; 16360 16361 if (env->subprog_cnt <= 1) 16362 return 0; 16363 16364 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16365 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 16366 continue; 16367 16368 /* Upon error here we cannot fall back to interpreter but 16369 * need a hard reject of the program. Thus -EFAULT is 16370 * propagated in any case. 16371 */ 16372 subprog = find_subprog(env, i + insn->imm + 1); 16373 if (subprog < 0) { 16374 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 16375 i + insn->imm + 1); 16376 return -EFAULT; 16377 } 16378 /* temporarily remember subprog id inside insn instead of 16379 * aux_data, since next loop will split up all insns into funcs 16380 */ 16381 insn->off = subprog; 16382 /* remember original imm in case JIT fails and fallback 16383 * to interpreter will be needed 16384 */ 16385 env->insn_aux_data[i].call_imm = insn->imm; 16386 /* point imm to __bpf_call_base+1 from JITs point of view */ 16387 insn->imm = 1; 16388 if (bpf_pseudo_func(insn)) 16389 /* jit (e.g. x86_64) may emit fewer instructions 16390 * if it learns a u32 imm is the same as a u64 imm. 16391 * Force a non zero here. 16392 */ 16393 insn[1].imm = 1; 16394 } 16395 16396 err = bpf_prog_alloc_jited_linfo(prog); 16397 if (err) 16398 goto out_undo_insn; 16399 16400 err = -ENOMEM; 16401 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 16402 if (!func) 16403 goto out_undo_insn; 16404 16405 for (i = 0; i < env->subprog_cnt; i++) { 16406 subprog_start = subprog_end; 16407 subprog_end = env->subprog_info[i + 1].start; 16408 16409 len = subprog_end - subprog_start; 16410 /* bpf_prog_run() doesn't call subprogs directly, 16411 * hence main prog stats include the runtime of subprogs. 16412 * subprogs don't have IDs and not reachable via prog_get_next_id 16413 * func[i]->stats will never be accessed and stays NULL 16414 */ 16415 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 16416 if (!func[i]) 16417 goto out_free; 16418 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 16419 len * sizeof(struct bpf_insn)); 16420 func[i]->type = prog->type; 16421 func[i]->len = len; 16422 if (bpf_prog_calc_tag(func[i])) 16423 goto out_free; 16424 func[i]->is_func = 1; 16425 func[i]->aux->func_idx = i; 16426 /* Below members will be freed only at prog->aux */ 16427 func[i]->aux->btf = prog->aux->btf; 16428 func[i]->aux->func_info = prog->aux->func_info; 16429 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 16430 func[i]->aux->poke_tab = prog->aux->poke_tab; 16431 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 16432 16433 for (j = 0; j < prog->aux->size_poke_tab; j++) { 16434 struct bpf_jit_poke_descriptor *poke; 16435 16436 poke = &prog->aux->poke_tab[j]; 16437 if (poke->insn_idx < subprog_end && 16438 poke->insn_idx >= subprog_start) 16439 poke->aux = func[i]->aux; 16440 } 16441 16442 func[i]->aux->name[0] = 'F'; 16443 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 16444 func[i]->jit_requested = 1; 16445 func[i]->blinding_requested = prog->blinding_requested; 16446 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 16447 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 16448 func[i]->aux->linfo = prog->aux->linfo; 16449 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 16450 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 16451 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 16452 num_exentries = 0; 16453 insn = func[i]->insnsi; 16454 for (j = 0; j < func[i]->len; j++, insn++) { 16455 if (BPF_CLASS(insn->code) == BPF_LDX && 16456 BPF_MODE(insn->code) == BPF_PROBE_MEM) 16457 num_exentries++; 16458 } 16459 func[i]->aux->num_exentries = num_exentries; 16460 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 16461 func[i] = bpf_int_jit_compile(func[i]); 16462 if (!func[i]->jited) { 16463 err = -ENOTSUPP; 16464 goto out_free; 16465 } 16466 cond_resched(); 16467 } 16468 16469 /* at this point all bpf functions were successfully JITed 16470 * now populate all bpf_calls with correct addresses and 16471 * run last pass of JIT 16472 */ 16473 for (i = 0; i < env->subprog_cnt; i++) { 16474 insn = func[i]->insnsi; 16475 for (j = 0; j < func[i]->len; j++, insn++) { 16476 if (bpf_pseudo_func(insn)) { 16477 subprog = insn->off; 16478 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 16479 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 16480 continue; 16481 } 16482 if (!bpf_pseudo_call(insn)) 16483 continue; 16484 subprog = insn->off; 16485 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 16486 } 16487 16488 /* we use the aux data to keep a list of the start addresses 16489 * of the JITed images for each function in the program 16490 * 16491 * for some architectures, such as powerpc64, the imm field 16492 * might not be large enough to hold the offset of the start 16493 * address of the callee's JITed image from __bpf_call_base 16494 * 16495 * in such cases, we can lookup the start address of a callee 16496 * by using its subprog id, available from the off field of 16497 * the call instruction, as an index for this list 16498 */ 16499 func[i]->aux->func = func; 16500 func[i]->aux->func_cnt = env->subprog_cnt; 16501 } 16502 for (i = 0; i < env->subprog_cnt; i++) { 16503 old_bpf_func = func[i]->bpf_func; 16504 tmp = bpf_int_jit_compile(func[i]); 16505 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 16506 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 16507 err = -ENOTSUPP; 16508 goto out_free; 16509 } 16510 cond_resched(); 16511 } 16512 16513 /* finally lock prog and jit images for all functions and 16514 * populate kallsysm 16515 */ 16516 for (i = 0; i < env->subprog_cnt; i++) { 16517 bpf_prog_lock_ro(func[i]); 16518 bpf_prog_kallsyms_add(func[i]); 16519 } 16520 16521 /* Last step: make now unused interpreter insns from main 16522 * prog consistent for later dump requests, so they can 16523 * later look the same as if they were interpreted only. 16524 */ 16525 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16526 if (bpf_pseudo_func(insn)) { 16527 insn[0].imm = env->insn_aux_data[i].call_imm; 16528 insn[1].imm = insn->off; 16529 insn->off = 0; 16530 continue; 16531 } 16532 if (!bpf_pseudo_call(insn)) 16533 continue; 16534 insn->off = env->insn_aux_data[i].call_imm; 16535 subprog = find_subprog(env, i + insn->off + 1); 16536 insn->imm = subprog; 16537 } 16538 16539 prog->jited = 1; 16540 prog->bpf_func = func[0]->bpf_func; 16541 prog->jited_len = func[0]->jited_len; 16542 prog->aux->func = func; 16543 prog->aux->func_cnt = env->subprog_cnt; 16544 bpf_prog_jit_attempt_done(prog); 16545 return 0; 16546 out_free: 16547 /* We failed JIT'ing, so at this point we need to unregister poke 16548 * descriptors from subprogs, so that kernel is not attempting to 16549 * patch it anymore as we're freeing the subprog JIT memory. 16550 */ 16551 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16552 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16553 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 16554 } 16555 /* At this point we're guaranteed that poke descriptors are not 16556 * live anymore. We can just unlink its descriptor table as it's 16557 * released with the main prog. 16558 */ 16559 for (i = 0; i < env->subprog_cnt; i++) { 16560 if (!func[i]) 16561 continue; 16562 func[i]->aux->poke_tab = NULL; 16563 bpf_jit_free(func[i]); 16564 } 16565 kfree(func); 16566 out_undo_insn: 16567 /* cleanup main prog to be interpreted */ 16568 prog->jit_requested = 0; 16569 prog->blinding_requested = 0; 16570 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16571 if (!bpf_pseudo_call(insn)) 16572 continue; 16573 insn->off = 0; 16574 insn->imm = env->insn_aux_data[i].call_imm; 16575 } 16576 bpf_prog_jit_attempt_done(prog); 16577 return err; 16578 } 16579 16580 static int fixup_call_args(struct bpf_verifier_env *env) 16581 { 16582 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16583 struct bpf_prog *prog = env->prog; 16584 struct bpf_insn *insn = prog->insnsi; 16585 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 16586 int i, depth; 16587 #endif 16588 int err = 0; 16589 16590 if (env->prog->jit_requested && 16591 !bpf_prog_is_offloaded(env->prog->aux)) { 16592 err = jit_subprogs(env); 16593 if (err == 0) 16594 return 0; 16595 if (err == -EFAULT) 16596 return err; 16597 } 16598 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16599 if (has_kfunc_call) { 16600 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 16601 return -EINVAL; 16602 } 16603 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 16604 /* When JIT fails the progs with bpf2bpf calls and tail_calls 16605 * have to be rejected, since interpreter doesn't support them yet. 16606 */ 16607 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 16608 return -EINVAL; 16609 } 16610 for (i = 0; i < prog->len; i++, insn++) { 16611 if (bpf_pseudo_func(insn)) { 16612 /* When JIT fails the progs with callback calls 16613 * have to be rejected, since interpreter doesn't support them yet. 16614 */ 16615 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 16616 return -EINVAL; 16617 } 16618 16619 if (!bpf_pseudo_call(insn)) 16620 continue; 16621 depth = get_callee_stack_depth(env, insn, i); 16622 if (depth < 0) 16623 return depth; 16624 bpf_patch_call_args(insn, depth); 16625 } 16626 err = 0; 16627 #endif 16628 return err; 16629 } 16630 16631 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 16632 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 16633 { 16634 const struct bpf_kfunc_desc *desc; 16635 void *xdp_kfunc; 16636 16637 if (!insn->imm) { 16638 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 16639 return -EINVAL; 16640 } 16641 16642 *cnt = 0; 16643 16644 if (bpf_dev_bound_kfunc_id(insn->imm)) { 16645 xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm); 16646 if (xdp_kfunc) { 16647 insn->imm = BPF_CALL_IMM(xdp_kfunc); 16648 return 0; 16649 } 16650 16651 /* fallback to default kfunc when not supported by netdev */ 16652 } 16653 16654 /* insn->imm has the btf func_id. Replace it with 16655 * an address (relative to __bpf_call_base). 16656 */ 16657 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 16658 if (!desc) { 16659 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 16660 insn->imm); 16661 return -EFAULT; 16662 } 16663 16664 insn->imm = desc->imm; 16665 if (insn->off) 16666 return 0; 16667 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 16668 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16669 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16670 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 16671 16672 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 16673 insn_buf[1] = addr[0]; 16674 insn_buf[2] = addr[1]; 16675 insn_buf[3] = *insn; 16676 *cnt = 4; 16677 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 16678 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16679 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16680 16681 insn_buf[0] = addr[0]; 16682 insn_buf[1] = addr[1]; 16683 insn_buf[2] = *insn; 16684 *cnt = 3; 16685 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 16686 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 16687 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 16688 *cnt = 1; 16689 } else if (desc->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 16690 bool seen_direct_write = env->seen_direct_write; 16691 bool is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 16692 16693 if (is_rdonly) 16694 insn->imm = BPF_CALL_IMM(bpf_dynptr_from_skb_rdonly); 16695 16696 /* restore env->seen_direct_write to its original value, since 16697 * may_access_direct_pkt_data mutates it 16698 */ 16699 env->seen_direct_write = seen_direct_write; 16700 } 16701 return 0; 16702 } 16703 16704 /* Do various post-verification rewrites in a single program pass. 16705 * These rewrites simplify JIT and interpreter implementations. 16706 */ 16707 static int do_misc_fixups(struct bpf_verifier_env *env) 16708 { 16709 struct bpf_prog *prog = env->prog; 16710 enum bpf_attach_type eatype = prog->expected_attach_type; 16711 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16712 struct bpf_insn *insn = prog->insnsi; 16713 const struct bpf_func_proto *fn; 16714 const int insn_cnt = prog->len; 16715 const struct bpf_map_ops *ops; 16716 struct bpf_insn_aux_data *aux; 16717 struct bpf_insn insn_buf[16]; 16718 struct bpf_prog *new_prog; 16719 struct bpf_map *map_ptr; 16720 int i, ret, cnt, delta = 0; 16721 16722 for (i = 0; i < insn_cnt; i++, insn++) { 16723 /* Make divide-by-zero exceptions impossible. */ 16724 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 16725 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 16726 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 16727 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 16728 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 16729 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 16730 struct bpf_insn *patchlet; 16731 struct bpf_insn chk_and_div[] = { 16732 /* [R,W]x div 0 -> 0 */ 16733 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16734 BPF_JNE | BPF_K, insn->src_reg, 16735 0, 2, 0), 16736 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 16737 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16738 *insn, 16739 }; 16740 struct bpf_insn chk_and_mod[] = { 16741 /* [R,W]x mod 0 -> [R,W]x */ 16742 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16743 BPF_JEQ | BPF_K, insn->src_reg, 16744 0, 1 + (is64 ? 0 : 1), 0), 16745 *insn, 16746 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16747 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 16748 }; 16749 16750 patchlet = isdiv ? chk_and_div : chk_and_mod; 16751 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 16752 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 16753 16754 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 16755 if (!new_prog) 16756 return -ENOMEM; 16757 16758 delta += cnt - 1; 16759 env->prog = prog = new_prog; 16760 insn = new_prog->insnsi + i + delta; 16761 continue; 16762 } 16763 16764 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 16765 if (BPF_CLASS(insn->code) == BPF_LD && 16766 (BPF_MODE(insn->code) == BPF_ABS || 16767 BPF_MODE(insn->code) == BPF_IND)) { 16768 cnt = env->ops->gen_ld_abs(insn, insn_buf); 16769 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16770 verbose(env, "bpf verifier is misconfigured\n"); 16771 return -EINVAL; 16772 } 16773 16774 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16775 if (!new_prog) 16776 return -ENOMEM; 16777 16778 delta += cnt - 1; 16779 env->prog = prog = new_prog; 16780 insn = new_prog->insnsi + i + delta; 16781 continue; 16782 } 16783 16784 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 16785 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 16786 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 16787 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 16788 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 16789 struct bpf_insn *patch = &insn_buf[0]; 16790 bool issrc, isneg, isimm; 16791 u32 off_reg; 16792 16793 aux = &env->insn_aux_data[i + delta]; 16794 if (!aux->alu_state || 16795 aux->alu_state == BPF_ALU_NON_POINTER) 16796 continue; 16797 16798 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 16799 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 16800 BPF_ALU_SANITIZE_SRC; 16801 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 16802 16803 off_reg = issrc ? insn->src_reg : insn->dst_reg; 16804 if (isimm) { 16805 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16806 } else { 16807 if (isneg) 16808 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16809 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16810 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 16811 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 16812 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 16813 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 16814 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 16815 } 16816 if (!issrc) 16817 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 16818 insn->src_reg = BPF_REG_AX; 16819 if (isneg) 16820 insn->code = insn->code == code_add ? 16821 code_sub : code_add; 16822 *patch++ = *insn; 16823 if (issrc && isneg && !isimm) 16824 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16825 cnt = patch - insn_buf; 16826 16827 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16828 if (!new_prog) 16829 return -ENOMEM; 16830 16831 delta += cnt - 1; 16832 env->prog = prog = new_prog; 16833 insn = new_prog->insnsi + i + delta; 16834 continue; 16835 } 16836 16837 if (insn->code != (BPF_JMP | BPF_CALL)) 16838 continue; 16839 if (insn->src_reg == BPF_PSEUDO_CALL) 16840 continue; 16841 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16842 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 16843 if (ret) 16844 return ret; 16845 if (cnt == 0) 16846 continue; 16847 16848 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16849 if (!new_prog) 16850 return -ENOMEM; 16851 16852 delta += cnt - 1; 16853 env->prog = prog = new_prog; 16854 insn = new_prog->insnsi + i + delta; 16855 continue; 16856 } 16857 16858 if (insn->imm == BPF_FUNC_get_route_realm) 16859 prog->dst_needed = 1; 16860 if (insn->imm == BPF_FUNC_get_prandom_u32) 16861 bpf_user_rnd_init_once(); 16862 if (insn->imm == BPF_FUNC_override_return) 16863 prog->kprobe_override = 1; 16864 if (insn->imm == BPF_FUNC_tail_call) { 16865 /* If we tail call into other programs, we 16866 * cannot make any assumptions since they can 16867 * be replaced dynamically during runtime in 16868 * the program array. 16869 */ 16870 prog->cb_access = 1; 16871 if (!allow_tail_call_in_subprogs(env)) 16872 prog->aux->stack_depth = MAX_BPF_STACK; 16873 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 16874 16875 /* mark bpf_tail_call as different opcode to avoid 16876 * conditional branch in the interpreter for every normal 16877 * call and to prevent accidental JITing by JIT compiler 16878 * that doesn't support bpf_tail_call yet 16879 */ 16880 insn->imm = 0; 16881 insn->code = BPF_JMP | BPF_TAIL_CALL; 16882 16883 aux = &env->insn_aux_data[i + delta]; 16884 if (env->bpf_capable && !prog->blinding_requested && 16885 prog->jit_requested && 16886 !bpf_map_key_poisoned(aux) && 16887 !bpf_map_ptr_poisoned(aux) && 16888 !bpf_map_ptr_unpriv(aux)) { 16889 struct bpf_jit_poke_descriptor desc = { 16890 .reason = BPF_POKE_REASON_TAIL_CALL, 16891 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 16892 .tail_call.key = bpf_map_key_immediate(aux), 16893 .insn_idx = i + delta, 16894 }; 16895 16896 ret = bpf_jit_add_poke_descriptor(prog, &desc); 16897 if (ret < 0) { 16898 verbose(env, "adding tail call poke descriptor failed\n"); 16899 return ret; 16900 } 16901 16902 insn->imm = ret + 1; 16903 continue; 16904 } 16905 16906 if (!bpf_map_ptr_unpriv(aux)) 16907 continue; 16908 16909 /* instead of changing every JIT dealing with tail_call 16910 * emit two extra insns: 16911 * if (index >= max_entries) goto out; 16912 * index &= array->index_mask; 16913 * to avoid out-of-bounds cpu speculation 16914 */ 16915 if (bpf_map_ptr_poisoned(aux)) { 16916 verbose(env, "tail_call abusing map_ptr\n"); 16917 return -EINVAL; 16918 } 16919 16920 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16921 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 16922 map_ptr->max_entries, 2); 16923 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 16924 container_of(map_ptr, 16925 struct bpf_array, 16926 map)->index_mask); 16927 insn_buf[2] = *insn; 16928 cnt = 3; 16929 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16930 if (!new_prog) 16931 return -ENOMEM; 16932 16933 delta += cnt - 1; 16934 env->prog = prog = new_prog; 16935 insn = new_prog->insnsi + i + delta; 16936 continue; 16937 } 16938 16939 if (insn->imm == BPF_FUNC_timer_set_callback) { 16940 /* The verifier will process callback_fn as many times as necessary 16941 * with different maps and the register states prepared by 16942 * set_timer_callback_state will be accurate. 16943 * 16944 * The following use case is valid: 16945 * map1 is shared by prog1, prog2, prog3. 16946 * prog1 calls bpf_timer_init for some map1 elements 16947 * prog2 calls bpf_timer_set_callback for some map1 elements. 16948 * Those that were not bpf_timer_init-ed will return -EINVAL. 16949 * prog3 calls bpf_timer_start for some map1 elements. 16950 * Those that were not both bpf_timer_init-ed and 16951 * bpf_timer_set_callback-ed will return -EINVAL. 16952 */ 16953 struct bpf_insn ld_addrs[2] = { 16954 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 16955 }; 16956 16957 insn_buf[0] = ld_addrs[0]; 16958 insn_buf[1] = ld_addrs[1]; 16959 insn_buf[2] = *insn; 16960 cnt = 3; 16961 16962 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16963 if (!new_prog) 16964 return -ENOMEM; 16965 16966 delta += cnt - 1; 16967 env->prog = prog = new_prog; 16968 insn = new_prog->insnsi + i + delta; 16969 goto patch_call_imm; 16970 } 16971 16972 if (is_storage_get_function(insn->imm)) { 16973 if (!env->prog->aux->sleepable || 16974 env->insn_aux_data[i + delta].storage_get_func_atomic) 16975 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 16976 else 16977 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 16978 insn_buf[1] = *insn; 16979 cnt = 2; 16980 16981 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16982 if (!new_prog) 16983 return -ENOMEM; 16984 16985 delta += cnt - 1; 16986 env->prog = prog = new_prog; 16987 insn = new_prog->insnsi + i + delta; 16988 goto patch_call_imm; 16989 } 16990 16991 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 16992 * and other inlining handlers are currently limited to 64 bit 16993 * only. 16994 */ 16995 if (prog->jit_requested && BITS_PER_LONG == 64 && 16996 (insn->imm == BPF_FUNC_map_lookup_elem || 16997 insn->imm == BPF_FUNC_map_update_elem || 16998 insn->imm == BPF_FUNC_map_delete_elem || 16999 insn->imm == BPF_FUNC_map_push_elem || 17000 insn->imm == BPF_FUNC_map_pop_elem || 17001 insn->imm == BPF_FUNC_map_peek_elem || 17002 insn->imm == BPF_FUNC_redirect_map || 17003 insn->imm == BPF_FUNC_for_each_map_elem || 17004 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 17005 aux = &env->insn_aux_data[i + delta]; 17006 if (bpf_map_ptr_poisoned(aux)) 17007 goto patch_call_imm; 17008 17009 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 17010 ops = map_ptr->ops; 17011 if (insn->imm == BPF_FUNC_map_lookup_elem && 17012 ops->map_gen_lookup) { 17013 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 17014 if (cnt == -EOPNOTSUPP) 17015 goto patch_map_ops_generic; 17016 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 17017 verbose(env, "bpf verifier is misconfigured\n"); 17018 return -EINVAL; 17019 } 17020 17021 new_prog = bpf_patch_insn_data(env, i + delta, 17022 insn_buf, cnt); 17023 if (!new_prog) 17024 return -ENOMEM; 17025 17026 delta += cnt - 1; 17027 env->prog = prog = new_prog; 17028 insn = new_prog->insnsi + i + delta; 17029 continue; 17030 } 17031 17032 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 17033 (void *(*)(struct bpf_map *map, void *key))NULL)); 17034 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 17035 (int (*)(struct bpf_map *map, void *key))NULL)); 17036 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 17037 (int (*)(struct bpf_map *map, void *key, void *value, 17038 u64 flags))NULL)); 17039 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 17040 (int (*)(struct bpf_map *map, void *value, 17041 u64 flags))NULL)); 17042 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 17043 (int (*)(struct bpf_map *map, void *value))NULL)); 17044 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 17045 (int (*)(struct bpf_map *map, void *value))NULL)); 17046 BUILD_BUG_ON(!__same_type(ops->map_redirect, 17047 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 17048 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 17049 (int (*)(struct bpf_map *map, 17050 bpf_callback_t callback_fn, 17051 void *callback_ctx, 17052 u64 flags))NULL)); 17053 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 17054 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 17055 17056 patch_map_ops_generic: 17057 switch (insn->imm) { 17058 case BPF_FUNC_map_lookup_elem: 17059 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 17060 continue; 17061 case BPF_FUNC_map_update_elem: 17062 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 17063 continue; 17064 case BPF_FUNC_map_delete_elem: 17065 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 17066 continue; 17067 case BPF_FUNC_map_push_elem: 17068 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 17069 continue; 17070 case BPF_FUNC_map_pop_elem: 17071 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 17072 continue; 17073 case BPF_FUNC_map_peek_elem: 17074 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 17075 continue; 17076 case BPF_FUNC_redirect_map: 17077 insn->imm = BPF_CALL_IMM(ops->map_redirect); 17078 continue; 17079 case BPF_FUNC_for_each_map_elem: 17080 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 17081 continue; 17082 case BPF_FUNC_map_lookup_percpu_elem: 17083 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 17084 continue; 17085 } 17086 17087 goto patch_call_imm; 17088 } 17089 17090 /* Implement bpf_jiffies64 inline. */ 17091 if (prog->jit_requested && BITS_PER_LONG == 64 && 17092 insn->imm == BPF_FUNC_jiffies64) { 17093 struct bpf_insn ld_jiffies_addr[2] = { 17094 BPF_LD_IMM64(BPF_REG_0, 17095 (unsigned long)&jiffies), 17096 }; 17097 17098 insn_buf[0] = ld_jiffies_addr[0]; 17099 insn_buf[1] = ld_jiffies_addr[1]; 17100 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 17101 BPF_REG_0, 0); 17102 cnt = 3; 17103 17104 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 17105 cnt); 17106 if (!new_prog) 17107 return -ENOMEM; 17108 17109 delta += cnt - 1; 17110 env->prog = prog = new_prog; 17111 insn = new_prog->insnsi + i + delta; 17112 continue; 17113 } 17114 17115 /* Implement bpf_get_func_arg inline. */ 17116 if (prog_type == BPF_PROG_TYPE_TRACING && 17117 insn->imm == BPF_FUNC_get_func_arg) { 17118 /* Load nr_args from ctx - 8 */ 17119 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 17120 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 17121 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 17122 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 17123 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 17124 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 17125 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 17126 insn_buf[7] = BPF_JMP_A(1); 17127 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 17128 cnt = 9; 17129 17130 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17131 if (!new_prog) 17132 return -ENOMEM; 17133 17134 delta += cnt - 1; 17135 env->prog = prog = new_prog; 17136 insn = new_prog->insnsi + i + delta; 17137 continue; 17138 } 17139 17140 /* Implement bpf_get_func_ret inline. */ 17141 if (prog_type == BPF_PROG_TYPE_TRACING && 17142 insn->imm == BPF_FUNC_get_func_ret) { 17143 if (eatype == BPF_TRACE_FEXIT || 17144 eatype == BPF_MODIFY_RETURN) { 17145 /* Load nr_args from ctx - 8 */ 17146 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 17147 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 17148 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 17149 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 17150 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 17151 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 17152 cnt = 6; 17153 } else { 17154 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 17155 cnt = 1; 17156 } 17157 17158 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17159 if (!new_prog) 17160 return -ENOMEM; 17161 17162 delta += cnt - 1; 17163 env->prog = prog = new_prog; 17164 insn = new_prog->insnsi + i + delta; 17165 continue; 17166 } 17167 17168 /* Implement get_func_arg_cnt inline. */ 17169 if (prog_type == BPF_PROG_TYPE_TRACING && 17170 insn->imm == BPF_FUNC_get_func_arg_cnt) { 17171 /* Load nr_args from ctx - 8 */ 17172 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 17173 17174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 17175 if (!new_prog) 17176 return -ENOMEM; 17177 17178 env->prog = prog = new_prog; 17179 insn = new_prog->insnsi + i + delta; 17180 continue; 17181 } 17182 17183 /* Implement bpf_get_func_ip inline. */ 17184 if (prog_type == BPF_PROG_TYPE_TRACING && 17185 insn->imm == BPF_FUNC_get_func_ip) { 17186 /* Load IP address from ctx - 16 */ 17187 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 17188 17189 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 17190 if (!new_prog) 17191 return -ENOMEM; 17192 17193 env->prog = prog = new_prog; 17194 insn = new_prog->insnsi + i + delta; 17195 continue; 17196 } 17197 17198 patch_call_imm: 17199 fn = env->ops->get_func_proto(insn->imm, env->prog); 17200 /* all functions that have prototype and verifier allowed 17201 * programs to call them, must be real in-kernel functions 17202 */ 17203 if (!fn->func) { 17204 verbose(env, 17205 "kernel subsystem misconfigured func %s#%d\n", 17206 func_id_name(insn->imm), insn->imm); 17207 return -EFAULT; 17208 } 17209 insn->imm = fn->func - __bpf_call_base; 17210 } 17211 17212 /* Since poke tab is now finalized, publish aux to tracker. */ 17213 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17214 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17215 if (!map_ptr->ops->map_poke_track || 17216 !map_ptr->ops->map_poke_untrack || 17217 !map_ptr->ops->map_poke_run) { 17218 verbose(env, "bpf verifier is misconfigured\n"); 17219 return -EINVAL; 17220 } 17221 17222 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 17223 if (ret < 0) { 17224 verbose(env, "tracking tail call prog failed\n"); 17225 return ret; 17226 } 17227 } 17228 17229 sort_kfunc_descs_by_imm(env->prog); 17230 17231 return 0; 17232 } 17233 17234 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 17235 int position, 17236 s32 stack_base, 17237 u32 callback_subprogno, 17238 u32 *cnt) 17239 { 17240 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 17241 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 17242 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 17243 int reg_loop_max = BPF_REG_6; 17244 int reg_loop_cnt = BPF_REG_7; 17245 int reg_loop_ctx = BPF_REG_8; 17246 17247 struct bpf_prog *new_prog; 17248 u32 callback_start; 17249 u32 call_insn_offset; 17250 s32 callback_offset; 17251 17252 /* This represents an inlined version of bpf_iter.c:bpf_loop, 17253 * be careful to modify this code in sync. 17254 */ 17255 struct bpf_insn insn_buf[] = { 17256 /* Return error and jump to the end of the patch if 17257 * expected number of iterations is too big. 17258 */ 17259 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 17260 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 17261 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 17262 /* spill R6, R7, R8 to use these as loop vars */ 17263 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 17264 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 17265 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 17266 /* initialize loop vars */ 17267 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 17268 BPF_MOV32_IMM(reg_loop_cnt, 0), 17269 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 17270 /* loop header, 17271 * if reg_loop_cnt >= reg_loop_max skip the loop body 17272 */ 17273 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 17274 /* callback call, 17275 * correct callback offset would be set after patching 17276 */ 17277 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 17278 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 17279 BPF_CALL_REL(0), 17280 /* increment loop counter */ 17281 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 17282 /* jump to loop header if callback returned 0 */ 17283 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 17284 /* return value of bpf_loop, 17285 * set R0 to the number of iterations 17286 */ 17287 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 17288 /* restore original values of R6, R7, R8 */ 17289 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 17290 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 17291 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 17292 }; 17293 17294 *cnt = ARRAY_SIZE(insn_buf); 17295 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 17296 if (!new_prog) 17297 return new_prog; 17298 17299 /* callback start is known only after patching */ 17300 callback_start = env->subprog_info[callback_subprogno].start; 17301 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 17302 call_insn_offset = position + 12; 17303 callback_offset = callback_start - call_insn_offset - 1; 17304 new_prog->insnsi[call_insn_offset].imm = callback_offset; 17305 17306 return new_prog; 17307 } 17308 17309 static bool is_bpf_loop_call(struct bpf_insn *insn) 17310 { 17311 return insn->code == (BPF_JMP | BPF_CALL) && 17312 insn->src_reg == 0 && 17313 insn->imm == BPF_FUNC_loop; 17314 } 17315 17316 /* For all sub-programs in the program (including main) check 17317 * insn_aux_data to see if there are bpf_loop calls that require 17318 * inlining. If such calls are found the calls are replaced with a 17319 * sequence of instructions produced by `inline_bpf_loop` function and 17320 * subprog stack_depth is increased by the size of 3 registers. 17321 * This stack space is used to spill values of the R6, R7, R8. These 17322 * registers are used to store the loop bound, counter and context 17323 * variables. 17324 */ 17325 static int optimize_bpf_loop(struct bpf_verifier_env *env) 17326 { 17327 struct bpf_subprog_info *subprogs = env->subprog_info; 17328 int i, cur_subprog = 0, cnt, delta = 0; 17329 struct bpf_insn *insn = env->prog->insnsi; 17330 int insn_cnt = env->prog->len; 17331 u16 stack_depth = subprogs[cur_subprog].stack_depth; 17332 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 17333 u16 stack_depth_extra = 0; 17334 17335 for (i = 0; i < insn_cnt; i++, insn++) { 17336 struct bpf_loop_inline_state *inline_state = 17337 &env->insn_aux_data[i + delta].loop_inline_state; 17338 17339 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 17340 struct bpf_prog *new_prog; 17341 17342 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 17343 new_prog = inline_bpf_loop(env, 17344 i + delta, 17345 -(stack_depth + stack_depth_extra), 17346 inline_state->callback_subprogno, 17347 &cnt); 17348 if (!new_prog) 17349 return -ENOMEM; 17350 17351 delta += cnt - 1; 17352 env->prog = new_prog; 17353 insn = new_prog->insnsi + i + delta; 17354 } 17355 17356 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 17357 subprogs[cur_subprog].stack_depth += stack_depth_extra; 17358 cur_subprog++; 17359 stack_depth = subprogs[cur_subprog].stack_depth; 17360 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 17361 stack_depth_extra = 0; 17362 } 17363 } 17364 17365 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 17366 17367 return 0; 17368 } 17369 17370 static void free_states(struct bpf_verifier_env *env) 17371 { 17372 struct bpf_verifier_state_list *sl, *sln; 17373 int i; 17374 17375 sl = env->free_list; 17376 while (sl) { 17377 sln = sl->next; 17378 free_verifier_state(&sl->state, false); 17379 kfree(sl); 17380 sl = sln; 17381 } 17382 env->free_list = NULL; 17383 17384 if (!env->explored_states) 17385 return; 17386 17387 for (i = 0; i < state_htab_size(env); i++) { 17388 sl = env->explored_states[i]; 17389 17390 while (sl) { 17391 sln = sl->next; 17392 free_verifier_state(&sl->state, false); 17393 kfree(sl); 17394 sl = sln; 17395 } 17396 env->explored_states[i] = NULL; 17397 } 17398 } 17399 17400 static int do_check_common(struct bpf_verifier_env *env, int subprog) 17401 { 17402 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17403 struct bpf_verifier_state *state; 17404 struct bpf_reg_state *regs; 17405 int ret, i; 17406 17407 env->prev_linfo = NULL; 17408 env->pass_cnt++; 17409 17410 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 17411 if (!state) 17412 return -ENOMEM; 17413 state->curframe = 0; 17414 state->speculative = false; 17415 state->branches = 1; 17416 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 17417 if (!state->frame[0]) { 17418 kfree(state); 17419 return -ENOMEM; 17420 } 17421 env->cur_state = state; 17422 init_func_state(env, state->frame[0], 17423 BPF_MAIN_FUNC /* callsite */, 17424 0 /* frameno */, 17425 subprog); 17426 state->first_insn_idx = env->subprog_info[subprog].start; 17427 state->last_insn_idx = -1; 17428 17429 regs = state->frame[state->curframe]->regs; 17430 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 17431 ret = btf_prepare_func_args(env, subprog, regs); 17432 if (ret) 17433 goto out; 17434 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 17435 if (regs[i].type == PTR_TO_CTX) 17436 mark_reg_known_zero(env, regs, i); 17437 else if (regs[i].type == SCALAR_VALUE) 17438 mark_reg_unknown(env, regs, i); 17439 else if (base_type(regs[i].type) == PTR_TO_MEM) { 17440 const u32 mem_size = regs[i].mem_size; 17441 17442 mark_reg_known_zero(env, regs, i); 17443 regs[i].mem_size = mem_size; 17444 regs[i].id = ++env->id_gen; 17445 } 17446 } 17447 } else { 17448 /* 1st arg to a function */ 17449 regs[BPF_REG_1].type = PTR_TO_CTX; 17450 mark_reg_known_zero(env, regs, BPF_REG_1); 17451 ret = btf_check_subprog_arg_match(env, subprog, regs); 17452 if (ret == -EFAULT) 17453 /* unlikely verifier bug. abort. 17454 * ret == 0 and ret < 0 are sadly acceptable for 17455 * main() function due to backward compatibility. 17456 * Like socket filter program may be written as: 17457 * int bpf_prog(struct pt_regs *ctx) 17458 * and never dereference that ctx in the program. 17459 * 'struct pt_regs' is a type mismatch for socket 17460 * filter that should be using 'struct __sk_buff'. 17461 */ 17462 goto out; 17463 } 17464 17465 ret = do_check(env); 17466 out: 17467 /* check for NULL is necessary, since cur_state can be freed inside 17468 * do_check() under memory pressure. 17469 */ 17470 if (env->cur_state) { 17471 free_verifier_state(env->cur_state, true); 17472 env->cur_state = NULL; 17473 } 17474 while (!pop_stack(env, NULL, NULL, false)); 17475 if (!ret && pop_log) 17476 bpf_vlog_reset(&env->log, 0); 17477 free_states(env); 17478 return ret; 17479 } 17480 17481 /* Verify all global functions in a BPF program one by one based on their BTF. 17482 * All global functions must pass verification. Otherwise the whole program is rejected. 17483 * Consider: 17484 * int bar(int); 17485 * int foo(int f) 17486 * { 17487 * return bar(f); 17488 * } 17489 * int bar(int b) 17490 * { 17491 * ... 17492 * } 17493 * foo() will be verified first for R1=any_scalar_value. During verification it 17494 * will be assumed that bar() already verified successfully and call to bar() 17495 * from foo() will be checked for type match only. Later bar() will be verified 17496 * independently to check that it's safe for R1=any_scalar_value. 17497 */ 17498 static int do_check_subprogs(struct bpf_verifier_env *env) 17499 { 17500 struct bpf_prog_aux *aux = env->prog->aux; 17501 int i, ret; 17502 17503 if (!aux->func_info) 17504 return 0; 17505 17506 for (i = 1; i < env->subprog_cnt; i++) { 17507 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 17508 continue; 17509 env->insn_idx = env->subprog_info[i].start; 17510 WARN_ON_ONCE(env->insn_idx == 0); 17511 ret = do_check_common(env, i); 17512 if (ret) { 17513 return ret; 17514 } else if (env->log.level & BPF_LOG_LEVEL) { 17515 verbose(env, 17516 "Func#%d is safe for any args that match its prototype\n", 17517 i); 17518 } 17519 } 17520 return 0; 17521 } 17522 17523 static int do_check_main(struct bpf_verifier_env *env) 17524 { 17525 int ret; 17526 17527 env->insn_idx = 0; 17528 ret = do_check_common(env, 0); 17529 if (!ret) 17530 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 17531 return ret; 17532 } 17533 17534 17535 static void print_verification_stats(struct bpf_verifier_env *env) 17536 { 17537 int i; 17538 17539 if (env->log.level & BPF_LOG_STATS) { 17540 verbose(env, "verification time %lld usec\n", 17541 div_u64(env->verification_time, 1000)); 17542 verbose(env, "stack depth "); 17543 for (i = 0; i < env->subprog_cnt; i++) { 17544 u32 depth = env->subprog_info[i].stack_depth; 17545 17546 verbose(env, "%d", depth); 17547 if (i + 1 < env->subprog_cnt) 17548 verbose(env, "+"); 17549 } 17550 verbose(env, "\n"); 17551 } 17552 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 17553 "total_states %d peak_states %d mark_read %d\n", 17554 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 17555 env->max_states_per_insn, env->total_states, 17556 env->peak_states, env->longest_mark_read_walk); 17557 } 17558 17559 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 17560 { 17561 const struct btf_type *t, *func_proto; 17562 const struct bpf_struct_ops *st_ops; 17563 const struct btf_member *member; 17564 struct bpf_prog *prog = env->prog; 17565 u32 btf_id, member_idx; 17566 const char *mname; 17567 17568 if (!prog->gpl_compatible) { 17569 verbose(env, "struct ops programs must have a GPL compatible license\n"); 17570 return -EINVAL; 17571 } 17572 17573 btf_id = prog->aux->attach_btf_id; 17574 st_ops = bpf_struct_ops_find(btf_id); 17575 if (!st_ops) { 17576 verbose(env, "attach_btf_id %u is not a supported struct\n", 17577 btf_id); 17578 return -ENOTSUPP; 17579 } 17580 17581 t = st_ops->type; 17582 member_idx = prog->expected_attach_type; 17583 if (member_idx >= btf_type_vlen(t)) { 17584 verbose(env, "attach to invalid member idx %u of struct %s\n", 17585 member_idx, st_ops->name); 17586 return -EINVAL; 17587 } 17588 17589 member = &btf_type_member(t)[member_idx]; 17590 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 17591 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 17592 NULL); 17593 if (!func_proto) { 17594 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 17595 mname, member_idx, st_ops->name); 17596 return -EINVAL; 17597 } 17598 17599 if (st_ops->check_member) { 17600 int err = st_ops->check_member(t, member, prog); 17601 17602 if (err) { 17603 verbose(env, "attach to unsupported member %s of struct %s\n", 17604 mname, st_ops->name); 17605 return err; 17606 } 17607 } 17608 17609 prog->aux->attach_func_proto = func_proto; 17610 prog->aux->attach_func_name = mname; 17611 env->ops = st_ops->verifier_ops; 17612 17613 return 0; 17614 } 17615 #define SECURITY_PREFIX "security_" 17616 17617 static int check_attach_modify_return(unsigned long addr, const char *func_name) 17618 { 17619 if (within_error_injection_list(addr) || 17620 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 17621 return 0; 17622 17623 return -EINVAL; 17624 } 17625 17626 /* list of non-sleepable functions that are otherwise on 17627 * ALLOW_ERROR_INJECTION list 17628 */ 17629 BTF_SET_START(btf_non_sleepable_error_inject) 17630 /* Three functions below can be called from sleepable and non-sleepable context. 17631 * Assume non-sleepable from bpf safety point of view. 17632 */ 17633 BTF_ID(func, __filemap_add_folio) 17634 BTF_ID(func, should_fail_alloc_page) 17635 BTF_ID(func, should_failslab) 17636 BTF_SET_END(btf_non_sleepable_error_inject) 17637 17638 static int check_non_sleepable_error_inject(u32 btf_id) 17639 { 17640 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 17641 } 17642 17643 int bpf_check_attach_target(struct bpf_verifier_log *log, 17644 const struct bpf_prog *prog, 17645 const struct bpf_prog *tgt_prog, 17646 u32 btf_id, 17647 struct bpf_attach_target_info *tgt_info) 17648 { 17649 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 17650 const char prefix[] = "btf_trace_"; 17651 int ret = 0, subprog = -1, i; 17652 const struct btf_type *t; 17653 bool conservative = true; 17654 const char *tname; 17655 struct btf *btf; 17656 long addr = 0; 17657 17658 if (!btf_id) { 17659 bpf_log(log, "Tracing programs must provide btf_id\n"); 17660 return -EINVAL; 17661 } 17662 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 17663 if (!btf) { 17664 bpf_log(log, 17665 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 17666 return -EINVAL; 17667 } 17668 t = btf_type_by_id(btf, btf_id); 17669 if (!t) { 17670 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 17671 return -EINVAL; 17672 } 17673 tname = btf_name_by_offset(btf, t->name_off); 17674 if (!tname) { 17675 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 17676 return -EINVAL; 17677 } 17678 if (tgt_prog) { 17679 struct bpf_prog_aux *aux = tgt_prog->aux; 17680 17681 if (bpf_prog_is_dev_bound(prog->aux) && 17682 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 17683 bpf_log(log, "Target program bound device mismatch"); 17684 return -EINVAL; 17685 } 17686 17687 for (i = 0; i < aux->func_info_cnt; i++) 17688 if (aux->func_info[i].type_id == btf_id) { 17689 subprog = i; 17690 break; 17691 } 17692 if (subprog == -1) { 17693 bpf_log(log, "Subprog %s doesn't exist\n", tname); 17694 return -EINVAL; 17695 } 17696 conservative = aux->func_info_aux[subprog].unreliable; 17697 if (prog_extension) { 17698 if (conservative) { 17699 bpf_log(log, 17700 "Cannot replace static functions\n"); 17701 return -EINVAL; 17702 } 17703 if (!prog->jit_requested) { 17704 bpf_log(log, 17705 "Extension programs should be JITed\n"); 17706 return -EINVAL; 17707 } 17708 } 17709 if (!tgt_prog->jited) { 17710 bpf_log(log, "Can attach to only JITed progs\n"); 17711 return -EINVAL; 17712 } 17713 if (tgt_prog->type == prog->type) { 17714 /* Cannot fentry/fexit another fentry/fexit program. 17715 * Cannot attach program extension to another extension. 17716 * It's ok to attach fentry/fexit to extension program. 17717 */ 17718 bpf_log(log, "Cannot recursively attach\n"); 17719 return -EINVAL; 17720 } 17721 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 17722 prog_extension && 17723 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 17724 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 17725 /* Program extensions can extend all program types 17726 * except fentry/fexit. The reason is the following. 17727 * The fentry/fexit programs are used for performance 17728 * analysis, stats and can be attached to any program 17729 * type except themselves. When extension program is 17730 * replacing XDP function it is necessary to allow 17731 * performance analysis of all functions. Both original 17732 * XDP program and its program extension. Hence 17733 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 17734 * allowed. If extending of fentry/fexit was allowed it 17735 * would be possible to create long call chain 17736 * fentry->extension->fentry->extension beyond 17737 * reasonable stack size. Hence extending fentry is not 17738 * allowed. 17739 */ 17740 bpf_log(log, "Cannot extend fentry/fexit\n"); 17741 return -EINVAL; 17742 } 17743 } else { 17744 if (prog_extension) { 17745 bpf_log(log, "Cannot replace kernel functions\n"); 17746 return -EINVAL; 17747 } 17748 } 17749 17750 switch (prog->expected_attach_type) { 17751 case BPF_TRACE_RAW_TP: 17752 if (tgt_prog) { 17753 bpf_log(log, 17754 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 17755 return -EINVAL; 17756 } 17757 if (!btf_type_is_typedef(t)) { 17758 bpf_log(log, "attach_btf_id %u is not a typedef\n", 17759 btf_id); 17760 return -EINVAL; 17761 } 17762 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 17763 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 17764 btf_id, tname); 17765 return -EINVAL; 17766 } 17767 tname += sizeof(prefix) - 1; 17768 t = btf_type_by_id(btf, t->type); 17769 if (!btf_type_is_ptr(t)) 17770 /* should never happen in valid vmlinux build */ 17771 return -EINVAL; 17772 t = btf_type_by_id(btf, t->type); 17773 if (!btf_type_is_func_proto(t)) 17774 /* should never happen in valid vmlinux build */ 17775 return -EINVAL; 17776 17777 break; 17778 case BPF_TRACE_ITER: 17779 if (!btf_type_is_func(t)) { 17780 bpf_log(log, "attach_btf_id %u is not a function\n", 17781 btf_id); 17782 return -EINVAL; 17783 } 17784 t = btf_type_by_id(btf, t->type); 17785 if (!btf_type_is_func_proto(t)) 17786 return -EINVAL; 17787 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17788 if (ret) 17789 return ret; 17790 break; 17791 default: 17792 if (!prog_extension) 17793 return -EINVAL; 17794 fallthrough; 17795 case BPF_MODIFY_RETURN: 17796 case BPF_LSM_MAC: 17797 case BPF_LSM_CGROUP: 17798 case BPF_TRACE_FENTRY: 17799 case BPF_TRACE_FEXIT: 17800 if (!btf_type_is_func(t)) { 17801 bpf_log(log, "attach_btf_id %u is not a function\n", 17802 btf_id); 17803 return -EINVAL; 17804 } 17805 if (prog_extension && 17806 btf_check_type_match(log, prog, btf, t)) 17807 return -EINVAL; 17808 t = btf_type_by_id(btf, t->type); 17809 if (!btf_type_is_func_proto(t)) 17810 return -EINVAL; 17811 17812 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 17813 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 17814 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 17815 return -EINVAL; 17816 17817 if (tgt_prog && conservative) 17818 t = NULL; 17819 17820 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17821 if (ret < 0) 17822 return ret; 17823 17824 if (tgt_prog) { 17825 if (subprog == 0) 17826 addr = (long) tgt_prog->bpf_func; 17827 else 17828 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 17829 } else { 17830 addr = kallsyms_lookup_name(tname); 17831 if (!addr) { 17832 bpf_log(log, 17833 "The address of function %s cannot be found\n", 17834 tname); 17835 return -ENOENT; 17836 } 17837 } 17838 17839 if (prog->aux->sleepable) { 17840 ret = -EINVAL; 17841 switch (prog->type) { 17842 case BPF_PROG_TYPE_TRACING: 17843 17844 /* fentry/fexit/fmod_ret progs can be sleepable if they are 17845 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 17846 */ 17847 if (!check_non_sleepable_error_inject(btf_id) && 17848 within_error_injection_list(addr)) 17849 ret = 0; 17850 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 17851 * in the fmodret id set with the KF_SLEEPABLE flag. 17852 */ 17853 else { 17854 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 17855 17856 if (flags && (*flags & KF_SLEEPABLE)) 17857 ret = 0; 17858 } 17859 break; 17860 case BPF_PROG_TYPE_LSM: 17861 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 17862 * Only some of them are sleepable. 17863 */ 17864 if (bpf_lsm_is_sleepable_hook(btf_id)) 17865 ret = 0; 17866 break; 17867 default: 17868 break; 17869 } 17870 if (ret) { 17871 bpf_log(log, "%s is not sleepable\n", tname); 17872 return ret; 17873 } 17874 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 17875 if (tgt_prog) { 17876 bpf_log(log, "can't modify return codes of BPF programs\n"); 17877 return -EINVAL; 17878 } 17879 ret = -EINVAL; 17880 if (btf_kfunc_is_modify_return(btf, btf_id) || 17881 !check_attach_modify_return(addr, tname)) 17882 ret = 0; 17883 if (ret) { 17884 bpf_log(log, "%s() is not modifiable\n", tname); 17885 return ret; 17886 } 17887 } 17888 17889 break; 17890 } 17891 tgt_info->tgt_addr = addr; 17892 tgt_info->tgt_name = tname; 17893 tgt_info->tgt_type = t; 17894 return 0; 17895 } 17896 17897 BTF_SET_START(btf_id_deny) 17898 BTF_ID_UNUSED 17899 #ifdef CONFIG_SMP 17900 BTF_ID(func, migrate_disable) 17901 BTF_ID(func, migrate_enable) 17902 #endif 17903 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 17904 BTF_ID(func, rcu_read_unlock_strict) 17905 #endif 17906 BTF_SET_END(btf_id_deny) 17907 17908 static bool can_be_sleepable(struct bpf_prog *prog) 17909 { 17910 if (prog->type == BPF_PROG_TYPE_TRACING) { 17911 switch (prog->expected_attach_type) { 17912 case BPF_TRACE_FENTRY: 17913 case BPF_TRACE_FEXIT: 17914 case BPF_MODIFY_RETURN: 17915 case BPF_TRACE_ITER: 17916 return true; 17917 default: 17918 return false; 17919 } 17920 } 17921 return prog->type == BPF_PROG_TYPE_LSM || 17922 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 17923 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 17924 } 17925 17926 static int check_attach_btf_id(struct bpf_verifier_env *env) 17927 { 17928 struct bpf_prog *prog = env->prog; 17929 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 17930 struct bpf_attach_target_info tgt_info = {}; 17931 u32 btf_id = prog->aux->attach_btf_id; 17932 struct bpf_trampoline *tr; 17933 int ret; 17934 u64 key; 17935 17936 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 17937 if (prog->aux->sleepable) 17938 /* attach_btf_id checked to be zero already */ 17939 return 0; 17940 verbose(env, "Syscall programs can only be sleepable\n"); 17941 return -EINVAL; 17942 } 17943 17944 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 17945 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 17946 return -EINVAL; 17947 } 17948 17949 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 17950 return check_struct_ops_btf_id(env); 17951 17952 if (prog->type != BPF_PROG_TYPE_TRACING && 17953 prog->type != BPF_PROG_TYPE_LSM && 17954 prog->type != BPF_PROG_TYPE_EXT) 17955 return 0; 17956 17957 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 17958 if (ret) 17959 return ret; 17960 17961 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 17962 /* to make freplace equivalent to their targets, they need to 17963 * inherit env->ops and expected_attach_type for the rest of the 17964 * verification 17965 */ 17966 env->ops = bpf_verifier_ops[tgt_prog->type]; 17967 prog->expected_attach_type = tgt_prog->expected_attach_type; 17968 } 17969 17970 /* store info about the attachment target that will be used later */ 17971 prog->aux->attach_func_proto = tgt_info.tgt_type; 17972 prog->aux->attach_func_name = tgt_info.tgt_name; 17973 17974 if (tgt_prog) { 17975 prog->aux->saved_dst_prog_type = tgt_prog->type; 17976 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 17977 } 17978 17979 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 17980 prog->aux->attach_btf_trace = true; 17981 return 0; 17982 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 17983 if (!bpf_iter_prog_supported(prog)) 17984 return -EINVAL; 17985 return 0; 17986 } 17987 17988 if (prog->type == BPF_PROG_TYPE_LSM) { 17989 ret = bpf_lsm_verify_prog(&env->log, prog); 17990 if (ret < 0) 17991 return ret; 17992 } else if (prog->type == BPF_PROG_TYPE_TRACING && 17993 btf_id_set_contains(&btf_id_deny, btf_id)) { 17994 return -EINVAL; 17995 } 17996 17997 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 17998 tr = bpf_trampoline_get(key, &tgt_info); 17999 if (!tr) 18000 return -ENOMEM; 18001 18002 prog->aux->dst_trampoline = tr; 18003 return 0; 18004 } 18005 18006 struct btf *bpf_get_btf_vmlinux(void) 18007 { 18008 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 18009 mutex_lock(&bpf_verifier_lock); 18010 if (!btf_vmlinux) 18011 btf_vmlinux = btf_parse_vmlinux(); 18012 mutex_unlock(&bpf_verifier_lock); 18013 } 18014 return btf_vmlinux; 18015 } 18016 18017 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 18018 { 18019 u64 start_time = ktime_get_ns(); 18020 struct bpf_verifier_env *env; 18021 struct bpf_verifier_log *log; 18022 int i, len, ret = -EINVAL; 18023 bool is_priv; 18024 18025 /* no program is valid */ 18026 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 18027 return -EINVAL; 18028 18029 /* 'struct bpf_verifier_env' can be global, but since it's not small, 18030 * allocate/free it every time bpf_check() is called 18031 */ 18032 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 18033 if (!env) 18034 return -ENOMEM; 18035 log = &env->log; 18036 18037 len = (*prog)->len; 18038 env->insn_aux_data = 18039 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 18040 ret = -ENOMEM; 18041 if (!env->insn_aux_data) 18042 goto err_free_env; 18043 for (i = 0; i < len; i++) 18044 env->insn_aux_data[i].orig_idx = i; 18045 env->prog = *prog; 18046 env->ops = bpf_verifier_ops[env->prog->type]; 18047 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 18048 is_priv = bpf_capable(); 18049 18050 bpf_get_btf_vmlinux(); 18051 18052 /* grab the mutex to protect few globals used by verifier */ 18053 if (!is_priv) 18054 mutex_lock(&bpf_verifier_lock); 18055 18056 if (attr->log_level || attr->log_buf || attr->log_size) { 18057 /* user requested verbose verifier output 18058 * and supplied buffer to store the verification trace 18059 */ 18060 log->level = attr->log_level; 18061 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 18062 log->len_total = attr->log_size; 18063 18064 /* log attributes have to be sane */ 18065 if (!bpf_verifier_log_attr_valid(log)) { 18066 ret = -EINVAL; 18067 goto err_unlock; 18068 } 18069 } 18070 18071 mark_verifier_state_clean(env); 18072 18073 if (IS_ERR(btf_vmlinux)) { 18074 /* Either gcc or pahole or kernel are broken. */ 18075 verbose(env, "in-kernel BTF is malformed\n"); 18076 ret = PTR_ERR(btf_vmlinux); 18077 goto skip_full_check; 18078 } 18079 18080 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 18081 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 18082 env->strict_alignment = true; 18083 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 18084 env->strict_alignment = false; 18085 18086 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 18087 env->allow_uninit_stack = bpf_allow_uninit_stack(); 18088 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 18089 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 18090 env->bpf_capable = bpf_capable(); 18091 18092 if (is_priv) 18093 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 18094 18095 env->explored_states = kvcalloc(state_htab_size(env), 18096 sizeof(struct bpf_verifier_state_list *), 18097 GFP_USER); 18098 ret = -ENOMEM; 18099 if (!env->explored_states) 18100 goto skip_full_check; 18101 18102 ret = add_subprog_and_kfunc(env); 18103 if (ret < 0) 18104 goto skip_full_check; 18105 18106 ret = check_subprogs(env); 18107 if (ret < 0) 18108 goto skip_full_check; 18109 18110 ret = check_btf_info(env, attr, uattr); 18111 if (ret < 0) 18112 goto skip_full_check; 18113 18114 ret = check_attach_btf_id(env); 18115 if (ret) 18116 goto skip_full_check; 18117 18118 ret = resolve_pseudo_ldimm64(env); 18119 if (ret < 0) 18120 goto skip_full_check; 18121 18122 if (bpf_prog_is_offloaded(env->prog->aux)) { 18123 ret = bpf_prog_offload_verifier_prep(env->prog); 18124 if (ret) 18125 goto skip_full_check; 18126 } 18127 18128 ret = check_cfg(env); 18129 if (ret < 0) 18130 goto skip_full_check; 18131 18132 ret = do_check_subprogs(env); 18133 ret = ret ?: do_check_main(env); 18134 18135 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 18136 ret = bpf_prog_offload_finalize(env); 18137 18138 skip_full_check: 18139 kvfree(env->explored_states); 18140 18141 if (ret == 0) 18142 ret = check_max_stack_depth(env); 18143 18144 /* instruction rewrites happen after this point */ 18145 if (ret == 0) 18146 ret = optimize_bpf_loop(env); 18147 18148 if (is_priv) { 18149 if (ret == 0) 18150 opt_hard_wire_dead_code_branches(env); 18151 if (ret == 0) 18152 ret = opt_remove_dead_code(env); 18153 if (ret == 0) 18154 ret = opt_remove_nops(env); 18155 } else { 18156 if (ret == 0) 18157 sanitize_dead_code(env); 18158 } 18159 18160 if (ret == 0) 18161 /* program is valid, convert *(u32*)(ctx + off) accesses */ 18162 ret = convert_ctx_accesses(env); 18163 18164 if (ret == 0) 18165 ret = do_misc_fixups(env); 18166 18167 /* do 32-bit optimization after insn patching has done so those patched 18168 * insns could be handled correctly. 18169 */ 18170 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 18171 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 18172 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 18173 : false; 18174 } 18175 18176 if (ret == 0) 18177 ret = fixup_call_args(env); 18178 18179 env->verification_time = ktime_get_ns() - start_time; 18180 print_verification_stats(env); 18181 env->prog->aux->verified_insns = env->insn_processed; 18182 18183 if (log->level && bpf_verifier_log_full(log)) 18184 ret = -ENOSPC; 18185 if (log->level && !log->ubuf) { 18186 ret = -EFAULT; 18187 goto err_release_maps; 18188 } 18189 18190 if (ret) 18191 goto err_release_maps; 18192 18193 if (env->used_map_cnt) { 18194 /* if program passed verifier, update used_maps in bpf_prog_info */ 18195 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 18196 sizeof(env->used_maps[0]), 18197 GFP_KERNEL); 18198 18199 if (!env->prog->aux->used_maps) { 18200 ret = -ENOMEM; 18201 goto err_release_maps; 18202 } 18203 18204 memcpy(env->prog->aux->used_maps, env->used_maps, 18205 sizeof(env->used_maps[0]) * env->used_map_cnt); 18206 env->prog->aux->used_map_cnt = env->used_map_cnt; 18207 } 18208 if (env->used_btf_cnt) { 18209 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 18210 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 18211 sizeof(env->used_btfs[0]), 18212 GFP_KERNEL); 18213 if (!env->prog->aux->used_btfs) { 18214 ret = -ENOMEM; 18215 goto err_release_maps; 18216 } 18217 18218 memcpy(env->prog->aux->used_btfs, env->used_btfs, 18219 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 18220 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 18221 } 18222 if (env->used_map_cnt || env->used_btf_cnt) { 18223 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 18224 * bpf_ld_imm64 instructions 18225 */ 18226 convert_pseudo_ld_imm64(env); 18227 } 18228 18229 adjust_btf_func(env); 18230 18231 err_release_maps: 18232 if (!env->prog->aux->used_maps) 18233 /* if we didn't copy map pointers into bpf_prog_info, release 18234 * them now. Otherwise free_used_maps() will release them. 18235 */ 18236 release_maps(env); 18237 if (!env->prog->aux->used_btfs) 18238 release_btfs(env); 18239 18240 /* extension progs temporarily inherit the attach_type of their targets 18241 for verification purposes, so set it back to zero before returning 18242 */ 18243 if (env->prog->type == BPF_PROG_TYPE_EXT) 18244 env->prog->expected_attach_type = 0; 18245 18246 *prog = env->prog; 18247 err_unlock: 18248 if (!is_priv) 18249 mutex_unlock(&bpf_verifier_lock); 18250 vfree(env->insn_aux_data); 18251 err_free_env: 18252 kfree(env); 18253 return ret; 18254 } 18255