1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 struct bpf_call_arg_meta { 232 struct bpf_map *map_ptr; 233 bool raw_mode; 234 bool pkt_access; 235 int regno; 236 int access_size; 237 int mem_size; 238 u64 msize_max_value; 239 int ref_obj_id; 240 int func_id; 241 u32 btf_id; 242 u32 ret_btf_id; 243 }; 244 245 struct btf *btf_vmlinux; 246 247 static DEFINE_MUTEX(bpf_verifier_lock); 248 249 static const struct bpf_line_info * 250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 251 { 252 const struct bpf_line_info *linfo; 253 const struct bpf_prog *prog; 254 u32 i, nr_linfo; 255 256 prog = env->prog; 257 nr_linfo = prog->aux->nr_linfo; 258 259 if (!nr_linfo || insn_off >= prog->len) 260 return NULL; 261 262 linfo = prog->aux->linfo; 263 for (i = 1; i < nr_linfo; i++) 264 if (insn_off < linfo[i].insn_off) 265 break; 266 267 return &linfo[i - 1]; 268 } 269 270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 271 va_list args) 272 { 273 unsigned int n; 274 275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 276 277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 278 "verifier log line truncated - local buffer too short\n"); 279 280 n = min(log->len_total - log->len_used - 1, n); 281 log->kbuf[n] = '\0'; 282 283 if (log->level == BPF_LOG_KERNEL) { 284 pr_err("BPF:%s\n", log->kbuf); 285 return; 286 } 287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 288 log->len_used += n; 289 else 290 log->ubuf = NULL; 291 } 292 293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 294 { 295 char zero = 0; 296 297 if (!bpf_verifier_log_needed(log)) 298 return; 299 300 log->len_used = new_pos; 301 if (put_user(zero, log->ubuf + new_pos)) 302 log->ubuf = NULL; 303 } 304 305 /* log_level controls verbosity level of eBPF verifier. 306 * bpf_verifier_log_write() is used to dump the verification trace to the log, 307 * so the user can figure out what's wrong with the program 308 */ 309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 310 const char *fmt, ...) 311 { 312 va_list args; 313 314 if (!bpf_verifier_log_needed(&env->log)) 315 return; 316 317 va_start(args, fmt); 318 bpf_verifier_vlog(&env->log, fmt, args); 319 va_end(args); 320 } 321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 322 323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 324 { 325 struct bpf_verifier_env *env = private_data; 326 va_list args; 327 328 if (!bpf_verifier_log_needed(&env->log)) 329 return; 330 331 va_start(args, fmt); 332 bpf_verifier_vlog(&env->log, fmt, args); 333 va_end(args); 334 } 335 336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 if (!bpf_verifier_log_needed(log)) 342 return; 343 344 va_start(args, fmt); 345 bpf_verifier_vlog(log, fmt, args); 346 va_end(args); 347 } 348 349 static const char *ltrim(const char *s) 350 { 351 while (isspace(*s)) 352 s++; 353 354 return s; 355 } 356 357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 358 u32 insn_off, 359 const char *prefix_fmt, ...) 360 { 361 const struct bpf_line_info *linfo; 362 363 if (!bpf_verifier_log_needed(&env->log)) 364 return; 365 366 linfo = find_linfo(env, insn_off); 367 if (!linfo || linfo == env->prev_linfo) 368 return; 369 370 if (prefix_fmt) { 371 va_list args; 372 373 va_start(args, prefix_fmt); 374 bpf_verifier_vlog(&env->log, prefix_fmt, args); 375 va_end(args); 376 } 377 378 verbose(env, "%s\n", 379 ltrim(btf_name_by_offset(env->prog->aux->btf, 380 linfo->line_off))); 381 382 env->prev_linfo = linfo; 383 } 384 385 static bool type_is_pkt_pointer(enum bpf_reg_type type) 386 { 387 return type == PTR_TO_PACKET || 388 type == PTR_TO_PACKET_META; 389 } 390 391 static bool type_is_sk_pointer(enum bpf_reg_type type) 392 { 393 return type == PTR_TO_SOCKET || 394 type == PTR_TO_SOCK_COMMON || 395 type == PTR_TO_TCP_SOCK || 396 type == PTR_TO_XDP_SOCK; 397 } 398 399 static bool reg_type_not_null(enum bpf_reg_type type) 400 { 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_TCP_SOCK || 403 type == PTR_TO_MAP_VALUE || 404 type == PTR_TO_SOCK_COMMON; 405 } 406 407 static bool reg_type_may_be_null(enum bpf_reg_type type) 408 { 409 return type == PTR_TO_MAP_VALUE_OR_NULL || 410 type == PTR_TO_SOCKET_OR_NULL || 411 type == PTR_TO_SOCK_COMMON_OR_NULL || 412 type == PTR_TO_TCP_SOCK_OR_NULL || 413 type == PTR_TO_BTF_ID_OR_NULL || 414 type == PTR_TO_MEM_OR_NULL || 415 type == PTR_TO_RDONLY_BUF_OR_NULL || 416 type == PTR_TO_RDWR_BUF_OR_NULL; 417 } 418 419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 420 { 421 return reg->type == PTR_TO_MAP_VALUE && 422 map_value_has_spin_lock(reg->map_ptr); 423 } 424 425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_SOCKET || 428 type == PTR_TO_SOCKET_OR_NULL || 429 type == PTR_TO_TCP_SOCK || 430 type == PTR_TO_TCP_SOCK_OR_NULL || 431 type == PTR_TO_MEM || 432 type == PTR_TO_MEM_OR_NULL; 433 } 434 435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 436 { 437 return type == ARG_PTR_TO_SOCK_COMMON; 438 } 439 440 static bool arg_type_may_be_null(enum bpf_arg_type type) 441 { 442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 443 type == ARG_PTR_TO_MEM_OR_NULL || 444 type == ARG_PTR_TO_CTX_OR_NULL || 445 type == ARG_PTR_TO_SOCKET_OR_NULL || 446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 447 } 448 449 /* Determine whether the function releases some resources allocated by another 450 * function call. The first reference type argument will be assumed to be 451 * released by release_reference(). 452 */ 453 static bool is_release_function(enum bpf_func_id func_id) 454 { 455 return func_id == BPF_FUNC_sk_release || 456 func_id == BPF_FUNC_ringbuf_submit || 457 func_id == BPF_FUNC_ringbuf_discard; 458 } 459 460 static bool may_be_acquire_function(enum bpf_func_id func_id) 461 { 462 return func_id == BPF_FUNC_sk_lookup_tcp || 463 func_id == BPF_FUNC_sk_lookup_udp || 464 func_id == BPF_FUNC_skc_lookup_tcp || 465 func_id == BPF_FUNC_map_lookup_elem || 466 func_id == BPF_FUNC_ringbuf_reserve; 467 } 468 469 static bool is_acquire_function(enum bpf_func_id func_id, 470 const struct bpf_map *map) 471 { 472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 473 474 if (func_id == BPF_FUNC_sk_lookup_tcp || 475 func_id == BPF_FUNC_sk_lookup_udp || 476 func_id == BPF_FUNC_skc_lookup_tcp || 477 func_id == BPF_FUNC_ringbuf_reserve) 478 return true; 479 480 if (func_id == BPF_FUNC_map_lookup_elem && 481 (map_type == BPF_MAP_TYPE_SOCKMAP || 482 map_type == BPF_MAP_TYPE_SOCKHASH)) 483 return true; 484 485 return false; 486 } 487 488 static bool is_ptr_cast_function(enum bpf_func_id func_id) 489 { 490 return func_id == BPF_FUNC_tcp_sock || 491 func_id == BPF_FUNC_sk_fullsock || 492 func_id == BPF_FUNC_skc_to_tcp_sock || 493 func_id == BPF_FUNC_skc_to_tcp6_sock || 494 func_id == BPF_FUNC_skc_to_udp6_sock || 495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 496 func_id == BPF_FUNC_skc_to_tcp_request_sock; 497 } 498 499 /* string representation of 'enum bpf_reg_type' */ 500 static const char * const reg_type_str[] = { 501 [NOT_INIT] = "?", 502 [SCALAR_VALUE] = "inv", 503 [PTR_TO_CTX] = "ctx", 504 [CONST_PTR_TO_MAP] = "map_ptr", 505 [PTR_TO_MAP_VALUE] = "map_value", 506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 507 [PTR_TO_STACK] = "fp", 508 [PTR_TO_PACKET] = "pkt", 509 [PTR_TO_PACKET_META] = "pkt_meta", 510 [PTR_TO_PACKET_END] = "pkt_end", 511 [PTR_TO_FLOW_KEYS] = "flow_keys", 512 [PTR_TO_SOCKET] = "sock", 513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 514 [PTR_TO_SOCK_COMMON] = "sock_common", 515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 516 [PTR_TO_TCP_SOCK] = "tcp_sock", 517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 518 [PTR_TO_TP_BUFFER] = "tp_buffer", 519 [PTR_TO_XDP_SOCK] = "xdp_sock", 520 [PTR_TO_BTF_ID] = "ptr_", 521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 523 [PTR_TO_MEM] = "mem", 524 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 525 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 527 [PTR_TO_RDWR_BUF] = "rdwr_buf", 528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 529 }; 530 531 static char slot_type_char[] = { 532 [STACK_INVALID] = '?', 533 [STACK_SPILL] = 'r', 534 [STACK_MISC] = 'm', 535 [STACK_ZERO] = '0', 536 }; 537 538 static void print_liveness(struct bpf_verifier_env *env, 539 enum bpf_reg_liveness live) 540 { 541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 542 verbose(env, "_"); 543 if (live & REG_LIVE_READ) 544 verbose(env, "r"); 545 if (live & REG_LIVE_WRITTEN) 546 verbose(env, "w"); 547 if (live & REG_LIVE_DONE) 548 verbose(env, "D"); 549 } 550 551 static struct bpf_func_state *func(struct bpf_verifier_env *env, 552 const struct bpf_reg_state *reg) 553 { 554 struct bpf_verifier_state *cur = env->cur_state; 555 556 return cur->frame[reg->frameno]; 557 } 558 559 const char *kernel_type_name(u32 id) 560 { 561 return btf_name_by_offset(btf_vmlinux, 562 btf_type_by_id(btf_vmlinux, id)->name_off); 563 } 564 565 static void print_verifier_state(struct bpf_verifier_env *env, 566 const struct bpf_func_state *state) 567 { 568 const struct bpf_reg_state *reg; 569 enum bpf_reg_type t; 570 int i; 571 572 if (state->frameno) 573 verbose(env, " frame%d:", state->frameno); 574 for (i = 0; i < MAX_BPF_REG; i++) { 575 reg = &state->regs[i]; 576 t = reg->type; 577 if (t == NOT_INIT) 578 continue; 579 verbose(env, " R%d", i); 580 print_liveness(env, reg->live); 581 verbose(env, "=%s", reg_type_str[t]); 582 if (t == SCALAR_VALUE && reg->precise) 583 verbose(env, "P"); 584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 585 tnum_is_const(reg->var_off)) { 586 /* reg->off should be 0 for SCALAR_VALUE */ 587 verbose(env, "%lld", reg->var_off.value + reg->off); 588 } else { 589 if (t == PTR_TO_BTF_ID || 590 t == PTR_TO_BTF_ID_OR_NULL || 591 t == PTR_TO_PERCPU_BTF_ID) 592 verbose(env, "%s", kernel_type_name(reg->btf_id)); 593 verbose(env, "(id=%d", reg->id); 594 if (reg_type_may_be_refcounted_or_null(t)) 595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 596 if (t != SCALAR_VALUE) 597 verbose(env, ",off=%d", reg->off); 598 if (type_is_pkt_pointer(t)) 599 verbose(env, ",r=%d", reg->range); 600 else if (t == CONST_PTR_TO_MAP || 601 t == PTR_TO_MAP_VALUE || 602 t == PTR_TO_MAP_VALUE_OR_NULL) 603 verbose(env, ",ks=%d,vs=%d", 604 reg->map_ptr->key_size, 605 reg->map_ptr->value_size); 606 if (tnum_is_const(reg->var_off)) { 607 /* Typically an immediate SCALAR_VALUE, but 608 * could be a pointer whose offset is too big 609 * for reg->off 610 */ 611 verbose(env, ",imm=%llx", reg->var_off.value); 612 } else { 613 if (reg->smin_value != reg->umin_value && 614 reg->smin_value != S64_MIN) 615 verbose(env, ",smin_value=%lld", 616 (long long)reg->smin_value); 617 if (reg->smax_value != reg->umax_value && 618 reg->smax_value != S64_MAX) 619 verbose(env, ",smax_value=%lld", 620 (long long)reg->smax_value); 621 if (reg->umin_value != 0) 622 verbose(env, ",umin_value=%llu", 623 (unsigned long long)reg->umin_value); 624 if (reg->umax_value != U64_MAX) 625 verbose(env, ",umax_value=%llu", 626 (unsigned long long)reg->umax_value); 627 if (!tnum_is_unknown(reg->var_off)) { 628 char tn_buf[48]; 629 630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 631 verbose(env, ",var_off=%s", tn_buf); 632 } 633 if (reg->s32_min_value != reg->smin_value && 634 reg->s32_min_value != S32_MIN) 635 verbose(env, ",s32_min_value=%d", 636 (int)(reg->s32_min_value)); 637 if (reg->s32_max_value != reg->smax_value && 638 reg->s32_max_value != S32_MAX) 639 verbose(env, ",s32_max_value=%d", 640 (int)(reg->s32_max_value)); 641 if (reg->u32_min_value != reg->umin_value && 642 reg->u32_min_value != U32_MIN) 643 verbose(env, ",u32_min_value=%d", 644 (int)(reg->u32_min_value)); 645 if (reg->u32_max_value != reg->umax_value && 646 reg->u32_max_value != U32_MAX) 647 verbose(env, ",u32_max_value=%d", 648 (int)(reg->u32_max_value)); 649 } 650 verbose(env, ")"); 651 } 652 } 653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 654 char types_buf[BPF_REG_SIZE + 1]; 655 bool valid = false; 656 int j; 657 658 for (j = 0; j < BPF_REG_SIZE; j++) { 659 if (state->stack[i].slot_type[j] != STACK_INVALID) 660 valid = true; 661 types_buf[j] = slot_type_char[ 662 state->stack[i].slot_type[j]]; 663 } 664 types_buf[BPF_REG_SIZE] = 0; 665 if (!valid) 666 continue; 667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 668 print_liveness(env, state->stack[i].spilled_ptr.live); 669 if (state->stack[i].slot_type[0] == STACK_SPILL) { 670 reg = &state->stack[i].spilled_ptr; 671 t = reg->type; 672 verbose(env, "=%s", reg_type_str[t]); 673 if (t == SCALAR_VALUE && reg->precise) 674 verbose(env, "P"); 675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 676 verbose(env, "%lld", reg->var_off.value + reg->off); 677 } else { 678 verbose(env, "=%s", types_buf); 679 } 680 } 681 if (state->acquired_refs && state->refs[0].id) { 682 verbose(env, " refs=%d", state->refs[0].id); 683 for (i = 1; i < state->acquired_refs; i++) 684 if (state->refs[i].id) 685 verbose(env, ",%d", state->refs[i].id); 686 } 687 verbose(env, "\n"); 688 } 689 690 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 691 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 692 const struct bpf_func_state *src) \ 693 { \ 694 if (!src->FIELD) \ 695 return 0; \ 696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 697 /* internal bug, make state invalid to reject the program */ \ 698 memset(dst, 0, sizeof(*dst)); \ 699 return -EFAULT; \ 700 } \ 701 memcpy(dst->FIELD, src->FIELD, \ 702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 703 return 0; \ 704 } 705 /* copy_reference_state() */ 706 COPY_STATE_FN(reference, acquired_refs, refs, 1) 707 /* copy_stack_state() */ 708 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 709 #undef COPY_STATE_FN 710 711 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 712 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 713 bool copy_old) \ 714 { \ 715 u32 old_size = state->COUNT; \ 716 struct bpf_##NAME##_state *new_##FIELD; \ 717 int slot = size / SIZE; \ 718 \ 719 if (size <= old_size || !size) { \ 720 if (copy_old) \ 721 return 0; \ 722 state->COUNT = slot * SIZE; \ 723 if (!size && old_size) { \ 724 kfree(state->FIELD); \ 725 state->FIELD = NULL; \ 726 } \ 727 return 0; \ 728 } \ 729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 730 GFP_KERNEL); \ 731 if (!new_##FIELD) \ 732 return -ENOMEM; \ 733 if (copy_old) { \ 734 if (state->FIELD) \ 735 memcpy(new_##FIELD, state->FIELD, \ 736 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 737 memset(new_##FIELD + old_size / SIZE, 0, \ 738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 739 } \ 740 state->COUNT = slot * SIZE; \ 741 kfree(state->FIELD); \ 742 state->FIELD = new_##FIELD; \ 743 return 0; \ 744 } 745 /* realloc_reference_state() */ 746 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 747 /* realloc_stack_state() */ 748 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 749 #undef REALLOC_STATE_FN 750 751 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 752 * make it consume minimal amount of memory. check_stack_write() access from 753 * the program calls into realloc_func_state() to grow the stack size. 754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 755 * which realloc_stack_state() copies over. It points to previous 756 * bpf_verifier_state which is never reallocated. 757 */ 758 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 759 int refs_size, bool copy_old) 760 { 761 int err = realloc_reference_state(state, refs_size, copy_old); 762 if (err) 763 return err; 764 return realloc_stack_state(state, stack_size, copy_old); 765 } 766 767 /* Acquire a pointer id from the env and update the state->refs to include 768 * this new pointer reference. 769 * On success, returns a valid pointer id to associate with the register 770 * On failure, returns a negative errno. 771 */ 772 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 773 { 774 struct bpf_func_state *state = cur_func(env); 775 int new_ofs = state->acquired_refs; 776 int id, err; 777 778 err = realloc_reference_state(state, state->acquired_refs + 1, true); 779 if (err) 780 return err; 781 id = ++env->id_gen; 782 state->refs[new_ofs].id = id; 783 state->refs[new_ofs].insn_idx = insn_idx; 784 785 return id; 786 } 787 788 /* release function corresponding to acquire_reference_state(). Idempotent. */ 789 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 790 { 791 int i, last_idx; 792 793 last_idx = state->acquired_refs - 1; 794 for (i = 0; i < state->acquired_refs; i++) { 795 if (state->refs[i].id == ptr_id) { 796 if (last_idx && i != last_idx) 797 memcpy(&state->refs[i], &state->refs[last_idx], 798 sizeof(*state->refs)); 799 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 800 state->acquired_refs--; 801 return 0; 802 } 803 } 804 return -EINVAL; 805 } 806 807 static int transfer_reference_state(struct bpf_func_state *dst, 808 struct bpf_func_state *src) 809 { 810 int err = realloc_reference_state(dst, src->acquired_refs, false); 811 if (err) 812 return err; 813 err = copy_reference_state(dst, src); 814 if (err) 815 return err; 816 return 0; 817 } 818 819 static void free_func_state(struct bpf_func_state *state) 820 { 821 if (!state) 822 return; 823 kfree(state->refs); 824 kfree(state->stack); 825 kfree(state); 826 } 827 828 static void clear_jmp_history(struct bpf_verifier_state *state) 829 { 830 kfree(state->jmp_history); 831 state->jmp_history = NULL; 832 state->jmp_history_cnt = 0; 833 } 834 835 static void free_verifier_state(struct bpf_verifier_state *state, 836 bool free_self) 837 { 838 int i; 839 840 for (i = 0; i <= state->curframe; i++) { 841 free_func_state(state->frame[i]); 842 state->frame[i] = NULL; 843 } 844 clear_jmp_history(state); 845 if (free_self) 846 kfree(state); 847 } 848 849 /* copy verifier state from src to dst growing dst stack space 850 * when necessary to accommodate larger src stack 851 */ 852 static int copy_func_state(struct bpf_func_state *dst, 853 const struct bpf_func_state *src) 854 { 855 int err; 856 857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 858 false); 859 if (err) 860 return err; 861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 862 err = copy_reference_state(dst, src); 863 if (err) 864 return err; 865 return copy_stack_state(dst, src); 866 } 867 868 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 869 const struct bpf_verifier_state *src) 870 { 871 struct bpf_func_state *dst; 872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 873 int i, err; 874 875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 876 kfree(dst_state->jmp_history); 877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 878 if (!dst_state->jmp_history) 879 return -ENOMEM; 880 } 881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 882 dst_state->jmp_history_cnt = src->jmp_history_cnt; 883 884 /* if dst has more stack frames then src frame, free them */ 885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 886 free_func_state(dst_state->frame[i]); 887 dst_state->frame[i] = NULL; 888 } 889 dst_state->speculative = src->speculative; 890 dst_state->curframe = src->curframe; 891 dst_state->active_spin_lock = src->active_spin_lock; 892 dst_state->branches = src->branches; 893 dst_state->parent = src->parent; 894 dst_state->first_insn_idx = src->first_insn_idx; 895 dst_state->last_insn_idx = src->last_insn_idx; 896 for (i = 0; i <= src->curframe; i++) { 897 dst = dst_state->frame[i]; 898 if (!dst) { 899 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 900 if (!dst) 901 return -ENOMEM; 902 dst_state->frame[i] = dst; 903 } 904 err = copy_func_state(dst, src->frame[i]); 905 if (err) 906 return err; 907 } 908 return 0; 909 } 910 911 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 912 { 913 while (st) { 914 u32 br = --st->branches; 915 916 /* WARN_ON(br > 1) technically makes sense here, 917 * but see comment in push_stack(), hence: 918 */ 919 WARN_ONCE((int)br < 0, 920 "BUG update_branch_counts:branches_to_explore=%d\n", 921 br); 922 if (br) 923 break; 924 st = st->parent; 925 } 926 } 927 928 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 929 int *insn_idx, bool pop_log) 930 { 931 struct bpf_verifier_state *cur = env->cur_state; 932 struct bpf_verifier_stack_elem *elem, *head = env->head; 933 int err; 934 935 if (env->head == NULL) 936 return -ENOENT; 937 938 if (cur) { 939 err = copy_verifier_state(cur, &head->st); 940 if (err) 941 return err; 942 } 943 if (pop_log) 944 bpf_vlog_reset(&env->log, head->log_pos); 945 if (insn_idx) 946 *insn_idx = head->insn_idx; 947 if (prev_insn_idx) 948 *prev_insn_idx = head->prev_insn_idx; 949 elem = head->next; 950 free_verifier_state(&head->st, false); 951 kfree(head); 952 env->head = elem; 953 env->stack_size--; 954 return 0; 955 } 956 957 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 958 int insn_idx, int prev_insn_idx, 959 bool speculative) 960 { 961 struct bpf_verifier_state *cur = env->cur_state; 962 struct bpf_verifier_stack_elem *elem; 963 int err; 964 965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 966 if (!elem) 967 goto err; 968 969 elem->insn_idx = insn_idx; 970 elem->prev_insn_idx = prev_insn_idx; 971 elem->next = env->head; 972 elem->log_pos = env->log.len_used; 973 env->head = elem; 974 env->stack_size++; 975 err = copy_verifier_state(&elem->st, cur); 976 if (err) 977 goto err; 978 elem->st.speculative |= speculative; 979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 980 verbose(env, "The sequence of %d jumps is too complex.\n", 981 env->stack_size); 982 goto err; 983 } 984 if (elem->st.parent) { 985 ++elem->st.parent->branches; 986 /* WARN_ON(branches > 2) technically makes sense here, 987 * but 988 * 1. speculative states will bump 'branches' for non-branch 989 * instructions 990 * 2. is_state_visited() heuristics may decide not to create 991 * a new state for a sequence of branches and all such current 992 * and cloned states will be pointing to a single parent state 993 * which might have large 'branches' count. 994 */ 995 } 996 return &elem->st; 997 err: 998 free_verifier_state(env->cur_state, true); 999 env->cur_state = NULL; 1000 /* pop all elements and return */ 1001 while (!pop_stack(env, NULL, NULL, false)); 1002 return NULL; 1003 } 1004 1005 #define CALLER_SAVED_REGS 6 1006 static const int caller_saved[CALLER_SAVED_REGS] = { 1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1008 }; 1009 1010 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1011 struct bpf_reg_state *reg); 1012 1013 /* This helper doesn't clear reg->id */ 1014 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1015 { 1016 reg->var_off = tnum_const(imm); 1017 reg->smin_value = (s64)imm; 1018 reg->smax_value = (s64)imm; 1019 reg->umin_value = imm; 1020 reg->umax_value = imm; 1021 1022 reg->s32_min_value = (s32)imm; 1023 reg->s32_max_value = (s32)imm; 1024 reg->u32_min_value = (u32)imm; 1025 reg->u32_max_value = (u32)imm; 1026 } 1027 1028 /* Mark the unknown part of a register (variable offset or scalar value) as 1029 * known to have the value @imm. 1030 */ 1031 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1032 { 1033 /* Clear id, off, and union(map_ptr, range) */ 1034 memset(((u8 *)reg) + sizeof(reg->type), 0, 1035 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1036 ___mark_reg_known(reg, imm); 1037 } 1038 1039 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1040 { 1041 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1042 reg->s32_min_value = (s32)imm; 1043 reg->s32_max_value = (s32)imm; 1044 reg->u32_min_value = (u32)imm; 1045 reg->u32_max_value = (u32)imm; 1046 } 1047 1048 /* Mark the 'variable offset' part of a register as zero. This should be 1049 * used only on registers holding a pointer type. 1050 */ 1051 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1052 { 1053 __mark_reg_known(reg, 0); 1054 } 1055 1056 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1057 { 1058 __mark_reg_known(reg, 0); 1059 reg->type = SCALAR_VALUE; 1060 } 1061 1062 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1063 struct bpf_reg_state *regs, u32 regno) 1064 { 1065 if (WARN_ON(regno >= MAX_BPF_REG)) { 1066 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1067 /* Something bad happened, let's kill all regs */ 1068 for (regno = 0; regno < MAX_BPF_REG; regno++) 1069 __mark_reg_not_init(env, regs + regno); 1070 return; 1071 } 1072 __mark_reg_known_zero(regs + regno); 1073 } 1074 1075 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1076 { 1077 return type_is_pkt_pointer(reg->type); 1078 } 1079 1080 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1081 { 1082 return reg_is_pkt_pointer(reg) || 1083 reg->type == PTR_TO_PACKET_END; 1084 } 1085 1086 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1087 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1088 enum bpf_reg_type which) 1089 { 1090 /* The register can already have a range from prior markings. 1091 * This is fine as long as it hasn't been advanced from its 1092 * origin. 1093 */ 1094 return reg->type == which && 1095 reg->id == 0 && 1096 reg->off == 0 && 1097 tnum_equals_const(reg->var_off, 0); 1098 } 1099 1100 /* Reset the min/max bounds of a register */ 1101 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1102 { 1103 reg->smin_value = S64_MIN; 1104 reg->smax_value = S64_MAX; 1105 reg->umin_value = 0; 1106 reg->umax_value = U64_MAX; 1107 1108 reg->s32_min_value = S32_MIN; 1109 reg->s32_max_value = S32_MAX; 1110 reg->u32_min_value = 0; 1111 reg->u32_max_value = U32_MAX; 1112 } 1113 1114 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1115 { 1116 reg->smin_value = S64_MIN; 1117 reg->smax_value = S64_MAX; 1118 reg->umin_value = 0; 1119 reg->umax_value = U64_MAX; 1120 } 1121 1122 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1123 { 1124 reg->s32_min_value = S32_MIN; 1125 reg->s32_max_value = S32_MAX; 1126 reg->u32_min_value = 0; 1127 reg->u32_max_value = U32_MAX; 1128 } 1129 1130 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1131 { 1132 struct tnum var32_off = tnum_subreg(reg->var_off); 1133 1134 /* min signed is max(sign bit) | min(other bits) */ 1135 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1136 var32_off.value | (var32_off.mask & S32_MIN)); 1137 /* max signed is min(sign bit) | max(other bits) */ 1138 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1139 var32_off.value | (var32_off.mask & S32_MAX)); 1140 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1141 reg->u32_max_value = min(reg->u32_max_value, 1142 (u32)(var32_off.value | var32_off.mask)); 1143 } 1144 1145 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1146 { 1147 /* min signed is max(sign bit) | min(other bits) */ 1148 reg->smin_value = max_t(s64, reg->smin_value, 1149 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1150 /* max signed is min(sign bit) | max(other bits) */ 1151 reg->smax_value = min_t(s64, reg->smax_value, 1152 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1153 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1154 reg->umax_value = min(reg->umax_value, 1155 reg->var_off.value | reg->var_off.mask); 1156 } 1157 1158 static void __update_reg_bounds(struct bpf_reg_state *reg) 1159 { 1160 __update_reg32_bounds(reg); 1161 __update_reg64_bounds(reg); 1162 } 1163 1164 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1165 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1166 { 1167 /* Learn sign from signed bounds. 1168 * If we cannot cross the sign boundary, then signed and unsigned bounds 1169 * are the same, so combine. This works even in the negative case, e.g. 1170 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1171 */ 1172 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1173 reg->s32_min_value = reg->u32_min_value = 1174 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1175 reg->s32_max_value = reg->u32_max_value = 1176 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1177 return; 1178 } 1179 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1180 * boundary, so we must be careful. 1181 */ 1182 if ((s32)reg->u32_max_value >= 0) { 1183 /* Positive. We can't learn anything from the smin, but smax 1184 * is positive, hence safe. 1185 */ 1186 reg->s32_min_value = reg->u32_min_value; 1187 reg->s32_max_value = reg->u32_max_value = 1188 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1189 } else if ((s32)reg->u32_min_value < 0) { 1190 /* Negative. We can't learn anything from the smax, but smin 1191 * is negative, hence safe. 1192 */ 1193 reg->s32_min_value = reg->u32_min_value = 1194 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1195 reg->s32_max_value = reg->u32_max_value; 1196 } 1197 } 1198 1199 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1200 { 1201 /* Learn sign from signed bounds. 1202 * If we cannot cross the sign boundary, then signed and unsigned bounds 1203 * are the same, so combine. This works even in the negative case, e.g. 1204 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1205 */ 1206 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1207 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1208 reg->umin_value); 1209 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1210 reg->umax_value); 1211 return; 1212 } 1213 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1214 * boundary, so we must be careful. 1215 */ 1216 if ((s64)reg->umax_value >= 0) { 1217 /* Positive. We can't learn anything from the smin, but smax 1218 * is positive, hence safe. 1219 */ 1220 reg->smin_value = reg->umin_value; 1221 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1222 reg->umax_value); 1223 } else if ((s64)reg->umin_value < 0) { 1224 /* Negative. We can't learn anything from the smax, but smin 1225 * is negative, hence safe. 1226 */ 1227 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1228 reg->umin_value); 1229 reg->smax_value = reg->umax_value; 1230 } 1231 } 1232 1233 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1234 { 1235 __reg32_deduce_bounds(reg); 1236 __reg64_deduce_bounds(reg); 1237 } 1238 1239 /* Attempts to improve var_off based on unsigned min/max information */ 1240 static void __reg_bound_offset(struct bpf_reg_state *reg) 1241 { 1242 struct tnum var64_off = tnum_intersect(reg->var_off, 1243 tnum_range(reg->umin_value, 1244 reg->umax_value)); 1245 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1246 tnum_range(reg->u32_min_value, 1247 reg->u32_max_value)); 1248 1249 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1250 } 1251 1252 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1253 { 1254 reg->umin_value = reg->u32_min_value; 1255 reg->umax_value = reg->u32_max_value; 1256 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1257 * but must be positive otherwise set to worse case bounds 1258 * and refine later from tnum. 1259 */ 1260 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1261 reg->smax_value = reg->s32_max_value; 1262 else 1263 reg->smax_value = U32_MAX; 1264 if (reg->s32_min_value >= 0) 1265 reg->smin_value = reg->s32_min_value; 1266 else 1267 reg->smin_value = 0; 1268 } 1269 1270 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1271 { 1272 /* special case when 64-bit register has upper 32-bit register 1273 * zeroed. Typically happens after zext or <<32, >>32 sequence 1274 * allowing us to use 32-bit bounds directly, 1275 */ 1276 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1277 __reg_assign_32_into_64(reg); 1278 } else { 1279 /* Otherwise the best we can do is push lower 32bit known and 1280 * unknown bits into register (var_off set from jmp logic) 1281 * then learn as much as possible from the 64-bit tnum 1282 * known and unknown bits. The previous smin/smax bounds are 1283 * invalid here because of jmp32 compare so mark them unknown 1284 * so they do not impact tnum bounds calculation. 1285 */ 1286 __mark_reg64_unbounded(reg); 1287 __update_reg_bounds(reg); 1288 } 1289 1290 /* Intersecting with the old var_off might have improved our bounds 1291 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1292 * then new var_off is (0; 0x7f...fc) which improves our umax. 1293 */ 1294 __reg_deduce_bounds(reg); 1295 __reg_bound_offset(reg); 1296 __update_reg_bounds(reg); 1297 } 1298 1299 static bool __reg64_bound_s32(s64 a) 1300 { 1301 if (a > S32_MIN && a < S32_MAX) 1302 return true; 1303 return false; 1304 } 1305 1306 static bool __reg64_bound_u32(u64 a) 1307 { 1308 if (a > U32_MIN && a < U32_MAX) 1309 return true; 1310 return false; 1311 } 1312 1313 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1314 { 1315 __mark_reg32_unbounded(reg); 1316 1317 if (__reg64_bound_s32(reg->smin_value)) 1318 reg->s32_min_value = (s32)reg->smin_value; 1319 if (__reg64_bound_s32(reg->smax_value)) 1320 reg->s32_max_value = (s32)reg->smax_value; 1321 if (__reg64_bound_u32(reg->umin_value)) 1322 reg->u32_min_value = (u32)reg->umin_value; 1323 if (__reg64_bound_u32(reg->umax_value)) 1324 reg->u32_max_value = (u32)reg->umax_value; 1325 1326 /* Intersecting with the old var_off might have improved our bounds 1327 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1328 * then new var_off is (0; 0x7f...fc) which improves our umax. 1329 */ 1330 __reg_deduce_bounds(reg); 1331 __reg_bound_offset(reg); 1332 __update_reg_bounds(reg); 1333 } 1334 1335 /* Mark a register as having a completely unknown (scalar) value. */ 1336 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1337 struct bpf_reg_state *reg) 1338 { 1339 /* 1340 * Clear type, id, off, and union(map_ptr, range) and 1341 * padding between 'type' and union 1342 */ 1343 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1344 reg->type = SCALAR_VALUE; 1345 reg->var_off = tnum_unknown; 1346 reg->frameno = 0; 1347 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1348 __mark_reg_unbounded(reg); 1349 } 1350 1351 static void mark_reg_unknown(struct bpf_verifier_env *env, 1352 struct bpf_reg_state *regs, u32 regno) 1353 { 1354 if (WARN_ON(regno >= MAX_BPF_REG)) { 1355 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1356 /* Something bad happened, let's kill all regs except FP */ 1357 for (regno = 0; regno < BPF_REG_FP; regno++) 1358 __mark_reg_not_init(env, regs + regno); 1359 return; 1360 } 1361 __mark_reg_unknown(env, regs + regno); 1362 } 1363 1364 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1365 struct bpf_reg_state *reg) 1366 { 1367 __mark_reg_unknown(env, reg); 1368 reg->type = NOT_INIT; 1369 } 1370 1371 static void mark_reg_not_init(struct bpf_verifier_env *env, 1372 struct bpf_reg_state *regs, u32 regno) 1373 { 1374 if (WARN_ON(regno >= MAX_BPF_REG)) { 1375 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1376 /* Something bad happened, let's kill all regs except FP */ 1377 for (regno = 0; regno < BPF_REG_FP; regno++) 1378 __mark_reg_not_init(env, regs + regno); 1379 return; 1380 } 1381 __mark_reg_not_init(env, regs + regno); 1382 } 1383 1384 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1385 struct bpf_reg_state *regs, u32 regno, 1386 enum bpf_reg_type reg_type, u32 btf_id) 1387 { 1388 if (reg_type == SCALAR_VALUE) { 1389 mark_reg_unknown(env, regs, regno); 1390 return; 1391 } 1392 mark_reg_known_zero(env, regs, regno); 1393 regs[regno].type = PTR_TO_BTF_ID; 1394 regs[regno].btf_id = btf_id; 1395 } 1396 1397 #define DEF_NOT_SUBREG (0) 1398 static void init_reg_state(struct bpf_verifier_env *env, 1399 struct bpf_func_state *state) 1400 { 1401 struct bpf_reg_state *regs = state->regs; 1402 int i; 1403 1404 for (i = 0; i < MAX_BPF_REG; i++) { 1405 mark_reg_not_init(env, regs, i); 1406 regs[i].live = REG_LIVE_NONE; 1407 regs[i].parent = NULL; 1408 regs[i].subreg_def = DEF_NOT_SUBREG; 1409 } 1410 1411 /* frame pointer */ 1412 regs[BPF_REG_FP].type = PTR_TO_STACK; 1413 mark_reg_known_zero(env, regs, BPF_REG_FP); 1414 regs[BPF_REG_FP].frameno = state->frameno; 1415 } 1416 1417 #define BPF_MAIN_FUNC (-1) 1418 static void init_func_state(struct bpf_verifier_env *env, 1419 struct bpf_func_state *state, 1420 int callsite, int frameno, int subprogno) 1421 { 1422 state->callsite = callsite; 1423 state->frameno = frameno; 1424 state->subprogno = subprogno; 1425 init_reg_state(env, state); 1426 } 1427 1428 enum reg_arg_type { 1429 SRC_OP, /* register is used as source operand */ 1430 DST_OP, /* register is used as destination operand */ 1431 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1432 }; 1433 1434 static int cmp_subprogs(const void *a, const void *b) 1435 { 1436 return ((struct bpf_subprog_info *)a)->start - 1437 ((struct bpf_subprog_info *)b)->start; 1438 } 1439 1440 static int find_subprog(struct bpf_verifier_env *env, int off) 1441 { 1442 struct bpf_subprog_info *p; 1443 1444 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1445 sizeof(env->subprog_info[0]), cmp_subprogs); 1446 if (!p) 1447 return -ENOENT; 1448 return p - env->subprog_info; 1449 1450 } 1451 1452 static int add_subprog(struct bpf_verifier_env *env, int off) 1453 { 1454 int insn_cnt = env->prog->len; 1455 int ret; 1456 1457 if (off >= insn_cnt || off < 0) { 1458 verbose(env, "call to invalid destination\n"); 1459 return -EINVAL; 1460 } 1461 ret = find_subprog(env, off); 1462 if (ret >= 0) 1463 return 0; 1464 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1465 verbose(env, "too many subprograms\n"); 1466 return -E2BIG; 1467 } 1468 env->subprog_info[env->subprog_cnt++].start = off; 1469 sort(env->subprog_info, env->subprog_cnt, 1470 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1471 return 0; 1472 } 1473 1474 static int check_subprogs(struct bpf_verifier_env *env) 1475 { 1476 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1477 struct bpf_subprog_info *subprog = env->subprog_info; 1478 struct bpf_insn *insn = env->prog->insnsi; 1479 int insn_cnt = env->prog->len; 1480 1481 /* Add entry function. */ 1482 ret = add_subprog(env, 0); 1483 if (ret < 0) 1484 return ret; 1485 1486 /* determine subprog starts. The end is one before the next starts */ 1487 for (i = 0; i < insn_cnt; i++) { 1488 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1489 continue; 1490 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1491 continue; 1492 if (!env->bpf_capable) { 1493 verbose(env, 1494 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1495 return -EPERM; 1496 } 1497 ret = add_subprog(env, i + insn[i].imm + 1); 1498 if (ret < 0) 1499 return ret; 1500 } 1501 1502 /* Add a fake 'exit' subprog which could simplify subprog iteration 1503 * logic. 'subprog_cnt' should not be increased. 1504 */ 1505 subprog[env->subprog_cnt].start = insn_cnt; 1506 1507 if (env->log.level & BPF_LOG_LEVEL2) 1508 for (i = 0; i < env->subprog_cnt; i++) 1509 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1510 1511 /* now check that all jumps are within the same subprog */ 1512 subprog_start = subprog[cur_subprog].start; 1513 subprog_end = subprog[cur_subprog + 1].start; 1514 for (i = 0; i < insn_cnt; i++) { 1515 u8 code = insn[i].code; 1516 1517 if (code == (BPF_JMP | BPF_CALL) && 1518 insn[i].imm == BPF_FUNC_tail_call && 1519 insn[i].src_reg != BPF_PSEUDO_CALL) 1520 subprog[cur_subprog].has_tail_call = true; 1521 if (BPF_CLASS(code) == BPF_LD && 1522 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1523 subprog[cur_subprog].has_ld_abs = true; 1524 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1525 goto next; 1526 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1527 goto next; 1528 off = i + insn[i].off + 1; 1529 if (off < subprog_start || off >= subprog_end) { 1530 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1531 return -EINVAL; 1532 } 1533 next: 1534 if (i == subprog_end - 1) { 1535 /* to avoid fall-through from one subprog into another 1536 * the last insn of the subprog should be either exit 1537 * or unconditional jump back 1538 */ 1539 if (code != (BPF_JMP | BPF_EXIT) && 1540 code != (BPF_JMP | BPF_JA)) { 1541 verbose(env, "last insn is not an exit or jmp\n"); 1542 return -EINVAL; 1543 } 1544 subprog_start = subprog_end; 1545 cur_subprog++; 1546 if (cur_subprog < env->subprog_cnt) 1547 subprog_end = subprog[cur_subprog + 1].start; 1548 } 1549 } 1550 return 0; 1551 } 1552 1553 /* Parentage chain of this register (or stack slot) should take care of all 1554 * issues like callee-saved registers, stack slot allocation time, etc. 1555 */ 1556 static int mark_reg_read(struct bpf_verifier_env *env, 1557 const struct bpf_reg_state *state, 1558 struct bpf_reg_state *parent, u8 flag) 1559 { 1560 bool writes = parent == state->parent; /* Observe write marks */ 1561 int cnt = 0; 1562 1563 while (parent) { 1564 /* if read wasn't screened by an earlier write ... */ 1565 if (writes && state->live & REG_LIVE_WRITTEN) 1566 break; 1567 if (parent->live & REG_LIVE_DONE) { 1568 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1569 reg_type_str[parent->type], 1570 parent->var_off.value, parent->off); 1571 return -EFAULT; 1572 } 1573 /* The first condition is more likely to be true than the 1574 * second, checked it first. 1575 */ 1576 if ((parent->live & REG_LIVE_READ) == flag || 1577 parent->live & REG_LIVE_READ64) 1578 /* The parentage chain never changes and 1579 * this parent was already marked as LIVE_READ. 1580 * There is no need to keep walking the chain again and 1581 * keep re-marking all parents as LIVE_READ. 1582 * This case happens when the same register is read 1583 * multiple times without writes into it in-between. 1584 * Also, if parent has the stronger REG_LIVE_READ64 set, 1585 * then no need to set the weak REG_LIVE_READ32. 1586 */ 1587 break; 1588 /* ... then we depend on parent's value */ 1589 parent->live |= flag; 1590 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1591 if (flag == REG_LIVE_READ64) 1592 parent->live &= ~REG_LIVE_READ32; 1593 state = parent; 1594 parent = state->parent; 1595 writes = true; 1596 cnt++; 1597 } 1598 1599 if (env->longest_mark_read_walk < cnt) 1600 env->longest_mark_read_walk = cnt; 1601 return 0; 1602 } 1603 1604 /* This function is supposed to be used by the following 32-bit optimization 1605 * code only. It returns TRUE if the source or destination register operates 1606 * on 64-bit, otherwise return FALSE. 1607 */ 1608 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1609 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1610 { 1611 u8 code, class, op; 1612 1613 code = insn->code; 1614 class = BPF_CLASS(code); 1615 op = BPF_OP(code); 1616 if (class == BPF_JMP) { 1617 /* BPF_EXIT for "main" will reach here. Return TRUE 1618 * conservatively. 1619 */ 1620 if (op == BPF_EXIT) 1621 return true; 1622 if (op == BPF_CALL) { 1623 /* BPF to BPF call will reach here because of marking 1624 * caller saved clobber with DST_OP_NO_MARK for which we 1625 * don't care the register def because they are anyway 1626 * marked as NOT_INIT already. 1627 */ 1628 if (insn->src_reg == BPF_PSEUDO_CALL) 1629 return false; 1630 /* Helper call will reach here because of arg type 1631 * check, conservatively return TRUE. 1632 */ 1633 if (t == SRC_OP) 1634 return true; 1635 1636 return false; 1637 } 1638 } 1639 1640 if (class == BPF_ALU64 || class == BPF_JMP || 1641 /* BPF_END always use BPF_ALU class. */ 1642 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1643 return true; 1644 1645 if (class == BPF_ALU || class == BPF_JMP32) 1646 return false; 1647 1648 if (class == BPF_LDX) { 1649 if (t != SRC_OP) 1650 return BPF_SIZE(code) == BPF_DW; 1651 /* LDX source must be ptr. */ 1652 return true; 1653 } 1654 1655 if (class == BPF_STX) { 1656 if (reg->type != SCALAR_VALUE) 1657 return true; 1658 return BPF_SIZE(code) == BPF_DW; 1659 } 1660 1661 if (class == BPF_LD) { 1662 u8 mode = BPF_MODE(code); 1663 1664 /* LD_IMM64 */ 1665 if (mode == BPF_IMM) 1666 return true; 1667 1668 /* Both LD_IND and LD_ABS return 32-bit data. */ 1669 if (t != SRC_OP) 1670 return false; 1671 1672 /* Implicit ctx ptr. */ 1673 if (regno == BPF_REG_6) 1674 return true; 1675 1676 /* Explicit source could be any width. */ 1677 return true; 1678 } 1679 1680 if (class == BPF_ST) 1681 /* The only source register for BPF_ST is a ptr. */ 1682 return true; 1683 1684 /* Conservatively return true at default. */ 1685 return true; 1686 } 1687 1688 /* Return TRUE if INSN doesn't have explicit value define. */ 1689 static bool insn_no_def(struct bpf_insn *insn) 1690 { 1691 u8 class = BPF_CLASS(insn->code); 1692 1693 return (class == BPF_JMP || class == BPF_JMP32 || 1694 class == BPF_STX || class == BPF_ST); 1695 } 1696 1697 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1698 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1699 { 1700 if (insn_no_def(insn)) 1701 return false; 1702 1703 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1704 } 1705 1706 static void mark_insn_zext(struct bpf_verifier_env *env, 1707 struct bpf_reg_state *reg) 1708 { 1709 s32 def_idx = reg->subreg_def; 1710 1711 if (def_idx == DEF_NOT_SUBREG) 1712 return; 1713 1714 env->insn_aux_data[def_idx - 1].zext_dst = true; 1715 /* The dst will be zero extended, so won't be sub-register anymore. */ 1716 reg->subreg_def = DEF_NOT_SUBREG; 1717 } 1718 1719 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1720 enum reg_arg_type t) 1721 { 1722 struct bpf_verifier_state *vstate = env->cur_state; 1723 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1724 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1725 struct bpf_reg_state *reg, *regs = state->regs; 1726 bool rw64; 1727 1728 if (regno >= MAX_BPF_REG) { 1729 verbose(env, "R%d is invalid\n", regno); 1730 return -EINVAL; 1731 } 1732 1733 reg = ®s[regno]; 1734 rw64 = is_reg64(env, insn, regno, reg, t); 1735 if (t == SRC_OP) { 1736 /* check whether register used as source operand can be read */ 1737 if (reg->type == NOT_INIT) { 1738 verbose(env, "R%d !read_ok\n", regno); 1739 return -EACCES; 1740 } 1741 /* We don't need to worry about FP liveness because it's read-only */ 1742 if (regno == BPF_REG_FP) 1743 return 0; 1744 1745 if (rw64) 1746 mark_insn_zext(env, reg); 1747 1748 return mark_reg_read(env, reg, reg->parent, 1749 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1750 } else { 1751 /* check whether register used as dest operand can be written to */ 1752 if (regno == BPF_REG_FP) { 1753 verbose(env, "frame pointer is read only\n"); 1754 return -EACCES; 1755 } 1756 reg->live |= REG_LIVE_WRITTEN; 1757 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1758 if (t == DST_OP) 1759 mark_reg_unknown(env, regs, regno); 1760 } 1761 return 0; 1762 } 1763 1764 /* for any branch, call, exit record the history of jmps in the given state */ 1765 static int push_jmp_history(struct bpf_verifier_env *env, 1766 struct bpf_verifier_state *cur) 1767 { 1768 u32 cnt = cur->jmp_history_cnt; 1769 struct bpf_idx_pair *p; 1770 1771 cnt++; 1772 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1773 if (!p) 1774 return -ENOMEM; 1775 p[cnt - 1].idx = env->insn_idx; 1776 p[cnt - 1].prev_idx = env->prev_insn_idx; 1777 cur->jmp_history = p; 1778 cur->jmp_history_cnt = cnt; 1779 return 0; 1780 } 1781 1782 /* Backtrack one insn at a time. If idx is not at the top of recorded 1783 * history then previous instruction came from straight line execution. 1784 */ 1785 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1786 u32 *history) 1787 { 1788 u32 cnt = *history; 1789 1790 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1791 i = st->jmp_history[cnt - 1].prev_idx; 1792 (*history)--; 1793 } else { 1794 i--; 1795 } 1796 return i; 1797 } 1798 1799 /* For given verifier state backtrack_insn() is called from the last insn to 1800 * the first insn. Its purpose is to compute a bitmask of registers and 1801 * stack slots that needs precision in the parent verifier state. 1802 */ 1803 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1804 u32 *reg_mask, u64 *stack_mask) 1805 { 1806 const struct bpf_insn_cbs cbs = { 1807 .cb_print = verbose, 1808 .private_data = env, 1809 }; 1810 struct bpf_insn *insn = env->prog->insnsi + idx; 1811 u8 class = BPF_CLASS(insn->code); 1812 u8 opcode = BPF_OP(insn->code); 1813 u8 mode = BPF_MODE(insn->code); 1814 u32 dreg = 1u << insn->dst_reg; 1815 u32 sreg = 1u << insn->src_reg; 1816 u32 spi; 1817 1818 if (insn->code == 0) 1819 return 0; 1820 if (env->log.level & BPF_LOG_LEVEL) { 1821 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1822 verbose(env, "%d: ", idx); 1823 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1824 } 1825 1826 if (class == BPF_ALU || class == BPF_ALU64) { 1827 if (!(*reg_mask & dreg)) 1828 return 0; 1829 if (opcode == BPF_MOV) { 1830 if (BPF_SRC(insn->code) == BPF_X) { 1831 /* dreg = sreg 1832 * dreg needs precision after this insn 1833 * sreg needs precision before this insn 1834 */ 1835 *reg_mask &= ~dreg; 1836 *reg_mask |= sreg; 1837 } else { 1838 /* dreg = K 1839 * dreg needs precision after this insn. 1840 * Corresponding register is already marked 1841 * as precise=true in this verifier state. 1842 * No further markings in parent are necessary 1843 */ 1844 *reg_mask &= ~dreg; 1845 } 1846 } else { 1847 if (BPF_SRC(insn->code) == BPF_X) { 1848 /* dreg += sreg 1849 * both dreg and sreg need precision 1850 * before this insn 1851 */ 1852 *reg_mask |= sreg; 1853 } /* else dreg += K 1854 * dreg still needs precision before this insn 1855 */ 1856 } 1857 } else if (class == BPF_LDX) { 1858 if (!(*reg_mask & dreg)) 1859 return 0; 1860 *reg_mask &= ~dreg; 1861 1862 /* scalars can only be spilled into stack w/o losing precision. 1863 * Load from any other memory can be zero extended. 1864 * The desire to keep that precision is already indicated 1865 * by 'precise' mark in corresponding register of this state. 1866 * No further tracking necessary. 1867 */ 1868 if (insn->src_reg != BPF_REG_FP) 1869 return 0; 1870 if (BPF_SIZE(insn->code) != BPF_DW) 1871 return 0; 1872 1873 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1874 * that [fp - off] slot contains scalar that needs to be 1875 * tracked with precision 1876 */ 1877 spi = (-insn->off - 1) / BPF_REG_SIZE; 1878 if (spi >= 64) { 1879 verbose(env, "BUG spi %d\n", spi); 1880 WARN_ONCE(1, "verifier backtracking bug"); 1881 return -EFAULT; 1882 } 1883 *stack_mask |= 1ull << spi; 1884 } else if (class == BPF_STX || class == BPF_ST) { 1885 if (*reg_mask & dreg) 1886 /* stx & st shouldn't be using _scalar_ dst_reg 1887 * to access memory. It means backtracking 1888 * encountered a case of pointer subtraction. 1889 */ 1890 return -ENOTSUPP; 1891 /* scalars can only be spilled into stack */ 1892 if (insn->dst_reg != BPF_REG_FP) 1893 return 0; 1894 if (BPF_SIZE(insn->code) != BPF_DW) 1895 return 0; 1896 spi = (-insn->off - 1) / BPF_REG_SIZE; 1897 if (spi >= 64) { 1898 verbose(env, "BUG spi %d\n", spi); 1899 WARN_ONCE(1, "verifier backtracking bug"); 1900 return -EFAULT; 1901 } 1902 if (!(*stack_mask & (1ull << spi))) 1903 return 0; 1904 *stack_mask &= ~(1ull << spi); 1905 if (class == BPF_STX) 1906 *reg_mask |= sreg; 1907 } else if (class == BPF_JMP || class == BPF_JMP32) { 1908 if (opcode == BPF_CALL) { 1909 if (insn->src_reg == BPF_PSEUDO_CALL) 1910 return -ENOTSUPP; 1911 /* regular helper call sets R0 */ 1912 *reg_mask &= ~1; 1913 if (*reg_mask & 0x3f) { 1914 /* if backtracing was looking for registers R1-R5 1915 * they should have been found already. 1916 */ 1917 verbose(env, "BUG regs %x\n", *reg_mask); 1918 WARN_ONCE(1, "verifier backtracking bug"); 1919 return -EFAULT; 1920 } 1921 } else if (opcode == BPF_EXIT) { 1922 return -ENOTSUPP; 1923 } 1924 } else if (class == BPF_LD) { 1925 if (!(*reg_mask & dreg)) 1926 return 0; 1927 *reg_mask &= ~dreg; 1928 /* It's ld_imm64 or ld_abs or ld_ind. 1929 * For ld_imm64 no further tracking of precision 1930 * into parent is necessary 1931 */ 1932 if (mode == BPF_IND || mode == BPF_ABS) 1933 /* to be analyzed */ 1934 return -ENOTSUPP; 1935 } 1936 return 0; 1937 } 1938 1939 /* the scalar precision tracking algorithm: 1940 * . at the start all registers have precise=false. 1941 * . scalar ranges are tracked as normal through alu and jmp insns. 1942 * . once precise value of the scalar register is used in: 1943 * . ptr + scalar alu 1944 * . if (scalar cond K|scalar) 1945 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1946 * backtrack through the verifier states and mark all registers and 1947 * stack slots with spilled constants that these scalar regisers 1948 * should be precise. 1949 * . during state pruning two registers (or spilled stack slots) 1950 * are equivalent if both are not precise. 1951 * 1952 * Note the verifier cannot simply walk register parentage chain, 1953 * since many different registers and stack slots could have been 1954 * used to compute single precise scalar. 1955 * 1956 * The approach of starting with precise=true for all registers and then 1957 * backtrack to mark a register as not precise when the verifier detects 1958 * that program doesn't care about specific value (e.g., when helper 1959 * takes register as ARG_ANYTHING parameter) is not safe. 1960 * 1961 * It's ok to walk single parentage chain of the verifier states. 1962 * It's possible that this backtracking will go all the way till 1st insn. 1963 * All other branches will be explored for needing precision later. 1964 * 1965 * The backtracking needs to deal with cases like: 1966 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1967 * r9 -= r8 1968 * r5 = r9 1969 * if r5 > 0x79f goto pc+7 1970 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1971 * r5 += 1 1972 * ... 1973 * call bpf_perf_event_output#25 1974 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1975 * 1976 * and this case: 1977 * r6 = 1 1978 * call foo // uses callee's r6 inside to compute r0 1979 * r0 += r6 1980 * if r0 == 0 goto 1981 * 1982 * to track above reg_mask/stack_mask needs to be independent for each frame. 1983 * 1984 * Also if parent's curframe > frame where backtracking started, 1985 * the verifier need to mark registers in both frames, otherwise callees 1986 * may incorrectly prune callers. This is similar to 1987 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1988 * 1989 * For now backtracking falls back into conservative marking. 1990 */ 1991 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1992 struct bpf_verifier_state *st) 1993 { 1994 struct bpf_func_state *func; 1995 struct bpf_reg_state *reg; 1996 int i, j; 1997 1998 /* big hammer: mark all scalars precise in this path. 1999 * pop_stack may still get !precise scalars. 2000 */ 2001 for (; st; st = st->parent) 2002 for (i = 0; i <= st->curframe; i++) { 2003 func = st->frame[i]; 2004 for (j = 0; j < BPF_REG_FP; j++) { 2005 reg = &func->regs[j]; 2006 if (reg->type != SCALAR_VALUE) 2007 continue; 2008 reg->precise = true; 2009 } 2010 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2011 if (func->stack[j].slot_type[0] != STACK_SPILL) 2012 continue; 2013 reg = &func->stack[j].spilled_ptr; 2014 if (reg->type != SCALAR_VALUE) 2015 continue; 2016 reg->precise = true; 2017 } 2018 } 2019 } 2020 2021 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2022 int spi) 2023 { 2024 struct bpf_verifier_state *st = env->cur_state; 2025 int first_idx = st->first_insn_idx; 2026 int last_idx = env->insn_idx; 2027 struct bpf_func_state *func; 2028 struct bpf_reg_state *reg; 2029 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2030 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2031 bool skip_first = true; 2032 bool new_marks = false; 2033 int i, err; 2034 2035 if (!env->bpf_capable) 2036 return 0; 2037 2038 func = st->frame[st->curframe]; 2039 if (regno >= 0) { 2040 reg = &func->regs[regno]; 2041 if (reg->type != SCALAR_VALUE) { 2042 WARN_ONCE(1, "backtracing misuse"); 2043 return -EFAULT; 2044 } 2045 if (!reg->precise) 2046 new_marks = true; 2047 else 2048 reg_mask = 0; 2049 reg->precise = true; 2050 } 2051 2052 while (spi >= 0) { 2053 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2054 stack_mask = 0; 2055 break; 2056 } 2057 reg = &func->stack[spi].spilled_ptr; 2058 if (reg->type != SCALAR_VALUE) { 2059 stack_mask = 0; 2060 break; 2061 } 2062 if (!reg->precise) 2063 new_marks = true; 2064 else 2065 stack_mask = 0; 2066 reg->precise = true; 2067 break; 2068 } 2069 2070 if (!new_marks) 2071 return 0; 2072 if (!reg_mask && !stack_mask) 2073 return 0; 2074 for (;;) { 2075 DECLARE_BITMAP(mask, 64); 2076 u32 history = st->jmp_history_cnt; 2077 2078 if (env->log.level & BPF_LOG_LEVEL) 2079 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2080 for (i = last_idx;;) { 2081 if (skip_first) { 2082 err = 0; 2083 skip_first = false; 2084 } else { 2085 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2086 } 2087 if (err == -ENOTSUPP) { 2088 mark_all_scalars_precise(env, st); 2089 return 0; 2090 } else if (err) { 2091 return err; 2092 } 2093 if (!reg_mask && !stack_mask) 2094 /* Found assignment(s) into tracked register in this state. 2095 * Since this state is already marked, just return. 2096 * Nothing to be tracked further in the parent state. 2097 */ 2098 return 0; 2099 if (i == first_idx) 2100 break; 2101 i = get_prev_insn_idx(st, i, &history); 2102 if (i >= env->prog->len) { 2103 /* This can happen if backtracking reached insn 0 2104 * and there are still reg_mask or stack_mask 2105 * to backtrack. 2106 * It means the backtracking missed the spot where 2107 * particular register was initialized with a constant. 2108 */ 2109 verbose(env, "BUG backtracking idx %d\n", i); 2110 WARN_ONCE(1, "verifier backtracking bug"); 2111 return -EFAULT; 2112 } 2113 } 2114 st = st->parent; 2115 if (!st) 2116 break; 2117 2118 new_marks = false; 2119 func = st->frame[st->curframe]; 2120 bitmap_from_u64(mask, reg_mask); 2121 for_each_set_bit(i, mask, 32) { 2122 reg = &func->regs[i]; 2123 if (reg->type != SCALAR_VALUE) { 2124 reg_mask &= ~(1u << i); 2125 continue; 2126 } 2127 if (!reg->precise) 2128 new_marks = true; 2129 reg->precise = true; 2130 } 2131 2132 bitmap_from_u64(mask, stack_mask); 2133 for_each_set_bit(i, mask, 64) { 2134 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2135 /* the sequence of instructions: 2136 * 2: (bf) r3 = r10 2137 * 3: (7b) *(u64 *)(r3 -8) = r0 2138 * 4: (79) r4 = *(u64 *)(r10 -8) 2139 * doesn't contain jmps. It's backtracked 2140 * as a single block. 2141 * During backtracking insn 3 is not recognized as 2142 * stack access, so at the end of backtracking 2143 * stack slot fp-8 is still marked in stack_mask. 2144 * However the parent state may not have accessed 2145 * fp-8 and it's "unallocated" stack space. 2146 * In such case fallback to conservative. 2147 */ 2148 mark_all_scalars_precise(env, st); 2149 return 0; 2150 } 2151 2152 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2153 stack_mask &= ~(1ull << i); 2154 continue; 2155 } 2156 reg = &func->stack[i].spilled_ptr; 2157 if (reg->type != SCALAR_VALUE) { 2158 stack_mask &= ~(1ull << i); 2159 continue; 2160 } 2161 if (!reg->precise) 2162 new_marks = true; 2163 reg->precise = true; 2164 } 2165 if (env->log.level & BPF_LOG_LEVEL) { 2166 print_verifier_state(env, func); 2167 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2168 new_marks ? "didn't have" : "already had", 2169 reg_mask, stack_mask); 2170 } 2171 2172 if (!reg_mask && !stack_mask) 2173 break; 2174 if (!new_marks) 2175 break; 2176 2177 last_idx = st->last_insn_idx; 2178 first_idx = st->first_insn_idx; 2179 } 2180 return 0; 2181 } 2182 2183 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2184 { 2185 return __mark_chain_precision(env, regno, -1); 2186 } 2187 2188 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2189 { 2190 return __mark_chain_precision(env, -1, spi); 2191 } 2192 2193 static bool is_spillable_regtype(enum bpf_reg_type type) 2194 { 2195 switch (type) { 2196 case PTR_TO_MAP_VALUE: 2197 case PTR_TO_MAP_VALUE_OR_NULL: 2198 case PTR_TO_STACK: 2199 case PTR_TO_CTX: 2200 case PTR_TO_PACKET: 2201 case PTR_TO_PACKET_META: 2202 case PTR_TO_PACKET_END: 2203 case PTR_TO_FLOW_KEYS: 2204 case CONST_PTR_TO_MAP: 2205 case PTR_TO_SOCKET: 2206 case PTR_TO_SOCKET_OR_NULL: 2207 case PTR_TO_SOCK_COMMON: 2208 case PTR_TO_SOCK_COMMON_OR_NULL: 2209 case PTR_TO_TCP_SOCK: 2210 case PTR_TO_TCP_SOCK_OR_NULL: 2211 case PTR_TO_XDP_SOCK: 2212 case PTR_TO_BTF_ID: 2213 case PTR_TO_BTF_ID_OR_NULL: 2214 case PTR_TO_RDONLY_BUF: 2215 case PTR_TO_RDONLY_BUF_OR_NULL: 2216 case PTR_TO_RDWR_BUF: 2217 case PTR_TO_RDWR_BUF_OR_NULL: 2218 case PTR_TO_PERCPU_BTF_ID: 2219 return true; 2220 default: 2221 return false; 2222 } 2223 } 2224 2225 /* Does this register contain a constant zero? */ 2226 static bool register_is_null(struct bpf_reg_state *reg) 2227 { 2228 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2229 } 2230 2231 static bool register_is_const(struct bpf_reg_state *reg) 2232 { 2233 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2234 } 2235 2236 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2237 { 2238 return tnum_is_unknown(reg->var_off) && 2239 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2240 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2241 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2242 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2243 } 2244 2245 static bool register_is_bounded(struct bpf_reg_state *reg) 2246 { 2247 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2248 } 2249 2250 static bool __is_pointer_value(bool allow_ptr_leaks, 2251 const struct bpf_reg_state *reg) 2252 { 2253 if (allow_ptr_leaks) 2254 return false; 2255 2256 return reg->type != SCALAR_VALUE; 2257 } 2258 2259 static void save_register_state(struct bpf_func_state *state, 2260 int spi, struct bpf_reg_state *reg) 2261 { 2262 int i; 2263 2264 state->stack[spi].spilled_ptr = *reg; 2265 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2266 2267 for (i = 0; i < BPF_REG_SIZE; i++) 2268 state->stack[spi].slot_type[i] = STACK_SPILL; 2269 } 2270 2271 /* check_stack_read/write functions track spill/fill of registers, 2272 * stack boundary and alignment are checked in check_mem_access() 2273 */ 2274 static int check_stack_write(struct bpf_verifier_env *env, 2275 struct bpf_func_state *state, /* func where register points to */ 2276 int off, int size, int value_regno, int insn_idx) 2277 { 2278 struct bpf_func_state *cur; /* state of the current function */ 2279 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2280 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2281 struct bpf_reg_state *reg = NULL; 2282 2283 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2284 state->acquired_refs, true); 2285 if (err) 2286 return err; 2287 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2288 * so it's aligned access and [off, off + size) are within stack limits 2289 */ 2290 if (!env->allow_ptr_leaks && 2291 state->stack[spi].slot_type[0] == STACK_SPILL && 2292 size != BPF_REG_SIZE) { 2293 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2294 return -EACCES; 2295 } 2296 2297 cur = env->cur_state->frame[env->cur_state->curframe]; 2298 if (value_regno >= 0) 2299 reg = &cur->regs[value_regno]; 2300 2301 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2302 !register_is_null(reg) && env->bpf_capable) { 2303 if (dst_reg != BPF_REG_FP) { 2304 /* The backtracking logic can only recognize explicit 2305 * stack slot address like [fp - 8]. Other spill of 2306 * scalar via different register has to be conervative. 2307 * Backtrack from here and mark all registers as precise 2308 * that contributed into 'reg' being a constant. 2309 */ 2310 err = mark_chain_precision(env, value_regno); 2311 if (err) 2312 return err; 2313 } 2314 save_register_state(state, spi, reg); 2315 } else if (reg && is_spillable_regtype(reg->type)) { 2316 /* register containing pointer is being spilled into stack */ 2317 if (size != BPF_REG_SIZE) { 2318 verbose_linfo(env, insn_idx, "; "); 2319 verbose(env, "invalid size of register spill\n"); 2320 return -EACCES; 2321 } 2322 2323 if (state != cur && reg->type == PTR_TO_STACK) { 2324 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2325 return -EINVAL; 2326 } 2327 2328 if (!env->bypass_spec_v4) { 2329 bool sanitize = false; 2330 2331 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2332 register_is_const(&state->stack[spi].spilled_ptr)) 2333 sanitize = true; 2334 for (i = 0; i < BPF_REG_SIZE; i++) 2335 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2336 sanitize = true; 2337 break; 2338 } 2339 if (sanitize) { 2340 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2341 int soff = (-spi - 1) * BPF_REG_SIZE; 2342 2343 /* detected reuse of integer stack slot with a pointer 2344 * which means either llvm is reusing stack slot or 2345 * an attacker is trying to exploit CVE-2018-3639 2346 * (speculative store bypass) 2347 * Have to sanitize that slot with preemptive 2348 * store of zero. 2349 */ 2350 if (*poff && *poff != soff) { 2351 /* disallow programs where single insn stores 2352 * into two different stack slots, since verifier 2353 * cannot sanitize them 2354 */ 2355 verbose(env, 2356 "insn %d cannot access two stack slots fp%d and fp%d", 2357 insn_idx, *poff, soff); 2358 return -EINVAL; 2359 } 2360 *poff = soff; 2361 } 2362 } 2363 save_register_state(state, spi, reg); 2364 } else { 2365 u8 type = STACK_MISC; 2366 2367 /* regular write of data into stack destroys any spilled ptr */ 2368 state->stack[spi].spilled_ptr.type = NOT_INIT; 2369 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2370 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2371 for (i = 0; i < BPF_REG_SIZE; i++) 2372 state->stack[spi].slot_type[i] = STACK_MISC; 2373 2374 /* only mark the slot as written if all 8 bytes were written 2375 * otherwise read propagation may incorrectly stop too soon 2376 * when stack slots are partially written. 2377 * This heuristic means that read propagation will be 2378 * conservative, since it will add reg_live_read marks 2379 * to stack slots all the way to first state when programs 2380 * writes+reads less than 8 bytes 2381 */ 2382 if (size == BPF_REG_SIZE) 2383 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2384 2385 /* when we zero initialize stack slots mark them as such */ 2386 if (reg && register_is_null(reg)) { 2387 /* backtracking doesn't work for STACK_ZERO yet. */ 2388 err = mark_chain_precision(env, value_regno); 2389 if (err) 2390 return err; 2391 type = STACK_ZERO; 2392 } 2393 2394 /* Mark slots affected by this stack write. */ 2395 for (i = 0; i < size; i++) 2396 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2397 type; 2398 } 2399 return 0; 2400 } 2401 2402 static int check_stack_read(struct bpf_verifier_env *env, 2403 struct bpf_func_state *reg_state /* func where register points to */, 2404 int off, int size, int value_regno) 2405 { 2406 struct bpf_verifier_state *vstate = env->cur_state; 2407 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2408 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2409 struct bpf_reg_state *reg; 2410 u8 *stype; 2411 2412 if (reg_state->allocated_stack <= slot) { 2413 verbose(env, "invalid read from stack off %d+0 size %d\n", 2414 off, size); 2415 return -EACCES; 2416 } 2417 stype = reg_state->stack[spi].slot_type; 2418 reg = ®_state->stack[spi].spilled_ptr; 2419 2420 if (stype[0] == STACK_SPILL) { 2421 if (size != BPF_REG_SIZE) { 2422 if (reg->type != SCALAR_VALUE) { 2423 verbose_linfo(env, env->insn_idx, "; "); 2424 verbose(env, "invalid size of register fill\n"); 2425 return -EACCES; 2426 } 2427 if (value_regno >= 0) { 2428 mark_reg_unknown(env, state->regs, value_regno); 2429 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2430 } 2431 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2432 return 0; 2433 } 2434 for (i = 1; i < BPF_REG_SIZE; i++) { 2435 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2436 verbose(env, "corrupted spill memory\n"); 2437 return -EACCES; 2438 } 2439 } 2440 2441 if (value_regno >= 0) { 2442 /* restore register state from stack */ 2443 state->regs[value_regno] = *reg; 2444 /* mark reg as written since spilled pointer state likely 2445 * has its liveness marks cleared by is_state_visited() 2446 * which resets stack/reg liveness for state transitions 2447 */ 2448 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2449 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2450 /* If value_regno==-1, the caller is asking us whether 2451 * it is acceptable to use this value as a SCALAR_VALUE 2452 * (e.g. for XADD). 2453 * We must not allow unprivileged callers to do that 2454 * with spilled pointers. 2455 */ 2456 verbose(env, "leaking pointer from stack off %d\n", 2457 off); 2458 return -EACCES; 2459 } 2460 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2461 } else { 2462 int zeros = 0; 2463 2464 for (i = 0; i < size; i++) { 2465 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2466 continue; 2467 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2468 zeros++; 2469 continue; 2470 } 2471 verbose(env, "invalid read from stack off %d+%d size %d\n", 2472 off, i, size); 2473 return -EACCES; 2474 } 2475 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2476 if (value_regno >= 0) { 2477 if (zeros == size) { 2478 /* any size read into register is zero extended, 2479 * so the whole register == const_zero 2480 */ 2481 __mark_reg_const_zero(&state->regs[value_regno]); 2482 /* backtracking doesn't support STACK_ZERO yet, 2483 * so mark it precise here, so that later 2484 * backtracking can stop here. 2485 * Backtracking may not need this if this register 2486 * doesn't participate in pointer adjustment. 2487 * Forward propagation of precise flag is not 2488 * necessary either. This mark is only to stop 2489 * backtracking. Any register that contributed 2490 * to const 0 was marked precise before spill. 2491 */ 2492 state->regs[value_regno].precise = true; 2493 } else { 2494 /* have read misc data from the stack */ 2495 mark_reg_unknown(env, state->regs, value_regno); 2496 } 2497 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2498 } 2499 } 2500 return 0; 2501 } 2502 2503 static int check_stack_access(struct bpf_verifier_env *env, 2504 const struct bpf_reg_state *reg, 2505 int off, int size) 2506 { 2507 /* Stack accesses must be at a fixed offset, so that we 2508 * can determine what type of data were returned. See 2509 * check_stack_read(). 2510 */ 2511 if (!tnum_is_const(reg->var_off)) { 2512 char tn_buf[48]; 2513 2514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2515 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2516 tn_buf, off, size); 2517 return -EACCES; 2518 } 2519 2520 if (off >= 0 || off < -MAX_BPF_STACK) { 2521 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2522 return -EACCES; 2523 } 2524 2525 return 0; 2526 } 2527 2528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2529 int off, int size, enum bpf_access_type type) 2530 { 2531 struct bpf_reg_state *regs = cur_regs(env); 2532 struct bpf_map *map = regs[regno].map_ptr; 2533 u32 cap = bpf_map_flags_to_cap(map); 2534 2535 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2536 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2537 map->value_size, off, size); 2538 return -EACCES; 2539 } 2540 2541 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2542 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2543 map->value_size, off, size); 2544 return -EACCES; 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2551 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2552 int off, int size, u32 mem_size, 2553 bool zero_size_allowed) 2554 { 2555 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2556 struct bpf_reg_state *reg; 2557 2558 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2559 return 0; 2560 2561 reg = &cur_regs(env)[regno]; 2562 switch (reg->type) { 2563 case PTR_TO_MAP_VALUE: 2564 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2565 mem_size, off, size); 2566 break; 2567 case PTR_TO_PACKET: 2568 case PTR_TO_PACKET_META: 2569 case PTR_TO_PACKET_END: 2570 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2571 off, size, regno, reg->id, off, mem_size); 2572 break; 2573 case PTR_TO_MEM: 2574 default: 2575 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2576 mem_size, off, size); 2577 } 2578 2579 return -EACCES; 2580 } 2581 2582 /* check read/write into a memory region with possible variable offset */ 2583 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2584 int off, int size, u32 mem_size, 2585 bool zero_size_allowed) 2586 { 2587 struct bpf_verifier_state *vstate = env->cur_state; 2588 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2589 struct bpf_reg_state *reg = &state->regs[regno]; 2590 int err; 2591 2592 /* We may have adjusted the register pointing to memory region, so we 2593 * need to try adding each of min_value and max_value to off 2594 * to make sure our theoretical access will be safe. 2595 */ 2596 if (env->log.level & BPF_LOG_LEVEL) 2597 print_verifier_state(env, state); 2598 2599 /* The minimum value is only important with signed 2600 * comparisons where we can't assume the floor of a 2601 * value is 0. If we are using signed variables for our 2602 * index'es we need to make sure that whatever we use 2603 * will have a set floor within our range. 2604 */ 2605 if (reg->smin_value < 0 && 2606 (reg->smin_value == S64_MIN || 2607 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2608 reg->smin_value + off < 0)) { 2609 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2610 regno); 2611 return -EACCES; 2612 } 2613 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2614 mem_size, zero_size_allowed); 2615 if (err) { 2616 verbose(env, "R%d min value is outside of the allowed memory range\n", 2617 regno); 2618 return err; 2619 } 2620 2621 /* If we haven't set a max value then we need to bail since we can't be 2622 * sure we won't do bad things. 2623 * If reg->umax_value + off could overflow, treat that as unbounded too. 2624 */ 2625 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2626 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2627 regno); 2628 return -EACCES; 2629 } 2630 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2631 mem_size, zero_size_allowed); 2632 if (err) { 2633 verbose(env, "R%d max value is outside of the allowed memory range\n", 2634 regno); 2635 return err; 2636 } 2637 2638 return 0; 2639 } 2640 2641 /* check read/write into a map element with possible variable offset */ 2642 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2643 int off, int size, bool zero_size_allowed) 2644 { 2645 struct bpf_verifier_state *vstate = env->cur_state; 2646 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2647 struct bpf_reg_state *reg = &state->regs[regno]; 2648 struct bpf_map *map = reg->map_ptr; 2649 int err; 2650 2651 err = check_mem_region_access(env, regno, off, size, map->value_size, 2652 zero_size_allowed); 2653 if (err) 2654 return err; 2655 2656 if (map_value_has_spin_lock(map)) { 2657 u32 lock = map->spin_lock_off; 2658 2659 /* if any part of struct bpf_spin_lock can be touched by 2660 * load/store reject this program. 2661 * To check that [x1, x2) overlaps with [y1, y2) 2662 * it is sufficient to check x1 < y2 && y1 < x2. 2663 */ 2664 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2665 lock < reg->umax_value + off + size) { 2666 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2667 return -EACCES; 2668 } 2669 } 2670 return err; 2671 } 2672 2673 #define MAX_PACKET_OFF 0xffff 2674 2675 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2676 { 2677 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2678 } 2679 2680 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2681 const struct bpf_call_arg_meta *meta, 2682 enum bpf_access_type t) 2683 { 2684 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2685 2686 switch (prog_type) { 2687 /* Program types only with direct read access go here! */ 2688 case BPF_PROG_TYPE_LWT_IN: 2689 case BPF_PROG_TYPE_LWT_OUT: 2690 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2691 case BPF_PROG_TYPE_SK_REUSEPORT: 2692 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2693 case BPF_PROG_TYPE_CGROUP_SKB: 2694 if (t == BPF_WRITE) 2695 return false; 2696 fallthrough; 2697 2698 /* Program types with direct read + write access go here! */ 2699 case BPF_PROG_TYPE_SCHED_CLS: 2700 case BPF_PROG_TYPE_SCHED_ACT: 2701 case BPF_PROG_TYPE_XDP: 2702 case BPF_PROG_TYPE_LWT_XMIT: 2703 case BPF_PROG_TYPE_SK_SKB: 2704 case BPF_PROG_TYPE_SK_MSG: 2705 if (meta) 2706 return meta->pkt_access; 2707 2708 env->seen_direct_write = true; 2709 return true; 2710 2711 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2712 if (t == BPF_WRITE) 2713 env->seen_direct_write = true; 2714 2715 return true; 2716 2717 default: 2718 return false; 2719 } 2720 } 2721 2722 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2723 int size, bool zero_size_allowed) 2724 { 2725 struct bpf_reg_state *regs = cur_regs(env); 2726 struct bpf_reg_state *reg = ®s[regno]; 2727 int err; 2728 2729 /* We may have added a variable offset to the packet pointer; but any 2730 * reg->range we have comes after that. We are only checking the fixed 2731 * offset. 2732 */ 2733 2734 /* We don't allow negative numbers, because we aren't tracking enough 2735 * detail to prove they're safe. 2736 */ 2737 if (reg->smin_value < 0) { 2738 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2739 regno); 2740 return -EACCES; 2741 } 2742 err = __check_mem_access(env, regno, off, size, reg->range, 2743 zero_size_allowed); 2744 if (err) { 2745 verbose(env, "R%d offset is outside of the packet\n", regno); 2746 return err; 2747 } 2748 2749 /* __check_mem_access has made sure "off + size - 1" is within u16. 2750 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2751 * otherwise find_good_pkt_pointers would have refused to set range info 2752 * that __check_mem_access would have rejected this pkt access. 2753 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2754 */ 2755 env->prog->aux->max_pkt_offset = 2756 max_t(u32, env->prog->aux->max_pkt_offset, 2757 off + reg->umax_value + size - 1); 2758 2759 return err; 2760 } 2761 2762 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2763 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2764 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2765 u32 *btf_id) 2766 { 2767 struct bpf_insn_access_aux info = { 2768 .reg_type = *reg_type, 2769 .log = &env->log, 2770 }; 2771 2772 if (env->ops->is_valid_access && 2773 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2774 /* A non zero info.ctx_field_size indicates that this field is a 2775 * candidate for later verifier transformation to load the whole 2776 * field and then apply a mask when accessed with a narrower 2777 * access than actual ctx access size. A zero info.ctx_field_size 2778 * will only allow for whole field access and rejects any other 2779 * type of narrower access. 2780 */ 2781 *reg_type = info.reg_type; 2782 2783 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2784 *btf_id = info.btf_id; 2785 else 2786 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2787 /* remember the offset of last byte accessed in ctx */ 2788 if (env->prog->aux->max_ctx_offset < off + size) 2789 env->prog->aux->max_ctx_offset = off + size; 2790 return 0; 2791 } 2792 2793 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2794 return -EACCES; 2795 } 2796 2797 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2798 int size) 2799 { 2800 if (size < 0 || off < 0 || 2801 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2802 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2803 off, size); 2804 return -EACCES; 2805 } 2806 return 0; 2807 } 2808 2809 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2810 u32 regno, int off, int size, 2811 enum bpf_access_type t) 2812 { 2813 struct bpf_reg_state *regs = cur_regs(env); 2814 struct bpf_reg_state *reg = ®s[regno]; 2815 struct bpf_insn_access_aux info = {}; 2816 bool valid; 2817 2818 if (reg->smin_value < 0) { 2819 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2820 regno); 2821 return -EACCES; 2822 } 2823 2824 switch (reg->type) { 2825 case PTR_TO_SOCK_COMMON: 2826 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2827 break; 2828 case PTR_TO_SOCKET: 2829 valid = bpf_sock_is_valid_access(off, size, t, &info); 2830 break; 2831 case PTR_TO_TCP_SOCK: 2832 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2833 break; 2834 case PTR_TO_XDP_SOCK: 2835 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2836 break; 2837 default: 2838 valid = false; 2839 } 2840 2841 2842 if (valid) { 2843 env->insn_aux_data[insn_idx].ctx_field_size = 2844 info.ctx_field_size; 2845 return 0; 2846 } 2847 2848 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2849 regno, reg_type_str[reg->type], off, size); 2850 2851 return -EACCES; 2852 } 2853 2854 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2855 { 2856 return cur_regs(env) + regno; 2857 } 2858 2859 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2860 { 2861 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2862 } 2863 2864 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2865 { 2866 const struct bpf_reg_state *reg = reg_state(env, regno); 2867 2868 return reg->type == PTR_TO_CTX; 2869 } 2870 2871 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2872 { 2873 const struct bpf_reg_state *reg = reg_state(env, regno); 2874 2875 return type_is_sk_pointer(reg->type); 2876 } 2877 2878 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2879 { 2880 const struct bpf_reg_state *reg = reg_state(env, regno); 2881 2882 return type_is_pkt_pointer(reg->type); 2883 } 2884 2885 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2886 { 2887 const struct bpf_reg_state *reg = reg_state(env, regno); 2888 2889 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2890 return reg->type == PTR_TO_FLOW_KEYS; 2891 } 2892 2893 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2894 const struct bpf_reg_state *reg, 2895 int off, int size, bool strict) 2896 { 2897 struct tnum reg_off; 2898 int ip_align; 2899 2900 /* Byte size accesses are always allowed. */ 2901 if (!strict || size == 1) 2902 return 0; 2903 2904 /* For platforms that do not have a Kconfig enabling 2905 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2906 * NET_IP_ALIGN is universally set to '2'. And on platforms 2907 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2908 * to this code only in strict mode where we want to emulate 2909 * the NET_IP_ALIGN==2 checking. Therefore use an 2910 * unconditional IP align value of '2'. 2911 */ 2912 ip_align = 2; 2913 2914 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2915 if (!tnum_is_aligned(reg_off, size)) { 2916 char tn_buf[48]; 2917 2918 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2919 verbose(env, 2920 "misaligned packet access off %d+%s+%d+%d size %d\n", 2921 ip_align, tn_buf, reg->off, off, size); 2922 return -EACCES; 2923 } 2924 2925 return 0; 2926 } 2927 2928 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2929 const struct bpf_reg_state *reg, 2930 const char *pointer_desc, 2931 int off, int size, bool strict) 2932 { 2933 struct tnum reg_off; 2934 2935 /* Byte size accesses are always allowed. */ 2936 if (!strict || size == 1) 2937 return 0; 2938 2939 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2940 if (!tnum_is_aligned(reg_off, size)) { 2941 char tn_buf[48]; 2942 2943 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2944 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2945 pointer_desc, tn_buf, reg->off, off, size); 2946 return -EACCES; 2947 } 2948 2949 return 0; 2950 } 2951 2952 static int check_ptr_alignment(struct bpf_verifier_env *env, 2953 const struct bpf_reg_state *reg, int off, 2954 int size, bool strict_alignment_once) 2955 { 2956 bool strict = env->strict_alignment || strict_alignment_once; 2957 const char *pointer_desc = ""; 2958 2959 switch (reg->type) { 2960 case PTR_TO_PACKET: 2961 case PTR_TO_PACKET_META: 2962 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2963 * right in front, treat it the very same way. 2964 */ 2965 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2966 case PTR_TO_FLOW_KEYS: 2967 pointer_desc = "flow keys "; 2968 break; 2969 case PTR_TO_MAP_VALUE: 2970 pointer_desc = "value "; 2971 break; 2972 case PTR_TO_CTX: 2973 pointer_desc = "context "; 2974 break; 2975 case PTR_TO_STACK: 2976 pointer_desc = "stack "; 2977 /* The stack spill tracking logic in check_stack_write() 2978 * and check_stack_read() relies on stack accesses being 2979 * aligned. 2980 */ 2981 strict = true; 2982 break; 2983 case PTR_TO_SOCKET: 2984 pointer_desc = "sock "; 2985 break; 2986 case PTR_TO_SOCK_COMMON: 2987 pointer_desc = "sock_common "; 2988 break; 2989 case PTR_TO_TCP_SOCK: 2990 pointer_desc = "tcp_sock "; 2991 break; 2992 case PTR_TO_XDP_SOCK: 2993 pointer_desc = "xdp_sock "; 2994 break; 2995 default: 2996 break; 2997 } 2998 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2999 strict); 3000 } 3001 3002 static int update_stack_depth(struct bpf_verifier_env *env, 3003 const struct bpf_func_state *func, 3004 int off) 3005 { 3006 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3007 3008 if (stack >= -off) 3009 return 0; 3010 3011 /* update known max for given subprogram */ 3012 env->subprog_info[func->subprogno].stack_depth = -off; 3013 return 0; 3014 } 3015 3016 /* starting from main bpf function walk all instructions of the function 3017 * and recursively walk all callees that given function can call. 3018 * Ignore jump and exit insns. 3019 * Since recursion is prevented by check_cfg() this algorithm 3020 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3021 */ 3022 static int check_max_stack_depth(struct bpf_verifier_env *env) 3023 { 3024 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3025 struct bpf_subprog_info *subprog = env->subprog_info; 3026 struct bpf_insn *insn = env->prog->insnsi; 3027 bool tail_call_reachable = false; 3028 int ret_insn[MAX_CALL_FRAMES]; 3029 int ret_prog[MAX_CALL_FRAMES]; 3030 int j; 3031 3032 process_func: 3033 /* protect against potential stack overflow that might happen when 3034 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3035 * depth for such case down to 256 so that the worst case scenario 3036 * would result in 8k stack size (32 which is tailcall limit * 256 = 3037 * 8k). 3038 * 3039 * To get the idea what might happen, see an example: 3040 * func1 -> sub rsp, 128 3041 * subfunc1 -> sub rsp, 256 3042 * tailcall1 -> add rsp, 256 3043 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3044 * subfunc2 -> sub rsp, 64 3045 * subfunc22 -> sub rsp, 128 3046 * tailcall2 -> add rsp, 128 3047 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3048 * 3049 * tailcall will unwind the current stack frame but it will not get rid 3050 * of caller's stack as shown on the example above. 3051 */ 3052 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3053 verbose(env, 3054 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3055 depth); 3056 return -EACCES; 3057 } 3058 /* round up to 32-bytes, since this is granularity 3059 * of interpreter stack size 3060 */ 3061 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3062 if (depth > MAX_BPF_STACK) { 3063 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3064 frame + 1, depth); 3065 return -EACCES; 3066 } 3067 continue_func: 3068 subprog_end = subprog[idx + 1].start; 3069 for (; i < subprog_end; i++) { 3070 if (insn[i].code != (BPF_JMP | BPF_CALL)) 3071 continue; 3072 if (insn[i].src_reg != BPF_PSEUDO_CALL) 3073 continue; 3074 /* remember insn and function to return to */ 3075 ret_insn[frame] = i + 1; 3076 ret_prog[frame] = idx; 3077 3078 /* find the callee */ 3079 i = i + insn[i].imm + 1; 3080 idx = find_subprog(env, i); 3081 if (idx < 0) { 3082 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3083 i); 3084 return -EFAULT; 3085 } 3086 3087 if (subprog[idx].has_tail_call) 3088 tail_call_reachable = true; 3089 3090 frame++; 3091 if (frame >= MAX_CALL_FRAMES) { 3092 verbose(env, "the call stack of %d frames is too deep !\n", 3093 frame); 3094 return -E2BIG; 3095 } 3096 goto process_func; 3097 } 3098 /* if tail call got detected across bpf2bpf calls then mark each of the 3099 * currently present subprog frames as tail call reachable subprogs; 3100 * this info will be utilized by JIT so that we will be preserving the 3101 * tail call counter throughout bpf2bpf calls combined with tailcalls 3102 */ 3103 if (tail_call_reachable) 3104 for (j = 0; j < frame; j++) 3105 subprog[ret_prog[j]].tail_call_reachable = true; 3106 3107 /* end of for() loop means the last insn of the 'subprog' 3108 * was reached. Doesn't matter whether it was JA or EXIT 3109 */ 3110 if (frame == 0) 3111 return 0; 3112 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3113 frame--; 3114 i = ret_insn[frame]; 3115 idx = ret_prog[frame]; 3116 goto continue_func; 3117 } 3118 3119 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3120 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3121 const struct bpf_insn *insn, int idx) 3122 { 3123 int start = idx + insn->imm + 1, subprog; 3124 3125 subprog = find_subprog(env, start); 3126 if (subprog < 0) { 3127 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3128 start); 3129 return -EFAULT; 3130 } 3131 return env->subprog_info[subprog].stack_depth; 3132 } 3133 #endif 3134 3135 int check_ctx_reg(struct bpf_verifier_env *env, 3136 const struct bpf_reg_state *reg, int regno) 3137 { 3138 /* Access to ctx or passing it to a helper is only allowed in 3139 * its original, unmodified form. 3140 */ 3141 3142 if (reg->off) { 3143 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3144 regno, reg->off); 3145 return -EACCES; 3146 } 3147 3148 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3149 char tn_buf[48]; 3150 3151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3152 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3153 return -EACCES; 3154 } 3155 3156 return 0; 3157 } 3158 3159 static int __check_buffer_access(struct bpf_verifier_env *env, 3160 const char *buf_info, 3161 const struct bpf_reg_state *reg, 3162 int regno, int off, int size) 3163 { 3164 if (off < 0) { 3165 verbose(env, 3166 "R%d invalid %s buffer access: off=%d, size=%d\n", 3167 regno, buf_info, off, size); 3168 return -EACCES; 3169 } 3170 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3171 char tn_buf[48]; 3172 3173 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3174 verbose(env, 3175 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3176 regno, off, tn_buf); 3177 return -EACCES; 3178 } 3179 3180 return 0; 3181 } 3182 3183 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3184 const struct bpf_reg_state *reg, 3185 int regno, int off, int size) 3186 { 3187 int err; 3188 3189 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3190 if (err) 3191 return err; 3192 3193 if (off + size > env->prog->aux->max_tp_access) 3194 env->prog->aux->max_tp_access = off + size; 3195 3196 return 0; 3197 } 3198 3199 static int check_buffer_access(struct bpf_verifier_env *env, 3200 const struct bpf_reg_state *reg, 3201 int regno, int off, int size, 3202 bool zero_size_allowed, 3203 const char *buf_info, 3204 u32 *max_access) 3205 { 3206 int err; 3207 3208 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3209 if (err) 3210 return err; 3211 3212 if (off + size > *max_access) 3213 *max_access = off + size; 3214 3215 return 0; 3216 } 3217 3218 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3219 static void zext_32_to_64(struct bpf_reg_state *reg) 3220 { 3221 reg->var_off = tnum_subreg(reg->var_off); 3222 __reg_assign_32_into_64(reg); 3223 } 3224 3225 /* truncate register to smaller size (in bytes) 3226 * must be called with size < BPF_REG_SIZE 3227 */ 3228 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3229 { 3230 u64 mask; 3231 3232 /* clear high bits in bit representation */ 3233 reg->var_off = tnum_cast(reg->var_off, size); 3234 3235 /* fix arithmetic bounds */ 3236 mask = ((u64)1 << (size * 8)) - 1; 3237 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3238 reg->umin_value &= mask; 3239 reg->umax_value &= mask; 3240 } else { 3241 reg->umin_value = 0; 3242 reg->umax_value = mask; 3243 } 3244 reg->smin_value = reg->umin_value; 3245 reg->smax_value = reg->umax_value; 3246 3247 /* If size is smaller than 32bit register the 32bit register 3248 * values are also truncated so we push 64-bit bounds into 3249 * 32-bit bounds. Above were truncated < 32-bits already. 3250 */ 3251 if (size >= 4) 3252 return; 3253 __reg_combine_64_into_32(reg); 3254 } 3255 3256 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3257 { 3258 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3259 } 3260 3261 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3262 { 3263 void *ptr; 3264 u64 addr; 3265 int err; 3266 3267 err = map->ops->map_direct_value_addr(map, &addr, off); 3268 if (err) 3269 return err; 3270 ptr = (void *)(long)addr + off; 3271 3272 switch (size) { 3273 case sizeof(u8): 3274 *val = (u64)*(u8 *)ptr; 3275 break; 3276 case sizeof(u16): 3277 *val = (u64)*(u16 *)ptr; 3278 break; 3279 case sizeof(u32): 3280 *val = (u64)*(u32 *)ptr; 3281 break; 3282 case sizeof(u64): 3283 *val = *(u64 *)ptr; 3284 break; 3285 default: 3286 return -EINVAL; 3287 } 3288 return 0; 3289 } 3290 3291 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3292 struct bpf_reg_state *regs, 3293 int regno, int off, int size, 3294 enum bpf_access_type atype, 3295 int value_regno) 3296 { 3297 struct bpf_reg_state *reg = regs + regno; 3298 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3299 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3300 u32 btf_id; 3301 int ret; 3302 3303 if (off < 0) { 3304 verbose(env, 3305 "R%d is ptr_%s invalid negative access: off=%d\n", 3306 regno, tname, off); 3307 return -EACCES; 3308 } 3309 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3310 char tn_buf[48]; 3311 3312 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3313 verbose(env, 3314 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3315 regno, tname, off, tn_buf); 3316 return -EACCES; 3317 } 3318 3319 if (env->ops->btf_struct_access) { 3320 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3321 atype, &btf_id); 3322 } else { 3323 if (atype != BPF_READ) { 3324 verbose(env, "only read is supported\n"); 3325 return -EACCES; 3326 } 3327 3328 ret = btf_struct_access(&env->log, t, off, size, atype, 3329 &btf_id); 3330 } 3331 3332 if (ret < 0) 3333 return ret; 3334 3335 if (atype == BPF_READ && value_regno >= 0) 3336 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3337 3338 return 0; 3339 } 3340 3341 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3342 struct bpf_reg_state *regs, 3343 int regno, int off, int size, 3344 enum bpf_access_type atype, 3345 int value_regno) 3346 { 3347 struct bpf_reg_state *reg = regs + regno; 3348 struct bpf_map *map = reg->map_ptr; 3349 const struct btf_type *t; 3350 const char *tname; 3351 u32 btf_id; 3352 int ret; 3353 3354 if (!btf_vmlinux) { 3355 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3356 return -ENOTSUPP; 3357 } 3358 3359 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3360 verbose(env, "map_ptr access not supported for map type %d\n", 3361 map->map_type); 3362 return -ENOTSUPP; 3363 } 3364 3365 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3366 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3367 3368 if (!env->allow_ptr_to_map_access) { 3369 verbose(env, 3370 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3371 tname); 3372 return -EPERM; 3373 } 3374 3375 if (off < 0) { 3376 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3377 regno, tname, off); 3378 return -EACCES; 3379 } 3380 3381 if (atype != BPF_READ) { 3382 verbose(env, "only read from %s is supported\n", tname); 3383 return -EACCES; 3384 } 3385 3386 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3387 if (ret < 0) 3388 return ret; 3389 3390 if (value_regno >= 0) 3391 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3392 3393 return 0; 3394 } 3395 3396 3397 /* check whether memory at (regno + off) is accessible for t = (read | write) 3398 * if t==write, value_regno is a register which value is stored into memory 3399 * if t==read, value_regno is a register which will receive the value from memory 3400 * if t==write && value_regno==-1, some unknown value is stored into memory 3401 * if t==read && value_regno==-1, don't care what we read from memory 3402 */ 3403 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3404 int off, int bpf_size, enum bpf_access_type t, 3405 int value_regno, bool strict_alignment_once) 3406 { 3407 struct bpf_reg_state *regs = cur_regs(env); 3408 struct bpf_reg_state *reg = regs + regno; 3409 struct bpf_func_state *state; 3410 int size, err = 0; 3411 3412 size = bpf_size_to_bytes(bpf_size); 3413 if (size < 0) 3414 return size; 3415 3416 /* alignment checks will add in reg->off themselves */ 3417 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3418 if (err) 3419 return err; 3420 3421 /* for access checks, reg->off is just part of off */ 3422 off += reg->off; 3423 3424 if (reg->type == PTR_TO_MAP_VALUE) { 3425 if (t == BPF_WRITE && value_regno >= 0 && 3426 is_pointer_value(env, value_regno)) { 3427 verbose(env, "R%d leaks addr into map\n", value_regno); 3428 return -EACCES; 3429 } 3430 err = check_map_access_type(env, regno, off, size, t); 3431 if (err) 3432 return err; 3433 err = check_map_access(env, regno, off, size, false); 3434 if (!err && t == BPF_READ && value_regno >= 0) { 3435 struct bpf_map *map = reg->map_ptr; 3436 3437 /* if map is read-only, track its contents as scalars */ 3438 if (tnum_is_const(reg->var_off) && 3439 bpf_map_is_rdonly(map) && 3440 map->ops->map_direct_value_addr) { 3441 int map_off = off + reg->var_off.value; 3442 u64 val = 0; 3443 3444 err = bpf_map_direct_read(map, map_off, size, 3445 &val); 3446 if (err) 3447 return err; 3448 3449 regs[value_regno].type = SCALAR_VALUE; 3450 __mark_reg_known(®s[value_regno], val); 3451 } else { 3452 mark_reg_unknown(env, regs, value_regno); 3453 } 3454 } 3455 } else if (reg->type == PTR_TO_MEM) { 3456 if (t == BPF_WRITE && value_regno >= 0 && 3457 is_pointer_value(env, value_regno)) { 3458 verbose(env, "R%d leaks addr into mem\n", value_regno); 3459 return -EACCES; 3460 } 3461 err = check_mem_region_access(env, regno, off, size, 3462 reg->mem_size, false); 3463 if (!err && t == BPF_READ && value_regno >= 0) 3464 mark_reg_unknown(env, regs, value_regno); 3465 } else if (reg->type == PTR_TO_CTX) { 3466 enum bpf_reg_type reg_type = SCALAR_VALUE; 3467 u32 btf_id = 0; 3468 3469 if (t == BPF_WRITE && value_regno >= 0 && 3470 is_pointer_value(env, value_regno)) { 3471 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3472 return -EACCES; 3473 } 3474 3475 err = check_ctx_reg(env, reg, regno); 3476 if (err < 0) 3477 return err; 3478 3479 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3480 if (err) 3481 verbose_linfo(env, insn_idx, "; "); 3482 if (!err && t == BPF_READ && value_regno >= 0) { 3483 /* ctx access returns either a scalar, or a 3484 * PTR_TO_PACKET[_META,_END]. In the latter 3485 * case, we know the offset is zero. 3486 */ 3487 if (reg_type == SCALAR_VALUE) { 3488 mark_reg_unknown(env, regs, value_regno); 3489 } else { 3490 mark_reg_known_zero(env, regs, 3491 value_regno); 3492 if (reg_type_may_be_null(reg_type)) 3493 regs[value_regno].id = ++env->id_gen; 3494 /* A load of ctx field could have different 3495 * actual load size with the one encoded in the 3496 * insn. When the dst is PTR, it is for sure not 3497 * a sub-register. 3498 */ 3499 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3500 if (reg_type == PTR_TO_BTF_ID || 3501 reg_type == PTR_TO_BTF_ID_OR_NULL) 3502 regs[value_regno].btf_id = btf_id; 3503 } 3504 regs[value_regno].type = reg_type; 3505 } 3506 3507 } else if (reg->type == PTR_TO_STACK) { 3508 off += reg->var_off.value; 3509 err = check_stack_access(env, reg, off, size); 3510 if (err) 3511 return err; 3512 3513 state = func(env, reg); 3514 err = update_stack_depth(env, state, off); 3515 if (err) 3516 return err; 3517 3518 if (t == BPF_WRITE) 3519 err = check_stack_write(env, state, off, size, 3520 value_regno, insn_idx); 3521 else 3522 err = check_stack_read(env, state, off, size, 3523 value_regno); 3524 } else if (reg_is_pkt_pointer(reg)) { 3525 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3526 verbose(env, "cannot write into packet\n"); 3527 return -EACCES; 3528 } 3529 if (t == BPF_WRITE && value_regno >= 0 && 3530 is_pointer_value(env, value_regno)) { 3531 verbose(env, "R%d leaks addr into packet\n", 3532 value_regno); 3533 return -EACCES; 3534 } 3535 err = check_packet_access(env, regno, off, size, false); 3536 if (!err && t == BPF_READ && value_regno >= 0) 3537 mark_reg_unknown(env, regs, value_regno); 3538 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3539 if (t == BPF_WRITE && value_regno >= 0 && 3540 is_pointer_value(env, value_regno)) { 3541 verbose(env, "R%d leaks addr into flow keys\n", 3542 value_regno); 3543 return -EACCES; 3544 } 3545 3546 err = check_flow_keys_access(env, off, size); 3547 if (!err && t == BPF_READ && value_regno >= 0) 3548 mark_reg_unknown(env, regs, value_regno); 3549 } else if (type_is_sk_pointer(reg->type)) { 3550 if (t == BPF_WRITE) { 3551 verbose(env, "R%d cannot write into %s\n", 3552 regno, reg_type_str[reg->type]); 3553 return -EACCES; 3554 } 3555 err = check_sock_access(env, insn_idx, regno, off, size, t); 3556 if (!err && value_regno >= 0) 3557 mark_reg_unknown(env, regs, value_regno); 3558 } else if (reg->type == PTR_TO_TP_BUFFER) { 3559 err = check_tp_buffer_access(env, reg, regno, off, size); 3560 if (!err && t == BPF_READ && value_regno >= 0) 3561 mark_reg_unknown(env, regs, value_regno); 3562 } else if (reg->type == PTR_TO_BTF_ID) { 3563 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3564 value_regno); 3565 } else if (reg->type == CONST_PTR_TO_MAP) { 3566 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3567 value_regno); 3568 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3569 if (t == BPF_WRITE) { 3570 verbose(env, "R%d cannot write into %s\n", 3571 regno, reg_type_str[reg->type]); 3572 return -EACCES; 3573 } 3574 err = check_buffer_access(env, reg, regno, off, size, false, 3575 "rdonly", 3576 &env->prog->aux->max_rdonly_access); 3577 if (!err && value_regno >= 0) 3578 mark_reg_unknown(env, regs, value_regno); 3579 } else if (reg->type == PTR_TO_RDWR_BUF) { 3580 err = check_buffer_access(env, reg, regno, off, size, false, 3581 "rdwr", 3582 &env->prog->aux->max_rdwr_access); 3583 if (!err && t == BPF_READ && value_regno >= 0) 3584 mark_reg_unknown(env, regs, value_regno); 3585 } else { 3586 verbose(env, "R%d invalid mem access '%s'\n", regno, 3587 reg_type_str[reg->type]); 3588 return -EACCES; 3589 } 3590 3591 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3592 regs[value_regno].type == SCALAR_VALUE) { 3593 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3594 coerce_reg_to_size(®s[value_regno], size); 3595 } 3596 return err; 3597 } 3598 3599 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3600 { 3601 int err; 3602 3603 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3604 insn->imm != 0) { 3605 verbose(env, "BPF_XADD uses reserved fields\n"); 3606 return -EINVAL; 3607 } 3608 3609 /* check src1 operand */ 3610 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3611 if (err) 3612 return err; 3613 3614 /* check src2 operand */ 3615 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3616 if (err) 3617 return err; 3618 3619 if (is_pointer_value(env, insn->src_reg)) { 3620 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3621 return -EACCES; 3622 } 3623 3624 if (is_ctx_reg(env, insn->dst_reg) || 3625 is_pkt_reg(env, insn->dst_reg) || 3626 is_flow_key_reg(env, insn->dst_reg) || 3627 is_sk_reg(env, insn->dst_reg)) { 3628 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3629 insn->dst_reg, 3630 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3631 return -EACCES; 3632 } 3633 3634 /* check whether atomic_add can read the memory */ 3635 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3636 BPF_SIZE(insn->code), BPF_READ, -1, true); 3637 if (err) 3638 return err; 3639 3640 /* check whether atomic_add can write into the same memory */ 3641 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3642 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3643 } 3644 3645 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3646 int off, int access_size, 3647 bool zero_size_allowed) 3648 { 3649 struct bpf_reg_state *reg = reg_state(env, regno); 3650 3651 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3652 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3653 if (tnum_is_const(reg->var_off)) { 3654 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3655 regno, off, access_size); 3656 } else { 3657 char tn_buf[48]; 3658 3659 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3660 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3661 regno, tn_buf, access_size); 3662 } 3663 return -EACCES; 3664 } 3665 return 0; 3666 } 3667 3668 /* when register 'regno' is passed into function that will read 'access_size' 3669 * bytes from that pointer, make sure that it's within stack boundary 3670 * and all elements of stack are initialized. 3671 * Unlike most pointer bounds-checking functions, this one doesn't take an 3672 * 'off' argument, so it has to add in reg->off itself. 3673 */ 3674 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3675 int access_size, bool zero_size_allowed, 3676 struct bpf_call_arg_meta *meta) 3677 { 3678 struct bpf_reg_state *reg = reg_state(env, regno); 3679 struct bpf_func_state *state = func(env, reg); 3680 int err, min_off, max_off, i, j, slot, spi; 3681 3682 if (tnum_is_const(reg->var_off)) { 3683 min_off = max_off = reg->var_off.value + reg->off; 3684 err = __check_stack_boundary(env, regno, min_off, access_size, 3685 zero_size_allowed); 3686 if (err) 3687 return err; 3688 } else { 3689 /* Variable offset is prohibited for unprivileged mode for 3690 * simplicity since it requires corresponding support in 3691 * Spectre masking for stack ALU. 3692 * See also retrieve_ptr_limit(). 3693 */ 3694 if (!env->bypass_spec_v1) { 3695 char tn_buf[48]; 3696 3697 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3698 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3699 regno, tn_buf); 3700 return -EACCES; 3701 } 3702 /* Only initialized buffer on stack is allowed to be accessed 3703 * with variable offset. With uninitialized buffer it's hard to 3704 * guarantee that whole memory is marked as initialized on 3705 * helper return since specific bounds are unknown what may 3706 * cause uninitialized stack leaking. 3707 */ 3708 if (meta && meta->raw_mode) 3709 meta = NULL; 3710 3711 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3712 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3713 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3714 regno); 3715 return -EACCES; 3716 } 3717 min_off = reg->smin_value + reg->off; 3718 max_off = reg->smax_value + reg->off; 3719 err = __check_stack_boundary(env, regno, min_off, access_size, 3720 zero_size_allowed); 3721 if (err) { 3722 verbose(env, "R%d min value is outside of stack bound\n", 3723 regno); 3724 return err; 3725 } 3726 err = __check_stack_boundary(env, regno, max_off, access_size, 3727 zero_size_allowed); 3728 if (err) { 3729 verbose(env, "R%d max value is outside of stack bound\n", 3730 regno); 3731 return err; 3732 } 3733 } 3734 3735 if (meta && meta->raw_mode) { 3736 meta->access_size = access_size; 3737 meta->regno = regno; 3738 return 0; 3739 } 3740 3741 for (i = min_off; i < max_off + access_size; i++) { 3742 u8 *stype; 3743 3744 slot = -i - 1; 3745 spi = slot / BPF_REG_SIZE; 3746 if (state->allocated_stack <= slot) 3747 goto err; 3748 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3749 if (*stype == STACK_MISC) 3750 goto mark; 3751 if (*stype == STACK_ZERO) { 3752 /* helper can write anything into the stack */ 3753 *stype = STACK_MISC; 3754 goto mark; 3755 } 3756 3757 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3758 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3759 goto mark; 3760 3761 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3762 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3763 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3764 for (j = 0; j < BPF_REG_SIZE; j++) 3765 state->stack[spi].slot_type[j] = STACK_MISC; 3766 goto mark; 3767 } 3768 3769 err: 3770 if (tnum_is_const(reg->var_off)) { 3771 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3772 min_off, i - min_off, access_size); 3773 } else { 3774 char tn_buf[48]; 3775 3776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3777 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3778 tn_buf, i - min_off, access_size); 3779 } 3780 return -EACCES; 3781 mark: 3782 /* reading any byte out of 8-byte 'spill_slot' will cause 3783 * the whole slot to be marked as 'read' 3784 */ 3785 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3786 state->stack[spi].spilled_ptr.parent, 3787 REG_LIVE_READ64); 3788 } 3789 return update_stack_depth(env, state, min_off); 3790 } 3791 3792 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3793 int access_size, bool zero_size_allowed, 3794 struct bpf_call_arg_meta *meta) 3795 { 3796 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3797 3798 switch (reg->type) { 3799 case PTR_TO_PACKET: 3800 case PTR_TO_PACKET_META: 3801 return check_packet_access(env, regno, reg->off, access_size, 3802 zero_size_allowed); 3803 case PTR_TO_MAP_VALUE: 3804 if (check_map_access_type(env, regno, reg->off, access_size, 3805 meta && meta->raw_mode ? BPF_WRITE : 3806 BPF_READ)) 3807 return -EACCES; 3808 return check_map_access(env, regno, reg->off, access_size, 3809 zero_size_allowed); 3810 case PTR_TO_MEM: 3811 return check_mem_region_access(env, regno, reg->off, 3812 access_size, reg->mem_size, 3813 zero_size_allowed); 3814 case PTR_TO_RDONLY_BUF: 3815 if (meta && meta->raw_mode) 3816 return -EACCES; 3817 return check_buffer_access(env, reg, regno, reg->off, 3818 access_size, zero_size_allowed, 3819 "rdonly", 3820 &env->prog->aux->max_rdonly_access); 3821 case PTR_TO_RDWR_BUF: 3822 return check_buffer_access(env, reg, regno, reg->off, 3823 access_size, zero_size_allowed, 3824 "rdwr", 3825 &env->prog->aux->max_rdwr_access); 3826 case PTR_TO_STACK: 3827 return check_stack_boundary(env, regno, access_size, 3828 zero_size_allowed, meta); 3829 default: /* scalar_value or invalid ptr */ 3830 /* Allow zero-byte read from NULL, regardless of pointer type */ 3831 if (zero_size_allowed && access_size == 0 && 3832 register_is_null(reg)) 3833 return 0; 3834 3835 verbose(env, "R%d type=%s expected=%s\n", regno, 3836 reg_type_str[reg->type], 3837 reg_type_str[PTR_TO_STACK]); 3838 return -EACCES; 3839 } 3840 } 3841 3842 /* Implementation details: 3843 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3844 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3845 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3846 * value_or_null->value transition, since the verifier only cares about 3847 * the range of access to valid map value pointer and doesn't care about actual 3848 * address of the map element. 3849 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3850 * reg->id > 0 after value_or_null->value transition. By doing so 3851 * two bpf_map_lookups will be considered two different pointers that 3852 * point to different bpf_spin_locks. 3853 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3854 * dead-locks. 3855 * Since only one bpf_spin_lock is allowed the checks are simpler than 3856 * reg_is_refcounted() logic. The verifier needs to remember only 3857 * one spin_lock instead of array of acquired_refs. 3858 * cur_state->active_spin_lock remembers which map value element got locked 3859 * and clears it after bpf_spin_unlock. 3860 */ 3861 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3862 bool is_lock) 3863 { 3864 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3865 struct bpf_verifier_state *cur = env->cur_state; 3866 bool is_const = tnum_is_const(reg->var_off); 3867 struct bpf_map *map = reg->map_ptr; 3868 u64 val = reg->var_off.value; 3869 3870 if (!is_const) { 3871 verbose(env, 3872 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3873 regno); 3874 return -EINVAL; 3875 } 3876 if (!map->btf) { 3877 verbose(env, 3878 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3879 map->name); 3880 return -EINVAL; 3881 } 3882 if (!map_value_has_spin_lock(map)) { 3883 if (map->spin_lock_off == -E2BIG) 3884 verbose(env, 3885 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3886 map->name); 3887 else if (map->spin_lock_off == -ENOENT) 3888 verbose(env, 3889 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3890 map->name); 3891 else 3892 verbose(env, 3893 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3894 map->name); 3895 return -EINVAL; 3896 } 3897 if (map->spin_lock_off != val + reg->off) { 3898 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3899 val + reg->off); 3900 return -EINVAL; 3901 } 3902 if (is_lock) { 3903 if (cur->active_spin_lock) { 3904 verbose(env, 3905 "Locking two bpf_spin_locks are not allowed\n"); 3906 return -EINVAL; 3907 } 3908 cur->active_spin_lock = reg->id; 3909 } else { 3910 if (!cur->active_spin_lock) { 3911 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3912 return -EINVAL; 3913 } 3914 if (cur->active_spin_lock != reg->id) { 3915 verbose(env, "bpf_spin_unlock of different lock\n"); 3916 return -EINVAL; 3917 } 3918 cur->active_spin_lock = 0; 3919 } 3920 return 0; 3921 } 3922 3923 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3924 { 3925 return type == ARG_PTR_TO_MEM || 3926 type == ARG_PTR_TO_MEM_OR_NULL || 3927 type == ARG_PTR_TO_UNINIT_MEM; 3928 } 3929 3930 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3931 { 3932 return type == ARG_CONST_SIZE || 3933 type == ARG_CONST_SIZE_OR_ZERO; 3934 } 3935 3936 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3937 { 3938 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3939 } 3940 3941 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3942 { 3943 return type == ARG_PTR_TO_INT || 3944 type == ARG_PTR_TO_LONG; 3945 } 3946 3947 static int int_ptr_type_to_size(enum bpf_arg_type type) 3948 { 3949 if (type == ARG_PTR_TO_INT) 3950 return sizeof(u32); 3951 else if (type == ARG_PTR_TO_LONG) 3952 return sizeof(u64); 3953 3954 return -EINVAL; 3955 } 3956 3957 static int resolve_map_arg_type(struct bpf_verifier_env *env, 3958 const struct bpf_call_arg_meta *meta, 3959 enum bpf_arg_type *arg_type) 3960 { 3961 if (!meta->map_ptr) { 3962 /* kernel subsystem misconfigured verifier */ 3963 verbose(env, "invalid map_ptr to access map->type\n"); 3964 return -EACCES; 3965 } 3966 3967 switch (meta->map_ptr->map_type) { 3968 case BPF_MAP_TYPE_SOCKMAP: 3969 case BPF_MAP_TYPE_SOCKHASH: 3970 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 3971 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 3972 } else { 3973 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 3974 return -EINVAL; 3975 } 3976 break; 3977 3978 default: 3979 break; 3980 } 3981 return 0; 3982 } 3983 3984 struct bpf_reg_types { 3985 const enum bpf_reg_type types[10]; 3986 u32 *btf_id; 3987 }; 3988 3989 static const struct bpf_reg_types map_key_value_types = { 3990 .types = { 3991 PTR_TO_STACK, 3992 PTR_TO_PACKET, 3993 PTR_TO_PACKET_META, 3994 PTR_TO_MAP_VALUE, 3995 }, 3996 }; 3997 3998 static const struct bpf_reg_types sock_types = { 3999 .types = { 4000 PTR_TO_SOCK_COMMON, 4001 PTR_TO_SOCKET, 4002 PTR_TO_TCP_SOCK, 4003 PTR_TO_XDP_SOCK, 4004 }, 4005 }; 4006 4007 #ifdef CONFIG_NET 4008 static const struct bpf_reg_types btf_id_sock_common_types = { 4009 .types = { 4010 PTR_TO_SOCK_COMMON, 4011 PTR_TO_SOCKET, 4012 PTR_TO_TCP_SOCK, 4013 PTR_TO_XDP_SOCK, 4014 PTR_TO_BTF_ID, 4015 }, 4016 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4017 }; 4018 #endif 4019 4020 static const struct bpf_reg_types mem_types = { 4021 .types = { 4022 PTR_TO_STACK, 4023 PTR_TO_PACKET, 4024 PTR_TO_PACKET_META, 4025 PTR_TO_MAP_VALUE, 4026 PTR_TO_MEM, 4027 PTR_TO_RDONLY_BUF, 4028 PTR_TO_RDWR_BUF, 4029 }, 4030 }; 4031 4032 static const struct bpf_reg_types int_ptr_types = { 4033 .types = { 4034 PTR_TO_STACK, 4035 PTR_TO_PACKET, 4036 PTR_TO_PACKET_META, 4037 PTR_TO_MAP_VALUE, 4038 }, 4039 }; 4040 4041 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4042 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4043 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4044 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4045 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4046 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4047 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4048 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4049 4050 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4051 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4052 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4053 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4054 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4055 [ARG_CONST_SIZE] = &scalar_types, 4056 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4057 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4058 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4059 [ARG_PTR_TO_CTX] = &context_types, 4060 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4061 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4062 #ifdef CONFIG_NET 4063 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4064 #endif 4065 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4066 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4067 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4068 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4069 [ARG_PTR_TO_MEM] = &mem_types, 4070 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4071 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4072 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4073 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4074 [ARG_PTR_TO_INT] = &int_ptr_types, 4075 [ARG_PTR_TO_LONG] = &int_ptr_types, 4076 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4077 }; 4078 4079 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4080 enum bpf_arg_type arg_type, 4081 const u32 *arg_btf_id) 4082 { 4083 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4084 enum bpf_reg_type expected, type = reg->type; 4085 const struct bpf_reg_types *compatible; 4086 int i, j; 4087 4088 compatible = compatible_reg_types[arg_type]; 4089 if (!compatible) { 4090 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4091 return -EFAULT; 4092 } 4093 4094 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4095 expected = compatible->types[i]; 4096 if (expected == NOT_INIT) 4097 break; 4098 4099 if (type == expected) 4100 goto found; 4101 } 4102 4103 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4104 for (j = 0; j + 1 < i; j++) 4105 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4106 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4107 return -EACCES; 4108 4109 found: 4110 if (type == PTR_TO_BTF_ID) { 4111 if (!arg_btf_id) { 4112 if (!compatible->btf_id) { 4113 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4114 return -EFAULT; 4115 } 4116 arg_btf_id = compatible->btf_id; 4117 } 4118 4119 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, 4120 *arg_btf_id)) { 4121 verbose(env, "R%d is of type %s but %s is expected\n", 4122 regno, kernel_type_name(reg->btf_id), 4123 kernel_type_name(*arg_btf_id)); 4124 return -EACCES; 4125 } 4126 4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4128 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4129 regno); 4130 return -EACCES; 4131 } 4132 } 4133 4134 return 0; 4135 } 4136 4137 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4138 struct bpf_call_arg_meta *meta, 4139 const struct bpf_func_proto *fn) 4140 { 4141 u32 regno = BPF_REG_1 + arg; 4142 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4143 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4144 enum bpf_reg_type type = reg->type; 4145 int err = 0; 4146 4147 if (arg_type == ARG_DONTCARE) 4148 return 0; 4149 4150 err = check_reg_arg(env, regno, SRC_OP); 4151 if (err) 4152 return err; 4153 4154 if (arg_type == ARG_ANYTHING) { 4155 if (is_pointer_value(env, regno)) { 4156 verbose(env, "R%d leaks addr into helper function\n", 4157 regno); 4158 return -EACCES; 4159 } 4160 return 0; 4161 } 4162 4163 if (type_is_pkt_pointer(type) && 4164 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4165 verbose(env, "helper access to the packet is not allowed\n"); 4166 return -EACCES; 4167 } 4168 4169 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4170 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4171 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4172 err = resolve_map_arg_type(env, meta, &arg_type); 4173 if (err) 4174 return err; 4175 } 4176 4177 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4178 /* A NULL register has a SCALAR_VALUE type, so skip 4179 * type checking. 4180 */ 4181 goto skip_type_check; 4182 4183 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4184 if (err) 4185 return err; 4186 4187 if (type == PTR_TO_CTX) { 4188 err = check_ctx_reg(env, reg, regno); 4189 if (err < 0) 4190 return err; 4191 } 4192 4193 skip_type_check: 4194 if (reg->ref_obj_id) { 4195 if (meta->ref_obj_id) { 4196 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4197 regno, reg->ref_obj_id, 4198 meta->ref_obj_id); 4199 return -EFAULT; 4200 } 4201 meta->ref_obj_id = reg->ref_obj_id; 4202 } 4203 4204 if (arg_type == ARG_CONST_MAP_PTR) { 4205 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4206 meta->map_ptr = reg->map_ptr; 4207 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4208 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4209 * check that [key, key + map->key_size) are within 4210 * stack limits and initialized 4211 */ 4212 if (!meta->map_ptr) { 4213 /* in function declaration map_ptr must come before 4214 * map_key, so that it's verified and known before 4215 * we have to check map_key here. Otherwise it means 4216 * that kernel subsystem misconfigured verifier 4217 */ 4218 verbose(env, "invalid map_ptr to access map->key\n"); 4219 return -EACCES; 4220 } 4221 err = check_helper_mem_access(env, regno, 4222 meta->map_ptr->key_size, false, 4223 NULL); 4224 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4225 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4226 !register_is_null(reg)) || 4227 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4228 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4229 * check [value, value + map->value_size) validity 4230 */ 4231 if (!meta->map_ptr) { 4232 /* kernel subsystem misconfigured verifier */ 4233 verbose(env, "invalid map_ptr to access map->value\n"); 4234 return -EACCES; 4235 } 4236 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4237 err = check_helper_mem_access(env, regno, 4238 meta->map_ptr->value_size, false, 4239 meta); 4240 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4241 if (!reg->btf_id) { 4242 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4243 return -EACCES; 4244 } 4245 meta->ret_btf_id = reg->btf_id; 4246 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4247 if (meta->func_id == BPF_FUNC_spin_lock) { 4248 if (process_spin_lock(env, regno, true)) 4249 return -EACCES; 4250 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4251 if (process_spin_lock(env, regno, false)) 4252 return -EACCES; 4253 } else { 4254 verbose(env, "verifier internal error\n"); 4255 return -EFAULT; 4256 } 4257 } else if (arg_type_is_mem_ptr(arg_type)) { 4258 /* The access to this pointer is only checked when we hit the 4259 * next is_mem_size argument below. 4260 */ 4261 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4262 } else if (arg_type_is_mem_size(arg_type)) { 4263 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4264 4265 /* This is used to refine r0 return value bounds for helpers 4266 * that enforce this value as an upper bound on return values. 4267 * See do_refine_retval_range() for helpers that can refine 4268 * the return value. C type of helper is u32 so we pull register 4269 * bound from umax_value however, if negative verifier errors 4270 * out. Only upper bounds can be learned because retval is an 4271 * int type and negative retvals are allowed. 4272 */ 4273 meta->msize_max_value = reg->umax_value; 4274 4275 /* The register is SCALAR_VALUE; the access check 4276 * happens using its boundaries. 4277 */ 4278 if (!tnum_is_const(reg->var_off)) 4279 /* For unprivileged variable accesses, disable raw 4280 * mode so that the program is required to 4281 * initialize all the memory that the helper could 4282 * just partially fill up. 4283 */ 4284 meta = NULL; 4285 4286 if (reg->smin_value < 0) { 4287 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4288 regno); 4289 return -EACCES; 4290 } 4291 4292 if (reg->umin_value == 0) { 4293 err = check_helper_mem_access(env, regno - 1, 0, 4294 zero_size_allowed, 4295 meta); 4296 if (err) 4297 return err; 4298 } 4299 4300 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4301 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4302 regno); 4303 return -EACCES; 4304 } 4305 err = check_helper_mem_access(env, regno - 1, 4306 reg->umax_value, 4307 zero_size_allowed, meta); 4308 if (!err) 4309 err = mark_chain_precision(env, regno); 4310 } else if (arg_type_is_alloc_size(arg_type)) { 4311 if (!tnum_is_const(reg->var_off)) { 4312 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4313 regno); 4314 return -EACCES; 4315 } 4316 meta->mem_size = reg->var_off.value; 4317 } else if (arg_type_is_int_ptr(arg_type)) { 4318 int size = int_ptr_type_to_size(arg_type); 4319 4320 err = check_helper_mem_access(env, regno, size, false, meta); 4321 if (err) 4322 return err; 4323 err = check_ptr_alignment(env, reg, 0, size, true); 4324 } 4325 4326 return err; 4327 } 4328 4329 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4330 { 4331 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4332 enum bpf_prog_type type = resolve_prog_type(env->prog); 4333 4334 if (func_id != BPF_FUNC_map_update_elem) 4335 return false; 4336 4337 /* It's not possible to get access to a locked struct sock in these 4338 * contexts, so updating is safe. 4339 */ 4340 switch (type) { 4341 case BPF_PROG_TYPE_TRACING: 4342 if (eatype == BPF_TRACE_ITER) 4343 return true; 4344 break; 4345 case BPF_PROG_TYPE_SOCKET_FILTER: 4346 case BPF_PROG_TYPE_SCHED_CLS: 4347 case BPF_PROG_TYPE_SCHED_ACT: 4348 case BPF_PROG_TYPE_XDP: 4349 case BPF_PROG_TYPE_SK_REUSEPORT: 4350 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4351 case BPF_PROG_TYPE_SK_LOOKUP: 4352 return true; 4353 default: 4354 break; 4355 } 4356 4357 verbose(env, "cannot update sockmap in this context\n"); 4358 return false; 4359 } 4360 4361 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4362 { 4363 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4364 } 4365 4366 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4367 struct bpf_map *map, int func_id) 4368 { 4369 if (!map) 4370 return 0; 4371 4372 /* We need a two way check, first is from map perspective ... */ 4373 switch (map->map_type) { 4374 case BPF_MAP_TYPE_PROG_ARRAY: 4375 if (func_id != BPF_FUNC_tail_call) 4376 goto error; 4377 break; 4378 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4379 if (func_id != BPF_FUNC_perf_event_read && 4380 func_id != BPF_FUNC_perf_event_output && 4381 func_id != BPF_FUNC_skb_output && 4382 func_id != BPF_FUNC_perf_event_read_value && 4383 func_id != BPF_FUNC_xdp_output) 4384 goto error; 4385 break; 4386 case BPF_MAP_TYPE_RINGBUF: 4387 if (func_id != BPF_FUNC_ringbuf_output && 4388 func_id != BPF_FUNC_ringbuf_reserve && 4389 func_id != BPF_FUNC_ringbuf_submit && 4390 func_id != BPF_FUNC_ringbuf_discard && 4391 func_id != BPF_FUNC_ringbuf_query) 4392 goto error; 4393 break; 4394 case BPF_MAP_TYPE_STACK_TRACE: 4395 if (func_id != BPF_FUNC_get_stackid) 4396 goto error; 4397 break; 4398 case BPF_MAP_TYPE_CGROUP_ARRAY: 4399 if (func_id != BPF_FUNC_skb_under_cgroup && 4400 func_id != BPF_FUNC_current_task_under_cgroup) 4401 goto error; 4402 break; 4403 case BPF_MAP_TYPE_CGROUP_STORAGE: 4404 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4405 if (func_id != BPF_FUNC_get_local_storage) 4406 goto error; 4407 break; 4408 case BPF_MAP_TYPE_DEVMAP: 4409 case BPF_MAP_TYPE_DEVMAP_HASH: 4410 if (func_id != BPF_FUNC_redirect_map && 4411 func_id != BPF_FUNC_map_lookup_elem) 4412 goto error; 4413 break; 4414 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4415 * appear. 4416 */ 4417 case BPF_MAP_TYPE_CPUMAP: 4418 if (func_id != BPF_FUNC_redirect_map) 4419 goto error; 4420 break; 4421 case BPF_MAP_TYPE_XSKMAP: 4422 if (func_id != BPF_FUNC_redirect_map && 4423 func_id != BPF_FUNC_map_lookup_elem) 4424 goto error; 4425 break; 4426 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4427 case BPF_MAP_TYPE_HASH_OF_MAPS: 4428 if (func_id != BPF_FUNC_map_lookup_elem) 4429 goto error; 4430 break; 4431 case BPF_MAP_TYPE_SOCKMAP: 4432 if (func_id != BPF_FUNC_sk_redirect_map && 4433 func_id != BPF_FUNC_sock_map_update && 4434 func_id != BPF_FUNC_map_delete_elem && 4435 func_id != BPF_FUNC_msg_redirect_map && 4436 func_id != BPF_FUNC_sk_select_reuseport && 4437 func_id != BPF_FUNC_map_lookup_elem && 4438 !may_update_sockmap(env, func_id)) 4439 goto error; 4440 break; 4441 case BPF_MAP_TYPE_SOCKHASH: 4442 if (func_id != BPF_FUNC_sk_redirect_hash && 4443 func_id != BPF_FUNC_sock_hash_update && 4444 func_id != BPF_FUNC_map_delete_elem && 4445 func_id != BPF_FUNC_msg_redirect_hash && 4446 func_id != BPF_FUNC_sk_select_reuseport && 4447 func_id != BPF_FUNC_map_lookup_elem && 4448 !may_update_sockmap(env, func_id)) 4449 goto error; 4450 break; 4451 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4452 if (func_id != BPF_FUNC_sk_select_reuseport) 4453 goto error; 4454 break; 4455 case BPF_MAP_TYPE_QUEUE: 4456 case BPF_MAP_TYPE_STACK: 4457 if (func_id != BPF_FUNC_map_peek_elem && 4458 func_id != BPF_FUNC_map_pop_elem && 4459 func_id != BPF_FUNC_map_push_elem) 4460 goto error; 4461 break; 4462 case BPF_MAP_TYPE_SK_STORAGE: 4463 if (func_id != BPF_FUNC_sk_storage_get && 4464 func_id != BPF_FUNC_sk_storage_delete) 4465 goto error; 4466 break; 4467 case BPF_MAP_TYPE_INODE_STORAGE: 4468 if (func_id != BPF_FUNC_inode_storage_get && 4469 func_id != BPF_FUNC_inode_storage_delete) 4470 goto error; 4471 break; 4472 case BPF_MAP_TYPE_TASK_STORAGE: 4473 if (func_id != BPF_FUNC_task_storage_get && 4474 func_id != BPF_FUNC_task_storage_delete) 4475 goto error; 4476 break; 4477 default: 4478 break; 4479 } 4480 4481 /* ... and second from the function itself. */ 4482 switch (func_id) { 4483 case BPF_FUNC_tail_call: 4484 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4485 goto error; 4486 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4487 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4488 return -EINVAL; 4489 } 4490 break; 4491 case BPF_FUNC_perf_event_read: 4492 case BPF_FUNC_perf_event_output: 4493 case BPF_FUNC_perf_event_read_value: 4494 case BPF_FUNC_skb_output: 4495 case BPF_FUNC_xdp_output: 4496 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4497 goto error; 4498 break; 4499 case BPF_FUNC_get_stackid: 4500 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4501 goto error; 4502 break; 4503 case BPF_FUNC_current_task_under_cgroup: 4504 case BPF_FUNC_skb_under_cgroup: 4505 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4506 goto error; 4507 break; 4508 case BPF_FUNC_redirect_map: 4509 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4510 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4511 map->map_type != BPF_MAP_TYPE_CPUMAP && 4512 map->map_type != BPF_MAP_TYPE_XSKMAP) 4513 goto error; 4514 break; 4515 case BPF_FUNC_sk_redirect_map: 4516 case BPF_FUNC_msg_redirect_map: 4517 case BPF_FUNC_sock_map_update: 4518 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4519 goto error; 4520 break; 4521 case BPF_FUNC_sk_redirect_hash: 4522 case BPF_FUNC_msg_redirect_hash: 4523 case BPF_FUNC_sock_hash_update: 4524 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4525 goto error; 4526 break; 4527 case BPF_FUNC_get_local_storage: 4528 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4529 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4530 goto error; 4531 break; 4532 case BPF_FUNC_sk_select_reuseport: 4533 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4534 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4535 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4536 goto error; 4537 break; 4538 case BPF_FUNC_map_peek_elem: 4539 case BPF_FUNC_map_pop_elem: 4540 case BPF_FUNC_map_push_elem: 4541 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4542 map->map_type != BPF_MAP_TYPE_STACK) 4543 goto error; 4544 break; 4545 case BPF_FUNC_sk_storage_get: 4546 case BPF_FUNC_sk_storage_delete: 4547 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4548 goto error; 4549 break; 4550 case BPF_FUNC_inode_storage_get: 4551 case BPF_FUNC_inode_storage_delete: 4552 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 4553 goto error; 4554 break; 4555 case BPF_FUNC_task_storage_get: 4556 case BPF_FUNC_task_storage_delete: 4557 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 4558 goto error; 4559 break; 4560 default: 4561 break; 4562 } 4563 4564 return 0; 4565 error: 4566 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4567 map->map_type, func_id_name(func_id), func_id); 4568 return -EINVAL; 4569 } 4570 4571 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4572 { 4573 int count = 0; 4574 4575 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4576 count++; 4577 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4578 count++; 4579 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4580 count++; 4581 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4582 count++; 4583 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4584 count++; 4585 4586 /* We only support one arg being in raw mode at the moment, 4587 * which is sufficient for the helper functions we have 4588 * right now. 4589 */ 4590 return count <= 1; 4591 } 4592 4593 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4594 enum bpf_arg_type arg_next) 4595 { 4596 return (arg_type_is_mem_ptr(arg_curr) && 4597 !arg_type_is_mem_size(arg_next)) || 4598 (!arg_type_is_mem_ptr(arg_curr) && 4599 arg_type_is_mem_size(arg_next)); 4600 } 4601 4602 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4603 { 4604 /* bpf_xxx(..., buf, len) call will access 'len' 4605 * bytes from memory 'buf'. Both arg types need 4606 * to be paired, so make sure there's no buggy 4607 * helper function specification. 4608 */ 4609 if (arg_type_is_mem_size(fn->arg1_type) || 4610 arg_type_is_mem_ptr(fn->arg5_type) || 4611 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4612 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4613 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4614 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4615 return false; 4616 4617 return true; 4618 } 4619 4620 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4621 { 4622 int count = 0; 4623 4624 if (arg_type_may_be_refcounted(fn->arg1_type)) 4625 count++; 4626 if (arg_type_may_be_refcounted(fn->arg2_type)) 4627 count++; 4628 if (arg_type_may_be_refcounted(fn->arg3_type)) 4629 count++; 4630 if (arg_type_may_be_refcounted(fn->arg4_type)) 4631 count++; 4632 if (arg_type_may_be_refcounted(fn->arg5_type)) 4633 count++; 4634 4635 /* A reference acquiring function cannot acquire 4636 * another refcounted ptr. 4637 */ 4638 if (may_be_acquire_function(func_id) && count) 4639 return false; 4640 4641 /* We only support one arg being unreferenced at the moment, 4642 * which is sufficient for the helper functions we have right now. 4643 */ 4644 return count <= 1; 4645 } 4646 4647 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4648 { 4649 int i; 4650 4651 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 4652 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 4653 return false; 4654 4655 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 4656 return false; 4657 } 4658 4659 return true; 4660 } 4661 4662 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4663 { 4664 return check_raw_mode_ok(fn) && 4665 check_arg_pair_ok(fn) && 4666 check_btf_id_ok(fn) && 4667 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4668 } 4669 4670 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4671 * are now invalid, so turn them into unknown SCALAR_VALUE. 4672 */ 4673 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4674 struct bpf_func_state *state) 4675 { 4676 struct bpf_reg_state *regs = state->regs, *reg; 4677 int i; 4678 4679 for (i = 0; i < MAX_BPF_REG; i++) 4680 if (reg_is_pkt_pointer_any(®s[i])) 4681 mark_reg_unknown(env, regs, i); 4682 4683 bpf_for_each_spilled_reg(i, state, reg) { 4684 if (!reg) 4685 continue; 4686 if (reg_is_pkt_pointer_any(reg)) 4687 __mark_reg_unknown(env, reg); 4688 } 4689 } 4690 4691 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4692 { 4693 struct bpf_verifier_state *vstate = env->cur_state; 4694 int i; 4695 4696 for (i = 0; i <= vstate->curframe; i++) 4697 __clear_all_pkt_pointers(env, vstate->frame[i]); 4698 } 4699 4700 static void release_reg_references(struct bpf_verifier_env *env, 4701 struct bpf_func_state *state, 4702 int ref_obj_id) 4703 { 4704 struct bpf_reg_state *regs = state->regs, *reg; 4705 int i; 4706 4707 for (i = 0; i < MAX_BPF_REG; i++) 4708 if (regs[i].ref_obj_id == ref_obj_id) 4709 mark_reg_unknown(env, regs, i); 4710 4711 bpf_for_each_spilled_reg(i, state, reg) { 4712 if (!reg) 4713 continue; 4714 if (reg->ref_obj_id == ref_obj_id) 4715 __mark_reg_unknown(env, reg); 4716 } 4717 } 4718 4719 /* The pointer with the specified id has released its reference to kernel 4720 * resources. Identify all copies of the same pointer and clear the reference. 4721 */ 4722 static int release_reference(struct bpf_verifier_env *env, 4723 int ref_obj_id) 4724 { 4725 struct bpf_verifier_state *vstate = env->cur_state; 4726 int err; 4727 int i; 4728 4729 err = release_reference_state(cur_func(env), ref_obj_id); 4730 if (err) 4731 return err; 4732 4733 for (i = 0; i <= vstate->curframe; i++) 4734 release_reg_references(env, vstate->frame[i], ref_obj_id); 4735 4736 return 0; 4737 } 4738 4739 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4740 struct bpf_reg_state *regs) 4741 { 4742 int i; 4743 4744 /* after the call registers r0 - r5 were scratched */ 4745 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4746 mark_reg_not_init(env, regs, caller_saved[i]); 4747 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4748 } 4749 } 4750 4751 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4752 int *insn_idx) 4753 { 4754 struct bpf_verifier_state *state = env->cur_state; 4755 struct bpf_func_info_aux *func_info_aux; 4756 struct bpf_func_state *caller, *callee; 4757 int i, err, subprog, target_insn; 4758 bool is_global = false; 4759 4760 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4761 verbose(env, "the call stack of %d frames is too deep\n", 4762 state->curframe + 2); 4763 return -E2BIG; 4764 } 4765 4766 target_insn = *insn_idx + insn->imm; 4767 subprog = find_subprog(env, target_insn + 1); 4768 if (subprog < 0) { 4769 verbose(env, "verifier bug. No program starts at insn %d\n", 4770 target_insn + 1); 4771 return -EFAULT; 4772 } 4773 4774 caller = state->frame[state->curframe]; 4775 if (state->frame[state->curframe + 1]) { 4776 verbose(env, "verifier bug. Frame %d already allocated\n", 4777 state->curframe + 1); 4778 return -EFAULT; 4779 } 4780 4781 func_info_aux = env->prog->aux->func_info_aux; 4782 if (func_info_aux) 4783 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4784 err = btf_check_func_arg_match(env, subprog, caller->regs); 4785 if (err == -EFAULT) 4786 return err; 4787 if (is_global) { 4788 if (err) { 4789 verbose(env, "Caller passes invalid args into func#%d\n", 4790 subprog); 4791 return err; 4792 } else { 4793 if (env->log.level & BPF_LOG_LEVEL) 4794 verbose(env, 4795 "Func#%d is global and valid. Skipping.\n", 4796 subprog); 4797 clear_caller_saved_regs(env, caller->regs); 4798 4799 /* All global functions return SCALAR_VALUE */ 4800 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4801 4802 /* continue with next insn after call */ 4803 return 0; 4804 } 4805 } 4806 4807 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4808 if (!callee) 4809 return -ENOMEM; 4810 state->frame[state->curframe + 1] = callee; 4811 4812 /* callee cannot access r0, r6 - r9 for reading and has to write 4813 * into its own stack before reading from it. 4814 * callee can read/write into caller's stack 4815 */ 4816 init_func_state(env, callee, 4817 /* remember the callsite, it will be used by bpf_exit */ 4818 *insn_idx /* callsite */, 4819 state->curframe + 1 /* frameno within this callchain */, 4820 subprog /* subprog number within this prog */); 4821 4822 /* Transfer references to the callee */ 4823 err = transfer_reference_state(callee, caller); 4824 if (err) 4825 return err; 4826 4827 /* copy r1 - r5 args that callee can access. The copy includes parent 4828 * pointers, which connects us up to the liveness chain 4829 */ 4830 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4831 callee->regs[i] = caller->regs[i]; 4832 4833 clear_caller_saved_regs(env, caller->regs); 4834 4835 /* only increment it after check_reg_arg() finished */ 4836 state->curframe++; 4837 4838 /* and go analyze first insn of the callee */ 4839 *insn_idx = target_insn; 4840 4841 if (env->log.level & BPF_LOG_LEVEL) { 4842 verbose(env, "caller:\n"); 4843 print_verifier_state(env, caller); 4844 verbose(env, "callee:\n"); 4845 print_verifier_state(env, callee); 4846 } 4847 return 0; 4848 } 4849 4850 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4851 { 4852 struct bpf_verifier_state *state = env->cur_state; 4853 struct bpf_func_state *caller, *callee; 4854 struct bpf_reg_state *r0; 4855 int err; 4856 4857 callee = state->frame[state->curframe]; 4858 r0 = &callee->regs[BPF_REG_0]; 4859 if (r0->type == PTR_TO_STACK) { 4860 /* technically it's ok to return caller's stack pointer 4861 * (or caller's caller's pointer) back to the caller, 4862 * since these pointers are valid. Only current stack 4863 * pointer will be invalid as soon as function exits, 4864 * but let's be conservative 4865 */ 4866 verbose(env, "cannot return stack pointer to the caller\n"); 4867 return -EINVAL; 4868 } 4869 4870 state->curframe--; 4871 caller = state->frame[state->curframe]; 4872 /* return to the caller whatever r0 had in the callee */ 4873 caller->regs[BPF_REG_0] = *r0; 4874 4875 /* Transfer references to the caller */ 4876 err = transfer_reference_state(caller, callee); 4877 if (err) 4878 return err; 4879 4880 *insn_idx = callee->callsite + 1; 4881 if (env->log.level & BPF_LOG_LEVEL) { 4882 verbose(env, "returning from callee:\n"); 4883 print_verifier_state(env, callee); 4884 verbose(env, "to caller at %d:\n", *insn_idx); 4885 print_verifier_state(env, caller); 4886 } 4887 /* clear everything in the callee */ 4888 free_func_state(callee); 4889 state->frame[state->curframe + 1] = NULL; 4890 return 0; 4891 } 4892 4893 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4894 int func_id, 4895 struct bpf_call_arg_meta *meta) 4896 { 4897 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4898 4899 if (ret_type != RET_INTEGER || 4900 (func_id != BPF_FUNC_get_stack && 4901 func_id != BPF_FUNC_probe_read_str && 4902 func_id != BPF_FUNC_probe_read_kernel_str && 4903 func_id != BPF_FUNC_probe_read_user_str)) 4904 return; 4905 4906 ret_reg->smax_value = meta->msize_max_value; 4907 ret_reg->s32_max_value = meta->msize_max_value; 4908 __reg_deduce_bounds(ret_reg); 4909 __reg_bound_offset(ret_reg); 4910 __update_reg_bounds(ret_reg); 4911 } 4912 4913 static int 4914 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4915 int func_id, int insn_idx) 4916 { 4917 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4918 struct bpf_map *map = meta->map_ptr; 4919 4920 if (func_id != BPF_FUNC_tail_call && 4921 func_id != BPF_FUNC_map_lookup_elem && 4922 func_id != BPF_FUNC_map_update_elem && 4923 func_id != BPF_FUNC_map_delete_elem && 4924 func_id != BPF_FUNC_map_push_elem && 4925 func_id != BPF_FUNC_map_pop_elem && 4926 func_id != BPF_FUNC_map_peek_elem) 4927 return 0; 4928 4929 if (map == NULL) { 4930 verbose(env, "kernel subsystem misconfigured verifier\n"); 4931 return -EINVAL; 4932 } 4933 4934 /* In case of read-only, some additional restrictions 4935 * need to be applied in order to prevent altering the 4936 * state of the map from program side. 4937 */ 4938 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4939 (func_id == BPF_FUNC_map_delete_elem || 4940 func_id == BPF_FUNC_map_update_elem || 4941 func_id == BPF_FUNC_map_push_elem || 4942 func_id == BPF_FUNC_map_pop_elem)) { 4943 verbose(env, "write into map forbidden\n"); 4944 return -EACCES; 4945 } 4946 4947 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4948 bpf_map_ptr_store(aux, meta->map_ptr, 4949 !meta->map_ptr->bypass_spec_v1); 4950 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4951 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4952 !meta->map_ptr->bypass_spec_v1); 4953 return 0; 4954 } 4955 4956 static int 4957 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4958 int func_id, int insn_idx) 4959 { 4960 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4961 struct bpf_reg_state *regs = cur_regs(env), *reg; 4962 struct bpf_map *map = meta->map_ptr; 4963 struct tnum range; 4964 u64 val; 4965 int err; 4966 4967 if (func_id != BPF_FUNC_tail_call) 4968 return 0; 4969 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4970 verbose(env, "kernel subsystem misconfigured verifier\n"); 4971 return -EINVAL; 4972 } 4973 4974 range = tnum_range(0, map->max_entries - 1); 4975 reg = ®s[BPF_REG_3]; 4976 4977 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4978 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4979 return 0; 4980 } 4981 4982 err = mark_chain_precision(env, BPF_REG_3); 4983 if (err) 4984 return err; 4985 4986 val = reg->var_off.value; 4987 if (bpf_map_key_unseen(aux)) 4988 bpf_map_key_store(aux, val); 4989 else if (!bpf_map_key_poisoned(aux) && 4990 bpf_map_key_immediate(aux) != val) 4991 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4992 return 0; 4993 } 4994 4995 static int check_reference_leak(struct bpf_verifier_env *env) 4996 { 4997 struct bpf_func_state *state = cur_func(env); 4998 int i; 4999 5000 for (i = 0; i < state->acquired_refs; i++) { 5001 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5002 state->refs[i].id, state->refs[i].insn_idx); 5003 } 5004 return state->acquired_refs ? -EINVAL : 0; 5005 } 5006 5007 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 5008 { 5009 const struct bpf_func_proto *fn = NULL; 5010 struct bpf_reg_state *regs; 5011 struct bpf_call_arg_meta meta; 5012 bool changes_data; 5013 int i, err; 5014 5015 /* find function prototype */ 5016 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5017 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5018 func_id); 5019 return -EINVAL; 5020 } 5021 5022 if (env->ops->get_func_proto) 5023 fn = env->ops->get_func_proto(func_id, env->prog); 5024 if (!fn) { 5025 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5026 func_id); 5027 return -EINVAL; 5028 } 5029 5030 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5031 if (!env->prog->gpl_compatible && fn->gpl_only) { 5032 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5033 return -EINVAL; 5034 } 5035 5036 if (fn->allowed && !fn->allowed(env->prog)) { 5037 verbose(env, "helper call is not allowed in probe\n"); 5038 return -EINVAL; 5039 } 5040 5041 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5042 changes_data = bpf_helper_changes_pkt_data(fn->func); 5043 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5044 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5045 func_id_name(func_id), func_id); 5046 return -EINVAL; 5047 } 5048 5049 memset(&meta, 0, sizeof(meta)); 5050 meta.pkt_access = fn->pkt_access; 5051 5052 err = check_func_proto(fn, func_id); 5053 if (err) { 5054 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5055 func_id_name(func_id), func_id); 5056 return err; 5057 } 5058 5059 meta.func_id = func_id; 5060 /* check args */ 5061 for (i = 0; i < 5; i++) { 5062 err = check_func_arg(env, i, &meta, fn); 5063 if (err) 5064 return err; 5065 } 5066 5067 err = record_func_map(env, &meta, func_id, insn_idx); 5068 if (err) 5069 return err; 5070 5071 err = record_func_key(env, &meta, func_id, insn_idx); 5072 if (err) 5073 return err; 5074 5075 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5076 * is inferred from register state. 5077 */ 5078 for (i = 0; i < meta.access_size; i++) { 5079 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5080 BPF_WRITE, -1, false); 5081 if (err) 5082 return err; 5083 } 5084 5085 if (func_id == BPF_FUNC_tail_call) { 5086 err = check_reference_leak(env); 5087 if (err) { 5088 verbose(env, "tail_call would lead to reference leak\n"); 5089 return err; 5090 } 5091 } else if (is_release_function(func_id)) { 5092 err = release_reference(env, meta.ref_obj_id); 5093 if (err) { 5094 verbose(env, "func %s#%d reference has not been acquired before\n", 5095 func_id_name(func_id), func_id); 5096 return err; 5097 } 5098 } 5099 5100 regs = cur_regs(env); 5101 5102 /* check that flags argument in get_local_storage(map, flags) is 0, 5103 * this is required because get_local_storage() can't return an error. 5104 */ 5105 if (func_id == BPF_FUNC_get_local_storage && 5106 !register_is_null(®s[BPF_REG_2])) { 5107 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5108 return -EINVAL; 5109 } 5110 5111 /* reset caller saved regs */ 5112 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5113 mark_reg_not_init(env, regs, caller_saved[i]); 5114 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5115 } 5116 5117 /* helper call returns 64-bit value. */ 5118 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5119 5120 /* update return register (already marked as written above) */ 5121 if (fn->ret_type == RET_INTEGER) { 5122 /* sets type to SCALAR_VALUE */ 5123 mark_reg_unknown(env, regs, BPF_REG_0); 5124 } else if (fn->ret_type == RET_VOID) { 5125 regs[BPF_REG_0].type = NOT_INIT; 5126 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5127 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5128 /* There is no offset yet applied, variable or fixed */ 5129 mark_reg_known_zero(env, regs, BPF_REG_0); 5130 /* remember map_ptr, so that check_map_access() 5131 * can check 'value_size' boundary of memory access 5132 * to map element returned from bpf_map_lookup_elem() 5133 */ 5134 if (meta.map_ptr == NULL) { 5135 verbose(env, 5136 "kernel subsystem misconfigured verifier\n"); 5137 return -EINVAL; 5138 } 5139 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5140 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5141 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5142 if (map_value_has_spin_lock(meta.map_ptr)) 5143 regs[BPF_REG_0].id = ++env->id_gen; 5144 } else { 5145 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5146 } 5147 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5148 mark_reg_known_zero(env, regs, BPF_REG_0); 5149 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5150 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5151 mark_reg_known_zero(env, regs, BPF_REG_0); 5152 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5153 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5154 mark_reg_known_zero(env, regs, BPF_REG_0); 5155 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5156 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5157 mark_reg_known_zero(env, regs, BPF_REG_0); 5158 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5159 regs[BPF_REG_0].mem_size = meta.mem_size; 5160 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5161 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5162 const struct btf_type *t; 5163 5164 mark_reg_known_zero(env, regs, BPF_REG_0); 5165 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL); 5166 if (!btf_type_is_struct(t)) { 5167 u32 tsize; 5168 const struct btf_type *ret; 5169 const char *tname; 5170 5171 /* resolve the type size of ksym. */ 5172 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 5173 if (IS_ERR(ret)) { 5174 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5175 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5176 tname, PTR_ERR(ret)); 5177 return -EINVAL; 5178 } 5179 regs[BPF_REG_0].type = 5180 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5181 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5182 regs[BPF_REG_0].mem_size = tsize; 5183 } else { 5184 regs[BPF_REG_0].type = 5185 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5186 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5187 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5188 } 5189 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 5190 fn->ret_type == RET_PTR_TO_BTF_ID) { 5191 int ret_btf_id; 5192 5193 mark_reg_known_zero(env, regs, BPF_REG_0); 5194 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 5195 PTR_TO_BTF_ID : 5196 PTR_TO_BTF_ID_OR_NULL; 5197 ret_btf_id = *fn->ret_btf_id; 5198 if (ret_btf_id == 0) { 5199 verbose(env, "invalid return type %d of func %s#%d\n", 5200 fn->ret_type, func_id_name(func_id), func_id); 5201 return -EINVAL; 5202 } 5203 regs[BPF_REG_0].btf_id = ret_btf_id; 5204 } else { 5205 verbose(env, "unknown return type %d of func %s#%d\n", 5206 fn->ret_type, func_id_name(func_id), func_id); 5207 return -EINVAL; 5208 } 5209 5210 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 5211 regs[BPF_REG_0].id = ++env->id_gen; 5212 5213 if (is_ptr_cast_function(func_id)) { 5214 /* For release_reference() */ 5215 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5216 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5217 int id = acquire_reference_state(env, insn_idx); 5218 5219 if (id < 0) 5220 return id; 5221 /* For mark_ptr_or_null_reg() */ 5222 regs[BPF_REG_0].id = id; 5223 /* For release_reference() */ 5224 regs[BPF_REG_0].ref_obj_id = id; 5225 } 5226 5227 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5228 5229 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5230 if (err) 5231 return err; 5232 5233 if ((func_id == BPF_FUNC_get_stack || 5234 func_id == BPF_FUNC_get_task_stack) && 5235 !env->prog->has_callchain_buf) { 5236 const char *err_str; 5237 5238 #ifdef CONFIG_PERF_EVENTS 5239 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5240 err_str = "cannot get callchain buffer for func %s#%d\n"; 5241 #else 5242 err = -ENOTSUPP; 5243 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5244 #endif 5245 if (err) { 5246 verbose(env, err_str, func_id_name(func_id), func_id); 5247 return err; 5248 } 5249 5250 env->prog->has_callchain_buf = true; 5251 } 5252 5253 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5254 env->prog->call_get_stack = true; 5255 5256 if (changes_data) 5257 clear_all_pkt_pointers(env); 5258 return 0; 5259 } 5260 5261 static bool signed_add_overflows(s64 a, s64 b) 5262 { 5263 /* Do the add in u64, where overflow is well-defined */ 5264 s64 res = (s64)((u64)a + (u64)b); 5265 5266 if (b < 0) 5267 return res > a; 5268 return res < a; 5269 } 5270 5271 static bool signed_add32_overflows(s64 a, s64 b) 5272 { 5273 /* Do the add in u32, where overflow is well-defined */ 5274 s32 res = (s32)((u32)a + (u32)b); 5275 5276 if (b < 0) 5277 return res > a; 5278 return res < a; 5279 } 5280 5281 static bool signed_sub_overflows(s32 a, s32 b) 5282 { 5283 /* Do the sub in u64, where overflow is well-defined */ 5284 s64 res = (s64)((u64)a - (u64)b); 5285 5286 if (b < 0) 5287 return res < a; 5288 return res > a; 5289 } 5290 5291 static bool signed_sub32_overflows(s32 a, s32 b) 5292 { 5293 /* Do the sub in u64, where overflow is well-defined */ 5294 s32 res = (s32)((u32)a - (u32)b); 5295 5296 if (b < 0) 5297 return res < a; 5298 return res > a; 5299 } 5300 5301 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5302 const struct bpf_reg_state *reg, 5303 enum bpf_reg_type type) 5304 { 5305 bool known = tnum_is_const(reg->var_off); 5306 s64 val = reg->var_off.value; 5307 s64 smin = reg->smin_value; 5308 5309 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5310 verbose(env, "math between %s pointer and %lld is not allowed\n", 5311 reg_type_str[type], val); 5312 return false; 5313 } 5314 5315 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5316 verbose(env, "%s pointer offset %d is not allowed\n", 5317 reg_type_str[type], reg->off); 5318 return false; 5319 } 5320 5321 if (smin == S64_MIN) { 5322 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5323 reg_type_str[type]); 5324 return false; 5325 } 5326 5327 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5328 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5329 smin, reg_type_str[type]); 5330 return false; 5331 } 5332 5333 return true; 5334 } 5335 5336 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5337 { 5338 return &env->insn_aux_data[env->insn_idx]; 5339 } 5340 5341 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5342 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5343 { 5344 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5345 (opcode == BPF_SUB && !off_is_neg); 5346 u32 off; 5347 5348 switch (ptr_reg->type) { 5349 case PTR_TO_STACK: 5350 /* Indirect variable offset stack access is prohibited in 5351 * unprivileged mode so it's not handled here. 5352 */ 5353 off = ptr_reg->off + ptr_reg->var_off.value; 5354 if (mask_to_left) 5355 *ptr_limit = MAX_BPF_STACK + off; 5356 else 5357 *ptr_limit = -off; 5358 return 0; 5359 case PTR_TO_MAP_VALUE: 5360 if (mask_to_left) { 5361 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5362 } else { 5363 off = ptr_reg->smin_value + ptr_reg->off; 5364 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5365 } 5366 return 0; 5367 default: 5368 return -EINVAL; 5369 } 5370 } 5371 5372 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5373 const struct bpf_insn *insn) 5374 { 5375 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5376 } 5377 5378 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5379 u32 alu_state, u32 alu_limit) 5380 { 5381 /* If we arrived here from different branches with different 5382 * state or limits to sanitize, then this won't work. 5383 */ 5384 if (aux->alu_state && 5385 (aux->alu_state != alu_state || 5386 aux->alu_limit != alu_limit)) 5387 return -EACCES; 5388 5389 /* Corresponding fixup done in fixup_bpf_calls(). */ 5390 aux->alu_state = alu_state; 5391 aux->alu_limit = alu_limit; 5392 return 0; 5393 } 5394 5395 static int sanitize_val_alu(struct bpf_verifier_env *env, 5396 struct bpf_insn *insn) 5397 { 5398 struct bpf_insn_aux_data *aux = cur_aux(env); 5399 5400 if (can_skip_alu_sanitation(env, insn)) 5401 return 0; 5402 5403 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5404 } 5405 5406 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5407 struct bpf_insn *insn, 5408 const struct bpf_reg_state *ptr_reg, 5409 struct bpf_reg_state *dst_reg, 5410 bool off_is_neg) 5411 { 5412 struct bpf_verifier_state *vstate = env->cur_state; 5413 struct bpf_insn_aux_data *aux = cur_aux(env); 5414 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5415 u8 opcode = BPF_OP(insn->code); 5416 u32 alu_state, alu_limit; 5417 struct bpf_reg_state tmp; 5418 bool ret; 5419 5420 if (can_skip_alu_sanitation(env, insn)) 5421 return 0; 5422 5423 /* We already marked aux for masking from non-speculative 5424 * paths, thus we got here in the first place. We only care 5425 * to explore bad access from here. 5426 */ 5427 if (vstate->speculative) 5428 goto do_sim; 5429 5430 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5431 alu_state |= ptr_is_dst_reg ? 5432 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5433 5434 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5435 return 0; 5436 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5437 return -EACCES; 5438 do_sim: 5439 /* Simulate and find potential out-of-bounds access under 5440 * speculative execution from truncation as a result of 5441 * masking when off was not within expected range. If off 5442 * sits in dst, then we temporarily need to move ptr there 5443 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5444 * for cases where we use K-based arithmetic in one direction 5445 * and truncated reg-based in the other in order to explore 5446 * bad access. 5447 */ 5448 if (!ptr_is_dst_reg) { 5449 tmp = *dst_reg; 5450 *dst_reg = *ptr_reg; 5451 } 5452 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5453 if (!ptr_is_dst_reg && ret) 5454 *dst_reg = tmp; 5455 return !ret ? -EFAULT : 0; 5456 } 5457 5458 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5459 * Caller should also handle BPF_MOV case separately. 5460 * If we return -EACCES, caller may want to try again treating pointer as a 5461 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5462 */ 5463 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5464 struct bpf_insn *insn, 5465 const struct bpf_reg_state *ptr_reg, 5466 const struct bpf_reg_state *off_reg) 5467 { 5468 struct bpf_verifier_state *vstate = env->cur_state; 5469 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5470 struct bpf_reg_state *regs = state->regs, *dst_reg; 5471 bool known = tnum_is_const(off_reg->var_off); 5472 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5473 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5474 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5475 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5476 u32 dst = insn->dst_reg, src = insn->src_reg; 5477 u8 opcode = BPF_OP(insn->code); 5478 int ret; 5479 5480 dst_reg = ®s[dst]; 5481 5482 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5483 smin_val > smax_val || umin_val > umax_val) { 5484 /* Taint dst register if offset had invalid bounds derived from 5485 * e.g. dead branches. 5486 */ 5487 __mark_reg_unknown(env, dst_reg); 5488 return 0; 5489 } 5490 5491 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5492 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5493 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5494 __mark_reg_unknown(env, dst_reg); 5495 return 0; 5496 } 5497 5498 verbose(env, 5499 "R%d 32-bit pointer arithmetic prohibited\n", 5500 dst); 5501 return -EACCES; 5502 } 5503 5504 switch (ptr_reg->type) { 5505 case PTR_TO_MAP_VALUE_OR_NULL: 5506 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5507 dst, reg_type_str[ptr_reg->type]); 5508 return -EACCES; 5509 case CONST_PTR_TO_MAP: 5510 /* smin_val represents the known value */ 5511 if (known && smin_val == 0 && opcode == BPF_ADD) 5512 break; 5513 fallthrough; 5514 case PTR_TO_PACKET_END: 5515 case PTR_TO_SOCKET: 5516 case PTR_TO_SOCKET_OR_NULL: 5517 case PTR_TO_SOCK_COMMON: 5518 case PTR_TO_SOCK_COMMON_OR_NULL: 5519 case PTR_TO_TCP_SOCK: 5520 case PTR_TO_TCP_SOCK_OR_NULL: 5521 case PTR_TO_XDP_SOCK: 5522 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5523 dst, reg_type_str[ptr_reg->type]); 5524 return -EACCES; 5525 case PTR_TO_MAP_VALUE: 5526 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5527 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5528 off_reg == dst_reg ? dst : src); 5529 return -EACCES; 5530 } 5531 fallthrough; 5532 default: 5533 break; 5534 } 5535 5536 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5537 * The id may be overwritten later if we create a new variable offset. 5538 */ 5539 dst_reg->type = ptr_reg->type; 5540 dst_reg->id = ptr_reg->id; 5541 5542 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5543 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5544 return -EINVAL; 5545 5546 /* pointer types do not carry 32-bit bounds at the moment. */ 5547 __mark_reg32_unbounded(dst_reg); 5548 5549 switch (opcode) { 5550 case BPF_ADD: 5551 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5552 if (ret < 0) { 5553 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5554 return ret; 5555 } 5556 /* We can take a fixed offset as long as it doesn't overflow 5557 * the s32 'off' field 5558 */ 5559 if (known && (ptr_reg->off + smin_val == 5560 (s64)(s32)(ptr_reg->off + smin_val))) { 5561 /* pointer += K. Accumulate it into fixed offset */ 5562 dst_reg->smin_value = smin_ptr; 5563 dst_reg->smax_value = smax_ptr; 5564 dst_reg->umin_value = umin_ptr; 5565 dst_reg->umax_value = umax_ptr; 5566 dst_reg->var_off = ptr_reg->var_off; 5567 dst_reg->off = ptr_reg->off + smin_val; 5568 dst_reg->raw = ptr_reg->raw; 5569 break; 5570 } 5571 /* A new variable offset is created. Note that off_reg->off 5572 * == 0, since it's a scalar. 5573 * dst_reg gets the pointer type and since some positive 5574 * integer value was added to the pointer, give it a new 'id' 5575 * if it's a PTR_TO_PACKET. 5576 * this creates a new 'base' pointer, off_reg (variable) gets 5577 * added into the variable offset, and we copy the fixed offset 5578 * from ptr_reg. 5579 */ 5580 if (signed_add_overflows(smin_ptr, smin_val) || 5581 signed_add_overflows(smax_ptr, smax_val)) { 5582 dst_reg->smin_value = S64_MIN; 5583 dst_reg->smax_value = S64_MAX; 5584 } else { 5585 dst_reg->smin_value = smin_ptr + smin_val; 5586 dst_reg->smax_value = smax_ptr + smax_val; 5587 } 5588 if (umin_ptr + umin_val < umin_ptr || 5589 umax_ptr + umax_val < umax_ptr) { 5590 dst_reg->umin_value = 0; 5591 dst_reg->umax_value = U64_MAX; 5592 } else { 5593 dst_reg->umin_value = umin_ptr + umin_val; 5594 dst_reg->umax_value = umax_ptr + umax_val; 5595 } 5596 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5597 dst_reg->off = ptr_reg->off; 5598 dst_reg->raw = ptr_reg->raw; 5599 if (reg_is_pkt_pointer(ptr_reg)) { 5600 dst_reg->id = ++env->id_gen; 5601 /* something was added to pkt_ptr, set range to zero */ 5602 dst_reg->raw = 0; 5603 } 5604 break; 5605 case BPF_SUB: 5606 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5607 if (ret < 0) { 5608 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5609 return ret; 5610 } 5611 if (dst_reg == off_reg) { 5612 /* scalar -= pointer. Creates an unknown scalar */ 5613 verbose(env, "R%d tried to subtract pointer from scalar\n", 5614 dst); 5615 return -EACCES; 5616 } 5617 /* We don't allow subtraction from FP, because (according to 5618 * test_verifier.c test "invalid fp arithmetic", JITs might not 5619 * be able to deal with it. 5620 */ 5621 if (ptr_reg->type == PTR_TO_STACK) { 5622 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5623 dst); 5624 return -EACCES; 5625 } 5626 if (known && (ptr_reg->off - smin_val == 5627 (s64)(s32)(ptr_reg->off - smin_val))) { 5628 /* pointer -= K. Subtract it from fixed offset */ 5629 dst_reg->smin_value = smin_ptr; 5630 dst_reg->smax_value = smax_ptr; 5631 dst_reg->umin_value = umin_ptr; 5632 dst_reg->umax_value = umax_ptr; 5633 dst_reg->var_off = ptr_reg->var_off; 5634 dst_reg->id = ptr_reg->id; 5635 dst_reg->off = ptr_reg->off - smin_val; 5636 dst_reg->raw = ptr_reg->raw; 5637 break; 5638 } 5639 /* A new variable offset is created. If the subtrahend is known 5640 * nonnegative, then any reg->range we had before is still good. 5641 */ 5642 if (signed_sub_overflows(smin_ptr, smax_val) || 5643 signed_sub_overflows(smax_ptr, smin_val)) { 5644 /* Overflow possible, we know nothing */ 5645 dst_reg->smin_value = S64_MIN; 5646 dst_reg->smax_value = S64_MAX; 5647 } else { 5648 dst_reg->smin_value = smin_ptr - smax_val; 5649 dst_reg->smax_value = smax_ptr - smin_val; 5650 } 5651 if (umin_ptr < umax_val) { 5652 /* Overflow possible, we know nothing */ 5653 dst_reg->umin_value = 0; 5654 dst_reg->umax_value = U64_MAX; 5655 } else { 5656 /* Cannot overflow (as long as bounds are consistent) */ 5657 dst_reg->umin_value = umin_ptr - umax_val; 5658 dst_reg->umax_value = umax_ptr - umin_val; 5659 } 5660 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5661 dst_reg->off = ptr_reg->off; 5662 dst_reg->raw = ptr_reg->raw; 5663 if (reg_is_pkt_pointer(ptr_reg)) { 5664 dst_reg->id = ++env->id_gen; 5665 /* something was added to pkt_ptr, set range to zero */ 5666 if (smin_val < 0) 5667 dst_reg->raw = 0; 5668 } 5669 break; 5670 case BPF_AND: 5671 case BPF_OR: 5672 case BPF_XOR: 5673 /* bitwise ops on pointers are troublesome, prohibit. */ 5674 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5675 dst, bpf_alu_string[opcode >> 4]); 5676 return -EACCES; 5677 default: 5678 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5679 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5680 dst, bpf_alu_string[opcode >> 4]); 5681 return -EACCES; 5682 } 5683 5684 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5685 return -EINVAL; 5686 5687 __update_reg_bounds(dst_reg); 5688 __reg_deduce_bounds(dst_reg); 5689 __reg_bound_offset(dst_reg); 5690 5691 /* For unprivileged we require that resulting offset must be in bounds 5692 * in order to be able to sanitize access later on. 5693 */ 5694 if (!env->bypass_spec_v1) { 5695 if (dst_reg->type == PTR_TO_MAP_VALUE && 5696 check_map_access(env, dst, dst_reg->off, 1, false)) { 5697 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5698 "prohibited for !root\n", dst); 5699 return -EACCES; 5700 } else if (dst_reg->type == PTR_TO_STACK && 5701 check_stack_access(env, dst_reg, dst_reg->off + 5702 dst_reg->var_off.value, 1)) { 5703 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5704 "prohibited for !root\n", dst); 5705 return -EACCES; 5706 } 5707 } 5708 5709 return 0; 5710 } 5711 5712 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5713 struct bpf_reg_state *src_reg) 5714 { 5715 s32 smin_val = src_reg->s32_min_value; 5716 s32 smax_val = src_reg->s32_max_value; 5717 u32 umin_val = src_reg->u32_min_value; 5718 u32 umax_val = src_reg->u32_max_value; 5719 5720 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5721 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5722 dst_reg->s32_min_value = S32_MIN; 5723 dst_reg->s32_max_value = S32_MAX; 5724 } else { 5725 dst_reg->s32_min_value += smin_val; 5726 dst_reg->s32_max_value += smax_val; 5727 } 5728 if (dst_reg->u32_min_value + umin_val < umin_val || 5729 dst_reg->u32_max_value + umax_val < umax_val) { 5730 dst_reg->u32_min_value = 0; 5731 dst_reg->u32_max_value = U32_MAX; 5732 } else { 5733 dst_reg->u32_min_value += umin_val; 5734 dst_reg->u32_max_value += umax_val; 5735 } 5736 } 5737 5738 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5739 struct bpf_reg_state *src_reg) 5740 { 5741 s64 smin_val = src_reg->smin_value; 5742 s64 smax_val = src_reg->smax_value; 5743 u64 umin_val = src_reg->umin_value; 5744 u64 umax_val = src_reg->umax_value; 5745 5746 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5747 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5748 dst_reg->smin_value = S64_MIN; 5749 dst_reg->smax_value = S64_MAX; 5750 } else { 5751 dst_reg->smin_value += smin_val; 5752 dst_reg->smax_value += smax_val; 5753 } 5754 if (dst_reg->umin_value + umin_val < umin_val || 5755 dst_reg->umax_value + umax_val < umax_val) { 5756 dst_reg->umin_value = 0; 5757 dst_reg->umax_value = U64_MAX; 5758 } else { 5759 dst_reg->umin_value += umin_val; 5760 dst_reg->umax_value += umax_val; 5761 } 5762 } 5763 5764 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5765 struct bpf_reg_state *src_reg) 5766 { 5767 s32 smin_val = src_reg->s32_min_value; 5768 s32 smax_val = src_reg->s32_max_value; 5769 u32 umin_val = src_reg->u32_min_value; 5770 u32 umax_val = src_reg->u32_max_value; 5771 5772 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5773 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5774 /* Overflow possible, we know nothing */ 5775 dst_reg->s32_min_value = S32_MIN; 5776 dst_reg->s32_max_value = S32_MAX; 5777 } else { 5778 dst_reg->s32_min_value -= smax_val; 5779 dst_reg->s32_max_value -= smin_val; 5780 } 5781 if (dst_reg->u32_min_value < umax_val) { 5782 /* Overflow possible, we know nothing */ 5783 dst_reg->u32_min_value = 0; 5784 dst_reg->u32_max_value = U32_MAX; 5785 } else { 5786 /* Cannot overflow (as long as bounds are consistent) */ 5787 dst_reg->u32_min_value -= umax_val; 5788 dst_reg->u32_max_value -= umin_val; 5789 } 5790 } 5791 5792 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5793 struct bpf_reg_state *src_reg) 5794 { 5795 s64 smin_val = src_reg->smin_value; 5796 s64 smax_val = src_reg->smax_value; 5797 u64 umin_val = src_reg->umin_value; 5798 u64 umax_val = src_reg->umax_value; 5799 5800 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5801 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5802 /* Overflow possible, we know nothing */ 5803 dst_reg->smin_value = S64_MIN; 5804 dst_reg->smax_value = S64_MAX; 5805 } else { 5806 dst_reg->smin_value -= smax_val; 5807 dst_reg->smax_value -= smin_val; 5808 } 5809 if (dst_reg->umin_value < umax_val) { 5810 /* Overflow possible, we know nothing */ 5811 dst_reg->umin_value = 0; 5812 dst_reg->umax_value = U64_MAX; 5813 } else { 5814 /* Cannot overflow (as long as bounds are consistent) */ 5815 dst_reg->umin_value -= umax_val; 5816 dst_reg->umax_value -= umin_val; 5817 } 5818 } 5819 5820 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5821 struct bpf_reg_state *src_reg) 5822 { 5823 s32 smin_val = src_reg->s32_min_value; 5824 u32 umin_val = src_reg->u32_min_value; 5825 u32 umax_val = src_reg->u32_max_value; 5826 5827 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5828 /* Ain't nobody got time to multiply that sign */ 5829 __mark_reg32_unbounded(dst_reg); 5830 return; 5831 } 5832 /* Both values are positive, so we can work with unsigned and 5833 * copy the result to signed (unless it exceeds S32_MAX). 5834 */ 5835 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5836 /* Potential overflow, we know nothing */ 5837 __mark_reg32_unbounded(dst_reg); 5838 return; 5839 } 5840 dst_reg->u32_min_value *= umin_val; 5841 dst_reg->u32_max_value *= umax_val; 5842 if (dst_reg->u32_max_value > S32_MAX) { 5843 /* Overflow possible, we know nothing */ 5844 dst_reg->s32_min_value = S32_MIN; 5845 dst_reg->s32_max_value = S32_MAX; 5846 } else { 5847 dst_reg->s32_min_value = dst_reg->u32_min_value; 5848 dst_reg->s32_max_value = dst_reg->u32_max_value; 5849 } 5850 } 5851 5852 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5853 struct bpf_reg_state *src_reg) 5854 { 5855 s64 smin_val = src_reg->smin_value; 5856 u64 umin_val = src_reg->umin_value; 5857 u64 umax_val = src_reg->umax_value; 5858 5859 if (smin_val < 0 || dst_reg->smin_value < 0) { 5860 /* Ain't nobody got time to multiply that sign */ 5861 __mark_reg64_unbounded(dst_reg); 5862 return; 5863 } 5864 /* Both values are positive, so we can work with unsigned and 5865 * copy the result to signed (unless it exceeds S64_MAX). 5866 */ 5867 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5868 /* Potential overflow, we know nothing */ 5869 __mark_reg64_unbounded(dst_reg); 5870 return; 5871 } 5872 dst_reg->umin_value *= umin_val; 5873 dst_reg->umax_value *= umax_val; 5874 if (dst_reg->umax_value > S64_MAX) { 5875 /* Overflow possible, we know nothing */ 5876 dst_reg->smin_value = S64_MIN; 5877 dst_reg->smax_value = S64_MAX; 5878 } else { 5879 dst_reg->smin_value = dst_reg->umin_value; 5880 dst_reg->smax_value = dst_reg->umax_value; 5881 } 5882 } 5883 5884 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5885 struct bpf_reg_state *src_reg) 5886 { 5887 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5888 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5889 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5890 s32 smin_val = src_reg->s32_min_value; 5891 u32 umax_val = src_reg->u32_max_value; 5892 5893 /* Assuming scalar64_min_max_and will be called so its safe 5894 * to skip updating register for known 32-bit case. 5895 */ 5896 if (src_known && dst_known) 5897 return; 5898 5899 /* We get our minimum from the var_off, since that's inherently 5900 * bitwise. Our maximum is the minimum of the operands' maxima. 5901 */ 5902 dst_reg->u32_min_value = var32_off.value; 5903 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5904 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5905 /* Lose signed bounds when ANDing negative numbers, 5906 * ain't nobody got time for that. 5907 */ 5908 dst_reg->s32_min_value = S32_MIN; 5909 dst_reg->s32_max_value = S32_MAX; 5910 } else { 5911 /* ANDing two positives gives a positive, so safe to 5912 * cast result into s64. 5913 */ 5914 dst_reg->s32_min_value = dst_reg->u32_min_value; 5915 dst_reg->s32_max_value = dst_reg->u32_max_value; 5916 } 5917 5918 } 5919 5920 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5921 struct bpf_reg_state *src_reg) 5922 { 5923 bool src_known = tnum_is_const(src_reg->var_off); 5924 bool dst_known = tnum_is_const(dst_reg->var_off); 5925 s64 smin_val = src_reg->smin_value; 5926 u64 umax_val = src_reg->umax_value; 5927 5928 if (src_known && dst_known) { 5929 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5930 return; 5931 } 5932 5933 /* We get our minimum from the var_off, since that's inherently 5934 * bitwise. Our maximum is the minimum of the operands' maxima. 5935 */ 5936 dst_reg->umin_value = dst_reg->var_off.value; 5937 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5938 if (dst_reg->smin_value < 0 || smin_val < 0) { 5939 /* Lose signed bounds when ANDing negative numbers, 5940 * ain't nobody got time for that. 5941 */ 5942 dst_reg->smin_value = S64_MIN; 5943 dst_reg->smax_value = S64_MAX; 5944 } else { 5945 /* ANDing two positives gives a positive, so safe to 5946 * cast result into s64. 5947 */ 5948 dst_reg->smin_value = dst_reg->umin_value; 5949 dst_reg->smax_value = dst_reg->umax_value; 5950 } 5951 /* We may learn something more from the var_off */ 5952 __update_reg_bounds(dst_reg); 5953 } 5954 5955 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5956 struct bpf_reg_state *src_reg) 5957 { 5958 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5959 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5960 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5961 s32 smin_val = src_reg->s32_min_value; 5962 u32 umin_val = src_reg->u32_min_value; 5963 5964 /* Assuming scalar64_min_max_or will be called so it is safe 5965 * to skip updating register for known case. 5966 */ 5967 if (src_known && dst_known) 5968 return; 5969 5970 /* We get our maximum from the var_off, and our minimum is the 5971 * maximum of the operands' minima 5972 */ 5973 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5974 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5975 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5976 /* Lose signed bounds when ORing negative numbers, 5977 * ain't nobody got time for that. 5978 */ 5979 dst_reg->s32_min_value = S32_MIN; 5980 dst_reg->s32_max_value = S32_MAX; 5981 } else { 5982 /* ORing two positives gives a positive, so safe to 5983 * cast result into s64. 5984 */ 5985 dst_reg->s32_min_value = dst_reg->u32_min_value; 5986 dst_reg->s32_max_value = dst_reg->u32_max_value; 5987 } 5988 } 5989 5990 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5991 struct bpf_reg_state *src_reg) 5992 { 5993 bool src_known = tnum_is_const(src_reg->var_off); 5994 bool dst_known = tnum_is_const(dst_reg->var_off); 5995 s64 smin_val = src_reg->smin_value; 5996 u64 umin_val = src_reg->umin_value; 5997 5998 if (src_known && dst_known) { 5999 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6000 return; 6001 } 6002 6003 /* We get our maximum from the var_off, and our minimum is the 6004 * maximum of the operands' minima 6005 */ 6006 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 6007 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6008 if (dst_reg->smin_value < 0 || smin_val < 0) { 6009 /* Lose signed bounds when ORing negative numbers, 6010 * ain't nobody got time for that. 6011 */ 6012 dst_reg->smin_value = S64_MIN; 6013 dst_reg->smax_value = S64_MAX; 6014 } else { 6015 /* ORing two positives gives a positive, so safe to 6016 * cast result into s64. 6017 */ 6018 dst_reg->smin_value = dst_reg->umin_value; 6019 dst_reg->smax_value = dst_reg->umax_value; 6020 } 6021 /* We may learn something more from the var_off */ 6022 __update_reg_bounds(dst_reg); 6023 } 6024 6025 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6026 struct bpf_reg_state *src_reg) 6027 { 6028 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6029 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6030 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6031 s32 smin_val = src_reg->s32_min_value; 6032 6033 /* Assuming scalar64_min_max_xor will be called so it is safe 6034 * to skip updating register for known case. 6035 */ 6036 if (src_known && dst_known) 6037 return; 6038 6039 /* We get both minimum and maximum from the var32_off. */ 6040 dst_reg->u32_min_value = var32_off.value; 6041 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6042 6043 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6044 /* XORing two positive sign numbers gives a positive, 6045 * so safe to cast u32 result into s32. 6046 */ 6047 dst_reg->s32_min_value = dst_reg->u32_min_value; 6048 dst_reg->s32_max_value = dst_reg->u32_max_value; 6049 } else { 6050 dst_reg->s32_min_value = S32_MIN; 6051 dst_reg->s32_max_value = S32_MAX; 6052 } 6053 } 6054 6055 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6056 struct bpf_reg_state *src_reg) 6057 { 6058 bool src_known = tnum_is_const(src_reg->var_off); 6059 bool dst_known = tnum_is_const(dst_reg->var_off); 6060 s64 smin_val = src_reg->smin_value; 6061 6062 if (src_known && dst_known) { 6063 /* dst_reg->var_off.value has been updated earlier */ 6064 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6065 return; 6066 } 6067 6068 /* We get both minimum and maximum from the var_off. */ 6069 dst_reg->umin_value = dst_reg->var_off.value; 6070 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6071 6072 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6073 /* XORing two positive sign numbers gives a positive, 6074 * so safe to cast u64 result into s64. 6075 */ 6076 dst_reg->smin_value = dst_reg->umin_value; 6077 dst_reg->smax_value = dst_reg->umax_value; 6078 } else { 6079 dst_reg->smin_value = S64_MIN; 6080 dst_reg->smax_value = S64_MAX; 6081 } 6082 6083 __update_reg_bounds(dst_reg); 6084 } 6085 6086 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6087 u64 umin_val, u64 umax_val) 6088 { 6089 /* We lose all sign bit information (except what we can pick 6090 * up from var_off) 6091 */ 6092 dst_reg->s32_min_value = S32_MIN; 6093 dst_reg->s32_max_value = S32_MAX; 6094 /* If we might shift our top bit out, then we know nothing */ 6095 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6096 dst_reg->u32_min_value = 0; 6097 dst_reg->u32_max_value = U32_MAX; 6098 } else { 6099 dst_reg->u32_min_value <<= umin_val; 6100 dst_reg->u32_max_value <<= umax_val; 6101 } 6102 } 6103 6104 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6105 struct bpf_reg_state *src_reg) 6106 { 6107 u32 umax_val = src_reg->u32_max_value; 6108 u32 umin_val = src_reg->u32_min_value; 6109 /* u32 alu operation will zext upper bits */ 6110 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6111 6112 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6113 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6114 /* Not required but being careful mark reg64 bounds as unknown so 6115 * that we are forced to pick them up from tnum and zext later and 6116 * if some path skips this step we are still safe. 6117 */ 6118 __mark_reg64_unbounded(dst_reg); 6119 __update_reg32_bounds(dst_reg); 6120 } 6121 6122 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6123 u64 umin_val, u64 umax_val) 6124 { 6125 /* Special case <<32 because it is a common compiler pattern to sign 6126 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6127 * positive we know this shift will also be positive so we can track 6128 * bounds correctly. Otherwise we lose all sign bit information except 6129 * what we can pick up from var_off. Perhaps we can generalize this 6130 * later to shifts of any length. 6131 */ 6132 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6133 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6134 else 6135 dst_reg->smax_value = S64_MAX; 6136 6137 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6138 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6139 else 6140 dst_reg->smin_value = S64_MIN; 6141 6142 /* If we might shift our top bit out, then we know nothing */ 6143 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6144 dst_reg->umin_value = 0; 6145 dst_reg->umax_value = U64_MAX; 6146 } else { 6147 dst_reg->umin_value <<= umin_val; 6148 dst_reg->umax_value <<= umax_val; 6149 } 6150 } 6151 6152 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6153 struct bpf_reg_state *src_reg) 6154 { 6155 u64 umax_val = src_reg->umax_value; 6156 u64 umin_val = src_reg->umin_value; 6157 6158 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6159 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6160 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6161 6162 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6163 /* We may learn something more from the var_off */ 6164 __update_reg_bounds(dst_reg); 6165 } 6166 6167 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6168 struct bpf_reg_state *src_reg) 6169 { 6170 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6171 u32 umax_val = src_reg->u32_max_value; 6172 u32 umin_val = src_reg->u32_min_value; 6173 6174 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6175 * be negative, then either: 6176 * 1) src_reg might be zero, so the sign bit of the result is 6177 * unknown, so we lose our signed bounds 6178 * 2) it's known negative, thus the unsigned bounds capture the 6179 * signed bounds 6180 * 3) the signed bounds cross zero, so they tell us nothing 6181 * about the result 6182 * If the value in dst_reg is known nonnegative, then again the 6183 * unsigned bounts capture the signed bounds. 6184 * Thus, in all cases it suffices to blow away our signed bounds 6185 * and rely on inferring new ones from the unsigned bounds and 6186 * var_off of the result. 6187 */ 6188 dst_reg->s32_min_value = S32_MIN; 6189 dst_reg->s32_max_value = S32_MAX; 6190 6191 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6192 dst_reg->u32_min_value >>= umax_val; 6193 dst_reg->u32_max_value >>= umin_val; 6194 6195 __mark_reg64_unbounded(dst_reg); 6196 __update_reg32_bounds(dst_reg); 6197 } 6198 6199 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6200 struct bpf_reg_state *src_reg) 6201 { 6202 u64 umax_val = src_reg->umax_value; 6203 u64 umin_val = src_reg->umin_value; 6204 6205 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6206 * be negative, then either: 6207 * 1) src_reg might be zero, so the sign bit of the result is 6208 * unknown, so we lose our signed bounds 6209 * 2) it's known negative, thus the unsigned bounds capture the 6210 * signed bounds 6211 * 3) the signed bounds cross zero, so they tell us nothing 6212 * about the result 6213 * If the value in dst_reg is known nonnegative, then again the 6214 * unsigned bounts capture the signed bounds. 6215 * Thus, in all cases it suffices to blow away our signed bounds 6216 * and rely on inferring new ones from the unsigned bounds and 6217 * var_off of the result. 6218 */ 6219 dst_reg->smin_value = S64_MIN; 6220 dst_reg->smax_value = S64_MAX; 6221 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6222 dst_reg->umin_value >>= umax_val; 6223 dst_reg->umax_value >>= umin_val; 6224 6225 /* Its not easy to operate on alu32 bounds here because it depends 6226 * on bits being shifted in. Take easy way out and mark unbounded 6227 * so we can recalculate later from tnum. 6228 */ 6229 __mark_reg32_unbounded(dst_reg); 6230 __update_reg_bounds(dst_reg); 6231 } 6232 6233 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6234 struct bpf_reg_state *src_reg) 6235 { 6236 u64 umin_val = src_reg->u32_min_value; 6237 6238 /* Upon reaching here, src_known is true and 6239 * umax_val is equal to umin_val. 6240 */ 6241 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6242 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6243 6244 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6245 6246 /* blow away the dst_reg umin_value/umax_value and rely on 6247 * dst_reg var_off to refine the result. 6248 */ 6249 dst_reg->u32_min_value = 0; 6250 dst_reg->u32_max_value = U32_MAX; 6251 6252 __mark_reg64_unbounded(dst_reg); 6253 __update_reg32_bounds(dst_reg); 6254 } 6255 6256 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6257 struct bpf_reg_state *src_reg) 6258 { 6259 u64 umin_val = src_reg->umin_value; 6260 6261 /* Upon reaching here, src_known is true and umax_val is equal 6262 * to umin_val. 6263 */ 6264 dst_reg->smin_value >>= umin_val; 6265 dst_reg->smax_value >>= umin_val; 6266 6267 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6268 6269 /* blow away the dst_reg umin_value/umax_value and rely on 6270 * dst_reg var_off to refine the result. 6271 */ 6272 dst_reg->umin_value = 0; 6273 dst_reg->umax_value = U64_MAX; 6274 6275 /* Its not easy to operate on alu32 bounds here because it depends 6276 * on bits being shifted in from upper 32-bits. Take easy way out 6277 * and mark unbounded so we can recalculate later from tnum. 6278 */ 6279 __mark_reg32_unbounded(dst_reg); 6280 __update_reg_bounds(dst_reg); 6281 } 6282 6283 /* WARNING: This function does calculations on 64-bit values, but the actual 6284 * execution may occur on 32-bit values. Therefore, things like bitshifts 6285 * need extra checks in the 32-bit case. 6286 */ 6287 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6288 struct bpf_insn *insn, 6289 struct bpf_reg_state *dst_reg, 6290 struct bpf_reg_state src_reg) 6291 { 6292 struct bpf_reg_state *regs = cur_regs(env); 6293 u8 opcode = BPF_OP(insn->code); 6294 bool src_known; 6295 s64 smin_val, smax_val; 6296 u64 umin_val, umax_val; 6297 s32 s32_min_val, s32_max_val; 6298 u32 u32_min_val, u32_max_val; 6299 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6300 u32 dst = insn->dst_reg; 6301 int ret; 6302 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6303 6304 smin_val = src_reg.smin_value; 6305 smax_val = src_reg.smax_value; 6306 umin_val = src_reg.umin_value; 6307 umax_val = src_reg.umax_value; 6308 6309 s32_min_val = src_reg.s32_min_value; 6310 s32_max_val = src_reg.s32_max_value; 6311 u32_min_val = src_reg.u32_min_value; 6312 u32_max_val = src_reg.u32_max_value; 6313 6314 if (alu32) { 6315 src_known = tnum_subreg_is_const(src_reg.var_off); 6316 if ((src_known && 6317 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6318 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6319 /* Taint dst register if offset had invalid bounds 6320 * derived from e.g. dead branches. 6321 */ 6322 __mark_reg_unknown(env, dst_reg); 6323 return 0; 6324 } 6325 } else { 6326 src_known = tnum_is_const(src_reg.var_off); 6327 if ((src_known && 6328 (smin_val != smax_val || umin_val != umax_val)) || 6329 smin_val > smax_val || umin_val > umax_val) { 6330 /* Taint dst register if offset had invalid bounds 6331 * derived from e.g. dead branches. 6332 */ 6333 __mark_reg_unknown(env, dst_reg); 6334 return 0; 6335 } 6336 } 6337 6338 if (!src_known && 6339 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6340 __mark_reg_unknown(env, dst_reg); 6341 return 0; 6342 } 6343 6344 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6345 * There are two classes of instructions: The first class we track both 6346 * alu32 and alu64 sign/unsigned bounds independently this provides the 6347 * greatest amount of precision when alu operations are mixed with jmp32 6348 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6349 * and BPF_OR. This is possible because these ops have fairly easy to 6350 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6351 * See alu32 verifier tests for examples. The second class of 6352 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6353 * with regards to tracking sign/unsigned bounds because the bits may 6354 * cross subreg boundaries in the alu64 case. When this happens we mark 6355 * the reg unbounded in the subreg bound space and use the resulting 6356 * tnum to calculate an approximation of the sign/unsigned bounds. 6357 */ 6358 switch (opcode) { 6359 case BPF_ADD: 6360 ret = sanitize_val_alu(env, insn); 6361 if (ret < 0) { 6362 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6363 return ret; 6364 } 6365 scalar32_min_max_add(dst_reg, &src_reg); 6366 scalar_min_max_add(dst_reg, &src_reg); 6367 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6368 break; 6369 case BPF_SUB: 6370 ret = sanitize_val_alu(env, insn); 6371 if (ret < 0) { 6372 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6373 return ret; 6374 } 6375 scalar32_min_max_sub(dst_reg, &src_reg); 6376 scalar_min_max_sub(dst_reg, &src_reg); 6377 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6378 break; 6379 case BPF_MUL: 6380 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6381 scalar32_min_max_mul(dst_reg, &src_reg); 6382 scalar_min_max_mul(dst_reg, &src_reg); 6383 break; 6384 case BPF_AND: 6385 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6386 scalar32_min_max_and(dst_reg, &src_reg); 6387 scalar_min_max_and(dst_reg, &src_reg); 6388 break; 6389 case BPF_OR: 6390 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6391 scalar32_min_max_or(dst_reg, &src_reg); 6392 scalar_min_max_or(dst_reg, &src_reg); 6393 break; 6394 case BPF_XOR: 6395 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6396 scalar32_min_max_xor(dst_reg, &src_reg); 6397 scalar_min_max_xor(dst_reg, &src_reg); 6398 break; 6399 case BPF_LSH: 6400 if (umax_val >= insn_bitness) { 6401 /* Shifts greater than 31 or 63 are undefined. 6402 * This includes shifts by a negative number. 6403 */ 6404 mark_reg_unknown(env, regs, insn->dst_reg); 6405 break; 6406 } 6407 if (alu32) 6408 scalar32_min_max_lsh(dst_reg, &src_reg); 6409 else 6410 scalar_min_max_lsh(dst_reg, &src_reg); 6411 break; 6412 case BPF_RSH: 6413 if (umax_val >= insn_bitness) { 6414 /* Shifts greater than 31 or 63 are undefined. 6415 * This includes shifts by a negative number. 6416 */ 6417 mark_reg_unknown(env, regs, insn->dst_reg); 6418 break; 6419 } 6420 if (alu32) 6421 scalar32_min_max_rsh(dst_reg, &src_reg); 6422 else 6423 scalar_min_max_rsh(dst_reg, &src_reg); 6424 break; 6425 case BPF_ARSH: 6426 if (umax_val >= insn_bitness) { 6427 /* Shifts greater than 31 or 63 are undefined. 6428 * This includes shifts by a negative number. 6429 */ 6430 mark_reg_unknown(env, regs, insn->dst_reg); 6431 break; 6432 } 6433 if (alu32) 6434 scalar32_min_max_arsh(dst_reg, &src_reg); 6435 else 6436 scalar_min_max_arsh(dst_reg, &src_reg); 6437 break; 6438 default: 6439 mark_reg_unknown(env, regs, insn->dst_reg); 6440 break; 6441 } 6442 6443 /* ALU32 ops are zero extended into 64bit register */ 6444 if (alu32) 6445 zext_32_to_64(dst_reg); 6446 6447 __update_reg_bounds(dst_reg); 6448 __reg_deduce_bounds(dst_reg); 6449 __reg_bound_offset(dst_reg); 6450 return 0; 6451 } 6452 6453 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6454 * and var_off. 6455 */ 6456 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6457 struct bpf_insn *insn) 6458 { 6459 struct bpf_verifier_state *vstate = env->cur_state; 6460 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6461 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6462 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6463 u8 opcode = BPF_OP(insn->code); 6464 int err; 6465 6466 dst_reg = ®s[insn->dst_reg]; 6467 src_reg = NULL; 6468 if (dst_reg->type != SCALAR_VALUE) 6469 ptr_reg = dst_reg; 6470 else 6471 /* Make sure ID is cleared otherwise dst_reg min/max could be 6472 * incorrectly propagated into other registers by find_equal_scalars() 6473 */ 6474 dst_reg->id = 0; 6475 if (BPF_SRC(insn->code) == BPF_X) { 6476 src_reg = ®s[insn->src_reg]; 6477 if (src_reg->type != SCALAR_VALUE) { 6478 if (dst_reg->type != SCALAR_VALUE) { 6479 /* Combining two pointers by any ALU op yields 6480 * an arbitrary scalar. Disallow all math except 6481 * pointer subtraction 6482 */ 6483 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6484 mark_reg_unknown(env, regs, insn->dst_reg); 6485 return 0; 6486 } 6487 verbose(env, "R%d pointer %s pointer prohibited\n", 6488 insn->dst_reg, 6489 bpf_alu_string[opcode >> 4]); 6490 return -EACCES; 6491 } else { 6492 /* scalar += pointer 6493 * This is legal, but we have to reverse our 6494 * src/dest handling in computing the range 6495 */ 6496 err = mark_chain_precision(env, insn->dst_reg); 6497 if (err) 6498 return err; 6499 return adjust_ptr_min_max_vals(env, insn, 6500 src_reg, dst_reg); 6501 } 6502 } else if (ptr_reg) { 6503 /* pointer += scalar */ 6504 err = mark_chain_precision(env, insn->src_reg); 6505 if (err) 6506 return err; 6507 return adjust_ptr_min_max_vals(env, insn, 6508 dst_reg, src_reg); 6509 } 6510 } else { 6511 /* Pretend the src is a reg with a known value, since we only 6512 * need to be able to read from this state. 6513 */ 6514 off_reg.type = SCALAR_VALUE; 6515 __mark_reg_known(&off_reg, insn->imm); 6516 src_reg = &off_reg; 6517 if (ptr_reg) /* pointer += K */ 6518 return adjust_ptr_min_max_vals(env, insn, 6519 ptr_reg, src_reg); 6520 } 6521 6522 /* Got here implies adding two SCALAR_VALUEs */ 6523 if (WARN_ON_ONCE(ptr_reg)) { 6524 print_verifier_state(env, state); 6525 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6526 return -EINVAL; 6527 } 6528 if (WARN_ON(!src_reg)) { 6529 print_verifier_state(env, state); 6530 verbose(env, "verifier internal error: no src_reg\n"); 6531 return -EINVAL; 6532 } 6533 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6534 } 6535 6536 /* check validity of 32-bit and 64-bit arithmetic operations */ 6537 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6538 { 6539 struct bpf_reg_state *regs = cur_regs(env); 6540 u8 opcode = BPF_OP(insn->code); 6541 int err; 6542 6543 if (opcode == BPF_END || opcode == BPF_NEG) { 6544 if (opcode == BPF_NEG) { 6545 if (BPF_SRC(insn->code) != 0 || 6546 insn->src_reg != BPF_REG_0 || 6547 insn->off != 0 || insn->imm != 0) { 6548 verbose(env, "BPF_NEG uses reserved fields\n"); 6549 return -EINVAL; 6550 } 6551 } else { 6552 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6553 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6554 BPF_CLASS(insn->code) == BPF_ALU64) { 6555 verbose(env, "BPF_END uses reserved fields\n"); 6556 return -EINVAL; 6557 } 6558 } 6559 6560 /* check src operand */ 6561 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6562 if (err) 6563 return err; 6564 6565 if (is_pointer_value(env, insn->dst_reg)) { 6566 verbose(env, "R%d pointer arithmetic prohibited\n", 6567 insn->dst_reg); 6568 return -EACCES; 6569 } 6570 6571 /* check dest operand */ 6572 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6573 if (err) 6574 return err; 6575 6576 } else if (opcode == BPF_MOV) { 6577 6578 if (BPF_SRC(insn->code) == BPF_X) { 6579 if (insn->imm != 0 || insn->off != 0) { 6580 verbose(env, "BPF_MOV uses reserved fields\n"); 6581 return -EINVAL; 6582 } 6583 6584 /* check src operand */ 6585 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6586 if (err) 6587 return err; 6588 } else { 6589 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6590 verbose(env, "BPF_MOV uses reserved fields\n"); 6591 return -EINVAL; 6592 } 6593 } 6594 6595 /* check dest operand, mark as required later */ 6596 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6597 if (err) 6598 return err; 6599 6600 if (BPF_SRC(insn->code) == BPF_X) { 6601 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6602 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6603 6604 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6605 /* case: R1 = R2 6606 * copy register state to dest reg 6607 */ 6608 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 6609 /* Assign src and dst registers the same ID 6610 * that will be used by find_equal_scalars() 6611 * to propagate min/max range. 6612 */ 6613 src_reg->id = ++env->id_gen; 6614 *dst_reg = *src_reg; 6615 dst_reg->live |= REG_LIVE_WRITTEN; 6616 dst_reg->subreg_def = DEF_NOT_SUBREG; 6617 } else { 6618 /* R1 = (u32) R2 */ 6619 if (is_pointer_value(env, insn->src_reg)) { 6620 verbose(env, 6621 "R%d partial copy of pointer\n", 6622 insn->src_reg); 6623 return -EACCES; 6624 } else if (src_reg->type == SCALAR_VALUE) { 6625 *dst_reg = *src_reg; 6626 /* Make sure ID is cleared otherwise 6627 * dst_reg min/max could be incorrectly 6628 * propagated into src_reg by find_equal_scalars() 6629 */ 6630 dst_reg->id = 0; 6631 dst_reg->live |= REG_LIVE_WRITTEN; 6632 dst_reg->subreg_def = env->insn_idx + 1; 6633 } else { 6634 mark_reg_unknown(env, regs, 6635 insn->dst_reg); 6636 } 6637 zext_32_to_64(dst_reg); 6638 } 6639 } else { 6640 /* case: R = imm 6641 * remember the value we stored into this reg 6642 */ 6643 /* clear any state __mark_reg_known doesn't set */ 6644 mark_reg_unknown(env, regs, insn->dst_reg); 6645 regs[insn->dst_reg].type = SCALAR_VALUE; 6646 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6647 __mark_reg_known(regs + insn->dst_reg, 6648 insn->imm); 6649 } else { 6650 __mark_reg_known(regs + insn->dst_reg, 6651 (u32)insn->imm); 6652 } 6653 } 6654 6655 } else if (opcode > BPF_END) { 6656 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6657 return -EINVAL; 6658 6659 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6660 6661 if (BPF_SRC(insn->code) == BPF_X) { 6662 if (insn->imm != 0 || insn->off != 0) { 6663 verbose(env, "BPF_ALU uses reserved fields\n"); 6664 return -EINVAL; 6665 } 6666 /* check src1 operand */ 6667 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6668 if (err) 6669 return err; 6670 } else { 6671 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6672 verbose(env, "BPF_ALU uses reserved fields\n"); 6673 return -EINVAL; 6674 } 6675 } 6676 6677 /* check src2 operand */ 6678 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6679 if (err) 6680 return err; 6681 6682 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6683 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6684 verbose(env, "div by zero\n"); 6685 return -EINVAL; 6686 } 6687 6688 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6689 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6690 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6691 6692 if (insn->imm < 0 || insn->imm >= size) { 6693 verbose(env, "invalid shift %d\n", insn->imm); 6694 return -EINVAL; 6695 } 6696 } 6697 6698 /* check dest operand */ 6699 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6700 if (err) 6701 return err; 6702 6703 return adjust_reg_min_max_vals(env, insn); 6704 } 6705 6706 return 0; 6707 } 6708 6709 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6710 struct bpf_reg_state *dst_reg, 6711 enum bpf_reg_type type, u16 new_range) 6712 { 6713 struct bpf_reg_state *reg; 6714 int i; 6715 6716 for (i = 0; i < MAX_BPF_REG; i++) { 6717 reg = &state->regs[i]; 6718 if (reg->type == type && reg->id == dst_reg->id) 6719 /* keep the maximum range already checked */ 6720 reg->range = max(reg->range, new_range); 6721 } 6722 6723 bpf_for_each_spilled_reg(i, state, reg) { 6724 if (!reg) 6725 continue; 6726 if (reg->type == type && reg->id == dst_reg->id) 6727 reg->range = max(reg->range, new_range); 6728 } 6729 } 6730 6731 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6732 struct bpf_reg_state *dst_reg, 6733 enum bpf_reg_type type, 6734 bool range_right_open) 6735 { 6736 u16 new_range; 6737 int i; 6738 6739 if (dst_reg->off < 0 || 6740 (dst_reg->off == 0 && range_right_open)) 6741 /* This doesn't give us any range */ 6742 return; 6743 6744 if (dst_reg->umax_value > MAX_PACKET_OFF || 6745 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6746 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6747 * than pkt_end, but that's because it's also less than pkt. 6748 */ 6749 return; 6750 6751 new_range = dst_reg->off; 6752 if (range_right_open) 6753 new_range--; 6754 6755 /* Examples for register markings: 6756 * 6757 * pkt_data in dst register: 6758 * 6759 * r2 = r3; 6760 * r2 += 8; 6761 * if (r2 > pkt_end) goto <handle exception> 6762 * <access okay> 6763 * 6764 * r2 = r3; 6765 * r2 += 8; 6766 * if (r2 < pkt_end) goto <access okay> 6767 * <handle exception> 6768 * 6769 * Where: 6770 * r2 == dst_reg, pkt_end == src_reg 6771 * r2=pkt(id=n,off=8,r=0) 6772 * r3=pkt(id=n,off=0,r=0) 6773 * 6774 * pkt_data in src register: 6775 * 6776 * r2 = r3; 6777 * r2 += 8; 6778 * if (pkt_end >= r2) goto <access okay> 6779 * <handle exception> 6780 * 6781 * r2 = r3; 6782 * r2 += 8; 6783 * if (pkt_end <= r2) goto <handle exception> 6784 * <access okay> 6785 * 6786 * Where: 6787 * pkt_end == dst_reg, r2 == src_reg 6788 * r2=pkt(id=n,off=8,r=0) 6789 * r3=pkt(id=n,off=0,r=0) 6790 * 6791 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6792 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6793 * and [r3, r3 + 8-1) respectively is safe to access depending on 6794 * the check. 6795 */ 6796 6797 /* If our ids match, then we must have the same max_value. And we 6798 * don't care about the other reg's fixed offset, since if it's too big 6799 * the range won't allow anything. 6800 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6801 */ 6802 for (i = 0; i <= vstate->curframe; i++) 6803 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6804 new_range); 6805 } 6806 6807 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6808 { 6809 struct tnum subreg = tnum_subreg(reg->var_off); 6810 s32 sval = (s32)val; 6811 6812 switch (opcode) { 6813 case BPF_JEQ: 6814 if (tnum_is_const(subreg)) 6815 return !!tnum_equals_const(subreg, val); 6816 break; 6817 case BPF_JNE: 6818 if (tnum_is_const(subreg)) 6819 return !tnum_equals_const(subreg, val); 6820 break; 6821 case BPF_JSET: 6822 if ((~subreg.mask & subreg.value) & val) 6823 return 1; 6824 if (!((subreg.mask | subreg.value) & val)) 6825 return 0; 6826 break; 6827 case BPF_JGT: 6828 if (reg->u32_min_value > val) 6829 return 1; 6830 else if (reg->u32_max_value <= val) 6831 return 0; 6832 break; 6833 case BPF_JSGT: 6834 if (reg->s32_min_value > sval) 6835 return 1; 6836 else if (reg->s32_max_value < sval) 6837 return 0; 6838 break; 6839 case BPF_JLT: 6840 if (reg->u32_max_value < val) 6841 return 1; 6842 else if (reg->u32_min_value >= val) 6843 return 0; 6844 break; 6845 case BPF_JSLT: 6846 if (reg->s32_max_value < sval) 6847 return 1; 6848 else if (reg->s32_min_value >= sval) 6849 return 0; 6850 break; 6851 case BPF_JGE: 6852 if (reg->u32_min_value >= val) 6853 return 1; 6854 else if (reg->u32_max_value < val) 6855 return 0; 6856 break; 6857 case BPF_JSGE: 6858 if (reg->s32_min_value >= sval) 6859 return 1; 6860 else if (reg->s32_max_value < sval) 6861 return 0; 6862 break; 6863 case BPF_JLE: 6864 if (reg->u32_max_value <= val) 6865 return 1; 6866 else if (reg->u32_min_value > val) 6867 return 0; 6868 break; 6869 case BPF_JSLE: 6870 if (reg->s32_max_value <= sval) 6871 return 1; 6872 else if (reg->s32_min_value > sval) 6873 return 0; 6874 break; 6875 } 6876 6877 return -1; 6878 } 6879 6880 6881 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6882 { 6883 s64 sval = (s64)val; 6884 6885 switch (opcode) { 6886 case BPF_JEQ: 6887 if (tnum_is_const(reg->var_off)) 6888 return !!tnum_equals_const(reg->var_off, val); 6889 break; 6890 case BPF_JNE: 6891 if (tnum_is_const(reg->var_off)) 6892 return !tnum_equals_const(reg->var_off, val); 6893 break; 6894 case BPF_JSET: 6895 if ((~reg->var_off.mask & reg->var_off.value) & val) 6896 return 1; 6897 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6898 return 0; 6899 break; 6900 case BPF_JGT: 6901 if (reg->umin_value > val) 6902 return 1; 6903 else if (reg->umax_value <= val) 6904 return 0; 6905 break; 6906 case BPF_JSGT: 6907 if (reg->smin_value > sval) 6908 return 1; 6909 else if (reg->smax_value < sval) 6910 return 0; 6911 break; 6912 case BPF_JLT: 6913 if (reg->umax_value < val) 6914 return 1; 6915 else if (reg->umin_value >= val) 6916 return 0; 6917 break; 6918 case BPF_JSLT: 6919 if (reg->smax_value < sval) 6920 return 1; 6921 else if (reg->smin_value >= sval) 6922 return 0; 6923 break; 6924 case BPF_JGE: 6925 if (reg->umin_value >= val) 6926 return 1; 6927 else if (reg->umax_value < val) 6928 return 0; 6929 break; 6930 case BPF_JSGE: 6931 if (reg->smin_value >= sval) 6932 return 1; 6933 else if (reg->smax_value < sval) 6934 return 0; 6935 break; 6936 case BPF_JLE: 6937 if (reg->umax_value <= val) 6938 return 1; 6939 else if (reg->umin_value > val) 6940 return 0; 6941 break; 6942 case BPF_JSLE: 6943 if (reg->smax_value <= sval) 6944 return 1; 6945 else if (reg->smin_value > sval) 6946 return 0; 6947 break; 6948 } 6949 6950 return -1; 6951 } 6952 6953 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6954 * and return: 6955 * 1 - branch will be taken and "goto target" will be executed 6956 * 0 - branch will not be taken and fall-through to next insn 6957 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6958 * range [0,10] 6959 */ 6960 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6961 bool is_jmp32) 6962 { 6963 if (__is_pointer_value(false, reg)) { 6964 if (!reg_type_not_null(reg->type)) 6965 return -1; 6966 6967 /* If pointer is valid tests against zero will fail so we can 6968 * use this to direct branch taken. 6969 */ 6970 if (val != 0) 6971 return -1; 6972 6973 switch (opcode) { 6974 case BPF_JEQ: 6975 return 0; 6976 case BPF_JNE: 6977 return 1; 6978 default: 6979 return -1; 6980 } 6981 } 6982 6983 if (is_jmp32) 6984 return is_branch32_taken(reg, val, opcode); 6985 return is_branch64_taken(reg, val, opcode); 6986 } 6987 6988 /* Adjusts the register min/max values in the case that the dst_reg is the 6989 * variable register that we are working on, and src_reg is a constant or we're 6990 * simply doing a BPF_K check. 6991 * In JEQ/JNE cases we also adjust the var_off values. 6992 */ 6993 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6994 struct bpf_reg_state *false_reg, 6995 u64 val, u32 val32, 6996 u8 opcode, bool is_jmp32) 6997 { 6998 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6999 struct tnum false_64off = false_reg->var_off; 7000 struct tnum true_32off = tnum_subreg(true_reg->var_off); 7001 struct tnum true_64off = true_reg->var_off; 7002 s64 sval = (s64)val; 7003 s32 sval32 = (s32)val32; 7004 7005 /* If the dst_reg is a pointer, we can't learn anything about its 7006 * variable offset from the compare (unless src_reg were a pointer into 7007 * the same object, but we don't bother with that. 7008 * Since false_reg and true_reg have the same type by construction, we 7009 * only need to check one of them for pointerness. 7010 */ 7011 if (__is_pointer_value(false, false_reg)) 7012 return; 7013 7014 switch (opcode) { 7015 case BPF_JEQ: 7016 case BPF_JNE: 7017 { 7018 struct bpf_reg_state *reg = 7019 opcode == BPF_JEQ ? true_reg : false_reg; 7020 7021 /* JEQ/JNE comparison doesn't change the register equivalence. 7022 * r1 = r2; 7023 * if (r1 == 42) goto label; 7024 * ... 7025 * label: // here both r1 and r2 are known to be 42. 7026 * 7027 * Hence when marking register as known preserve it's ID. 7028 */ 7029 if (is_jmp32) 7030 __mark_reg32_known(reg, val32); 7031 else 7032 ___mark_reg_known(reg, val); 7033 break; 7034 } 7035 case BPF_JSET: 7036 if (is_jmp32) { 7037 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7038 if (is_power_of_2(val32)) 7039 true_32off = tnum_or(true_32off, 7040 tnum_const(val32)); 7041 } else { 7042 false_64off = tnum_and(false_64off, tnum_const(~val)); 7043 if (is_power_of_2(val)) 7044 true_64off = tnum_or(true_64off, 7045 tnum_const(val)); 7046 } 7047 break; 7048 case BPF_JGE: 7049 case BPF_JGT: 7050 { 7051 if (is_jmp32) { 7052 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7053 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7054 7055 false_reg->u32_max_value = min(false_reg->u32_max_value, 7056 false_umax); 7057 true_reg->u32_min_value = max(true_reg->u32_min_value, 7058 true_umin); 7059 } else { 7060 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7061 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7062 7063 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7064 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7065 } 7066 break; 7067 } 7068 case BPF_JSGE: 7069 case BPF_JSGT: 7070 { 7071 if (is_jmp32) { 7072 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7073 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7074 7075 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7076 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7077 } else { 7078 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7079 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7080 7081 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7082 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7083 } 7084 break; 7085 } 7086 case BPF_JLE: 7087 case BPF_JLT: 7088 { 7089 if (is_jmp32) { 7090 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7091 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7092 7093 false_reg->u32_min_value = max(false_reg->u32_min_value, 7094 false_umin); 7095 true_reg->u32_max_value = min(true_reg->u32_max_value, 7096 true_umax); 7097 } else { 7098 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7099 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7100 7101 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7102 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7103 } 7104 break; 7105 } 7106 case BPF_JSLE: 7107 case BPF_JSLT: 7108 { 7109 if (is_jmp32) { 7110 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7111 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7112 7113 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7114 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7115 } else { 7116 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7117 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7118 7119 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7120 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7121 } 7122 break; 7123 } 7124 default: 7125 return; 7126 } 7127 7128 if (is_jmp32) { 7129 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7130 tnum_subreg(false_32off)); 7131 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7132 tnum_subreg(true_32off)); 7133 __reg_combine_32_into_64(false_reg); 7134 __reg_combine_32_into_64(true_reg); 7135 } else { 7136 false_reg->var_off = false_64off; 7137 true_reg->var_off = true_64off; 7138 __reg_combine_64_into_32(false_reg); 7139 __reg_combine_64_into_32(true_reg); 7140 } 7141 } 7142 7143 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7144 * the variable reg. 7145 */ 7146 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7147 struct bpf_reg_state *false_reg, 7148 u64 val, u32 val32, 7149 u8 opcode, bool is_jmp32) 7150 { 7151 /* How can we transform "a <op> b" into "b <op> a"? */ 7152 static const u8 opcode_flip[16] = { 7153 /* these stay the same */ 7154 [BPF_JEQ >> 4] = BPF_JEQ, 7155 [BPF_JNE >> 4] = BPF_JNE, 7156 [BPF_JSET >> 4] = BPF_JSET, 7157 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7158 [BPF_JGE >> 4] = BPF_JLE, 7159 [BPF_JGT >> 4] = BPF_JLT, 7160 [BPF_JLE >> 4] = BPF_JGE, 7161 [BPF_JLT >> 4] = BPF_JGT, 7162 [BPF_JSGE >> 4] = BPF_JSLE, 7163 [BPF_JSGT >> 4] = BPF_JSLT, 7164 [BPF_JSLE >> 4] = BPF_JSGE, 7165 [BPF_JSLT >> 4] = BPF_JSGT 7166 }; 7167 opcode = opcode_flip[opcode >> 4]; 7168 /* This uses zero as "not present in table"; luckily the zero opcode, 7169 * BPF_JA, can't get here. 7170 */ 7171 if (opcode) 7172 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7173 } 7174 7175 /* Regs are known to be equal, so intersect their min/max/var_off */ 7176 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7177 struct bpf_reg_state *dst_reg) 7178 { 7179 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7180 dst_reg->umin_value); 7181 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7182 dst_reg->umax_value); 7183 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7184 dst_reg->smin_value); 7185 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7186 dst_reg->smax_value); 7187 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7188 dst_reg->var_off); 7189 /* We might have learned new bounds from the var_off. */ 7190 __update_reg_bounds(src_reg); 7191 __update_reg_bounds(dst_reg); 7192 /* We might have learned something about the sign bit. */ 7193 __reg_deduce_bounds(src_reg); 7194 __reg_deduce_bounds(dst_reg); 7195 /* We might have learned some bits from the bounds. */ 7196 __reg_bound_offset(src_reg); 7197 __reg_bound_offset(dst_reg); 7198 /* Intersecting with the old var_off might have improved our bounds 7199 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7200 * then new var_off is (0; 0x7f...fc) which improves our umax. 7201 */ 7202 __update_reg_bounds(src_reg); 7203 __update_reg_bounds(dst_reg); 7204 } 7205 7206 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7207 struct bpf_reg_state *true_dst, 7208 struct bpf_reg_state *false_src, 7209 struct bpf_reg_state *false_dst, 7210 u8 opcode) 7211 { 7212 switch (opcode) { 7213 case BPF_JEQ: 7214 __reg_combine_min_max(true_src, true_dst); 7215 break; 7216 case BPF_JNE: 7217 __reg_combine_min_max(false_src, false_dst); 7218 break; 7219 } 7220 } 7221 7222 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7223 struct bpf_reg_state *reg, u32 id, 7224 bool is_null) 7225 { 7226 if (reg_type_may_be_null(reg->type) && reg->id == id && 7227 !WARN_ON_ONCE(!reg->id)) { 7228 /* Old offset (both fixed and variable parts) should 7229 * have been known-zero, because we don't allow pointer 7230 * arithmetic on pointers that might be NULL. 7231 */ 7232 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7233 !tnum_equals_const(reg->var_off, 0) || 7234 reg->off)) { 7235 __mark_reg_known_zero(reg); 7236 reg->off = 0; 7237 } 7238 if (is_null) { 7239 reg->type = SCALAR_VALUE; 7240 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 7241 const struct bpf_map *map = reg->map_ptr; 7242 7243 if (map->inner_map_meta) { 7244 reg->type = CONST_PTR_TO_MAP; 7245 reg->map_ptr = map->inner_map_meta; 7246 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7247 reg->type = PTR_TO_XDP_SOCK; 7248 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 7249 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7250 reg->type = PTR_TO_SOCKET; 7251 } else { 7252 reg->type = PTR_TO_MAP_VALUE; 7253 } 7254 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 7255 reg->type = PTR_TO_SOCKET; 7256 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 7257 reg->type = PTR_TO_SOCK_COMMON; 7258 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 7259 reg->type = PTR_TO_TCP_SOCK; 7260 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 7261 reg->type = PTR_TO_BTF_ID; 7262 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 7263 reg->type = PTR_TO_MEM; 7264 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 7265 reg->type = PTR_TO_RDONLY_BUF; 7266 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 7267 reg->type = PTR_TO_RDWR_BUF; 7268 } 7269 if (is_null) { 7270 /* We don't need id and ref_obj_id from this point 7271 * onwards anymore, thus we should better reset it, 7272 * so that state pruning has chances to take effect. 7273 */ 7274 reg->id = 0; 7275 reg->ref_obj_id = 0; 7276 } else if (!reg_may_point_to_spin_lock(reg)) { 7277 /* For not-NULL ptr, reg->ref_obj_id will be reset 7278 * in release_reg_references(). 7279 * 7280 * reg->id is still used by spin_lock ptr. Other 7281 * than spin_lock ptr type, reg->id can be reset. 7282 */ 7283 reg->id = 0; 7284 } 7285 } 7286 } 7287 7288 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7289 bool is_null) 7290 { 7291 struct bpf_reg_state *reg; 7292 int i; 7293 7294 for (i = 0; i < MAX_BPF_REG; i++) 7295 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7296 7297 bpf_for_each_spilled_reg(i, state, reg) { 7298 if (!reg) 7299 continue; 7300 mark_ptr_or_null_reg(state, reg, id, is_null); 7301 } 7302 } 7303 7304 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7305 * be folded together at some point. 7306 */ 7307 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7308 bool is_null) 7309 { 7310 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7311 struct bpf_reg_state *regs = state->regs; 7312 u32 ref_obj_id = regs[regno].ref_obj_id; 7313 u32 id = regs[regno].id; 7314 int i; 7315 7316 if (ref_obj_id && ref_obj_id == id && is_null) 7317 /* regs[regno] is in the " == NULL" branch. 7318 * No one could have freed the reference state before 7319 * doing the NULL check. 7320 */ 7321 WARN_ON_ONCE(release_reference_state(state, id)); 7322 7323 for (i = 0; i <= vstate->curframe; i++) 7324 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7325 } 7326 7327 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7328 struct bpf_reg_state *dst_reg, 7329 struct bpf_reg_state *src_reg, 7330 struct bpf_verifier_state *this_branch, 7331 struct bpf_verifier_state *other_branch) 7332 { 7333 if (BPF_SRC(insn->code) != BPF_X) 7334 return false; 7335 7336 /* Pointers are always 64-bit. */ 7337 if (BPF_CLASS(insn->code) == BPF_JMP32) 7338 return false; 7339 7340 switch (BPF_OP(insn->code)) { 7341 case BPF_JGT: 7342 if ((dst_reg->type == PTR_TO_PACKET && 7343 src_reg->type == PTR_TO_PACKET_END) || 7344 (dst_reg->type == PTR_TO_PACKET_META && 7345 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7346 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7347 find_good_pkt_pointers(this_branch, dst_reg, 7348 dst_reg->type, false); 7349 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7350 src_reg->type == PTR_TO_PACKET) || 7351 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7352 src_reg->type == PTR_TO_PACKET_META)) { 7353 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7354 find_good_pkt_pointers(other_branch, src_reg, 7355 src_reg->type, true); 7356 } else { 7357 return false; 7358 } 7359 break; 7360 case BPF_JLT: 7361 if ((dst_reg->type == PTR_TO_PACKET && 7362 src_reg->type == PTR_TO_PACKET_END) || 7363 (dst_reg->type == PTR_TO_PACKET_META && 7364 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7365 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7366 find_good_pkt_pointers(other_branch, dst_reg, 7367 dst_reg->type, true); 7368 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7369 src_reg->type == PTR_TO_PACKET) || 7370 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7371 src_reg->type == PTR_TO_PACKET_META)) { 7372 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7373 find_good_pkt_pointers(this_branch, src_reg, 7374 src_reg->type, false); 7375 } else { 7376 return false; 7377 } 7378 break; 7379 case BPF_JGE: 7380 if ((dst_reg->type == PTR_TO_PACKET && 7381 src_reg->type == PTR_TO_PACKET_END) || 7382 (dst_reg->type == PTR_TO_PACKET_META && 7383 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7384 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7385 find_good_pkt_pointers(this_branch, dst_reg, 7386 dst_reg->type, true); 7387 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7388 src_reg->type == PTR_TO_PACKET) || 7389 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7390 src_reg->type == PTR_TO_PACKET_META)) { 7391 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7392 find_good_pkt_pointers(other_branch, src_reg, 7393 src_reg->type, false); 7394 } else { 7395 return false; 7396 } 7397 break; 7398 case BPF_JLE: 7399 if ((dst_reg->type == PTR_TO_PACKET && 7400 src_reg->type == PTR_TO_PACKET_END) || 7401 (dst_reg->type == PTR_TO_PACKET_META && 7402 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7403 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7404 find_good_pkt_pointers(other_branch, dst_reg, 7405 dst_reg->type, false); 7406 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7407 src_reg->type == PTR_TO_PACKET) || 7408 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7409 src_reg->type == PTR_TO_PACKET_META)) { 7410 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7411 find_good_pkt_pointers(this_branch, src_reg, 7412 src_reg->type, true); 7413 } else { 7414 return false; 7415 } 7416 break; 7417 default: 7418 return false; 7419 } 7420 7421 return true; 7422 } 7423 7424 static void find_equal_scalars(struct bpf_verifier_state *vstate, 7425 struct bpf_reg_state *known_reg) 7426 { 7427 struct bpf_func_state *state; 7428 struct bpf_reg_state *reg; 7429 int i, j; 7430 7431 for (i = 0; i <= vstate->curframe; i++) { 7432 state = vstate->frame[i]; 7433 for (j = 0; j < MAX_BPF_REG; j++) { 7434 reg = &state->regs[j]; 7435 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7436 *reg = *known_reg; 7437 } 7438 7439 bpf_for_each_spilled_reg(j, state, reg) { 7440 if (!reg) 7441 continue; 7442 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7443 *reg = *known_reg; 7444 } 7445 } 7446 } 7447 7448 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7449 struct bpf_insn *insn, int *insn_idx) 7450 { 7451 struct bpf_verifier_state *this_branch = env->cur_state; 7452 struct bpf_verifier_state *other_branch; 7453 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7454 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7455 u8 opcode = BPF_OP(insn->code); 7456 bool is_jmp32; 7457 int pred = -1; 7458 int err; 7459 7460 /* Only conditional jumps are expected to reach here. */ 7461 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7462 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7463 return -EINVAL; 7464 } 7465 7466 if (BPF_SRC(insn->code) == BPF_X) { 7467 if (insn->imm != 0) { 7468 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7469 return -EINVAL; 7470 } 7471 7472 /* check src1 operand */ 7473 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7474 if (err) 7475 return err; 7476 7477 if (is_pointer_value(env, insn->src_reg)) { 7478 verbose(env, "R%d pointer comparison prohibited\n", 7479 insn->src_reg); 7480 return -EACCES; 7481 } 7482 src_reg = ®s[insn->src_reg]; 7483 } else { 7484 if (insn->src_reg != BPF_REG_0) { 7485 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7486 return -EINVAL; 7487 } 7488 } 7489 7490 /* check src2 operand */ 7491 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7492 if (err) 7493 return err; 7494 7495 dst_reg = ®s[insn->dst_reg]; 7496 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7497 7498 if (BPF_SRC(insn->code) == BPF_K) { 7499 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7500 } else if (src_reg->type == SCALAR_VALUE && 7501 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7502 pred = is_branch_taken(dst_reg, 7503 tnum_subreg(src_reg->var_off).value, 7504 opcode, 7505 is_jmp32); 7506 } else if (src_reg->type == SCALAR_VALUE && 7507 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7508 pred = is_branch_taken(dst_reg, 7509 src_reg->var_off.value, 7510 opcode, 7511 is_jmp32); 7512 } 7513 7514 if (pred >= 0) { 7515 /* If we get here with a dst_reg pointer type it is because 7516 * above is_branch_taken() special cased the 0 comparison. 7517 */ 7518 if (!__is_pointer_value(false, dst_reg)) 7519 err = mark_chain_precision(env, insn->dst_reg); 7520 if (BPF_SRC(insn->code) == BPF_X && !err) 7521 err = mark_chain_precision(env, insn->src_reg); 7522 if (err) 7523 return err; 7524 } 7525 if (pred == 1) { 7526 /* only follow the goto, ignore fall-through */ 7527 *insn_idx += insn->off; 7528 return 0; 7529 } else if (pred == 0) { 7530 /* only follow fall-through branch, since 7531 * that's where the program will go 7532 */ 7533 return 0; 7534 } 7535 7536 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7537 false); 7538 if (!other_branch) 7539 return -EFAULT; 7540 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7541 7542 /* detect if we are comparing against a constant value so we can adjust 7543 * our min/max values for our dst register. 7544 * this is only legit if both are scalars (or pointers to the same 7545 * object, I suppose, but we don't support that right now), because 7546 * otherwise the different base pointers mean the offsets aren't 7547 * comparable. 7548 */ 7549 if (BPF_SRC(insn->code) == BPF_X) { 7550 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7551 7552 if (dst_reg->type == SCALAR_VALUE && 7553 src_reg->type == SCALAR_VALUE) { 7554 if (tnum_is_const(src_reg->var_off) || 7555 (is_jmp32 && 7556 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7557 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7558 dst_reg, 7559 src_reg->var_off.value, 7560 tnum_subreg(src_reg->var_off).value, 7561 opcode, is_jmp32); 7562 else if (tnum_is_const(dst_reg->var_off) || 7563 (is_jmp32 && 7564 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7565 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7566 src_reg, 7567 dst_reg->var_off.value, 7568 tnum_subreg(dst_reg->var_off).value, 7569 opcode, is_jmp32); 7570 else if (!is_jmp32 && 7571 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7572 /* Comparing for equality, we can combine knowledge */ 7573 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7574 &other_branch_regs[insn->dst_reg], 7575 src_reg, dst_reg, opcode); 7576 if (src_reg->id && 7577 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 7578 find_equal_scalars(this_branch, src_reg); 7579 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 7580 } 7581 7582 } 7583 } else if (dst_reg->type == SCALAR_VALUE) { 7584 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7585 dst_reg, insn->imm, (u32)insn->imm, 7586 opcode, is_jmp32); 7587 } 7588 7589 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 7590 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 7591 find_equal_scalars(this_branch, dst_reg); 7592 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 7593 } 7594 7595 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7596 * NOTE: these optimizations below are related with pointer comparison 7597 * which will never be JMP32. 7598 */ 7599 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7600 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7601 reg_type_may_be_null(dst_reg->type)) { 7602 /* Mark all identical registers in each branch as either 7603 * safe or unknown depending R == 0 or R != 0 conditional. 7604 */ 7605 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7606 opcode == BPF_JNE); 7607 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7608 opcode == BPF_JEQ); 7609 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7610 this_branch, other_branch) && 7611 is_pointer_value(env, insn->dst_reg)) { 7612 verbose(env, "R%d pointer comparison prohibited\n", 7613 insn->dst_reg); 7614 return -EACCES; 7615 } 7616 if (env->log.level & BPF_LOG_LEVEL) 7617 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7618 return 0; 7619 } 7620 7621 /* verify BPF_LD_IMM64 instruction */ 7622 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7623 { 7624 struct bpf_insn_aux_data *aux = cur_aux(env); 7625 struct bpf_reg_state *regs = cur_regs(env); 7626 struct bpf_reg_state *dst_reg; 7627 struct bpf_map *map; 7628 int err; 7629 7630 if (BPF_SIZE(insn->code) != BPF_DW) { 7631 verbose(env, "invalid BPF_LD_IMM insn\n"); 7632 return -EINVAL; 7633 } 7634 if (insn->off != 0) { 7635 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7636 return -EINVAL; 7637 } 7638 7639 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7640 if (err) 7641 return err; 7642 7643 dst_reg = ®s[insn->dst_reg]; 7644 if (insn->src_reg == 0) { 7645 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7646 7647 dst_reg->type = SCALAR_VALUE; 7648 __mark_reg_known(®s[insn->dst_reg], imm); 7649 return 0; 7650 } 7651 7652 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 7653 mark_reg_known_zero(env, regs, insn->dst_reg); 7654 7655 dst_reg->type = aux->btf_var.reg_type; 7656 switch (dst_reg->type) { 7657 case PTR_TO_MEM: 7658 dst_reg->mem_size = aux->btf_var.mem_size; 7659 break; 7660 case PTR_TO_BTF_ID: 7661 case PTR_TO_PERCPU_BTF_ID: 7662 dst_reg->btf_id = aux->btf_var.btf_id; 7663 break; 7664 default: 7665 verbose(env, "bpf verifier is misconfigured\n"); 7666 return -EFAULT; 7667 } 7668 return 0; 7669 } 7670 7671 map = env->used_maps[aux->map_index]; 7672 mark_reg_known_zero(env, regs, insn->dst_reg); 7673 dst_reg->map_ptr = map; 7674 7675 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7676 dst_reg->type = PTR_TO_MAP_VALUE; 7677 dst_reg->off = aux->map_off; 7678 if (map_value_has_spin_lock(map)) 7679 dst_reg->id = ++env->id_gen; 7680 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7681 dst_reg->type = CONST_PTR_TO_MAP; 7682 } else { 7683 verbose(env, "bpf verifier is misconfigured\n"); 7684 return -EINVAL; 7685 } 7686 7687 return 0; 7688 } 7689 7690 static bool may_access_skb(enum bpf_prog_type type) 7691 { 7692 switch (type) { 7693 case BPF_PROG_TYPE_SOCKET_FILTER: 7694 case BPF_PROG_TYPE_SCHED_CLS: 7695 case BPF_PROG_TYPE_SCHED_ACT: 7696 return true; 7697 default: 7698 return false; 7699 } 7700 } 7701 7702 /* verify safety of LD_ABS|LD_IND instructions: 7703 * - they can only appear in the programs where ctx == skb 7704 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7705 * preserve R6-R9, and store return value into R0 7706 * 7707 * Implicit input: 7708 * ctx == skb == R6 == CTX 7709 * 7710 * Explicit input: 7711 * SRC == any register 7712 * IMM == 32-bit immediate 7713 * 7714 * Output: 7715 * R0 - 8/16/32-bit skb data converted to cpu endianness 7716 */ 7717 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7718 { 7719 struct bpf_reg_state *regs = cur_regs(env); 7720 static const int ctx_reg = BPF_REG_6; 7721 u8 mode = BPF_MODE(insn->code); 7722 int i, err; 7723 7724 if (!may_access_skb(resolve_prog_type(env->prog))) { 7725 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7726 return -EINVAL; 7727 } 7728 7729 if (!env->ops->gen_ld_abs) { 7730 verbose(env, "bpf verifier is misconfigured\n"); 7731 return -EINVAL; 7732 } 7733 7734 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7735 BPF_SIZE(insn->code) == BPF_DW || 7736 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7737 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7738 return -EINVAL; 7739 } 7740 7741 /* check whether implicit source operand (register R6) is readable */ 7742 err = check_reg_arg(env, ctx_reg, SRC_OP); 7743 if (err) 7744 return err; 7745 7746 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7747 * gen_ld_abs() may terminate the program at runtime, leading to 7748 * reference leak. 7749 */ 7750 err = check_reference_leak(env); 7751 if (err) { 7752 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7753 return err; 7754 } 7755 7756 if (env->cur_state->active_spin_lock) { 7757 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7758 return -EINVAL; 7759 } 7760 7761 if (regs[ctx_reg].type != PTR_TO_CTX) { 7762 verbose(env, 7763 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7764 return -EINVAL; 7765 } 7766 7767 if (mode == BPF_IND) { 7768 /* check explicit source operand */ 7769 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7770 if (err) 7771 return err; 7772 } 7773 7774 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7775 if (err < 0) 7776 return err; 7777 7778 /* reset caller saved regs to unreadable */ 7779 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7780 mark_reg_not_init(env, regs, caller_saved[i]); 7781 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7782 } 7783 7784 /* mark destination R0 register as readable, since it contains 7785 * the value fetched from the packet. 7786 * Already marked as written above. 7787 */ 7788 mark_reg_unknown(env, regs, BPF_REG_0); 7789 /* ld_abs load up to 32-bit skb data. */ 7790 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7791 return 0; 7792 } 7793 7794 static int check_return_code(struct bpf_verifier_env *env) 7795 { 7796 struct tnum enforce_attach_type_range = tnum_unknown; 7797 const struct bpf_prog *prog = env->prog; 7798 struct bpf_reg_state *reg; 7799 struct tnum range = tnum_range(0, 1); 7800 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7801 int err; 7802 7803 /* LSM and struct_ops func-ptr's return type could be "void" */ 7804 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS || 7805 prog_type == BPF_PROG_TYPE_LSM) && 7806 !prog->aux->attach_func_proto->type) 7807 return 0; 7808 7809 /* eBPF calling convetion is such that R0 is used 7810 * to return the value from eBPF program. 7811 * Make sure that it's readable at this time 7812 * of bpf_exit, which means that program wrote 7813 * something into it earlier 7814 */ 7815 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7816 if (err) 7817 return err; 7818 7819 if (is_pointer_value(env, BPF_REG_0)) { 7820 verbose(env, "R0 leaks addr as return value\n"); 7821 return -EACCES; 7822 } 7823 7824 switch (prog_type) { 7825 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7826 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7827 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7828 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7829 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7830 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7831 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7832 range = tnum_range(1, 1); 7833 break; 7834 case BPF_PROG_TYPE_CGROUP_SKB: 7835 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7836 range = tnum_range(0, 3); 7837 enforce_attach_type_range = tnum_range(2, 3); 7838 } 7839 break; 7840 case BPF_PROG_TYPE_CGROUP_SOCK: 7841 case BPF_PROG_TYPE_SOCK_OPS: 7842 case BPF_PROG_TYPE_CGROUP_DEVICE: 7843 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7844 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7845 break; 7846 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7847 if (!env->prog->aux->attach_btf_id) 7848 return 0; 7849 range = tnum_const(0); 7850 break; 7851 case BPF_PROG_TYPE_TRACING: 7852 switch (env->prog->expected_attach_type) { 7853 case BPF_TRACE_FENTRY: 7854 case BPF_TRACE_FEXIT: 7855 range = tnum_const(0); 7856 break; 7857 case BPF_TRACE_RAW_TP: 7858 case BPF_MODIFY_RETURN: 7859 return 0; 7860 case BPF_TRACE_ITER: 7861 break; 7862 default: 7863 return -ENOTSUPP; 7864 } 7865 break; 7866 case BPF_PROG_TYPE_SK_LOOKUP: 7867 range = tnum_range(SK_DROP, SK_PASS); 7868 break; 7869 case BPF_PROG_TYPE_EXT: 7870 /* freplace program can return anything as its return value 7871 * depends on the to-be-replaced kernel func or bpf program. 7872 */ 7873 default: 7874 return 0; 7875 } 7876 7877 reg = cur_regs(env) + BPF_REG_0; 7878 if (reg->type != SCALAR_VALUE) { 7879 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7880 reg_type_str[reg->type]); 7881 return -EINVAL; 7882 } 7883 7884 if (!tnum_in(range, reg->var_off)) { 7885 char tn_buf[48]; 7886 7887 verbose(env, "At program exit the register R0 "); 7888 if (!tnum_is_unknown(reg->var_off)) { 7889 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7890 verbose(env, "has value %s", tn_buf); 7891 } else { 7892 verbose(env, "has unknown scalar value"); 7893 } 7894 tnum_strn(tn_buf, sizeof(tn_buf), range); 7895 verbose(env, " should have been in %s\n", tn_buf); 7896 return -EINVAL; 7897 } 7898 7899 if (!tnum_is_unknown(enforce_attach_type_range) && 7900 tnum_in(enforce_attach_type_range, reg->var_off)) 7901 env->prog->enforce_expected_attach_type = 1; 7902 return 0; 7903 } 7904 7905 /* non-recursive DFS pseudo code 7906 * 1 procedure DFS-iterative(G,v): 7907 * 2 label v as discovered 7908 * 3 let S be a stack 7909 * 4 S.push(v) 7910 * 5 while S is not empty 7911 * 6 t <- S.pop() 7912 * 7 if t is what we're looking for: 7913 * 8 return t 7914 * 9 for all edges e in G.adjacentEdges(t) do 7915 * 10 if edge e is already labelled 7916 * 11 continue with the next edge 7917 * 12 w <- G.adjacentVertex(t,e) 7918 * 13 if vertex w is not discovered and not explored 7919 * 14 label e as tree-edge 7920 * 15 label w as discovered 7921 * 16 S.push(w) 7922 * 17 continue at 5 7923 * 18 else if vertex w is discovered 7924 * 19 label e as back-edge 7925 * 20 else 7926 * 21 // vertex w is explored 7927 * 22 label e as forward- or cross-edge 7928 * 23 label t as explored 7929 * 24 S.pop() 7930 * 7931 * convention: 7932 * 0x10 - discovered 7933 * 0x11 - discovered and fall-through edge labelled 7934 * 0x12 - discovered and fall-through and branch edges labelled 7935 * 0x20 - explored 7936 */ 7937 7938 enum { 7939 DISCOVERED = 0x10, 7940 EXPLORED = 0x20, 7941 FALLTHROUGH = 1, 7942 BRANCH = 2, 7943 }; 7944 7945 static u32 state_htab_size(struct bpf_verifier_env *env) 7946 { 7947 return env->prog->len; 7948 } 7949 7950 static struct bpf_verifier_state_list **explored_state( 7951 struct bpf_verifier_env *env, 7952 int idx) 7953 { 7954 struct bpf_verifier_state *cur = env->cur_state; 7955 struct bpf_func_state *state = cur->frame[cur->curframe]; 7956 7957 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7958 } 7959 7960 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7961 { 7962 env->insn_aux_data[idx].prune_point = true; 7963 } 7964 7965 /* t, w, e - match pseudo-code above: 7966 * t - index of current instruction 7967 * w - next instruction 7968 * e - edge 7969 */ 7970 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7971 bool loop_ok) 7972 { 7973 int *insn_stack = env->cfg.insn_stack; 7974 int *insn_state = env->cfg.insn_state; 7975 7976 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7977 return 0; 7978 7979 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7980 return 0; 7981 7982 if (w < 0 || w >= env->prog->len) { 7983 verbose_linfo(env, t, "%d: ", t); 7984 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7985 return -EINVAL; 7986 } 7987 7988 if (e == BRANCH) 7989 /* mark branch target for state pruning */ 7990 init_explored_state(env, w); 7991 7992 if (insn_state[w] == 0) { 7993 /* tree-edge */ 7994 insn_state[t] = DISCOVERED | e; 7995 insn_state[w] = DISCOVERED; 7996 if (env->cfg.cur_stack >= env->prog->len) 7997 return -E2BIG; 7998 insn_stack[env->cfg.cur_stack++] = w; 7999 return 1; 8000 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 8001 if (loop_ok && env->bpf_capable) 8002 return 0; 8003 verbose_linfo(env, t, "%d: ", t); 8004 verbose_linfo(env, w, "%d: ", w); 8005 verbose(env, "back-edge from insn %d to %d\n", t, w); 8006 return -EINVAL; 8007 } else if (insn_state[w] == EXPLORED) { 8008 /* forward- or cross-edge */ 8009 insn_state[t] = DISCOVERED | e; 8010 } else { 8011 verbose(env, "insn state internal bug\n"); 8012 return -EFAULT; 8013 } 8014 return 0; 8015 } 8016 8017 /* non-recursive depth-first-search to detect loops in BPF program 8018 * loop == back-edge in directed graph 8019 */ 8020 static int check_cfg(struct bpf_verifier_env *env) 8021 { 8022 struct bpf_insn *insns = env->prog->insnsi; 8023 int insn_cnt = env->prog->len; 8024 int *insn_stack, *insn_state; 8025 int ret = 0; 8026 int i, t; 8027 8028 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8029 if (!insn_state) 8030 return -ENOMEM; 8031 8032 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8033 if (!insn_stack) { 8034 kvfree(insn_state); 8035 return -ENOMEM; 8036 } 8037 8038 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8039 insn_stack[0] = 0; /* 0 is the first instruction */ 8040 env->cfg.cur_stack = 1; 8041 8042 peek_stack: 8043 if (env->cfg.cur_stack == 0) 8044 goto check_state; 8045 t = insn_stack[env->cfg.cur_stack - 1]; 8046 8047 if (BPF_CLASS(insns[t].code) == BPF_JMP || 8048 BPF_CLASS(insns[t].code) == BPF_JMP32) { 8049 u8 opcode = BPF_OP(insns[t].code); 8050 8051 if (opcode == BPF_EXIT) { 8052 goto mark_explored; 8053 } else if (opcode == BPF_CALL) { 8054 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8055 if (ret == 1) 8056 goto peek_stack; 8057 else if (ret < 0) 8058 goto err_free; 8059 if (t + 1 < insn_cnt) 8060 init_explored_state(env, t + 1); 8061 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8062 init_explored_state(env, t); 8063 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8064 env, false); 8065 if (ret == 1) 8066 goto peek_stack; 8067 else if (ret < 0) 8068 goto err_free; 8069 } 8070 } else if (opcode == BPF_JA) { 8071 if (BPF_SRC(insns[t].code) != BPF_K) { 8072 ret = -EINVAL; 8073 goto err_free; 8074 } 8075 /* unconditional jump with single edge */ 8076 ret = push_insn(t, t + insns[t].off + 1, 8077 FALLTHROUGH, env, true); 8078 if (ret == 1) 8079 goto peek_stack; 8080 else if (ret < 0) 8081 goto err_free; 8082 /* unconditional jmp is not a good pruning point, 8083 * but it's marked, since backtracking needs 8084 * to record jmp history in is_state_visited(). 8085 */ 8086 init_explored_state(env, t + insns[t].off + 1); 8087 /* tell verifier to check for equivalent states 8088 * after every call and jump 8089 */ 8090 if (t + 1 < insn_cnt) 8091 init_explored_state(env, t + 1); 8092 } else { 8093 /* conditional jump with two edges */ 8094 init_explored_state(env, t); 8095 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8096 if (ret == 1) 8097 goto peek_stack; 8098 else if (ret < 0) 8099 goto err_free; 8100 8101 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8102 if (ret == 1) 8103 goto peek_stack; 8104 else if (ret < 0) 8105 goto err_free; 8106 } 8107 } else { 8108 /* all other non-branch instructions with single 8109 * fall-through edge 8110 */ 8111 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8112 if (ret == 1) 8113 goto peek_stack; 8114 else if (ret < 0) 8115 goto err_free; 8116 } 8117 8118 mark_explored: 8119 insn_state[t] = EXPLORED; 8120 if (env->cfg.cur_stack-- <= 0) { 8121 verbose(env, "pop stack internal bug\n"); 8122 ret = -EFAULT; 8123 goto err_free; 8124 } 8125 goto peek_stack; 8126 8127 check_state: 8128 for (i = 0; i < insn_cnt; i++) { 8129 if (insn_state[i] != EXPLORED) { 8130 verbose(env, "unreachable insn %d\n", i); 8131 ret = -EINVAL; 8132 goto err_free; 8133 } 8134 } 8135 ret = 0; /* cfg looks good */ 8136 8137 err_free: 8138 kvfree(insn_state); 8139 kvfree(insn_stack); 8140 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8141 return ret; 8142 } 8143 8144 static int check_abnormal_return(struct bpf_verifier_env *env) 8145 { 8146 int i; 8147 8148 for (i = 1; i < env->subprog_cnt; i++) { 8149 if (env->subprog_info[i].has_ld_abs) { 8150 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8151 return -EINVAL; 8152 } 8153 if (env->subprog_info[i].has_tail_call) { 8154 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8155 return -EINVAL; 8156 } 8157 } 8158 return 0; 8159 } 8160 8161 /* The minimum supported BTF func info size */ 8162 #define MIN_BPF_FUNCINFO_SIZE 8 8163 #define MAX_FUNCINFO_REC_SIZE 252 8164 8165 static int check_btf_func(struct bpf_verifier_env *env, 8166 const union bpf_attr *attr, 8167 union bpf_attr __user *uattr) 8168 { 8169 const struct btf_type *type, *func_proto, *ret_type; 8170 u32 i, nfuncs, urec_size, min_size; 8171 u32 krec_size = sizeof(struct bpf_func_info); 8172 struct bpf_func_info *krecord; 8173 struct bpf_func_info_aux *info_aux = NULL; 8174 struct bpf_prog *prog; 8175 const struct btf *btf; 8176 void __user *urecord; 8177 u32 prev_offset = 0; 8178 bool scalar_return; 8179 int ret = -ENOMEM; 8180 8181 nfuncs = attr->func_info_cnt; 8182 if (!nfuncs) { 8183 if (check_abnormal_return(env)) 8184 return -EINVAL; 8185 return 0; 8186 } 8187 8188 if (nfuncs != env->subprog_cnt) { 8189 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8190 return -EINVAL; 8191 } 8192 8193 urec_size = attr->func_info_rec_size; 8194 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8195 urec_size > MAX_FUNCINFO_REC_SIZE || 8196 urec_size % sizeof(u32)) { 8197 verbose(env, "invalid func info rec size %u\n", urec_size); 8198 return -EINVAL; 8199 } 8200 8201 prog = env->prog; 8202 btf = prog->aux->btf; 8203 8204 urecord = u64_to_user_ptr(attr->func_info); 8205 min_size = min_t(u32, krec_size, urec_size); 8206 8207 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8208 if (!krecord) 8209 return -ENOMEM; 8210 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8211 if (!info_aux) 8212 goto err_free; 8213 8214 for (i = 0; i < nfuncs; i++) { 8215 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8216 if (ret) { 8217 if (ret == -E2BIG) { 8218 verbose(env, "nonzero tailing record in func info"); 8219 /* set the size kernel expects so loader can zero 8220 * out the rest of the record. 8221 */ 8222 if (put_user(min_size, &uattr->func_info_rec_size)) 8223 ret = -EFAULT; 8224 } 8225 goto err_free; 8226 } 8227 8228 if (copy_from_user(&krecord[i], urecord, min_size)) { 8229 ret = -EFAULT; 8230 goto err_free; 8231 } 8232 8233 /* check insn_off */ 8234 ret = -EINVAL; 8235 if (i == 0) { 8236 if (krecord[i].insn_off) { 8237 verbose(env, 8238 "nonzero insn_off %u for the first func info record", 8239 krecord[i].insn_off); 8240 goto err_free; 8241 } 8242 } else if (krecord[i].insn_off <= prev_offset) { 8243 verbose(env, 8244 "same or smaller insn offset (%u) than previous func info record (%u)", 8245 krecord[i].insn_off, prev_offset); 8246 goto err_free; 8247 } 8248 8249 if (env->subprog_info[i].start != krecord[i].insn_off) { 8250 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8251 goto err_free; 8252 } 8253 8254 /* check type_id */ 8255 type = btf_type_by_id(btf, krecord[i].type_id); 8256 if (!type || !btf_type_is_func(type)) { 8257 verbose(env, "invalid type id %d in func info", 8258 krecord[i].type_id); 8259 goto err_free; 8260 } 8261 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8262 8263 func_proto = btf_type_by_id(btf, type->type); 8264 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8265 /* btf_func_check() already verified it during BTF load */ 8266 goto err_free; 8267 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8268 scalar_return = 8269 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8270 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8271 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8272 goto err_free; 8273 } 8274 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8275 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8276 goto err_free; 8277 } 8278 8279 prev_offset = krecord[i].insn_off; 8280 urecord += urec_size; 8281 } 8282 8283 prog->aux->func_info = krecord; 8284 prog->aux->func_info_cnt = nfuncs; 8285 prog->aux->func_info_aux = info_aux; 8286 return 0; 8287 8288 err_free: 8289 kvfree(krecord); 8290 kfree(info_aux); 8291 return ret; 8292 } 8293 8294 static void adjust_btf_func(struct bpf_verifier_env *env) 8295 { 8296 struct bpf_prog_aux *aux = env->prog->aux; 8297 int i; 8298 8299 if (!aux->func_info) 8300 return; 8301 8302 for (i = 0; i < env->subprog_cnt; i++) 8303 aux->func_info[i].insn_off = env->subprog_info[i].start; 8304 } 8305 8306 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8307 sizeof(((struct bpf_line_info *)(0))->line_col)) 8308 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8309 8310 static int check_btf_line(struct bpf_verifier_env *env, 8311 const union bpf_attr *attr, 8312 union bpf_attr __user *uattr) 8313 { 8314 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8315 struct bpf_subprog_info *sub; 8316 struct bpf_line_info *linfo; 8317 struct bpf_prog *prog; 8318 const struct btf *btf; 8319 void __user *ulinfo; 8320 int err; 8321 8322 nr_linfo = attr->line_info_cnt; 8323 if (!nr_linfo) 8324 return 0; 8325 8326 rec_size = attr->line_info_rec_size; 8327 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8328 rec_size > MAX_LINEINFO_REC_SIZE || 8329 rec_size & (sizeof(u32) - 1)) 8330 return -EINVAL; 8331 8332 /* Need to zero it in case the userspace may 8333 * pass in a smaller bpf_line_info object. 8334 */ 8335 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8336 GFP_KERNEL | __GFP_NOWARN); 8337 if (!linfo) 8338 return -ENOMEM; 8339 8340 prog = env->prog; 8341 btf = prog->aux->btf; 8342 8343 s = 0; 8344 sub = env->subprog_info; 8345 ulinfo = u64_to_user_ptr(attr->line_info); 8346 expected_size = sizeof(struct bpf_line_info); 8347 ncopy = min_t(u32, expected_size, rec_size); 8348 for (i = 0; i < nr_linfo; i++) { 8349 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8350 if (err) { 8351 if (err == -E2BIG) { 8352 verbose(env, "nonzero tailing record in line_info"); 8353 if (put_user(expected_size, 8354 &uattr->line_info_rec_size)) 8355 err = -EFAULT; 8356 } 8357 goto err_free; 8358 } 8359 8360 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8361 err = -EFAULT; 8362 goto err_free; 8363 } 8364 8365 /* 8366 * Check insn_off to ensure 8367 * 1) strictly increasing AND 8368 * 2) bounded by prog->len 8369 * 8370 * The linfo[0].insn_off == 0 check logically falls into 8371 * the later "missing bpf_line_info for func..." case 8372 * because the first linfo[0].insn_off must be the 8373 * first sub also and the first sub must have 8374 * subprog_info[0].start == 0. 8375 */ 8376 if ((i && linfo[i].insn_off <= prev_offset) || 8377 linfo[i].insn_off >= prog->len) { 8378 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8379 i, linfo[i].insn_off, prev_offset, 8380 prog->len); 8381 err = -EINVAL; 8382 goto err_free; 8383 } 8384 8385 if (!prog->insnsi[linfo[i].insn_off].code) { 8386 verbose(env, 8387 "Invalid insn code at line_info[%u].insn_off\n", 8388 i); 8389 err = -EINVAL; 8390 goto err_free; 8391 } 8392 8393 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8394 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8395 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8396 err = -EINVAL; 8397 goto err_free; 8398 } 8399 8400 if (s != env->subprog_cnt) { 8401 if (linfo[i].insn_off == sub[s].start) { 8402 sub[s].linfo_idx = i; 8403 s++; 8404 } else if (sub[s].start < linfo[i].insn_off) { 8405 verbose(env, "missing bpf_line_info for func#%u\n", s); 8406 err = -EINVAL; 8407 goto err_free; 8408 } 8409 } 8410 8411 prev_offset = linfo[i].insn_off; 8412 ulinfo += rec_size; 8413 } 8414 8415 if (s != env->subprog_cnt) { 8416 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 8417 env->subprog_cnt - s, s); 8418 err = -EINVAL; 8419 goto err_free; 8420 } 8421 8422 prog->aux->linfo = linfo; 8423 prog->aux->nr_linfo = nr_linfo; 8424 8425 return 0; 8426 8427 err_free: 8428 kvfree(linfo); 8429 return err; 8430 } 8431 8432 static int check_btf_info(struct bpf_verifier_env *env, 8433 const union bpf_attr *attr, 8434 union bpf_attr __user *uattr) 8435 { 8436 struct btf *btf; 8437 int err; 8438 8439 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8440 if (check_abnormal_return(env)) 8441 return -EINVAL; 8442 return 0; 8443 } 8444 8445 btf = btf_get_by_fd(attr->prog_btf_fd); 8446 if (IS_ERR(btf)) 8447 return PTR_ERR(btf); 8448 env->prog->aux->btf = btf; 8449 8450 err = check_btf_func(env, attr, uattr); 8451 if (err) 8452 return err; 8453 8454 err = check_btf_line(env, attr, uattr); 8455 if (err) 8456 return err; 8457 8458 return 0; 8459 } 8460 8461 /* check %cur's range satisfies %old's */ 8462 static bool range_within(struct bpf_reg_state *old, 8463 struct bpf_reg_state *cur) 8464 { 8465 return old->umin_value <= cur->umin_value && 8466 old->umax_value >= cur->umax_value && 8467 old->smin_value <= cur->smin_value && 8468 old->smax_value >= cur->smax_value; 8469 } 8470 8471 /* Maximum number of register states that can exist at once */ 8472 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8473 struct idpair { 8474 u32 old; 8475 u32 cur; 8476 }; 8477 8478 /* If in the old state two registers had the same id, then they need to have 8479 * the same id in the new state as well. But that id could be different from 8480 * the old state, so we need to track the mapping from old to new ids. 8481 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8482 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8483 * regs with a different old id could still have new id 9, we don't care about 8484 * that. 8485 * So we look through our idmap to see if this old id has been seen before. If 8486 * so, we require the new id to match; otherwise, we add the id pair to the map. 8487 */ 8488 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8489 { 8490 unsigned int i; 8491 8492 for (i = 0; i < ID_MAP_SIZE; i++) { 8493 if (!idmap[i].old) { 8494 /* Reached an empty slot; haven't seen this id before */ 8495 idmap[i].old = old_id; 8496 idmap[i].cur = cur_id; 8497 return true; 8498 } 8499 if (idmap[i].old == old_id) 8500 return idmap[i].cur == cur_id; 8501 } 8502 /* We ran out of idmap slots, which should be impossible */ 8503 WARN_ON_ONCE(1); 8504 return false; 8505 } 8506 8507 static void clean_func_state(struct bpf_verifier_env *env, 8508 struct bpf_func_state *st) 8509 { 8510 enum bpf_reg_liveness live; 8511 int i, j; 8512 8513 for (i = 0; i < BPF_REG_FP; i++) { 8514 live = st->regs[i].live; 8515 /* liveness must not touch this register anymore */ 8516 st->regs[i].live |= REG_LIVE_DONE; 8517 if (!(live & REG_LIVE_READ)) 8518 /* since the register is unused, clear its state 8519 * to make further comparison simpler 8520 */ 8521 __mark_reg_not_init(env, &st->regs[i]); 8522 } 8523 8524 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8525 live = st->stack[i].spilled_ptr.live; 8526 /* liveness must not touch this stack slot anymore */ 8527 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8528 if (!(live & REG_LIVE_READ)) { 8529 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8530 for (j = 0; j < BPF_REG_SIZE; j++) 8531 st->stack[i].slot_type[j] = STACK_INVALID; 8532 } 8533 } 8534 } 8535 8536 static void clean_verifier_state(struct bpf_verifier_env *env, 8537 struct bpf_verifier_state *st) 8538 { 8539 int i; 8540 8541 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8542 /* all regs in this state in all frames were already marked */ 8543 return; 8544 8545 for (i = 0; i <= st->curframe; i++) 8546 clean_func_state(env, st->frame[i]); 8547 } 8548 8549 /* the parentage chains form a tree. 8550 * the verifier states are added to state lists at given insn and 8551 * pushed into state stack for future exploration. 8552 * when the verifier reaches bpf_exit insn some of the verifer states 8553 * stored in the state lists have their final liveness state already, 8554 * but a lot of states will get revised from liveness point of view when 8555 * the verifier explores other branches. 8556 * Example: 8557 * 1: r0 = 1 8558 * 2: if r1 == 100 goto pc+1 8559 * 3: r0 = 2 8560 * 4: exit 8561 * when the verifier reaches exit insn the register r0 in the state list of 8562 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8563 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8564 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8565 * 8566 * Since the verifier pushes the branch states as it sees them while exploring 8567 * the program the condition of walking the branch instruction for the second 8568 * time means that all states below this branch were already explored and 8569 * their final liveness markes are already propagated. 8570 * Hence when the verifier completes the search of state list in is_state_visited() 8571 * we can call this clean_live_states() function to mark all liveness states 8572 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8573 * will not be used. 8574 * This function also clears the registers and stack for states that !READ 8575 * to simplify state merging. 8576 * 8577 * Important note here that walking the same branch instruction in the callee 8578 * doesn't meant that the states are DONE. The verifier has to compare 8579 * the callsites 8580 */ 8581 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8582 struct bpf_verifier_state *cur) 8583 { 8584 struct bpf_verifier_state_list *sl; 8585 int i; 8586 8587 sl = *explored_state(env, insn); 8588 while (sl) { 8589 if (sl->state.branches) 8590 goto next; 8591 if (sl->state.insn_idx != insn || 8592 sl->state.curframe != cur->curframe) 8593 goto next; 8594 for (i = 0; i <= cur->curframe; i++) 8595 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8596 goto next; 8597 clean_verifier_state(env, &sl->state); 8598 next: 8599 sl = sl->next; 8600 } 8601 } 8602 8603 /* Returns true if (rold safe implies rcur safe) */ 8604 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8605 struct idpair *idmap) 8606 { 8607 bool equal; 8608 8609 if (!(rold->live & REG_LIVE_READ)) 8610 /* explored state didn't use this */ 8611 return true; 8612 8613 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8614 8615 if (rold->type == PTR_TO_STACK) 8616 /* two stack pointers are equal only if they're pointing to 8617 * the same stack frame, since fp-8 in foo != fp-8 in bar 8618 */ 8619 return equal && rold->frameno == rcur->frameno; 8620 8621 if (equal) 8622 return true; 8623 8624 if (rold->type == NOT_INIT) 8625 /* explored state can't have used this */ 8626 return true; 8627 if (rcur->type == NOT_INIT) 8628 return false; 8629 switch (rold->type) { 8630 case SCALAR_VALUE: 8631 if (rcur->type == SCALAR_VALUE) { 8632 if (!rold->precise && !rcur->precise) 8633 return true; 8634 /* new val must satisfy old val knowledge */ 8635 return range_within(rold, rcur) && 8636 tnum_in(rold->var_off, rcur->var_off); 8637 } else { 8638 /* We're trying to use a pointer in place of a scalar. 8639 * Even if the scalar was unbounded, this could lead to 8640 * pointer leaks because scalars are allowed to leak 8641 * while pointers are not. We could make this safe in 8642 * special cases if root is calling us, but it's 8643 * probably not worth the hassle. 8644 */ 8645 return false; 8646 } 8647 case PTR_TO_MAP_VALUE: 8648 /* If the new min/max/var_off satisfy the old ones and 8649 * everything else matches, we are OK. 8650 * 'id' is not compared, since it's only used for maps with 8651 * bpf_spin_lock inside map element and in such cases if 8652 * the rest of the prog is valid for one map element then 8653 * it's valid for all map elements regardless of the key 8654 * used in bpf_map_lookup() 8655 */ 8656 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8657 range_within(rold, rcur) && 8658 tnum_in(rold->var_off, rcur->var_off); 8659 case PTR_TO_MAP_VALUE_OR_NULL: 8660 /* a PTR_TO_MAP_VALUE could be safe to use as a 8661 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8662 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8663 * checked, doing so could have affected others with the same 8664 * id, and we can't check for that because we lost the id when 8665 * we converted to a PTR_TO_MAP_VALUE. 8666 */ 8667 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8668 return false; 8669 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8670 return false; 8671 /* Check our ids match any regs they're supposed to */ 8672 return check_ids(rold->id, rcur->id, idmap); 8673 case PTR_TO_PACKET_META: 8674 case PTR_TO_PACKET: 8675 if (rcur->type != rold->type) 8676 return false; 8677 /* We must have at least as much range as the old ptr 8678 * did, so that any accesses which were safe before are 8679 * still safe. This is true even if old range < old off, 8680 * since someone could have accessed through (ptr - k), or 8681 * even done ptr -= k in a register, to get a safe access. 8682 */ 8683 if (rold->range > rcur->range) 8684 return false; 8685 /* If the offsets don't match, we can't trust our alignment; 8686 * nor can we be sure that we won't fall out of range. 8687 */ 8688 if (rold->off != rcur->off) 8689 return false; 8690 /* id relations must be preserved */ 8691 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8692 return false; 8693 /* new val must satisfy old val knowledge */ 8694 return range_within(rold, rcur) && 8695 tnum_in(rold->var_off, rcur->var_off); 8696 case PTR_TO_CTX: 8697 case CONST_PTR_TO_MAP: 8698 case PTR_TO_PACKET_END: 8699 case PTR_TO_FLOW_KEYS: 8700 case PTR_TO_SOCKET: 8701 case PTR_TO_SOCKET_OR_NULL: 8702 case PTR_TO_SOCK_COMMON: 8703 case PTR_TO_SOCK_COMMON_OR_NULL: 8704 case PTR_TO_TCP_SOCK: 8705 case PTR_TO_TCP_SOCK_OR_NULL: 8706 case PTR_TO_XDP_SOCK: 8707 /* Only valid matches are exact, which memcmp() above 8708 * would have accepted 8709 */ 8710 default: 8711 /* Don't know what's going on, just say it's not safe */ 8712 return false; 8713 } 8714 8715 /* Shouldn't get here; if we do, say it's not safe */ 8716 WARN_ON_ONCE(1); 8717 return false; 8718 } 8719 8720 static bool stacksafe(struct bpf_func_state *old, 8721 struct bpf_func_state *cur, 8722 struct idpair *idmap) 8723 { 8724 int i, spi; 8725 8726 /* walk slots of the explored stack and ignore any additional 8727 * slots in the current stack, since explored(safe) state 8728 * didn't use them 8729 */ 8730 for (i = 0; i < old->allocated_stack; i++) { 8731 spi = i / BPF_REG_SIZE; 8732 8733 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8734 i += BPF_REG_SIZE - 1; 8735 /* explored state didn't use this */ 8736 continue; 8737 } 8738 8739 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8740 continue; 8741 8742 /* explored stack has more populated slots than current stack 8743 * and these slots were used 8744 */ 8745 if (i >= cur->allocated_stack) 8746 return false; 8747 8748 /* if old state was safe with misc data in the stack 8749 * it will be safe with zero-initialized stack. 8750 * The opposite is not true 8751 */ 8752 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8753 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8754 continue; 8755 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8756 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8757 /* Ex: old explored (safe) state has STACK_SPILL in 8758 * this stack slot, but current has STACK_MISC -> 8759 * this verifier states are not equivalent, 8760 * return false to continue verification of this path 8761 */ 8762 return false; 8763 if (i % BPF_REG_SIZE) 8764 continue; 8765 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8766 continue; 8767 if (!regsafe(&old->stack[spi].spilled_ptr, 8768 &cur->stack[spi].spilled_ptr, 8769 idmap)) 8770 /* when explored and current stack slot are both storing 8771 * spilled registers, check that stored pointers types 8772 * are the same as well. 8773 * Ex: explored safe path could have stored 8774 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8775 * but current path has stored: 8776 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8777 * such verifier states are not equivalent. 8778 * return false to continue verification of this path 8779 */ 8780 return false; 8781 } 8782 return true; 8783 } 8784 8785 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8786 { 8787 if (old->acquired_refs != cur->acquired_refs) 8788 return false; 8789 return !memcmp(old->refs, cur->refs, 8790 sizeof(*old->refs) * old->acquired_refs); 8791 } 8792 8793 /* compare two verifier states 8794 * 8795 * all states stored in state_list are known to be valid, since 8796 * verifier reached 'bpf_exit' instruction through them 8797 * 8798 * this function is called when verifier exploring different branches of 8799 * execution popped from the state stack. If it sees an old state that has 8800 * more strict register state and more strict stack state then this execution 8801 * branch doesn't need to be explored further, since verifier already 8802 * concluded that more strict state leads to valid finish. 8803 * 8804 * Therefore two states are equivalent if register state is more conservative 8805 * and explored stack state is more conservative than the current one. 8806 * Example: 8807 * explored current 8808 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8809 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8810 * 8811 * In other words if current stack state (one being explored) has more 8812 * valid slots than old one that already passed validation, it means 8813 * the verifier can stop exploring and conclude that current state is valid too 8814 * 8815 * Similarly with registers. If explored state has register type as invalid 8816 * whereas register type in current state is meaningful, it means that 8817 * the current state will reach 'bpf_exit' instruction safely 8818 */ 8819 static bool func_states_equal(struct bpf_func_state *old, 8820 struct bpf_func_state *cur) 8821 { 8822 struct idpair *idmap; 8823 bool ret = false; 8824 int i; 8825 8826 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8827 /* If we failed to allocate the idmap, just say it's not safe */ 8828 if (!idmap) 8829 return false; 8830 8831 for (i = 0; i < MAX_BPF_REG; i++) { 8832 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8833 goto out_free; 8834 } 8835 8836 if (!stacksafe(old, cur, idmap)) 8837 goto out_free; 8838 8839 if (!refsafe(old, cur)) 8840 goto out_free; 8841 ret = true; 8842 out_free: 8843 kfree(idmap); 8844 return ret; 8845 } 8846 8847 static bool states_equal(struct bpf_verifier_env *env, 8848 struct bpf_verifier_state *old, 8849 struct bpf_verifier_state *cur) 8850 { 8851 int i; 8852 8853 if (old->curframe != cur->curframe) 8854 return false; 8855 8856 /* Verification state from speculative execution simulation 8857 * must never prune a non-speculative execution one. 8858 */ 8859 if (old->speculative && !cur->speculative) 8860 return false; 8861 8862 if (old->active_spin_lock != cur->active_spin_lock) 8863 return false; 8864 8865 /* for states to be equal callsites have to be the same 8866 * and all frame states need to be equivalent 8867 */ 8868 for (i = 0; i <= old->curframe; i++) { 8869 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8870 return false; 8871 if (!func_states_equal(old->frame[i], cur->frame[i])) 8872 return false; 8873 } 8874 return true; 8875 } 8876 8877 /* Return 0 if no propagation happened. Return negative error code if error 8878 * happened. Otherwise, return the propagated bit. 8879 */ 8880 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8881 struct bpf_reg_state *reg, 8882 struct bpf_reg_state *parent_reg) 8883 { 8884 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8885 u8 flag = reg->live & REG_LIVE_READ; 8886 int err; 8887 8888 /* When comes here, read flags of PARENT_REG or REG could be any of 8889 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8890 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8891 */ 8892 if (parent_flag == REG_LIVE_READ64 || 8893 /* Or if there is no read flag from REG. */ 8894 !flag || 8895 /* Or if the read flag from REG is the same as PARENT_REG. */ 8896 parent_flag == flag) 8897 return 0; 8898 8899 err = mark_reg_read(env, reg, parent_reg, flag); 8900 if (err) 8901 return err; 8902 8903 return flag; 8904 } 8905 8906 /* A write screens off any subsequent reads; but write marks come from the 8907 * straight-line code between a state and its parent. When we arrive at an 8908 * equivalent state (jump target or such) we didn't arrive by the straight-line 8909 * code, so read marks in the state must propagate to the parent regardless 8910 * of the state's write marks. That's what 'parent == state->parent' comparison 8911 * in mark_reg_read() is for. 8912 */ 8913 static int propagate_liveness(struct bpf_verifier_env *env, 8914 const struct bpf_verifier_state *vstate, 8915 struct bpf_verifier_state *vparent) 8916 { 8917 struct bpf_reg_state *state_reg, *parent_reg; 8918 struct bpf_func_state *state, *parent; 8919 int i, frame, err = 0; 8920 8921 if (vparent->curframe != vstate->curframe) { 8922 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8923 vparent->curframe, vstate->curframe); 8924 return -EFAULT; 8925 } 8926 /* Propagate read liveness of registers... */ 8927 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8928 for (frame = 0; frame <= vstate->curframe; frame++) { 8929 parent = vparent->frame[frame]; 8930 state = vstate->frame[frame]; 8931 parent_reg = parent->regs; 8932 state_reg = state->regs; 8933 /* We don't need to worry about FP liveness, it's read-only */ 8934 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8935 err = propagate_liveness_reg(env, &state_reg[i], 8936 &parent_reg[i]); 8937 if (err < 0) 8938 return err; 8939 if (err == REG_LIVE_READ64) 8940 mark_insn_zext(env, &parent_reg[i]); 8941 } 8942 8943 /* Propagate stack slots. */ 8944 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8945 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8946 parent_reg = &parent->stack[i].spilled_ptr; 8947 state_reg = &state->stack[i].spilled_ptr; 8948 err = propagate_liveness_reg(env, state_reg, 8949 parent_reg); 8950 if (err < 0) 8951 return err; 8952 } 8953 } 8954 return 0; 8955 } 8956 8957 /* find precise scalars in the previous equivalent state and 8958 * propagate them into the current state 8959 */ 8960 static int propagate_precision(struct bpf_verifier_env *env, 8961 const struct bpf_verifier_state *old) 8962 { 8963 struct bpf_reg_state *state_reg; 8964 struct bpf_func_state *state; 8965 int i, err = 0; 8966 8967 state = old->frame[old->curframe]; 8968 state_reg = state->regs; 8969 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8970 if (state_reg->type != SCALAR_VALUE || 8971 !state_reg->precise) 8972 continue; 8973 if (env->log.level & BPF_LOG_LEVEL2) 8974 verbose(env, "propagating r%d\n", i); 8975 err = mark_chain_precision(env, i); 8976 if (err < 0) 8977 return err; 8978 } 8979 8980 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8981 if (state->stack[i].slot_type[0] != STACK_SPILL) 8982 continue; 8983 state_reg = &state->stack[i].spilled_ptr; 8984 if (state_reg->type != SCALAR_VALUE || 8985 !state_reg->precise) 8986 continue; 8987 if (env->log.level & BPF_LOG_LEVEL2) 8988 verbose(env, "propagating fp%d\n", 8989 (-i - 1) * BPF_REG_SIZE); 8990 err = mark_chain_precision_stack(env, i); 8991 if (err < 0) 8992 return err; 8993 } 8994 return 0; 8995 } 8996 8997 static bool states_maybe_looping(struct bpf_verifier_state *old, 8998 struct bpf_verifier_state *cur) 8999 { 9000 struct bpf_func_state *fold, *fcur; 9001 int i, fr = cur->curframe; 9002 9003 if (old->curframe != fr) 9004 return false; 9005 9006 fold = old->frame[fr]; 9007 fcur = cur->frame[fr]; 9008 for (i = 0; i < MAX_BPF_REG; i++) 9009 if (memcmp(&fold->regs[i], &fcur->regs[i], 9010 offsetof(struct bpf_reg_state, parent))) 9011 return false; 9012 return true; 9013 } 9014 9015 9016 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9017 { 9018 struct bpf_verifier_state_list *new_sl; 9019 struct bpf_verifier_state_list *sl, **pprev; 9020 struct bpf_verifier_state *cur = env->cur_state, *new; 9021 int i, j, err, states_cnt = 0; 9022 bool add_new_state = env->test_state_freq ? true : false; 9023 9024 cur->last_insn_idx = env->prev_insn_idx; 9025 if (!env->insn_aux_data[insn_idx].prune_point) 9026 /* this 'insn_idx' instruction wasn't marked, so we will not 9027 * be doing state search here 9028 */ 9029 return 0; 9030 9031 /* bpf progs typically have pruning point every 4 instructions 9032 * http://vger.kernel.org/bpfconf2019.html#session-1 9033 * Do not add new state for future pruning if the verifier hasn't seen 9034 * at least 2 jumps and at least 8 instructions. 9035 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9036 * In tests that amounts to up to 50% reduction into total verifier 9037 * memory consumption and 20% verifier time speedup. 9038 */ 9039 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9040 env->insn_processed - env->prev_insn_processed >= 8) 9041 add_new_state = true; 9042 9043 pprev = explored_state(env, insn_idx); 9044 sl = *pprev; 9045 9046 clean_live_states(env, insn_idx, cur); 9047 9048 while (sl) { 9049 states_cnt++; 9050 if (sl->state.insn_idx != insn_idx) 9051 goto next; 9052 if (sl->state.branches) { 9053 if (states_maybe_looping(&sl->state, cur) && 9054 states_equal(env, &sl->state, cur)) { 9055 verbose_linfo(env, insn_idx, "; "); 9056 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9057 return -EINVAL; 9058 } 9059 /* if the verifier is processing a loop, avoid adding new state 9060 * too often, since different loop iterations have distinct 9061 * states and may not help future pruning. 9062 * This threshold shouldn't be too low to make sure that 9063 * a loop with large bound will be rejected quickly. 9064 * The most abusive loop will be: 9065 * r1 += 1 9066 * if r1 < 1000000 goto pc-2 9067 * 1M insn_procssed limit / 100 == 10k peak states. 9068 * This threshold shouldn't be too high either, since states 9069 * at the end of the loop are likely to be useful in pruning. 9070 */ 9071 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9072 env->insn_processed - env->prev_insn_processed < 100) 9073 add_new_state = false; 9074 goto miss; 9075 } 9076 if (states_equal(env, &sl->state, cur)) { 9077 sl->hit_cnt++; 9078 /* reached equivalent register/stack state, 9079 * prune the search. 9080 * Registers read by the continuation are read by us. 9081 * If we have any write marks in env->cur_state, they 9082 * will prevent corresponding reads in the continuation 9083 * from reaching our parent (an explored_state). Our 9084 * own state will get the read marks recorded, but 9085 * they'll be immediately forgotten as we're pruning 9086 * this state and will pop a new one. 9087 */ 9088 err = propagate_liveness(env, &sl->state, cur); 9089 9090 /* if previous state reached the exit with precision and 9091 * current state is equivalent to it (except precsion marks) 9092 * the precision needs to be propagated back in 9093 * the current state. 9094 */ 9095 err = err ? : push_jmp_history(env, cur); 9096 err = err ? : propagate_precision(env, &sl->state); 9097 if (err) 9098 return err; 9099 return 1; 9100 } 9101 miss: 9102 /* when new state is not going to be added do not increase miss count. 9103 * Otherwise several loop iterations will remove the state 9104 * recorded earlier. The goal of these heuristics is to have 9105 * states from some iterations of the loop (some in the beginning 9106 * and some at the end) to help pruning. 9107 */ 9108 if (add_new_state) 9109 sl->miss_cnt++; 9110 /* heuristic to determine whether this state is beneficial 9111 * to keep checking from state equivalence point of view. 9112 * Higher numbers increase max_states_per_insn and verification time, 9113 * but do not meaningfully decrease insn_processed. 9114 */ 9115 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9116 /* the state is unlikely to be useful. Remove it to 9117 * speed up verification 9118 */ 9119 *pprev = sl->next; 9120 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9121 u32 br = sl->state.branches; 9122 9123 WARN_ONCE(br, 9124 "BUG live_done but branches_to_explore %d\n", 9125 br); 9126 free_verifier_state(&sl->state, false); 9127 kfree(sl); 9128 env->peak_states--; 9129 } else { 9130 /* cannot free this state, since parentage chain may 9131 * walk it later. Add it for free_list instead to 9132 * be freed at the end of verification 9133 */ 9134 sl->next = env->free_list; 9135 env->free_list = sl; 9136 } 9137 sl = *pprev; 9138 continue; 9139 } 9140 next: 9141 pprev = &sl->next; 9142 sl = *pprev; 9143 } 9144 9145 if (env->max_states_per_insn < states_cnt) 9146 env->max_states_per_insn = states_cnt; 9147 9148 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9149 return push_jmp_history(env, cur); 9150 9151 if (!add_new_state) 9152 return push_jmp_history(env, cur); 9153 9154 /* There were no equivalent states, remember the current one. 9155 * Technically the current state is not proven to be safe yet, 9156 * but it will either reach outer most bpf_exit (which means it's safe) 9157 * or it will be rejected. When there are no loops the verifier won't be 9158 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9159 * again on the way to bpf_exit. 9160 * When looping the sl->state.branches will be > 0 and this state 9161 * will not be considered for equivalence until branches == 0. 9162 */ 9163 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9164 if (!new_sl) 9165 return -ENOMEM; 9166 env->total_states++; 9167 env->peak_states++; 9168 env->prev_jmps_processed = env->jmps_processed; 9169 env->prev_insn_processed = env->insn_processed; 9170 9171 /* add new state to the head of linked list */ 9172 new = &new_sl->state; 9173 err = copy_verifier_state(new, cur); 9174 if (err) { 9175 free_verifier_state(new, false); 9176 kfree(new_sl); 9177 return err; 9178 } 9179 new->insn_idx = insn_idx; 9180 WARN_ONCE(new->branches != 1, 9181 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9182 9183 cur->parent = new; 9184 cur->first_insn_idx = insn_idx; 9185 clear_jmp_history(cur); 9186 new_sl->next = *explored_state(env, insn_idx); 9187 *explored_state(env, insn_idx) = new_sl; 9188 /* connect new state to parentage chain. Current frame needs all 9189 * registers connected. Only r6 - r9 of the callers are alive (pushed 9190 * to the stack implicitly by JITs) so in callers' frames connect just 9191 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9192 * the state of the call instruction (with WRITTEN set), and r0 comes 9193 * from callee with its full parentage chain, anyway. 9194 */ 9195 /* clear write marks in current state: the writes we did are not writes 9196 * our child did, so they don't screen off its reads from us. 9197 * (There are no read marks in current state, because reads always mark 9198 * their parent and current state never has children yet. Only 9199 * explored_states can get read marks.) 9200 */ 9201 for (j = 0; j <= cur->curframe; j++) { 9202 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9203 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9204 for (i = 0; i < BPF_REG_FP; i++) 9205 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9206 } 9207 9208 /* all stack frames are accessible from callee, clear them all */ 9209 for (j = 0; j <= cur->curframe; j++) { 9210 struct bpf_func_state *frame = cur->frame[j]; 9211 struct bpf_func_state *newframe = new->frame[j]; 9212 9213 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9214 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9215 frame->stack[i].spilled_ptr.parent = 9216 &newframe->stack[i].spilled_ptr; 9217 } 9218 } 9219 return 0; 9220 } 9221 9222 /* Return true if it's OK to have the same insn return a different type. */ 9223 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9224 { 9225 switch (type) { 9226 case PTR_TO_CTX: 9227 case PTR_TO_SOCKET: 9228 case PTR_TO_SOCKET_OR_NULL: 9229 case PTR_TO_SOCK_COMMON: 9230 case PTR_TO_SOCK_COMMON_OR_NULL: 9231 case PTR_TO_TCP_SOCK: 9232 case PTR_TO_TCP_SOCK_OR_NULL: 9233 case PTR_TO_XDP_SOCK: 9234 case PTR_TO_BTF_ID: 9235 case PTR_TO_BTF_ID_OR_NULL: 9236 return false; 9237 default: 9238 return true; 9239 } 9240 } 9241 9242 /* If an instruction was previously used with particular pointer types, then we 9243 * need to be careful to avoid cases such as the below, where it may be ok 9244 * for one branch accessing the pointer, but not ok for the other branch: 9245 * 9246 * R1 = sock_ptr 9247 * goto X; 9248 * ... 9249 * R1 = some_other_valid_ptr; 9250 * goto X; 9251 * ... 9252 * R2 = *(u32 *)(R1 + 0); 9253 */ 9254 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9255 { 9256 return src != prev && (!reg_type_mismatch_ok(src) || 9257 !reg_type_mismatch_ok(prev)); 9258 } 9259 9260 static int do_check(struct bpf_verifier_env *env) 9261 { 9262 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9263 struct bpf_verifier_state *state = env->cur_state; 9264 struct bpf_insn *insns = env->prog->insnsi; 9265 struct bpf_reg_state *regs; 9266 int insn_cnt = env->prog->len; 9267 bool do_print_state = false; 9268 int prev_insn_idx = -1; 9269 9270 for (;;) { 9271 struct bpf_insn *insn; 9272 u8 class; 9273 int err; 9274 9275 env->prev_insn_idx = prev_insn_idx; 9276 if (env->insn_idx >= insn_cnt) { 9277 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9278 env->insn_idx, insn_cnt); 9279 return -EFAULT; 9280 } 9281 9282 insn = &insns[env->insn_idx]; 9283 class = BPF_CLASS(insn->code); 9284 9285 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9286 verbose(env, 9287 "BPF program is too large. Processed %d insn\n", 9288 env->insn_processed); 9289 return -E2BIG; 9290 } 9291 9292 err = is_state_visited(env, env->insn_idx); 9293 if (err < 0) 9294 return err; 9295 if (err == 1) { 9296 /* found equivalent state, can prune the search */ 9297 if (env->log.level & BPF_LOG_LEVEL) { 9298 if (do_print_state) 9299 verbose(env, "\nfrom %d to %d%s: safe\n", 9300 env->prev_insn_idx, env->insn_idx, 9301 env->cur_state->speculative ? 9302 " (speculative execution)" : ""); 9303 else 9304 verbose(env, "%d: safe\n", env->insn_idx); 9305 } 9306 goto process_bpf_exit; 9307 } 9308 9309 if (signal_pending(current)) 9310 return -EAGAIN; 9311 9312 if (need_resched()) 9313 cond_resched(); 9314 9315 if (env->log.level & BPF_LOG_LEVEL2 || 9316 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9317 if (env->log.level & BPF_LOG_LEVEL2) 9318 verbose(env, "%d:", env->insn_idx); 9319 else 9320 verbose(env, "\nfrom %d to %d%s:", 9321 env->prev_insn_idx, env->insn_idx, 9322 env->cur_state->speculative ? 9323 " (speculative execution)" : ""); 9324 print_verifier_state(env, state->frame[state->curframe]); 9325 do_print_state = false; 9326 } 9327 9328 if (env->log.level & BPF_LOG_LEVEL) { 9329 const struct bpf_insn_cbs cbs = { 9330 .cb_print = verbose, 9331 .private_data = env, 9332 }; 9333 9334 verbose_linfo(env, env->insn_idx, "; "); 9335 verbose(env, "%d: ", env->insn_idx); 9336 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9337 } 9338 9339 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9340 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9341 env->prev_insn_idx); 9342 if (err) 9343 return err; 9344 } 9345 9346 regs = cur_regs(env); 9347 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9348 prev_insn_idx = env->insn_idx; 9349 9350 if (class == BPF_ALU || class == BPF_ALU64) { 9351 err = check_alu_op(env, insn); 9352 if (err) 9353 return err; 9354 9355 } else if (class == BPF_LDX) { 9356 enum bpf_reg_type *prev_src_type, src_reg_type; 9357 9358 /* check for reserved fields is already done */ 9359 9360 /* check src operand */ 9361 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9362 if (err) 9363 return err; 9364 9365 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9366 if (err) 9367 return err; 9368 9369 src_reg_type = regs[insn->src_reg].type; 9370 9371 /* check that memory (src_reg + off) is readable, 9372 * the state of dst_reg will be updated by this func 9373 */ 9374 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9375 insn->off, BPF_SIZE(insn->code), 9376 BPF_READ, insn->dst_reg, false); 9377 if (err) 9378 return err; 9379 9380 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9381 9382 if (*prev_src_type == NOT_INIT) { 9383 /* saw a valid insn 9384 * dst_reg = *(u32 *)(src_reg + off) 9385 * save type to validate intersecting paths 9386 */ 9387 *prev_src_type = src_reg_type; 9388 9389 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9390 /* ABuser program is trying to use the same insn 9391 * dst_reg = *(u32*) (src_reg + off) 9392 * with different pointer types: 9393 * src_reg == ctx in one branch and 9394 * src_reg == stack|map in some other branch. 9395 * Reject it. 9396 */ 9397 verbose(env, "same insn cannot be used with different pointers\n"); 9398 return -EINVAL; 9399 } 9400 9401 } else if (class == BPF_STX) { 9402 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9403 9404 if (BPF_MODE(insn->code) == BPF_XADD) { 9405 err = check_xadd(env, env->insn_idx, insn); 9406 if (err) 9407 return err; 9408 env->insn_idx++; 9409 continue; 9410 } 9411 9412 /* check src1 operand */ 9413 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9414 if (err) 9415 return err; 9416 /* check src2 operand */ 9417 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9418 if (err) 9419 return err; 9420 9421 dst_reg_type = regs[insn->dst_reg].type; 9422 9423 /* check that memory (dst_reg + off) is writeable */ 9424 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9425 insn->off, BPF_SIZE(insn->code), 9426 BPF_WRITE, insn->src_reg, false); 9427 if (err) 9428 return err; 9429 9430 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9431 9432 if (*prev_dst_type == NOT_INIT) { 9433 *prev_dst_type = dst_reg_type; 9434 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9435 verbose(env, "same insn cannot be used with different pointers\n"); 9436 return -EINVAL; 9437 } 9438 9439 } else if (class == BPF_ST) { 9440 if (BPF_MODE(insn->code) != BPF_MEM || 9441 insn->src_reg != BPF_REG_0) { 9442 verbose(env, "BPF_ST uses reserved fields\n"); 9443 return -EINVAL; 9444 } 9445 /* check src operand */ 9446 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9447 if (err) 9448 return err; 9449 9450 if (is_ctx_reg(env, insn->dst_reg)) { 9451 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 9452 insn->dst_reg, 9453 reg_type_str[reg_state(env, insn->dst_reg)->type]); 9454 return -EACCES; 9455 } 9456 9457 /* check that memory (dst_reg + off) is writeable */ 9458 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9459 insn->off, BPF_SIZE(insn->code), 9460 BPF_WRITE, -1, false); 9461 if (err) 9462 return err; 9463 9464 } else if (class == BPF_JMP || class == BPF_JMP32) { 9465 u8 opcode = BPF_OP(insn->code); 9466 9467 env->jmps_processed++; 9468 if (opcode == BPF_CALL) { 9469 if (BPF_SRC(insn->code) != BPF_K || 9470 insn->off != 0 || 9471 (insn->src_reg != BPF_REG_0 && 9472 insn->src_reg != BPF_PSEUDO_CALL) || 9473 insn->dst_reg != BPF_REG_0 || 9474 class == BPF_JMP32) { 9475 verbose(env, "BPF_CALL uses reserved fields\n"); 9476 return -EINVAL; 9477 } 9478 9479 if (env->cur_state->active_spin_lock && 9480 (insn->src_reg == BPF_PSEUDO_CALL || 9481 insn->imm != BPF_FUNC_spin_unlock)) { 9482 verbose(env, "function calls are not allowed while holding a lock\n"); 9483 return -EINVAL; 9484 } 9485 if (insn->src_reg == BPF_PSEUDO_CALL) 9486 err = check_func_call(env, insn, &env->insn_idx); 9487 else 9488 err = check_helper_call(env, insn->imm, env->insn_idx); 9489 if (err) 9490 return err; 9491 9492 } else if (opcode == BPF_JA) { 9493 if (BPF_SRC(insn->code) != BPF_K || 9494 insn->imm != 0 || 9495 insn->src_reg != BPF_REG_0 || 9496 insn->dst_reg != BPF_REG_0 || 9497 class == BPF_JMP32) { 9498 verbose(env, "BPF_JA uses reserved fields\n"); 9499 return -EINVAL; 9500 } 9501 9502 env->insn_idx += insn->off + 1; 9503 continue; 9504 9505 } else if (opcode == BPF_EXIT) { 9506 if (BPF_SRC(insn->code) != BPF_K || 9507 insn->imm != 0 || 9508 insn->src_reg != BPF_REG_0 || 9509 insn->dst_reg != BPF_REG_0 || 9510 class == BPF_JMP32) { 9511 verbose(env, "BPF_EXIT uses reserved fields\n"); 9512 return -EINVAL; 9513 } 9514 9515 if (env->cur_state->active_spin_lock) { 9516 verbose(env, "bpf_spin_unlock is missing\n"); 9517 return -EINVAL; 9518 } 9519 9520 if (state->curframe) { 9521 /* exit from nested function */ 9522 err = prepare_func_exit(env, &env->insn_idx); 9523 if (err) 9524 return err; 9525 do_print_state = true; 9526 continue; 9527 } 9528 9529 err = check_reference_leak(env); 9530 if (err) 9531 return err; 9532 9533 err = check_return_code(env); 9534 if (err) 9535 return err; 9536 process_bpf_exit: 9537 update_branch_counts(env, env->cur_state); 9538 err = pop_stack(env, &prev_insn_idx, 9539 &env->insn_idx, pop_log); 9540 if (err < 0) { 9541 if (err != -ENOENT) 9542 return err; 9543 break; 9544 } else { 9545 do_print_state = true; 9546 continue; 9547 } 9548 } else { 9549 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9550 if (err) 9551 return err; 9552 } 9553 } else if (class == BPF_LD) { 9554 u8 mode = BPF_MODE(insn->code); 9555 9556 if (mode == BPF_ABS || mode == BPF_IND) { 9557 err = check_ld_abs(env, insn); 9558 if (err) 9559 return err; 9560 9561 } else if (mode == BPF_IMM) { 9562 err = check_ld_imm(env, insn); 9563 if (err) 9564 return err; 9565 9566 env->insn_idx++; 9567 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9568 } else { 9569 verbose(env, "invalid BPF_LD mode\n"); 9570 return -EINVAL; 9571 } 9572 } else { 9573 verbose(env, "unknown insn class %d\n", class); 9574 return -EINVAL; 9575 } 9576 9577 env->insn_idx++; 9578 } 9579 9580 return 0; 9581 } 9582 9583 /* replace pseudo btf_id with kernel symbol address */ 9584 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 9585 struct bpf_insn *insn, 9586 struct bpf_insn_aux_data *aux) 9587 { 9588 u32 datasec_id, type, id = insn->imm; 9589 const struct btf_var_secinfo *vsi; 9590 const struct btf_type *datasec; 9591 const struct btf_type *t; 9592 const char *sym_name; 9593 bool percpu = false; 9594 u64 addr; 9595 int i; 9596 9597 if (!btf_vmlinux) { 9598 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 9599 return -EINVAL; 9600 } 9601 9602 if (insn[1].imm != 0) { 9603 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n"); 9604 return -EINVAL; 9605 } 9606 9607 t = btf_type_by_id(btf_vmlinux, id); 9608 if (!t) { 9609 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 9610 return -ENOENT; 9611 } 9612 9613 if (!btf_type_is_var(t)) { 9614 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", 9615 id); 9616 return -EINVAL; 9617 } 9618 9619 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off); 9620 addr = kallsyms_lookup_name(sym_name); 9621 if (!addr) { 9622 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 9623 sym_name); 9624 return -ENOENT; 9625 } 9626 9627 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu", 9628 BTF_KIND_DATASEC); 9629 if (datasec_id > 0) { 9630 datasec = btf_type_by_id(btf_vmlinux, datasec_id); 9631 for_each_vsi(i, datasec, vsi) { 9632 if (vsi->type == id) { 9633 percpu = true; 9634 break; 9635 } 9636 } 9637 } 9638 9639 insn[0].imm = (u32)addr; 9640 insn[1].imm = addr >> 32; 9641 9642 type = t->type; 9643 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL); 9644 if (percpu) { 9645 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 9646 aux->btf_var.btf_id = type; 9647 } else if (!btf_type_is_struct(t)) { 9648 const struct btf_type *ret; 9649 const char *tname; 9650 u32 tsize; 9651 9652 /* resolve the type size of ksym. */ 9653 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 9654 if (IS_ERR(ret)) { 9655 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 9656 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 9657 tname, PTR_ERR(ret)); 9658 return -EINVAL; 9659 } 9660 aux->btf_var.reg_type = PTR_TO_MEM; 9661 aux->btf_var.mem_size = tsize; 9662 } else { 9663 aux->btf_var.reg_type = PTR_TO_BTF_ID; 9664 aux->btf_var.btf_id = type; 9665 } 9666 return 0; 9667 } 9668 9669 static int check_map_prealloc(struct bpf_map *map) 9670 { 9671 return (map->map_type != BPF_MAP_TYPE_HASH && 9672 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9673 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9674 !(map->map_flags & BPF_F_NO_PREALLOC); 9675 } 9676 9677 static bool is_tracing_prog_type(enum bpf_prog_type type) 9678 { 9679 switch (type) { 9680 case BPF_PROG_TYPE_KPROBE: 9681 case BPF_PROG_TYPE_TRACEPOINT: 9682 case BPF_PROG_TYPE_PERF_EVENT: 9683 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9684 return true; 9685 default: 9686 return false; 9687 } 9688 } 9689 9690 static bool is_preallocated_map(struct bpf_map *map) 9691 { 9692 if (!check_map_prealloc(map)) 9693 return false; 9694 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9695 return false; 9696 return true; 9697 } 9698 9699 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9700 struct bpf_map *map, 9701 struct bpf_prog *prog) 9702 9703 { 9704 enum bpf_prog_type prog_type = resolve_prog_type(prog); 9705 /* 9706 * Validate that trace type programs use preallocated hash maps. 9707 * 9708 * For programs attached to PERF events this is mandatory as the 9709 * perf NMI can hit any arbitrary code sequence. 9710 * 9711 * All other trace types using preallocated hash maps are unsafe as 9712 * well because tracepoint or kprobes can be inside locked regions 9713 * of the memory allocator or at a place where a recursion into the 9714 * memory allocator would see inconsistent state. 9715 * 9716 * On RT enabled kernels run-time allocation of all trace type 9717 * programs is strictly prohibited due to lock type constraints. On 9718 * !RT kernels it is allowed for backwards compatibility reasons for 9719 * now, but warnings are emitted so developers are made aware of 9720 * the unsafety and can fix their programs before this is enforced. 9721 */ 9722 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 9723 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 9724 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9725 return -EINVAL; 9726 } 9727 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9728 verbose(env, "trace type programs can only use preallocated hash map\n"); 9729 return -EINVAL; 9730 } 9731 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9732 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9733 } 9734 9735 if (map_value_has_spin_lock(map)) { 9736 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 9737 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 9738 return -EINVAL; 9739 } 9740 9741 if (is_tracing_prog_type(prog_type)) { 9742 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9743 return -EINVAL; 9744 } 9745 9746 if (prog->aux->sleepable) { 9747 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 9748 return -EINVAL; 9749 } 9750 } 9751 9752 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9753 !bpf_offload_prog_map_match(prog, map)) { 9754 verbose(env, "offload device mismatch between prog and map\n"); 9755 return -EINVAL; 9756 } 9757 9758 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9759 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9760 return -EINVAL; 9761 } 9762 9763 if (prog->aux->sleepable) 9764 switch (map->map_type) { 9765 case BPF_MAP_TYPE_HASH: 9766 case BPF_MAP_TYPE_LRU_HASH: 9767 case BPF_MAP_TYPE_ARRAY: 9768 if (!is_preallocated_map(map)) { 9769 verbose(env, 9770 "Sleepable programs can only use preallocated hash maps\n"); 9771 return -EINVAL; 9772 } 9773 break; 9774 default: 9775 verbose(env, 9776 "Sleepable programs can only use array and hash maps\n"); 9777 return -EINVAL; 9778 } 9779 9780 return 0; 9781 } 9782 9783 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9784 { 9785 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9786 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9787 } 9788 9789 /* find and rewrite pseudo imm in ld_imm64 instructions: 9790 * 9791 * 1. if it accesses map FD, replace it with actual map pointer. 9792 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 9793 * 9794 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 9795 */ 9796 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 9797 { 9798 struct bpf_insn *insn = env->prog->insnsi; 9799 int insn_cnt = env->prog->len; 9800 int i, j, err; 9801 9802 err = bpf_prog_calc_tag(env->prog); 9803 if (err) 9804 return err; 9805 9806 for (i = 0; i < insn_cnt; i++, insn++) { 9807 if (BPF_CLASS(insn->code) == BPF_LDX && 9808 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9809 verbose(env, "BPF_LDX uses reserved fields\n"); 9810 return -EINVAL; 9811 } 9812 9813 if (BPF_CLASS(insn->code) == BPF_STX && 9814 ((BPF_MODE(insn->code) != BPF_MEM && 9815 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9816 verbose(env, "BPF_STX uses reserved fields\n"); 9817 return -EINVAL; 9818 } 9819 9820 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9821 struct bpf_insn_aux_data *aux; 9822 struct bpf_map *map; 9823 struct fd f; 9824 u64 addr; 9825 9826 if (i == insn_cnt - 1 || insn[1].code != 0 || 9827 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9828 insn[1].off != 0) { 9829 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9830 return -EINVAL; 9831 } 9832 9833 if (insn[0].src_reg == 0) 9834 /* valid generic load 64-bit imm */ 9835 goto next_insn; 9836 9837 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 9838 aux = &env->insn_aux_data[i]; 9839 err = check_pseudo_btf_id(env, insn, aux); 9840 if (err) 9841 return err; 9842 goto next_insn; 9843 } 9844 9845 /* In final convert_pseudo_ld_imm64() step, this is 9846 * converted into regular 64-bit imm load insn. 9847 */ 9848 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9849 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9850 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9851 insn[1].imm != 0)) { 9852 verbose(env, 9853 "unrecognized bpf_ld_imm64 insn\n"); 9854 return -EINVAL; 9855 } 9856 9857 f = fdget(insn[0].imm); 9858 map = __bpf_map_get(f); 9859 if (IS_ERR(map)) { 9860 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9861 insn[0].imm); 9862 return PTR_ERR(map); 9863 } 9864 9865 err = check_map_prog_compatibility(env, map, env->prog); 9866 if (err) { 9867 fdput(f); 9868 return err; 9869 } 9870 9871 aux = &env->insn_aux_data[i]; 9872 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9873 addr = (unsigned long)map; 9874 } else { 9875 u32 off = insn[1].imm; 9876 9877 if (off >= BPF_MAX_VAR_OFF) { 9878 verbose(env, "direct value offset of %u is not allowed\n", off); 9879 fdput(f); 9880 return -EINVAL; 9881 } 9882 9883 if (!map->ops->map_direct_value_addr) { 9884 verbose(env, "no direct value access support for this map type\n"); 9885 fdput(f); 9886 return -EINVAL; 9887 } 9888 9889 err = map->ops->map_direct_value_addr(map, &addr, off); 9890 if (err) { 9891 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9892 map->value_size, off); 9893 fdput(f); 9894 return err; 9895 } 9896 9897 aux->map_off = off; 9898 addr += off; 9899 } 9900 9901 insn[0].imm = (u32)addr; 9902 insn[1].imm = addr >> 32; 9903 9904 /* check whether we recorded this map already */ 9905 for (j = 0; j < env->used_map_cnt; j++) { 9906 if (env->used_maps[j] == map) { 9907 aux->map_index = j; 9908 fdput(f); 9909 goto next_insn; 9910 } 9911 } 9912 9913 if (env->used_map_cnt >= MAX_USED_MAPS) { 9914 fdput(f); 9915 return -E2BIG; 9916 } 9917 9918 /* hold the map. If the program is rejected by verifier, 9919 * the map will be released by release_maps() or it 9920 * will be used by the valid program until it's unloaded 9921 * and all maps are released in free_used_maps() 9922 */ 9923 bpf_map_inc(map); 9924 9925 aux->map_index = env->used_map_cnt; 9926 env->used_maps[env->used_map_cnt++] = map; 9927 9928 if (bpf_map_is_cgroup_storage(map) && 9929 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9930 verbose(env, "only one cgroup storage of each type is allowed\n"); 9931 fdput(f); 9932 return -EBUSY; 9933 } 9934 9935 fdput(f); 9936 next_insn: 9937 insn++; 9938 i++; 9939 continue; 9940 } 9941 9942 /* Basic sanity check before we invest more work here. */ 9943 if (!bpf_opcode_in_insntable(insn->code)) { 9944 verbose(env, "unknown opcode %02x\n", insn->code); 9945 return -EINVAL; 9946 } 9947 } 9948 9949 /* now all pseudo BPF_LD_IMM64 instructions load valid 9950 * 'struct bpf_map *' into a register instead of user map_fd. 9951 * These pointers will be used later by verifier to validate map access. 9952 */ 9953 return 0; 9954 } 9955 9956 /* drop refcnt of maps used by the rejected program */ 9957 static void release_maps(struct bpf_verifier_env *env) 9958 { 9959 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9960 env->used_map_cnt); 9961 } 9962 9963 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9964 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9965 { 9966 struct bpf_insn *insn = env->prog->insnsi; 9967 int insn_cnt = env->prog->len; 9968 int i; 9969 9970 for (i = 0; i < insn_cnt; i++, insn++) 9971 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9972 insn->src_reg = 0; 9973 } 9974 9975 /* single env->prog->insni[off] instruction was replaced with the range 9976 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9977 * [0, off) and [off, end) to new locations, so the patched range stays zero 9978 */ 9979 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9980 struct bpf_prog *new_prog, u32 off, u32 cnt) 9981 { 9982 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9983 struct bpf_insn *insn = new_prog->insnsi; 9984 u32 prog_len; 9985 int i; 9986 9987 /* aux info at OFF always needs adjustment, no matter fast path 9988 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9989 * original insn at old prog. 9990 */ 9991 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9992 9993 if (cnt == 1) 9994 return 0; 9995 prog_len = new_prog->len; 9996 new_data = vzalloc(array_size(prog_len, 9997 sizeof(struct bpf_insn_aux_data))); 9998 if (!new_data) 9999 return -ENOMEM; 10000 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 10001 memcpy(new_data + off + cnt - 1, old_data + off, 10002 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 10003 for (i = off; i < off + cnt - 1; i++) { 10004 new_data[i].seen = env->pass_cnt; 10005 new_data[i].zext_dst = insn_has_def32(env, insn + i); 10006 } 10007 env->insn_aux_data = new_data; 10008 vfree(old_data); 10009 return 0; 10010 } 10011 10012 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10013 { 10014 int i; 10015 10016 if (len == 1) 10017 return; 10018 /* NOTE: fake 'exit' subprog should be updated as well. */ 10019 for (i = 0; i <= env->subprog_cnt; i++) { 10020 if (env->subprog_info[i].start <= off) 10021 continue; 10022 env->subprog_info[i].start += len - 1; 10023 } 10024 } 10025 10026 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10027 { 10028 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10029 int i, sz = prog->aux->size_poke_tab; 10030 struct bpf_jit_poke_descriptor *desc; 10031 10032 for (i = 0; i < sz; i++) { 10033 desc = &tab[i]; 10034 desc->insn_idx += len - 1; 10035 } 10036 } 10037 10038 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10039 const struct bpf_insn *patch, u32 len) 10040 { 10041 struct bpf_prog *new_prog; 10042 10043 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10044 if (IS_ERR(new_prog)) { 10045 if (PTR_ERR(new_prog) == -ERANGE) 10046 verbose(env, 10047 "insn %d cannot be patched due to 16-bit range\n", 10048 env->insn_aux_data[off].orig_idx); 10049 return NULL; 10050 } 10051 if (adjust_insn_aux_data(env, new_prog, off, len)) 10052 return NULL; 10053 adjust_subprog_starts(env, off, len); 10054 adjust_poke_descs(new_prog, len); 10055 return new_prog; 10056 } 10057 10058 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10059 u32 off, u32 cnt) 10060 { 10061 int i, j; 10062 10063 /* find first prog starting at or after off (first to remove) */ 10064 for (i = 0; i < env->subprog_cnt; i++) 10065 if (env->subprog_info[i].start >= off) 10066 break; 10067 /* find first prog starting at or after off + cnt (first to stay) */ 10068 for (j = i; j < env->subprog_cnt; j++) 10069 if (env->subprog_info[j].start >= off + cnt) 10070 break; 10071 /* if j doesn't start exactly at off + cnt, we are just removing 10072 * the front of previous prog 10073 */ 10074 if (env->subprog_info[j].start != off + cnt) 10075 j--; 10076 10077 if (j > i) { 10078 struct bpf_prog_aux *aux = env->prog->aux; 10079 int move; 10080 10081 /* move fake 'exit' subprog as well */ 10082 move = env->subprog_cnt + 1 - j; 10083 10084 memmove(env->subprog_info + i, 10085 env->subprog_info + j, 10086 sizeof(*env->subprog_info) * move); 10087 env->subprog_cnt -= j - i; 10088 10089 /* remove func_info */ 10090 if (aux->func_info) { 10091 move = aux->func_info_cnt - j; 10092 10093 memmove(aux->func_info + i, 10094 aux->func_info + j, 10095 sizeof(*aux->func_info) * move); 10096 aux->func_info_cnt -= j - i; 10097 /* func_info->insn_off is set after all code rewrites, 10098 * in adjust_btf_func() - no need to adjust 10099 */ 10100 } 10101 } else { 10102 /* convert i from "first prog to remove" to "first to adjust" */ 10103 if (env->subprog_info[i].start == off) 10104 i++; 10105 } 10106 10107 /* update fake 'exit' subprog as well */ 10108 for (; i <= env->subprog_cnt; i++) 10109 env->subprog_info[i].start -= cnt; 10110 10111 return 0; 10112 } 10113 10114 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10115 u32 cnt) 10116 { 10117 struct bpf_prog *prog = env->prog; 10118 u32 i, l_off, l_cnt, nr_linfo; 10119 struct bpf_line_info *linfo; 10120 10121 nr_linfo = prog->aux->nr_linfo; 10122 if (!nr_linfo) 10123 return 0; 10124 10125 linfo = prog->aux->linfo; 10126 10127 /* find first line info to remove, count lines to be removed */ 10128 for (i = 0; i < nr_linfo; i++) 10129 if (linfo[i].insn_off >= off) 10130 break; 10131 10132 l_off = i; 10133 l_cnt = 0; 10134 for (; i < nr_linfo; i++) 10135 if (linfo[i].insn_off < off + cnt) 10136 l_cnt++; 10137 else 10138 break; 10139 10140 /* First live insn doesn't match first live linfo, it needs to "inherit" 10141 * last removed linfo. prog is already modified, so prog->len == off 10142 * means no live instructions after (tail of the program was removed). 10143 */ 10144 if (prog->len != off && l_cnt && 10145 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10146 l_cnt--; 10147 linfo[--i].insn_off = off + cnt; 10148 } 10149 10150 /* remove the line info which refer to the removed instructions */ 10151 if (l_cnt) { 10152 memmove(linfo + l_off, linfo + i, 10153 sizeof(*linfo) * (nr_linfo - i)); 10154 10155 prog->aux->nr_linfo -= l_cnt; 10156 nr_linfo = prog->aux->nr_linfo; 10157 } 10158 10159 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10160 for (i = l_off; i < nr_linfo; i++) 10161 linfo[i].insn_off -= cnt; 10162 10163 /* fix up all subprogs (incl. 'exit') which start >= off */ 10164 for (i = 0; i <= env->subprog_cnt; i++) 10165 if (env->subprog_info[i].linfo_idx > l_off) { 10166 /* program may have started in the removed region but 10167 * may not be fully removed 10168 */ 10169 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10170 env->subprog_info[i].linfo_idx -= l_cnt; 10171 else 10172 env->subprog_info[i].linfo_idx = l_off; 10173 } 10174 10175 return 0; 10176 } 10177 10178 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10179 { 10180 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10181 unsigned int orig_prog_len = env->prog->len; 10182 int err; 10183 10184 if (bpf_prog_is_dev_bound(env->prog->aux)) 10185 bpf_prog_offload_remove_insns(env, off, cnt); 10186 10187 err = bpf_remove_insns(env->prog, off, cnt); 10188 if (err) 10189 return err; 10190 10191 err = adjust_subprog_starts_after_remove(env, off, cnt); 10192 if (err) 10193 return err; 10194 10195 err = bpf_adj_linfo_after_remove(env, off, cnt); 10196 if (err) 10197 return err; 10198 10199 memmove(aux_data + off, aux_data + off + cnt, 10200 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10201 10202 return 0; 10203 } 10204 10205 /* The verifier does more data flow analysis than llvm and will not 10206 * explore branches that are dead at run time. Malicious programs can 10207 * have dead code too. Therefore replace all dead at-run-time code 10208 * with 'ja -1'. 10209 * 10210 * Just nops are not optimal, e.g. if they would sit at the end of the 10211 * program and through another bug we would manage to jump there, then 10212 * we'd execute beyond program memory otherwise. Returning exception 10213 * code also wouldn't work since we can have subprogs where the dead 10214 * code could be located. 10215 */ 10216 static void sanitize_dead_code(struct bpf_verifier_env *env) 10217 { 10218 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10219 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10220 struct bpf_insn *insn = env->prog->insnsi; 10221 const int insn_cnt = env->prog->len; 10222 int i; 10223 10224 for (i = 0; i < insn_cnt; i++) { 10225 if (aux_data[i].seen) 10226 continue; 10227 memcpy(insn + i, &trap, sizeof(trap)); 10228 } 10229 } 10230 10231 static bool insn_is_cond_jump(u8 code) 10232 { 10233 u8 op; 10234 10235 if (BPF_CLASS(code) == BPF_JMP32) 10236 return true; 10237 10238 if (BPF_CLASS(code) != BPF_JMP) 10239 return false; 10240 10241 op = BPF_OP(code); 10242 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10243 } 10244 10245 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10246 { 10247 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10248 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10249 struct bpf_insn *insn = env->prog->insnsi; 10250 const int insn_cnt = env->prog->len; 10251 int i; 10252 10253 for (i = 0; i < insn_cnt; i++, insn++) { 10254 if (!insn_is_cond_jump(insn->code)) 10255 continue; 10256 10257 if (!aux_data[i + 1].seen) 10258 ja.off = insn->off; 10259 else if (!aux_data[i + 1 + insn->off].seen) 10260 ja.off = 0; 10261 else 10262 continue; 10263 10264 if (bpf_prog_is_dev_bound(env->prog->aux)) 10265 bpf_prog_offload_replace_insn(env, i, &ja); 10266 10267 memcpy(insn, &ja, sizeof(ja)); 10268 } 10269 } 10270 10271 static int opt_remove_dead_code(struct bpf_verifier_env *env) 10272 { 10273 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10274 int insn_cnt = env->prog->len; 10275 int i, err; 10276 10277 for (i = 0; i < insn_cnt; i++) { 10278 int j; 10279 10280 j = 0; 10281 while (i + j < insn_cnt && !aux_data[i + j].seen) 10282 j++; 10283 if (!j) 10284 continue; 10285 10286 err = verifier_remove_insns(env, i, j); 10287 if (err) 10288 return err; 10289 insn_cnt = env->prog->len; 10290 } 10291 10292 return 0; 10293 } 10294 10295 static int opt_remove_nops(struct bpf_verifier_env *env) 10296 { 10297 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10298 struct bpf_insn *insn = env->prog->insnsi; 10299 int insn_cnt = env->prog->len; 10300 int i, err; 10301 10302 for (i = 0; i < insn_cnt; i++) { 10303 if (memcmp(&insn[i], &ja, sizeof(ja))) 10304 continue; 10305 10306 err = verifier_remove_insns(env, i, 1); 10307 if (err) 10308 return err; 10309 insn_cnt--; 10310 i--; 10311 } 10312 10313 return 0; 10314 } 10315 10316 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10317 const union bpf_attr *attr) 10318 { 10319 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10320 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10321 int i, patch_len, delta = 0, len = env->prog->len; 10322 struct bpf_insn *insns = env->prog->insnsi; 10323 struct bpf_prog *new_prog; 10324 bool rnd_hi32; 10325 10326 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10327 zext_patch[1] = BPF_ZEXT_REG(0); 10328 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10329 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10330 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10331 for (i = 0; i < len; i++) { 10332 int adj_idx = i + delta; 10333 struct bpf_insn insn; 10334 10335 insn = insns[adj_idx]; 10336 if (!aux[adj_idx].zext_dst) { 10337 u8 code, class; 10338 u32 imm_rnd; 10339 10340 if (!rnd_hi32) 10341 continue; 10342 10343 code = insn.code; 10344 class = BPF_CLASS(code); 10345 if (insn_no_def(&insn)) 10346 continue; 10347 10348 /* NOTE: arg "reg" (the fourth one) is only used for 10349 * BPF_STX which has been ruled out in above 10350 * check, it is safe to pass NULL here. 10351 */ 10352 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10353 if (class == BPF_LD && 10354 BPF_MODE(code) == BPF_IMM) 10355 i++; 10356 continue; 10357 } 10358 10359 /* ctx load could be transformed into wider load. */ 10360 if (class == BPF_LDX && 10361 aux[adj_idx].ptr_type == PTR_TO_CTX) 10362 continue; 10363 10364 imm_rnd = get_random_int(); 10365 rnd_hi32_patch[0] = insn; 10366 rnd_hi32_patch[1].imm = imm_rnd; 10367 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10368 patch = rnd_hi32_patch; 10369 patch_len = 4; 10370 goto apply_patch_buffer; 10371 } 10372 10373 if (!bpf_jit_needs_zext()) 10374 continue; 10375 10376 zext_patch[0] = insn; 10377 zext_patch[1].dst_reg = insn.dst_reg; 10378 zext_patch[1].src_reg = insn.dst_reg; 10379 patch = zext_patch; 10380 patch_len = 2; 10381 apply_patch_buffer: 10382 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10383 if (!new_prog) 10384 return -ENOMEM; 10385 env->prog = new_prog; 10386 insns = new_prog->insnsi; 10387 aux = env->insn_aux_data; 10388 delta += patch_len - 1; 10389 } 10390 10391 return 0; 10392 } 10393 10394 /* convert load instructions that access fields of a context type into a 10395 * sequence of instructions that access fields of the underlying structure: 10396 * struct __sk_buff -> struct sk_buff 10397 * struct bpf_sock_ops -> struct sock 10398 */ 10399 static int convert_ctx_accesses(struct bpf_verifier_env *env) 10400 { 10401 const struct bpf_verifier_ops *ops = env->ops; 10402 int i, cnt, size, ctx_field_size, delta = 0; 10403 const int insn_cnt = env->prog->len; 10404 struct bpf_insn insn_buf[16], *insn; 10405 u32 target_size, size_default, off; 10406 struct bpf_prog *new_prog; 10407 enum bpf_access_type type; 10408 bool is_narrower_load; 10409 10410 if (ops->gen_prologue || env->seen_direct_write) { 10411 if (!ops->gen_prologue) { 10412 verbose(env, "bpf verifier is misconfigured\n"); 10413 return -EINVAL; 10414 } 10415 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 10416 env->prog); 10417 if (cnt >= ARRAY_SIZE(insn_buf)) { 10418 verbose(env, "bpf verifier is misconfigured\n"); 10419 return -EINVAL; 10420 } else if (cnt) { 10421 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10422 if (!new_prog) 10423 return -ENOMEM; 10424 10425 env->prog = new_prog; 10426 delta += cnt - 1; 10427 } 10428 } 10429 10430 if (bpf_prog_is_dev_bound(env->prog->aux)) 10431 return 0; 10432 10433 insn = env->prog->insnsi + delta; 10434 10435 for (i = 0; i < insn_cnt; i++, insn++) { 10436 bpf_convert_ctx_access_t convert_ctx_access; 10437 10438 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 10439 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10440 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 10441 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 10442 type = BPF_READ; 10443 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 10444 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10445 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 10446 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 10447 type = BPF_WRITE; 10448 else 10449 continue; 10450 10451 if (type == BPF_WRITE && 10452 env->insn_aux_data[i + delta].sanitize_stack_off) { 10453 struct bpf_insn patch[] = { 10454 /* Sanitize suspicious stack slot with zero. 10455 * There are no memory dependencies for this store, 10456 * since it's only using frame pointer and immediate 10457 * constant of zero 10458 */ 10459 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 10460 env->insn_aux_data[i + delta].sanitize_stack_off, 10461 0), 10462 /* the original STX instruction will immediately 10463 * overwrite the same stack slot with appropriate value 10464 */ 10465 *insn, 10466 }; 10467 10468 cnt = ARRAY_SIZE(patch); 10469 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10470 if (!new_prog) 10471 return -ENOMEM; 10472 10473 delta += cnt - 1; 10474 env->prog = new_prog; 10475 insn = new_prog->insnsi + i + delta; 10476 continue; 10477 } 10478 10479 switch (env->insn_aux_data[i + delta].ptr_type) { 10480 case PTR_TO_CTX: 10481 if (!ops->convert_ctx_access) 10482 continue; 10483 convert_ctx_access = ops->convert_ctx_access; 10484 break; 10485 case PTR_TO_SOCKET: 10486 case PTR_TO_SOCK_COMMON: 10487 convert_ctx_access = bpf_sock_convert_ctx_access; 10488 break; 10489 case PTR_TO_TCP_SOCK: 10490 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10491 break; 10492 case PTR_TO_XDP_SOCK: 10493 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10494 break; 10495 case PTR_TO_BTF_ID: 10496 if (type == BPF_READ) { 10497 insn->code = BPF_LDX | BPF_PROBE_MEM | 10498 BPF_SIZE((insn)->code); 10499 env->prog->aux->num_exentries++; 10500 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10501 verbose(env, "Writes through BTF pointers are not allowed\n"); 10502 return -EINVAL; 10503 } 10504 continue; 10505 default: 10506 continue; 10507 } 10508 10509 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10510 size = BPF_LDST_BYTES(insn); 10511 10512 /* If the read access is a narrower load of the field, 10513 * convert to a 4/8-byte load, to minimum program type specific 10514 * convert_ctx_access changes. If conversion is successful, 10515 * we will apply proper mask to the result. 10516 */ 10517 is_narrower_load = size < ctx_field_size; 10518 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10519 off = insn->off; 10520 if (is_narrower_load) { 10521 u8 size_code; 10522 10523 if (type == BPF_WRITE) { 10524 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10525 return -EINVAL; 10526 } 10527 10528 size_code = BPF_H; 10529 if (ctx_field_size == 4) 10530 size_code = BPF_W; 10531 else if (ctx_field_size == 8) 10532 size_code = BPF_DW; 10533 10534 insn->off = off & ~(size_default - 1); 10535 insn->code = BPF_LDX | BPF_MEM | size_code; 10536 } 10537 10538 target_size = 0; 10539 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 10540 &target_size); 10541 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 10542 (ctx_field_size && !target_size)) { 10543 verbose(env, "bpf verifier is misconfigured\n"); 10544 return -EINVAL; 10545 } 10546 10547 if (is_narrower_load && size < target_size) { 10548 u8 shift = bpf_ctx_narrow_access_offset( 10549 off, size, size_default) * 8; 10550 if (ctx_field_size <= 4) { 10551 if (shift) 10552 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 10553 insn->dst_reg, 10554 shift); 10555 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 10556 (1 << size * 8) - 1); 10557 } else { 10558 if (shift) 10559 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 10560 insn->dst_reg, 10561 shift); 10562 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 10563 (1ULL << size * 8) - 1); 10564 } 10565 } 10566 10567 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10568 if (!new_prog) 10569 return -ENOMEM; 10570 10571 delta += cnt - 1; 10572 10573 /* keep walking new program and skip insns we just inserted */ 10574 env->prog = new_prog; 10575 insn = new_prog->insnsi + i + delta; 10576 } 10577 10578 return 0; 10579 } 10580 10581 static int jit_subprogs(struct bpf_verifier_env *env) 10582 { 10583 struct bpf_prog *prog = env->prog, **func, *tmp; 10584 int i, j, subprog_start, subprog_end = 0, len, subprog; 10585 struct bpf_map *map_ptr; 10586 struct bpf_insn *insn; 10587 void *old_bpf_func; 10588 int err, num_exentries; 10589 10590 if (env->subprog_cnt <= 1) 10591 return 0; 10592 10593 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10594 if (insn->code != (BPF_JMP | BPF_CALL) || 10595 insn->src_reg != BPF_PSEUDO_CALL) 10596 continue; 10597 /* Upon error here we cannot fall back to interpreter but 10598 * need a hard reject of the program. Thus -EFAULT is 10599 * propagated in any case. 10600 */ 10601 subprog = find_subprog(env, i + insn->imm + 1); 10602 if (subprog < 0) { 10603 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10604 i + insn->imm + 1); 10605 return -EFAULT; 10606 } 10607 /* temporarily remember subprog id inside insn instead of 10608 * aux_data, since next loop will split up all insns into funcs 10609 */ 10610 insn->off = subprog; 10611 /* remember original imm in case JIT fails and fallback 10612 * to interpreter will be needed 10613 */ 10614 env->insn_aux_data[i].call_imm = insn->imm; 10615 /* point imm to __bpf_call_base+1 from JITs point of view */ 10616 insn->imm = 1; 10617 } 10618 10619 err = bpf_prog_alloc_jited_linfo(prog); 10620 if (err) 10621 goto out_undo_insn; 10622 10623 err = -ENOMEM; 10624 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10625 if (!func) 10626 goto out_undo_insn; 10627 10628 for (i = 0; i < env->subprog_cnt; i++) { 10629 subprog_start = subprog_end; 10630 subprog_end = env->subprog_info[i + 1].start; 10631 10632 len = subprog_end - subprog_start; 10633 /* BPF_PROG_RUN doesn't call subprogs directly, 10634 * hence main prog stats include the runtime of subprogs. 10635 * subprogs don't have IDs and not reachable via prog_get_next_id 10636 * func[i]->aux->stats will never be accessed and stays NULL 10637 */ 10638 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10639 if (!func[i]) 10640 goto out_free; 10641 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10642 len * sizeof(struct bpf_insn)); 10643 func[i]->type = prog->type; 10644 func[i]->len = len; 10645 if (bpf_prog_calc_tag(func[i])) 10646 goto out_free; 10647 func[i]->is_func = 1; 10648 func[i]->aux->func_idx = i; 10649 /* the btf and func_info will be freed only at prog->aux */ 10650 func[i]->aux->btf = prog->aux->btf; 10651 func[i]->aux->func_info = prog->aux->func_info; 10652 10653 for (j = 0; j < prog->aux->size_poke_tab; j++) { 10654 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 10655 int ret; 10656 10657 if (!(insn_idx >= subprog_start && 10658 insn_idx <= subprog_end)) 10659 continue; 10660 10661 ret = bpf_jit_add_poke_descriptor(func[i], 10662 &prog->aux->poke_tab[j]); 10663 if (ret < 0) { 10664 verbose(env, "adding tail call poke descriptor failed\n"); 10665 goto out_free; 10666 } 10667 10668 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 10669 10670 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 10671 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 10672 if (ret < 0) { 10673 verbose(env, "tracking tail call prog failed\n"); 10674 goto out_free; 10675 } 10676 } 10677 10678 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10679 * Long term would need debug info to populate names 10680 */ 10681 func[i]->aux->name[0] = 'F'; 10682 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10683 func[i]->jit_requested = 1; 10684 func[i]->aux->linfo = prog->aux->linfo; 10685 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10686 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10687 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10688 num_exentries = 0; 10689 insn = func[i]->insnsi; 10690 for (j = 0; j < func[i]->len; j++, insn++) { 10691 if (BPF_CLASS(insn->code) == BPF_LDX && 10692 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10693 num_exentries++; 10694 } 10695 func[i]->aux->num_exentries = num_exentries; 10696 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 10697 func[i] = bpf_int_jit_compile(func[i]); 10698 if (!func[i]->jited) { 10699 err = -ENOTSUPP; 10700 goto out_free; 10701 } 10702 cond_resched(); 10703 } 10704 10705 /* Untrack main program's aux structs so that during map_poke_run() 10706 * we will not stumble upon the unfilled poke descriptors; each 10707 * of the main program's poke descs got distributed across subprogs 10708 * and got tracked onto map, so we are sure that none of them will 10709 * be missed after the operation below 10710 */ 10711 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10712 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10713 10714 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 10715 } 10716 10717 /* at this point all bpf functions were successfully JITed 10718 * now populate all bpf_calls with correct addresses and 10719 * run last pass of JIT 10720 */ 10721 for (i = 0; i < env->subprog_cnt; i++) { 10722 insn = func[i]->insnsi; 10723 for (j = 0; j < func[i]->len; j++, insn++) { 10724 if (insn->code != (BPF_JMP | BPF_CALL) || 10725 insn->src_reg != BPF_PSEUDO_CALL) 10726 continue; 10727 subprog = insn->off; 10728 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10729 __bpf_call_base; 10730 } 10731 10732 /* we use the aux data to keep a list of the start addresses 10733 * of the JITed images for each function in the program 10734 * 10735 * for some architectures, such as powerpc64, the imm field 10736 * might not be large enough to hold the offset of the start 10737 * address of the callee's JITed image from __bpf_call_base 10738 * 10739 * in such cases, we can lookup the start address of a callee 10740 * by using its subprog id, available from the off field of 10741 * the call instruction, as an index for this list 10742 */ 10743 func[i]->aux->func = func; 10744 func[i]->aux->func_cnt = env->subprog_cnt; 10745 } 10746 for (i = 0; i < env->subprog_cnt; i++) { 10747 old_bpf_func = func[i]->bpf_func; 10748 tmp = bpf_int_jit_compile(func[i]); 10749 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10750 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10751 err = -ENOTSUPP; 10752 goto out_free; 10753 } 10754 cond_resched(); 10755 } 10756 10757 /* finally lock prog and jit images for all functions and 10758 * populate kallsysm 10759 */ 10760 for (i = 0; i < env->subprog_cnt; i++) { 10761 bpf_prog_lock_ro(func[i]); 10762 bpf_prog_kallsyms_add(func[i]); 10763 } 10764 10765 /* Last step: make now unused interpreter insns from main 10766 * prog consistent for later dump requests, so they can 10767 * later look the same as if they were interpreted only. 10768 */ 10769 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10770 if (insn->code != (BPF_JMP | BPF_CALL) || 10771 insn->src_reg != BPF_PSEUDO_CALL) 10772 continue; 10773 insn->off = env->insn_aux_data[i].call_imm; 10774 subprog = find_subprog(env, i + insn->off + 1); 10775 insn->imm = subprog; 10776 } 10777 10778 prog->jited = 1; 10779 prog->bpf_func = func[0]->bpf_func; 10780 prog->aux->func = func; 10781 prog->aux->func_cnt = env->subprog_cnt; 10782 bpf_prog_free_unused_jited_linfo(prog); 10783 return 0; 10784 out_free: 10785 for (i = 0; i < env->subprog_cnt; i++) { 10786 if (!func[i]) 10787 continue; 10788 10789 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 10790 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 10791 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 10792 } 10793 bpf_jit_free(func[i]); 10794 } 10795 kfree(func); 10796 out_undo_insn: 10797 /* cleanup main prog to be interpreted */ 10798 prog->jit_requested = 0; 10799 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10800 if (insn->code != (BPF_JMP | BPF_CALL) || 10801 insn->src_reg != BPF_PSEUDO_CALL) 10802 continue; 10803 insn->off = 0; 10804 insn->imm = env->insn_aux_data[i].call_imm; 10805 } 10806 bpf_prog_free_jited_linfo(prog); 10807 return err; 10808 } 10809 10810 static int fixup_call_args(struct bpf_verifier_env *env) 10811 { 10812 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10813 struct bpf_prog *prog = env->prog; 10814 struct bpf_insn *insn = prog->insnsi; 10815 int i, depth; 10816 #endif 10817 int err = 0; 10818 10819 if (env->prog->jit_requested && 10820 !bpf_prog_is_dev_bound(env->prog->aux)) { 10821 err = jit_subprogs(env); 10822 if (err == 0) 10823 return 0; 10824 if (err == -EFAULT) 10825 return err; 10826 } 10827 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10828 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 10829 /* When JIT fails the progs with bpf2bpf calls and tail_calls 10830 * have to be rejected, since interpreter doesn't support them yet. 10831 */ 10832 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 10833 return -EINVAL; 10834 } 10835 for (i = 0; i < prog->len; i++, insn++) { 10836 if (insn->code != (BPF_JMP | BPF_CALL) || 10837 insn->src_reg != BPF_PSEUDO_CALL) 10838 continue; 10839 depth = get_callee_stack_depth(env, insn, i); 10840 if (depth < 0) 10841 return depth; 10842 bpf_patch_call_args(insn, depth); 10843 } 10844 err = 0; 10845 #endif 10846 return err; 10847 } 10848 10849 /* fixup insn->imm field of bpf_call instructions 10850 * and inline eligible helpers as explicit sequence of BPF instructions 10851 * 10852 * this function is called after eBPF program passed verification 10853 */ 10854 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10855 { 10856 struct bpf_prog *prog = env->prog; 10857 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10858 struct bpf_insn *insn = prog->insnsi; 10859 const struct bpf_func_proto *fn; 10860 const int insn_cnt = prog->len; 10861 const struct bpf_map_ops *ops; 10862 struct bpf_insn_aux_data *aux; 10863 struct bpf_insn insn_buf[16]; 10864 struct bpf_prog *new_prog; 10865 struct bpf_map *map_ptr; 10866 int i, ret, cnt, delta = 0; 10867 10868 for (i = 0; i < insn_cnt; i++, insn++) { 10869 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10870 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10871 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10872 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10873 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10874 struct bpf_insn mask_and_div[] = { 10875 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10876 /* Rx div 0 -> 0 */ 10877 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10878 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10879 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10880 *insn, 10881 }; 10882 struct bpf_insn mask_and_mod[] = { 10883 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10884 /* Rx mod 0 -> Rx */ 10885 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10886 *insn, 10887 }; 10888 struct bpf_insn *patchlet; 10889 10890 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10891 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10892 patchlet = mask_and_div + (is64 ? 1 : 0); 10893 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10894 } else { 10895 patchlet = mask_and_mod + (is64 ? 1 : 0); 10896 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10897 } 10898 10899 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10900 if (!new_prog) 10901 return -ENOMEM; 10902 10903 delta += cnt - 1; 10904 env->prog = prog = new_prog; 10905 insn = new_prog->insnsi + i + delta; 10906 continue; 10907 } 10908 10909 if (BPF_CLASS(insn->code) == BPF_LD && 10910 (BPF_MODE(insn->code) == BPF_ABS || 10911 BPF_MODE(insn->code) == BPF_IND)) { 10912 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10913 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10914 verbose(env, "bpf verifier is misconfigured\n"); 10915 return -EINVAL; 10916 } 10917 10918 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10919 if (!new_prog) 10920 return -ENOMEM; 10921 10922 delta += cnt - 1; 10923 env->prog = prog = new_prog; 10924 insn = new_prog->insnsi + i + delta; 10925 continue; 10926 } 10927 10928 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10929 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10930 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10931 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10932 struct bpf_insn insn_buf[16]; 10933 struct bpf_insn *patch = &insn_buf[0]; 10934 bool issrc, isneg; 10935 u32 off_reg; 10936 10937 aux = &env->insn_aux_data[i + delta]; 10938 if (!aux->alu_state || 10939 aux->alu_state == BPF_ALU_NON_POINTER) 10940 continue; 10941 10942 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10943 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10944 BPF_ALU_SANITIZE_SRC; 10945 10946 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10947 if (isneg) 10948 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10949 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10950 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10951 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10952 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10953 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10954 if (issrc) { 10955 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10956 off_reg); 10957 insn->src_reg = BPF_REG_AX; 10958 } else { 10959 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10960 BPF_REG_AX); 10961 } 10962 if (isneg) 10963 insn->code = insn->code == code_add ? 10964 code_sub : code_add; 10965 *patch++ = *insn; 10966 if (issrc && isneg) 10967 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10968 cnt = patch - insn_buf; 10969 10970 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10971 if (!new_prog) 10972 return -ENOMEM; 10973 10974 delta += cnt - 1; 10975 env->prog = prog = new_prog; 10976 insn = new_prog->insnsi + i + delta; 10977 continue; 10978 } 10979 10980 if (insn->code != (BPF_JMP | BPF_CALL)) 10981 continue; 10982 if (insn->src_reg == BPF_PSEUDO_CALL) 10983 continue; 10984 10985 if (insn->imm == BPF_FUNC_get_route_realm) 10986 prog->dst_needed = 1; 10987 if (insn->imm == BPF_FUNC_get_prandom_u32) 10988 bpf_user_rnd_init_once(); 10989 if (insn->imm == BPF_FUNC_override_return) 10990 prog->kprobe_override = 1; 10991 if (insn->imm == BPF_FUNC_tail_call) { 10992 /* If we tail call into other programs, we 10993 * cannot make any assumptions since they can 10994 * be replaced dynamically during runtime in 10995 * the program array. 10996 */ 10997 prog->cb_access = 1; 10998 if (!allow_tail_call_in_subprogs(env)) 10999 prog->aux->stack_depth = MAX_BPF_STACK; 11000 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 11001 11002 /* mark bpf_tail_call as different opcode to avoid 11003 * conditional branch in the interpeter for every normal 11004 * call and to prevent accidental JITing by JIT compiler 11005 * that doesn't support bpf_tail_call yet 11006 */ 11007 insn->imm = 0; 11008 insn->code = BPF_JMP | BPF_TAIL_CALL; 11009 11010 aux = &env->insn_aux_data[i + delta]; 11011 if (env->bpf_capable && !expect_blinding && 11012 prog->jit_requested && 11013 !bpf_map_key_poisoned(aux) && 11014 !bpf_map_ptr_poisoned(aux) && 11015 !bpf_map_ptr_unpriv(aux)) { 11016 struct bpf_jit_poke_descriptor desc = { 11017 .reason = BPF_POKE_REASON_TAIL_CALL, 11018 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11019 .tail_call.key = bpf_map_key_immediate(aux), 11020 .insn_idx = i + delta, 11021 }; 11022 11023 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11024 if (ret < 0) { 11025 verbose(env, "adding tail call poke descriptor failed\n"); 11026 return ret; 11027 } 11028 11029 insn->imm = ret + 1; 11030 continue; 11031 } 11032 11033 if (!bpf_map_ptr_unpriv(aux)) 11034 continue; 11035 11036 /* instead of changing every JIT dealing with tail_call 11037 * emit two extra insns: 11038 * if (index >= max_entries) goto out; 11039 * index &= array->index_mask; 11040 * to avoid out-of-bounds cpu speculation 11041 */ 11042 if (bpf_map_ptr_poisoned(aux)) { 11043 verbose(env, "tail_call abusing map_ptr\n"); 11044 return -EINVAL; 11045 } 11046 11047 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11048 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11049 map_ptr->max_entries, 2); 11050 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11051 container_of(map_ptr, 11052 struct bpf_array, 11053 map)->index_mask); 11054 insn_buf[2] = *insn; 11055 cnt = 3; 11056 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11057 if (!new_prog) 11058 return -ENOMEM; 11059 11060 delta += cnt - 1; 11061 env->prog = prog = new_prog; 11062 insn = new_prog->insnsi + i + delta; 11063 continue; 11064 } 11065 11066 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11067 * and other inlining handlers are currently limited to 64 bit 11068 * only. 11069 */ 11070 if (prog->jit_requested && BITS_PER_LONG == 64 && 11071 (insn->imm == BPF_FUNC_map_lookup_elem || 11072 insn->imm == BPF_FUNC_map_update_elem || 11073 insn->imm == BPF_FUNC_map_delete_elem || 11074 insn->imm == BPF_FUNC_map_push_elem || 11075 insn->imm == BPF_FUNC_map_pop_elem || 11076 insn->imm == BPF_FUNC_map_peek_elem)) { 11077 aux = &env->insn_aux_data[i + delta]; 11078 if (bpf_map_ptr_poisoned(aux)) 11079 goto patch_call_imm; 11080 11081 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11082 ops = map_ptr->ops; 11083 if (insn->imm == BPF_FUNC_map_lookup_elem && 11084 ops->map_gen_lookup) { 11085 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11086 if (cnt == -EOPNOTSUPP) 11087 goto patch_map_ops_generic; 11088 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11089 verbose(env, "bpf verifier is misconfigured\n"); 11090 return -EINVAL; 11091 } 11092 11093 new_prog = bpf_patch_insn_data(env, i + delta, 11094 insn_buf, cnt); 11095 if (!new_prog) 11096 return -ENOMEM; 11097 11098 delta += cnt - 1; 11099 env->prog = prog = new_prog; 11100 insn = new_prog->insnsi + i + delta; 11101 continue; 11102 } 11103 11104 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11105 (void *(*)(struct bpf_map *map, void *key))NULL)); 11106 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11107 (int (*)(struct bpf_map *map, void *key))NULL)); 11108 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11109 (int (*)(struct bpf_map *map, void *key, void *value, 11110 u64 flags))NULL)); 11111 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11112 (int (*)(struct bpf_map *map, void *value, 11113 u64 flags))NULL)); 11114 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11115 (int (*)(struct bpf_map *map, void *value))NULL)); 11116 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11117 (int (*)(struct bpf_map *map, void *value))NULL)); 11118 patch_map_ops_generic: 11119 switch (insn->imm) { 11120 case BPF_FUNC_map_lookup_elem: 11121 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11122 __bpf_call_base; 11123 continue; 11124 case BPF_FUNC_map_update_elem: 11125 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11126 __bpf_call_base; 11127 continue; 11128 case BPF_FUNC_map_delete_elem: 11129 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11130 __bpf_call_base; 11131 continue; 11132 case BPF_FUNC_map_push_elem: 11133 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11134 __bpf_call_base; 11135 continue; 11136 case BPF_FUNC_map_pop_elem: 11137 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11138 __bpf_call_base; 11139 continue; 11140 case BPF_FUNC_map_peek_elem: 11141 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11142 __bpf_call_base; 11143 continue; 11144 } 11145 11146 goto patch_call_imm; 11147 } 11148 11149 if (prog->jit_requested && BITS_PER_LONG == 64 && 11150 insn->imm == BPF_FUNC_jiffies64) { 11151 struct bpf_insn ld_jiffies_addr[2] = { 11152 BPF_LD_IMM64(BPF_REG_0, 11153 (unsigned long)&jiffies), 11154 }; 11155 11156 insn_buf[0] = ld_jiffies_addr[0]; 11157 insn_buf[1] = ld_jiffies_addr[1]; 11158 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11159 BPF_REG_0, 0); 11160 cnt = 3; 11161 11162 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11163 cnt); 11164 if (!new_prog) 11165 return -ENOMEM; 11166 11167 delta += cnt - 1; 11168 env->prog = prog = new_prog; 11169 insn = new_prog->insnsi + i + delta; 11170 continue; 11171 } 11172 11173 patch_call_imm: 11174 fn = env->ops->get_func_proto(insn->imm, env->prog); 11175 /* all functions that have prototype and verifier allowed 11176 * programs to call them, must be real in-kernel functions 11177 */ 11178 if (!fn->func) { 11179 verbose(env, 11180 "kernel subsystem misconfigured func %s#%d\n", 11181 func_id_name(insn->imm), insn->imm); 11182 return -EFAULT; 11183 } 11184 insn->imm = fn->func - __bpf_call_base; 11185 } 11186 11187 /* Since poke tab is now finalized, publish aux to tracker. */ 11188 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11189 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11190 if (!map_ptr->ops->map_poke_track || 11191 !map_ptr->ops->map_poke_untrack || 11192 !map_ptr->ops->map_poke_run) { 11193 verbose(env, "bpf verifier is misconfigured\n"); 11194 return -EINVAL; 11195 } 11196 11197 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11198 if (ret < 0) { 11199 verbose(env, "tracking tail call prog failed\n"); 11200 return ret; 11201 } 11202 } 11203 11204 return 0; 11205 } 11206 11207 static void free_states(struct bpf_verifier_env *env) 11208 { 11209 struct bpf_verifier_state_list *sl, *sln; 11210 int i; 11211 11212 sl = env->free_list; 11213 while (sl) { 11214 sln = sl->next; 11215 free_verifier_state(&sl->state, false); 11216 kfree(sl); 11217 sl = sln; 11218 } 11219 env->free_list = NULL; 11220 11221 if (!env->explored_states) 11222 return; 11223 11224 for (i = 0; i < state_htab_size(env); i++) { 11225 sl = env->explored_states[i]; 11226 11227 while (sl) { 11228 sln = sl->next; 11229 free_verifier_state(&sl->state, false); 11230 kfree(sl); 11231 sl = sln; 11232 } 11233 env->explored_states[i] = NULL; 11234 } 11235 } 11236 11237 /* The verifier is using insn_aux_data[] to store temporary data during 11238 * verification and to store information for passes that run after the 11239 * verification like dead code sanitization. do_check_common() for subprogram N 11240 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 11241 * temporary data after do_check_common() finds that subprogram N cannot be 11242 * verified independently. pass_cnt counts the number of times 11243 * do_check_common() was run and insn->aux->seen tells the pass number 11244 * insn_aux_data was touched. These variables are compared to clear temporary 11245 * data from failed pass. For testing and experiments do_check_common() can be 11246 * run multiple times even when prior attempt to verify is unsuccessful. 11247 */ 11248 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 11249 { 11250 struct bpf_insn *insn = env->prog->insnsi; 11251 struct bpf_insn_aux_data *aux; 11252 int i, class; 11253 11254 for (i = 0; i < env->prog->len; i++) { 11255 class = BPF_CLASS(insn[i].code); 11256 if (class != BPF_LDX && class != BPF_STX) 11257 continue; 11258 aux = &env->insn_aux_data[i]; 11259 if (aux->seen != env->pass_cnt) 11260 continue; 11261 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 11262 } 11263 } 11264 11265 static int do_check_common(struct bpf_verifier_env *env, int subprog) 11266 { 11267 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11268 struct bpf_verifier_state *state; 11269 struct bpf_reg_state *regs; 11270 int ret, i; 11271 11272 env->prev_linfo = NULL; 11273 env->pass_cnt++; 11274 11275 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11276 if (!state) 11277 return -ENOMEM; 11278 state->curframe = 0; 11279 state->speculative = false; 11280 state->branches = 1; 11281 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11282 if (!state->frame[0]) { 11283 kfree(state); 11284 return -ENOMEM; 11285 } 11286 env->cur_state = state; 11287 init_func_state(env, state->frame[0], 11288 BPF_MAIN_FUNC /* callsite */, 11289 0 /* frameno */, 11290 subprog); 11291 11292 regs = state->frame[state->curframe]->regs; 11293 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11294 ret = btf_prepare_func_args(env, subprog, regs); 11295 if (ret) 11296 goto out; 11297 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11298 if (regs[i].type == PTR_TO_CTX) 11299 mark_reg_known_zero(env, regs, i); 11300 else if (regs[i].type == SCALAR_VALUE) 11301 mark_reg_unknown(env, regs, i); 11302 } 11303 } else { 11304 /* 1st arg to a function */ 11305 regs[BPF_REG_1].type = PTR_TO_CTX; 11306 mark_reg_known_zero(env, regs, BPF_REG_1); 11307 ret = btf_check_func_arg_match(env, subprog, regs); 11308 if (ret == -EFAULT) 11309 /* unlikely verifier bug. abort. 11310 * ret == 0 and ret < 0 are sadly acceptable for 11311 * main() function due to backward compatibility. 11312 * Like socket filter program may be written as: 11313 * int bpf_prog(struct pt_regs *ctx) 11314 * and never dereference that ctx in the program. 11315 * 'struct pt_regs' is a type mismatch for socket 11316 * filter that should be using 'struct __sk_buff'. 11317 */ 11318 goto out; 11319 } 11320 11321 ret = do_check(env); 11322 out: 11323 /* check for NULL is necessary, since cur_state can be freed inside 11324 * do_check() under memory pressure. 11325 */ 11326 if (env->cur_state) { 11327 free_verifier_state(env->cur_state, true); 11328 env->cur_state = NULL; 11329 } 11330 while (!pop_stack(env, NULL, NULL, false)); 11331 if (!ret && pop_log) 11332 bpf_vlog_reset(&env->log, 0); 11333 free_states(env); 11334 if (ret) 11335 /* clean aux data in case subprog was rejected */ 11336 sanitize_insn_aux_data(env); 11337 return ret; 11338 } 11339 11340 /* Verify all global functions in a BPF program one by one based on their BTF. 11341 * All global functions must pass verification. Otherwise the whole program is rejected. 11342 * Consider: 11343 * int bar(int); 11344 * int foo(int f) 11345 * { 11346 * return bar(f); 11347 * } 11348 * int bar(int b) 11349 * { 11350 * ... 11351 * } 11352 * foo() will be verified first for R1=any_scalar_value. During verification it 11353 * will be assumed that bar() already verified successfully and call to bar() 11354 * from foo() will be checked for type match only. Later bar() will be verified 11355 * independently to check that it's safe for R1=any_scalar_value. 11356 */ 11357 static int do_check_subprogs(struct bpf_verifier_env *env) 11358 { 11359 struct bpf_prog_aux *aux = env->prog->aux; 11360 int i, ret; 11361 11362 if (!aux->func_info) 11363 return 0; 11364 11365 for (i = 1; i < env->subprog_cnt; i++) { 11366 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 11367 continue; 11368 env->insn_idx = env->subprog_info[i].start; 11369 WARN_ON_ONCE(env->insn_idx == 0); 11370 ret = do_check_common(env, i); 11371 if (ret) { 11372 return ret; 11373 } else if (env->log.level & BPF_LOG_LEVEL) { 11374 verbose(env, 11375 "Func#%d is safe for any args that match its prototype\n", 11376 i); 11377 } 11378 } 11379 return 0; 11380 } 11381 11382 static int do_check_main(struct bpf_verifier_env *env) 11383 { 11384 int ret; 11385 11386 env->insn_idx = 0; 11387 ret = do_check_common(env, 0); 11388 if (!ret) 11389 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11390 return ret; 11391 } 11392 11393 11394 static void print_verification_stats(struct bpf_verifier_env *env) 11395 { 11396 int i; 11397 11398 if (env->log.level & BPF_LOG_STATS) { 11399 verbose(env, "verification time %lld usec\n", 11400 div_u64(env->verification_time, 1000)); 11401 verbose(env, "stack depth "); 11402 for (i = 0; i < env->subprog_cnt; i++) { 11403 u32 depth = env->subprog_info[i].stack_depth; 11404 11405 verbose(env, "%d", depth); 11406 if (i + 1 < env->subprog_cnt) 11407 verbose(env, "+"); 11408 } 11409 verbose(env, "\n"); 11410 } 11411 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 11412 "total_states %d peak_states %d mark_read %d\n", 11413 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 11414 env->max_states_per_insn, env->total_states, 11415 env->peak_states, env->longest_mark_read_walk); 11416 } 11417 11418 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11419 { 11420 const struct btf_type *t, *func_proto; 11421 const struct bpf_struct_ops *st_ops; 11422 const struct btf_member *member; 11423 struct bpf_prog *prog = env->prog; 11424 u32 btf_id, member_idx; 11425 const char *mname; 11426 11427 btf_id = prog->aux->attach_btf_id; 11428 st_ops = bpf_struct_ops_find(btf_id); 11429 if (!st_ops) { 11430 verbose(env, "attach_btf_id %u is not a supported struct\n", 11431 btf_id); 11432 return -ENOTSUPP; 11433 } 11434 11435 t = st_ops->type; 11436 member_idx = prog->expected_attach_type; 11437 if (member_idx >= btf_type_vlen(t)) { 11438 verbose(env, "attach to invalid member idx %u of struct %s\n", 11439 member_idx, st_ops->name); 11440 return -EINVAL; 11441 } 11442 11443 member = &btf_type_member(t)[member_idx]; 11444 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11445 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 11446 NULL); 11447 if (!func_proto) { 11448 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 11449 mname, member_idx, st_ops->name); 11450 return -EINVAL; 11451 } 11452 11453 if (st_ops->check_member) { 11454 int err = st_ops->check_member(t, member); 11455 11456 if (err) { 11457 verbose(env, "attach to unsupported member %s of struct %s\n", 11458 mname, st_ops->name); 11459 return err; 11460 } 11461 } 11462 11463 prog->aux->attach_func_proto = func_proto; 11464 prog->aux->attach_func_name = mname; 11465 env->ops = st_ops->verifier_ops; 11466 11467 return 0; 11468 } 11469 #define SECURITY_PREFIX "security_" 11470 11471 static int check_attach_modify_return(unsigned long addr, const char *func_name) 11472 { 11473 if (within_error_injection_list(addr) || 11474 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 11475 return 0; 11476 11477 return -EINVAL; 11478 } 11479 11480 /* non exhaustive list of sleepable bpf_lsm_*() functions */ 11481 BTF_SET_START(btf_sleepable_lsm_hooks) 11482 #ifdef CONFIG_BPF_LSM 11483 BTF_ID(func, bpf_lsm_bprm_committed_creds) 11484 #else 11485 BTF_ID_UNUSED 11486 #endif 11487 BTF_SET_END(btf_sleepable_lsm_hooks) 11488 11489 static int check_sleepable_lsm_hook(u32 btf_id) 11490 { 11491 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id); 11492 } 11493 11494 /* list of non-sleepable functions that are otherwise on 11495 * ALLOW_ERROR_INJECTION list 11496 */ 11497 BTF_SET_START(btf_non_sleepable_error_inject) 11498 /* Three functions below can be called from sleepable and non-sleepable context. 11499 * Assume non-sleepable from bpf safety point of view. 11500 */ 11501 BTF_ID(func, __add_to_page_cache_locked) 11502 BTF_ID(func, should_fail_alloc_page) 11503 BTF_ID(func, should_failslab) 11504 BTF_SET_END(btf_non_sleepable_error_inject) 11505 11506 static int check_non_sleepable_error_inject(u32 btf_id) 11507 { 11508 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11509 } 11510 11511 int bpf_check_attach_target(struct bpf_verifier_log *log, 11512 const struct bpf_prog *prog, 11513 const struct bpf_prog *tgt_prog, 11514 u32 btf_id, 11515 struct bpf_attach_target_info *tgt_info) 11516 { 11517 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11518 const char prefix[] = "btf_trace_"; 11519 int ret = 0, subprog = -1, i; 11520 const struct btf_type *t; 11521 bool conservative = true; 11522 const char *tname; 11523 struct btf *btf; 11524 long addr = 0; 11525 11526 if (!btf_id) { 11527 bpf_log(log, "Tracing programs must provide btf_id\n"); 11528 return -EINVAL; 11529 } 11530 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux; 11531 if (!btf) { 11532 bpf_log(log, 11533 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11534 return -EINVAL; 11535 } 11536 t = btf_type_by_id(btf, btf_id); 11537 if (!t) { 11538 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 11539 return -EINVAL; 11540 } 11541 tname = btf_name_by_offset(btf, t->name_off); 11542 if (!tname) { 11543 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 11544 return -EINVAL; 11545 } 11546 if (tgt_prog) { 11547 struct bpf_prog_aux *aux = tgt_prog->aux; 11548 11549 for (i = 0; i < aux->func_info_cnt; i++) 11550 if (aux->func_info[i].type_id == btf_id) { 11551 subprog = i; 11552 break; 11553 } 11554 if (subprog == -1) { 11555 bpf_log(log, "Subprog %s doesn't exist\n", tname); 11556 return -EINVAL; 11557 } 11558 conservative = aux->func_info_aux[subprog].unreliable; 11559 if (prog_extension) { 11560 if (conservative) { 11561 bpf_log(log, 11562 "Cannot replace static functions\n"); 11563 return -EINVAL; 11564 } 11565 if (!prog->jit_requested) { 11566 bpf_log(log, 11567 "Extension programs should be JITed\n"); 11568 return -EINVAL; 11569 } 11570 } 11571 if (!tgt_prog->jited) { 11572 bpf_log(log, "Can attach to only JITed progs\n"); 11573 return -EINVAL; 11574 } 11575 if (tgt_prog->type == prog->type) { 11576 /* Cannot fentry/fexit another fentry/fexit program. 11577 * Cannot attach program extension to another extension. 11578 * It's ok to attach fentry/fexit to extension program. 11579 */ 11580 bpf_log(log, "Cannot recursively attach\n"); 11581 return -EINVAL; 11582 } 11583 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 11584 prog_extension && 11585 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 11586 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11587 /* Program extensions can extend all program types 11588 * except fentry/fexit. The reason is the following. 11589 * The fentry/fexit programs are used for performance 11590 * analysis, stats and can be attached to any program 11591 * type except themselves. When extension program is 11592 * replacing XDP function it is necessary to allow 11593 * performance analysis of all functions. Both original 11594 * XDP program and its program extension. Hence 11595 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11596 * allowed. If extending of fentry/fexit was allowed it 11597 * would be possible to create long call chain 11598 * fentry->extension->fentry->extension beyond 11599 * reasonable stack size. Hence extending fentry is not 11600 * allowed. 11601 */ 11602 bpf_log(log, "Cannot extend fentry/fexit\n"); 11603 return -EINVAL; 11604 } 11605 } else { 11606 if (prog_extension) { 11607 bpf_log(log, "Cannot replace kernel functions\n"); 11608 return -EINVAL; 11609 } 11610 } 11611 11612 switch (prog->expected_attach_type) { 11613 case BPF_TRACE_RAW_TP: 11614 if (tgt_prog) { 11615 bpf_log(log, 11616 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11617 return -EINVAL; 11618 } 11619 if (!btf_type_is_typedef(t)) { 11620 bpf_log(log, "attach_btf_id %u is not a typedef\n", 11621 btf_id); 11622 return -EINVAL; 11623 } 11624 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11625 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 11626 btf_id, tname); 11627 return -EINVAL; 11628 } 11629 tname += sizeof(prefix) - 1; 11630 t = btf_type_by_id(btf, t->type); 11631 if (!btf_type_is_ptr(t)) 11632 /* should never happen in valid vmlinux build */ 11633 return -EINVAL; 11634 t = btf_type_by_id(btf, t->type); 11635 if (!btf_type_is_func_proto(t)) 11636 /* should never happen in valid vmlinux build */ 11637 return -EINVAL; 11638 11639 break; 11640 case BPF_TRACE_ITER: 11641 if (!btf_type_is_func(t)) { 11642 bpf_log(log, "attach_btf_id %u is not a function\n", 11643 btf_id); 11644 return -EINVAL; 11645 } 11646 t = btf_type_by_id(btf, t->type); 11647 if (!btf_type_is_func_proto(t)) 11648 return -EINVAL; 11649 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11650 if (ret) 11651 return ret; 11652 break; 11653 default: 11654 if (!prog_extension) 11655 return -EINVAL; 11656 fallthrough; 11657 case BPF_MODIFY_RETURN: 11658 case BPF_LSM_MAC: 11659 case BPF_TRACE_FENTRY: 11660 case BPF_TRACE_FEXIT: 11661 if (!btf_type_is_func(t)) { 11662 bpf_log(log, "attach_btf_id %u is not a function\n", 11663 btf_id); 11664 return -EINVAL; 11665 } 11666 if (prog_extension && 11667 btf_check_type_match(log, prog, btf, t)) 11668 return -EINVAL; 11669 t = btf_type_by_id(btf, t->type); 11670 if (!btf_type_is_func_proto(t)) 11671 return -EINVAL; 11672 11673 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 11674 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 11675 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 11676 return -EINVAL; 11677 11678 if (tgt_prog && conservative) 11679 t = NULL; 11680 11681 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11682 if (ret < 0) 11683 return ret; 11684 11685 if (tgt_prog) { 11686 if (subprog == 0) 11687 addr = (long) tgt_prog->bpf_func; 11688 else 11689 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11690 } else { 11691 addr = kallsyms_lookup_name(tname); 11692 if (!addr) { 11693 bpf_log(log, 11694 "The address of function %s cannot be found\n", 11695 tname); 11696 return -ENOENT; 11697 } 11698 } 11699 11700 if (prog->aux->sleepable) { 11701 ret = -EINVAL; 11702 switch (prog->type) { 11703 case BPF_PROG_TYPE_TRACING: 11704 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 11705 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 11706 */ 11707 if (!check_non_sleepable_error_inject(btf_id) && 11708 within_error_injection_list(addr)) 11709 ret = 0; 11710 break; 11711 case BPF_PROG_TYPE_LSM: 11712 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 11713 * Only some of them are sleepable. 11714 */ 11715 if (check_sleepable_lsm_hook(btf_id)) 11716 ret = 0; 11717 break; 11718 default: 11719 break; 11720 } 11721 if (ret) { 11722 bpf_log(log, "%s is not sleepable\n", tname); 11723 return ret; 11724 } 11725 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11726 if (tgt_prog) { 11727 bpf_log(log, "can't modify return codes of BPF programs\n"); 11728 return -EINVAL; 11729 } 11730 ret = check_attach_modify_return(addr, tname); 11731 if (ret) { 11732 bpf_log(log, "%s() is not modifiable\n", tname); 11733 return ret; 11734 } 11735 } 11736 11737 break; 11738 } 11739 tgt_info->tgt_addr = addr; 11740 tgt_info->tgt_name = tname; 11741 tgt_info->tgt_type = t; 11742 return 0; 11743 } 11744 11745 static int check_attach_btf_id(struct bpf_verifier_env *env) 11746 { 11747 struct bpf_prog *prog = env->prog; 11748 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 11749 struct bpf_attach_target_info tgt_info = {}; 11750 u32 btf_id = prog->aux->attach_btf_id; 11751 struct bpf_trampoline *tr; 11752 int ret; 11753 u64 key; 11754 11755 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 11756 prog->type != BPF_PROG_TYPE_LSM) { 11757 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 11758 return -EINVAL; 11759 } 11760 11761 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 11762 return check_struct_ops_btf_id(env); 11763 11764 if (prog->type != BPF_PROG_TYPE_TRACING && 11765 prog->type != BPF_PROG_TYPE_LSM && 11766 prog->type != BPF_PROG_TYPE_EXT) 11767 return 0; 11768 11769 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 11770 if (ret) 11771 return ret; 11772 11773 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 11774 /* to make freplace equivalent to their targets, they need to 11775 * inherit env->ops and expected_attach_type for the rest of the 11776 * verification 11777 */ 11778 env->ops = bpf_verifier_ops[tgt_prog->type]; 11779 prog->expected_attach_type = tgt_prog->expected_attach_type; 11780 } 11781 11782 /* store info about the attachment target that will be used later */ 11783 prog->aux->attach_func_proto = tgt_info.tgt_type; 11784 prog->aux->attach_func_name = tgt_info.tgt_name; 11785 11786 if (tgt_prog) { 11787 prog->aux->saved_dst_prog_type = tgt_prog->type; 11788 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 11789 } 11790 11791 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 11792 prog->aux->attach_btf_trace = true; 11793 return 0; 11794 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 11795 if (!bpf_iter_prog_supported(prog)) 11796 return -EINVAL; 11797 return 0; 11798 } 11799 11800 if (prog->type == BPF_PROG_TYPE_LSM) { 11801 ret = bpf_lsm_verify_prog(&env->log, prog); 11802 if (ret < 0) 11803 return ret; 11804 } 11805 11806 key = bpf_trampoline_compute_key(tgt_prog, btf_id); 11807 tr = bpf_trampoline_get(key, &tgt_info); 11808 if (!tr) 11809 return -ENOMEM; 11810 11811 prog->aux->dst_trampoline = tr; 11812 return 0; 11813 } 11814 11815 struct btf *bpf_get_btf_vmlinux(void) 11816 { 11817 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11818 mutex_lock(&bpf_verifier_lock); 11819 if (!btf_vmlinux) 11820 btf_vmlinux = btf_parse_vmlinux(); 11821 mutex_unlock(&bpf_verifier_lock); 11822 } 11823 return btf_vmlinux; 11824 } 11825 11826 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11827 union bpf_attr __user *uattr) 11828 { 11829 u64 start_time = ktime_get_ns(); 11830 struct bpf_verifier_env *env; 11831 struct bpf_verifier_log *log; 11832 int i, len, ret = -EINVAL; 11833 bool is_priv; 11834 11835 /* no program is valid */ 11836 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11837 return -EINVAL; 11838 11839 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11840 * allocate/free it every time bpf_check() is called 11841 */ 11842 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11843 if (!env) 11844 return -ENOMEM; 11845 log = &env->log; 11846 11847 len = (*prog)->len; 11848 env->insn_aux_data = 11849 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11850 ret = -ENOMEM; 11851 if (!env->insn_aux_data) 11852 goto err_free_env; 11853 for (i = 0; i < len; i++) 11854 env->insn_aux_data[i].orig_idx = i; 11855 env->prog = *prog; 11856 env->ops = bpf_verifier_ops[env->prog->type]; 11857 is_priv = bpf_capable(); 11858 11859 bpf_get_btf_vmlinux(); 11860 11861 /* grab the mutex to protect few globals used by verifier */ 11862 if (!is_priv) 11863 mutex_lock(&bpf_verifier_lock); 11864 11865 if (attr->log_level || attr->log_buf || attr->log_size) { 11866 /* user requested verbose verifier output 11867 * and supplied buffer to store the verification trace 11868 */ 11869 log->level = attr->log_level; 11870 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11871 log->len_total = attr->log_size; 11872 11873 ret = -EINVAL; 11874 /* log attributes have to be sane */ 11875 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11876 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11877 goto err_unlock; 11878 } 11879 11880 if (IS_ERR(btf_vmlinux)) { 11881 /* Either gcc or pahole or kernel are broken. */ 11882 verbose(env, "in-kernel BTF is malformed\n"); 11883 ret = PTR_ERR(btf_vmlinux); 11884 goto skip_full_check; 11885 } 11886 11887 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 11888 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 11889 env->strict_alignment = true; 11890 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 11891 env->strict_alignment = false; 11892 11893 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 11894 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 11895 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 11896 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 11897 env->bpf_capable = bpf_capable(); 11898 11899 if (is_priv) 11900 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 11901 11902 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11903 ret = bpf_prog_offload_verifier_prep(env->prog); 11904 if (ret) 11905 goto skip_full_check; 11906 } 11907 11908 env->explored_states = kvcalloc(state_htab_size(env), 11909 sizeof(struct bpf_verifier_state_list *), 11910 GFP_USER); 11911 ret = -ENOMEM; 11912 if (!env->explored_states) 11913 goto skip_full_check; 11914 11915 ret = check_subprogs(env); 11916 if (ret < 0) 11917 goto skip_full_check; 11918 11919 ret = check_btf_info(env, attr, uattr); 11920 if (ret < 0) 11921 goto skip_full_check; 11922 11923 ret = check_attach_btf_id(env); 11924 if (ret) 11925 goto skip_full_check; 11926 11927 ret = resolve_pseudo_ldimm64(env); 11928 if (ret < 0) 11929 goto skip_full_check; 11930 11931 ret = check_cfg(env); 11932 if (ret < 0) 11933 goto skip_full_check; 11934 11935 ret = do_check_subprogs(env); 11936 ret = ret ?: do_check_main(env); 11937 11938 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 11939 ret = bpf_prog_offload_finalize(env); 11940 11941 skip_full_check: 11942 kvfree(env->explored_states); 11943 11944 if (ret == 0) 11945 ret = check_max_stack_depth(env); 11946 11947 /* instruction rewrites happen after this point */ 11948 if (is_priv) { 11949 if (ret == 0) 11950 opt_hard_wire_dead_code_branches(env); 11951 if (ret == 0) 11952 ret = opt_remove_dead_code(env); 11953 if (ret == 0) 11954 ret = opt_remove_nops(env); 11955 } else { 11956 if (ret == 0) 11957 sanitize_dead_code(env); 11958 } 11959 11960 if (ret == 0) 11961 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11962 ret = convert_ctx_accesses(env); 11963 11964 if (ret == 0) 11965 ret = fixup_bpf_calls(env); 11966 11967 /* do 32-bit optimization after insn patching has done so those patched 11968 * insns could be handled correctly. 11969 */ 11970 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11971 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11972 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11973 : false; 11974 } 11975 11976 if (ret == 0) 11977 ret = fixup_call_args(env); 11978 11979 env->verification_time = ktime_get_ns() - start_time; 11980 print_verification_stats(env); 11981 11982 if (log->level && bpf_verifier_log_full(log)) 11983 ret = -ENOSPC; 11984 if (log->level && !log->ubuf) { 11985 ret = -EFAULT; 11986 goto err_release_maps; 11987 } 11988 11989 if (ret == 0 && env->used_map_cnt) { 11990 /* if program passed verifier, update used_maps in bpf_prog_info */ 11991 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11992 sizeof(env->used_maps[0]), 11993 GFP_KERNEL); 11994 11995 if (!env->prog->aux->used_maps) { 11996 ret = -ENOMEM; 11997 goto err_release_maps; 11998 } 11999 12000 memcpy(env->prog->aux->used_maps, env->used_maps, 12001 sizeof(env->used_maps[0]) * env->used_map_cnt); 12002 env->prog->aux->used_map_cnt = env->used_map_cnt; 12003 12004 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 12005 * bpf_ld_imm64 instructions 12006 */ 12007 convert_pseudo_ld_imm64(env); 12008 } 12009 12010 if (ret == 0) 12011 adjust_btf_func(env); 12012 12013 err_release_maps: 12014 if (!env->prog->aux->used_maps) 12015 /* if we didn't copy map pointers into bpf_prog_info, release 12016 * them now. Otherwise free_used_maps() will release them. 12017 */ 12018 release_maps(env); 12019 12020 /* extension progs temporarily inherit the attach_type of their targets 12021 for verification purposes, so set it back to zero before returning 12022 */ 12023 if (env->prog->type == BPF_PROG_TYPE_EXT) 12024 env->prog->expected_attach_type = 0; 12025 12026 *prog = env->prog; 12027 err_unlock: 12028 if (!is_priv) 12029 mutex_unlock(&bpf_verifier_lock); 12030 vfree(env->insn_aux_data); 12031 err_free_env: 12032 kfree(env); 12033 return ret; 12034 } 12035