xref: /linux/kernel/bpf/verifier.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 32k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	65536
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 struct bpf_call_arg_meta {
147 	struct bpf_map *map_ptr;
148 	bool raw_mode;
149 	bool pkt_access;
150 	int regno;
151 	int access_size;
152 };
153 
154 /* verbose verifier prints what it's seeing
155  * bpf_check() is called under lock, so no race to access these global vars
156  */
157 static u32 log_level, log_size, log_len;
158 static char *log_buf;
159 
160 static DEFINE_MUTEX(bpf_verifier_lock);
161 
162 /* log_level controls verbosity level of eBPF verifier.
163  * verbose() is used to dump the verification trace to the log, so the user
164  * can figure out what's wrong with the program
165  */
166 static __printf(1, 2) void verbose(const char *fmt, ...)
167 {
168 	va_list args;
169 
170 	if (log_level == 0 || log_len >= log_size - 1)
171 		return;
172 
173 	va_start(args, fmt);
174 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 	va_end(args);
176 }
177 
178 /* string representation of 'enum bpf_reg_type' */
179 static const char * const reg_type_str[] = {
180 	[NOT_INIT]		= "?",
181 	[UNKNOWN_VALUE]		= "inv",
182 	[PTR_TO_CTX]		= "ctx",
183 	[CONST_PTR_TO_MAP]	= "map_ptr",
184 	[PTR_TO_MAP_VALUE]	= "map_value",
185 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
186 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
187 	[FRAME_PTR]		= "fp",
188 	[PTR_TO_STACK]		= "fp",
189 	[CONST_IMM]		= "imm",
190 	[PTR_TO_PACKET]		= "pkt",
191 	[PTR_TO_PACKET_END]	= "pkt_end",
192 };
193 
194 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195 static const char * const func_id_str[] = {
196 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197 };
198 #undef __BPF_FUNC_STR_FN
199 
200 static const char *func_id_name(int id)
201 {
202 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203 
204 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 		return func_id_str[id];
206 	else
207 		return "unknown";
208 }
209 
210 static void print_verifier_state(struct bpf_verifier_state *state)
211 {
212 	struct bpf_reg_state *reg;
213 	enum bpf_reg_type t;
214 	int i;
215 
216 	for (i = 0; i < MAX_BPF_REG; i++) {
217 		reg = &state->regs[i];
218 		t = reg->type;
219 		if (t == NOT_INIT)
220 			continue;
221 		verbose(" R%d=%s", i, reg_type_str[t]);
222 		if (t == CONST_IMM || t == PTR_TO_STACK)
223 			verbose("%lld", reg->imm);
224 		else if (t == PTR_TO_PACKET)
225 			verbose("(id=%d,off=%d,r=%d)",
226 				reg->id, reg->off, reg->range);
227 		else if (t == UNKNOWN_VALUE && reg->imm)
228 			verbose("%lld", reg->imm);
229 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
230 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 			 t == PTR_TO_MAP_VALUE_ADJ)
232 			verbose("(ks=%d,vs=%d,id=%u)",
233 				reg->map_ptr->key_size,
234 				reg->map_ptr->value_size,
235 				reg->id);
236 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
237 			verbose(",min_value=%lld",
238 				(long long)reg->min_value);
239 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 			verbose(",max_value=%llu",
241 				(unsigned long long)reg->max_value);
242 	}
243 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
244 		if (state->stack_slot_type[i] == STACK_SPILL)
245 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
246 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
247 	}
248 	verbose("\n");
249 }
250 
251 static const char *const bpf_class_string[] = {
252 	[BPF_LD]    = "ld",
253 	[BPF_LDX]   = "ldx",
254 	[BPF_ST]    = "st",
255 	[BPF_STX]   = "stx",
256 	[BPF_ALU]   = "alu",
257 	[BPF_JMP]   = "jmp",
258 	[BPF_RET]   = "BUG",
259 	[BPF_ALU64] = "alu64",
260 };
261 
262 static const char *const bpf_alu_string[16] = {
263 	[BPF_ADD >> 4]  = "+=",
264 	[BPF_SUB >> 4]  = "-=",
265 	[BPF_MUL >> 4]  = "*=",
266 	[BPF_DIV >> 4]  = "/=",
267 	[BPF_OR  >> 4]  = "|=",
268 	[BPF_AND >> 4]  = "&=",
269 	[BPF_LSH >> 4]  = "<<=",
270 	[BPF_RSH >> 4]  = ">>=",
271 	[BPF_NEG >> 4]  = "neg",
272 	[BPF_MOD >> 4]  = "%=",
273 	[BPF_XOR >> 4]  = "^=",
274 	[BPF_MOV >> 4]  = "=",
275 	[BPF_ARSH >> 4] = "s>>=",
276 	[BPF_END >> 4]  = "endian",
277 };
278 
279 static const char *const bpf_ldst_string[] = {
280 	[BPF_W >> 3]  = "u32",
281 	[BPF_H >> 3]  = "u16",
282 	[BPF_B >> 3]  = "u8",
283 	[BPF_DW >> 3] = "u64",
284 };
285 
286 static const char *const bpf_jmp_string[16] = {
287 	[BPF_JA >> 4]   = "jmp",
288 	[BPF_JEQ >> 4]  = "==",
289 	[BPF_JGT >> 4]  = ">",
290 	[BPF_JGE >> 4]  = ">=",
291 	[BPF_JSET >> 4] = "&",
292 	[BPF_JNE >> 4]  = "!=",
293 	[BPF_JSGT >> 4] = "s>",
294 	[BPF_JSGE >> 4] = "s>=",
295 	[BPF_CALL >> 4] = "call",
296 	[BPF_EXIT >> 4] = "exit",
297 };
298 
299 static void print_bpf_insn(struct bpf_insn *insn)
300 {
301 	u8 class = BPF_CLASS(insn->code);
302 
303 	if (class == BPF_ALU || class == BPF_ALU64) {
304 		if (BPF_SRC(insn->code) == BPF_X)
305 			verbose("(%02x) %sr%d %s %sr%d\n",
306 				insn->code, class == BPF_ALU ? "(u32) " : "",
307 				insn->dst_reg,
308 				bpf_alu_string[BPF_OP(insn->code) >> 4],
309 				class == BPF_ALU ? "(u32) " : "",
310 				insn->src_reg);
311 		else
312 			verbose("(%02x) %sr%d %s %s%d\n",
313 				insn->code, class == BPF_ALU ? "(u32) " : "",
314 				insn->dst_reg,
315 				bpf_alu_string[BPF_OP(insn->code) >> 4],
316 				class == BPF_ALU ? "(u32) " : "",
317 				insn->imm);
318 	} else if (class == BPF_STX) {
319 		if (BPF_MODE(insn->code) == BPF_MEM)
320 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 				insn->code,
322 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 				insn->dst_reg,
324 				insn->off, insn->src_reg);
325 		else if (BPF_MODE(insn->code) == BPF_XADD)
326 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 				insn->code,
328 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 				insn->dst_reg, insn->off,
330 				insn->src_reg);
331 		else
332 			verbose("BUG_%02x\n", insn->code);
333 	} else if (class == BPF_ST) {
334 		if (BPF_MODE(insn->code) != BPF_MEM) {
335 			verbose("BUG_st_%02x\n", insn->code);
336 			return;
337 		}
338 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 			insn->code,
340 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 			insn->dst_reg,
342 			insn->off, insn->imm);
343 	} else if (class == BPF_LDX) {
344 		if (BPF_MODE(insn->code) != BPF_MEM) {
345 			verbose("BUG_ldx_%02x\n", insn->code);
346 			return;
347 		}
348 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 			insn->code, insn->dst_reg,
350 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 			insn->src_reg, insn->off);
352 	} else if (class == BPF_LD) {
353 		if (BPF_MODE(insn->code) == BPF_ABS) {
354 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 				insn->code,
356 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 				insn->imm);
358 		} else if (BPF_MODE(insn->code) == BPF_IND) {
359 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 				insn->code,
361 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 				insn->src_reg, insn->imm);
363 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
364 			verbose("(%02x) r%d = 0x%x\n",
365 				insn->code, insn->dst_reg, insn->imm);
366 		} else {
367 			verbose("BUG_ld_%02x\n", insn->code);
368 			return;
369 		}
370 	} else if (class == BPF_JMP) {
371 		u8 opcode = BPF_OP(insn->code);
372 
373 		if (opcode == BPF_CALL) {
374 			verbose("(%02x) call %s#%d\n", insn->code,
375 				func_id_name(insn->imm), insn->imm);
376 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
377 			verbose("(%02x) goto pc%+d\n",
378 				insn->code, insn->off);
379 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 			verbose("(%02x) exit\n", insn->code);
381 		} else if (BPF_SRC(insn->code) == BPF_X) {
382 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 				insn->code, insn->dst_reg,
384 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 				insn->src_reg, insn->off);
386 		} else {
387 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 				insn->code, insn->dst_reg,
389 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 				insn->imm, insn->off);
391 		}
392 	} else {
393 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 	}
395 }
396 
397 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
398 {
399 	struct bpf_verifier_stack_elem *elem;
400 	int insn_idx;
401 
402 	if (env->head == NULL)
403 		return -1;
404 
405 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 	insn_idx = env->head->insn_idx;
407 	if (prev_insn_idx)
408 		*prev_insn_idx = env->head->prev_insn_idx;
409 	elem = env->head->next;
410 	kfree(env->head);
411 	env->head = elem;
412 	env->stack_size--;
413 	return insn_idx;
414 }
415 
416 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 					     int insn_idx, int prev_insn_idx)
418 {
419 	struct bpf_verifier_stack_elem *elem;
420 
421 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
422 	if (!elem)
423 		goto err;
424 
425 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 	elem->insn_idx = insn_idx;
427 	elem->prev_insn_idx = prev_insn_idx;
428 	elem->next = env->head;
429 	env->head = elem;
430 	env->stack_size++;
431 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
432 		verbose("BPF program is too complex\n");
433 		goto err;
434 	}
435 	return &elem->st;
436 err:
437 	/* pop all elements and return */
438 	while (pop_stack(env, NULL) >= 0);
439 	return NULL;
440 }
441 
442 #define CALLER_SAVED_REGS 6
443 static const int caller_saved[CALLER_SAVED_REGS] = {
444 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445 };
446 
447 static void init_reg_state(struct bpf_reg_state *regs)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAX_BPF_REG; i++) {
452 		regs[i].type = NOT_INIT;
453 		regs[i].imm = 0;
454 		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
456 	}
457 
458 	/* frame pointer */
459 	regs[BPF_REG_FP].type = FRAME_PTR;
460 
461 	/* 1st arg to a function */
462 	regs[BPF_REG_1].type = PTR_TO_CTX;
463 }
464 
465 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
466 {
467 	BUG_ON(regno >= MAX_BPF_REG);
468 	regs[regno].type = UNKNOWN_VALUE;
469 	regs[regno].id = 0;
470 	regs[regno].imm = 0;
471 }
472 
473 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
474 {
475 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
476 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
477 }
478 
479 enum reg_arg_type {
480 	SRC_OP,		/* register is used as source operand */
481 	DST_OP,		/* register is used as destination operand */
482 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
483 };
484 
485 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
486 			 enum reg_arg_type t)
487 {
488 	if (regno >= MAX_BPF_REG) {
489 		verbose("R%d is invalid\n", regno);
490 		return -EINVAL;
491 	}
492 
493 	if (t == SRC_OP) {
494 		/* check whether register used as source operand can be read */
495 		if (regs[regno].type == NOT_INIT) {
496 			verbose("R%d !read_ok\n", regno);
497 			return -EACCES;
498 		}
499 	} else {
500 		/* check whether register used as dest operand can be written to */
501 		if (regno == BPF_REG_FP) {
502 			verbose("frame pointer is read only\n");
503 			return -EACCES;
504 		}
505 		if (t == DST_OP)
506 			mark_reg_unknown_value(regs, regno);
507 	}
508 	return 0;
509 }
510 
511 static int bpf_size_to_bytes(int bpf_size)
512 {
513 	if (bpf_size == BPF_W)
514 		return 4;
515 	else if (bpf_size == BPF_H)
516 		return 2;
517 	else if (bpf_size == BPF_B)
518 		return 1;
519 	else if (bpf_size == BPF_DW)
520 		return 8;
521 	else
522 		return -EINVAL;
523 }
524 
525 static bool is_spillable_regtype(enum bpf_reg_type type)
526 {
527 	switch (type) {
528 	case PTR_TO_MAP_VALUE:
529 	case PTR_TO_MAP_VALUE_OR_NULL:
530 	case PTR_TO_STACK:
531 	case PTR_TO_CTX:
532 	case PTR_TO_PACKET:
533 	case PTR_TO_PACKET_END:
534 	case FRAME_PTR:
535 	case CONST_PTR_TO_MAP:
536 		return true;
537 	default:
538 		return false;
539 	}
540 }
541 
542 /* check_stack_read/write functions track spill/fill of registers,
543  * stack boundary and alignment are checked in check_mem_access()
544  */
545 static int check_stack_write(struct bpf_verifier_state *state, int off,
546 			     int size, int value_regno)
547 {
548 	int i;
549 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
550 	 * so it's aligned access and [off, off + size) are within stack limits
551 	 */
552 
553 	if (value_regno >= 0 &&
554 	    is_spillable_regtype(state->regs[value_regno].type)) {
555 
556 		/* register containing pointer is being spilled into stack */
557 		if (size != BPF_REG_SIZE) {
558 			verbose("invalid size of register spill\n");
559 			return -EACCES;
560 		}
561 
562 		/* save register state */
563 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
564 			state->regs[value_regno];
565 
566 		for (i = 0; i < BPF_REG_SIZE; i++)
567 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
568 	} else {
569 		/* regular write of data into stack */
570 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
571 			(struct bpf_reg_state) {};
572 
573 		for (i = 0; i < size; i++)
574 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
575 	}
576 	return 0;
577 }
578 
579 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
580 			    int value_regno)
581 {
582 	u8 *slot_type;
583 	int i;
584 
585 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
586 
587 	if (slot_type[0] == STACK_SPILL) {
588 		if (size != BPF_REG_SIZE) {
589 			verbose("invalid size of register spill\n");
590 			return -EACCES;
591 		}
592 		for (i = 1; i < BPF_REG_SIZE; i++) {
593 			if (slot_type[i] != STACK_SPILL) {
594 				verbose("corrupted spill memory\n");
595 				return -EACCES;
596 			}
597 		}
598 
599 		if (value_regno >= 0)
600 			/* restore register state from stack */
601 			state->regs[value_regno] =
602 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
603 		return 0;
604 	} else {
605 		for (i = 0; i < size; i++) {
606 			if (slot_type[i] != STACK_MISC) {
607 				verbose("invalid read from stack off %d+%d size %d\n",
608 					off, i, size);
609 				return -EACCES;
610 			}
611 		}
612 		if (value_regno >= 0)
613 			/* have read misc data from the stack */
614 			mark_reg_unknown_value(state->regs, value_regno);
615 		return 0;
616 	}
617 }
618 
619 /* check read/write into map element returned by bpf_map_lookup_elem() */
620 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
621 			    int size)
622 {
623 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
624 
625 	if (off < 0 || off + size > map->value_size) {
626 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
627 			map->value_size, off, size);
628 		return -EACCES;
629 	}
630 	return 0;
631 }
632 
633 #define MAX_PACKET_OFF 0xffff
634 
635 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
636 				       const struct bpf_call_arg_meta *meta,
637 				       enum bpf_access_type t)
638 {
639 	switch (env->prog->type) {
640 	case BPF_PROG_TYPE_LWT_IN:
641 	case BPF_PROG_TYPE_LWT_OUT:
642 		/* dst_input() and dst_output() can't write for now */
643 		if (t == BPF_WRITE)
644 			return false;
645 	case BPF_PROG_TYPE_SCHED_CLS:
646 	case BPF_PROG_TYPE_SCHED_ACT:
647 	case BPF_PROG_TYPE_XDP:
648 	case BPF_PROG_TYPE_LWT_XMIT:
649 		if (meta)
650 			return meta->pkt_access;
651 
652 		env->seen_direct_write = true;
653 		return true;
654 	default:
655 		return false;
656 	}
657 }
658 
659 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
660 			       int size)
661 {
662 	struct bpf_reg_state *regs = env->cur_state.regs;
663 	struct bpf_reg_state *reg = &regs[regno];
664 
665 	off += reg->off;
666 	if (off < 0 || size <= 0 || off + size > reg->range) {
667 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
668 			off, size, regno, reg->id, reg->off, reg->range);
669 		return -EACCES;
670 	}
671 	return 0;
672 }
673 
674 /* check access to 'struct bpf_context' fields */
675 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
676 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
677 {
678 	/* for analyzer ctx accesses are already validated and converted */
679 	if (env->analyzer_ops)
680 		return 0;
681 
682 	if (env->prog->aux->ops->is_valid_access &&
683 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
684 		/* remember the offset of last byte accessed in ctx */
685 		if (env->prog->aux->max_ctx_offset < off + size)
686 			env->prog->aux->max_ctx_offset = off + size;
687 		return 0;
688 	}
689 
690 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
691 	return -EACCES;
692 }
693 
694 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
695 {
696 	if (env->allow_ptr_leaks)
697 		return false;
698 
699 	switch (env->cur_state.regs[regno].type) {
700 	case UNKNOWN_VALUE:
701 	case CONST_IMM:
702 		return false;
703 	default:
704 		return true;
705 	}
706 }
707 
708 static int check_ptr_alignment(struct bpf_verifier_env *env,
709 			       struct bpf_reg_state *reg, int off, int size)
710 {
711 	if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
712 		if (off % size != 0) {
713 			verbose("misaligned access off %d size %d\n",
714 				off, size);
715 			return -EACCES;
716 		} else {
717 			return 0;
718 		}
719 	}
720 
721 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
722 		/* misaligned access to packet is ok on x86,arm,arm64 */
723 		return 0;
724 
725 	if (reg->id && size != 1) {
726 		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
727 		return -EACCES;
728 	}
729 
730 	/* skb->data is NET_IP_ALIGN-ed */
731 	if (reg->type == PTR_TO_PACKET &&
732 	    (NET_IP_ALIGN + reg->off + off) % size != 0) {
733 		verbose("misaligned packet access off %d+%d+%d size %d\n",
734 			NET_IP_ALIGN, reg->off, off, size);
735 		return -EACCES;
736 	}
737 	return 0;
738 }
739 
740 /* check whether memory at (regno + off) is accessible for t = (read | write)
741  * if t==write, value_regno is a register which value is stored into memory
742  * if t==read, value_regno is a register which will receive the value from memory
743  * if t==write && value_regno==-1, some unknown value is stored into memory
744  * if t==read && value_regno==-1, don't care what we read from memory
745  */
746 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
747 			    int bpf_size, enum bpf_access_type t,
748 			    int value_regno)
749 {
750 	struct bpf_verifier_state *state = &env->cur_state;
751 	struct bpf_reg_state *reg = &state->regs[regno];
752 	int size, err = 0;
753 
754 	if (reg->type == PTR_TO_STACK)
755 		off += reg->imm;
756 
757 	size = bpf_size_to_bytes(bpf_size);
758 	if (size < 0)
759 		return size;
760 
761 	err = check_ptr_alignment(env, reg, off, size);
762 	if (err)
763 		return err;
764 
765 	if (reg->type == PTR_TO_MAP_VALUE ||
766 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
767 		if (t == BPF_WRITE && value_regno >= 0 &&
768 		    is_pointer_value(env, value_regno)) {
769 			verbose("R%d leaks addr into map\n", value_regno);
770 			return -EACCES;
771 		}
772 
773 		/* If we adjusted the register to this map value at all then we
774 		 * need to change off and size to min_value and max_value
775 		 * respectively to make sure our theoretical access will be
776 		 * safe.
777 		 */
778 		if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
779 			if (log_level)
780 				print_verifier_state(state);
781 			env->varlen_map_value_access = true;
782 			/* The minimum value is only important with signed
783 			 * comparisons where we can't assume the floor of a
784 			 * value is 0.  If we are using signed variables for our
785 			 * index'es we need to make sure that whatever we use
786 			 * will have a set floor within our range.
787 			 */
788 			if (reg->min_value < 0) {
789 				verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
790 					regno);
791 				return -EACCES;
792 			}
793 			err = check_map_access(env, regno, reg->min_value + off,
794 					       size);
795 			if (err) {
796 				verbose("R%d min value is outside of the array range\n",
797 					regno);
798 				return err;
799 			}
800 
801 			/* If we haven't set a max value then we need to bail
802 			 * since we can't be sure we won't do bad things.
803 			 */
804 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
805 				verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
806 					regno);
807 				return -EACCES;
808 			}
809 			off += reg->max_value;
810 		}
811 		err = check_map_access(env, regno, off, size);
812 		if (!err && t == BPF_READ && value_regno >= 0)
813 			mark_reg_unknown_value(state->regs, value_regno);
814 
815 	} else if (reg->type == PTR_TO_CTX) {
816 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
817 
818 		if (t == BPF_WRITE && value_regno >= 0 &&
819 		    is_pointer_value(env, value_regno)) {
820 			verbose("R%d leaks addr into ctx\n", value_regno);
821 			return -EACCES;
822 		}
823 		err = check_ctx_access(env, off, size, t, &reg_type);
824 		if (!err && t == BPF_READ && value_regno >= 0) {
825 			mark_reg_unknown_value(state->regs, value_regno);
826 			/* note that reg.[id|off|range] == 0 */
827 			state->regs[value_regno].type = reg_type;
828 		}
829 
830 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
831 		if (off >= 0 || off < -MAX_BPF_STACK) {
832 			verbose("invalid stack off=%d size=%d\n", off, size);
833 			return -EACCES;
834 		}
835 		if (t == BPF_WRITE) {
836 			if (!env->allow_ptr_leaks &&
837 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
838 			    size != BPF_REG_SIZE) {
839 				verbose("attempt to corrupt spilled pointer on stack\n");
840 				return -EACCES;
841 			}
842 			err = check_stack_write(state, off, size, value_regno);
843 		} else {
844 			err = check_stack_read(state, off, size, value_regno);
845 		}
846 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
847 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
848 			verbose("cannot write into packet\n");
849 			return -EACCES;
850 		}
851 		if (t == BPF_WRITE && value_regno >= 0 &&
852 		    is_pointer_value(env, value_regno)) {
853 			verbose("R%d leaks addr into packet\n", value_regno);
854 			return -EACCES;
855 		}
856 		err = check_packet_access(env, regno, off, size);
857 		if (!err && t == BPF_READ && value_regno >= 0)
858 			mark_reg_unknown_value(state->regs, value_regno);
859 	} else {
860 		verbose("R%d invalid mem access '%s'\n",
861 			regno, reg_type_str[reg->type]);
862 		return -EACCES;
863 	}
864 
865 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
866 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
867 		/* 1 or 2 byte load zero-extends, determine the number of
868 		 * zero upper bits. Not doing it fo 4 byte load, since
869 		 * such values cannot be added to ptr_to_packet anyway.
870 		 */
871 		state->regs[value_regno].imm = 64 - size * 8;
872 	}
873 	return err;
874 }
875 
876 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
877 {
878 	struct bpf_reg_state *regs = env->cur_state.regs;
879 	int err;
880 
881 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
882 	    insn->imm != 0) {
883 		verbose("BPF_XADD uses reserved fields\n");
884 		return -EINVAL;
885 	}
886 
887 	/* check src1 operand */
888 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
889 	if (err)
890 		return err;
891 
892 	/* check src2 operand */
893 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
894 	if (err)
895 		return err;
896 
897 	/* check whether atomic_add can read the memory */
898 	err = check_mem_access(env, insn->dst_reg, insn->off,
899 			       BPF_SIZE(insn->code), BPF_READ, -1);
900 	if (err)
901 		return err;
902 
903 	/* check whether atomic_add can write into the same memory */
904 	return check_mem_access(env, insn->dst_reg, insn->off,
905 				BPF_SIZE(insn->code), BPF_WRITE, -1);
906 }
907 
908 /* when register 'regno' is passed into function that will read 'access_size'
909  * bytes from that pointer, make sure that it's within stack boundary
910  * and all elements of stack are initialized
911  */
912 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
913 				int access_size, bool zero_size_allowed,
914 				struct bpf_call_arg_meta *meta)
915 {
916 	struct bpf_verifier_state *state = &env->cur_state;
917 	struct bpf_reg_state *regs = state->regs;
918 	int off, i;
919 
920 	if (regs[regno].type != PTR_TO_STACK) {
921 		if (zero_size_allowed && access_size == 0 &&
922 		    regs[regno].type == CONST_IMM &&
923 		    regs[regno].imm  == 0)
924 			return 0;
925 
926 		verbose("R%d type=%s expected=%s\n", regno,
927 			reg_type_str[regs[regno].type],
928 			reg_type_str[PTR_TO_STACK]);
929 		return -EACCES;
930 	}
931 
932 	off = regs[regno].imm;
933 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
934 	    access_size <= 0) {
935 		verbose("invalid stack type R%d off=%d access_size=%d\n",
936 			regno, off, access_size);
937 		return -EACCES;
938 	}
939 
940 	if (meta && meta->raw_mode) {
941 		meta->access_size = access_size;
942 		meta->regno = regno;
943 		return 0;
944 	}
945 
946 	for (i = 0; i < access_size; i++) {
947 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
948 			verbose("invalid indirect read from stack off %d+%d size %d\n",
949 				off, i, access_size);
950 			return -EACCES;
951 		}
952 	}
953 	return 0;
954 }
955 
956 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
957 			  enum bpf_arg_type arg_type,
958 			  struct bpf_call_arg_meta *meta)
959 {
960 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
961 	enum bpf_reg_type expected_type, type = reg->type;
962 	int err = 0;
963 
964 	if (arg_type == ARG_DONTCARE)
965 		return 0;
966 
967 	if (type == NOT_INIT) {
968 		verbose("R%d !read_ok\n", regno);
969 		return -EACCES;
970 	}
971 
972 	if (arg_type == ARG_ANYTHING) {
973 		if (is_pointer_value(env, regno)) {
974 			verbose("R%d leaks addr into helper function\n", regno);
975 			return -EACCES;
976 		}
977 		return 0;
978 	}
979 
980 	if (type == PTR_TO_PACKET &&
981 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
982 		verbose("helper access to the packet is not allowed\n");
983 		return -EACCES;
984 	}
985 
986 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
987 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
988 		expected_type = PTR_TO_STACK;
989 		if (type != PTR_TO_PACKET && type != expected_type)
990 			goto err_type;
991 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
992 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
993 		expected_type = CONST_IMM;
994 		if (type != expected_type)
995 			goto err_type;
996 	} else if (arg_type == ARG_CONST_MAP_PTR) {
997 		expected_type = CONST_PTR_TO_MAP;
998 		if (type != expected_type)
999 			goto err_type;
1000 	} else if (arg_type == ARG_PTR_TO_CTX) {
1001 		expected_type = PTR_TO_CTX;
1002 		if (type != expected_type)
1003 			goto err_type;
1004 	} else if (arg_type == ARG_PTR_TO_STACK ||
1005 		   arg_type == ARG_PTR_TO_RAW_STACK) {
1006 		expected_type = PTR_TO_STACK;
1007 		/* One exception here. In case function allows for NULL to be
1008 		 * passed in as argument, it's a CONST_IMM type. Final test
1009 		 * happens during stack boundary checking.
1010 		 */
1011 		if (type == CONST_IMM && reg->imm == 0)
1012 			/* final test in check_stack_boundary() */;
1013 		else if (type != PTR_TO_PACKET && type != expected_type)
1014 			goto err_type;
1015 		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
1016 	} else {
1017 		verbose("unsupported arg_type %d\n", arg_type);
1018 		return -EFAULT;
1019 	}
1020 
1021 	if (arg_type == ARG_CONST_MAP_PTR) {
1022 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1023 		meta->map_ptr = reg->map_ptr;
1024 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1025 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1026 		 * check that [key, key + map->key_size) are within
1027 		 * stack limits and initialized
1028 		 */
1029 		if (!meta->map_ptr) {
1030 			/* in function declaration map_ptr must come before
1031 			 * map_key, so that it's verified and known before
1032 			 * we have to check map_key here. Otherwise it means
1033 			 * that kernel subsystem misconfigured verifier
1034 			 */
1035 			verbose("invalid map_ptr to access map->key\n");
1036 			return -EACCES;
1037 		}
1038 		if (type == PTR_TO_PACKET)
1039 			err = check_packet_access(env, regno, 0,
1040 						  meta->map_ptr->key_size);
1041 		else
1042 			err = check_stack_boundary(env, regno,
1043 						   meta->map_ptr->key_size,
1044 						   false, NULL);
1045 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1046 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1047 		 * check [value, value + map->value_size) validity
1048 		 */
1049 		if (!meta->map_ptr) {
1050 			/* kernel subsystem misconfigured verifier */
1051 			verbose("invalid map_ptr to access map->value\n");
1052 			return -EACCES;
1053 		}
1054 		if (type == PTR_TO_PACKET)
1055 			err = check_packet_access(env, regno, 0,
1056 						  meta->map_ptr->value_size);
1057 		else
1058 			err = check_stack_boundary(env, regno,
1059 						   meta->map_ptr->value_size,
1060 						   false, NULL);
1061 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
1062 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1063 		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1064 
1065 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1066 		 * from stack pointer 'buf'. Check it
1067 		 * note: regno == len, regno - 1 == buf
1068 		 */
1069 		if (regno == 0) {
1070 			/* kernel subsystem misconfigured verifier */
1071 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1072 			return -EACCES;
1073 		}
1074 		if (regs[regno - 1].type == PTR_TO_PACKET)
1075 			err = check_packet_access(env, regno - 1, 0, reg->imm);
1076 		else
1077 			err = check_stack_boundary(env, regno - 1, reg->imm,
1078 						   zero_size_allowed, meta);
1079 	}
1080 
1081 	return err;
1082 err_type:
1083 	verbose("R%d type=%s expected=%s\n", regno,
1084 		reg_type_str[type], reg_type_str[expected_type]);
1085 	return -EACCES;
1086 }
1087 
1088 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1089 {
1090 	if (!map)
1091 		return 0;
1092 
1093 	/* We need a two way check, first is from map perspective ... */
1094 	switch (map->map_type) {
1095 	case BPF_MAP_TYPE_PROG_ARRAY:
1096 		if (func_id != BPF_FUNC_tail_call)
1097 			goto error;
1098 		break;
1099 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1100 		if (func_id != BPF_FUNC_perf_event_read &&
1101 		    func_id != BPF_FUNC_perf_event_output)
1102 			goto error;
1103 		break;
1104 	case BPF_MAP_TYPE_STACK_TRACE:
1105 		if (func_id != BPF_FUNC_get_stackid)
1106 			goto error;
1107 		break;
1108 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1109 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1110 		    func_id != BPF_FUNC_current_task_under_cgroup)
1111 			goto error;
1112 		break;
1113 	default:
1114 		break;
1115 	}
1116 
1117 	/* ... and second from the function itself. */
1118 	switch (func_id) {
1119 	case BPF_FUNC_tail_call:
1120 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1121 			goto error;
1122 		break;
1123 	case BPF_FUNC_perf_event_read:
1124 	case BPF_FUNC_perf_event_output:
1125 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1126 			goto error;
1127 		break;
1128 	case BPF_FUNC_get_stackid:
1129 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1130 			goto error;
1131 		break;
1132 	case BPF_FUNC_current_task_under_cgroup:
1133 	case BPF_FUNC_skb_under_cgroup:
1134 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1135 			goto error;
1136 		break;
1137 	default:
1138 		break;
1139 	}
1140 
1141 	return 0;
1142 error:
1143 	verbose("cannot pass map_type %d into func %s#%d\n",
1144 		map->map_type, func_id_name(func_id), func_id);
1145 	return -EINVAL;
1146 }
1147 
1148 static int check_raw_mode(const struct bpf_func_proto *fn)
1149 {
1150 	int count = 0;
1151 
1152 	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1153 		count++;
1154 	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1155 		count++;
1156 	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1157 		count++;
1158 	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1159 		count++;
1160 	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1161 		count++;
1162 
1163 	return count > 1 ? -EINVAL : 0;
1164 }
1165 
1166 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1167 {
1168 	struct bpf_verifier_state *state = &env->cur_state;
1169 	struct bpf_reg_state *regs = state->regs, *reg;
1170 	int i;
1171 
1172 	for (i = 0; i < MAX_BPF_REG; i++)
1173 		if (regs[i].type == PTR_TO_PACKET ||
1174 		    regs[i].type == PTR_TO_PACKET_END)
1175 			mark_reg_unknown_value(regs, i);
1176 
1177 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1178 		if (state->stack_slot_type[i] != STACK_SPILL)
1179 			continue;
1180 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1181 		if (reg->type != PTR_TO_PACKET &&
1182 		    reg->type != PTR_TO_PACKET_END)
1183 			continue;
1184 		reg->type = UNKNOWN_VALUE;
1185 		reg->imm = 0;
1186 	}
1187 }
1188 
1189 static int check_call(struct bpf_verifier_env *env, int func_id)
1190 {
1191 	struct bpf_verifier_state *state = &env->cur_state;
1192 	const struct bpf_func_proto *fn = NULL;
1193 	struct bpf_reg_state *regs = state->regs;
1194 	struct bpf_reg_state *reg;
1195 	struct bpf_call_arg_meta meta;
1196 	bool changes_data;
1197 	int i, err;
1198 
1199 	/* find function prototype */
1200 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1201 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1202 		return -EINVAL;
1203 	}
1204 
1205 	if (env->prog->aux->ops->get_func_proto)
1206 		fn = env->prog->aux->ops->get_func_proto(func_id);
1207 
1208 	if (!fn) {
1209 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1210 		return -EINVAL;
1211 	}
1212 
1213 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1214 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1215 		verbose("cannot call GPL only function from proprietary program\n");
1216 		return -EINVAL;
1217 	}
1218 
1219 	changes_data = bpf_helper_changes_skb_data(fn->func);
1220 
1221 	memset(&meta, 0, sizeof(meta));
1222 	meta.pkt_access = fn->pkt_access;
1223 
1224 	/* We only support one arg being in raw mode at the moment, which
1225 	 * is sufficient for the helper functions we have right now.
1226 	 */
1227 	err = check_raw_mode(fn);
1228 	if (err) {
1229 		verbose("kernel subsystem misconfigured func %s#%d\n",
1230 			func_id_name(func_id), func_id);
1231 		return err;
1232 	}
1233 
1234 	/* check args */
1235 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1236 	if (err)
1237 		return err;
1238 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1239 	if (err)
1240 		return err;
1241 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1242 	if (err)
1243 		return err;
1244 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1245 	if (err)
1246 		return err;
1247 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1248 	if (err)
1249 		return err;
1250 
1251 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1252 	 * is inferred from register state.
1253 	 */
1254 	for (i = 0; i < meta.access_size; i++) {
1255 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1256 		if (err)
1257 			return err;
1258 	}
1259 
1260 	/* reset caller saved regs */
1261 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1262 		reg = regs + caller_saved[i];
1263 		reg->type = NOT_INIT;
1264 		reg->imm = 0;
1265 	}
1266 
1267 	/* update return register */
1268 	if (fn->ret_type == RET_INTEGER) {
1269 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1270 	} else if (fn->ret_type == RET_VOID) {
1271 		regs[BPF_REG_0].type = NOT_INIT;
1272 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1273 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1274 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1275 		/* remember map_ptr, so that check_map_access()
1276 		 * can check 'value_size' boundary of memory access
1277 		 * to map element returned from bpf_map_lookup_elem()
1278 		 */
1279 		if (meta.map_ptr == NULL) {
1280 			verbose("kernel subsystem misconfigured verifier\n");
1281 			return -EINVAL;
1282 		}
1283 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1284 		regs[BPF_REG_0].id = ++env->id_gen;
1285 	} else {
1286 		verbose("unknown return type %d of func %s#%d\n",
1287 			fn->ret_type, func_id_name(func_id), func_id);
1288 		return -EINVAL;
1289 	}
1290 
1291 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1292 	if (err)
1293 		return err;
1294 
1295 	if (changes_data)
1296 		clear_all_pkt_pointers(env);
1297 	return 0;
1298 }
1299 
1300 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1301 				struct bpf_insn *insn)
1302 {
1303 	struct bpf_reg_state *regs = env->cur_state.regs;
1304 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1305 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1306 	struct bpf_reg_state tmp_reg;
1307 	s32 imm;
1308 
1309 	if (BPF_SRC(insn->code) == BPF_K) {
1310 		/* pkt_ptr += imm */
1311 		imm = insn->imm;
1312 
1313 add_imm:
1314 		if (imm <= 0) {
1315 			verbose("addition of negative constant to packet pointer is not allowed\n");
1316 			return -EACCES;
1317 		}
1318 		if (imm >= MAX_PACKET_OFF ||
1319 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1320 			verbose("constant %d is too large to add to packet pointer\n",
1321 				imm);
1322 			return -EACCES;
1323 		}
1324 		/* a constant was added to pkt_ptr.
1325 		 * Remember it while keeping the same 'id'
1326 		 */
1327 		dst_reg->off += imm;
1328 	} else {
1329 		if (src_reg->type == PTR_TO_PACKET) {
1330 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1331 			tmp_reg = *dst_reg;  /* save r7 state */
1332 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1333 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1334 			/* if the checks below reject it, the copy won't matter,
1335 			 * since we're rejecting the whole program. If all ok,
1336 			 * then imm22 state will be added to r7
1337 			 * and r7 will be pkt(id=0,off=22,r=62) while
1338 			 * r6 will stay as pkt(id=0,off=0,r=62)
1339 			 */
1340 		}
1341 
1342 		if (src_reg->type == CONST_IMM) {
1343 			/* pkt_ptr += reg where reg is known constant */
1344 			imm = src_reg->imm;
1345 			goto add_imm;
1346 		}
1347 		/* disallow pkt_ptr += reg
1348 		 * if reg is not uknown_value with guaranteed zero upper bits
1349 		 * otherwise pkt_ptr may overflow and addition will become
1350 		 * subtraction which is not allowed
1351 		 */
1352 		if (src_reg->type != UNKNOWN_VALUE) {
1353 			verbose("cannot add '%s' to ptr_to_packet\n",
1354 				reg_type_str[src_reg->type]);
1355 			return -EACCES;
1356 		}
1357 		if (src_reg->imm < 48) {
1358 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1359 				src_reg->imm);
1360 			return -EACCES;
1361 		}
1362 		/* dst_reg stays as pkt_ptr type and since some positive
1363 		 * integer value was added to the pointer, increment its 'id'
1364 		 */
1365 		dst_reg->id = ++env->id_gen;
1366 
1367 		/* something was added to pkt_ptr, set range and off to zero */
1368 		dst_reg->off = 0;
1369 		dst_reg->range = 0;
1370 	}
1371 	return 0;
1372 }
1373 
1374 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1375 {
1376 	struct bpf_reg_state *regs = env->cur_state.regs;
1377 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1378 	u8 opcode = BPF_OP(insn->code);
1379 	s64 imm_log2;
1380 
1381 	/* for type == UNKNOWN_VALUE:
1382 	 * imm > 0 -> number of zero upper bits
1383 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1384 	 */
1385 
1386 	if (BPF_SRC(insn->code) == BPF_X) {
1387 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1388 
1389 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1390 		    dst_reg->imm && opcode == BPF_ADD) {
1391 			/* dreg += sreg
1392 			 * where both have zero upper bits. Adding them
1393 			 * can only result making one more bit non-zero
1394 			 * in the larger value.
1395 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1396 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1397 			 */
1398 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1399 			dst_reg->imm--;
1400 			return 0;
1401 		}
1402 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1403 		    dst_reg->imm && opcode == BPF_ADD) {
1404 			/* dreg += sreg
1405 			 * where dreg has zero upper bits and sreg is const.
1406 			 * Adding them can only result making one more bit
1407 			 * non-zero in the larger value.
1408 			 */
1409 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1410 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1411 			dst_reg->imm--;
1412 			return 0;
1413 		}
1414 		/* all other cases non supported yet, just mark dst_reg */
1415 		dst_reg->imm = 0;
1416 		return 0;
1417 	}
1418 
1419 	/* sign extend 32-bit imm into 64-bit to make sure that
1420 	 * negative values occupy bit 63. Note ilog2() would have
1421 	 * been incorrect, since sizeof(insn->imm) == 4
1422 	 */
1423 	imm_log2 = __ilog2_u64((long long)insn->imm);
1424 
1425 	if (dst_reg->imm && opcode == BPF_LSH) {
1426 		/* reg <<= imm
1427 		 * if reg was a result of 2 byte load, then its imm == 48
1428 		 * which means that upper 48 bits are zero and shifting this reg
1429 		 * left by 4 would mean that upper 44 bits are still zero
1430 		 */
1431 		dst_reg->imm -= insn->imm;
1432 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1433 		/* reg *= imm
1434 		 * if multiplying by 14 subtract 4
1435 		 * This is conservative calculation of upper zero bits.
1436 		 * It's not trying to special case insn->imm == 1 or 0 cases
1437 		 */
1438 		dst_reg->imm -= imm_log2 + 1;
1439 	} else if (opcode == BPF_AND) {
1440 		/* reg &= imm */
1441 		dst_reg->imm = 63 - imm_log2;
1442 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1443 		/* reg += imm */
1444 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1445 		dst_reg->imm--;
1446 	} else if (opcode == BPF_RSH) {
1447 		/* reg >>= imm
1448 		 * which means that after right shift, upper bits will be zero
1449 		 * note that verifier already checked that
1450 		 * 0 <= imm < 64 for shift insn
1451 		 */
1452 		dst_reg->imm += insn->imm;
1453 		if (unlikely(dst_reg->imm > 64))
1454 			/* some dumb code did:
1455 			 * r2 = *(u32 *)mem;
1456 			 * r2 >>= 32;
1457 			 * and all bits are zero now */
1458 			dst_reg->imm = 64;
1459 	} else {
1460 		/* all other alu ops, means that we don't know what will
1461 		 * happen to the value, mark it with unknown number of zero bits
1462 		 */
1463 		dst_reg->imm = 0;
1464 	}
1465 
1466 	if (dst_reg->imm < 0) {
1467 		/* all 64 bits of the register can contain non-zero bits
1468 		 * and such value cannot be added to ptr_to_packet, since it
1469 		 * may overflow, mark it as unknown to avoid further eval
1470 		 */
1471 		dst_reg->imm = 0;
1472 	}
1473 	return 0;
1474 }
1475 
1476 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1477 				struct bpf_insn *insn)
1478 {
1479 	struct bpf_reg_state *regs = env->cur_state.regs;
1480 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1481 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1482 	u8 opcode = BPF_OP(insn->code);
1483 
1484 	/* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1485 	 * Don't care about overflow or negative values, just add them
1486 	 */
1487 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1488 		dst_reg->imm += insn->imm;
1489 	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1490 		 src_reg->type == CONST_IMM)
1491 		dst_reg->imm += src_reg->imm;
1492 	else
1493 		mark_reg_unknown_value(regs, insn->dst_reg);
1494 	return 0;
1495 }
1496 
1497 static void check_reg_overflow(struct bpf_reg_state *reg)
1498 {
1499 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1500 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1501 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1502 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1503 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1504 }
1505 
1506 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1507 				    struct bpf_insn *insn)
1508 {
1509 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1510 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1511 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1512 	u8 opcode = BPF_OP(insn->code);
1513 
1514 	dst_reg = &regs[insn->dst_reg];
1515 	if (BPF_SRC(insn->code) == BPF_X) {
1516 		check_reg_overflow(&regs[insn->src_reg]);
1517 		min_val = regs[insn->src_reg].min_value;
1518 		max_val = regs[insn->src_reg].max_value;
1519 
1520 		/* If the source register is a random pointer then the
1521 		 * min_value/max_value values represent the range of the known
1522 		 * accesses into that value, not the actual min/max value of the
1523 		 * register itself.  In this case we have to reset the reg range
1524 		 * values so we know it is not safe to look at.
1525 		 */
1526 		if (regs[insn->src_reg].type != CONST_IMM &&
1527 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1528 			min_val = BPF_REGISTER_MIN_RANGE;
1529 			max_val = BPF_REGISTER_MAX_RANGE;
1530 		}
1531 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1532 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1533 		min_val = max_val = insn->imm;
1534 	}
1535 
1536 	/* We don't know anything about what was done to this register, mark it
1537 	 * as unknown.
1538 	 */
1539 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1540 	    max_val == BPF_REGISTER_MAX_RANGE) {
1541 		reset_reg_range_values(regs, insn->dst_reg);
1542 		return;
1543 	}
1544 
1545 	/* If one of our values was at the end of our ranges then we can't just
1546 	 * do our normal operations to the register, we need to set the values
1547 	 * to the min/max since they are undefined.
1548 	 */
1549 	if (min_val == BPF_REGISTER_MIN_RANGE)
1550 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1551 	if (max_val == BPF_REGISTER_MAX_RANGE)
1552 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1553 
1554 	switch (opcode) {
1555 	case BPF_ADD:
1556 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1557 			dst_reg->min_value += min_val;
1558 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1559 			dst_reg->max_value += max_val;
1560 		break;
1561 	case BPF_SUB:
1562 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1563 			dst_reg->min_value -= min_val;
1564 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1565 			dst_reg->max_value -= max_val;
1566 		break;
1567 	case BPF_MUL:
1568 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1569 			dst_reg->min_value *= min_val;
1570 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1571 			dst_reg->max_value *= max_val;
1572 		break;
1573 	case BPF_AND:
1574 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1575 		 * for that.  Otherwise the minimum is 0 and the max is the max
1576 		 * value we could AND against.
1577 		 */
1578 		if (min_val < 0)
1579 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1580 		else
1581 			dst_reg->min_value = 0;
1582 		dst_reg->max_value = max_val;
1583 		break;
1584 	case BPF_LSH:
1585 		/* Gotta have special overflow logic here, if we're shifting
1586 		 * more than MAX_RANGE then just assume we have an invalid
1587 		 * range.
1588 		 */
1589 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1590 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1591 		else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1592 			dst_reg->min_value <<= min_val;
1593 
1594 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1595 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1596 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1597 			dst_reg->max_value <<= max_val;
1598 		break;
1599 	case BPF_RSH:
1600 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1601 		 * unsigned shift, so make the appropriate casts.
1602 		 */
1603 		if (min_val < 0 || dst_reg->min_value < 0)
1604 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1605 		else
1606 			dst_reg->min_value =
1607 				(u64)(dst_reg->min_value) >> min_val;
1608 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1609 			dst_reg->max_value >>= max_val;
1610 		break;
1611 	default:
1612 		reset_reg_range_values(regs, insn->dst_reg);
1613 		break;
1614 	}
1615 
1616 	check_reg_overflow(dst_reg);
1617 }
1618 
1619 /* check validity of 32-bit and 64-bit arithmetic operations */
1620 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1621 {
1622 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1623 	u8 opcode = BPF_OP(insn->code);
1624 	int err;
1625 
1626 	if (opcode == BPF_END || opcode == BPF_NEG) {
1627 		if (opcode == BPF_NEG) {
1628 			if (BPF_SRC(insn->code) != 0 ||
1629 			    insn->src_reg != BPF_REG_0 ||
1630 			    insn->off != 0 || insn->imm != 0) {
1631 				verbose("BPF_NEG uses reserved fields\n");
1632 				return -EINVAL;
1633 			}
1634 		} else {
1635 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1636 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1637 				verbose("BPF_END uses reserved fields\n");
1638 				return -EINVAL;
1639 			}
1640 		}
1641 
1642 		/* check src operand */
1643 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1644 		if (err)
1645 			return err;
1646 
1647 		if (is_pointer_value(env, insn->dst_reg)) {
1648 			verbose("R%d pointer arithmetic prohibited\n",
1649 				insn->dst_reg);
1650 			return -EACCES;
1651 		}
1652 
1653 		/* check dest operand */
1654 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1655 		if (err)
1656 			return err;
1657 
1658 	} else if (opcode == BPF_MOV) {
1659 
1660 		if (BPF_SRC(insn->code) == BPF_X) {
1661 			if (insn->imm != 0 || insn->off != 0) {
1662 				verbose("BPF_MOV uses reserved fields\n");
1663 				return -EINVAL;
1664 			}
1665 
1666 			/* check src operand */
1667 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1668 			if (err)
1669 				return err;
1670 		} else {
1671 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1672 				verbose("BPF_MOV uses reserved fields\n");
1673 				return -EINVAL;
1674 			}
1675 		}
1676 
1677 		/* check dest operand */
1678 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1679 		if (err)
1680 			return err;
1681 
1682 		/* we are setting our register to something new, we need to
1683 		 * reset its range values.
1684 		 */
1685 		reset_reg_range_values(regs, insn->dst_reg);
1686 
1687 		if (BPF_SRC(insn->code) == BPF_X) {
1688 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1689 				/* case: R1 = R2
1690 				 * copy register state to dest reg
1691 				 */
1692 				regs[insn->dst_reg] = regs[insn->src_reg];
1693 			} else {
1694 				if (is_pointer_value(env, insn->src_reg)) {
1695 					verbose("R%d partial copy of pointer\n",
1696 						insn->src_reg);
1697 					return -EACCES;
1698 				}
1699 				mark_reg_unknown_value(regs, insn->dst_reg);
1700 			}
1701 		} else {
1702 			/* case: R = imm
1703 			 * remember the value we stored into this reg
1704 			 */
1705 			regs[insn->dst_reg].type = CONST_IMM;
1706 			regs[insn->dst_reg].imm = insn->imm;
1707 			regs[insn->dst_reg].max_value = insn->imm;
1708 			regs[insn->dst_reg].min_value = insn->imm;
1709 		}
1710 
1711 	} else if (opcode > BPF_END) {
1712 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1713 		return -EINVAL;
1714 
1715 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1716 
1717 		if (BPF_SRC(insn->code) == BPF_X) {
1718 			if (insn->imm != 0 || insn->off != 0) {
1719 				verbose("BPF_ALU uses reserved fields\n");
1720 				return -EINVAL;
1721 			}
1722 			/* check src1 operand */
1723 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1724 			if (err)
1725 				return err;
1726 		} else {
1727 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1728 				verbose("BPF_ALU uses reserved fields\n");
1729 				return -EINVAL;
1730 			}
1731 		}
1732 
1733 		/* check src2 operand */
1734 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1735 		if (err)
1736 			return err;
1737 
1738 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1739 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1740 			verbose("div by zero\n");
1741 			return -EINVAL;
1742 		}
1743 
1744 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1745 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1746 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1747 
1748 			if (insn->imm < 0 || insn->imm >= size) {
1749 				verbose("invalid shift %d\n", insn->imm);
1750 				return -EINVAL;
1751 			}
1752 		}
1753 
1754 		/* check dest operand */
1755 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1756 		if (err)
1757 			return err;
1758 
1759 		dst_reg = &regs[insn->dst_reg];
1760 
1761 		/* first we want to adjust our ranges. */
1762 		adjust_reg_min_max_vals(env, insn);
1763 
1764 		/* pattern match 'bpf_add Rx, imm' instruction */
1765 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1766 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1767 			dst_reg->type = PTR_TO_STACK;
1768 			dst_reg->imm = insn->imm;
1769 			return 0;
1770 		} else if (opcode == BPF_ADD &&
1771 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1772 			   (dst_reg->type == PTR_TO_PACKET ||
1773 			    (BPF_SRC(insn->code) == BPF_X &&
1774 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1775 			/* ptr_to_packet += K|X */
1776 			return check_packet_ptr_add(env, insn);
1777 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1778 			   dst_reg->type == UNKNOWN_VALUE &&
1779 			   env->allow_ptr_leaks) {
1780 			/* unknown += K|X */
1781 			return evaluate_reg_alu(env, insn);
1782 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1783 			   dst_reg->type == CONST_IMM &&
1784 			   env->allow_ptr_leaks) {
1785 			/* reg_imm += K|X */
1786 			return evaluate_reg_imm_alu(env, insn);
1787 		} else if (is_pointer_value(env, insn->dst_reg)) {
1788 			verbose("R%d pointer arithmetic prohibited\n",
1789 				insn->dst_reg);
1790 			return -EACCES;
1791 		} else if (BPF_SRC(insn->code) == BPF_X &&
1792 			   is_pointer_value(env, insn->src_reg)) {
1793 			verbose("R%d pointer arithmetic prohibited\n",
1794 				insn->src_reg);
1795 			return -EACCES;
1796 		}
1797 
1798 		/* If we did pointer math on a map value then just set it to our
1799 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1800 		 * loads to this register appropriately, otherwise just mark the
1801 		 * register as unknown.
1802 		 */
1803 		if (env->allow_ptr_leaks &&
1804 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
1805 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1806 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1807 		else
1808 			mark_reg_unknown_value(regs, insn->dst_reg);
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1815 				   struct bpf_reg_state *dst_reg)
1816 {
1817 	struct bpf_reg_state *regs = state->regs, *reg;
1818 	int i;
1819 
1820 	/* LLVM can generate two kind of checks:
1821 	 *
1822 	 * Type 1:
1823 	 *
1824 	 *   r2 = r3;
1825 	 *   r2 += 8;
1826 	 *   if (r2 > pkt_end) goto <handle exception>
1827 	 *   <access okay>
1828 	 *
1829 	 *   Where:
1830 	 *     r2 == dst_reg, pkt_end == src_reg
1831 	 *     r2=pkt(id=n,off=8,r=0)
1832 	 *     r3=pkt(id=n,off=0,r=0)
1833 	 *
1834 	 * Type 2:
1835 	 *
1836 	 *   r2 = r3;
1837 	 *   r2 += 8;
1838 	 *   if (pkt_end >= r2) goto <access okay>
1839 	 *   <handle exception>
1840 	 *
1841 	 *   Where:
1842 	 *     pkt_end == dst_reg, r2 == src_reg
1843 	 *     r2=pkt(id=n,off=8,r=0)
1844 	 *     r3=pkt(id=n,off=0,r=0)
1845 	 *
1846 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1847 	 * so that range of bytes [r3, r3 + 8) is safe to access.
1848 	 */
1849 
1850 	for (i = 0; i < MAX_BPF_REG; i++)
1851 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1852 			regs[i].range = dst_reg->off;
1853 
1854 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1855 		if (state->stack_slot_type[i] != STACK_SPILL)
1856 			continue;
1857 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1858 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1859 			reg->range = dst_reg->off;
1860 	}
1861 }
1862 
1863 /* Adjusts the register min/max values in the case that the dst_reg is the
1864  * variable register that we are working on, and src_reg is a constant or we're
1865  * simply doing a BPF_K check.
1866  */
1867 static void reg_set_min_max(struct bpf_reg_state *true_reg,
1868 			    struct bpf_reg_state *false_reg, u64 val,
1869 			    u8 opcode)
1870 {
1871 	switch (opcode) {
1872 	case BPF_JEQ:
1873 		/* If this is false then we know nothing Jon Snow, but if it is
1874 		 * true then we know for sure.
1875 		 */
1876 		true_reg->max_value = true_reg->min_value = val;
1877 		break;
1878 	case BPF_JNE:
1879 		/* If this is true we know nothing Jon Snow, but if it is false
1880 		 * we know the value for sure;
1881 		 */
1882 		false_reg->max_value = false_reg->min_value = val;
1883 		break;
1884 	case BPF_JGT:
1885 		/* Unsigned comparison, the minimum value is 0. */
1886 		false_reg->min_value = 0;
1887 	case BPF_JSGT:
1888 		/* If this is false then we know the maximum val is val,
1889 		 * otherwise we know the min val is val+1.
1890 		 */
1891 		false_reg->max_value = val;
1892 		true_reg->min_value = val + 1;
1893 		break;
1894 	case BPF_JGE:
1895 		/* Unsigned comparison, the minimum value is 0. */
1896 		false_reg->min_value = 0;
1897 	case BPF_JSGE:
1898 		/* If this is false then we know the maximum value is val - 1,
1899 		 * otherwise we know the mimimum value is val.
1900 		 */
1901 		false_reg->max_value = val - 1;
1902 		true_reg->min_value = val;
1903 		break;
1904 	default:
1905 		break;
1906 	}
1907 
1908 	check_reg_overflow(false_reg);
1909 	check_reg_overflow(true_reg);
1910 }
1911 
1912 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
1913  * is the variable reg.
1914  */
1915 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
1916 				struct bpf_reg_state *false_reg, u64 val,
1917 				u8 opcode)
1918 {
1919 	switch (opcode) {
1920 	case BPF_JEQ:
1921 		/* If this is false then we know nothing Jon Snow, but if it is
1922 		 * true then we know for sure.
1923 		 */
1924 		true_reg->max_value = true_reg->min_value = val;
1925 		break;
1926 	case BPF_JNE:
1927 		/* If this is true we know nothing Jon Snow, but if it is false
1928 		 * we know the value for sure;
1929 		 */
1930 		false_reg->max_value = false_reg->min_value = val;
1931 		break;
1932 	case BPF_JGT:
1933 		/* Unsigned comparison, the minimum value is 0. */
1934 		true_reg->min_value = 0;
1935 	case BPF_JSGT:
1936 		/*
1937 		 * If this is false, then the val is <= the register, if it is
1938 		 * true the register <= to the val.
1939 		 */
1940 		false_reg->min_value = val;
1941 		true_reg->max_value = val - 1;
1942 		break;
1943 	case BPF_JGE:
1944 		/* Unsigned comparison, the minimum value is 0. */
1945 		true_reg->min_value = 0;
1946 	case BPF_JSGE:
1947 		/* If this is false then constant < register, if it is true then
1948 		 * the register < constant.
1949 		 */
1950 		false_reg->min_value = val + 1;
1951 		true_reg->max_value = val;
1952 		break;
1953 	default:
1954 		break;
1955 	}
1956 
1957 	check_reg_overflow(false_reg);
1958 	check_reg_overflow(true_reg);
1959 }
1960 
1961 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
1962 			 enum bpf_reg_type type)
1963 {
1964 	struct bpf_reg_state *reg = &regs[regno];
1965 
1966 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
1967 		reg->type = type;
1968 		if (type == UNKNOWN_VALUE)
1969 			mark_reg_unknown_value(regs, regno);
1970 	}
1971 }
1972 
1973 /* The logic is similar to find_good_pkt_pointers(), both could eventually
1974  * be folded together at some point.
1975  */
1976 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
1977 			  enum bpf_reg_type type)
1978 {
1979 	struct bpf_reg_state *regs = state->regs;
1980 	int i;
1981 
1982 	for (i = 0; i < MAX_BPF_REG; i++)
1983 		mark_map_reg(regs, i, regs[regno].id, type);
1984 
1985 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1986 		if (state->stack_slot_type[i] != STACK_SPILL)
1987 			continue;
1988 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE,
1989 			     regs[regno].id, type);
1990 	}
1991 }
1992 
1993 static int check_cond_jmp_op(struct bpf_verifier_env *env,
1994 			     struct bpf_insn *insn, int *insn_idx)
1995 {
1996 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
1997 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
1998 	u8 opcode = BPF_OP(insn->code);
1999 	int err;
2000 
2001 	if (opcode > BPF_EXIT) {
2002 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2003 		return -EINVAL;
2004 	}
2005 
2006 	if (BPF_SRC(insn->code) == BPF_X) {
2007 		if (insn->imm != 0) {
2008 			verbose("BPF_JMP uses reserved fields\n");
2009 			return -EINVAL;
2010 		}
2011 
2012 		/* check src1 operand */
2013 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2014 		if (err)
2015 			return err;
2016 
2017 		if (is_pointer_value(env, insn->src_reg)) {
2018 			verbose("R%d pointer comparison prohibited\n",
2019 				insn->src_reg);
2020 			return -EACCES;
2021 		}
2022 	} else {
2023 		if (insn->src_reg != BPF_REG_0) {
2024 			verbose("BPF_JMP uses reserved fields\n");
2025 			return -EINVAL;
2026 		}
2027 	}
2028 
2029 	/* check src2 operand */
2030 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2031 	if (err)
2032 		return err;
2033 
2034 	dst_reg = &regs[insn->dst_reg];
2035 
2036 	/* detect if R == 0 where R was initialized to zero earlier */
2037 	if (BPF_SRC(insn->code) == BPF_K &&
2038 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2039 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2040 		if (opcode == BPF_JEQ) {
2041 			/* if (imm == imm) goto pc+off;
2042 			 * only follow the goto, ignore fall-through
2043 			 */
2044 			*insn_idx += insn->off;
2045 			return 0;
2046 		} else {
2047 			/* if (imm != imm) goto pc+off;
2048 			 * only follow fall-through branch, since
2049 			 * that's where the program will go
2050 			 */
2051 			return 0;
2052 		}
2053 	}
2054 
2055 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2056 	if (!other_branch)
2057 		return -EFAULT;
2058 
2059 	/* detect if we are comparing against a constant value so we can adjust
2060 	 * our min/max values for our dst register.
2061 	 */
2062 	if (BPF_SRC(insn->code) == BPF_X) {
2063 		if (regs[insn->src_reg].type == CONST_IMM)
2064 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2065 					dst_reg, regs[insn->src_reg].imm,
2066 					opcode);
2067 		else if (dst_reg->type == CONST_IMM)
2068 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2069 					    &regs[insn->src_reg], dst_reg->imm,
2070 					    opcode);
2071 	} else {
2072 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2073 					dst_reg, insn->imm, opcode);
2074 	}
2075 
2076 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2077 	if (BPF_SRC(insn->code) == BPF_K &&
2078 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2079 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2080 		/* Mark all identical map registers in each branch as either
2081 		 * safe or unknown depending R == 0 or R != 0 conditional.
2082 		 */
2083 		mark_map_regs(this_branch, insn->dst_reg,
2084 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2085 		mark_map_regs(other_branch, insn->dst_reg,
2086 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2087 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2088 		   dst_reg->type == PTR_TO_PACKET &&
2089 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2090 		find_good_pkt_pointers(this_branch, dst_reg);
2091 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2092 		   dst_reg->type == PTR_TO_PACKET_END &&
2093 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2094 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2095 	} else if (is_pointer_value(env, insn->dst_reg)) {
2096 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2097 		return -EACCES;
2098 	}
2099 	if (log_level)
2100 		print_verifier_state(this_branch);
2101 	return 0;
2102 }
2103 
2104 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2105 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2106 {
2107 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2108 
2109 	return (struct bpf_map *) (unsigned long) imm64;
2110 }
2111 
2112 /* verify BPF_LD_IMM64 instruction */
2113 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2114 {
2115 	struct bpf_reg_state *regs = env->cur_state.regs;
2116 	int err;
2117 
2118 	if (BPF_SIZE(insn->code) != BPF_DW) {
2119 		verbose("invalid BPF_LD_IMM insn\n");
2120 		return -EINVAL;
2121 	}
2122 	if (insn->off != 0) {
2123 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2124 		return -EINVAL;
2125 	}
2126 
2127 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2128 	if (err)
2129 		return err;
2130 
2131 	if (insn->src_reg == 0) {
2132 		/* generic move 64-bit immediate into a register,
2133 		 * only analyzer needs to collect the ld_imm value.
2134 		 */
2135 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2136 
2137 		if (!env->analyzer_ops)
2138 			return 0;
2139 
2140 		regs[insn->dst_reg].type = CONST_IMM;
2141 		regs[insn->dst_reg].imm = imm;
2142 		return 0;
2143 	}
2144 
2145 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2146 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2147 
2148 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2149 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2150 	return 0;
2151 }
2152 
2153 static bool may_access_skb(enum bpf_prog_type type)
2154 {
2155 	switch (type) {
2156 	case BPF_PROG_TYPE_SOCKET_FILTER:
2157 	case BPF_PROG_TYPE_SCHED_CLS:
2158 	case BPF_PROG_TYPE_SCHED_ACT:
2159 		return true;
2160 	default:
2161 		return false;
2162 	}
2163 }
2164 
2165 /* verify safety of LD_ABS|LD_IND instructions:
2166  * - they can only appear in the programs where ctx == skb
2167  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2168  *   preserve R6-R9, and store return value into R0
2169  *
2170  * Implicit input:
2171  *   ctx == skb == R6 == CTX
2172  *
2173  * Explicit input:
2174  *   SRC == any register
2175  *   IMM == 32-bit immediate
2176  *
2177  * Output:
2178  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2179  */
2180 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2181 {
2182 	struct bpf_reg_state *regs = env->cur_state.regs;
2183 	u8 mode = BPF_MODE(insn->code);
2184 	struct bpf_reg_state *reg;
2185 	int i, err;
2186 
2187 	if (!may_access_skb(env->prog->type)) {
2188 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2189 		return -EINVAL;
2190 	}
2191 
2192 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2193 	    BPF_SIZE(insn->code) == BPF_DW ||
2194 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2195 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2196 		return -EINVAL;
2197 	}
2198 
2199 	/* check whether implicit source operand (register R6) is readable */
2200 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2201 	if (err)
2202 		return err;
2203 
2204 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2205 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2206 		return -EINVAL;
2207 	}
2208 
2209 	if (mode == BPF_IND) {
2210 		/* check explicit source operand */
2211 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2212 		if (err)
2213 			return err;
2214 	}
2215 
2216 	/* reset caller saved regs to unreadable */
2217 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2218 		reg = regs + caller_saved[i];
2219 		reg->type = NOT_INIT;
2220 		reg->imm = 0;
2221 	}
2222 
2223 	/* mark destination R0 register as readable, since it contains
2224 	 * the value fetched from the packet
2225 	 */
2226 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2227 	return 0;
2228 }
2229 
2230 /* non-recursive DFS pseudo code
2231  * 1  procedure DFS-iterative(G,v):
2232  * 2      label v as discovered
2233  * 3      let S be a stack
2234  * 4      S.push(v)
2235  * 5      while S is not empty
2236  * 6            t <- S.pop()
2237  * 7            if t is what we're looking for:
2238  * 8                return t
2239  * 9            for all edges e in G.adjacentEdges(t) do
2240  * 10               if edge e is already labelled
2241  * 11                   continue with the next edge
2242  * 12               w <- G.adjacentVertex(t,e)
2243  * 13               if vertex w is not discovered and not explored
2244  * 14                   label e as tree-edge
2245  * 15                   label w as discovered
2246  * 16                   S.push(w)
2247  * 17                   continue at 5
2248  * 18               else if vertex w is discovered
2249  * 19                   label e as back-edge
2250  * 20               else
2251  * 21                   // vertex w is explored
2252  * 22                   label e as forward- or cross-edge
2253  * 23           label t as explored
2254  * 24           S.pop()
2255  *
2256  * convention:
2257  * 0x10 - discovered
2258  * 0x11 - discovered and fall-through edge labelled
2259  * 0x12 - discovered and fall-through and branch edges labelled
2260  * 0x20 - explored
2261  */
2262 
2263 enum {
2264 	DISCOVERED = 0x10,
2265 	EXPLORED = 0x20,
2266 	FALLTHROUGH = 1,
2267 	BRANCH = 2,
2268 };
2269 
2270 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2271 
2272 static int *insn_stack;	/* stack of insns to process */
2273 static int cur_stack;	/* current stack index */
2274 static int *insn_state;
2275 
2276 /* t, w, e - match pseudo-code above:
2277  * t - index of current instruction
2278  * w - next instruction
2279  * e - edge
2280  */
2281 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2282 {
2283 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2284 		return 0;
2285 
2286 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2287 		return 0;
2288 
2289 	if (w < 0 || w >= env->prog->len) {
2290 		verbose("jump out of range from insn %d to %d\n", t, w);
2291 		return -EINVAL;
2292 	}
2293 
2294 	if (e == BRANCH)
2295 		/* mark branch target for state pruning */
2296 		env->explored_states[w] = STATE_LIST_MARK;
2297 
2298 	if (insn_state[w] == 0) {
2299 		/* tree-edge */
2300 		insn_state[t] = DISCOVERED | e;
2301 		insn_state[w] = DISCOVERED;
2302 		if (cur_stack >= env->prog->len)
2303 			return -E2BIG;
2304 		insn_stack[cur_stack++] = w;
2305 		return 1;
2306 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2307 		verbose("back-edge from insn %d to %d\n", t, w);
2308 		return -EINVAL;
2309 	} else if (insn_state[w] == EXPLORED) {
2310 		/* forward- or cross-edge */
2311 		insn_state[t] = DISCOVERED | e;
2312 	} else {
2313 		verbose("insn state internal bug\n");
2314 		return -EFAULT;
2315 	}
2316 	return 0;
2317 }
2318 
2319 /* non-recursive depth-first-search to detect loops in BPF program
2320  * loop == back-edge in directed graph
2321  */
2322 static int check_cfg(struct bpf_verifier_env *env)
2323 {
2324 	struct bpf_insn *insns = env->prog->insnsi;
2325 	int insn_cnt = env->prog->len;
2326 	int ret = 0;
2327 	int i, t;
2328 
2329 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2330 	if (!insn_state)
2331 		return -ENOMEM;
2332 
2333 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2334 	if (!insn_stack) {
2335 		kfree(insn_state);
2336 		return -ENOMEM;
2337 	}
2338 
2339 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2340 	insn_stack[0] = 0; /* 0 is the first instruction */
2341 	cur_stack = 1;
2342 
2343 peek_stack:
2344 	if (cur_stack == 0)
2345 		goto check_state;
2346 	t = insn_stack[cur_stack - 1];
2347 
2348 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2349 		u8 opcode = BPF_OP(insns[t].code);
2350 
2351 		if (opcode == BPF_EXIT) {
2352 			goto mark_explored;
2353 		} else if (opcode == BPF_CALL) {
2354 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2355 			if (ret == 1)
2356 				goto peek_stack;
2357 			else if (ret < 0)
2358 				goto err_free;
2359 			if (t + 1 < insn_cnt)
2360 				env->explored_states[t + 1] = STATE_LIST_MARK;
2361 		} else if (opcode == BPF_JA) {
2362 			if (BPF_SRC(insns[t].code) != BPF_K) {
2363 				ret = -EINVAL;
2364 				goto err_free;
2365 			}
2366 			/* unconditional jump with single edge */
2367 			ret = push_insn(t, t + insns[t].off + 1,
2368 					FALLTHROUGH, env);
2369 			if (ret == 1)
2370 				goto peek_stack;
2371 			else if (ret < 0)
2372 				goto err_free;
2373 			/* tell verifier to check for equivalent states
2374 			 * after every call and jump
2375 			 */
2376 			if (t + 1 < insn_cnt)
2377 				env->explored_states[t + 1] = STATE_LIST_MARK;
2378 		} else {
2379 			/* conditional jump with two edges */
2380 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2381 			if (ret == 1)
2382 				goto peek_stack;
2383 			else if (ret < 0)
2384 				goto err_free;
2385 
2386 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2387 			if (ret == 1)
2388 				goto peek_stack;
2389 			else if (ret < 0)
2390 				goto err_free;
2391 		}
2392 	} else {
2393 		/* all other non-branch instructions with single
2394 		 * fall-through edge
2395 		 */
2396 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2397 		if (ret == 1)
2398 			goto peek_stack;
2399 		else if (ret < 0)
2400 			goto err_free;
2401 	}
2402 
2403 mark_explored:
2404 	insn_state[t] = EXPLORED;
2405 	if (cur_stack-- <= 0) {
2406 		verbose("pop stack internal bug\n");
2407 		ret = -EFAULT;
2408 		goto err_free;
2409 	}
2410 	goto peek_stack;
2411 
2412 check_state:
2413 	for (i = 0; i < insn_cnt; i++) {
2414 		if (insn_state[i] != EXPLORED) {
2415 			verbose("unreachable insn %d\n", i);
2416 			ret = -EINVAL;
2417 			goto err_free;
2418 		}
2419 	}
2420 	ret = 0; /* cfg looks good */
2421 
2422 err_free:
2423 	kfree(insn_state);
2424 	kfree(insn_stack);
2425 	return ret;
2426 }
2427 
2428 /* the following conditions reduce the number of explored insns
2429  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2430  */
2431 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2432 				   struct bpf_reg_state *cur)
2433 {
2434 	if (old->id != cur->id)
2435 		return false;
2436 
2437 	/* old ptr_to_packet is more conservative, since it allows smaller
2438 	 * range. Ex:
2439 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2440 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2441 	 * further and found no issues with the program. Now we're in the same
2442 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2443 	 * will only be looking at most 10 bytes after this pointer.
2444 	 */
2445 	if (old->off == cur->off && old->range < cur->range)
2446 		return true;
2447 
2448 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2449 	 * since both cannot be used for packet access and safe(old)
2450 	 * pointer has smaller off that could be used for further
2451 	 * 'if (ptr > data_end)' check
2452 	 * Ex:
2453 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2454 	 * that we cannot access the packet.
2455 	 * The safe range is:
2456 	 * [ptr, ptr + range - off)
2457 	 * so whenever off >=range, it means no safe bytes from this pointer.
2458 	 * When comparing old->off <= cur->off, it means that older code
2459 	 * went with smaller offset and that offset was later
2460 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2461 	 * Say, 'old' state was explored like:
2462 	 * ... R3(off=0, r=0)
2463 	 * R4 = R3 + 20
2464 	 * ... now R4(off=20,r=0)  <-- here
2465 	 * if (R4 > data_end)
2466 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2467 	 * ... the code further went all the way to bpf_exit.
2468 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2469 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2470 	 * goes further, such cur_R4 will give larger safe packet range after
2471 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2472 	 * so they will be good with r=30 and we can prune the search.
2473 	 */
2474 	if (old->off <= cur->off &&
2475 	    old->off >= old->range && cur->off >= cur->range)
2476 		return true;
2477 
2478 	return false;
2479 }
2480 
2481 /* compare two verifier states
2482  *
2483  * all states stored in state_list are known to be valid, since
2484  * verifier reached 'bpf_exit' instruction through them
2485  *
2486  * this function is called when verifier exploring different branches of
2487  * execution popped from the state stack. If it sees an old state that has
2488  * more strict register state and more strict stack state then this execution
2489  * branch doesn't need to be explored further, since verifier already
2490  * concluded that more strict state leads to valid finish.
2491  *
2492  * Therefore two states are equivalent if register state is more conservative
2493  * and explored stack state is more conservative than the current one.
2494  * Example:
2495  *       explored                   current
2496  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2497  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2498  *
2499  * In other words if current stack state (one being explored) has more
2500  * valid slots than old one that already passed validation, it means
2501  * the verifier can stop exploring and conclude that current state is valid too
2502  *
2503  * Similarly with registers. If explored state has register type as invalid
2504  * whereas register type in current state is meaningful, it means that
2505  * the current state will reach 'bpf_exit' instruction safely
2506  */
2507 static bool states_equal(struct bpf_verifier_env *env,
2508 			 struct bpf_verifier_state *old,
2509 			 struct bpf_verifier_state *cur)
2510 {
2511 	bool varlen_map_access = env->varlen_map_value_access;
2512 	struct bpf_reg_state *rold, *rcur;
2513 	int i;
2514 
2515 	for (i = 0; i < MAX_BPF_REG; i++) {
2516 		rold = &old->regs[i];
2517 		rcur = &cur->regs[i];
2518 
2519 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2520 			continue;
2521 
2522 		/* If the ranges were not the same, but everything else was and
2523 		 * we didn't do a variable access into a map then we are a-ok.
2524 		 */
2525 		if (!varlen_map_access &&
2526 		    rold->type == rcur->type && rold->imm == rcur->imm)
2527 			continue;
2528 
2529 		/* If we didn't map access then again we don't care about the
2530 		 * mismatched range values and it's ok if our old type was
2531 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2532 		 */
2533 		if (rold->type == NOT_INIT ||
2534 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2535 		     rcur->type != NOT_INIT))
2536 			continue;
2537 
2538 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2539 		    compare_ptrs_to_packet(rold, rcur))
2540 			continue;
2541 
2542 		return false;
2543 	}
2544 
2545 	for (i = 0; i < MAX_BPF_STACK; i++) {
2546 		if (old->stack_slot_type[i] == STACK_INVALID)
2547 			continue;
2548 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2549 			/* Ex: old explored (safe) state has STACK_SPILL in
2550 			 * this stack slot, but current has has STACK_MISC ->
2551 			 * this verifier states are not equivalent,
2552 			 * return false to continue verification of this path
2553 			 */
2554 			return false;
2555 		if (i % BPF_REG_SIZE)
2556 			continue;
2557 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2558 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2559 			   sizeof(old->spilled_regs[0])))
2560 			/* when explored and current stack slot types are
2561 			 * the same, check that stored pointers types
2562 			 * are the same as well.
2563 			 * Ex: explored safe path could have stored
2564 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2565 			 * but current path has stored:
2566 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2567 			 * such verifier states are not equivalent.
2568 			 * return false to continue verification of this path
2569 			 */
2570 			return false;
2571 		else
2572 			continue;
2573 	}
2574 	return true;
2575 }
2576 
2577 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2578 {
2579 	struct bpf_verifier_state_list *new_sl;
2580 	struct bpf_verifier_state_list *sl;
2581 
2582 	sl = env->explored_states[insn_idx];
2583 	if (!sl)
2584 		/* this 'insn_idx' instruction wasn't marked, so we will not
2585 		 * be doing state search here
2586 		 */
2587 		return 0;
2588 
2589 	while (sl != STATE_LIST_MARK) {
2590 		if (states_equal(env, &sl->state, &env->cur_state))
2591 			/* reached equivalent register/stack state,
2592 			 * prune the search
2593 			 */
2594 			return 1;
2595 		sl = sl->next;
2596 	}
2597 
2598 	/* there were no equivalent states, remember current one.
2599 	 * technically the current state is not proven to be safe yet,
2600 	 * but it will either reach bpf_exit (which means it's safe) or
2601 	 * it will be rejected. Since there are no loops, we won't be
2602 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2603 	 */
2604 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2605 	if (!new_sl)
2606 		return -ENOMEM;
2607 
2608 	/* add new state to the head of linked list */
2609 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2610 	new_sl->next = env->explored_states[insn_idx];
2611 	env->explored_states[insn_idx] = new_sl;
2612 	return 0;
2613 }
2614 
2615 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2616 				  int insn_idx, int prev_insn_idx)
2617 {
2618 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2619 		return 0;
2620 
2621 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2622 }
2623 
2624 static int do_check(struct bpf_verifier_env *env)
2625 {
2626 	struct bpf_verifier_state *state = &env->cur_state;
2627 	struct bpf_insn *insns = env->prog->insnsi;
2628 	struct bpf_reg_state *regs = state->regs;
2629 	int insn_cnt = env->prog->len;
2630 	int insn_idx, prev_insn_idx = 0;
2631 	int insn_processed = 0;
2632 	bool do_print_state = false;
2633 
2634 	init_reg_state(regs);
2635 	insn_idx = 0;
2636 	env->varlen_map_value_access = false;
2637 	for (;;) {
2638 		struct bpf_insn *insn;
2639 		u8 class;
2640 		int err;
2641 
2642 		if (insn_idx >= insn_cnt) {
2643 			verbose("invalid insn idx %d insn_cnt %d\n",
2644 				insn_idx, insn_cnt);
2645 			return -EFAULT;
2646 		}
2647 
2648 		insn = &insns[insn_idx];
2649 		class = BPF_CLASS(insn->code);
2650 
2651 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2652 			verbose("BPF program is too large. Proccessed %d insn\n",
2653 				insn_processed);
2654 			return -E2BIG;
2655 		}
2656 
2657 		err = is_state_visited(env, insn_idx);
2658 		if (err < 0)
2659 			return err;
2660 		if (err == 1) {
2661 			/* found equivalent state, can prune the search */
2662 			if (log_level) {
2663 				if (do_print_state)
2664 					verbose("\nfrom %d to %d: safe\n",
2665 						prev_insn_idx, insn_idx);
2666 				else
2667 					verbose("%d: safe\n", insn_idx);
2668 			}
2669 			goto process_bpf_exit;
2670 		}
2671 
2672 		if (log_level && do_print_state) {
2673 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2674 			print_verifier_state(&env->cur_state);
2675 			do_print_state = false;
2676 		}
2677 
2678 		if (log_level) {
2679 			verbose("%d: ", insn_idx);
2680 			print_bpf_insn(insn);
2681 		}
2682 
2683 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2684 		if (err)
2685 			return err;
2686 
2687 		if (class == BPF_ALU || class == BPF_ALU64) {
2688 			err = check_alu_op(env, insn);
2689 			if (err)
2690 				return err;
2691 
2692 		} else if (class == BPF_LDX) {
2693 			enum bpf_reg_type *prev_src_type, src_reg_type;
2694 
2695 			/* check for reserved fields is already done */
2696 
2697 			/* check src operand */
2698 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2699 			if (err)
2700 				return err;
2701 
2702 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2703 			if (err)
2704 				return err;
2705 
2706 			src_reg_type = regs[insn->src_reg].type;
2707 
2708 			/* check that memory (src_reg + off) is readable,
2709 			 * the state of dst_reg will be updated by this func
2710 			 */
2711 			err = check_mem_access(env, insn->src_reg, insn->off,
2712 					       BPF_SIZE(insn->code), BPF_READ,
2713 					       insn->dst_reg);
2714 			if (err)
2715 				return err;
2716 
2717 			reset_reg_range_values(regs, insn->dst_reg);
2718 			if (BPF_SIZE(insn->code) != BPF_W &&
2719 			    BPF_SIZE(insn->code) != BPF_DW) {
2720 				insn_idx++;
2721 				continue;
2722 			}
2723 
2724 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2725 
2726 			if (*prev_src_type == NOT_INIT) {
2727 				/* saw a valid insn
2728 				 * dst_reg = *(u32 *)(src_reg + off)
2729 				 * save type to validate intersecting paths
2730 				 */
2731 				*prev_src_type = src_reg_type;
2732 
2733 			} else if (src_reg_type != *prev_src_type &&
2734 				   (src_reg_type == PTR_TO_CTX ||
2735 				    *prev_src_type == PTR_TO_CTX)) {
2736 				/* ABuser program is trying to use the same insn
2737 				 * dst_reg = *(u32*) (src_reg + off)
2738 				 * with different pointer types:
2739 				 * src_reg == ctx in one branch and
2740 				 * src_reg == stack|map in some other branch.
2741 				 * Reject it.
2742 				 */
2743 				verbose("same insn cannot be used with different pointers\n");
2744 				return -EINVAL;
2745 			}
2746 
2747 		} else if (class == BPF_STX) {
2748 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2749 
2750 			if (BPF_MODE(insn->code) == BPF_XADD) {
2751 				err = check_xadd(env, insn);
2752 				if (err)
2753 					return err;
2754 				insn_idx++;
2755 				continue;
2756 			}
2757 
2758 			/* check src1 operand */
2759 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2760 			if (err)
2761 				return err;
2762 			/* check src2 operand */
2763 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2764 			if (err)
2765 				return err;
2766 
2767 			dst_reg_type = regs[insn->dst_reg].type;
2768 
2769 			/* check that memory (dst_reg + off) is writeable */
2770 			err = check_mem_access(env, insn->dst_reg, insn->off,
2771 					       BPF_SIZE(insn->code), BPF_WRITE,
2772 					       insn->src_reg);
2773 			if (err)
2774 				return err;
2775 
2776 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2777 
2778 			if (*prev_dst_type == NOT_INIT) {
2779 				*prev_dst_type = dst_reg_type;
2780 			} else if (dst_reg_type != *prev_dst_type &&
2781 				   (dst_reg_type == PTR_TO_CTX ||
2782 				    *prev_dst_type == PTR_TO_CTX)) {
2783 				verbose("same insn cannot be used with different pointers\n");
2784 				return -EINVAL;
2785 			}
2786 
2787 		} else if (class == BPF_ST) {
2788 			if (BPF_MODE(insn->code) != BPF_MEM ||
2789 			    insn->src_reg != BPF_REG_0) {
2790 				verbose("BPF_ST uses reserved fields\n");
2791 				return -EINVAL;
2792 			}
2793 			/* check src operand */
2794 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2795 			if (err)
2796 				return err;
2797 
2798 			/* check that memory (dst_reg + off) is writeable */
2799 			err = check_mem_access(env, insn->dst_reg, insn->off,
2800 					       BPF_SIZE(insn->code), BPF_WRITE,
2801 					       -1);
2802 			if (err)
2803 				return err;
2804 
2805 		} else if (class == BPF_JMP) {
2806 			u8 opcode = BPF_OP(insn->code);
2807 
2808 			if (opcode == BPF_CALL) {
2809 				if (BPF_SRC(insn->code) != BPF_K ||
2810 				    insn->off != 0 ||
2811 				    insn->src_reg != BPF_REG_0 ||
2812 				    insn->dst_reg != BPF_REG_0) {
2813 					verbose("BPF_CALL uses reserved fields\n");
2814 					return -EINVAL;
2815 				}
2816 
2817 				err = check_call(env, insn->imm);
2818 				if (err)
2819 					return err;
2820 
2821 			} else if (opcode == BPF_JA) {
2822 				if (BPF_SRC(insn->code) != BPF_K ||
2823 				    insn->imm != 0 ||
2824 				    insn->src_reg != BPF_REG_0 ||
2825 				    insn->dst_reg != BPF_REG_0) {
2826 					verbose("BPF_JA uses reserved fields\n");
2827 					return -EINVAL;
2828 				}
2829 
2830 				insn_idx += insn->off + 1;
2831 				continue;
2832 
2833 			} else if (opcode == BPF_EXIT) {
2834 				if (BPF_SRC(insn->code) != BPF_K ||
2835 				    insn->imm != 0 ||
2836 				    insn->src_reg != BPF_REG_0 ||
2837 				    insn->dst_reg != BPF_REG_0) {
2838 					verbose("BPF_EXIT uses reserved fields\n");
2839 					return -EINVAL;
2840 				}
2841 
2842 				/* eBPF calling convetion is such that R0 is used
2843 				 * to return the value from eBPF program.
2844 				 * Make sure that it's readable at this time
2845 				 * of bpf_exit, which means that program wrote
2846 				 * something into it earlier
2847 				 */
2848 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2849 				if (err)
2850 					return err;
2851 
2852 				if (is_pointer_value(env, BPF_REG_0)) {
2853 					verbose("R0 leaks addr as return value\n");
2854 					return -EACCES;
2855 				}
2856 
2857 process_bpf_exit:
2858 				insn_idx = pop_stack(env, &prev_insn_idx);
2859 				if (insn_idx < 0) {
2860 					break;
2861 				} else {
2862 					do_print_state = true;
2863 					continue;
2864 				}
2865 			} else {
2866 				err = check_cond_jmp_op(env, insn, &insn_idx);
2867 				if (err)
2868 					return err;
2869 			}
2870 		} else if (class == BPF_LD) {
2871 			u8 mode = BPF_MODE(insn->code);
2872 
2873 			if (mode == BPF_ABS || mode == BPF_IND) {
2874 				err = check_ld_abs(env, insn);
2875 				if (err)
2876 					return err;
2877 
2878 			} else if (mode == BPF_IMM) {
2879 				err = check_ld_imm(env, insn);
2880 				if (err)
2881 					return err;
2882 
2883 				insn_idx++;
2884 			} else {
2885 				verbose("invalid BPF_LD mode\n");
2886 				return -EINVAL;
2887 			}
2888 			reset_reg_range_values(regs, insn->dst_reg);
2889 		} else {
2890 			verbose("unknown insn class %d\n", class);
2891 			return -EINVAL;
2892 		}
2893 
2894 		insn_idx++;
2895 	}
2896 
2897 	verbose("processed %d insns\n", insn_processed);
2898 	return 0;
2899 }
2900 
2901 static int check_map_prog_compatibility(struct bpf_map *map,
2902 					struct bpf_prog *prog)
2903 
2904 {
2905 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2906 	    (map->map_type == BPF_MAP_TYPE_HASH ||
2907 	     map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2908 	    (map->map_flags & BPF_F_NO_PREALLOC)) {
2909 		verbose("perf_event programs can only use preallocated hash map\n");
2910 		return -EINVAL;
2911 	}
2912 	return 0;
2913 }
2914 
2915 /* look for pseudo eBPF instructions that access map FDs and
2916  * replace them with actual map pointers
2917  */
2918 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
2919 {
2920 	struct bpf_insn *insn = env->prog->insnsi;
2921 	int insn_cnt = env->prog->len;
2922 	int i, j, err;
2923 
2924 	for (i = 0; i < insn_cnt; i++, insn++) {
2925 		if (BPF_CLASS(insn->code) == BPF_LDX &&
2926 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2927 			verbose("BPF_LDX uses reserved fields\n");
2928 			return -EINVAL;
2929 		}
2930 
2931 		if (BPF_CLASS(insn->code) == BPF_STX &&
2932 		    ((BPF_MODE(insn->code) != BPF_MEM &&
2933 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2934 			verbose("BPF_STX uses reserved fields\n");
2935 			return -EINVAL;
2936 		}
2937 
2938 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2939 			struct bpf_map *map;
2940 			struct fd f;
2941 
2942 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
2943 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2944 			    insn[1].off != 0) {
2945 				verbose("invalid bpf_ld_imm64 insn\n");
2946 				return -EINVAL;
2947 			}
2948 
2949 			if (insn->src_reg == 0)
2950 				/* valid generic load 64-bit imm */
2951 				goto next_insn;
2952 
2953 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2954 				verbose("unrecognized bpf_ld_imm64 insn\n");
2955 				return -EINVAL;
2956 			}
2957 
2958 			f = fdget(insn->imm);
2959 			map = __bpf_map_get(f);
2960 			if (IS_ERR(map)) {
2961 				verbose("fd %d is not pointing to valid bpf_map\n",
2962 					insn->imm);
2963 				return PTR_ERR(map);
2964 			}
2965 
2966 			err = check_map_prog_compatibility(map, env->prog);
2967 			if (err) {
2968 				fdput(f);
2969 				return err;
2970 			}
2971 
2972 			/* store map pointer inside BPF_LD_IMM64 instruction */
2973 			insn[0].imm = (u32) (unsigned long) map;
2974 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2975 
2976 			/* check whether we recorded this map already */
2977 			for (j = 0; j < env->used_map_cnt; j++)
2978 				if (env->used_maps[j] == map) {
2979 					fdput(f);
2980 					goto next_insn;
2981 				}
2982 
2983 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2984 				fdput(f);
2985 				return -E2BIG;
2986 			}
2987 
2988 			/* hold the map. If the program is rejected by verifier,
2989 			 * the map will be released by release_maps() or it
2990 			 * will be used by the valid program until it's unloaded
2991 			 * and all maps are released in free_bpf_prog_info()
2992 			 */
2993 			map = bpf_map_inc(map, false);
2994 			if (IS_ERR(map)) {
2995 				fdput(f);
2996 				return PTR_ERR(map);
2997 			}
2998 			env->used_maps[env->used_map_cnt++] = map;
2999 
3000 			fdput(f);
3001 next_insn:
3002 			insn++;
3003 			i++;
3004 		}
3005 	}
3006 
3007 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3008 	 * 'struct bpf_map *' into a register instead of user map_fd.
3009 	 * These pointers will be used later by verifier to validate map access.
3010 	 */
3011 	return 0;
3012 }
3013 
3014 /* drop refcnt of maps used by the rejected program */
3015 static void release_maps(struct bpf_verifier_env *env)
3016 {
3017 	int i;
3018 
3019 	for (i = 0; i < env->used_map_cnt; i++)
3020 		bpf_map_put(env->used_maps[i]);
3021 }
3022 
3023 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3024 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3025 {
3026 	struct bpf_insn *insn = env->prog->insnsi;
3027 	int insn_cnt = env->prog->len;
3028 	int i;
3029 
3030 	for (i = 0; i < insn_cnt; i++, insn++)
3031 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3032 			insn->src_reg = 0;
3033 }
3034 
3035 /* convert load instructions that access fields of 'struct __sk_buff'
3036  * into sequence of instructions that access fields of 'struct sk_buff'
3037  */
3038 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3039 {
3040 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3041 	const int insn_cnt = env->prog->len;
3042 	struct bpf_insn insn_buf[16], *insn;
3043 	struct bpf_prog *new_prog;
3044 	enum bpf_access_type type;
3045 	int i, cnt, delta = 0;
3046 
3047 	if (ops->gen_prologue) {
3048 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3049 					env->prog);
3050 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3051 			verbose("bpf verifier is misconfigured\n");
3052 			return -EINVAL;
3053 		} else if (cnt) {
3054 			new_prog = bpf_patch_insn_single(env->prog, 0,
3055 							 insn_buf, cnt);
3056 			if (!new_prog)
3057 				return -ENOMEM;
3058 			env->prog = new_prog;
3059 			delta += cnt - 1;
3060 		}
3061 	}
3062 
3063 	if (!ops->convert_ctx_access)
3064 		return 0;
3065 
3066 	insn = env->prog->insnsi + delta;
3067 
3068 	for (i = 0; i < insn_cnt; i++, insn++) {
3069 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3070 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3071 			type = BPF_READ;
3072 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3073 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3074 			type = BPF_WRITE;
3075 		else
3076 			continue;
3077 
3078 		if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
3079 			continue;
3080 
3081 		cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3082 					      insn->off, insn_buf, env->prog);
3083 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3084 			verbose("bpf verifier is misconfigured\n");
3085 			return -EINVAL;
3086 		}
3087 
3088 		new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3089 						 cnt);
3090 		if (!new_prog)
3091 			return -ENOMEM;
3092 
3093 		delta += cnt - 1;
3094 
3095 		/* keep walking new program and skip insns we just inserted */
3096 		env->prog = new_prog;
3097 		insn      = new_prog->insnsi + i + delta;
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static void free_states(struct bpf_verifier_env *env)
3104 {
3105 	struct bpf_verifier_state_list *sl, *sln;
3106 	int i;
3107 
3108 	if (!env->explored_states)
3109 		return;
3110 
3111 	for (i = 0; i < env->prog->len; i++) {
3112 		sl = env->explored_states[i];
3113 
3114 		if (sl)
3115 			while (sl != STATE_LIST_MARK) {
3116 				sln = sl->next;
3117 				kfree(sl);
3118 				sl = sln;
3119 			}
3120 	}
3121 
3122 	kfree(env->explored_states);
3123 }
3124 
3125 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3126 {
3127 	char __user *log_ubuf = NULL;
3128 	struct bpf_verifier_env *env;
3129 	int ret = -EINVAL;
3130 
3131 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
3132 		return -E2BIG;
3133 
3134 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3135 	 * allocate/free it every time bpf_check() is called
3136 	 */
3137 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3138 	if (!env)
3139 		return -ENOMEM;
3140 
3141 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3142 				     (*prog)->len);
3143 	ret = -ENOMEM;
3144 	if (!env->insn_aux_data)
3145 		goto err_free_env;
3146 	env->prog = *prog;
3147 
3148 	/* grab the mutex to protect few globals used by verifier */
3149 	mutex_lock(&bpf_verifier_lock);
3150 
3151 	if (attr->log_level || attr->log_buf || attr->log_size) {
3152 		/* user requested verbose verifier output
3153 		 * and supplied buffer to store the verification trace
3154 		 */
3155 		log_level = attr->log_level;
3156 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3157 		log_size = attr->log_size;
3158 		log_len = 0;
3159 
3160 		ret = -EINVAL;
3161 		/* log_* values have to be sane */
3162 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3163 		    log_level == 0 || log_ubuf == NULL)
3164 			goto err_unlock;
3165 
3166 		ret = -ENOMEM;
3167 		log_buf = vmalloc(log_size);
3168 		if (!log_buf)
3169 			goto err_unlock;
3170 	} else {
3171 		log_level = 0;
3172 	}
3173 
3174 	ret = replace_map_fd_with_map_ptr(env);
3175 	if (ret < 0)
3176 		goto skip_full_check;
3177 
3178 	env->explored_states = kcalloc(env->prog->len,
3179 				       sizeof(struct bpf_verifier_state_list *),
3180 				       GFP_USER);
3181 	ret = -ENOMEM;
3182 	if (!env->explored_states)
3183 		goto skip_full_check;
3184 
3185 	ret = check_cfg(env);
3186 	if (ret < 0)
3187 		goto skip_full_check;
3188 
3189 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3190 
3191 	ret = do_check(env);
3192 
3193 skip_full_check:
3194 	while (pop_stack(env, NULL) >= 0);
3195 	free_states(env);
3196 
3197 	if (ret == 0)
3198 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3199 		ret = convert_ctx_accesses(env);
3200 
3201 	if (log_level && log_len >= log_size - 1) {
3202 		BUG_ON(log_len >= log_size);
3203 		/* verifier log exceeded user supplied buffer */
3204 		ret = -ENOSPC;
3205 		/* fall through to return what was recorded */
3206 	}
3207 
3208 	/* copy verifier log back to user space including trailing zero */
3209 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3210 		ret = -EFAULT;
3211 		goto free_log_buf;
3212 	}
3213 
3214 	if (ret == 0 && env->used_map_cnt) {
3215 		/* if program passed verifier, update used_maps in bpf_prog_info */
3216 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3217 							  sizeof(env->used_maps[0]),
3218 							  GFP_KERNEL);
3219 
3220 		if (!env->prog->aux->used_maps) {
3221 			ret = -ENOMEM;
3222 			goto free_log_buf;
3223 		}
3224 
3225 		memcpy(env->prog->aux->used_maps, env->used_maps,
3226 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3227 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3228 
3229 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3230 		 * bpf_ld_imm64 instructions
3231 		 */
3232 		convert_pseudo_ld_imm64(env);
3233 	}
3234 
3235 free_log_buf:
3236 	if (log_level)
3237 		vfree(log_buf);
3238 	if (!env->prog->aux->used_maps)
3239 		/* if we didn't copy map pointers into bpf_prog_info, release
3240 		 * them now. Otherwise free_bpf_prog_info() will release them.
3241 		 */
3242 		release_maps(env);
3243 	*prog = env->prog;
3244 err_unlock:
3245 	mutex_unlock(&bpf_verifier_lock);
3246 	vfree(env->insn_aux_data);
3247 err_free_env:
3248 	kfree(env);
3249 	return ret;
3250 }
3251 
3252 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3253 		 void *priv)
3254 {
3255 	struct bpf_verifier_env *env;
3256 	int ret;
3257 
3258 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3259 	if (!env)
3260 		return -ENOMEM;
3261 
3262 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3263 				     prog->len);
3264 	ret = -ENOMEM;
3265 	if (!env->insn_aux_data)
3266 		goto err_free_env;
3267 	env->prog = prog;
3268 	env->analyzer_ops = ops;
3269 	env->analyzer_priv = priv;
3270 
3271 	/* grab the mutex to protect few globals used by verifier */
3272 	mutex_lock(&bpf_verifier_lock);
3273 
3274 	log_level = 0;
3275 
3276 	env->explored_states = kcalloc(env->prog->len,
3277 				       sizeof(struct bpf_verifier_state_list *),
3278 				       GFP_KERNEL);
3279 	ret = -ENOMEM;
3280 	if (!env->explored_states)
3281 		goto skip_full_check;
3282 
3283 	ret = check_cfg(env);
3284 	if (ret < 0)
3285 		goto skip_full_check;
3286 
3287 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3288 
3289 	ret = do_check(env);
3290 
3291 skip_full_check:
3292 	while (pop_stack(env, NULL) >= 0);
3293 	free_states(env);
3294 
3295 	mutex_unlock(&bpf_verifier_lock);
3296 	vfree(env->insn_aux_data);
3297 err_free_env:
3298 	kfree(env);
3299 	return ret;
3300 }
3301 EXPORT_SYMBOL_GPL(bpf_analyzer);
3302