1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK || 330 type == PTR_TO_XDP_SOCK; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL || 337 type == PTR_TO_SOCK_COMMON_OR_NULL || 338 type == PTR_TO_TCP_SOCK_OR_NULL; 339 } 340 341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 342 { 343 return reg->type == PTR_TO_MAP_VALUE && 344 map_value_has_spin_lock(reg->map_ptr); 345 } 346 347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 348 { 349 return type == PTR_TO_SOCKET || 350 type == PTR_TO_SOCKET_OR_NULL || 351 type == PTR_TO_TCP_SOCK || 352 type == PTR_TO_TCP_SOCK_OR_NULL; 353 } 354 355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 356 { 357 return type == ARG_PTR_TO_SOCK_COMMON; 358 } 359 360 /* Determine whether the function releases some resources allocated by another 361 * function call. The first reference type argument will be assumed to be 362 * released by release_reference(). 363 */ 364 static bool is_release_function(enum bpf_func_id func_id) 365 { 366 return func_id == BPF_FUNC_sk_release; 367 } 368 369 static bool is_acquire_function(enum bpf_func_id func_id) 370 { 371 return func_id == BPF_FUNC_sk_lookup_tcp || 372 func_id == BPF_FUNC_sk_lookup_udp || 373 func_id == BPF_FUNC_skc_lookup_tcp; 374 } 375 376 static bool is_ptr_cast_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_tcp_sock || 379 func_id == BPF_FUNC_sk_fullsock; 380 } 381 382 /* string representation of 'enum bpf_reg_type' */ 383 static const char * const reg_type_str[] = { 384 [NOT_INIT] = "?", 385 [SCALAR_VALUE] = "inv", 386 [PTR_TO_CTX] = "ctx", 387 [CONST_PTR_TO_MAP] = "map_ptr", 388 [PTR_TO_MAP_VALUE] = "map_value", 389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 390 [PTR_TO_STACK] = "fp", 391 [PTR_TO_PACKET] = "pkt", 392 [PTR_TO_PACKET_META] = "pkt_meta", 393 [PTR_TO_PACKET_END] = "pkt_end", 394 [PTR_TO_FLOW_KEYS] = "flow_keys", 395 [PTR_TO_SOCKET] = "sock", 396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 397 [PTR_TO_SOCK_COMMON] = "sock_common", 398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 399 [PTR_TO_TCP_SOCK] = "tcp_sock", 400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 401 [PTR_TO_TP_BUFFER] = "tp_buffer", 402 [PTR_TO_XDP_SOCK] = "xdp_sock", 403 }; 404 405 static char slot_type_char[] = { 406 [STACK_INVALID] = '?', 407 [STACK_SPILL] = 'r', 408 [STACK_MISC] = 'm', 409 [STACK_ZERO] = '0', 410 }; 411 412 static void print_liveness(struct bpf_verifier_env *env, 413 enum bpf_reg_liveness live) 414 { 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 416 verbose(env, "_"); 417 if (live & REG_LIVE_READ) 418 verbose(env, "r"); 419 if (live & REG_LIVE_WRITTEN) 420 verbose(env, "w"); 421 if (live & REG_LIVE_DONE) 422 verbose(env, "D"); 423 } 424 425 static struct bpf_func_state *func(struct bpf_verifier_env *env, 426 const struct bpf_reg_state *reg) 427 { 428 struct bpf_verifier_state *cur = env->cur_state; 429 430 return cur->frame[reg->frameno]; 431 } 432 433 static void print_verifier_state(struct bpf_verifier_env *env, 434 const struct bpf_func_state *state) 435 { 436 const struct bpf_reg_state *reg; 437 enum bpf_reg_type t; 438 int i; 439 440 if (state->frameno) 441 verbose(env, " frame%d:", state->frameno); 442 for (i = 0; i < MAX_BPF_REG; i++) { 443 reg = &state->regs[i]; 444 t = reg->type; 445 if (t == NOT_INIT) 446 continue; 447 verbose(env, " R%d", i); 448 print_liveness(env, reg->live); 449 verbose(env, "=%s", reg_type_str[t]); 450 if (t == SCALAR_VALUE && reg->precise) 451 verbose(env, "P"); 452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 453 tnum_is_const(reg->var_off)) { 454 /* reg->off should be 0 for SCALAR_VALUE */ 455 verbose(env, "%lld", reg->var_off.value + reg->off); 456 } else { 457 verbose(env, "(id=%d", reg->id); 458 if (reg_type_may_be_refcounted_or_null(t)) 459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 460 if (t != SCALAR_VALUE) 461 verbose(env, ",off=%d", reg->off); 462 if (type_is_pkt_pointer(t)) 463 verbose(env, ",r=%d", reg->range); 464 else if (t == CONST_PTR_TO_MAP || 465 t == PTR_TO_MAP_VALUE || 466 t == PTR_TO_MAP_VALUE_OR_NULL) 467 verbose(env, ",ks=%d,vs=%d", 468 reg->map_ptr->key_size, 469 reg->map_ptr->value_size); 470 if (tnum_is_const(reg->var_off)) { 471 /* Typically an immediate SCALAR_VALUE, but 472 * could be a pointer whose offset is too big 473 * for reg->off 474 */ 475 verbose(env, ",imm=%llx", reg->var_off.value); 476 } else { 477 if (reg->smin_value != reg->umin_value && 478 reg->smin_value != S64_MIN) 479 verbose(env, ",smin_value=%lld", 480 (long long)reg->smin_value); 481 if (reg->smax_value != reg->umax_value && 482 reg->smax_value != S64_MAX) 483 verbose(env, ",smax_value=%lld", 484 (long long)reg->smax_value); 485 if (reg->umin_value != 0) 486 verbose(env, ",umin_value=%llu", 487 (unsigned long long)reg->umin_value); 488 if (reg->umax_value != U64_MAX) 489 verbose(env, ",umax_value=%llu", 490 (unsigned long long)reg->umax_value); 491 if (!tnum_is_unknown(reg->var_off)) { 492 char tn_buf[48]; 493 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 495 verbose(env, ",var_off=%s", tn_buf); 496 } 497 } 498 verbose(env, ")"); 499 } 500 } 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 502 char types_buf[BPF_REG_SIZE + 1]; 503 bool valid = false; 504 int j; 505 506 for (j = 0; j < BPF_REG_SIZE; j++) { 507 if (state->stack[i].slot_type[j] != STACK_INVALID) 508 valid = true; 509 types_buf[j] = slot_type_char[ 510 state->stack[i].slot_type[j]]; 511 } 512 types_buf[BPF_REG_SIZE] = 0; 513 if (!valid) 514 continue; 515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 516 print_liveness(env, state->stack[i].spilled_ptr.live); 517 if (state->stack[i].slot_type[0] == STACK_SPILL) { 518 reg = &state->stack[i].spilled_ptr; 519 t = reg->type; 520 verbose(env, "=%s", reg_type_str[t]); 521 if (t == SCALAR_VALUE && reg->precise) 522 verbose(env, "P"); 523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 524 verbose(env, "%lld", reg->var_off.value + reg->off); 525 } else { 526 verbose(env, "=%s", types_buf); 527 } 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void clear_jmp_history(struct bpf_verifier_state *state) 677 { 678 kfree(state->jmp_history); 679 state->jmp_history = NULL; 680 state->jmp_history_cnt = 0; 681 } 682 683 static void free_verifier_state(struct bpf_verifier_state *state, 684 bool free_self) 685 { 686 int i; 687 688 for (i = 0; i <= state->curframe; i++) { 689 free_func_state(state->frame[i]); 690 state->frame[i] = NULL; 691 } 692 clear_jmp_history(state); 693 if (free_self) 694 kfree(state); 695 } 696 697 /* copy verifier state from src to dst growing dst stack space 698 * when necessary to accommodate larger src stack 699 */ 700 static int copy_func_state(struct bpf_func_state *dst, 701 const struct bpf_func_state *src) 702 { 703 int err; 704 705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 706 false); 707 if (err) 708 return err; 709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 710 err = copy_reference_state(dst, src); 711 if (err) 712 return err; 713 return copy_stack_state(dst, src); 714 } 715 716 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 717 const struct bpf_verifier_state *src) 718 { 719 struct bpf_func_state *dst; 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 721 int i, err; 722 723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 724 kfree(dst_state->jmp_history); 725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 726 if (!dst_state->jmp_history) 727 return -ENOMEM; 728 } 729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 730 dst_state->jmp_history_cnt = src->jmp_history_cnt; 731 732 /* if dst has more stack frames then src frame, free them */ 733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 734 free_func_state(dst_state->frame[i]); 735 dst_state->frame[i] = NULL; 736 } 737 dst_state->speculative = src->speculative; 738 dst_state->curframe = src->curframe; 739 dst_state->active_spin_lock = src->active_spin_lock; 740 dst_state->branches = src->branches; 741 dst_state->parent = src->parent; 742 dst_state->first_insn_idx = src->first_insn_idx; 743 dst_state->last_insn_idx = src->last_insn_idx; 744 for (i = 0; i <= src->curframe; i++) { 745 dst = dst_state->frame[i]; 746 if (!dst) { 747 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 748 if (!dst) 749 return -ENOMEM; 750 dst_state->frame[i] = dst; 751 } 752 err = copy_func_state(dst, src->frame[i]); 753 if (err) 754 return err; 755 } 756 return 0; 757 } 758 759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 760 { 761 while (st) { 762 u32 br = --st->branches; 763 764 /* WARN_ON(br > 1) technically makes sense here, 765 * but see comment in push_stack(), hence: 766 */ 767 WARN_ONCE((int)br < 0, 768 "BUG update_branch_counts:branches_to_explore=%d\n", 769 br); 770 if (br) 771 break; 772 st = st->parent; 773 } 774 } 775 776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 777 int *insn_idx) 778 { 779 struct bpf_verifier_state *cur = env->cur_state; 780 struct bpf_verifier_stack_elem *elem, *head = env->head; 781 int err; 782 783 if (env->head == NULL) 784 return -ENOENT; 785 786 if (cur) { 787 err = copy_verifier_state(cur, &head->st); 788 if (err) 789 return err; 790 } 791 if (insn_idx) 792 *insn_idx = head->insn_idx; 793 if (prev_insn_idx) 794 *prev_insn_idx = head->prev_insn_idx; 795 elem = head->next; 796 free_verifier_state(&head->st, false); 797 kfree(head); 798 env->head = elem; 799 env->stack_size--; 800 return 0; 801 } 802 803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 804 int insn_idx, int prev_insn_idx, 805 bool speculative) 806 { 807 struct bpf_verifier_state *cur = env->cur_state; 808 struct bpf_verifier_stack_elem *elem; 809 int err; 810 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 812 if (!elem) 813 goto err; 814 815 elem->insn_idx = insn_idx; 816 elem->prev_insn_idx = prev_insn_idx; 817 elem->next = env->head; 818 env->head = elem; 819 env->stack_size++; 820 err = copy_verifier_state(&elem->st, cur); 821 if (err) 822 goto err; 823 elem->st.speculative |= speculative; 824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 825 verbose(env, "The sequence of %d jumps is too complex.\n", 826 env->stack_size); 827 goto err; 828 } 829 if (elem->st.parent) { 830 ++elem->st.parent->branches; 831 /* WARN_ON(branches > 2) technically makes sense here, 832 * but 833 * 1. speculative states will bump 'branches' for non-branch 834 * instructions 835 * 2. is_state_visited() heuristics may decide not to create 836 * a new state for a sequence of branches and all such current 837 * and cloned states will be pointing to a single parent state 838 * which might have large 'branches' count. 839 */ 840 } 841 return &elem->st; 842 err: 843 free_verifier_state(env->cur_state, true); 844 env->cur_state = NULL; 845 /* pop all elements and return */ 846 while (!pop_stack(env, NULL, NULL)); 847 return NULL; 848 } 849 850 #define CALLER_SAVED_REGS 6 851 static const int caller_saved[CALLER_SAVED_REGS] = { 852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 853 }; 854 855 static void __mark_reg_not_init(struct bpf_reg_state *reg); 856 857 /* Mark the unknown part of a register (variable offset or scalar value) as 858 * known to have the value @imm. 859 */ 860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 861 { 862 /* Clear id, off, and union(map_ptr, range) */ 863 memset(((u8 *)reg) + sizeof(reg->type), 0, 864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 865 reg->var_off = tnum_const(imm); 866 reg->smin_value = (s64)imm; 867 reg->smax_value = (s64)imm; 868 reg->umin_value = imm; 869 reg->umax_value = imm; 870 } 871 872 /* Mark the 'variable offset' part of a register as zero. This should be 873 * used only on registers holding a pointer type. 874 */ 875 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 876 { 877 __mark_reg_known(reg, 0); 878 } 879 880 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 881 { 882 __mark_reg_known(reg, 0); 883 reg->type = SCALAR_VALUE; 884 } 885 886 static void mark_reg_known_zero(struct bpf_verifier_env *env, 887 struct bpf_reg_state *regs, u32 regno) 888 { 889 if (WARN_ON(regno >= MAX_BPF_REG)) { 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 891 /* Something bad happened, let's kill all regs */ 892 for (regno = 0; regno < MAX_BPF_REG; regno++) 893 __mark_reg_not_init(regs + regno); 894 return; 895 } 896 __mark_reg_known_zero(regs + regno); 897 } 898 899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 900 { 901 return type_is_pkt_pointer(reg->type); 902 } 903 904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 905 { 906 return reg_is_pkt_pointer(reg) || 907 reg->type == PTR_TO_PACKET_END; 908 } 909 910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 912 enum bpf_reg_type which) 913 { 914 /* The register can already have a range from prior markings. 915 * This is fine as long as it hasn't been advanced from its 916 * origin. 917 */ 918 return reg->type == which && 919 reg->id == 0 && 920 reg->off == 0 && 921 tnum_equals_const(reg->var_off, 0); 922 } 923 924 /* Attempts to improve min/max values based on var_off information */ 925 static void __update_reg_bounds(struct bpf_reg_state *reg) 926 { 927 /* min signed is max(sign bit) | min(other bits) */ 928 reg->smin_value = max_t(s64, reg->smin_value, 929 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 930 /* max signed is min(sign bit) | max(other bits) */ 931 reg->smax_value = min_t(s64, reg->smax_value, 932 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 933 reg->umin_value = max(reg->umin_value, reg->var_off.value); 934 reg->umax_value = min(reg->umax_value, 935 reg->var_off.value | reg->var_off.mask); 936 } 937 938 /* Uses signed min/max values to inform unsigned, and vice-versa */ 939 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 940 { 941 /* Learn sign from signed bounds. 942 * If we cannot cross the sign boundary, then signed and unsigned bounds 943 * are the same, so combine. This works even in the negative case, e.g. 944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 945 */ 946 if (reg->smin_value >= 0 || reg->smax_value < 0) { 947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 948 reg->umin_value); 949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 950 reg->umax_value); 951 return; 952 } 953 /* Learn sign from unsigned bounds. Signed bounds cross the sign 954 * boundary, so we must be careful. 955 */ 956 if ((s64)reg->umax_value >= 0) { 957 /* Positive. We can't learn anything from the smin, but smax 958 * is positive, hence safe. 959 */ 960 reg->smin_value = reg->umin_value; 961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 962 reg->umax_value); 963 } else if ((s64)reg->umin_value < 0) { 964 /* Negative. We can't learn anything from the smax, but smin 965 * is negative, hence safe. 966 */ 967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 968 reg->umin_value); 969 reg->smax_value = reg->umax_value; 970 } 971 } 972 973 /* Attempts to improve var_off based on unsigned min/max information */ 974 static void __reg_bound_offset(struct bpf_reg_state *reg) 975 { 976 reg->var_off = tnum_intersect(reg->var_off, 977 tnum_range(reg->umin_value, 978 reg->umax_value)); 979 } 980 981 /* Reset the min/max bounds of a register */ 982 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 983 { 984 reg->smin_value = S64_MIN; 985 reg->smax_value = S64_MAX; 986 reg->umin_value = 0; 987 reg->umax_value = U64_MAX; 988 } 989 990 /* Mark a register as having a completely unknown (scalar) value. */ 991 static void __mark_reg_unknown(struct bpf_reg_state *reg) 992 { 993 /* 994 * Clear type, id, off, and union(map_ptr, range) and 995 * padding between 'type' and union 996 */ 997 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 998 reg->type = SCALAR_VALUE; 999 reg->var_off = tnum_unknown; 1000 reg->frameno = 0; 1001 __mark_reg_unbounded(reg); 1002 } 1003 1004 static void mark_reg_unknown(struct bpf_verifier_env *env, 1005 struct bpf_reg_state *regs, u32 regno) 1006 { 1007 if (WARN_ON(regno >= MAX_BPF_REG)) { 1008 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1009 /* Something bad happened, let's kill all regs except FP */ 1010 for (regno = 0; regno < BPF_REG_FP; regno++) 1011 __mark_reg_not_init(regs + regno); 1012 return; 1013 } 1014 regs += regno; 1015 __mark_reg_unknown(regs); 1016 /* constant backtracking is enabled for root without bpf2bpf calls */ 1017 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1018 true : false; 1019 } 1020 1021 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1022 { 1023 __mark_reg_unknown(reg); 1024 reg->type = NOT_INIT; 1025 } 1026 1027 static void mark_reg_not_init(struct bpf_verifier_env *env, 1028 struct bpf_reg_state *regs, u32 regno) 1029 { 1030 if (WARN_ON(regno >= MAX_BPF_REG)) { 1031 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1032 /* Something bad happened, let's kill all regs except FP */ 1033 for (regno = 0; regno < BPF_REG_FP; regno++) 1034 __mark_reg_not_init(regs + regno); 1035 return; 1036 } 1037 __mark_reg_not_init(regs + regno); 1038 } 1039 1040 #define DEF_NOT_SUBREG (0) 1041 static void init_reg_state(struct bpf_verifier_env *env, 1042 struct bpf_func_state *state) 1043 { 1044 struct bpf_reg_state *regs = state->regs; 1045 int i; 1046 1047 for (i = 0; i < MAX_BPF_REG; i++) { 1048 mark_reg_not_init(env, regs, i); 1049 regs[i].live = REG_LIVE_NONE; 1050 regs[i].parent = NULL; 1051 regs[i].subreg_def = DEF_NOT_SUBREG; 1052 } 1053 1054 /* frame pointer */ 1055 regs[BPF_REG_FP].type = PTR_TO_STACK; 1056 mark_reg_known_zero(env, regs, BPF_REG_FP); 1057 regs[BPF_REG_FP].frameno = state->frameno; 1058 1059 /* 1st arg to a function */ 1060 regs[BPF_REG_1].type = PTR_TO_CTX; 1061 mark_reg_known_zero(env, regs, BPF_REG_1); 1062 } 1063 1064 #define BPF_MAIN_FUNC (-1) 1065 static void init_func_state(struct bpf_verifier_env *env, 1066 struct bpf_func_state *state, 1067 int callsite, int frameno, int subprogno) 1068 { 1069 state->callsite = callsite; 1070 state->frameno = frameno; 1071 state->subprogno = subprogno; 1072 init_reg_state(env, state); 1073 } 1074 1075 enum reg_arg_type { 1076 SRC_OP, /* register is used as source operand */ 1077 DST_OP, /* register is used as destination operand */ 1078 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1079 }; 1080 1081 static int cmp_subprogs(const void *a, const void *b) 1082 { 1083 return ((struct bpf_subprog_info *)a)->start - 1084 ((struct bpf_subprog_info *)b)->start; 1085 } 1086 1087 static int find_subprog(struct bpf_verifier_env *env, int off) 1088 { 1089 struct bpf_subprog_info *p; 1090 1091 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1092 sizeof(env->subprog_info[0]), cmp_subprogs); 1093 if (!p) 1094 return -ENOENT; 1095 return p - env->subprog_info; 1096 1097 } 1098 1099 static int add_subprog(struct bpf_verifier_env *env, int off) 1100 { 1101 int insn_cnt = env->prog->len; 1102 int ret; 1103 1104 if (off >= insn_cnt || off < 0) { 1105 verbose(env, "call to invalid destination\n"); 1106 return -EINVAL; 1107 } 1108 ret = find_subprog(env, off); 1109 if (ret >= 0) 1110 return 0; 1111 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1112 verbose(env, "too many subprograms\n"); 1113 return -E2BIG; 1114 } 1115 env->subprog_info[env->subprog_cnt++].start = off; 1116 sort(env->subprog_info, env->subprog_cnt, 1117 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1118 return 0; 1119 } 1120 1121 static int check_subprogs(struct bpf_verifier_env *env) 1122 { 1123 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1124 struct bpf_subprog_info *subprog = env->subprog_info; 1125 struct bpf_insn *insn = env->prog->insnsi; 1126 int insn_cnt = env->prog->len; 1127 1128 /* Add entry function. */ 1129 ret = add_subprog(env, 0); 1130 if (ret < 0) 1131 return ret; 1132 1133 /* determine subprog starts. The end is one before the next starts */ 1134 for (i = 0; i < insn_cnt; i++) { 1135 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1136 continue; 1137 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1138 continue; 1139 if (!env->allow_ptr_leaks) { 1140 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1141 return -EPERM; 1142 } 1143 ret = add_subprog(env, i + insn[i].imm + 1); 1144 if (ret < 0) 1145 return ret; 1146 } 1147 1148 /* Add a fake 'exit' subprog which could simplify subprog iteration 1149 * logic. 'subprog_cnt' should not be increased. 1150 */ 1151 subprog[env->subprog_cnt].start = insn_cnt; 1152 1153 if (env->log.level & BPF_LOG_LEVEL2) 1154 for (i = 0; i < env->subprog_cnt; i++) 1155 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1156 1157 /* now check that all jumps are within the same subprog */ 1158 subprog_start = subprog[cur_subprog].start; 1159 subprog_end = subprog[cur_subprog + 1].start; 1160 for (i = 0; i < insn_cnt; i++) { 1161 u8 code = insn[i].code; 1162 1163 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1164 goto next; 1165 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1166 goto next; 1167 off = i + insn[i].off + 1; 1168 if (off < subprog_start || off >= subprog_end) { 1169 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1170 return -EINVAL; 1171 } 1172 next: 1173 if (i == subprog_end - 1) { 1174 /* to avoid fall-through from one subprog into another 1175 * the last insn of the subprog should be either exit 1176 * or unconditional jump back 1177 */ 1178 if (code != (BPF_JMP | BPF_EXIT) && 1179 code != (BPF_JMP | BPF_JA)) { 1180 verbose(env, "last insn is not an exit or jmp\n"); 1181 return -EINVAL; 1182 } 1183 subprog_start = subprog_end; 1184 cur_subprog++; 1185 if (cur_subprog < env->subprog_cnt) 1186 subprog_end = subprog[cur_subprog + 1].start; 1187 } 1188 } 1189 return 0; 1190 } 1191 1192 /* Parentage chain of this register (or stack slot) should take care of all 1193 * issues like callee-saved registers, stack slot allocation time, etc. 1194 */ 1195 static int mark_reg_read(struct bpf_verifier_env *env, 1196 const struct bpf_reg_state *state, 1197 struct bpf_reg_state *parent, u8 flag) 1198 { 1199 bool writes = parent == state->parent; /* Observe write marks */ 1200 int cnt = 0; 1201 1202 while (parent) { 1203 /* if read wasn't screened by an earlier write ... */ 1204 if (writes && state->live & REG_LIVE_WRITTEN) 1205 break; 1206 if (parent->live & REG_LIVE_DONE) { 1207 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1208 reg_type_str[parent->type], 1209 parent->var_off.value, parent->off); 1210 return -EFAULT; 1211 } 1212 /* The first condition is more likely to be true than the 1213 * second, checked it first. 1214 */ 1215 if ((parent->live & REG_LIVE_READ) == flag || 1216 parent->live & REG_LIVE_READ64) 1217 /* The parentage chain never changes and 1218 * this parent was already marked as LIVE_READ. 1219 * There is no need to keep walking the chain again and 1220 * keep re-marking all parents as LIVE_READ. 1221 * This case happens when the same register is read 1222 * multiple times without writes into it in-between. 1223 * Also, if parent has the stronger REG_LIVE_READ64 set, 1224 * then no need to set the weak REG_LIVE_READ32. 1225 */ 1226 break; 1227 /* ... then we depend on parent's value */ 1228 parent->live |= flag; 1229 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1230 if (flag == REG_LIVE_READ64) 1231 parent->live &= ~REG_LIVE_READ32; 1232 state = parent; 1233 parent = state->parent; 1234 writes = true; 1235 cnt++; 1236 } 1237 1238 if (env->longest_mark_read_walk < cnt) 1239 env->longest_mark_read_walk = cnt; 1240 return 0; 1241 } 1242 1243 /* This function is supposed to be used by the following 32-bit optimization 1244 * code only. It returns TRUE if the source or destination register operates 1245 * on 64-bit, otherwise return FALSE. 1246 */ 1247 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1248 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1249 { 1250 u8 code, class, op; 1251 1252 code = insn->code; 1253 class = BPF_CLASS(code); 1254 op = BPF_OP(code); 1255 if (class == BPF_JMP) { 1256 /* BPF_EXIT for "main" will reach here. Return TRUE 1257 * conservatively. 1258 */ 1259 if (op == BPF_EXIT) 1260 return true; 1261 if (op == BPF_CALL) { 1262 /* BPF to BPF call will reach here because of marking 1263 * caller saved clobber with DST_OP_NO_MARK for which we 1264 * don't care the register def because they are anyway 1265 * marked as NOT_INIT already. 1266 */ 1267 if (insn->src_reg == BPF_PSEUDO_CALL) 1268 return false; 1269 /* Helper call will reach here because of arg type 1270 * check, conservatively return TRUE. 1271 */ 1272 if (t == SRC_OP) 1273 return true; 1274 1275 return false; 1276 } 1277 } 1278 1279 if (class == BPF_ALU64 || class == BPF_JMP || 1280 /* BPF_END always use BPF_ALU class. */ 1281 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1282 return true; 1283 1284 if (class == BPF_ALU || class == BPF_JMP32) 1285 return false; 1286 1287 if (class == BPF_LDX) { 1288 if (t != SRC_OP) 1289 return BPF_SIZE(code) == BPF_DW; 1290 /* LDX source must be ptr. */ 1291 return true; 1292 } 1293 1294 if (class == BPF_STX) { 1295 if (reg->type != SCALAR_VALUE) 1296 return true; 1297 return BPF_SIZE(code) == BPF_DW; 1298 } 1299 1300 if (class == BPF_LD) { 1301 u8 mode = BPF_MODE(code); 1302 1303 /* LD_IMM64 */ 1304 if (mode == BPF_IMM) 1305 return true; 1306 1307 /* Both LD_IND and LD_ABS return 32-bit data. */ 1308 if (t != SRC_OP) 1309 return false; 1310 1311 /* Implicit ctx ptr. */ 1312 if (regno == BPF_REG_6) 1313 return true; 1314 1315 /* Explicit source could be any width. */ 1316 return true; 1317 } 1318 1319 if (class == BPF_ST) 1320 /* The only source register for BPF_ST is a ptr. */ 1321 return true; 1322 1323 /* Conservatively return true at default. */ 1324 return true; 1325 } 1326 1327 /* Return TRUE if INSN doesn't have explicit value define. */ 1328 static bool insn_no_def(struct bpf_insn *insn) 1329 { 1330 u8 class = BPF_CLASS(insn->code); 1331 1332 return (class == BPF_JMP || class == BPF_JMP32 || 1333 class == BPF_STX || class == BPF_ST); 1334 } 1335 1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1337 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1338 { 1339 if (insn_no_def(insn)) 1340 return false; 1341 1342 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1343 } 1344 1345 static void mark_insn_zext(struct bpf_verifier_env *env, 1346 struct bpf_reg_state *reg) 1347 { 1348 s32 def_idx = reg->subreg_def; 1349 1350 if (def_idx == DEF_NOT_SUBREG) 1351 return; 1352 1353 env->insn_aux_data[def_idx - 1].zext_dst = true; 1354 /* The dst will be zero extended, so won't be sub-register anymore. */ 1355 reg->subreg_def = DEF_NOT_SUBREG; 1356 } 1357 1358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1359 enum reg_arg_type t) 1360 { 1361 struct bpf_verifier_state *vstate = env->cur_state; 1362 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1363 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1364 struct bpf_reg_state *reg, *regs = state->regs; 1365 bool rw64; 1366 1367 if (regno >= MAX_BPF_REG) { 1368 verbose(env, "R%d is invalid\n", regno); 1369 return -EINVAL; 1370 } 1371 1372 reg = ®s[regno]; 1373 rw64 = is_reg64(env, insn, regno, reg, t); 1374 if (t == SRC_OP) { 1375 /* check whether register used as source operand can be read */ 1376 if (reg->type == NOT_INIT) { 1377 verbose(env, "R%d !read_ok\n", regno); 1378 return -EACCES; 1379 } 1380 /* We don't need to worry about FP liveness because it's read-only */ 1381 if (regno == BPF_REG_FP) 1382 return 0; 1383 1384 if (rw64) 1385 mark_insn_zext(env, reg); 1386 1387 return mark_reg_read(env, reg, reg->parent, 1388 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1389 } else { 1390 /* check whether register used as dest operand can be written to */ 1391 if (regno == BPF_REG_FP) { 1392 verbose(env, "frame pointer is read only\n"); 1393 return -EACCES; 1394 } 1395 reg->live |= REG_LIVE_WRITTEN; 1396 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1397 if (t == DST_OP) 1398 mark_reg_unknown(env, regs, regno); 1399 } 1400 return 0; 1401 } 1402 1403 /* for any branch, call, exit record the history of jmps in the given state */ 1404 static int push_jmp_history(struct bpf_verifier_env *env, 1405 struct bpf_verifier_state *cur) 1406 { 1407 u32 cnt = cur->jmp_history_cnt; 1408 struct bpf_idx_pair *p; 1409 1410 cnt++; 1411 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1412 if (!p) 1413 return -ENOMEM; 1414 p[cnt - 1].idx = env->insn_idx; 1415 p[cnt - 1].prev_idx = env->prev_insn_idx; 1416 cur->jmp_history = p; 1417 cur->jmp_history_cnt = cnt; 1418 return 0; 1419 } 1420 1421 /* Backtrack one insn at a time. If idx is not at the top of recorded 1422 * history then previous instruction came from straight line execution. 1423 */ 1424 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1425 u32 *history) 1426 { 1427 u32 cnt = *history; 1428 1429 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1430 i = st->jmp_history[cnt - 1].prev_idx; 1431 (*history)--; 1432 } else { 1433 i--; 1434 } 1435 return i; 1436 } 1437 1438 /* For given verifier state backtrack_insn() is called from the last insn to 1439 * the first insn. Its purpose is to compute a bitmask of registers and 1440 * stack slots that needs precision in the parent verifier state. 1441 */ 1442 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1443 u32 *reg_mask, u64 *stack_mask) 1444 { 1445 const struct bpf_insn_cbs cbs = { 1446 .cb_print = verbose, 1447 .private_data = env, 1448 }; 1449 struct bpf_insn *insn = env->prog->insnsi + idx; 1450 u8 class = BPF_CLASS(insn->code); 1451 u8 opcode = BPF_OP(insn->code); 1452 u8 mode = BPF_MODE(insn->code); 1453 u32 dreg = 1u << insn->dst_reg; 1454 u32 sreg = 1u << insn->src_reg; 1455 u32 spi; 1456 1457 if (insn->code == 0) 1458 return 0; 1459 if (env->log.level & BPF_LOG_LEVEL) { 1460 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1461 verbose(env, "%d: ", idx); 1462 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1463 } 1464 1465 if (class == BPF_ALU || class == BPF_ALU64) { 1466 if (!(*reg_mask & dreg)) 1467 return 0; 1468 if (opcode == BPF_MOV) { 1469 if (BPF_SRC(insn->code) == BPF_X) { 1470 /* dreg = sreg 1471 * dreg needs precision after this insn 1472 * sreg needs precision before this insn 1473 */ 1474 *reg_mask &= ~dreg; 1475 *reg_mask |= sreg; 1476 } else { 1477 /* dreg = K 1478 * dreg needs precision after this insn. 1479 * Corresponding register is already marked 1480 * as precise=true in this verifier state. 1481 * No further markings in parent are necessary 1482 */ 1483 *reg_mask &= ~dreg; 1484 } 1485 } else { 1486 if (BPF_SRC(insn->code) == BPF_X) { 1487 /* dreg += sreg 1488 * both dreg and sreg need precision 1489 * before this insn 1490 */ 1491 *reg_mask |= sreg; 1492 } /* else dreg += K 1493 * dreg still needs precision before this insn 1494 */ 1495 } 1496 } else if (class == BPF_LDX) { 1497 if (!(*reg_mask & dreg)) 1498 return 0; 1499 *reg_mask &= ~dreg; 1500 1501 /* scalars can only be spilled into stack w/o losing precision. 1502 * Load from any other memory can be zero extended. 1503 * The desire to keep that precision is already indicated 1504 * by 'precise' mark in corresponding register of this state. 1505 * No further tracking necessary. 1506 */ 1507 if (insn->src_reg != BPF_REG_FP) 1508 return 0; 1509 if (BPF_SIZE(insn->code) != BPF_DW) 1510 return 0; 1511 1512 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1513 * that [fp - off] slot contains scalar that needs to be 1514 * tracked with precision 1515 */ 1516 spi = (-insn->off - 1) / BPF_REG_SIZE; 1517 if (spi >= 64) { 1518 verbose(env, "BUG spi %d\n", spi); 1519 WARN_ONCE(1, "verifier backtracking bug"); 1520 return -EFAULT; 1521 } 1522 *stack_mask |= 1ull << spi; 1523 } else if (class == BPF_STX || class == BPF_ST) { 1524 if (*reg_mask & dreg) 1525 /* stx & st shouldn't be using _scalar_ dst_reg 1526 * to access memory. It means backtracking 1527 * encountered a case of pointer subtraction. 1528 */ 1529 return -ENOTSUPP; 1530 /* scalars can only be spilled into stack */ 1531 if (insn->dst_reg != BPF_REG_FP) 1532 return 0; 1533 if (BPF_SIZE(insn->code) != BPF_DW) 1534 return 0; 1535 spi = (-insn->off - 1) / BPF_REG_SIZE; 1536 if (spi >= 64) { 1537 verbose(env, "BUG spi %d\n", spi); 1538 WARN_ONCE(1, "verifier backtracking bug"); 1539 return -EFAULT; 1540 } 1541 if (!(*stack_mask & (1ull << spi))) 1542 return 0; 1543 *stack_mask &= ~(1ull << spi); 1544 if (class == BPF_STX) 1545 *reg_mask |= sreg; 1546 } else if (class == BPF_JMP || class == BPF_JMP32) { 1547 if (opcode == BPF_CALL) { 1548 if (insn->src_reg == BPF_PSEUDO_CALL) 1549 return -ENOTSUPP; 1550 /* regular helper call sets R0 */ 1551 *reg_mask &= ~1; 1552 if (*reg_mask & 0x3f) { 1553 /* if backtracing was looking for registers R1-R5 1554 * they should have been found already. 1555 */ 1556 verbose(env, "BUG regs %x\n", *reg_mask); 1557 WARN_ONCE(1, "verifier backtracking bug"); 1558 return -EFAULT; 1559 } 1560 } else if (opcode == BPF_EXIT) { 1561 return -ENOTSUPP; 1562 } 1563 } else if (class == BPF_LD) { 1564 if (!(*reg_mask & dreg)) 1565 return 0; 1566 *reg_mask &= ~dreg; 1567 /* It's ld_imm64 or ld_abs or ld_ind. 1568 * For ld_imm64 no further tracking of precision 1569 * into parent is necessary 1570 */ 1571 if (mode == BPF_IND || mode == BPF_ABS) 1572 /* to be analyzed */ 1573 return -ENOTSUPP; 1574 } 1575 return 0; 1576 } 1577 1578 /* the scalar precision tracking algorithm: 1579 * . at the start all registers have precise=false. 1580 * . scalar ranges are tracked as normal through alu and jmp insns. 1581 * . once precise value of the scalar register is used in: 1582 * . ptr + scalar alu 1583 * . if (scalar cond K|scalar) 1584 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1585 * backtrack through the verifier states and mark all registers and 1586 * stack slots with spilled constants that these scalar regisers 1587 * should be precise. 1588 * . during state pruning two registers (or spilled stack slots) 1589 * are equivalent if both are not precise. 1590 * 1591 * Note the verifier cannot simply walk register parentage chain, 1592 * since many different registers and stack slots could have been 1593 * used to compute single precise scalar. 1594 * 1595 * The approach of starting with precise=true for all registers and then 1596 * backtrack to mark a register as not precise when the verifier detects 1597 * that program doesn't care about specific value (e.g., when helper 1598 * takes register as ARG_ANYTHING parameter) is not safe. 1599 * 1600 * It's ok to walk single parentage chain of the verifier states. 1601 * It's possible that this backtracking will go all the way till 1st insn. 1602 * All other branches will be explored for needing precision later. 1603 * 1604 * The backtracking needs to deal with cases like: 1605 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1606 * r9 -= r8 1607 * r5 = r9 1608 * if r5 > 0x79f goto pc+7 1609 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1610 * r5 += 1 1611 * ... 1612 * call bpf_perf_event_output#25 1613 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1614 * 1615 * and this case: 1616 * r6 = 1 1617 * call foo // uses callee's r6 inside to compute r0 1618 * r0 += r6 1619 * if r0 == 0 goto 1620 * 1621 * to track above reg_mask/stack_mask needs to be independent for each frame. 1622 * 1623 * Also if parent's curframe > frame where backtracking started, 1624 * the verifier need to mark registers in both frames, otherwise callees 1625 * may incorrectly prune callers. This is similar to 1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1627 * 1628 * For now backtracking falls back into conservative marking. 1629 */ 1630 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1631 struct bpf_verifier_state *st) 1632 { 1633 struct bpf_func_state *func; 1634 struct bpf_reg_state *reg; 1635 int i, j; 1636 1637 /* big hammer: mark all scalars precise in this path. 1638 * pop_stack may still get !precise scalars. 1639 */ 1640 for (; st; st = st->parent) 1641 for (i = 0; i <= st->curframe; i++) { 1642 func = st->frame[i]; 1643 for (j = 0; j < BPF_REG_FP; j++) { 1644 reg = &func->regs[j]; 1645 if (reg->type != SCALAR_VALUE) 1646 continue; 1647 reg->precise = true; 1648 } 1649 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1650 if (func->stack[j].slot_type[0] != STACK_SPILL) 1651 continue; 1652 reg = &func->stack[j].spilled_ptr; 1653 if (reg->type != SCALAR_VALUE) 1654 continue; 1655 reg->precise = true; 1656 } 1657 } 1658 } 1659 1660 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1661 int spi) 1662 { 1663 struct bpf_verifier_state *st = env->cur_state; 1664 int first_idx = st->first_insn_idx; 1665 int last_idx = env->insn_idx; 1666 struct bpf_func_state *func; 1667 struct bpf_reg_state *reg; 1668 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1669 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1670 bool skip_first = true; 1671 bool new_marks = false; 1672 int i, err; 1673 1674 if (!env->allow_ptr_leaks) 1675 /* backtracking is root only for now */ 1676 return 0; 1677 1678 func = st->frame[st->curframe]; 1679 if (regno >= 0) { 1680 reg = &func->regs[regno]; 1681 if (reg->type != SCALAR_VALUE) { 1682 WARN_ONCE(1, "backtracing misuse"); 1683 return -EFAULT; 1684 } 1685 if (!reg->precise) 1686 new_marks = true; 1687 else 1688 reg_mask = 0; 1689 reg->precise = true; 1690 } 1691 1692 while (spi >= 0) { 1693 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1694 stack_mask = 0; 1695 break; 1696 } 1697 reg = &func->stack[spi].spilled_ptr; 1698 if (reg->type != SCALAR_VALUE) { 1699 stack_mask = 0; 1700 break; 1701 } 1702 if (!reg->precise) 1703 new_marks = true; 1704 else 1705 stack_mask = 0; 1706 reg->precise = true; 1707 break; 1708 } 1709 1710 if (!new_marks) 1711 return 0; 1712 if (!reg_mask && !stack_mask) 1713 return 0; 1714 for (;;) { 1715 DECLARE_BITMAP(mask, 64); 1716 u32 history = st->jmp_history_cnt; 1717 1718 if (env->log.level & BPF_LOG_LEVEL) 1719 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1720 for (i = last_idx;;) { 1721 if (skip_first) { 1722 err = 0; 1723 skip_first = false; 1724 } else { 1725 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1726 } 1727 if (err == -ENOTSUPP) { 1728 mark_all_scalars_precise(env, st); 1729 return 0; 1730 } else if (err) { 1731 return err; 1732 } 1733 if (!reg_mask && !stack_mask) 1734 /* Found assignment(s) into tracked register in this state. 1735 * Since this state is already marked, just return. 1736 * Nothing to be tracked further in the parent state. 1737 */ 1738 return 0; 1739 if (i == first_idx) 1740 break; 1741 i = get_prev_insn_idx(st, i, &history); 1742 if (i >= env->prog->len) { 1743 /* This can happen if backtracking reached insn 0 1744 * and there are still reg_mask or stack_mask 1745 * to backtrack. 1746 * It means the backtracking missed the spot where 1747 * particular register was initialized with a constant. 1748 */ 1749 verbose(env, "BUG backtracking idx %d\n", i); 1750 WARN_ONCE(1, "verifier backtracking bug"); 1751 return -EFAULT; 1752 } 1753 } 1754 st = st->parent; 1755 if (!st) 1756 break; 1757 1758 new_marks = false; 1759 func = st->frame[st->curframe]; 1760 bitmap_from_u64(mask, reg_mask); 1761 for_each_set_bit(i, mask, 32) { 1762 reg = &func->regs[i]; 1763 if (reg->type != SCALAR_VALUE) { 1764 reg_mask &= ~(1u << i); 1765 continue; 1766 } 1767 if (!reg->precise) 1768 new_marks = true; 1769 reg->precise = true; 1770 } 1771 1772 bitmap_from_u64(mask, stack_mask); 1773 for_each_set_bit(i, mask, 64) { 1774 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1775 /* This can happen if backtracking 1776 * is propagating stack precision where 1777 * caller has larger stack frame 1778 * than callee, but backtrack_insn() should 1779 * have returned -ENOTSUPP. 1780 */ 1781 verbose(env, "BUG spi %d stack_size %d\n", 1782 i, func->allocated_stack); 1783 WARN_ONCE(1, "verifier backtracking bug"); 1784 return -EFAULT; 1785 } 1786 1787 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1788 stack_mask &= ~(1ull << i); 1789 continue; 1790 } 1791 reg = &func->stack[i].spilled_ptr; 1792 if (reg->type != SCALAR_VALUE) { 1793 stack_mask &= ~(1ull << i); 1794 continue; 1795 } 1796 if (!reg->precise) 1797 new_marks = true; 1798 reg->precise = true; 1799 } 1800 if (env->log.level & BPF_LOG_LEVEL) { 1801 print_verifier_state(env, func); 1802 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1803 new_marks ? "didn't have" : "already had", 1804 reg_mask, stack_mask); 1805 } 1806 1807 if (!reg_mask && !stack_mask) 1808 break; 1809 if (!new_marks) 1810 break; 1811 1812 last_idx = st->last_insn_idx; 1813 first_idx = st->first_insn_idx; 1814 } 1815 return 0; 1816 } 1817 1818 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1819 { 1820 return __mark_chain_precision(env, regno, -1); 1821 } 1822 1823 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1824 { 1825 return __mark_chain_precision(env, -1, spi); 1826 } 1827 1828 static bool is_spillable_regtype(enum bpf_reg_type type) 1829 { 1830 switch (type) { 1831 case PTR_TO_MAP_VALUE: 1832 case PTR_TO_MAP_VALUE_OR_NULL: 1833 case PTR_TO_STACK: 1834 case PTR_TO_CTX: 1835 case PTR_TO_PACKET: 1836 case PTR_TO_PACKET_META: 1837 case PTR_TO_PACKET_END: 1838 case PTR_TO_FLOW_KEYS: 1839 case CONST_PTR_TO_MAP: 1840 case PTR_TO_SOCKET: 1841 case PTR_TO_SOCKET_OR_NULL: 1842 case PTR_TO_SOCK_COMMON: 1843 case PTR_TO_SOCK_COMMON_OR_NULL: 1844 case PTR_TO_TCP_SOCK: 1845 case PTR_TO_TCP_SOCK_OR_NULL: 1846 case PTR_TO_XDP_SOCK: 1847 return true; 1848 default: 1849 return false; 1850 } 1851 } 1852 1853 /* Does this register contain a constant zero? */ 1854 static bool register_is_null(struct bpf_reg_state *reg) 1855 { 1856 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1857 } 1858 1859 static bool register_is_const(struct bpf_reg_state *reg) 1860 { 1861 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1862 } 1863 1864 static void save_register_state(struct bpf_func_state *state, 1865 int spi, struct bpf_reg_state *reg) 1866 { 1867 int i; 1868 1869 state->stack[spi].spilled_ptr = *reg; 1870 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1871 1872 for (i = 0; i < BPF_REG_SIZE; i++) 1873 state->stack[spi].slot_type[i] = STACK_SPILL; 1874 } 1875 1876 /* check_stack_read/write functions track spill/fill of registers, 1877 * stack boundary and alignment are checked in check_mem_access() 1878 */ 1879 static int check_stack_write(struct bpf_verifier_env *env, 1880 struct bpf_func_state *state, /* func where register points to */ 1881 int off, int size, int value_regno, int insn_idx) 1882 { 1883 struct bpf_func_state *cur; /* state of the current function */ 1884 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1885 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1886 struct bpf_reg_state *reg = NULL; 1887 1888 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1889 state->acquired_refs, true); 1890 if (err) 1891 return err; 1892 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1893 * so it's aligned access and [off, off + size) are within stack limits 1894 */ 1895 if (!env->allow_ptr_leaks && 1896 state->stack[spi].slot_type[0] == STACK_SPILL && 1897 size != BPF_REG_SIZE) { 1898 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1899 return -EACCES; 1900 } 1901 1902 cur = env->cur_state->frame[env->cur_state->curframe]; 1903 if (value_regno >= 0) 1904 reg = &cur->regs[value_regno]; 1905 1906 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1907 !register_is_null(reg) && env->allow_ptr_leaks) { 1908 if (dst_reg != BPF_REG_FP) { 1909 /* The backtracking logic can only recognize explicit 1910 * stack slot address like [fp - 8]. Other spill of 1911 * scalar via different register has to be conervative. 1912 * Backtrack from here and mark all registers as precise 1913 * that contributed into 'reg' being a constant. 1914 */ 1915 err = mark_chain_precision(env, value_regno); 1916 if (err) 1917 return err; 1918 } 1919 save_register_state(state, spi, reg); 1920 } else if (reg && is_spillable_regtype(reg->type)) { 1921 /* register containing pointer is being spilled into stack */ 1922 if (size != BPF_REG_SIZE) { 1923 verbose_linfo(env, insn_idx, "; "); 1924 verbose(env, "invalid size of register spill\n"); 1925 return -EACCES; 1926 } 1927 1928 if (state != cur && reg->type == PTR_TO_STACK) { 1929 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1930 return -EINVAL; 1931 } 1932 1933 if (!env->allow_ptr_leaks) { 1934 bool sanitize = false; 1935 1936 if (state->stack[spi].slot_type[0] == STACK_SPILL && 1937 register_is_const(&state->stack[spi].spilled_ptr)) 1938 sanitize = true; 1939 for (i = 0; i < BPF_REG_SIZE; i++) 1940 if (state->stack[spi].slot_type[i] == STACK_MISC) { 1941 sanitize = true; 1942 break; 1943 } 1944 if (sanitize) { 1945 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1946 int soff = (-spi - 1) * BPF_REG_SIZE; 1947 1948 /* detected reuse of integer stack slot with a pointer 1949 * which means either llvm is reusing stack slot or 1950 * an attacker is trying to exploit CVE-2018-3639 1951 * (speculative store bypass) 1952 * Have to sanitize that slot with preemptive 1953 * store of zero. 1954 */ 1955 if (*poff && *poff != soff) { 1956 /* disallow programs where single insn stores 1957 * into two different stack slots, since verifier 1958 * cannot sanitize them 1959 */ 1960 verbose(env, 1961 "insn %d cannot access two stack slots fp%d and fp%d", 1962 insn_idx, *poff, soff); 1963 return -EINVAL; 1964 } 1965 *poff = soff; 1966 } 1967 } 1968 save_register_state(state, spi, reg); 1969 } else { 1970 u8 type = STACK_MISC; 1971 1972 /* regular write of data into stack destroys any spilled ptr */ 1973 state->stack[spi].spilled_ptr.type = NOT_INIT; 1974 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1975 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1976 for (i = 0; i < BPF_REG_SIZE; i++) 1977 state->stack[spi].slot_type[i] = STACK_MISC; 1978 1979 /* only mark the slot as written if all 8 bytes were written 1980 * otherwise read propagation may incorrectly stop too soon 1981 * when stack slots are partially written. 1982 * This heuristic means that read propagation will be 1983 * conservative, since it will add reg_live_read marks 1984 * to stack slots all the way to first state when programs 1985 * writes+reads less than 8 bytes 1986 */ 1987 if (size == BPF_REG_SIZE) 1988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1989 1990 /* when we zero initialize stack slots mark them as such */ 1991 if (reg && register_is_null(reg)) { 1992 /* backtracking doesn't work for STACK_ZERO yet. */ 1993 err = mark_chain_precision(env, value_regno); 1994 if (err) 1995 return err; 1996 type = STACK_ZERO; 1997 } 1998 1999 /* Mark slots affected by this stack write. */ 2000 for (i = 0; i < size; i++) 2001 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2002 type; 2003 } 2004 return 0; 2005 } 2006 2007 static int check_stack_read(struct bpf_verifier_env *env, 2008 struct bpf_func_state *reg_state /* func where register points to */, 2009 int off, int size, int value_regno) 2010 { 2011 struct bpf_verifier_state *vstate = env->cur_state; 2012 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2013 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2014 struct bpf_reg_state *reg; 2015 u8 *stype; 2016 2017 if (reg_state->allocated_stack <= slot) { 2018 verbose(env, "invalid read from stack off %d+0 size %d\n", 2019 off, size); 2020 return -EACCES; 2021 } 2022 stype = reg_state->stack[spi].slot_type; 2023 reg = ®_state->stack[spi].spilled_ptr; 2024 2025 if (stype[0] == STACK_SPILL) { 2026 if (size != BPF_REG_SIZE) { 2027 if (reg->type != SCALAR_VALUE) { 2028 verbose_linfo(env, env->insn_idx, "; "); 2029 verbose(env, "invalid size of register fill\n"); 2030 return -EACCES; 2031 } 2032 if (value_regno >= 0) { 2033 mark_reg_unknown(env, state->regs, value_regno); 2034 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2035 } 2036 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2037 return 0; 2038 } 2039 for (i = 1; i < BPF_REG_SIZE; i++) { 2040 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2041 verbose(env, "corrupted spill memory\n"); 2042 return -EACCES; 2043 } 2044 } 2045 2046 if (value_regno >= 0) { 2047 /* restore register state from stack */ 2048 state->regs[value_regno] = *reg; 2049 /* mark reg as written since spilled pointer state likely 2050 * has its liveness marks cleared by is_state_visited() 2051 * which resets stack/reg liveness for state transitions 2052 */ 2053 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2054 } 2055 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2056 } else { 2057 int zeros = 0; 2058 2059 for (i = 0; i < size; i++) { 2060 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2061 continue; 2062 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2063 zeros++; 2064 continue; 2065 } 2066 verbose(env, "invalid read from stack off %d+%d size %d\n", 2067 off, i, size); 2068 return -EACCES; 2069 } 2070 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2071 if (value_regno >= 0) { 2072 if (zeros == size) { 2073 /* any size read into register is zero extended, 2074 * so the whole register == const_zero 2075 */ 2076 __mark_reg_const_zero(&state->regs[value_regno]); 2077 /* backtracking doesn't support STACK_ZERO yet, 2078 * so mark it precise here, so that later 2079 * backtracking can stop here. 2080 * Backtracking may not need this if this register 2081 * doesn't participate in pointer adjustment. 2082 * Forward propagation of precise flag is not 2083 * necessary either. This mark is only to stop 2084 * backtracking. Any register that contributed 2085 * to const 0 was marked precise before spill. 2086 */ 2087 state->regs[value_regno].precise = true; 2088 } else { 2089 /* have read misc data from the stack */ 2090 mark_reg_unknown(env, state->regs, value_regno); 2091 } 2092 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2093 } 2094 } 2095 return 0; 2096 } 2097 2098 static int check_stack_access(struct bpf_verifier_env *env, 2099 const struct bpf_reg_state *reg, 2100 int off, int size) 2101 { 2102 /* Stack accesses must be at a fixed offset, so that we 2103 * can determine what type of data were returned. See 2104 * check_stack_read(). 2105 */ 2106 if (!tnum_is_const(reg->var_off)) { 2107 char tn_buf[48]; 2108 2109 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2110 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2111 tn_buf, off, size); 2112 return -EACCES; 2113 } 2114 2115 if (off >= 0 || off < -MAX_BPF_STACK) { 2116 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2117 return -EACCES; 2118 } 2119 2120 return 0; 2121 } 2122 2123 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2124 int off, int size, enum bpf_access_type type) 2125 { 2126 struct bpf_reg_state *regs = cur_regs(env); 2127 struct bpf_map *map = regs[regno].map_ptr; 2128 u32 cap = bpf_map_flags_to_cap(map); 2129 2130 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2131 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2132 map->value_size, off, size); 2133 return -EACCES; 2134 } 2135 2136 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2137 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2138 map->value_size, off, size); 2139 return -EACCES; 2140 } 2141 2142 return 0; 2143 } 2144 2145 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2146 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2147 int size, bool zero_size_allowed) 2148 { 2149 struct bpf_reg_state *regs = cur_regs(env); 2150 struct bpf_map *map = regs[regno].map_ptr; 2151 2152 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2153 off + size > map->value_size) { 2154 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2155 map->value_size, off, size); 2156 return -EACCES; 2157 } 2158 return 0; 2159 } 2160 2161 /* check read/write into a map element with possible variable offset */ 2162 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2163 int off, int size, bool zero_size_allowed) 2164 { 2165 struct bpf_verifier_state *vstate = env->cur_state; 2166 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2167 struct bpf_reg_state *reg = &state->regs[regno]; 2168 int err; 2169 2170 /* We may have adjusted the register to this map value, so we 2171 * need to try adding each of min_value and max_value to off 2172 * to make sure our theoretical access will be safe. 2173 */ 2174 if (env->log.level & BPF_LOG_LEVEL) 2175 print_verifier_state(env, state); 2176 2177 /* The minimum value is only important with signed 2178 * comparisons where we can't assume the floor of a 2179 * value is 0. If we are using signed variables for our 2180 * index'es we need to make sure that whatever we use 2181 * will have a set floor within our range. 2182 */ 2183 if (reg->smin_value < 0 && 2184 (reg->smin_value == S64_MIN || 2185 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2186 reg->smin_value + off < 0)) { 2187 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2188 regno); 2189 return -EACCES; 2190 } 2191 err = __check_map_access(env, regno, reg->smin_value + off, size, 2192 zero_size_allowed); 2193 if (err) { 2194 verbose(env, "R%d min value is outside of the array range\n", 2195 regno); 2196 return err; 2197 } 2198 2199 /* If we haven't set a max value then we need to bail since we can't be 2200 * sure we won't do bad things. 2201 * If reg->umax_value + off could overflow, treat that as unbounded too. 2202 */ 2203 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2204 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2205 regno); 2206 return -EACCES; 2207 } 2208 err = __check_map_access(env, regno, reg->umax_value + off, size, 2209 zero_size_allowed); 2210 if (err) 2211 verbose(env, "R%d max value is outside of the array range\n", 2212 regno); 2213 2214 if (map_value_has_spin_lock(reg->map_ptr)) { 2215 u32 lock = reg->map_ptr->spin_lock_off; 2216 2217 /* if any part of struct bpf_spin_lock can be touched by 2218 * load/store reject this program. 2219 * To check that [x1, x2) overlaps with [y1, y2) 2220 * it is sufficient to check x1 < y2 && y1 < x2. 2221 */ 2222 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2223 lock < reg->umax_value + off + size) { 2224 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2225 return -EACCES; 2226 } 2227 } 2228 return err; 2229 } 2230 2231 #define MAX_PACKET_OFF 0xffff 2232 2233 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2234 const struct bpf_call_arg_meta *meta, 2235 enum bpf_access_type t) 2236 { 2237 switch (env->prog->type) { 2238 /* Program types only with direct read access go here! */ 2239 case BPF_PROG_TYPE_LWT_IN: 2240 case BPF_PROG_TYPE_LWT_OUT: 2241 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2242 case BPF_PROG_TYPE_SK_REUSEPORT: 2243 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2244 case BPF_PROG_TYPE_CGROUP_SKB: 2245 if (t == BPF_WRITE) 2246 return false; 2247 /* fallthrough */ 2248 2249 /* Program types with direct read + write access go here! */ 2250 case BPF_PROG_TYPE_SCHED_CLS: 2251 case BPF_PROG_TYPE_SCHED_ACT: 2252 case BPF_PROG_TYPE_XDP: 2253 case BPF_PROG_TYPE_LWT_XMIT: 2254 case BPF_PROG_TYPE_SK_SKB: 2255 case BPF_PROG_TYPE_SK_MSG: 2256 if (meta) 2257 return meta->pkt_access; 2258 2259 env->seen_direct_write = true; 2260 return true; 2261 2262 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2263 if (t == BPF_WRITE) 2264 env->seen_direct_write = true; 2265 2266 return true; 2267 2268 default: 2269 return false; 2270 } 2271 } 2272 2273 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2274 int off, int size, bool zero_size_allowed) 2275 { 2276 struct bpf_reg_state *regs = cur_regs(env); 2277 struct bpf_reg_state *reg = ®s[regno]; 2278 2279 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2280 (u64)off + size > reg->range) { 2281 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2282 off, size, regno, reg->id, reg->off, reg->range); 2283 return -EACCES; 2284 } 2285 return 0; 2286 } 2287 2288 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2289 int size, bool zero_size_allowed) 2290 { 2291 struct bpf_reg_state *regs = cur_regs(env); 2292 struct bpf_reg_state *reg = ®s[regno]; 2293 int err; 2294 2295 /* We may have added a variable offset to the packet pointer; but any 2296 * reg->range we have comes after that. We are only checking the fixed 2297 * offset. 2298 */ 2299 2300 /* We don't allow negative numbers, because we aren't tracking enough 2301 * detail to prove they're safe. 2302 */ 2303 if (reg->smin_value < 0) { 2304 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2305 regno); 2306 return -EACCES; 2307 } 2308 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2309 if (err) { 2310 verbose(env, "R%d offset is outside of the packet\n", regno); 2311 return err; 2312 } 2313 2314 /* __check_packet_access has made sure "off + size - 1" is within u16. 2315 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2316 * otherwise find_good_pkt_pointers would have refused to set range info 2317 * that __check_packet_access would have rejected this pkt access. 2318 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2319 */ 2320 env->prog->aux->max_pkt_offset = 2321 max_t(u32, env->prog->aux->max_pkt_offset, 2322 off + reg->umax_value + size - 1); 2323 2324 return err; 2325 } 2326 2327 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2328 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2329 enum bpf_access_type t, enum bpf_reg_type *reg_type) 2330 { 2331 struct bpf_insn_access_aux info = { 2332 .reg_type = *reg_type, 2333 }; 2334 2335 if (env->ops->is_valid_access && 2336 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2337 /* A non zero info.ctx_field_size indicates that this field is a 2338 * candidate for later verifier transformation to load the whole 2339 * field and then apply a mask when accessed with a narrower 2340 * access than actual ctx access size. A zero info.ctx_field_size 2341 * will only allow for whole field access and rejects any other 2342 * type of narrower access. 2343 */ 2344 *reg_type = info.reg_type; 2345 2346 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2347 /* remember the offset of last byte accessed in ctx */ 2348 if (env->prog->aux->max_ctx_offset < off + size) 2349 env->prog->aux->max_ctx_offset = off + size; 2350 return 0; 2351 } 2352 2353 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2354 return -EACCES; 2355 } 2356 2357 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2358 int size) 2359 { 2360 if (size < 0 || off < 0 || 2361 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2362 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2363 off, size); 2364 return -EACCES; 2365 } 2366 return 0; 2367 } 2368 2369 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2370 u32 regno, int off, int size, 2371 enum bpf_access_type t) 2372 { 2373 struct bpf_reg_state *regs = cur_regs(env); 2374 struct bpf_reg_state *reg = ®s[regno]; 2375 struct bpf_insn_access_aux info = {}; 2376 bool valid; 2377 2378 if (reg->smin_value < 0) { 2379 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2380 regno); 2381 return -EACCES; 2382 } 2383 2384 switch (reg->type) { 2385 case PTR_TO_SOCK_COMMON: 2386 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2387 break; 2388 case PTR_TO_SOCKET: 2389 valid = bpf_sock_is_valid_access(off, size, t, &info); 2390 break; 2391 case PTR_TO_TCP_SOCK: 2392 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2393 break; 2394 case PTR_TO_XDP_SOCK: 2395 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2396 break; 2397 default: 2398 valid = false; 2399 } 2400 2401 2402 if (valid) { 2403 env->insn_aux_data[insn_idx].ctx_field_size = 2404 info.ctx_field_size; 2405 return 0; 2406 } 2407 2408 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2409 regno, reg_type_str[reg->type], off, size); 2410 2411 return -EACCES; 2412 } 2413 2414 static bool __is_pointer_value(bool allow_ptr_leaks, 2415 const struct bpf_reg_state *reg) 2416 { 2417 if (allow_ptr_leaks) 2418 return false; 2419 2420 return reg->type != SCALAR_VALUE; 2421 } 2422 2423 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2424 { 2425 return cur_regs(env) + regno; 2426 } 2427 2428 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2429 { 2430 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2431 } 2432 2433 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2434 { 2435 const struct bpf_reg_state *reg = reg_state(env, regno); 2436 2437 return reg->type == PTR_TO_CTX; 2438 } 2439 2440 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2441 { 2442 const struct bpf_reg_state *reg = reg_state(env, regno); 2443 2444 return type_is_sk_pointer(reg->type); 2445 } 2446 2447 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2448 { 2449 const struct bpf_reg_state *reg = reg_state(env, regno); 2450 2451 return type_is_pkt_pointer(reg->type); 2452 } 2453 2454 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2455 { 2456 const struct bpf_reg_state *reg = reg_state(env, regno); 2457 2458 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2459 return reg->type == PTR_TO_FLOW_KEYS; 2460 } 2461 2462 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2463 const struct bpf_reg_state *reg, 2464 int off, int size, bool strict) 2465 { 2466 struct tnum reg_off; 2467 int ip_align; 2468 2469 /* Byte size accesses are always allowed. */ 2470 if (!strict || size == 1) 2471 return 0; 2472 2473 /* For platforms that do not have a Kconfig enabling 2474 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2475 * NET_IP_ALIGN is universally set to '2'. And on platforms 2476 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2477 * to this code only in strict mode where we want to emulate 2478 * the NET_IP_ALIGN==2 checking. Therefore use an 2479 * unconditional IP align value of '2'. 2480 */ 2481 ip_align = 2; 2482 2483 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2484 if (!tnum_is_aligned(reg_off, size)) { 2485 char tn_buf[48]; 2486 2487 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2488 verbose(env, 2489 "misaligned packet access off %d+%s+%d+%d size %d\n", 2490 ip_align, tn_buf, reg->off, off, size); 2491 return -EACCES; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2498 const struct bpf_reg_state *reg, 2499 const char *pointer_desc, 2500 int off, int size, bool strict) 2501 { 2502 struct tnum reg_off; 2503 2504 /* Byte size accesses are always allowed. */ 2505 if (!strict || size == 1) 2506 return 0; 2507 2508 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2509 if (!tnum_is_aligned(reg_off, size)) { 2510 char tn_buf[48]; 2511 2512 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2513 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2514 pointer_desc, tn_buf, reg->off, off, size); 2515 return -EACCES; 2516 } 2517 2518 return 0; 2519 } 2520 2521 static int check_ptr_alignment(struct bpf_verifier_env *env, 2522 const struct bpf_reg_state *reg, int off, 2523 int size, bool strict_alignment_once) 2524 { 2525 bool strict = env->strict_alignment || strict_alignment_once; 2526 const char *pointer_desc = ""; 2527 2528 switch (reg->type) { 2529 case PTR_TO_PACKET: 2530 case PTR_TO_PACKET_META: 2531 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2532 * right in front, treat it the very same way. 2533 */ 2534 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2535 case PTR_TO_FLOW_KEYS: 2536 pointer_desc = "flow keys "; 2537 break; 2538 case PTR_TO_MAP_VALUE: 2539 pointer_desc = "value "; 2540 break; 2541 case PTR_TO_CTX: 2542 pointer_desc = "context "; 2543 break; 2544 case PTR_TO_STACK: 2545 pointer_desc = "stack "; 2546 /* The stack spill tracking logic in check_stack_write() 2547 * and check_stack_read() relies on stack accesses being 2548 * aligned. 2549 */ 2550 strict = true; 2551 break; 2552 case PTR_TO_SOCKET: 2553 pointer_desc = "sock "; 2554 break; 2555 case PTR_TO_SOCK_COMMON: 2556 pointer_desc = "sock_common "; 2557 break; 2558 case PTR_TO_TCP_SOCK: 2559 pointer_desc = "tcp_sock "; 2560 break; 2561 case PTR_TO_XDP_SOCK: 2562 pointer_desc = "xdp_sock "; 2563 break; 2564 default: 2565 break; 2566 } 2567 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2568 strict); 2569 } 2570 2571 static int update_stack_depth(struct bpf_verifier_env *env, 2572 const struct bpf_func_state *func, 2573 int off) 2574 { 2575 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2576 2577 if (stack >= -off) 2578 return 0; 2579 2580 /* update known max for given subprogram */ 2581 env->subprog_info[func->subprogno].stack_depth = -off; 2582 return 0; 2583 } 2584 2585 /* starting from main bpf function walk all instructions of the function 2586 * and recursively walk all callees that given function can call. 2587 * Ignore jump and exit insns. 2588 * Since recursion is prevented by check_cfg() this algorithm 2589 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2590 */ 2591 static int check_max_stack_depth(struct bpf_verifier_env *env) 2592 { 2593 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2594 struct bpf_subprog_info *subprog = env->subprog_info; 2595 struct bpf_insn *insn = env->prog->insnsi; 2596 int ret_insn[MAX_CALL_FRAMES]; 2597 int ret_prog[MAX_CALL_FRAMES]; 2598 2599 process_func: 2600 /* round up to 32-bytes, since this is granularity 2601 * of interpreter stack size 2602 */ 2603 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2604 if (depth > MAX_BPF_STACK) { 2605 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2606 frame + 1, depth); 2607 return -EACCES; 2608 } 2609 continue_func: 2610 subprog_end = subprog[idx + 1].start; 2611 for (; i < subprog_end; i++) { 2612 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2613 continue; 2614 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2615 continue; 2616 /* remember insn and function to return to */ 2617 ret_insn[frame] = i + 1; 2618 ret_prog[frame] = idx; 2619 2620 /* find the callee */ 2621 i = i + insn[i].imm + 1; 2622 idx = find_subprog(env, i); 2623 if (idx < 0) { 2624 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2625 i); 2626 return -EFAULT; 2627 } 2628 frame++; 2629 if (frame >= MAX_CALL_FRAMES) { 2630 verbose(env, "the call stack of %d frames is too deep !\n", 2631 frame); 2632 return -E2BIG; 2633 } 2634 goto process_func; 2635 } 2636 /* end of for() loop means the last insn of the 'subprog' 2637 * was reached. Doesn't matter whether it was JA or EXIT 2638 */ 2639 if (frame == 0) 2640 return 0; 2641 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2642 frame--; 2643 i = ret_insn[frame]; 2644 idx = ret_prog[frame]; 2645 goto continue_func; 2646 } 2647 2648 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2649 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2650 const struct bpf_insn *insn, int idx) 2651 { 2652 int start = idx + insn->imm + 1, subprog; 2653 2654 subprog = find_subprog(env, start); 2655 if (subprog < 0) { 2656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2657 start); 2658 return -EFAULT; 2659 } 2660 return env->subprog_info[subprog].stack_depth; 2661 } 2662 #endif 2663 2664 static int check_ctx_reg(struct bpf_verifier_env *env, 2665 const struct bpf_reg_state *reg, int regno) 2666 { 2667 /* Access to ctx or passing it to a helper is only allowed in 2668 * its original, unmodified form. 2669 */ 2670 2671 if (reg->off) { 2672 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2673 regno, reg->off); 2674 return -EACCES; 2675 } 2676 2677 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2678 char tn_buf[48]; 2679 2680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2681 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2682 return -EACCES; 2683 } 2684 2685 return 0; 2686 } 2687 2688 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2689 const struct bpf_reg_state *reg, 2690 int regno, int off, int size) 2691 { 2692 if (off < 0) { 2693 verbose(env, 2694 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2695 regno, off, size); 2696 return -EACCES; 2697 } 2698 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2699 char tn_buf[48]; 2700 2701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2702 verbose(env, 2703 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2704 regno, off, tn_buf); 2705 return -EACCES; 2706 } 2707 if (off + size > env->prog->aux->max_tp_access) 2708 env->prog->aux->max_tp_access = off + size; 2709 2710 return 0; 2711 } 2712 2713 2714 /* truncate register to smaller size (in bytes) 2715 * must be called with size < BPF_REG_SIZE 2716 */ 2717 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2718 { 2719 u64 mask; 2720 2721 /* clear high bits in bit representation */ 2722 reg->var_off = tnum_cast(reg->var_off, size); 2723 2724 /* fix arithmetic bounds */ 2725 mask = ((u64)1 << (size * 8)) - 1; 2726 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2727 reg->umin_value &= mask; 2728 reg->umax_value &= mask; 2729 } else { 2730 reg->umin_value = 0; 2731 reg->umax_value = mask; 2732 } 2733 reg->smin_value = reg->umin_value; 2734 reg->smax_value = reg->umax_value; 2735 } 2736 2737 /* check whether memory at (regno + off) is accessible for t = (read | write) 2738 * if t==write, value_regno is a register which value is stored into memory 2739 * if t==read, value_regno is a register which will receive the value from memory 2740 * if t==write && value_regno==-1, some unknown value is stored into memory 2741 * if t==read && value_regno==-1, don't care what we read from memory 2742 */ 2743 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2744 int off, int bpf_size, enum bpf_access_type t, 2745 int value_regno, bool strict_alignment_once) 2746 { 2747 struct bpf_reg_state *regs = cur_regs(env); 2748 struct bpf_reg_state *reg = regs + regno; 2749 struct bpf_func_state *state; 2750 int size, err = 0; 2751 2752 size = bpf_size_to_bytes(bpf_size); 2753 if (size < 0) 2754 return size; 2755 2756 /* alignment checks will add in reg->off themselves */ 2757 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2758 if (err) 2759 return err; 2760 2761 /* for access checks, reg->off is just part of off */ 2762 off += reg->off; 2763 2764 if (reg->type == PTR_TO_MAP_VALUE) { 2765 if (t == BPF_WRITE && value_regno >= 0 && 2766 is_pointer_value(env, value_regno)) { 2767 verbose(env, "R%d leaks addr into map\n", value_regno); 2768 return -EACCES; 2769 } 2770 err = check_map_access_type(env, regno, off, size, t); 2771 if (err) 2772 return err; 2773 err = check_map_access(env, regno, off, size, false); 2774 if (!err && t == BPF_READ && value_regno >= 0) 2775 mark_reg_unknown(env, regs, value_regno); 2776 2777 } else if (reg->type == PTR_TO_CTX) { 2778 enum bpf_reg_type reg_type = SCALAR_VALUE; 2779 2780 if (t == BPF_WRITE && value_regno >= 0 && 2781 is_pointer_value(env, value_regno)) { 2782 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2783 return -EACCES; 2784 } 2785 2786 err = check_ctx_reg(env, reg, regno); 2787 if (err < 0) 2788 return err; 2789 2790 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2791 if (!err && t == BPF_READ && value_regno >= 0) { 2792 /* ctx access returns either a scalar, or a 2793 * PTR_TO_PACKET[_META,_END]. In the latter 2794 * case, we know the offset is zero. 2795 */ 2796 if (reg_type == SCALAR_VALUE) { 2797 mark_reg_unknown(env, regs, value_regno); 2798 } else { 2799 mark_reg_known_zero(env, regs, 2800 value_regno); 2801 if (reg_type_may_be_null(reg_type)) 2802 regs[value_regno].id = ++env->id_gen; 2803 /* A load of ctx field could have different 2804 * actual load size with the one encoded in the 2805 * insn. When the dst is PTR, it is for sure not 2806 * a sub-register. 2807 */ 2808 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2809 } 2810 regs[value_regno].type = reg_type; 2811 } 2812 2813 } else if (reg->type == PTR_TO_STACK) { 2814 off += reg->var_off.value; 2815 err = check_stack_access(env, reg, off, size); 2816 if (err) 2817 return err; 2818 2819 state = func(env, reg); 2820 err = update_stack_depth(env, state, off); 2821 if (err) 2822 return err; 2823 2824 if (t == BPF_WRITE) 2825 err = check_stack_write(env, state, off, size, 2826 value_regno, insn_idx); 2827 else 2828 err = check_stack_read(env, state, off, size, 2829 value_regno); 2830 } else if (reg_is_pkt_pointer(reg)) { 2831 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2832 verbose(env, "cannot write into packet\n"); 2833 return -EACCES; 2834 } 2835 if (t == BPF_WRITE && value_regno >= 0 && 2836 is_pointer_value(env, value_regno)) { 2837 verbose(env, "R%d leaks addr into packet\n", 2838 value_regno); 2839 return -EACCES; 2840 } 2841 err = check_packet_access(env, regno, off, size, false); 2842 if (!err && t == BPF_READ && value_regno >= 0) 2843 mark_reg_unknown(env, regs, value_regno); 2844 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2845 if (t == BPF_WRITE && value_regno >= 0 && 2846 is_pointer_value(env, value_regno)) { 2847 verbose(env, "R%d leaks addr into flow keys\n", 2848 value_regno); 2849 return -EACCES; 2850 } 2851 2852 err = check_flow_keys_access(env, off, size); 2853 if (!err && t == BPF_READ && value_regno >= 0) 2854 mark_reg_unknown(env, regs, value_regno); 2855 } else if (type_is_sk_pointer(reg->type)) { 2856 if (t == BPF_WRITE) { 2857 verbose(env, "R%d cannot write into %s\n", 2858 regno, reg_type_str[reg->type]); 2859 return -EACCES; 2860 } 2861 err = check_sock_access(env, insn_idx, regno, off, size, t); 2862 if (!err && value_regno >= 0) 2863 mark_reg_unknown(env, regs, value_regno); 2864 } else if (reg->type == PTR_TO_TP_BUFFER) { 2865 err = check_tp_buffer_access(env, reg, regno, off, size); 2866 if (!err && t == BPF_READ && value_regno >= 0) 2867 mark_reg_unknown(env, regs, value_regno); 2868 } else { 2869 verbose(env, "R%d invalid mem access '%s'\n", regno, 2870 reg_type_str[reg->type]); 2871 return -EACCES; 2872 } 2873 2874 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2875 regs[value_regno].type == SCALAR_VALUE) { 2876 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2877 coerce_reg_to_size(®s[value_regno], size); 2878 } 2879 return err; 2880 } 2881 2882 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2883 { 2884 int err; 2885 2886 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2887 insn->imm != 0) { 2888 verbose(env, "BPF_XADD uses reserved fields\n"); 2889 return -EINVAL; 2890 } 2891 2892 /* check src1 operand */ 2893 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2894 if (err) 2895 return err; 2896 2897 /* check src2 operand */ 2898 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2899 if (err) 2900 return err; 2901 2902 if (is_pointer_value(env, insn->src_reg)) { 2903 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2904 return -EACCES; 2905 } 2906 2907 if (is_ctx_reg(env, insn->dst_reg) || 2908 is_pkt_reg(env, insn->dst_reg) || 2909 is_flow_key_reg(env, insn->dst_reg) || 2910 is_sk_reg(env, insn->dst_reg)) { 2911 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2912 insn->dst_reg, 2913 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2914 return -EACCES; 2915 } 2916 2917 /* check whether atomic_add can read the memory */ 2918 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2919 BPF_SIZE(insn->code), BPF_READ, -1, true); 2920 if (err) 2921 return err; 2922 2923 /* check whether atomic_add can write into the same memory */ 2924 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2925 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2926 } 2927 2928 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2929 int off, int access_size, 2930 bool zero_size_allowed) 2931 { 2932 struct bpf_reg_state *reg = reg_state(env, regno); 2933 2934 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2935 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2936 if (tnum_is_const(reg->var_off)) { 2937 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2938 regno, off, access_size); 2939 } else { 2940 char tn_buf[48]; 2941 2942 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2943 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2944 regno, tn_buf, access_size); 2945 } 2946 return -EACCES; 2947 } 2948 return 0; 2949 } 2950 2951 /* when register 'regno' is passed into function that will read 'access_size' 2952 * bytes from that pointer, make sure that it's within stack boundary 2953 * and all elements of stack are initialized. 2954 * Unlike most pointer bounds-checking functions, this one doesn't take an 2955 * 'off' argument, so it has to add in reg->off itself. 2956 */ 2957 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2958 int access_size, bool zero_size_allowed, 2959 struct bpf_call_arg_meta *meta) 2960 { 2961 struct bpf_reg_state *reg = reg_state(env, regno); 2962 struct bpf_func_state *state = func(env, reg); 2963 int err, min_off, max_off, i, j, slot, spi; 2964 2965 if (reg->type != PTR_TO_STACK) { 2966 /* Allow zero-byte read from NULL, regardless of pointer type */ 2967 if (zero_size_allowed && access_size == 0 && 2968 register_is_null(reg)) 2969 return 0; 2970 2971 verbose(env, "R%d type=%s expected=%s\n", regno, 2972 reg_type_str[reg->type], 2973 reg_type_str[PTR_TO_STACK]); 2974 return -EACCES; 2975 } 2976 2977 if (tnum_is_const(reg->var_off)) { 2978 min_off = max_off = reg->var_off.value + reg->off; 2979 err = __check_stack_boundary(env, regno, min_off, access_size, 2980 zero_size_allowed); 2981 if (err) 2982 return err; 2983 } else { 2984 /* Variable offset is prohibited for unprivileged mode for 2985 * simplicity since it requires corresponding support in 2986 * Spectre masking for stack ALU. 2987 * See also retrieve_ptr_limit(). 2988 */ 2989 if (!env->allow_ptr_leaks) { 2990 char tn_buf[48]; 2991 2992 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2993 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2994 regno, tn_buf); 2995 return -EACCES; 2996 } 2997 /* Only initialized buffer on stack is allowed to be accessed 2998 * with variable offset. With uninitialized buffer it's hard to 2999 * guarantee that whole memory is marked as initialized on 3000 * helper return since specific bounds are unknown what may 3001 * cause uninitialized stack leaking. 3002 */ 3003 if (meta && meta->raw_mode) 3004 meta = NULL; 3005 3006 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3007 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3008 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3009 regno); 3010 return -EACCES; 3011 } 3012 min_off = reg->smin_value + reg->off; 3013 max_off = reg->smax_value + reg->off; 3014 err = __check_stack_boundary(env, regno, min_off, access_size, 3015 zero_size_allowed); 3016 if (err) { 3017 verbose(env, "R%d min value is outside of stack bound\n", 3018 regno); 3019 return err; 3020 } 3021 err = __check_stack_boundary(env, regno, max_off, access_size, 3022 zero_size_allowed); 3023 if (err) { 3024 verbose(env, "R%d max value is outside of stack bound\n", 3025 regno); 3026 return err; 3027 } 3028 } 3029 3030 if (meta && meta->raw_mode) { 3031 meta->access_size = access_size; 3032 meta->regno = regno; 3033 return 0; 3034 } 3035 3036 for (i = min_off; i < max_off + access_size; i++) { 3037 u8 *stype; 3038 3039 slot = -i - 1; 3040 spi = slot / BPF_REG_SIZE; 3041 if (state->allocated_stack <= slot) 3042 goto err; 3043 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3044 if (*stype == STACK_MISC) 3045 goto mark; 3046 if (*stype == STACK_ZERO) { 3047 /* helper can write anything into the stack */ 3048 *stype = STACK_MISC; 3049 goto mark; 3050 } 3051 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3052 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3053 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3054 for (j = 0; j < BPF_REG_SIZE; j++) 3055 state->stack[spi].slot_type[j] = STACK_MISC; 3056 goto mark; 3057 } 3058 3059 err: 3060 if (tnum_is_const(reg->var_off)) { 3061 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3062 min_off, i - min_off, access_size); 3063 } else { 3064 char tn_buf[48]; 3065 3066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3067 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3068 tn_buf, i - min_off, access_size); 3069 } 3070 return -EACCES; 3071 mark: 3072 /* reading any byte out of 8-byte 'spill_slot' will cause 3073 * the whole slot to be marked as 'read' 3074 */ 3075 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3076 state->stack[spi].spilled_ptr.parent, 3077 REG_LIVE_READ64); 3078 } 3079 return update_stack_depth(env, state, min_off); 3080 } 3081 3082 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3083 int access_size, bool zero_size_allowed, 3084 struct bpf_call_arg_meta *meta) 3085 { 3086 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3087 3088 switch (reg->type) { 3089 case PTR_TO_PACKET: 3090 case PTR_TO_PACKET_META: 3091 return check_packet_access(env, regno, reg->off, access_size, 3092 zero_size_allowed); 3093 case PTR_TO_MAP_VALUE: 3094 if (check_map_access_type(env, regno, reg->off, access_size, 3095 meta && meta->raw_mode ? BPF_WRITE : 3096 BPF_READ)) 3097 return -EACCES; 3098 return check_map_access(env, regno, reg->off, access_size, 3099 zero_size_allowed); 3100 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3101 return check_stack_boundary(env, regno, access_size, 3102 zero_size_allowed, meta); 3103 } 3104 } 3105 3106 /* Implementation details: 3107 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3108 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3109 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3110 * value_or_null->value transition, since the verifier only cares about 3111 * the range of access to valid map value pointer and doesn't care about actual 3112 * address of the map element. 3113 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3114 * reg->id > 0 after value_or_null->value transition. By doing so 3115 * two bpf_map_lookups will be considered two different pointers that 3116 * point to different bpf_spin_locks. 3117 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3118 * dead-locks. 3119 * Since only one bpf_spin_lock is allowed the checks are simpler than 3120 * reg_is_refcounted() logic. The verifier needs to remember only 3121 * one spin_lock instead of array of acquired_refs. 3122 * cur_state->active_spin_lock remembers which map value element got locked 3123 * and clears it after bpf_spin_unlock. 3124 */ 3125 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3126 bool is_lock) 3127 { 3128 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3129 struct bpf_verifier_state *cur = env->cur_state; 3130 bool is_const = tnum_is_const(reg->var_off); 3131 struct bpf_map *map = reg->map_ptr; 3132 u64 val = reg->var_off.value; 3133 3134 if (reg->type != PTR_TO_MAP_VALUE) { 3135 verbose(env, "R%d is not a pointer to map_value\n", regno); 3136 return -EINVAL; 3137 } 3138 if (!is_const) { 3139 verbose(env, 3140 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3141 regno); 3142 return -EINVAL; 3143 } 3144 if (!map->btf) { 3145 verbose(env, 3146 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3147 map->name); 3148 return -EINVAL; 3149 } 3150 if (!map_value_has_spin_lock(map)) { 3151 if (map->spin_lock_off == -E2BIG) 3152 verbose(env, 3153 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3154 map->name); 3155 else if (map->spin_lock_off == -ENOENT) 3156 verbose(env, 3157 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3158 map->name); 3159 else 3160 verbose(env, 3161 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3162 map->name); 3163 return -EINVAL; 3164 } 3165 if (map->spin_lock_off != val + reg->off) { 3166 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3167 val + reg->off); 3168 return -EINVAL; 3169 } 3170 if (is_lock) { 3171 if (cur->active_spin_lock) { 3172 verbose(env, 3173 "Locking two bpf_spin_locks are not allowed\n"); 3174 return -EINVAL; 3175 } 3176 cur->active_spin_lock = reg->id; 3177 } else { 3178 if (!cur->active_spin_lock) { 3179 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3180 return -EINVAL; 3181 } 3182 if (cur->active_spin_lock != reg->id) { 3183 verbose(env, "bpf_spin_unlock of different lock\n"); 3184 return -EINVAL; 3185 } 3186 cur->active_spin_lock = 0; 3187 } 3188 return 0; 3189 } 3190 3191 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3192 { 3193 return type == ARG_PTR_TO_MEM || 3194 type == ARG_PTR_TO_MEM_OR_NULL || 3195 type == ARG_PTR_TO_UNINIT_MEM; 3196 } 3197 3198 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3199 { 3200 return type == ARG_CONST_SIZE || 3201 type == ARG_CONST_SIZE_OR_ZERO; 3202 } 3203 3204 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3205 { 3206 return type == ARG_PTR_TO_INT || 3207 type == ARG_PTR_TO_LONG; 3208 } 3209 3210 static int int_ptr_type_to_size(enum bpf_arg_type type) 3211 { 3212 if (type == ARG_PTR_TO_INT) 3213 return sizeof(u32); 3214 else if (type == ARG_PTR_TO_LONG) 3215 return sizeof(u64); 3216 3217 return -EINVAL; 3218 } 3219 3220 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3221 enum bpf_arg_type arg_type, 3222 struct bpf_call_arg_meta *meta) 3223 { 3224 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3225 enum bpf_reg_type expected_type, type = reg->type; 3226 int err = 0; 3227 3228 if (arg_type == ARG_DONTCARE) 3229 return 0; 3230 3231 err = check_reg_arg(env, regno, SRC_OP); 3232 if (err) 3233 return err; 3234 3235 if (arg_type == ARG_ANYTHING) { 3236 if (is_pointer_value(env, regno)) { 3237 verbose(env, "R%d leaks addr into helper function\n", 3238 regno); 3239 return -EACCES; 3240 } 3241 return 0; 3242 } 3243 3244 if (type_is_pkt_pointer(type) && 3245 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3246 verbose(env, "helper access to the packet is not allowed\n"); 3247 return -EACCES; 3248 } 3249 3250 if (arg_type == ARG_PTR_TO_MAP_KEY || 3251 arg_type == ARG_PTR_TO_MAP_VALUE || 3252 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3253 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3254 expected_type = PTR_TO_STACK; 3255 if (register_is_null(reg) && 3256 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3257 /* final test in check_stack_boundary() */; 3258 else if (!type_is_pkt_pointer(type) && 3259 type != PTR_TO_MAP_VALUE && 3260 type != expected_type) 3261 goto err_type; 3262 } else if (arg_type == ARG_CONST_SIZE || 3263 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3264 expected_type = SCALAR_VALUE; 3265 if (type != expected_type) 3266 goto err_type; 3267 } else if (arg_type == ARG_CONST_MAP_PTR) { 3268 expected_type = CONST_PTR_TO_MAP; 3269 if (type != expected_type) 3270 goto err_type; 3271 } else if (arg_type == ARG_PTR_TO_CTX) { 3272 expected_type = PTR_TO_CTX; 3273 if (type != expected_type) 3274 goto err_type; 3275 err = check_ctx_reg(env, reg, regno); 3276 if (err < 0) 3277 return err; 3278 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3279 expected_type = PTR_TO_SOCK_COMMON; 3280 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3281 if (!type_is_sk_pointer(type)) 3282 goto err_type; 3283 if (reg->ref_obj_id) { 3284 if (meta->ref_obj_id) { 3285 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3286 regno, reg->ref_obj_id, 3287 meta->ref_obj_id); 3288 return -EFAULT; 3289 } 3290 meta->ref_obj_id = reg->ref_obj_id; 3291 } 3292 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3293 expected_type = PTR_TO_SOCKET; 3294 if (type != expected_type) 3295 goto err_type; 3296 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3297 if (meta->func_id == BPF_FUNC_spin_lock) { 3298 if (process_spin_lock(env, regno, true)) 3299 return -EACCES; 3300 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3301 if (process_spin_lock(env, regno, false)) 3302 return -EACCES; 3303 } else { 3304 verbose(env, "verifier internal error\n"); 3305 return -EFAULT; 3306 } 3307 } else if (arg_type_is_mem_ptr(arg_type)) { 3308 expected_type = PTR_TO_STACK; 3309 /* One exception here. In case function allows for NULL to be 3310 * passed in as argument, it's a SCALAR_VALUE type. Final test 3311 * happens during stack boundary checking. 3312 */ 3313 if (register_is_null(reg) && 3314 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3315 /* final test in check_stack_boundary() */; 3316 else if (!type_is_pkt_pointer(type) && 3317 type != PTR_TO_MAP_VALUE && 3318 type != expected_type) 3319 goto err_type; 3320 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3321 } else if (arg_type_is_int_ptr(arg_type)) { 3322 expected_type = PTR_TO_STACK; 3323 if (!type_is_pkt_pointer(type) && 3324 type != PTR_TO_MAP_VALUE && 3325 type != expected_type) 3326 goto err_type; 3327 } else { 3328 verbose(env, "unsupported arg_type %d\n", arg_type); 3329 return -EFAULT; 3330 } 3331 3332 if (arg_type == ARG_CONST_MAP_PTR) { 3333 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3334 meta->map_ptr = reg->map_ptr; 3335 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3336 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3337 * check that [key, key + map->key_size) are within 3338 * stack limits and initialized 3339 */ 3340 if (!meta->map_ptr) { 3341 /* in function declaration map_ptr must come before 3342 * map_key, so that it's verified and known before 3343 * we have to check map_key here. Otherwise it means 3344 * that kernel subsystem misconfigured verifier 3345 */ 3346 verbose(env, "invalid map_ptr to access map->key\n"); 3347 return -EACCES; 3348 } 3349 err = check_helper_mem_access(env, regno, 3350 meta->map_ptr->key_size, false, 3351 NULL); 3352 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3353 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3354 !register_is_null(reg)) || 3355 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3356 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3357 * check [value, value + map->value_size) validity 3358 */ 3359 if (!meta->map_ptr) { 3360 /* kernel subsystem misconfigured verifier */ 3361 verbose(env, "invalid map_ptr to access map->value\n"); 3362 return -EACCES; 3363 } 3364 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3365 err = check_helper_mem_access(env, regno, 3366 meta->map_ptr->value_size, false, 3367 meta); 3368 } else if (arg_type_is_mem_size(arg_type)) { 3369 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3370 3371 /* remember the mem_size which may be used later 3372 * to refine return values. 3373 */ 3374 meta->msize_smax_value = reg->smax_value; 3375 meta->msize_umax_value = reg->umax_value; 3376 3377 /* The register is SCALAR_VALUE; the access check 3378 * happens using its boundaries. 3379 */ 3380 if (!tnum_is_const(reg->var_off)) 3381 /* For unprivileged variable accesses, disable raw 3382 * mode so that the program is required to 3383 * initialize all the memory that the helper could 3384 * just partially fill up. 3385 */ 3386 meta = NULL; 3387 3388 if (reg->smin_value < 0) { 3389 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3390 regno); 3391 return -EACCES; 3392 } 3393 3394 if (reg->umin_value == 0) { 3395 err = check_helper_mem_access(env, regno - 1, 0, 3396 zero_size_allowed, 3397 meta); 3398 if (err) 3399 return err; 3400 } 3401 3402 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3403 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3404 regno); 3405 return -EACCES; 3406 } 3407 err = check_helper_mem_access(env, regno - 1, 3408 reg->umax_value, 3409 zero_size_allowed, meta); 3410 if (!err) 3411 err = mark_chain_precision(env, regno); 3412 } else if (arg_type_is_int_ptr(arg_type)) { 3413 int size = int_ptr_type_to_size(arg_type); 3414 3415 err = check_helper_mem_access(env, regno, size, false, meta); 3416 if (err) 3417 return err; 3418 err = check_ptr_alignment(env, reg, 0, size, true); 3419 } 3420 3421 return err; 3422 err_type: 3423 verbose(env, "R%d type=%s expected=%s\n", regno, 3424 reg_type_str[type], reg_type_str[expected_type]); 3425 return -EACCES; 3426 } 3427 3428 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3429 struct bpf_map *map, int func_id) 3430 { 3431 if (!map) 3432 return 0; 3433 3434 /* We need a two way check, first is from map perspective ... */ 3435 switch (map->map_type) { 3436 case BPF_MAP_TYPE_PROG_ARRAY: 3437 if (func_id != BPF_FUNC_tail_call) 3438 goto error; 3439 break; 3440 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3441 if (func_id != BPF_FUNC_perf_event_read && 3442 func_id != BPF_FUNC_perf_event_output && 3443 func_id != BPF_FUNC_perf_event_read_value) 3444 goto error; 3445 break; 3446 case BPF_MAP_TYPE_STACK_TRACE: 3447 if (func_id != BPF_FUNC_get_stackid) 3448 goto error; 3449 break; 3450 case BPF_MAP_TYPE_CGROUP_ARRAY: 3451 if (func_id != BPF_FUNC_skb_under_cgroup && 3452 func_id != BPF_FUNC_current_task_under_cgroup) 3453 goto error; 3454 break; 3455 case BPF_MAP_TYPE_CGROUP_STORAGE: 3456 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3457 if (func_id != BPF_FUNC_get_local_storage) 3458 goto error; 3459 break; 3460 case BPF_MAP_TYPE_DEVMAP: 3461 if (func_id != BPF_FUNC_redirect_map && 3462 func_id != BPF_FUNC_map_lookup_elem) 3463 goto error; 3464 break; 3465 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3466 * appear. 3467 */ 3468 case BPF_MAP_TYPE_CPUMAP: 3469 if (func_id != BPF_FUNC_redirect_map) 3470 goto error; 3471 break; 3472 case BPF_MAP_TYPE_XSKMAP: 3473 if (func_id != BPF_FUNC_redirect_map && 3474 func_id != BPF_FUNC_map_lookup_elem) 3475 goto error; 3476 break; 3477 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3478 case BPF_MAP_TYPE_HASH_OF_MAPS: 3479 if (func_id != BPF_FUNC_map_lookup_elem) 3480 goto error; 3481 break; 3482 case BPF_MAP_TYPE_SOCKMAP: 3483 if (func_id != BPF_FUNC_sk_redirect_map && 3484 func_id != BPF_FUNC_sock_map_update && 3485 func_id != BPF_FUNC_map_delete_elem && 3486 func_id != BPF_FUNC_msg_redirect_map) 3487 goto error; 3488 break; 3489 case BPF_MAP_TYPE_SOCKHASH: 3490 if (func_id != BPF_FUNC_sk_redirect_hash && 3491 func_id != BPF_FUNC_sock_hash_update && 3492 func_id != BPF_FUNC_map_delete_elem && 3493 func_id != BPF_FUNC_msg_redirect_hash) 3494 goto error; 3495 break; 3496 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3497 if (func_id != BPF_FUNC_sk_select_reuseport) 3498 goto error; 3499 break; 3500 case BPF_MAP_TYPE_QUEUE: 3501 case BPF_MAP_TYPE_STACK: 3502 if (func_id != BPF_FUNC_map_peek_elem && 3503 func_id != BPF_FUNC_map_pop_elem && 3504 func_id != BPF_FUNC_map_push_elem) 3505 goto error; 3506 break; 3507 case BPF_MAP_TYPE_SK_STORAGE: 3508 if (func_id != BPF_FUNC_sk_storage_get && 3509 func_id != BPF_FUNC_sk_storage_delete) 3510 goto error; 3511 break; 3512 default: 3513 break; 3514 } 3515 3516 /* ... and second from the function itself. */ 3517 switch (func_id) { 3518 case BPF_FUNC_tail_call: 3519 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3520 goto error; 3521 if (env->subprog_cnt > 1) { 3522 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3523 return -EINVAL; 3524 } 3525 break; 3526 case BPF_FUNC_perf_event_read: 3527 case BPF_FUNC_perf_event_output: 3528 case BPF_FUNC_perf_event_read_value: 3529 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3530 goto error; 3531 break; 3532 case BPF_FUNC_get_stackid: 3533 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3534 goto error; 3535 break; 3536 case BPF_FUNC_current_task_under_cgroup: 3537 case BPF_FUNC_skb_under_cgroup: 3538 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3539 goto error; 3540 break; 3541 case BPF_FUNC_redirect_map: 3542 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3543 map->map_type != BPF_MAP_TYPE_CPUMAP && 3544 map->map_type != BPF_MAP_TYPE_XSKMAP) 3545 goto error; 3546 break; 3547 case BPF_FUNC_sk_redirect_map: 3548 case BPF_FUNC_msg_redirect_map: 3549 case BPF_FUNC_sock_map_update: 3550 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3551 goto error; 3552 break; 3553 case BPF_FUNC_sk_redirect_hash: 3554 case BPF_FUNC_msg_redirect_hash: 3555 case BPF_FUNC_sock_hash_update: 3556 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3557 goto error; 3558 break; 3559 case BPF_FUNC_get_local_storage: 3560 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3561 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3562 goto error; 3563 break; 3564 case BPF_FUNC_sk_select_reuseport: 3565 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3566 goto error; 3567 break; 3568 case BPF_FUNC_map_peek_elem: 3569 case BPF_FUNC_map_pop_elem: 3570 case BPF_FUNC_map_push_elem: 3571 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3572 map->map_type != BPF_MAP_TYPE_STACK) 3573 goto error; 3574 break; 3575 case BPF_FUNC_sk_storage_get: 3576 case BPF_FUNC_sk_storage_delete: 3577 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3578 goto error; 3579 break; 3580 default: 3581 break; 3582 } 3583 3584 return 0; 3585 error: 3586 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3587 map->map_type, func_id_name(func_id), func_id); 3588 return -EINVAL; 3589 } 3590 3591 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3592 { 3593 int count = 0; 3594 3595 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3596 count++; 3597 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3598 count++; 3599 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3600 count++; 3601 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3602 count++; 3603 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3604 count++; 3605 3606 /* We only support one arg being in raw mode at the moment, 3607 * which is sufficient for the helper functions we have 3608 * right now. 3609 */ 3610 return count <= 1; 3611 } 3612 3613 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3614 enum bpf_arg_type arg_next) 3615 { 3616 return (arg_type_is_mem_ptr(arg_curr) && 3617 !arg_type_is_mem_size(arg_next)) || 3618 (!arg_type_is_mem_ptr(arg_curr) && 3619 arg_type_is_mem_size(arg_next)); 3620 } 3621 3622 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3623 { 3624 /* bpf_xxx(..., buf, len) call will access 'len' 3625 * bytes from memory 'buf'. Both arg types need 3626 * to be paired, so make sure there's no buggy 3627 * helper function specification. 3628 */ 3629 if (arg_type_is_mem_size(fn->arg1_type) || 3630 arg_type_is_mem_ptr(fn->arg5_type) || 3631 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3632 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3633 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3634 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3635 return false; 3636 3637 return true; 3638 } 3639 3640 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3641 { 3642 int count = 0; 3643 3644 if (arg_type_may_be_refcounted(fn->arg1_type)) 3645 count++; 3646 if (arg_type_may_be_refcounted(fn->arg2_type)) 3647 count++; 3648 if (arg_type_may_be_refcounted(fn->arg3_type)) 3649 count++; 3650 if (arg_type_may_be_refcounted(fn->arg4_type)) 3651 count++; 3652 if (arg_type_may_be_refcounted(fn->arg5_type)) 3653 count++; 3654 3655 /* A reference acquiring function cannot acquire 3656 * another refcounted ptr. 3657 */ 3658 if (is_acquire_function(func_id) && count) 3659 return false; 3660 3661 /* We only support one arg being unreferenced at the moment, 3662 * which is sufficient for the helper functions we have right now. 3663 */ 3664 return count <= 1; 3665 } 3666 3667 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3668 { 3669 return check_raw_mode_ok(fn) && 3670 check_arg_pair_ok(fn) && 3671 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3672 } 3673 3674 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3675 * are now invalid, so turn them into unknown SCALAR_VALUE. 3676 */ 3677 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3678 struct bpf_func_state *state) 3679 { 3680 struct bpf_reg_state *regs = state->regs, *reg; 3681 int i; 3682 3683 for (i = 0; i < MAX_BPF_REG; i++) 3684 if (reg_is_pkt_pointer_any(®s[i])) 3685 mark_reg_unknown(env, regs, i); 3686 3687 bpf_for_each_spilled_reg(i, state, reg) { 3688 if (!reg) 3689 continue; 3690 if (reg_is_pkt_pointer_any(reg)) 3691 __mark_reg_unknown(reg); 3692 } 3693 } 3694 3695 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3696 { 3697 struct bpf_verifier_state *vstate = env->cur_state; 3698 int i; 3699 3700 for (i = 0; i <= vstate->curframe; i++) 3701 __clear_all_pkt_pointers(env, vstate->frame[i]); 3702 } 3703 3704 static void release_reg_references(struct bpf_verifier_env *env, 3705 struct bpf_func_state *state, 3706 int ref_obj_id) 3707 { 3708 struct bpf_reg_state *regs = state->regs, *reg; 3709 int i; 3710 3711 for (i = 0; i < MAX_BPF_REG; i++) 3712 if (regs[i].ref_obj_id == ref_obj_id) 3713 mark_reg_unknown(env, regs, i); 3714 3715 bpf_for_each_spilled_reg(i, state, reg) { 3716 if (!reg) 3717 continue; 3718 if (reg->ref_obj_id == ref_obj_id) 3719 __mark_reg_unknown(reg); 3720 } 3721 } 3722 3723 /* The pointer with the specified id has released its reference to kernel 3724 * resources. Identify all copies of the same pointer and clear the reference. 3725 */ 3726 static int release_reference(struct bpf_verifier_env *env, 3727 int ref_obj_id) 3728 { 3729 struct bpf_verifier_state *vstate = env->cur_state; 3730 int err; 3731 int i; 3732 3733 err = release_reference_state(cur_func(env), ref_obj_id); 3734 if (err) 3735 return err; 3736 3737 for (i = 0; i <= vstate->curframe; i++) 3738 release_reg_references(env, vstate->frame[i], ref_obj_id); 3739 3740 return 0; 3741 } 3742 3743 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3744 int *insn_idx) 3745 { 3746 struct bpf_verifier_state *state = env->cur_state; 3747 struct bpf_func_state *caller, *callee; 3748 int i, err, subprog, target_insn; 3749 3750 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3751 verbose(env, "the call stack of %d frames is too deep\n", 3752 state->curframe + 2); 3753 return -E2BIG; 3754 } 3755 3756 target_insn = *insn_idx + insn->imm; 3757 subprog = find_subprog(env, target_insn + 1); 3758 if (subprog < 0) { 3759 verbose(env, "verifier bug. No program starts at insn %d\n", 3760 target_insn + 1); 3761 return -EFAULT; 3762 } 3763 3764 caller = state->frame[state->curframe]; 3765 if (state->frame[state->curframe + 1]) { 3766 verbose(env, "verifier bug. Frame %d already allocated\n", 3767 state->curframe + 1); 3768 return -EFAULT; 3769 } 3770 3771 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3772 if (!callee) 3773 return -ENOMEM; 3774 state->frame[state->curframe + 1] = callee; 3775 3776 /* callee cannot access r0, r6 - r9 for reading and has to write 3777 * into its own stack before reading from it. 3778 * callee can read/write into caller's stack 3779 */ 3780 init_func_state(env, callee, 3781 /* remember the callsite, it will be used by bpf_exit */ 3782 *insn_idx /* callsite */, 3783 state->curframe + 1 /* frameno within this callchain */, 3784 subprog /* subprog number within this prog */); 3785 3786 /* Transfer references to the callee */ 3787 err = transfer_reference_state(callee, caller); 3788 if (err) 3789 return err; 3790 3791 /* copy r1 - r5 args that callee can access. The copy includes parent 3792 * pointers, which connects us up to the liveness chain 3793 */ 3794 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3795 callee->regs[i] = caller->regs[i]; 3796 3797 /* after the call registers r0 - r5 were scratched */ 3798 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3799 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3800 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3801 } 3802 3803 /* only increment it after check_reg_arg() finished */ 3804 state->curframe++; 3805 3806 /* and go analyze first insn of the callee */ 3807 *insn_idx = target_insn; 3808 3809 if (env->log.level & BPF_LOG_LEVEL) { 3810 verbose(env, "caller:\n"); 3811 print_verifier_state(env, caller); 3812 verbose(env, "callee:\n"); 3813 print_verifier_state(env, callee); 3814 } 3815 return 0; 3816 } 3817 3818 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3819 { 3820 struct bpf_verifier_state *state = env->cur_state; 3821 struct bpf_func_state *caller, *callee; 3822 struct bpf_reg_state *r0; 3823 int err; 3824 3825 callee = state->frame[state->curframe]; 3826 r0 = &callee->regs[BPF_REG_0]; 3827 if (r0->type == PTR_TO_STACK) { 3828 /* technically it's ok to return caller's stack pointer 3829 * (or caller's caller's pointer) back to the caller, 3830 * since these pointers are valid. Only current stack 3831 * pointer will be invalid as soon as function exits, 3832 * but let's be conservative 3833 */ 3834 verbose(env, "cannot return stack pointer to the caller\n"); 3835 return -EINVAL; 3836 } 3837 3838 state->curframe--; 3839 caller = state->frame[state->curframe]; 3840 /* return to the caller whatever r0 had in the callee */ 3841 caller->regs[BPF_REG_0] = *r0; 3842 3843 /* Transfer references to the caller */ 3844 err = transfer_reference_state(caller, callee); 3845 if (err) 3846 return err; 3847 3848 *insn_idx = callee->callsite + 1; 3849 if (env->log.level & BPF_LOG_LEVEL) { 3850 verbose(env, "returning from callee:\n"); 3851 print_verifier_state(env, callee); 3852 verbose(env, "to caller at %d:\n", *insn_idx); 3853 print_verifier_state(env, caller); 3854 } 3855 /* clear everything in the callee */ 3856 free_func_state(callee); 3857 state->frame[state->curframe + 1] = NULL; 3858 return 0; 3859 } 3860 3861 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3862 int func_id, 3863 struct bpf_call_arg_meta *meta) 3864 { 3865 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3866 3867 if (ret_type != RET_INTEGER || 3868 (func_id != BPF_FUNC_get_stack && 3869 func_id != BPF_FUNC_probe_read_str)) 3870 return; 3871 3872 ret_reg->smax_value = meta->msize_smax_value; 3873 ret_reg->umax_value = meta->msize_umax_value; 3874 __reg_deduce_bounds(ret_reg); 3875 __reg_bound_offset(ret_reg); 3876 } 3877 3878 static int 3879 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3880 int func_id, int insn_idx) 3881 { 3882 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3883 struct bpf_map *map = meta->map_ptr; 3884 3885 if (func_id != BPF_FUNC_tail_call && 3886 func_id != BPF_FUNC_map_lookup_elem && 3887 func_id != BPF_FUNC_map_update_elem && 3888 func_id != BPF_FUNC_map_delete_elem && 3889 func_id != BPF_FUNC_map_push_elem && 3890 func_id != BPF_FUNC_map_pop_elem && 3891 func_id != BPF_FUNC_map_peek_elem) 3892 return 0; 3893 3894 if (map == NULL) { 3895 verbose(env, "kernel subsystem misconfigured verifier\n"); 3896 return -EINVAL; 3897 } 3898 3899 /* In case of read-only, some additional restrictions 3900 * need to be applied in order to prevent altering the 3901 * state of the map from program side. 3902 */ 3903 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3904 (func_id == BPF_FUNC_map_delete_elem || 3905 func_id == BPF_FUNC_map_update_elem || 3906 func_id == BPF_FUNC_map_push_elem || 3907 func_id == BPF_FUNC_map_pop_elem)) { 3908 verbose(env, "write into map forbidden\n"); 3909 return -EACCES; 3910 } 3911 3912 if (!BPF_MAP_PTR(aux->map_state)) 3913 bpf_map_ptr_store(aux, meta->map_ptr, 3914 meta->map_ptr->unpriv_array); 3915 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3916 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3917 meta->map_ptr->unpriv_array); 3918 return 0; 3919 } 3920 3921 static int check_reference_leak(struct bpf_verifier_env *env) 3922 { 3923 struct bpf_func_state *state = cur_func(env); 3924 int i; 3925 3926 for (i = 0; i < state->acquired_refs; i++) { 3927 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3928 state->refs[i].id, state->refs[i].insn_idx); 3929 } 3930 return state->acquired_refs ? -EINVAL : 0; 3931 } 3932 3933 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3934 { 3935 const struct bpf_func_proto *fn = NULL; 3936 struct bpf_reg_state *regs; 3937 struct bpf_call_arg_meta meta; 3938 bool changes_data; 3939 int i, err; 3940 3941 /* find function prototype */ 3942 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3943 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3944 func_id); 3945 return -EINVAL; 3946 } 3947 3948 if (env->ops->get_func_proto) 3949 fn = env->ops->get_func_proto(func_id, env->prog); 3950 if (!fn) { 3951 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3952 func_id); 3953 return -EINVAL; 3954 } 3955 3956 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3957 if (!env->prog->gpl_compatible && fn->gpl_only) { 3958 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3959 return -EINVAL; 3960 } 3961 3962 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3963 changes_data = bpf_helper_changes_pkt_data(fn->func); 3964 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3965 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3966 func_id_name(func_id), func_id); 3967 return -EINVAL; 3968 } 3969 3970 memset(&meta, 0, sizeof(meta)); 3971 meta.pkt_access = fn->pkt_access; 3972 3973 err = check_func_proto(fn, func_id); 3974 if (err) { 3975 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3976 func_id_name(func_id), func_id); 3977 return err; 3978 } 3979 3980 meta.func_id = func_id; 3981 /* check args */ 3982 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3983 if (err) 3984 return err; 3985 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3986 if (err) 3987 return err; 3988 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3989 if (err) 3990 return err; 3991 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3992 if (err) 3993 return err; 3994 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3995 if (err) 3996 return err; 3997 3998 err = record_func_map(env, &meta, func_id, insn_idx); 3999 if (err) 4000 return err; 4001 4002 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4003 * is inferred from register state. 4004 */ 4005 for (i = 0; i < meta.access_size; i++) { 4006 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4007 BPF_WRITE, -1, false); 4008 if (err) 4009 return err; 4010 } 4011 4012 if (func_id == BPF_FUNC_tail_call) { 4013 err = check_reference_leak(env); 4014 if (err) { 4015 verbose(env, "tail_call would lead to reference leak\n"); 4016 return err; 4017 } 4018 } else if (is_release_function(func_id)) { 4019 err = release_reference(env, meta.ref_obj_id); 4020 if (err) { 4021 verbose(env, "func %s#%d reference has not been acquired before\n", 4022 func_id_name(func_id), func_id); 4023 return err; 4024 } 4025 } 4026 4027 regs = cur_regs(env); 4028 4029 /* check that flags argument in get_local_storage(map, flags) is 0, 4030 * this is required because get_local_storage() can't return an error. 4031 */ 4032 if (func_id == BPF_FUNC_get_local_storage && 4033 !register_is_null(®s[BPF_REG_2])) { 4034 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4035 return -EINVAL; 4036 } 4037 4038 /* reset caller saved regs */ 4039 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4040 mark_reg_not_init(env, regs, caller_saved[i]); 4041 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4042 } 4043 4044 /* helper call returns 64-bit value. */ 4045 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4046 4047 /* update return register (already marked as written above) */ 4048 if (fn->ret_type == RET_INTEGER) { 4049 /* sets type to SCALAR_VALUE */ 4050 mark_reg_unknown(env, regs, BPF_REG_0); 4051 } else if (fn->ret_type == RET_VOID) { 4052 regs[BPF_REG_0].type = NOT_INIT; 4053 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4054 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4055 /* There is no offset yet applied, variable or fixed */ 4056 mark_reg_known_zero(env, regs, BPF_REG_0); 4057 /* remember map_ptr, so that check_map_access() 4058 * can check 'value_size' boundary of memory access 4059 * to map element returned from bpf_map_lookup_elem() 4060 */ 4061 if (meta.map_ptr == NULL) { 4062 verbose(env, 4063 "kernel subsystem misconfigured verifier\n"); 4064 return -EINVAL; 4065 } 4066 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4067 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4068 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4069 if (map_value_has_spin_lock(meta.map_ptr)) 4070 regs[BPF_REG_0].id = ++env->id_gen; 4071 } else { 4072 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4073 regs[BPF_REG_0].id = ++env->id_gen; 4074 } 4075 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4076 mark_reg_known_zero(env, regs, BPF_REG_0); 4077 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4078 regs[BPF_REG_0].id = ++env->id_gen; 4079 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4080 mark_reg_known_zero(env, regs, BPF_REG_0); 4081 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4082 regs[BPF_REG_0].id = ++env->id_gen; 4083 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4084 mark_reg_known_zero(env, regs, BPF_REG_0); 4085 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4086 regs[BPF_REG_0].id = ++env->id_gen; 4087 } else { 4088 verbose(env, "unknown return type %d of func %s#%d\n", 4089 fn->ret_type, func_id_name(func_id), func_id); 4090 return -EINVAL; 4091 } 4092 4093 if (is_ptr_cast_function(func_id)) { 4094 /* For release_reference() */ 4095 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4096 } else if (is_acquire_function(func_id)) { 4097 int id = acquire_reference_state(env, insn_idx); 4098 4099 if (id < 0) 4100 return id; 4101 /* For mark_ptr_or_null_reg() */ 4102 regs[BPF_REG_0].id = id; 4103 /* For release_reference() */ 4104 regs[BPF_REG_0].ref_obj_id = id; 4105 } 4106 4107 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4108 4109 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4110 if (err) 4111 return err; 4112 4113 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4114 const char *err_str; 4115 4116 #ifdef CONFIG_PERF_EVENTS 4117 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4118 err_str = "cannot get callchain buffer for func %s#%d\n"; 4119 #else 4120 err = -ENOTSUPP; 4121 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4122 #endif 4123 if (err) { 4124 verbose(env, err_str, func_id_name(func_id), func_id); 4125 return err; 4126 } 4127 4128 env->prog->has_callchain_buf = true; 4129 } 4130 4131 if (changes_data) 4132 clear_all_pkt_pointers(env); 4133 return 0; 4134 } 4135 4136 static bool signed_add_overflows(s64 a, s64 b) 4137 { 4138 /* Do the add in u64, where overflow is well-defined */ 4139 s64 res = (s64)((u64)a + (u64)b); 4140 4141 if (b < 0) 4142 return res > a; 4143 return res < a; 4144 } 4145 4146 static bool signed_sub_overflows(s64 a, s64 b) 4147 { 4148 /* Do the sub in u64, where overflow is well-defined */ 4149 s64 res = (s64)((u64)a - (u64)b); 4150 4151 if (b < 0) 4152 return res < a; 4153 return res > a; 4154 } 4155 4156 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4157 const struct bpf_reg_state *reg, 4158 enum bpf_reg_type type) 4159 { 4160 bool known = tnum_is_const(reg->var_off); 4161 s64 val = reg->var_off.value; 4162 s64 smin = reg->smin_value; 4163 4164 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4165 verbose(env, "math between %s pointer and %lld is not allowed\n", 4166 reg_type_str[type], val); 4167 return false; 4168 } 4169 4170 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4171 verbose(env, "%s pointer offset %d is not allowed\n", 4172 reg_type_str[type], reg->off); 4173 return false; 4174 } 4175 4176 if (smin == S64_MIN) { 4177 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4178 reg_type_str[type]); 4179 return false; 4180 } 4181 4182 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4183 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4184 smin, reg_type_str[type]); 4185 return false; 4186 } 4187 4188 return true; 4189 } 4190 4191 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4192 { 4193 return &env->insn_aux_data[env->insn_idx]; 4194 } 4195 4196 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4197 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4198 { 4199 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4200 (opcode == BPF_SUB && !off_is_neg); 4201 u32 off; 4202 4203 switch (ptr_reg->type) { 4204 case PTR_TO_STACK: 4205 /* Indirect variable offset stack access is prohibited in 4206 * unprivileged mode so it's not handled here. 4207 */ 4208 off = ptr_reg->off + ptr_reg->var_off.value; 4209 if (mask_to_left) 4210 *ptr_limit = MAX_BPF_STACK + off; 4211 else 4212 *ptr_limit = -off; 4213 return 0; 4214 case PTR_TO_MAP_VALUE: 4215 if (mask_to_left) { 4216 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4217 } else { 4218 off = ptr_reg->smin_value + ptr_reg->off; 4219 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4220 } 4221 return 0; 4222 default: 4223 return -EINVAL; 4224 } 4225 } 4226 4227 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4228 const struct bpf_insn *insn) 4229 { 4230 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4231 } 4232 4233 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4234 u32 alu_state, u32 alu_limit) 4235 { 4236 /* If we arrived here from different branches with different 4237 * state or limits to sanitize, then this won't work. 4238 */ 4239 if (aux->alu_state && 4240 (aux->alu_state != alu_state || 4241 aux->alu_limit != alu_limit)) 4242 return -EACCES; 4243 4244 /* Corresponding fixup done in fixup_bpf_calls(). */ 4245 aux->alu_state = alu_state; 4246 aux->alu_limit = alu_limit; 4247 return 0; 4248 } 4249 4250 static int sanitize_val_alu(struct bpf_verifier_env *env, 4251 struct bpf_insn *insn) 4252 { 4253 struct bpf_insn_aux_data *aux = cur_aux(env); 4254 4255 if (can_skip_alu_sanitation(env, insn)) 4256 return 0; 4257 4258 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4259 } 4260 4261 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4262 struct bpf_insn *insn, 4263 const struct bpf_reg_state *ptr_reg, 4264 struct bpf_reg_state *dst_reg, 4265 bool off_is_neg) 4266 { 4267 struct bpf_verifier_state *vstate = env->cur_state; 4268 struct bpf_insn_aux_data *aux = cur_aux(env); 4269 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4270 u8 opcode = BPF_OP(insn->code); 4271 u32 alu_state, alu_limit; 4272 struct bpf_reg_state tmp; 4273 bool ret; 4274 4275 if (can_skip_alu_sanitation(env, insn)) 4276 return 0; 4277 4278 /* We already marked aux for masking from non-speculative 4279 * paths, thus we got here in the first place. We only care 4280 * to explore bad access from here. 4281 */ 4282 if (vstate->speculative) 4283 goto do_sim; 4284 4285 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4286 alu_state |= ptr_is_dst_reg ? 4287 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4288 4289 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4290 return 0; 4291 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4292 return -EACCES; 4293 do_sim: 4294 /* Simulate and find potential out-of-bounds access under 4295 * speculative execution from truncation as a result of 4296 * masking when off was not within expected range. If off 4297 * sits in dst, then we temporarily need to move ptr there 4298 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4299 * for cases where we use K-based arithmetic in one direction 4300 * and truncated reg-based in the other in order to explore 4301 * bad access. 4302 */ 4303 if (!ptr_is_dst_reg) { 4304 tmp = *dst_reg; 4305 *dst_reg = *ptr_reg; 4306 } 4307 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4308 if (!ptr_is_dst_reg && ret) 4309 *dst_reg = tmp; 4310 return !ret ? -EFAULT : 0; 4311 } 4312 4313 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4314 * Caller should also handle BPF_MOV case separately. 4315 * If we return -EACCES, caller may want to try again treating pointer as a 4316 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4317 */ 4318 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4319 struct bpf_insn *insn, 4320 const struct bpf_reg_state *ptr_reg, 4321 const struct bpf_reg_state *off_reg) 4322 { 4323 struct bpf_verifier_state *vstate = env->cur_state; 4324 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4325 struct bpf_reg_state *regs = state->regs, *dst_reg; 4326 bool known = tnum_is_const(off_reg->var_off); 4327 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4328 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4329 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4330 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4331 u32 dst = insn->dst_reg, src = insn->src_reg; 4332 u8 opcode = BPF_OP(insn->code); 4333 int ret; 4334 4335 dst_reg = ®s[dst]; 4336 4337 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4338 smin_val > smax_val || umin_val > umax_val) { 4339 /* Taint dst register if offset had invalid bounds derived from 4340 * e.g. dead branches. 4341 */ 4342 __mark_reg_unknown(dst_reg); 4343 return 0; 4344 } 4345 4346 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4347 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4348 verbose(env, 4349 "R%d 32-bit pointer arithmetic prohibited\n", 4350 dst); 4351 return -EACCES; 4352 } 4353 4354 switch (ptr_reg->type) { 4355 case PTR_TO_MAP_VALUE_OR_NULL: 4356 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4357 dst, reg_type_str[ptr_reg->type]); 4358 return -EACCES; 4359 case CONST_PTR_TO_MAP: 4360 case PTR_TO_PACKET_END: 4361 case PTR_TO_SOCKET: 4362 case PTR_TO_SOCKET_OR_NULL: 4363 case PTR_TO_SOCK_COMMON: 4364 case PTR_TO_SOCK_COMMON_OR_NULL: 4365 case PTR_TO_TCP_SOCK: 4366 case PTR_TO_TCP_SOCK_OR_NULL: 4367 case PTR_TO_XDP_SOCK: 4368 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4369 dst, reg_type_str[ptr_reg->type]); 4370 return -EACCES; 4371 case PTR_TO_MAP_VALUE: 4372 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4373 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4374 off_reg == dst_reg ? dst : src); 4375 return -EACCES; 4376 } 4377 /* fall-through */ 4378 default: 4379 break; 4380 } 4381 4382 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4383 * The id may be overwritten later if we create a new variable offset. 4384 */ 4385 dst_reg->type = ptr_reg->type; 4386 dst_reg->id = ptr_reg->id; 4387 4388 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4389 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4390 return -EINVAL; 4391 4392 switch (opcode) { 4393 case BPF_ADD: 4394 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4395 if (ret < 0) { 4396 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4397 return ret; 4398 } 4399 /* We can take a fixed offset as long as it doesn't overflow 4400 * the s32 'off' field 4401 */ 4402 if (known && (ptr_reg->off + smin_val == 4403 (s64)(s32)(ptr_reg->off + smin_val))) { 4404 /* pointer += K. Accumulate it into fixed offset */ 4405 dst_reg->smin_value = smin_ptr; 4406 dst_reg->smax_value = smax_ptr; 4407 dst_reg->umin_value = umin_ptr; 4408 dst_reg->umax_value = umax_ptr; 4409 dst_reg->var_off = ptr_reg->var_off; 4410 dst_reg->off = ptr_reg->off + smin_val; 4411 dst_reg->raw = ptr_reg->raw; 4412 break; 4413 } 4414 /* A new variable offset is created. Note that off_reg->off 4415 * == 0, since it's a scalar. 4416 * dst_reg gets the pointer type and since some positive 4417 * integer value was added to the pointer, give it a new 'id' 4418 * if it's a PTR_TO_PACKET. 4419 * this creates a new 'base' pointer, off_reg (variable) gets 4420 * added into the variable offset, and we copy the fixed offset 4421 * from ptr_reg. 4422 */ 4423 if (signed_add_overflows(smin_ptr, smin_val) || 4424 signed_add_overflows(smax_ptr, smax_val)) { 4425 dst_reg->smin_value = S64_MIN; 4426 dst_reg->smax_value = S64_MAX; 4427 } else { 4428 dst_reg->smin_value = smin_ptr + smin_val; 4429 dst_reg->smax_value = smax_ptr + smax_val; 4430 } 4431 if (umin_ptr + umin_val < umin_ptr || 4432 umax_ptr + umax_val < umax_ptr) { 4433 dst_reg->umin_value = 0; 4434 dst_reg->umax_value = U64_MAX; 4435 } else { 4436 dst_reg->umin_value = umin_ptr + umin_val; 4437 dst_reg->umax_value = umax_ptr + umax_val; 4438 } 4439 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4440 dst_reg->off = ptr_reg->off; 4441 dst_reg->raw = ptr_reg->raw; 4442 if (reg_is_pkt_pointer(ptr_reg)) { 4443 dst_reg->id = ++env->id_gen; 4444 /* something was added to pkt_ptr, set range to zero */ 4445 dst_reg->raw = 0; 4446 } 4447 break; 4448 case BPF_SUB: 4449 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4450 if (ret < 0) { 4451 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4452 return ret; 4453 } 4454 if (dst_reg == off_reg) { 4455 /* scalar -= pointer. Creates an unknown scalar */ 4456 verbose(env, "R%d tried to subtract pointer from scalar\n", 4457 dst); 4458 return -EACCES; 4459 } 4460 /* We don't allow subtraction from FP, because (according to 4461 * test_verifier.c test "invalid fp arithmetic", JITs might not 4462 * be able to deal with it. 4463 */ 4464 if (ptr_reg->type == PTR_TO_STACK) { 4465 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4466 dst); 4467 return -EACCES; 4468 } 4469 if (known && (ptr_reg->off - smin_val == 4470 (s64)(s32)(ptr_reg->off - smin_val))) { 4471 /* pointer -= K. Subtract it from fixed offset */ 4472 dst_reg->smin_value = smin_ptr; 4473 dst_reg->smax_value = smax_ptr; 4474 dst_reg->umin_value = umin_ptr; 4475 dst_reg->umax_value = umax_ptr; 4476 dst_reg->var_off = ptr_reg->var_off; 4477 dst_reg->id = ptr_reg->id; 4478 dst_reg->off = ptr_reg->off - smin_val; 4479 dst_reg->raw = ptr_reg->raw; 4480 break; 4481 } 4482 /* A new variable offset is created. If the subtrahend is known 4483 * nonnegative, then any reg->range we had before is still good. 4484 */ 4485 if (signed_sub_overflows(smin_ptr, smax_val) || 4486 signed_sub_overflows(smax_ptr, smin_val)) { 4487 /* Overflow possible, we know nothing */ 4488 dst_reg->smin_value = S64_MIN; 4489 dst_reg->smax_value = S64_MAX; 4490 } else { 4491 dst_reg->smin_value = smin_ptr - smax_val; 4492 dst_reg->smax_value = smax_ptr - smin_val; 4493 } 4494 if (umin_ptr < umax_val) { 4495 /* Overflow possible, we know nothing */ 4496 dst_reg->umin_value = 0; 4497 dst_reg->umax_value = U64_MAX; 4498 } else { 4499 /* Cannot overflow (as long as bounds are consistent) */ 4500 dst_reg->umin_value = umin_ptr - umax_val; 4501 dst_reg->umax_value = umax_ptr - umin_val; 4502 } 4503 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4504 dst_reg->off = ptr_reg->off; 4505 dst_reg->raw = ptr_reg->raw; 4506 if (reg_is_pkt_pointer(ptr_reg)) { 4507 dst_reg->id = ++env->id_gen; 4508 /* something was added to pkt_ptr, set range to zero */ 4509 if (smin_val < 0) 4510 dst_reg->raw = 0; 4511 } 4512 break; 4513 case BPF_AND: 4514 case BPF_OR: 4515 case BPF_XOR: 4516 /* bitwise ops on pointers are troublesome, prohibit. */ 4517 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4518 dst, bpf_alu_string[opcode >> 4]); 4519 return -EACCES; 4520 default: 4521 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4522 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4523 dst, bpf_alu_string[opcode >> 4]); 4524 return -EACCES; 4525 } 4526 4527 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4528 return -EINVAL; 4529 4530 __update_reg_bounds(dst_reg); 4531 __reg_deduce_bounds(dst_reg); 4532 __reg_bound_offset(dst_reg); 4533 4534 /* For unprivileged we require that resulting offset must be in bounds 4535 * in order to be able to sanitize access later on. 4536 */ 4537 if (!env->allow_ptr_leaks) { 4538 if (dst_reg->type == PTR_TO_MAP_VALUE && 4539 check_map_access(env, dst, dst_reg->off, 1, false)) { 4540 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4541 "prohibited for !root\n", dst); 4542 return -EACCES; 4543 } else if (dst_reg->type == PTR_TO_STACK && 4544 check_stack_access(env, dst_reg, dst_reg->off + 4545 dst_reg->var_off.value, 1)) { 4546 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4547 "prohibited for !root\n", dst); 4548 return -EACCES; 4549 } 4550 } 4551 4552 return 0; 4553 } 4554 4555 /* WARNING: This function does calculations on 64-bit values, but the actual 4556 * execution may occur on 32-bit values. Therefore, things like bitshifts 4557 * need extra checks in the 32-bit case. 4558 */ 4559 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4560 struct bpf_insn *insn, 4561 struct bpf_reg_state *dst_reg, 4562 struct bpf_reg_state src_reg) 4563 { 4564 struct bpf_reg_state *regs = cur_regs(env); 4565 u8 opcode = BPF_OP(insn->code); 4566 bool src_known, dst_known; 4567 s64 smin_val, smax_val; 4568 u64 umin_val, umax_val; 4569 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4570 u32 dst = insn->dst_reg; 4571 int ret; 4572 4573 if (insn_bitness == 32) { 4574 /* Relevant for 32-bit RSH: Information can propagate towards 4575 * LSB, so it isn't sufficient to only truncate the output to 4576 * 32 bits. 4577 */ 4578 coerce_reg_to_size(dst_reg, 4); 4579 coerce_reg_to_size(&src_reg, 4); 4580 } 4581 4582 smin_val = src_reg.smin_value; 4583 smax_val = src_reg.smax_value; 4584 umin_val = src_reg.umin_value; 4585 umax_val = src_reg.umax_value; 4586 src_known = tnum_is_const(src_reg.var_off); 4587 dst_known = tnum_is_const(dst_reg->var_off); 4588 4589 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4590 smin_val > smax_val || umin_val > umax_val) { 4591 /* Taint dst register if offset had invalid bounds derived from 4592 * e.g. dead branches. 4593 */ 4594 __mark_reg_unknown(dst_reg); 4595 return 0; 4596 } 4597 4598 if (!src_known && 4599 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4600 __mark_reg_unknown(dst_reg); 4601 return 0; 4602 } 4603 4604 switch (opcode) { 4605 case BPF_ADD: 4606 ret = sanitize_val_alu(env, insn); 4607 if (ret < 0) { 4608 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4609 return ret; 4610 } 4611 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4612 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4613 dst_reg->smin_value = S64_MIN; 4614 dst_reg->smax_value = S64_MAX; 4615 } else { 4616 dst_reg->smin_value += smin_val; 4617 dst_reg->smax_value += smax_val; 4618 } 4619 if (dst_reg->umin_value + umin_val < umin_val || 4620 dst_reg->umax_value + umax_val < umax_val) { 4621 dst_reg->umin_value = 0; 4622 dst_reg->umax_value = U64_MAX; 4623 } else { 4624 dst_reg->umin_value += umin_val; 4625 dst_reg->umax_value += umax_val; 4626 } 4627 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4628 break; 4629 case BPF_SUB: 4630 ret = sanitize_val_alu(env, insn); 4631 if (ret < 0) { 4632 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4633 return ret; 4634 } 4635 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4636 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4637 /* Overflow possible, we know nothing */ 4638 dst_reg->smin_value = S64_MIN; 4639 dst_reg->smax_value = S64_MAX; 4640 } else { 4641 dst_reg->smin_value -= smax_val; 4642 dst_reg->smax_value -= smin_val; 4643 } 4644 if (dst_reg->umin_value < umax_val) { 4645 /* Overflow possible, we know nothing */ 4646 dst_reg->umin_value = 0; 4647 dst_reg->umax_value = U64_MAX; 4648 } else { 4649 /* Cannot overflow (as long as bounds are consistent) */ 4650 dst_reg->umin_value -= umax_val; 4651 dst_reg->umax_value -= umin_val; 4652 } 4653 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4654 break; 4655 case BPF_MUL: 4656 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4657 if (smin_val < 0 || dst_reg->smin_value < 0) { 4658 /* Ain't nobody got time to multiply that sign */ 4659 __mark_reg_unbounded(dst_reg); 4660 __update_reg_bounds(dst_reg); 4661 break; 4662 } 4663 /* Both values are positive, so we can work with unsigned and 4664 * copy the result to signed (unless it exceeds S64_MAX). 4665 */ 4666 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4667 /* Potential overflow, we know nothing */ 4668 __mark_reg_unbounded(dst_reg); 4669 /* (except what we can learn from the var_off) */ 4670 __update_reg_bounds(dst_reg); 4671 break; 4672 } 4673 dst_reg->umin_value *= umin_val; 4674 dst_reg->umax_value *= umax_val; 4675 if (dst_reg->umax_value > S64_MAX) { 4676 /* Overflow possible, we know nothing */ 4677 dst_reg->smin_value = S64_MIN; 4678 dst_reg->smax_value = S64_MAX; 4679 } else { 4680 dst_reg->smin_value = dst_reg->umin_value; 4681 dst_reg->smax_value = dst_reg->umax_value; 4682 } 4683 break; 4684 case BPF_AND: 4685 if (src_known && dst_known) { 4686 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4687 src_reg.var_off.value); 4688 break; 4689 } 4690 /* We get our minimum from the var_off, since that's inherently 4691 * bitwise. Our maximum is the minimum of the operands' maxima. 4692 */ 4693 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4694 dst_reg->umin_value = dst_reg->var_off.value; 4695 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4696 if (dst_reg->smin_value < 0 || smin_val < 0) { 4697 /* Lose signed bounds when ANDing negative numbers, 4698 * ain't nobody got time for that. 4699 */ 4700 dst_reg->smin_value = S64_MIN; 4701 dst_reg->smax_value = S64_MAX; 4702 } else { 4703 /* ANDing two positives gives a positive, so safe to 4704 * cast result into s64. 4705 */ 4706 dst_reg->smin_value = dst_reg->umin_value; 4707 dst_reg->smax_value = dst_reg->umax_value; 4708 } 4709 /* We may learn something more from the var_off */ 4710 __update_reg_bounds(dst_reg); 4711 break; 4712 case BPF_OR: 4713 if (src_known && dst_known) { 4714 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4715 src_reg.var_off.value); 4716 break; 4717 } 4718 /* We get our maximum from the var_off, and our minimum is the 4719 * maximum of the operands' minima 4720 */ 4721 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4722 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4723 dst_reg->umax_value = dst_reg->var_off.value | 4724 dst_reg->var_off.mask; 4725 if (dst_reg->smin_value < 0 || smin_val < 0) { 4726 /* Lose signed bounds when ORing negative numbers, 4727 * ain't nobody got time for that. 4728 */ 4729 dst_reg->smin_value = S64_MIN; 4730 dst_reg->smax_value = S64_MAX; 4731 } else { 4732 /* ORing two positives gives a positive, so safe to 4733 * cast result into s64. 4734 */ 4735 dst_reg->smin_value = dst_reg->umin_value; 4736 dst_reg->smax_value = dst_reg->umax_value; 4737 } 4738 /* We may learn something more from the var_off */ 4739 __update_reg_bounds(dst_reg); 4740 break; 4741 case BPF_LSH: 4742 if (umax_val >= insn_bitness) { 4743 /* Shifts greater than 31 or 63 are undefined. 4744 * This includes shifts by a negative number. 4745 */ 4746 mark_reg_unknown(env, regs, insn->dst_reg); 4747 break; 4748 } 4749 /* We lose all sign bit information (except what we can pick 4750 * up from var_off) 4751 */ 4752 dst_reg->smin_value = S64_MIN; 4753 dst_reg->smax_value = S64_MAX; 4754 /* If we might shift our top bit out, then we know nothing */ 4755 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4756 dst_reg->umin_value = 0; 4757 dst_reg->umax_value = U64_MAX; 4758 } else { 4759 dst_reg->umin_value <<= umin_val; 4760 dst_reg->umax_value <<= umax_val; 4761 } 4762 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4763 /* We may learn something more from the var_off */ 4764 __update_reg_bounds(dst_reg); 4765 break; 4766 case BPF_RSH: 4767 if (umax_val >= insn_bitness) { 4768 /* Shifts greater than 31 or 63 are undefined. 4769 * This includes shifts by a negative number. 4770 */ 4771 mark_reg_unknown(env, regs, insn->dst_reg); 4772 break; 4773 } 4774 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4775 * be negative, then either: 4776 * 1) src_reg might be zero, so the sign bit of the result is 4777 * unknown, so we lose our signed bounds 4778 * 2) it's known negative, thus the unsigned bounds capture the 4779 * signed bounds 4780 * 3) the signed bounds cross zero, so they tell us nothing 4781 * about the result 4782 * If the value in dst_reg is known nonnegative, then again the 4783 * unsigned bounts capture the signed bounds. 4784 * Thus, in all cases it suffices to blow away our signed bounds 4785 * and rely on inferring new ones from the unsigned bounds and 4786 * var_off of the result. 4787 */ 4788 dst_reg->smin_value = S64_MIN; 4789 dst_reg->smax_value = S64_MAX; 4790 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4791 dst_reg->umin_value >>= umax_val; 4792 dst_reg->umax_value >>= umin_val; 4793 /* We may learn something more from the var_off */ 4794 __update_reg_bounds(dst_reg); 4795 break; 4796 case BPF_ARSH: 4797 if (umax_val >= insn_bitness) { 4798 /* Shifts greater than 31 or 63 are undefined. 4799 * This includes shifts by a negative number. 4800 */ 4801 mark_reg_unknown(env, regs, insn->dst_reg); 4802 break; 4803 } 4804 4805 /* Upon reaching here, src_known is true and 4806 * umax_val is equal to umin_val. 4807 */ 4808 dst_reg->smin_value >>= umin_val; 4809 dst_reg->smax_value >>= umin_val; 4810 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4811 4812 /* blow away the dst_reg umin_value/umax_value and rely on 4813 * dst_reg var_off to refine the result. 4814 */ 4815 dst_reg->umin_value = 0; 4816 dst_reg->umax_value = U64_MAX; 4817 __update_reg_bounds(dst_reg); 4818 break; 4819 default: 4820 mark_reg_unknown(env, regs, insn->dst_reg); 4821 break; 4822 } 4823 4824 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4825 /* 32-bit ALU ops are (32,32)->32 */ 4826 coerce_reg_to_size(dst_reg, 4); 4827 } 4828 4829 __reg_deduce_bounds(dst_reg); 4830 __reg_bound_offset(dst_reg); 4831 return 0; 4832 } 4833 4834 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4835 * and var_off. 4836 */ 4837 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4838 struct bpf_insn *insn) 4839 { 4840 struct bpf_verifier_state *vstate = env->cur_state; 4841 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4842 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4843 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4844 u8 opcode = BPF_OP(insn->code); 4845 int err; 4846 4847 dst_reg = ®s[insn->dst_reg]; 4848 src_reg = NULL; 4849 if (dst_reg->type != SCALAR_VALUE) 4850 ptr_reg = dst_reg; 4851 if (BPF_SRC(insn->code) == BPF_X) { 4852 src_reg = ®s[insn->src_reg]; 4853 if (src_reg->type != SCALAR_VALUE) { 4854 if (dst_reg->type != SCALAR_VALUE) { 4855 /* Combining two pointers by any ALU op yields 4856 * an arbitrary scalar. Disallow all math except 4857 * pointer subtraction 4858 */ 4859 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4860 mark_reg_unknown(env, regs, insn->dst_reg); 4861 return 0; 4862 } 4863 verbose(env, "R%d pointer %s pointer prohibited\n", 4864 insn->dst_reg, 4865 bpf_alu_string[opcode >> 4]); 4866 return -EACCES; 4867 } else { 4868 /* scalar += pointer 4869 * This is legal, but we have to reverse our 4870 * src/dest handling in computing the range 4871 */ 4872 err = mark_chain_precision(env, insn->dst_reg); 4873 if (err) 4874 return err; 4875 return adjust_ptr_min_max_vals(env, insn, 4876 src_reg, dst_reg); 4877 } 4878 } else if (ptr_reg) { 4879 /* pointer += scalar */ 4880 err = mark_chain_precision(env, insn->src_reg); 4881 if (err) 4882 return err; 4883 return adjust_ptr_min_max_vals(env, insn, 4884 dst_reg, src_reg); 4885 } 4886 } else { 4887 /* Pretend the src is a reg with a known value, since we only 4888 * need to be able to read from this state. 4889 */ 4890 off_reg.type = SCALAR_VALUE; 4891 __mark_reg_known(&off_reg, insn->imm); 4892 src_reg = &off_reg; 4893 if (ptr_reg) /* pointer += K */ 4894 return adjust_ptr_min_max_vals(env, insn, 4895 ptr_reg, src_reg); 4896 } 4897 4898 /* Got here implies adding two SCALAR_VALUEs */ 4899 if (WARN_ON_ONCE(ptr_reg)) { 4900 print_verifier_state(env, state); 4901 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4902 return -EINVAL; 4903 } 4904 if (WARN_ON(!src_reg)) { 4905 print_verifier_state(env, state); 4906 verbose(env, "verifier internal error: no src_reg\n"); 4907 return -EINVAL; 4908 } 4909 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4910 } 4911 4912 /* check validity of 32-bit and 64-bit arithmetic operations */ 4913 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4914 { 4915 struct bpf_reg_state *regs = cur_regs(env); 4916 u8 opcode = BPF_OP(insn->code); 4917 int err; 4918 4919 if (opcode == BPF_END || opcode == BPF_NEG) { 4920 if (opcode == BPF_NEG) { 4921 if (BPF_SRC(insn->code) != 0 || 4922 insn->src_reg != BPF_REG_0 || 4923 insn->off != 0 || insn->imm != 0) { 4924 verbose(env, "BPF_NEG uses reserved fields\n"); 4925 return -EINVAL; 4926 } 4927 } else { 4928 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4929 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4930 BPF_CLASS(insn->code) == BPF_ALU64) { 4931 verbose(env, "BPF_END uses reserved fields\n"); 4932 return -EINVAL; 4933 } 4934 } 4935 4936 /* check src operand */ 4937 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4938 if (err) 4939 return err; 4940 4941 if (is_pointer_value(env, insn->dst_reg)) { 4942 verbose(env, "R%d pointer arithmetic prohibited\n", 4943 insn->dst_reg); 4944 return -EACCES; 4945 } 4946 4947 /* check dest operand */ 4948 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4949 if (err) 4950 return err; 4951 4952 } else if (opcode == BPF_MOV) { 4953 4954 if (BPF_SRC(insn->code) == BPF_X) { 4955 if (insn->imm != 0 || insn->off != 0) { 4956 verbose(env, "BPF_MOV uses reserved fields\n"); 4957 return -EINVAL; 4958 } 4959 4960 /* check src operand */ 4961 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4962 if (err) 4963 return err; 4964 } else { 4965 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4966 verbose(env, "BPF_MOV uses reserved fields\n"); 4967 return -EINVAL; 4968 } 4969 } 4970 4971 /* check dest operand, mark as required later */ 4972 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4973 if (err) 4974 return err; 4975 4976 if (BPF_SRC(insn->code) == BPF_X) { 4977 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4978 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4979 4980 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4981 /* case: R1 = R2 4982 * copy register state to dest reg 4983 */ 4984 *dst_reg = *src_reg; 4985 dst_reg->live |= REG_LIVE_WRITTEN; 4986 dst_reg->subreg_def = DEF_NOT_SUBREG; 4987 } else { 4988 /* R1 = (u32) R2 */ 4989 if (is_pointer_value(env, insn->src_reg)) { 4990 verbose(env, 4991 "R%d partial copy of pointer\n", 4992 insn->src_reg); 4993 return -EACCES; 4994 } else if (src_reg->type == SCALAR_VALUE) { 4995 *dst_reg = *src_reg; 4996 dst_reg->live |= REG_LIVE_WRITTEN; 4997 dst_reg->subreg_def = env->insn_idx + 1; 4998 } else { 4999 mark_reg_unknown(env, regs, 5000 insn->dst_reg); 5001 } 5002 coerce_reg_to_size(dst_reg, 4); 5003 } 5004 } else { 5005 /* case: R = imm 5006 * remember the value we stored into this reg 5007 */ 5008 /* clear any state __mark_reg_known doesn't set */ 5009 mark_reg_unknown(env, regs, insn->dst_reg); 5010 regs[insn->dst_reg].type = SCALAR_VALUE; 5011 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5012 __mark_reg_known(regs + insn->dst_reg, 5013 insn->imm); 5014 } else { 5015 __mark_reg_known(regs + insn->dst_reg, 5016 (u32)insn->imm); 5017 } 5018 } 5019 5020 } else if (opcode > BPF_END) { 5021 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5022 return -EINVAL; 5023 5024 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5025 5026 if (BPF_SRC(insn->code) == BPF_X) { 5027 if (insn->imm != 0 || insn->off != 0) { 5028 verbose(env, "BPF_ALU uses reserved fields\n"); 5029 return -EINVAL; 5030 } 5031 /* check src1 operand */ 5032 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5033 if (err) 5034 return err; 5035 } else { 5036 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5037 verbose(env, "BPF_ALU uses reserved fields\n"); 5038 return -EINVAL; 5039 } 5040 } 5041 5042 /* check src2 operand */ 5043 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5044 if (err) 5045 return err; 5046 5047 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5048 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5049 verbose(env, "div by zero\n"); 5050 return -EINVAL; 5051 } 5052 5053 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5054 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5055 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5056 5057 if (insn->imm < 0 || insn->imm >= size) { 5058 verbose(env, "invalid shift %d\n", insn->imm); 5059 return -EINVAL; 5060 } 5061 } 5062 5063 /* check dest operand */ 5064 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5065 if (err) 5066 return err; 5067 5068 return adjust_reg_min_max_vals(env, insn); 5069 } 5070 5071 return 0; 5072 } 5073 5074 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5075 struct bpf_reg_state *dst_reg, 5076 enum bpf_reg_type type, u16 new_range) 5077 { 5078 struct bpf_reg_state *reg; 5079 int i; 5080 5081 for (i = 0; i < MAX_BPF_REG; i++) { 5082 reg = &state->regs[i]; 5083 if (reg->type == type && reg->id == dst_reg->id) 5084 /* keep the maximum range already checked */ 5085 reg->range = max(reg->range, new_range); 5086 } 5087 5088 bpf_for_each_spilled_reg(i, state, reg) { 5089 if (!reg) 5090 continue; 5091 if (reg->type == type && reg->id == dst_reg->id) 5092 reg->range = max(reg->range, new_range); 5093 } 5094 } 5095 5096 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5097 struct bpf_reg_state *dst_reg, 5098 enum bpf_reg_type type, 5099 bool range_right_open) 5100 { 5101 u16 new_range; 5102 int i; 5103 5104 if (dst_reg->off < 0 || 5105 (dst_reg->off == 0 && range_right_open)) 5106 /* This doesn't give us any range */ 5107 return; 5108 5109 if (dst_reg->umax_value > MAX_PACKET_OFF || 5110 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5111 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5112 * than pkt_end, but that's because it's also less than pkt. 5113 */ 5114 return; 5115 5116 new_range = dst_reg->off; 5117 if (range_right_open) 5118 new_range--; 5119 5120 /* Examples for register markings: 5121 * 5122 * pkt_data in dst register: 5123 * 5124 * r2 = r3; 5125 * r2 += 8; 5126 * if (r2 > pkt_end) goto <handle exception> 5127 * <access okay> 5128 * 5129 * r2 = r3; 5130 * r2 += 8; 5131 * if (r2 < pkt_end) goto <access okay> 5132 * <handle exception> 5133 * 5134 * Where: 5135 * r2 == dst_reg, pkt_end == src_reg 5136 * r2=pkt(id=n,off=8,r=0) 5137 * r3=pkt(id=n,off=0,r=0) 5138 * 5139 * pkt_data in src register: 5140 * 5141 * r2 = r3; 5142 * r2 += 8; 5143 * if (pkt_end >= r2) goto <access okay> 5144 * <handle exception> 5145 * 5146 * r2 = r3; 5147 * r2 += 8; 5148 * if (pkt_end <= r2) goto <handle exception> 5149 * <access okay> 5150 * 5151 * Where: 5152 * pkt_end == dst_reg, r2 == src_reg 5153 * r2=pkt(id=n,off=8,r=0) 5154 * r3=pkt(id=n,off=0,r=0) 5155 * 5156 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5157 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5158 * and [r3, r3 + 8-1) respectively is safe to access depending on 5159 * the check. 5160 */ 5161 5162 /* If our ids match, then we must have the same max_value. And we 5163 * don't care about the other reg's fixed offset, since if it's too big 5164 * the range won't allow anything. 5165 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5166 */ 5167 for (i = 0; i <= vstate->curframe; i++) 5168 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5169 new_range); 5170 } 5171 5172 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5173 * and return: 5174 * 1 - branch will be taken and "goto target" will be executed 5175 * 0 - branch will not be taken and fall-through to next insn 5176 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5177 */ 5178 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5179 bool is_jmp32) 5180 { 5181 struct bpf_reg_state reg_lo; 5182 s64 sval; 5183 5184 if (__is_pointer_value(false, reg)) 5185 return -1; 5186 5187 if (is_jmp32) { 5188 reg_lo = *reg; 5189 reg = ®_lo; 5190 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5191 * could truncate high bits and update umin/umax according to 5192 * information of low bits. 5193 */ 5194 coerce_reg_to_size(reg, 4); 5195 /* smin/smax need special handling. For example, after coerce, 5196 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5197 * used as operand to JMP32. It is a negative number from s32's 5198 * point of view, while it is a positive number when seen as 5199 * s64. The smin/smax are kept as s64, therefore, when used with 5200 * JMP32, they need to be transformed into s32, then sign 5201 * extended back to s64. 5202 * 5203 * Also, smin/smax were copied from umin/umax. If umin/umax has 5204 * different sign bit, then min/max relationship doesn't 5205 * maintain after casting into s32, for this case, set smin/smax 5206 * to safest range. 5207 */ 5208 if ((reg->umax_value ^ reg->umin_value) & 5209 (1ULL << 31)) { 5210 reg->smin_value = S32_MIN; 5211 reg->smax_value = S32_MAX; 5212 } 5213 reg->smin_value = (s64)(s32)reg->smin_value; 5214 reg->smax_value = (s64)(s32)reg->smax_value; 5215 5216 val = (u32)val; 5217 sval = (s64)(s32)val; 5218 } else { 5219 sval = (s64)val; 5220 } 5221 5222 switch (opcode) { 5223 case BPF_JEQ: 5224 if (tnum_is_const(reg->var_off)) 5225 return !!tnum_equals_const(reg->var_off, val); 5226 break; 5227 case BPF_JNE: 5228 if (tnum_is_const(reg->var_off)) 5229 return !tnum_equals_const(reg->var_off, val); 5230 break; 5231 case BPF_JSET: 5232 if ((~reg->var_off.mask & reg->var_off.value) & val) 5233 return 1; 5234 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5235 return 0; 5236 break; 5237 case BPF_JGT: 5238 if (reg->umin_value > val) 5239 return 1; 5240 else if (reg->umax_value <= val) 5241 return 0; 5242 break; 5243 case BPF_JSGT: 5244 if (reg->smin_value > sval) 5245 return 1; 5246 else if (reg->smax_value < sval) 5247 return 0; 5248 break; 5249 case BPF_JLT: 5250 if (reg->umax_value < val) 5251 return 1; 5252 else if (reg->umin_value >= val) 5253 return 0; 5254 break; 5255 case BPF_JSLT: 5256 if (reg->smax_value < sval) 5257 return 1; 5258 else if (reg->smin_value >= sval) 5259 return 0; 5260 break; 5261 case BPF_JGE: 5262 if (reg->umin_value >= val) 5263 return 1; 5264 else if (reg->umax_value < val) 5265 return 0; 5266 break; 5267 case BPF_JSGE: 5268 if (reg->smin_value >= sval) 5269 return 1; 5270 else if (reg->smax_value < sval) 5271 return 0; 5272 break; 5273 case BPF_JLE: 5274 if (reg->umax_value <= val) 5275 return 1; 5276 else if (reg->umin_value > val) 5277 return 0; 5278 break; 5279 case BPF_JSLE: 5280 if (reg->smax_value <= sval) 5281 return 1; 5282 else if (reg->smin_value > sval) 5283 return 0; 5284 break; 5285 } 5286 5287 return -1; 5288 } 5289 5290 /* Generate min value of the high 32-bit from TNUM info. */ 5291 static u64 gen_hi_min(struct tnum var) 5292 { 5293 return var.value & ~0xffffffffULL; 5294 } 5295 5296 /* Generate max value of the high 32-bit from TNUM info. */ 5297 static u64 gen_hi_max(struct tnum var) 5298 { 5299 return (var.value | var.mask) & ~0xffffffffULL; 5300 } 5301 5302 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5303 * are with the same signedness. 5304 */ 5305 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5306 { 5307 return ((s32)sval >= 0 && 5308 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5309 ((s32)sval < 0 && 5310 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5311 } 5312 5313 /* Adjusts the register min/max values in the case that the dst_reg is the 5314 * variable register that we are working on, and src_reg is a constant or we're 5315 * simply doing a BPF_K check. 5316 * In JEQ/JNE cases we also adjust the var_off values. 5317 */ 5318 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5319 struct bpf_reg_state *false_reg, u64 val, 5320 u8 opcode, bool is_jmp32) 5321 { 5322 s64 sval; 5323 5324 /* If the dst_reg is a pointer, we can't learn anything about its 5325 * variable offset from the compare (unless src_reg were a pointer into 5326 * the same object, but we don't bother with that. 5327 * Since false_reg and true_reg have the same type by construction, we 5328 * only need to check one of them for pointerness. 5329 */ 5330 if (__is_pointer_value(false, false_reg)) 5331 return; 5332 5333 val = is_jmp32 ? (u32)val : val; 5334 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5335 5336 switch (opcode) { 5337 case BPF_JEQ: 5338 case BPF_JNE: 5339 { 5340 struct bpf_reg_state *reg = 5341 opcode == BPF_JEQ ? true_reg : false_reg; 5342 5343 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5344 * if it is true we know the value for sure. Likewise for 5345 * BPF_JNE. 5346 */ 5347 if (is_jmp32) { 5348 u64 old_v = reg->var_off.value; 5349 u64 hi_mask = ~0xffffffffULL; 5350 5351 reg->var_off.value = (old_v & hi_mask) | val; 5352 reg->var_off.mask &= hi_mask; 5353 } else { 5354 __mark_reg_known(reg, val); 5355 } 5356 break; 5357 } 5358 case BPF_JSET: 5359 false_reg->var_off = tnum_and(false_reg->var_off, 5360 tnum_const(~val)); 5361 if (is_power_of_2(val)) 5362 true_reg->var_off = tnum_or(true_reg->var_off, 5363 tnum_const(val)); 5364 break; 5365 case BPF_JGE: 5366 case BPF_JGT: 5367 { 5368 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5369 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5370 5371 if (is_jmp32) { 5372 false_umax += gen_hi_max(false_reg->var_off); 5373 true_umin += gen_hi_min(true_reg->var_off); 5374 } 5375 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5376 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5377 break; 5378 } 5379 case BPF_JSGE: 5380 case BPF_JSGT: 5381 { 5382 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5383 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5384 5385 /* If the full s64 was not sign-extended from s32 then don't 5386 * deduct further info. 5387 */ 5388 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5389 break; 5390 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5391 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5392 break; 5393 } 5394 case BPF_JLE: 5395 case BPF_JLT: 5396 { 5397 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5398 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5399 5400 if (is_jmp32) { 5401 false_umin += gen_hi_min(false_reg->var_off); 5402 true_umax += gen_hi_max(true_reg->var_off); 5403 } 5404 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5405 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5406 break; 5407 } 5408 case BPF_JSLE: 5409 case BPF_JSLT: 5410 { 5411 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5412 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5413 5414 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5415 break; 5416 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5417 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5418 break; 5419 } 5420 default: 5421 break; 5422 } 5423 5424 __reg_deduce_bounds(false_reg); 5425 __reg_deduce_bounds(true_reg); 5426 /* We might have learned some bits from the bounds. */ 5427 __reg_bound_offset(false_reg); 5428 __reg_bound_offset(true_reg); 5429 /* Intersecting with the old var_off might have improved our bounds 5430 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5431 * then new var_off is (0; 0x7f...fc) which improves our umax. 5432 */ 5433 __update_reg_bounds(false_reg); 5434 __update_reg_bounds(true_reg); 5435 } 5436 5437 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5438 * the variable reg. 5439 */ 5440 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5441 struct bpf_reg_state *false_reg, u64 val, 5442 u8 opcode, bool is_jmp32) 5443 { 5444 s64 sval; 5445 5446 if (__is_pointer_value(false, false_reg)) 5447 return; 5448 5449 val = is_jmp32 ? (u32)val : val; 5450 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5451 5452 switch (opcode) { 5453 case BPF_JEQ: 5454 case BPF_JNE: 5455 { 5456 struct bpf_reg_state *reg = 5457 opcode == BPF_JEQ ? true_reg : false_reg; 5458 5459 if (is_jmp32) { 5460 u64 old_v = reg->var_off.value; 5461 u64 hi_mask = ~0xffffffffULL; 5462 5463 reg->var_off.value = (old_v & hi_mask) | val; 5464 reg->var_off.mask &= hi_mask; 5465 } else { 5466 __mark_reg_known(reg, val); 5467 } 5468 break; 5469 } 5470 case BPF_JSET: 5471 false_reg->var_off = tnum_and(false_reg->var_off, 5472 tnum_const(~val)); 5473 if (is_power_of_2(val)) 5474 true_reg->var_off = tnum_or(true_reg->var_off, 5475 tnum_const(val)); 5476 break; 5477 case BPF_JGE: 5478 case BPF_JGT: 5479 { 5480 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5481 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5482 5483 if (is_jmp32) { 5484 false_umin += gen_hi_min(false_reg->var_off); 5485 true_umax += gen_hi_max(true_reg->var_off); 5486 } 5487 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5488 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5489 break; 5490 } 5491 case BPF_JSGE: 5492 case BPF_JSGT: 5493 { 5494 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5495 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5496 5497 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5498 break; 5499 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5500 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5501 break; 5502 } 5503 case BPF_JLE: 5504 case BPF_JLT: 5505 { 5506 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5507 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5508 5509 if (is_jmp32) { 5510 false_umax += gen_hi_max(false_reg->var_off); 5511 true_umin += gen_hi_min(true_reg->var_off); 5512 } 5513 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5514 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5515 break; 5516 } 5517 case BPF_JSLE: 5518 case BPF_JSLT: 5519 { 5520 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5521 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5522 5523 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5524 break; 5525 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5526 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5527 break; 5528 } 5529 default: 5530 break; 5531 } 5532 5533 __reg_deduce_bounds(false_reg); 5534 __reg_deduce_bounds(true_reg); 5535 /* We might have learned some bits from the bounds. */ 5536 __reg_bound_offset(false_reg); 5537 __reg_bound_offset(true_reg); 5538 /* Intersecting with the old var_off might have improved our bounds 5539 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5540 * then new var_off is (0; 0x7f...fc) which improves our umax. 5541 */ 5542 __update_reg_bounds(false_reg); 5543 __update_reg_bounds(true_reg); 5544 } 5545 5546 /* Regs are known to be equal, so intersect their min/max/var_off */ 5547 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5548 struct bpf_reg_state *dst_reg) 5549 { 5550 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5551 dst_reg->umin_value); 5552 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5553 dst_reg->umax_value); 5554 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5555 dst_reg->smin_value); 5556 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5557 dst_reg->smax_value); 5558 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5559 dst_reg->var_off); 5560 /* We might have learned new bounds from the var_off. */ 5561 __update_reg_bounds(src_reg); 5562 __update_reg_bounds(dst_reg); 5563 /* We might have learned something about the sign bit. */ 5564 __reg_deduce_bounds(src_reg); 5565 __reg_deduce_bounds(dst_reg); 5566 /* We might have learned some bits from the bounds. */ 5567 __reg_bound_offset(src_reg); 5568 __reg_bound_offset(dst_reg); 5569 /* Intersecting with the old var_off might have improved our bounds 5570 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5571 * then new var_off is (0; 0x7f...fc) which improves our umax. 5572 */ 5573 __update_reg_bounds(src_reg); 5574 __update_reg_bounds(dst_reg); 5575 } 5576 5577 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5578 struct bpf_reg_state *true_dst, 5579 struct bpf_reg_state *false_src, 5580 struct bpf_reg_state *false_dst, 5581 u8 opcode) 5582 { 5583 switch (opcode) { 5584 case BPF_JEQ: 5585 __reg_combine_min_max(true_src, true_dst); 5586 break; 5587 case BPF_JNE: 5588 __reg_combine_min_max(false_src, false_dst); 5589 break; 5590 } 5591 } 5592 5593 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5594 struct bpf_reg_state *reg, u32 id, 5595 bool is_null) 5596 { 5597 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5598 /* Old offset (both fixed and variable parts) should 5599 * have been known-zero, because we don't allow pointer 5600 * arithmetic on pointers that might be NULL. 5601 */ 5602 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5603 !tnum_equals_const(reg->var_off, 0) || 5604 reg->off)) { 5605 __mark_reg_known_zero(reg); 5606 reg->off = 0; 5607 } 5608 if (is_null) { 5609 reg->type = SCALAR_VALUE; 5610 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5611 if (reg->map_ptr->inner_map_meta) { 5612 reg->type = CONST_PTR_TO_MAP; 5613 reg->map_ptr = reg->map_ptr->inner_map_meta; 5614 } else if (reg->map_ptr->map_type == 5615 BPF_MAP_TYPE_XSKMAP) { 5616 reg->type = PTR_TO_XDP_SOCK; 5617 } else { 5618 reg->type = PTR_TO_MAP_VALUE; 5619 } 5620 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5621 reg->type = PTR_TO_SOCKET; 5622 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5623 reg->type = PTR_TO_SOCK_COMMON; 5624 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5625 reg->type = PTR_TO_TCP_SOCK; 5626 } 5627 if (is_null) { 5628 /* We don't need id and ref_obj_id from this point 5629 * onwards anymore, thus we should better reset it, 5630 * so that state pruning has chances to take effect. 5631 */ 5632 reg->id = 0; 5633 reg->ref_obj_id = 0; 5634 } else if (!reg_may_point_to_spin_lock(reg)) { 5635 /* For not-NULL ptr, reg->ref_obj_id will be reset 5636 * in release_reg_references(). 5637 * 5638 * reg->id is still used by spin_lock ptr. Other 5639 * than spin_lock ptr type, reg->id can be reset. 5640 */ 5641 reg->id = 0; 5642 } 5643 } 5644 } 5645 5646 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5647 bool is_null) 5648 { 5649 struct bpf_reg_state *reg; 5650 int i; 5651 5652 for (i = 0; i < MAX_BPF_REG; i++) 5653 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5654 5655 bpf_for_each_spilled_reg(i, state, reg) { 5656 if (!reg) 5657 continue; 5658 mark_ptr_or_null_reg(state, reg, id, is_null); 5659 } 5660 } 5661 5662 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5663 * be folded together at some point. 5664 */ 5665 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5666 bool is_null) 5667 { 5668 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5669 struct bpf_reg_state *regs = state->regs; 5670 u32 ref_obj_id = regs[regno].ref_obj_id; 5671 u32 id = regs[regno].id; 5672 int i; 5673 5674 if (ref_obj_id && ref_obj_id == id && is_null) 5675 /* regs[regno] is in the " == NULL" branch. 5676 * No one could have freed the reference state before 5677 * doing the NULL check. 5678 */ 5679 WARN_ON_ONCE(release_reference_state(state, id)); 5680 5681 for (i = 0; i <= vstate->curframe; i++) 5682 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5683 } 5684 5685 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5686 struct bpf_reg_state *dst_reg, 5687 struct bpf_reg_state *src_reg, 5688 struct bpf_verifier_state *this_branch, 5689 struct bpf_verifier_state *other_branch) 5690 { 5691 if (BPF_SRC(insn->code) != BPF_X) 5692 return false; 5693 5694 /* Pointers are always 64-bit. */ 5695 if (BPF_CLASS(insn->code) == BPF_JMP32) 5696 return false; 5697 5698 switch (BPF_OP(insn->code)) { 5699 case BPF_JGT: 5700 if ((dst_reg->type == PTR_TO_PACKET && 5701 src_reg->type == PTR_TO_PACKET_END) || 5702 (dst_reg->type == PTR_TO_PACKET_META && 5703 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5704 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5705 find_good_pkt_pointers(this_branch, dst_reg, 5706 dst_reg->type, false); 5707 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5708 src_reg->type == PTR_TO_PACKET) || 5709 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5710 src_reg->type == PTR_TO_PACKET_META)) { 5711 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5712 find_good_pkt_pointers(other_branch, src_reg, 5713 src_reg->type, true); 5714 } else { 5715 return false; 5716 } 5717 break; 5718 case BPF_JLT: 5719 if ((dst_reg->type == PTR_TO_PACKET && 5720 src_reg->type == PTR_TO_PACKET_END) || 5721 (dst_reg->type == PTR_TO_PACKET_META && 5722 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5723 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5724 find_good_pkt_pointers(other_branch, dst_reg, 5725 dst_reg->type, true); 5726 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5727 src_reg->type == PTR_TO_PACKET) || 5728 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5729 src_reg->type == PTR_TO_PACKET_META)) { 5730 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5731 find_good_pkt_pointers(this_branch, src_reg, 5732 src_reg->type, false); 5733 } else { 5734 return false; 5735 } 5736 break; 5737 case BPF_JGE: 5738 if ((dst_reg->type == PTR_TO_PACKET && 5739 src_reg->type == PTR_TO_PACKET_END) || 5740 (dst_reg->type == PTR_TO_PACKET_META && 5741 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5742 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5743 find_good_pkt_pointers(this_branch, dst_reg, 5744 dst_reg->type, true); 5745 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5746 src_reg->type == PTR_TO_PACKET) || 5747 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5748 src_reg->type == PTR_TO_PACKET_META)) { 5749 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5750 find_good_pkt_pointers(other_branch, src_reg, 5751 src_reg->type, false); 5752 } else { 5753 return false; 5754 } 5755 break; 5756 case BPF_JLE: 5757 if ((dst_reg->type == PTR_TO_PACKET && 5758 src_reg->type == PTR_TO_PACKET_END) || 5759 (dst_reg->type == PTR_TO_PACKET_META && 5760 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5761 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5762 find_good_pkt_pointers(other_branch, dst_reg, 5763 dst_reg->type, false); 5764 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5765 src_reg->type == PTR_TO_PACKET) || 5766 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5767 src_reg->type == PTR_TO_PACKET_META)) { 5768 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5769 find_good_pkt_pointers(this_branch, src_reg, 5770 src_reg->type, true); 5771 } else { 5772 return false; 5773 } 5774 break; 5775 default: 5776 return false; 5777 } 5778 5779 return true; 5780 } 5781 5782 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5783 struct bpf_insn *insn, int *insn_idx) 5784 { 5785 struct bpf_verifier_state *this_branch = env->cur_state; 5786 struct bpf_verifier_state *other_branch; 5787 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5788 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 5789 u8 opcode = BPF_OP(insn->code); 5790 bool is_jmp32; 5791 int pred = -1; 5792 int err; 5793 5794 /* Only conditional jumps are expected to reach here. */ 5795 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5796 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5797 return -EINVAL; 5798 } 5799 5800 if (BPF_SRC(insn->code) == BPF_X) { 5801 if (insn->imm != 0) { 5802 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5803 return -EINVAL; 5804 } 5805 5806 /* check src1 operand */ 5807 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5808 if (err) 5809 return err; 5810 5811 if (is_pointer_value(env, insn->src_reg)) { 5812 verbose(env, "R%d pointer comparison prohibited\n", 5813 insn->src_reg); 5814 return -EACCES; 5815 } 5816 src_reg = ®s[insn->src_reg]; 5817 } else { 5818 if (insn->src_reg != BPF_REG_0) { 5819 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5820 return -EINVAL; 5821 } 5822 } 5823 5824 /* check src2 operand */ 5825 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5826 if (err) 5827 return err; 5828 5829 dst_reg = ®s[insn->dst_reg]; 5830 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5831 5832 if (BPF_SRC(insn->code) == BPF_K) 5833 pred = is_branch_taken(dst_reg, insn->imm, 5834 opcode, is_jmp32); 5835 else if (src_reg->type == SCALAR_VALUE && 5836 tnum_is_const(src_reg->var_off)) 5837 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 5838 opcode, is_jmp32); 5839 if (pred >= 0) { 5840 err = mark_chain_precision(env, insn->dst_reg); 5841 if (BPF_SRC(insn->code) == BPF_X && !err) 5842 err = mark_chain_precision(env, insn->src_reg); 5843 if (err) 5844 return err; 5845 } 5846 if (pred == 1) { 5847 /* only follow the goto, ignore fall-through */ 5848 *insn_idx += insn->off; 5849 return 0; 5850 } else if (pred == 0) { 5851 /* only follow fall-through branch, since 5852 * that's where the program will go 5853 */ 5854 return 0; 5855 } 5856 5857 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5858 false); 5859 if (!other_branch) 5860 return -EFAULT; 5861 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5862 5863 /* detect if we are comparing against a constant value so we can adjust 5864 * our min/max values for our dst register. 5865 * this is only legit if both are scalars (or pointers to the same 5866 * object, I suppose, but we don't support that right now), because 5867 * otherwise the different base pointers mean the offsets aren't 5868 * comparable. 5869 */ 5870 if (BPF_SRC(insn->code) == BPF_X) { 5871 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5872 struct bpf_reg_state lo_reg0 = *dst_reg; 5873 struct bpf_reg_state lo_reg1 = *src_reg; 5874 struct bpf_reg_state *src_lo, *dst_lo; 5875 5876 dst_lo = &lo_reg0; 5877 src_lo = &lo_reg1; 5878 coerce_reg_to_size(dst_lo, 4); 5879 coerce_reg_to_size(src_lo, 4); 5880 5881 if (dst_reg->type == SCALAR_VALUE && 5882 src_reg->type == SCALAR_VALUE) { 5883 if (tnum_is_const(src_reg->var_off) || 5884 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5885 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5886 dst_reg, 5887 is_jmp32 5888 ? src_lo->var_off.value 5889 : src_reg->var_off.value, 5890 opcode, is_jmp32); 5891 else if (tnum_is_const(dst_reg->var_off) || 5892 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5893 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5894 src_reg, 5895 is_jmp32 5896 ? dst_lo->var_off.value 5897 : dst_reg->var_off.value, 5898 opcode, is_jmp32); 5899 else if (!is_jmp32 && 5900 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5901 /* Comparing for equality, we can combine knowledge */ 5902 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5903 &other_branch_regs[insn->dst_reg], 5904 src_reg, dst_reg, opcode); 5905 } 5906 } else if (dst_reg->type == SCALAR_VALUE) { 5907 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5908 dst_reg, insn->imm, opcode, is_jmp32); 5909 } 5910 5911 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5912 * NOTE: these optimizations below are related with pointer comparison 5913 * which will never be JMP32. 5914 */ 5915 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5916 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5917 reg_type_may_be_null(dst_reg->type)) { 5918 /* Mark all identical registers in each branch as either 5919 * safe or unknown depending R == 0 or R != 0 conditional. 5920 */ 5921 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5922 opcode == BPF_JNE); 5923 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5924 opcode == BPF_JEQ); 5925 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5926 this_branch, other_branch) && 5927 is_pointer_value(env, insn->dst_reg)) { 5928 verbose(env, "R%d pointer comparison prohibited\n", 5929 insn->dst_reg); 5930 return -EACCES; 5931 } 5932 if (env->log.level & BPF_LOG_LEVEL) 5933 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5934 return 0; 5935 } 5936 5937 /* verify BPF_LD_IMM64 instruction */ 5938 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5939 { 5940 struct bpf_insn_aux_data *aux = cur_aux(env); 5941 struct bpf_reg_state *regs = cur_regs(env); 5942 struct bpf_map *map; 5943 int err; 5944 5945 if (BPF_SIZE(insn->code) != BPF_DW) { 5946 verbose(env, "invalid BPF_LD_IMM insn\n"); 5947 return -EINVAL; 5948 } 5949 if (insn->off != 0) { 5950 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5951 return -EINVAL; 5952 } 5953 5954 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5955 if (err) 5956 return err; 5957 5958 if (insn->src_reg == 0) { 5959 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5960 5961 regs[insn->dst_reg].type = SCALAR_VALUE; 5962 __mark_reg_known(®s[insn->dst_reg], imm); 5963 return 0; 5964 } 5965 5966 map = env->used_maps[aux->map_index]; 5967 mark_reg_known_zero(env, regs, insn->dst_reg); 5968 regs[insn->dst_reg].map_ptr = map; 5969 5970 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5971 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5972 regs[insn->dst_reg].off = aux->map_off; 5973 if (map_value_has_spin_lock(map)) 5974 regs[insn->dst_reg].id = ++env->id_gen; 5975 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5976 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5977 } else { 5978 verbose(env, "bpf verifier is misconfigured\n"); 5979 return -EINVAL; 5980 } 5981 5982 return 0; 5983 } 5984 5985 static bool may_access_skb(enum bpf_prog_type type) 5986 { 5987 switch (type) { 5988 case BPF_PROG_TYPE_SOCKET_FILTER: 5989 case BPF_PROG_TYPE_SCHED_CLS: 5990 case BPF_PROG_TYPE_SCHED_ACT: 5991 return true; 5992 default: 5993 return false; 5994 } 5995 } 5996 5997 /* verify safety of LD_ABS|LD_IND instructions: 5998 * - they can only appear in the programs where ctx == skb 5999 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6000 * preserve R6-R9, and store return value into R0 6001 * 6002 * Implicit input: 6003 * ctx == skb == R6 == CTX 6004 * 6005 * Explicit input: 6006 * SRC == any register 6007 * IMM == 32-bit immediate 6008 * 6009 * Output: 6010 * R0 - 8/16/32-bit skb data converted to cpu endianness 6011 */ 6012 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6013 { 6014 struct bpf_reg_state *regs = cur_regs(env); 6015 u8 mode = BPF_MODE(insn->code); 6016 int i, err; 6017 6018 if (!may_access_skb(env->prog->type)) { 6019 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6020 return -EINVAL; 6021 } 6022 6023 if (!env->ops->gen_ld_abs) { 6024 verbose(env, "bpf verifier is misconfigured\n"); 6025 return -EINVAL; 6026 } 6027 6028 if (env->subprog_cnt > 1) { 6029 /* when program has LD_ABS insn JITs and interpreter assume 6030 * that r1 == ctx == skb which is not the case for callees 6031 * that can have arbitrary arguments. It's problematic 6032 * for main prog as well since JITs would need to analyze 6033 * all functions in order to make proper register save/restore 6034 * decisions in the main prog. Hence disallow LD_ABS with calls 6035 */ 6036 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6037 return -EINVAL; 6038 } 6039 6040 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6041 BPF_SIZE(insn->code) == BPF_DW || 6042 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6043 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6044 return -EINVAL; 6045 } 6046 6047 /* check whether implicit source operand (register R6) is readable */ 6048 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6049 if (err) 6050 return err; 6051 6052 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6053 * gen_ld_abs() may terminate the program at runtime, leading to 6054 * reference leak. 6055 */ 6056 err = check_reference_leak(env); 6057 if (err) { 6058 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6059 return err; 6060 } 6061 6062 if (env->cur_state->active_spin_lock) { 6063 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6064 return -EINVAL; 6065 } 6066 6067 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6068 verbose(env, 6069 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6070 return -EINVAL; 6071 } 6072 6073 if (mode == BPF_IND) { 6074 /* check explicit source operand */ 6075 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6076 if (err) 6077 return err; 6078 } 6079 6080 /* reset caller saved regs to unreadable */ 6081 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6082 mark_reg_not_init(env, regs, caller_saved[i]); 6083 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6084 } 6085 6086 /* mark destination R0 register as readable, since it contains 6087 * the value fetched from the packet. 6088 * Already marked as written above. 6089 */ 6090 mark_reg_unknown(env, regs, BPF_REG_0); 6091 /* ld_abs load up to 32-bit skb data. */ 6092 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6093 return 0; 6094 } 6095 6096 static int check_return_code(struct bpf_verifier_env *env) 6097 { 6098 struct tnum enforce_attach_type_range = tnum_unknown; 6099 struct bpf_reg_state *reg; 6100 struct tnum range = tnum_range(0, 1); 6101 6102 switch (env->prog->type) { 6103 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6104 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6105 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6106 range = tnum_range(1, 1); 6107 break; 6108 case BPF_PROG_TYPE_CGROUP_SKB: 6109 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6110 range = tnum_range(0, 3); 6111 enforce_attach_type_range = tnum_range(2, 3); 6112 } 6113 break; 6114 case BPF_PROG_TYPE_CGROUP_SOCK: 6115 case BPF_PROG_TYPE_SOCK_OPS: 6116 case BPF_PROG_TYPE_CGROUP_DEVICE: 6117 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6118 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6119 break; 6120 default: 6121 return 0; 6122 } 6123 6124 reg = cur_regs(env) + BPF_REG_0; 6125 if (reg->type != SCALAR_VALUE) { 6126 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6127 reg_type_str[reg->type]); 6128 return -EINVAL; 6129 } 6130 6131 if (!tnum_in(range, reg->var_off)) { 6132 char tn_buf[48]; 6133 6134 verbose(env, "At program exit the register R0 "); 6135 if (!tnum_is_unknown(reg->var_off)) { 6136 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6137 verbose(env, "has value %s", tn_buf); 6138 } else { 6139 verbose(env, "has unknown scalar value"); 6140 } 6141 tnum_strn(tn_buf, sizeof(tn_buf), range); 6142 verbose(env, " should have been in %s\n", tn_buf); 6143 return -EINVAL; 6144 } 6145 6146 if (!tnum_is_unknown(enforce_attach_type_range) && 6147 tnum_in(enforce_attach_type_range, reg->var_off)) 6148 env->prog->enforce_expected_attach_type = 1; 6149 return 0; 6150 } 6151 6152 /* non-recursive DFS pseudo code 6153 * 1 procedure DFS-iterative(G,v): 6154 * 2 label v as discovered 6155 * 3 let S be a stack 6156 * 4 S.push(v) 6157 * 5 while S is not empty 6158 * 6 t <- S.pop() 6159 * 7 if t is what we're looking for: 6160 * 8 return t 6161 * 9 for all edges e in G.adjacentEdges(t) do 6162 * 10 if edge e is already labelled 6163 * 11 continue with the next edge 6164 * 12 w <- G.adjacentVertex(t,e) 6165 * 13 if vertex w is not discovered and not explored 6166 * 14 label e as tree-edge 6167 * 15 label w as discovered 6168 * 16 S.push(w) 6169 * 17 continue at 5 6170 * 18 else if vertex w is discovered 6171 * 19 label e as back-edge 6172 * 20 else 6173 * 21 // vertex w is explored 6174 * 22 label e as forward- or cross-edge 6175 * 23 label t as explored 6176 * 24 S.pop() 6177 * 6178 * convention: 6179 * 0x10 - discovered 6180 * 0x11 - discovered and fall-through edge labelled 6181 * 0x12 - discovered and fall-through and branch edges labelled 6182 * 0x20 - explored 6183 */ 6184 6185 enum { 6186 DISCOVERED = 0x10, 6187 EXPLORED = 0x20, 6188 FALLTHROUGH = 1, 6189 BRANCH = 2, 6190 }; 6191 6192 static u32 state_htab_size(struct bpf_verifier_env *env) 6193 { 6194 return env->prog->len; 6195 } 6196 6197 static struct bpf_verifier_state_list **explored_state( 6198 struct bpf_verifier_env *env, 6199 int idx) 6200 { 6201 struct bpf_verifier_state *cur = env->cur_state; 6202 struct bpf_func_state *state = cur->frame[cur->curframe]; 6203 6204 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6205 } 6206 6207 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6208 { 6209 env->insn_aux_data[idx].prune_point = true; 6210 } 6211 6212 /* t, w, e - match pseudo-code above: 6213 * t - index of current instruction 6214 * w - next instruction 6215 * e - edge 6216 */ 6217 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6218 bool loop_ok) 6219 { 6220 int *insn_stack = env->cfg.insn_stack; 6221 int *insn_state = env->cfg.insn_state; 6222 6223 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6224 return 0; 6225 6226 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6227 return 0; 6228 6229 if (w < 0 || w >= env->prog->len) { 6230 verbose_linfo(env, t, "%d: ", t); 6231 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6232 return -EINVAL; 6233 } 6234 6235 if (e == BRANCH) 6236 /* mark branch target for state pruning */ 6237 init_explored_state(env, w); 6238 6239 if (insn_state[w] == 0) { 6240 /* tree-edge */ 6241 insn_state[t] = DISCOVERED | e; 6242 insn_state[w] = DISCOVERED; 6243 if (env->cfg.cur_stack >= env->prog->len) 6244 return -E2BIG; 6245 insn_stack[env->cfg.cur_stack++] = w; 6246 return 1; 6247 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6248 if (loop_ok && env->allow_ptr_leaks) 6249 return 0; 6250 verbose_linfo(env, t, "%d: ", t); 6251 verbose_linfo(env, w, "%d: ", w); 6252 verbose(env, "back-edge from insn %d to %d\n", t, w); 6253 return -EINVAL; 6254 } else if (insn_state[w] == EXPLORED) { 6255 /* forward- or cross-edge */ 6256 insn_state[t] = DISCOVERED | e; 6257 } else { 6258 verbose(env, "insn state internal bug\n"); 6259 return -EFAULT; 6260 } 6261 return 0; 6262 } 6263 6264 /* non-recursive depth-first-search to detect loops in BPF program 6265 * loop == back-edge in directed graph 6266 */ 6267 static int check_cfg(struct bpf_verifier_env *env) 6268 { 6269 struct bpf_insn *insns = env->prog->insnsi; 6270 int insn_cnt = env->prog->len; 6271 int *insn_stack, *insn_state; 6272 int ret = 0; 6273 int i, t; 6274 6275 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6276 if (!insn_state) 6277 return -ENOMEM; 6278 6279 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6280 if (!insn_stack) { 6281 kvfree(insn_state); 6282 return -ENOMEM; 6283 } 6284 6285 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6286 insn_stack[0] = 0; /* 0 is the first instruction */ 6287 env->cfg.cur_stack = 1; 6288 6289 peek_stack: 6290 if (env->cfg.cur_stack == 0) 6291 goto check_state; 6292 t = insn_stack[env->cfg.cur_stack - 1]; 6293 6294 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6295 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6296 u8 opcode = BPF_OP(insns[t].code); 6297 6298 if (opcode == BPF_EXIT) { 6299 goto mark_explored; 6300 } else if (opcode == BPF_CALL) { 6301 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6302 if (ret == 1) 6303 goto peek_stack; 6304 else if (ret < 0) 6305 goto err_free; 6306 if (t + 1 < insn_cnt) 6307 init_explored_state(env, t + 1); 6308 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6309 init_explored_state(env, t); 6310 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6311 env, false); 6312 if (ret == 1) 6313 goto peek_stack; 6314 else if (ret < 0) 6315 goto err_free; 6316 } 6317 } else if (opcode == BPF_JA) { 6318 if (BPF_SRC(insns[t].code) != BPF_K) { 6319 ret = -EINVAL; 6320 goto err_free; 6321 } 6322 /* unconditional jump with single edge */ 6323 ret = push_insn(t, t + insns[t].off + 1, 6324 FALLTHROUGH, env, true); 6325 if (ret == 1) 6326 goto peek_stack; 6327 else if (ret < 0) 6328 goto err_free; 6329 /* unconditional jmp is not a good pruning point, 6330 * but it's marked, since backtracking needs 6331 * to record jmp history in is_state_visited(). 6332 */ 6333 init_explored_state(env, t + insns[t].off + 1); 6334 /* tell verifier to check for equivalent states 6335 * after every call and jump 6336 */ 6337 if (t + 1 < insn_cnt) 6338 init_explored_state(env, t + 1); 6339 } else { 6340 /* conditional jump with two edges */ 6341 init_explored_state(env, t); 6342 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6343 if (ret == 1) 6344 goto peek_stack; 6345 else if (ret < 0) 6346 goto err_free; 6347 6348 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6349 if (ret == 1) 6350 goto peek_stack; 6351 else if (ret < 0) 6352 goto err_free; 6353 } 6354 } else { 6355 /* all other non-branch instructions with single 6356 * fall-through edge 6357 */ 6358 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6359 if (ret == 1) 6360 goto peek_stack; 6361 else if (ret < 0) 6362 goto err_free; 6363 } 6364 6365 mark_explored: 6366 insn_state[t] = EXPLORED; 6367 if (env->cfg.cur_stack-- <= 0) { 6368 verbose(env, "pop stack internal bug\n"); 6369 ret = -EFAULT; 6370 goto err_free; 6371 } 6372 goto peek_stack; 6373 6374 check_state: 6375 for (i = 0; i < insn_cnt; i++) { 6376 if (insn_state[i] != EXPLORED) { 6377 verbose(env, "unreachable insn %d\n", i); 6378 ret = -EINVAL; 6379 goto err_free; 6380 } 6381 } 6382 ret = 0; /* cfg looks good */ 6383 6384 err_free: 6385 kvfree(insn_state); 6386 kvfree(insn_stack); 6387 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6388 return ret; 6389 } 6390 6391 /* The minimum supported BTF func info size */ 6392 #define MIN_BPF_FUNCINFO_SIZE 8 6393 #define MAX_FUNCINFO_REC_SIZE 252 6394 6395 static int check_btf_func(struct bpf_verifier_env *env, 6396 const union bpf_attr *attr, 6397 union bpf_attr __user *uattr) 6398 { 6399 u32 i, nfuncs, urec_size, min_size; 6400 u32 krec_size = sizeof(struct bpf_func_info); 6401 struct bpf_func_info *krecord; 6402 const struct btf_type *type; 6403 struct bpf_prog *prog; 6404 const struct btf *btf; 6405 void __user *urecord; 6406 u32 prev_offset = 0; 6407 int ret = 0; 6408 6409 nfuncs = attr->func_info_cnt; 6410 if (!nfuncs) 6411 return 0; 6412 6413 if (nfuncs != env->subprog_cnt) { 6414 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6415 return -EINVAL; 6416 } 6417 6418 urec_size = attr->func_info_rec_size; 6419 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6420 urec_size > MAX_FUNCINFO_REC_SIZE || 6421 urec_size % sizeof(u32)) { 6422 verbose(env, "invalid func info rec size %u\n", urec_size); 6423 return -EINVAL; 6424 } 6425 6426 prog = env->prog; 6427 btf = prog->aux->btf; 6428 6429 urecord = u64_to_user_ptr(attr->func_info); 6430 min_size = min_t(u32, krec_size, urec_size); 6431 6432 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6433 if (!krecord) 6434 return -ENOMEM; 6435 6436 for (i = 0; i < nfuncs; i++) { 6437 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6438 if (ret) { 6439 if (ret == -E2BIG) { 6440 verbose(env, "nonzero tailing record in func info"); 6441 /* set the size kernel expects so loader can zero 6442 * out the rest of the record. 6443 */ 6444 if (put_user(min_size, &uattr->func_info_rec_size)) 6445 ret = -EFAULT; 6446 } 6447 goto err_free; 6448 } 6449 6450 if (copy_from_user(&krecord[i], urecord, min_size)) { 6451 ret = -EFAULT; 6452 goto err_free; 6453 } 6454 6455 /* check insn_off */ 6456 if (i == 0) { 6457 if (krecord[i].insn_off) { 6458 verbose(env, 6459 "nonzero insn_off %u for the first func info record", 6460 krecord[i].insn_off); 6461 ret = -EINVAL; 6462 goto err_free; 6463 } 6464 } else if (krecord[i].insn_off <= prev_offset) { 6465 verbose(env, 6466 "same or smaller insn offset (%u) than previous func info record (%u)", 6467 krecord[i].insn_off, prev_offset); 6468 ret = -EINVAL; 6469 goto err_free; 6470 } 6471 6472 if (env->subprog_info[i].start != krecord[i].insn_off) { 6473 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6474 ret = -EINVAL; 6475 goto err_free; 6476 } 6477 6478 /* check type_id */ 6479 type = btf_type_by_id(btf, krecord[i].type_id); 6480 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6481 verbose(env, "invalid type id %d in func info", 6482 krecord[i].type_id); 6483 ret = -EINVAL; 6484 goto err_free; 6485 } 6486 6487 prev_offset = krecord[i].insn_off; 6488 urecord += urec_size; 6489 } 6490 6491 prog->aux->func_info = krecord; 6492 prog->aux->func_info_cnt = nfuncs; 6493 return 0; 6494 6495 err_free: 6496 kvfree(krecord); 6497 return ret; 6498 } 6499 6500 static void adjust_btf_func(struct bpf_verifier_env *env) 6501 { 6502 int i; 6503 6504 if (!env->prog->aux->func_info) 6505 return; 6506 6507 for (i = 0; i < env->subprog_cnt; i++) 6508 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 6509 } 6510 6511 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6512 sizeof(((struct bpf_line_info *)(0))->line_col)) 6513 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6514 6515 static int check_btf_line(struct bpf_verifier_env *env, 6516 const union bpf_attr *attr, 6517 union bpf_attr __user *uattr) 6518 { 6519 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6520 struct bpf_subprog_info *sub; 6521 struct bpf_line_info *linfo; 6522 struct bpf_prog *prog; 6523 const struct btf *btf; 6524 void __user *ulinfo; 6525 int err; 6526 6527 nr_linfo = attr->line_info_cnt; 6528 if (!nr_linfo) 6529 return 0; 6530 6531 rec_size = attr->line_info_rec_size; 6532 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6533 rec_size > MAX_LINEINFO_REC_SIZE || 6534 rec_size & (sizeof(u32) - 1)) 6535 return -EINVAL; 6536 6537 /* Need to zero it in case the userspace may 6538 * pass in a smaller bpf_line_info object. 6539 */ 6540 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6541 GFP_KERNEL | __GFP_NOWARN); 6542 if (!linfo) 6543 return -ENOMEM; 6544 6545 prog = env->prog; 6546 btf = prog->aux->btf; 6547 6548 s = 0; 6549 sub = env->subprog_info; 6550 ulinfo = u64_to_user_ptr(attr->line_info); 6551 expected_size = sizeof(struct bpf_line_info); 6552 ncopy = min_t(u32, expected_size, rec_size); 6553 for (i = 0; i < nr_linfo; i++) { 6554 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6555 if (err) { 6556 if (err == -E2BIG) { 6557 verbose(env, "nonzero tailing record in line_info"); 6558 if (put_user(expected_size, 6559 &uattr->line_info_rec_size)) 6560 err = -EFAULT; 6561 } 6562 goto err_free; 6563 } 6564 6565 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6566 err = -EFAULT; 6567 goto err_free; 6568 } 6569 6570 /* 6571 * Check insn_off to ensure 6572 * 1) strictly increasing AND 6573 * 2) bounded by prog->len 6574 * 6575 * The linfo[0].insn_off == 0 check logically falls into 6576 * the later "missing bpf_line_info for func..." case 6577 * because the first linfo[0].insn_off must be the 6578 * first sub also and the first sub must have 6579 * subprog_info[0].start == 0. 6580 */ 6581 if ((i && linfo[i].insn_off <= prev_offset) || 6582 linfo[i].insn_off >= prog->len) { 6583 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6584 i, linfo[i].insn_off, prev_offset, 6585 prog->len); 6586 err = -EINVAL; 6587 goto err_free; 6588 } 6589 6590 if (!prog->insnsi[linfo[i].insn_off].code) { 6591 verbose(env, 6592 "Invalid insn code at line_info[%u].insn_off\n", 6593 i); 6594 err = -EINVAL; 6595 goto err_free; 6596 } 6597 6598 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6599 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6600 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6601 err = -EINVAL; 6602 goto err_free; 6603 } 6604 6605 if (s != env->subprog_cnt) { 6606 if (linfo[i].insn_off == sub[s].start) { 6607 sub[s].linfo_idx = i; 6608 s++; 6609 } else if (sub[s].start < linfo[i].insn_off) { 6610 verbose(env, "missing bpf_line_info for func#%u\n", s); 6611 err = -EINVAL; 6612 goto err_free; 6613 } 6614 } 6615 6616 prev_offset = linfo[i].insn_off; 6617 ulinfo += rec_size; 6618 } 6619 6620 if (s != env->subprog_cnt) { 6621 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6622 env->subprog_cnt - s, s); 6623 err = -EINVAL; 6624 goto err_free; 6625 } 6626 6627 prog->aux->linfo = linfo; 6628 prog->aux->nr_linfo = nr_linfo; 6629 6630 return 0; 6631 6632 err_free: 6633 kvfree(linfo); 6634 return err; 6635 } 6636 6637 static int check_btf_info(struct bpf_verifier_env *env, 6638 const union bpf_attr *attr, 6639 union bpf_attr __user *uattr) 6640 { 6641 struct btf *btf; 6642 int err; 6643 6644 if (!attr->func_info_cnt && !attr->line_info_cnt) 6645 return 0; 6646 6647 btf = btf_get_by_fd(attr->prog_btf_fd); 6648 if (IS_ERR(btf)) 6649 return PTR_ERR(btf); 6650 env->prog->aux->btf = btf; 6651 6652 err = check_btf_func(env, attr, uattr); 6653 if (err) 6654 return err; 6655 6656 err = check_btf_line(env, attr, uattr); 6657 if (err) 6658 return err; 6659 6660 return 0; 6661 } 6662 6663 /* check %cur's range satisfies %old's */ 6664 static bool range_within(struct bpf_reg_state *old, 6665 struct bpf_reg_state *cur) 6666 { 6667 return old->umin_value <= cur->umin_value && 6668 old->umax_value >= cur->umax_value && 6669 old->smin_value <= cur->smin_value && 6670 old->smax_value >= cur->smax_value; 6671 } 6672 6673 /* Maximum number of register states that can exist at once */ 6674 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6675 struct idpair { 6676 u32 old; 6677 u32 cur; 6678 }; 6679 6680 /* If in the old state two registers had the same id, then they need to have 6681 * the same id in the new state as well. But that id could be different from 6682 * the old state, so we need to track the mapping from old to new ids. 6683 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6684 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6685 * regs with a different old id could still have new id 9, we don't care about 6686 * that. 6687 * So we look through our idmap to see if this old id has been seen before. If 6688 * so, we require the new id to match; otherwise, we add the id pair to the map. 6689 */ 6690 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6691 { 6692 unsigned int i; 6693 6694 for (i = 0; i < ID_MAP_SIZE; i++) { 6695 if (!idmap[i].old) { 6696 /* Reached an empty slot; haven't seen this id before */ 6697 idmap[i].old = old_id; 6698 idmap[i].cur = cur_id; 6699 return true; 6700 } 6701 if (idmap[i].old == old_id) 6702 return idmap[i].cur == cur_id; 6703 } 6704 /* We ran out of idmap slots, which should be impossible */ 6705 WARN_ON_ONCE(1); 6706 return false; 6707 } 6708 6709 static void clean_func_state(struct bpf_verifier_env *env, 6710 struct bpf_func_state *st) 6711 { 6712 enum bpf_reg_liveness live; 6713 int i, j; 6714 6715 for (i = 0; i < BPF_REG_FP; i++) { 6716 live = st->regs[i].live; 6717 /* liveness must not touch this register anymore */ 6718 st->regs[i].live |= REG_LIVE_DONE; 6719 if (!(live & REG_LIVE_READ)) 6720 /* since the register is unused, clear its state 6721 * to make further comparison simpler 6722 */ 6723 __mark_reg_not_init(&st->regs[i]); 6724 } 6725 6726 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6727 live = st->stack[i].spilled_ptr.live; 6728 /* liveness must not touch this stack slot anymore */ 6729 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6730 if (!(live & REG_LIVE_READ)) { 6731 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6732 for (j = 0; j < BPF_REG_SIZE; j++) 6733 st->stack[i].slot_type[j] = STACK_INVALID; 6734 } 6735 } 6736 } 6737 6738 static void clean_verifier_state(struct bpf_verifier_env *env, 6739 struct bpf_verifier_state *st) 6740 { 6741 int i; 6742 6743 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6744 /* all regs in this state in all frames were already marked */ 6745 return; 6746 6747 for (i = 0; i <= st->curframe; i++) 6748 clean_func_state(env, st->frame[i]); 6749 } 6750 6751 /* the parentage chains form a tree. 6752 * the verifier states are added to state lists at given insn and 6753 * pushed into state stack for future exploration. 6754 * when the verifier reaches bpf_exit insn some of the verifer states 6755 * stored in the state lists have their final liveness state already, 6756 * but a lot of states will get revised from liveness point of view when 6757 * the verifier explores other branches. 6758 * Example: 6759 * 1: r0 = 1 6760 * 2: if r1 == 100 goto pc+1 6761 * 3: r0 = 2 6762 * 4: exit 6763 * when the verifier reaches exit insn the register r0 in the state list of 6764 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6765 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6766 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6767 * 6768 * Since the verifier pushes the branch states as it sees them while exploring 6769 * the program the condition of walking the branch instruction for the second 6770 * time means that all states below this branch were already explored and 6771 * their final liveness markes are already propagated. 6772 * Hence when the verifier completes the search of state list in is_state_visited() 6773 * we can call this clean_live_states() function to mark all liveness states 6774 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6775 * will not be used. 6776 * This function also clears the registers and stack for states that !READ 6777 * to simplify state merging. 6778 * 6779 * Important note here that walking the same branch instruction in the callee 6780 * doesn't meant that the states are DONE. The verifier has to compare 6781 * the callsites 6782 */ 6783 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6784 struct bpf_verifier_state *cur) 6785 { 6786 struct bpf_verifier_state_list *sl; 6787 int i; 6788 6789 sl = *explored_state(env, insn); 6790 while (sl) { 6791 if (sl->state.branches) 6792 goto next; 6793 if (sl->state.insn_idx != insn || 6794 sl->state.curframe != cur->curframe) 6795 goto next; 6796 for (i = 0; i <= cur->curframe; i++) 6797 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6798 goto next; 6799 clean_verifier_state(env, &sl->state); 6800 next: 6801 sl = sl->next; 6802 } 6803 } 6804 6805 /* Returns true if (rold safe implies rcur safe) */ 6806 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6807 struct idpair *idmap) 6808 { 6809 bool equal; 6810 6811 if (!(rold->live & REG_LIVE_READ)) 6812 /* explored state didn't use this */ 6813 return true; 6814 6815 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6816 6817 if (rold->type == PTR_TO_STACK) 6818 /* two stack pointers are equal only if they're pointing to 6819 * the same stack frame, since fp-8 in foo != fp-8 in bar 6820 */ 6821 return equal && rold->frameno == rcur->frameno; 6822 6823 if (equal) 6824 return true; 6825 6826 if (rold->type == NOT_INIT) 6827 /* explored state can't have used this */ 6828 return true; 6829 if (rcur->type == NOT_INIT) 6830 return false; 6831 switch (rold->type) { 6832 case SCALAR_VALUE: 6833 if (rcur->type == SCALAR_VALUE) { 6834 if (!rold->precise && !rcur->precise) 6835 return true; 6836 /* new val must satisfy old val knowledge */ 6837 return range_within(rold, rcur) && 6838 tnum_in(rold->var_off, rcur->var_off); 6839 } else { 6840 /* We're trying to use a pointer in place of a scalar. 6841 * Even if the scalar was unbounded, this could lead to 6842 * pointer leaks because scalars are allowed to leak 6843 * while pointers are not. We could make this safe in 6844 * special cases if root is calling us, but it's 6845 * probably not worth the hassle. 6846 */ 6847 return false; 6848 } 6849 case PTR_TO_MAP_VALUE: 6850 /* If the new min/max/var_off satisfy the old ones and 6851 * everything else matches, we are OK. 6852 * 'id' is not compared, since it's only used for maps with 6853 * bpf_spin_lock inside map element and in such cases if 6854 * the rest of the prog is valid for one map element then 6855 * it's valid for all map elements regardless of the key 6856 * used in bpf_map_lookup() 6857 */ 6858 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6859 range_within(rold, rcur) && 6860 tnum_in(rold->var_off, rcur->var_off); 6861 case PTR_TO_MAP_VALUE_OR_NULL: 6862 /* a PTR_TO_MAP_VALUE could be safe to use as a 6863 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6864 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6865 * checked, doing so could have affected others with the same 6866 * id, and we can't check for that because we lost the id when 6867 * we converted to a PTR_TO_MAP_VALUE. 6868 */ 6869 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6870 return false; 6871 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6872 return false; 6873 /* Check our ids match any regs they're supposed to */ 6874 return check_ids(rold->id, rcur->id, idmap); 6875 case PTR_TO_PACKET_META: 6876 case PTR_TO_PACKET: 6877 if (rcur->type != rold->type) 6878 return false; 6879 /* We must have at least as much range as the old ptr 6880 * did, so that any accesses which were safe before are 6881 * still safe. This is true even if old range < old off, 6882 * since someone could have accessed through (ptr - k), or 6883 * even done ptr -= k in a register, to get a safe access. 6884 */ 6885 if (rold->range > rcur->range) 6886 return false; 6887 /* If the offsets don't match, we can't trust our alignment; 6888 * nor can we be sure that we won't fall out of range. 6889 */ 6890 if (rold->off != rcur->off) 6891 return false; 6892 /* id relations must be preserved */ 6893 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6894 return false; 6895 /* new val must satisfy old val knowledge */ 6896 return range_within(rold, rcur) && 6897 tnum_in(rold->var_off, rcur->var_off); 6898 case PTR_TO_CTX: 6899 case CONST_PTR_TO_MAP: 6900 case PTR_TO_PACKET_END: 6901 case PTR_TO_FLOW_KEYS: 6902 case PTR_TO_SOCKET: 6903 case PTR_TO_SOCKET_OR_NULL: 6904 case PTR_TO_SOCK_COMMON: 6905 case PTR_TO_SOCK_COMMON_OR_NULL: 6906 case PTR_TO_TCP_SOCK: 6907 case PTR_TO_TCP_SOCK_OR_NULL: 6908 case PTR_TO_XDP_SOCK: 6909 /* Only valid matches are exact, which memcmp() above 6910 * would have accepted 6911 */ 6912 default: 6913 /* Don't know what's going on, just say it's not safe */ 6914 return false; 6915 } 6916 6917 /* Shouldn't get here; if we do, say it's not safe */ 6918 WARN_ON_ONCE(1); 6919 return false; 6920 } 6921 6922 static bool stacksafe(struct bpf_func_state *old, 6923 struct bpf_func_state *cur, 6924 struct idpair *idmap) 6925 { 6926 int i, spi; 6927 6928 /* walk slots of the explored stack and ignore any additional 6929 * slots in the current stack, since explored(safe) state 6930 * didn't use them 6931 */ 6932 for (i = 0; i < old->allocated_stack; i++) { 6933 spi = i / BPF_REG_SIZE; 6934 6935 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6936 i += BPF_REG_SIZE - 1; 6937 /* explored state didn't use this */ 6938 continue; 6939 } 6940 6941 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6942 continue; 6943 6944 /* explored stack has more populated slots than current stack 6945 * and these slots were used 6946 */ 6947 if (i >= cur->allocated_stack) 6948 return false; 6949 6950 /* if old state was safe with misc data in the stack 6951 * it will be safe with zero-initialized stack. 6952 * The opposite is not true 6953 */ 6954 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6955 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6956 continue; 6957 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6958 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6959 /* Ex: old explored (safe) state has STACK_SPILL in 6960 * this stack slot, but current has has STACK_MISC -> 6961 * this verifier states are not equivalent, 6962 * return false to continue verification of this path 6963 */ 6964 return false; 6965 if (i % BPF_REG_SIZE) 6966 continue; 6967 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6968 continue; 6969 if (!regsafe(&old->stack[spi].spilled_ptr, 6970 &cur->stack[spi].spilled_ptr, 6971 idmap)) 6972 /* when explored and current stack slot are both storing 6973 * spilled registers, check that stored pointers types 6974 * are the same as well. 6975 * Ex: explored safe path could have stored 6976 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6977 * but current path has stored: 6978 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6979 * such verifier states are not equivalent. 6980 * return false to continue verification of this path 6981 */ 6982 return false; 6983 } 6984 return true; 6985 } 6986 6987 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6988 { 6989 if (old->acquired_refs != cur->acquired_refs) 6990 return false; 6991 return !memcmp(old->refs, cur->refs, 6992 sizeof(*old->refs) * old->acquired_refs); 6993 } 6994 6995 /* compare two verifier states 6996 * 6997 * all states stored in state_list are known to be valid, since 6998 * verifier reached 'bpf_exit' instruction through them 6999 * 7000 * this function is called when verifier exploring different branches of 7001 * execution popped from the state stack. If it sees an old state that has 7002 * more strict register state and more strict stack state then this execution 7003 * branch doesn't need to be explored further, since verifier already 7004 * concluded that more strict state leads to valid finish. 7005 * 7006 * Therefore two states are equivalent if register state is more conservative 7007 * and explored stack state is more conservative than the current one. 7008 * Example: 7009 * explored current 7010 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7011 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7012 * 7013 * In other words if current stack state (one being explored) has more 7014 * valid slots than old one that already passed validation, it means 7015 * the verifier can stop exploring and conclude that current state is valid too 7016 * 7017 * Similarly with registers. If explored state has register type as invalid 7018 * whereas register type in current state is meaningful, it means that 7019 * the current state will reach 'bpf_exit' instruction safely 7020 */ 7021 static bool func_states_equal(struct bpf_func_state *old, 7022 struct bpf_func_state *cur) 7023 { 7024 struct idpair *idmap; 7025 bool ret = false; 7026 int i; 7027 7028 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7029 /* If we failed to allocate the idmap, just say it's not safe */ 7030 if (!idmap) 7031 return false; 7032 7033 for (i = 0; i < MAX_BPF_REG; i++) { 7034 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7035 goto out_free; 7036 } 7037 7038 if (!stacksafe(old, cur, idmap)) 7039 goto out_free; 7040 7041 if (!refsafe(old, cur)) 7042 goto out_free; 7043 ret = true; 7044 out_free: 7045 kfree(idmap); 7046 return ret; 7047 } 7048 7049 static bool states_equal(struct bpf_verifier_env *env, 7050 struct bpf_verifier_state *old, 7051 struct bpf_verifier_state *cur) 7052 { 7053 int i; 7054 7055 if (old->curframe != cur->curframe) 7056 return false; 7057 7058 /* Verification state from speculative execution simulation 7059 * must never prune a non-speculative execution one. 7060 */ 7061 if (old->speculative && !cur->speculative) 7062 return false; 7063 7064 if (old->active_spin_lock != cur->active_spin_lock) 7065 return false; 7066 7067 /* for states to be equal callsites have to be the same 7068 * and all frame states need to be equivalent 7069 */ 7070 for (i = 0; i <= old->curframe; i++) { 7071 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7072 return false; 7073 if (!func_states_equal(old->frame[i], cur->frame[i])) 7074 return false; 7075 } 7076 return true; 7077 } 7078 7079 /* Return 0 if no propagation happened. Return negative error code if error 7080 * happened. Otherwise, return the propagated bit. 7081 */ 7082 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7083 struct bpf_reg_state *reg, 7084 struct bpf_reg_state *parent_reg) 7085 { 7086 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7087 u8 flag = reg->live & REG_LIVE_READ; 7088 int err; 7089 7090 /* When comes here, read flags of PARENT_REG or REG could be any of 7091 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7092 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7093 */ 7094 if (parent_flag == REG_LIVE_READ64 || 7095 /* Or if there is no read flag from REG. */ 7096 !flag || 7097 /* Or if the read flag from REG is the same as PARENT_REG. */ 7098 parent_flag == flag) 7099 return 0; 7100 7101 err = mark_reg_read(env, reg, parent_reg, flag); 7102 if (err) 7103 return err; 7104 7105 return flag; 7106 } 7107 7108 /* A write screens off any subsequent reads; but write marks come from the 7109 * straight-line code between a state and its parent. When we arrive at an 7110 * equivalent state (jump target or such) we didn't arrive by the straight-line 7111 * code, so read marks in the state must propagate to the parent regardless 7112 * of the state's write marks. That's what 'parent == state->parent' comparison 7113 * in mark_reg_read() is for. 7114 */ 7115 static int propagate_liveness(struct bpf_verifier_env *env, 7116 const struct bpf_verifier_state *vstate, 7117 struct bpf_verifier_state *vparent) 7118 { 7119 struct bpf_reg_state *state_reg, *parent_reg; 7120 struct bpf_func_state *state, *parent; 7121 int i, frame, err = 0; 7122 7123 if (vparent->curframe != vstate->curframe) { 7124 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7125 vparent->curframe, vstate->curframe); 7126 return -EFAULT; 7127 } 7128 /* Propagate read liveness of registers... */ 7129 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7130 for (frame = 0; frame <= vstate->curframe; frame++) { 7131 parent = vparent->frame[frame]; 7132 state = vstate->frame[frame]; 7133 parent_reg = parent->regs; 7134 state_reg = state->regs; 7135 /* We don't need to worry about FP liveness, it's read-only */ 7136 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7137 err = propagate_liveness_reg(env, &state_reg[i], 7138 &parent_reg[i]); 7139 if (err < 0) 7140 return err; 7141 if (err == REG_LIVE_READ64) 7142 mark_insn_zext(env, &parent_reg[i]); 7143 } 7144 7145 /* Propagate stack slots. */ 7146 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7147 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7148 parent_reg = &parent->stack[i].spilled_ptr; 7149 state_reg = &state->stack[i].spilled_ptr; 7150 err = propagate_liveness_reg(env, state_reg, 7151 parent_reg); 7152 if (err < 0) 7153 return err; 7154 } 7155 } 7156 return 0; 7157 } 7158 7159 /* find precise scalars in the previous equivalent state and 7160 * propagate them into the current state 7161 */ 7162 static int propagate_precision(struct bpf_verifier_env *env, 7163 const struct bpf_verifier_state *old) 7164 { 7165 struct bpf_reg_state *state_reg; 7166 struct bpf_func_state *state; 7167 int i, err = 0; 7168 7169 state = old->frame[old->curframe]; 7170 state_reg = state->regs; 7171 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7172 if (state_reg->type != SCALAR_VALUE || 7173 !state_reg->precise) 7174 continue; 7175 if (env->log.level & BPF_LOG_LEVEL2) 7176 verbose(env, "propagating r%d\n", i); 7177 err = mark_chain_precision(env, i); 7178 if (err < 0) 7179 return err; 7180 } 7181 7182 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7183 if (state->stack[i].slot_type[0] != STACK_SPILL) 7184 continue; 7185 state_reg = &state->stack[i].spilled_ptr; 7186 if (state_reg->type != SCALAR_VALUE || 7187 !state_reg->precise) 7188 continue; 7189 if (env->log.level & BPF_LOG_LEVEL2) 7190 verbose(env, "propagating fp%d\n", 7191 (-i - 1) * BPF_REG_SIZE); 7192 err = mark_chain_precision_stack(env, i); 7193 if (err < 0) 7194 return err; 7195 } 7196 return 0; 7197 } 7198 7199 static bool states_maybe_looping(struct bpf_verifier_state *old, 7200 struct bpf_verifier_state *cur) 7201 { 7202 struct bpf_func_state *fold, *fcur; 7203 int i, fr = cur->curframe; 7204 7205 if (old->curframe != fr) 7206 return false; 7207 7208 fold = old->frame[fr]; 7209 fcur = cur->frame[fr]; 7210 for (i = 0; i < MAX_BPF_REG; i++) 7211 if (memcmp(&fold->regs[i], &fcur->regs[i], 7212 offsetof(struct bpf_reg_state, parent))) 7213 return false; 7214 return true; 7215 } 7216 7217 7218 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7219 { 7220 struct bpf_verifier_state_list *new_sl; 7221 struct bpf_verifier_state_list *sl, **pprev; 7222 struct bpf_verifier_state *cur = env->cur_state, *new; 7223 int i, j, err, states_cnt = 0; 7224 bool add_new_state = false; 7225 7226 cur->last_insn_idx = env->prev_insn_idx; 7227 if (!env->insn_aux_data[insn_idx].prune_point) 7228 /* this 'insn_idx' instruction wasn't marked, so we will not 7229 * be doing state search here 7230 */ 7231 return 0; 7232 7233 /* bpf progs typically have pruning point every 4 instructions 7234 * http://vger.kernel.org/bpfconf2019.html#session-1 7235 * Do not add new state for future pruning if the verifier hasn't seen 7236 * at least 2 jumps and at least 8 instructions. 7237 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7238 * In tests that amounts to up to 50% reduction into total verifier 7239 * memory consumption and 20% verifier time speedup. 7240 */ 7241 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7242 env->insn_processed - env->prev_insn_processed >= 8) 7243 add_new_state = true; 7244 7245 pprev = explored_state(env, insn_idx); 7246 sl = *pprev; 7247 7248 clean_live_states(env, insn_idx, cur); 7249 7250 while (sl) { 7251 states_cnt++; 7252 if (sl->state.insn_idx != insn_idx) 7253 goto next; 7254 if (sl->state.branches) { 7255 if (states_maybe_looping(&sl->state, cur) && 7256 states_equal(env, &sl->state, cur)) { 7257 verbose_linfo(env, insn_idx, "; "); 7258 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7259 return -EINVAL; 7260 } 7261 /* if the verifier is processing a loop, avoid adding new state 7262 * too often, since different loop iterations have distinct 7263 * states and may not help future pruning. 7264 * This threshold shouldn't be too low to make sure that 7265 * a loop with large bound will be rejected quickly. 7266 * The most abusive loop will be: 7267 * r1 += 1 7268 * if r1 < 1000000 goto pc-2 7269 * 1M insn_procssed limit / 100 == 10k peak states. 7270 * This threshold shouldn't be too high either, since states 7271 * at the end of the loop are likely to be useful in pruning. 7272 */ 7273 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7274 env->insn_processed - env->prev_insn_processed < 100) 7275 add_new_state = false; 7276 goto miss; 7277 } 7278 if (states_equal(env, &sl->state, cur)) { 7279 sl->hit_cnt++; 7280 /* reached equivalent register/stack state, 7281 * prune the search. 7282 * Registers read by the continuation are read by us. 7283 * If we have any write marks in env->cur_state, they 7284 * will prevent corresponding reads in the continuation 7285 * from reaching our parent (an explored_state). Our 7286 * own state will get the read marks recorded, but 7287 * they'll be immediately forgotten as we're pruning 7288 * this state and will pop a new one. 7289 */ 7290 err = propagate_liveness(env, &sl->state, cur); 7291 7292 /* if previous state reached the exit with precision and 7293 * current state is equivalent to it (except precsion marks) 7294 * the precision needs to be propagated back in 7295 * the current state. 7296 */ 7297 err = err ? : push_jmp_history(env, cur); 7298 err = err ? : propagate_precision(env, &sl->state); 7299 if (err) 7300 return err; 7301 return 1; 7302 } 7303 miss: 7304 /* when new state is not going to be added do not increase miss count. 7305 * Otherwise several loop iterations will remove the state 7306 * recorded earlier. The goal of these heuristics is to have 7307 * states from some iterations of the loop (some in the beginning 7308 * and some at the end) to help pruning. 7309 */ 7310 if (add_new_state) 7311 sl->miss_cnt++; 7312 /* heuristic to determine whether this state is beneficial 7313 * to keep checking from state equivalence point of view. 7314 * Higher numbers increase max_states_per_insn and verification time, 7315 * but do not meaningfully decrease insn_processed. 7316 */ 7317 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7318 /* the state is unlikely to be useful. Remove it to 7319 * speed up verification 7320 */ 7321 *pprev = sl->next; 7322 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7323 u32 br = sl->state.branches; 7324 7325 WARN_ONCE(br, 7326 "BUG live_done but branches_to_explore %d\n", 7327 br); 7328 free_verifier_state(&sl->state, false); 7329 kfree(sl); 7330 env->peak_states--; 7331 } else { 7332 /* cannot free this state, since parentage chain may 7333 * walk it later. Add it for free_list instead to 7334 * be freed at the end of verification 7335 */ 7336 sl->next = env->free_list; 7337 env->free_list = sl; 7338 } 7339 sl = *pprev; 7340 continue; 7341 } 7342 next: 7343 pprev = &sl->next; 7344 sl = *pprev; 7345 } 7346 7347 if (env->max_states_per_insn < states_cnt) 7348 env->max_states_per_insn = states_cnt; 7349 7350 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7351 return push_jmp_history(env, cur); 7352 7353 if (!add_new_state) 7354 return push_jmp_history(env, cur); 7355 7356 /* There were no equivalent states, remember the current one. 7357 * Technically the current state is not proven to be safe yet, 7358 * but it will either reach outer most bpf_exit (which means it's safe) 7359 * or it will be rejected. When there are no loops the verifier won't be 7360 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7361 * again on the way to bpf_exit. 7362 * When looping the sl->state.branches will be > 0 and this state 7363 * will not be considered for equivalence until branches == 0. 7364 */ 7365 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7366 if (!new_sl) 7367 return -ENOMEM; 7368 env->total_states++; 7369 env->peak_states++; 7370 env->prev_jmps_processed = env->jmps_processed; 7371 env->prev_insn_processed = env->insn_processed; 7372 7373 /* add new state to the head of linked list */ 7374 new = &new_sl->state; 7375 err = copy_verifier_state(new, cur); 7376 if (err) { 7377 free_verifier_state(new, false); 7378 kfree(new_sl); 7379 return err; 7380 } 7381 new->insn_idx = insn_idx; 7382 WARN_ONCE(new->branches != 1, 7383 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7384 7385 cur->parent = new; 7386 cur->first_insn_idx = insn_idx; 7387 clear_jmp_history(cur); 7388 new_sl->next = *explored_state(env, insn_idx); 7389 *explored_state(env, insn_idx) = new_sl; 7390 /* connect new state to parentage chain. Current frame needs all 7391 * registers connected. Only r6 - r9 of the callers are alive (pushed 7392 * to the stack implicitly by JITs) so in callers' frames connect just 7393 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7394 * the state of the call instruction (with WRITTEN set), and r0 comes 7395 * from callee with its full parentage chain, anyway. 7396 */ 7397 /* clear write marks in current state: the writes we did are not writes 7398 * our child did, so they don't screen off its reads from us. 7399 * (There are no read marks in current state, because reads always mark 7400 * their parent and current state never has children yet. Only 7401 * explored_states can get read marks.) 7402 */ 7403 for (j = 0; j <= cur->curframe; j++) { 7404 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7405 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7406 for (i = 0; i < BPF_REG_FP; i++) 7407 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7408 } 7409 7410 /* all stack frames are accessible from callee, clear them all */ 7411 for (j = 0; j <= cur->curframe; j++) { 7412 struct bpf_func_state *frame = cur->frame[j]; 7413 struct bpf_func_state *newframe = new->frame[j]; 7414 7415 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7416 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7417 frame->stack[i].spilled_ptr.parent = 7418 &newframe->stack[i].spilled_ptr; 7419 } 7420 } 7421 return 0; 7422 } 7423 7424 /* Return true if it's OK to have the same insn return a different type. */ 7425 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7426 { 7427 switch (type) { 7428 case PTR_TO_CTX: 7429 case PTR_TO_SOCKET: 7430 case PTR_TO_SOCKET_OR_NULL: 7431 case PTR_TO_SOCK_COMMON: 7432 case PTR_TO_SOCK_COMMON_OR_NULL: 7433 case PTR_TO_TCP_SOCK: 7434 case PTR_TO_TCP_SOCK_OR_NULL: 7435 case PTR_TO_XDP_SOCK: 7436 return false; 7437 default: 7438 return true; 7439 } 7440 } 7441 7442 /* If an instruction was previously used with particular pointer types, then we 7443 * need to be careful to avoid cases such as the below, where it may be ok 7444 * for one branch accessing the pointer, but not ok for the other branch: 7445 * 7446 * R1 = sock_ptr 7447 * goto X; 7448 * ... 7449 * R1 = some_other_valid_ptr; 7450 * goto X; 7451 * ... 7452 * R2 = *(u32 *)(R1 + 0); 7453 */ 7454 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7455 { 7456 return src != prev && (!reg_type_mismatch_ok(src) || 7457 !reg_type_mismatch_ok(prev)); 7458 } 7459 7460 static int do_check(struct bpf_verifier_env *env) 7461 { 7462 struct bpf_verifier_state *state; 7463 struct bpf_insn *insns = env->prog->insnsi; 7464 struct bpf_reg_state *regs; 7465 int insn_cnt = env->prog->len; 7466 bool do_print_state = false; 7467 int prev_insn_idx = -1; 7468 7469 env->prev_linfo = NULL; 7470 7471 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7472 if (!state) 7473 return -ENOMEM; 7474 state->curframe = 0; 7475 state->speculative = false; 7476 state->branches = 1; 7477 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7478 if (!state->frame[0]) { 7479 kfree(state); 7480 return -ENOMEM; 7481 } 7482 env->cur_state = state; 7483 init_func_state(env, state->frame[0], 7484 BPF_MAIN_FUNC /* callsite */, 7485 0 /* frameno */, 7486 0 /* subprogno, zero == main subprog */); 7487 7488 for (;;) { 7489 struct bpf_insn *insn; 7490 u8 class; 7491 int err; 7492 7493 env->prev_insn_idx = prev_insn_idx; 7494 if (env->insn_idx >= insn_cnt) { 7495 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7496 env->insn_idx, insn_cnt); 7497 return -EFAULT; 7498 } 7499 7500 insn = &insns[env->insn_idx]; 7501 class = BPF_CLASS(insn->code); 7502 7503 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7504 verbose(env, 7505 "BPF program is too large. Processed %d insn\n", 7506 env->insn_processed); 7507 return -E2BIG; 7508 } 7509 7510 err = is_state_visited(env, env->insn_idx); 7511 if (err < 0) 7512 return err; 7513 if (err == 1) { 7514 /* found equivalent state, can prune the search */ 7515 if (env->log.level & BPF_LOG_LEVEL) { 7516 if (do_print_state) 7517 verbose(env, "\nfrom %d to %d%s: safe\n", 7518 env->prev_insn_idx, env->insn_idx, 7519 env->cur_state->speculative ? 7520 " (speculative execution)" : ""); 7521 else 7522 verbose(env, "%d: safe\n", env->insn_idx); 7523 } 7524 goto process_bpf_exit; 7525 } 7526 7527 if (signal_pending(current)) 7528 return -EAGAIN; 7529 7530 if (need_resched()) 7531 cond_resched(); 7532 7533 if (env->log.level & BPF_LOG_LEVEL2 || 7534 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7535 if (env->log.level & BPF_LOG_LEVEL2) 7536 verbose(env, "%d:", env->insn_idx); 7537 else 7538 verbose(env, "\nfrom %d to %d%s:", 7539 env->prev_insn_idx, env->insn_idx, 7540 env->cur_state->speculative ? 7541 " (speculative execution)" : ""); 7542 print_verifier_state(env, state->frame[state->curframe]); 7543 do_print_state = false; 7544 } 7545 7546 if (env->log.level & BPF_LOG_LEVEL) { 7547 const struct bpf_insn_cbs cbs = { 7548 .cb_print = verbose, 7549 .private_data = env, 7550 }; 7551 7552 verbose_linfo(env, env->insn_idx, "; "); 7553 verbose(env, "%d: ", env->insn_idx); 7554 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7555 } 7556 7557 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7558 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7559 env->prev_insn_idx); 7560 if (err) 7561 return err; 7562 } 7563 7564 regs = cur_regs(env); 7565 env->insn_aux_data[env->insn_idx].seen = true; 7566 prev_insn_idx = env->insn_idx; 7567 7568 if (class == BPF_ALU || class == BPF_ALU64) { 7569 err = check_alu_op(env, insn); 7570 if (err) 7571 return err; 7572 7573 } else if (class == BPF_LDX) { 7574 enum bpf_reg_type *prev_src_type, src_reg_type; 7575 7576 /* check for reserved fields is already done */ 7577 7578 /* check src operand */ 7579 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7580 if (err) 7581 return err; 7582 7583 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7584 if (err) 7585 return err; 7586 7587 src_reg_type = regs[insn->src_reg].type; 7588 7589 /* check that memory (src_reg + off) is readable, 7590 * the state of dst_reg will be updated by this func 7591 */ 7592 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7593 insn->off, BPF_SIZE(insn->code), 7594 BPF_READ, insn->dst_reg, false); 7595 if (err) 7596 return err; 7597 7598 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7599 7600 if (*prev_src_type == NOT_INIT) { 7601 /* saw a valid insn 7602 * dst_reg = *(u32 *)(src_reg + off) 7603 * save type to validate intersecting paths 7604 */ 7605 *prev_src_type = src_reg_type; 7606 7607 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7608 /* ABuser program is trying to use the same insn 7609 * dst_reg = *(u32*) (src_reg + off) 7610 * with different pointer types: 7611 * src_reg == ctx in one branch and 7612 * src_reg == stack|map in some other branch. 7613 * Reject it. 7614 */ 7615 verbose(env, "same insn cannot be used with different pointers\n"); 7616 return -EINVAL; 7617 } 7618 7619 } else if (class == BPF_STX) { 7620 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7621 7622 if (BPF_MODE(insn->code) == BPF_XADD) { 7623 err = check_xadd(env, env->insn_idx, insn); 7624 if (err) 7625 return err; 7626 env->insn_idx++; 7627 continue; 7628 } 7629 7630 /* check src1 operand */ 7631 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7632 if (err) 7633 return err; 7634 /* check src2 operand */ 7635 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7636 if (err) 7637 return err; 7638 7639 dst_reg_type = regs[insn->dst_reg].type; 7640 7641 /* check that memory (dst_reg + off) is writeable */ 7642 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7643 insn->off, BPF_SIZE(insn->code), 7644 BPF_WRITE, insn->src_reg, false); 7645 if (err) 7646 return err; 7647 7648 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7649 7650 if (*prev_dst_type == NOT_INIT) { 7651 *prev_dst_type = dst_reg_type; 7652 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7653 verbose(env, "same insn cannot be used with different pointers\n"); 7654 return -EINVAL; 7655 } 7656 7657 } else if (class == BPF_ST) { 7658 if (BPF_MODE(insn->code) != BPF_MEM || 7659 insn->src_reg != BPF_REG_0) { 7660 verbose(env, "BPF_ST uses reserved fields\n"); 7661 return -EINVAL; 7662 } 7663 /* check src operand */ 7664 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7665 if (err) 7666 return err; 7667 7668 if (is_ctx_reg(env, insn->dst_reg)) { 7669 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7670 insn->dst_reg, 7671 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7672 return -EACCES; 7673 } 7674 7675 /* check that memory (dst_reg + off) is writeable */ 7676 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7677 insn->off, BPF_SIZE(insn->code), 7678 BPF_WRITE, -1, false); 7679 if (err) 7680 return err; 7681 7682 } else if (class == BPF_JMP || class == BPF_JMP32) { 7683 u8 opcode = BPF_OP(insn->code); 7684 7685 env->jmps_processed++; 7686 if (opcode == BPF_CALL) { 7687 if (BPF_SRC(insn->code) != BPF_K || 7688 insn->off != 0 || 7689 (insn->src_reg != BPF_REG_0 && 7690 insn->src_reg != BPF_PSEUDO_CALL) || 7691 insn->dst_reg != BPF_REG_0 || 7692 class == BPF_JMP32) { 7693 verbose(env, "BPF_CALL uses reserved fields\n"); 7694 return -EINVAL; 7695 } 7696 7697 if (env->cur_state->active_spin_lock && 7698 (insn->src_reg == BPF_PSEUDO_CALL || 7699 insn->imm != BPF_FUNC_spin_unlock)) { 7700 verbose(env, "function calls are not allowed while holding a lock\n"); 7701 return -EINVAL; 7702 } 7703 if (insn->src_reg == BPF_PSEUDO_CALL) 7704 err = check_func_call(env, insn, &env->insn_idx); 7705 else 7706 err = check_helper_call(env, insn->imm, env->insn_idx); 7707 if (err) 7708 return err; 7709 7710 } else if (opcode == BPF_JA) { 7711 if (BPF_SRC(insn->code) != BPF_K || 7712 insn->imm != 0 || 7713 insn->src_reg != BPF_REG_0 || 7714 insn->dst_reg != BPF_REG_0 || 7715 class == BPF_JMP32) { 7716 verbose(env, "BPF_JA uses reserved fields\n"); 7717 return -EINVAL; 7718 } 7719 7720 env->insn_idx += insn->off + 1; 7721 continue; 7722 7723 } else if (opcode == BPF_EXIT) { 7724 if (BPF_SRC(insn->code) != BPF_K || 7725 insn->imm != 0 || 7726 insn->src_reg != BPF_REG_0 || 7727 insn->dst_reg != BPF_REG_0 || 7728 class == BPF_JMP32) { 7729 verbose(env, "BPF_EXIT uses reserved fields\n"); 7730 return -EINVAL; 7731 } 7732 7733 if (env->cur_state->active_spin_lock) { 7734 verbose(env, "bpf_spin_unlock is missing\n"); 7735 return -EINVAL; 7736 } 7737 7738 if (state->curframe) { 7739 /* exit from nested function */ 7740 err = prepare_func_exit(env, &env->insn_idx); 7741 if (err) 7742 return err; 7743 do_print_state = true; 7744 continue; 7745 } 7746 7747 err = check_reference_leak(env); 7748 if (err) 7749 return err; 7750 7751 /* eBPF calling convetion is such that R0 is used 7752 * to return the value from eBPF program. 7753 * Make sure that it's readable at this time 7754 * of bpf_exit, which means that program wrote 7755 * something into it earlier 7756 */ 7757 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7758 if (err) 7759 return err; 7760 7761 if (is_pointer_value(env, BPF_REG_0)) { 7762 verbose(env, "R0 leaks addr as return value\n"); 7763 return -EACCES; 7764 } 7765 7766 err = check_return_code(env); 7767 if (err) 7768 return err; 7769 process_bpf_exit: 7770 update_branch_counts(env, env->cur_state); 7771 err = pop_stack(env, &prev_insn_idx, 7772 &env->insn_idx); 7773 if (err < 0) { 7774 if (err != -ENOENT) 7775 return err; 7776 break; 7777 } else { 7778 do_print_state = true; 7779 continue; 7780 } 7781 } else { 7782 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7783 if (err) 7784 return err; 7785 } 7786 } else if (class == BPF_LD) { 7787 u8 mode = BPF_MODE(insn->code); 7788 7789 if (mode == BPF_ABS || mode == BPF_IND) { 7790 err = check_ld_abs(env, insn); 7791 if (err) 7792 return err; 7793 7794 } else if (mode == BPF_IMM) { 7795 err = check_ld_imm(env, insn); 7796 if (err) 7797 return err; 7798 7799 env->insn_idx++; 7800 env->insn_aux_data[env->insn_idx].seen = true; 7801 } else { 7802 verbose(env, "invalid BPF_LD mode\n"); 7803 return -EINVAL; 7804 } 7805 } else { 7806 verbose(env, "unknown insn class %d\n", class); 7807 return -EINVAL; 7808 } 7809 7810 env->insn_idx++; 7811 } 7812 7813 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7814 return 0; 7815 } 7816 7817 static int check_map_prealloc(struct bpf_map *map) 7818 { 7819 return (map->map_type != BPF_MAP_TYPE_HASH && 7820 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7821 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7822 !(map->map_flags & BPF_F_NO_PREALLOC); 7823 } 7824 7825 static bool is_tracing_prog_type(enum bpf_prog_type type) 7826 { 7827 switch (type) { 7828 case BPF_PROG_TYPE_KPROBE: 7829 case BPF_PROG_TYPE_TRACEPOINT: 7830 case BPF_PROG_TYPE_PERF_EVENT: 7831 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7832 return true; 7833 default: 7834 return false; 7835 } 7836 } 7837 7838 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7839 struct bpf_map *map, 7840 struct bpf_prog *prog) 7841 7842 { 7843 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7844 * preallocated hash maps, since doing memory allocation 7845 * in overflow_handler can crash depending on where nmi got 7846 * triggered. 7847 */ 7848 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7849 if (!check_map_prealloc(map)) { 7850 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7851 return -EINVAL; 7852 } 7853 if (map->inner_map_meta && 7854 !check_map_prealloc(map->inner_map_meta)) { 7855 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7856 return -EINVAL; 7857 } 7858 } 7859 7860 if ((is_tracing_prog_type(prog->type) || 7861 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7862 map_value_has_spin_lock(map)) { 7863 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7864 return -EINVAL; 7865 } 7866 7867 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7868 !bpf_offload_prog_map_match(prog, map)) { 7869 verbose(env, "offload device mismatch between prog and map\n"); 7870 return -EINVAL; 7871 } 7872 7873 return 0; 7874 } 7875 7876 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7877 { 7878 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7879 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7880 } 7881 7882 /* look for pseudo eBPF instructions that access map FDs and 7883 * replace them with actual map pointers 7884 */ 7885 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7886 { 7887 struct bpf_insn *insn = env->prog->insnsi; 7888 int insn_cnt = env->prog->len; 7889 int i, j, err; 7890 7891 err = bpf_prog_calc_tag(env->prog); 7892 if (err) 7893 return err; 7894 7895 for (i = 0; i < insn_cnt; i++, insn++) { 7896 if (BPF_CLASS(insn->code) == BPF_LDX && 7897 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7898 verbose(env, "BPF_LDX uses reserved fields\n"); 7899 return -EINVAL; 7900 } 7901 7902 if (BPF_CLASS(insn->code) == BPF_STX && 7903 ((BPF_MODE(insn->code) != BPF_MEM && 7904 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7905 verbose(env, "BPF_STX uses reserved fields\n"); 7906 return -EINVAL; 7907 } 7908 7909 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7910 struct bpf_insn_aux_data *aux; 7911 struct bpf_map *map; 7912 struct fd f; 7913 u64 addr; 7914 7915 if (i == insn_cnt - 1 || insn[1].code != 0 || 7916 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7917 insn[1].off != 0) { 7918 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7919 return -EINVAL; 7920 } 7921 7922 if (insn[0].src_reg == 0) 7923 /* valid generic load 64-bit imm */ 7924 goto next_insn; 7925 7926 /* In final convert_pseudo_ld_imm64() step, this is 7927 * converted into regular 64-bit imm load insn. 7928 */ 7929 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7930 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7931 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7932 insn[1].imm != 0)) { 7933 verbose(env, 7934 "unrecognized bpf_ld_imm64 insn\n"); 7935 return -EINVAL; 7936 } 7937 7938 f = fdget(insn[0].imm); 7939 map = __bpf_map_get(f); 7940 if (IS_ERR(map)) { 7941 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7942 insn[0].imm); 7943 return PTR_ERR(map); 7944 } 7945 7946 err = check_map_prog_compatibility(env, map, env->prog); 7947 if (err) { 7948 fdput(f); 7949 return err; 7950 } 7951 7952 aux = &env->insn_aux_data[i]; 7953 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7954 addr = (unsigned long)map; 7955 } else { 7956 u32 off = insn[1].imm; 7957 7958 if (off >= BPF_MAX_VAR_OFF) { 7959 verbose(env, "direct value offset of %u is not allowed\n", off); 7960 fdput(f); 7961 return -EINVAL; 7962 } 7963 7964 if (!map->ops->map_direct_value_addr) { 7965 verbose(env, "no direct value access support for this map type\n"); 7966 fdput(f); 7967 return -EINVAL; 7968 } 7969 7970 err = map->ops->map_direct_value_addr(map, &addr, off); 7971 if (err) { 7972 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7973 map->value_size, off); 7974 fdput(f); 7975 return err; 7976 } 7977 7978 aux->map_off = off; 7979 addr += off; 7980 } 7981 7982 insn[0].imm = (u32)addr; 7983 insn[1].imm = addr >> 32; 7984 7985 /* check whether we recorded this map already */ 7986 for (j = 0; j < env->used_map_cnt; j++) { 7987 if (env->used_maps[j] == map) { 7988 aux->map_index = j; 7989 fdput(f); 7990 goto next_insn; 7991 } 7992 } 7993 7994 if (env->used_map_cnt >= MAX_USED_MAPS) { 7995 fdput(f); 7996 return -E2BIG; 7997 } 7998 7999 /* hold the map. If the program is rejected by verifier, 8000 * the map will be released by release_maps() or it 8001 * will be used by the valid program until it's unloaded 8002 * and all maps are released in free_used_maps() 8003 */ 8004 map = bpf_map_inc(map, false); 8005 if (IS_ERR(map)) { 8006 fdput(f); 8007 return PTR_ERR(map); 8008 } 8009 8010 aux->map_index = env->used_map_cnt; 8011 env->used_maps[env->used_map_cnt++] = map; 8012 8013 if (bpf_map_is_cgroup_storage(map) && 8014 bpf_cgroup_storage_assign(env->prog, map)) { 8015 verbose(env, "only one cgroup storage of each type is allowed\n"); 8016 fdput(f); 8017 return -EBUSY; 8018 } 8019 8020 fdput(f); 8021 next_insn: 8022 insn++; 8023 i++; 8024 continue; 8025 } 8026 8027 /* Basic sanity check before we invest more work here. */ 8028 if (!bpf_opcode_in_insntable(insn->code)) { 8029 verbose(env, "unknown opcode %02x\n", insn->code); 8030 return -EINVAL; 8031 } 8032 } 8033 8034 /* now all pseudo BPF_LD_IMM64 instructions load valid 8035 * 'struct bpf_map *' into a register instead of user map_fd. 8036 * These pointers will be used later by verifier to validate map access. 8037 */ 8038 return 0; 8039 } 8040 8041 /* drop refcnt of maps used by the rejected program */ 8042 static void release_maps(struct bpf_verifier_env *env) 8043 { 8044 enum bpf_cgroup_storage_type stype; 8045 int i; 8046 8047 for_each_cgroup_storage_type(stype) { 8048 if (!env->prog->aux->cgroup_storage[stype]) 8049 continue; 8050 bpf_cgroup_storage_release(env->prog, 8051 env->prog->aux->cgroup_storage[stype]); 8052 } 8053 8054 for (i = 0; i < env->used_map_cnt; i++) 8055 bpf_map_put(env->used_maps[i]); 8056 } 8057 8058 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8059 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8060 { 8061 struct bpf_insn *insn = env->prog->insnsi; 8062 int insn_cnt = env->prog->len; 8063 int i; 8064 8065 for (i = 0; i < insn_cnt; i++, insn++) 8066 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8067 insn->src_reg = 0; 8068 } 8069 8070 /* single env->prog->insni[off] instruction was replaced with the range 8071 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8072 * [0, off) and [off, end) to new locations, so the patched range stays zero 8073 */ 8074 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8075 struct bpf_prog *new_prog, u32 off, u32 cnt) 8076 { 8077 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8078 struct bpf_insn *insn = new_prog->insnsi; 8079 u32 prog_len; 8080 int i; 8081 8082 /* aux info at OFF always needs adjustment, no matter fast path 8083 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8084 * original insn at old prog. 8085 */ 8086 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8087 8088 if (cnt == 1) 8089 return 0; 8090 prog_len = new_prog->len; 8091 new_data = vzalloc(array_size(prog_len, 8092 sizeof(struct bpf_insn_aux_data))); 8093 if (!new_data) 8094 return -ENOMEM; 8095 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8096 memcpy(new_data + off + cnt - 1, old_data + off, 8097 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8098 for (i = off; i < off + cnt - 1; i++) { 8099 new_data[i].seen = true; 8100 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8101 } 8102 env->insn_aux_data = new_data; 8103 vfree(old_data); 8104 return 0; 8105 } 8106 8107 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8108 { 8109 int i; 8110 8111 if (len == 1) 8112 return; 8113 /* NOTE: fake 'exit' subprog should be updated as well. */ 8114 for (i = 0; i <= env->subprog_cnt; i++) { 8115 if (env->subprog_info[i].start <= off) 8116 continue; 8117 env->subprog_info[i].start += len - 1; 8118 } 8119 } 8120 8121 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8122 const struct bpf_insn *patch, u32 len) 8123 { 8124 struct bpf_prog *new_prog; 8125 8126 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8127 if (IS_ERR(new_prog)) { 8128 if (PTR_ERR(new_prog) == -ERANGE) 8129 verbose(env, 8130 "insn %d cannot be patched due to 16-bit range\n", 8131 env->insn_aux_data[off].orig_idx); 8132 return NULL; 8133 } 8134 if (adjust_insn_aux_data(env, new_prog, off, len)) 8135 return NULL; 8136 adjust_subprog_starts(env, off, len); 8137 return new_prog; 8138 } 8139 8140 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8141 u32 off, u32 cnt) 8142 { 8143 int i, j; 8144 8145 /* find first prog starting at or after off (first to remove) */ 8146 for (i = 0; i < env->subprog_cnt; i++) 8147 if (env->subprog_info[i].start >= off) 8148 break; 8149 /* find first prog starting at or after off + cnt (first to stay) */ 8150 for (j = i; j < env->subprog_cnt; j++) 8151 if (env->subprog_info[j].start >= off + cnt) 8152 break; 8153 /* if j doesn't start exactly at off + cnt, we are just removing 8154 * the front of previous prog 8155 */ 8156 if (env->subprog_info[j].start != off + cnt) 8157 j--; 8158 8159 if (j > i) { 8160 struct bpf_prog_aux *aux = env->prog->aux; 8161 int move; 8162 8163 /* move fake 'exit' subprog as well */ 8164 move = env->subprog_cnt + 1 - j; 8165 8166 memmove(env->subprog_info + i, 8167 env->subprog_info + j, 8168 sizeof(*env->subprog_info) * move); 8169 env->subprog_cnt -= j - i; 8170 8171 /* remove func_info */ 8172 if (aux->func_info) { 8173 move = aux->func_info_cnt - j; 8174 8175 memmove(aux->func_info + i, 8176 aux->func_info + j, 8177 sizeof(*aux->func_info) * move); 8178 aux->func_info_cnt -= j - i; 8179 /* func_info->insn_off is set after all code rewrites, 8180 * in adjust_btf_func() - no need to adjust 8181 */ 8182 } 8183 } else { 8184 /* convert i from "first prog to remove" to "first to adjust" */ 8185 if (env->subprog_info[i].start == off) 8186 i++; 8187 } 8188 8189 /* update fake 'exit' subprog as well */ 8190 for (; i <= env->subprog_cnt; i++) 8191 env->subprog_info[i].start -= cnt; 8192 8193 return 0; 8194 } 8195 8196 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8197 u32 cnt) 8198 { 8199 struct bpf_prog *prog = env->prog; 8200 u32 i, l_off, l_cnt, nr_linfo; 8201 struct bpf_line_info *linfo; 8202 8203 nr_linfo = prog->aux->nr_linfo; 8204 if (!nr_linfo) 8205 return 0; 8206 8207 linfo = prog->aux->linfo; 8208 8209 /* find first line info to remove, count lines to be removed */ 8210 for (i = 0; i < nr_linfo; i++) 8211 if (linfo[i].insn_off >= off) 8212 break; 8213 8214 l_off = i; 8215 l_cnt = 0; 8216 for (; i < nr_linfo; i++) 8217 if (linfo[i].insn_off < off + cnt) 8218 l_cnt++; 8219 else 8220 break; 8221 8222 /* First live insn doesn't match first live linfo, it needs to "inherit" 8223 * last removed linfo. prog is already modified, so prog->len == off 8224 * means no live instructions after (tail of the program was removed). 8225 */ 8226 if (prog->len != off && l_cnt && 8227 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8228 l_cnt--; 8229 linfo[--i].insn_off = off + cnt; 8230 } 8231 8232 /* remove the line info which refer to the removed instructions */ 8233 if (l_cnt) { 8234 memmove(linfo + l_off, linfo + i, 8235 sizeof(*linfo) * (nr_linfo - i)); 8236 8237 prog->aux->nr_linfo -= l_cnt; 8238 nr_linfo = prog->aux->nr_linfo; 8239 } 8240 8241 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8242 for (i = l_off; i < nr_linfo; i++) 8243 linfo[i].insn_off -= cnt; 8244 8245 /* fix up all subprogs (incl. 'exit') which start >= off */ 8246 for (i = 0; i <= env->subprog_cnt; i++) 8247 if (env->subprog_info[i].linfo_idx > l_off) { 8248 /* program may have started in the removed region but 8249 * may not be fully removed 8250 */ 8251 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8252 env->subprog_info[i].linfo_idx -= l_cnt; 8253 else 8254 env->subprog_info[i].linfo_idx = l_off; 8255 } 8256 8257 return 0; 8258 } 8259 8260 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8261 { 8262 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8263 unsigned int orig_prog_len = env->prog->len; 8264 int err; 8265 8266 if (bpf_prog_is_dev_bound(env->prog->aux)) 8267 bpf_prog_offload_remove_insns(env, off, cnt); 8268 8269 err = bpf_remove_insns(env->prog, off, cnt); 8270 if (err) 8271 return err; 8272 8273 err = adjust_subprog_starts_after_remove(env, off, cnt); 8274 if (err) 8275 return err; 8276 8277 err = bpf_adj_linfo_after_remove(env, off, cnt); 8278 if (err) 8279 return err; 8280 8281 memmove(aux_data + off, aux_data + off + cnt, 8282 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8283 8284 return 0; 8285 } 8286 8287 /* The verifier does more data flow analysis than llvm and will not 8288 * explore branches that are dead at run time. Malicious programs can 8289 * have dead code too. Therefore replace all dead at-run-time code 8290 * with 'ja -1'. 8291 * 8292 * Just nops are not optimal, e.g. if they would sit at the end of the 8293 * program and through another bug we would manage to jump there, then 8294 * we'd execute beyond program memory otherwise. Returning exception 8295 * code also wouldn't work since we can have subprogs where the dead 8296 * code could be located. 8297 */ 8298 static void sanitize_dead_code(struct bpf_verifier_env *env) 8299 { 8300 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8301 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8302 struct bpf_insn *insn = env->prog->insnsi; 8303 const int insn_cnt = env->prog->len; 8304 int i; 8305 8306 for (i = 0; i < insn_cnt; i++) { 8307 if (aux_data[i].seen) 8308 continue; 8309 memcpy(insn + i, &trap, sizeof(trap)); 8310 } 8311 } 8312 8313 static bool insn_is_cond_jump(u8 code) 8314 { 8315 u8 op; 8316 8317 if (BPF_CLASS(code) == BPF_JMP32) 8318 return true; 8319 8320 if (BPF_CLASS(code) != BPF_JMP) 8321 return false; 8322 8323 op = BPF_OP(code); 8324 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8325 } 8326 8327 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8328 { 8329 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8330 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8331 struct bpf_insn *insn = env->prog->insnsi; 8332 const int insn_cnt = env->prog->len; 8333 int i; 8334 8335 for (i = 0; i < insn_cnt; i++, insn++) { 8336 if (!insn_is_cond_jump(insn->code)) 8337 continue; 8338 8339 if (!aux_data[i + 1].seen) 8340 ja.off = insn->off; 8341 else if (!aux_data[i + 1 + insn->off].seen) 8342 ja.off = 0; 8343 else 8344 continue; 8345 8346 if (bpf_prog_is_dev_bound(env->prog->aux)) 8347 bpf_prog_offload_replace_insn(env, i, &ja); 8348 8349 memcpy(insn, &ja, sizeof(ja)); 8350 } 8351 } 8352 8353 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8354 { 8355 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8356 int insn_cnt = env->prog->len; 8357 int i, err; 8358 8359 for (i = 0; i < insn_cnt; i++) { 8360 int j; 8361 8362 j = 0; 8363 while (i + j < insn_cnt && !aux_data[i + j].seen) 8364 j++; 8365 if (!j) 8366 continue; 8367 8368 err = verifier_remove_insns(env, i, j); 8369 if (err) 8370 return err; 8371 insn_cnt = env->prog->len; 8372 } 8373 8374 return 0; 8375 } 8376 8377 static int opt_remove_nops(struct bpf_verifier_env *env) 8378 { 8379 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8380 struct bpf_insn *insn = env->prog->insnsi; 8381 int insn_cnt = env->prog->len; 8382 int i, err; 8383 8384 for (i = 0; i < insn_cnt; i++) { 8385 if (memcmp(&insn[i], &ja, sizeof(ja))) 8386 continue; 8387 8388 err = verifier_remove_insns(env, i, 1); 8389 if (err) 8390 return err; 8391 insn_cnt--; 8392 i--; 8393 } 8394 8395 return 0; 8396 } 8397 8398 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8399 const union bpf_attr *attr) 8400 { 8401 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8402 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8403 int i, patch_len, delta = 0, len = env->prog->len; 8404 struct bpf_insn *insns = env->prog->insnsi; 8405 struct bpf_prog *new_prog; 8406 bool rnd_hi32; 8407 8408 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8409 zext_patch[1] = BPF_ZEXT_REG(0); 8410 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8411 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8412 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8413 for (i = 0; i < len; i++) { 8414 int adj_idx = i + delta; 8415 struct bpf_insn insn; 8416 8417 insn = insns[adj_idx]; 8418 if (!aux[adj_idx].zext_dst) { 8419 u8 code, class; 8420 u32 imm_rnd; 8421 8422 if (!rnd_hi32) 8423 continue; 8424 8425 code = insn.code; 8426 class = BPF_CLASS(code); 8427 if (insn_no_def(&insn)) 8428 continue; 8429 8430 /* NOTE: arg "reg" (the fourth one) is only used for 8431 * BPF_STX which has been ruled out in above 8432 * check, it is safe to pass NULL here. 8433 */ 8434 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8435 if (class == BPF_LD && 8436 BPF_MODE(code) == BPF_IMM) 8437 i++; 8438 continue; 8439 } 8440 8441 /* ctx load could be transformed into wider load. */ 8442 if (class == BPF_LDX && 8443 aux[adj_idx].ptr_type == PTR_TO_CTX) 8444 continue; 8445 8446 imm_rnd = get_random_int(); 8447 rnd_hi32_patch[0] = insn; 8448 rnd_hi32_patch[1].imm = imm_rnd; 8449 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8450 patch = rnd_hi32_patch; 8451 patch_len = 4; 8452 goto apply_patch_buffer; 8453 } 8454 8455 if (!bpf_jit_needs_zext()) 8456 continue; 8457 8458 zext_patch[0] = insn; 8459 zext_patch[1].dst_reg = insn.dst_reg; 8460 zext_patch[1].src_reg = insn.dst_reg; 8461 patch = zext_patch; 8462 patch_len = 2; 8463 apply_patch_buffer: 8464 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8465 if (!new_prog) 8466 return -ENOMEM; 8467 env->prog = new_prog; 8468 insns = new_prog->insnsi; 8469 aux = env->insn_aux_data; 8470 delta += patch_len - 1; 8471 } 8472 8473 return 0; 8474 } 8475 8476 /* convert load instructions that access fields of a context type into a 8477 * sequence of instructions that access fields of the underlying structure: 8478 * struct __sk_buff -> struct sk_buff 8479 * struct bpf_sock_ops -> struct sock 8480 */ 8481 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8482 { 8483 const struct bpf_verifier_ops *ops = env->ops; 8484 int i, cnt, size, ctx_field_size, delta = 0; 8485 const int insn_cnt = env->prog->len; 8486 struct bpf_insn insn_buf[16], *insn; 8487 u32 target_size, size_default, off; 8488 struct bpf_prog *new_prog; 8489 enum bpf_access_type type; 8490 bool is_narrower_load; 8491 8492 if (ops->gen_prologue || env->seen_direct_write) { 8493 if (!ops->gen_prologue) { 8494 verbose(env, "bpf verifier is misconfigured\n"); 8495 return -EINVAL; 8496 } 8497 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8498 env->prog); 8499 if (cnt >= ARRAY_SIZE(insn_buf)) { 8500 verbose(env, "bpf verifier is misconfigured\n"); 8501 return -EINVAL; 8502 } else if (cnt) { 8503 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8504 if (!new_prog) 8505 return -ENOMEM; 8506 8507 env->prog = new_prog; 8508 delta += cnt - 1; 8509 } 8510 } 8511 8512 if (bpf_prog_is_dev_bound(env->prog->aux)) 8513 return 0; 8514 8515 insn = env->prog->insnsi + delta; 8516 8517 for (i = 0; i < insn_cnt; i++, insn++) { 8518 bpf_convert_ctx_access_t convert_ctx_access; 8519 8520 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8521 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8522 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8523 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8524 type = BPF_READ; 8525 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8526 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8527 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8528 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8529 type = BPF_WRITE; 8530 else 8531 continue; 8532 8533 if (type == BPF_WRITE && 8534 env->insn_aux_data[i + delta].sanitize_stack_off) { 8535 struct bpf_insn patch[] = { 8536 /* Sanitize suspicious stack slot with zero. 8537 * There are no memory dependencies for this store, 8538 * since it's only using frame pointer and immediate 8539 * constant of zero 8540 */ 8541 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8542 env->insn_aux_data[i + delta].sanitize_stack_off, 8543 0), 8544 /* the original STX instruction will immediately 8545 * overwrite the same stack slot with appropriate value 8546 */ 8547 *insn, 8548 }; 8549 8550 cnt = ARRAY_SIZE(patch); 8551 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8552 if (!new_prog) 8553 return -ENOMEM; 8554 8555 delta += cnt - 1; 8556 env->prog = new_prog; 8557 insn = new_prog->insnsi + i + delta; 8558 continue; 8559 } 8560 8561 switch (env->insn_aux_data[i + delta].ptr_type) { 8562 case PTR_TO_CTX: 8563 if (!ops->convert_ctx_access) 8564 continue; 8565 convert_ctx_access = ops->convert_ctx_access; 8566 break; 8567 case PTR_TO_SOCKET: 8568 case PTR_TO_SOCK_COMMON: 8569 convert_ctx_access = bpf_sock_convert_ctx_access; 8570 break; 8571 case PTR_TO_TCP_SOCK: 8572 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8573 break; 8574 case PTR_TO_XDP_SOCK: 8575 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8576 break; 8577 default: 8578 continue; 8579 } 8580 8581 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8582 size = BPF_LDST_BYTES(insn); 8583 8584 /* If the read access is a narrower load of the field, 8585 * convert to a 4/8-byte load, to minimum program type specific 8586 * convert_ctx_access changes. If conversion is successful, 8587 * we will apply proper mask to the result. 8588 */ 8589 is_narrower_load = size < ctx_field_size; 8590 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8591 off = insn->off; 8592 if (is_narrower_load) { 8593 u8 size_code; 8594 8595 if (type == BPF_WRITE) { 8596 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8597 return -EINVAL; 8598 } 8599 8600 size_code = BPF_H; 8601 if (ctx_field_size == 4) 8602 size_code = BPF_W; 8603 else if (ctx_field_size == 8) 8604 size_code = BPF_DW; 8605 8606 insn->off = off & ~(size_default - 1); 8607 insn->code = BPF_LDX | BPF_MEM | size_code; 8608 } 8609 8610 target_size = 0; 8611 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8612 &target_size); 8613 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8614 (ctx_field_size && !target_size)) { 8615 verbose(env, "bpf verifier is misconfigured\n"); 8616 return -EINVAL; 8617 } 8618 8619 if (is_narrower_load && size < target_size) { 8620 u8 shift = bpf_ctx_narrow_load_shift(off, size, 8621 size_default); 8622 if (ctx_field_size <= 4) { 8623 if (shift) 8624 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8625 insn->dst_reg, 8626 shift); 8627 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8628 (1 << size * 8) - 1); 8629 } else { 8630 if (shift) 8631 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8632 insn->dst_reg, 8633 shift); 8634 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8635 (1ULL << size * 8) - 1); 8636 } 8637 } 8638 8639 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8640 if (!new_prog) 8641 return -ENOMEM; 8642 8643 delta += cnt - 1; 8644 8645 /* keep walking new program and skip insns we just inserted */ 8646 env->prog = new_prog; 8647 insn = new_prog->insnsi + i + delta; 8648 } 8649 8650 return 0; 8651 } 8652 8653 static int jit_subprogs(struct bpf_verifier_env *env) 8654 { 8655 struct bpf_prog *prog = env->prog, **func, *tmp; 8656 int i, j, subprog_start, subprog_end = 0, len, subprog; 8657 struct bpf_insn *insn; 8658 void *old_bpf_func; 8659 int err; 8660 8661 if (env->subprog_cnt <= 1) 8662 return 0; 8663 8664 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8665 if (insn->code != (BPF_JMP | BPF_CALL) || 8666 insn->src_reg != BPF_PSEUDO_CALL) 8667 continue; 8668 /* Upon error here we cannot fall back to interpreter but 8669 * need a hard reject of the program. Thus -EFAULT is 8670 * propagated in any case. 8671 */ 8672 subprog = find_subprog(env, i + insn->imm + 1); 8673 if (subprog < 0) { 8674 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8675 i + insn->imm + 1); 8676 return -EFAULT; 8677 } 8678 /* temporarily remember subprog id inside insn instead of 8679 * aux_data, since next loop will split up all insns into funcs 8680 */ 8681 insn->off = subprog; 8682 /* remember original imm in case JIT fails and fallback 8683 * to interpreter will be needed 8684 */ 8685 env->insn_aux_data[i].call_imm = insn->imm; 8686 /* point imm to __bpf_call_base+1 from JITs point of view */ 8687 insn->imm = 1; 8688 } 8689 8690 err = bpf_prog_alloc_jited_linfo(prog); 8691 if (err) 8692 goto out_undo_insn; 8693 8694 err = -ENOMEM; 8695 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8696 if (!func) 8697 goto out_undo_insn; 8698 8699 for (i = 0; i < env->subprog_cnt; i++) { 8700 subprog_start = subprog_end; 8701 subprog_end = env->subprog_info[i + 1].start; 8702 8703 len = subprog_end - subprog_start; 8704 /* BPF_PROG_RUN doesn't call subprogs directly, 8705 * hence main prog stats include the runtime of subprogs. 8706 * subprogs don't have IDs and not reachable via prog_get_next_id 8707 * func[i]->aux->stats will never be accessed and stays NULL 8708 */ 8709 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8710 if (!func[i]) 8711 goto out_free; 8712 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8713 len * sizeof(struct bpf_insn)); 8714 func[i]->type = prog->type; 8715 func[i]->len = len; 8716 if (bpf_prog_calc_tag(func[i])) 8717 goto out_free; 8718 func[i]->is_func = 1; 8719 func[i]->aux->func_idx = i; 8720 /* the btf and func_info will be freed only at prog->aux */ 8721 func[i]->aux->btf = prog->aux->btf; 8722 func[i]->aux->func_info = prog->aux->func_info; 8723 8724 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8725 * Long term would need debug info to populate names 8726 */ 8727 func[i]->aux->name[0] = 'F'; 8728 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8729 func[i]->jit_requested = 1; 8730 func[i]->aux->linfo = prog->aux->linfo; 8731 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8732 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8733 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8734 func[i] = bpf_int_jit_compile(func[i]); 8735 if (!func[i]->jited) { 8736 err = -ENOTSUPP; 8737 goto out_free; 8738 } 8739 cond_resched(); 8740 } 8741 /* at this point all bpf functions were successfully JITed 8742 * now populate all bpf_calls with correct addresses and 8743 * run last pass of JIT 8744 */ 8745 for (i = 0; i < env->subprog_cnt; i++) { 8746 insn = func[i]->insnsi; 8747 for (j = 0; j < func[i]->len; j++, insn++) { 8748 if (insn->code != (BPF_JMP | BPF_CALL) || 8749 insn->src_reg != BPF_PSEUDO_CALL) 8750 continue; 8751 subprog = insn->off; 8752 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8753 __bpf_call_base; 8754 } 8755 8756 /* we use the aux data to keep a list of the start addresses 8757 * of the JITed images for each function in the program 8758 * 8759 * for some architectures, such as powerpc64, the imm field 8760 * might not be large enough to hold the offset of the start 8761 * address of the callee's JITed image from __bpf_call_base 8762 * 8763 * in such cases, we can lookup the start address of a callee 8764 * by using its subprog id, available from the off field of 8765 * the call instruction, as an index for this list 8766 */ 8767 func[i]->aux->func = func; 8768 func[i]->aux->func_cnt = env->subprog_cnt; 8769 } 8770 for (i = 0; i < env->subprog_cnt; i++) { 8771 old_bpf_func = func[i]->bpf_func; 8772 tmp = bpf_int_jit_compile(func[i]); 8773 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8774 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8775 err = -ENOTSUPP; 8776 goto out_free; 8777 } 8778 cond_resched(); 8779 } 8780 8781 /* finally lock prog and jit images for all functions and 8782 * populate kallsysm 8783 */ 8784 for (i = 0; i < env->subprog_cnt; i++) { 8785 bpf_prog_lock_ro(func[i]); 8786 bpf_prog_kallsyms_add(func[i]); 8787 } 8788 8789 /* Last step: make now unused interpreter insns from main 8790 * prog consistent for later dump requests, so they can 8791 * later look the same as if they were interpreted only. 8792 */ 8793 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8794 if (insn->code != (BPF_JMP | BPF_CALL) || 8795 insn->src_reg != BPF_PSEUDO_CALL) 8796 continue; 8797 insn->off = env->insn_aux_data[i].call_imm; 8798 subprog = find_subprog(env, i + insn->off + 1); 8799 insn->imm = subprog; 8800 } 8801 8802 prog->jited = 1; 8803 prog->bpf_func = func[0]->bpf_func; 8804 prog->aux->func = func; 8805 prog->aux->func_cnt = env->subprog_cnt; 8806 bpf_prog_free_unused_jited_linfo(prog); 8807 return 0; 8808 out_free: 8809 for (i = 0; i < env->subprog_cnt; i++) 8810 if (func[i]) 8811 bpf_jit_free(func[i]); 8812 kfree(func); 8813 out_undo_insn: 8814 /* cleanup main prog to be interpreted */ 8815 prog->jit_requested = 0; 8816 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8817 if (insn->code != (BPF_JMP | BPF_CALL) || 8818 insn->src_reg != BPF_PSEUDO_CALL) 8819 continue; 8820 insn->off = 0; 8821 insn->imm = env->insn_aux_data[i].call_imm; 8822 } 8823 bpf_prog_free_jited_linfo(prog); 8824 return err; 8825 } 8826 8827 static int fixup_call_args(struct bpf_verifier_env *env) 8828 { 8829 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8830 struct bpf_prog *prog = env->prog; 8831 struct bpf_insn *insn = prog->insnsi; 8832 int i, depth; 8833 #endif 8834 int err = 0; 8835 8836 if (env->prog->jit_requested && 8837 !bpf_prog_is_dev_bound(env->prog->aux)) { 8838 err = jit_subprogs(env); 8839 if (err == 0) 8840 return 0; 8841 if (err == -EFAULT) 8842 return err; 8843 } 8844 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8845 for (i = 0; i < prog->len; i++, insn++) { 8846 if (insn->code != (BPF_JMP | BPF_CALL) || 8847 insn->src_reg != BPF_PSEUDO_CALL) 8848 continue; 8849 depth = get_callee_stack_depth(env, insn, i); 8850 if (depth < 0) 8851 return depth; 8852 bpf_patch_call_args(insn, depth); 8853 } 8854 err = 0; 8855 #endif 8856 return err; 8857 } 8858 8859 /* fixup insn->imm field of bpf_call instructions 8860 * and inline eligible helpers as explicit sequence of BPF instructions 8861 * 8862 * this function is called after eBPF program passed verification 8863 */ 8864 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8865 { 8866 struct bpf_prog *prog = env->prog; 8867 struct bpf_insn *insn = prog->insnsi; 8868 const struct bpf_func_proto *fn; 8869 const int insn_cnt = prog->len; 8870 const struct bpf_map_ops *ops; 8871 struct bpf_insn_aux_data *aux; 8872 struct bpf_insn insn_buf[16]; 8873 struct bpf_prog *new_prog; 8874 struct bpf_map *map_ptr; 8875 int i, cnt, delta = 0; 8876 8877 for (i = 0; i < insn_cnt; i++, insn++) { 8878 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8879 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8880 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8881 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8882 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8883 struct bpf_insn mask_and_div[] = { 8884 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8885 /* Rx div 0 -> 0 */ 8886 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8887 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8888 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8889 *insn, 8890 }; 8891 struct bpf_insn mask_and_mod[] = { 8892 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8893 /* Rx mod 0 -> Rx */ 8894 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8895 *insn, 8896 }; 8897 struct bpf_insn *patchlet; 8898 8899 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8900 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8901 patchlet = mask_and_div + (is64 ? 1 : 0); 8902 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8903 } else { 8904 patchlet = mask_and_mod + (is64 ? 1 : 0); 8905 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8906 } 8907 8908 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8909 if (!new_prog) 8910 return -ENOMEM; 8911 8912 delta += cnt - 1; 8913 env->prog = prog = new_prog; 8914 insn = new_prog->insnsi + i + delta; 8915 continue; 8916 } 8917 8918 if (BPF_CLASS(insn->code) == BPF_LD && 8919 (BPF_MODE(insn->code) == BPF_ABS || 8920 BPF_MODE(insn->code) == BPF_IND)) { 8921 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8922 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8923 verbose(env, "bpf verifier is misconfigured\n"); 8924 return -EINVAL; 8925 } 8926 8927 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8928 if (!new_prog) 8929 return -ENOMEM; 8930 8931 delta += cnt - 1; 8932 env->prog = prog = new_prog; 8933 insn = new_prog->insnsi + i + delta; 8934 continue; 8935 } 8936 8937 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8938 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8939 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8940 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8941 struct bpf_insn insn_buf[16]; 8942 struct bpf_insn *patch = &insn_buf[0]; 8943 bool issrc, isneg; 8944 u32 off_reg; 8945 8946 aux = &env->insn_aux_data[i + delta]; 8947 if (!aux->alu_state || 8948 aux->alu_state == BPF_ALU_NON_POINTER) 8949 continue; 8950 8951 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8952 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8953 BPF_ALU_SANITIZE_SRC; 8954 8955 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8956 if (isneg) 8957 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8958 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8959 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8960 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8961 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8962 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8963 if (issrc) { 8964 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8965 off_reg); 8966 insn->src_reg = BPF_REG_AX; 8967 } else { 8968 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8969 BPF_REG_AX); 8970 } 8971 if (isneg) 8972 insn->code = insn->code == code_add ? 8973 code_sub : code_add; 8974 *patch++ = *insn; 8975 if (issrc && isneg) 8976 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8977 cnt = patch - insn_buf; 8978 8979 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8980 if (!new_prog) 8981 return -ENOMEM; 8982 8983 delta += cnt - 1; 8984 env->prog = prog = new_prog; 8985 insn = new_prog->insnsi + i + delta; 8986 continue; 8987 } 8988 8989 if (insn->code != (BPF_JMP | BPF_CALL)) 8990 continue; 8991 if (insn->src_reg == BPF_PSEUDO_CALL) 8992 continue; 8993 8994 if (insn->imm == BPF_FUNC_get_route_realm) 8995 prog->dst_needed = 1; 8996 if (insn->imm == BPF_FUNC_get_prandom_u32) 8997 bpf_user_rnd_init_once(); 8998 if (insn->imm == BPF_FUNC_override_return) 8999 prog->kprobe_override = 1; 9000 if (insn->imm == BPF_FUNC_tail_call) { 9001 /* If we tail call into other programs, we 9002 * cannot make any assumptions since they can 9003 * be replaced dynamically during runtime in 9004 * the program array. 9005 */ 9006 prog->cb_access = 1; 9007 env->prog->aux->stack_depth = MAX_BPF_STACK; 9008 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9009 9010 /* mark bpf_tail_call as different opcode to avoid 9011 * conditional branch in the interpeter for every normal 9012 * call and to prevent accidental JITing by JIT compiler 9013 * that doesn't support bpf_tail_call yet 9014 */ 9015 insn->imm = 0; 9016 insn->code = BPF_JMP | BPF_TAIL_CALL; 9017 9018 aux = &env->insn_aux_data[i + delta]; 9019 if (!bpf_map_ptr_unpriv(aux)) 9020 continue; 9021 9022 /* instead of changing every JIT dealing with tail_call 9023 * emit two extra insns: 9024 * if (index >= max_entries) goto out; 9025 * index &= array->index_mask; 9026 * to avoid out-of-bounds cpu speculation 9027 */ 9028 if (bpf_map_ptr_poisoned(aux)) { 9029 verbose(env, "tail_call abusing map_ptr\n"); 9030 return -EINVAL; 9031 } 9032 9033 map_ptr = BPF_MAP_PTR(aux->map_state); 9034 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9035 map_ptr->max_entries, 2); 9036 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9037 container_of(map_ptr, 9038 struct bpf_array, 9039 map)->index_mask); 9040 insn_buf[2] = *insn; 9041 cnt = 3; 9042 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9043 if (!new_prog) 9044 return -ENOMEM; 9045 9046 delta += cnt - 1; 9047 env->prog = prog = new_prog; 9048 insn = new_prog->insnsi + i + delta; 9049 continue; 9050 } 9051 9052 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9053 * and other inlining handlers are currently limited to 64 bit 9054 * only. 9055 */ 9056 if (prog->jit_requested && BITS_PER_LONG == 64 && 9057 (insn->imm == BPF_FUNC_map_lookup_elem || 9058 insn->imm == BPF_FUNC_map_update_elem || 9059 insn->imm == BPF_FUNC_map_delete_elem || 9060 insn->imm == BPF_FUNC_map_push_elem || 9061 insn->imm == BPF_FUNC_map_pop_elem || 9062 insn->imm == BPF_FUNC_map_peek_elem)) { 9063 aux = &env->insn_aux_data[i + delta]; 9064 if (bpf_map_ptr_poisoned(aux)) 9065 goto patch_call_imm; 9066 9067 map_ptr = BPF_MAP_PTR(aux->map_state); 9068 ops = map_ptr->ops; 9069 if (insn->imm == BPF_FUNC_map_lookup_elem && 9070 ops->map_gen_lookup) { 9071 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9072 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9073 verbose(env, "bpf verifier is misconfigured\n"); 9074 return -EINVAL; 9075 } 9076 9077 new_prog = bpf_patch_insn_data(env, i + delta, 9078 insn_buf, cnt); 9079 if (!new_prog) 9080 return -ENOMEM; 9081 9082 delta += cnt - 1; 9083 env->prog = prog = new_prog; 9084 insn = new_prog->insnsi + i + delta; 9085 continue; 9086 } 9087 9088 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9089 (void *(*)(struct bpf_map *map, void *key))NULL)); 9090 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9091 (int (*)(struct bpf_map *map, void *key))NULL)); 9092 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9093 (int (*)(struct bpf_map *map, void *key, void *value, 9094 u64 flags))NULL)); 9095 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9096 (int (*)(struct bpf_map *map, void *value, 9097 u64 flags))NULL)); 9098 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9099 (int (*)(struct bpf_map *map, void *value))NULL)); 9100 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9101 (int (*)(struct bpf_map *map, void *value))NULL)); 9102 9103 switch (insn->imm) { 9104 case BPF_FUNC_map_lookup_elem: 9105 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9106 __bpf_call_base; 9107 continue; 9108 case BPF_FUNC_map_update_elem: 9109 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9110 __bpf_call_base; 9111 continue; 9112 case BPF_FUNC_map_delete_elem: 9113 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9114 __bpf_call_base; 9115 continue; 9116 case BPF_FUNC_map_push_elem: 9117 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9118 __bpf_call_base; 9119 continue; 9120 case BPF_FUNC_map_pop_elem: 9121 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9122 __bpf_call_base; 9123 continue; 9124 case BPF_FUNC_map_peek_elem: 9125 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9126 __bpf_call_base; 9127 continue; 9128 } 9129 9130 goto patch_call_imm; 9131 } 9132 9133 patch_call_imm: 9134 fn = env->ops->get_func_proto(insn->imm, env->prog); 9135 /* all functions that have prototype and verifier allowed 9136 * programs to call them, must be real in-kernel functions 9137 */ 9138 if (!fn->func) { 9139 verbose(env, 9140 "kernel subsystem misconfigured func %s#%d\n", 9141 func_id_name(insn->imm), insn->imm); 9142 return -EFAULT; 9143 } 9144 insn->imm = fn->func - __bpf_call_base; 9145 } 9146 9147 return 0; 9148 } 9149 9150 static void free_states(struct bpf_verifier_env *env) 9151 { 9152 struct bpf_verifier_state_list *sl, *sln; 9153 int i; 9154 9155 sl = env->free_list; 9156 while (sl) { 9157 sln = sl->next; 9158 free_verifier_state(&sl->state, false); 9159 kfree(sl); 9160 sl = sln; 9161 } 9162 9163 if (!env->explored_states) 9164 return; 9165 9166 for (i = 0; i < state_htab_size(env); i++) { 9167 sl = env->explored_states[i]; 9168 9169 while (sl) { 9170 sln = sl->next; 9171 free_verifier_state(&sl->state, false); 9172 kfree(sl); 9173 sl = sln; 9174 } 9175 } 9176 9177 kvfree(env->explored_states); 9178 } 9179 9180 static void print_verification_stats(struct bpf_verifier_env *env) 9181 { 9182 int i; 9183 9184 if (env->log.level & BPF_LOG_STATS) { 9185 verbose(env, "verification time %lld usec\n", 9186 div_u64(env->verification_time, 1000)); 9187 verbose(env, "stack depth "); 9188 for (i = 0; i < env->subprog_cnt; i++) { 9189 u32 depth = env->subprog_info[i].stack_depth; 9190 9191 verbose(env, "%d", depth); 9192 if (i + 1 < env->subprog_cnt) 9193 verbose(env, "+"); 9194 } 9195 verbose(env, "\n"); 9196 } 9197 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9198 "total_states %d peak_states %d mark_read %d\n", 9199 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9200 env->max_states_per_insn, env->total_states, 9201 env->peak_states, env->longest_mark_read_walk); 9202 } 9203 9204 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9205 union bpf_attr __user *uattr) 9206 { 9207 u64 start_time = ktime_get_ns(); 9208 struct bpf_verifier_env *env; 9209 struct bpf_verifier_log *log; 9210 int i, len, ret = -EINVAL; 9211 bool is_priv; 9212 9213 /* no program is valid */ 9214 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9215 return -EINVAL; 9216 9217 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9218 * allocate/free it every time bpf_check() is called 9219 */ 9220 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9221 if (!env) 9222 return -ENOMEM; 9223 log = &env->log; 9224 9225 len = (*prog)->len; 9226 env->insn_aux_data = 9227 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9228 ret = -ENOMEM; 9229 if (!env->insn_aux_data) 9230 goto err_free_env; 9231 for (i = 0; i < len; i++) 9232 env->insn_aux_data[i].orig_idx = i; 9233 env->prog = *prog; 9234 env->ops = bpf_verifier_ops[env->prog->type]; 9235 is_priv = capable(CAP_SYS_ADMIN); 9236 9237 /* grab the mutex to protect few globals used by verifier */ 9238 if (!is_priv) 9239 mutex_lock(&bpf_verifier_lock); 9240 9241 if (attr->log_level || attr->log_buf || attr->log_size) { 9242 /* user requested verbose verifier output 9243 * and supplied buffer to store the verification trace 9244 */ 9245 log->level = attr->log_level; 9246 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9247 log->len_total = attr->log_size; 9248 9249 ret = -EINVAL; 9250 /* log attributes have to be sane */ 9251 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9252 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9253 goto err_unlock; 9254 } 9255 9256 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9257 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9258 env->strict_alignment = true; 9259 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9260 env->strict_alignment = false; 9261 9262 env->allow_ptr_leaks = is_priv; 9263 9264 ret = replace_map_fd_with_map_ptr(env); 9265 if (ret < 0) 9266 goto skip_full_check; 9267 9268 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9269 ret = bpf_prog_offload_verifier_prep(env->prog); 9270 if (ret) 9271 goto skip_full_check; 9272 } 9273 9274 env->explored_states = kvcalloc(state_htab_size(env), 9275 sizeof(struct bpf_verifier_state_list *), 9276 GFP_USER); 9277 ret = -ENOMEM; 9278 if (!env->explored_states) 9279 goto skip_full_check; 9280 9281 ret = check_subprogs(env); 9282 if (ret < 0) 9283 goto skip_full_check; 9284 9285 ret = check_btf_info(env, attr, uattr); 9286 if (ret < 0) 9287 goto skip_full_check; 9288 9289 ret = check_cfg(env); 9290 if (ret < 0) 9291 goto skip_full_check; 9292 9293 ret = do_check(env); 9294 if (env->cur_state) { 9295 free_verifier_state(env->cur_state, true); 9296 env->cur_state = NULL; 9297 } 9298 9299 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9300 ret = bpf_prog_offload_finalize(env); 9301 9302 skip_full_check: 9303 while (!pop_stack(env, NULL, NULL)); 9304 free_states(env); 9305 9306 if (ret == 0) 9307 ret = check_max_stack_depth(env); 9308 9309 /* instruction rewrites happen after this point */ 9310 if (is_priv) { 9311 if (ret == 0) 9312 opt_hard_wire_dead_code_branches(env); 9313 if (ret == 0) 9314 ret = opt_remove_dead_code(env); 9315 if (ret == 0) 9316 ret = opt_remove_nops(env); 9317 } else { 9318 if (ret == 0) 9319 sanitize_dead_code(env); 9320 } 9321 9322 if (ret == 0) 9323 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9324 ret = convert_ctx_accesses(env); 9325 9326 if (ret == 0) 9327 ret = fixup_bpf_calls(env); 9328 9329 /* do 32-bit optimization after insn patching has done so those patched 9330 * insns could be handled correctly. 9331 */ 9332 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9333 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9334 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9335 : false; 9336 } 9337 9338 if (ret == 0) 9339 ret = fixup_call_args(env); 9340 9341 env->verification_time = ktime_get_ns() - start_time; 9342 print_verification_stats(env); 9343 9344 if (log->level && bpf_verifier_log_full(log)) 9345 ret = -ENOSPC; 9346 if (log->level && !log->ubuf) { 9347 ret = -EFAULT; 9348 goto err_release_maps; 9349 } 9350 9351 if (ret == 0 && env->used_map_cnt) { 9352 /* if program passed verifier, update used_maps in bpf_prog_info */ 9353 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9354 sizeof(env->used_maps[0]), 9355 GFP_KERNEL); 9356 9357 if (!env->prog->aux->used_maps) { 9358 ret = -ENOMEM; 9359 goto err_release_maps; 9360 } 9361 9362 memcpy(env->prog->aux->used_maps, env->used_maps, 9363 sizeof(env->used_maps[0]) * env->used_map_cnt); 9364 env->prog->aux->used_map_cnt = env->used_map_cnt; 9365 9366 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9367 * bpf_ld_imm64 instructions 9368 */ 9369 convert_pseudo_ld_imm64(env); 9370 } 9371 9372 if (ret == 0) 9373 adjust_btf_func(env); 9374 9375 err_release_maps: 9376 if (!env->prog->aux->used_maps) 9377 /* if we didn't copy map pointers into bpf_prog_info, release 9378 * them now. Otherwise free_used_maps() will release them. 9379 */ 9380 release_maps(env); 9381 *prog = env->prog; 9382 err_unlock: 9383 if (!is_priv) 9384 mutex_unlock(&bpf_verifier_lock); 9385 vfree(env->insn_aux_data); 9386 err_free_env: 9387 kfree(env); 9388 return ret; 9389 } 9390