1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/bpf.h> 18 #include <linux/bpf_verifier.h> 19 #include <linux/filter.h> 20 #include <net/netlink.h> 21 #include <linux/file.h> 22 #include <linux/vmalloc.h> 23 #include <linux/stringify.h> 24 #include <linux/bsearch.h> 25 #include <linux/sort.h> 26 #include <linux/perf_event.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 }; 175 176 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 177 #define BPF_COMPLEXITY_LIMIT_STACK 1024 178 179 #define BPF_MAP_PTR_UNPRIV 1UL 180 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 181 POISON_POINTER_DELTA)) 182 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 183 184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 185 { 186 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 187 } 188 189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 190 { 191 return aux->map_state & BPF_MAP_PTR_UNPRIV; 192 } 193 194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 195 const struct bpf_map *map, bool unpriv) 196 { 197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 198 unpriv |= bpf_map_ptr_unpriv(aux); 199 aux->map_state = (unsigned long)map | 200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 201 } 202 203 struct bpf_call_arg_meta { 204 struct bpf_map *map_ptr; 205 bool raw_mode; 206 bool pkt_access; 207 int regno; 208 int access_size; 209 s64 msize_smax_value; 210 u64 msize_umax_value; 211 int ptr_id; 212 }; 213 214 static DEFINE_MUTEX(bpf_verifier_lock); 215 216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 217 va_list args) 218 { 219 unsigned int n; 220 221 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 222 223 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 224 "verifier log line truncated - local buffer too short\n"); 225 226 n = min(log->len_total - log->len_used - 1, n); 227 log->kbuf[n] = '\0'; 228 229 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 230 log->len_used += n; 231 else 232 log->ubuf = NULL; 233 } 234 235 /* log_level controls verbosity level of eBPF verifier. 236 * bpf_verifier_log_write() is used to dump the verification trace to the log, 237 * so the user can figure out what's wrong with the program 238 */ 239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 240 const char *fmt, ...) 241 { 242 va_list args; 243 244 if (!bpf_verifier_log_needed(&env->log)) 245 return; 246 247 va_start(args, fmt); 248 bpf_verifier_vlog(&env->log, fmt, args); 249 va_end(args); 250 } 251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 252 253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 254 { 255 struct bpf_verifier_env *env = private_data; 256 va_list args; 257 258 if (!bpf_verifier_log_needed(&env->log)) 259 return; 260 261 va_start(args, fmt); 262 bpf_verifier_vlog(&env->log, fmt, args); 263 va_end(args); 264 } 265 266 static bool type_is_pkt_pointer(enum bpf_reg_type type) 267 { 268 return type == PTR_TO_PACKET || 269 type == PTR_TO_PACKET_META; 270 } 271 272 static bool reg_type_may_be_null(enum bpf_reg_type type) 273 { 274 return type == PTR_TO_MAP_VALUE_OR_NULL || 275 type == PTR_TO_SOCKET_OR_NULL; 276 } 277 278 static bool type_is_refcounted(enum bpf_reg_type type) 279 { 280 return type == PTR_TO_SOCKET; 281 } 282 283 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 284 { 285 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 286 } 287 288 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 289 { 290 return type_is_refcounted(reg->type); 291 } 292 293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 294 { 295 return type_is_refcounted_or_null(reg->type); 296 } 297 298 static bool arg_type_is_refcounted(enum bpf_arg_type type) 299 { 300 return type == ARG_PTR_TO_SOCKET; 301 } 302 303 /* Determine whether the function releases some resources allocated by another 304 * function call. The first reference type argument will be assumed to be 305 * released by release_reference(). 306 */ 307 static bool is_release_function(enum bpf_func_id func_id) 308 { 309 return func_id == BPF_FUNC_sk_release; 310 } 311 312 /* string representation of 'enum bpf_reg_type' */ 313 static const char * const reg_type_str[] = { 314 [NOT_INIT] = "?", 315 [SCALAR_VALUE] = "inv", 316 [PTR_TO_CTX] = "ctx", 317 [CONST_PTR_TO_MAP] = "map_ptr", 318 [PTR_TO_MAP_VALUE] = "map_value", 319 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 320 [PTR_TO_STACK] = "fp", 321 [PTR_TO_PACKET] = "pkt", 322 [PTR_TO_PACKET_META] = "pkt_meta", 323 [PTR_TO_PACKET_END] = "pkt_end", 324 [PTR_TO_FLOW_KEYS] = "flow_keys", 325 [PTR_TO_SOCKET] = "sock", 326 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 327 }; 328 329 static char slot_type_char[] = { 330 [STACK_INVALID] = '?', 331 [STACK_SPILL] = 'r', 332 [STACK_MISC] = 'm', 333 [STACK_ZERO] = '0', 334 }; 335 336 static void print_liveness(struct bpf_verifier_env *env, 337 enum bpf_reg_liveness live) 338 { 339 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 340 verbose(env, "_"); 341 if (live & REG_LIVE_READ) 342 verbose(env, "r"); 343 if (live & REG_LIVE_WRITTEN) 344 verbose(env, "w"); 345 } 346 347 static struct bpf_func_state *func(struct bpf_verifier_env *env, 348 const struct bpf_reg_state *reg) 349 { 350 struct bpf_verifier_state *cur = env->cur_state; 351 352 return cur->frame[reg->frameno]; 353 } 354 355 static void print_verifier_state(struct bpf_verifier_env *env, 356 const struct bpf_func_state *state) 357 { 358 const struct bpf_reg_state *reg; 359 enum bpf_reg_type t; 360 int i; 361 362 if (state->frameno) 363 verbose(env, " frame%d:", state->frameno); 364 for (i = 0; i < MAX_BPF_REG; i++) { 365 reg = &state->regs[i]; 366 t = reg->type; 367 if (t == NOT_INIT) 368 continue; 369 verbose(env, " R%d", i); 370 print_liveness(env, reg->live); 371 verbose(env, "=%s", reg_type_str[t]); 372 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 373 tnum_is_const(reg->var_off)) { 374 /* reg->off should be 0 for SCALAR_VALUE */ 375 verbose(env, "%lld", reg->var_off.value + reg->off); 376 if (t == PTR_TO_STACK) 377 verbose(env, ",call_%d", func(env, reg)->callsite); 378 } else { 379 verbose(env, "(id=%d", reg->id); 380 if (t != SCALAR_VALUE) 381 verbose(env, ",off=%d", reg->off); 382 if (type_is_pkt_pointer(t)) 383 verbose(env, ",r=%d", reg->range); 384 else if (t == CONST_PTR_TO_MAP || 385 t == PTR_TO_MAP_VALUE || 386 t == PTR_TO_MAP_VALUE_OR_NULL) 387 verbose(env, ",ks=%d,vs=%d", 388 reg->map_ptr->key_size, 389 reg->map_ptr->value_size); 390 if (tnum_is_const(reg->var_off)) { 391 /* Typically an immediate SCALAR_VALUE, but 392 * could be a pointer whose offset is too big 393 * for reg->off 394 */ 395 verbose(env, ",imm=%llx", reg->var_off.value); 396 } else { 397 if (reg->smin_value != reg->umin_value && 398 reg->smin_value != S64_MIN) 399 verbose(env, ",smin_value=%lld", 400 (long long)reg->smin_value); 401 if (reg->smax_value != reg->umax_value && 402 reg->smax_value != S64_MAX) 403 verbose(env, ",smax_value=%lld", 404 (long long)reg->smax_value); 405 if (reg->umin_value != 0) 406 verbose(env, ",umin_value=%llu", 407 (unsigned long long)reg->umin_value); 408 if (reg->umax_value != U64_MAX) 409 verbose(env, ",umax_value=%llu", 410 (unsigned long long)reg->umax_value); 411 if (!tnum_is_unknown(reg->var_off)) { 412 char tn_buf[48]; 413 414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 415 verbose(env, ",var_off=%s", tn_buf); 416 } 417 } 418 verbose(env, ")"); 419 } 420 } 421 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 422 char types_buf[BPF_REG_SIZE + 1]; 423 bool valid = false; 424 int j; 425 426 for (j = 0; j < BPF_REG_SIZE; j++) { 427 if (state->stack[i].slot_type[j] != STACK_INVALID) 428 valid = true; 429 types_buf[j] = slot_type_char[ 430 state->stack[i].slot_type[j]]; 431 } 432 types_buf[BPF_REG_SIZE] = 0; 433 if (!valid) 434 continue; 435 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 436 print_liveness(env, state->stack[i].spilled_ptr.live); 437 if (state->stack[i].slot_type[0] == STACK_SPILL) 438 verbose(env, "=%s", 439 reg_type_str[state->stack[i].spilled_ptr.type]); 440 else 441 verbose(env, "=%s", types_buf); 442 } 443 if (state->acquired_refs && state->refs[0].id) { 444 verbose(env, " refs=%d", state->refs[0].id); 445 for (i = 1; i < state->acquired_refs; i++) 446 if (state->refs[i].id) 447 verbose(env, ",%d", state->refs[i].id); 448 } 449 verbose(env, "\n"); 450 } 451 452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 453 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 454 const struct bpf_func_state *src) \ 455 { \ 456 if (!src->FIELD) \ 457 return 0; \ 458 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 459 /* internal bug, make state invalid to reject the program */ \ 460 memset(dst, 0, sizeof(*dst)); \ 461 return -EFAULT; \ 462 } \ 463 memcpy(dst->FIELD, src->FIELD, \ 464 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 465 return 0; \ 466 } 467 /* copy_reference_state() */ 468 COPY_STATE_FN(reference, acquired_refs, refs, 1) 469 /* copy_stack_state() */ 470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 471 #undef COPY_STATE_FN 472 473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 475 bool copy_old) \ 476 { \ 477 u32 old_size = state->COUNT; \ 478 struct bpf_##NAME##_state *new_##FIELD; \ 479 int slot = size / SIZE; \ 480 \ 481 if (size <= old_size || !size) { \ 482 if (copy_old) \ 483 return 0; \ 484 state->COUNT = slot * SIZE; \ 485 if (!size && old_size) { \ 486 kfree(state->FIELD); \ 487 state->FIELD = NULL; \ 488 } \ 489 return 0; \ 490 } \ 491 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 492 GFP_KERNEL); \ 493 if (!new_##FIELD) \ 494 return -ENOMEM; \ 495 if (copy_old) { \ 496 if (state->FIELD) \ 497 memcpy(new_##FIELD, state->FIELD, \ 498 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 499 memset(new_##FIELD + old_size / SIZE, 0, \ 500 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 501 } \ 502 state->COUNT = slot * SIZE; \ 503 kfree(state->FIELD); \ 504 state->FIELD = new_##FIELD; \ 505 return 0; \ 506 } 507 /* realloc_reference_state() */ 508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 509 /* realloc_stack_state() */ 510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 511 #undef REALLOC_STATE_FN 512 513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 514 * make it consume minimal amount of memory. check_stack_write() access from 515 * the program calls into realloc_func_state() to grow the stack size. 516 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 517 * which realloc_stack_state() copies over. It points to previous 518 * bpf_verifier_state which is never reallocated. 519 */ 520 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 521 int refs_size, bool copy_old) 522 { 523 int err = realloc_reference_state(state, refs_size, copy_old); 524 if (err) 525 return err; 526 return realloc_stack_state(state, stack_size, copy_old); 527 } 528 529 /* Acquire a pointer id from the env and update the state->refs to include 530 * this new pointer reference. 531 * On success, returns a valid pointer id to associate with the register 532 * On failure, returns a negative errno. 533 */ 534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 535 { 536 struct bpf_func_state *state = cur_func(env); 537 int new_ofs = state->acquired_refs; 538 int id, err; 539 540 err = realloc_reference_state(state, state->acquired_refs + 1, true); 541 if (err) 542 return err; 543 id = ++env->id_gen; 544 state->refs[new_ofs].id = id; 545 state->refs[new_ofs].insn_idx = insn_idx; 546 547 return id; 548 } 549 550 /* release function corresponding to acquire_reference_state(). Idempotent. */ 551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 552 { 553 int i, last_idx; 554 555 if (!ptr_id) 556 return -EFAULT; 557 558 last_idx = state->acquired_refs - 1; 559 for (i = 0; i < state->acquired_refs; i++) { 560 if (state->refs[i].id == ptr_id) { 561 if (last_idx && i != last_idx) 562 memcpy(&state->refs[i], &state->refs[last_idx], 563 sizeof(*state->refs)); 564 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 565 state->acquired_refs--; 566 return 0; 567 } 568 } 569 return -EFAULT; 570 } 571 572 /* variation on the above for cases where we expect that there must be an 573 * outstanding reference for the specified ptr_id. 574 */ 575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 576 { 577 struct bpf_func_state *state = cur_func(env); 578 int err; 579 580 err = __release_reference_state(state, ptr_id); 581 if (WARN_ON_ONCE(err != 0)) 582 verbose(env, "verifier internal error: can't release reference\n"); 583 return err; 584 } 585 586 static int transfer_reference_state(struct bpf_func_state *dst, 587 struct bpf_func_state *src) 588 { 589 int err = realloc_reference_state(dst, src->acquired_refs, false); 590 if (err) 591 return err; 592 err = copy_reference_state(dst, src); 593 if (err) 594 return err; 595 return 0; 596 } 597 598 static void free_func_state(struct bpf_func_state *state) 599 { 600 if (!state) 601 return; 602 kfree(state->refs); 603 kfree(state->stack); 604 kfree(state); 605 } 606 607 static void free_verifier_state(struct bpf_verifier_state *state, 608 bool free_self) 609 { 610 int i; 611 612 for (i = 0; i <= state->curframe; i++) { 613 free_func_state(state->frame[i]); 614 state->frame[i] = NULL; 615 } 616 if (free_self) 617 kfree(state); 618 } 619 620 /* copy verifier state from src to dst growing dst stack space 621 * when necessary to accommodate larger src stack 622 */ 623 static int copy_func_state(struct bpf_func_state *dst, 624 const struct bpf_func_state *src) 625 { 626 int err; 627 628 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 629 false); 630 if (err) 631 return err; 632 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 633 err = copy_reference_state(dst, src); 634 if (err) 635 return err; 636 return copy_stack_state(dst, src); 637 } 638 639 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 640 const struct bpf_verifier_state *src) 641 { 642 struct bpf_func_state *dst; 643 int i, err; 644 645 /* if dst has more stack frames then src frame, free them */ 646 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 647 free_func_state(dst_state->frame[i]); 648 dst_state->frame[i] = NULL; 649 } 650 dst_state->curframe = src->curframe; 651 for (i = 0; i <= src->curframe; i++) { 652 dst = dst_state->frame[i]; 653 if (!dst) { 654 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 655 if (!dst) 656 return -ENOMEM; 657 dst_state->frame[i] = dst; 658 } 659 err = copy_func_state(dst, src->frame[i]); 660 if (err) 661 return err; 662 } 663 return 0; 664 } 665 666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 667 int *insn_idx) 668 { 669 struct bpf_verifier_state *cur = env->cur_state; 670 struct bpf_verifier_stack_elem *elem, *head = env->head; 671 int err; 672 673 if (env->head == NULL) 674 return -ENOENT; 675 676 if (cur) { 677 err = copy_verifier_state(cur, &head->st); 678 if (err) 679 return err; 680 } 681 if (insn_idx) 682 *insn_idx = head->insn_idx; 683 if (prev_insn_idx) 684 *prev_insn_idx = head->prev_insn_idx; 685 elem = head->next; 686 free_verifier_state(&head->st, false); 687 kfree(head); 688 env->head = elem; 689 env->stack_size--; 690 return 0; 691 } 692 693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 694 int insn_idx, int prev_insn_idx) 695 { 696 struct bpf_verifier_state *cur = env->cur_state; 697 struct bpf_verifier_stack_elem *elem; 698 int err; 699 700 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 701 if (!elem) 702 goto err; 703 704 elem->insn_idx = insn_idx; 705 elem->prev_insn_idx = prev_insn_idx; 706 elem->next = env->head; 707 env->head = elem; 708 env->stack_size++; 709 err = copy_verifier_state(&elem->st, cur); 710 if (err) 711 goto err; 712 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 713 verbose(env, "BPF program is too complex\n"); 714 goto err; 715 } 716 return &elem->st; 717 err: 718 free_verifier_state(env->cur_state, true); 719 env->cur_state = NULL; 720 /* pop all elements and return */ 721 while (!pop_stack(env, NULL, NULL)); 722 return NULL; 723 } 724 725 #define CALLER_SAVED_REGS 6 726 static const int caller_saved[CALLER_SAVED_REGS] = { 727 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 728 }; 729 730 static void __mark_reg_not_init(struct bpf_reg_state *reg); 731 732 /* Mark the unknown part of a register (variable offset or scalar value) as 733 * known to have the value @imm. 734 */ 735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 736 { 737 /* Clear id, off, and union(map_ptr, range) */ 738 memset(((u8 *)reg) + sizeof(reg->type), 0, 739 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 740 reg->var_off = tnum_const(imm); 741 reg->smin_value = (s64)imm; 742 reg->smax_value = (s64)imm; 743 reg->umin_value = imm; 744 reg->umax_value = imm; 745 } 746 747 /* Mark the 'variable offset' part of a register as zero. This should be 748 * used only on registers holding a pointer type. 749 */ 750 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 751 { 752 __mark_reg_known(reg, 0); 753 } 754 755 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 756 { 757 __mark_reg_known(reg, 0); 758 reg->type = SCALAR_VALUE; 759 } 760 761 static void mark_reg_known_zero(struct bpf_verifier_env *env, 762 struct bpf_reg_state *regs, u32 regno) 763 { 764 if (WARN_ON(regno >= MAX_BPF_REG)) { 765 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 766 /* Something bad happened, let's kill all regs */ 767 for (regno = 0; regno < MAX_BPF_REG; regno++) 768 __mark_reg_not_init(regs + regno); 769 return; 770 } 771 __mark_reg_known_zero(regs + regno); 772 } 773 774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 775 { 776 return type_is_pkt_pointer(reg->type); 777 } 778 779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 780 { 781 return reg_is_pkt_pointer(reg) || 782 reg->type == PTR_TO_PACKET_END; 783 } 784 785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 787 enum bpf_reg_type which) 788 { 789 /* The register can already have a range from prior markings. 790 * This is fine as long as it hasn't been advanced from its 791 * origin. 792 */ 793 return reg->type == which && 794 reg->id == 0 && 795 reg->off == 0 && 796 tnum_equals_const(reg->var_off, 0); 797 } 798 799 /* Attempts to improve min/max values based on var_off information */ 800 static void __update_reg_bounds(struct bpf_reg_state *reg) 801 { 802 /* min signed is max(sign bit) | min(other bits) */ 803 reg->smin_value = max_t(s64, reg->smin_value, 804 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 805 /* max signed is min(sign bit) | max(other bits) */ 806 reg->smax_value = min_t(s64, reg->smax_value, 807 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 808 reg->umin_value = max(reg->umin_value, reg->var_off.value); 809 reg->umax_value = min(reg->umax_value, 810 reg->var_off.value | reg->var_off.mask); 811 } 812 813 /* Uses signed min/max values to inform unsigned, and vice-versa */ 814 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 815 { 816 /* Learn sign from signed bounds. 817 * If we cannot cross the sign boundary, then signed and unsigned bounds 818 * are the same, so combine. This works even in the negative case, e.g. 819 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 820 */ 821 if (reg->smin_value >= 0 || reg->smax_value < 0) { 822 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 823 reg->umin_value); 824 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 825 reg->umax_value); 826 return; 827 } 828 /* Learn sign from unsigned bounds. Signed bounds cross the sign 829 * boundary, so we must be careful. 830 */ 831 if ((s64)reg->umax_value >= 0) { 832 /* Positive. We can't learn anything from the smin, but smax 833 * is positive, hence safe. 834 */ 835 reg->smin_value = reg->umin_value; 836 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 837 reg->umax_value); 838 } else if ((s64)reg->umin_value < 0) { 839 /* Negative. We can't learn anything from the smax, but smin 840 * is negative, hence safe. 841 */ 842 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 843 reg->umin_value); 844 reg->smax_value = reg->umax_value; 845 } 846 } 847 848 /* Attempts to improve var_off based on unsigned min/max information */ 849 static void __reg_bound_offset(struct bpf_reg_state *reg) 850 { 851 reg->var_off = tnum_intersect(reg->var_off, 852 tnum_range(reg->umin_value, 853 reg->umax_value)); 854 } 855 856 /* Reset the min/max bounds of a register */ 857 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 858 { 859 reg->smin_value = S64_MIN; 860 reg->smax_value = S64_MAX; 861 reg->umin_value = 0; 862 reg->umax_value = U64_MAX; 863 } 864 865 /* Mark a register as having a completely unknown (scalar) value. */ 866 static void __mark_reg_unknown(struct bpf_reg_state *reg) 867 { 868 /* 869 * Clear type, id, off, and union(map_ptr, range) and 870 * padding between 'type' and union 871 */ 872 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 873 reg->type = SCALAR_VALUE; 874 reg->var_off = tnum_unknown; 875 reg->frameno = 0; 876 __mark_reg_unbounded(reg); 877 } 878 879 static void mark_reg_unknown(struct bpf_verifier_env *env, 880 struct bpf_reg_state *regs, u32 regno) 881 { 882 if (WARN_ON(regno >= MAX_BPF_REG)) { 883 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 884 /* Something bad happened, let's kill all regs except FP */ 885 for (regno = 0; regno < BPF_REG_FP; regno++) 886 __mark_reg_not_init(regs + regno); 887 return; 888 } 889 __mark_reg_unknown(regs + regno); 890 } 891 892 static void __mark_reg_not_init(struct bpf_reg_state *reg) 893 { 894 __mark_reg_unknown(reg); 895 reg->type = NOT_INIT; 896 } 897 898 static void mark_reg_not_init(struct bpf_verifier_env *env, 899 struct bpf_reg_state *regs, u32 regno) 900 { 901 if (WARN_ON(regno >= MAX_BPF_REG)) { 902 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 903 /* Something bad happened, let's kill all regs except FP */ 904 for (regno = 0; regno < BPF_REG_FP; regno++) 905 __mark_reg_not_init(regs + regno); 906 return; 907 } 908 __mark_reg_not_init(regs + regno); 909 } 910 911 static void init_reg_state(struct bpf_verifier_env *env, 912 struct bpf_func_state *state) 913 { 914 struct bpf_reg_state *regs = state->regs; 915 int i; 916 917 for (i = 0; i < MAX_BPF_REG; i++) { 918 mark_reg_not_init(env, regs, i); 919 regs[i].live = REG_LIVE_NONE; 920 regs[i].parent = NULL; 921 } 922 923 /* frame pointer */ 924 regs[BPF_REG_FP].type = PTR_TO_STACK; 925 mark_reg_known_zero(env, regs, BPF_REG_FP); 926 regs[BPF_REG_FP].frameno = state->frameno; 927 928 /* 1st arg to a function */ 929 regs[BPF_REG_1].type = PTR_TO_CTX; 930 mark_reg_known_zero(env, regs, BPF_REG_1); 931 } 932 933 #define BPF_MAIN_FUNC (-1) 934 static void init_func_state(struct bpf_verifier_env *env, 935 struct bpf_func_state *state, 936 int callsite, int frameno, int subprogno) 937 { 938 state->callsite = callsite; 939 state->frameno = frameno; 940 state->subprogno = subprogno; 941 init_reg_state(env, state); 942 } 943 944 enum reg_arg_type { 945 SRC_OP, /* register is used as source operand */ 946 DST_OP, /* register is used as destination operand */ 947 DST_OP_NO_MARK /* same as above, check only, don't mark */ 948 }; 949 950 static int cmp_subprogs(const void *a, const void *b) 951 { 952 return ((struct bpf_subprog_info *)a)->start - 953 ((struct bpf_subprog_info *)b)->start; 954 } 955 956 static int find_subprog(struct bpf_verifier_env *env, int off) 957 { 958 struct bpf_subprog_info *p; 959 960 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 961 sizeof(env->subprog_info[0]), cmp_subprogs); 962 if (!p) 963 return -ENOENT; 964 return p - env->subprog_info; 965 966 } 967 968 static int add_subprog(struct bpf_verifier_env *env, int off) 969 { 970 int insn_cnt = env->prog->len; 971 int ret; 972 973 if (off >= insn_cnt || off < 0) { 974 verbose(env, "call to invalid destination\n"); 975 return -EINVAL; 976 } 977 ret = find_subprog(env, off); 978 if (ret >= 0) 979 return 0; 980 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 981 verbose(env, "too many subprograms\n"); 982 return -E2BIG; 983 } 984 env->subprog_info[env->subprog_cnt++].start = off; 985 sort(env->subprog_info, env->subprog_cnt, 986 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 987 return 0; 988 } 989 990 static int check_subprogs(struct bpf_verifier_env *env) 991 { 992 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 993 struct bpf_subprog_info *subprog = env->subprog_info; 994 struct bpf_insn *insn = env->prog->insnsi; 995 int insn_cnt = env->prog->len; 996 997 /* Add entry function. */ 998 ret = add_subprog(env, 0); 999 if (ret < 0) 1000 return ret; 1001 1002 /* determine subprog starts. The end is one before the next starts */ 1003 for (i = 0; i < insn_cnt; i++) { 1004 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1005 continue; 1006 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1007 continue; 1008 if (!env->allow_ptr_leaks) { 1009 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1010 return -EPERM; 1011 } 1012 ret = add_subprog(env, i + insn[i].imm + 1); 1013 if (ret < 0) 1014 return ret; 1015 } 1016 1017 /* Add a fake 'exit' subprog which could simplify subprog iteration 1018 * logic. 'subprog_cnt' should not be increased. 1019 */ 1020 subprog[env->subprog_cnt].start = insn_cnt; 1021 1022 if (env->log.level > 1) 1023 for (i = 0; i < env->subprog_cnt; i++) 1024 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1025 1026 /* now check that all jumps are within the same subprog */ 1027 subprog_start = subprog[cur_subprog].start; 1028 subprog_end = subprog[cur_subprog + 1].start; 1029 for (i = 0; i < insn_cnt; i++) { 1030 u8 code = insn[i].code; 1031 1032 if (BPF_CLASS(code) != BPF_JMP) 1033 goto next; 1034 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1035 goto next; 1036 off = i + insn[i].off + 1; 1037 if (off < subprog_start || off >= subprog_end) { 1038 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1039 return -EINVAL; 1040 } 1041 next: 1042 if (i == subprog_end - 1) { 1043 /* to avoid fall-through from one subprog into another 1044 * the last insn of the subprog should be either exit 1045 * or unconditional jump back 1046 */ 1047 if (code != (BPF_JMP | BPF_EXIT) && 1048 code != (BPF_JMP | BPF_JA)) { 1049 verbose(env, "last insn is not an exit or jmp\n"); 1050 return -EINVAL; 1051 } 1052 subprog_start = subprog_end; 1053 cur_subprog++; 1054 if (cur_subprog < env->subprog_cnt) 1055 subprog_end = subprog[cur_subprog + 1].start; 1056 } 1057 } 1058 return 0; 1059 } 1060 1061 /* Parentage chain of this register (or stack slot) should take care of all 1062 * issues like callee-saved registers, stack slot allocation time, etc. 1063 */ 1064 static int mark_reg_read(struct bpf_verifier_env *env, 1065 const struct bpf_reg_state *state, 1066 struct bpf_reg_state *parent) 1067 { 1068 bool writes = parent == state->parent; /* Observe write marks */ 1069 1070 while (parent) { 1071 /* if read wasn't screened by an earlier write ... */ 1072 if (writes && state->live & REG_LIVE_WRITTEN) 1073 break; 1074 /* ... then we depend on parent's value */ 1075 parent->live |= REG_LIVE_READ; 1076 state = parent; 1077 parent = state->parent; 1078 writes = true; 1079 } 1080 return 0; 1081 } 1082 1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1084 enum reg_arg_type t) 1085 { 1086 struct bpf_verifier_state *vstate = env->cur_state; 1087 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1088 struct bpf_reg_state *regs = state->regs; 1089 1090 if (regno >= MAX_BPF_REG) { 1091 verbose(env, "R%d is invalid\n", regno); 1092 return -EINVAL; 1093 } 1094 1095 if (t == SRC_OP) { 1096 /* check whether register used as source operand can be read */ 1097 if (regs[regno].type == NOT_INIT) { 1098 verbose(env, "R%d !read_ok\n", regno); 1099 return -EACCES; 1100 } 1101 /* We don't need to worry about FP liveness because it's read-only */ 1102 if (regno != BPF_REG_FP) 1103 return mark_reg_read(env, ®s[regno], 1104 regs[regno].parent); 1105 } else { 1106 /* check whether register used as dest operand can be written to */ 1107 if (regno == BPF_REG_FP) { 1108 verbose(env, "frame pointer is read only\n"); 1109 return -EACCES; 1110 } 1111 regs[regno].live |= REG_LIVE_WRITTEN; 1112 if (t == DST_OP) 1113 mark_reg_unknown(env, regs, regno); 1114 } 1115 return 0; 1116 } 1117 1118 static bool is_spillable_regtype(enum bpf_reg_type type) 1119 { 1120 switch (type) { 1121 case PTR_TO_MAP_VALUE: 1122 case PTR_TO_MAP_VALUE_OR_NULL: 1123 case PTR_TO_STACK: 1124 case PTR_TO_CTX: 1125 case PTR_TO_PACKET: 1126 case PTR_TO_PACKET_META: 1127 case PTR_TO_PACKET_END: 1128 case PTR_TO_FLOW_KEYS: 1129 case CONST_PTR_TO_MAP: 1130 case PTR_TO_SOCKET: 1131 case PTR_TO_SOCKET_OR_NULL: 1132 return true; 1133 default: 1134 return false; 1135 } 1136 } 1137 1138 /* Does this register contain a constant zero? */ 1139 static bool register_is_null(struct bpf_reg_state *reg) 1140 { 1141 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1142 } 1143 1144 /* check_stack_read/write functions track spill/fill of registers, 1145 * stack boundary and alignment are checked in check_mem_access() 1146 */ 1147 static int check_stack_write(struct bpf_verifier_env *env, 1148 struct bpf_func_state *state, /* func where register points to */ 1149 int off, int size, int value_regno, int insn_idx) 1150 { 1151 struct bpf_func_state *cur; /* state of the current function */ 1152 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1153 enum bpf_reg_type type; 1154 1155 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1156 state->acquired_refs, true); 1157 if (err) 1158 return err; 1159 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1160 * so it's aligned access and [off, off + size) are within stack limits 1161 */ 1162 if (!env->allow_ptr_leaks && 1163 state->stack[spi].slot_type[0] == STACK_SPILL && 1164 size != BPF_REG_SIZE) { 1165 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1166 return -EACCES; 1167 } 1168 1169 cur = env->cur_state->frame[env->cur_state->curframe]; 1170 if (value_regno >= 0 && 1171 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1172 1173 /* register containing pointer is being spilled into stack */ 1174 if (size != BPF_REG_SIZE) { 1175 verbose(env, "invalid size of register spill\n"); 1176 return -EACCES; 1177 } 1178 1179 if (state != cur && type == PTR_TO_STACK) { 1180 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1181 return -EINVAL; 1182 } 1183 1184 /* save register state */ 1185 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1186 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1187 1188 for (i = 0; i < BPF_REG_SIZE; i++) { 1189 if (state->stack[spi].slot_type[i] == STACK_MISC && 1190 !env->allow_ptr_leaks) { 1191 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1192 int soff = (-spi - 1) * BPF_REG_SIZE; 1193 1194 /* detected reuse of integer stack slot with a pointer 1195 * which means either llvm is reusing stack slot or 1196 * an attacker is trying to exploit CVE-2018-3639 1197 * (speculative store bypass) 1198 * Have to sanitize that slot with preemptive 1199 * store of zero. 1200 */ 1201 if (*poff && *poff != soff) { 1202 /* disallow programs where single insn stores 1203 * into two different stack slots, since verifier 1204 * cannot sanitize them 1205 */ 1206 verbose(env, 1207 "insn %d cannot access two stack slots fp%d and fp%d", 1208 insn_idx, *poff, soff); 1209 return -EINVAL; 1210 } 1211 *poff = soff; 1212 } 1213 state->stack[spi].slot_type[i] = STACK_SPILL; 1214 } 1215 } else { 1216 u8 type = STACK_MISC; 1217 1218 /* regular write of data into stack destroys any spilled ptr */ 1219 state->stack[spi].spilled_ptr.type = NOT_INIT; 1220 1221 /* only mark the slot as written if all 8 bytes were written 1222 * otherwise read propagation may incorrectly stop too soon 1223 * when stack slots are partially written. 1224 * This heuristic means that read propagation will be 1225 * conservative, since it will add reg_live_read marks 1226 * to stack slots all the way to first state when programs 1227 * writes+reads less than 8 bytes 1228 */ 1229 if (size == BPF_REG_SIZE) 1230 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1231 1232 /* when we zero initialize stack slots mark them as such */ 1233 if (value_regno >= 0 && 1234 register_is_null(&cur->regs[value_regno])) 1235 type = STACK_ZERO; 1236 1237 for (i = 0; i < size; i++) 1238 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1239 type; 1240 } 1241 return 0; 1242 } 1243 1244 static int check_stack_read(struct bpf_verifier_env *env, 1245 struct bpf_func_state *reg_state /* func where register points to */, 1246 int off, int size, int value_regno) 1247 { 1248 struct bpf_verifier_state *vstate = env->cur_state; 1249 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1250 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1251 u8 *stype; 1252 1253 if (reg_state->allocated_stack <= slot) { 1254 verbose(env, "invalid read from stack off %d+0 size %d\n", 1255 off, size); 1256 return -EACCES; 1257 } 1258 stype = reg_state->stack[spi].slot_type; 1259 1260 if (stype[0] == STACK_SPILL) { 1261 if (size != BPF_REG_SIZE) { 1262 verbose(env, "invalid size of register spill\n"); 1263 return -EACCES; 1264 } 1265 for (i = 1; i < BPF_REG_SIZE; i++) { 1266 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1267 verbose(env, "corrupted spill memory\n"); 1268 return -EACCES; 1269 } 1270 } 1271 1272 if (value_regno >= 0) { 1273 /* restore register state from stack */ 1274 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1275 /* mark reg as written since spilled pointer state likely 1276 * has its liveness marks cleared by is_state_visited() 1277 * which resets stack/reg liveness for state transitions 1278 */ 1279 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1280 } 1281 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1282 reg_state->stack[spi].spilled_ptr.parent); 1283 return 0; 1284 } else { 1285 int zeros = 0; 1286 1287 for (i = 0; i < size; i++) { 1288 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1289 continue; 1290 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1291 zeros++; 1292 continue; 1293 } 1294 verbose(env, "invalid read from stack off %d+%d size %d\n", 1295 off, i, size); 1296 return -EACCES; 1297 } 1298 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1299 reg_state->stack[spi].spilled_ptr.parent); 1300 if (value_regno >= 0) { 1301 if (zeros == size) { 1302 /* any size read into register is zero extended, 1303 * so the whole register == const_zero 1304 */ 1305 __mark_reg_const_zero(&state->regs[value_regno]); 1306 } else { 1307 /* have read misc data from the stack */ 1308 mark_reg_unknown(env, state->regs, value_regno); 1309 } 1310 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1311 } 1312 return 0; 1313 } 1314 } 1315 1316 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1318 int size, bool zero_size_allowed) 1319 { 1320 struct bpf_reg_state *regs = cur_regs(env); 1321 struct bpf_map *map = regs[regno].map_ptr; 1322 1323 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1324 off + size > map->value_size) { 1325 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1326 map->value_size, off, size); 1327 return -EACCES; 1328 } 1329 return 0; 1330 } 1331 1332 /* check read/write into a map element with possible variable offset */ 1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1334 int off, int size, bool zero_size_allowed) 1335 { 1336 struct bpf_verifier_state *vstate = env->cur_state; 1337 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1338 struct bpf_reg_state *reg = &state->regs[regno]; 1339 int err; 1340 1341 /* We may have adjusted the register to this map value, so we 1342 * need to try adding each of min_value and max_value to off 1343 * to make sure our theoretical access will be safe. 1344 */ 1345 if (env->log.level) 1346 print_verifier_state(env, state); 1347 /* The minimum value is only important with signed 1348 * comparisons where we can't assume the floor of a 1349 * value is 0. If we are using signed variables for our 1350 * index'es we need to make sure that whatever we use 1351 * will have a set floor within our range. 1352 */ 1353 if (reg->smin_value < 0) { 1354 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1355 regno); 1356 return -EACCES; 1357 } 1358 err = __check_map_access(env, regno, reg->smin_value + off, size, 1359 zero_size_allowed); 1360 if (err) { 1361 verbose(env, "R%d min value is outside of the array range\n", 1362 regno); 1363 return err; 1364 } 1365 1366 /* If we haven't set a max value then we need to bail since we can't be 1367 * sure we won't do bad things. 1368 * If reg->umax_value + off could overflow, treat that as unbounded too. 1369 */ 1370 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1371 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1372 regno); 1373 return -EACCES; 1374 } 1375 err = __check_map_access(env, regno, reg->umax_value + off, size, 1376 zero_size_allowed); 1377 if (err) 1378 verbose(env, "R%d max value is outside of the array range\n", 1379 regno); 1380 return err; 1381 } 1382 1383 #define MAX_PACKET_OFF 0xffff 1384 1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1386 const struct bpf_call_arg_meta *meta, 1387 enum bpf_access_type t) 1388 { 1389 switch (env->prog->type) { 1390 /* Program types only with direct read access go here! */ 1391 case BPF_PROG_TYPE_LWT_IN: 1392 case BPF_PROG_TYPE_LWT_OUT: 1393 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1394 case BPF_PROG_TYPE_SK_REUSEPORT: 1395 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1396 case BPF_PROG_TYPE_CGROUP_SKB: 1397 if (t == BPF_WRITE) 1398 return false; 1399 /* fallthrough */ 1400 1401 /* Program types with direct read + write access go here! */ 1402 case BPF_PROG_TYPE_SCHED_CLS: 1403 case BPF_PROG_TYPE_SCHED_ACT: 1404 case BPF_PROG_TYPE_XDP: 1405 case BPF_PROG_TYPE_LWT_XMIT: 1406 case BPF_PROG_TYPE_SK_SKB: 1407 case BPF_PROG_TYPE_SK_MSG: 1408 if (meta) 1409 return meta->pkt_access; 1410 1411 env->seen_direct_write = true; 1412 return true; 1413 default: 1414 return false; 1415 } 1416 } 1417 1418 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1419 int off, int size, bool zero_size_allowed) 1420 { 1421 struct bpf_reg_state *regs = cur_regs(env); 1422 struct bpf_reg_state *reg = ®s[regno]; 1423 1424 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1425 (u64)off + size > reg->range) { 1426 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1427 off, size, regno, reg->id, reg->off, reg->range); 1428 return -EACCES; 1429 } 1430 return 0; 1431 } 1432 1433 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1434 int size, bool zero_size_allowed) 1435 { 1436 struct bpf_reg_state *regs = cur_regs(env); 1437 struct bpf_reg_state *reg = ®s[regno]; 1438 int err; 1439 1440 /* We may have added a variable offset to the packet pointer; but any 1441 * reg->range we have comes after that. We are only checking the fixed 1442 * offset. 1443 */ 1444 1445 /* We don't allow negative numbers, because we aren't tracking enough 1446 * detail to prove they're safe. 1447 */ 1448 if (reg->smin_value < 0) { 1449 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1450 regno); 1451 return -EACCES; 1452 } 1453 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1454 if (err) { 1455 verbose(env, "R%d offset is outside of the packet\n", regno); 1456 return err; 1457 } 1458 return err; 1459 } 1460 1461 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1462 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1463 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1464 { 1465 struct bpf_insn_access_aux info = { 1466 .reg_type = *reg_type, 1467 }; 1468 1469 if (env->ops->is_valid_access && 1470 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1471 /* A non zero info.ctx_field_size indicates that this field is a 1472 * candidate for later verifier transformation to load the whole 1473 * field and then apply a mask when accessed with a narrower 1474 * access than actual ctx access size. A zero info.ctx_field_size 1475 * will only allow for whole field access and rejects any other 1476 * type of narrower access. 1477 */ 1478 *reg_type = info.reg_type; 1479 1480 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1481 /* remember the offset of last byte accessed in ctx */ 1482 if (env->prog->aux->max_ctx_offset < off + size) 1483 env->prog->aux->max_ctx_offset = off + size; 1484 return 0; 1485 } 1486 1487 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1488 return -EACCES; 1489 } 1490 1491 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1492 int size) 1493 { 1494 if (size < 0 || off < 0 || 1495 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1496 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1497 off, size); 1498 return -EACCES; 1499 } 1500 return 0; 1501 } 1502 1503 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1504 int size, enum bpf_access_type t) 1505 { 1506 struct bpf_reg_state *regs = cur_regs(env); 1507 struct bpf_reg_state *reg = ®s[regno]; 1508 struct bpf_insn_access_aux info; 1509 1510 if (reg->smin_value < 0) { 1511 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1512 regno); 1513 return -EACCES; 1514 } 1515 1516 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1517 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1518 off, size); 1519 return -EACCES; 1520 } 1521 1522 return 0; 1523 } 1524 1525 static bool __is_pointer_value(bool allow_ptr_leaks, 1526 const struct bpf_reg_state *reg) 1527 { 1528 if (allow_ptr_leaks) 1529 return false; 1530 1531 return reg->type != SCALAR_VALUE; 1532 } 1533 1534 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1535 { 1536 return cur_regs(env) + regno; 1537 } 1538 1539 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1540 { 1541 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1542 } 1543 1544 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1545 { 1546 const struct bpf_reg_state *reg = reg_state(env, regno); 1547 1548 return reg->type == PTR_TO_CTX || 1549 reg->type == PTR_TO_SOCKET; 1550 } 1551 1552 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1553 { 1554 const struct bpf_reg_state *reg = reg_state(env, regno); 1555 1556 return type_is_pkt_pointer(reg->type); 1557 } 1558 1559 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1560 { 1561 const struct bpf_reg_state *reg = reg_state(env, regno); 1562 1563 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1564 return reg->type == PTR_TO_FLOW_KEYS; 1565 } 1566 1567 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1568 const struct bpf_reg_state *reg, 1569 int off, int size, bool strict) 1570 { 1571 struct tnum reg_off; 1572 int ip_align; 1573 1574 /* Byte size accesses are always allowed. */ 1575 if (!strict || size == 1) 1576 return 0; 1577 1578 /* For platforms that do not have a Kconfig enabling 1579 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1580 * NET_IP_ALIGN is universally set to '2'. And on platforms 1581 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1582 * to this code only in strict mode where we want to emulate 1583 * the NET_IP_ALIGN==2 checking. Therefore use an 1584 * unconditional IP align value of '2'. 1585 */ 1586 ip_align = 2; 1587 1588 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1589 if (!tnum_is_aligned(reg_off, size)) { 1590 char tn_buf[48]; 1591 1592 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1593 verbose(env, 1594 "misaligned packet access off %d+%s+%d+%d size %d\n", 1595 ip_align, tn_buf, reg->off, off, size); 1596 return -EACCES; 1597 } 1598 1599 return 0; 1600 } 1601 1602 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1603 const struct bpf_reg_state *reg, 1604 const char *pointer_desc, 1605 int off, int size, bool strict) 1606 { 1607 struct tnum reg_off; 1608 1609 /* Byte size accesses are always allowed. */ 1610 if (!strict || size == 1) 1611 return 0; 1612 1613 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1614 if (!tnum_is_aligned(reg_off, size)) { 1615 char tn_buf[48]; 1616 1617 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1618 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1619 pointer_desc, tn_buf, reg->off, off, size); 1620 return -EACCES; 1621 } 1622 1623 return 0; 1624 } 1625 1626 static int check_ptr_alignment(struct bpf_verifier_env *env, 1627 const struct bpf_reg_state *reg, int off, 1628 int size, bool strict_alignment_once) 1629 { 1630 bool strict = env->strict_alignment || strict_alignment_once; 1631 const char *pointer_desc = ""; 1632 1633 switch (reg->type) { 1634 case PTR_TO_PACKET: 1635 case PTR_TO_PACKET_META: 1636 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1637 * right in front, treat it the very same way. 1638 */ 1639 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1640 case PTR_TO_FLOW_KEYS: 1641 pointer_desc = "flow keys "; 1642 break; 1643 case PTR_TO_MAP_VALUE: 1644 pointer_desc = "value "; 1645 break; 1646 case PTR_TO_CTX: 1647 pointer_desc = "context "; 1648 break; 1649 case PTR_TO_STACK: 1650 pointer_desc = "stack "; 1651 /* The stack spill tracking logic in check_stack_write() 1652 * and check_stack_read() relies on stack accesses being 1653 * aligned. 1654 */ 1655 strict = true; 1656 break; 1657 case PTR_TO_SOCKET: 1658 pointer_desc = "sock "; 1659 break; 1660 default: 1661 break; 1662 } 1663 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1664 strict); 1665 } 1666 1667 static int update_stack_depth(struct bpf_verifier_env *env, 1668 const struct bpf_func_state *func, 1669 int off) 1670 { 1671 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1672 1673 if (stack >= -off) 1674 return 0; 1675 1676 /* update known max for given subprogram */ 1677 env->subprog_info[func->subprogno].stack_depth = -off; 1678 return 0; 1679 } 1680 1681 /* starting from main bpf function walk all instructions of the function 1682 * and recursively walk all callees that given function can call. 1683 * Ignore jump and exit insns. 1684 * Since recursion is prevented by check_cfg() this algorithm 1685 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1686 */ 1687 static int check_max_stack_depth(struct bpf_verifier_env *env) 1688 { 1689 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1690 struct bpf_subprog_info *subprog = env->subprog_info; 1691 struct bpf_insn *insn = env->prog->insnsi; 1692 int ret_insn[MAX_CALL_FRAMES]; 1693 int ret_prog[MAX_CALL_FRAMES]; 1694 1695 process_func: 1696 /* round up to 32-bytes, since this is granularity 1697 * of interpreter stack size 1698 */ 1699 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1700 if (depth > MAX_BPF_STACK) { 1701 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1702 frame + 1, depth); 1703 return -EACCES; 1704 } 1705 continue_func: 1706 subprog_end = subprog[idx + 1].start; 1707 for (; i < subprog_end; i++) { 1708 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1709 continue; 1710 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1711 continue; 1712 /* remember insn and function to return to */ 1713 ret_insn[frame] = i + 1; 1714 ret_prog[frame] = idx; 1715 1716 /* find the callee */ 1717 i = i + insn[i].imm + 1; 1718 idx = find_subprog(env, i); 1719 if (idx < 0) { 1720 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1721 i); 1722 return -EFAULT; 1723 } 1724 frame++; 1725 if (frame >= MAX_CALL_FRAMES) { 1726 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1727 return -EFAULT; 1728 } 1729 goto process_func; 1730 } 1731 /* end of for() loop means the last insn of the 'subprog' 1732 * was reached. Doesn't matter whether it was JA or EXIT 1733 */ 1734 if (frame == 0) 1735 return 0; 1736 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1737 frame--; 1738 i = ret_insn[frame]; 1739 idx = ret_prog[frame]; 1740 goto continue_func; 1741 } 1742 1743 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1744 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1745 const struct bpf_insn *insn, int idx) 1746 { 1747 int start = idx + insn->imm + 1, subprog; 1748 1749 subprog = find_subprog(env, start); 1750 if (subprog < 0) { 1751 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1752 start); 1753 return -EFAULT; 1754 } 1755 return env->subprog_info[subprog].stack_depth; 1756 } 1757 #endif 1758 1759 static int check_ctx_reg(struct bpf_verifier_env *env, 1760 const struct bpf_reg_state *reg, int regno) 1761 { 1762 /* Access to ctx or passing it to a helper is only allowed in 1763 * its original, unmodified form. 1764 */ 1765 1766 if (reg->off) { 1767 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1768 regno, reg->off); 1769 return -EACCES; 1770 } 1771 1772 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1773 char tn_buf[48]; 1774 1775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1776 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1777 return -EACCES; 1778 } 1779 1780 return 0; 1781 } 1782 1783 /* truncate register to smaller size (in bytes) 1784 * must be called with size < BPF_REG_SIZE 1785 */ 1786 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1787 { 1788 u64 mask; 1789 1790 /* clear high bits in bit representation */ 1791 reg->var_off = tnum_cast(reg->var_off, size); 1792 1793 /* fix arithmetic bounds */ 1794 mask = ((u64)1 << (size * 8)) - 1; 1795 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1796 reg->umin_value &= mask; 1797 reg->umax_value &= mask; 1798 } else { 1799 reg->umin_value = 0; 1800 reg->umax_value = mask; 1801 } 1802 reg->smin_value = reg->umin_value; 1803 reg->smax_value = reg->umax_value; 1804 } 1805 1806 /* check whether memory at (regno + off) is accessible for t = (read | write) 1807 * if t==write, value_regno is a register which value is stored into memory 1808 * if t==read, value_regno is a register which will receive the value from memory 1809 * if t==write && value_regno==-1, some unknown value is stored into memory 1810 * if t==read && value_regno==-1, don't care what we read from memory 1811 */ 1812 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1813 int off, int bpf_size, enum bpf_access_type t, 1814 int value_regno, bool strict_alignment_once) 1815 { 1816 struct bpf_reg_state *regs = cur_regs(env); 1817 struct bpf_reg_state *reg = regs + regno; 1818 struct bpf_func_state *state; 1819 int size, err = 0; 1820 1821 size = bpf_size_to_bytes(bpf_size); 1822 if (size < 0) 1823 return size; 1824 1825 /* alignment checks will add in reg->off themselves */ 1826 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1827 if (err) 1828 return err; 1829 1830 /* for access checks, reg->off is just part of off */ 1831 off += reg->off; 1832 1833 if (reg->type == PTR_TO_MAP_VALUE) { 1834 if (t == BPF_WRITE && value_regno >= 0 && 1835 is_pointer_value(env, value_regno)) { 1836 verbose(env, "R%d leaks addr into map\n", value_regno); 1837 return -EACCES; 1838 } 1839 1840 err = check_map_access(env, regno, off, size, false); 1841 if (!err && t == BPF_READ && value_regno >= 0) 1842 mark_reg_unknown(env, regs, value_regno); 1843 1844 } else if (reg->type == PTR_TO_CTX) { 1845 enum bpf_reg_type reg_type = SCALAR_VALUE; 1846 1847 if (t == BPF_WRITE && value_regno >= 0 && 1848 is_pointer_value(env, value_regno)) { 1849 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1850 return -EACCES; 1851 } 1852 1853 err = check_ctx_reg(env, reg, regno); 1854 if (err < 0) 1855 return err; 1856 1857 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1858 if (!err && t == BPF_READ && value_regno >= 0) { 1859 /* ctx access returns either a scalar, or a 1860 * PTR_TO_PACKET[_META,_END]. In the latter 1861 * case, we know the offset is zero. 1862 */ 1863 if (reg_type == SCALAR_VALUE) 1864 mark_reg_unknown(env, regs, value_regno); 1865 else 1866 mark_reg_known_zero(env, regs, 1867 value_regno); 1868 regs[value_regno].type = reg_type; 1869 } 1870 1871 } else if (reg->type == PTR_TO_STACK) { 1872 /* stack accesses must be at a fixed offset, so that we can 1873 * determine what type of data were returned. 1874 * See check_stack_read(). 1875 */ 1876 if (!tnum_is_const(reg->var_off)) { 1877 char tn_buf[48]; 1878 1879 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1880 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1881 tn_buf, off, size); 1882 return -EACCES; 1883 } 1884 off += reg->var_off.value; 1885 if (off >= 0 || off < -MAX_BPF_STACK) { 1886 verbose(env, "invalid stack off=%d size=%d\n", off, 1887 size); 1888 return -EACCES; 1889 } 1890 1891 state = func(env, reg); 1892 err = update_stack_depth(env, state, off); 1893 if (err) 1894 return err; 1895 1896 if (t == BPF_WRITE) 1897 err = check_stack_write(env, state, off, size, 1898 value_regno, insn_idx); 1899 else 1900 err = check_stack_read(env, state, off, size, 1901 value_regno); 1902 } else if (reg_is_pkt_pointer(reg)) { 1903 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1904 verbose(env, "cannot write into packet\n"); 1905 return -EACCES; 1906 } 1907 if (t == BPF_WRITE && value_regno >= 0 && 1908 is_pointer_value(env, value_regno)) { 1909 verbose(env, "R%d leaks addr into packet\n", 1910 value_regno); 1911 return -EACCES; 1912 } 1913 err = check_packet_access(env, regno, off, size, false); 1914 if (!err && t == BPF_READ && value_regno >= 0) 1915 mark_reg_unknown(env, regs, value_regno); 1916 } else if (reg->type == PTR_TO_FLOW_KEYS) { 1917 if (t == BPF_WRITE && value_regno >= 0 && 1918 is_pointer_value(env, value_regno)) { 1919 verbose(env, "R%d leaks addr into flow keys\n", 1920 value_regno); 1921 return -EACCES; 1922 } 1923 1924 err = check_flow_keys_access(env, off, size); 1925 if (!err && t == BPF_READ && value_regno >= 0) 1926 mark_reg_unknown(env, regs, value_regno); 1927 } else if (reg->type == PTR_TO_SOCKET) { 1928 if (t == BPF_WRITE) { 1929 verbose(env, "cannot write into socket\n"); 1930 return -EACCES; 1931 } 1932 err = check_sock_access(env, regno, off, size, t); 1933 if (!err && value_regno >= 0) 1934 mark_reg_unknown(env, regs, value_regno); 1935 } else { 1936 verbose(env, "R%d invalid mem access '%s'\n", regno, 1937 reg_type_str[reg->type]); 1938 return -EACCES; 1939 } 1940 1941 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1942 regs[value_regno].type == SCALAR_VALUE) { 1943 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1944 coerce_reg_to_size(®s[value_regno], size); 1945 } 1946 return err; 1947 } 1948 1949 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1950 { 1951 int err; 1952 1953 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1954 insn->imm != 0) { 1955 verbose(env, "BPF_XADD uses reserved fields\n"); 1956 return -EINVAL; 1957 } 1958 1959 /* check src1 operand */ 1960 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1961 if (err) 1962 return err; 1963 1964 /* check src2 operand */ 1965 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1966 if (err) 1967 return err; 1968 1969 if (is_pointer_value(env, insn->src_reg)) { 1970 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1971 return -EACCES; 1972 } 1973 1974 if (is_ctx_reg(env, insn->dst_reg) || 1975 is_pkt_reg(env, insn->dst_reg) || 1976 is_flow_key_reg(env, insn->dst_reg)) { 1977 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1978 insn->dst_reg, 1979 reg_type_str[reg_state(env, insn->dst_reg)->type]); 1980 return -EACCES; 1981 } 1982 1983 /* check whether atomic_add can read the memory */ 1984 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1985 BPF_SIZE(insn->code), BPF_READ, -1, true); 1986 if (err) 1987 return err; 1988 1989 /* check whether atomic_add can write into the same memory */ 1990 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1991 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1992 } 1993 1994 /* when register 'regno' is passed into function that will read 'access_size' 1995 * bytes from that pointer, make sure that it's within stack boundary 1996 * and all elements of stack are initialized. 1997 * Unlike most pointer bounds-checking functions, this one doesn't take an 1998 * 'off' argument, so it has to add in reg->off itself. 1999 */ 2000 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2001 int access_size, bool zero_size_allowed, 2002 struct bpf_call_arg_meta *meta) 2003 { 2004 struct bpf_reg_state *reg = reg_state(env, regno); 2005 struct bpf_func_state *state = func(env, reg); 2006 int off, i, slot, spi; 2007 2008 if (reg->type != PTR_TO_STACK) { 2009 /* Allow zero-byte read from NULL, regardless of pointer type */ 2010 if (zero_size_allowed && access_size == 0 && 2011 register_is_null(reg)) 2012 return 0; 2013 2014 verbose(env, "R%d type=%s expected=%s\n", regno, 2015 reg_type_str[reg->type], 2016 reg_type_str[PTR_TO_STACK]); 2017 return -EACCES; 2018 } 2019 2020 /* Only allow fixed-offset stack reads */ 2021 if (!tnum_is_const(reg->var_off)) { 2022 char tn_buf[48]; 2023 2024 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2025 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2026 regno, tn_buf); 2027 return -EACCES; 2028 } 2029 off = reg->off + reg->var_off.value; 2030 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2031 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2032 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2033 regno, off, access_size); 2034 return -EACCES; 2035 } 2036 2037 if (meta && meta->raw_mode) { 2038 meta->access_size = access_size; 2039 meta->regno = regno; 2040 return 0; 2041 } 2042 2043 for (i = 0; i < access_size; i++) { 2044 u8 *stype; 2045 2046 slot = -(off + i) - 1; 2047 spi = slot / BPF_REG_SIZE; 2048 if (state->allocated_stack <= slot) 2049 goto err; 2050 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2051 if (*stype == STACK_MISC) 2052 goto mark; 2053 if (*stype == STACK_ZERO) { 2054 /* helper can write anything into the stack */ 2055 *stype = STACK_MISC; 2056 goto mark; 2057 } 2058 err: 2059 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2060 off, i, access_size); 2061 return -EACCES; 2062 mark: 2063 /* reading any byte out of 8-byte 'spill_slot' will cause 2064 * the whole slot to be marked as 'read' 2065 */ 2066 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2067 state->stack[spi].spilled_ptr.parent); 2068 } 2069 return update_stack_depth(env, state, off); 2070 } 2071 2072 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2073 int access_size, bool zero_size_allowed, 2074 struct bpf_call_arg_meta *meta) 2075 { 2076 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2077 2078 switch (reg->type) { 2079 case PTR_TO_PACKET: 2080 case PTR_TO_PACKET_META: 2081 return check_packet_access(env, regno, reg->off, access_size, 2082 zero_size_allowed); 2083 case PTR_TO_MAP_VALUE: 2084 return check_map_access(env, regno, reg->off, access_size, 2085 zero_size_allowed); 2086 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2087 return check_stack_boundary(env, regno, access_size, 2088 zero_size_allowed, meta); 2089 } 2090 } 2091 2092 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2093 { 2094 return type == ARG_PTR_TO_MEM || 2095 type == ARG_PTR_TO_MEM_OR_NULL || 2096 type == ARG_PTR_TO_UNINIT_MEM; 2097 } 2098 2099 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2100 { 2101 return type == ARG_CONST_SIZE || 2102 type == ARG_CONST_SIZE_OR_ZERO; 2103 } 2104 2105 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2106 enum bpf_arg_type arg_type, 2107 struct bpf_call_arg_meta *meta) 2108 { 2109 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2110 enum bpf_reg_type expected_type, type = reg->type; 2111 int err = 0; 2112 2113 if (arg_type == ARG_DONTCARE) 2114 return 0; 2115 2116 err = check_reg_arg(env, regno, SRC_OP); 2117 if (err) 2118 return err; 2119 2120 if (arg_type == ARG_ANYTHING) { 2121 if (is_pointer_value(env, regno)) { 2122 verbose(env, "R%d leaks addr into helper function\n", 2123 regno); 2124 return -EACCES; 2125 } 2126 return 0; 2127 } 2128 2129 if (type_is_pkt_pointer(type) && 2130 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2131 verbose(env, "helper access to the packet is not allowed\n"); 2132 return -EACCES; 2133 } 2134 2135 if (arg_type == ARG_PTR_TO_MAP_KEY || 2136 arg_type == ARG_PTR_TO_MAP_VALUE || 2137 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2138 expected_type = PTR_TO_STACK; 2139 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2140 type != expected_type) 2141 goto err_type; 2142 } else if (arg_type == ARG_CONST_SIZE || 2143 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2144 expected_type = SCALAR_VALUE; 2145 if (type != expected_type) 2146 goto err_type; 2147 } else if (arg_type == ARG_CONST_MAP_PTR) { 2148 expected_type = CONST_PTR_TO_MAP; 2149 if (type != expected_type) 2150 goto err_type; 2151 } else if (arg_type == ARG_PTR_TO_CTX) { 2152 expected_type = PTR_TO_CTX; 2153 if (type != expected_type) 2154 goto err_type; 2155 err = check_ctx_reg(env, reg, regno); 2156 if (err < 0) 2157 return err; 2158 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2159 expected_type = PTR_TO_SOCKET; 2160 if (type != expected_type) 2161 goto err_type; 2162 if (meta->ptr_id || !reg->id) { 2163 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2164 meta->ptr_id, reg->id); 2165 return -EFAULT; 2166 } 2167 meta->ptr_id = reg->id; 2168 } else if (arg_type_is_mem_ptr(arg_type)) { 2169 expected_type = PTR_TO_STACK; 2170 /* One exception here. In case function allows for NULL to be 2171 * passed in as argument, it's a SCALAR_VALUE type. Final test 2172 * happens during stack boundary checking. 2173 */ 2174 if (register_is_null(reg) && 2175 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2176 /* final test in check_stack_boundary() */; 2177 else if (!type_is_pkt_pointer(type) && 2178 type != PTR_TO_MAP_VALUE && 2179 type != expected_type) 2180 goto err_type; 2181 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2182 } else { 2183 verbose(env, "unsupported arg_type %d\n", arg_type); 2184 return -EFAULT; 2185 } 2186 2187 if (arg_type == ARG_CONST_MAP_PTR) { 2188 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2189 meta->map_ptr = reg->map_ptr; 2190 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2191 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2192 * check that [key, key + map->key_size) are within 2193 * stack limits and initialized 2194 */ 2195 if (!meta->map_ptr) { 2196 /* in function declaration map_ptr must come before 2197 * map_key, so that it's verified and known before 2198 * we have to check map_key here. Otherwise it means 2199 * that kernel subsystem misconfigured verifier 2200 */ 2201 verbose(env, "invalid map_ptr to access map->key\n"); 2202 return -EACCES; 2203 } 2204 err = check_helper_mem_access(env, regno, 2205 meta->map_ptr->key_size, false, 2206 NULL); 2207 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2208 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2209 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2210 * check [value, value + map->value_size) validity 2211 */ 2212 if (!meta->map_ptr) { 2213 /* kernel subsystem misconfigured verifier */ 2214 verbose(env, "invalid map_ptr to access map->value\n"); 2215 return -EACCES; 2216 } 2217 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2218 err = check_helper_mem_access(env, regno, 2219 meta->map_ptr->value_size, false, 2220 meta); 2221 } else if (arg_type_is_mem_size(arg_type)) { 2222 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2223 2224 /* remember the mem_size which may be used later 2225 * to refine return values. 2226 */ 2227 meta->msize_smax_value = reg->smax_value; 2228 meta->msize_umax_value = reg->umax_value; 2229 2230 /* The register is SCALAR_VALUE; the access check 2231 * happens using its boundaries. 2232 */ 2233 if (!tnum_is_const(reg->var_off)) 2234 /* For unprivileged variable accesses, disable raw 2235 * mode so that the program is required to 2236 * initialize all the memory that the helper could 2237 * just partially fill up. 2238 */ 2239 meta = NULL; 2240 2241 if (reg->smin_value < 0) { 2242 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2243 regno); 2244 return -EACCES; 2245 } 2246 2247 if (reg->umin_value == 0) { 2248 err = check_helper_mem_access(env, regno - 1, 0, 2249 zero_size_allowed, 2250 meta); 2251 if (err) 2252 return err; 2253 } 2254 2255 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2256 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2257 regno); 2258 return -EACCES; 2259 } 2260 err = check_helper_mem_access(env, regno - 1, 2261 reg->umax_value, 2262 zero_size_allowed, meta); 2263 } 2264 2265 return err; 2266 err_type: 2267 verbose(env, "R%d type=%s expected=%s\n", regno, 2268 reg_type_str[type], reg_type_str[expected_type]); 2269 return -EACCES; 2270 } 2271 2272 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2273 struct bpf_map *map, int func_id) 2274 { 2275 if (!map) 2276 return 0; 2277 2278 /* We need a two way check, first is from map perspective ... */ 2279 switch (map->map_type) { 2280 case BPF_MAP_TYPE_PROG_ARRAY: 2281 if (func_id != BPF_FUNC_tail_call) 2282 goto error; 2283 break; 2284 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2285 if (func_id != BPF_FUNC_perf_event_read && 2286 func_id != BPF_FUNC_perf_event_output && 2287 func_id != BPF_FUNC_perf_event_read_value) 2288 goto error; 2289 break; 2290 case BPF_MAP_TYPE_STACK_TRACE: 2291 if (func_id != BPF_FUNC_get_stackid) 2292 goto error; 2293 break; 2294 case BPF_MAP_TYPE_CGROUP_ARRAY: 2295 if (func_id != BPF_FUNC_skb_under_cgroup && 2296 func_id != BPF_FUNC_current_task_under_cgroup) 2297 goto error; 2298 break; 2299 case BPF_MAP_TYPE_CGROUP_STORAGE: 2300 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2301 if (func_id != BPF_FUNC_get_local_storage) 2302 goto error; 2303 break; 2304 /* devmap returns a pointer to a live net_device ifindex that we cannot 2305 * allow to be modified from bpf side. So do not allow lookup elements 2306 * for now. 2307 */ 2308 case BPF_MAP_TYPE_DEVMAP: 2309 if (func_id != BPF_FUNC_redirect_map) 2310 goto error; 2311 break; 2312 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2313 * appear. 2314 */ 2315 case BPF_MAP_TYPE_CPUMAP: 2316 case BPF_MAP_TYPE_XSKMAP: 2317 if (func_id != BPF_FUNC_redirect_map) 2318 goto error; 2319 break; 2320 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2321 case BPF_MAP_TYPE_HASH_OF_MAPS: 2322 if (func_id != BPF_FUNC_map_lookup_elem) 2323 goto error; 2324 break; 2325 case BPF_MAP_TYPE_SOCKMAP: 2326 if (func_id != BPF_FUNC_sk_redirect_map && 2327 func_id != BPF_FUNC_sock_map_update && 2328 func_id != BPF_FUNC_map_delete_elem && 2329 func_id != BPF_FUNC_msg_redirect_map) 2330 goto error; 2331 break; 2332 case BPF_MAP_TYPE_SOCKHASH: 2333 if (func_id != BPF_FUNC_sk_redirect_hash && 2334 func_id != BPF_FUNC_sock_hash_update && 2335 func_id != BPF_FUNC_map_delete_elem && 2336 func_id != BPF_FUNC_msg_redirect_hash) 2337 goto error; 2338 break; 2339 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2340 if (func_id != BPF_FUNC_sk_select_reuseport) 2341 goto error; 2342 break; 2343 case BPF_MAP_TYPE_QUEUE: 2344 case BPF_MAP_TYPE_STACK: 2345 if (func_id != BPF_FUNC_map_peek_elem && 2346 func_id != BPF_FUNC_map_pop_elem && 2347 func_id != BPF_FUNC_map_push_elem) 2348 goto error; 2349 break; 2350 default: 2351 break; 2352 } 2353 2354 /* ... and second from the function itself. */ 2355 switch (func_id) { 2356 case BPF_FUNC_tail_call: 2357 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2358 goto error; 2359 if (env->subprog_cnt > 1) { 2360 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2361 return -EINVAL; 2362 } 2363 break; 2364 case BPF_FUNC_perf_event_read: 2365 case BPF_FUNC_perf_event_output: 2366 case BPF_FUNC_perf_event_read_value: 2367 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2368 goto error; 2369 break; 2370 case BPF_FUNC_get_stackid: 2371 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2372 goto error; 2373 break; 2374 case BPF_FUNC_current_task_under_cgroup: 2375 case BPF_FUNC_skb_under_cgroup: 2376 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2377 goto error; 2378 break; 2379 case BPF_FUNC_redirect_map: 2380 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2381 map->map_type != BPF_MAP_TYPE_CPUMAP && 2382 map->map_type != BPF_MAP_TYPE_XSKMAP) 2383 goto error; 2384 break; 2385 case BPF_FUNC_sk_redirect_map: 2386 case BPF_FUNC_msg_redirect_map: 2387 case BPF_FUNC_sock_map_update: 2388 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2389 goto error; 2390 break; 2391 case BPF_FUNC_sk_redirect_hash: 2392 case BPF_FUNC_msg_redirect_hash: 2393 case BPF_FUNC_sock_hash_update: 2394 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2395 goto error; 2396 break; 2397 case BPF_FUNC_get_local_storage: 2398 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2399 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2400 goto error; 2401 break; 2402 case BPF_FUNC_sk_select_reuseport: 2403 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2404 goto error; 2405 break; 2406 case BPF_FUNC_map_peek_elem: 2407 case BPF_FUNC_map_pop_elem: 2408 case BPF_FUNC_map_push_elem: 2409 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2410 map->map_type != BPF_MAP_TYPE_STACK) 2411 goto error; 2412 break; 2413 default: 2414 break; 2415 } 2416 2417 return 0; 2418 error: 2419 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2420 map->map_type, func_id_name(func_id), func_id); 2421 return -EINVAL; 2422 } 2423 2424 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2425 { 2426 int count = 0; 2427 2428 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2429 count++; 2430 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2431 count++; 2432 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2433 count++; 2434 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2435 count++; 2436 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2437 count++; 2438 2439 /* We only support one arg being in raw mode at the moment, 2440 * which is sufficient for the helper functions we have 2441 * right now. 2442 */ 2443 return count <= 1; 2444 } 2445 2446 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2447 enum bpf_arg_type arg_next) 2448 { 2449 return (arg_type_is_mem_ptr(arg_curr) && 2450 !arg_type_is_mem_size(arg_next)) || 2451 (!arg_type_is_mem_ptr(arg_curr) && 2452 arg_type_is_mem_size(arg_next)); 2453 } 2454 2455 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2456 { 2457 /* bpf_xxx(..., buf, len) call will access 'len' 2458 * bytes from memory 'buf'. Both arg types need 2459 * to be paired, so make sure there's no buggy 2460 * helper function specification. 2461 */ 2462 if (arg_type_is_mem_size(fn->arg1_type) || 2463 arg_type_is_mem_ptr(fn->arg5_type) || 2464 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2465 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2466 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2467 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2468 return false; 2469 2470 return true; 2471 } 2472 2473 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2474 { 2475 int count = 0; 2476 2477 if (arg_type_is_refcounted(fn->arg1_type)) 2478 count++; 2479 if (arg_type_is_refcounted(fn->arg2_type)) 2480 count++; 2481 if (arg_type_is_refcounted(fn->arg3_type)) 2482 count++; 2483 if (arg_type_is_refcounted(fn->arg4_type)) 2484 count++; 2485 if (arg_type_is_refcounted(fn->arg5_type)) 2486 count++; 2487 2488 /* We only support one arg being unreferenced at the moment, 2489 * which is sufficient for the helper functions we have right now. 2490 */ 2491 return count <= 1; 2492 } 2493 2494 static int check_func_proto(const struct bpf_func_proto *fn) 2495 { 2496 return check_raw_mode_ok(fn) && 2497 check_arg_pair_ok(fn) && 2498 check_refcount_ok(fn) ? 0 : -EINVAL; 2499 } 2500 2501 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2502 * are now invalid, so turn them into unknown SCALAR_VALUE. 2503 */ 2504 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2505 struct bpf_func_state *state) 2506 { 2507 struct bpf_reg_state *regs = state->regs, *reg; 2508 int i; 2509 2510 for (i = 0; i < MAX_BPF_REG; i++) 2511 if (reg_is_pkt_pointer_any(®s[i])) 2512 mark_reg_unknown(env, regs, i); 2513 2514 bpf_for_each_spilled_reg(i, state, reg) { 2515 if (!reg) 2516 continue; 2517 if (reg_is_pkt_pointer_any(reg)) 2518 __mark_reg_unknown(reg); 2519 } 2520 } 2521 2522 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2523 { 2524 struct bpf_verifier_state *vstate = env->cur_state; 2525 int i; 2526 2527 for (i = 0; i <= vstate->curframe; i++) 2528 __clear_all_pkt_pointers(env, vstate->frame[i]); 2529 } 2530 2531 static void release_reg_references(struct bpf_verifier_env *env, 2532 struct bpf_func_state *state, int id) 2533 { 2534 struct bpf_reg_state *regs = state->regs, *reg; 2535 int i; 2536 2537 for (i = 0; i < MAX_BPF_REG; i++) 2538 if (regs[i].id == id) 2539 mark_reg_unknown(env, regs, i); 2540 2541 bpf_for_each_spilled_reg(i, state, reg) { 2542 if (!reg) 2543 continue; 2544 if (reg_is_refcounted(reg) && reg->id == id) 2545 __mark_reg_unknown(reg); 2546 } 2547 } 2548 2549 /* The pointer with the specified id has released its reference to kernel 2550 * resources. Identify all copies of the same pointer and clear the reference. 2551 */ 2552 static int release_reference(struct bpf_verifier_env *env, 2553 struct bpf_call_arg_meta *meta) 2554 { 2555 struct bpf_verifier_state *vstate = env->cur_state; 2556 int i; 2557 2558 for (i = 0; i <= vstate->curframe; i++) 2559 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2560 2561 return release_reference_state(env, meta->ptr_id); 2562 } 2563 2564 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2565 int *insn_idx) 2566 { 2567 struct bpf_verifier_state *state = env->cur_state; 2568 struct bpf_func_state *caller, *callee; 2569 int i, err, subprog, target_insn; 2570 2571 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2572 verbose(env, "the call stack of %d frames is too deep\n", 2573 state->curframe + 2); 2574 return -E2BIG; 2575 } 2576 2577 target_insn = *insn_idx + insn->imm; 2578 subprog = find_subprog(env, target_insn + 1); 2579 if (subprog < 0) { 2580 verbose(env, "verifier bug. No program starts at insn %d\n", 2581 target_insn + 1); 2582 return -EFAULT; 2583 } 2584 2585 caller = state->frame[state->curframe]; 2586 if (state->frame[state->curframe + 1]) { 2587 verbose(env, "verifier bug. Frame %d already allocated\n", 2588 state->curframe + 1); 2589 return -EFAULT; 2590 } 2591 2592 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2593 if (!callee) 2594 return -ENOMEM; 2595 state->frame[state->curframe + 1] = callee; 2596 2597 /* callee cannot access r0, r6 - r9 for reading and has to write 2598 * into its own stack before reading from it. 2599 * callee can read/write into caller's stack 2600 */ 2601 init_func_state(env, callee, 2602 /* remember the callsite, it will be used by bpf_exit */ 2603 *insn_idx /* callsite */, 2604 state->curframe + 1 /* frameno within this callchain */, 2605 subprog /* subprog number within this prog */); 2606 2607 /* Transfer references to the callee */ 2608 err = transfer_reference_state(callee, caller); 2609 if (err) 2610 return err; 2611 2612 /* copy r1 - r5 args that callee can access. The copy includes parent 2613 * pointers, which connects us up to the liveness chain 2614 */ 2615 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2616 callee->regs[i] = caller->regs[i]; 2617 2618 /* after the call registers r0 - r5 were scratched */ 2619 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2620 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2621 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2622 } 2623 2624 /* only increment it after check_reg_arg() finished */ 2625 state->curframe++; 2626 2627 /* and go analyze first insn of the callee */ 2628 *insn_idx = target_insn; 2629 2630 if (env->log.level) { 2631 verbose(env, "caller:\n"); 2632 print_verifier_state(env, caller); 2633 verbose(env, "callee:\n"); 2634 print_verifier_state(env, callee); 2635 } 2636 return 0; 2637 } 2638 2639 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2640 { 2641 struct bpf_verifier_state *state = env->cur_state; 2642 struct bpf_func_state *caller, *callee; 2643 struct bpf_reg_state *r0; 2644 int err; 2645 2646 callee = state->frame[state->curframe]; 2647 r0 = &callee->regs[BPF_REG_0]; 2648 if (r0->type == PTR_TO_STACK) { 2649 /* technically it's ok to return caller's stack pointer 2650 * (or caller's caller's pointer) back to the caller, 2651 * since these pointers are valid. Only current stack 2652 * pointer will be invalid as soon as function exits, 2653 * but let's be conservative 2654 */ 2655 verbose(env, "cannot return stack pointer to the caller\n"); 2656 return -EINVAL; 2657 } 2658 2659 state->curframe--; 2660 caller = state->frame[state->curframe]; 2661 /* return to the caller whatever r0 had in the callee */ 2662 caller->regs[BPF_REG_0] = *r0; 2663 2664 /* Transfer references to the caller */ 2665 err = transfer_reference_state(caller, callee); 2666 if (err) 2667 return err; 2668 2669 *insn_idx = callee->callsite + 1; 2670 if (env->log.level) { 2671 verbose(env, "returning from callee:\n"); 2672 print_verifier_state(env, callee); 2673 verbose(env, "to caller at %d:\n", *insn_idx); 2674 print_verifier_state(env, caller); 2675 } 2676 /* clear everything in the callee */ 2677 free_func_state(callee); 2678 state->frame[state->curframe + 1] = NULL; 2679 return 0; 2680 } 2681 2682 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2683 int func_id, 2684 struct bpf_call_arg_meta *meta) 2685 { 2686 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2687 2688 if (ret_type != RET_INTEGER || 2689 (func_id != BPF_FUNC_get_stack && 2690 func_id != BPF_FUNC_probe_read_str)) 2691 return; 2692 2693 ret_reg->smax_value = meta->msize_smax_value; 2694 ret_reg->umax_value = meta->msize_umax_value; 2695 __reg_deduce_bounds(ret_reg); 2696 __reg_bound_offset(ret_reg); 2697 } 2698 2699 static int 2700 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2701 int func_id, int insn_idx) 2702 { 2703 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2704 2705 if (func_id != BPF_FUNC_tail_call && 2706 func_id != BPF_FUNC_map_lookup_elem && 2707 func_id != BPF_FUNC_map_update_elem && 2708 func_id != BPF_FUNC_map_delete_elem && 2709 func_id != BPF_FUNC_map_push_elem && 2710 func_id != BPF_FUNC_map_pop_elem && 2711 func_id != BPF_FUNC_map_peek_elem) 2712 return 0; 2713 2714 if (meta->map_ptr == NULL) { 2715 verbose(env, "kernel subsystem misconfigured verifier\n"); 2716 return -EINVAL; 2717 } 2718 2719 if (!BPF_MAP_PTR(aux->map_state)) 2720 bpf_map_ptr_store(aux, meta->map_ptr, 2721 meta->map_ptr->unpriv_array); 2722 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2723 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2724 meta->map_ptr->unpriv_array); 2725 return 0; 2726 } 2727 2728 static int check_reference_leak(struct bpf_verifier_env *env) 2729 { 2730 struct bpf_func_state *state = cur_func(env); 2731 int i; 2732 2733 for (i = 0; i < state->acquired_refs; i++) { 2734 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2735 state->refs[i].id, state->refs[i].insn_idx); 2736 } 2737 return state->acquired_refs ? -EINVAL : 0; 2738 } 2739 2740 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2741 { 2742 const struct bpf_func_proto *fn = NULL; 2743 struct bpf_reg_state *regs; 2744 struct bpf_call_arg_meta meta; 2745 bool changes_data; 2746 int i, err; 2747 2748 /* find function prototype */ 2749 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2750 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2751 func_id); 2752 return -EINVAL; 2753 } 2754 2755 if (env->ops->get_func_proto) 2756 fn = env->ops->get_func_proto(func_id, env->prog); 2757 if (!fn) { 2758 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2759 func_id); 2760 return -EINVAL; 2761 } 2762 2763 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2764 if (!env->prog->gpl_compatible && fn->gpl_only) { 2765 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2766 return -EINVAL; 2767 } 2768 2769 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2770 changes_data = bpf_helper_changes_pkt_data(fn->func); 2771 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2772 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2773 func_id_name(func_id), func_id); 2774 return -EINVAL; 2775 } 2776 2777 memset(&meta, 0, sizeof(meta)); 2778 meta.pkt_access = fn->pkt_access; 2779 2780 err = check_func_proto(fn); 2781 if (err) { 2782 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2783 func_id_name(func_id), func_id); 2784 return err; 2785 } 2786 2787 /* check args */ 2788 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2789 if (err) 2790 return err; 2791 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2792 if (err) 2793 return err; 2794 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2795 if (err) 2796 return err; 2797 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2798 if (err) 2799 return err; 2800 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2801 if (err) 2802 return err; 2803 2804 err = record_func_map(env, &meta, func_id, insn_idx); 2805 if (err) 2806 return err; 2807 2808 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2809 * is inferred from register state. 2810 */ 2811 for (i = 0; i < meta.access_size; i++) { 2812 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2813 BPF_WRITE, -1, false); 2814 if (err) 2815 return err; 2816 } 2817 2818 if (func_id == BPF_FUNC_tail_call) { 2819 err = check_reference_leak(env); 2820 if (err) { 2821 verbose(env, "tail_call would lead to reference leak\n"); 2822 return err; 2823 } 2824 } else if (is_release_function(func_id)) { 2825 err = release_reference(env, &meta); 2826 if (err) 2827 return err; 2828 } 2829 2830 regs = cur_regs(env); 2831 2832 /* check that flags argument in get_local_storage(map, flags) is 0, 2833 * this is required because get_local_storage() can't return an error. 2834 */ 2835 if (func_id == BPF_FUNC_get_local_storage && 2836 !register_is_null(®s[BPF_REG_2])) { 2837 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2838 return -EINVAL; 2839 } 2840 2841 /* reset caller saved regs */ 2842 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2843 mark_reg_not_init(env, regs, caller_saved[i]); 2844 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2845 } 2846 2847 /* update return register (already marked as written above) */ 2848 if (fn->ret_type == RET_INTEGER) { 2849 /* sets type to SCALAR_VALUE */ 2850 mark_reg_unknown(env, regs, BPF_REG_0); 2851 } else if (fn->ret_type == RET_VOID) { 2852 regs[BPF_REG_0].type = NOT_INIT; 2853 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2854 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2855 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) 2856 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2857 else 2858 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2859 /* There is no offset yet applied, variable or fixed */ 2860 mark_reg_known_zero(env, regs, BPF_REG_0); 2861 /* remember map_ptr, so that check_map_access() 2862 * can check 'value_size' boundary of memory access 2863 * to map element returned from bpf_map_lookup_elem() 2864 */ 2865 if (meta.map_ptr == NULL) { 2866 verbose(env, 2867 "kernel subsystem misconfigured verifier\n"); 2868 return -EINVAL; 2869 } 2870 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2871 regs[BPF_REG_0].id = ++env->id_gen; 2872 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2873 int id = acquire_reference_state(env, insn_idx); 2874 if (id < 0) 2875 return id; 2876 mark_reg_known_zero(env, regs, BPF_REG_0); 2877 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2878 regs[BPF_REG_0].id = id; 2879 } else { 2880 verbose(env, "unknown return type %d of func %s#%d\n", 2881 fn->ret_type, func_id_name(func_id), func_id); 2882 return -EINVAL; 2883 } 2884 2885 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2886 2887 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2888 if (err) 2889 return err; 2890 2891 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2892 const char *err_str; 2893 2894 #ifdef CONFIG_PERF_EVENTS 2895 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2896 err_str = "cannot get callchain buffer for func %s#%d\n"; 2897 #else 2898 err = -ENOTSUPP; 2899 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2900 #endif 2901 if (err) { 2902 verbose(env, err_str, func_id_name(func_id), func_id); 2903 return err; 2904 } 2905 2906 env->prog->has_callchain_buf = true; 2907 } 2908 2909 if (changes_data) 2910 clear_all_pkt_pointers(env); 2911 return 0; 2912 } 2913 2914 static bool signed_add_overflows(s64 a, s64 b) 2915 { 2916 /* Do the add in u64, where overflow is well-defined */ 2917 s64 res = (s64)((u64)a + (u64)b); 2918 2919 if (b < 0) 2920 return res > a; 2921 return res < a; 2922 } 2923 2924 static bool signed_sub_overflows(s64 a, s64 b) 2925 { 2926 /* Do the sub in u64, where overflow is well-defined */ 2927 s64 res = (s64)((u64)a - (u64)b); 2928 2929 if (b < 0) 2930 return res < a; 2931 return res > a; 2932 } 2933 2934 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2935 const struct bpf_reg_state *reg, 2936 enum bpf_reg_type type) 2937 { 2938 bool known = tnum_is_const(reg->var_off); 2939 s64 val = reg->var_off.value; 2940 s64 smin = reg->smin_value; 2941 2942 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2943 verbose(env, "math between %s pointer and %lld is not allowed\n", 2944 reg_type_str[type], val); 2945 return false; 2946 } 2947 2948 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2949 verbose(env, "%s pointer offset %d is not allowed\n", 2950 reg_type_str[type], reg->off); 2951 return false; 2952 } 2953 2954 if (smin == S64_MIN) { 2955 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2956 reg_type_str[type]); 2957 return false; 2958 } 2959 2960 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2961 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2962 smin, reg_type_str[type]); 2963 return false; 2964 } 2965 2966 return true; 2967 } 2968 2969 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2970 * Caller should also handle BPF_MOV case separately. 2971 * If we return -EACCES, caller may want to try again treating pointer as a 2972 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2973 */ 2974 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2975 struct bpf_insn *insn, 2976 const struct bpf_reg_state *ptr_reg, 2977 const struct bpf_reg_state *off_reg) 2978 { 2979 struct bpf_verifier_state *vstate = env->cur_state; 2980 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2981 struct bpf_reg_state *regs = state->regs, *dst_reg; 2982 bool known = tnum_is_const(off_reg->var_off); 2983 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2984 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2985 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2986 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2987 u8 opcode = BPF_OP(insn->code); 2988 u32 dst = insn->dst_reg; 2989 2990 dst_reg = ®s[dst]; 2991 2992 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2993 smin_val > smax_val || umin_val > umax_val) { 2994 /* Taint dst register if offset had invalid bounds derived from 2995 * e.g. dead branches. 2996 */ 2997 __mark_reg_unknown(dst_reg); 2998 return 0; 2999 } 3000 3001 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3002 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3003 verbose(env, 3004 "R%d 32-bit pointer arithmetic prohibited\n", 3005 dst); 3006 return -EACCES; 3007 } 3008 3009 switch (ptr_reg->type) { 3010 case PTR_TO_MAP_VALUE_OR_NULL: 3011 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3012 dst, reg_type_str[ptr_reg->type]); 3013 return -EACCES; 3014 case CONST_PTR_TO_MAP: 3015 case PTR_TO_PACKET_END: 3016 case PTR_TO_SOCKET: 3017 case PTR_TO_SOCKET_OR_NULL: 3018 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3019 dst, reg_type_str[ptr_reg->type]); 3020 return -EACCES; 3021 default: 3022 break; 3023 } 3024 3025 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3026 * The id may be overwritten later if we create a new variable offset. 3027 */ 3028 dst_reg->type = ptr_reg->type; 3029 dst_reg->id = ptr_reg->id; 3030 3031 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3032 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3033 return -EINVAL; 3034 3035 switch (opcode) { 3036 case BPF_ADD: 3037 /* We can take a fixed offset as long as it doesn't overflow 3038 * the s32 'off' field 3039 */ 3040 if (known && (ptr_reg->off + smin_val == 3041 (s64)(s32)(ptr_reg->off + smin_val))) { 3042 /* pointer += K. Accumulate it into fixed offset */ 3043 dst_reg->smin_value = smin_ptr; 3044 dst_reg->smax_value = smax_ptr; 3045 dst_reg->umin_value = umin_ptr; 3046 dst_reg->umax_value = umax_ptr; 3047 dst_reg->var_off = ptr_reg->var_off; 3048 dst_reg->off = ptr_reg->off + smin_val; 3049 dst_reg->range = ptr_reg->range; 3050 break; 3051 } 3052 /* A new variable offset is created. Note that off_reg->off 3053 * == 0, since it's a scalar. 3054 * dst_reg gets the pointer type and since some positive 3055 * integer value was added to the pointer, give it a new 'id' 3056 * if it's a PTR_TO_PACKET. 3057 * this creates a new 'base' pointer, off_reg (variable) gets 3058 * added into the variable offset, and we copy the fixed offset 3059 * from ptr_reg. 3060 */ 3061 if (signed_add_overflows(smin_ptr, smin_val) || 3062 signed_add_overflows(smax_ptr, smax_val)) { 3063 dst_reg->smin_value = S64_MIN; 3064 dst_reg->smax_value = S64_MAX; 3065 } else { 3066 dst_reg->smin_value = smin_ptr + smin_val; 3067 dst_reg->smax_value = smax_ptr + smax_val; 3068 } 3069 if (umin_ptr + umin_val < umin_ptr || 3070 umax_ptr + umax_val < umax_ptr) { 3071 dst_reg->umin_value = 0; 3072 dst_reg->umax_value = U64_MAX; 3073 } else { 3074 dst_reg->umin_value = umin_ptr + umin_val; 3075 dst_reg->umax_value = umax_ptr + umax_val; 3076 } 3077 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3078 dst_reg->off = ptr_reg->off; 3079 if (reg_is_pkt_pointer(ptr_reg)) { 3080 dst_reg->id = ++env->id_gen; 3081 /* something was added to pkt_ptr, set range to zero */ 3082 dst_reg->range = 0; 3083 } 3084 break; 3085 case BPF_SUB: 3086 if (dst_reg == off_reg) { 3087 /* scalar -= pointer. Creates an unknown scalar */ 3088 verbose(env, "R%d tried to subtract pointer from scalar\n", 3089 dst); 3090 return -EACCES; 3091 } 3092 /* We don't allow subtraction from FP, because (according to 3093 * test_verifier.c test "invalid fp arithmetic", JITs might not 3094 * be able to deal with it. 3095 */ 3096 if (ptr_reg->type == PTR_TO_STACK) { 3097 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3098 dst); 3099 return -EACCES; 3100 } 3101 if (known && (ptr_reg->off - smin_val == 3102 (s64)(s32)(ptr_reg->off - smin_val))) { 3103 /* pointer -= K. Subtract it from fixed offset */ 3104 dst_reg->smin_value = smin_ptr; 3105 dst_reg->smax_value = smax_ptr; 3106 dst_reg->umin_value = umin_ptr; 3107 dst_reg->umax_value = umax_ptr; 3108 dst_reg->var_off = ptr_reg->var_off; 3109 dst_reg->id = ptr_reg->id; 3110 dst_reg->off = ptr_reg->off - smin_val; 3111 dst_reg->range = ptr_reg->range; 3112 break; 3113 } 3114 /* A new variable offset is created. If the subtrahend is known 3115 * nonnegative, then any reg->range we had before is still good. 3116 */ 3117 if (signed_sub_overflows(smin_ptr, smax_val) || 3118 signed_sub_overflows(smax_ptr, smin_val)) { 3119 /* Overflow possible, we know nothing */ 3120 dst_reg->smin_value = S64_MIN; 3121 dst_reg->smax_value = S64_MAX; 3122 } else { 3123 dst_reg->smin_value = smin_ptr - smax_val; 3124 dst_reg->smax_value = smax_ptr - smin_val; 3125 } 3126 if (umin_ptr < umax_val) { 3127 /* Overflow possible, we know nothing */ 3128 dst_reg->umin_value = 0; 3129 dst_reg->umax_value = U64_MAX; 3130 } else { 3131 /* Cannot overflow (as long as bounds are consistent) */ 3132 dst_reg->umin_value = umin_ptr - umax_val; 3133 dst_reg->umax_value = umax_ptr - umin_val; 3134 } 3135 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3136 dst_reg->off = ptr_reg->off; 3137 if (reg_is_pkt_pointer(ptr_reg)) { 3138 dst_reg->id = ++env->id_gen; 3139 /* something was added to pkt_ptr, set range to zero */ 3140 if (smin_val < 0) 3141 dst_reg->range = 0; 3142 } 3143 break; 3144 case BPF_AND: 3145 case BPF_OR: 3146 case BPF_XOR: 3147 /* bitwise ops on pointers are troublesome, prohibit. */ 3148 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3149 dst, bpf_alu_string[opcode >> 4]); 3150 return -EACCES; 3151 default: 3152 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3153 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3154 dst, bpf_alu_string[opcode >> 4]); 3155 return -EACCES; 3156 } 3157 3158 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3159 return -EINVAL; 3160 3161 __update_reg_bounds(dst_reg); 3162 __reg_deduce_bounds(dst_reg); 3163 __reg_bound_offset(dst_reg); 3164 return 0; 3165 } 3166 3167 /* WARNING: This function does calculations on 64-bit values, but the actual 3168 * execution may occur on 32-bit values. Therefore, things like bitshifts 3169 * need extra checks in the 32-bit case. 3170 */ 3171 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3172 struct bpf_insn *insn, 3173 struct bpf_reg_state *dst_reg, 3174 struct bpf_reg_state src_reg) 3175 { 3176 struct bpf_reg_state *regs = cur_regs(env); 3177 u8 opcode = BPF_OP(insn->code); 3178 bool src_known, dst_known; 3179 s64 smin_val, smax_val; 3180 u64 umin_val, umax_val; 3181 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3182 3183 if (insn_bitness == 32) { 3184 /* Relevant for 32-bit RSH: Information can propagate towards 3185 * LSB, so it isn't sufficient to only truncate the output to 3186 * 32 bits. 3187 */ 3188 coerce_reg_to_size(dst_reg, 4); 3189 coerce_reg_to_size(&src_reg, 4); 3190 } 3191 3192 smin_val = src_reg.smin_value; 3193 smax_val = src_reg.smax_value; 3194 umin_val = src_reg.umin_value; 3195 umax_val = src_reg.umax_value; 3196 src_known = tnum_is_const(src_reg.var_off); 3197 dst_known = tnum_is_const(dst_reg->var_off); 3198 3199 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3200 smin_val > smax_val || umin_val > umax_val) { 3201 /* Taint dst register if offset had invalid bounds derived from 3202 * e.g. dead branches. 3203 */ 3204 __mark_reg_unknown(dst_reg); 3205 return 0; 3206 } 3207 3208 if (!src_known && 3209 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3210 __mark_reg_unknown(dst_reg); 3211 return 0; 3212 } 3213 3214 switch (opcode) { 3215 case BPF_ADD: 3216 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3217 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3218 dst_reg->smin_value = S64_MIN; 3219 dst_reg->smax_value = S64_MAX; 3220 } else { 3221 dst_reg->smin_value += smin_val; 3222 dst_reg->smax_value += smax_val; 3223 } 3224 if (dst_reg->umin_value + umin_val < umin_val || 3225 dst_reg->umax_value + umax_val < umax_val) { 3226 dst_reg->umin_value = 0; 3227 dst_reg->umax_value = U64_MAX; 3228 } else { 3229 dst_reg->umin_value += umin_val; 3230 dst_reg->umax_value += umax_val; 3231 } 3232 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3233 break; 3234 case BPF_SUB: 3235 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3236 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3237 /* Overflow possible, we know nothing */ 3238 dst_reg->smin_value = S64_MIN; 3239 dst_reg->smax_value = S64_MAX; 3240 } else { 3241 dst_reg->smin_value -= smax_val; 3242 dst_reg->smax_value -= smin_val; 3243 } 3244 if (dst_reg->umin_value < umax_val) { 3245 /* Overflow possible, we know nothing */ 3246 dst_reg->umin_value = 0; 3247 dst_reg->umax_value = U64_MAX; 3248 } else { 3249 /* Cannot overflow (as long as bounds are consistent) */ 3250 dst_reg->umin_value -= umax_val; 3251 dst_reg->umax_value -= umin_val; 3252 } 3253 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3254 break; 3255 case BPF_MUL: 3256 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3257 if (smin_val < 0 || dst_reg->smin_value < 0) { 3258 /* Ain't nobody got time to multiply that sign */ 3259 __mark_reg_unbounded(dst_reg); 3260 __update_reg_bounds(dst_reg); 3261 break; 3262 } 3263 /* Both values are positive, so we can work with unsigned and 3264 * copy the result to signed (unless it exceeds S64_MAX). 3265 */ 3266 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3267 /* Potential overflow, we know nothing */ 3268 __mark_reg_unbounded(dst_reg); 3269 /* (except what we can learn from the var_off) */ 3270 __update_reg_bounds(dst_reg); 3271 break; 3272 } 3273 dst_reg->umin_value *= umin_val; 3274 dst_reg->umax_value *= umax_val; 3275 if (dst_reg->umax_value > S64_MAX) { 3276 /* Overflow possible, we know nothing */ 3277 dst_reg->smin_value = S64_MIN; 3278 dst_reg->smax_value = S64_MAX; 3279 } else { 3280 dst_reg->smin_value = dst_reg->umin_value; 3281 dst_reg->smax_value = dst_reg->umax_value; 3282 } 3283 break; 3284 case BPF_AND: 3285 if (src_known && dst_known) { 3286 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3287 src_reg.var_off.value); 3288 break; 3289 } 3290 /* We get our minimum from the var_off, since that's inherently 3291 * bitwise. Our maximum is the minimum of the operands' maxima. 3292 */ 3293 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3294 dst_reg->umin_value = dst_reg->var_off.value; 3295 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3296 if (dst_reg->smin_value < 0 || smin_val < 0) { 3297 /* Lose signed bounds when ANDing negative numbers, 3298 * ain't nobody got time for that. 3299 */ 3300 dst_reg->smin_value = S64_MIN; 3301 dst_reg->smax_value = S64_MAX; 3302 } else { 3303 /* ANDing two positives gives a positive, so safe to 3304 * cast result into s64. 3305 */ 3306 dst_reg->smin_value = dst_reg->umin_value; 3307 dst_reg->smax_value = dst_reg->umax_value; 3308 } 3309 /* We may learn something more from the var_off */ 3310 __update_reg_bounds(dst_reg); 3311 break; 3312 case BPF_OR: 3313 if (src_known && dst_known) { 3314 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3315 src_reg.var_off.value); 3316 break; 3317 } 3318 /* We get our maximum from the var_off, and our minimum is the 3319 * maximum of the operands' minima 3320 */ 3321 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3322 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3323 dst_reg->umax_value = dst_reg->var_off.value | 3324 dst_reg->var_off.mask; 3325 if (dst_reg->smin_value < 0 || smin_val < 0) { 3326 /* Lose signed bounds when ORing negative numbers, 3327 * ain't nobody got time for that. 3328 */ 3329 dst_reg->smin_value = S64_MIN; 3330 dst_reg->smax_value = S64_MAX; 3331 } else { 3332 /* ORing two positives gives a positive, so safe to 3333 * cast result into s64. 3334 */ 3335 dst_reg->smin_value = dst_reg->umin_value; 3336 dst_reg->smax_value = dst_reg->umax_value; 3337 } 3338 /* We may learn something more from the var_off */ 3339 __update_reg_bounds(dst_reg); 3340 break; 3341 case BPF_LSH: 3342 if (umax_val >= insn_bitness) { 3343 /* Shifts greater than 31 or 63 are undefined. 3344 * This includes shifts by a negative number. 3345 */ 3346 mark_reg_unknown(env, regs, insn->dst_reg); 3347 break; 3348 } 3349 /* We lose all sign bit information (except what we can pick 3350 * up from var_off) 3351 */ 3352 dst_reg->smin_value = S64_MIN; 3353 dst_reg->smax_value = S64_MAX; 3354 /* If we might shift our top bit out, then we know nothing */ 3355 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3356 dst_reg->umin_value = 0; 3357 dst_reg->umax_value = U64_MAX; 3358 } else { 3359 dst_reg->umin_value <<= umin_val; 3360 dst_reg->umax_value <<= umax_val; 3361 } 3362 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3363 /* We may learn something more from the var_off */ 3364 __update_reg_bounds(dst_reg); 3365 break; 3366 case BPF_RSH: 3367 if (umax_val >= insn_bitness) { 3368 /* Shifts greater than 31 or 63 are undefined. 3369 * This includes shifts by a negative number. 3370 */ 3371 mark_reg_unknown(env, regs, insn->dst_reg); 3372 break; 3373 } 3374 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3375 * be negative, then either: 3376 * 1) src_reg might be zero, so the sign bit of the result is 3377 * unknown, so we lose our signed bounds 3378 * 2) it's known negative, thus the unsigned bounds capture the 3379 * signed bounds 3380 * 3) the signed bounds cross zero, so they tell us nothing 3381 * about the result 3382 * If the value in dst_reg is known nonnegative, then again the 3383 * unsigned bounts capture the signed bounds. 3384 * Thus, in all cases it suffices to blow away our signed bounds 3385 * and rely on inferring new ones from the unsigned bounds and 3386 * var_off of the result. 3387 */ 3388 dst_reg->smin_value = S64_MIN; 3389 dst_reg->smax_value = S64_MAX; 3390 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3391 dst_reg->umin_value >>= umax_val; 3392 dst_reg->umax_value >>= umin_val; 3393 /* We may learn something more from the var_off */ 3394 __update_reg_bounds(dst_reg); 3395 break; 3396 case BPF_ARSH: 3397 if (umax_val >= insn_bitness) { 3398 /* Shifts greater than 31 or 63 are undefined. 3399 * This includes shifts by a negative number. 3400 */ 3401 mark_reg_unknown(env, regs, insn->dst_reg); 3402 break; 3403 } 3404 3405 /* Upon reaching here, src_known is true and 3406 * umax_val is equal to umin_val. 3407 */ 3408 dst_reg->smin_value >>= umin_val; 3409 dst_reg->smax_value >>= umin_val; 3410 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3411 3412 /* blow away the dst_reg umin_value/umax_value and rely on 3413 * dst_reg var_off to refine the result. 3414 */ 3415 dst_reg->umin_value = 0; 3416 dst_reg->umax_value = U64_MAX; 3417 __update_reg_bounds(dst_reg); 3418 break; 3419 default: 3420 mark_reg_unknown(env, regs, insn->dst_reg); 3421 break; 3422 } 3423 3424 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3425 /* 32-bit ALU ops are (32,32)->32 */ 3426 coerce_reg_to_size(dst_reg, 4); 3427 } 3428 3429 __reg_deduce_bounds(dst_reg); 3430 __reg_bound_offset(dst_reg); 3431 return 0; 3432 } 3433 3434 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3435 * and var_off. 3436 */ 3437 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3438 struct bpf_insn *insn) 3439 { 3440 struct bpf_verifier_state *vstate = env->cur_state; 3441 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3442 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3443 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3444 u8 opcode = BPF_OP(insn->code); 3445 3446 dst_reg = ®s[insn->dst_reg]; 3447 src_reg = NULL; 3448 if (dst_reg->type != SCALAR_VALUE) 3449 ptr_reg = dst_reg; 3450 if (BPF_SRC(insn->code) == BPF_X) { 3451 src_reg = ®s[insn->src_reg]; 3452 if (src_reg->type != SCALAR_VALUE) { 3453 if (dst_reg->type != SCALAR_VALUE) { 3454 /* Combining two pointers by any ALU op yields 3455 * an arbitrary scalar. Disallow all math except 3456 * pointer subtraction 3457 */ 3458 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3459 mark_reg_unknown(env, regs, insn->dst_reg); 3460 return 0; 3461 } 3462 verbose(env, "R%d pointer %s pointer prohibited\n", 3463 insn->dst_reg, 3464 bpf_alu_string[opcode >> 4]); 3465 return -EACCES; 3466 } else { 3467 /* scalar += pointer 3468 * This is legal, but we have to reverse our 3469 * src/dest handling in computing the range 3470 */ 3471 return adjust_ptr_min_max_vals(env, insn, 3472 src_reg, dst_reg); 3473 } 3474 } else if (ptr_reg) { 3475 /* pointer += scalar */ 3476 return adjust_ptr_min_max_vals(env, insn, 3477 dst_reg, src_reg); 3478 } 3479 } else { 3480 /* Pretend the src is a reg with a known value, since we only 3481 * need to be able to read from this state. 3482 */ 3483 off_reg.type = SCALAR_VALUE; 3484 __mark_reg_known(&off_reg, insn->imm); 3485 src_reg = &off_reg; 3486 if (ptr_reg) /* pointer += K */ 3487 return adjust_ptr_min_max_vals(env, insn, 3488 ptr_reg, src_reg); 3489 } 3490 3491 /* Got here implies adding two SCALAR_VALUEs */ 3492 if (WARN_ON_ONCE(ptr_reg)) { 3493 print_verifier_state(env, state); 3494 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3495 return -EINVAL; 3496 } 3497 if (WARN_ON(!src_reg)) { 3498 print_verifier_state(env, state); 3499 verbose(env, "verifier internal error: no src_reg\n"); 3500 return -EINVAL; 3501 } 3502 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3503 } 3504 3505 /* check validity of 32-bit and 64-bit arithmetic operations */ 3506 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3507 { 3508 struct bpf_reg_state *regs = cur_regs(env); 3509 u8 opcode = BPF_OP(insn->code); 3510 int err; 3511 3512 if (opcode == BPF_END || opcode == BPF_NEG) { 3513 if (opcode == BPF_NEG) { 3514 if (BPF_SRC(insn->code) != 0 || 3515 insn->src_reg != BPF_REG_0 || 3516 insn->off != 0 || insn->imm != 0) { 3517 verbose(env, "BPF_NEG uses reserved fields\n"); 3518 return -EINVAL; 3519 } 3520 } else { 3521 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3522 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3523 BPF_CLASS(insn->code) == BPF_ALU64) { 3524 verbose(env, "BPF_END uses reserved fields\n"); 3525 return -EINVAL; 3526 } 3527 } 3528 3529 /* check src operand */ 3530 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3531 if (err) 3532 return err; 3533 3534 if (is_pointer_value(env, insn->dst_reg)) { 3535 verbose(env, "R%d pointer arithmetic prohibited\n", 3536 insn->dst_reg); 3537 return -EACCES; 3538 } 3539 3540 /* check dest operand */ 3541 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3542 if (err) 3543 return err; 3544 3545 } else if (opcode == BPF_MOV) { 3546 3547 if (BPF_SRC(insn->code) == BPF_X) { 3548 if (insn->imm != 0 || insn->off != 0) { 3549 verbose(env, "BPF_MOV uses reserved fields\n"); 3550 return -EINVAL; 3551 } 3552 3553 /* check src operand */ 3554 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3555 if (err) 3556 return err; 3557 } else { 3558 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3559 verbose(env, "BPF_MOV uses reserved fields\n"); 3560 return -EINVAL; 3561 } 3562 } 3563 3564 /* check dest operand, mark as required later */ 3565 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3566 if (err) 3567 return err; 3568 3569 if (BPF_SRC(insn->code) == BPF_X) { 3570 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3571 /* case: R1 = R2 3572 * copy register state to dest reg 3573 */ 3574 regs[insn->dst_reg] = regs[insn->src_reg]; 3575 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3576 } else { 3577 /* R1 = (u32) R2 */ 3578 if (is_pointer_value(env, insn->src_reg)) { 3579 verbose(env, 3580 "R%d partial copy of pointer\n", 3581 insn->src_reg); 3582 return -EACCES; 3583 } 3584 mark_reg_unknown(env, regs, insn->dst_reg); 3585 coerce_reg_to_size(®s[insn->dst_reg], 4); 3586 } 3587 } else { 3588 /* case: R = imm 3589 * remember the value we stored into this reg 3590 */ 3591 /* clear any state __mark_reg_known doesn't set */ 3592 mark_reg_unknown(env, regs, insn->dst_reg); 3593 regs[insn->dst_reg].type = SCALAR_VALUE; 3594 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3595 __mark_reg_known(regs + insn->dst_reg, 3596 insn->imm); 3597 } else { 3598 __mark_reg_known(regs + insn->dst_reg, 3599 (u32)insn->imm); 3600 } 3601 } 3602 3603 } else if (opcode > BPF_END) { 3604 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3605 return -EINVAL; 3606 3607 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3608 3609 if (BPF_SRC(insn->code) == BPF_X) { 3610 if (insn->imm != 0 || insn->off != 0) { 3611 verbose(env, "BPF_ALU uses reserved fields\n"); 3612 return -EINVAL; 3613 } 3614 /* check src1 operand */ 3615 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3616 if (err) 3617 return err; 3618 } else { 3619 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3620 verbose(env, "BPF_ALU uses reserved fields\n"); 3621 return -EINVAL; 3622 } 3623 } 3624 3625 /* check src2 operand */ 3626 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3627 if (err) 3628 return err; 3629 3630 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3631 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3632 verbose(env, "div by zero\n"); 3633 return -EINVAL; 3634 } 3635 3636 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3637 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3638 return -EINVAL; 3639 } 3640 3641 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3642 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3643 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3644 3645 if (insn->imm < 0 || insn->imm >= size) { 3646 verbose(env, "invalid shift %d\n", insn->imm); 3647 return -EINVAL; 3648 } 3649 } 3650 3651 /* check dest operand */ 3652 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3653 if (err) 3654 return err; 3655 3656 return adjust_reg_min_max_vals(env, insn); 3657 } 3658 3659 return 0; 3660 } 3661 3662 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3663 struct bpf_reg_state *dst_reg, 3664 enum bpf_reg_type type, 3665 bool range_right_open) 3666 { 3667 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3668 struct bpf_reg_state *regs = state->regs, *reg; 3669 u16 new_range; 3670 int i, j; 3671 3672 if (dst_reg->off < 0 || 3673 (dst_reg->off == 0 && range_right_open)) 3674 /* This doesn't give us any range */ 3675 return; 3676 3677 if (dst_reg->umax_value > MAX_PACKET_OFF || 3678 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3679 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3680 * than pkt_end, but that's because it's also less than pkt. 3681 */ 3682 return; 3683 3684 new_range = dst_reg->off; 3685 if (range_right_open) 3686 new_range--; 3687 3688 /* Examples for register markings: 3689 * 3690 * pkt_data in dst register: 3691 * 3692 * r2 = r3; 3693 * r2 += 8; 3694 * if (r2 > pkt_end) goto <handle exception> 3695 * <access okay> 3696 * 3697 * r2 = r3; 3698 * r2 += 8; 3699 * if (r2 < pkt_end) goto <access okay> 3700 * <handle exception> 3701 * 3702 * Where: 3703 * r2 == dst_reg, pkt_end == src_reg 3704 * r2=pkt(id=n,off=8,r=0) 3705 * r3=pkt(id=n,off=0,r=0) 3706 * 3707 * pkt_data in src register: 3708 * 3709 * r2 = r3; 3710 * r2 += 8; 3711 * if (pkt_end >= r2) goto <access okay> 3712 * <handle exception> 3713 * 3714 * r2 = r3; 3715 * r2 += 8; 3716 * if (pkt_end <= r2) goto <handle exception> 3717 * <access okay> 3718 * 3719 * Where: 3720 * pkt_end == dst_reg, r2 == src_reg 3721 * r2=pkt(id=n,off=8,r=0) 3722 * r3=pkt(id=n,off=0,r=0) 3723 * 3724 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3725 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3726 * and [r3, r3 + 8-1) respectively is safe to access depending on 3727 * the check. 3728 */ 3729 3730 /* If our ids match, then we must have the same max_value. And we 3731 * don't care about the other reg's fixed offset, since if it's too big 3732 * the range won't allow anything. 3733 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3734 */ 3735 for (i = 0; i < MAX_BPF_REG; i++) 3736 if (regs[i].type == type && regs[i].id == dst_reg->id) 3737 /* keep the maximum range already checked */ 3738 regs[i].range = max(regs[i].range, new_range); 3739 3740 for (j = 0; j <= vstate->curframe; j++) { 3741 state = vstate->frame[j]; 3742 bpf_for_each_spilled_reg(i, state, reg) { 3743 if (!reg) 3744 continue; 3745 if (reg->type == type && reg->id == dst_reg->id) 3746 reg->range = max(reg->range, new_range); 3747 } 3748 } 3749 } 3750 3751 /* Adjusts the register min/max values in the case that the dst_reg is the 3752 * variable register that we are working on, and src_reg is a constant or we're 3753 * simply doing a BPF_K check. 3754 * In JEQ/JNE cases we also adjust the var_off values. 3755 */ 3756 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3757 struct bpf_reg_state *false_reg, u64 val, 3758 u8 opcode) 3759 { 3760 /* If the dst_reg is a pointer, we can't learn anything about its 3761 * variable offset from the compare (unless src_reg were a pointer into 3762 * the same object, but we don't bother with that. 3763 * Since false_reg and true_reg have the same type by construction, we 3764 * only need to check one of them for pointerness. 3765 */ 3766 if (__is_pointer_value(false, false_reg)) 3767 return; 3768 3769 switch (opcode) { 3770 case BPF_JEQ: 3771 /* If this is false then we know nothing Jon Snow, but if it is 3772 * true then we know for sure. 3773 */ 3774 __mark_reg_known(true_reg, val); 3775 break; 3776 case BPF_JNE: 3777 /* If this is true we know nothing Jon Snow, but if it is false 3778 * we know the value for sure; 3779 */ 3780 __mark_reg_known(false_reg, val); 3781 break; 3782 case BPF_JGT: 3783 false_reg->umax_value = min(false_reg->umax_value, val); 3784 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3785 break; 3786 case BPF_JSGT: 3787 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3788 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3789 break; 3790 case BPF_JLT: 3791 false_reg->umin_value = max(false_reg->umin_value, val); 3792 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3793 break; 3794 case BPF_JSLT: 3795 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3796 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3797 break; 3798 case BPF_JGE: 3799 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3800 true_reg->umin_value = max(true_reg->umin_value, val); 3801 break; 3802 case BPF_JSGE: 3803 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3804 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3805 break; 3806 case BPF_JLE: 3807 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3808 true_reg->umax_value = min(true_reg->umax_value, val); 3809 break; 3810 case BPF_JSLE: 3811 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3812 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3813 break; 3814 default: 3815 break; 3816 } 3817 3818 __reg_deduce_bounds(false_reg); 3819 __reg_deduce_bounds(true_reg); 3820 /* We might have learned some bits from the bounds. */ 3821 __reg_bound_offset(false_reg); 3822 __reg_bound_offset(true_reg); 3823 /* Intersecting with the old var_off might have improved our bounds 3824 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3825 * then new var_off is (0; 0x7f...fc) which improves our umax. 3826 */ 3827 __update_reg_bounds(false_reg); 3828 __update_reg_bounds(true_reg); 3829 } 3830 3831 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3832 * the variable reg. 3833 */ 3834 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3835 struct bpf_reg_state *false_reg, u64 val, 3836 u8 opcode) 3837 { 3838 if (__is_pointer_value(false, false_reg)) 3839 return; 3840 3841 switch (opcode) { 3842 case BPF_JEQ: 3843 /* If this is false then we know nothing Jon Snow, but if it is 3844 * true then we know for sure. 3845 */ 3846 __mark_reg_known(true_reg, val); 3847 break; 3848 case BPF_JNE: 3849 /* If this is true we know nothing Jon Snow, but if it is false 3850 * we know the value for sure; 3851 */ 3852 __mark_reg_known(false_reg, val); 3853 break; 3854 case BPF_JGT: 3855 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3856 false_reg->umin_value = max(false_reg->umin_value, val); 3857 break; 3858 case BPF_JSGT: 3859 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3860 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3861 break; 3862 case BPF_JLT: 3863 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3864 false_reg->umax_value = min(false_reg->umax_value, val); 3865 break; 3866 case BPF_JSLT: 3867 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3868 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3869 break; 3870 case BPF_JGE: 3871 true_reg->umax_value = min(true_reg->umax_value, val); 3872 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3873 break; 3874 case BPF_JSGE: 3875 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3876 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3877 break; 3878 case BPF_JLE: 3879 true_reg->umin_value = max(true_reg->umin_value, val); 3880 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3881 break; 3882 case BPF_JSLE: 3883 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3884 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3885 break; 3886 default: 3887 break; 3888 } 3889 3890 __reg_deduce_bounds(false_reg); 3891 __reg_deduce_bounds(true_reg); 3892 /* We might have learned some bits from the bounds. */ 3893 __reg_bound_offset(false_reg); 3894 __reg_bound_offset(true_reg); 3895 /* Intersecting with the old var_off might have improved our bounds 3896 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3897 * then new var_off is (0; 0x7f...fc) which improves our umax. 3898 */ 3899 __update_reg_bounds(false_reg); 3900 __update_reg_bounds(true_reg); 3901 } 3902 3903 /* Regs are known to be equal, so intersect their min/max/var_off */ 3904 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3905 struct bpf_reg_state *dst_reg) 3906 { 3907 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3908 dst_reg->umin_value); 3909 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3910 dst_reg->umax_value); 3911 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3912 dst_reg->smin_value); 3913 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3914 dst_reg->smax_value); 3915 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3916 dst_reg->var_off); 3917 /* We might have learned new bounds from the var_off. */ 3918 __update_reg_bounds(src_reg); 3919 __update_reg_bounds(dst_reg); 3920 /* We might have learned something about the sign bit. */ 3921 __reg_deduce_bounds(src_reg); 3922 __reg_deduce_bounds(dst_reg); 3923 /* We might have learned some bits from the bounds. */ 3924 __reg_bound_offset(src_reg); 3925 __reg_bound_offset(dst_reg); 3926 /* Intersecting with the old var_off might have improved our bounds 3927 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3928 * then new var_off is (0; 0x7f...fc) which improves our umax. 3929 */ 3930 __update_reg_bounds(src_reg); 3931 __update_reg_bounds(dst_reg); 3932 } 3933 3934 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3935 struct bpf_reg_state *true_dst, 3936 struct bpf_reg_state *false_src, 3937 struct bpf_reg_state *false_dst, 3938 u8 opcode) 3939 { 3940 switch (opcode) { 3941 case BPF_JEQ: 3942 __reg_combine_min_max(true_src, true_dst); 3943 break; 3944 case BPF_JNE: 3945 __reg_combine_min_max(false_src, false_dst); 3946 break; 3947 } 3948 } 3949 3950 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 3951 struct bpf_reg_state *reg, u32 id, 3952 bool is_null) 3953 { 3954 if (reg_type_may_be_null(reg->type) && reg->id == id) { 3955 /* Old offset (both fixed and variable parts) should 3956 * have been known-zero, because we don't allow pointer 3957 * arithmetic on pointers that might be NULL. 3958 */ 3959 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3960 !tnum_equals_const(reg->var_off, 0) || 3961 reg->off)) { 3962 __mark_reg_known_zero(reg); 3963 reg->off = 0; 3964 } 3965 if (is_null) { 3966 reg->type = SCALAR_VALUE; 3967 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3968 if (reg->map_ptr->inner_map_meta) { 3969 reg->type = CONST_PTR_TO_MAP; 3970 reg->map_ptr = reg->map_ptr->inner_map_meta; 3971 } else { 3972 reg->type = PTR_TO_MAP_VALUE; 3973 } 3974 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 3975 reg->type = PTR_TO_SOCKET; 3976 } 3977 if (is_null || !reg_is_refcounted(reg)) { 3978 /* We don't need id from this point onwards anymore, 3979 * thus we should better reset it, so that state 3980 * pruning has chances to take effect. 3981 */ 3982 reg->id = 0; 3983 } 3984 } 3985 } 3986 3987 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3988 * be folded together at some point. 3989 */ 3990 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 3991 bool is_null) 3992 { 3993 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3994 struct bpf_reg_state *reg, *regs = state->regs; 3995 u32 id = regs[regno].id; 3996 int i, j; 3997 3998 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 3999 __release_reference_state(state, id); 4000 4001 for (i = 0; i < MAX_BPF_REG; i++) 4002 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4003 4004 for (j = 0; j <= vstate->curframe; j++) { 4005 state = vstate->frame[j]; 4006 bpf_for_each_spilled_reg(i, state, reg) { 4007 if (!reg) 4008 continue; 4009 mark_ptr_or_null_reg(state, reg, id, is_null); 4010 } 4011 } 4012 } 4013 4014 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4015 struct bpf_reg_state *dst_reg, 4016 struct bpf_reg_state *src_reg, 4017 struct bpf_verifier_state *this_branch, 4018 struct bpf_verifier_state *other_branch) 4019 { 4020 if (BPF_SRC(insn->code) != BPF_X) 4021 return false; 4022 4023 switch (BPF_OP(insn->code)) { 4024 case BPF_JGT: 4025 if ((dst_reg->type == PTR_TO_PACKET && 4026 src_reg->type == PTR_TO_PACKET_END) || 4027 (dst_reg->type == PTR_TO_PACKET_META && 4028 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4029 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4030 find_good_pkt_pointers(this_branch, dst_reg, 4031 dst_reg->type, false); 4032 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4033 src_reg->type == PTR_TO_PACKET) || 4034 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4035 src_reg->type == PTR_TO_PACKET_META)) { 4036 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4037 find_good_pkt_pointers(other_branch, src_reg, 4038 src_reg->type, true); 4039 } else { 4040 return false; 4041 } 4042 break; 4043 case BPF_JLT: 4044 if ((dst_reg->type == PTR_TO_PACKET && 4045 src_reg->type == PTR_TO_PACKET_END) || 4046 (dst_reg->type == PTR_TO_PACKET_META && 4047 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4048 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4049 find_good_pkt_pointers(other_branch, dst_reg, 4050 dst_reg->type, true); 4051 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4052 src_reg->type == PTR_TO_PACKET) || 4053 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4054 src_reg->type == PTR_TO_PACKET_META)) { 4055 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4056 find_good_pkt_pointers(this_branch, src_reg, 4057 src_reg->type, false); 4058 } else { 4059 return false; 4060 } 4061 break; 4062 case BPF_JGE: 4063 if ((dst_reg->type == PTR_TO_PACKET && 4064 src_reg->type == PTR_TO_PACKET_END) || 4065 (dst_reg->type == PTR_TO_PACKET_META && 4066 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4067 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4068 find_good_pkt_pointers(this_branch, dst_reg, 4069 dst_reg->type, true); 4070 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4071 src_reg->type == PTR_TO_PACKET) || 4072 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4073 src_reg->type == PTR_TO_PACKET_META)) { 4074 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4075 find_good_pkt_pointers(other_branch, src_reg, 4076 src_reg->type, false); 4077 } else { 4078 return false; 4079 } 4080 break; 4081 case BPF_JLE: 4082 if ((dst_reg->type == PTR_TO_PACKET && 4083 src_reg->type == PTR_TO_PACKET_END) || 4084 (dst_reg->type == PTR_TO_PACKET_META && 4085 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4086 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4087 find_good_pkt_pointers(other_branch, dst_reg, 4088 dst_reg->type, false); 4089 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4090 src_reg->type == PTR_TO_PACKET) || 4091 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4092 src_reg->type == PTR_TO_PACKET_META)) { 4093 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4094 find_good_pkt_pointers(this_branch, src_reg, 4095 src_reg->type, true); 4096 } else { 4097 return false; 4098 } 4099 break; 4100 default: 4101 return false; 4102 } 4103 4104 return true; 4105 } 4106 4107 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4108 struct bpf_insn *insn, int *insn_idx) 4109 { 4110 struct bpf_verifier_state *this_branch = env->cur_state; 4111 struct bpf_verifier_state *other_branch; 4112 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4113 struct bpf_reg_state *dst_reg, *other_branch_regs; 4114 u8 opcode = BPF_OP(insn->code); 4115 int err; 4116 4117 if (opcode > BPF_JSLE) { 4118 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4119 return -EINVAL; 4120 } 4121 4122 if (BPF_SRC(insn->code) == BPF_X) { 4123 if (insn->imm != 0) { 4124 verbose(env, "BPF_JMP uses reserved fields\n"); 4125 return -EINVAL; 4126 } 4127 4128 /* check src1 operand */ 4129 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4130 if (err) 4131 return err; 4132 4133 if (is_pointer_value(env, insn->src_reg)) { 4134 verbose(env, "R%d pointer comparison prohibited\n", 4135 insn->src_reg); 4136 return -EACCES; 4137 } 4138 } else { 4139 if (insn->src_reg != BPF_REG_0) { 4140 verbose(env, "BPF_JMP uses reserved fields\n"); 4141 return -EINVAL; 4142 } 4143 } 4144 4145 /* check src2 operand */ 4146 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4147 if (err) 4148 return err; 4149 4150 dst_reg = ®s[insn->dst_reg]; 4151 4152 /* detect if R == 0 where R was initialized to zero earlier */ 4153 if (BPF_SRC(insn->code) == BPF_K && 4154 (opcode == BPF_JEQ || opcode == BPF_JNE) && 4155 dst_reg->type == SCALAR_VALUE && 4156 tnum_is_const(dst_reg->var_off)) { 4157 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 4158 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 4159 /* if (imm == imm) goto pc+off; 4160 * only follow the goto, ignore fall-through 4161 */ 4162 *insn_idx += insn->off; 4163 return 0; 4164 } else { 4165 /* if (imm != imm) goto pc+off; 4166 * only follow fall-through branch, since 4167 * that's where the program will go 4168 */ 4169 return 0; 4170 } 4171 } 4172 4173 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 4174 if (!other_branch) 4175 return -EFAULT; 4176 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4177 4178 /* detect if we are comparing against a constant value so we can adjust 4179 * our min/max values for our dst register. 4180 * this is only legit if both are scalars (or pointers to the same 4181 * object, I suppose, but we don't support that right now), because 4182 * otherwise the different base pointers mean the offsets aren't 4183 * comparable. 4184 */ 4185 if (BPF_SRC(insn->code) == BPF_X) { 4186 if (dst_reg->type == SCALAR_VALUE && 4187 regs[insn->src_reg].type == SCALAR_VALUE) { 4188 if (tnum_is_const(regs[insn->src_reg].var_off)) 4189 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4190 dst_reg, regs[insn->src_reg].var_off.value, 4191 opcode); 4192 else if (tnum_is_const(dst_reg->var_off)) 4193 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4194 ®s[insn->src_reg], 4195 dst_reg->var_off.value, opcode); 4196 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4197 /* Comparing for equality, we can combine knowledge */ 4198 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4199 &other_branch_regs[insn->dst_reg], 4200 ®s[insn->src_reg], 4201 ®s[insn->dst_reg], opcode); 4202 } 4203 } else if (dst_reg->type == SCALAR_VALUE) { 4204 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4205 dst_reg, insn->imm, opcode); 4206 } 4207 4208 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4209 if (BPF_SRC(insn->code) == BPF_K && 4210 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4211 reg_type_may_be_null(dst_reg->type)) { 4212 /* Mark all identical registers in each branch as either 4213 * safe or unknown depending R == 0 or R != 0 conditional. 4214 */ 4215 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4216 opcode == BPF_JNE); 4217 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4218 opcode == BPF_JEQ); 4219 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4220 this_branch, other_branch) && 4221 is_pointer_value(env, insn->dst_reg)) { 4222 verbose(env, "R%d pointer comparison prohibited\n", 4223 insn->dst_reg); 4224 return -EACCES; 4225 } 4226 if (env->log.level) 4227 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4228 return 0; 4229 } 4230 4231 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4232 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4233 { 4234 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4235 4236 return (struct bpf_map *) (unsigned long) imm64; 4237 } 4238 4239 /* verify BPF_LD_IMM64 instruction */ 4240 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4241 { 4242 struct bpf_reg_state *regs = cur_regs(env); 4243 int err; 4244 4245 if (BPF_SIZE(insn->code) != BPF_DW) { 4246 verbose(env, "invalid BPF_LD_IMM insn\n"); 4247 return -EINVAL; 4248 } 4249 if (insn->off != 0) { 4250 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4251 return -EINVAL; 4252 } 4253 4254 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4255 if (err) 4256 return err; 4257 4258 if (insn->src_reg == 0) { 4259 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4260 4261 regs[insn->dst_reg].type = SCALAR_VALUE; 4262 __mark_reg_known(®s[insn->dst_reg], imm); 4263 return 0; 4264 } 4265 4266 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4267 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4268 4269 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4270 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4271 return 0; 4272 } 4273 4274 static bool may_access_skb(enum bpf_prog_type type) 4275 { 4276 switch (type) { 4277 case BPF_PROG_TYPE_SOCKET_FILTER: 4278 case BPF_PROG_TYPE_SCHED_CLS: 4279 case BPF_PROG_TYPE_SCHED_ACT: 4280 return true; 4281 default: 4282 return false; 4283 } 4284 } 4285 4286 /* verify safety of LD_ABS|LD_IND instructions: 4287 * - they can only appear in the programs where ctx == skb 4288 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4289 * preserve R6-R9, and store return value into R0 4290 * 4291 * Implicit input: 4292 * ctx == skb == R6 == CTX 4293 * 4294 * Explicit input: 4295 * SRC == any register 4296 * IMM == 32-bit immediate 4297 * 4298 * Output: 4299 * R0 - 8/16/32-bit skb data converted to cpu endianness 4300 */ 4301 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4302 { 4303 struct bpf_reg_state *regs = cur_regs(env); 4304 u8 mode = BPF_MODE(insn->code); 4305 int i, err; 4306 4307 if (!may_access_skb(env->prog->type)) { 4308 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4309 return -EINVAL; 4310 } 4311 4312 if (!env->ops->gen_ld_abs) { 4313 verbose(env, "bpf verifier is misconfigured\n"); 4314 return -EINVAL; 4315 } 4316 4317 if (env->subprog_cnt > 1) { 4318 /* when program has LD_ABS insn JITs and interpreter assume 4319 * that r1 == ctx == skb which is not the case for callees 4320 * that can have arbitrary arguments. It's problematic 4321 * for main prog as well since JITs would need to analyze 4322 * all functions in order to make proper register save/restore 4323 * decisions in the main prog. Hence disallow LD_ABS with calls 4324 */ 4325 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4326 return -EINVAL; 4327 } 4328 4329 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4330 BPF_SIZE(insn->code) == BPF_DW || 4331 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4332 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4333 return -EINVAL; 4334 } 4335 4336 /* check whether implicit source operand (register R6) is readable */ 4337 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4338 if (err) 4339 return err; 4340 4341 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4342 * gen_ld_abs() may terminate the program at runtime, leading to 4343 * reference leak. 4344 */ 4345 err = check_reference_leak(env); 4346 if (err) { 4347 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4348 return err; 4349 } 4350 4351 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4352 verbose(env, 4353 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4354 return -EINVAL; 4355 } 4356 4357 if (mode == BPF_IND) { 4358 /* check explicit source operand */ 4359 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4360 if (err) 4361 return err; 4362 } 4363 4364 /* reset caller saved regs to unreadable */ 4365 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4366 mark_reg_not_init(env, regs, caller_saved[i]); 4367 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4368 } 4369 4370 /* mark destination R0 register as readable, since it contains 4371 * the value fetched from the packet. 4372 * Already marked as written above. 4373 */ 4374 mark_reg_unknown(env, regs, BPF_REG_0); 4375 return 0; 4376 } 4377 4378 static int check_return_code(struct bpf_verifier_env *env) 4379 { 4380 struct bpf_reg_state *reg; 4381 struct tnum range = tnum_range(0, 1); 4382 4383 switch (env->prog->type) { 4384 case BPF_PROG_TYPE_CGROUP_SKB: 4385 case BPF_PROG_TYPE_CGROUP_SOCK: 4386 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4387 case BPF_PROG_TYPE_SOCK_OPS: 4388 case BPF_PROG_TYPE_CGROUP_DEVICE: 4389 break; 4390 default: 4391 return 0; 4392 } 4393 4394 reg = cur_regs(env) + BPF_REG_0; 4395 if (reg->type != SCALAR_VALUE) { 4396 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4397 reg_type_str[reg->type]); 4398 return -EINVAL; 4399 } 4400 4401 if (!tnum_in(range, reg->var_off)) { 4402 verbose(env, "At program exit the register R0 "); 4403 if (!tnum_is_unknown(reg->var_off)) { 4404 char tn_buf[48]; 4405 4406 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4407 verbose(env, "has value %s", tn_buf); 4408 } else { 4409 verbose(env, "has unknown scalar value"); 4410 } 4411 verbose(env, " should have been 0 or 1\n"); 4412 return -EINVAL; 4413 } 4414 return 0; 4415 } 4416 4417 /* non-recursive DFS pseudo code 4418 * 1 procedure DFS-iterative(G,v): 4419 * 2 label v as discovered 4420 * 3 let S be a stack 4421 * 4 S.push(v) 4422 * 5 while S is not empty 4423 * 6 t <- S.pop() 4424 * 7 if t is what we're looking for: 4425 * 8 return t 4426 * 9 for all edges e in G.adjacentEdges(t) do 4427 * 10 if edge e is already labelled 4428 * 11 continue with the next edge 4429 * 12 w <- G.adjacentVertex(t,e) 4430 * 13 if vertex w is not discovered and not explored 4431 * 14 label e as tree-edge 4432 * 15 label w as discovered 4433 * 16 S.push(w) 4434 * 17 continue at 5 4435 * 18 else if vertex w is discovered 4436 * 19 label e as back-edge 4437 * 20 else 4438 * 21 // vertex w is explored 4439 * 22 label e as forward- or cross-edge 4440 * 23 label t as explored 4441 * 24 S.pop() 4442 * 4443 * convention: 4444 * 0x10 - discovered 4445 * 0x11 - discovered and fall-through edge labelled 4446 * 0x12 - discovered and fall-through and branch edges labelled 4447 * 0x20 - explored 4448 */ 4449 4450 enum { 4451 DISCOVERED = 0x10, 4452 EXPLORED = 0x20, 4453 FALLTHROUGH = 1, 4454 BRANCH = 2, 4455 }; 4456 4457 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4458 4459 static int *insn_stack; /* stack of insns to process */ 4460 static int cur_stack; /* current stack index */ 4461 static int *insn_state; 4462 4463 /* t, w, e - match pseudo-code above: 4464 * t - index of current instruction 4465 * w - next instruction 4466 * e - edge 4467 */ 4468 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4469 { 4470 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4471 return 0; 4472 4473 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4474 return 0; 4475 4476 if (w < 0 || w >= env->prog->len) { 4477 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4478 return -EINVAL; 4479 } 4480 4481 if (e == BRANCH) 4482 /* mark branch target for state pruning */ 4483 env->explored_states[w] = STATE_LIST_MARK; 4484 4485 if (insn_state[w] == 0) { 4486 /* tree-edge */ 4487 insn_state[t] = DISCOVERED | e; 4488 insn_state[w] = DISCOVERED; 4489 if (cur_stack >= env->prog->len) 4490 return -E2BIG; 4491 insn_stack[cur_stack++] = w; 4492 return 1; 4493 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4494 verbose(env, "back-edge from insn %d to %d\n", t, w); 4495 return -EINVAL; 4496 } else if (insn_state[w] == EXPLORED) { 4497 /* forward- or cross-edge */ 4498 insn_state[t] = DISCOVERED | e; 4499 } else { 4500 verbose(env, "insn state internal bug\n"); 4501 return -EFAULT; 4502 } 4503 return 0; 4504 } 4505 4506 /* non-recursive depth-first-search to detect loops in BPF program 4507 * loop == back-edge in directed graph 4508 */ 4509 static int check_cfg(struct bpf_verifier_env *env) 4510 { 4511 struct bpf_insn *insns = env->prog->insnsi; 4512 int insn_cnt = env->prog->len; 4513 int ret = 0; 4514 int i, t; 4515 4516 ret = check_subprogs(env); 4517 if (ret < 0) 4518 return ret; 4519 4520 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4521 if (!insn_state) 4522 return -ENOMEM; 4523 4524 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4525 if (!insn_stack) { 4526 kfree(insn_state); 4527 return -ENOMEM; 4528 } 4529 4530 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4531 insn_stack[0] = 0; /* 0 is the first instruction */ 4532 cur_stack = 1; 4533 4534 peek_stack: 4535 if (cur_stack == 0) 4536 goto check_state; 4537 t = insn_stack[cur_stack - 1]; 4538 4539 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4540 u8 opcode = BPF_OP(insns[t].code); 4541 4542 if (opcode == BPF_EXIT) { 4543 goto mark_explored; 4544 } else if (opcode == BPF_CALL) { 4545 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4546 if (ret == 1) 4547 goto peek_stack; 4548 else if (ret < 0) 4549 goto err_free; 4550 if (t + 1 < insn_cnt) 4551 env->explored_states[t + 1] = STATE_LIST_MARK; 4552 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4553 env->explored_states[t] = STATE_LIST_MARK; 4554 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4555 if (ret == 1) 4556 goto peek_stack; 4557 else if (ret < 0) 4558 goto err_free; 4559 } 4560 } else if (opcode == BPF_JA) { 4561 if (BPF_SRC(insns[t].code) != BPF_K) { 4562 ret = -EINVAL; 4563 goto err_free; 4564 } 4565 /* unconditional jump with single edge */ 4566 ret = push_insn(t, t + insns[t].off + 1, 4567 FALLTHROUGH, env); 4568 if (ret == 1) 4569 goto peek_stack; 4570 else if (ret < 0) 4571 goto err_free; 4572 /* tell verifier to check for equivalent states 4573 * after every call and jump 4574 */ 4575 if (t + 1 < insn_cnt) 4576 env->explored_states[t + 1] = STATE_LIST_MARK; 4577 } else { 4578 /* conditional jump with two edges */ 4579 env->explored_states[t] = STATE_LIST_MARK; 4580 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4581 if (ret == 1) 4582 goto peek_stack; 4583 else if (ret < 0) 4584 goto err_free; 4585 4586 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4587 if (ret == 1) 4588 goto peek_stack; 4589 else if (ret < 0) 4590 goto err_free; 4591 } 4592 } else { 4593 /* all other non-branch instructions with single 4594 * fall-through edge 4595 */ 4596 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4597 if (ret == 1) 4598 goto peek_stack; 4599 else if (ret < 0) 4600 goto err_free; 4601 } 4602 4603 mark_explored: 4604 insn_state[t] = EXPLORED; 4605 if (cur_stack-- <= 0) { 4606 verbose(env, "pop stack internal bug\n"); 4607 ret = -EFAULT; 4608 goto err_free; 4609 } 4610 goto peek_stack; 4611 4612 check_state: 4613 for (i = 0; i < insn_cnt; i++) { 4614 if (insn_state[i] != EXPLORED) { 4615 verbose(env, "unreachable insn %d\n", i); 4616 ret = -EINVAL; 4617 goto err_free; 4618 } 4619 } 4620 ret = 0; /* cfg looks good */ 4621 4622 err_free: 4623 kfree(insn_state); 4624 kfree(insn_stack); 4625 return ret; 4626 } 4627 4628 /* check %cur's range satisfies %old's */ 4629 static bool range_within(struct bpf_reg_state *old, 4630 struct bpf_reg_state *cur) 4631 { 4632 return old->umin_value <= cur->umin_value && 4633 old->umax_value >= cur->umax_value && 4634 old->smin_value <= cur->smin_value && 4635 old->smax_value >= cur->smax_value; 4636 } 4637 4638 /* Maximum number of register states that can exist at once */ 4639 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4640 struct idpair { 4641 u32 old; 4642 u32 cur; 4643 }; 4644 4645 /* If in the old state two registers had the same id, then they need to have 4646 * the same id in the new state as well. But that id could be different from 4647 * the old state, so we need to track the mapping from old to new ids. 4648 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4649 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4650 * regs with a different old id could still have new id 9, we don't care about 4651 * that. 4652 * So we look through our idmap to see if this old id has been seen before. If 4653 * so, we require the new id to match; otherwise, we add the id pair to the map. 4654 */ 4655 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4656 { 4657 unsigned int i; 4658 4659 for (i = 0; i < ID_MAP_SIZE; i++) { 4660 if (!idmap[i].old) { 4661 /* Reached an empty slot; haven't seen this id before */ 4662 idmap[i].old = old_id; 4663 idmap[i].cur = cur_id; 4664 return true; 4665 } 4666 if (idmap[i].old == old_id) 4667 return idmap[i].cur == cur_id; 4668 } 4669 /* We ran out of idmap slots, which should be impossible */ 4670 WARN_ON_ONCE(1); 4671 return false; 4672 } 4673 4674 /* Returns true if (rold safe implies rcur safe) */ 4675 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4676 struct idpair *idmap) 4677 { 4678 bool equal; 4679 4680 if (!(rold->live & REG_LIVE_READ)) 4681 /* explored state didn't use this */ 4682 return true; 4683 4684 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 4685 4686 if (rold->type == PTR_TO_STACK) 4687 /* two stack pointers are equal only if they're pointing to 4688 * the same stack frame, since fp-8 in foo != fp-8 in bar 4689 */ 4690 return equal && rold->frameno == rcur->frameno; 4691 4692 if (equal) 4693 return true; 4694 4695 if (rold->type == NOT_INIT) 4696 /* explored state can't have used this */ 4697 return true; 4698 if (rcur->type == NOT_INIT) 4699 return false; 4700 switch (rold->type) { 4701 case SCALAR_VALUE: 4702 if (rcur->type == SCALAR_VALUE) { 4703 /* new val must satisfy old val knowledge */ 4704 return range_within(rold, rcur) && 4705 tnum_in(rold->var_off, rcur->var_off); 4706 } else { 4707 /* We're trying to use a pointer in place of a scalar. 4708 * Even if the scalar was unbounded, this could lead to 4709 * pointer leaks because scalars are allowed to leak 4710 * while pointers are not. We could make this safe in 4711 * special cases if root is calling us, but it's 4712 * probably not worth the hassle. 4713 */ 4714 return false; 4715 } 4716 case PTR_TO_MAP_VALUE: 4717 /* If the new min/max/var_off satisfy the old ones and 4718 * everything else matches, we are OK. 4719 * We don't care about the 'id' value, because nothing 4720 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4721 */ 4722 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4723 range_within(rold, rcur) && 4724 tnum_in(rold->var_off, rcur->var_off); 4725 case PTR_TO_MAP_VALUE_OR_NULL: 4726 /* a PTR_TO_MAP_VALUE could be safe to use as a 4727 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4728 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4729 * checked, doing so could have affected others with the same 4730 * id, and we can't check for that because we lost the id when 4731 * we converted to a PTR_TO_MAP_VALUE. 4732 */ 4733 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4734 return false; 4735 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4736 return false; 4737 /* Check our ids match any regs they're supposed to */ 4738 return check_ids(rold->id, rcur->id, idmap); 4739 case PTR_TO_PACKET_META: 4740 case PTR_TO_PACKET: 4741 if (rcur->type != rold->type) 4742 return false; 4743 /* We must have at least as much range as the old ptr 4744 * did, so that any accesses which were safe before are 4745 * still safe. This is true even if old range < old off, 4746 * since someone could have accessed through (ptr - k), or 4747 * even done ptr -= k in a register, to get a safe access. 4748 */ 4749 if (rold->range > rcur->range) 4750 return false; 4751 /* If the offsets don't match, we can't trust our alignment; 4752 * nor can we be sure that we won't fall out of range. 4753 */ 4754 if (rold->off != rcur->off) 4755 return false; 4756 /* id relations must be preserved */ 4757 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4758 return false; 4759 /* new val must satisfy old val knowledge */ 4760 return range_within(rold, rcur) && 4761 tnum_in(rold->var_off, rcur->var_off); 4762 case PTR_TO_CTX: 4763 case CONST_PTR_TO_MAP: 4764 case PTR_TO_PACKET_END: 4765 case PTR_TO_FLOW_KEYS: 4766 case PTR_TO_SOCKET: 4767 case PTR_TO_SOCKET_OR_NULL: 4768 /* Only valid matches are exact, which memcmp() above 4769 * would have accepted 4770 */ 4771 default: 4772 /* Don't know what's going on, just say it's not safe */ 4773 return false; 4774 } 4775 4776 /* Shouldn't get here; if we do, say it's not safe */ 4777 WARN_ON_ONCE(1); 4778 return false; 4779 } 4780 4781 static bool stacksafe(struct bpf_func_state *old, 4782 struct bpf_func_state *cur, 4783 struct idpair *idmap) 4784 { 4785 int i, spi; 4786 4787 /* if explored stack has more populated slots than current stack 4788 * such stacks are not equivalent 4789 */ 4790 if (old->allocated_stack > cur->allocated_stack) 4791 return false; 4792 4793 /* walk slots of the explored stack and ignore any additional 4794 * slots in the current stack, since explored(safe) state 4795 * didn't use them 4796 */ 4797 for (i = 0; i < old->allocated_stack; i++) { 4798 spi = i / BPF_REG_SIZE; 4799 4800 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4801 /* explored state didn't use this */ 4802 continue; 4803 4804 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4805 continue; 4806 /* if old state was safe with misc data in the stack 4807 * it will be safe with zero-initialized stack. 4808 * The opposite is not true 4809 */ 4810 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4811 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4812 continue; 4813 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4814 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4815 /* Ex: old explored (safe) state has STACK_SPILL in 4816 * this stack slot, but current has has STACK_MISC -> 4817 * this verifier states are not equivalent, 4818 * return false to continue verification of this path 4819 */ 4820 return false; 4821 if (i % BPF_REG_SIZE) 4822 continue; 4823 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4824 continue; 4825 if (!regsafe(&old->stack[spi].spilled_ptr, 4826 &cur->stack[spi].spilled_ptr, 4827 idmap)) 4828 /* when explored and current stack slot are both storing 4829 * spilled registers, check that stored pointers types 4830 * are the same as well. 4831 * Ex: explored safe path could have stored 4832 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4833 * but current path has stored: 4834 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4835 * such verifier states are not equivalent. 4836 * return false to continue verification of this path 4837 */ 4838 return false; 4839 } 4840 return true; 4841 } 4842 4843 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 4844 { 4845 if (old->acquired_refs != cur->acquired_refs) 4846 return false; 4847 return !memcmp(old->refs, cur->refs, 4848 sizeof(*old->refs) * old->acquired_refs); 4849 } 4850 4851 /* compare two verifier states 4852 * 4853 * all states stored in state_list are known to be valid, since 4854 * verifier reached 'bpf_exit' instruction through them 4855 * 4856 * this function is called when verifier exploring different branches of 4857 * execution popped from the state stack. If it sees an old state that has 4858 * more strict register state and more strict stack state then this execution 4859 * branch doesn't need to be explored further, since verifier already 4860 * concluded that more strict state leads to valid finish. 4861 * 4862 * Therefore two states are equivalent if register state is more conservative 4863 * and explored stack state is more conservative than the current one. 4864 * Example: 4865 * explored current 4866 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4867 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4868 * 4869 * In other words if current stack state (one being explored) has more 4870 * valid slots than old one that already passed validation, it means 4871 * the verifier can stop exploring and conclude that current state is valid too 4872 * 4873 * Similarly with registers. If explored state has register type as invalid 4874 * whereas register type in current state is meaningful, it means that 4875 * the current state will reach 'bpf_exit' instruction safely 4876 */ 4877 static bool func_states_equal(struct bpf_func_state *old, 4878 struct bpf_func_state *cur) 4879 { 4880 struct idpair *idmap; 4881 bool ret = false; 4882 int i; 4883 4884 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4885 /* If we failed to allocate the idmap, just say it's not safe */ 4886 if (!idmap) 4887 return false; 4888 4889 for (i = 0; i < MAX_BPF_REG; i++) { 4890 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4891 goto out_free; 4892 } 4893 4894 if (!stacksafe(old, cur, idmap)) 4895 goto out_free; 4896 4897 if (!refsafe(old, cur)) 4898 goto out_free; 4899 ret = true; 4900 out_free: 4901 kfree(idmap); 4902 return ret; 4903 } 4904 4905 static bool states_equal(struct bpf_verifier_env *env, 4906 struct bpf_verifier_state *old, 4907 struct bpf_verifier_state *cur) 4908 { 4909 int i; 4910 4911 if (old->curframe != cur->curframe) 4912 return false; 4913 4914 /* for states to be equal callsites have to be the same 4915 * and all frame states need to be equivalent 4916 */ 4917 for (i = 0; i <= old->curframe; i++) { 4918 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4919 return false; 4920 if (!func_states_equal(old->frame[i], cur->frame[i])) 4921 return false; 4922 } 4923 return true; 4924 } 4925 4926 /* A write screens off any subsequent reads; but write marks come from the 4927 * straight-line code between a state and its parent. When we arrive at an 4928 * equivalent state (jump target or such) we didn't arrive by the straight-line 4929 * code, so read marks in the state must propagate to the parent regardless 4930 * of the state's write marks. That's what 'parent == state->parent' comparison 4931 * in mark_reg_read() is for. 4932 */ 4933 static int propagate_liveness(struct bpf_verifier_env *env, 4934 const struct bpf_verifier_state *vstate, 4935 struct bpf_verifier_state *vparent) 4936 { 4937 int i, frame, err = 0; 4938 struct bpf_func_state *state, *parent; 4939 4940 if (vparent->curframe != vstate->curframe) { 4941 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4942 vparent->curframe, vstate->curframe); 4943 return -EFAULT; 4944 } 4945 /* Propagate read liveness of registers... */ 4946 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4947 /* We don't need to worry about FP liveness because it's read-only */ 4948 for (i = 0; i < BPF_REG_FP; i++) { 4949 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4950 continue; 4951 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4952 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 4953 &vparent->frame[vstate->curframe]->regs[i]); 4954 if (err) 4955 return err; 4956 } 4957 } 4958 4959 /* ... and stack slots */ 4960 for (frame = 0; frame <= vstate->curframe; frame++) { 4961 state = vstate->frame[frame]; 4962 parent = vparent->frame[frame]; 4963 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4964 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4965 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4966 continue; 4967 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4968 mark_reg_read(env, &state->stack[i].spilled_ptr, 4969 &parent->stack[i].spilled_ptr); 4970 } 4971 } 4972 return err; 4973 } 4974 4975 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4976 { 4977 struct bpf_verifier_state_list *new_sl; 4978 struct bpf_verifier_state_list *sl; 4979 struct bpf_verifier_state *cur = env->cur_state, *new; 4980 int i, j, err; 4981 4982 sl = env->explored_states[insn_idx]; 4983 if (!sl) 4984 /* this 'insn_idx' instruction wasn't marked, so we will not 4985 * be doing state search here 4986 */ 4987 return 0; 4988 4989 while (sl != STATE_LIST_MARK) { 4990 if (states_equal(env, &sl->state, cur)) { 4991 /* reached equivalent register/stack state, 4992 * prune the search. 4993 * Registers read by the continuation are read by us. 4994 * If we have any write marks in env->cur_state, they 4995 * will prevent corresponding reads in the continuation 4996 * from reaching our parent (an explored_state). Our 4997 * own state will get the read marks recorded, but 4998 * they'll be immediately forgotten as we're pruning 4999 * this state and will pop a new one. 5000 */ 5001 err = propagate_liveness(env, &sl->state, cur); 5002 if (err) 5003 return err; 5004 return 1; 5005 } 5006 sl = sl->next; 5007 } 5008 5009 /* there were no equivalent states, remember current one. 5010 * technically the current state is not proven to be safe yet, 5011 * but it will either reach outer most bpf_exit (which means it's safe) 5012 * or it will be rejected. Since there are no loops, we won't be 5013 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5014 * again on the way to bpf_exit 5015 */ 5016 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5017 if (!new_sl) 5018 return -ENOMEM; 5019 5020 /* add new state to the head of linked list */ 5021 new = &new_sl->state; 5022 err = copy_verifier_state(new, cur); 5023 if (err) { 5024 free_verifier_state(new, false); 5025 kfree(new_sl); 5026 return err; 5027 } 5028 new_sl->next = env->explored_states[insn_idx]; 5029 env->explored_states[insn_idx] = new_sl; 5030 /* connect new state to parentage chain */ 5031 for (i = 0; i < BPF_REG_FP; i++) 5032 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 5033 /* clear write marks in current state: the writes we did are not writes 5034 * our child did, so they don't screen off its reads from us. 5035 * (There are no read marks in current state, because reads always mark 5036 * their parent and current state never has children yet. Only 5037 * explored_states can get read marks.) 5038 */ 5039 for (i = 0; i < BPF_REG_FP; i++) 5040 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5041 5042 /* all stack frames are accessible from callee, clear them all */ 5043 for (j = 0; j <= cur->curframe; j++) { 5044 struct bpf_func_state *frame = cur->frame[j]; 5045 struct bpf_func_state *newframe = new->frame[j]; 5046 5047 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5048 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5049 frame->stack[i].spilled_ptr.parent = 5050 &newframe->stack[i].spilled_ptr; 5051 } 5052 } 5053 return 0; 5054 } 5055 5056 /* Return true if it's OK to have the same insn return a different type. */ 5057 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5058 { 5059 switch (type) { 5060 case PTR_TO_CTX: 5061 case PTR_TO_SOCKET: 5062 case PTR_TO_SOCKET_OR_NULL: 5063 return false; 5064 default: 5065 return true; 5066 } 5067 } 5068 5069 /* If an instruction was previously used with particular pointer types, then we 5070 * need to be careful to avoid cases such as the below, where it may be ok 5071 * for one branch accessing the pointer, but not ok for the other branch: 5072 * 5073 * R1 = sock_ptr 5074 * goto X; 5075 * ... 5076 * R1 = some_other_valid_ptr; 5077 * goto X; 5078 * ... 5079 * R2 = *(u32 *)(R1 + 0); 5080 */ 5081 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5082 { 5083 return src != prev && (!reg_type_mismatch_ok(src) || 5084 !reg_type_mismatch_ok(prev)); 5085 } 5086 5087 static int do_check(struct bpf_verifier_env *env) 5088 { 5089 struct bpf_verifier_state *state; 5090 struct bpf_insn *insns = env->prog->insnsi; 5091 struct bpf_reg_state *regs; 5092 int insn_cnt = env->prog->len, i; 5093 int insn_idx, prev_insn_idx = 0; 5094 int insn_processed = 0; 5095 bool do_print_state = false; 5096 5097 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5098 if (!state) 5099 return -ENOMEM; 5100 state->curframe = 0; 5101 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5102 if (!state->frame[0]) { 5103 kfree(state); 5104 return -ENOMEM; 5105 } 5106 env->cur_state = state; 5107 init_func_state(env, state->frame[0], 5108 BPF_MAIN_FUNC /* callsite */, 5109 0 /* frameno */, 5110 0 /* subprogno, zero == main subprog */); 5111 insn_idx = 0; 5112 for (;;) { 5113 struct bpf_insn *insn; 5114 u8 class; 5115 int err; 5116 5117 if (insn_idx >= insn_cnt) { 5118 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5119 insn_idx, insn_cnt); 5120 return -EFAULT; 5121 } 5122 5123 insn = &insns[insn_idx]; 5124 class = BPF_CLASS(insn->code); 5125 5126 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5127 verbose(env, 5128 "BPF program is too large. Processed %d insn\n", 5129 insn_processed); 5130 return -E2BIG; 5131 } 5132 5133 err = is_state_visited(env, insn_idx); 5134 if (err < 0) 5135 return err; 5136 if (err == 1) { 5137 /* found equivalent state, can prune the search */ 5138 if (env->log.level) { 5139 if (do_print_state) 5140 verbose(env, "\nfrom %d to %d: safe\n", 5141 prev_insn_idx, insn_idx); 5142 else 5143 verbose(env, "%d: safe\n", insn_idx); 5144 } 5145 goto process_bpf_exit; 5146 } 5147 5148 if (need_resched()) 5149 cond_resched(); 5150 5151 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5152 if (env->log.level > 1) 5153 verbose(env, "%d:", insn_idx); 5154 else 5155 verbose(env, "\nfrom %d to %d:", 5156 prev_insn_idx, insn_idx); 5157 print_verifier_state(env, state->frame[state->curframe]); 5158 do_print_state = false; 5159 } 5160 5161 if (env->log.level) { 5162 const struct bpf_insn_cbs cbs = { 5163 .cb_print = verbose, 5164 .private_data = env, 5165 }; 5166 5167 verbose(env, "%d: ", insn_idx); 5168 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5169 } 5170 5171 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5172 err = bpf_prog_offload_verify_insn(env, insn_idx, 5173 prev_insn_idx); 5174 if (err) 5175 return err; 5176 } 5177 5178 regs = cur_regs(env); 5179 env->insn_aux_data[insn_idx].seen = true; 5180 5181 if (class == BPF_ALU || class == BPF_ALU64) { 5182 err = check_alu_op(env, insn); 5183 if (err) 5184 return err; 5185 5186 } else if (class == BPF_LDX) { 5187 enum bpf_reg_type *prev_src_type, src_reg_type; 5188 5189 /* check for reserved fields is already done */ 5190 5191 /* check src operand */ 5192 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5193 if (err) 5194 return err; 5195 5196 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5197 if (err) 5198 return err; 5199 5200 src_reg_type = regs[insn->src_reg].type; 5201 5202 /* check that memory (src_reg + off) is readable, 5203 * the state of dst_reg will be updated by this func 5204 */ 5205 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 5206 BPF_SIZE(insn->code), BPF_READ, 5207 insn->dst_reg, false); 5208 if (err) 5209 return err; 5210 5211 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 5212 5213 if (*prev_src_type == NOT_INIT) { 5214 /* saw a valid insn 5215 * dst_reg = *(u32 *)(src_reg + off) 5216 * save type to validate intersecting paths 5217 */ 5218 *prev_src_type = src_reg_type; 5219 5220 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5221 /* ABuser program is trying to use the same insn 5222 * dst_reg = *(u32*) (src_reg + off) 5223 * with different pointer types: 5224 * src_reg == ctx in one branch and 5225 * src_reg == stack|map in some other branch. 5226 * Reject it. 5227 */ 5228 verbose(env, "same insn cannot be used with different pointers\n"); 5229 return -EINVAL; 5230 } 5231 5232 } else if (class == BPF_STX) { 5233 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5234 5235 if (BPF_MODE(insn->code) == BPF_XADD) { 5236 err = check_xadd(env, insn_idx, insn); 5237 if (err) 5238 return err; 5239 insn_idx++; 5240 continue; 5241 } 5242 5243 /* check src1 operand */ 5244 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5245 if (err) 5246 return err; 5247 /* check src2 operand */ 5248 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5249 if (err) 5250 return err; 5251 5252 dst_reg_type = regs[insn->dst_reg].type; 5253 5254 /* check that memory (dst_reg + off) is writeable */ 5255 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5256 BPF_SIZE(insn->code), BPF_WRITE, 5257 insn->src_reg, false); 5258 if (err) 5259 return err; 5260 5261 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 5262 5263 if (*prev_dst_type == NOT_INIT) { 5264 *prev_dst_type = dst_reg_type; 5265 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5266 verbose(env, "same insn cannot be used with different pointers\n"); 5267 return -EINVAL; 5268 } 5269 5270 } else if (class == BPF_ST) { 5271 if (BPF_MODE(insn->code) != BPF_MEM || 5272 insn->src_reg != BPF_REG_0) { 5273 verbose(env, "BPF_ST uses reserved fields\n"); 5274 return -EINVAL; 5275 } 5276 /* check src operand */ 5277 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5278 if (err) 5279 return err; 5280 5281 if (is_ctx_reg(env, insn->dst_reg)) { 5282 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 5283 insn->dst_reg, 5284 reg_type_str[reg_state(env, insn->dst_reg)->type]); 5285 return -EACCES; 5286 } 5287 5288 /* check that memory (dst_reg + off) is writeable */ 5289 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5290 BPF_SIZE(insn->code), BPF_WRITE, 5291 -1, false); 5292 if (err) 5293 return err; 5294 5295 } else if (class == BPF_JMP) { 5296 u8 opcode = BPF_OP(insn->code); 5297 5298 if (opcode == BPF_CALL) { 5299 if (BPF_SRC(insn->code) != BPF_K || 5300 insn->off != 0 || 5301 (insn->src_reg != BPF_REG_0 && 5302 insn->src_reg != BPF_PSEUDO_CALL) || 5303 insn->dst_reg != BPF_REG_0) { 5304 verbose(env, "BPF_CALL uses reserved fields\n"); 5305 return -EINVAL; 5306 } 5307 5308 if (insn->src_reg == BPF_PSEUDO_CALL) 5309 err = check_func_call(env, insn, &insn_idx); 5310 else 5311 err = check_helper_call(env, insn->imm, insn_idx); 5312 if (err) 5313 return err; 5314 5315 } else if (opcode == BPF_JA) { 5316 if (BPF_SRC(insn->code) != BPF_K || 5317 insn->imm != 0 || 5318 insn->src_reg != BPF_REG_0 || 5319 insn->dst_reg != BPF_REG_0) { 5320 verbose(env, "BPF_JA uses reserved fields\n"); 5321 return -EINVAL; 5322 } 5323 5324 insn_idx += insn->off + 1; 5325 continue; 5326 5327 } else if (opcode == BPF_EXIT) { 5328 if (BPF_SRC(insn->code) != BPF_K || 5329 insn->imm != 0 || 5330 insn->src_reg != BPF_REG_0 || 5331 insn->dst_reg != BPF_REG_0) { 5332 verbose(env, "BPF_EXIT uses reserved fields\n"); 5333 return -EINVAL; 5334 } 5335 5336 if (state->curframe) { 5337 /* exit from nested function */ 5338 prev_insn_idx = insn_idx; 5339 err = prepare_func_exit(env, &insn_idx); 5340 if (err) 5341 return err; 5342 do_print_state = true; 5343 continue; 5344 } 5345 5346 err = check_reference_leak(env); 5347 if (err) 5348 return err; 5349 5350 /* eBPF calling convetion is such that R0 is used 5351 * to return the value from eBPF program. 5352 * Make sure that it's readable at this time 5353 * of bpf_exit, which means that program wrote 5354 * something into it earlier 5355 */ 5356 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5357 if (err) 5358 return err; 5359 5360 if (is_pointer_value(env, BPF_REG_0)) { 5361 verbose(env, "R0 leaks addr as return value\n"); 5362 return -EACCES; 5363 } 5364 5365 err = check_return_code(env); 5366 if (err) 5367 return err; 5368 process_bpf_exit: 5369 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5370 if (err < 0) { 5371 if (err != -ENOENT) 5372 return err; 5373 break; 5374 } else { 5375 do_print_state = true; 5376 continue; 5377 } 5378 } else { 5379 err = check_cond_jmp_op(env, insn, &insn_idx); 5380 if (err) 5381 return err; 5382 } 5383 } else if (class == BPF_LD) { 5384 u8 mode = BPF_MODE(insn->code); 5385 5386 if (mode == BPF_ABS || mode == BPF_IND) { 5387 err = check_ld_abs(env, insn); 5388 if (err) 5389 return err; 5390 5391 } else if (mode == BPF_IMM) { 5392 err = check_ld_imm(env, insn); 5393 if (err) 5394 return err; 5395 5396 insn_idx++; 5397 env->insn_aux_data[insn_idx].seen = true; 5398 } else { 5399 verbose(env, "invalid BPF_LD mode\n"); 5400 return -EINVAL; 5401 } 5402 } else { 5403 verbose(env, "unknown insn class %d\n", class); 5404 return -EINVAL; 5405 } 5406 5407 insn_idx++; 5408 } 5409 5410 verbose(env, "processed %d insns (limit %d), stack depth ", 5411 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5412 for (i = 0; i < env->subprog_cnt; i++) { 5413 u32 depth = env->subprog_info[i].stack_depth; 5414 5415 verbose(env, "%d", depth); 5416 if (i + 1 < env->subprog_cnt) 5417 verbose(env, "+"); 5418 } 5419 verbose(env, "\n"); 5420 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5421 return 0; 5422 } 5423 5424 static int check_map_prealloc(struct bpf_map *map) 5425 { 5426 return (map->map_type != BPF_MAP_TYPE_HASH && 5427 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5428 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5429 !(map->map_flags & BPF_F_NO_PREALLOC); 5430 } 5431 5432 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5433 struct bpf_map *map, 5434 struct bpf_prog *prog) 5435 5436 { 5437 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5438 * preallocated hash maps, since doing memory allocation 5439 * in overflow_handler can crash depending on where nmi got 5440 * triggered. 5441 */ 5442 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5443 if (!check_map_prealloc(map)) { 5444 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5445 return -EINVAL; 5446 } 5447 if (map->inner_map_meta && 5448 !check_map_prealloc(map->inner_map_meta)) { 5449 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5450 return -EINVAL; 5451 } 5452 } 5453 5454 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5455 !bpf_offload_prog_map_match(prog, map)) { 5456 verbose(env, "offload device mismatch between prog and map\n"); 5457 return -EINVAL; 5458 } 5459 5460 return 0; 5461 } 5462 5463 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 5464 { 5465 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 5466 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 5467 } 5468 5469 /* look for pseudo eBPF instructions that access map FDs and 5470 * replace them with actual map pointers 5471 */ 5472 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5473 { 5474 struct bpf_insn *insn = env->prog->insnsi; 5475 int insn_cnt = env->prog->len; 5476 int i, j, err; 5477 5478 err = bpf_prog_calc_tag(env->prog); 5479 if (err) 5480 return err; 5481 5482 for (i = 0; i < insn_cnt; i++, insn++) { 5483 if (BPF_CLASS(insn->code) == BPF_LDX && 5484 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5485 verbose(env, "BPF_LDX uses reserved fields\n"); 5486 return -EINVAL; 5487 } 5488 5489 if (BPF_CLASS(insn->code) == BPF_STX && 5490 ((BPF_MODE(insn->code) != BPF_MEM && 5491 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5492 verbose(env, "BPF_STX uses reserved fields\n"); 5493 return -EINVAL; 5494 } 5495 5496 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5497 struct bpf_map *map; 5498 struct fd f; 5499 5500 if (i == insn_cnt - 1 || insn[1].code != 0 || 5501 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5502 insn[1].off != 0) { 5503 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5504 return -EINVAL; 5505 } 5506 5507 if (insn->src_reg == 0) 5508 /* valid generic load 64-bit imm */ 5509 goto next_insn; 5510 5511 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5512 verbose(env, 5513 "unrecognized bpf_ld_imm64 insn\n"); 5514 return -EINVAL; 5515 } 5516 5517 f = fdget(insn->imm); 5518 map = __bpf_map_get(f); 5519 if (IS_ERR(map)) { 5520 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5521 insn->imm); 5522 return PTR_ERR(map); 5523 } 5524 5525 err = check_map_prog_compatibility(env, map, env->prog); 5526 if (err) { 5527 fdput(f); 5528 return err; 5529 } 5530 5531 /* store map pointer inside BPF_LD_IMM64 instruction */ 5532 insn[0].imm = (u32) (unsigned long) map; 5533 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5534 5535 /* check whether we recorded this map already */ 5536 for (j = 0; j < env->used_map_cnt; j++) 5537 if (env->used_maps[j] == map) { 5538 fdput(f); 5539 goto next_insn; 5540 } 5541 5542 if (env->used_map_cnt >= MAX_USED_MAPS) { 5543 fdput(f); 5544 return -E2BIG; 5545 } 5546 5547 /* hold the map. If the program is rejected by verifier, 5548 * the map will be released by release_maps() or it 5549 * will be used by the valid program until it's unloaded 5550 * and all maps are released in free_used_maps() 5551 */ 5552 map = bpf_map_inc(map, false); 5553 if (IS_ERR(map)) { 5554 fdput(f); 5555 return PTR_ERR(map); 5556 } 5557 env->used_maps[env->used_map_cnt++] = map; 5558 5559 if (bpf_map_is_cgroup_storage(map) && 5560 bpf_cgroup_storage_assign(env->prog, map)) { 5561 verbose(env, "only one cgroup storage of each type is allowed\n"); 5562 fdput(f); 5563 return -EBUSY; 5564 } 5565 5566 fdput(f); 5567 next_insn: 5568 insn++; 5569 i++; 5570 continue; 5571 } 5572 5573 /* Basic sanity check before we invest more work here. */ 5574 if (!bpf_opcode_in_insntable(insn->code)) { 5575 verbose(env, "unknown opcode %02x\n", insn->code); 5576 return -EINVAL; 5577 } 5578 } 5579 5580 /* now all pseudo BPF_LD_IMM64 instructions load valid 5581 * 'struct bpf_map *' into a register instead of user map_fd. 5582 * These pointers will be used later by verifier to validate map access. 5583 */ 5584 return 0; 5585 } 5586 5587 /* drop refcnt of maps used by the rejected program */ 5588 static void release_maps(struct bpf_verifier_env *env) 5589 { 5590 enum bpf_cgroup_storage_type stype; 5591 int i; 5592 5593 for_each_cgroup_storage_type(stype) { 5594 if (!env->prog->aux->cgroup_storage[stype]) 5595 continue; 5596 bpf_cgroup_storage_release(env->prog, 5597 env->prog->aux->cgroup_storage[stype]); 5598 } 5599 5600 for (i = 0; i < env->used_map_cnt; i++) 5601 bpf_map_put(env->used_maps[i]); 5602 } 5603 5604 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5605 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5606 { 5607 struct bpf_insn *insn = env->prog->insnsi; 5608 int insn_cnt = env->prog->len; 5609 int i; 5610 5611 for (i = 0; i < insn_cnt; i++, insn++) 5612 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5613 insn->src_reg = 0; 5614 } 5615 5616 /* single env->prog->insni[off] instruction was replaced with the range 5617 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5618 * [0, off) and [off, end) to new locations, so the patched range stays zero 5619 */ 5620 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5621 u32 off, u32 cnt) 5622 { 5623 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5624 int i; 5625 5626 if (cnt == 1) 5627 return 0; 5628 new_data = vzalloc(array_size(prog_len, 5629 sizeof(struct bpf_insn_aux_data))); 5630 if (!new_data) 5631 return -ENOMEM; 5632 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5633 memcpy(new_data + off + cnt - 1, old_data + off, 5634 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5635 for (i = off; i < off + cnt - 1; i++) 5636 new_data[i].seen = true; 5637 env->insn_aux_data = new_data; 5638 vfree(old_data); 5639 return 0; 5640 } 5641 5642 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5643 { 5644 int i; 5645 5646 if (len == 1) 5647 return; 5648 /* NOTE: fake 'exit' subprog should be updated as well. */ 5649 for (i = 0; i <= env->subprog_cnt; i++) { 5650 if (env->subprog_info[i].start < off) 5651 continue; 5652 env->subprog_info[i].start += len - 1; 5653 } 5654 } 5655 5656 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5657 const struct bpf_insn *patch, u32 len) 5658 { 5659 struct bpf_prog *new_prog; 5660 5661 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5662 if (!new_prog) 5663 return NULL; 5664 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5665 return NULL; 5666 adjust_subprog_starts(env, off, len); 5667 return new_prog; 5668 } 5669 5670 /* The verifier does more data flow analysis than llvm and will not 5671 * explore branches that are dead at run time. Malicious programs can 5672 * have dead code too. Therefore replace all dead at-run-time code 5673 * with 'ja -1'. 5674 * 5675 * Just nops are not optimal, e.g. if they would sit at the end of the 5676 * program and through another bug we would manage to jump there, then 5677 * we'd execute beyond program memory otherwise. Returning exception 5678 * code also wouldn't work since we can have subprogs where the dead 5679 * code could be located. 5680 */ 5681 static void sanitize_dead_code(struct bpf_verifier_env *env) 5682 { 5683 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5684 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5685 struct bpf_insn *insn = env->prog->insnsi; 5686 const int insn_cnt = env->prog->len; 5687 int i; 5688 5689 for (i = 0; i < insn_cnt; i++) { 5690 if (aux_data[i].seen) 5691 continue; 5692 memcpy(insn + i, &trap, sizeof(trap)); 5693 } 5694 } 5695 5696 /* convert load instructions that access fields of a context type into a 5697 * sequence of instructions that access fields of the underlying structure: 5698 * struct __sk_buff -> struct sk_buff 5699 * struct bpf_sock_ops -> struct sock 5700 */ 5701 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5702 { 5703 const struct bpf_verifier_ops *ops = env->ops; 5704 int i, cnt, size, ctx_field_size, delta = 0; 5705 const int insn_cnt = env->prog->len; 5706 struct bpf_insn insn_buf[16], *insn; 5707 struct bpf_prog *new_prog; 5708 enum bpf_access_type type; 5709 bool is_narrower_load; 5710 u32 target_size; 5711 5712 if (ops->gen_prologue || env->seen_direct_write) { 5713 if (!ops->gen_prologue) { 5714 verbose(env, "bpf verifier is misconfigured\n"); 5715 return -EINVAL; 5716 } 5717 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5718 env->prog); 5719 if (cnt >= ARRAY_SIZE(insn_buf)) { 5720 verbose(env, "bpf verifier is misconfigured\n"); 5721 return -EINVAL; 5722 } else if (cnt) { 5723 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5724 if (!new_prog) 5725 return -ENOMEM; 5726 5727 env->prog = new_prog; 5728 delta += cnt - 1; 5729 } 5730 } 5731 5732 if (bpf_prog_is_dev_bound(env->prog->aux)) 5733 return 0; 5734 5735 insn = env->prog->insnsi + delta; 5736 5737 for (i = 0; i < insn_cnt; i++, insn++) { 5738 bpf_convert_ctx_access_t convert_ctx_access; 5739 5740 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5741 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5742 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5743 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5744 type = BPF_READ; 5745 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5746 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5747 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5748 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5749 type = BPF_WRITE; 5750 else 5751 continue; 5752 5753 if (type == BPF_WRITE && 5754 env->insn_aux_data[i + delta].sanitize_stack_off) { 5755 struct bpf_insn patch[] = { 5756 /* Sanitize suspicious stack slot with zero. 5757 * There are no memory dependencies for this store, 5758 * since it's only using frame pointer and immediate 5759 * constant of zero 5760 */ 5761 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5762 env->insn_aux_data[i + delta].sanitize_stack_off, 5763 0), 5764 /* the original STX instruction will immediately 5765 * overwrite the same stack slot with appropriate value 5766 */ 5767 *insn, 5768 }; 5769 5770 cnt = ARRAY_SIZE(patch); 5771 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5772 if (!new_prog) 5773 return -ENOMEM; 5774 5775 delta += cnt - 1; 5776 env->prog = new_prog; 5777 insn = new_prog->insnsi + i + delta; 5778 continue; 5779 } 5780 5781 switch (env->insn_aux_data[i + delta].ptr_type) { 5782 case PTR_TO_CTX: 5783 if (!ops->convert_ctx_access) 5784 continue; 5785 convert_ctx_access = ops->convert_ctx_access; 5786 break; 5787 case PTR_TO_SOCKET: 5788 convert_ctx_access = bpf_sock_convert_ctx_access; 5789 break; 5790 default: 5791 continue; 5792 } 5793 5794 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5795 size = BPF_LDST_BYTES(insn); 5796 5797 /* If the read access is a narrower load of the field, 5798 * convert to a 4/8-byte load, to minimum program type specific 5799 * convert_ctx_access changes. If conversion is successful, 5800 * we will apply proper mask to the result. 5801 */ 5802 is_narrower_load = size < ctx_field_size; 5803 if (is_narrower_load) { 5804 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5805 u32 off = insn->off; 5806 u8 size_code; 5807 5808 if (type == BPF_WRITE) { 5809 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5810 return -EINVAL; 5811 } 5812 5813 size_code = BPF_H; 5814 if (ctx_field_size == 4) 5815 size_code = BPF_W; 5816 else if (ctx_field_size == 8) 5817 size_code = BPF_DW; 5818 5819 insn->off = off & ~(size_default - 1); 5820 insn->code = BPF_LDX | BPF_MEM | size_code; 5821 } 5822 5823 target_size = 0; 5824 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 5825 &target_size); 5826 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5827 (ctx_field_size && !target_size)) { 5828 verbose(env, "bpf verifier is misconfigured\n"); 5829 return -EINVAL; 5830 } 5831 5832 if (is_narrower_load && size < target_size) { 5833 if (ctx_field_size <= 4) 5834 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5835 (1 << size * 8) - 1); 5836 else 5837 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5838 (1 << size * 8) - 1); 5839 } 5840 5841 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5842 if (!new_prog) 5843 return -ENOMEM; 5844 5845 delta += cnt - 1; 5846 5847 /* keep walking new program and skip insns we just inserted */ 5848 env->prog = new_prog; 5849 insn = new_prog->insnsi + i + delta; 5850 } 5851 5852 return 0; 5853 } 5854 5855 static int jit_subprogs(struct bpf_verifier_env *env) 5856 { 5857 struct bpf_prog *prog = env->prog, **func, *tmp; 5858 int i, j, subprog_start, subprog_end = 0, len, subprog; 5859 struct bpf_insn *insn; 5860 void *old_bpf_func; 5861 int err = -ENOMEM; 5862 5863 if (env->subprog_cnt <= 1) 5864 return 0; 5865 5866 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5867 if (insn->code != (BPF_JMP | BPF_CALL) || 5868 insn->src_reg != BPF_PSEUDO_CALL) 5869 continue; 5870 /* Upon error here we cannot fall back to interpreter but 5871 * need a hard reject of the program. Thus -EFAULT is 5872 * propagated in any case. 5873 */ 5874 subprog = find_subprog(env, i + insn->imm + 1); 5875 if (subprog < 0) { 5876 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5877 i + insn->imm + 1); 5878 return -EFAULT; 5879 } 5880 /* temporarily remember subprog id inside insn instead of 5881 * aux_data, since next loop will split up all insns into funcs 5882 */ 5883 insn->off = subprog; 5884 /* remember original imm in case JIT fails and fallback 5885 * to interpreter will be needed 5886 */ 5887 env->insn_aux_data[i].call_imm = insn->imm; 5888 /* point imm to __bpf_call_base+1 from JITs point of view */ 5889 insn->imm = 1; 5890 } 5891 5892 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5893 if (!func) 5894 goto out_undo_insn; 5895 5896 for (i = 0; i < env->subprog_cnt; i++) { 5897 subprog_start = subprog_end; 5898 subprog_end = env->subprog_info[i + 1].start; 5899 5900 len = subprog_end - subprog_start; 5901 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5902 if (!func[i]) 5903 goto out_free; 5904 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5905 len * sizeof(struct bpf_insn)); 5906 func[i]->type = prog->type; 5907 func[i]->len = len; 5908 if (bpf_prog_calc_tag(func[i])) 5909 goto out_free; 5910 func[i]->is_func = 1; 5911 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5912 * Long term would need debug info to populate names 5913 */ 5914 func[i]->aux->name[0] = 'F'; 5915 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5916 func[i]->jit_requested = 1; 5917 func[i] = bpf_int_jit_compile(func[i]); 5918 if (!func[i]->jited) { 5919 err = -ENOTSUPP; 5920 goto out_free; 5921 } 5922 cond_resched(); 5923 } 5924 /* at this point all bpf functions were successfully JITed 5925 * now populate all bpf_calls with correct addresses and 5926 * run last pass of JIT 5927 */ 5928 for (i = 0; i < env->subprog_cnt; i++) { 5929 insn = func[i]->insnsi; 5930 for (j = 0; j < func[i]->len; j++, insn++) { 5931 if (insn->code != (BPF_JMP | BPF_CALL) || 5932 insn->src_reg != BPF_PSEUDO_CALL) 5933 continue; 5934 subprog = insn->off; 5935 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5936 func[subprog]->bpf_func - 5937 __bpf_call_base; 5938 } 5939 5940 /* we use the aux data to keep a list of the start addresses 5941 * of the JITed images for each function in the program 5942 * 5943 * for some architectures, such as powerpc64, the imm field 5944 * might not be large enough to hold the offset of the start 5945 * address of the callee's JITed image from __bpf_call_base 5946 * 5947 * in such cases, we can lookup the start address of a callee 5948 * by using its subprog id, available from the off field of 5949 * the call instruction, as an index for this list 5950 */ 5951 func[i]->aux->func = func; 5952 func[i]->aux->func_cnt = env->subprog_cnt; 5953 } 5954 for (i = 0; i < env->subprog_cnt; i++) { 5955 old_bpf_func = func[i]->bpf_func; 5956 tmp = bpf_int_jit_compile(func[i]); 5957 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5958 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5959 err = -ENOTSUPP; 5960 goto out_free; 5961 } 5962 cond_resched(); 5963 } 5964 5965 /* finally lock prog and jit images for all functions and 5966 * populate kallsysm 5967 */ 5968 for (i = 0; i < env->subprog_cnt; i++) { 5969 bpf_prog_lock_ro(func[i]); 5970 bpf_prog_kallsyms_add(func[i]); 5971 } 5972 5973 /* Last step: make now unused interpreter insns from main 5974 * prog consistent for later dump requests, so they can 5975 * later look the same as if they were interpreted only. 5976 */ 5977 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5978 if (insn->code != (BPF_JMP | BPF_CALL) || 5979 insn->src_reg != BPF_PSEUDO_CALL) 5980 continue; 5981 insn->off = env->insn_aux_data[i].call_imm; 5982 subprog = find_subprog(env, i + insn->off + 1); 5983 insn->imm = subprog; 5984 } 5985 5986 prog->jited = 1; 5987 prog->bpf_func = func[0]->bpf_func; 5988 prog->aux->func = func; 5989 prog->aux->func_cnt = env->subprog_cnt; 5990 return 0; 5991 out_free: 5992 for (i = 0; i < env->subprog_cnt; i++) 5993 if (func[i]) 5994 bpf_jit_free(func[i]); 5995 kfree(func); 5996 out_undo_insn: 5997 /* cleanup main prog to be interpreted */ 5998 prog->jit_requested = 0; 5999 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6000 if (insn->code != (BPF_JMP | BPF_CALL) || 6001 insn->src_reg != BPF_PSEUDO_CALL) 6002 continue; 6003 insn->off = 0; 6004 insn->imm = env->insn_aux_data[i].call_imm; 6005 } 6006 return err; 6007 } 6008 6009 static int fixup_call_args(struct bpf_verifier_env *env) 6010 { 6011 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6012 struct bpf_prog *prog = env->prog; 6013 struct bpf_insn *insn = prog->insnsi; 6014 int i, depth; 6015 #endif 6016 int err = 0; 6017 6018 if (env->prog->jit_requested && 6019 !bpf_prog_is_dev_bound(env->prog->aux)) { 6020 err = jit_subprogs(env); 6021 if (err == 0) 6022 return 0; 6023 if (err == -EFAULT) 6024 return err; 6025 } 6026 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6027 for (i = 0; i < prog->len; i++, insn++) { 6028 if (insn->code != (BPF_JMP | BPF_CALL) || 6029 insn->src_reg != BPF_PSEUDO_CALL) 6030 continue; 6031 depth = get_callee_stack_depth(env, insn, i); 6032 if (depth < 0) 6033 return depth; 6034 bpf_patch_call_args(insn, depth); 6035 } 6036 err = 0; 6037 #endif 6038 return err; 6039 } 6040 6041 /* fixup insn->imm field of bpf_call instructions 6042 * and inline eligible helpers as explicit sequence of BPF instructions 6043 * 6044 * this function is called after eBPF program passed verification 6045 */ 6046 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6047 { 6048 struct bpf_prog *prog = env->prog; 6049 struct bpf_insn *insn = prog->insnsi; 6050 const struct bpf_func_proto *fn; 6051 const int insn_cnt = prog->len; 6052 const struct bpf_map_ops *ops; 6053 struct bpf_insn_aux_data *aux; 6054 struct bpf_insn insn_buf[16]; 6055 struct bpf_prog *new_prog; 6056 struct bpf_map *map_ptr; 6057 int i, cnt, delta = 0; 6058 6059 for (i = 0; i < insn_cnt; i++, insn++) { 6060 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6061 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6062 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6063 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6064 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6065 struct bpf_insn mask_and_div[] = { 6066 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6067 /* Rx div 0 -> 0 */ 6068 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6069 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6070 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6071 *insn, 6072 }; 6073 struct bpf_insn mask_and_mod[] = { 6074 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6075 /* Rx mod 0 -> Rx */ 6076 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6077 *insn, 6078 }; 6079 struct bpf_insn *patchlet; 6080 6081 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6082 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6083 patchlet = mask_and_div + (is64 ? 1 : 0); 6084 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6085 } else { 6086 patchlet = mask_and_mod + (is64 ? 1 : 0); 6087 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6088 } 6089 6090 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6091 if (!new_prog) 6092 return -ENOMEM; 6093 6094 delta += cnt - 1; 6095 env->prog = prog = new_prog; 6096 insn = new_prog->insnsi + i + delta; 6097 continue; 6098 } 6099 6100 if (BPF_CLASS(insn->code) == BPF_LD && 6101 (BPF_MODE(insn->code) == BPF_ABS || 6102 BPF_MODE(insn->code) == BPF_IND)) { 6103 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6104 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6105 verbose(env, "bpf verifier is misconfigured\n"); 6106 return -EINVAL; 6107 } 6108 6109 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6110 if (!new_prog) 6111 return -ENOMEM; 6112 6113 delta += cnt - 1; 6114 env->prog = prog = new_prog; 6115 insn = new_prog->insnsi + i + delta; 6116 continue; 6117 } 6118 6119 if (insn->code != (BPF_JMP | BPF_CALL)) 6120 continue; 6121 if (insn->src_reg == BPF_PSEUDO_CALL) 6122 continue; 6123 6124 if (insn->imm == BPF_FUNC_get_route_realm) 6125 prog->dst_needed = 1; 6126 if (insn->imm == BPF_FUNC_get_prandom_u32) 6127 bpf_user_rnd_init_once(); 6128 if (insn->imm == BPF_FUNC_override_return) 6129 prog->kprobe_override = 1; 6130 if (insn->imm == BPF_FUNC_tail_call) { 6131 /* If we tail call into other programs, we 6132 * cannot make any assumptions since they can 6133 * be replaced dynamically during runtime in 6134 * the program array. 6135 */ 6136 prog->cb_access = 1; 6137 env->prog->aux->stack_depth = MAX_BPF_STACK; 6138 6139 /* mark bpf_tail_call as different opcode to avoid 6140 * conditional branch in the interpeter for every normal 6141 * call and to prevent accidental JITing by JIT compiler 6142 * that doesn't support bpf_tail_call yet 6143 */ 6144 insn->imm = 0; 6145 insn->code = BPF_JMP | BPF_TAIL_CALL; 6146 6147 aux = &env->insn_aux_data[i + delta]; 6148 if (!bpf_map_ptr_unpriv(aux)) 6149 continue; 6150 6151 /* instead of changing every JIT dealing with tail_call 6152 * emit two extra insns: 6153 * if (index >= max_entries) goto out; 6154 * index &= array->index_mask; 6155 * to avoid out-of-bounds cpu speculation 6156 */ 6157 if (bpf_map_ptr_poisoned(aux)) { 6158 verbose(env, "tail_call abusing map_ptr\n"); 6159 return -EINVAL; 6160 } 6161 6162 map_ptr = BPF_MAP_PTR(aux->map_state); 6163 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6164 map_ptr->max_entries, 2); 6165 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6166 container_of(map_ptr, 6167 struct bpf_array, 6168 map)->index_mask); 6169 insn_buf[2] = *insn; 6170 cnt = 3; 6171 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6172 if (!new_prog) 6173 return -ENOMEM; 6174 6175 delta += cnt - 1; 6176 env->prog = prog = new_prog; 6177 insn = new_prog->insnsi + i + delta; 6178 continue; 6179 } 6180 6181 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6182 * and other inlining handlers are currently limited to 64 bit 6183 * only. 6184 */ 6185 if (prog->jit_requested && BITS_PER_LONG == 64 && 6186 (insn->imm == BPF_FUNC_map_lookup_elem || 6187 insn->imm == BPF_FUNC_map_update_elem || 6188 insn->imm == BPF_FUNC_map_delete_elem || 6189 insn->imm == BPF_FUNC_map_push_elem || 6190 insn->imm == BPF_FUNC_map_pop_elem || 6191 insn->imm == BPF_FUNC_map_peek_elem)) { 6192 aux = &env->insn_aux_data[i + delta]; 6193 if (bpf_map_ptr_poisoned(aux)) 6194 goto patch_call_imm; 6195 6196 map_ptr = BPF_MAP_PTR(aux->map_state); 6197 ops = map_ptr->ops; 6198 if (insn->imm == BPF_FUNC_map_lookup_elem && 6199 ops->map_gen_lookup) { 6200 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 6201 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6202 verbose(env, "bpf verifier is misconfigured\n"); 6203 return -EINVAL; 6204 } 6205 6206 new_prog = bpf_patch_insn_data(env, i + delta, 6207 insn_buf, cnt); 6208 if (!new_prog) 6209 return -ENOMEM; 6210 6211 delta += cnt - 1; 6212 env->prog = prog = new_prog; 6213 insn = new_prog->insnsi + i + delta; 6214 continue; 6215 } 6216 6217 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 6218 (void *(*)(struct bpf_map *map, void *key))NULL)); 6219 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 6220 (int (*)(struct bpf_map *map, void *key))NULL)); 6221 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 6222 (int (*)(struct bpf_map *map, void *key, void *value, 6223 u64 flags))NULL)); 6224 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 6225 (int (*)(struct bpf_map *map, void *value, 6226 u64 flags))NULL)); 6227 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 6228 (int (*)(struct bpf_map *map, void *value))NULL)); 6229 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 6230 (int (*)(struct bpf_map *map, void *value))NULL)); 6231 6232 switch (insn->imm) { 6233 case BPF_FUNC_map_lookup_elem: 6234 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 6235 __bpf_call_base; 6236 continue; 6237 case BPF_FUNC_map_update_elem: 6238 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 6239 __bpf_call_base; 6240 continue; 6241 case BPF_FUNC_map_delete_elem: 6242 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 6243 __bpf_call_base; 6244 continue; 6245 case BPF_FUNC_map_push_elem: 6246 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 6247 __bpf_call_base; 6248 continue; 6249 case BPF_FUNC_map_pop_elem: 6250 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 6251 __bpf_call_base; 6252 continue; 6253 case BPF_FUNC_map_peek_elem: 6254 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 6255 __bpf_call_base; 6256 continue; 6257 } 6258 6259 goto patch_call_imm; 6260 } 6261 6262 patch_call_imm: 6263 fn = env->ops->get_func_proto(insn->imm, env->prog); 6264 /* all functions that have prototype and verifier allowed 6265 * programs to call them, must be real in-kernel functions 6266 */ 6267 if (!fn->func) { 6268 verbose(env, 6269 "kernel subsystem misconfigured func %s#%d\n", 6270 func_id_name(insn->imm), insn->imm); 6271 return -EFAULT; 6272 } 6273 insn->imm = fn->func - __bpf_call_base; 6274 } 6275 6276 return 0; 6277 } 6278 6279 static void free_states(struct bpf_verifier_env *env) 6280 { 6281 struct bpf_verifier_state_list *sl, *sln; 6282 int i; 6283 6284 if (!env->explored_states) 6285 return; 6286 6287 for (i = 0; i < env->prog->len; i++) { 6288 sl = env->explored_states[i]; 6289 6290 if (sl) 6291 while (sl != STATE_LIST_MARK) { 6292 sln = sl->next; 6293 free_verifier_state(&sl->state, false); 6294 kfree(sl); 6295 sl = sln; 6296 } 6297 } 6298 6299 kfree(env->explored_states); 6300 } 6301 6302 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 6303 { 6304 struct bpf_verifier_env *env; 6305 struct bpf_verifier_log *log; 6306 int ret = -EINVAL; 6307 6308 /* no program is valid */ 6309 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 6310 return -EINVAL; 6311 6312 /* 'struct bpf_verifier_env' can be global, but since it's not small, 6313 * allocate/free it every time bpf_check() is called 6314 */ 6315 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 6316 if (!env) 6317 return -ENOMEM; 6318 log = &env->log; 6319 6320 env->insn_aux_data = 6321 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 6322 (*prog)->len)); 6323 ret = -ENOMEM; 6324 if (!env->insn_aux_data) 6325 goto err_free_env; 6326 env->prog = *prog; 6327 env->ops = bpf_verifier_ops[env->prog->type]; 6328 6329 /* grab the mutex to protect few globals used by verifier */ 6330 mutex_lock(&bpf_verifier_lock); 6331 6332 if (attr->log_level || attr->log_buf || attr->log_size) { 6333 /* user requested verbose verifier output 6334 * and supplied buffer to store the verification trace 6335 */ 6336 log->level = attr->log_level; 6337 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 6338 log->len_total = attr->log_size; 6339 6340 ret = -EINVAL; 6341 /* log attributes have to be sane */ 6342 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 6343 !log->level || !log->ubuf) 6344 goto err_unlock; 6345 } 6346 6347 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 6348 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 6349 env->strict_alignment = true; 6350 6351 ret = replace_map_fd_with_map_ptr(env); 6352 if (ret < 0) 6353 goto skip_full_check; 6354 6355 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6356 ret = bpf_prog_offload_verifier_prep(env); 6357 if (ret) 6358 goto skip_full_check; 6359 } 6360 6361 env->explored_states = kcalloc(env->prog->len, 6362 sizeof(struct bpf_verifier_state_list *), 6363 GFP_USER); 6364 ret = -ENOMEM; 6365 if (!env->explored_states) 6366 goto skip_full_check; 6367 6368 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 6369 6370 ret = check_cfg(env); 6371 if (ret < 0) 6372 goto skip_full_check; 6373 6374 ret = do_check(env); 6375 if (env->cur_state) { 6376 free_verifier_state(env->cur_state, true); 6377 env->cur_state = NULL; 6378 } 6379 6380 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 6381 ret = bpf_prog_offload_finalize(env); 6382 6383 skip_full_check: 6384 while (!pop_stack(env, NULL, NULL)); 6385 free_states(env); 6386 6387 if (ret == 0) 6388 sanitize_dead_code(env); 6389 6390 if (ret == 0) 6391 ret = check_max_stack_depth(env); 6392 6393 if (ret == 0) 6394 /* program is valid, convert *(u32*)(ctx + off) accesses */ 6395 ret = convert_ctx_accesses(env); 6396 6397 if (ret == 0) 6398 ret = fixup_bpf_calls(env); 6399 6400 if (ret == 0) 6401 ret = fixup_call_args(env); 6402 6403 if (log->level && bpf_verifier_log_full(log)) 6404 ret = -ENOSPC; 6405 if (log->level && !log->ubuf) { 6406 ret = -EFAULT; 6407 goto err_release_maps; 6408 } 6409 6410 if (ret == 0 && env->used_map_cnt) { 6411 /* if program passed verifier, update used_maps in bpf_prog_info */ 6412 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 6413 sizeof(env->used_maps[0]), 6414 GFP_KERNEL); 6415 6416 if (!env->prog->aux->used_maps) { 6417 ret = -ENOMEM; 6418 goto err_release_maps; 6419 } 6420 6421 memcpy(env->prog->aux->used_maps, env->used_maps, 6422 sizeof(env->used_maps[0]) * env->used_map_cnt); 6423 env->prog->aux->used_map_cnt = env->used_map_cnt; 6424 6425 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6426 * bpf_ld_imm64 instructions 6427 */ 6428 convert_pseudo_ld_imm64(env); 6429 } 6430 6431 err_release_maps: 6432 if (!env->prog->aux->used_maps) 6433 /* if we didn't copy map pointers into bpf_prog_info, release 6434 * them now. Otherwise free_used_maps() will release them. 6435 */ 6436 release_maps(env); 6437 *prog = env->prog; 6438 err_unlock: 6439 mutex_unlock(&bpf_verifier_lock); 6440 vfree(env->insn_aux_data); 6441 err_free_env: 6442 kfree(env); 6443 return ret; 6444 } 6445