xref: /linux/kernel/bpf/verifier.c (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_verifier.h>
19 #include <linux/filter.h>
20 #include <net/netlink.h>
21 #include <linux/file.h>
22 #include <linux/vmalloc.h>
23 #include <linux/stringify.h>
24 #include <linux/bsearch.h>
25 #include <linux/sort.h>
26 #include <linux/perf_event.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 };
175 
176 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
177 #define BPF_COMPLEXITY_LIMIT_STACK	1024
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_state = (unsigned long)map |
200 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 struct bpf_call_arg_meta {
204 	struct bpf_map *map_ptr;
205 	bool raw_mode;
206 	bool pkt_access;
207 	int regno;
208 	int access_size;
209 	s64 msize_smax_value;
210 	u64 msize_umax_value;
211 	int ptr_id;
212 };
213 
214 static DEFINE_MUTEX(bpf_verifier_lock);
215 
216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
217 		       va_list args)
218 {
219 	unsigned int n;
220 
221 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
222 
223 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
224 		  "verifier log line truncated - local buffer too short\n");
225 
226 	n = min(log->len_total - log->len_used - 1, n);
227 	log->kbuf[n] = '\0';
228 
229 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
230 		log->len_used += n;
231 	else
232 		log->ubuf = NULL;
233 }
234 
235 /* log_level controls verbosity level of eBPF verifier.
236  * bpf_verifier_log_write() is used to dump the verification trace to the log,
237  * so the user can figure out what's wrong with the program
238  */
239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
240 					   const char *fmt, ...)
241 {
242 	va_list args;
243 
244 	if (!bpf_verifier_log_needed(&env->log))
245 		return;
246 
247 	va_start(args, fmt);
248 	bpf_verifier_vlog(&env->log, fmt, args);
249 	va_end(args);
250 }
251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
252 
253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
254 {
255 	struct bpf_verifier_env *env = private_data;
256 	va_list args;
257 
258 	if (!bpf_verifier_log_needed(&env->log))
259 		return;
260 
261 	va_start(args, fmt);
262 	bpf_verifier_vlog(&env->log, fmt, args);
263 	va_end(args);
264 }
265 
266 static bool type_is_pkt_pointer(enum bpf_reg_type type)
267 {
268 	return type == PTR_TO_PACKET ||
269 	       type == PTR_TO_PACKET_META;
270 }
271 
272 static bool reg_type_may_be_null(enum bpf_reg_type type)
273 {
274 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
275 	       type == PTR_TO_SOCKET_OR_NULL;
276 }
277 
278 static bool type_is_refcounted(enum bpf_reg_type type)
279 {
280 	return type == PTR_TO_SOCKET;
281 }
282 
283 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
284 {
285 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
286 }
287 
288 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
289 {
290 	return type_is_refcounted(reg->type);
291 }
292 
293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
294 {
295 	return type_is_refcounted_or_null(reg->type);
296 }
297 
298 static bool arg_type_is_refcounted(enum bpf_arg_type type)
299 {
300 	return type == ARG_PTR_TO_SOCKET;
301 }
302 
303 /* Determine whether the function releases some resources allocated by another
304  * function call. The first reference type argument will be assumed to be
305  * released by release_reference().
306  */
307 static bool is_release_function(enum bpf_func_id func_id)
308 {
309 	return func_id == BPF_FUNC_sk_release;
310 }
311 
312 /* string representation of 'enum bpf_reg_type' */
313 static const char * const reg_type_str[] = {
314 	[NOT_INIT]		= "?",
315 	[SCALAR_VALUE]		= "inv",
316 	[PTR_TO_CTX]		= "ctx",
317 	[CONST_PTR_TO_MAP]	= "map_ptr",
318 	[PTR_TO_MAP_VALUE]	= "map_value",
319 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
320 	[PTR_TO_STACK]		= "fp",
321 	[PTR_TO_PACKET]		= "pkt",
322 	[PTR_TO_PACKET_META]	= "pkt_meta",
323 	[PTR_TO_PACKET_END]	= "pkt_end",
324 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
325 	[PTR_TO_SOCKET]		= "sock",
326 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
327 };
328 
329 static char slot_type_char[] = {
330 	[STACK_INVALID]	= '?',
331 	[STACK_SPILL]	= 'r',
332 	[STACK_MISC]	= 'm',
333 	[STACK_ZERO]	= '0',
334 };
335 
336 static void print_liveness(struct bpf_verifier_env *env,
337 			   enum bpf_reg_liveness live)
338 {
339 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
340 	    verbose(env, "_");
341 	if (live & REG_LIVE_READ)
342 		verbose(env, "r");
343 	if (live & REG_LIVE_WRITTEN)
344 		verbose(env, "w");
345 }
346 
347 static struct bpf_func_state *func(struct bpf_verifier_env *env,
348 				   const struct bpf_reg_state *reg)
349 {
350 	struct bpf_verifier_state *cur = env->cur_state;
351 
352 	return cur->frame[reg->frameno];
353 }
354 
355 static void print_verifier_state(struct bpf_verifier_env *env,
356 				 const struct bpf_func_state *state)
357 {
358 	const struct bpf_reg_state *reg;
359 	enum bpf_reg_type t;
360 	int i;
361 
362 	if (state->frameno)
363 		verbose(env, " frame%d:", state->frameno);
364 	for (i = 0; i < MAX_BPF_REG; i++) {
365 		reg = &state->regs[i];
366 		t = reg->type;
367 		if (t == NOT_INIT)
368 			continue;
369 		verbose(env, " R%d", i);
370 		print_liveness(env, reg->live);
371 		verbose(env, "=%s", reg_type_str[t]);
372 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
373 		    tnum_is_const(reg->var_off)) {
374 			/* reg->off should be 0 for SCALAR_VALUE */
375 			verbose(env, "%lld", reg->var_off.value + reg->off);
376 			if (t == PTR_TO_STACK)
377 				verbose(env, ",call_%d", func(env, reg)->callsite);
378 		} else {
379 			verbose(env, "(id=%d", reg->id);
380 			if (t != SCALAR_VALUE)
381 				verbose(env, ",off=%d", reg->off);
382 			if (type_is_pkt_pointer(t))
383 				verbose(env, ",r=%d", reg->range);
384 			else if (t == CONST_PTR_TO_MAP ||
385 				 t == PTR_TO_MAP_VALUE ||
386 				 t == PTR_TO_MAP_VALUE_OR_NULL)
387 				verbose(env, ",ks=%d,vs=%d",
388 					reg->map_ptr->key_size,
389 					reg->map_ptr->value_size);
390 			if (tnum_is_const(reg->var_off)) {
391 				/* Typically an immediate SCALAR_VALUE, but
392 				 * could be a pointer whose offset is too big
393 				 * for reg->off
394 				 */
395 				verbose(env, ",imm=%llx", reg->var_off.value);
396 			} else {
397 				if (reg->smin_value != reg->umin_value &&
398 				    reg->smin_value != S64_MIN)
399 					verbose(env, ",smin_value=%lld",
400 						(long long)reg->smin_value);
401 				if (reg->smax_value != reg->umax_value &&
402 				    reg->smax_value != S64_MAX)
403 					verbose(env, ",smax_value=%lld",
404 						(long long)reg->smax_value);
405 				if (reg->umin_value != 0)
406 					verbose(env, ",umin_value=%llu",
407 						(unsigned long long)reg->umin_value);
408 				if (reg->umax_value != U64_MAX)
409 					verbose(env, ",umax_value=%llu",
410 						(unsigned long long)reg->umax_value);
411 				if (!tnum_is_unknown(reg->var_off)) {
412 					char tn_buf[48];
413 
414 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
415 					verbose(env, ",var_off=%s", tn_buf);
416 				}
417 			}
418 			verbose(env, ")");
419 		}
420 	}
421 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
422 		char types_buf[BPF_REG_SIZE + 1];
423 		bool valid = false;
424 		int j;
425 
426 		for (j = 0; j < BPF_REG_SIZE; j++) {
427 			if (state->stack[i].slot_type[j] != STACK_INVALID)
428 				valid = true;
429 			types_buf[j] = slot_type_char[
430 					state->stack[i].slot_type[j]];
431 		}
432 		types_buf[BPF_REG_SIZE] = 0;
433 		if (!valid)
434 			continue;
435 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
436 		print_liveness(env, state->stack[i].spilled_ptr.live);
437 		if (state->stack[i].slot_type[0] == STACK_SPILL)
438 			verbose(env, "=%s",
439 				reg_type_str[state->stack[i].spilled_ptr.type]);
440 		else
441 			verbose(env, "=%s", types_buf);
442 	}
443 	if (state->acquired_refs && state->refs[0].id) {
444 		verbose(env, " refs=%d", state->refs[0].id);
445 		for (i = 1; i < state->acquired_refs; i++)
446 			if (state->refs[i].id)
447 				verbose(env, ",%d", state->refs[i].id);
448 	}
449 	verbose(env, "\n");
450 }
451 
452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
453 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
454 			       const struct bpf_func_state *src)	\
455 {									\
456 	if (!src->FIELD)						\
457 		return 0;						\
458 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
459 		/* internal bug, make state invalid to reject the program */ \
460 		memset(dst, 0, sizeof(*dst));				\
461 		return -EFAULT;						\
462 	}								\
463 	memcpy(dst->FIELD, src->FIELD,					\
464 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
465 	return 0;							\
466 }
467 /* copy_reference_state() */
468 COPY_STATE_FN(reference, acquired_refs, refs, 1)
469 /* copy_stack_state() */
470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
471 #undef COPY_STATE_FN
472 
473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
475 				  bool copy_old)			\
476 {									\
477 	u32 old_size = state->COUNT;					\
478 	struct bpf_##NAME##_state *new_##FIELD;				\
479 	int slot = size / SIZE;						\
480 									\
481 	if (size <= old_size || !size) {				\
482 		if (copy_old)						\
483 			return 0;					\
484 		state->COUNT = slot * SIZE;				\
485 		if (!size && old_size) {				\
486 			kfree(state->FIELD);				\
487 			state->FIELD = NULL;				\
488 		}							\
489 		return 0;						\
490 	}								\
491 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
492 				    GFP_KERNEL);			\
493 	if (!new_##FIELD)						\
494 		return -ENOMEM;						\
495 	if (copy_old) {							\
496 		if (state->FIELD)					\
497 			memcpy(new_##FIELD, state->FIELD,		\
498 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
499 		memset(new_##FIELD + old_size / SIZE, 0,		\
500 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
501 	}								\
502 	state->COUNT = slot * SIZE;					\
503 	kfree(state->FIELD);						\
504 	state->FIELD = new_##FIELD;					\
505 	return 0;							\
506 }
507 /* realloc_reference_state() */
508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
509 /* realloc_stack_state() */
510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
511 #undef REALLOC_STATE_FN
512 
513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
514  * make it consume minimal amount of memory. check_stack_write() access from
515  * the program calls into realloc_func_state() to grow the stack size.
516  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
517  * which realloc_stack_state() copies over. It points to previous
518  * bpf_verifier_state which is never reallocated.
519  */
520 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
521 			      int refs_size, bool copy_old)
522 {
523 	int err = realloc_reference_state(state, refs_size, copy_old);
524 	if (err)
525 		return err;
526 	return realloc_stack_state(state, stack_size, copy_old);
527 }
528 
529 /* Acquire a pointer id from the env and update the state->refs to include
530  * this new pointer reference.
531  * On success, returns a valid pointer id to associate with the register
532  * On failure, returns a negative errno.
533  */
534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
535 {
536 	struct bpf_func_state *state = cur_func(env);
537 	int new_ofs = state->acquired_refs;
538 	int id, err;
539 
540 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
541 	if (err)
542 		return err;
543 	id = ++env->id_gen;
544 	state->refs[new_ofs].id = id;
545 	state->refs[new_ofs].insn_idx = insn_idx;
546 
547 	return id;
548 }
549 
550 /* release function corresponding to acquire_reference_state(). Idempotent. */
551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
552 {
553 	int i, last_idx;
554 
555 	if (!ptr_id)
556 		return -EFAULT;
557 
558 	last_idx = state->acquired_refs - 1;
559 	for (i = 0; i < state->acquired_refs; i++) {
560 		if (state->refs[i].id == ptr_id) {
561 			if (last_idx && i != last_idx)
562 				memcpy(&state->refs[i], &state->refs[last_idx],
563 				       sizeof(*state->refs));
564 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
565 			state->acquired_refs--;
566 			return 0;
567 		}
568 	}
569 	return -EFAULT;
570 }
571 
572 /* variation on the above for cases where we expect that there must be an
573  * outstanding reference for the specified ptr_id.
574  */
575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
576 {
577 	struct bpf_func_state *state = cur_func(env);
578 	int err;
579 
580 	err = __release_reference_state(state, ptr_id);
581 	if (WARN_ON_ONCE(err != 0))
582 		verbose(env, "verifier internal error: can't release reference\n");
583 	return err;
584 }
585 
586 static int transfer_reference_state(struct bpf_func_state *dst,
587 				    struct bpf_func_state *src)
588 {
589 	int err = realloc_reference_state(dst, src->acquired_refs, false);
590 	if (err)
591 		return err;
592 	err = copy_reference_state(dst, src);
593 	if (err)
594 		return err;
595 	return 0;
596 }
597 
598 static void free_func_state(struct bpf_func_state *state)
599 {
600 	if (!state)
601 		return;
602 	kfree(state->refs);
603 	kfree(state->stack);
604 	kfree(state);
605 }
606 
607 static void free_verifier_state(struct bpf_verifier_state *state,
608 				bool free_self)
609 {
610 	int i;
611 
612 	for (i = 0; i <= state->curframe; i++) {
613 		free_func_state(state->frame[i]);
614 		state->frame[i] = NULL;
615 	}
616 	if (free_self)
617 		kfree(state);
618 }
619 
620 /* copy verifier state from src to dst growing dst stack space
621  * when necessary to accommodate larger src stack
622  */
623 static int copy_func_state(struct bpf_func_state *dst,
624 			   const struct bpf_func_state *src)
625 {
626 	int err;
627 
628 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
629 				 false);
630 	if (err)
631 		return err;
632 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
633 	err = copy_reference_state(dst, src);
634 	if (err)
635 		return err;
636 	return copy_stack_state(dst, src);
637 }
638 
639 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
640 			       const struct bpf_verifier_state *src)
641 {
642 	struct bpf_func_state *dst;
643 	int i, err;
644 
645 	/* if dst has more stack frames then src frame, free them */
646 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
647 		free_func_state(dst_state->frame[i]);
648 		dst_state->frame[i] = NULL;
649 	}
650 	dst_state->curframe = src->curframe;
651 	for (i = 0; i <= src->curframe; i++) {
652 		dst = dst_state->frame[i];
653 		if (!dst) {
654 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
655 			if (!dst)
656 				return -ENOMEM;
657 			dst_state->frame[i] = dst;
658 		}
659 		err = copy_func_state(dst, src->frame[i]);
660 		if (err)
661 			return err;
662 	}
663 	return 0;
664 }
665 
666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
667 		     int *insn_idx)
668 {
669 	struct bpf_verifier_state *cur = env->cur_state;
670 	struct bpf_verifier_stack_elem *elem, *head = env->head;
671 	int err;
672 
673 	if (env->head == NULL)
674 		return -ENOENT;
675 
676 	if (cur) {
677 		err = copy_verifier_state(cur, &head->st);
678 		if (err)
679 			return err;
680 	}
681 	if (insn_idx)
682 		*insn_idx = head->insn_idx;
683 	if (prev_insn_idx)
684 		*prev_insn_idx = head->prev_insn_idx;
685 	elem = head->next;
686 	free_verifier_state(&head->st, false);
687 	kfree(head);
688 	env->head = elem;
689 	env->stack_size--;
690 	return 0;
691 }
692 
693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
694 					     int insn_idx, int prev_insn_idx)
695 {
696 	struct bpf_verifier_state *cur = env->cur_state;
697 	struct bpf_verifier_stack_elem *elem;
698 	int err;
699 
700 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
701 	if (!elem)
702 		goto err;
703 
704 	elem->insn_idx = insn_idx;
705 	elem->prev_insn_idx = prev_insn_idx;
706 	elem->next = env->head;
707 	env->head = elem;
708 	env->stack_size++;
709 	err = copy_verifier_state(&elem->st, cur);
710 	if (err)
711 		goto err;
712 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
713 		verbose(env, "BPF program is too complex\n");
714 		goto err;
715 	}
716 	return &elem->st;
717 err:
718 	free_verifier_state(env->cur_state, true);
719 	env->cur_state = NULL;
720 	/* pop all elements and return */
721 	while (!pop_stack(env, NULL, NULL));
722 	return NULL;
723 }
724 
725 #define CALLER_SAVED_REGS 6
726 static const int caller_saved[CALLER_SAVED_REGS] = {
727 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
728 };
729 
730 static void __mark_reg_not_init(struct bpf_reg_state *reg);
731 
732 /* Mark the unknown part of a register (variable offset or scalar value) as
733  * known to have the value @imm.
734  */
735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
736 {
737 	/* Clear id, off, and union(map_ptr, range) */
738 	memset(((u8 *)reg) + sizeof(reg->type), 0,
739 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
740 	reg->var_off = tnum_const(imm);
741 	reg->smin_value = (s64)imm;
742 	reg->smax_value = (s64)imm;
743 	reg->umin_value = imm;
744 	reg->umax_value = imm;
745 }
746 
747 /* Mark the 'variable offset' part of a register as zero.  This should be
748  * used only on registers holding a pointer type.
749  */
750 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
751 {
752 	__mark_reg_known(reg, 0);
753 }
754 
755 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
756 {
757 	__mark_reg_known(reg, 0);
758 	reg->type = SCALAR_VALUE;
759 }
760 
761 static void mark_reg_known_zero(struct bpf_verifier_env *env,
762 				struct bpf_reg_state *regs, u32 regno)
763 {
764 	if (WARN_ON(regno >= MAX_BPF_REG)) {
765 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
766 		/* Something bad happened, let's kill all regs */
767 		for (regno = 0; regno < MAX_BPF_REG; regno++)
768 			__mark_reg_not_init(regs + regno);
769 		return;
770 	}
771 	__mark_reg_known_zero(regs + regno);
772 }
773 
774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
775 {
776 	return type_is_pkt_pointer(reg->type);
777 }
778 
779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
780 {
781 	return reg_is_pkt_pointer(reg) ||
782 	       reg->type == PTR_TO_PACKET_END;
783 }
784 
785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
787 				    enum bpf_reg_type which)
788 {
789 	/* The register can already have a range from prior markings.
790 	 * This is fine as long as it hasn't been advanced from its
791 	 * origin.
792 	 */
793 	return reg->type == which &&
794 	       reg->id == 0 &&
795 	       reg->off == 0 &&
796 	       tnum_equals_const(reg->var_off, 0);
797 }
798 
799 /* Attempts to improve min/max values based on var_off information */
800 static void __update_reg_bounds(struct bpf_reg_state *reg)
801 {
802 	/* min signed is max(sign bit) | min(other bits) */
803 	reg->smin_value = max_t(s64, reg->smin_value,
804 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
805 	/* max signed is min(sign bit) | max(other bits) */
806 	reg->smax_value = min_t(s64, reg->smax_value,
807 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
808 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
809 	reg->umax_value = min(reg->umax_value,
810 			      reg->var_off.value | reg->var_off.mask);
811 }
812 
813 /* Uses signed min/max values to inform unsigned, and vice-versa */
814 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
815 {
816 	/* Learn sign from signed bounds.
817 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
818 	 * are the same, so combine.  This works even in the negative case, e.g.
819 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
820 	 */
821 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
822 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
823 							  reg->umin_value);
824 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
825 							  reg->umax_value);
826 		return;
827 	}
828 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
829 	 * boundary, so we must be careful.
830 	 */
831 	if ((s64)reg->umax_value >= 0) {
832 		/* Positive.  We can't learn anything from the smin, but smax
833 		 * is positive, hence safe.
834 		 */
835 		reg->smin_value = reg->umin_value;
836 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
837 							  reg->umax_value);
838 	} else if ((s64)reg->umin_value < 0) {
839 		/* Negative.  We can't learn anything from the smax, but smin
840 		 * is negative, hence safe.
841 		 */
842 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
843 							  reg->umin_value);
844 		reg->smax_value = reg->umax_value;
845 	}
846 }
847 
848 /* Attempts to improve var_off based on unsigned min/max information */
849 static void __reg_bound_offset(struct bpf_reg_state *reg)
850 {
851 	reg->var_off = tnum_intersect(reg->var_off,
852 				      tnum_range(reg->umin_value,
853 						 reg->umax_value));
854 }
855 
856 /* Reset the min/max bounds of a register */
857 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
858 {
859 	reg->smin_value = S64_MIN;
860 	reg->smax_value = S64_MAX;
861 	reg->umin_value = 0;
862 	reg->umax_value = U64_MAX;
863 }
864 
865 /* Mark a register as having a completely unknown (scalar) value. */
866 static void __mark_reg_unknown(struct bpf_reg_state *reg)
867 {
868 	/*
869 	 * Clear type, id, off, and union(map_ptr, range) and
870 	 * padding between 'type' and union
871 	 */
872 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
873 	reg->type = SCALAR_VALUE;
874 	reg->var_off = tnum_unknown;
875 	reg->frameno = 0;
876 	__mark_reg_unbounded(reg);
877 }
878 
879 static void mark_reg_unknown(struct bpf_verifier_env *env,
880 			     struct bpf_reg_state *regs, u32 regno)
881 {
882 	if (WARN_ON(regno >= MAX_BPF_REG)) {
883 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
884 		/* Something bad happened, let's kill all regs except FP */
885 		for (regno = 0; regno < BPF_REG_FP; regno++)
886 			__mark_reg_not_init(regs + regno);
887 		return;
888 	}
889 	__mark_reg_unknown(regs + regno);
890 }
891 
892 static void __mark_reg_not_init(struct bpf_reg_state *reg)
893 {
894 	__mark_reg_unknown(reg);
895 	reg->type = NOT_INIT;
896 }
897 
898 static void mark_reg_not_init(struct bpf_verifier_env *env,
899 			      struct bpf_reg_state *regs, u32 regno)
900 {
901 	if (WARN_ON(regno >= MAX_BPF_REG)) {
902 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
903 		/* Something bad happened, let's kill all regs except FP */
904 		for (regno = 0; regno < BPF_REG_FP; regno++)
905 			__mark_reg_not_init(regs + regno);
906 		return;
907 	}
908 	__mark_reg_not_init(regs + regno);
909 }
910 
911 static void init_reg_state(struct bpf_verifier_env *env,
912 			   struct bpf_func_state *state)
913 {
914 	struct bpf_reg_state *regs = state->regs;
915 	int i;
916 
917 	for (i = 0; i < MAX_BPF_REG; i++) {
918 		mark_reg_not_init(env, regs, i);
919 		regs[i].live = REG_LIVE_NONE;
920 		regs[i].parent = NULL;
921 	}
922 
923 	/* frame pointer */
924 	regs[BPF_REG_FP].type = PTR_TO_STACK;
925 	mark_reg_known_zero(env, regs, BPF_REG_FP);
926 	regs[BPF_REG_FP].frameno = state->frameno;
927 
928 	/* 1st arg to a function */
929 	regs[BPF_REG_1].type = PTR_TO_CTX;
930 	mark_reg_known_zero(env, regs, BPF_REG_1);
931 }
932 
933 #define BPF_MAIN_FUNC (-1)
934 static void init_func_state(struct bpf_verifier_env *env,
935 			    struct bpf_func_state *state,
936 			    int callsite, int frameno, int subprogno)
937 {
938 	state->callsite = callsite;
939 	state->frameno = frameno;
940 	state->subprogno = subprogno;
941 	init_reg_state(env, state);
942 }
943 
944 enum reg_arg_type {
945 	SRC_OP,		/* register is used as source operand */
946 	DST_OP,		/* register is used as destination operand */
947 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
948 };
949 
950 static int cmp_subprogs(const void *a, const void *b)
951 {
952 	return ((struct bpf_subprog_info *)a)->start -
953 	       ((struct bpf_subprog_info *)b)->start;
954 }
955 
956 static int find_subprog(struct bpf_verifier_env *env, int off)
957 {
958 	struct bpf_subprog_info *p;
959 
960 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
961 		    sizeof(env->subprog_info[0]), cmp_subprogs);
962 	if (!p)
963 		return -ENOENT;
964 	return p - env->subprog_info;
965 
966 }
967 
968 static int add_subprog(struct bpf_verifier_env *env, int off)
969 {
970 	int insn_cnt = env->prog->len;
971 	int ret;
972 
973 	if (off >= insn_cnt || off < 0) {
974 		verbose(env, "call to invalid destination\n");
975 		return -EINVAL;
976 	}
977 	ret = find_subprog(env, off);
978 	if (ret >= 0)
979 		return 0;
980 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
981 		verbose(env, "too many subprograms\n");
982 		return -E2BIG;
983 	}
984 	env->subprog_info[env->subprog_cnt++].start = off;
985 	sort(env->subprog_info, env->subprog_cnt,
986 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
987 	return 0;
988 }
989 
990 static int check_subprogs(struct bpf_verifier_env *env)
991 {
992 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
993 	struct bpf_subprog_info *subprog = env->subprog_info;
994 	struct bpf_insn *insn = env->prog->insnsi;
995 	int insn_cnt = env->prog->len;
996 
997 	/* Add entry function. */
998 	ret = add_subprog(env, 0);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/* determine subprog starts. The end is one before the next starts */
1003 	for (i = 0; i < insn_cnt; i++) {
1004 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1005 			continue;
1006 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1007 			continue;
1008 		if (!env->allow_ptr_leaks) {
1009 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1010 			return -EPERM;
1011 		}
1012 		ret = add_subprog(env, i + insn[i].imm + 1);
1013 		if (ret < 0)
1014 			return ret;
1015 	}
1016 
1017 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1018 	 * logic. 'subprog_cnt' should not be increased.
1019 	 */
1020 	subprog[env->subprog_cnt].start = insn_cnt;
1021 
1022 	if (env->log.level > 1)
1023 		for (i = 0; i < env->subprog_cnt; i++)
1024 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1025 
1026 	/* now check that all jumps are within the same subprog */
1027 	subprog_start = subprog[cur_subprog].start;
1028 	subprog_end = subprog[cur_subprog + 1].start;
1029 	for (i = 0; i < insn_cnt; i++) {
1030 		u8 code = insn[i].code;
1031 
1032 		if (BPF_CLASS(code) != BPF_JMP)
1033 			goto next;
1034 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1035 			goto next;
1036 		off = i + insn[i].off + 1;
1037 		if (off < subprog_start || off >= subprog_end) {
1038 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1039 			return -EINVAL;
1040 		}
1041 next:
1042 		if (i == subprog_end - 1) {
1043 			/* to avoid fall-through from one subprog into another
1044 			 * the last insn of the subprog should be either exit
1045 			 * or unconditional jump back
1046 			 */
1047 			if (code != (BPF_JMP | BPF_EXIT) &&
1048 			    code != (BPF_JMP | BPF_JA)) {
1049 				verbose(env, "last insn is not an exit or jmp\n");
1050 				return -EINVAL;
1051 			}
1052 			subprog_start = subprog_end;
1053 			cur_subprog++;
1054 			if (cur_subprog < env->subprog_cnt)
1055 				subprog_end = subprog[cur_subprog + 1].start;
1056 		}
1057 	}
1058 	return 0;
1059 }
1060 
1061 /* Parentage chain of this register (or stack slot) should take care of all
1062  * issues like callee-saved registers, stack slot allocation time, etc.
1063  */
1064 static int mark_reg_read(struct bpf_verifier_env *env,
1065 			 const struct bpf_reg_state *state,
1066 			 struct bpf_reg_state *parent)
1067 {
1068 	bool writes = parent == state->parent; /* Observe write marks */
1069 
1070 	while (parent) {
1071 		/* if read wasn't screened by an earlier write ... */
1072 		if (writes && state->live & REG_LIVE_WRITTEN)
1073 			break;
1074 		/* ... then we depend on parent's value */
1075 		parent->live |= REG_LIVE_READ;
1076 		state = parent;
1077 		parent = state->parent;
1078 		writes = true;
1079 	}
1080 	return 0;
1081 }
1082 
1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1084 			 enum reg_arg_type t)
1085 {
1086 	struct bpf_verifier_state *vstate = env->cur_state;
1087 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1088 	struct bpf_reg_state *regs = state->regs;
1089 
1090 	if (regno >= MAX_BPF_REG) {
1091 		verbose(env, "R%d is invalid\n", regno);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (t == SRC_OP) {
1096 		/* check whether register used as source operand can be read */
1097 		if (regs[regno].type == NOT_INIT) {
1098 			verbose(env, "R%d !read_ok\n", regno);
1099 			return -EACCES;
1100 		}
1101 		/* We don't need to worry about FP liveness because it's read-only */
1102 		if (regno != BPF_REG_FP)
1103 			return mark_reg_read(env, &regs[regno],
1104 					     regs[regno].parent);
1105 	} else {
1106 		/* check whether register used as dest operand can be written to */
1107 		if (regno == BPF_REG_FP) {
1108 			verbose(env, "frame pointer is read only\n");
1109 			return -EACCES;
1110 		}
1111 		regs[regno].live |= REG_LIVE_WRITTEN;
1112 		if (t == DST_OP)
1113 			mark_reg_unknown(env, regs, regno);
1114 	}
1115 	return 0;
1116 }
1117 
1118 static bool is_spillable_regtype(enum bpf_reg_type type)
1119 {
1120 	switch (type) {
1121 	case PTR_TO_MAP_VALUE:
1122 	case PTR_TO_MAP_VALUE_OR_NULL:
1123 	case PTR_TO_STACK:
1124 	case PTR_TO_CTX:
1125 	case PTR_TO_PACKET:
1126 	case PTR_TO_PACKET_META:
1127 	case PTR_TO_PACKET_END:
1128 	case PTR_TO_FLOW_KEYS:
1129 	case CONST_PTR_TO_MAP:
1130 	case PTR_TO_SOCKET:
1131 	case PTR_TO_SOCKET_OR_NULL:
1132 		return true;
1133 	default:
1134 		return false;
1135 	}
1136 }
1137 
1138 /* Does this register contain a constant zero? */
1139 static bool register_is_null(struct bpf_reg_state *reg)
1140 {
1141 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1142 }
1143 
1144 /* check_stack_read/write functions track spill/fill of registers,
1145  * stack boundary and alignment are checked in check_mem_access()
1146  */
1147 static int check_stack_write(struct bpf_verifier_env *env,
1148 			     struct bpf_func_state *state, /* func where register points to */
1149 			     int off, int size, int value_regno, int insn_idx)
1150 {
1151 	struct bpf_func_state *cur; /* state of the current function */
1152 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1153 	enum bpf_reg_type type;
1154 
1155 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1156 				 state->acquired_refs, true);
1157 	if (err)
1158 		return err;
1159 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1160 	 * so it's aligned access and [off, off + size) are within stack limits
1161 	 */
1162 	if (!env->allow_ptr_leaks &&
1163 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1164 	    size != BPF_REG_SIZE) {
1165 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1166 		return -EACCES;
1167 	}
1168 
1169 	cur = env->cur_state->frame[env->cur_state->curframe];
1170 	if (value_regno >= 0 &&
1171 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1172 
1173 		/* register containing pointer is being spilled into stack */
1174 		if (size != BPF_REG_SIZE) {
1175 			verbose(env, "invalid size of register spill\n");
1176 			return -EACCES;
1177 		}
1178 
1179 		if (state != cur && type == PTR_TO_STACK) {
1180 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1181 			return -EINVAL;
1182 		}
1183 
1184 		/* save register state */
1185 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1186 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1187 
1188 		for (i = 0; i < BPF_REG_SIZE; i++) {
1189 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1190 			    !env->allow_ptr_leaks) {
1191 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1192 				int soff = (-spi - 1) * BPF_REG_SIZE;
1193 
1194 				/* detected reuse of integer stack slot with a pointer
1195 				 * which means either llvm is reusing stack slot or
1196 				 * an attacker is trying to exploit CVE-2018-3639
1197 				 * (speculative store bypass)
1198 				 * Have to sanitize that slot with preemptive
1199 				 * store of zero.
1200 				 */
1201 				if (*poff && *poff != soff) {
1202 					/* disallow programs where single insn stores
1203 					 * into two different stack slots, since verifier
1204 					 * cannot sanitize them
1205 					 */
1206 					verbose(env,
1207 						"insn %d cannot access two stack slots fp%d and fp%d",
1208 						insn_idx, *poff, soff);
1209 					return -EINVAL;
1210 				}
1211 				*poff = soff;
1212 			}
1213 			state->stack[spi].slot_type[i] = STACK_SPILL;
1214 		}
1215 	} else {
1216 		u8 type = STACK_MISC;
1217 
1218 		/* regular write of data into stack destroys any spilled ptr */
1219 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1220 
1221 		/* only mark the slot as written if all 8 bytes were written
1222 		 * otherwise read propagation may incorrectly stop too soon
1223 		 * when stack slots are partially written.
1224 		 * This heuristic means that read propagation will be
1225 		 * conservative, since it will add reg_live_read marks
1226 		 * to stack slots all the way to first state when programs
1227 		 * writes+reads less than 8 bytes
1228 		 */
1229 		if (size == BPF_REG_SIZE)
1230 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1231 
1232 		/* when we zero initialize stack slots mark them as such */
1233 		if (value_regno >= 0 &&
1234 		    register_is_null(&cur->regs[value_regno]))
1235 			type = STACK_ZERO;
1236 
1237 		for (i = 0; i < size; i++)
1238 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1239 				type;
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int check_stack_read(struct bpf_verifier_env *env,
1245 			    struct bpf_func_state *reg_state /* func where register points to */,
1246 			    int off, int size, int value_regno)
1247 {
1248 	struct bpf_verifier_state *vstate = env->cur_state;
1249 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1250 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1251 	u8 *stype;
1252 
1253 	if (reg_state->allocated_stack <= slot) {
1254 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1255 			off, size);
1256 		return -EACCES;
1257 	}
1258 	stype = reg_state->stack[spi].slot_type;
1259 
1260 	if (stype[0] == STACK_SPILL) {
1261 		if (size != BPF_REG_SIZE) {
1262 			verbose(env, "invalid size of register spill\n");
1263 			return -EACCES;
1264 		}
1265 		for (i = 1; i < BPF_REG_SIZE; i++) {
1266 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1267 				verbose(env, "corrupted spill memory\n");
1268 				return -EACCES;
1269 			}
1270 		}
1271 
1272 		if (value_regno >= 0) {
1273 			/* restore register state from stack */
1274 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1275 			/* mark reg as written since spilled pointer state likely
1276 			 * has its liveness marks cleared by is_state_visited()
1277 			 * which resets stack/reg liveness for state transitions
1278 			 */
1279 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1280 		}
1281 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1282 			      reg_state->stack[spi].spilled_ptr.parent);
1283 		return 0;
1284 	} else {
1285 		int zeros = 0;
1286 
1287 		for (i = 0; i < size; i++) {
1288 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1289 				continue;
1290 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1291 				zeros++;
1292 				continue;
1293 			}
1294 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1295 				off, i, size);
1296 			return -EACCES;
1297 		}
1298 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1299 			      reg_state->stack[spi].spilled_ptr.parent);
1300 		if (value_regno >= 0) {
1301 			if (zeros == size) {
1302 				/* any size read into register is zero extended,
1303 				 * so the whole register == const_zero
1304 				 */
1305 				__mark_reg_const_zero(&state->regs[value_regno]);
1306 			} else {
1307 				/* have read misc data from the stack */
1308 				mark_reg_unknown(env, state->regs, value_regno);
1309 			}
1310 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1311 		}
1312 		return 0;
1313 	}
1314 }
1315 
1316 /* check read/write into map element returned by bpf_map_lookup_elem() */
1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1318 			      int size, bool zero_size_allowed)
1319 {
1320 	struct bpf_reg_state *regs = cur_regs(env);
1321 	struct bpf_map *map = regs[regno].map_ptr;
1322 
1323 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1324 	    off + size > map->value_size) {
1325 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1326 			map->value_size, off, size);
1327 		return -EACCES;
1328 	}
1329 	return 0;
1330 }
1331 
1332 /* check read/write into a map element with possible variable offset */
1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1334 			    int off, int size, bool zero_size_allowed)
1335 {
1336 	struct bpf_verifier_state *vstate = env->cur_state;
1337 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1338 	struct bpf_reg_state *reg = &state->regs[regno];
1339 	int err;
1340 
1341 	/* We may have adjusted the register to this map value, so we
1342 	 * need to try adding each of min_value and max_value to off
1343 	 * to make sure our theoretical access will be safe.
1344 	 */
1345 	if (env->log.level)
1346 		print_verifier_state(env, state);
1347 	/* The minimum value is only important with signed
1348 	 * comparisons where we can't assume the floor of a
1349 	 * value is 0.  If we are using signed variables for our
1350 	 * index'es we need to make sure that whatever we use
1351 	 * will have a set floor within our range.
1352 	 */
1353 	if (reg->smin_value < 0) {
1354 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1355 			regno);
1356 		return -EACCES;
1357 	}
1358 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1359 				 zero_size_allowed);
1360 	if (err) {
1361 		verbose(env, "R%d min value is outside of the array range\n",
1362 			regno);
1363 		return err;
1364 	}
1365 
1366 	/* If we haven't set a max value then we need to bail since we can't be
1367 	 * sure we won't do bad things.
1368 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1369 	 */
1370 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1371 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1372 			regno);
1373 		return -EACCES;
1374 	}
1375 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1376 				 zero_size_allowed);
1377 	if (err)
1378 		verbose(env, "R%d max value is outside of the array range\n",
1379 			regno);
1380 	return err;
1381 }
1382 
1383 #define MAX_PACKET_OFF 0xffff
1384 
1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1386 				       const struct bpf_call_arg_meta *meta,
1387 				       enum bpf_access_type t)
1388 {
1389 	switch (env->prog->type) {
1390 	/* Program types only with direct read access go here! */
1391 	case BPF_PROG_TYPE_LWT_IN:
1392 	case BPF_PROG_TYPE_LWT_OUT:
1393 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1394 	case BPF_PROG_TYPE_SK_REUSEPORT:
1395 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1396 	case BPF_PROG_TYPE_CGROUP_SKB:
1397 		if (t == BPF_WRITE)
1398 			return false;
1399 		/* fallthrough */
1400 
1401 	/* Program types with direct read + write access go here! */
1402 	case BPF_PROG_TYPE_SCHED_CLS:
1403 	case BPF_PROG_TYPE_SCHED_ACT:
1404 	case BPF_PROG_TYPE_XDP:
1405 	case BPF_PROG_TYPE_LWT_XMIT:
1406 	case BPF_PROG_TYPE_SK_SKB:
1407 	case BPF_PROG_TYPE_SK_MSG:
1408 		if (meta)
1409 			return meta->pkt_access;
1410 
1411 		env->seen_direct_write = true;
1412 		return true;
1413 	default:
1414 		return false;
1415 	}
1416 }
1417 
1418 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1419 				 int off, int size, bool zero_size_allowed)
1420 {
1421 	struct bpf_reg_state *regs = cur_regs(env);
1422 	struct bpf_reg_state *reg = &regs[regno];
1423 
1424 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1425 	    (u64)off + size > reg->range) {
1426 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1427 			off, size, regno, reg->id, reg->off, reg->range);
1428 		return -EACCES;
1429 	}
1430 	return 0;
1431 }
1432 
1433 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1434 			       int size, bool zero_size_allowed)
1435 {
1436 	struct bpf_reg_state *regs = cur_regs(env);
1437 	struct bpf_reg_state *reg = &regs[regno];
1438 	int err;
1439 
1440 	/* We may have added a variable offset to the packet pointer; but any
1441 	 * reg->range we have comes after that.  We are only checking the fixed
1442 	 * offset.
1443 	 */
1444 
1445 	/* We don't allow negative numbers, because we aren't tracking enough
1446 	 * detail to prove they're safe.
1447 	 */
1448 	if (reg->smin_value < 0) {
1449 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1450 			regno);
1451 		return -EACCES;
1452 	}
1453 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1454 	if (err) {
1455 		verbose(env, "R%d offset is outside of the packet\n", regno);
1456 		return err;
1457 	}
1458 	return err;
1459 }
1460 
1461 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1462 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1463 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1464 {
1465 	struct bpf_insn_access_aux info = {
1466 		.reg_type = *reg_type,
1467 	};
1468 
1469 	if (env->ops->is_valid_access &&
1470 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1471 		/* A non zero info.ctx_field_size indicates that this field is a
1472 		 * candidate for later verifier transformation to load the whole
1473 		 * field and then apply a mask when accessed with a narrower
1474 		 * access than actual ctx access size. A zero info.ctx_field_size
1475 		 * will only allow for whole field access and rejects any other
1476 		 * type of narrower access.
1477 		 */
1478 		*reg_type = info.reg_type;
1479 
1480 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1481 		/* remember the offset of last byte accessed in ctx */
1482 		if (env->prog->aux->max_ctx_offset < off + size)
1483 			env->prog->aux->max_ctx_offset = off + size;
1484 		return 0;
1485 	}
1486 
1487 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1488 	return -EACCES;
1489 }
1490 
1491 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1492 				  int size)
1493 {
1494 	if (size < 0 || off < 0 ||
1495 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1496 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1497 			off, size);
1498 		return -EACCES;
1499 	}
1500 	return 0;
1501 }
1502 
1503 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1504 			     int size, enum bpf_access_type t)
1505 {
1506 	struct bpf_reg_state *regs = cur_regs(env);
1507 	struct bpf_reg_state *reg = &regs[regno];
1508 	struct bpf_insn_access_aux info;
1509 
1510 	if (reg->smin_value < 0) {
1511 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1512 			regno);
1513 		return -EACCES;
1514 	}
1515 
1516 	if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1517 		verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1518 			off, size);
1519 		return -EACCES;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 static bool __is_pointer_value(bool allow_ptr_leaks,
1526 			       const struct bpf_reg_state *reg)
1527 {
1528 	if (allow_ptr_leaks)
1529 		return false;
1530 
1531 	return reg->type != SCALAR_VALUE;
1532 }
1533 
1534 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1535 {
1536 	return cur_regs(env) + regno;
1537 }
1538 
1539 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1540 {
1541 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1542 }
1543 
1544 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1545 {
1546 	const struct bpf_reg_state *reg = reg_state(env, regno);
1547 
1548 	return reg->type == PTR_TO_CTX ||
1549 	       reg->type == PTR_TO_SOCKET;
1550 }
1551 
1552 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1553 {
1554 	const struct bpf_reg_state *reg = reg_state(env, regno);
1555 
1556 	return type_is_pkt_pointer(reg->type);
1557 }
1558 
1559 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1560 {
1561 	const struct bpf_reg_state *reg = reg_state(env, regno);
1562 
1563 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1564 	return reg->type == PTR_TO_FLOW_KEYS;
1565 }
1566 
1567 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1568 				   const struct bpf_reg_state *reg,
1569 				   int off, int size, bool strict)
1570 {
1571 	struct tnum reg_off;
1572 	int ip_align;
1573 
1574 	/* Byte size accesses are always allowed. */
1575 	if (!strict || size == 1)
1576 		return 0;
1577 
1578 	/* For platforms that do not have a Kconfig enabling
1579 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1580 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1581 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1582 	 * to this code only in strict mode where we want to emulate
1583 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1584 	 * unconditional IP align value of '2'.
1585 	 */
1586 	ip_align = 2;
1587 
1588 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1589 	if (!tnum_is_aligned(reg_off, size)) {
1590 		char tn_buf[48];
1591 
1592 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1593 		verbose(env,
1594 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1595 			ip_align, tn_buf, reg->off, off, size);
1596 		return -EACCES;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1603 				       const struct bpf_reg_state *reg,
1604 				       const char *pointer_desc,
1605 				       int off, int size, bool strict)
1606 {
1607 	struct tnum reg_off;
1608 
1609 	/* Byte size accesses are always allowed. */
1610 	if (!strict || size == 1)
1611 		return 0;
1612 
1613 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1614 	if (!tnum_is_aligned(reg_off, size)) {
1615 		char tn_buf[48];
1616 
1617 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1618 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1619 			pointer_desc, tn_buf, reg->off, off, size);
1620 		return -EACCES;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static int check_ptr_alignment(struct bpf_verifier_env *env,
1627 			       const struct bpf_reg_state *reg, int off,
1628 			       int size, bool strict_alignment_once)
1629 {
1630 	bool strict = env->strict_alignment || strict_alignment_once;
1631 	const char *pointer_desc = "";
1632 
1633 	switch (reg->type) {
1634 	case PTR_TO_PACKET:
1635 	case PTR_TO_PACKET_META:
1636 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1637 		 * right in front, treat it the very same way.
1638 		 */
1639 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1640 	case PTR_TO_FLOW_KEYS:
1641 		pointer_desc = "flow keys ";
1642 		break;
1643 	case PTR_TO_MAP_VALUE:
1644 		pointer_desc = "value ";
1645 		break;
1646 	case PTR_TO_CTX:
1647 		pointer_desc = "context ";
1648 		break;
1649 	case PTR_TO_STACK:
1650 		pointer_desc = "stack ";
1651 		/* The stack spill tracking logic in check_stack_write()
1652 		 * and check_stack_read() relies on stack accesses being
1653 		 * aligned.
1654 		 */
1655 		strict = true;
1656 		break;
1657 	case PTR_TO_SOCKET:
1658 		pointer_desc = "sock ";
1659 		break;
1660 	default:
1661 		break;
1662 	}
1663 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1664 					   strict);
1665 }
1666 
1667 static int update_stack_depth(struct bpf_verifier_env *env,
1668 			      const struct bpf_func_state *func,
1669 			      int off)
1670 {
1671 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1672 
1673 	if (stack >= -off)
1674 		return 0;
1675 
1676 	/* update known max for given subprogram */
1677 	env->subprog_info[func->subprogno].stack_depth = -off;
1678 	return 0;
1679 }
1680 
1681 /* starting from main bpf function walk all instructions of the function
1682  * and recursively walk all callees that given function can call.
1683  * Ignore jump and exit insns.
1684  * Since recursion is prevented by check_cfg() this algorithm
1685  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1686  */
1687 static int check_max_stack_depth(struct bpf_verifier_env *env)
1688 {
1689 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1690 	struct bpf_subprog_info *subprog = env->subprog_info;
1691 	struct bpf_insn *insn = env->prog->insnsi;
1692 	int ret_insn[MAX_CALL_FRAMES];
1693 	int ret_prog[MAX_CALL_FRAMES];
1694 
1695 process_func:
1696 	/* round up to 32-bytes, since this is granularity
1697 	 * of interpreter stack size
1698 	 */
1699 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1700 	if (depth > MAX_BPF_STACK) {
1701 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1702 			frame + 1, depth);
1703 		return -EACCES;
1704 	}
1705 continue_func:
1706 	subprog_end = subprog[idx + 1].start;
1707 	for (; i < subprog_end; i++) {
1708 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1709 			continue;
1710 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1711 			continue;
1712 		/* remember insn and function to return to */
1713 		ret_insn[frame] = i + 1;
1714 		ret_prog[frame] = idx;
1715 
1716 		/* find the callee */
1717 		i = i + insn[i].imm + 1;
1718 		idx = find_subprog(env, i);
1719 		if (idx < 0) {
1720 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1721 				  i);
1722 			return -EFAULT;
1723 		}
1724 		frame++;
1725 		if (frame >= MAX_CALL_FRAMES) {
1726 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1727 			return -EFAULT;
1728 		}
1729 		goto process_func;
1730 	}
1731 	/* end of for() loop means the last insn of the 'subprog'
1732 	 * was reached. Doesn't matter whether it was JA or EXIT
1733 	 */
1734 	if (frame == 0)
1735 		return 0;
1736 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1737 	frame--;
1738 	i = ret_insn[frame];
1739 	idx = ret_prog[frame];
1740 	goto continue_func;
1741 }
1742 
1743 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1744 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1745 				  const struct bpf_insn *insn, int idx)
1746 {
1747 	int start = idx + insn->imm + 1, subprog;
1748 
1749 	subprog = find_subprog(env, start);
1750 	if (subprog < 0) {
1751 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1752 			  start);
1753 		return -EFAULT;
1754 	}
1755 	return env->subprog_info[subprog].stack_depth;
1756 }
1757 #endif
1758 
1759 static int check_ctx_reg(struct bpf_verifier_env *env,
1760 			 const struct bpf_reg_state *reg, int regno)
1761 {
1762 	/* Access to ctx or passing it to a helper is only allowed in
1763 	 * its original, unmodified form.
1764 	 */
1765 
1766 	if (reg->off) {
1767 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1768 			regno, reg->off);
1769 		return -EACCES;
1770 	}
1771 
1772 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1773 		char tn_buf[48];
1774 
1775 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1776 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1777 		return -EACCES;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /* truncate register to smaller size (in bytes)
1784  * must be called with size < BPF_REG_SIZE
1785  */
1786 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1787 {
1788 	u64 mask;
1789 
1790 	/* clear high bits in bit representation */
1791 	reg->var_off = tnum_cast(reg->var_off, size);
1792 
1793 	/* fix arithmetic bounds */
1794 	mask = ((u64)1 << (size * 8)) - 1;
1795 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1796 		reg->umin_value &= mask;
1797 		reg->umax_value &= mask;
1798 	} else {
1799 		reg->umin_value = 0;
1800 		reg->umax_value = mask;
1801 	}
1802 	reg->smin_value = reg->umin_value;
1803 	reg->smax_value = reg->umax_value;
1804 }
1805 
1806 /* check whether memory at (regno + off) is accessible for t = (read | write)
1807  * if t==write, value_regno is a register which value is stored into memory
1808  * if t==read, value_regno is a register which will receive the value from memory
1809  * if t==write && value_regno==-1, some unknown value is stored into memory
1810  * if t==read && value_regno==-1, don't care what we read from memory
1811  */
1812 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1813 			    int off, int bpf_size, enum bpf_access_type t,
1814 			    int value_regno, bool strict_alignment_once)
1815 {
1816 	struct bpf_reg_state *regs = cur_regs(env);
1817 	struct bpf_reg_state *reg = regs + regno;
1818 	struct bpf_func_state *state;
1819 	int size, err = 0;
1820 
1821 	size = bpf_size_to_bytes(bpf_size);
1822 	if (size < 0)
1823 		return size;
1824 
1825 	/* alignment checks will add in reg->off themselves */
1826 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1827 	if (err)
1828 		return err;
1829 
1830 	/* for access checks, reg->off is just part of off */
1831 	off += reg->off;
1832 
1833 	if (reg->type == PTR_TO_MAP_VALUE) {
1834 		if (t == BPF_WRITE && value_regno >= 0 &&
1835 		    is_pointer_value(env, value_regno)) {
1836 			verbose(env, "R%d leaks addr into map\n", value_regno);
1837 			return -EACCES;
1838 		}
1839 
1840 		err = check_map_access(env, regno, off, size, false);
1841 		if (!err && t == BPF_READ && value_regno >= 0)
1842 			mark_reg_unknown(env, regs, value_regno);
1843 
1844 	} else if (reg->type == PTR_TO_CTX) {
1845 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1846 
1847 		if (t == BPF_WRITE && value_regno >= 0 &&
1848 		    is_pointer_value(env, value_regno)) {
1849 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1850 			return -EACCES;
1851 		}
1852 
1853 		err = check_ctx_reg(env, reg, regno);
1854 		if (err < 0)
1855 			return err;
1856 
1857 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1858 		if (!err && t == BPF_READ && value_regno >= 0) {
1859 			/* ctx access returns either a scalar, or a
1860 			 * PTR_TO_PACKET[_META,_END]. In the latter
1861 			 * case, we know the offset is zero.
1862 			 */
1863 			if (reg_type == SCALAR_VALUE)
1864 				mark_reg_unknown(env, regs, value_regno);
1865 			else
1866 				mark_reg_known_zero(env, regs,
1867 						    value_regno);
1868 			regs[value_regno].type = reg_type;
1869 		}
1870 
1871 	} else if (reg->type == PTR_TO_STACK) {
1872 		/* stack accesses must be at a fixed offset, so that we can
1873 		 * determine what type of data were returned.
1874 		 * See check_stack_read().
1875 		 */
1876 		if (!tnum_is_const(reg->var_off)) {
1877 			char tn_buf[48];
1878 
1879 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1880 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1881 				tn_buf, off, size);
1882 			return -EACCES;
1883 		}
1884 		off += reg->var_off.value;
1885 		if (off >= 0 || off < -MAX_BPF_STACK) {
1886 			verbose(env, "invalid stack off=%d size=%d\n", off,
1887 				size);
1888 			return -EACCES;
1889 		}
1890 
1891 		state = func(env, reg);
1892 		err = update_stack_depth(env, state, off);
1893 		if (err)
1894 			return err;
1895 
1896 		if (t == BPF_WRITE)
1897 			err = check_stack_write(env, state, off, size,
1898 						value_regno, insn_idx);
1899 		else
1900 			err = check_stack_read(env, state, off, size,
1901 					       value_regno);
1902 	} else if (reg_is_pkt_pointer(reg)) {
1903 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1904 			verbose(env, "cannot write into packet\n");
1905 			return -EACCES;
1906 		}
1907 		if (t == BPF_WRITE && value_regno >= 0 &&
1908 		    is_pointer_value(env, value_regno)) {
1909 			verbose(env, "R%d leaks addr into packet\n",
1910 				value_regno);
1911 			return -EACCES;
1912 		}
1913 		err = check_packet_access(env, regno, off, size, false);
1914 		if (!err && t == BPF_READ && value_regno >= 0)
1915 			mark_reg_unknown(env, regs, value_regno);
1916 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
1917 		if (t == BPF_WRITE && value_regno >= 0 &&
1918 		    is_pointer_value(env, value_regno)) {
1919 			verbose(env, "R%d leaks addr into flow keys\n",
1920 				value_regno);
1921 			return -EACCES;
1922 		}
1923 
1924 		err = check_flow_keys_access(env, off, size);
1925 		if (!err && t == BPF_READ && value_regno >= 0)
1926 			mark_reg_unknown(env, regs, value_regno);
1927 	} else if (reg->type == PTR_TO_SOCKET) {
1928 		if (t == BPF_WRITE) {
1929 			verbose(env, "cannot write into socket\n");
1930 			return -EACCES;
1931 		}
1932 		err = check_sock_access(env, regno, off, size, t);
1933 		if (!err && value_regno >= 0)
1934 			mark_reg_unknown(env, regs, value_regno);
1935 	} else {
1936 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1937 			reg_type_str[reg->type]);
1938 		return -EACCES;
1939 	}
1940 
1941 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1942 	    regs[value_regno].type == SCALAR_VALUE) {
1943 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1944 		coerce_reg_to_size(&regs[value_regno], size);
1945 	}
1946 	return err;
1947 }
1948 
1949 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1950 {
1951 	int err;
1952 
1953 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1954 	    insn->imm != 0) {
1955 		verbose(env, "BPF_XADD uses reserved fields\n");
1956 		return -EINVAL;
1957 	}
1958 
1959 	/* check src1 operand */
1960 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1961 	if (err)
1962 		return err;
1963 
1964 	/* check src2 operand */
1965 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1966 	if (err)
1967 		return err;
1968 
1969 	if (is_pointer_value(env, insn->src_reg)) {
1970 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1971 		return -EACCES;
1972 	}
1973 
1974 	if (is_ctx_reg(env, insn->dst_reg) ||
1975 	    is_pkt_reg(env, insn->dst_reg) ||
1976 	    is_flow_key_reg(env, insn->dst_reg)) {
1977 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1978 			insn->dst_reg,
1979 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
1980 		return -EACCES;
1981 	}
1982 
1983 	/* check whether atomic_add can read the memory */
1984 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1985 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1986 	if (err)
1987 		return err;
1988 
1989 	/* check whether atomic_add can write into the same memory */
1990 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1991 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1992 }
1993 
1994 /* when register 'regno' is passed into function that will read 'access_size'
1995  * bytes from that pointer, make sure that it's within stack boundary
1996  * and all elements of stack are initialized.
1997  * Unlike most pointer bounds-checking functions, this one doesn't take an
1998  * 'off' argument, so it has to add in reg->off itself.
1999  */
2000 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2001 				int access_size, bool zero_size_allowed,
2002 				struct bpf_call_arg_meta *meta)
2003 {
2004 	struct bpf_reg_state *reg = reg_state(env, regno);
2005 	struct bpf_func_state *state = func(env, reg);
2006 	int off, i, slot, spi;
2007 
2008 	if (reg->type != PTR_TO_STACK) {
2009 		/* Allow zero-byte read from NULL, regardless of pointer type */
2010 		if (zero_size_allowed && access_size == 0 &&
2011 		    register_is_null(reg))
2012 			return 0;
2013 
2014 		verbose(env, "R%d type=%s expected=%s\n", regno,
2015 			reg_type_str[reg->type],
2016 			reg_type_str[PTR_TO_STACK]);
2017 		return -EACCES;
2018 	}
2019 
2020 	/* Only allow fixed-offset stack reads */
2021 	if (!tnum_is_const(reg->var_off)) {
2022 		char tn_buf[48];
2023 
2024 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2025 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2026 			regno, tn_buf);
2027 		return -EACCES;
2028 	}
2029 	off = reg->off + reg->var_off.value;
2030 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2031 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2032 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2033 			regno, off, access_size);
2034 		return -EACCES;
2035 	}
2036 
2037 	if (meta && meta->raw_mode) {
2038 		meta->access_size = access_size;
2039 		meta->regno = regno;
2040 		return 0;
2041 	}
2042 
2043 	for (i = 0; i < access_size; i++) {
2044 		u8 *stype;
2045 
2046 		slot = -(off + i) - 1;
2047 		spi = slot / BPF_REG_SIZE;
2048 		if (state->allocated_stack <= slot)
2049 			goto err;
2050 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2051 		if (*stype == STACK_MISC)
2052 			goto mark;
2053 		if (*stype == STACK_ZERO) {
2054 			/* helper can write anything into the stack */
2055 			*stype = STACK_MISC;
2056 			goto mark;
2057 		}
2058 err:
2059 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2060 			off, i, access_size);
2061 		return -EACCES;
2062 mark:
2063 		/* reading any byte out of 8-byte 'spill_slot' will cause
2064 		 * the whole slot to be marked as 'read'
2065 		 */
2066 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2067 			      state->stack[spi].spilled_ptr.parent);
2068 	}
2069 	return update_stack_depth(env, state, off);
2070 }
2071 
2072 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2073 				   int access_size, bool zero_size_allowed,
2074 				   struct bpf_call_arg_meta *meta)
2075 {
2076 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2077 
2078 	switch (reg->type) {
2079 	case PTR_TO_PACKET:
2080 	case PTR_TO_PACKET_META:
2081 		return check_packet_access(env, regno, reg->off, access_size,
2082 					   zero_size_allowed);
2083 	case PTR_TO_MAP_VALUE:
2084 		return check_map_access(env, regno, reg->off, access_size,
2085 					zero_size_allowed);
2086 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2087 		return check_stack_boundary(env, regno, access_size,
2088 					    zero_size_allowed, meta);
2089 	}
2090 }
2091 
2092 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2093 {
2094 	return type == ARG_PTR_TO_MEM ||
2095 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2096 	       type == ARG_PTR_TO_UNINIT_MEM;
2097 }
2098 
2099 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2100 {
2101 	return type == ARG_CONST_SIZE ||
2102 	       type == ARG_CONST_SIZE_OR_ZERO;
2103 }
2104 
2105 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2106 			  enum bpf_arg_type arg_type,
2107 			  struct bpf_call_arg_meta *meta)
2108 {
2109 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2110 	enum bpf_reg_type expected_type, type = reg->type;
2111 	int err = 0;
2112 
2113 	if (arg_type == ARG_DONTCARE)
2114 		return 0;
2115 
2116 	err = check_reg_arg(env, regno, SRC_OP);
2117 	if (err)
2118 		return err;
2119 
2120 	if (arg_type == ARG_ANYTHING) {
2121 		if (is_pointer_value(env, regno)) {
2122 			verbose(env, "R%d leaks addr into helper function\n",
2123 				regno);
2124 			return -EACCES;
2125 		}
2126 		return 0;
2127 	}
2128 
2129 	if (type_is_pkt_pointer(type) &&
2130 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2131 		verbose(env, "helper access to the packet is not allowed\n");
2132 		return -EACCES;
2133 	}
2134 
2135 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2136 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2137 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2138 		expected_type = PTR_TO_STACK;
2139 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2140 		    type != expected_type)
2141 			goto err_type;
2142 	} else if (arg_type == ARG_CONST_SIZE ||
2143 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2144 		expected_type = SCALAR_VALUE;
2145 		if (type != expected_type)
2146 			goto err_type;
2147 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2148 		expected_type = CONST_PTR_TO_MAP;
2149 		if (type != expected_type)
2150 			goto err_type;
2151 	} else if (arg_type == ARG_PTR_TO_CTX) {
2152 		expected_type = PTR_TO_CTX;
2153 		if (type != expected_type)
2154 			goto err_type;
2155 		err = check_ctx_reg(env, reg, regno);
2156 		if (err < 0)
2157 			return err;
2158 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2159 		expected_type = PTR_TO_SOCKET;
2160 		if (type != expected_type)
2161 			goto err_type;
2162 		if (meta->ptr_id || !reg->id) {
2163 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2164 				meta->ptr_id, reg->id);
2165 			return -EFAULT;
2166 		}
2167 		meta->ptr_id = reg->id;
2168 	} else if (arg_type_is_mem_ptr(arg_type)) {
2169 		expected_type = PTR_TO_STACK;
2170 		/* One exception here. In case function allows for NULL to be
2171 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2172 		 * happens during stack boundary checking.
2173 		 */
2174 		if (register_is_null(reg) &&
2175 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2176 			/* final test in check_stack_boundary() */;
2177 		else if (!type_is_pkt_pointer(type) &&
2178 			 type != PTR_TO_MAP_VALUE &&
2179 			 type != expected_type)
2180 			goto err_type;
2181 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2182 	} else {
2183 		verbose(env, "unsupported arg_type %d\n", arg_type);
2184 		return -EFAULT;
2185 	}
2186 
2187 	if (arg_type == ARG_CONST_MAP_PTR) {
2188 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2189 		meta->map_ptr = reg->map_ptr;
2190 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2191 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2192 		 * check that [key, key + map->key_size) are within
2193 		 * stack limits and initialized
2194 		 */
2195 		if (!meta->map_ptr) {
2196 			/* in function declaration map_ptr must come before
2197 			 * map_key, so that it's verified and known before
2198 			 * we have to check map_key here. Otherwise it means
2199 			 * that kernel subsystem misconfigured verifier
2200 			 */
2201 			verbose(env, "invalid map_ptr to access map->key\n");
2202 			return -EACCES;
2203 		}
2204 		err = check_helper_mem_access(env, regno,
2205 					      meta->map_ptr->key_size, false,
2206 					      NULL);
2207 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2208 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2209 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2210 		 * check [value, value + map->value_size) validity
2211 		 */
2212 		if (!meta->map_ptr) {
2213 			/* kernel subsystem misconfigured verifier */
2214 			verbose(env, "invalid map_ptr to access map->value\n");
2215 			return -EACCES;
2216 		}
2217 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2218 		err = check_helper_mem_access(env, regno,
2219 					      meta->map_ptr->value_size, false,
2220 					      meta);
2221 	} else if (arg_type_is_mem_size(arg_type)) {
2222 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2223 
2224 		/* remember the mem_size which may be used later
2225 		 * to refine return values.
2226 		 */
2227 		meta->msize_smax_value = reg->smax_value;
2228 		meta->msize_umax_value = reg->umax_value;
2229 
2230 		/* The register is SCALAR_VALUE; the access check
2231 		 * happens using its boundaries.
2232 		 */
2233 		if (!tnum_is_const(reg->var_off))
2234 			/* For unprivileged variable accesses, disable raw
2235 			 * mode so that the program is required to
2236 			 * initialize all the memory that the helper could
2237 			 * just partially fill up.
2238 			 */
2239 			meta = NULL;
2240 
2241 		if (reg->smin_value < 0) {
2242 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2243 				regno);
2244 			return -EACCES;
2245 		}
2246 
2247 		if (reg->umin_value == 0) {
2248 			err = check_helper_mem_access(env, regno - 1, 0,
2249 						      zero_size_allowed,
2250 						      meta);
2251 			if (err)
2252 				return err;
2253 		}
2254 
2255 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2256 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2257 				regno);
2258 			return -EACCES;
2259 		}
2260 		err = check_helper_mem_access(env, regno - 1,
2261 					      reg->umax_value,
2262 					      zero_size_allowed, meta);
2263 	}
2264 
2265 	return err;
2266 err_type:
2267 	verbose(env, "R%d type=%s expected=%s\n", regno,
2268 		reg_type_str[type], reg_type_str[expected_type]);
2269 	return -EACCES;
2270 }
2271 
2272 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2273 					struct bpf_map *map, int func_id)
2274 {
2275 	if (!map)
2276 		return 0;
2277 
2278 	/* We need a two way check, first is from map perspective ... */
2279 	switch (map->map_type) {
2280 	case BPF_MAP_TYPE_PROG_ARRAY:
2281 		if (func_id != BPF_FUNC_tail_call)
2282 			goto error;
2283 		break;
2284 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2285 		if (func_id != BPF_FUNC_perf_event_read &&
2286 		    func_id != BPF_FUNC_perf_event_output &&
2287 		    func_id != BPF_FUNC_perf_event_read_value)
2288 			goto error;
2289 		break;
2290 	case BPF_MAP_TYPE_STACK_TRACE:
2291 		if (func_id != BPF_FUNC_get_stackid)
2292 			goto error;
2293 		break;
2294 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2295 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2296 		    func_id != BPF_FUNC_current_task_under_cgroup)
2297 			goto error;
2298 		break;
2299 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2300 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2301 		if (func_id != BPF_FUNC_get_local_storage)
2302 			goto error;
2303 		break;
2304 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2305 	 * allow to be modified from bpf side. So do not allow lookup elements
2306 	 * for now.
2307 	 */
2308 	case BPF_MAP_TYPE_DEVMAP:
2309 		if (func_id != BPF_FUNC_redirect_map)
2310 			goto error;
2311 		break;
2312 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2313 	 * appear.
2314 	 */
2315 	case BPF_MAP_TYPE_CPUMAP:
2316 	case BPF_MAP_TYPE_XSKMAP:
2317 		if (func_id != BPF_FUNC_redirect_map)
2318 			goto error;
2319 		break;
2320 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2321 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2322 		if (func_id != BPF_FUNC_map_lookup_elem)
2323 			goto error;
2324 		break;
2325 	case BPF_MAP_TYPE_SOCKMAP:
2326 		if (func_id != BPF_FUNC_sk_redirect_map &&
2327 		    func_id != BPF_FUNC_sock_map_update &&
2328 		    func_id != BPF_FUNC_map_delete_elem &&
2329 		    func_id != BPF_FUNC_msg_redirect_map)
2330 			goto error;
2331 		break;
2332 	case BPF_MAP_TYPE_SOCKHASH:
2333 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2334 		    func_id != BPF_FUNC_sock_hash_update &&
2335 		    func_id != BPF_FUNC_map_delete_elem &&
2336 		    func_id != BPF_FUNC_msg_redirect_hash)
2337 			goto error;
2338 		break;
2339 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2340 		if (func_id != BPF_FUNC_sk_select_reuseport)
2341 			goto error;
2342 		break;
2343 	case BPF_MAP_TYPE_QUEUE:
2344 	case BPF_MAP_TYPE_STACK:
2345 		if (func_id != BPF_FUNC_map_peek_elem &&
2346 		    func_id != BPF_FUNC_map_pop_elem &&
2347 		    func_id != BPF_FUNC_map_push_elem)
2348 			goto error;
2349 		break;
2350 	default:
2351 		break;
2352 	}
2353 
2354 	/* ... and second from the function itself. */
2355 	switch (func_id) {
2356 	case BPF_FUNC_tail_call:
2357 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2358 			goto error;
2359 		if (env->subprog_cnt > 1) {
2360 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2361 			return -EINVAL;
2362 		}
2363 		break;
2364 	case BPF_FUNC_perf_event_read:
2365 	case BPF_FUNC_perf_event_output:
2366 	case BPF_FUNC_perf_event_read_value:
2367 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2368 			goto error;
2369 		break;
2370 	case BPF_FUNC_get_stackid:
2371 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2372 			goto error;
2373 		break;
2374 	case BPF_FUNC_current_task_under_cgroup:
2375 	case BPF_FUNC_skb_under_cgroup:
2376 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2377 			goto error;
2378 		break;
2379 	case BPF_FUNC_redirect_map:
2380 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2381 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2382 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2383 			goto error;
2384 		break;
2385 	case BPF_FUNC_sk_redirect_map:
2386 	case BPF_FUNC_msg_redirect_map:
2387 	case BPF_FUNC_sock_map_update:
2388 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2389 			goto error;
2390 		break;
2391 	case BPF_FUNC_sk_redirect_hash:
2392 	case BPF_FUNC_msg_redirect_hash:
2393 	case BPF_FUNC_sock_hash_update:
2394 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2395 			goto error;
2396 		break;
2397 	case BPF_FUNC_get_local_storage:
2398 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2399 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2400 			goto error;
2401 		break;
2402 	case BPF_FUNC_sk_select_reuseport:
2403 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2404 			goto error;
2405 		break;
2406 	case BPF_FUNC_map_peek_elem:
2407 	case BPF_FUNC_map_pop_elem:
2408 	case BPF_FUNC_map_push_elem:
2409 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2410 		    map->map_type != BPF_MAP_TYPE_STACK)
2411 			goto error;
2412 		break;
2413 	default:
2414 		break;
2415 	}
2416 
2417 	return 0;
2418 error:
2419 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2420 		map->map_type, func_id_name(func_id), func_id);
2421 	return -EINVAL;
2422 }
2423 
2424 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2425 {
2426 	int count = 0;
2427 
2428 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2429 		count++;
2430 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2431 		count++;
2432 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2433 		count++;
2434 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2435 		count++;
2436 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2437 		count++;
2438 
2439 	/* We only support one arg being in raw mode at the moment,
2440 	 * which is sufficient for the helper functions we have
2441 	 * right now.
2442 	 */
2443 	return count <= 1;
2444 }
2445 
2446 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2447 				    enum bpf_arg_type arg_next)
2448 {
2449 	return (arg_type_is_mem_ptr(arg_curr) &&
2450 	        !arg_type_is_mem_size(arg_next)) ||
2451 	       (!arg_type_is_mem_ptr(arg_curr) &&
2452 		arg_type_is_mem_size(arg_next));
2453 }
2454 
2455 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2456 {
2457 	/* bpf_xxx(..., buf, len) call will access 'len'
2458 	 * bytes from memory 'buf'. Both arg types need
2459 	 * to be paired, so make sure there's no buggy
2460 	 * helper function specification.
2461 	 */
2462 	if (arg_type_is_mem_size(fn->arg1_type) ||
2463 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2464 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2465 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2466 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2467 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2468 		return false;
2469 
2470 	return true;
2471 }
2472 
2473 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2474 {
2475 	int count = 0;
2476 
2477 	if (arg_type_is_refcounted(fn->arg1_type))
2478 		count++;
2479 	if (arg_type_is_refcounted(fn->arg2_type))
2480 		count++;
2481 	if (arg_type_is_refcounted(fn->arg3_type))
2482 		count++;
2483 	if (arg_type_is_refcounted(fn->arg4_type))
2484 		count++;
2485 	if (arg_type_is_refcounted(fn->arg5_type))
2486 		count++;
2487 
2488 	/* We only support one arg being unreferenced at the moment,
2489 	 * which is sufficient for the helper functions we have right now.
2490 	 */
2491 	return count <= 1;
2492 }
2493 
2494 static int check_func_proto(const struct bpf_func_proto *fn)
2495 {
2496 	return check_raw_mode_ok(fn) &&
2497 	       check_arg_pair_ok(fn) &&
2498 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2499 }
2500 
2501 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2502  * are now invalid, so turn them into unknown SCALAR_VALUE.
2503  */
2504 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2505 				     struct bpf_func_state *state)
2506 {
2507 	struct bpf_reg_state *regs = state->regs, *reg;
2508 	int i;
2509 
2510 	for (i = 0; i < MAX_BPF_REG; i++)
2511 		if (reg_is_pkt_pointer_any(&regs[i]))
2512 			mark_reg_unknown(env, regs, i);
2513 
2514 	bpf_for_each_spilled_reg(i, state, reg) {
2515 		if (!reg)
2516 			continue;
2517 		if (reg_is_pkt_pointer_any(reg))
2518 			__mark_reg_unknown(reg);
2519 	}
2520 }
2521 
2522 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2523 {
2524 	struct bpf_verifier_state *vstate = env->cur_state;
2525 	int i;
2526 
2527 	for (i = 0; i <= vstate->curframe; i++)
2528 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2529 }
2530 
2531 static void release_reg_references(struct bpf_verifier_env *env,
2532 				   struct bpf_func_state *state, int id)
2533 {
2534 	struct bpf_reg_state *regs = state->regs, *reg;
2535 	int i;
2536 
2537 	for (i = 0; i < MAX_BPF_REG; i++)
2538 		if (regs[i].id == id)
2539 			mark_reg_unknown(env, regs, i);
2540 
2541 	bpf_for_each_spilled_reg(i, state, reg) {
2542 		if (!reg)
2543 			continue;
2544 		if (reg_is_refcounted(reg) && reg->id == id)
2545 			__mark_reg_unknown(reg);
2546 	}
2547 }
2548 
2549 /* The pointer with the specified id has released its reference to kernel
2550  * resources. Identify all copies of the same pointer and clear the reference.
2551  */
2552 static int release_reference(struct bpf_verifier_env *env,
2553 			     struct bpf_call_arg_meta *meta)
2554 {
2555 	struct bpf_verifier_state *vstate = env->cur_state;
2556 	int i;
2557 
2558 	for (i = 0; i <= vstate->curframe; i++)
2559 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2560 
2561 	return release_reference_state(env, meta->ptr_id);
2562 }
2563 
2564 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2565 			   int *insn_idx)
2566 {
2567 	struct bpf_verifier_state *state = env->cur_state;
2568 	struct bpf_func_state *caller, *callee;
2569 	int i, err, subprog, target_insn;
2570 
2571 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2572 		verbose(env, "the call stack of %d frames is too deep\n",
2573 			state->curframe + 2);
2574 		return -E2BIG;
2575 	}
2576 
2577 	target_insn = *insn_idx + insn->imm;
2578 	subprog = find_subprog(env, target_insn + 1);
2579 	if (subprog < 0) {
2580 		verbose(env, "verifier bug. No program starts at insn %d\n",
2581 			target_insn + 1);
2582 		return -EFAULT;
2583 	}
2584 
2585 	caller = state->frame[state->curframe];
2586 	if (state->frame[state->curframe + 1]) {
2587 		verbose(env, "verifier bug. Frame %d already allocated\n",
2588 			state->curframe + 1);
2589 		return -EFAULT;
2590 	}
2591 
2592 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2593 	if (!callee)
2594 		return -ENOMEM;
2595 	state->frame[state->curframe + 1] = callee;
2596 
2597 	/* callee cannot access r0, r6 - r9 for reading and has to write
2598 	 * into its own stack before reading from it.
2599 	 * callee can read/write into caller's stack
2600 	 */
2601 	init_func_state(env, callee,
2602 			/* remember the callsite, it will be used by bpf_exit */
2603 			*insn_idx /* callsite */,
2604 			state->curframe + 1 /* frameno within this callchain */,
2605 			subprog /* subprog number within this prog */);
2606 
2607 	/* Transfer references to the callee */
2608 	err = transfer_reference_state(callee, caller);
2609 	if (err)
2610 		return err;
2611 
2612 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2613 	 * pointers, which connects us up to the liveness chain
2614 	 */
2615 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2616 		callee->regs[i] = caller->regs[i];
2617 
2618 	/* after the call registers r0 - r5 were scratched */
2619 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2620 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2621 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2622 	}
2623 
2624 	/* only increment it after check_reg_arg() finished */
2625 	state->curframe++;
2626 
2627 	/* and go analyze first insn of the callee */
2628 	*insn_idx = target_insn;
2629 
2630 	if (env->log.level) {
2631 		verbose(env, "caller:\n");
2632 		print_verifier_state(env, caller);
2633 		verbose(env, "callee:\n");
2634 		print_verifier_state(env, callee);
2635 	}
2636 	return 0;
2637 }
2638 
2639 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2640 {
2641 	struct bpf_verifier_state *state = env->cur_state;
2642 	struct bpf_func_state *caller, *callee;
2643 	struct bpf_reg_state *r0;
2644 	int err;
2645 
2646 	callee = state->frame[state->curframe];
2647 	r0 = &callee->regs[BPF_REG_0];
2648 	if (r0->type == PTR_TO_STACK) {
2649 		/* technically it's ok to return caller's stack pointer
2650 		 * (or caller's caller's pointer) back to the caller,
2651 		 * since these pointers are valid. Only current stack
2652 		 * pointer will be invalid as soon as function exits,
2653 		 * but let's be conservative
2654 		 */
2655 		verbose(env, "cannot return stack pointer to the caller\n");
2656 		return -EINVAL;
2657 	}
2658 
2659 	state->curframe--;
2660 	caller = state->frame[state->curframe];
2661 	/* return to the caller whatever r0 had in the callee */
2662 	caller->regs[BPF_REG_0] = *r0;
2663 
2664 	/* Transfer references to the caller */
2665 	err = transfer_reference_state(caller, callee);
2666 	if (err)
2667 		return err;
2668 
2669 	*insn_idx = callee->callsite + 1;
2670 	if (env->log.level) {
2671 		verbose(env, "returning from callee:\n");
2672 		print_verifier_state(env, callee);
2673 		verbose(env, "to caller at %d:\n", *insn_idx);
2674 		print_verifier_state(env, caller);
2675 	}
2676 	/* clear everything in the callee */
2677 	free_func_state(callee);
2678 	state->frame[state->curframe + 1] = NULL;
2679 	return 0;
2680 }
2681 
2682 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2683 				   int func_id,
2684 				   struct bpf_call_arg_meta *meta)
2685 {
2686 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2687 
2688 	if (ret_type != RET_INTEGER ||
2689 	    (func_id != BPF_FUNC_get_stack &&
2690 	     func_id != BPF_FUNC_probe_read_str))
2691 		return;
2692 
2693 	ret_reg->smax_value = meta->msize_smax_value;
2694 	ret_reg->umax_value = meta->msize_umax_value;
2695 	__reg_deduce_bounds(ret_reg);
2696 	__reg_bound_offset(ret_reg);
2697 }
2698 
2699 static int
2700 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2701 		int func_id, int insn_idx)
2702 {
2703 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2704 
2705 	if (func_id != BPF_FUNC_tail_call &&
2706 	    func_id != BPF_FUNC_map_lookup_elem &&
2707 	    func_id != BPF_FUNC_map_update_elem &&
2708 	    func_id != BPF_FUNC_map_delete_elem &&
2709 	    func_id != BPF_FUNC_map_push_elem &&
2710 	    func_id != BPF_FUNC_map_pop_elem &&
2711 	    func_id != BPF_FUNC_map_peek_elem)
2712 		return 0;
2713 
2714 	if (meta->map_ptr == NULL) {
2715 		verbose(env, "kernel subsystem misconfigured verifier\n");
2716 		return -EINVAL;
2717 	}
2718 
2719 	if (!BPF_MAP_PTR(aux->map_state))
2720 		bpf_map_ptr_store(aux, meta->map_ptr,
2721 				  meta->map_ptr->unpriv_array);
2722 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2723 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2724 				  meta->map_ptr->unpriv_array);
2725 	return 0;
2726 }
2727 
2728 static int check_reference_leak(struct bpf_verifier_env *env)
2729 {
2730 	struct bpf_func_state *state = cur_func(env);
2731 	int i;
2732 
2733 	for (i = 0; i < state->acquired_refs; i++) {
2734 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2735 			state->refs[i].id, state->refs[i].insn_idx);
2736 	}
2737 	return state->acquired_refs ? -EINVAL : 0;
2738 }
2739 
2740 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2741 {
2742 	const struct bpf_func_proto *fn = NULL;
2743 	struct bpf_reg_state *regs;
2744 	struct bpf_call_arg_meta meta;
2745 	bool changes_data;
2746 	int i, err;
2747 
2748 	/* find function prototype */
2749 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2750 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2751 			func_id);
2752 		return -EINVAL;
2753 	}
2754 
2755 	if (env->ops->get_func_proto)
2756 		fn = env->ops->get_func_proto(func_id, env->prog);
2757 	if (!fn) {
2758 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2759 			func_id);
2760 		return -EINVAL;
2761 	}
2762 
2763 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2764 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2765 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2766 		return -EINVAL;
2767 	}
2768 
2769 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2770 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2771 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2772 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2773 			func_id_name(func_id), func_id);
2774 		return -EINVAL;
2775 	}
2776 
2777 	memset(&meta, 0, sizeof(meta));
2778 	meta.pkt_access = fn->pkt_access;
2779 
2780 	err = check_func_proto(fn);
2781 	if (err) {
2782 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2783 			func_id_name(func_id), func_id);
2784 		return err;
2785 	}
2786 
2787 	/* check args */
2788 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2789 	if (err)
2790 		return err;
2791 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2792 	if (err)
2793 		return err;
2794 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2795 	if (err)
2796 		return err;
2797 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2798 	if (err)
2799 		return err;
2800 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2801 	if (err)
2802 		return err;
2803 
2804 	err = record_func_map(env, &meta, func_id, insn_idx);
2805 	if (err)
2806 		return err;
2807 
2808 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2809 	 * is inferred from register state.
2810 	 */
2811 	for (i = 0; i < meta.access_size; i++) {
2812 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2813 				       BPF_WRITE, -1, false);
2814 		if (err)
2815 			return err;
2816 	}
2817 
2818 	if (func_id == BPF_FUNC_tail_call) {
2819 		err = check_reference_leak(env);
2820 		if (err) {
2821 			verbose(env, "tail_call would lead to reference leak\n");
2822 			return err;
2823 		}
2824 	} else if (is_release_function(func_id)) {
2825 		err = release_reference(env, &meta);
2826 		if (err)
2827 			return err;
2828 	}
2829 
2830 	regs = cur_regs(env);
2831 
2832 	/* check that flags argument in get_local_storage(map, flags) is 0,
2833 	 * this is required because get_local_storage() can't return an error.
2834 	 */
2835 	if (func_id == BPF_FUNC_get_local_storage &&
2836 	    !register_is_null(&regs[BPF_REG_2])) {
2837 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2838 		return -EINVAL;
2839 	}
2840 
2841 	/* reset caller saved regs */
2842 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2843 		mark_reg_not_init(env, regs, caller_saved[i]);
2844 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2845 	}
2846 
2847 	/* update return register (already marked as written above) */
2848 	if (fn->ret_type == RET_INTEGER) {
2849 		/* sets type to SCALAR_VALUE */
2850 		mark_reg_unknown(env, regs, BPF_REG_0);
2851 	} else if (fn->ret_type == RET_VOID) {
2852 		regs[BPF_REG_0].type = NOT_INIT;
2853 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2854 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2855 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
2856 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2857 		else
2858 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2859 		/* There is no offset yet applied, variable or fixed */
2860 		mark_reg_known_zero(env, regs, BPF_REG_0);
2861 		/* remember map_ptr, so that check_map_access()
2862 		 * can check 'value_size' boundary of memory access
2863 		 * to map element returned from bpf_map_lookup_elem()
2864 		 */
2865 		if (meta.map_ptr == NULL) {
2866 			verbose(env,
2867 				"kernel subsystem misconfigured verifier\n");
2868 			return -EINVAL;
2869 		}
2870 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2871 		regs[BPF_REG_0].id = ++env->id_gen;
2872 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2873 		int id = acquire_reference_state(env, insn_idx);
2874 		if (id < 0)
2875 			return id;
2876 		mark_reg_known_zero(env, regs, BPF_REG_0);
2877 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2878 		regs[BPF_REG_0].id = id;
2879 	} else {
2880 		verbose(env, "unknown return type %d of func %s#%d\n",
2881 			fn->ret_type, func_id_name(func_id), func_id);
2882 		return -EINVAL;
2883 	}
2884 
2885 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2886 
2887 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2888 	if (err)
2889 		return err;
2890 
2891 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2892 		const char *err_str;
2893 
2894 #ifdef CONFIG_PERF_EVENTS
2895 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2896 		err_str = "cannot get callchain buffer for func %s#%d\n";
2897 #else
2898 		err = -ENOTSUPP;
2899 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2900 #endif
2901 		if (err) {
2902 			verbose(env, err_str, func_id_name(func_id), func_id);
2903 			return err;
2904 		}
2905 
2906 		env->prog->has_callchain_buf = true;
2907 	}
2908 
2909 	if (changes_data)
2910 		clear_all_pkt_pointers(env);
2911 	return 0;
2912 }
2913 
2914 static bool signed_add_overflows(s64 a, s64 b)
2915 {
2916 	/* Do the add in u64, where overflow is well-defined */
2917 	s64 res = (s64)((u64)a + (u64)b);
2918 
2919 	if (b < 0)
2920 		return res > a;
2921 	return res < a;
2922 }
2923 
2924 static bool signed_sub_overflows(s64 a, s64 b)
2925 {
2926 	/* Do the sub in u64, where overflow is well-defined */
2927 	s64 res = (s64)((u64)a - (u64)b);
2928 
2929 	if (b < 0)
2930 		return res < a;
2931 	return res > a;
2932 }
2933 
2934 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2935 				  const struct bpf_reg_state *reg,
2936 				  enum bpf_reg_type type)
2937 {
2938 	bool known = tnum_is_const(reg->var_off);
2939 	s64 val = reg->var_off.value;
2940 	s64 smin = reg->smin_value;
2941 
2942 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2943 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2944 			reg_type_str[type], val);
2945 		return false;
2946 	}
2947 
2948 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2949 		verbose(env, "%s pointer offset %d is not allowed\n",
2950 			reg_type_str[type], reg->off);
2951 		return false;
2952 	}
2953 
2954 	if (smin == S64_MIN) {
2955 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2956 			reg_type_str[type]);
2957 		return false;
2958 	}
2959 
2960 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2961 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2962 			smin, reg_type_str[type]);
2963 		return false;
2964 	}
2965 
2966 	return true;
2967 }
2968 
2969 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2970  * Caller should also handle BPF_MOV case separately.
2971  * If we return -EACCES, caller may want to try again treating pointer as a
2972  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2973  */
2974 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2975 				   struct bpf_insn *insn,
2976 				   const struct bpf_reg_state *ptr_reg,
2977 				   const struct bpf_reg_state *off_reg)
2978 {
2979 	struct bpf_verifier_state *vstate = env->cur_state;
2980 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2981 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2982 	bool known = tnum_is_const(off_reg->var_off);
2983 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2984 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2985 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2986 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2987 	u8 opcode = BPF_OP(insn->code);
2988 	u32 dst = insn->dst_reg;
2989 
2990 	dst_reg = &regs[dst];
2991 
2992 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2993 	    smin_val > smax_val || umin_val > umax_val) {
2994 		/* Taint dst register if offset had invalid bounds derived from
2995 		 * e.g. dead branches.
2996 		 */
2997 		__mark_reg_unknown(dst_reg);
2998 		return 0;
2999 	}
3000 
3001 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3002 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3003 		verbose(env,
3004 			"R%d 32-bit pointer arithmetic prohibited\n",
3005 			dst);
3006 		return -EACCES;
3007 	}
3008 
3009 	switch (ptr_reg->type) {
3010 	case PTR_TO_MAP_VALUE_OR_NULL:
3011 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3012 			dst, reg_type_str[ptr_reg->type]);
3013 		return -EACCES;
3014 	case CONST_PTR_TO_MAP:
3015 	case PTR_TO_PACKET_END:
3016 	case PTR_TO_SOCKET:
3017 	case PTR_TO_SOCKET_OR_NULL:
3018 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3019 			dst, reg_type_str[ptr_reg->type]);
3020 		return -EACCES;
3021 	default:
3022 		break;
3023 	}
3024 
3025 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3026 	 * The id may be overwritten later if we create a new variable offset.
3027 	 */
3028 	dst_reg->type = ptr_reg->type;
3029 	dst_reg->id = ptr_reg->id;
3030 
3031 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3032 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3033 		return -EINVAL;
3034 
3035 	switch (opcode) {
3036 	case BPF_ADD:
3037 		/* We can take a fixed offset as long as it doesn't overflow
3038 		 * the s32 'off' field
3039 		 */
3040 		if (known && (ptr_reg->off + smin_val ==
3041 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3042 			/* pointer += K.  Accumulate it into fixed offset */
3043 			dst_reg->smin_value = smin_ptr;
3044 			dst_reg->smax_value = smax_ptr;
3045 			dst_reg->umin_value = umin_ptr;
3046 			dst_reg->umax_value = umax_ptr;
3047 			dst_reg->var_off = ptr_reg->var_off;
3048 			dst_reg->off = ptr_reg->off + smin_val;
3049 			dst_reg->range = ptr_reg->range;
3050 			break;
3051 		}
3052 		/* A new variable offset is created.  Note that off_reg->off
3053 		 * == 0, since it's a scalar.
3054 		 * dst_reg gets the pointer type and since some positive
3055 		 * integer value was added to the pointer, give it a new 'id'
3056 		 * if it's a PTR_TO_PACKET.
3057 		 * this creates a new 'base' pointer, off_reg (variable) gets
3058 		 * added into the variable offset, and we copy the fixed offset
3059 		 * from ptr_reg.
3060 		 */
3061 		if (signed_add_overflows(smin_ptr, smin_val) ||
3062 		    signed_add_overflows(smax_ptr, smax_val)) {
3063 			dst_reg->smin_value = S64_MIN;
3064 			dst_reg->smax_value = S64_MAX;
3065 		} else {
3066 			dst_reg->smin_value = smin_ptr + smin_val;
3067 			dst_reg->smax_value = smax_ptr + smax_val;
3068 		}
3069 		if (umin_ptr + umin_val < umin_ptr ||
3070 		    umax_ptr + umax_val < umax_ptr) {
3071 			dst_reg->umin_value = 0;
3072 			dst_reg->umax_value = U64_MAX;
3073 		} else {
3074 			dst_reg->umin_value = umin_ptr + umin_val;
3075 			dst_reg->umax_value = umax_ptr + umax_val;
3076 		}
3077 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3078 		dst_reg->off = ptr_reg->off;
3079 		if (reg_is_pkt_pointer(ptr_reg)) {
3080 			dst_reg->id = ++env->id_gen;
3081 			/* something was added to pkt_ptr, set range to zero */
3082 			dst_reg->range = 0;
3083 		}
3084 		break;
3085 	case BPF_SUB:
3086 		if (dst_reg == off_reg) {
3087 			/* scalar -= pointer.  Creates an unknown scalar */
3088 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3089 				dst);
3090 			return -EACCES;
3091 		}
3092 		/* We don't allow subtraction from FP, because (according to
3093 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3094 		 * be able to deal with it.
3095 		 */
3096 		if (ptr_reg->type == PTR_TO_STACK) {
3097 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3098 				dst);
3099 			return -EACCES;
3100 		}
3101 		if (known && (ptr_reg->off - smin_val ==
3102 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3103 			/* pointer -= K.  Subtract it from fixed offset */
3104 			dst_reg->smin_value = smin_ptr;
3105 			dst_reg->smax_value = smax_ptr;
3106 			dst_reg->umin_value = umin_ptr;
3107 			dst_reg->umax_value = umax_ptr;
3108 			dst_reg->var_off = ptr_reg->var_off;
3109 			dst_reg->id = ptr_reg->id;
3110 			dst_reg->off = ptr_reg->off - smin_val;
3111 			dst_reg->range = ptr_reg->range;
3112 			break;
3113 		}
3114 		/* A new variable offset is created.  If the subtrahend is known
3115 		 * nonnegative, then any reg->range we had before is still good.
3116 		 */
3117 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3118 		    signed_sub_overflows(smax_ptr, smin_val)) {
3119 			/* Overflow possible, we know nothing */
3120 			dst_reg->smin_value = S64_MIN;
3121 			dst_reg->smax_value = S64_MAX;
3122 		} else {
3123 			dst_reg->smin_value = smin_ptr - smax_val;
3124 			dst_reg->smax_value = smax_ptr - smin_val;
3125 		}
3126 		if (umin_ptr < umax_val) {
3127 			/* Overflow possible, we know nothing */
3128 			dst_reg->umin_value = 0;
3129 			dst_reg->umax_value = U64_MAX;
3130 		} else {
3131 			/* Cannot overflow (as long as bounds are consistent) */
3132 			dst_reg->umin_value = umin_ptr - umax_val;
3133 			dst_reg->umax_value = umax_ptr - umin_val;
3134 		}
3135 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3136 		dst_reg->off = ptr_reg->off;
3137 		if (reg_is_pkt_pointer(ptr_reg)) {
3138 			dst_reg->id = ++env->id_gen;
3139 			/* something was added to pkt_ptr, set range to zero */
3140 			if (smin_val < 0)
3141 				dst_reg->range = 0;
3142 		}
3143 		break;
3144 	case BPF_AND:
3145 	case BPF_OR:
3146 	case BPF_XOR:
3147 		/* bitwise ops on pointers are troublesome, prohibit. */
3148 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3149 			dst, bpf_alu_string[opcode >> 4]);
3150 		return -EACCES;
3151 	default:
3152 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3153 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3154 			dst, bpf_alu_string[opcode >> 4]);
3155 		return -EACCES;
3156 	}
3157 
3158 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3159 		return -EINVAL;
3160 
3161 	__update_reg_bounds(dst_reg);
3162 	__reg_deduce_bounds(dst_reg);
3163 	__reg_bound_offset(dst_reg);
3164 	return 0;
3165 }
3166 
3167 /* WARNING: This function does calculations on 64-bit values, but the actual
3168  * execution may occur on 32-bit values. Therefore, things like bitshifts
3169  * need extra checks in the 32-bit case.
3170  */
3171 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3172 				      struct bpf_insn *insn,
3173 				      struct bpf_reg_state *dst_reg,
3174 				      struct bpf_reg_state src_reg)
3175 {
3176 	struct bpf_reg_state *regs = cur_regs(env);
3177 	u8 opcode = BPF_OP(insn->code);
3178 	bool src_known, dst_known;
3179 	s64 smin_val, smax_val;
3180 	u64 umin_val, umax_val;
3181 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3182 
3183 	if (insn_bitness == 32) {
3184 		/* Relevant for 32-bit RSH: Information can propagate towards
3185 		 * LSB, so it isn't sufficient to only truncate the output to
3186 		 * 32 bits.
3187 		 */
3188 		coerce_reg_to_size(dst_reg, 4);
3189 		coerce_reg_to_size(&src_reg, 4);
3190 	}
3191 
3192 	smin_val = src_reg.smin_value;
3193 	smax_val = src_reg.smax_value;
3194 	umin_val = src_reg.umin_value;
3195 	umax_val = src_reg.umax_value;
3196 	src_known = tnum_is_const(src_reg.var_off);
3197 	dst_known = tnum_is_const(dst_reg->var_off);
3198 
3199 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3200 	    smin_val > smax_val || umin_val > umax_val) {
3201 		/* Taint dst register if offset had invalid bounds derived from
3202 		 * e.g. dead branches.
3203 		 */
3204 		__mark_reg_unknown(dst_reg);
3205 		return 0;
3206 	}
3207 
3208 	if (!src_known &&
3209 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3210 		__mark_reg_unknown(dst_reg);
3211 		return 0;
3212 	}
3213 
3214 	switch (opcode) {
3215 	case BPF_ADD:
3216 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3217 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3218 			dst_reg->smin_value = S64_MIN;
3219 			dst_reg->smax_value = S64_MAX;
3220 		} else {
3221 			dst_reg->smin_value += smin_val;
3222 			dst_reg->smax_value += smax_val;
3223 		}
3224 		if (dst_reg->umin_value + umin_val < umin_val ||
3225 		    dst_reg->umax_value + umax_val < umax_val) {
3226 			dst_reg->umin_value = 0;
3227 			dst_reg->umax_value = U64_MAX;
3228 		} else {
3229 			dst_reg->umin_value += umin_val;
3230 			dst_reg->umax_value += umax_val;
3231 		}
3232 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3233 		break;
3234 	case BPF_SUB:
3235 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3236 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3237 			/* Overflow possible, we know nothing */
3238 			dst_reg->smin_value = S64_MIN;
3239 			dst_reg->smax_value = S64_MAX;
3240 		} else {
3241 			dst_reg->smin_value -= smax_val;
3242 			dst_reg->smax_value -= smin_val;
3243 		}
3244 		if (dst_reg->umin_value < umax_val) {
3245 			/* Overflow possible, we know nothing */
3246 			dst_reg->umin_value = 0;
3247 			dst_reg->umax_value = U64_MAX;
3248 		} else {
3249 			/* Cannot overflow (as long as bounds are consistent) */
3250 			dst_reg->umin_value -= umax_val;
3251 			dst_reg->umax_value -= umin_val;
3252 		}
3253 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3254 		break;
3255 	case BPF_MUL:
3256 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3257 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3258 			/* Ain't nobody got time to multiply that sign */
3259 			__mark_reg_unbounded(dst_reg);
3260 			__update_reg_bounds(dst_reg);
3261 			break;
3262 		}
3263 		/* Both values are positive, so we can work with unsigned and
3264 		 * copy the result to signed (unless it exceeds S64_MAX).
3265 		 */
3266 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3267 			/* Potential overflow, we know nothing */
3268 			__mark_reg_unbounded(dst_reg);
3269 			/* (except what we can learn from the var_off) */
3270 			__update_reg_bounds(dst_reg);
3271 			break;
3272 		}
3273 		dst_reg->umin_value *= umin_val;
3274 		dst_reg->umax_value *= umax_val;
3275 		if (dst_reg->umax_value > S64_MAX) {
3276 			/* Overflow possible, we know nothing */
3277 			dst_reg->smin_value = S64_MIN;
3278 			dst_reg->smax_value = S64_MAX;
3279 		} else {
3280 			dst_reg->smin_value = dst_reg->umin_value;
3281 			dst_reg->smax_value = dst_reg->umax_value;
3282 		}
3283 		break;
3284 	case BPF_AND:
3285 		if (src_known && dst_known) {
3286 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3287 						  src_reg.var_off.value);
3288 			break;
3289 		}
3290 		/* We get our minimum from the var_off, since that's inherently
3291 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3292 		 */
3293 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3294 		dst_reg->umin_value = dst_reg->var_off.value;
3295 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3296 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3297 			/* Lose signed bounds when ANDing negative numbers,
3298 			 * ain't nobody got time for that.
3299 			 */
3300 			dst_reg->smin_value = S64_MIN;
3301 			dst_reg->smax_value = S64_MAX;
3302 		} else {
3303 			/* ANDing two positives gives a positive, so safe to
3304 			 * cast result into s64.
3305 			 */
3306 			dst_reg->smin_value = dst_reg->umin_value;
3307 			dst_reg->smax_value = dst_reg->umax_value;
3308 		}
3309 		/* We may learn something more from the var_off */
3310 		__update_reg_bounds(dst_reg);
3311 		break;
3312 	case BPF_OR:
3313 		if (src_known && dst_known) {
3314 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3315 						  src_reg.var_off.value);
3316 			break;
3317 		}
3318 		/* We get our maximum from the var_off, and our minimum is the
3319 		 * maximum of the operands' minima
3320 		 */
3321 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3322 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3323 		dst_reg->umax_value = dst_reg->var_off.value |
3324 				      dst_reg->var_off.mask;
3325 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3326 			/* Lose signed bounds when ORing negative numbers,
3327 			 * ain't nobody got time for that.
3328 			 */
3329 			dst_reg->smin_value = S64_MIN;
3330 			dst_reg->smax_value = S64_MAX;
3331 		} else {
3332 			/* ORing two positives gives a positive, so safe to
3333 			 * cast result into s64.
3334 			 */
3335 			dst_reg->smin_value = dst_reg->umin_value;
3336 			dst_reg->smax_value = dst_reg->umax_value;
3337 		}
3338 		/* We may learn something more from the var_off */
3339 		__update_reg_bounds(dst_reg);
3340 		break;
3341 	case BPF_LSH:
3342 		if (umax_val >= insn_bitness) {
3343 			/* Shifts greater than 31 or 63 are undefined.
3344 			 * This includes shifts by a negative number.
3345 			 */
3346 			mark_reg_unknown(env, regs, insn->dst_reg);
3347 			break;
3348 		}
3349 		/* We lose all sign bit information (except what we can pick
3350 		 * up from var_off)
3351 		 */
3352 		dst_reg->smin_value = S64_MIN;
3353 		dst_reg->smax_value = S64_MAX;
3354 		/* If we might shift our top bit out, then we know nothing */
3355 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3356 			dst_reg->umin_value = 0;
3357 			dst_reg->umax_value = U64_MAX;
3358 		} else {
3359 			dst_reg->umin_value <<= umin_val;
3360 			dst_reg->umax_value <<= umax_val;
3361 		}
3362 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3363 		/* We may learn something more from the var_off */
3364 		__update_reg_bounds(dst_reg);
3365 		break;
3366 	case BPF_RSH:
3367 		if (umax_val >= insn_bitness) {
3368 			/* Shifts greater than 31 or 63 are undefined.
3369 			 * This includes shifts by a negative number.
3370 			 */
3371 			mark_reg_unknown(env, regs, insn->dst_reg);
3372 			break;
3373 		}
3374 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3375 		 * be negative, then either:
3376 		 * 1) src_reg might be zero, so the sign bit of the result is
3377 		 *    unknown, so we lose our signed bounds
3378 		 * 2) it's known negative, thus the unsigned bounds capture the
3379 		 *    signed bounds
3380 		 * 3) the signed bounds cross zero, so they tell us nothing
3381 		 *    about the result
3382 		 * If the value in dst_reg is known nonnegative, then again the
3383 		 * unsigned bounts capture the signed bounds.
3384 		 * Thus, in all cases it suffices to blow away our signed bounds
3385 		 * and rely on inferring new ones from the unsigned bounds and
3386 		 * var_off of the result.
3387 		 */
3388 		dst_reg->smin_value = S64_MIN;
3389 		dst_reg->smax_value = S64_MAX;
3390 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3391 		dst_reg->umin_value >>= umax_val;
3392 		dst_reg->umax_value >>= umin_val;
3393 		/* We may learn something more from the var_off */
3394 		__update_reg_bounds(dst_reg);
3395 		break;
3396 	case BPF_ARSH:
3397 		if (umax_val >= insn_bitness) {
3398 			/* Shifts greater than 31 or 63 are undefined.
3399 			 * This includes shifts by a negative number.
3400 			 */
3401 			mark_reg_unknown(env, regs, insn->dst_reg);
3402 			break;
3403 		}
3404 
3405 		/* Upon reaching here, src_known is true and
3406 		 * umax_val is equal to umin_val.
3407 		 */
3408 		dst_reg->smin_value >>= umin_val;
3409 		dst_reg->smax_value >>= umin_val;
3410 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3411 
3412 		/* blow away the dst_reg umin_value/umax_value and rely on
3413 		 * dst_reg var_off to refine the result.
3414 		 */
3415 		dst_reg->umin_value = 0;
3416 		dst_reg->umax_value = U64_MAX;
3417 		__update_reg_bounds(dst_reg);
3418 		break;
3419 	default:
3420 		mark_reg_unknown(env, regs, insn->dst_reg);
3421 		break;
3422 	}
3423 
3424 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3425 		/* 32-bit ALU ops are (32,32)->32 */
3426 		coerce_reg_to_size(dst_reg, 4);
3427 	}
3428 
3429 	__reg_deduce_bounds(dst_reg);
3430 	__reg_bound_offset(dst_reg);
3431 	return 0;
3432 }
3433 
3434 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3435  * and var_off.
3436  */
3437 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3438 				   struct bpf_insn *insn)
3439 {
3440 	struct bpf_verifier_state *vstate = env->cur_state;
3441 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3442 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3443 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3444 	u8 opcode = BPF_OP(insn->code);
3445 
3446 	dst_reg = &regs[insn->dst_reg];
3447 	src_reg = NULL;
3448 	if (dst_reg->type != SCALAR_VALUE)
3449 		ptr_reg = dst_reg;
3450 	if (BPF_SRC(insn->code) == BPF_X) {
3451 		src_reg = &regs[insn->src_reg];
3452 		if (src_reg->type != SCALAR_VALUE) {
3453 			if (dst_reg->type != SCALAR_VALUE) {
3454 				/* Combining two pointers by any ALU op yields
3455 				 * an arbitrary scalar. Disallow all math except
3456 				 * pointer subtraction
3457 				 */
3458 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3459 					mark_reg_unknown(env, regs, insn->dst_reg);
3460 					return 0;
3461 				}
3462 				verbose(env, "R%d pointer %s pointer prohibited\n",
3463 					insn->dst_reg,
3464 					bpf_alu_string[opcode >> 4]);
3465 				return -EACCES;
3466 			} else {
3467 				/* scalar += pointer
3468 				 * This is legal, but we have to reverse our
3469 				 * src/dest handling in computing the range
3470 				 */
3471 				return adjust_ptr_min_max_vals(env, insn,
3472 							       src_reg, dst_reg);
3473 			}
3474 		} else if (ptr_reg) {
3475 			/* pointer += scalar */
3476 			return adjust_ptr_min_max_vals(env, insn,
3477 						       dst_reg, src_reg);
3478 		}
3479 	} else {
3480 		/* Pretend the src is a reg with a known value, since we only
3481 		 * need to be able to read from this state.
3482 		 */
3483 		off_reg.type = SCALAR_VALUE;
3484 		__mark_reg_known(&off_reg, insn->imm);
3485 		src_reg = &off_reg;
3486 		if (ptr_reg) /* pointer += K */
3487 			return adjust_ptr_min_max_vals(env, insn,
3488 						       ptr_reg, src_reg);
3489 	}
3490 
3491 	/* Got here implies adding two SCALAR_VALUEs */
3492 	if (WARN_ON_ONCE(ptr_reg)) {
3493 		print_verifier_state(env, state);
3494 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3495 		return -EINVAL;
3496 	}
3497 	if (WARN_ON(!src_reg)) {
3498 		print_verifier_state(env, state);
3499 		verbose(env, "verifier internal error: no src_reg\n");
3500 		return -EINVAL;
3501 	}
3502 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3503 }
3504 
3505 /* check validity of 32-bit and 64-bit arithmetic operations */
3506 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3507 {
3508 	struct bpf_reg_state *regs = cur_regs(env);
3509 	u8 opcode = BPF_OP(insn->code);
3510 	int err;
3511 
3512 	if (opcode == BPF_END || opcode == BPF_NEG) {
3513 		if (opcode == BPF_NEG) {
3514 			if (BPF_SRC(insn->code) != 0 ||
3515 			    insn->src_reg != BPF_REG_0 ||
3516 			    insn->off != 0 || insn->imm != 0) {
3517 				verbose(env, "BPF_NEG uses reserved fields\n");
3518 				return -EINVAL;
3519 			}
3520 		} else {
3521 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3522 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3523 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3524 				verbose(env, "BPF_END uses reserved fields\n");
3525 				return -EINVAL;
3526 			}
3527 		}
3528 
3529 		/* check src operand */
3530 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3531 		if (err)
3532 			return err;
3533 
3534 		if (is_pointer_value(env, insn->dst_reg)) {
3535 			verbose(env, "R%d pointer arithmetic prohibited\n",
3536 				insn->dst_reg);
3537 			return -EACCES;
3538 		}
3539 
3540 		/* check dest operand */
3541 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3542 		if (err)
3543 			return err;
3544 
3545 	} else if (opcode == BPF_MOV) {
3546 
3547 		if (BPF_SRC(insn->code) == BPF_X) {
3548 			if (insn->imm != 0 || insn->off != 0) {
3549 				verbose(env, "BPF_MOV uses reserved fields\n");
3550 				return -EINVAL;
3551 			}
3552 
3553 			/* check src operand */
3554 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3555 			if (err)
3556 				return err;
3557 		} else {
3558 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3559 				verbose(env, "BPF_MOV uses reserved fields\n");
3560 				return -EINVAL;
3561 			}
3562 		}
3563 
3564 		/* check dest operand, mark as required later */
3565 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3566 		if (err)
3567 			return err;
3568 
3569 		if (BPF_SRC(insn->code) == BPF_X) {
3570 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3571 				/* case: R1 = R2
3572 				 * copy register state to dest reg
3573 				 */
3574 				regs[insn->dst_reg] = regs[insn->src_reg];
3575 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3576 			} else {
3577 				/* R1 = (u32) R2 */
3578 				if (is_pointer_value(env, insn->src_reg)) {
3579 					verbose(env,
3580 						"R%d partial copy of pointer\n",
3581 						insn->src_reg);
3582 					return -EACCES;
3583 				}
3584 				mark_reg_unknown(env, regs, insn->dst_reg);
3585 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3586 			}
3587 		} else {
3588 			/* case: R = imm
3589 			 * remember the value we stored into this reg
3590 			 */
3591 			/* clear any state __mark_reg_known doesn't set */
3592 			mark_reg_unknown(env, regs, insn->dst_reg);
3593 			regs[insn->dst_reg].type = SCALAR_VALUE;
3594 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3595 				__mark_reg_known(regs + insn->dst_reg,
3596 						 insn->imm);
3597 			} else {
3598 				__mark_reg_known(regs + insn->dst_reg,
3599 						 (u32)insn->imm);
3600 			}
3601 		}
3602 
3603 	} else if (opcode > BPF_END) {
3604 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3605 		return -EINVAL;
3606 
3607 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3608 
3609 		if (BPF_SRC(insn->code) == BPF_X) {
3610 			if (insn->imm != 0 || insn->off != 0) {
3611 				verbose(env, "BPF_ALU uses reserved fields\n");
3612 				return -EINVAL;
3613 			}
3614 			/* check src1 operand */
3615 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3616 			if (err)
3617 				return err;
3618 		} else {
3619 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3620 				verbose(env, "BPF_ALU uses reserved fields\n");
3621 				return -EINVAL;
3622 			}
3623 		}
3624 
3625 		/* check src2 operand */
3626 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3627 		if (err)
3628 			return err;
3629 
3630 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3631 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3632 			verbose(env, "div by zero\n");
3633 			return -EINVAL;
3634 		}
3635 
3636 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3637 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3638 			return -EINVAL;
3639 		}
3640 
3641 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3642 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3643 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3644 
3645 			if (insn->imm < 0 || insn->imm >= size) {
3646 				verbose(env, "invalid shift %d\n", insn->imm);
3647 				return -EINVAL;
3648 			}
3649 		}
3650 
3651 		/* check dest operand */
3652 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3653 		if (err)
3654 			return err;
3655 
3656 		return adjust_reg_min_max_vals(env, insn);
3657 	}
3658 
3659 	return 0;
3660 }
3661 
3662 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3663 				   struct bpf_reg_state *dst_reg,
3664 				   enum bpf_reg_type type,
3665 				   bool range_right_open)
3666 {
3667 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3668 	struct bpf_reg_state *regs = state->regs, *reg;
3669 	u16 new_range;
3670 	int i, j;
3671 
3672 	if (dst_reg->off < 0 ||
3673 	    (dst_reg->off == 0 && range_right_open))
3674 		/* This doesn't give us any range */
3675 		return;
3676 
3677 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3678 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3679 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3680 		 * than pkt_end, but that's because it's also less than pkt.
3681 		 */
3682 		return;
3683 
3684 	new_range = dst_reg->off;
3685 	if (range_right_open)
3686 		new_range--;
3687 
3688 	/* Examples for register markings:
3689 	 *
3690 	 * pkt_data in dst register:
3691 	 *
3692 	 *   r2 = r3;
3693 	 *   r2 += 8;
3694 	 *   if (r2 > pkt_end) goto <handle exception>
3695 	 *   <access okay>
3696 	 *
3697 	 *   r2 = r3;
3698 	 *   r2 += 8;
3699 	 *   if (r2 < pkt_end) goto <access okay>
3700 	 *   <handle exception>
3701 	 *
3702 	 *   Where:
3703 	 *     r2 == dst_reg, pkt_end == src_reg
3704 	 *     r2=pkt(id=n,off=8,r=0)
3705 	 *     r3=pkt(id=n,off=0,r=0)
3706 	 *
3707 	 * pkt_data in src register:
3708 	 *
3709 	 *   r2 = r3;
3710 	 *   r2 += 8;
3711 	 *   if (pkt_end >= r2) goto <access okay>
3712 	 *   <handle exception>
3713 	 *
3714 	 *   r2 = r3;
3715 	 *   r2 += 8;
3716 	 *   if (pkt_end <= r2) goto <handle exception>
3717 	 *   <access okay>
3718 	 *
3719 	 *   Where:
3720 	 *     pkt_end == dst_reg, r2 == src_reg
3721 	 *     r2=pkt(id=n,off=8,r=0)
3722 	 *     r3=pkt(id=n,off=0,r=0)
3723 	 *
3724 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3725 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3726 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3727 	 * the check.
3728 	 */
3729 
3730 	/* If our ids match, then we must have the same max_value.  And we
3731 	 * don't care about the other reg's fixed offset, since if it's too big
3732 	 * the range won't allow anything.
3733 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3734 	 */
3735 	for (i = 0; i < MAX_BPF_REG; i++)
3736 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3737 			/* keep the maximum range already checked */
3738 			regs[i].range = max(regs[i].range, new_range);
3739 
3740 	for (j = 0; j <= vstate->curframe; j++) {
3741 		state = vstate->frame[j];
3742 		bpf_for_each_spilled_reg(i, state, reg) {
3743 			if (!reg)
3744 				continue;
3745 			if (reg->type == type && reg->id == dst_reg->id)
3746 				reg->range = max(reg->range, new_range);
3747 		}
3748 	}
3749 }
3750 
3751 /* Adjusts the register min/max values in the case that the dst_reg is the
3752  * variable register that we are working on, and src_reg is a constant or we're
3753  * simply doing a BPF_K check.
3754  * In JEQ/JNE cases we also adjust the var_off values.
3755  */
3756 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3757 			    struct bpf_reg_state *false_reg, u64 val,
3758 			    u8 opcode)
3759 {
3760 	/* If the dst_reg is a pointer, we can't learn anything about its
3761 	 * variable offset from the compare (unless src_reg were a pointer into
3762 	 * the same object, but we don't bother with that.
3763 	 * Since false_reg and true_reg have the same type by construction, we
3764 	 * only need to check one of them for pointerness.
3765 	 */
3766 	if (__is_pointer_value(false, false_reg))
3767 		return;
3768 
3769 	switch (opcode) {
3770 	case BPF_JEQ:
3771 		/* If this is false then we know nothing Jon Snow, but if it is
3772 		 * true then we know for sure.
3773 		 */
3774 		__mark_reg_known(true_reg, val);
3775 		break;
3776 	case BPF_JNE:
3777 		/* If this is true we know nothing Jon Snow, but if it is false
3778 		 * we know the value for sure;
3779 		 */
3780 		__mark_reg_known(false_reg, val);
3781 		break;
3782 	case BPF_JGT:
3783 		false_reg->umax_value = min(false_reg->umax_value, val);
3784 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3785 		break;
3786 	case BPF_JSGT:
3787 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3788 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3789 		break;
3790 	case BPF_JLT:
3791 		false_reg->umin_value = max(false_reg->umin_value, val);
3792 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3793 		break;
3794 	case BPF_JSLT:
3795 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3796 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3797 		break;
3798 	case BPF_JGE:
3799 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3800 		true_reg->umin_value = max(true_reg->umin_value, val);
3801 		break;
3802 	case BPF_JSGE:
3803 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3804 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3805 		break;
3806 	case BPF_JLE:
3807 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3808 		true_reg->umax_value = min(true_reg->umax_value, val);
3809 		break;
3810 	case BPF_JSLE:
3811 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3812 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3813 		break;
3814 	default:
3815 		break;
3816 	}
3817 
3818 	__reg_deduce_bounds(false_reg);
3819 	__reg_deduce_bounds(true_reg);
3820 	/* We might have learned some bits from the bounds. */
3821 	__reg_bound_offset(false_reg);
3822 	__reg_bound_offset(true_reg);
3823 	/* Intersecting with the old var_off might have improved our bounds
3824 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3825 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3826 	 */
3827 	__update_reg_bounds(false_reg);
3828 	__update_reg_bounds(true_reg);
3829 }
3830 
3831 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3832  * the variable reg.
3833  */
3834 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3835 				struct bpf_reg_state *false_reg, u64 val,
3836 				u8 opcode)
3837 {
3838 	if (__is_pointer_value(false, false_reg))
3839 		return;
3840 
3841 	switch (opcode) {
3842 	case BPF_JEQ:
3843 		/* If this is false then we know nothing Jon Snow, but if it is
3844 		 * true then we know for sure.
3845 		 */
3846 		__mark_reg_known(true_reg, val);
3847 		break;
3848 	case BPF_JNE:
3849 		/* If this is true we know nothing Jon Snow, but if it is false
3850 		 * we know the value for sure;
3851 		 */
3852 		__mark_reg_known(false_reg, val);
3853 		break;
3854 	case BPF_JGT:
3855 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3856 		false_reg->umin_value = max(false_reg->umin_value, val);
3857 		break;
3858 	case BPF_JSGT:
3859 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3860 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3861 		break;
3862 	case BPF_JLT:
3863 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3864 		false_reg->umax_value = min(false_reg->umax_value, val);
3865 		break;
3866 	case BPF_JSLT:
3867 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3868 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3869 		break;
3870 	case BPF_JGE:
3871 		true_reg->umax_value = min(true_reg->umax_value, val);
3872 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3873 		break;
3874 	case BPF_JSGE:
3875 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3876 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3877 		break;
3878 	case BPF_JLE:
3879 		true_reg->umin_value = max(true_reg->umin_value, val);
3880 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3881 		break;
3882 	case BPF_JSLE:
3883 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3884 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3885 		break;
3886 	default:
3887 		break;
3888 	}
3889 
3890 	__reg_deduce_bounds(false_reg);
3891 	__reg_deduce_bounds(true_reg);
3892 	/* We might have learned some bits from the bounds. */
3893 	__reg_bound_offset(false_reg);
3894 	__reg_bound_offset(true_reg);
3895 	/* Intersecting with the old var_off might have improved our bounds
3896 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3897 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3898 	 */
3899 	__update_reg_bounds(false_reg);
3900 	__update_reg_bounds(true_reg);
3901 }
3902 
3903 /* Regs are known to be equal, so intersect their min/max/var_off */
3904 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3905 				  struct bpf_reg_state *dst_reg)
3906 {
3907 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3908 							dst_reg->umin_value);
3909 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3910 							dst_reg->umax_value);
3911 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3912 							dst_reg->smin_value);
3913 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3914 							dst_reg->smax_value);
3915 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3916 							     dst_reg->var_off);
3917 	/* We might have learned new bounds from the var_off. */
3918 	__update_reg_bounds(src_reg);
3919 	__update_reg_bounds(dst_reg);
3920 	/* We might have learned something about the sign bit. */
3921 	__reg_deduce_bounds(src_reg);
3922 	__reg_deduce_bounds(dst_reg);
3923 	/* We might have learned some bits from the bounds. */
3924 	__reg_bound_offset(src_reg);
3925 	__reg_bound_offset(dst_reg);
3926 	/* Intersecting with the old var_off might have improved our bounds
3927 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3928 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3929 	 */
3930 	__update_reg_bounds(src_reg);
3931 	__update_reg_bounds(dst_reg);
3932 }
3933 
3934 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3935 				struct bpf_reg_state *true_dst,
3936 				struct bpf_reg_state *false_src,
3937 				struct bpf_reg_state *false_dst,
3938 				u8 opcode)
3939 {
3940 	switch (opcode) {
3941 	case BPF_JEQ:
3942 		__reg_combine_min_max(true_src, true_dst);
3943 		break;
3944 	case BPF_JNE:
3945 		__reg_combine_min_max(false_src, false_dst);
3946 		break;
3947 	}
3948 }
3949 
3950 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
3951 				 struct bpf_reg_state *reg, u32 id,
3952 				 bool is_null)
3953 {
3954 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
3955 		/* Old offset (both fixed and variable parts) should
3956 		 * have been known-zero, because we don't allow pointer
3957 		 * arithmetic on pointers that might be NULL.
3958 		 */
3959 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3960 				 !tnum_equals_const(reg->var_off, 0) ||
3961 				 reg->off)) {
3962 			__mark_reg_known_zero(reg);
3963 			reg->off = 0;
3964 		}
3965 		if (is_null) {
3966 			reg->type = SCALAR_VALUE;
3967 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3968 			if (reg->map_ptr->inner_map_meta) {
3969 				reg->type = CONST_PTR_TO_MAP;
3970 				reg->map_ptr = reg->map_ptr->inner_map_meta;
3971 			} else {
3972 				reg->type = PTR_TO_MAP_VALUE;
3973 			}
3974 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3975 			reg->type = PTR_TO_SOCKET;
3976 		}
3977 		if (is_null || !reg_is_refcounted(reg)) {
3978 			/* We don't need id from this point onwards anymore,
3979 			 * thus we should better reset it, so that state
3980 			 * pruning has chances to take effect.
3981 			 */
3982 			reg->id = 0;
3983 		}
3984 	}
3985 }
3986 
3987 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3988  * be folded together at some point.
3989  */
3990 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
3991 				  bool is_null)
3992 {
3993 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3994 	struct bpf_reg_state *reg, *regs = state->regs;
3995 	u32 id = regs[regno].id;
3996 	int i, j;
3997 
3998 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
3999 		__release_reference_state(state, id);
4000 
4001 	for (i = 0; i < MAX_BPF_REG; i++)
4002 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4003 
4004 	for (j = 0; j <= vstate->curframe; j++) {
4005 		state = vstate->frame[j];
4006 		bpf_for_each_spilled_reg(i, state, reg) {
4007 			if (!reg)
4008 				continue;
4009 			mark_ptr_or_null_reg(state, reg, id, is_null);
4010 		}
4011 	}
4012 }
4013 
4014 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4015 				   struct bpf_reg_state *dst_reg,
4016 				   struct bpf_reg_state *src_reg,
4017 				   struct bpf_verifier_state *this_branch,
4018 				   struct bpf_verifier_state *other_branch)
4019 {
4020 	if (BPF_SRC(insn->code) != BPF_X)
4021 		return false;
4022 
4023 	switch (BPF_OP(insn->code)) {
4024 	case BPF_JGT:
4025 		if ((dst_reg->type == PTR_TO_PACKET &&
4026 		     src_reg->type == PTR_TO_PACKET_END) ||
4027 		    (dst_reg->type == PTR_TO_PACKET_META &&
4028 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4029 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4030 			find_good_pkt_pointers(this_branch, dst_reg,
4031 					       dst_reg->type, false);
4032 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4033 			    src_reg->type == PTR_TO_PACKET) ||
4034 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4035 			    src_reg->type == PTR_TO_PACKET_META)) {
4036 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4037 			find_good_pkt_pointers(other_branch, src_reg,
4038 					       src_reg->type, true);
4039 		} else {
4040 			return false;
4041 		}
4042 		break;
4043 	case BPF_JLT:
4044 		if ((dst_reg->type == PTR_TO_PACKET &&
4045 		     src_reg->type == PTR_TO_PACKET_END) ||
4046 		    (dst_reg->type == PTR_TO_PACKET_META &&
4047 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4048 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4049 			find_good_pkt_pointers(other_branch, dst_reg,
4050 					       dst_reg->type, true);
4051 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4052 			    src_reg->type == PTR_TO_PACKET) ||
4053 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4054 			    src_reg->type == PTR_TO_PACKET_META)) {
4055 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4056 			find_good_pkt_pointers(this_branch, src_reg,
4057 					       src_reg->type, false);
4058 		} else {
4059 			return false;
4060 		}
4061 		break;
4062 	case BPF_JGE:
4063 		if ((dst_reg->type == PTR_TO_PACKET &&
4064 		     src_reg->type == PTR_TO_PACKET_END) ||
4065 		    (dst_reg->type == PTR_TO_PACKET_META &&
4066 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4067 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4068 			find_good_pkt_pointers(this_branch, dst_reg,
4069 					       dst_reg->type, true);
4070 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4071 			    src_reg->type == PTR_TO_PACKET) ||
4072 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4073 			    src_reg->type == PTR_TO_PACKET_META)) {
4074 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4075 			find_good_pkt_pointers(other_branch, src_reg,
4076 					       src_reg->type, false);
4077 		} else {
4078 			return false;
4079 		}
4080 		break;
4081 	case BPF_JLE:
4082 		if ((dst_reg->type == PTR_TO_PACKET &&
4083 		     src_reg->type == PTR_TO_PACKET_END) ||
4084 		    (dst_reg->type == PTR_TO_PACKET_META &&
4085 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4086 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4087 			find_good_pkt_pointers(other_branch, dst_reg,
4088 					       dst_reg->type, false);
4089 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4090 			    src_reg->type == PTR_TO_PACKET) ||
4091 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4092 			    src_reg->type == PTR_TO_PACKET_META)) {
4093 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4094 			find_good_pkt_pointers(this_branch, src_reg,
4095 					       src_reg->type, true);
4096 		} else {
4097 			return false;
4098 		}
4099 		break;
4100 	default:
4101 		return false;
4102 	}
4103 
4104 	return true;
4105 }
4106 
4107 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4108 			     struct bpf_insn *insn, int *insn_idx)
4109 {
4110 	struct bpf_verifier_state *this_branch = env->cur_state;
4111 	struct bpf_verifier_state *other_branch;
4112 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4113 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4114 	u8 opcode = BPF_OP(insn->code);
4115 	int err;
4116 
4117 	if (opcode > BPF_JSLE) {
4118 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4119 		return -EINVAL;
4120 	}
4121 
4122 	if (BPF_SRC(insn->code) == BPF_X) {
4123 		if (insn->imm != 0) {
4124 			verbose(env, "BPF_JMP uses reserved fields\n");
4125 			return -EINVAL;
4126 		}
4127 
4128 		/* check src1 operand */
4129 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4130 		if (err)
4131 			return err;
4132 
4133 		if (is_pointer_value(env, insn->src_reg)) {
4134 			verbose(env, "R%d pointer comparison prohibited\n",
4135 				insn->src_reg);
4136 			return -EACCES;
4137 		}
4138 	} else {
4139 		if (insn->src_reg != BPF_REG_0) {
4140 			verbose(env, "BPF_JMP uses reserved fields\n");
4141 			return -EINVAL;
4142 		}
4143 	}
4144 
4145 	/* check src2 operand */
4146 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4147 	if (err)
4148 		return err;
4149 
4150 	dst_reg = &regs[insn->dst_reg];
4151 
4152 	/* detect if R == 0 where R was initialized to zero earlier */
4153 	if (BPF_SRC(insn->code) == BPF_K &&
4154 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4155 	    dst_reg->type == SCALAR_VALUE &&
4156 	    tnum_is_const(dst_reg->var_off)) {
4157 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
4158 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
4159 			/* if (imm == imm) goto pc+off;
4160 			 * only follow the goto, ignore fall-through
4161 			 */
4162 			*insn_idx += insn->off;
4163 			return 0;
4164 		} else {
4165 			/* if (imm != imm) goto pc+off;
4166 			 * only follow fall-through branch, since
4167 			 * that's where the program will go
4168 			 */
4169 			return 0;
4170 		}
4171 	}
4172 
4173 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4174 	if (!other_branch)
4175 		return -EFAULT;
4176 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4177 
4178 	/* detect if we are comparing against a constant value so we can adjust
4179 	 * our min/max values for our dst register.
4180 	 * this is only legit if both are scalars (or pointers to the same
4181 	 * object, I suppose, but we don't support that right now), because
4182 	 * otherwise the different base pointers mean the offsets aren't
4183 	 * comparable.
4184 	 */
4185 	if (BPF_SRC(insn->code) == BPF_X) {
4186 		if (dst_reg->type == SCALAR_VALUE &&
4187 		    regs[insn->src_reg].type == SCALAR_VALUE) {
4188 			if (tnum_is_const(regs[insn->src_reg].var_off))
4189 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4190 						dst_reg, regs[insn->src_reg].var_off.value,
4191 						opcode);
4192 			else if (tnum_is_const(dst_reg->var_off))
4193 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4194 						    &regs[insn->src_reg],
4195 						    dst_reg->var_off.value, opcode);
4196 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4197 				/* Comparing for equality, we can combine knowledge */
4198 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4199 						    &other_branch_regs[insn->dst_reg],
4200 						    &regs[insn->src_reg],
4201 						    &regs[insn->dst_reg], opcode);
4202 		}
4203 	} else if (dst_reg->type == SCALAR_VALUE) {
4204 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4205 					dst_reg, insn->imm, opcode);
4206 	}
4207 
4208 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4209 	if (BPF_SRC(insn->code) == BPF_K &&
4210 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4211 	    reg_type_may_be_null(dst_reg->type)) {
4212 		/* Mark all identical registers in each branch as either
4213 		 * safe or unknown depending R == 0 or R != 0 conditional.
4214 		 */
4215 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4216 				      opcode == BPF_JNE);
4217 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4218 				      opcode == BPF_JEQ);
4219 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4220 					   this_branch, other_branch) &&
4221 		   is_pointer_value(env, insn->dst_reg)) {
4222 		verbose(env, "R%d pointer comparison prohibited\n",
4223 			insn->dst_reg);
4224 		return -EACCES;
4225 	}
4226 	if (env->log.level)
4227 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4228 	return 0;
4229 }
4230 
4231 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4232 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4233 {
4234 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4235 
4236 	return (struct bpf_map *) (unsigned long) imm64;
4237 }
4238 
4239 /* verify BPF_LD_IMM64 instruction */
4240 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4241 {
4242 	struct bpf_reg_state *regs = cur_regs(env);
4243 	int err;
4244 
4245 	if (BPF_SIZE(insn->code) != BPF_DW) {
4246 		verbose(env, "invalid BPF_LD_IMM insn\n");
4247 		return -EINVAL;
4248 	}
4249 	if (insn->off != 0) {
4250 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4251 		return -EINVAL;
4252 	}
4253 
4254 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4255 	if (err)
4256 		return err;
4257 
4258 	if (insn->src_reg == 0) {
4259 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4260 
4261 		regs[insn->dst_reg].type = SCALAR_VALUE;
4262 		__mark_reg_known(&regs[insn->dst_reg], imm);
4263 		return 0;
4264 	}
4265 
4266 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4267 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4268 
4269 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4270 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4271 	return 0;
4272 }
4273 
4274 static bool may_access_skb(enum bpf_prog_type type)
4275 {
4276 	switch (type) {
4277 	case BPF_PROG_TYPE_SOCKET_FILTER:
4278 	case BPF_PROG_TYPE_SCHED_CLS:
4279 	case BPF_PROG_TYPE_SCHED_ACT:
4280 		return true;
4281 	default:
4282 		return false;
4283 	}
4284 }
4285 
4286 /* verify safety of LD_ABS|LD_IND instructions:
4287  * - they can only appear in the programs where ctx == skb
4288  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4289  *   preserve R6-R9, and store return value into R0
4290  *
4291  * Implicit input:
4292  *   ctx == skb == R6 == CTX
4293  *
4294  * Explicit input:
4295  *   SRC == any register
4296  *   IMM == 32-bit immediate
4297  *
4298  * Output:
4299  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4300  */
4301 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4302 {
4303 	struct bpf_reg_state *regs = cur_regs(env);
4304 	u8 mode = BPF_MODE(insn->code);
4305 	int i, err;
4306 
4307 	if (!may_access_skb(env->prog->type)) {
4308 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4309 		return -EINVAL;
4310 	}
4311 
4312 	if (!env->ops->gen_ld_abs) {
4313 		verbose(env, "bpf verifier is misconfigured\n");
4314 		return -EINVAL;
4315 	}
4316 
4317 	if (env->subprog_cnt > 1) {
4318 		/* when program has LD_ABS insn JITs and interpreter assume
4319 		 * that r1 == ctx == skb which is not the case for callees
4320 		 * that can have arbitrary arguments. It's problematic
4321 		 * for main prog as well since JITs would need to analyze
4322 		 * all functions in order to make proper register save/restore
4323 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4324 		 */
4325 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4326 		return -EINVAL;
4327 	}
4328 
4329 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4330 	    BPF_SIZE(insn->code) == BPF_DW ||
4331 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4332 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4333 		return -EINVAL;
4334 	}
4335 
4336 	/* check whether implicit source operand (register R6) is readable */
4337 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4338 	if (err)
4339 		return err;
4340 
4341 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4342 	 * gen_ld_abs() may terminate the program at runtime, leading to
4343 	 * reference leak.
4344 	 */
4345 	err = check_reference_leak(env);
4346 	if (err) {
4347 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4348 		return err;
4349 	}
4350 
4351 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4352 		verbose(env,
4353 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4354 		return -EINVAL;
4355 	}
4356 
4357 	if (mode == BPF_IND) {
4358 		/* check explicit source operand */
4359 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4360 		if (err)
4361 			return err;
4362 	}
4363 
4364 	/* reset caller saved regs to unreadable */
4365 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4366 		mark_reg_not_init(env, regs, caller_saved[i]);
4367 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4368 	}
4369 
4370 	/* mark destination R0 register as readable, since it contains
4371 	 * the value fetched from the packet.
4372 	 * Already marked as written above.
4373 	 */
4374 	mark_reg_unknown(env, regs, BPF_REG_0);
4375 	return 0;
4376 }
4377 
4378 static int check_return_code(struct bpf_verifier_env *env)
4379 {
4380 	struct bpf_reg_state *reg;
4381 	struct tnum range = tnum_range(0, 1);
4382 
4383 	switch (env->prog->type) {
4384 	case BPF_PROG_TYPE_CGROUP_SKB:
4385 	case BPF_PROG_TYPE_CGROUP_SOCK:
4386 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4387 	case BPF_PROG_TYPE_SOCK_OPS:
4388 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4389 		break;
4390 	default:
4391 		return 0;
4392 	}
4393 
4394 	reg = cur_regs(env) + BPF_REG_0;
4395 	if (reg->type != SCALAR_VALUE) {
4396 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4397 			reg_type_str[reg->type]);
4398 		return -EINVAL;
4399 	}
4400 
4401 	if (!tnum_in(range, reg->var_off)) {
4402 		verbose(env, "At program exit the register R0 ");
4403 		if (!tnum_is_unknown(reg->var_off)) {
4404 			char tn_buf[48];
4405 
4406 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4407 			verbose(env, "has value %s", tn_buf);
4408 		} else {
4409 			verbose(env, "has unknown scalar value");
4410 		}
4411 		verbose(env, " should have been 0 or 1\n");
4412 		return -EINVAL;
4413 	}
4414 	return 0;
4415 }
4416 
4417 /* non-recursive DFS pseudo code
4418  * 1  procedure DFS-iterative(G,v):
4419  * 2      label v as discovered
4420  * 3      let S be a stack
4421  * 4      S.push(v)
4422  * 5      while S is not empty
4423  * 6            t <- S.pop()
4424  * 7            if t is what we're looking for:
4425  * 8                return t
4426  * 9            for all edges e in G.adjacentEdges(t) do
4427  * 10               if edge e is already labelled
4428  * 11                   continue with the next edge
4429  * 12               w <- G.adjacentVertex(t,e)
4430  * 13               if vertex w is not discovered and not explored
4431  * 14                   label e as tree-edge
4432  * 15                   label w as discovered
4433  * 16                   S.push(w)
4434  * 17                   continue at 5
4435  * 18               else if vertex w is discovered
4436  * 19                   label e as back-edge
4437  * 20               else
4438  * 21                   // vertex w is explored
4439  * 22                   label e as forward- or cross-edge
4440  * 23           label t as explored
4441  * 24           S.pop()
4442  *
4443  * convention:
4444  * 0x10 - discovered
4445  * 0x11 - discovered and fall-through edge labelled
4446  * 0x12 - discovered and fall-through and branch edges labelled
4447  * 0x20 - explored
4448  */
4449 
4450 enum {
4451 	DISCOVERED = 0x10,
4452 	EXPLORED = 0x20,
4453 	FALLTHROUGH = 1,
4454 	BRANCH = 2,
4455 };
4456 
4457 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4458 
4459 static int *insn_stack;	/* stack of insns to process */
4460 static int cur_stack;	/* current stack index */
4461 static int *insn_state;
4462 
4463 /* t, w, e - match pseudo-code above:
4464  * t - index of current instruction
4465  * w - next instruction
4466  * e - edge
4467  */
4468 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4469 {
4470 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4471 		return 0;
4472 
4473 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4474 		return 0;
4475 
4476 	if (w < 0 || w >= env->prog->len) {
4477 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4478 		return -EINVAL;
4479 	}
4480 
4481 	if (e == BRANCH)
4482 		/* mark branch target for state pruning */
4483 		env->explored_states[w] = STATE_LIST_MARK;
4484 
4485 	if (insn_state[w] == 0) {
4486 		/* tree-edge */
4487 		insn_state[t] = DISCOVERED | e;
4488 		insn_state[w] = DISCOVERED;
4489 		if (cur_stack >= env->prog->len)
4490 			return -E2BIG;
4491 		insn_stack[cur_stack++] = w;
4492 		return 1;
4493 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4494 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4495 		return -EINVAL;
4496 	} else if (insn_state[w] == EXPLORED) {
4497 		/* forward- or cross-edge */
4498 		insn_state[t] = DISCOVERED | e;
4499 	} else {
4500 		verbose(env, "insn state internal bug\n");
4501 		return -EFAULT;
4502 	}
4503 	return 0;
4504 }
4505 
4506 /* non-recursive depth-first-search to detect loops in BPF program
4507  * loop == back-edge in directed graph
4508  */
4509 static int check_cfg(struct bpf_verifier_env *env)
4510 {
4511 	struct bpf_insn *insns = env->prog->insnsi;
4512 	int insn_cnt = env->prog->len;
4513 	int ret = 0;
4514 	int i, t;
4515 
4516 	ret = check_subprogs(env);
4517 	if (ret < 0)
4518 		return ret;
4519 
4520 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4521 	if (!insn_state)
4522 		return -ENOMEM;
4523 
4524 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4525 	if (!insn_stack) {
4526 		kfree(insn_state);
4527 		return -ENOMEM;
4528 	}
4529 
4530 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4531 	insn_stack[0] = 0; /* 0 is the first instruction */
4532 	cur_stack = 1;
4533 
4534 peek_stack:
4535 	if (cur_stack == 0)
4536 		goto check_state;
4537 	t = insn_stack[cur_stack - 1];
4538 
4539 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4540 		u8 opcode = BPF_OP(insns[t].code);
4541 
4542 		if (opcode == BPF_EXIT) {
4543 			goto mark_explored;
4544 		} else if (opcode == BPF_CALL) {
4545 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4546 			if (ret == 1)
4547 				goto peek_stack;
4548 			else if (ret < 0)
4549 				goto err_free;
4550 			if (t + 1 < insn_cnt)
4551 				env->explored_states[t + 1] = STATE_LIST_MARK;
4552 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4553 				env->explored_states[t] = STATE_LIST_MARK;
4554 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4555 				if (ret == 1)
4556 					goto peek_stack;
4557 				else if (ret < 0)
4558 					goto err_free;
4559 			}
4560 		} else if (opcode == BPF_JA) {
4561 			if (BPF_SRC(insns[t].code) != BPF_K) {
4562 				ret = -EINVAL;
4563 				goto err_free;
4564 			}
4565 			/* unconditional jump with single edge */
4566 			ret = push_insn(t, t + insns[t].off + 1,
4567 					FALLTHROUGH, env);
4568 			if (ret == 1)
4569 				goto peek_stack;
4570 			else if (ret < 0)
4571 				goto err_free;
4572 			/* tell verifier to check for equivalent states
4573 			 * after every call and jump
4574 			 */
4575 			if (t + 1 < insn_cnt)
4576 				env->explored_states[t + 1] = STATE_LIST_MARK;
4577 		} else {
4578 			/* conditional jump with two edges */
4579 			env->explored_states[t] = STATE_LIST_MARK;
4580 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4581 			if (ret == 1)
4582 				goto peek_stack;
4583 			else if (ret < 0)
4584 				goto err_free;
4585 
4586 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4587 			if (ret == 1)
4588 				goto peek_stack;
4589 			else if (ret < 0)
4590 				goto err_free;
4591 		}
4592 	} else {
4593 		/* all other non-branch instructions with single
4594 		 * fall-through edge
4595 		 */
4596 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4597 		if (ret == 1)
4598 			goto peek_stack;
4599 		else if (ret < 0)
4600 			goto err_free;
4601 	}
4602 
4603 mark_explored:
4604 	insn_state[t] = EXPLORED;
4605 	if (cur_stack-- <= 0) {
4606 		verbose(env, "pop stack internal bug\n");
4607 		ret = -EFAULT;
4608 		goto err_free;
4609 	}
4610 	goto peek_stack;
4611 
4612 check_state:
4613 	for (i = 0; i < insn_cnt; i++) {
4614 		if (insn_state[i] != EXPLORED) {
4615 			verbose(env, "unreachable insn %d\n", i);
4616 			ret = -EINVAL;
4617 			goto err_free;
4618 		}
4619 	}
4620 	ret = 0; /* cfg looks good */
4621 
4622 err_free:
4623 	kfree(insn_state);
4624 	kfree(insn_stack);
4625 	return ret;
4626 }
4627 
4628 /* check %cur's range satisfies %old's */
4629 static bool range_within(struct bpf_reg_state *old,
4630 			 struct bpf_reg_state *cur)
4631 {
4632 	return old->umin_value <= cur->umin_value &&
4633 	       old->umax_value >= cur->umax_value &&
4634 	       old->smin_value <= cur->smin_value &&
4635 	       old->smax_value >= cur->smax_value;
4636 }
4637 
4638 /* Maximum number of register states that can exist at once */
4639 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4640 struct idpair {
4641 	u32 old;
4642 	u32 cur;
4643 };
4644 
4645 /* If in the old state two registers had the same id, then they need to have
4646  * the same id in the new state as well.  But that id could be different from
4647  * the old state, so we need to track the mapping from old to new ids.
4648  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4649  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4650  * regs with a different old id could still have new id 9, we don't care about
4651  * that.
4652  * So we look through our idmap to see if this old id has been seen before.  If
4653  * so, we require the new id to match; otherwise, we add the id pair to the map.
4654  */
4655 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4656 {
4657 	unsigned int i;
4658 
4659 	for (i = 0; i < ID_MAP_SIZE; i++) {
4660 		if (!idmap[i].old) {
4661 			/* Reached an empty slot; haven't seen this id before */
4662 			idmap[i].old = old_id;
4663 			idmap[i].cur = cur_id;
4664 			return true;
4665 		}
4666 		if (idmap[i].old == old_id)
4667 			return idmap[i].cur == cur_id;
4668 	}
4669 	/* We ran out of idmap slots, which should be impossible */
4670 	WARN_ON_ONCE(1);
4671 	return false;
4672 }
4673 
4674 /* Returns true if (rold safe implies rcur safe) */
4675 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4676 		    struct idpair *idmap)
4677 {
4678 	bool equal;
4679 
4680 	if (!(rold->live & REG_LIVE_READ))
4681 		/* explored state didn't use this */
4682 		return true;
4683 
4684 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4685 
4686 	if (rold->type == PTR_TO_STACK)
4687 		/* two stack pointers are equal only if they're pointing to
4688 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4689 		 */
4690 		return equal && rold->frameno == rcur->frameno;
4691 
4692 	if (equal)
4693 		return true;
4694 
4695 	if (rold->type == NOT_INIT)
4696 		/* explored state can't have used this */
4697 		return true;
4698 	if (rcur->type == NOT_INIT)
4699 		return false;
4700 	switch (rold->type) {
4701 	case SCALAR_VALUE:
4702 		if (rcur->type == SCALAR_VALUE) {
4703 			/* new val must satisfy old val knowledge */
4704 			return range_within(rold, rcur) &&
4705 			       tnum_in(rold->var_off, rcur->var_off);
4706 		} else {
4707 			/* We're trying to use a pointer in place of a scalar.
4708 			 * Even if the scalar was unbounded, this could lead to
4709 			 * pointer leaks because scalars are allowed to leak
4710 			 * while pointers are not. We could make this safe in
4711 			 * special cases if root is calling us, but it's
4712 			 * probably not worth the hassle.
4713 			 */
4714 			return false;
4715 		}
4716 	case PTR_TO_MAP_VALUE:
4717 		/* If the new min/max/var_off satisfy the old ones and
4718 		 * everything else matches, we are OK.
4719 		 * We don't care about the 'id' value, because nothing
4720 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4721 		 */
4722 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4723 		       range_within(rold, rcur) &&
4724 		       tnum_in(rold->var_off, rcur->var_off);
4725 	case PTR_TO_MAP_VALUE_OR_NULL:
4726 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4727 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4728 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4729 		 * checked, doing so could have affected others with the same
4730 		 * id, and we can't check for that because we lost the id when
4731 		 * we converted to a PTR_TO_MAP_VALUE.
4732 		 */
4733 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4734 			return false;
4735 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4736 			return false;
4737 		/* Check our ids match any regs they're supposed to */
4738 		return check_ids(rold->id, rcur->id, idmap);
4739 	case PTR_TO_PACKET_META:
4740 	case PTR_TO_PACKET:
4741 		if (rcur->type != rold->type)
4742 			return false;
4743 		/* We must have at least as much range as the old ptr
4744 		 * did, so that any accesses which were safe before are
4745 		 * still safe.  This is true even if old range < old off,
4746 		 * since someone could have accessed through (ptr - k), or
4747 		 * even done ptr -= k in a register, to get a safe access.
4748 		 */
4749 		if (rold->range > rcur->range)
4750 			return false;
4751 		/* If the offsets don't match, we can't trust our alignment;
4752 		 * nor can we be sure that we won't fall out of range.
4753 		 */
4754 		if (rold->off != rcur->off)
4755 			return false;
4756 		/* id relations must be preserved */
4757 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4758 			return false;
4759 		/* new val must satisfy old val knowledge */
4760 		return range_within(rold, rcur) &&
4761 		       tnum_in(rold->var_off, rcur->var_off);
4762 	case PTR_TO_CTX:
4763 	case CONST_PTR_TO_MAP:
4764 	case PTR_TO_PACKET_END:
4765 	case PTR_TO_FLOW_KEYS:
4766 	case PTR_TO_SOCKET:
4767 	case PTR_TO_SOCKET_OR_NULL:
4768 		/* Only valid matches are exact, which memcmp() above
4769 		 * would have accepted
4770 		 */
4771 	default:
4772 		/* Don't know what's going on, just say it's not safe */
4773 		return false;
4774 	}
4775 
4776 	/* Shouldn't get here; if we do, say it's not safe */
4777 	WARN_ON_ONCE(1);
4778 	return false;
4779 }
4780 
4781 static bool stacksafe(struct bpf_func_state *old,
4782 		      struct bpf_func_state *cur,
4783 		      struct idpair *idmap)
4784 {
4785 	int i, spi;
4786 
4787 	/* if explored stack has more populated slots than current stack
4788 	 * such stacks are not equivalent
4789 	 */
4790 	if (old->allocated_stack > cur->allocated_stack)
4791 		return false;
4792 
4793 	/* walk slots of the explored stack and ignore any additional
4794 	 * slots in the current stack, since explored(safe) state
4795 	 * didn't use them
4796 	 */
4797 	for (i = 0; i < old->allocated_stack; i++) {
4798 		spi = i / BPF_REG_SIZE;
4799 
4800 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4801 			/* explored state didn't use this */
4802 			continue;
4803 
4804 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4805 			continue;
4806 		/* if old state was safe with misc data in the stack
4807 		 * it will be safe with zero-initialized stack.
4808 		 * The opposite is not true
4809 		 */
4810 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4811 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4812 			continue;
4813 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4814 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4815 			/* Ex: old explored (safe) state has STACK_SPILL in
4816 			 * this stack slot, but current has has STACK_MISC ->
4817 			 * this verifier states are not equivalent,
4818 			 * return false to continue verification of this path
4819 			 */
4820 			return false;
4821 		if (i % BPF_REG_SIZE)
4822 			continue;
4823 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4824 			continue;
4825 		if (!regsafe(&old->stack[spi].spilled_ptr,
4826 			     &cur->stack[spi].spilled_ptr,
4827 			     idmap))
4828 			/* when explored and current stack slot are both storing
4829 			 * spilled registers, check that stored pointers types
4830 			 * are the same as well.
4831 			 * Ex: explored safe path could have stored
4832 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4833 			 * but current path has stored:
4834 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4835 			 * such verifier states are not equivalent.
4836 			 * return false to continue verification of this path
4837 			 */
4838 			return false;
4839 	}
4840 	return true;
4841 }
4842 
4843 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4844 {
4845 	if (old->acquired_refs != cur->acquired_refs)
4846 		return false;
4847 	return !memcmp(old->refs, cur->refs,
4848 		       sizeof(*old->refs) * old->acquired_refs);
4849 }
4850 
4851 /* compare two verifier states
4852  *
4853  * all states stored in state_list are known to be valid, since
4854  * verifier reached 'bpf_exit' instruction through them
4855  *
4856  * this function is called when verifier exploring different branches of
4857  * execution popped from the state stack. If it sees an old state that has
4858  * more strict register state and more strict stack state then this execution
4859  * branch doesn't need to be explored further, since verifier already
4860  * concluded that more strict state leads to valid finish.
4861  *
4862  * Therefore two states are equivalent if register state is more conservative
4863  * and explored stack state is more conservative than the current one.
4864  * Example:
4865  *       explored                   current
4866  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4867  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4868  *
4869  * In other words if current stack state (one being explored) has more
4870  * valid slots than old one that already passed validation, it means
4871  * the verifier can stop exploring and conclude that current state is valid too
4872  *
4873  * Similarly with registers. If explored state has register type as invalid
4874  * whereas register type in current state is meaningful, it means that
4875  * the current state will reach 'bpf_exit' instruction safely
4876  */
4877 static bool func_states_equal(struct bpf_func_state *old,
4878 			      struct bpf_func_state *cur)
4879 {
4880 	struct idpair *idmap;
4881 	bool ret = false;
4882 	int i;
4883 
4884 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4885 	/* If we failed to allocate the idmap, just say it's not safe */
4886 	if (!idmap)
4887 		return false;
4888 
4889 	for (i = 0; i < MAX_BPF_REG; i++) {
4890 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4891 			goto out_free;
4892 	}
4893 
4894 	if (!stacksafe(old, cur, idmap))
4895 		goto out_free;
4896 
4897 	if (!refsafe(old, cur))
4898 		goto out_free;
4899 	ret = true;
4900 out_free:
4901 	kfree(idmap);
4902 	return ret;
4903 }
4904 
4905 static bool states_equal(struct bpf_verifier_env *env,
4906 			 struct bpf_verifier_state *old,
4907 			 struct bpf_verifier_state *cur)
4908 {
4909 	int i;
4910 
4911 	if (old->curframe != cur->curframe)
4912 		return false;
4913 
4914 	/* for states to be equal callsites have to be the same
4915 	 * and all frame states need to be equivalent
4916 	 */
4917 	for (i = 0; i <= old->curframe; i++) {
4918 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4919 			return false;
4920 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4921 			return false;
4922 	}
4923 	return true;
4924 }
4925 
4926 /* A write screens off any subsequent reads; but write marks come from the
4927  * straight-line code between a state and its parent.  When we arrive at an
4928  * equivalent state (jump target or such) we didn't arrive by the straight-line
4929  * code, so read marks in the state must propagate to the parent regardless
4930  * of the state's write marks. That's what 'parent == state->parent' comparison
4931  * in mark_reg_read() is for.
4932  */
4933 static int propagate_liveness(struct bpf_verifier_env *env,
4934 			      const struct bpf_verifier_state *vstate,
4935 			      struct bpf_verifier_state *vparent)
4936 {
4937 	int i, frame, err = 0;
4938 	struct bpf_func_state *state, *parent;
4939 
4940 	if (vparent->curframe != vstate->curframe) {
4941 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4942 		     vparent->curframe, vstate->curframe);
4943 		return -EFAULT;
4944 	}
4945 	/* Propagate read liveness of registers... */
4946 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4947 	/* We don't need to worry about FP liveness because it's read-only */
4948 	for (i = 0; i < BPF_REG_FP; i++) {
4949 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4950 			continue;
4951 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4952 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4953 					    &vparent->frame[vstate->curframe]->regs[i]);
4954 			if (err)
4955 				return err;
4956 		}
4957 	}
4958 
4959 	/* ... and stack slots */
4960 	for (frame = 0; frame <= vstate->curframe; frame++) {
4961 		state = vstate->frame[frame];
4962 		parent = vparent->frame[frame];
4963 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4964 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4965 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4966 				continue;
4967 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4968 				mark_reg_read(env, &state->stack[i].spilled_ptr,
4969 					      &parent->stack[i].spilled_ptr);
4970 		}
4971 	}
4972 	return err;
4973 }
4974 
4975 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4976 {
4977 	struct bpf_verifier_state_list *new_sl;
4978 	struct bpf_verifier_state_list *sl;
4979 	struct bpf_verifier_state *cur = env->cur_state, *new;
4980 	int i, j, err;
4981 
4982 	sl = env->explored_states[insn_idx];
4983 	if (!sl)
4984 		/* this 'insn_idx' instruction wasn't marked, so we will not
4985 		 * be doing state search here
4986 		 */
4987 		return 0;
4988 
4989 	while (sl != STATE_LIST_MARK) {
4990 		if (states_equal(env, &sl->state, cur)) {
4991 			/* reached equivalent register/stack state,
4992 			 * prune the search.
4993 			 * Registers read by the continuation are read by us.
4994 			 * If we have any write marks in env->cur_state, they
4995 			 * will prevent corresponding reads in the continuation
4996 			 * from reaching our parent (an explored_state).  Our
4997 			 * own state will get the read marks recorded, but
4998 			 * they'll be immediately forgotten as we're pruning
4999 			 * this state and will pop a new one.
5000 			 */
5001 			err = propagate_liveness(env, &sl->state, cur);
5002 			if (err)
5003 				return err;
5004 			return 1;
5005 		}
5006 		sl = sl->next;
5007 	}
5008 
5009 	/* there were no equivalent states, remember current one.
5010 	 * technically the current state is not proven to be safe yet,
5011 	 * but it will either reach outer most bpf_exit (which means it's safe)
5012 	 * or it will be rejected. Since there are no loops, we won't be
5013 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5014 	 * again on the way to bpf_exit
5015 	 */
5016 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5017 	if (!new_sl)
5018 		return -ENOMEM;
5019 
5020 	/* add new state to the head of linked list */
5021 	new = &new_sl->state;
5022 	err = copy_verifier_state(new, cur);
5023 	if (err) {
5024 		free_verifier_state(new, false);
5025 		kfree(new_sl);
5026 		return err;
5027 	}
5028 	new_sl->next = env->explored_states[insn_idx];
5029 	env->explored_states[insn_idx] = new_sl;
5030 	/* connect new state to parentage chain */
5031 	for (i = 0; i < BPF_REG_FP; i++)
5032 		cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
5033 	/* clear write marks in current state: the writes we did are not writes
5034 	 * our child did, so they don't screen off its reads from us.
5035 	 * (There are no read marks in current state, because reads always mark
5036 	 * their parent and current state never has children yet.  Only
5037 	 * explored_states can get read marks.)
5038 	 */
5039 	for (i = 0; i < BPF_REG_FP; i++)
5040 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5041 
5042 	/* all stack frames are accessible from callee, clear them all */
5043 	for (j = 0; j <= cur->curframe; j++) {
5044 		struct bpf_func_state *frame = cur->frame[j];
5045 		struct bpf_func_state *newframe = new->frame[j];
5046 
5047 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5048 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5049 			frame->stack[i].spilled_ptr.parent =
5050 						&newframe->stack[i].spilled_ptr;
5051 		}
5052 	}
5053 	return 0;
5054 }
5055 
5056 /* Return true if it's OK to have the same insn return a different type. */
5057 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5058 {
5059 	switch (type) {
5060 	case PTR_TO_CTX:
5061 	case PTR_TO_SOCKET:
5062 	case PTR_TO_SOCKET_OR_NULL:
5063 		return false;
5064 	default:
5065 		return true;
5066 	}
5067 }
5068 
5069 /* If an instruction was previously used with particular pointer types, then we
5070  * need to be careful to avoid cases such as the below, where it may be ok
5071  * for one branch accessing the pointer, but not ok for the other branch:
5072  *
5073  * R1 = sock_ptr
5074  * goto X;
5075  * ...
5076  * R1 = some_other_valid_ptr;
5077  * goto X;
5078  * ...
5079  * R2 = *(u32 *)(R1 + 0);
5080  */
5081 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5082 {
5083 	return src != prev && (!reg_type_mismatch_ok(src) ||
5084 			       !reg_type_mismatch_ok(prev));
5085 }
5086 
5087 static int do_check(struct bpf_verifier_env *env)
5088 {
5089 	struct bpf_verifier_state *state;
5090 	struct bpf_insn *insns = env->prog->insnsi;
5091 	struct bpf_reg_state *regs;
5092 	int insn_cnt = env->prog->len, i;
5093 	int insn_idx, prev_insn_idx = 0;
5094 	int insn_processed = 0;
5095 	bool do_print_state = false;
5096 
5097 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5098 	if (!state)
5099 		return -ENOMEM;
5100 	state->curframe = 0;
5101 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5102 	if (!state->frame[0]) {
5103 		kfree(state);
5104 		return -ENOMEM;
5105 	}
5106 	env->cur_state = state;
5107 	init_func_state(env, state->frame[0],
5108 			BPF_MAIN_FUNC /* callsite */,
5109 			0 /* frameno */,
5110 			0 /* subprogno, zero == main subprog */);
5111 	insn_idx = 0;
5112 	for (;;) {
5113 		struct bpf_insn *insn;
5114 		u8 class;
5115 		int err;
5116 
5117 		if (insn_idx >= insn_cnt) {
5118 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5119 				insn_idx, insn_cnt);
5120 			return -EFAULT;
5121 		}
5122 
5123 		insn = &insns[insn_idx];
5124 		class = BPF_CLASS(insn->code);
5125 
5126 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5127 			verbose(env,
5128 				"BPF program is too large. Processed %d insn\n",
5129 				insn_processed);
5130 			return -E2BIG;
5131 		}
5132 
5133 		err = is_state_visited(env, insn_idx);
5134 		if (err < 0)
5135 			return err;
5136 		if (err == 1) {
5137 			/* found equivalent state, can prune the search */
5138 			if (env->log.level) {
5139 				if (do_print_state)
5140 					verbose(env, "\nfrom %d to %d: safe\n",
5141 						prev_insn_idx, insn_idx);
5142 				else
5143 					verbose(env, "%d: safe\n", insn_idx);
5144 			}
5145 			goto process_bpf_exit;
5146 		}
5147 
5148 		if (need_resched())
5149 			cond_resched();
5150 
5151 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5152 			if (env->log.level > 1)
5153 				verbose(env, "%d:", insn_idx);
5154 			else
5155 				verbose(env, "\nfrom %d to %d:",
5156 					prev_insn_idx, insn_idx);
5157 			print_verifier_state(env, state->frame[state->curframe]);
5158 			do_print_state = false;
5159 		}
5160 
5161 		if (env->log.level) {
5162 			const struct bpf_insn_cbs cbs = {
5163 				.cb_print	= verbose,
5164 				.private_data	= env,
5165 			};
5166 
5167 			verbose(env, "%d: ", insn_idx);
5168 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5169 		}
5170 
5171 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5172 			err = bpf_prog_offload_verify_insn(env, insn_idx,
5173 							   prev_insn_idx);
5174 			if (err)
5175 				return err;
5176 		}
5177 
5178 		regs = cur_regs(env);
5179 		env->insn_aux_data[insn_idx].seen = true;
5180 
5181 		if (class == BPF_ALU || class == BPF_ALU64) {
5182 			err = check_alu_op(env, insn);
5183 			if (err)
5184 				return err;
5185 
5186 		} else if (class == BPF_LDX) {
5187 			enum bpf_reg_type *prev_src_type, src_reg_type;
5188 
5189 			/* check for reserved fields is already done */
5190 
5191 			/* check src operand */
5192 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5193 			if (err)
5194 				return err;
5195 
5196 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5197 			if (err)
5198 				return err;
5199 
5200 			src_reg_type = regs[insn->src_reg].type;
5201 
5202 			/* check that memory (src_reg + off) is readable,
5203 			 * the state of dst_reg will be updated by this func
5204 			 */
5205 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5206 					       BPF_SIZE(insn->code), BPF_READ,
5207 					       insn->dst_reg, false);
5208 			if (err)
5209 				return err;
5210 
5211 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5212 
5213 			if (*prev_src_type == NOT_INIT) {
5214 				/* saw a valid insn
5215 				 * dst_reg = *(u32 *)(src_reg + off)
5216 				 * save type to validate intersecting paths
5217 				 */
5218 				*prev_src_type = src_reg_type;
5219 
5220 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5221 				/* ABuser program is trying to use the same insn
5222 				 * dst_reg = *(u32*) (src_reg + off)
5223 				 * with different pointer types:
5224 				 * src_reg == ctx in one branch and
5225 				 * src_reg == stack|map in some other branch.
5226 				 * Reject it.
5227 				 */
5228 				verbose(env, "same insn cannot be used with different pointers\n");
5229 				return -EINVAL;
5230 			}
5231 
5232 		} else if (class == BPF_STX) {
5233 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5234 
5235 			if (BPF_MODE(insn->code) == BPF_XADD) {
5236 				err = check_xadd(env, insn_idx, insn);
5237 				if (err)
5238 					return err;
5239 				insn_idx++;
5240 				continue;
5241 			}
5242 
5243 			/* check src1 operand */
5244 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5245 			if (err)
5246 				return err;
5247 			/* check src2 operand */
5248 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5249 			if (err)
5250 				return err;
5251 
5252 			dst_reg_type = regs[insn->dst_reg].type;
5253 
5254 			/* check that memory (dst_reg + off) is writeable */
5255 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5256 					       BPF_SIZE(insn->code), BPF_WRITE,
5257 					       insn->src_reg, false);
5258 			if (err)
5259 				return err;
5260 
5261 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5262 
5263 			if (*prev_dst_type == NOT_INIT) {
5264 				*prev_dst_type = dst_reg_type;
5265 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5266 				verbose(env, "same insn cannot be used with different pointers\n");
5267 				return -EINVAL;
5268 			}
5269 
5270 		} else if (class == BPF_ST) {
5271 			if (BPF_MODE(insn->code) != BPF_MEM ||
5272 			    insn->src_reg != BPF_REG_0) {
5273 				verbose(env, "BPF_ST uses reserved fields\n");
5274 				return -EINVAL;
5275 			}
5276 			/* check src operand */
5277 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5278 			if (err)
5279 				return err;
5280 
5281 			if (is_ctx_reg(env, insn->dst_reg)) {
5282 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5283 					insn->dst_reg,
5284 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
5285 				return -EACCES;
5286 			}
5287 
5288 			/* check that memory (dst_reg + off) is writeable */
5289 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5290 					       BPF_SIZE(insn->code), BPF_WRITE,
5291 					       -1, false);
5292 			if (err)
5293 				return err;
5294 
5295 		} else if (class == BPF_JMP) {
5296 			u8 opcode = BPF_OP(insn->code);
5297 
5298 			if (opcode == BPF_CALL) {
5299 				if (BPF_SRC(insn->code) != BPF_K ||
5300 				    insn->off != 0 ||
5301 				    (insn->src_reg != BPF_REG_0 &&
5302 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5303 				    insn->dst_reg != BPF_REG_0) {
5304 					verbose(env, "BPF_CALL uses reserved fields\n");
5305 					return -EINVAL;
5306 				}
5307 
5308 				if (insn->src_reg == BPF_PSEUDO_CALL)
5309 					err = check_func_call(env, insn, &insn_idx);
5310 				else
5311 					err = check_helper_call(env, insn->imm, insn_idx);
5312 				if (err)
5313 					return err;
5314 
5315 			} else if (opcode == BPF_JA) {
5316 				if (BPF_SRC(insn->code) != BPF_K ||
5317 				    insn->imm != 0 ||
5318 				    insn->src_reg != BPF_REG_0 ||
5319 				    insn->dst_reg != BPF_REG_0) {
5320 					verbose(env, "BPF_JA uses reserved fields\n");
5321 					return -EINVAL;
5322 				}
5323 
5324 				insn_idx += insn->off + 1;
5325 				continue;
5326 
5327 			} else if (opcode == BPF_EXIT) {
5328 				if (BPF_SRC(insn->code) != BPF_K ||
5329 				    insn->imm != 0 ||
5330 				    insn->src_reg != BPF_REG_0 ||
5331 				    insn->dst_reg != BPF_REG_0) {
5332 					verbose(env, "BPF_EXIT uses reserved fields\n");
5333 					return -EINVAL;
5334 				}
5335 
5336 				if (state->curframe) {
5337 					/* exit from nested function */
5338 					prev_insn_idx = insn_idx;
5339 					err = prepare_func_exit(env, &insn_idx);
5340 					if (err)
5341 						return err;
5342 					do_print_state = true;
5343 					continue;
5344 				}
5345 
5346 				err = check_reference_leak(env);
5347 				if (err)
5348 					return err;
5349 
5350 				/* eBPF calling convetion is such that R0 is used
5351 				 * to return the value from eBPF program.
5352 				 * Make sure that it's readable at this time
5353 				 * of bpf_exit, which means that program wrote
5354 				 * something into it earlier
5355 				 */
5356 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5357 				if (err)
5358 					return err;
5359 
5360 				if (is_pointer_value(env, BPF_REG_0)) {
5361 					verbose(env, "R0 leaks addr as return value\n");
5362 					return -EACCES;
5363 				}
5364 
5365 				err = check_return_code(env);
5366 				if (err)
5367 					return err;
5368 process_bpf_exit:
5369 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
5370 				if (err < 0) {
5371 					if (err != -ENOENT)
5372 						return err;
5373 					break;
5374 				} else {
5375 					do_print_state = true;
5376 					continue;
5377 				}
5378 			} else {
5379 				err = check_cond_jmp_op(env, insn, &insn_idx);
5380 				if (err)
5381 					return err;
5382 			}
5383 		} else if (class == BPF_LD) {
5384 			u8 mode = BPF_MODE(insn->code);
5385 
5386 			if (mode == BPF_ABS || mode == BPF_IND) {
5387 				err = check_ld_abs(env, insn);
5388 				if (err)
5389 					return err;
5390 
5391 			} else if (mode == BPF_IMM) {
5392 				err = check_ld_imm(env, insn);
5393 				if (err)
5394 					return err;
5395 
5396 				insn_idx++;
5397 				env->insn_aux_data[insn_idx].seen = true;
5398 			} else {
5399 				verbose(env, "invalid BPF_LD mode\n");
5400 				return -EINVAL;
5401 			}
5402 		} else {
5403 			verbose(env, "unknown insn class %d\n", class);
5404 			return -EINVAL;
5405 		}
5406 
5407 		insn_idx++;
5408 	}
5409 
5410 	verbose(env, "processed %d insns (limit %d), stack depth ",
5411 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5412 	for (i = 0; i < env->subprog_cnt; i++) {
5413 		u32 depth = env->subprog_info[i].stack_depth;
5414 
5415 		verbose(env, "%d", depth);
5416 		if (i + 1 < env->subprog_cnt)
5417 			verbose(env, "+");
5418 	}
5419 	verbose(env, "\n");
5420 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5421 	return 0;
5422 }
5423 
5424 static int check_map_prealloc(struct bpf_map *map)
5425 {
5426 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5427 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5428 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5429 		!(map->map_flags & BPF_F_NO_PREALLOC);
5430 }
5431 
5432 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5433 					struct bpf_map *map,
5434 					struct bpf_prog *prog)
5435 
5436 {
5437 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5438 	 * preallocated hash maps, since doing memory allocation
5439 	 * in overflow_handler can crash depending on where nmi got
5440 	 * triggered.
5441 	 */
5442 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5443 		if (!check_map_prealloc(map)) {
5444 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5445 			return -EINVAL;
5446 		}
5447 		if (map->inner_map_meta &&
5448 		    !check_map_prealloc(map->inner_map_meta)) {
5449 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5450 			return -EINVAL;
5451 		}
5452 	}
5453 
5454 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5455 	    !bpf_offload_prog_map_match(prog, map)) {
5456 		verbose(env, "offload device mismatch between prog and map\n");
5457 		return -EINVAL;
5458 	}
5459 
5460 	return 0;
5461 }
5462 
5463 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5464 {
5465 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5466 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5467 }
5468 
5469 /* look for pseudo eBPF instructions that access map FDs and
5470  * replace them with actual map pointers
5471  */
5472 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5473 {
5474 	struct bpf_insn *insn = env->prog->insnsi;
5475 	int insn_cnt = env->prog->len;
5476 	int i, j, err;
5477 
5478 	err = bpf_prog_calc_tag(env->prog);
5479 	if (err)
5480 		return err;
5481 
5482 	for (i = 0; i < insn_cnt; i++, insn++) {
5483 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5484 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5485 			verbose(env, "BPF_LDX uses reserved fields\n");
5486 			return -EINVAL;
5487 		}
5488 
5489 		if (BPF_CLASS(insn->code) == BPF_STX &&
5490 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5491 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5492 			verbose(env, "BPF_STX uses reserved fields\n");
5493 			return -EINVAL;
5494 		}
5495 
5496 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5497 			struct bpf_map *map;
5498 			struct fd f;
5499 
5500 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5501 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5502 			    insn[1].off != 0) {
5503 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5504 				return -EINVAL;
5505 			}
5506 
5507 			if (insn->src_reg == 0)
5508 				/* valid generic load 64-bit imm */
5509 				goto next_insn;
5510 
5511 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5512 				verbose(env,
5513 					"unrecognized bpf_ld_imm64 insn\n");
5514 				return -EINVAL;
5515 			}
5516 
5517 			f = fdget(insn->imm);
5518 			map = __bpf_map_get(f);
5519 			if (IS_ERR(map)) {
5520 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5521 					insn->imm);
5522 				return PTR_ERR(map);
5523 			}
5524 
5525 			err = check_map_prog_compatibility(env, map, env->prog);
5526 			if (err) {
5527 				fdput(f);
5528 				return err;
5529 			}
5530 
5531 			/* store map pointer inside BPF_LD_IMM64 instruction */
5532 			insn[0].imm = (u32) (unsigned long) map;
5533 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5534 
5535 			/* check whether we recorded this map already */
5536 			for (j = 0; j < env->used_map_cnt; j++)
5537 				if (env->used_maps[j] == map) {
5538 					fdput(f);
5539 					goto next_insn;
5540 				}
5541 
5542 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5543 				fdput(f);
5544 				return -E2BIG;
5545 			}
5546 
5547 			/* hold the map. If the program is rejected by verifier,
5548 			 * the map will be released by release_maps() or it
5549 			 * will be used by the valid program until it's unloaded
5550 			 * and all maps are released in free_used_maps()
5551 			 */
5552 			map = bpf_map_inc(map, false);
5553 			if (IS_ERR(map)) {
5554 				fdput(f);
5555 				return PTR_ERR(map);
5556 			}
5557 			env->used_maps[env->used_map_cnt++] = map;
5558 
5559 			if (bpf_map_is_cgroup_storage(map) &&
5560 			    bpf_cgroup_storage_assign(env->prog, map)) {
5561 				verbose(env, "only one cgroup storage of each type is allowed\n");
5562 				fdput(f);
5563 				return -EBUSY;
5564 			}
5565 
5566 			fdput(f);
5567 next_insn:
5568 			insn++;
5569 			i++;
5570 			continue;
5571 		}
5572 
5573 		/* Basic sanity check before we invest more work here. */
5574 		if (!bpf_opcode_in_insntable(insn->code)) {
5575 			verbose(env, "unknown opcode %02x\n", insn->code);
5576 			return -EINVAL;
5577 		}
5578 	}
5579 
5580 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5581 	 * 'struct bpf_map *' into a register instead of user map_fd.
5582 	 * These pointers will be used later by verifier to validate map access.
5583 	 */
5584 	return 0;
5585 }
5586 
5587 /* drop refcnt of maps used by the rejected program */
5588 static void release_maps(struct bpf_verifier_env *env)
5589 {
5590 	enum bpf_cgroup_storage_type stype;
5591 	int i;
5592 
5593 	for_each_cgroup_storage_type(stype) {
5594 		if (!env->prog->aux->cgroup_storage[stype])
5595 			continue;
5596 		bpf_cgroup_storage_release(env->prog,
5597 			env->prog->aux->cgroup_storage[stype]);
5598 	}
5599 
5600 	for (i = 0; i < env->used_map_cnt; i++)
5601 		bpf_map_put(env->used_maps[i]);
5602 }
5603 
5604 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5605 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5606 {
5607 	struct bpf_insn *insn = env->prog->insnsi;
5608 	int insn_cnt = env->prog->len;
5609 	int i;
5610 
5611 	for (i = 0; i < insn_cnt; i++, insn++)
5612 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5613 			insn->src_reg = 0;
5614 }
5615 
5616 /* single env->prog->insni[off] instruction was replaced with the range
5617  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5618  * [0, off) and [off, end) to new locations, so the patched range stays zero
5619  */
5620 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5621 				u32 off, u32 cnt)
5622 {
5623 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5624 	int i;
5625 
5626 	if (cnt == 1)
5627 		return 0;
5628 	new_data = vzalloc(array_size(prog_len,
5629 				      sizeof(struct bpf_insn_aux_data)));
5630 	if (!new_data)
5631 		return -ENOMEM;
5632 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5633 	memcpy(new_data + off + cnt - 1, old_data + off,
5634 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5635 	for (i = off; i < off + cnt - 1; i++)
5636 		new_data[i].seen = true;
5637 	env->insn_aux_data = new_data;
5638 	vfree(old_data);
5639 	return 0;
5640 }
5641 
5642 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5643 {
5644 	int i;
5645 
5646 	if (len == 1)
5647 		return;
5648 	/* NOTE: fake 'exit' subprog should be updated as well. */
5649 	for (i = 0; i <= env->subprog_cnt; i++) {
5650 		if (env->subprog_info[i].start < off)
5651 			continue;
5652 		env->subprog_info[i].start += len - 1;
5653 	}
5654 }
5655 
5656 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5657 					    const struct bpf_insn *patch, u32 len)
5658 {
5659 	struct bpf_prog *new_prog;
5660 
5661 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5662 	if (!new_prog)
5663 		return NULL;
5664 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5665 		return NULL;
5666 	adjust_subprog_starts(env, off, len);
5667 	return new_prog;
5668 }
5669 
5670 /* The verifier does more data flow analysis than llvm and will not
5671  * explore branches that are dead at run time. Malicious programs can
5672  * have dead code too. Therefore replace all dead at-run-time code
5673  * with 'ja -1'.
5674  *
5675  * Just nops are not optimal, e.g. if they would sit at the end of the
5676  * program and through another bug we would manage to jump there, then
5677  * we'd execute beyond program memory otherwise. Returning exception
5678  * code also wouldn't work since we can have subprogs where the dead
5679  * code could be located.
5680  */
5681 static void sanitize_dead_code(struct bpf_verifier_env *env)
5682 {
5683 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5684 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5685 	struct bpf_insn *insn = env->prog->insnsi;
5686 	const int insn_cnt = env->prog->len;
5687 	int i;
5688 
5689 	for (i = 0; i < insn_cnt; i++) {
5690 		if (aux_data[i].seen)
5691 			continue;
5692 		memcpy(insn + i, &trap, sizeof(trap));
5693 	}
5694 }
5695 
5696 /* convert load instructions that access fields of a context type into a
5697  * sequence of instructions that access fields of the underlying structure:
5698  *     struct __sk_buff    -> struct sk_buff
5699  *     struct bpf_sock_ops -> struct sock
5700  */
5701 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5702 {
5703 	const struct bpf_verifier_ops *ops = env->ops;
5704 	int i, cnt, size, ctx_field_size, delta = 0;
5705 	const int insn_cnt = env->prog->len;
5706 	struct bpf_insn insn_buf[16], *insn;
5707 	struct bpf_prog *new_prog;
5708 	enum bpf_access_type type;
5709 	bool is_narrower_load;
5710 	u32 target_size;
5711 
5712 	if (ops->gen_prologue || env->seen_direct_write) {
5713 		if (!ops->gen_prologue) {
5714 			verbose(env, "bpf verifier is misconfigured\n");
5715 			return -EINVAL;
5716 		}
5717 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5718 					env->prog);
5719 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5720 			verbose(env, "bpf verifier is misconfigured\n");
5721 			return -EINVAL;
5722 		} else if (cnt) {
5723 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5724 			if (!new_prog)
5725 				return -ENOMEM;
5726 
5727 			env->prog = new_prog;
5728 			delta += cnt - 1;
5729 		}
5730 	}
5731 
5732 	if (bpf_prog_is_dev_bound(env->prog->aux))
5733 		return 0;
5734 
5735 	insn = env->prog->insnsi + delta;
5736 
5737 	for (i = 0; i < insn_cnt; i++, insn++) {
5738 		bpf_convert_ctx_access_t convert_ctx_access;
5739 
5740 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5741 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5742 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5743 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5744 			type = BPF_READ;
5745 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5746 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5747 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5748 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5749 			type = BPF_WRITE;
5750 		else
5751 			continue;
5752 
5753 		if (type == BPF_WRITE &&
5754 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5755 			struct bpf_insn patch[] = {
5756 				/* Sanitize suspicious stack slot with zero.
5757 				 * There are no memory dependencies for this store,
5758 				 * since it's only using frame pointer and immediate
5759 				 * constant of zero
5760 				 */
5761 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5762 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5763 					   0),
5764 				/* the original STX instruction will immediately
5765 				 * overwrite the same stack slot with appropriate value
5766 				 */
5767 				*insn,
5768 			};
5769 
5770 			cnt = ARRAY_SIZE(patch);
5771 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5772 			if (!new_prog)
5773 				return -ENOMEM;
5774 
5775 			delta    += cnt - 1;
5776 			env->prog = new_prog;
5777 			insn      = new_prog->insnsi + i + delta;
5778 			continue;
5779 		}
5780 
5781 		switch (env->insn_aux_data[i + delta].ptr_type) {
5782 		case PTR_TO_CTX:
5783 			if (!ops->convert_ctx_access)
5784 				continue;
5785 			convert_ctx_access = ops->convert_ctx_access;
5786 			break;
5787 		case PTR_TO_SOCKET:
5788 			convert_ctx_access = bpf_sock_convert_ctx_access;
5789 			break;
5790 		default:
5791 			continue;
5792 		}
5793 
5794 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5795 		size = BPF_LDST_BYTES(insn);
5796 
5797 		/* If the read access is a narrower load of the field,
5798 		 * convert to a 4/8-byte load, to minimum program type specific
5799 		 * convert_ctx_access changes. If conversion is successful,
5800 		 * we will apply proper mask to the result.
5801 		 */
5802 		is_narrower_load = size < ctx_field_size;
5803 		if (is_narrower_load) {
5804 			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5805 			u32 off = insn->off;
5806 			u8 size_code;
5807 
5808 			if (type == BPF_WRITE) {
5809 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5810 				return -EINVAL;
5811 			}
5812 
5813 			size_code = BPF_H;
5814 			if (ctx_field_size == 4)
5815 				size_code = BPF_W;
5816 			else if (ctx_field_size == 8)
5817 				size_code = BPF_DW;
5818 
5819 			insn->off = off & ~(size_default - 1);
5820 			insn->code = BPF_LDX | BPF_MEM | size_code;
5821 		}
5822 
5823 		target_size = 0;
5824 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5825 					 &target_size);
5826 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5827 		    (ctx_field_size && !target_size)) {
5828 			verbose(env, "bpf verifier is misconfigured\n");
5829 			return -EINVAL;
5830 		}
5831 
5832 		if (is_narrower_load && size < target_size) {
5833 			if (ctx_field_size <= 4)
5834 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5835 								(1 << size * 8) - 1);
5836 			else
5837 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5838 								(1 << size * 8) - 1);
5839 		}
5840 
5841 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5842 		if (!new_prog)
5843 			return -ENOMEM;
5844 
5845 		delta += cnt - 1;
5846 
5847 		/* keep walking new program and skip insns we just inserted */
5848 		env->prog = new_prog;
5849 		insn      = new_prog->insnsi + i + delta;
5850 	}
5851 
5852 	return 0;
5853 }
5854 
5855 static int jit_subprogs(struct bpf_verifier_env *env)
5856 {
5857 	struct bpf_prog *prog = env->prog, **func, *tmp;
5858 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5859 	struct bpf_insn *insn;
5860 	void *old_bpf_func;
5861 	int err = -ENOMEM;
5862 
5863 	if (env->subprog_cnt <= 1)
5864 		return 0;
5865 
5866 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5867 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5868 		    insn->src_reg != BPF_PSEUDO_CALL)
5869 			continue;
5870 		/* Upon error here we cannot fall back to interpreter but
5871 		 * need a hard reject of the program. Thus -EFAULT is
5872 		 * propagated in any case.
5873 		 */
5874 		subprog = find_subprog(env, i + insn->imm + 1);
5875 		if (subprog < 0) {
5876 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5877 				  i + insn->imm + 1);
5878 			return -EFAULT;
5879 		}
5880 		/* temporarily remember subprog id inside insn instead of
5881 		 * aux_data, since next loop will split up all insns into funcs
5882 		 */
5883 		insn->off = subprog;
5884 		/* remember original imm in case JIT fails and fallback
5885 		 * to interpreter will be needed
5886 		 */
5887 		env->insn_aux_data[i].call_imm = insn->imm;
5888 		/* point imm to __bpf_call_base+1 from JITs point of view */
5889 		insn->imm = 1;
5890 	}
5891 
5892 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5893 	if (!func)
5894 		goto out_undo_insn;
5895 
5896 	for (i = 0; i < env->subprog_cnt; i++) {
5897 		subprog_start = subprog_end;
5898 		subprog_end = env->subprog_info[i + 1].start;
5899 
5900 		len = subprog_end - subprog_start;
5901 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5902 		if (!func[i])
5903 			goto out_free;
5904 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5905 		       len * sizeof(struct bpf_insn));
5906 		func[i]->type = prog->type;
5907 		func[i]->len = len;
5908 		if (bpf_prog_calc_tag(func[i]))
5909 			goto out_free;
5910 		func[i]->is_func = 1;
5911 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5912 		 * Long term would need debug info to populate names
5913 		 */
5914 		func[i]->aux->name[0] = 'F';
5915 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5916 		func[i]->jit_requested = 1;
5917 		func[i] = bpf_int_jit_compile(func[i]);
5918 		if (!func[i]->jited) {
5919 			err = -ENOTSUPP;
5920 			goto out_free;
5921 		}
5922 		cond_resched();
5923 	}
5924 	/* at this point all bpf functions were successfully JITed
5925 	 * now populate all bpf_calls with correct addresses and
5926 	 * run last pass of JIT
5927 	 */
5928 	for (i = 0; i < env->subprog_cnt; i++) {
5929 		insn = func[i]->insnsi;
5930 		for (j = 0; j < func[i]->len; j++, insn++) {
5931 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5932 			    insn->src_reg != BPF_PSEUDO_CALL)
5933 				continue;
5934 			subprog = insn->off;
5935 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5936 				func[subprog]->bpf_func -
5937 				__bpf_call_base;
5938 		}
5939 
5940 		/* we use the aux data to keep a list of the start addresses
5941 		 * of the JITed images for each function in the program
5942 		 *
5943 		 * for some architectures, such as powerpc64, the imm field
5944 		 * might not be large enough to hold the offset of the start
5945 		 * address of the callee's JITed image from __bpf_call_base
5946 		 *
5947 		 * in such cases, we can lookup the start address of a callee
5948 		 * by using its subprog id, available from the off field of
5949 		 * the call instruction, as an index for this list
5950 		 */
5951 		func[i]->aux->func = func;
5952 		func[i]->aux->func_cnt = env->subprog_cnt;
5953 	}
5954 	for (i = 0; i < env->subprog_cnt; i++) {
5955 		old_bpf_func = func[i]->bpf_func;
5956 		tmp = bpf_int_jit_compile(func[i]);
5957 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5958 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5959 			err = -ENOTSUPP;
5960 			goto out_free;
5961 		}
5962 		cond_resched();
5963 	}
5964 
5965 	/* finally lock prog and jit images for all functions and
5966 	 * populate kallsysm
5967 	 */
5968 	for (i = 0; i < env->subprog_cnt; i++) {
5969 		bpf_prog_lock_ro(func[i]);
5970 		bpf_prog_kallsyms_add(func[i]);
5971 	}
5972 
5973 	/* Last step: make now unused interpreter insns from main
5974 	 * prog consistent for later dump requests, so they can
5975 	 * later look the same as if they were interpreted only.
5976 	 */
5977 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5978 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5979 		    insn->src_reg != BPF_PSEUDO_CALL)
5980 			continue;
5981 		insn->off = env->insn_aux_data[i].call_imm;
5982 		subprog = find_subprog(env, i + insn->off + 1);
5983 		insn->imm = subprog;
5984 	}
5985 
5986 	prog->jited = 1;
5987 	prog->bpf_func = func[0]->bpf_func;
5988 	prog->aux->func = func;
5989 	prog->aux->func_cnt = env->subprog_cnt;
5990 	return 0;
5991 out_free:
5992 	for (i = 0; i < env->subprog_cnt; i++)
5993 		if (func[i])
5994 			bpf_jit_free(func[i]);
5995 	kfree(func);
5996 out_undo_insn:
5997 	/* cleanup main prog to be interpreted */
5998 	prog->jit_requested = 0;
5999 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6000 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6001 		    insn->src_reg != BPF_PSEUDO_CALL)
6002 			continue;
6003 		insn->off = 0;
6004 		insn->imm = env->insn_aux_data[i].call_imm;
6005 	}
6006 	return err;
6007 }
6008 
6009 static int fixup_call_args(struct bpf_verifier_env *env)
6010 {
6011 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6012 	struct bpf_prog *prog = env->prog;
6013 	struct bpf_insn *insn = prog->insnsi;
6014 	int i, depth;
6015 #endif
6016 	int err = 0;
6017 
6018 	if (env->prog->jit_requested &&
6019 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
6020 		err = jit_subprogs(env);
6021 		if (err == 0)
6022 			return 0;
6023 		if (err == -EFAULT)
6024 			return err;
6025 	}
6026 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6027 	for (i = 0; i < prog->len; i++, insn++) {
6028 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6029 		    insn->src_reg != BPF_PSEUDO_CALL)
6030 			continue;
6031 		depth = get_callee_stack_depth(env, insn, i);
6032 		if (depth < 0)
6033 			return depth;
6034 		bpf_patch_call_args(insn, depth);
6035 	}
6036 	err = 0;
6037 #endif
6038 	return err;
6039 }
6040 
6041 /* fixup insn->imm field of bpf_call instructions
6042  * and inline eligible helpers as explicit sequence of BPF instructions
6043  *
6044  * this function is called after eBPF program passed verification
6045  */
6046 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6047 {
6048 	struct bpf_prog *prog = env->prog;
6049 	struct bpf_insn *insn = prog->insnsi;
6050 	const struct bpf_func_proto *fn;
6051 	const int insn_cnt = prog->len;
6052 	const struct bpf_map_ops *ops;
6053 	struct bpf_insn_aux_data *aux;
6054 	struct bpf_insn insn_buf[16];
6055 	struct bpf_prog *new_prog;
6056 	struct bpf_map *map_ptr;
6057 	int i, cnt, delta = 0;
6058 
6059 	for (i = 0; i < insn_cnt; i++, insn++) {
6060 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6061 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6062 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6063 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6064 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6065 			struct bpf_insn mask_and_div[] = {
6066 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6067 				/* Rx div 0 -> 0 */
6068 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6069 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6070 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6071 				*insn,
6072 			};
6073 			struct bpf_insn mask_and_mod[] = {
6074 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6075 				/* Rx mod 0 -> Rx */
6076 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6077 				*insn,
6078 			};
6079 			struct bpf_insn *patchlet;
6080 
6081 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6082 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6083 				patchlet = mask_and_div + (is64 ? 1 : 0);
6084 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6085 			} else {
6086 				patchlet = mask_and_mod + (is64 ? 1 : 0);
6087 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6088 			}
6089 
6090 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6091 			if (!new_prog)
6092 				return -ENOMEM;
6093 
6094 			delta    += cnt - 1;
6095 			env->prog = prog = new_prog;
6096 			insn      = new_prog->insnsi + i + delta;
6097 			continue;
6098 		}
6099 
6100 		if (BPF_CLASS(insn->code) == BPF_LD &&
6101 		    (BPF_MODE(insn->code) == BPF_ABS ||
6102 		     BPF_MODE(insn->code) == BPF_IND)) {
6103 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6104 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6105 				verbose(env, "bpf verifier is misconfigured\n");
6106 				return -EINVAL;
6107 			}
6108 
6109 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6110 			if (!new_prog)
6111 				return -ENOMEM;
6112 
6113 			delta    += cnt - 1;
6114 			env->prog = prog = new_prog;
6115 			insn      = new_prog->insnsi + i + delta;
6116 			continue;
6117 		}
6118 
6119 		if (insn->code != (BPF_JMP | BPF_CALL))
6120 			continue;
6121 		if (insn->src_reg == BPF_PSEUDO_CALL)
6122 			continue;
6123 
6124 		if (insn->imm == BPF_FUNC_get_route_realm)
6125 			prog->dst_needed = 1;
6126 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6127 			bpf_user_rnd_init_once();
6128 		if (insn->imm == BPF_FUNC_override_return)
6129 			prog->kprobe_override = 1;
6130 		if (insn->imm == BPF_FUNC_tail_call) {
6131 			/* If we tail call into other programs, we
6132 			 * cannot make any assumptions since they can
6133 			 * be replaced dynamically during runtime in
6134 			 * the program array.
6135 			 */
6136 			prog->cb_access = 1;
6137 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6138 
6139 			/* mark bpf_tail_call as different opcode to avoid
6140 			 * conditional branch in the interpeter for every normal
6141 			 * call and to prevent accidental JITing by JIT compiler
6142 			 * that doesn't support bpf_tail_call yet
6143 			 */
6144 			insn->imm = 0;
6145 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6146 
6147 			aux = &env->insn_aux_data[i + delta];
6148 			if (!bpf_map_ptr_unpriv(aux))
6149 				continue;
6150 
6151 			/* instead of changing every JIT dealing with tail_call
6152 			 * emit two extra insns:
6153 			 * if (index >= max_entries) goto out;
6154 			 * index &= array->index_mask;
6155 			 * to avoid out-of-bounds cpu speculation
6156 			 */
6157 			if (bpf_map_ptr_poisoned(aux)) {
6158 				verbose(env, "tail_call abusing map_ptr\n");
6159 				return -EINVAL;
6160 			}
6161 
6162 			map_ptr = BPF_MAP_PTR(aux->map_state);
6163 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6164 						  map_ptr->max_entries, 2);
6165 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6166 						    container_of(map_ptr,
6167 								 struct bpf_array,
6168 								 map)->index_mask);
6169 			insn_buf[2] = *insn;
6170 			cnt = 3;
6171 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6172 			if (!new_prog)
6173 				return -ENOMEM;
6174 
6175 			delta    += cnt - 1;
6176 			env->prog = prog = new_prog;
6177 			insn      = new_prog->insnsi + i + delta;
6178 			continue;
6179 		}
6180 
6181 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6182 		 * and other inlining handlers are currently limited to 64 bit
6183 		 * only.
6184 		 */
6185 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6186 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6187 		     insn->imm == BPF_FUNC_map_update_elem ||
6188 		     insn->imm == BPF_FUNC_map_delete_elem ||
6189 		     insn->imm == BPF_FUNC_map_push_elem   ||
6190 		     insn->imm == BPF_FUNC_map_pop_elem    ||
6191 		     insn->imm == BPF_FUNC_map_peek_elem)) {
6192 			aux = &env->insn_aux_data[i + delta];
6193 			if (bpf_map_ptr_poisoned(aux))
6194 				goto patch_call_imm;
6195 
6196 			map_ptr = BPF_MAP_PTR(aux->map_state);
6197 			ops = map_ptr->ops;
6198 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6199 			    ops->map_gen_lookup) {
6200 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6201 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6202 					verbose(env, "bpf verifier is misconfigured\n");
6203 					return -EINVAL;
6204 				}
6205 
6206 				new_prog = bpf_patch_insn_data(env, i + delta,
6207 							       insn_buf, cnt);
6208 				if (!new_prog)
6209 					return -ENOMEM;
6210 
6211 				delta    += cnt - 1;
6212 				env->prog = prog = new_prog;
6213 				insn      = new_prog->insnsi + i + delta;
6214 				continue;
6215 			}
6216 
6217 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6218 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6219 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6220 				     (int (*)(struct bpf_map *map, void *key))NULL));
6221 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6222 				     (int (*)(struct bpf_map *map, void *key, void *value,
6223 					      u64 flags))NULL));
6224 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6225 				     (int (*)(struct bpf_map *map, void *value,
6226 					      u64 flags))NULL));
6227 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6228 				     (int (*)(struct bpf_map *map, void *value))NULL));
6229 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6230 				     (int (*)(struct bpf_map *map, void *value))NULL));
6231 
6232 			switch (insn->imm) {
6233 			case BPF_FUNC_map_lookup_elem:
6234 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6235 					    __bpf_call_base;
6236 				continue;
6237 			case BPF_FUNC_map_update_elem:
6238 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6239 					    __bpf_call_base;
6240 				continue;
6241 			case BPF_FUNC_map_delete_elem:
6242 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6243 					    __bpf_call_base;
6244 				continue;
6245 			case BPF_FUNC_map_push_elem:
6246 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6247 					    __bpf_call_base;
6248 				continue;
6249 			case BPF_FUNC_map_pop_elem:
6250 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6251 					    __bpf_call_base;
6252 				continue;
6253 			case BPF_FUNC_map_peek_elem:
6254 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6255 					    __bpf_call_base;
6256 				continue;
6257 			}
6258 
6259 			goto patch_call_imm;
6260 		}
6261 
6262 patch_call_imm:
6263 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6264 		/* all functions that have prototype and verifier allowed
6265 		 * programs to call them, must be real in-kernel functions
6266 		 */
6267 		if (!fn->func) {
6268 			verbose(env,
6269 				"kernel subsystem misconfigured func %s#%d\n",
6270 				func_id_name(insn->imm), insn->imm);
6271 			return -EFAULT;
6272 		}
6273 		insn->imm = fn->func - __bpf_call_base;
6274 	}
6275 
6276 	return 0;
6277 }
6278 
6279 static void free_states(struct bpf_verifier_env *env)
6280 {
6281 	struct bpf_verifier_state_list *sl, *sln;
6282 	int i;
6283 
6284 	if (!env->explored_states)
6285 		return;
6286 
6287 	for (i = 0; i < env->prog->len; i++) {
6288 		sl = env->explored_states[i];
6289 
6290 		if (sl)
6291 			while (sl != STATE_LIST_MARK) {
6292 				sln = sl->next;
6293 				free_verifier_state(&sl->state, false);
6294 				kfree(sl);
6295 				sl = sln;
6296 			}
6297 	}
6298 
6299 	kfree(env->explored_states);
6300 }
6301 
6302 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6303 {
6304 	struct bpf_verifier_env *env;
6305 	struct bpf_verifier_log *log;
6306 	int ret = -EINVAL;
6307 
6308 	/* no program is valid */
6309 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6310 		return -EINVAL;
6311 
6312 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6313 	 * allocate/free it every time bpf_check() is called
6314 	 */
6315 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6316 	if (!env)
6317 		return -ENOMEM;
6318 	log = &env->log;
6319 
6320 	env->insn_aux_data =
6321 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6322 				   (*prog)->len));
6323 	ret = -ENOMEM;
6324 	if (!env->insn_aux_data)
6325 		goto err_free_env;
6326 	env->prog = *prog;
6327 	env->ops = bpf_verifier_ops[env->prog->type];
6328 
6329 	/* grab the mutex to protect few globals used by verifier */
6330 	mutex_lock(&bpf_verifier_lock);
6331 
6332 	if (attr->log_level || attr->log_buf || attr->log_size) {
6333 		/* user requested verbose verifier output
6334 		 * and supplied buffer to store the verification trace
6335 		 */
6336 		log->level = attr->log_level;
6337 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6338 		log->len_total = attr->log_size;
6339 
6340 		ret = -EINVAL;
6341 		/* log attributes have to be sane */
6342 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6343 		    !log->level || !log->ubuf)
6344 			goto err_unlock;
6345 	}
6346 
6347 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6348 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6349 		env->strict_alignment = true;
6350 
6351 	ret = replace_map_fd_with_map_ptr(env);
6352 	if (ret < 0)
6353 		goto skip_full_check;
6354 
6355 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6356 		ret = bpf_prog_offload_verifier_prep(env);
6357 		if (ret)
6358 			goto skip_full_check;
6359 	}
6360 
6361 	env->explored_states = kcalloc(env->prog->len,
6362 				       sizeof(struct bpf_verifier_state_list *),
6363 				       GFP_USER);
6364 	ret = -ENOMEM;
6365 	if (!env->explored_states)
6366 		goto skip_full_check;
6367 
6368 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6369 
6370 	ret = check_cfg(env);
6371 	if (ret < 0)
6372 		goto skip_full_check;
6373 
6374 	ret = do_check(env);
6375 	if (env->cur_state) {
6376 		free_verifier_state(env->cur_state, true);
6377 		env->cur_state = NULL;
6378 	}
6379 
6380 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6381 		ret = bpf_prog_offload_finalize(env);
6382 
6383 skip_full_check:
6384 	while (!pop_stack(env, NULL, NULL));
6385 	free_states(env);
6386 
6387 	if (ret == 0)
6388 		sanitize_dead_code(env);
6389 
6390 	if (ret == 0)
6391 		ret = check_max_stack_depth(env);
6392 
6393 	if (ret == 0)
6394 		/* program is valid, convert *(u32*)(ctx + off) accesses */
6395 		ret = convert_ctx_accesses(env);
6396 
6397 	if (ret == 0)
6398 		ret = fixup_bpf_calls(env);
6399 
6400 	if (ret == 0)
6401 		ret = fixup_call_args(env);
6402 
6403 	if (log->level && bpf_verifier_log_full(log))
6404 		ret = -ENOSPC;
6405 	if (log->level && !log->ubuf) {
6406 		ret = -EFAULT;
6407 		goto err_release_maps;
6408 	}
6409 
6410 	if (ret == 0 && env->used_map_cnt) {
6411 		/* if program passed verifier, update used_maps in bpf_prog_info */
6412 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6413 							  sizeof(env->used_maps[0]),
6414 							  GFP_KERNEL);
6415 
6416 		if (!env->prog->aux->used_maps) {
6417 			ret = -ENOMEM;
6418 			goto err_release_maps;
6419 		}
6420 
6421 		memcpy(env->prog->aux->used_maps, env->used_maps,
6422 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
6423 		env->prog->aux->used_map_cnt = env->used_map_cnt;
6424 
6425 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
6426 		 * bpf_ld_imm64 instructions
6427 		 */
6428 		convert_pseudo_ld_imm64(env);
6429 	}
6430 
6431 err_release_maps:
6432 	if (!env->prog->aux->used_maps)
6433 		/* if we didn't copy map pointers into bpf_prog_info, release
6434 		 * them now. Otherwise free_used_maps() will release them.
6435 		 */
6436 		release_maps(env);
6437 	*prog = env->prog;
6438 err_unlock:
6439 	mutex_unlock(&bpf_verifier_lock);
6440 	vfree(env->insn_aux_data);
6441 err_free_env:
6442 	kfree(env);
6443 	return ret;
6444 }
6445