1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_UNPRIV 1UL 161 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 162 POISON_POINTER_DELTA)) 163 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 164 165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 166 { 167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 168 } 169 170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 171 { 172 return aux->map_state & BPF_MAP_PTR_UNPRIV; 173 } 174 175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 176 const struct bpf_map *map, bool unpriv) 177 { 178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 179 unpriv |= bpf_map_ptr_unpriv(aux); 180 aux->map_state = (unsigned long)map | 181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 182 } 183 184 struct bpf_call_arg_meta { 185 struct bpf_map *map_ptr; 186 bool raw_mode; 187 bool pkt_access; 188 int regno; 189 int access_size; 190 s64 msize_smax_value; 191 u64 msize_umax_value; 192 }; 193 194 static DEFINE_MUTEX(bpf_verifier_lock); 195 196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 197 va_list args) 198 { 199 unsigned int n; 200 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 202 203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 204 "verifier log line truncated - local buffer too short\n"); 205 206 n = min(log->len_total - log->len_used - 1, n); 207 log->kbuf[n] = '\0'; 208 209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 210 log->len_used += n; 211 else 212 log->ubuf = NULL; 213 } 214 215 /* log_level controls verbosity level of eBPF verifier. 216 * bpf_verifier_log_write() is used to dump the verification trace to the log, 217 * so the user can figure out what's wrong with the program 218 */ 219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 220 const char *fmt, ...) 221 { 222 va_list args; 223 224 if (!bpf_verifier_log_needed(&env->log)) 225 return; 226 227 va_start(args, fmt); 228 bpf_verifier_vlog(&env->log, fmt, args); 229 va_end(args); 230 } 231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 232 233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 234 { 235 struct bpf_verifier_env *env = private_data; 236 va_list args; 237 238 if (!bpf_verifier_log_needed(&env->log)) 239 return; 240 241 va_start(args, fmt); 242 bpf_verifier_vlog(&env->log, fmt, args); 243 va_end(args); 244 } 245 246 static bool type_is_pkt_pointer(enum bpf_reg_type type) 247 { 248 return type == PTR_TO_PACKET || 249 type == PTR_TO_PACKET_META; 250 } 251 252 /* string representation of 'enum bpf_reg_type' */ 253 static const char * const reg_type_str[] = { 254 [NOT_INIT] = "?", 255 [SCALAR_VALUE] = "inv", 256 [PTR_TO_CTX] = "ctx", 257 [CONST_PTR_TO_MAP] = "map_ptr", 258 [PTR_TO_MAP_VALUE] = "map_value", 259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 260 [PTR_TO_STACK] = "fp", 261 [PTR_TO_PACKET] = "pkt", 262 [PTR_TO_PACKET_META] = "pkt_meta", 263 [PTR_TO_PACKET_END] = "pkt_end", 264 }; 265 266 static void print_liveness(struct bpf_verifier_env *env, 267 enum bpf_reg_liveness live) 268 { 269 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 270 verbose(env, "_"); 271 if (live & REG_LIVE_READ) 272 verbose(env, "r"); 273 if (live & REG_LIVE_WRITTEN) 274 verbose(env, "w"); 275 } 276 277 static struct bpf_func_state *func(struct bpf_verifier_env *env, 278 const struct bpf_reg_state *reg) 279 { 280 struct bpf_verifier_state *cur = env->cur_state; 281 282 return cur->frame[reg->frameno]; 283 } 284 285 static void print_verifier_state(struct bpf_verifier_env *env, 286 const struct bpf_func_state *state) 287 { 288 const struct bpf_reg_state *reg; 289 enum bpf_reg_type t; 290 int i; 291 292 if (state->frameno) 293 verbose(env, " frame%d:", state->frameno); 294 for (i = 0; i < MAX_BPF_REG; i++) { 295 reg = &state->regs[i]; 296 t = reg->type; 297 if (t == NOT_INIT) 298 continue; 299 verbose(env, " R%d", i); 300 print_liveness(env, reg->live); 301 verbose(env, "=%s", reg_type_str[t]); 302 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 303 tnum_is_const(reg->var_off)) { 304 /* reg->off should be 0 for SCALAR_VALUE */ 305 verbose(env, "%lld", reg->var_off.value + reg->off); 306 if (t == PTR_TO_STACK) 307 verbose(env, ",call_%d", func(env, reg)->callsite); 308 } else { 309 verbose(env, "(id=%d", reg->id); 310 if (t != SCALAR_VALUE) 311 verbose(env, ",off=%d", reg->off); 312 if (type_is_pkt_pointer(t)) 313 verbose(env, ",r=%d", reg->range); 314 else if (t == CONST_PTR_TO_MAP || 315 t == PTR_TO_MAP_VALUE || 316 t == PTR_TO_MAP_VALUE_OR_NULL) 317 verbose(env, ",ks=%d,vs=%d", 318 reg->map_ptr->key_size, 319 reg->map_ptr->value_size); 320 if (tnum_is_const(reg->var_off)) { 321 /* Typically an immediate SCALAR_VALUE, but 322 * could be a pointer whose offset is too big 323 * for reg->off 324 */ 325 verbose(env, ",imm=%llx", reg->var_off.value); 326 } else { 327 if (reg->smin_value != reg->umin_value && 328 reg->smin_value != S64_MIN) 329 verbose(env, ",smin_value=%lld", 330 (long long)reg->smin_value); 331 if (reg->smax_value != reg->umax_value && 332 reg->smax_value != S64_MAX) 333 verbose(env, ",smax_value=%lld", 334 (long long)reg->smax_value); 335 if (reg->umin_value != 0) 336 verbose(env, ",umin_value=%llu", 337 (unsigned long long)reg->umin_value); 338 if (reg->umax_value != U64_MAX) 339 verbose(env, ",umax_value=%llu", 340 (unsigned long long)reg->umax_value); 341 if (!tnum_is_unknown(reg->var_off)) { 342 char tn_buf[48]; 343 344 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 345 verbose(env, ",var_off=%s", tn_buf); 346 } 347 } 348 verbose(env, ")"); 349 } 350 } 351 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 352 if (state->stack[i].slot_type[0] == STACK_SPILL) { 353 verbose(env, " fp%d", 354 (-i - 1) * BPF_REG_SIZE); 355 print_liveness(env, state->stack[i].spilled_ptr.live); 356 verbose(env, "=%s", 357 reg_type_str[state->stack[i].spilled_ptr.type]); 358 } 359 if (state->stack[i].slot_type[0] == STACK_ZERO) 360 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 361 } 362 verbose(env, "\n"); 363 } 364 365 static int copy_stack_state(struct bpf_func_state *dst, 366 const struct bpf_func_state *src) 367 { 368 if (!src->stack) 369 return 0; 370 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 371 /* internal bug, make state invalid to reject the program */ 372 memset(dst, 0, sizeof(*dst)); 373 return -EFAULT; 374 } 375 memcpy(dst->stack, src->stack, 376 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 377 return 0; 378 } 379 380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 381 * make it consume minimal amount of memory. check_stack_write() access from 382 * the program calls into realloc_func_state() to grow the stack size. 383 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 384 * which this function copies over. It points to previous bpf_verifier_state 385 * which is never reallocated 386 */ 387 static int realloc_func_state(struct bpf_func_state *state, int size, 388 bool copy_old) 389 { 390 u32 old_size = state->allocated_stack; 391 struct bpf_stack_state *new_stack; 392 int slot = size / BPF_REG_SIZE; 393 394 if (size <= old_size || !size) { 395 if (copy_old) 396 return 0; 397 state->allocated_stack = slot * BPF_REG_SIZE; 398 if (!size && old_size) { 399 kfree(state->stack); 400 state->stack = NULL; 401 } 402 return 0; 403 } 404 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 405 GFP_KERNEL); 406 if (!new_stack) 407 return -ENOMEM; 408 if (copy_old) { 409 if (state->stack) 410 memcpy(new_stack, state->stack, 411 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 412 memset(new_stack + old_size / BPF_REG_SIZE, 0, 413 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 414 } 415 state->allocated_stack = slot * BPF_REG_SIZE; 416 kfree(state->stack); 417 state->stack = new_stack; 418 return 0; 419 } 420 421 static void free_func_state(struct bpf_func_state *state) 422 { 423 if (!state) 424 return; 425 kfree(state->stack); 426 kfree(state); 427 } 428 429 static void free_verifier_state(struct bpf_verifier_state *state, 430 bool free_self) 431 { 432 int i; 433 434 for (i = 0; i <= state->curframe; i++) { 435 free_func_state(state->frame[i]); 436 state->frame[i] = NULL; 437 } 438 if (free_self) 439 kfree(state); 440 } 441 442 /* copy verifier state from src to dst growing dst stack space 443 * when necessary to accommodate larger src stack 444 */ 445 static int copy_func_state(struct bpf_func_state *dst, 446 const struct bpf_func_state *src) 447 { 448 int err; 449 450 err = realloc_func_state(dst, src->allocated_stack, false); 451 if (err) 452 return err; 453 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 454 return copy_stack_state(dst, src); 455 } 456 457 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 458 const struct bpf_verifier_state *src) 459 { 460 struct bpf_func_state *dst; 461 int i, err; 462 463 /* if dst has more stack frames then src frame, free them */ 464 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 465 free_func_state(dst_state->frame[i]); 466 dst_state->frame[i] = NULL; 467 } 468 dst_state->curframe = src->curframe; 469 dst_state->parent = src->parent; 470 for (i = 0; i <= src->curframe; i++) { 471 dst = dst_state->frame[i]; 472 if (!dst) { 473 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 474 if (!dst) 475 return -ENOMEM; 476 dst_state->frame[i] = dst; 477 } 478 err = copy_func_state(dst, src->frame[i]); 479 if (err) 480 return err; 481 } 482 return 0; 483 } 484 485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 486 int *insn_idx) 487 { 488 struct bpf_verifier_state *cur = env->cur_state; 489 struct bpf_verifier_stack_elem *elem, *head = env->head; 490 int err; 491 492 if (env->head == NULL) 493 return -ENOENT; 494 495 if (cur) { 496 err = copy_verifier_state(cur, &head->st); 497 if (err) 498 return err; 499 } 500 if (insn_idx) 501 *insn_idx = head->insn_idx; 502 if (prev_insn_idx) 503 *prev_insn_idx = head->prev_insn_idx; 504 elem = head->next; 505 free_verifier_state(&head->st, false); 506 kfree(head); 507 env->head = elem; 508 env->stack_size--; 509 return 0; 510 } 511 512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 513 int insn_idx, int prev_insn_idx) 514 { 515 struct bpf_verifier_state *cur = env->cur_state; 516 struct bpf_verifier_stack_elem *elem; 517 int err; 518 519 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 520 if (!elem) 521 goto err; 522 523 elem->insn_idx = insn_idx; 524 elem->prev_insn_idx = prev_insn_idx; 525 elem->next = env->head; 526 env->head = elem; 527 env->stack_size++; 528 err = copy_verifier_state(&elem->st, cur); 529 if (err) 530 goto err; 531 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 532 verbose(env, "BPF program is too complex\n"); 533 goto err; 534 } 535 return &elem->st; 536 err: 537 free_verifier_state(env->cur_state, true); 538 env->cur_state = NULL; 539 /* pop all elements and return */ 540 while (!pop_stack(env, NULL, NULL)); 541 return NULL; 542 } 543 544 #define CALLER_SAVED_REGS 6 545 static const int caller_saved[CALLER_SAVED_REGS] = { 546 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 547 }; 548 549 static void __mark_reg_not_init(struct bpf_reg_state *reg); 550 551 /* Mark the unknown part of a register (variable offset or scalar value) as 552 * known to have the value @imm. 553 */ 554 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 555 { 556 reg->id = 0; 557 reg->var_off = tnum_const(imm); 558 reg->smin_value = (s64)imm; 559 reg->smax_value = (s64)imm; 560 reg->umin_value = imm; 561 reg->umax_value = imm; 562 } 563 564 /* Mark the 'variable offset' part of a register as zero. This should be 565 * used only on registers holding a pointer type. 566 */ 567 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 568 { 569 __mark_reg_known(reg, 0); 570 } 571 572 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 573 { 574 __mark_reg_known(reg, 0); 575 reg->off = 0; 576 reg->type = SCALAR_VALUE; 577 } 578 579 static void mark_reg_known_zero(struct bpf_verifier_env *env, 580 struct bpf_reg_state *regs, u32 regno) 581 { 582 if (WARN_ON(regno >= MAX_BPF_REG)) { 583 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 584 /* Something bad happened, let's kill all regs */ 585 for (regno = 0; regno < MAX_BPF_REG; regno++) 586 __mark_reg_not_init(regs + regno); 587 return; 588 } 589 __mark_reg_known_zero(regs + regno); 590 } 591 592 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 593 { 594 return type_is_pkt_pointer(reg->type); 595 } 596 597 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 598 { 599 return reg_is_pkt_pointer(reg) || 600 reg->type == PTR_TO_PACKET_END; 601 } 602 603 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 604 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 605 enum bpf_reg_type which) 606 { 607 /* The register can already have a range from prior markings. 608 * This is fine as long as it hasn't been advanced from its 609 * origin. 610 */ 611 return reg->type == which && 612 reg->id == 0 && 613 reg->off == 0 && 614 tnum_equals_const(reg->var_off, 0); 615 } 616 617 /* Attempts to improve min/max values based on var_off information */ 618 static void __update_reg_bounds(struct bpf_reg_state *reg) 619 { 620 /* min signed is max(sign bit) | min(other bits) */ 621 reg->smin_value = max_t(s64, reg->smin_value, 622 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 623 /* max signed is min(sign bit) | max(other bits) */ 624 reg->smax_value = min_t(s64, reg->smax_value, 625 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 626 reg->umin_value = max(reg->umin_value, reg->var_off.value); 627 reg->umax_value = min(reg->umax_value, 628 reg->var_off.value | reg->var_off.mask); 629 } 630 631 /* Uses signed min/max values to inform unsigned, and vice-versa */ 632 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 633 { 634 /* Learn sign from signed bounds. 635 * If we cannot cross the sign boundary, then signed and unsigned bounds 636 * are the same, so combine. This works even in the negative case, e.g. 637 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 638 */ 639 if (reg->smin_value >= 0 || reg->smax_value < 0) { 640 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 641 reg->umin_value); 642 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 643 reg->umax_value); 644 return; 645 } 646 /* Learn sign from unsigned bounds. Signed bounds cross the sign 647 * boundary, so we must be careful. 648 */ 649 if ((s64)reg->umax_value >= 0) { 650 /* Positive. We can't learn anything from the smin, but smax 651 * is positive, hence safe. 652 */ 653 reg->smin_value = reg->umin_value; 654 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 655 reg->umax_value); 656 } else if ((s64)reg->umin_value < 0) { 657 /* Negative. We can't learn anything from the smax, but smin 658 * is negative, hence safe. 659 */ 660 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 661 reg->umin_value); 662 reg->smax_value = reg->umax_value; 663 } 664 } 665 666 /* Attempts to improve var_off based on unsigned min/max information */ 667 static void __reg_bound_offset(struct bpf_reg_state *reg) 668 { 669 reg->var_off = tnum_intersect(reg->var_off, 670 tnum_range(reg->umin_value, 671 reg->umax_value)); 672 } 673 674 /* Reset the min/max bounds of a register */ 675 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 676 { 677 reg->smin_value = S64_MIN; 678 reg->smax_value = S64_MAX; 679 reg->umin_value = 0; 680 reg->umax_value = U64_MAX; 681 } 682 683 /* Mark a register as having a completely unknown (scalar) value. */ 684 static void __mark_reg_unknown(struct bpf_reg_state *reg) 685 { 686 reg->type = SCALAR_VALUE; 687 reg->id = 0; 688 reg->off = 0; 689 reg->var_off = tnum_unknown; 690 reg->frameno = 0; 691 __mark_reg_unbounded(reg); 692 } 693 694 static void mark_reg_unknown(struct bpf_verifier_env *env, 695 struct bpf_reg_state *regs, u32 regno) 696 { 697 if (WARN_ON(regno >= MAX_BPF_REG)) { 698 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 699 /* Something bad happened, let's kill all regs except FP */ 700 for (regno = 0; regno < BPF_REG_FP; regno++) 701 __mark_reg_not_init(regs + regno); 702 return; 703 } 704 __mark_reg_unknown(regs + regno); 705 } 706 707 static void __mark_reg_not_init(struct bpf_reg_state *reg) 708 { 709 __mark_reg_unknown(reg); 710 reg->type = NOT_INIT; 711 } 712 713 static void mark_reg_not_init(struct bpf_verifier_env *env, 714 struct bpf_reg_state *regs, u32 regno) 715 { 716 if (WARN_ON(regno >= MAX_BPF_REG)) { 717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 718 /* Something bad happened, let's kill all regs except FP */ 719 for (regno = 0; regno < BPF_REG_FP; regno++) 720 __mark_reg_not_init(regs + regno); 721 return; 722 } 723 __mark_reg_not_init(regs + regno); 724 } 725 726 static void init_reg_state(struct bpf_verifier_env *env, 727 struct bpf_func_state *state) 728 { 729 struct bpf_reg_state *regs = state->regs; 730 int i; 731 732 for (i = 0; i < MAX_BPF_REG; i++) { 733 mark_reg_not_init(env, regs, i); 734 regs[i].live = REG_LIVE_NONE; 735 } 736 737 /* frame pointer */ 738 regs[BPF_REG_FP].type = PTR_TO_STACK; 739 mark_reg_known_zero(env, regs, BPF_REG_FP); 740 regs[BPF_REG_FP].frameno = state->frameno; 741 742 /* 1st arg to a function */ 743 regs[BPF_REG_1].type = PTR_TO_CTX; 744 mark_reg_known_zero(env, regs, BPF_REG_1); 745 } 746 747 #define BPF_MAIN_FUNC (-1) 748 static void init_func_state(struct bpf_verifier_env *env, 749 struct bpf_func_state *state, 750 int callsite, int frameno, int subprogno) 751 { 752 state->callsite = callsite; 753 state->frameno = frameno; 754 state->subprogno = subprogno; 755 init_reg_state(env, state); 756 } 757 758 enum reg_arg_type { 759 SRC_OP, /* register is used as source operand */ 760 DST_OP, /* register is used as destination operand */ 761 DST_OP_NO_MARK /* same as above, check only, don't mark */ 762 }; 763 764 static int cmp_subprogs(const void *a, const void *b) 765 { 766 return ((struct bpf_subprog_info *)a)->start - 767 ((struct bpf_subprog_info *)b)->start; 768 } 769 770 static int find_subprog(struct bpf_verifier_env *env, int off) 771 { 772 struct bpf_subprog_info *p; 773 774 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 775 sizeof(env->subprog_info[0]), cmp_subprogs); 776 if (!p) 777 return -ENOENT; 778 return p - env->subprog_info; 779 780 } 781 782 static int add_subprog(struct bpf_verifier_env *env, int off) 783 { 784 int insn_cnt = env->prog->len; 785 int ret; 786 787 if (off >= insn_cnt || off < 0) { 788 verbose(env, "call to invalid destination\n"); 789 return -EINVAL; 790 } 791 ret = find_subprog(env, off); 792 if (ret >= 0) 793 return 0; 794 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 795 verbose(env, "too many subprograms\n"); 796 return -E2BIG; 797 } 798 env->subprog_info[env->subprog_cnt++].start = off; 799 sort(env->subprog_info, env->subprog_cnt, 800 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 801 return 0; 802 } 803 804 static int check_subprogs(struct bpf_verifier_env *env) 805 { 806 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 807 struct bpf_subprog_info *subprog = env->subprog_info; 808 struct bpf_insn *insn = env->prog->insnsi; 809 int insn_cnt = env->prog->len; 810 811 /* Add entry function. */ 812 ret = add_subprog(env, 0); 813 if (ret < 0) 814 return ret; 815 816 /* determine subprog starts. The end is one before the next starts */ 817 for (i = 0; i < insn_cnt; i++) { 818 if (insn[i].code != (BPF_JMP | BPF_CALL)) 819 continue; 820 if (insn[i].src_reg != BPF_PSEUDO_CALL) 821 continue; 822 if (!env->allow_ptr_leaks) { 823 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 824 return -EPERM; 825 } 826 if (bpf_prog_is_dev_bound(env->prog->aux)) { 827 verbose(env, "function calls in offloaded programs are not supported yet\n"); 828 return -EINVAL; 829 } 830 ret = add_subprog(env, i + insn[i].imm + 1); 831 if (ret < 0) 832 return ret; 833 } 834 835 /* Add a fake 'exit' subprog which could simplify subprog iteration 836 * logic. 'subprog_cnt' should not be increased. 837 */ 838 subprog[env->subprog_cnt].start = insn_cnt; 839 840 if (env->log.level > 1) 841 for (i = 0; i < env->subprog_cnt; i++) 842 verbose(env, "func#%d @%d\n", i, subprog[i].start); 843 844 /* now check that all jumps are within the same subprog */ 845 subprog_start = subprog[cur_subprog].start; 846 subprog_end = subprog[cur_subprog + 1].start; 847 for (i = 0; i < insn_cnt; i++) { 848 u8 code = insn[i].code; 849 850 if (BPF_CLASS(code) != BPF_JMP) 851 goto next; 852 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 853 goto next; 854 off = i + insn[i].off + 1; 855 if (off < subprog_start || off >= subprog_end) { 856 verbose(env, "jump out of range from insn %d to %d\n", i, off); 857 return -EINVAL; 858 } 859 next: 860 if (i == subprog_end - 1) { 861 /* to avoid fall-through from one subprog into another 862 * the last insn of the subprog should be either exit 863 * or unconditional jump back 864 */ 865 if (code != (BPF_JMP | BPF_EXIT) && 866 code != (BPF_JMP | BPF_JA)) { 867 verbose(env, "last insn is not an exit or jmp\n"); 868 return -EINVAL; 869 } 870 subprog_start = subprog_end; 871 cur_subprog++; 872 if (cur_subprog < env->subprog_cnt) 873 subprog_end = subprog[cur_subprog + 1].start; 874 } 875 } 876 return 0; 877 } 878 879 static 880 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 881 const struct bpf_verifier_state *state, 882 struct bpf_verifier_state *parent, 883 u32 regno) 884 { 885 struct bpf_verifier_state *tmp = NULL; 886 887 /* 'parent' could be a state of caller and 888 * 'state' could be a state of callee. In such case 889 * parent->curframe < state->curframe 890 * and it's ok for r1 - r5 registers 891 * 892 * 'parent' could be a callee's state after it bpf_exit-ed. 893 * In such case parent->curframe > state->curframe 894 * and it's ok for r0 only 895 */ 896 if (parent->curframe == state->curframe || 897 (parent->curframe < state->curframe && 898 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 899 (parent->curframe > state->curframe && 900 regno == BPF_REG_0)) 901 return parent; 902 903 if (parent->curframe > state->curframe && 904 regno >= BPF_REG_6) { 905 /* for callee saved regs we have to skip the whole chain 906 * of states that belong to callee and mark as LIVE_READ 907 * the registers before the call 908 */ 909 tmp = parent; 910 while (tmp && tmp->curframe != state->curframe) { 911 tmp = tmp->parent; 912 } 913 if (!tmp) 914 goto bug; 915 parent = tmp; 916 } else { 917 goto bug; 918 } 919 return parent; 920 bug: 921 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 922 verbose(env, "regno %d parent frame %d current frame %d\n", 923 regno, parent->curframe, state->curframe); 924 return NULL; 925 } 926 927 static int mark_reg_read(struct bpf_verifier_env *env, 928 const struct bpf_verifier_state *state, 929 struct bpf_verifier_state *parent, 930 u32 regno) 931 { 932 bool writes = parent == state->parent; /* Observe write marks */ 933 934 if (regno == BPF_REG_FP) 935 /* We don't need to worry about FP liveness because it's read-only */ 936 return 0; 937 938 while (parent) { 939 /* if read wasn't screened by an earlier write ... */ 940 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 941 break; 942 parent = skip_callee(env, state, parent, regno); 943 if (!parent) 944 return -EFAULT; 945 /* ... then we depend on parent's value */ 946 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 947 state = parent; 948 parent = state->parent; 949 writes = true; 950 } 951 return 0; 952 } 953 954 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 955 enum reg_arg_type t) 956 { 957 struct bpf_verifier_state *vstate = env->cur_state; 958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 959 struct bpf_reg_state *regs = state->regs; 960 961 if (regno >= MAX_BPF_REG) { 962 verbose(env, "R%d is invalid\n", regno); 963 return -EINVAL; 964 } 965 966 if (t == SRC_OP) { 967 /* check whether register used as source operand can be read */ 968 if (regs[regno].type == NOT_INIT) { 969 verbose(env, "R%d !read_ok\n", regno); 970 return -EACCES; 971 } 972 return mark_reg_read(env, vstate, vstate->parent, regno); 973 } else { 974 /* check whether register used as dest operand can be written to */ 975 if (regno == BPF_REG_FP) { 976 verbose(env, "frame pointer is read only\n"); 977 return -EACCES; 978 } 979 regs[regno].live |= REG_LIVE_WRITTEN; 980 if (t == DST_OP) 981 mark_reg_unknown(env, regs, regno); 982 } 983 return 0; 984 } 985 986 static bool is_spillable_regtype(enum bpf_reg_type type) 987 { 988 switch (type) { 989 case PTR_TO_MAP_VALUE: 990 case PTR_TO_MAP_VALUE_OR_NULL: 991 case PTR_TO_STACK: 992 case PTR_TO_CTX: 993 case PTR_TO_PACKET: 994 case PTR_TO_PACKET_META: 995 case PTR_TO_PACKET_END: 996 case CONST_PTR_TO_MAP: 997 return true; 998 default: 999 return false; 1000 } 1001 } 1002 1003 /* Does this register contain a constant zero? */ 1004 static bool register_is_null(struct bpf_reg_state *reg) 1005 { 1006 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1007 } 1008 1009 /* check_stack_read/write functions track spill/fill of registers, 1010 * stack boundary and alignment are checked in check_mem_access() 1011 */ 1012 static int check_stack_write(struct bpf_verifier_env *env, 1013 struct bpf_func_state *state, /* func where register points to */ 1014 int off, int size, int value_regno, int insn_idx) 1015 { 1016 struct bpf_func_state *cur; /* state of the current function */ 1017 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1018 enum bpf_reg_type type; 1019 1020 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1021 true); 1022 if (err) 1023 return err; 1024 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1025 * so it's aligned access and [off, off + size) are within stack limits 1026 */ 1027 if (!env->allow_ptr_leaks && 1028 state->stack[spi].slot_type[0] == STACK_SPILL && 1029 size != BPF_REG_SIZE) { 1030 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1031 return -EACCES; 1032 } 1033 1034 cur = env->cur_state->frame[env->cur_state->curframe]; 1035 if (value_regno >= 0 && 1036 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1037 1038 /* register containing pointer is being spilled into stack */ 1039 if (size != BPF_REG_SIZE) { 1040 verbose(env, "invalid size of register spill\n"); 1041 return -EACCES; 1042 } 1043 1044 if (state != cur && type == PTR_TO_STACK) { 1045 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1046 return -EINVAL; 1047 } 1048 1049 /* save register state */ 1050 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1051 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1052 1053 for (i = 0; i < BPF_REG_SIZE; i++) { 1054 if (state->stack[spi].slot_type[i] == STACK_MISC && 1055 !env->allow_ptr_leaks) { 1056 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1057 int soff = (-spi - 1) * BPF_REG_SIZE; 1058 1059 /* detected reuse of integer stack slot with a pointer 1060 * which means either llvm is reusing stack slot or 1061 * an attacker is trying to exploit CVE-2018-3639 1062 * (speculative store bypass) 1063 * Have to sanitize that slot with preemptive 1064 * store of zero. 1065 */ 1066 if (*poff && *poff != soff) { 1067 /* disallow programs where single insn stores 1068 * into two different stack slots, since verifier 1069 * cannot sanitize them 1070 */ 1071 verbose(env, 1072 "insn %d cannot access two stack slots fp%d and fp%d", 1073 insn_idx, *poff, soff); 1074 return -EINVAL; 1075 } 1076 *poff = soff; 1077 } 1078 state->stack[spi].slot_type[i] = STACK_SPILL; 1079 } 1080 } else { 1081 u8 type = STACK_MISC; 1082 1083 /* regular write of data into stack */ 1084 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1085 1086 /* only mark the slot as written if all 8 bytes were written 1087 * otherwise read propagation may incorrectly stop too soon 1088 * when stack slots are partially written. 1089 * This heuristic means that read propagation will be 1090 * conservative, since it will add reg_live_read marks 1091 * to stack slots all the way to first state when programs 1092 * writes+reads less than 8 bytes 1093 */ 1094 if (size == BPF_REG_SIZE) 1095 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1096 1097 /* when we zero initialize stack slots mark them as such */ 1098 if (value_regno >= 0 && 1099 register_is_null(&cur->regs[value_regno])) 1100 type = STACK_ZERO; 1101 1102 for (i = 0; i < size; i++) 1103 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1104 type; 1105 } 1106 return 0; 1107 } 1108 1109 /* registers of every function are unique and mark_reg_read() propagates 1110 * the liveness in the following cases: 1111 * - from callee into caller for R1 - R5 that were used as arguments 1112 * - from caller into callee for R0 that used as result of the call 1113 * - from caller to the same caller skipping states of the callee for R6 - R9, 1114 * since R6 - R9 are callee saved by implicit function prologue and 1115 * caller's R6 != callee's R6, so when we propagate liveness up to 1116 * parent states we need to skip callee states for R6 - R9. 1117 * 1118 * stack slot marking is different, since stacks of caller and callee are 1119 * accessible in both (since caller can pass a pointer to caller's stack to 1120 * callee which can pass it to another function), hence mark_stack_slot_read() 1121 * has to propagate the stack liveness to all parent states at given frame number. 1122 * Consider code: 1123 * f1() { 1124 * ptr = fp - 8; 1125 * *ptr = ctx; 1126 * call f2 { 1127 * .. = *ptr; 1128 * } 1129 * .. = *ptr; 1130 * } 1131 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1132 * to mark liveness at the f1's frame and not f2's frame. 1133 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1134 * to propagate liveness to f2 states at f1's frame level and further into 1135 * f1 states at f1's frame level until write into that stack slot 1136 */ 1137 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1138 const struct bpf_verifier_state *state, 1139 struct bpf_verifier_state *parent, 1140 int slot, int frameno) 1141 { 1142 bool writes = parent == state->parent; /* Observe write marks */ 1143 1144 while (parent) { 1145 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1146 /* since LIVE_WRITTEN mark is only done for full 8-byte 1147 * write the read marks are conservative and parent 1148 * state may not even have the stack allocated. In such case 1149 * end the propagation, since the loop reached beginning 1150 * of the function 1151 */ 1152 break; 1153 /* if read wasn't screened by an earlier write ... */ 1154 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1155 break; 1156 /* ... then we depend on parent's value */ 1157 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1158 state = parent; 1159 parent = state->parent; 1160 writes = true; 1161 } 1162 } 1163 1164 static int check_stack_read(struct bpf_verifier_env *env, 1165 struct bpf_func_state *reg_state /* func where register points to */, 1166 int off, int size, int value_regno) 1167 { 1168 struct bpf_verifier_state *vstate = env->cur_state; 1169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1170 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1171 u8 *stype; 1172 1173 if (reg_state->allocated_stack <= slot) { 1174 verbose(env, "invalid read from stack off %d+0 size %d\n", 1175 off, size); 1176 return -EACCES; 1177 } 1178 stype = reg_state->stack[spi].slot_type; 1179 1180 if (stype[0] == STACK_SPILL) { 1181 if (size != BPF_REG_SIZE) { 1182 verbose(env, "invalid size of register spill\n"); 1183 return -EACCES; 1184 } 1185 for (i = 1; i < BPF_REG_SIZE; i++) { 1186 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1187 verbose(env, "corrupted spill memory\n"); 1188 return -EACCES; 1189 } 1190 } 1191 1192 if (value_regno >= 0) { 1193 /* restore register state from stack */ 1194 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1195 /* mark reg as written since spilled pointer state likely 1196 * has its liveness marks cleared by is_state_visited() 1197 * which resets stack/reg liveness for state transitions 1198 */ 1199 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1200 } 1201 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1202 reg_state->frameno); 1203 return 0; 1204 } else { 1205 int zeros = 0; 1206 1207 for (i = 0; i < size; i++) { 1208 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1209 continue; 1210 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1211 zeros++; 1212 continue; 1213 } 1214 verbose(env, "invalid read from stack off %d+%d size %d\n", 1215 off, i, size); 1216 return -EACCES; 1217 } 1218 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1219 reg_state->frameno); 1220 if (value_regno >= 0) { 1221 if (zeros == size) { 1222 /* any size read into register is zero extended, 1223 * so the whole register == const_zero 1224 */ 1225 __mark_reg_const_zero(&state->regs[value_regno]); 1226 } else { 1227 /* have read misc data from the stack */ 1228 mark_reg_unknown(env, state->regs, value_regno); 1229 } 1230 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1231 } 1232 return 0; 1233 } 1234 } 1235 1236 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1237 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1238 int size, bool zero_size_allowed) 1239 { 1240 struct bpf_reg_state *regs = cur_regs(env); 1241 struct bpf_map *map = regs[regno].map_ptr; 1242 1243 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1244 off + size > map->value_size) { 1245 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1246 map->value_size, off, size); 1247 return -EACCES; 1248 } 1249 return 0; 1250 } 1251 1252 /* check read/write into a map element with possible variable offset */ 1253 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1254 int off, int size, bool zero_size_allowed) 1255 { 1256 struct bpf_verifier_state *vstate = env->cur_state; 1257 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1258 struct bpf_reg_state *reg = &state->regs[regno]; 1259 int err; 1260 1261 /* We may have adjusted the register to this map value, so we 1262 * need to try adding each of min_value and max_value to off 1263 * to make sure our theoretical access will be safe. 1264 */ 1265 if (env->log.level) 1266 print_verifier_state(env, state); 1267 /* The minimum value is only important with signed 1268 * comparisons where we can't assume the floor of a 1269 * value is 0. If we are using signed variables for our 1270 * index'es we need to make sure that whatever we use 1271 * will have a set floor within our range. 1272 */ 1273 if (reg->smin_value < 0) { 1274 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1275 regno); 1276 return -EACCES; 1277 } 1278 err = __check_map_access(env, regno, reg->smin_value + off, size, 1279 zero_size_allowed); 1280 if (err) { 1281 verbose(env, "R%d min value is outside of the array range\n", 1282 regno); 1283 return err; 1284 } 1285 1286 /* If we haven't set a max value then we need to bail since we can't be 1287 * sure we won't do bad things. 1288 * If reg->umax_value + off could overflow, treat that as unbounded too. 1289 */ 1290 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1291 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1292 regno); 1293 return -EACCES; 1294 } 1295 err = __check_map_access(env, regno, reg->umax_value + off, size, 1296 zero_size_allowed); 1297 if (err) 1298 verbose(env, "R%d max value is outside of the array range\n", 1299 regno); 1300 return err; 1301 } 1302 1303 #define MAX_PACKET_OFF 0xffff 1304 1305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1306 const struct bpf_call_arg_meta *meta, 1307 enum bpf_access_type t) 1308 { 1309 switch (env->prog->type) { 1310 case BPF_PROG_TYPE_LWT_IN: 1311 case BPF_PROG_TYPE_LWT_OUT: 1312 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1313 case BPF_PROG_TYPE_SK_REUSEPORT: 1314 /* dst_input() and dst_output() can't write for now */ 1315 if (t == BPF_WRITE) 1316 return false; 1317 /* fallthrough */ 1318 case BPF_PROG_TYPE_SCHED_CLS: 1319 case BPF_PROG_TYPE_SCHED_ACT: 1320 case BPF_PROG_TYPE_XDP: 1321 case BPF_PROG_TYPE_LWT_XMIT: 1322 case BPF_PROG_TYPE_SK_SKB: 1323 case BPF_PROG_TYPE_SK_MSG: 1324 if (meta) 1325 return meta->pkt_access; 1326 1327 env->seen_direct_write = true; 1328 return true; 1329 default: 1330 return false; 1331 } 1332 } 1333 1334 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1335 int off, int size, bool zero_size_allowed) 1336 { 1337 struct bpf_reg_state *regs = cur_regs(env); 1338 struct bpf_reg_state *reg = ®s[regno]; 1339 1340 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1341 (u64)off + size > reg->range) { 1342 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1343 off, size, regno, reg->id, reg->off, reg->range); 1344 return -EACCES; 1345 } 1346 return 0; 1347 } 1348 1349 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1350 int size, bool zero_size_allowed) 1351 { 1352 struct bpf_reg_state *regs = cur_regs(env); 1353 struct bpf_reg_state *reg = ®s[regno]; 1354 int err; 1355 1356 /* We may have added a variable offset to the packet pointer; but any 1357 * reg->range we have comes after that. We are only checking the fixed 1358 * offset. 1359 */ 1360 1361 /* We don't allow negative numbers, because we aren't tracking enough 1362 * detail to prove they're safe. 1363 */ 1364 if (reg->smin_value < 0) { 1365 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1366 regno); 1367 return -EACCES; 1368 } 1369 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1370 if (err) { 1371 verbose(env, "R%d offset is outside of the packet\n", regno); 1372 return err; 1373 } 1374 return err; 1375 } 1376 1377 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1378 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1379 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1380 { 1381 struct bpf_insn_access_aux info = { 1382 .reg_type = *reg_type, 1383 }; 1384 1385 if (env->ops->is_valid_access && 1386 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1387 /* A non zero info.ctx_field_size indicates that this field is a 1388 * candidate for later verifier transformation to load the whole 1389 * field and then apply a mask when accessed with a narrower 1390 * access than actual ctx access size. A zero info.ctx_field_size 1391 * will only allow for whole field access and rejects any other 1392 * type of narrower access. 1393 */ 1394 *reg_type = info.reg_type; 1395 1396 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1397 /* remember the offset of last byte accessed in ctx */ 1398 if (env->prog->aux->max_ctx_offset < off + size) 1399 env->prog->aux->max_ctx_offset = off + size; 1400 return 0; 1401 } 1402 1403 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1404 return -EACCES; 1405 } 1406 1407 static bool __is_pointer_value(bool allow_ptr_leaks, 1408 const struct bpf_reg_state *reg) 1409 { 1410 if (allow_ptr_leaks) 1411 return false; 1412 1413 return reg->type != SCALAR_VALUE; 1414 } 1415 1416 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1417 { 1418 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1419 } 1420 1421 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1422 { 1423 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1424 1425 return reg->type == PTR_TO_CTX; 1426 } 1427 1428 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1429 { 1430 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1431 1432 return type_is_pkt_pointer(reg->type); 1433 } 1434 1435 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1436 const struct bpf_reg_state *reg, 1437 int off, int size, bool strict) 1438 { 1439 struct tnum reg_off; 1440 int ip_align; 1441 1442 /* Byte size accesses are always allowed. */ 1443 if (!strict || size == 1) 1444 return 0; 1445 1446 /* For platforms that do not have a Kconfig enabling 1447 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1448 * NET_IP_ALIGN is universally set to '2'. And on platforms 1449 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1450 * to this code only in strict mode where we want to emulate 1451 * the NET_IP_ALIGN==2 checking. Therefore use an 1452 * unconditional IP align value of '2'. 1453 */ 1454 ip_align = 2; 1455 1456 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1457 if (!tnum_is_aligned(reg_off, size)) { 1458 char tn_buf[48]; 1459 1460 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1461 verbose(env, 1462 "misaligned packet access off %d+%s+%d+%d size %d\n", 1463 ip_align, tn_buf, reg->off, off, size); 1464 return -EACCES; 1465 } 1466 1467 return 0; 1468 } 1469 1470 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1471 const struct bpf_reg_state *reg, 1472 const char *pointer_desc, 1473 int off, int size, bool strict) 1474 { 1475 struct tnum reg_off; 1476 1477 /* Byte size accesses are always allowed. */ 1478 if (!strict || size == 1) 1479 return 0; 1480 1481 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1482 if (!tnum_is_aligned(reg_off, size)) { 1483 char tn_buf[48]; 1484 1485 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1486 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1487 pointer_desc, tn_buf, reg->off, off, size); 1488 return -EACCES; 1489 } 1490 1491 return 0; 1492 } 1493 1494 static int check_ptr_alignment(struct bpf_verifier_env *env, 1495 const struct bpf_reg_state *reg, int off, 1496 int size, bool strict_alignment_once) 1497 { 1498 bool strict = env->strict_alignment || strict_alignment_once; 1499 const char *pointer_desc = ""; 1500 1501 switch (reg->type) { 1502 case PTR_TO_PACKET: 1503 case PTR_TO_PACKET_META: 1504 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1505 * right in front, treat it the very same way. 1506 */ 1507 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1508 case PTR_TO_MAP_VALUE: 1509 pointer_desc = "value "; 1510 break; 1511 case PTR_TO_CTX: 1512 pointer_desc = "context "; 1513 break; 1514 case PTR_TO_STACK: 1515 pointer_desc = "stack "; 1516 /* The stack spill tracking logic in check_stack_write() 1517 * and check_stack_read() relies on stack accesses being 1518 * aligned. 1519 */ 1520 strict = true; 1521 break; 1522 default: 1523 break; 1524 } 1525 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1526 strict); 1527 } 1528 1529 static int update_stack_depth(struct bpf_verifier_env *env, 1530 const struct bpf_func_state *func, 1531 int off) 1532 { 1533 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1534 1535 if (stack >= -off) 1536 return 0; 1537 1538 /* update known max for given subprogram */ 1539 env->subprog_info[func->subprogno].stack_depth = -off; 1540 return 0; 1541 } 1542 1543 /* starting from main bpf function walk all instructions of the function 1544 * and recursively walk all callees that given function can call. 1545 * Ignore jump and exit insns. 1546 * Since recursion is prevented by check_cfg() this algorithm 1547 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1548 */ 1549 static int check_max_stack_depth(struct bpf_verifier_env *env) 1550 { 1551 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1552 struct bpf_subprog_info *subprog = env->subprog_info; 1553 struct bpf_insn *insn = env->prog->insnsi; 1554 int ret_insn[MAX_CALL_FRAMES]; 1555 int ret_prog[MAX_CALL_FRAMES]; 1556 1557 process_func: 1558 /* round up to 32-bytes, since this is granularity 1559 * of interpreter stack size 1560 */ 1561 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1562 if (depth > MAX_BPF_STACK) { 1563 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1564 frame + 1, depth); 1565 return -EACCES; 1566 } 1567 continue_func: 1568 subprog_end = subprog[idx + 1].start; 1569 for (; i < subprog_end; i++) { 1570 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1571 continue; 1572 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1573 continue; 1574 /* remember insn and function to return to */ 1575 ret_insn[frame] = i + 1; 1576 ret_prog[frame] = idx; 1577 1578 /* find the callee */ 1579 i = i + insn[i].imm + 1; 1580 idx = find_subprog(env, i); 1581 if (idx < 0) { 1582 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1583 i); 1584 return -EFAULT; 1585 } 1586 frame++; 1587 if (frame >= MAX_CALL_FRAMES) { 1588 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1589 return -EFAULT; 1590 } 1591 goto process_func; 1592 } 1593 /* end of for() loop means the last insn of the 'subprog' 1594 * was reached. Doesn't matter whether it was JA or EXIT 1595 */ 1596 if (frame == 0) 1597 return 0; 1598 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1599 frame--; 1600 i = ret_insn[frame]; 1601 idx = ret_prog[frame]; 1602 goto continue_func; 1603 } 1604 1605 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1606 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1607 const struct bpf_insn *insn, int idx) 1608 { 1609 int start = idx + insn->imm + 1, subprog; 1610 1611 subprog = find_subprog(env, start); 1612 if (subprog < 0) { 1613 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1614 start); 1615 return -EFAULT; 1616 } 1617 return env->subprog_info[subprog].stack_depth; 1618 } 1619 #endif 1620 1621 static int check_ctx_reg(struct bpf_verifier_env *env, 1622 const struct bpf_reg_state *reg, int regno) 1623 { 1624 /* Access to ctx or passing it to a helper is only allowed in 1625 * its original, unmodified form. 1626 */ 1627 1628 if (reg->off) { 1629 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1630 regno, reg->off); 1631 return -EACCES; 1632 } 1633 1634 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1635 char tn_buf[48]; 1636 1637 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1638 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1639 return -EACCES; 1640 } 1641 1642 return 0; 1643 } 1644 1645 /* truncate register to smaller size (in bytes) 1646 * must be called with size < BPF_REG_SIZE 1647 */ 1648 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1649 { 1650 u64 mask; 1651 1652 /* clear high bits in bit representation */ 1653 reg->var_off = tnum_cast(reg->var_off, size); 1654 1655 /* fix arithmetic bounds */ 1656 mask = ((u64)1 << (size * 8)) - 1; 1657 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1658 reg->umin_value &= mask; 1659 reg->umax_value &= mask; 1660 } else { 1661 reg->umin_value = 0; 1662 reg->umax_value = mask; 1663 } 1664 reg->smin_value = reg->umin_value; 1665 reg->smax_value = reg->umax_value; 1666 } 1667 1668 /* check whether memory at (regno + off) is accessible for t = (read | write) 1669 * if t==write, value_regno is a register which value is stored into memory 1670 * if t==read, value_regno is a register which will receive the value from memory 1671 * if t==write && value_regno==-1, some unknown value is stored into memory 1672 * if t==read && value_regno==-1, don't care what we read from memory 1673 */ 1674 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1675 int off, int bpf_size, enum bpf_access_type t, 1676 int value_regno, bool strict_alignment_once) 1677 { 1678 struct bpf_reg_state *regs = cur_regs(env); 1679 struct bpf_reg_state *reg = regs + regno; 1680 struct bpf_func_state *state; 1681 int size, err = 0; 1682 1683 size = bpf_size_to_bytes(bpf_size); 1684 if (size < 0) 1685 return size; 1686 1687 /* alignment checks will add in reg->off themselves */ 1688 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1689 if (err) 1690 return err; 1691 1692 /* for access checks, reg->off is just part of off */ 1693 off += reg->off; 1694 1695 if (reg->type == PTR_TO_MAP_VALUE) { 1696 if (t == BPF_WRITE && value_regno >= 0 && 1697 is_pointer_value(env, value_regno)) { 1698 verbose(env, "R%d leaks addr into map\n", value_regno); 1699 return -EACCES; 1700 } 1701 1702 err = check_map_access(env, regno, off, size, false); 1703 if (!err && t == BPF_READ && value_regno >= 0) 1704 mark_reg_unknown(env, regs, value_regno); 1705 1706 } else if (reg->type == PTR_TO_CTX) { 1707 enum bpf_reg_type reg_type = SCALAR_VALUE; 1708 1709 if (t == BPF_WRITE && value_regno >= 0 && 1710 is_pointer_value(env, value_regno)) { 1711 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1712 return -EACCES; 1713 } 1714 1715 err = check_ctx_reg(env, reg, regno); 1716 if (err < 0) 1717 return err; 1718 1719 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1720 if (!err && t == BPF_READ && value_regno >= 0) { 1721 /* ctx access returns either a scalar, or a 1722 * PTR_TO_PACKET[_META,_END]. In the latter 1723 * case, we know the offset is zero. 1724 */ 1725 if (reg_type == SCALAR_VALUE) 1726 mark_reg_unknown(env, regs, value_regno); 1727 else 1728 mark_reg_known_zero(env, regs, 1729 value_regno); 1730 regs[value_regno].id = 0; 1731 regs[value_regno].off = 0; 1732 regs[value_regno].range = 0; 1733 regs[value_regno].type = reg_type; 1734 } 1735 1736 } else if (reg->type == PTR_TO_STACK) { 1737 /* stack accesses must be at a fixed offset, so that we can 1738 * determine what type of data were returned. 1739 * See check_stack_read(). 1740 */ 1741 if (!tnum_is_const(reg->var_off)) { 1742 char tn_buf[48]; 1743 1744 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1745 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1746 tn_buf, off, size); 1747 return -EACCES; 1748 } 1749 off += reg->var_off.value; 1750 if (off >= 0 || off < -MAX_BPF_STACK) { 1751 verbose(env, "invalid stack off=%d size=%d\n", off, 1752 size); 1753 return -EACCES; 1754 } 1755 1756 state = func(env, reg); 1757 err = update_stack_depth(env, state, off); 1758 if (err) 1759 return err; 1760 1761 if (t == BPF_WRITE) 1762 err = check_stack_write(env, state, off, size, 1763 value_regno, insn_idx); 1764 else 1765 err = check_stack_read(env, state, off, size, 1766 value_regno); 1767 } else if (reg_is_pkt_pointer(reg)) { 1768 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1769 verbose(env, "cannot write into packet\n"); 1770 return -EACCES; 1771 } 1772 if (t == BPF_WRITE && value_regno >= 0 && 1773 is_pointer_value(env, value_regno)) { 1774 verbose(env, "R%d leaks addr into packet\n", 1775 value_regno); 1776 return -EACCES; 1777 } 1778 err = check_packet_access(env, regno, off, size, false); 1779 if (!err && t == BPF_READ && value_regno >= 0) 1780 mark_reg_unknown(env, regs, value_regno); 1781 } else { 1782 verbose(env, "R%d invalid mem access '%s'\n", regno, 1783 reg_type_str[reg->type]); 1784 return -EACCES; 1785 } 1786 1787 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1788 regs[value_regno].type == SCALAR_VALUE) { 1789 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1790 coerce_reg_to_size(®s[value_regno], size); 1791 } 1792 return err; 1793 } 1794 1795 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1796 { 1797 int err; 1798 1799 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1800 insn->imm != 0) { 1801 verbose(env, "BPF_XADD uses reserved fields\n"); 1802 return -EINVAL; 1803 } 1804 1805 /* check src1 operand */ 1806 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1807 if (err) 1808 return err; 1809 1810 /* check src2 operand */ 1811 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1812 if (err) 1813 return err; 1814 1815 if (is_pointer_value(env, insn->src_reg)) { 1816 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1817 return -EACCES; 1818 } 1819 1820 if (is_ctx_reg(env, insn->dst_reg) || 1821 is_pkt_reg(env, insn->dst_reg)) { 1822 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1823 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1824 "context" : "packet"); 1825 return -EACCES; 1826 } 1827 1828 /* check whether atomic_add can read the memory */ 1829 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1830 BPF_SIZE(insn->code), BPF_READ, -1, true); 1831 if (err) 1832 return err; 1833 1834 /* check whether atomic_add can write into the same memory */ 1835 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1836 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1837 } 1838 1839 /* when register 'regno' is passed into function that will read 'access_size' 1840 * bytes from that pointer, make sure that it's within stack boundary 1841 * and all elements of stack are initialized. 1842 * Unlike most pointer bounds-checking functions, this one doesn't take an 1843 * 'off' argument, so it has to add in reg->off itself. 1844 */ 1845 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1846 int access_size, bool zero_size_allowed, 1847 struct bpf_call_arg_meta *meta) 1848 { 1849 struct bpf_reg_state *reg = cur_regs(env) + regno; 1850 struct bpf_func_state *state = func(env, reg); 1851 int off, i, slot, spi; 1852 1853 if (reg->type != PTR_TO_STACK) { 1854 /* Allow zero-byte read from NULL, regardless of pointer type */ 1855 if (zero_size_allowed && access_size == 0 && 1856 register_is_null(reg)) 1857 return 0; 1858 1859 verbose(env, "R%d type=%s expected=%s\n", regno, 1860 reg_type_str[reg->type], 1861 reg_type_str[PTR_TO_STACK]); 1862 return -EACCES; 1863 } 1864 1865 /* Only allow fixed-offset stack reads */ 1866 if (!tnum_is_const(reg->var_off)) { 1867 char tn_buf[48]; 1868 1869 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1870 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1871 regno, tn_buf); 1872 return -EACCES; 1873 } 1874 off = reg->off + reg->var_off.value; 1875 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1876 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1877 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1878 regno, off, access_size); 1879 return -EACCES; 1880 } 1881 1882 if (meta && meta->raw_mode) { 1883 meta->access_size = access_size; 1884 meta->regno = regno; 1885 return 0; 1886 } 1887 1888 for (i = 0; i < access_size; i++) { 1889 u8 *stype; 1890 1891 slot = -(off + i) - 1; 1892 spi = slot / BPF_REG_SIZE; 1893 if (state->allocated_stack <= slot) 1894 goto err; 1895 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1896 if (*stype == STACK_MISC) 1897 goto mark; 1898 if (*stype == STACK_ZERO) { 1899 /* helper can write anything into the stack */ 1900 *stype = STACK_MISC; 1901 goto mark; 1902 } 1903 err: 1904 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1905 off, i, access_size); 1906 return -EACCES; 1907 mark: 1908 /* reading any byte out of 8-byte 'spill_slot' will cause 1909 * the whole slot to be marked as 'read' 1910 */ 1911 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1912 spi, state->frameno); 1913 } 1914 return update_stack_depth(env, state, off); 1915 } 1916 1917 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1918 int access_size, bool zero_size_allowed, 1919 struct bpf_call_arg_meta *meta) 1920 { 1921 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1922 1923 switch (reg->type) { 1924 case PTR_TO_PACKET: 1925 case PTR_TO_PACKET_META: 1926 return check_packet_access(env, regno, reg->off, access_size, 1927 zero_size_allowed); 1928 case PTR_TO_MAP_VALUE: 1929 return check_map_access(env, regno, reg->off, access_size, 1930 zero_size_allowed); 1931 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1932 return check_stack_boundary(env, regno, access_size, 1933 zero_size_allowed, meta); 1934 } 1935 } 1936 1937 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1938 { 1939 return type == ARG_PTR_TO_MEM || 1940 type == ARG_PTR_TO_MEM_OR_NULL || 1941 type == ARG_PTR_TO_UNINIT_MEM; 1942 } 1943 1944 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1945 { 1946 return type == ARG_CONST_SIZE || 1947 type == ARG_CONST_SIZE_OR_ZERO; 1948 } 1949 1950 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1951 enum bpf_arg_type arg_type, 1952 struct bpf_call_arg_meta *meta) 1953 { 1954 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1955 enum bpf_reg_type expected_type, type = reg->type; 1956 int err = 0; 1957 1958 if (arg_type == ARG_DONTCARE) 1959 return 0; 1960 1961 err = check_reg_arg(env, regno, SRC_OP); 1962 if (err) 1963 return err; 1964 1965 if (arg_type == ARG_ANYTHING) { 1966 if (is_pointer_value(env, regno)) { 1967 verbose(env, "R%d leaks addr into helper function\n", 1968 regno); 1969 return -EACCES; 1970 } 1971 return 0; 1972 } 1973 1974 if (type_is_pkt_pointer(type) && 1975 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1976 verbose(env, "helper access to the packet is not allowed\n"); 1977 return -EACCES; 1978 } 1979 1980 if (arg_type == ARG_PTR_TO_MAP_KEY || 1981 arg_type == ARG_PTR_TO_MAP_VALUE) { 1982 expected_type = PTR_TO_STACK; 1983 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1984 type != expected_type) 1985 goto err_type; 1986 } else if (arg_type == ARG_CONST_SIZE || 1987 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1988 expected_type = SCALAR_VALUE; 1989 if (type != expected_type) 1990 goto err_type; 1991 } else if (arg_type == ARG_CONST_MAP_PTR) { 1992 expected_type = CONST_PTR_TO_MAP; 1993 if (type != expected_type) 1994 goto err_type; 1995 } else if (arg_type == ARG_PTR_TO_CTX) { 1996 expected_type = PTR_TO_CTX; 1997 if (type != expected_type) 1998 goto err_type; 1999 err = check_ctx_reg(env, reg, regno); 2000 if (err < 0) 2001 return err; 2002 } else if (arg_type_is_mem_ptr(arg_type)) { 2003 expected_type = PTR_TO_STACK; 2004 /* One exception here. In case function allows for NULL to be 2005 * passed in as argument, it's a SCALAR_VALUE type. Final test 2006 * happens during stack boundary checking. 2007 */ 2008 if (register_is_null(reg) && 2009 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2010 /* final test in check_stack_boundary() */; 2011 else if (!type_is_pkt_pointer(type) && 2012 type != PTR_TO_MAP_VALUE && 2013 type != expected_type) 2014 goto err_type; 2015 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2016 } else { 2017 verbose(env, "unsupported arg_type %d\n", arg_type); 2018 return -EFAULT; 2019 } 2020 2021 if (arg_type == ARG_CONST_MAP_PTR) { 2022 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2023 meta->map_ptr = reg->map_ptr; 2024 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2025 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2026 * check that [key, key + map->key_size) are within 2027 * stack limits and initialized 2028 */ 2029 if (!meta->map_ptr) { 2030 /* in function declaration map_ptr must come before 2031 * map_key, so that it's verified and known before 2032 * we have to check map_key here. Otherwise it means 2033 * that kernel subsystem misconfigured verifier 2034 */ 2035 verbose(env, "invalid map_ptr to access map->key\n"); 2036 return -EACCES; 2037 } 2038 err = check_helper_mem_access(env, regno, 2039 meta->map_ptr->key_size, false, 2040 NULL); 2041 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 2042 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2043 * check [value, value + map->value_size) validity 2044 */ 2045 if (!meta->map_ptr) { 2046 /* kernel subsystem misconfigured verifier */ 2047 verbose(env, "invalid map_ptr to access map->value\n"); 2048 return -EACCES; 2049 } 2050 err = check_helper_mem_access(env, regno, 2051 meta->map_ptr->value_size, false, 2052 NULL); 2053 } else if (arg_type_is_mem_size(arg_type)) { 2054 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2055 2056 /* remember the mem_size which may be used later 2057 * to refine return values. 2058 */ 2059 meta->msize_smax_value = reg->smax_value; 2060 meta->msize_umax_value = reg->umax_value; 2061 2062 /* The register is SCALAR_VALUE; the access check 2063 * happens using its boundaries. 2064 */ 2065 if (!tnum_is_const(reg->var_off)) 2066 /* For unprivileged variable accesses, disable raw 2067 * mode so that the program is required to 2068 * initialize all the memory that the helper could 2069 * just partially fill up. 2070 */ 2071 meta = NULL; 2072 2073 if (reg->smin_value < 0) { 2074 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2075 regno); 2076 return -EACCES; 2077 } 2078 2079 if (reg->umin_value == 0) { 2080 err = check_helper_mem_access(env, regno - 1, 0, 2081 zero_size_allowed, 2082 meta); 2083 if (err) 2084 return err; 2085 } 2086 2087 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2088 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2089 regno); 2090 return -EACCES; 2091 } 2092 err = check_helper_mem_access(env, regno - 1, 2093 reg->umax_value, 2094 zero_size_allowed, meta); 2095 } 2096 2097 return err; 2098 err_type: 2099 verbose(env, "R%d type=%s expected=%s\n", regno, 2100 reg_type_str[type], reg_type_str[expected_type]); 2101 return -EACCES; 2102 } 2103 2104 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2105 struct bpf_map *map, int func_id) 2106 { 2107 if (!map) 2108 return 0; 2109 2110 /* We need a two way check, first is from map perspective ... */ 2111 switch (map->map_type) { 2112 case BPF_MAP_TYPE_PROG_ARRAY: 2113 if (func_id != BPF_FUNC_tail_call) 2114 goto error; 2115 break; 2116 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2117 if (func_id != BPF_FUNC_perf_event_read && 2118 func_id != BPF_FUNC_perf_event_output && 2119 func_id != BPF_FUNC_perf_event_read_value) 2120 goto error; 2121 break; 2122 case BPF_MAP_TYPE_STACK_TRACE: 2123 if (func_id != BPF_FUNC_get_stackid) 2124 goto error; 2125 break; 2126 case BPF_MAP_TYPE_CGROUP_ARRAY: 2127 if (func_id != BPF_FUNC_skb_under_cgroup && 2128 func_id != BPF_FUNC_current_task_under_cgroup) 2129 goto error; 2130 break; 2131 case BPF_MAP_TYPE_CGROUP_STORAGE: 2132 if (func_id != BPF_FUNC_get_local_storage) 2133 goto error; 2134 break; 2135 /* devmap returns a pointer to a live net_device ifindex that we cannot 2136 * allow to be modified from bpf side. So do not allow lookup elements 2137 * for now. 2138 */ 2139 case BPF_MAP_TYPE_DEVMAP: 2140 if (func_id != BPF_FUNC_redirect_map) 2141 goto error; 2142 break; 2143 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2144 * appear. 2145 */ 2146 case BPF_MAP_TYPE_CPUMAP: 2147 case BPF_MAP_TYPE_XSKMAP: 2148 if (func_id != BPF_FUNC_redirect_map) 2149 goto error; 2150 break; 2151 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2152 case BPF_MAP_TYPE_HASH_OF_MAPS: 2153 if (func_id != BPF_FUNC_map_lookup_elem) 2154 goto error; 2155 break; 2156 case BPF_MAP_TYPE_SOCKMAP: 2157 if (func_id != BPF_FUNC_sk_redirect_map && 2158 func_id != BPF_FUNC_sock_map_update && 2159 func_id != BPF_FUNC_map_delete_elem && 2160 func_id != BPF_FUNC_msg_redirect_map) 2161 goto error; 2162 break; 2163 case BPF_MAP_TYPE_SOCKHASH: 2164 if (func_id != BPF_FUNC_sk_redirect_hash && 2165 func_id != BPF_FUNC_sock_hash_update && 2166 func_id != BPF_FUNC_map_delete_elem && 2167 func_id != BPF_FUNC_msg_redirect_hash) 2168 goto error; 2169 break; 2170 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2171 if (func_id != BPF_FUNC_sk_select_reuseport) 2172 goto error; 2173 break; 2174 default: 2175 break; 2176 } 2177 2178 /* ... and second from the function itself. */ 2179 switch (func_id) { 2180 case BPF_FUNC_tail_call: 2181 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2182 goto error; 2183 if (env->subprog_cnt > 1) { 2184 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2185 return -EINVAL; 2186 } 2187 break; 2188 case BPF_FUNC_perf_event_read: 2189 case BPF_FUNC_perf_event_output: 2190 case BPF_FUNC_perf_event_read_value: 2191 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2192 goto error; 2193 break; 2194 case BPF_FUNC_get_stackid: 2195 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2196 goto error; 2197 break; 2198 case BPF_FUNC_current_task_under_cgroup: 2199 case BPF_FUNC_skb_under_cgroup: 2200 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2201 goto error; 2202 break; 2203 case BPF_FUNC_redirect_map: 2204 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2205 map->map_type != BPF_MAP_TYPE_CPUMAP && 2206 map->map_type != BPF_MAP_TYPE_XSKMAP) 2207 goto error; 2208 break; 2209 case BPF_FUNC_sk_redirect_map: 2210 case BPF_FUNC_msg_redirect_map: 2211 case BPF_FUNC_sock_map_update: 2212 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2213 goto error; 2214 break; 2215 case BPF_FUNC_sk_redirect_hash: 2216 case BPF_FUNC_msg_redirect_hash: 2217 case BPF_FUNC_sock_hash_update: 2218 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2219 goto error; 2220 break; 2221 case BPF_FUNC_get_local_storage: 2222 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE) 2223 goto error; 2224 break; 2225 case BPF_FUNC_sk_select_reuseport: 2226 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2227 goto error; 2228 break; 2229 default: 2230 break; 2231 } 2232 2233 return 0; 2234 error: 2235 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2236 map->map_type, func_id_name(func_id), func_id); 2237 return -EINVAL; 2238 } 2239 2240 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2241 { 2242 int count = 0; 2243 2244 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2245 count++; 2246 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2247 count++; 2248 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2249 count++; 2250 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2251 count++; 2252 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2253 count++; 2254 2255 /* We only support one arg being in raw mode at the moment, 2256 * which is sufficient for the helper functions we have 2257 * right now. 2258 */ 2259 return count <= 1; 2260 } 2261 2262 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2263 enum bpf_arg_type arg_next) 2264 { 2265 return (arg_type_is_mem_ptr(arg_curr) && 2266 !arg_type_is_mem_size(arg_next)) || 2267 (!arg_type_is_mem_ptr(arg_curr) && 2268 arg_type_is_mem_size(arg_next)); 2269 } 2270 2271 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2272 { 2273 /* bpf_xxx(..., buf, len) call will access 'len' 2274 * bytes from memory 'buf'. Both arg types need 2275 * to be paired, so make sure there's no buggy 2276 * helper function specification. 2277 */ 2278 if (arg_type_is_mem_size(fn->arg1_type) || 2279 arg_type_is_mem_ptr(fn->arg5_type) || 2280 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2281 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2282 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2283 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2284 return false; 2285 2286 return true; 2287 } 2288 2289 static int check_func_proto(const struct bpf_func_proto *fn) 2290 { 2291 return check_raw_mode_ok(fn) && 2292 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2293 } 2294 2295 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2296 * are now invalid, so turn them into unknown SCALAR_VALUE. 2297 */ 2298 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2299 struct bpf_func_state *state) 2300 { 2301 struct bpf_reg_state *regs = state->regs, *reg; 2302 int i; 2303 2304 for (i = 0; i < MAX_BPF_REG; i++) 2305 if (reg_is_pkt_pointer_any(®s[i])) 2306 mark_reg_unknown(env, regs, i); 2307 2308 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2309 if (state->stack[i].slot_type[0] != STACK_SPILL) 2310 continue; 2311 reg = &state->stack[i].spilled_ptr; 2312 if (reg_is_pkt_pointer_any(reg)) 2313 __mark_reg_unknown(reg); 2314 } 2315 } 2316 2317 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2318 { 2319 struct bpf_verifier_state *vstate = env->cur_state; 2320 int i; 2321 2322 for (i = 0; i <= vstate->curframe; i++) 2323 __clear_all_pkt_pointers(env, vstate->frame[i]); 2324 } 2325 2326 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2327 int *insn_idx) 2328 { 2329 struct bpf_verifier_state *state = env->cur_state; 2330 struct bpf_func_state *caller, *callee; 2331 int i, subprog, target_insn; 2332 2333 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2334 verbose(env, "the call stack of %d frames is too deep\n", 2335 state->curframe + 2); 2336 return -E2BIG; 2337 } 2338 2339 target_insn = *insn_idx + insn->imm; 2340 subprog = find_subprog(env, target_insn + 1); 2341 if (subprog < 0) { 2342 verbose(env, "verifier bug. No program starts at insn %d\n", 2343 target_insn + 1); 2344 return -EFAULT; 2345 } 2346 2347 caller = state->frame[state->curframe]; 2348 if (state->frame[state->curframe + 1]) { 2349 verbose(env, "verifier bug. Frame %d already allocated\n", 2350 state->curframe + 1); 2351 return -EFAULT; 2352 } 2353 2354 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2355 if (!callee) 2356 return -ENOMEM; 2357 state->frame[state->curframe + 1] = callee; 2358 2359 /* callee cannot access r0, r6 - r9 for reading and has to write 2360 * into its own stack before reading from it. 2361 * callee can read/write into caller's stack 2362 */ 2363 init_func_state(env, callee, 2364 /* remember the callsite, it will be used by bpf_exit */ 2365 *insn_idx /* callsite */, 2366 state->curframe + 1 /* frameno within this callchain */, 2367 subprog /* subprog number within this prog */); 2368 2369 /* copy r1 - r5 args that callee can access */ 2370 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2371 callee->regs[i] = caller->regs[i]; 2372 2373 /* after the call regsiters r0 - r5 were scratched */ 2374 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2375 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2376 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2377 } 2378 2379 /* only increment it after check_reg_arg() finished */ 2380 state->curframe++; 2381 2382 /* and go analyze first insn of the callee */ 2383 *insn_idx = target_insn; 2384 2385 if (env->log.level) { 2386 verbose(env, "caller:\n"); 2387 print_verifier_state(env, caller); 2388 verbose(env, "callee:\n"); 2389 print_verifier_state(env, callee); 2390 } 2391 return 0; 2392 } 2393 2394 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2395 { 2396 struct bpf_verifier_state *state = env->cur_state; 2397 struct bpf_func_state *caller, *callee; 2398 struct bpf_reg_state *r0; 2399 2400 callee = state->frame[state->curframe]; 2401 r0 = &callee->regs[BPF_REG_0]; 2402 if (r0->type == PTR_TO_STACK) { 2403 /* technically it's ok to return caller's stack pointer 2404 * (or caller's caller's pointer) back to the caller, 2405 * since these pointers are valid. Only current stack 2406 * pointer will be invalid as soon as function exits, 2407 * but let's be conservative 2408 */ 2409 verbose(env, "cannot return stack pointer to the caller\n"); 2410 return -EINVAL; 2411 } 2412 2413 state->curframe--; 2414 caller = state->frame[state->curframe]; 2415 /* return to the caller whatever r0 had in the callee */ 2416 caller->regs[BPF_REG_0] = *r0; 2417 2418 *insn_idx = callee->callsite + 1; 2419 if (env->log.level) { 2420 verbose(env, "returning from callee:\n"); 2421 print_verifier_state(env, callee); 2422 verbose(env, "to caller at %d:\n", *insn_idx); 2423 print_verifier_state(env, caller); 2424 } 2425 /* clear everything in the callee */ 2426 free_func_state(callee); 2427 state->frame[state->curframe + 1] = NULL; 2428 return 0; 2429 } 2430 2431 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2432 int func_id, 2433 struct bpf_call_arg_meta *meta) 2434 { 2435 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2436 2437 if (ret_type != RET_INTEGER || 2438 (func_id != BPF_FUNC_get_stack && 2439 func_id != BPF_FUNC_probe_read_str)) 2440 return; 2441 2442 ret_reg->smax_value = meta->msize_smax_value; 2443 ret_reg->umax_value = meta->msize_umax_value; 2444 __reg_deduce_bounds(ret_reg); 2445 __reg_bound_offset(ret_reg); 2446 } 2447 2448 static int 2449 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2450 int func_id, int insn_idx) 2451 { 2452 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2453 2454 if (func_id != BPF_FUNC_tail_call && 2455 func_id != BPF_FUNC_map_lookup_elem && 2456 func_id != BPF_FUNC_map_update_elem && 2457 func_id != BPF_FUNC_map_delete_elem) 2458 return 0; 2459 2460 if (meta->map_ptr == NULL) { 2461 verbose(env, "kernel subsystem misconfigured verifier\n"); 2462 return -EINVAL; 2463 } 2464 2465 if (!BPF_MAP_PTR(aux->map_state)) 2466 bpf_map_ptr_store(aux, meta->map_ptr, 2467 meta->map_ptr->unpriv_array); 2468 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2469 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2470 meta->map_ptr->unpriv_array); 2471 return 0; 2472 } 2473 2474 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2475 { 2476 const struct bpf_func_proto *fn = NULL; 2477 struct bpf_reg_state *regs; 2478 struct bpf_call_arg_meta meta; 2479 bool changes_data; 2480 int i, err; 2481 2482 /* find function prototype */ 2483 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2484 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2485 func_id); 2486 return -EINVAL; 2487 } 2488 2489 if (env->ops->get_func_proto) 2490 fn = env->ops->get_func_proto(func_id, env->prog); 2491 if (!fn) { 2492 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2493 func_id); 2494 return -EINVAL; 2495 } 2496 2497 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2498 if (!env->prog->gpl_compatible && fn->gpl_only) { 2499 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2500 return -EINVAL; 2501 } 2502 2503 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2504 changes_data = bpf_helper_changes_pkt_data(fn->func); 2505 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2506 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2507 func_id_name(func_id), func_id); 2508 return -EINVAL; 2509 } 2510 2511 memset(&meta, 0, sizeof(meta)); 2512 meta.pkt_access = fn->pkt_access; 2513 2514 err = check_func_proto(fn); 2515 if (err) { 2516 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2517 func_id_name(func_id), func_id); 2518 return err; 2519 } 2520 2521 /* check args */ 2522 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2523 if (err) 2524 return err; 2525 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2526 if (err) 2527 return err; 2528 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2529 if (err) 2530 return err; 2531 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2532 if (err) 2533 return err; 2534 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2535 if (err) 2536 return err; 2537 2538 err = record_func_map(env, &meta, func_id, insn_idx); 2539 if (err) 2540 return err; 2541 2542 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2543 * is inferred from register state. 2544 */ 2545 for (i = 0; i < meta.access_size; i++) { 2546 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2547 BPF_WRITE, -1, false); 2548 if (err) 2549 return err; 2550 } 2551 2552 regs = cur_regs(env); 2553 2554 /* check that flags argument in get_local_storage(map, flags) is 0, 2555 * this is required because get_local_storage() can't return an error. 2556 */ 2557 if (func_id == BPF_FUNC_get_local_storage && 2558 !register_is_null(®s[BPF_REG_2])) { 2559 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2560 return -EINVAL; 2561 } 2562 2563 /* reset caller saved regs */ 2564 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2565 mark_reg_not_init(env, regs, caller_saved[i]); 2566 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2567 } 2568 2569 /* update return register (already marked as written above) */ 2570 if (fn->ret_type == RET_INTEGER) { 2571 /* sets type to SCALAR_VALUE */ 2572 mark_reg_unknown(env, regs, BPF_REG_0); 2573 } else if (fn->ret_type == RET_VOID) { 2574 regs[BPF_REG_0].type = NOT_INIT; 2575 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2576 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2577 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) 2578 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2579 else 2580 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2581 /* There is no offset yet applied, variable or fixed */ 2582 mark_reg_known_zero(env, regs, BPF_REG_0); 2583 regs[BPF_REG_0].off = 0; 2584 /* remember map_ptr, so that check_map_access() 2585 * can check 'value_size' boundary of memory access 2586 * to map element returned from bpf_map_lookup_elem() 2587 */ 2588 if (meta.map_ptr == NULL) { 2589 verbose(env, 2590 "kernel subsystem misconfigured verifier\n"); 2591 return -EINVAL; 2592 } 2593 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2594 regs[BPF_REG_0].id = ++env->id_gen; 2595 } else { 2596 verbose(env, "unknown return type %d of func %s#%d\n", 2597 fn->ret_type, func_id_name(func_id), func_id); 2598 return -EINVAL; 2599 } 2600 2601 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2602 2603 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2604 if (err) 2605 return err; 2606 2607 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2608 const char *err_str; 2609 2610 #ifdef CONFIG_PERF_EVENTS 2611 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2612 err_str = "cannot get callchain buffer for func %s#%d\n"; 2613 #else 2614 err = -ENOTSUPP; 2615 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2616 #endif 2617 if (err) { 2618 verbose(env, err_str, func_id_name(func_id), func_id); 2619 return err; 2620 } 2621 2622 env->prog->has_callchain_buf = true; 2623 } 2624 2625 if (changes_data) 2626 clear_all_pkt_pointers(env); 2627 return 0; 2628 } 2629 2630 static bool signed_add_overflows(s64 a, s64 b) 2631 { 2632 /* Do the add in u64, where overflow is well-defined */ 2633 s64 res = (s64)((u64)a + (u64)b); 2634 2635 if (b < 0) 2636 return res > a; 2637 return res < a; 2638 } 2639 2640 static bool signed_sub_overflows(s64 a, s64 b) 2641 { 2642 /* Do the sub in u64, where overflow is well-defined */ 2643 s64 res = (s64)((u64)a - (u64)b); 2644 2645 if (b < 0) 2646 return res < a; 2647 return res > a; 2648 } 2649 2650 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2651 const struct bpf_reg_state *reg, 2652 enum bpf_reg_type type) 2653 { 2654 bool known = tnum_is_const(reg->var_off); 2655 s64 val = reg->var_off.value; 2656 s64 smin = reg->smin_value; 2657 2658 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2659 verbose(env, "math between %s pointer and %lld is not allowed\n", 2660 reg_type_str[type], val); 2661 return false; 2662 } 2663 2664 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2665 verbose(env, "%s pointer offset %d is not allowed\n", 2666 reg_type_str[type], reg->off); 2667 return false; 2668 } 2669 2670 if (smin == S64_MIN) { 2671 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2672 reg_type_str[type]); 2673 return false; 2674 } 2675 2676 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2677 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2678 smin, reg_type_str[type]); 2679 return false; 2680 } 2681 2682 return true; 2683 } 2684 2685 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2686 * Caller should also handle BPF_MOV case separately. 2687 * If we return -EACCES, caller may want to try again treating pointer as a 2688 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2689 */ 2690 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2691 struct bpf_insn *insn, 2692 const struct bpf_reg_state *ptr_reg, 2693 const struct bpf_reg_state *off_reg) 2694 { 2695 struct bpf_verifier_state *vstate = env->cur_state; 2696 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2697 struct bpf_reg_state *regs = state->regs, *dst_reg; 2698 bool known = tnum_is_const(off_reg->var_off); 2699 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2700 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2701 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2702 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2703 u8 opcode = BPF_OP(insn->code); 2704 u32 dst = insn->dst_reg; 2705 2706 dst_reg = ®s[dst]; 2707 2708 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2709 smin_val > smax_val || umin_val > umax_val) { 2710 /* Taint dst register if offset had invalid bounds derived from 2711 * e.g. dead branches. 2712 */ 2713 __mark_reg_unknown(dst_reg); 2714 return 0; 2715 } 2716 2717 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2718 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2719 verbose(env, 2720 "R%d 32-bit pointer arithmetic prohibited\n", 2721 dst); 2722 return -EACCES; 2723 } 2724 2725 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2726 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2727 dst); 2728 return -EACCES; 2729 } 2730 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2731 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2732 dst); 2733 return -EACCES; 2734 } 2735 if (ptr_reg->type == PTR_TO_PACKET_END) { 2736 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2737 dst); 2738 return -EACCES; 2739 } 2740 2741 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2742 * The id may be overwritten later if we create a new variable offset. 2743 */ 2744 dst_reg->type = ptr_reg->type; 2745 dst_reg->id = ptr_reg->id; 2746 2747 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2748 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2749 return -EINVAL; 2750 2751 switch (opcode) { 2752 case BPF_ADD: 2753 /* We can take a fixed offset as long as it doesn't overflow 2754 * the s32 'off' field 2755 */ 2756 if (known && (ptr_reg->off + smin_val == 2757 (s64)(s32)(ptr_reg->off + smin_val))) { 2758 /* pointer += K. Accumulate it into fixed offset */ 2759 dst_reg->smin_value = smin_ptr; 2760 dst_reg->smax_value = smax_ptr; 2761 dst_reg->umin_value = umin_ptr; 2762 dst_reg->umax_value = umax_ptr; 2763 dst_reg->var_off = ptr_reg->var_off; 2764 dst_reg->off = ptr_reg->off + smin_val; 2765 dst_reg->range = ptr_reg->range; 2766 break; 2767 } 2768 /* A new variable offset is created. Note that off_reg->off 2769 * == 0, since it's a scalar. 2770 * dst_reg gets the pointer type and since some positive 2771 * integer value was added to the pointer, give it a new 'id' 2772 * if it's a PTR_TO_PACKET. 2773 * this creates a new 'base' pointer, off_reg (variable) gets 2774 * added into the variable offset, and we copy the fixed offset 2775 * from ptr_reg. 2776 */ 2777 if (signed_add_overflows(smin_ptr, smin_val) || 2778 signed_add_overflows(smax_ptr, smax_val)) { 2779 dst_reg->smin_value = S64_MIN; 2780 dst_reg->smax_value = S64_MAX; 2781 } else { 2782 dst_reg->smin_value = smin_ptr + smin_val; 2783 dst_reg->smax_value = smax_ptr + smax_val; 2784 } 2785 if (umin_ptr + umin_val < umin_ptr || 2786 umax_ptr + umax_val < umax_ptr) { 2787 dst_reg->umin_value = 0; 2788 dst_reg->umax_value = U64_MAX; 2789 } else { 2790 dst_reg->umin_value = umin_ptr + umin_val; 2791 dst_reg->umax_value = umax_ptr + umax_val; 2792 } 2793 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2794 dst_reg->off = ptr_reg->off; 2795 if (reg_is_pkt_pointer(ptr_reg)) { 2796 dst_reg->id = ++env->id_gen; 2797 /* something was added to pkt_ptr, set range to zero */ 2798 dst_reg->range = 0; 2799 } 2800 break; 2801 case BPF_SUB: 2802 if (dst_reg == off_reg) { 2803 /* scalar -= pointer. Creates an unknown scalar */ 2804 verbose(env, "R%d tried to subtract pointer from scalar\n", 2805 dst); 2806 return -EACCES; 2807 } 2808 /* We don't allow subtraction from FP, because (according to 2809 * test_verifier.c test "invalid fp arithmetic", JITs might not 2810 * be able to deal with it. 2811 */ 2812 if (ptr_reg->type == PTR_TO_STACK) { 2813 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2814 dst); 2815 return -EACCES; 2816 } 2817 if (known && (ptr_reg->off - smin_val == 2818 (s64)(s32)(ptr_reg->off - smin_val))) { 2819 /* pointer -= K. Subtract it from fixed offset */ 2820 dst_reg->smin_value = smin_ptr; 2821 dst_reg->smax_value = smax_ptr; 2822 dst_reg->umin_value = umin_ptr; 2823 dst_reg->umax_value = umax_ptr; 2824 dst_reg->var_off = ptr_reg->var_off; 2825 dst_reg->id = ptr_reg->id; 2826 dst_reg->off = ptr_reg->off - smin_val; 2827 dst_reg->range = ptr_reg->range; 2828 break; 2829 } 2830 /* A new variable offset is created. If the subtrahend is known 2831 * nonnegative, then any reg->range we had before is still good. 2832 */ 2833 if (signed_sub_overflows(smin_ptr, smax_val) || 2834 signed_sub_overflows(smax_ptr, smin_val)) { 2835 /* Overflow possible, we know nothing */ 2836 dst_reg->smin_value = S64_MIN; 2837 dst_reg->smax_value = S64_MAX; 2838 } else { 2839 dst_reg->smin_value = smin_ptr - smax_val; 2840 dst_reg->smax_value = smax_ptr - smin_val; 2841 } 2842 if (umin_ptr < umax_val) { 2843 /* Overflow possible, we know nothing */ 2844 dst_reg->umin_value = 0; 2845 dst_reg->umax_value = U64_MAX; 2846 } else { 2847 /* Cannot overflow (as long as bounds are consistent) */ 2848 dst_reg->umin_value = umin_ptr - umax_val; 2849 dst_reg->umax_value = umax_ptr - umin_val; 2850 } 2851 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2852 dst_reg->off = ptr_reg->off; 2853 if (reg_is_pkt_pointer(ptr_reg)) { 2854 dst_reg->id = ++env->id_gen; 2855 /* something was added to pkt_ptr, set range to zero */ 2856 if (smin_val < 0) 2857 dst_reg->range = 0; 2858 } 2859 break; 2860 case BPF_AND: 2861 case BPF_OR: 2862 case BPF_XOR: 2863 /* bitwise ops on pointers are troublesome, prohibit. */ 2864 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2865 dst, bpf_alu_string[opcode >> 4]); 2866 return -EACCES; 2867 default: 2868 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2869 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2870 dst, bpf_alu_string[opcode >> 4]); 2871 return -EACCES; 2872 } 2873 2874 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2875 return -EINVAL; 2876 2877 __update_reg_bounds(dst_reg); 2878 __reg_deduce_bounds(dst_reg); 2879 __reg_bound_offset(dst_reg); 2880 return 0; 2881 } 2882 2883 /* WARNING: This function does calculations on 64-bit values, but the actual 2884 * execution may occur on 32-bit values. Therefore, things like bitshifts 2885 * need extra checks in the 32-bit case. 2886 */ 2887 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2888 struct bpf_insn *insn, 2889 struct bpf_reg_state *dst_reg, 2890 struct bpf_reg_state src_reg) 2891 { 2892 struct bpf_reg_state *regs = cur_regs(env); 2893 u8 opcode = BPF_OP(insn->code); 2894 bool src_known, dst_known; 2895 s64 smin_val, smax_val; 2896 u64 umin_val, umax_val; 2897 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2898 2899 if (insn_bitness == 32) { 2900 /* Relevant for 32-bit RSH: Information can propagate towards 2901 * LSB, so it isn't sufficient to only truncate the output to 2902 * 32 bits. 2903 */ 2904 coerce_reg_to_size(dst_reg, 4); 2905 coerce_reg_to_size(&src_reg, 4); 2906 } 2907 2908 smin_val = src_reg.smin_value; 2909 smax_val = src_reg.smax_value; 2910 umin_val = src_reg.umin_value; 2911 umax_val = src_reg.umax_value; 2912 src_known = tnum_is_const(src_reg.var_off); 2913 dst_known = tnum_is_const(dst_reg->var_off); 2914 2915 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2916 smin_val > smax_val || umin_val > umax_val) { 2917 /* Taint dst register if offset had invalid bounds derived from 2918 * e.g. dead branches. 2919 */ 2920 __mark_reg_unknown(dst_reg); 2921 return 0; 2922 } 2923 2924 if (!src_known && 2925 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2926 __mark_reg_unknown(dst_reg); 2927 return 0; 2928 } 2929 2930 switch (opcode) { 2931 case BPF_ADD: 2932 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2933 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2934 dst_reg->smin_value = S64_MIN; 2935 dst_reg->smax_value = S64_MAX; 2936 } else { 2937 dst_reg->smin_value += smin_val; 2938 dst_reg->smax_value += smax_val; 2939 } 2940 if (dst_reg->umin_value + umin_val < umin_val || 2941 dst_reg->umax_value + umax_val < umax_val) { 2942 dst_reg->umin_value = 0; 2943 dst_reg->umax_value = U64_MAX; 2944 } else { 2945 dst_reg->umin_value += umin_val; 2946 dst_reg->umax_value += umax_val; 2947 } 2948 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2949 break; 2950 case BPF_SUB: 2951 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2952 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2953 /* Overflow possible, we know nothing */ 2954 dst_reg->smin_value = S64_MIN; 2955 dst_reg->smax_value = S64_MAX; 2956 } else { 2957 dst_reg->smin_value -= smax_val; 2958 dst_reg->smax_value -= smin_val; 2959 } 2960 if (dst_reg->umin_value < umax_val) { 2961 /* Overflow possible, we know nothing */ 2962 dst_reg->umin_value = 0; 2963 dst_reg->umax_value = U64_MAX; 2964 } else { 2965 /* Cannot overflow (as long as bounds are consistent) */ 2966 dst_reg->umin_value -= umax_val; 2967 dst_reg->umax_value -= umin_val; 2968 } 2969 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2970 break; 2971 case BPF_MUL: 2972 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2973 if (smin_val < 0 || dst_reg->smin_value < 0) { 2974 /* Ain't nobody got time to multiply that sign */ 2975 __mark_reg_unbounded(dst_reg); 2976 __update_reg_bounds(dst_reg); 2977 break; 2978 } 2979 /* Both values are positive, so we can work with unsigned and 2980 * copy the result to signed (unless it exceeds S64_MAX). 2981 */ 2982 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2983 /* Potential overflow, we know nothing */ 2984 __mark_reg_unbounded(dst_reg); 2985 /* (except what we can learn from the var_off) */ 2986 __update_reg_bounds(dst_reg); 2987 break; 2988 } 2989 dst_reg->umin_value *= umin_val; 2990 dst_reg->umax_value *= umax_val; 2991 if (dst_reg->umax_value > S64_MAX) { 2992 /* Overflow possible, we know nothing */ 2993 dst_reg->smin_value = S64_MIN; 2994 dst_reg->smax_value = S64_MAX; 2995 } else { 2996 dst_reg->smin_value = dst_reg->umin_value; 2997 dst_reg->smax_value = dst_reg->umax_value; 2998 } 2999 break; 3000 case BPF_AND: 3001 if (src_known && dst_known) { 3002 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3003 src_reg.var_off.value); 3004 break; 3005 } 3006 /* We get our minimum from the var_off, since that's inherently 3007 * bitwise. Our maximum is the minimum of the operands' maxima. 3008 */ 3009 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3010 dst_reg->umin_value = dst_reg->var_off.value; 3011 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3012 if (dst_reg->smin_value < 0 || smin_val < 0) { 3013 /* Lose signed bounds when ANDing negative numbers, 3014 * ain't nobody got time for that. 3015 */ 3016 dst_reg->smin_value = S64_MIN; 3017 dst_reg->smax_value = S64_MAX; 3018 } else { 3019 /* ANDing two positives gives a positive, so safe to 3020 * cast result into s64. 3021 */ 3022 dst_reg->smin_value = dst_reg->umin_value; 3023 dst_reg->smax_value = dst_reg->umax_value; 3024 } 3025 /* We may learn something more from the var_off */ 3026 __update_reg_bounds(dst_reg); 3027 break; 3028 case BPF_OR: 3029 if (src_known && dst_known) { 3030 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3031 src_reg.var_off.value); 3032 break; 3033 } 3034 /* We get our maximum from the var_off, and our minimum is the 3035 * maximum of the operands' minima 3036 */ 3037 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3038 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3039 dst_reg->umax_value = dst_reg->var_off.value | 3040 dst_reg->var_off.mask; 3041 if (dst_reg->smin_value < 0 || smin_val < 0) { 3042 /* Lose signed bounds when ORing negative numbers, 3043 * ain't nobody got time for that. 3044 */ 3045 dst_reg->smin_value = S64_MIN; 3046 dst_reg->smax_value = S64_MAX; 3047 } else { 3048 /* ORing two positives gives a positive, so safe to 3049 * cast result into s64. 3050 */ 3051 dst_reg->smin_value = dst_reg->umin_value; 3052 dst_reg->smax_value = dst_reg->umax_value; 3053 } 3054 /* We may learn something more from the var_off */ 3055 __update_reg_bounds(dst_reg); 3056 break; 3057 case BPF_LSH: 3058 if (umax_val >= insn_bitness) { 3059 /* Shifts greater than 31 or 63 are undefined. 3060 * This includes shifts by a negative number. 3061 */ 3062 mark_reg_unknown(env, regs, insn->dst_reg); 3063 break; 3064 } 3065 /* We lose all sign bit information (except what we can pick 3066 * up from var_off) 3067 */ 3068 dst_reg->smin_value = S64_MIN; 3069 dst_reg->smax_value = S64_MAX; 3070 /* If we might shift our top bit out, then we know nothing */ 3071 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3072 dst_reg->umin_value = 0; 3073 dst_reg->umax_value = U64_MAX; 3074 } else { 3075 dst_reg->umin_value <<= umin_val; 3076 dst_reg->umax_value <<= umax_val; 3077 } 3078 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3079 /* We may learn something more from the var_off */ 3080 __update_reg_bounds(dst_reg); 3081 break; 3082 case BPF_RSH: 3083 if (umax_val >= insn_bitness) { 3084 /* Shifts greater than 31 or 63 are undefined. 3085 * This includes shifts by a negative number. 3086 */ 3087 mark_reg_unknown(env, regs, insn->dst_reg); 3088 break; 3089 } 3090 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3091 * be negative, then either: 3092 * 1) src_reg might be zero, so the sign bit of the result is 3093 * unknown, so we lose our signed bounds 3094 * 2) it's known negative, thus the unsigned bounds capture the 3095 * signed bounds 3096 * 3) the signed bounds cross zero, so they tell us nothing 3097 * about the result 3098 * If the value in dst_reg is known nonnegative, then again the 3099 * unsigned bounts capture the signed bounds. 3100 * Thus, in all cases it suffices to blow away our signed bounds 3101 * and rely on inferring new ones from the unsigned bounds and 3102 * var_off of the result. 3103 */ 3104 dst_reg->smin_value = S64_MIN; 3105 dst_reg->smax_value = S64_MAX; 3106 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3107 dst_reg->umin_value >>= umax_val; 3108 dst_reg->umax_value >>= umin_val; 3109 /* We may learn something more from the var_off */ 3110 __update_reg_bounds(dst_reg); 3111 break; 3112 case BPF_ARSH: 3113 if (umax_val >= insn_bitness) { 3114 /* Shifts greater than 31 or 63 are undefined. 3115 * This includes shifts by a negative number. 3116 */ 3117 mark_reg_unknown(env, regs, insn->dst_reg); 3118 break; 3119 } 3120 3121 /* Upon reaching here, src_known is true and 3122 * umax_val is equal to umin_val. 3123 */ 3124 dst_reg->smin_value >>= umin_val; 3125 dst_reg->smax_value >>= umin_val; 3126 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3127 3128 /* blow away the dst_reg umin_value/umax_value and rely on 3129 * dst_reg var_off to refine the result. 3130 */ 3131 dst_reg->umin_value = 0; 3132 dst_reg->umax_value = U64_MAX; 3133 __update_reg_bounds(dst_reg); 3134 break; 3135 default: 3136 mark_reg_unknown(env, regs, insn->dst_reg); 3137 break; 3138 } 3139 3140 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3141 /* 32-bit ALU ops are (32,32)->32 */ 3142 coerce_reg_to_size(dst_reg, 4); 3143 } 3144 3145 __reg_deduce_bounds(dst_reg); 3146 __reg_bound_offset(dst_reg); 3147 return 0; 3148 } 3149 3150 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3151 * and var_off. 3152 */ 3153 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3154 struct bpf_insn *insn) 3155 { 3156 struct bpf_verifier_state *vstate = env->cur_state; 3157 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3158 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3159 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3160 u8 opcode = BPF_OP(insn->code); 3161 3162 dst_reg = ®s[insn->dst_reg]; 3163 src_reg = NULL; 3164 if (dst_reg->type != SCALAR_VALUE) 3165 ptr_reg = dst_reg; 3166 if (BPF_SRC(insn->code) == BPF_X) { 3167 src_reg = ®s[insn->src_reg]; 3168 if (src_reg->type != SCALAR_VALUE) { 3169 if (dst_reg->type != SCALAR_VALUE) { 3170 /* Combining two pointers by any ALU op yields 3171 * an arbitrary scalar. Disallow all math except 3172 * pointer subtraction 3173 */ 3174 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3175 mark_reg_unknown(env, regs, insn->dst_reg); 3176 return 0; 3177 } 3178 verbose(env, "R%d pointer %s pointer prohibited\n", 3179 insn->dst_reg, 3180 bpf_alu_string[opcode >> 4]); 3181 return -EACCES; 3182 } else { 3183 /* scalar += pointer 3184 * This is legal, but we have to reverse our 3185 * src/dest handling in computing the range 3186 */ 3187 return adjust_ptr_min_max_vals(env, insn, 3188 src_reg, dst_reg); 3189 } 3190 } else if (ptr_reg) { 3191 /* pointer += scalar */ 3192 return adjust_ptr_min_max_vals(env, insn, 3193 dst_reg, src_reg); 3194 } 3195 } else { 3196 /* Pretend the src is a reg with a known value, since we only 3197 * need to be able to read from this state. 3198 */ 3199 off_reg.type = SCALAR_VALUE; 3200 __mark_reg_known(&off_reg, insn->imm); 3201 src_reg = &off_reg; 3202 if (ptr_reg) /* pointer += K */ 3203 return adjust_ptr_min_max_vals(env, insn, 3204 ptr_reg, src_reg); 3205 } 3206 3207 /* Got here implies adding two SCALAR_VALUEs */ 3208 if (WARN_ON_ONCE(ptr_reg)) { 3209 print_verifier_state(env, state); 3210 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3211 return -EINVAL; 3212 } 3213 if (WARN_ON(!src_reg)) { 3214 print_verifier_state(env, state); 3215 verbose(env, "verifier internal error: no src_reg\n"); 3216 return -EINVAL; 3217 } 3218 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3219 } 3220 3221 /* check validity of 32-bit and 64-bit arithmetic operations */ 3222 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3223 { 3224 struct bpf_reg_state *regs = cur_regs(env); 3225 u8 opcode = BPF_OP(insn->code); 3226 int err; 3227 3228 if (opcode == BPF_END || opcode == BPF_NEG) { 3229 if (opcode == BPF_NEG) { 3230 if (BPF_SRC(insn->code) != 0 || 3231 insn->src_reg != BPF_REG_0 || 3232 insn->off != 0 || insn->imm != 0) { 3233 verbose(env, "BPF_NEG uses reserved fields\n"); 3234 return -EINVAL; 3235 } 3236 } else { 3237 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3238 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3239 BPF_CLASS(insn->code) == BPF_ALU64) { 3240 verbose(env, "BPF_END uses reserved fields\n"); 3241 return -EINVAL; 3242 } 3243 } 3244 3245 /* check src operand */ 3246 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3247 if (err) 3248 return err; 3249 3250 if (is_pointer_value(env, insn->dst_reg)) { 3251 verbose(env, "R%d pointer arithmetic prohibited\n", 3252 insn->dst_reg); 3253 return -EACCES; 3254 } 3255 3256 /* check dest operand */ 3257 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3258 if (err) 3259 return err; 3260 3261 } else if (opcode == BPF_MOV) { 3262 3263 if (BPF_SRC(insn->code) == BPF_X) { 3264 if (insn->imm != 0 || insn->off != 0) { 3265 verbose(env, "BPF_MOV uses reserved fields\n"); 3266 return -EINVAL; 3267 } 3268 3269 /* check src operand */ 3270 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3271 if (err) 3272 return err; 3273 } else { 3274 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3275 verbose(env, "BPF_MOV uses reserved fields\n"); 3276 return -EINVAL; 3277 } 3278 } 3279 3280 /* check dest operand, mark as required later */ 3281 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3282 if (err) 3283 return err; 3284 3285 if (BPF_SRC(insn->code) == BPF_X) { 3286 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3287 /* case: R1 = R2 3288 * copy register state to dest reg 3289 */ 3290 regs[insn->dst_reg] = regs[insn->src_reg]; 3291 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3292 } else { 3293 /* R1 = (u32) R2 */ 3294 if (is_pointer_value(env, insn->src_reg)) { 3295 verbose(env, 3296 "R%d partial copy of pointer\n", 3297 insn->src_reg); 3298 return -EACCES; 3299 } 3300 mark_reg_unknown(env, regs, insn->dst_reg); 3301 coerce_reg_to_size(®s[insn->dst_reg], 4); 3302 } 3303 } else { 3304 /* case: R = imm 3305 * remember the value we stored into this reg 3306 */ 3307 /* clear any state __mark_reg_known doesn't set */ 3308 mark_reg_unknown(env, regs, insn->dst_reg); 3309 regs[insn->dst_reg].type = SCALAR_VALUE; 3310 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3311 __mark_reg_known(regs + insn->dst_reg, 3312 insn->imm); 3313 } else { 3314 __mark_reg_known(regs + insn->dst_reg, 3315 (u32)insn->imm); 3316 } 3317 } 3318 3319 } else if (opcode > BPF_END) { 3320 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3321 return -EINVAL; 3322 3323 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3324 3325 if (BPF_SRC(insn->code) == BPF_X) { 3326 if (insn->imm != 0 || insn->off != 0) { 3327 verbose(env, "BPF_ALU uses reserved fields\n"); 3328 return -EINVAL; 3329 } 3330 /* check src1 operand */ 3331 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3332 if (err) 3333 return err; 3334 } else { 3335 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3336 verbose(env, "BPF_ALU uses reserved fields\n"); 3337 return -EINVAL; 3338 } 3339 } 3340 3341 /* check src2 operand */ 3342 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3343 if (err) 3344 return err; 3345 3346 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3347 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3348 verbose(env, "div by zero\n"); 3349 return -EINVAL; 3350 } 3351 3352 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3353 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3354 return -EINVAL; 3355 } 3356 3357 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3358 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3359 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3360 3361 if (insn->imm < 0 || insn->imm >= size) { 3362 verbose(env, "invalid shift %d\n", insn->imm); 3363 return -EINVAL; 3364 } 3365 } 3366 3367 /* check dest operand */ 3368 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3369 if (err) 3370 return err; 3371 3372 return adjust_reg_min_max_vals(env, insn); 3373 } 3374 3375 return 0; 3376 } 3377 3378 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3379 struct bpf_reg_state *dst_reg, 3380 enum bpf_reg_type type, 3381 bool range_right_open) 3382 { 3383 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3384 struct bpf_reg_state *regs = state->regs, *reg; 3385 u16 new_range; 3386 int i, j; 3387 3388 if (dst_reg->off < 0 || 3389 (dst_reg->off == 0 && range_right_open)) 3390 /* This doesn't give us any range */ 3391 return; 3392 3393 if (dst_reg->umax_value > MAX_PACKET_OFF || 3394 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3395 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3396 * than pkt_end, but that's because it's also less than pkt. 3397 */ 3398 return; 3399 3400 new_range = dst_reg->off; 3401 if (range_right_open) 3402 new_range--; 3403 3404 /* Examples for register markings: 3405 * 3406 * pkt_data in dst register: 3407 * 3408 * r2 = r3; 3409 * r2 += 8; 3410 * if (r2 > pkt_end) goto <handle exception> 3411 * <access okay> 3412 * 3413 * r2 = r3; 3414 * r2 += 8; 3415 * if (r2 < pkt_end) goto <access okay> 3416 * <handle exception> 3417 * 3418 * Where: 3419 * r2 == dst_reg, pkt_end == src_reg 3420 * r2=pkt(id=n,off=8,r=0) 3421 * r3=pkt(id=n,off=0,r=0) 3422 * 3423 * pkt_data in src register: 3424 * 3425 * r2 = r3; 3426 * r2 += 8; 3427 * if (pkt_end >= r2) goto <access okay> 3428 * <handle exception> 3429 * 3430 * r2 = r3; 3431 * r2 += 8; 3432 * if (pkt_end <= r2) goto <handle exception> 3433 * <access okay> 3434 * 3435 * Where: 3436 * pkt_end == dst_reg, r2 == src_reg 3437 * r2=pkt(id=n,off=8,r=0) 3438 * r3=pkt(id=n,off=0,r=0) 3439 * 3440 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3441 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3442 * and [r3, r3 + 8-1) respectively is safe to access depending on 3443 * the check. 3444 */ 3445 3446 /* If our ids match, then we must have the same max_value. And we 3447 * don't care about the other reg's fixed offset, since if it's too big 3448 * the range won't allow anything. 3449 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3450 */ 3451 for (i = 0; i < MAX_BPF_REG; i++) 3452 if (regs[i].type == type && regs[i].id == dst_reg->id) 3453 /* keep the maximum range already checked */ 3454 regs[i].range = max(regs[i].range, new_range); 3455 3456 for (j = 0; j <= vstate->curframe; j++) { 3457 state = vstate->frame[j]; 3458 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3459 if (state->stack[i].slot_type[0] != STACK_SPILL) 3460 continue; 3461 reg = &state->stack[i].spilled_ptr; 3462 if (reg->type == type && reg->id == dst_reg->id) 3463 reg->range = max(reg->range, new_range); 3464 } 3465 } 3466 } 3467 3468 /* Adjusts the register min/max values in the case that the dst_reg is the 3469 * variable register that we are working on, and src_reg is a constant or we're 3470 * simply doing a BPF_K check. 3471 * In JEQ/JNE cases we also adjust the var_off values. 3472 */ 3473 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3474 struct bpf_reg_state *false_reg, u64 val, 3475 u8 opcode) 3476 { 3477 /* If the dst_reg is a pointer, we can't learn anything about its 3478 * variable offset from the compare (unless src_reg were a pointer into 3479 * the same object, but we don't bother with that. 3480 * Since false_reg and true_reg have the same type by construction, we 3481 * only need to check one of them for pointerness. 3482 */ 3483 if (__is_pointer_value(false, false_reg)) 3484 return; 3485 3486 switch (opcode) { 3487 case BPF_JEQ: 3488 /* If this is false then we know nothing Jon Snow, but if it is 3489 * true then we know for sure. 3490 */ 3491 __mark_reg_known(true_reg, val); 3492 break; 3493 case BPF_JNE: 3494 /* If this is true we know nothing Jon Snow, but if it is false 3495 * we know the value for sure; 3496 */ 3497 __mark_reg_known(false_reg, val); 3498 break; 3499 case BPF_JGT: 3500 false_reg->umax_value = min(false_reg->umax_value, val); 3501 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3502 break; 3503 case BPF_JSGT: 3504 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3505 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3506 break; 3507 case BPF_JLT: 3508 false_reg->umin_value = max(false_reg->umin_value, val); 3509 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3510 break; 3511 case BPF_JSLT: 3512 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3513 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3514 break; 3515 case BPF_JGE: 3516 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3517 true_reg->umin_value = max(true_reg->umin_value, val); 3518 break; 3519 case BPF_JSGE: 3520 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3521 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3522 break; 3523 case BPF_JLE: 3524 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3525 true_reg->umax_value = min(true_reg->umax_value, val); 3526 break; 3527 case BPF_JSLE: 3528 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3529 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3530 break; 3531 default: 3532 break; 3533 } 3534 3535 __reg_deduce_bounds(false_reg); 3536 __reg_deduce_bounds(true_reg); 3537 /* We might have learned some bits from the bounds. */ 3538 __reg_bound_offset(false_reg); 3539 __reg_bound_offset(true_reg); 3540 /* Intersecting with the old var_off might have improved our bounds 3541 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3542 * then new var_off is (0; 0x7f...fc) which improves our umax. 3543 */ 3544 __update_reg_bounds(false_reg); 3545 __update_reg_bounds(true_reg); 3546 } 3547 3548 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3549 * the variable reg. 3550 */ 3551 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3552 struct bpf_reg_state *false_reg, u64 val, 3553 u8 opcode) 3554 { 3555 if (__is_pointer_value(false, false_reg)) 3556 return; 3557 3558 switch (opcode) { 3559 case BPF_JEQ: 3560 /* If this is false then we know nothing Jon Snow, but if it is 3561 * true then we know for sure. 3562 */ 3563 __mark_reg_known(true_reg, val); 3564 break; 3565 case BPF_JNE: 3566 /* If this is true we know nothing Jon Snow, but if it is false 3567 * we know the value for sure; 3568 */ 3569 __mark_reg_known(false_reg, val); 3570 break; 3571 case BPF_JGT: 3572 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3573 false_reg->umin_value = max(false_reg->umin_value, val); 3574 break; 3575 case BPF_JSGT: 3576 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3577 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3578 break; 3579 case BPF_JLT: 3580 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3581 false_reg->umax_value = min(false_reg->umax_value, val); 3582 break; 3583 case BPF_JSLT: 3584 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3585 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3586 break; 3587 case BPF_JGE: 3588 true_reg->umax_value = min(true_reg->umax_value, val); 3589 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3590 break; 3591 case BPF_JSGE: 3592 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3593 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3594 break; 3595 case BPF_JLE: 3596 true_reg->umin_value = max(true_reg->umin_value, val); 3597 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3598 break; 3599 case BPF_JSLE: 3600 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3601 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3602 break; 3603 default: 3604 break; 3605 } 3606 3607 __reg_deduce_bounds(false_reg); 3608 __reg_deduce_bounds(true_reg); 3609 /* We might have learned some bits from the bounds. */ 3610 __reg_bound_offset(false_reg); 3611 __reg_bound_offset(true_reg); 3612 /* Intersecting with the old var_off might have improved our bounds 3613 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3614 * then new var_off is (0; 0x7f...fc) which improves our umax. 3615 */ 3616 __update_reg_bounds(false_reg); 3617 __update_reg_bounds(true_reg); 3618 } 3619 3620 /* Regs are known to be equal, so intersect their min/max/var_off */ 3621 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3622 struct bpf_reg_state *dst_reg) 3623 { 3624 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3625 dst_reg->umin_value); 3626 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3627 dst_reg->umax_value); 3628 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3629 dst_reg->smin_value); 3630 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3631 dst_reg->smax_value); 3632 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3633 dst_reg->var_off); 3634 /* We might have learned new bounds from the var_off. */ 3635 __update_reg_bounds(src_reg); 3636 __update_reg_bounds(dst_reg); 3637 /* We might have learned something about the sign bit. */ 3638 __reg_deduce_bounds(src_reg); 3639 __reg_deduce_bounds(dst_reg); 3640 /* We might have learned some bits from the bounds. */ 3641 __reg_bound_offset(src_reg); 3642 __reg_bound_offset(dst_reg); 3643 /* Intersecting with the old var_off might have improved our bounds 3644 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3645 * then new var_off is (0; 0x7f...fc) which improves our umax. 3646 */ 3647 __update_reg_bounds(src_reg); 3648 __update_reg_bounds(dst_reg); 3649 } 3650 3651 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3652 struct bpf_reg_state *true_dst, 3653 struct bpf_reg_state *false_src, 3654 struct bpf_reg_state *false_dst, 3655 u8 opcode) 3656 { 3657 switch (opcode) { 3658 case BPF_JEQ: 3659 __reg_combine_min_max(true_src, true_dst); 3660 break; 3661 case BPF_JNE: 3662 __reg_combine_min_max(false_src, false_dst); 3663 break; 3664 } 3665 } 3666 3667 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3668 bool is_null) 3669 { 3670 struct bpf_reg_state *reg = ®s[regno]; 3671 3672 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3673 /* Old offset (both fixed and variable parts) should 3674 * have been known-zero, because we don't allow pointer 3675 * arithmetic on pointers that might be NULL. 3676 */ 3677 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3678 !tnum_equals_const(reg->var_off, 0) || 3679 reg->off)) { 3680 __mark_reg_known_zero(reg); 3681 reg->off = 0; 3682 } 3683 if (is_null) { 3684 reg->type = SCALAR_VALUE; 3685 } else if (reg->map_ptr->inner_map_meta) { 3686 reg->type = CONST_PTR_TO_MAP; 3687 reg->map_ptr = reg->map_ptr->inner_map_meta; 3688 } else { 3689 reg->type = PTR_TO_MAP_VALUE; 3690 } 3691 /* We don't need id from this point onwards anymore, thus we 3692 * should better reset it, so that state pruning has chances 3693 * to take effect. 3694 */ 3695 reg->id = 0; 3696 } 3697 } 3698 3699 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3700 * be folded together at some point. 3701 */ 3702 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3703 bool is_null) 3704 { 3705 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3706 struct bpf_reg_state *regs = state->regs; 3707 u32 id = regs[regno].id; 3708 int i, j; 3709 3710 for (i = 0; i < MAX_BPF_REG; i++) 3711 mark_map_reg(regs, i, id, is_null); 3712 3713 for (j = 0; j <= vstate->curframe; j++) { 3714 state = vstate->frame[j]; 3715 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3716 if (state->stack[i].slot_type[0] != STACK_SPILL) 3717 continue; 3718 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3719 } 3720 } 3721 } 3722 3723 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3724 struct bpf_reg_state *dst_reg, 3725 struct bpf_reg_state *src_reg, 3726 struct bpf_verifier_state *this_branch, 3727 struct bpf_verifier_state *other_branch) 3728 { 3729 if (BPF_SRC(insn->code) != BPF_X) 3730 return false; 3731 3732 switch (BPF_OP(insn->code)) { 3733 case BPF_JGT: 3734 if ((dst_reg->type == PTR_TO_PACKET && 3735 src_reg->type == PTR_TO_PACKET_END) || 3736 (dst_reg->type == PTR_TO_PACKET_META && 3737 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3738 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3739 find_good_pkt_pointers(this_branch, dst_reg, 3740 dst_reg->type, false); 3741 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3742 src_reg->type == PTR_TO_PACKET) || 3743 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3744 src_reg->type == PTR_TO_PACKET_META)) { 3745 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3746 find_good_pkt_pointers(other_branch, src_reg, 3747 src_reg->type, true); 3748 } else { 3749 return false; 3750 } 3751 break; 3752 case BPF_JLT: 3753 if ((dst_reg->type == PTR_TO_PACKET && 3754 src_reg->type == PTR_TO_PACKET_END) || 3755 (dst_reg->type == PTR_TO_PACKET_META && 3756 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3757 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3758 find_good_pkt_pointers(other_branch, dst_reg, 3759 dst_reg->type, true); 3760 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3761 src_reg->type == PTR_TO_PACKET) || 3762 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3763 src_reg->type == PTR_TO_PACKET_META)) { 3764 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3765 find_good_pkt_pointers(this_branch, src_reg, 3766 src_reg->type, false); 3767 } else { 3768 return false; 3769 } 3770 break; 3771 case BPF_JGE: 3772 if ((dst_reg->type == PTR_TO_PACKET && 3773 src_reg->type == PTR_TO_PACKET_END) || 3774 (dst_reg->type == PTR_TO_PACKET_META && 3775 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3776 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3777 find_good_pkt_pointers(this_branch, dst_reg, 3778 dst_reg->type, true); 3779 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3780 src_reg->type == PTR_TO_PACKET) || 3781 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3782 src_reg->type == PTR_TO_PACKET_META)) { 3783 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3784 find_good_pkt_pointers(other_branch, src_reg, 3785 src_reg->type, false); 3786 } else { 3787 return false; 3788 } 3789 break; 3790 case BPF_JLE: 3791 if ((dst_reg->type == PTR_TO_PACKET && 3792 src_reg->type == PTR_TO_PACKET_END) || 3793 (dst_reg->type == PTR_TO_PACKET_META && 3794 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3795 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3796 find_good_pkt_pointers(other_branch, dst_reg, 3797 dst_reg->type, false); 3798 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3799 src_reg->type == PTR_TO_PACKET) || 3800 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3801 src_reg->type == PTR_TO_PACKET_META)) { 3802 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3803 find_good_pkt_pointers(this_branch, src_reg, 3804 src_reg->type, true); 3805 } else { 3806 return false; 3807 } 3808 break; 3809 default: 3810 return false; 3811 } 3812 3813 return true; 3814 } 3815 3816 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3817 struct bpf_insn *insn, int *insn_idx) 3818 { 3819 struct bpf_verifier_state *this_branch = env->cur_state; 3820 struct bpf_verifier_state *other_branch; 3821 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3822 struct bpf_reg_state *dst_reg, *other_branch_regs; 3823 u8 opcode = BPF_OP(insn->code); 3824 int err; 3825 3826 if (opcode > BPF_JSLE) { 3827 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3828 return -EINVAL; 3829 } 3830 3831 if (BPF_SRC(insn->code) == BPF_X) { 3832 if (insn->imm != 0) { 3833 verbose(env, "BPF_JMP uses reserved fields\n"); 3834 return -EINVAL; 3835 } 3836 3837 /* check src1 operand */ 3838 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3839 if (err) 3840 return err; 3841 3842 if (is_pointer_value(env, insn->src_reg)) { 3843 verbose(env, "R%d pointer comparison prohibited\n", 3844 insn->src_reg); 3845 return -EACCES; 3846 } 3847 } else { 3848 if (insn->src_reg != BPF_REG_0) { 3849 verbose(env, "BPF_JMP uses reserved fields\n"); 3850 return -EINVAL; 3851 } 3852 } 3853 3854 /* check src2 operand */ 3855 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3856 if (err) 3857 return err; 3858 3859 dst_reg = ®s[insn->dst_reg]; 3860 3861 /* detect if R == 0 where R was initialized to zero earlier */ 3862 if (BPF_SRC(insn->code) == BPF_K && 3863 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3864 dst_reg->type == SCALAR_VALUE && 3865 tnum_is_const(dst_reg->var_off)) { 3866 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3867 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3868 /* if (imm == imm) goto pc+off; 3869 * only follow the goto, ignore fall-through 3870 */ 3871 *insn_idx += insn->off; 3872 return 0; 3873 } else { 3874 /* if (imm != imm) goto pc+off; 3875 * only follow fall-through branch, since 3876 * that's where the program will go 3877 */ 3878 return 0; 3879 } 3880 } 3881 3882 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3883 if (!other_branch) 3884 return -EFAULT; 3885 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3886 3887 /* detect if we are comparing against a constant value so we can adjust 3888 * our min/max values for our dst register. 3889 * this is only legit if both are scalars (or pointers to the same 3890 * object, I suppose, but we don't support that right now), because 3891 * otherwise the different base pointers mean the offsets aren't 3892 * comparable. 3893 */ 3894 if (BPF_SRC(insn->code) == BPF_X) { 3895 if (dst_reg->type == SCALAR_VALUE && 3896 regs[insn->src_reg].type == SCALAR_VALUE) { 3897 if (tnum_is_const(regs[insn->src_reg].var_off)) 3898 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3899 dst_reg, regs[insn->src_reg].var_off.value, 3900 opcode); 3901 else if (tnum_is_const(dst_reg->var_off)) 3902 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3903 ®s[insn->src_reg], 3904 dst_reg->var_off.value, opcode); 3905 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3906 /* Comparing for equality, we can combine knowledge */ 3907 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3908 &other_branch_regs[insn->dst_reg], 3909 ®s[insn->src_reg], 3910 ®s[insn->dst_reg], opcode); 3911 } 3912 } else if (dst_reg->type == SCALAR_VALUE) { 3913 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3914 dst_reg, insn->imm, opcode); 3915 } 3916 3917 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3918 if (BPF_SRC(insn->code) == BPF_K && 3919 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3920 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3921 /* Mark all identical map registers in each branch as either 3922 * safe or unknown depending R == 0 or R != 0 conditional. 3923 */ 3924 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3925 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3926 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3927 this_branch, other_branch) && 3928 is_pointer_value(env, insn->dst_reg)) { 3929 verbose(env, "R%d pointer comparison prohibited\n", 3930 insn->dst_reg); 3931 return -EACCES; 3932 } 3933 if (env->log.level) 3934 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3935 return 0; 3936 } 3937 3938 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3939 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3940 { 3941 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3942 3943 return (struct bpf_map *) (unsigned long) imm64; 3944 } 3945 3946 /* verify BPF_LD_IMM64 instruction */ 3947 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3948 { 3949 struct bpf_reg_state *regs = cur_regs(env); 3950 int err; 3951 3952 if (BPF_SIZE(insn->code) != BPF_DW) { 3953 verbose(env, "invalid BPF_LD_IMM insn\n"); 3954 return -EINVAL; 3955 } 3956 if (insn->off != 0) { 3957 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3958 return -EINVAL; 3959 } 3960 3961 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3962 if (err) 3963 return err; 3964 3965 if (insn->src_reg == 0) { 3966 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3967 3968 regs[insn->dst_reg].type = SCALAR_VALUE; 3969 __mark_reg_known(®s[insn->dst_reg], imm); 3970 return 0; 3971 } 3972 3973 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3974 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3975 3976 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3977 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3978 return 0; 3979 } 3980 3981 static bool may_access_skb(enum bpf_prog_type type) 3982 { 3983 switch (type) { 3984 case BPF_PROG_TYPE_SOCKET_FILTER: 3985 case BPF_PROG_TYPE_SCHED_CLS: 3986 case BPF_PROG_TYPE_SCHED_ACT: 3987 return true; 3988 default: 3989 return false; 3990 } 3991 } 3992 3993 /* verify safety of LD_ABS|LD_IND instructions: 3994 * - they can only appear in the programs where ctx == skb 3995 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3996 * preserve R6-R9, and store return value into R0 3997 * 3998 * Implicit input: 3999 * ctx == skb == R6 == CTX 4000 * 4001 * Explicit input: 4002 * SRC == any register 4003 * IMM == 32-bit immediate 4004 * 4005 * Output: 4006 * R0 - 8/16/32-bit skb data converted to cpu endianness 4007 */ 4008 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4009 { 4010 struct bpf_reg_state *regs = cur_regs(env); 4011 u8 mode = BPF_MODE(insn->code); 4012 int i, err; 4013 4014 if (!may_access_skb(env->prog->type)) { 4015 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4016 return -EINVAL; 4017 } 4018 4019 if (!env->ops->gen_ld_abs) { 4020 verbose(env, "bpf verifier is misconfigured\n"); 4021 return -EINVAL; 4022 } 4023 4024 if (env->subprog_cnt > 1) { 4025 /* when program has LD_ABS insn JITs and interpreter assume 4026 * that r1 == ctx == skb which is not the case for callees 4027 * that can have arbitrary arguments. It's problematic 4028 * for main prog as well since JITs would need to analyze 4029 * all functions in order to make proper register save/restore 4030 * decisions in the main prog. Hence disallow LD_ABS with calls 4031 */ 4032 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4033 return -EINVAL; 4034 } 4035 4036 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4037 BPF_SIZE(insn->code) == BPF_DW || 4038 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4039 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4040 return -EINVAL; 4041 } 4042 4043 /* check whether implicit source operand (register R6) is readable */ 4044 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4045 if (err) 4046 return err; 4047 4048 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4049 verbose(env, 4050 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4051 return -EINVAL; 4052 } 4053 4054 if (mode == BPF_IND) { 4055 /* check explicit source operand */ 4056 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4057 if (err) 4058 return err; 4059 } 4060 4061 /* reset caller saved regs to unreadable */ 4062 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4063 mark_reg_not_init(env, regs, caller_saved[i]); 4064 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4065 } 4066 4067 /* mark destination R0 register as readable, since it contains 4068 * the value fetched from the packet. 4069 * Already marked as written above. 4070 */ 4071 mark_reg_unknown(env, regs, BPF_REG_0); 4072 return 0; 4073 } 4074 4075 static int check_return_code(struct bpf_verifier_env *env) 4076 { 4077 struct bpf_reg_state *reg; 4078 struct tnum range = tnum_range(0, 1); 4079 4080 switch (env->prog->type) { 4081 case BPF_PROG_TYPE_CGROUP_SKB: 4082 case BPF_PROG_TYPE_CGROUP_SOCK: 4083 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4084 case BPF_PROG_TYPE_SOCK_OPS: 4085 case BPF_PROG_TYPE_CGROUP_DEVICE: 4086 break; 4087 default: 4088 return 0; 4089 } 4090 4091 reg = cur_regs(env) + BPF_REG_0; 4092 if (reg->type != SCALAR_VALUE) { 4093 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4094 reg_type_str[reg->type]); 4095 return -EINVAL; 4096 } 4097 4098 if (!tnum_in(range, reg->var_off)) { 4099 verbose(env, "At program exit the register R0 "); 4100 if (!tnum_is_unknown(reg->var_off)) { 4101 char tn_buf[48]; 4102 4103 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4104 verbose(env, "has value %s", tn_buf); 4105 } else { 4106 verbose(env, "has unknown scalar value"); 4107 } 4108 verbose(env, " should have been 0 or 1\n"); 4109 return -EINVAL; 4110 } 4111 return 0; 4112 } 4113 4114 /* non-recursive DFS pseudo code 4115 * 1 procedure DFS-iterative(G,v): 4116 * 2 label v as discovered 4117 * 3 let S be a stack 4118 * 4 S.push(v) 4119 * 5 while S is not empty 4120 * 6 t <- S.pop() 4121 * 7 if t is what we're looking for: 4122 * 8 return t 4123 * 9 for all edges e in G.adjacentEdges(t) do 4124 * 10 if edge e is already labelled 4125 * 11 continue with the next edge 4126 * 12 w <- G.adjacentVertex(t,e) 4127 * 13 if vertex w is not discovered and not explored 4128 * 14 label e as tree-edge 4129 * 15 label w as discovered 4130 * 16 S.push(w) 4131 * 17 continue at 5 4132 * 18 else if vertex w is discovered 4133 * 19 label e as back-edge 4134 * 20 else 4135 * 21 // vertex w is explored 4136 * 22 label e as forward- or cross-edge 4137 * 23 label t as explored 4138 * 24 S.pop() 4139 * 4140 * convention: 4141 * 0x10 - discovered 4142 * 0x11 - discovered and fall-through edge labelled 4143 * 0x12 - discovered and fall-through and branch edges labelled 4144 * 0x20 - explored 4145 */ 4146 4147 enum { 4148 DISCOVERED = 0x10, 4149 EXPLORED = 0x20, 4150 FALLTHROUGH = 1, 4151 BRANCH = 2, 4152 }; 4153 4154 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4155 4156 static int *insn_stack; /* stack of insns to process */ 4157 static int cur_stack; /* current stack index */ 4158 static int *insn_state; 4159 4160 /* t, w, e - match pseudo-code above: 4161 * t - index of current instruction 4162 * w - next instruction 4163 * e - edge 4164 */ 4165 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4166 { 4167 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4168 return 0; 4169 4170 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4171 return 0; 4172 4173 if (w < 0 || w >= env->prog->len) { 4174 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4175 return -EINVAL; 4176 } 4177 4178 if (e == BRANCH) 4179 /* mark branch target for state pruning */ 4180 env->explored_states[w] = STATE_LIST_MARK; 4181 4182 if (insn_state[w] == 0) { 4183 /* tree-edge */ 4184 insn_state[t] = DISCOVERED | e; 4185 insn_state[w] = DISCOVERED; 4186 if (cur_stack >= env->prog->len) 4187 return -E2BIG; 4188 insn_stack[cur_stack++] = w; 4189 return 1; 4190 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4191 verbose(env, "back-edge from insn %d to %d\n", t, w); 4192 return -EINVAL; 4193 } else if (insn_state[w] == EXPLORED) { 4194 /* forward- or cross-edge */ 4195 insn_state[t] = DISCOVERED | e; 4196 } else { 4197 verbose(env, "insn state internal bug\n"); 4198 return -EFAULT; 4199 } 4200 return 0; 4201 } 4202 4203 /* non-recursive depth-first-search to detect loops in BPF program 4204 * loop == back-edge in directed graph 4205 */ 4206 static int check_cfg(struct bpf_verifier_env *env) 4207 { 4208 struct bpf_insn *insns = env->prog->insnsi; 4209 int insn_cnt = env->prog->len; 4210 int ret = 0; 4211 int i, t; 4212 4213 ret = check_subprogs(env); 4214 if (ret < 0) 4215 return ret; 4216 4217 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4218 if (!insn_state) 4219 return -ENOMEM; 4220 4221 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4222 if (!insn_stack) { 4223 kfree(insn_state); 4224 return -ENOMEM; 4225 } 4226 4227 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4228 insn_stack[0] = 0; /* 0 is the first instruction */ 4229 cur_stack = 1; 4230 4231 peek_stack: 4232 if (cur_stack == 0) 4233 goto check_state; 4234 t = insn_stack[cur_stack - 1]; 4235 4236 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4237 u8 opcode = BPF_OP(insns[t].code); 4238 4239 if (opcode == BPF_EXIT) { 4240 goto mark_explored; 4241 } else if (opcode == BPF_CALL) { 4242 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4243 if (ret == 1) 4244 goto peek_stack; 4245 else if (ret < 0) 4246 goto err_free; 4247 if (t + 1 < insn_cnt) 4248 env->explored_states[t + 1] = STATE_LIST_MARK; 4249 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4250 env->explored_states[t] = STATE_LIST_MARK; 4251 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4252 if (ret == 1) 4253 goto peek_stack; 4254 else if (ret < 0) 4255 goto err_free; 4256 } 4257 } else if (opcode == BPF_JA) { 4258 if (BPF_SRC(insns[t].code) != BPF_K) { 4259 ret = -EINVAL; 4260 goto err_free; 4261 } 4262 /* unconditional jump with single edge */ 4263 ret = push_insn(t, t + insns[t].off + 1, 4264 FALLTHROUGH, env); 4265 if (ret == 1) 4266 goto peek_stack; 4267 else if (ret < 0) 4268 goto err_free; 4269 /* tell verifier to check for equivalent states 4270 * after every call and jump 4271 */ 4272 if (t + 1 < insn_cnt) 4273 env->explored_states[t + 1] = STATE_LIST_MARK; 4274 } else { 4275 /* conditional jump with two edges */ 4276 env->explored_states[t] = STATE_LIST_MARK; 4277 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4278 if (ret == 1) 4279 goto peek_stack; 4280 else if (ret < 0) 4281 goto err_free; 4282 4283 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4284 if (ret == 1) 4285 goto peek_stack; 4286 else if (ret < 0) 4287 goto err_free; 4288 } 4289 } else { 4290 /* all other non-branch instructions with single 4291 * fall-through edge 4292 */ 4293 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4294 if (ret == 1) 4295 goto peek_stack; 4296 else if (ret < 0) 4297 goto err_free; 4298 } 4299 4300 mark_explored: 4301 insn_state[t] = EXPLORED; 4302 if (cur_stack-- <= 0) { 4303 verbose(env, "pop stack internal bug\n"); 4304 ret = -EFAULT; 4305 goto err_free; 4306 } 4307 goto peek_stack; 4308 4309 check_state: 4310 for (i = 0; i < insn_cnt; i++) { 4311 if (insn_state[i] != EXPLORED) { 4312 verbose(env, "unreachable insn %d\n", i); 4313 ret = -EINVAL; 4314 goto err_free; 4315 } 4316 } 4317 ret = 0; /* cfg looks good */ 4318 4319 err_free: 4320 kfree(insn_state); 4321 kfree(insn_stack); 4322 return ret; 4323 } 4324 4325 /* check %cur's range satisfies %old's */ 4326 static bool range_within(struct bpf_reg_state *old, 4327 struct bpf_reg_state *cur) 4328 { 4329 return old->umin_value <= cur->umin_value && 4330 old->umax_value >= cur->umax_value && 4331 old->smin_value <= cur->smin_value && 4332 old->smax_value >= cur->smax_value; 4333 } 4334 4335 /* Maximum number of register states that can exist at once */ 4336 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4337 struct idpair { 4338 u32 old; 4339 u32 cur; 4340 }; 4341 4342 /* If in the old state two registers had the same id, then they need to have 4343 * the same id in the new state as well. But that id could be different from 4344 * the old state, so we need to track the mapping from old to new ids. 4345 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4346 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4347 * regs with a different old id could still have new id 9, we don't care about 4348 * that. 4349 * So we look through our idmap to see if this old id has been seen before. If 4350 * so, we require the new id to match; otherwise, we add the id pair to the map. 4351 */ 4352 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4353 { 4354 unsigned int i; 4355 4356 for (i = 0; i < ID_MAP_SIZE; i++) { 4357 if (!idmap[i].old) { 4358 /* Reached an empty slot; haven't seen this id before */ 4359 idmap[i].old = old_id; 4360 idmap[i].cur = cur_id; 4361 return true; 4362 } 4363 if (idmap[i].old == old_id) 4364 return idmap[i].cur == cur_id; 4365 } 4366 /* We ran out of idmap slots, which should be impossible */ 4367 WARN_ON_ONCE(1); 4368 return false; 4369 } 4370 4371 /* Returns true if (rold safe implies rcur safe) */ 4372 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4373 struct idpair *idmap) 4374 { 4375 bool equal; 4376 4377 if (!(rold->live & REG_LIVE_READ)) 4378 /* explored state didn't use this */ 4379 return true; 4380 4381 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4382 4383 if (rold->type == PTR_TO_STACK) 4384 /* two stack pointers are equal only if they're pointing to 4385 * the same stack frame, since fp-8 in foo != fp-8 in bar 4386 */ 4387 return equal && rold->frameno == rcur->frameno; 4388 4389 if (equal) 4390 return true; 4391 4392 if (rold->type == NOT_INIT) 4393 /* explored state can't have used this */ 4394 return true; 4395 if (rcur->type == NOT_INIT) 4396 return false; 4397 switch (rold->type) { 4398 case SCALAR_VALUE: 4399 if (rcur->type == SCALAR_VALUE) { 4400 /* new val must satisfy old val knowledge */ 4401 return range_within(rold, rcur) && 4402 tnum_in(rold->var_off, rcur->var_off); 4403 } else { 4404 /* We're trying to use a pointer in place of a scalar. 4405 * Even if the scalar was unbounded, this could lead to 4406 * pointer leaks because scalars are allowed to leak 4407 * while pointers are not. We could make this safe in 4408 * special cases if root is calling us, but it's 4409 * probably not worth the hassle. 4410 */ 4411 return false; 4412 } 4413 case PTR_TO_MAP_VALUE: 4414 /* If the new min/max/var_off satisfy the old ones and 4415 * everything else matches, we are OK. 4416 * We don't care about the 'id' value, because nothing 4417 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4418 */ 4419 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4420 range_within(rold, rcur) && 4421 tnum_in(rold->var_off, rcur->var_off); 4422 case PTR_TO_MAP_VALUE_OR_NULL: 4423 /* a PTR_TO_MAP_VALUE could be safe to use as a 4424 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4425 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4426 * checked, doing so could have affected others with the same 4427 * id, and we can't check for that because we lost the id when 4428 * we converted to a PTR_TO_MAP_VALUE. 4429 */ 4430 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4431 return false; 4432 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4433 return false; 4434 /* Check our ids match any regs they're supposed to */ 4435 return check_ids(rold->id, rcur->id, idmap); 4436 case PTR_TO_PACKET_META: 4437 case PTR_TO_PACKET: 4438 if (rcur->type != rold->type) 4439 return false; 4440 /* We must have at least as much range as the old ptr 4441 * did, so that any accesses which were safe before are 4442 * still safe. This is true even if old range < old off, 4443 * since someone could have accessed through (ptr - k), or 4444 * even done ptr -= k in a register, to get a safe access. 4445 */ 4446 if (rold->range > rcur->range) 4447 return false; 4448 /* If the offsets don't match, we can't trust our alignment; 4449 * nor can we be sure that we won't fall out of range. 4450 */ 4451 if (rold->off != rcur->off) 4452 return false; 4453 /* id relations must be preserved */ 4454 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4455 return false; 4456 /* new val must satisfy old val knowledge */ 4457 return range_within(rold, rcur) && 4458 tnum_in(rold->var_off, rcur->var_off); 4459 case PTR_TO_CTX: 4460 case CONST_PTR_TO_MAP: 4461 case PTR_TO_PACKET_END: 4462 /* Only valid matches are exact, which memcmp() above 4463 * would have accepted 4464 */ 4465 default: 4466 /* Don't know what's going on, just say it's not safe */ 4467 return false; 4468 } 4469 4470 /* Shouldn't get here; if we do, say it's not safe */ 4471 WARN_ON_ONCE(1); 4472 return false; 4473 } 4474 4475 static bool stacksafe(struct bpf_func_state *old, 4476 struct bpf_func_state *cur, 4477 struct idpair *idmap) 4478 { 4479 int i, spi; 4480 4481 /* if explored stack has more populated slots than current stack 4482 * such stacks are not equivalent 4483 */ 4484 if (old->allocated_stack > cur->allocated_stack) 4485 return false; 4486 4487 /* walk slots of the explored stack and ignore any additional 4488 * slots in the current stack, since explored(safe) state 4489 * didn't use them 4490 */ 4491 for (i = 0; i < old->allocated_stack; i++) { 4492 spi = i / BPF_REG_SIZE; 4493 4494 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4495 /* explored state didn't use this */ 4496 continue; 4497 4498 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4499 continue; 4500 /* if old state was safe with misc data in the stack 4501 * it will be safe with zero-initialized stack. 4502 * The opposite is not true 4503 */ 4504 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4505 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4506 continue; 4507 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4508 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4509 /* Ex: old explored (safe) state has STACK_SPILL in 4510 * this stack slot, but current has has STACK_MISC -> 4511 * this verifier states are not equivalent, 4512 * return false to continue verification of this path 4513 */ 4514 return false; 4515 if (i % BPF_REG_SIZE) 4516 continue; 4517 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4518 continue; 4519 if (!regsafe(&old->stack[spi].spilled_ptr, 4520 &cur->stack[spi].spilled_ptr, 4521 idmap)) 4522 /* when explored and current stack slot are both storing 4523 * spilled registers, check that stored pointers types 4524 * are the same as well. 4525 * Ex: explored safe path could have stored 4526 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4527 * but current path has stored: 4528 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4529 * such verifier states are not equivalent. 4530 * return false to continue verification of this path 4531 */ 4532 return false; 4533 } 4534 return true; 4535 } 4536 4537 /* compare two verifier states 4538 * 4539 * all states stored in state_list are known to be valid, since 4540 * verifier reached 'bpf_exit' instruction through them 4541 * 4542 * this function is called when verifier exploring different branches of 4543 * execution popped from the state stack. If it sees an old state that has 4544 * more strict register state and more strict stack state then this execution 4545 * branch doesn't need to be explored further, since verifier already 4546 * concluded that more strict state leads to valid finish. 4547 * 4548 * Therefore two states are equivalent if register state is more conservative 4549 * and explored stack state is more conservative than the current one. 4550 * Example: 4551 * explored current 4552 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4553 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4554 * 4555 * In other words if current stack state (one being explored) has more 4556 * valid slots than old one that already passed validation, it means 4557 * the verifier can stop exploring and conclude that current state is valid too 4558 * 4559 * Similarly with registers. If explored state has register type as invalid 4560 * whereas register type in current state is meaningful, it means that 4561 * the current state will reach 'bpf_exit' instruction safely 4562 */ 4563 static bool func_states_equal(struct bpf_func_state *old, 4564 struct bpf_func_state *cur) 4565 { 4566 struct idpair *idmap; 4567 bool ret = false; 4568 int i; 4569 4570 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4571 /* If we failed to allocate the idmap, just say it's not safe */ 4572 if (!idmap) 4573 return false; 4574 4575 for (i = 0; i < MAX_BPF_REG; i++) { 4576 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4577 goto out_free; 4578 } 4579 4580 if (!stacksafe(old, cur, idmap)) 4581 goto out_free; 4582 ret = true; 4583 out_free: 4584 kfree(idmap); 4585 return ret; 4586 } 4587 4588 static bool states_equal(struct bpf_verifier_env *env, 4589 struct bpf_verifier_state *old, 4590 struct bpf_verifier_state *cur) 4591 { 4592 int i; 4593 4594 if (old->curframe != cur->curframe) 4595 return false; 4596 4597 /* for states to be equal callsites have to be the same 4598 * and all frame states need to be equivalent 4599 */ 4600 for (i = 0; i <= old->curframe; i++) { 4601 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4602 return false; 4603 if (!func_states_equal(old->frame[i], cur->frame[i])) 4604 return false; 4605 } 4606 return true; 4607 } 4608 4609 /* A write screens off any subsequent reads; but write marks come from the 4610 * straight-line code between a state and its parent. When we arrive at an 4611 * equivalent state (jump target or such) we didn't arrive by the straight-line 4612 * code, so read marks in the state must propagate to the parent regardless 4613 * of the state's write marks. That's what 'parent == state->parent' comparison 4614 * in mark_reg_read() and mark_stack_slot_read() is for. 4615 */ 4616 static int propagate_liveness(struct bpf_verifier_env *env, 4617 const struct bpf_verifier_state *vstate, 4618 struct bpf_verifier_state *vparent) 4619 { 4620 int i, frame, err = 0; 4621 struct bpf_func_state *state, *parent; 4622 4623 if (vparent->curframe != vstate->curframe) { 4624 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4625 vparent->curframe, vstate->curframe); 4626 return -EFAULT; 4627 } 4628 /* Propagate read liveness of registers... */ 4629 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4630 /* We don't need to worry about FP liveness because it's read-only */ 4631 for (i = 0; i < BPF_REG_FP; i++) { 4632 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4633 continue; 4634 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4635 err = mark_reg_read(env, vstate, vparent, i); 4636 if (err) 4637 return err; 4638 } 4639 } 4640 4641 /* ... and stack slots */ 4642 for (frame = 0; frame <= vstate->curframe; frame++) { 4643 state = vstate->frame[frame]; 4644 parent = vparent->frame[frame]; 4645 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4646 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4647 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4648 continue; 4649 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4650 mark_stack_slot_read(env, vstate, vparent, i, frame); 4651 } 4652 } 4653 return err; 4654 } 4655 4656 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4657 { 4658 struct bpf_verifier_state_list *new_sl; 4659 struct bpf_verifier_state_list *sl; 4660 struct bpf_verifier_state *cur = env->cur_state; 4661 int i, j, err; 4662 4663 sl = env->explored_states[insn_idx]; 4664 if (!sl) 4665 /* this 'insn_idx' instruction wasn't marked, so we will not 4666 * be doing state search here 4667 */ 4668 return 0; 4669 4670 while (sl != STATE_LIST_MARK) { 4671 if (states_equal(env, &sl->state, cur)) { 4672 /* reached equivalent register/stack state, 4673 * prune the search. 4674 * Registers read by the continuation are read by us. 4675 * If we have any write marks in env->cur_state, they 4676 * will prevent corresponding reads in the continuation 4677 * from reaching our parent (an explored_state). Our 4678 * own state will get the read marks recorded, but 4679 * they'll be immediately forgotten as we're pruning 4680 * this state and will pop a new one. 4681 */ 4682 err = propagate_liveness(env, &sl->state, cur); 4683 if (err) 4684 return err; 4685 return 1; 4686 } 4687 sl = sl->next; 4688 } 4689 4690 /* there were no equivalent states, remember current one. 4691 * technically the current state is not proven to be safe yet, 4692 * but it will either reach outer most bpf_exit (which means it's safe) 4693 * or it will be rejected. Since there are no loops, we won't be 4694 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4695 * again on the way to bpf_exit 4696 */ 4697 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4698 if (!new_sl) 4699 return -ENOMEM; 4700 4701 /* add new state to the head of linked list */ 4702 err = copy_verifier_state(&new_sl->state, cur); 4703 if (err) { 4704 free_verifier_state(&new_sl->state, false); 4705 kfree(new_sl); 4706 return err; 4707 } 4708 new_sl->next = env->explored_states[insn_idx]; 4709 env->explored_states[insn_idx] = new_sl; 4710 /* connect new state to parentage chain */ 4711 cur->parent = &new_sl->state; 4712 /* clear write marks in current state: the writes we did are not writes 4713 * our child did, so they don't screen off its reads from us. 4714 * (There are no read marks in current state, because reads always mark 4715 * their parent and current state never has children yet. Only 4716 * explored_states can get read marks.) 4717 */ 4718 for (i = 0; i < BPF_REG_FP; i++) 4719 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4720 4721 /* all stack frames are accessible from callee, clear them all */ 4722 for (j = 0; j <= cur->curframe; j++) { 4723 struct bpf_func_state *frame = cur->frame[j]; 4724 4725 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4726 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4727 } 4728 return 0; 4729 } 4730 4731 static int do_check(struct bpf_verifier_env *env) 4732 { 4733 struct bpf_verifier_state *state; 4734 struct bpf_insn *insns = env->prog->insnsi; 4735 struct bpf_reg_state *regs; 4736 int insn_cnt = env->prog->len, i; 4737 int insn_idx, prev_insn_idx = 0; 4738 int insn_processed = 0; 4739 bool do_print_state = false; 4740 4741 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4742 if (!state) 4743 return -ENOMEM; 4744 state->curframe = 0; 4745 state->parent = NULL; 4746 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4747 if (!state->frame[0]) { 4748 kfree(state); 4749 return -ENOMEM; 4750 } 4751 env->cur_state = state; 4752 init_func_state(env, state->frame[0], 4753 BPF_MAIN_FUNC /* callsite */, 4754 0 /* frameno */, 4755 0 /* subprogno, zero == main subprog */); 4756 insn_idx = 0; 4757 for (;;) { 4758 struct bpf_insn *insn; 4759 u8 class; 4760 int err; 4761 4762 if (insn_idx >= insn_cnt) { 4763 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4764 insn_idx, insn_cnt); 4765 return -EFAULT; 4766 } 4767 4768 insn = &insns[insn_idx]; 4769 class = BPF_CLASS(insn->code); 4770 4771 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4772 verbose(env, 4773 "BPF program is too large. Processed %d insn\n", 4774 insn_processed); 4775 return -E2BIG; 4776 } 4777 4778 err = is_state_visited(env, insn_idx); 4779 if (err < 0) 4780 return err; 4781 if (err == 1) { 4782 /* found equivalent state, can prune the search */ 4783 if (env->log.level) { 4784 if (do_print_state) 4785 verbose(env, "\nfrom %d to %d: safe\n", 4786 prev_insn_idx, insn_idx); 4787 else 4788 verbose(env, "%d: safe\n", insn_idx); 4789 } 4790 goto process_bpf_exit; 4791 } 4792 4793 if (need_resched()) 4794 cond_resched(); 4795 4796 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4797 if (env->log.level > 1) 4798 verbose(env, "%d:", insn_idx); 4799 else 4800 verbose(env, "\nfrom %d to %d:", 4801 prev_insn_idx, insn_idx); 4802 print_verifier_state(env, state->frame[state->curframe]); 4803 do_print_state = false; 4804 } 4805 4806 if (env->log.level) { 4807 const struct bpf_insn_cbs cbs = { 4808 .cb_print = verbose, 4809 .private_data = env, 4810 }; 4811 4812 verbose(env, "%d: ", insn_idx); 4813 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4814 } 4815 4816 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4817 err = bpf_prog_offload_verify_insn(env, insn_idx, 4818 prev_insn_idx); 4819 if (err) 4820 return err; 4821 } 4822 4823 regs = cur_regs(env); 4824 env->insn_aux_data[insn_idx].seen = true; 4825 if (class == BPF_ALU || class == BPF_ALU64) { 4826 err = check_alu_op(env, insn); 4827 if (err) 4828 return err; 4829 4830 } else if (class == BPF_LDX) { 4831 enum bpf_reg_type *prev_src_type, src_reg_type; 4832 4833 /* check for reserved fields is already done */ 4834 4835 /* check src operand */ 4836 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4837 if (err) 4838 return err; 4839 4840 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4841 if (err) 4842 return err; 4843 4844 src_reg_type = regs[insn->src_reg].type; 4845 4846 /* check that memory (src_reg + off) is readable, 4847 * the state of dst_reg will be updated by this func 4848 */ 4849 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4850 BPF_SIZE(insn->code), BPF_READ, 4851 insn->dst_reg, false); 4852 if (err) 4853 return err; 4854 4855 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4856 4857 if (*prev_src_type == NOT_INIT) { 4858 /* saw a valid insn 4859 * dst_reg = *(u32 *)(src_reg + off) 4860 * save type to validate intersecting paths 4861 */ 4862 *prev_src_type = src_reg_type; 4863 4864 } else if (src_reg_type != *prev_src_type && 4865 (src_reg_type == PTR_TO_CTX || 4866 *prev_src_type == PTR_TO_CTX)) { 4867 /* ABuser program is trying to use the same insn 4868 * dst_reg = *(u32*) (src_reg + off) 4869 * with different pointer types: 4870 * src_reg == ctx in one branch and 4871 * src_reg == stack|map in some other branch. 4872 * Reject it. 4873 */ 4874 verbose(env, "same insn cannot be used with different pointers\n"); 4875 return -EINVAL; 4876 } 4877 4878 } else if (class == BPF_STX) { 4879 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4880 4881 if (BPF_MODE(insn->code) == BPF_XADD) { 4882 err = check_xadd(env, insn_idx, insn); 4883 if (err) 4884 return err; 4885 insn_idx++; 4886 continue; 4887 } 4888 4889 /* check src1 operand */ 4890 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4891 if (err) 4892 return err; 4893 /* check src2 operand */ 4894 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4895 if (err) 4896 return err; 4897 4898 dst_reg_type = regs[insn->dst_reg].type; 4899 4900 /* check that memory (dst_reg + off) is writeable */ 4901 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4902 BPF_SIZE(insn->code), BPF_WRITE, 4903 insn->src_reg, false); 4904 if (err) 4905 return err; 4906 4907 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4908 4909 if (*prev_dst_type == NOT_INIT) { 4910 *prev_dst_type = dst_reg_type; 4911 } else if (dst_reg_type != *prev_dst_type && 4912 (dst_reg_type == PTR_TO_CTX || 4913 *prev_dst_type == PTR_TO_CTX)) { 4914 verbose(env, "same insn cannot be used with different pointers\n"); 4915 return -EINVAL; 4916 } 4917 4918 } else if (class == BPF_ST) { 4919 if (BPF_MODE(insn->code) != BPF_MEM || 4920 insn->src_reg != BPF_REG_0) { 4921 verbose(env, "BPF_ST uses reserved fields\n"); 4922 return -EINVAL; 4923 } 4924 /* check src operand */ 4925 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4926 if (err) 4927 return err; 4928 4929 if (is_ctx_reg(env, insn->dst_reg)) { 4930 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4931 insn->dst_reg); 4932 return -EACCES; 4933 } 4934 4935 /* check that memory (dst_reg + off) is writeable */ 4936 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4937 BPF_SIZE(insn->code), BPF_WRITE, 4938 -1, false); 4939 if (err) 4940 return err; 4941 4942 } else if (class == BPF_JMP) { 4943 u8 opcode = BPF_OP(insn->code); 4944 4945 if (opcode == BPF_CALL) { 4946 if (BPF_SRC(insn->code) != BPF_K || 4947 insn->off != 0 || 4948 (insn->src_reg != BPF_REG_0 && 4949 insn->src_reg != BPF_PSEUDO_CALL) || 4950 insn->dst_reg != BPF_REG_0) { 4951 verbose(env, "BPF_CALL uses reserved fields\n"); 4952 return -EINVAL; 4953 } 4954 4955 if (insn->src_reg == BPF_PSEUDO_CALL) 4956 err = check_func_call(env, insn, &insn_idx); 4957 else 4958 err = check_helper_call(env, insn->imm, insn_idx); 4959 if (err) 4960 return err; 4961 4962 } else if (opcode == BPF_JA) { 4963 if (BPF_SRC(insn->code) != BPF_K || 4964 insn->imm != 0 || 4965 insn->src_reg != BPF_REG_0 || 4966 insn->dst_reg != BPF_REG_0) { 4967 verbose(env, "BPF_JA uses reserved fields\n"); 4968 return -EINVAL; 4969 } 4970 4971 insn_idx += insn->off + 1; 4972 continue; 4973 4974 } else if (opcode == BPF_EXIT) { 4975 if (BPF_SRC(insn->code) != BPF_K || 4976 insn->imm != 0 || 4977 insn->src_reg != BPF_REG_0 || 4978 insn->dst_reg != BPF_REG_0) { 4979 verbose(env, "BPF_EXIT uses reserved fields\n"); 4980 return -EINVAL; 4981 } 4982 4983 if (state->curframe) { 4984 /* exit from nested function */ 4985 prev_insn_idx = insn_idx; 4986 err = prepare_func_exit(env, &insn_idx); 4987 if (err) 4988 return err; 4989 do_print_state = true; 4990 continue; 4991 } 4992 4993 /* eBPF calling convetion is such that R0 is used 4994 * to return the value from eBPF program. 4995 * Make sure that it's readable at this time 4996 * of bpf_exit, which means that program wrote 4997 * something into it earlier 4998 */ 4999 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5000 if (err) 5001 return err; 5002 5003 if (is_pointer_value(env, BPF_REG_0)) { 5004 verbose(env, "R0 leaks addr as return value\n"); 5005 return -EACCES; 5006 } 5007 5008 err = check_return_code(env); 5009 if (err) 5010 return err; 5011 process_bpf_exit: 5012 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5013 if (err < 0) { 5014 if (err != -ENOENT) 5015 return err; 5016 break; 5017 } else { 5018 do_print_state = true; 5019 continue; 5020 } 5021 } else { 5022 err = check_cond_jmp_op(env, insn, &insn_idx); 5023 if (err) 5024 return err; 5025 } 5026 } else if (class == BPF_LD) { 5027 u8 mode = BPF_MODE(insn->code); 5028 5029 if (mode == BPF_ABS || mode == BPF_IND) { 5030 err = check_ld_abs(env, insn); 5031 if (err) 5032 return err; 5033 5034 } else if (mode == BPF_IMM) { 5035 err = check_ld_imm(env, insn); 5036 if (err) 5037 return err; 5038 5039 insn_idx++; 5040 env->insn_aux_data[insn_idx].seen = true; 5041 } else { 5042 verbose(env, "invalid BPF_LD mode\n"); 5043 return -EINVAL; 5044 } 5045 } else { 5046 verbose(env, "unknown insn class %d\n", class); 5047 return -EINVAL; 5048 } 5049 5050 insn_idx++; 5051 } 5052 5053 verbose(env, "processed %d insns (limit %d), stack depth ", 5054 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5055 for (i = 0; i < env->subprog_cnt; i++) { 5056 u32 depth = env->subprog_info[i].stack_depth; 5057 5058 verbose(env, "%d", depth); 5059 if (i + 1 < env->subprog_cnt) 5060 verbose(env, "+"); 5061 } 5062 verbose(env, "\n"); 5063 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5064 return 0; 5065 } 5066 5067 static int check_map_prealloc(struct bpf_map *map) 5068 { 5069 return (map->map_type != BPF_MAP_TYPE_HASH && 5070 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5071 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5072 !(map->map_flags & BPF_F_NO_PREALLOC); 5073 } 5074 5075 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5076 struct bpf_map *map, 5077 struct bpf_prog *prog) 5078 5079 { 5080 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5081 * preallocated hash maps, since doing memory allocation 5082 * in overflow_handler can crash depending on where nmi got 5083 * triggered. 5084 */ 5085 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5086 if (!check_map_prealloc(map)) { 5087 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5088 return -EINVAL; 5089 } 5090 if (map->inner_map_meta && 5091 !check_map_prealloc(map->inner_map_meta)) { 5092 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5093 return -EINVAL; 5094 } 5095 } 5096 5097 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5098 !bpf_offload_prog_map_match(prog, map)) { 5099 verbose(env, "offload device mismatch between prog and map\n"); 5100 return -EINVAL; 5101 } 5102 5103 return 0; 5104 } 5105 5106 /* look for pseudo eBPF instructions that access map FDs and 5107 * replace them with actual map pointers 5108 */ 5109 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5110 { 5111 struct bpf_insn *insn = env->prog->insnsi; 5112 int insn_cnt = env->prog->len; 5113 int i, j, err; 5114 5115 err = bpf_prog_calc_tag(env->prog); 5116 if (err) 5117 return err; 5118 5119 for (i = 0; i < insn_cnt; i++, insn++) { 5120 if (BPF_CLASS(insn->code) == BPF_LDX && 5121 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5122 verbose(env, "BPF_LDX uses reserved fields\n"); 5123 return -EINVAL; 5124 } 5125 5126 if (BPF_CLASS(insn->code) == BPF_STX && 5127 ((BPF_MODE(insn->code) != BPF_MEM && 5128 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5129 verbose(env, "BPF_STX uses reserved fields\n"); 5130 return -EINVAL; 5131 } 5132 5133 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5134 struct bpf_map *map; 5135 struct fd f; 5136 5137 if (i == insn_cnt - 1 || insn[1].code != 0 || 5138 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5139 insn[1].off != 0) { 5140 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5141 return -EINVAL; 5142 } 5143 5144 if (insn->src_reg == 0) 5145 /* valid generic load 64-bit imm */ 5146 goto next_insn; 5147 5148 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5149 verbose(env, 5150 "unrecognized bpf_ld_imm64 insn\n"); 5151 return -EINVAL; 5152 } 5153 5154 f = fdget(insn->imm); 5155 map = __bpf_map_get(f); 5156 if (IS_ERR(map)) { 5157 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5158 insn->imm); 5159 return PTR_ERR(map); 5160 } 5161 5162 err = check_map_prog_compatibility(env, map, env->prog); 5163 if (err) { 5164 fdput(f); 5165 return err; 5166 } 5167 5168 /* store map pointer inside BPF_LD_IMM64 instruction */ 5169 insn[0].imm = (u32) (unsigned long) map; 5170 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5171 5172 /* check whether we recorded this map already */ 5173 for (j = 0; j < env->used_map_cnt; j++) 5174 if (env->used_maps[j] == map) { 5175 fdput(f); 5176 goto next_insn; 5177 } 5178 5179 if (env->used_map_cnt >= MAX_USED_MAPS) { 5180 fdput(f); 5181 return -E2BIG; 5182 } 5183 5184 /* hold the map. If the program is rejected by verifier, 5185 * the map will be released by release_maps() or it 5186 * will be used by the valid program until it's unloaded 5187 * and all maps are released in free_used_maps() 5188 */ 5189 map = bpf_map_inc(map, false); 5190 if (IS_ERR(map)) { 5191 fdput(f); 5192 return PTR_ERR(map); 5193 } 5194 env->used_maps[env->used_map_cnt++] = map; 5195 5196 if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE && 5197 bpf_cgroup_storage_assign(env->prog, map)) { 5198 verbose(env, 5199 "only one cgroup storage is allowed\n"); 5200 fdput(f); 5201 return -EBUSY; 5202 } 5203 5204 fdput(f); 5205 next_insn: 5206 insn++; 5207 i++; 5208 continue; 5209 } 5210 5211 /* Basic sanity check before we invest more work here. */ 5212 if (!bpf_opcode_in_insntable(insn->code)) { 5213 verbose(env, "unknown opcode %02x\n", insn->code); 5214 return -EINVAL; 5215 } 5216 } 5217 5218 /* now all pseudo BPF_LD_IMM64 instructions load valid 5219 * 'struct bpf_map *' into a register instead of user map_fd. 5220 * These pointers will be used later by verifier to validate map access. 5221 */ 5222 return 0; 5223 } 5224 5225 /* drop refcnt of maps used by the rejected program */ 5226 static void release_maps(struct bpf_verifier_env *env) 5227 { 5228 int i; 5229 5230 if (env->prog->aux->cgroup_storage) 5231 bpf_cgroup_storage_release(env->prog, 5232 env->prog->aux->cgroup_storage); 5233 5234 for (i = 0; i < env->used_map_cnt; i++) 5235 bpf_map_put(env->used_maps[i]); 5236 } 5237 5238 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5239 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5240 { 5241 struct bpf_insn *insn = env->prog->insnsi; 5242 int insn_cnt = env->prog->len; 5243 int i; 5244 5245 for (i = 0; i < insn_cnt; i++, insn++) 5246 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5247 insn->src_reg = 0; 5248 } 5249 5250 /* single env->prog->insni[off] instruction was replaced with the range 5251 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5252 * [0, off) and [off, end) to new locations, so the patched range stays zero 5253 */ 5254 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5255 u32 off, u32 cnt) 5256 { 5257 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5258 int i; 5259 5260 if (cnt == 1) 5261 return 0; 5262 new_data = vzalloc(array_size(prog_len, 5263 sizeof(struct bpf_insn_aux_data))); 5264 if (!new_data) 5265 return -ENOMEM; 5266 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5267 memcpy(new_data + off + cnt - 1, old_data + off, 5268 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5269 for (i = off; i < off + cnt - 1; i++) 5270 new_data[i].seen = true; 5271 env->insn_aux_data = new_data; 5272 vfree(old_data); 5273 return 0; 5274 } 5275 5276 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5277 { 5278 int i; 5279 5280 if (len == 1) 5281 return; 5282 /* NOTE: fake 'exit' subprog should be updated as well. */ 5283 for (i = 0; i <= env->subprog_cnt; i++) { 5284 if (env->subprog_info[i].start < off) 5285 continue; 5286 env->subprog_info[i].start += len - 1; 5287 } 5288 } 5289 5290 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5291 const struct bpf_insn *patch, u32 len) 5292 { 5293 struct bpf_prog *new_prog; 5294 5295 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5296 if (!new_prog) 5297 return NULL; 5298 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5299 return NULL; 5300 adjust_subprog_starts(env, off, len); 5301 return new_prog; 5302 } 5303 5304 /* The verifier does more data flow analysis than llvm and will not 5305 * explore branches that are dead at run time. Malicious programs can 5306 * have dead code too. Therefore replace all dead at-run-time code 5307 * with 'ja -1'. 5308 * 5309 * Just nops are not optimal, e.g. if they would sit at the end of the 5310 * program and through another bug we would manage to jump there, then 5311 * we'd execute beyond program memory otherwise. Returning exception 5312 * code also wouldn't work since we can have subprogs where the dead 5313 * code could be located. 5314 */ 5315 static void sanitize_dead_code(struct bpf_verifier_env *env) 5316 { 5317 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5318 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5319 struct bpf_insn *insn = env->prog->insnsi; 5320 const int insn_cnt = env->prog->len; 5321 int i; 5322 5323 for (i = 0; i < insn_cnt; i++) { 5324 if (aux_data[i].seen) 5325 continue; 5326 memcpy(insn + i, &trap, sizeof(trap)); 5327 } 5328 } 5329 5330 /* convert load instructions that access fields of 'struct __sk_buff' 5331 * into sequence of instructions that access fields of 'struct sk_buff' 5332 */ 5333 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5334 { 5335 const struct bpf_verifier_ops *ops = env->ops; 5336 int i, cnt, size, ctx_field_size, delta = 0; 5337 const int insn_cnt = env->prog->len; 5338 struct bpf_insn insn_buf[16], *insn; 5339 struct bpf_prog *new_prog; 5340 enum bpf_access_type type; 5341 bool is_narrower_load; 5342 u32 target_size; 5343 5344 if (ops->gen_prologue) { 5345 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5346 env->prog); 5347 if (cnt >= ARRAY_SIZE(insn_buf)) { 5348 verbose(env, "bpf verifier is misconfigured\n"); 5349 return -EINVAL; 5350 } else if (cnt) { 5351 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5352 if (!new_prog) 5353 return -ENOMEM; 5354 5355 env->prog = new_prog; 5356 delta += cnt - 1; 5357 } 5358 } 5359 5360 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux)) 5361 return 0; 5362 5363 insn = env->prog->insnsi + delta; 5364 5365 for (i = 0; i < insn_cnt; i++, insn++) { 5366 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5367 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5368 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5369 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5370 type = BPF_READ; 5371 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5372 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5373 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5374 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5375 type = BPF_WRITE; 5376 else 5377 continue; 5378 5379 if (type == BPF_WRITE && 5380 env->insn_aux_data[i + delta].sanitize_stack_off) { 5381 struct bpf_insn patch[] = { 5382 /* Sanitize suspicious stack slot with zero. 5383 * There are no memory dependencies for this store, 5384 * since it's only using frame pointer and immediate 5385 * constant of zero 5386 */ 5387 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5388 env->insn_aux_data[i + delta].sanitize_stack_off, 5389 0), 5390 /* the original STX instruction will immediately 5391 * overwrite the same stack slot with appropriate value 5392 */ 5393 *insn, 5394 }; 5395 5396 cnt = ARRAY_SIZE(patch); 5397 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5398 if (!new_prog) 5399 return -ENOMEM; 5400 5401 delta += cnt - 1; 5402 env->prog = new_prog; 5403 insn = new_prog->insnsi + i + delta; 5404 continue; 5405 } 5406 5407 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5408 continue; 5409 5410 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5411 size = BPF_LDST_BYTES(insn); 5412 5413 /* If the read access is a narrower load of the field, 5414 * convert to a 4/8-byte load, to minimum program type specific 5415 * convert_ctx_access changes. If conversion is successful, 5416 * we will apply proper mask to the result. 5417 */ 5418 is_narrower_load = size < ctx_field_size; 5419 if (is_narrower_load) { 5420 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5421 u32 off = insn->off; 5422 u8 size_code; 5423 5424 if (type == BPF_WRITE) { 5425 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5426 return -EINVAL; 5427 } 5428 5429 size_code = BPF_H; 5430 if (ctx_field_size == 4) 5431 size_code = BPF_W; 5432 else if (ctx_field_size == 8) 5433 size_code = BPF_DW; 5434 5435 insn->off = off & ~(size_default - 1); 5436 insn->code = BPF_LDX | BPF_MEM | size_code; 5437 } 5438 5439 target_size = 0; 5440 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5441 &target_size); 5442 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5443 (ctx_field_size && !target_size)) { 5444 verbose(env, "bpf verifier is misconfigured\n"); 5445 return -EINVAL; 5446 } 5447 5448 if (is_narrower_load && size < target_size) { 5449 if (ctx_field_size <= 4) 5450 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5451 (1 << size * 8) - 1); 5452 else 5453 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5454 (1 << size * 8) - 1); 5455 } 5456 5457 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5458 if (!new_prog) 5459 return -ENOMEM; 5460 5461 delta += cnt - 1; 5462 5463 /* keep walking new program and skip insns we just inserted */ 5464 env->prog = new_prog; 5465 insn = new_prog->insnsi + i + delta; 5466 } 5467 5468 return 0; 5469 } 5470 5471 static int jit_subprogs(struct bpf_verifier_env *env) 5472 { 5473 struct bpf_prog *prog = env->prog, **func, *tmp; 5474 int i, j, subprog_start, subprog_end = 0, len, subprog; 5475 struct bpf_insn *insn; 5476 void *old_bpf_func; 5477 int err = -ENOMEM; 5478 5479 if (env->subprog_cnt <= 1) 5480 return 0; 5481 5482 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5483 if (insn->code != (BPF_JMP | BPF_CALL) || 5484 insn->src_reg != BPF_PSEUDO_CALL) 5485 continue; 5486 /* Upon error here we cannot fall back to interpreter but 5487 * need a hard reject of the program. Thus -EFAULT is 5488 * propagated in any case. 5489 */ 5490 subprog = find_subprog(env, i + insn->imm + 1); 5491 if (subprog < 0) { 5492 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5493 i + insn->imm + 1); 5494 return -EFAULT; 5495 } 5496 /* temporarily remember subprog id inside insn instead of 5497 * aux_data, since next loop will split up all insns into funcs 5498 */ 5499 insn->off = subprog; 5500 /* remember original imm in case JIT fails and fallback 5501 * to interpreter will be needed 5502 */ 5503 env->insn_aux_data[i].call_imm = insn->imm; 5504 /* point imm to __bpf_call_base+1 from JITs point of view */ 5505 insn->imm = 1; 5506 } 5507 5508 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5509 if (!func) 5510 goto out_undo_insn; 5511 5512 for (i = 0; i < env->subprog_cnt; i++) { 5513 subprog_start = subprog_end; 5514 subprog_end = env->subprog_info[i + 1].start; 5515 5516 len = subprog_end - subprog_start; 5517 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5518 if (!func[i]) 5519 goto out_free; 5520 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5521 len * sizeof(struct bpf_insn)); 5522 func[i]->type = prog->type; 5523 func[i]->len = len; 5524 if (bpf_prog_calc_tag(func[i])) 5525 goto out_free; 5526 func[i]->is_func = 1; 5527 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5528 * Long term would need debug info to populate names 5529 */ 5530 func[i]->aux->name[0] = 'F'; 5531 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5532 func[i]->jit_requested = 1; 5533 func[i] = bpf_int_jit_compile(func[i]); 5534 if (!func[i]->jited) { 5535 err = -ENOTSUPP; 5536 goto out_free; 5537 } 5538 cond_resched(); 5539 } 5540 /* at this point all bpf functions were successfully JITed 5541 * now populate all bpf_calls with correct addresses and 5542 * run last pass of JIT 5543 */ 5544 for (i = 0; i < env->subprog_cnt; i++) { 5545 insn = func[i]->insnsi; 5546 for (j = 0; j < func[i]->len; j++, insn++) { 5547 if (insn->code != (BPF_JMP | BPF_CALL) || 5548 insn->src_reg != BPF_PSEUDO_CALL) 5549 continue; 5550 subprog = insn->off; 5551 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5552 func[subprog]->bpf_func - 5553 __bpf_call_base; 5554 } 5555 5556 /* we use the aux data to keep a list of the start addresses 5557 * of the JITed images for each function in the program 5558 * 5559 * for some architectures, such as powerpc64, the imm field 5560 * might not be large enough to hold the offset of the start 5561 * address of the callee's JITed image from __bpf_call_base 5562 * 5563 * in such cases, we can lookup the start address of a callee 5564 * by using its subprog id, available from the off field of 5565 * the call instruction, as an index for this list 5566 */ 5567 func[i]->aux->func = func; 5568 func[i]->aux->func_cnt = env->subprog_cnt; 5569 } 5570 for (i = 0; i < env->subprog_cnt; i++) { 5571 old_bpf_func = func[i]->bpf_func; 5572 tmp = bpf_int_jit_compile(func[i]); 5573 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5574 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5575 err = -ENOTSUPP; 5576 goto out_free; 5577 } 5578 cond_resched(); 5579 } 5580 5581 /* finally lock prog and jit images for all functions and 5582 * populate kallsysm 5583 */ 5584 for (i = 0; i < env->subprog_cnt; i++) { 5585 bpf_prog_lock_ro(func[i]); 5586 bpf_prog_kallsyms_add(func[i]); 5587 } 5588 5589 /* Last step: make now unused interpreter insns from main 5590 * prog consistent for later dump requests, so they can 5591 * later look the same as if they were interpreted only. 5592 */ 5593 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5594 if (insn->code != (BPF_JMP | BPF_CALL) || 5595 insn->src_reg != BPF_PSEUDO_CALL) 5596 continue; 5597 insn->off = env->insn_aux_data[i].call_imm; 5598 subprog = find_subprog(env, i + insn->off + 1); 5599 insn->imm = subprog; 5600 } 5601 5602 prog->jited = 1; 5603 prog->bpf_func = func[0]->bpf_func; 5604 prog->aux->func = func; 5605 prog->aux->func_cnt = env->subprog_cnt; 5606 return 0; 5607 out_free: 5608 for (i = 0; i < env->subprog_cnt; i++) 5609 if (func[i]) 5610 bpf_jit_free(func[i]); 5611 kfree(func); 5612 out_undo_insn: 5613 /* cleanup main prog to be interpreted */ 5614 prog->jit_requested = 0; 5615 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5616 if (insn->code != (BPF_JMP | BPF_CALL) || 5617 insn->src_reg != BPF_PSEUDO_CALL) 5618 continue; 5619 insn->off = 0; 5620 insn->imm = env->insn_aux_data[i].call_imm; 5621 } 5622 return err; 5623 } 5624 5625 static int fixup_call_args(struct bpf_verifier_env *env) 5626 { 5627 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5628 struct bpf_prog *prog = env->prog; 5629 struct bpf_insn *insn = prog->insnsi; 5630 int i, depth; 5631 #endif 5632 int err; 5633 5634 err = 0; 5635 if (env->prog->jit_requested) { 5636 err = jit_subprogs(env); 5637 if (err == 0) 5638 return 0; 5639 if (err == -EFAULT) 5640 return err; 5641 } 5642 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5643 for (i = 0; i < prog->len; i++, insn++) { 5644 if (insn->code != (BPF_JMP | BPF_CALL) || 5645 insn->src_reg != BPF_PSEUDO_CALL) 5646 continue; 5647 depth = get_callee_stack_depth(env, insn, i); 5648 if (depth < 0) 5649 return depth; 5650 bpf_patch_call_args(insn, depth); 5651 } 5652 err = 0; 5653 #endif 5654 return err; 5655 } 5656 5657 /* fixup insn->imm field of bpf_call instructions 5658 * and inline eligible helpers as explicit sequence of BPF instructions 5659 * 5660 * this function is called after eBPF program passed verification 5661 */ 5662 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5663 { 5664 struct bpf_prog *prog = env->prog; 5665 struct bpf_insn *insn = prog->insnsi; 5666 const struct bpf_func_proto *fn; 5667 const int insn_cnt = prog->len; 5668 const struct bpf_map_ops *ops; 5669 struct bpf_insn_aux_data *aux; 5670 struct bpf_insn insn_buf[16]; 5671 struct bpf_prog *new_prog; 5672 struct bpf_map *map_ptr; 5673 int i, cnt, delta = 0; 5674 5675 for (i = 0; i < insn_cnt; i++, insn++) { 5676 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5677 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5678 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5679 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5680 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5681 struct bpf_insn mask_and_div[] = { 5682 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5683 /* Rx div 0 -> 0 */ 5684 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5685 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5686 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5687 *insn, 5688 }; 5689 struct bpf_insn mask_and_mod[] = { 5690 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5691 /* Rx mod 0 -> Rx */ 5692 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5693 *insn, 5694 }; 5695 struct bpf_insn *patchlet; 5696 5697 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5698 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5699 patchlet = mask_and_div + (is64 ? 1 : 0); 5700 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5701 } else { 5702 patchlet = mask_and_mod + (is64 ? 1 : 0); 5703 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5704 } 5705 5706 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5707 if (!new_prog) 5708 return -ENOMEM; 5709 5710 delta += cnt - 1; 5711 env->prog = prog = new_prog; 5712 insn = new_prog->insnsi + i + delta; 5713 continue; 5714 } 5715 5716 if (BPF_CLASS(insn->code) == BPF_LD && 5717 (BPF_MODE(insn->code) == BPF_ABS || 5718 BPF_MODE(insn->code) == BPF_IND)) { 5719 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5720 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5721 verbose(env, "bpf verifier is misconfigured\n"); 5722 return -EINVAL; 5723 } 5724 5725 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5726 if (!new_prog) 5727 return -ENOMEM; 5728 5729 delta += cnt - 1; 5730 env->prog = prog = new_prog; 5731 insn = new_prog->insnsi + i + delta; 5732 continue; 5733 } 5734 5735 if (insn->code != (BPF_JMP | BPF_CALL)) 5736 continue; 5737 if (insn->src_reg == BPF_PSEUDO_CALL) 5738 continue; 5739 5740 if (insn->imm == BPF_FUNC_get_route_realm) 5741 prog->dst_needed = 1; 5742 if (insn->imm == BPF_FUNC_get_prandom_u32) 5743 bpf_user_rnd_init_once(); 5744 if (insn->imm == BPF_FUNC_override_return) 5745 prog->kprobe_override = 1; 5746 if (insn->imm == BPF_FUNC_tail_call) { 5747 /* If we tail call into other programs, we 5748 * cannot make any assumptions since they can 5749 * be replaced dynamically during runtime in 5750 * the program array. 5751 */ 5752 prog->cb_access = 1; 5753 env->prog->aux->stack_depth = MAX_BPF_STACK; 5754 5755 /* mark bpf_tail_call as different opcode to avoid 5756 * conditional branch in the interpeter for every normal 5757 * call and to prevent accidental JITing by JIT compiler 5758 * that doesn't support bpf_tail_call yet 5759 */ 5760 insn->imm = 0; 5761 insn->code = BPF_JMP | BPF_TAIL_CALL; 5762 5763 aux = &env->insn_aux_data[i + delta]; 5764 if (!bpf_map_ptr_unpriv(aux)) 5765 continue; 5766 5767 /* instead of changing every JIT dealing with tail_call 5768 * emit two extra insns: 5769 * if (index >= max_entries) goto out; 5770 * index &= array->index_mask; 5771 * to avoid out-of-bounds cpu speculation 5772 */ 5773 if (bpf_map_ptr_poisoned(aux)) { 5774 verbose(env, "tail_call abusing map_ptr\n"); 5775 return -EINVAL; 5776 } 5777 5778 map_ptr = BPF_MAP_PTR(aux->map_state); 5779 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5780 map_ptr->max_entries, 2); 5781 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5782 container_of(map_ptr, 5783 struct bpf_array, 5784 map)->index_mask); 5785 insn_buf[2] = *insn; 5786 cnt = 3; 5787 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5788 if (!new_prog) 5789 return -ENOMEM; 5790 5791 delta += cnt - 1; 5792 env->prog = prog = new_prog; 5793 insn = new_prog->insnsi + i + delta; 5794 continue; 5795 } 5796 5797 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5798 * and other inlining handlers are currently limited to 64 bit 5799 * only. 5800 */ 5801 if (prog->jit_requested && BITS_PER_LONG == 64 && 5802 (insn->imm == BPF_FUNC_map_lookup_elem || 5803 insn->imm == BPF_FUNC_map_update_elem || 5804 insn->imm == BPF_FUNC_map_delete_elem)) { 5805 aux = &env->insn_aux_data[i + delta]; 5806 if (bpf_map_ptr_poisoned(aux)) 5807 goto patch_call_imm; 5808 5809 map_ptr = BPF_MAP_PTR(aux->map_state); 5810 ops = map_ptr->ops; 5811 if (insn->imm == BPF_FUNC_map_lookup_elem && 5812 ops->map_gen_lookup) { 5813 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 5814 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5815 verbose(env, "bpf verifier is misconfigured\n"); 5816 return -EINVAL; 5817 } 5818 5819 new_prog = bpf_patch_insn_data(env, i + delta, 5820 insn_buf, cnt); 5821 if (!new_prog) 5822 return -ENOMEM; 5823 5824 delta += cnt - 1; 5825 env->prog = prog = new_prog; 5826 insn = new_prog->insnsi + i + delta; 5827 continue; 5828 } 5829 5830 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 5831 (void *(*)(struct bpf_map *map, void *key))NULL)); 5832 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 5833 (int (*)(struct bpf_map *map, void *key))NULL)); 5834 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 5835 (int (*)(struct bpf_map *map, void *key, void *value, 5836 u64 flags))NULL)); 5837 switch (insn->imm) { 5838 case BPF_FUNC_map_lookup_elem: 5839 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 5840 __bpf_call_base; 5841 continue; 5842 case BPF_FUNC_map_update_elem: 5843 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 5844 __bpf_call_base; 5845 continue; 5846 case BPF_FUNC_map_delete_elem: 5847 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 5848 __bpf_call_base; 5849 continue; 5850 } 5851 5852 goto patch_call_imm; 5853 } 5854 5855 patch_call_imm: 5856 fn = env->ops->get_func_proto(insn->imm, env->prog); 5857 /* all functions that have prototype and verifier allowed 5858 * programs to call them, must be real in-kernel functions 5859 */ 5860 if (!fn->func) { 5861 verbose(env, 5862 "kernel subsystem misconfigured func %s#%d\n", 5863 func_id_name(insn->imm), insn->imm); 5864 return -EFAULT; 5865 } 5866 insn->imm = fn->func - __bpf_call_base; 5867 } 5868 5869 return 0; 5870 } 5871 5872 static void free_states(struct bpf_verifier_env *env) 5873 { 5874 struct bpf_verifier_state_list *sl, *sln; 5875 int i; 5876 5877 if (!env->explored_states) 5878 return; 5879 5880 for (i = 0; i < env->prog->len; i++) { 5881 sl = env->explored_states[i]; 5882 5883 if (sl) 5884 while (sl != STATE_LIST_MARK) { 5885 sln = sl->next; 5886 free_verifier_state(&sl->state, false); 5887 kfree(sl); 5888 sl = sln; 5889 } 5890 } 5891 5892 kfree(env->explored_states); 5893 } 5894 5895 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5896 { 5897 struct bpf_verifier_env *env; 5898 struct bpf_verifier_log *log; 5899 int ret = -EINVAL; 5900 5901 /* no program is valid */ 5902 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5903 return -EINVAL; 5904 5905 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5906 * allocate/free it every time bpf_check() is called 5907 */ 5908 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5909 if (!env) 5910 return -ENOMEM; 5911 log = &env->log; 5912 5913 env->insn_aux_data = 5914 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 5915 (*prog)->len)); 5916 ret = -ENOMEM; 5917 if (!env->insn_aux_data) 5918 goto err_free_env; 5919 env->prog = *prog; 5920 env->ops = bpf_verifier_ops[env->prog->type]; 5921 5922 /* grab the mutex to protect few globals used by verifier */ 5923 mutex_lock(&bpf_verifier_lock); 5924 5925 if (attr->log_level || attr->log_buf || attr->log_size) { 5926 /* user requested verbose verifier output 5927 * and supplied buffer to store the verification trace 5928 */ 5929 log->level = attr->log_level; 5930 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5931 log->len_total = attr->log_size; 5932 5933 ret = -EINVAL; 5934 /* log attributes have to be sane */ 5935 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5936 !log->level || !log->ubuf) 5937 goto err_unlock; 5938 } 5939 5940 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5941 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5942 env->strict_alignment = true; 5943 5944 ret = replace_map_fd_with_map_ptr(env); 5945 if (ret < 0) 5946 goto skip_full_check; 5947 5948 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5949 ret = bpf_prog_offload_verifier_prep(env); 5950 if (ret) 5951 goto skip_full_check; 5952 } 5953 5954 env->explored_states = kcalloc(env->prog->len, 5955 sizeof(struct bpf_verifier_state_list *), 5956 GFP_USER); 5957 ret = -ENOMEM; 5958 if (!env->explored_states) 5959 goto skip_full_check; 5960 5961 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5962 5963 ret = check_cfg(env); 5964 if (ret < 0) 5965 goto skip_full_check; 5966 5967 ret = do_check(env); 5968 if (env->cur_state) { 5969 free_verifier_state(env->cur_state, true); 5970 env->cur_state = NULL; 5971 } 5972 5973 skip_full_check: 5974 while (!pop_stack(env, NULL, NULL)); 5975 free_states(env); 5976 5977 if (ret == 0) 5978 sanitize_dead_code(env); 5979 5980 if (ret == 0) 5981 ret = check_max_stack_depth(env); 5982 5983 if (ret == 0) 5984 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5985 ret = convert_ctx_accesses(env); 5986 5987 if (ret == 0) 5988 ret = fixup_bpf_calls(env); 5989 5990 if (ret == 0) 5991 ret = fixup_call_args(env); 5992 5993 if (log->level && bpf_verifier_log_full(log)) 5994 ret = -ENOSPC; 5995 if (log->level && !log->ubuf) { 5996 ret = -EFAULT; 5997 goto err_release_maps; 5998 } 5999 6000 if (ret == 0 && env->used_map_cnt) { 6001 /* if program passed verifier, update used_maps in bpf_prog_info */ 6002 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 6003 sizeof(env->used_maps[0]), 6004 GFP_KERNEL); 6005 6006 if (!env->prog->aux->used_maps) { 6007 ret = -ENOMEM; 6008 goto err_release_maps; 6009 } 6010 6011 memcpy(env->prog->aux->used_maps, env->used_maps, 6012 sizeof(env->used_maps[0]) * env->used_map_cnt); 6013 env->prog->aux->used_map_cnt = env->used_map_cnt; 6014 6015 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6016 * bpf_ld_imm64 instructions 6017 */ 6018 convert_pseudo_ld_imm64(env); 6019 } 6020 6021 err_release_maps: 6022 if (!env->prog->aux->used_maps) 6023 /* if we didn't copy map pointers into bpf_prog_info, release 6024 * them now. Otherwise free_used_maps() will release them. 6025 */ 6026 release_maps(env); 6027 *prog = env->prog; 6028 err_unlock: 6029 mutex_unlock(&bpf_verifier_lock); 6030 vfree(env->insn_aux_data); 6031 err_free_env: 6032 kfree(env); 6033 return ret; 6034 } 6035