xref: /linux/kernel/bpf/verifier.c (revision bf070bb0e6c62ba3075db0a666763ba52c677102)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 #include "disasm.h"
25 
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 	[_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34 
35 /* bpf_check() is a static code analyzer that walks eBPF program
36  * instruction by instruction and updates register/stack state.
37  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38  *
39  * The first pass is depth-first-search to check that the program is a DAG.
40  * It rejects the following programs:
41  * - larger than BPF_MAXINSNS insns
42  * - if loop is present (detected via back-edge)
43  * - unreachable insns exist (shouldn't be a forest. program = one function)
44  * - out of bounds or malformed jumps
45  * The second pass is all possible path descent from the 1st insn.
46  * Since it's analyzing all pathes through the program, the length of the
47  * analysis is limited to 64k insn, which may be hit even if total number of
48  * insn is less then 4K, but there are too many branches that change stack/regs.
49  * Number of 'branches to be analyzed' is limited to 1k
50  *
51  * On entry to each instruction, each register has a type, and the instruction
52  * changes the types of the registers depending on instruction semantics.
53  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54  * copied to R1.
55  *
56  * All registers are 64-bit.
57  * R0 - return register
58  * R1-R5 argument passing registers
59  * R6-R9 callee saved registers
60  * R10 - frame pointer read-only
61  *
62  * At the start of BPF program the register R1 contains a pointer to bpf_context
63  * and has type PTR_TO_CTX.
64  *
65  * Verifier tracks arithmetic operations on pointers in case:
66  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68  * 1st insn copies R10 (which has FRAME_PTR) type into R1
69  * and 2nd arithmetic instruction is pattern matched to recognize
70  * that it wants to construct a pointer to some element within stack.
71  * So after 2nd insn, the register R1 has type PTR_TO_STACK
72  * (and -20 constant is saved for further stack bounds checking).
73  * Meaning that this reg is a pointer to stack plus known immediate constant.
74  *
75  * Most of the time the registers have SCALAR_VALUE type, which
76  * means the register has some value, but it's not a valid pointer.
77  * (like pointer plus pointer becomes SCALAR_VALUE type)
78  *
79  * When verifier sees load or store instructions the type of base register
80  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81  * types recognized by check_mem_access() function.
82  *
83  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84  * and the range of [ptr, ptr + map's value_size) is accessible.
85  *
86  * registers used to pass values to function calls are checked against
87  * function argument constraints.
88  *
89  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90  * It means that the register type passed to this function must be
91  * PTR_TO_STACK and it will be used inside the function as
92  * 'pointer to map element key'
93  *
94  * For example the argument constraints for bpf_map_lookup_elem():
95  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96  *   .arg1_type = ARG_CONST_MAP_PTR,
97  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
98  *
99  * ret_type says that this function returns 'pointer to map elem value or null'
100  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101  * 2nd argument should be a pointer to stack, which will be used inside
102  * the helper function as a pointer to map element key.
103  *
104  * On the kernel side the helper function looks like:
105  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106  * {
107  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108  *    void *key = (void *) (unsigned long) r2;
109  *    void *value;
110  *
111  *    here kernel can access 'key' and 'map' pointers safely, knowing that
112  *    [key, key + map->key_size) bytes are valid and were initialized on
113  *    the stack of eBPF program.
114  * }
115  *
116  * Corresponding eBPF program may look like:
117  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
118  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
120  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121  * here verifier looks at prototype of map_lookup_elem() and sees:
122  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124  *
125  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127  * and were initialized prior to this call.
128  * If it's ok, then verifier allows this BPF_CALL insn and looks at
129  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131  * returns ether pointer to map value or NULL.
132  *
133  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134  * insn, the register holding that pointer in the true branch changes state to
135  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136  * branch. See check_cond_jmp_op().
137  *
138  * After the call R0 is set to return type of the function and registers R1-R5
139  * are set to NOT_INIT to indicate that they are no longer readable.
140  */
141 
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 	/* verifer state is 'st'
145 	 * before processing instruction 'insn_idx'
146 	 * and after processing instruction 'prev_insn_idx'
147 	 */
148 	struct bpf_verifier_state st;
149 	int insn_idx;
150 	int prev_insn_idx;
151 	struct bpf_verifier_stack_elem *next;
152 };
153 
154 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 #define BPF_COMPLEXITY_LIMIT_STACK	1024
156 
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158 
159 struct bpf_call_arg_meta {
160 	struct bpf_map *map_ptr;
161 	bool raw_mode;
162 	bool pkt_access;
163 	int regno;
164 	int access_size;
165 };
166 
167 static DEFINE_MUTEX(bpf_verifier_lock);
168 
169 /* log_level controls verbosity level of eBPF verifier.
170  * verbose() is used to dump the verification trace to the log, so the user
171  * can figure out what's wrong with the program
172  */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 				   const char *fmt, ...)
175 {
176 	struct bpf_verifer_log *log = &env->log;
177 	unsigned int n;
178 	va_list args;
179 
180 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 		return;
182 
183 	va_start(args, fmt);
184 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 	va_end(args);
186 
187 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 		  "verifier log line truncated - local buffer too short\n");
189 
190 	n = min(log->len_total - log->len_used - 1, n);
191 	log->kbuf[n] = '\0';
192 
193 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 		log->len_used += n;
195 	else
196 		log->ubuf = NULL;
197 }
198 
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 	return type == PTR_TO_PACKET ||
202 	       type == PTR_TO_PACKET_META;
203 }
204 
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 	[NOT_INIT]		= "?",
208 	[SCALAR_VALUE]		= "inv",
209 	[PTR_TO_CTX]		= "ctx",
210 	[CONST_PTR_TO_MAP]	= "map_ptr",
211 	[PTR_TO_MAP_VALUE]	= "map_value",
212 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 	[PTR_TO_STACK]		= "fp",
214 	[PTR_TO_PACKET]		= "pkt",
215 	[PTR_TO_PACKET_META]	= "pkt_meta",
216 	[PTR_TO_PACKET_END]	= "pkt_end",
217 };
218 
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 				 struct bpf_verifier_state *state)
221 {
222 	struct bpf_reg_state *reg;
223 	enum bpf_reg_type t;
224 	int i;
225 
226 	for (i = 0; i < MAX_BPF_REG; i++) {
227 		reg = &state->regs[i];
228 		t = reg->type;
229 		if (t == NOT_INIT)
230 			continue;
231 		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 		    tnum_is_const(reg->var_off)) {
234 			/* reg->off should be 0 for SCALAR_VALUE */
235 			verbose(env, "%lld", reg->var_off.value + reg->off);
236 		} else {
237 			verbose(env, "(id=%d", reg->id);
238 			if (t != SCALAR_VALUE)
239 				verbose(env, ",off=%d", reg->off);
240 			if (type_is_pkt_pointer(t))
241 				verbose(env, ",r=%d", reg->range);
242 			else if (t == CONST_PTR_TO_MAP ||
243 				 t == PTR_TO_MAP_VALUE ||
244 				 t == PTR_TO_MAP_VALUE_OR_NULL)
245 				verbose(env, ",ks=%d,vs=%d",
246 					reg->map_ptr->key_size,
247 					reg->map_ptr->value_size);
248 			if (tnum_is_const(reg->var_off)) {
249 				/* Typically an immediate SCALAR_VALUE, but
250 				 * could be a pointer whose offset is too big
251 				 * for reg->off
252 				 */
253 				verbose(env, ",imm=%llx", reg->var_off.value);
254 			} else {
255 				if (reg->smin_value != reg->umin_value &&
256 				    reg->smin_value != S64_MIN)
257 					verbose(env, ",smin_value=%lld",
258 						(long long)reg->smin_value);
259 				if (reg->smax_value != reg->umax_value &&
260 				    reg->smax_value != S64_MAX)
261 					verbose(env, ",smax_value=%lld",
262 						(long long)reg->smax_value);
263 				if (reg->umin_value != 0)
264 					verbose(env, ",umin_value=%llu",
265 						(unsigned long long)reg->umin_value);
266 				if (reg->umax_value != U64_MAX)
267 					verbose(env, ",umax_value=%llu",
268 						(unsigned long long)reg->umax_value);
269 				if (!tnum_is_unknown(reg->var_off)) {
270 					char tn_buf[48];
271 
272 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 					verbose(env, ",var_off=%s", tn_buf);
274 				}
275 			}
276 			verbose(env, ")");
277 		}
278 	}
279 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 		if (state->stack[i].slot_type[0] == STACK_SPILL)
281 			verbose(env, " fp%d=%s",
282 				-MAX_BPF_STACK + i * BPF_REG_SIZE,
283 				reg_type_str[state->stack[i].spilled_ptr.type]);
284 	}
285 	verbose(env, "\n");
286 }
287 
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 			    const struct bpf_verifier_state *src)
290 {
291 	if (!src->stack)
292 		return 0;
293 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 		/* internal bug, make state invalid to reject the program */
295 		memset(dst, 0, sizeof(*dst));
296 		return -EFAULT;
297 	}
298 	memcpy(dst->stack, src->stack,
299 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 	return 0;
301 }
302 
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304  * make it consume minimal amount of memory. check_stack_write() access from
305  * the program calls into realloc_verifier_state() to grow the stack size.
306  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307  * which this function copies over. It points to previous bpf_verifier_state
308  * which is never reallocated
309  */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 				  bool copy_old)
312 {
313 	u32 old_size = state->allocated_stack;
314 	struct bpf_stack_state *new_stack;
315 	int slot = size / BPF_REG_SIZE;
316 
317 	if (size <= old_size || !size) {
318 		if (copy_old)
319 			return 0;
320 		state->allocated_stack = slot * BPF_REG_SIZE;
321 		if (!size && old_size) {
322 			kfree(state->stack);
323 			state->stack = NULL;
324 		}
325 		return 0;
326 	}
327 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 				  GFP_KERNEL);
329 	if (!new_stack)
330 		return -ENOMEM;
331 	if (copy_old) {
332 		if (state->stack)
333 			memcpy(new_stack, state->stack,
334 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 	}
338 	state->allocated_stack = slot * BPF_REG_SIZE;
339 	kfree(state->stack);
340 	state->stack = new_stack;
341 	return 0;
342 }
343 
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 				bool free_self)
346 {
347 	kfree(state->stack);
348 	if (free_self)
349 		kfree(state);
350 }
351 
352 /* copy verifier state from src to dst growing dst stack space
353  * when necessary to accommodate larger src stack
354  */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 			       const struct bpf_verifier_state *src)
357 {
358 	int err;
359 
360 	err = realloc_verifier_state(dst, src->allocated_stack, false);
361 	if (err)
362 		return err;
363 	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 	return copy_stack_state(dst, src);
365 }
366 
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 		     int *insn_idx)
369 {
370 	struct bpf_verifier_state *cur = env->cur_state;
371 	struct bpf_verifier_stack_elem *elem, *head = env->head;
372 	int err;
373 
374 	if (env->head == NULL)
375 		return -ENOENT;
376 
377 	if (cur) {
378 		err = copy_verifier_state(cur, &head->st);
379 		if (err)
380 			return err;
381 	}
382 	if (insn_idx)
383 		*insn_idx = head->insn_idx;
384 	if (prev_insn_idx)
385 		*prev_insn_idx = head->prev_insn_idx;
386 	elem = head->next;
387 	free_verifier_state(&head->st, false);
388 	kfree(head);
389 	env->head = elem;
390 	env->stack_size--;
391 	return 0;
392 }
393 
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 					     int insn_idx, int prev_insn_idx)
396 {
397 	struct bpf_verifier_state *cur = env->cur_state;
398 	struct bpf_verifier_stack_elem *elem;
399 	int err;
400 
401 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 	if (!elem)
403 		goto err;
404 
405 	elem->insn_idx = insn_idx;
406 	elem->prev_insn_idx = prev_insn_idx;
407 	elem->next = env->head;
408 	env->head = elem;
409 	env->stack_size++;
410 	err = copy_verifier_state(&elem->st, cur);
411 	if (err)
412 		goto err;
413 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 		verbose(env, "BPF program is too complex\n");
415 		goto err;
416 	}
417 	return &elem->st;
418 err:
419 	/* pop all elements and return */
420 	while (!pop_stack(env, NULL, NULL));
421 	return NULL;
422 }
423 
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428 
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430 
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432  * known to have the value @imm.
433  */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 	reg->id = 0;
437 	reg->var_off = tnum_const(imm);
438 	reg->smin_value = (s64)imm;
439 	reg->smax_value = (s64)imm;
440 	reg->umin_value = imm;
441 	reg->umax_value = imm;
442 }
443 
444 /* Mark the 'variable offset' part of a register as zero.  This should be
445  * used only on registers holding a pointer type.
446  */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 	__mark_reg_known(reg, 0);
450 }
451 
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 				struct bpf_reg_state *regs, u32 regno)
454 {
455 	if (WARN_ON(regno >= MAX_BPF_REG)) {
456 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 		/* Something bad happened, let's kill all regs */
458 		for (regno = 0; regno < MAX_BPF_REG; regno++)
459 			__mark_reg_not_init(regs + regno);
460 		return;
461 	}
462 	__mark_reg_known_zero(regs + regno);
463 }
464 
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 	return type_is_pkt_pointer(reg->type);
468 }
469 
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 	return reg_is_pkt_pointer(reg) ||
473 	       reg->type == PTR_TO_PACKET_END;
474 }
475 
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 				    enum bpf_reg_type which)
479 {
480 	/* The register can already have a range from prior markings.
481 	 * This is fine as long as it hasn't been advanced from its
482 	 * origin.
483 	 */
484 	return reg->type == which &&
485 	       reg->id == 0 &&
486 	       reg->off == 0 &&
487 	       tnum_equals_const(reg->var_off, 0);
488 }
489 
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 	/* min signed is max(sign bit) | min(other bits) */
494 	reg->smin_value = max_t(s64, reg->smin_value,
495 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 	/* max signed is min(sign bit) | max(other bits) */
497 	reg->smax_value = min_t(s64, reg->smax_value,
498 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 	reg->umax_value = min(reg->umax_value,
501 			      reg->var_off.value | reg->var_off.mask);
502 }
503 
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 	/* Learn sign from signed bounds.
508 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 	 * are the same, so combine.  This works even in the negative case, e.g.
510 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 	 */
512 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 							  reg->umin_value);
515 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 							  reg->umax_value);
517 		return;
518 	}
519 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
520 	 * boundary, so we must be careful.
521 	 */
522 	if ((s64)reg->umax_value >= 0) {
523 		/* Positive.  We can't learn anything from the smin, but smax
524 		 * is positive, hence safe.
525 		 */
526 		reg->smin_value = reg->umin_value;
527 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 							  reg->umax_value);
529 	} else if ((s64)reg->umin_value < 0) {
530 		/* Negative.  We can't learn anything from the smax, but smin
531 		 * is negative, hence safe.
532 		 */
533 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 							  reg->umin_value);
535 		reg->smax_value = reg->umax_value;
536 	}
537 }
538 
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 	reg->var_off = tnum_intersect(reg->var_off,
543 				      tnum_range(reg->umin_value,
544 						 reg->umax_value));
545 }
546 
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 	reg->smin_value = S64_MIN;
551 	reg->smax_value = S64_MAX;
552 	reg->umin_value = 0;
553 	reg->umax_value = U64_MAX;
554 }
555 
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 	reg->type = SCALAR_VALUE;
560 	reg->id = 0;
561 	reg->off = 0;
562 	reg->var_off = tnum_unknown;
563 	__mark_reg_unbounded(reg);
564 }
565 
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 			     struct bpf_reg_state *regs, u32 regno)
568 {
569 	if (WARN_ON(regno >= MAX_BPF_REG)) {
570 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 		/* Something bad happened, let's kill all regs */
572 		for (regno = 0; regno < MAX_BPF_REG; regno++)
573 			__mark_reg_not_init(regs + regno);
574 		return;
575 	}
576 	__mark_reg_unknown(regs + regno);
577 }
578 
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 	__mark_reg_unknown(reg);
582 	reg->type = NOT_INIT;
583 }
584 
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 			      struct bpf_reg_state *regs, u32 regno)
587 {
588 	if (WARN_ON(regno >= MAX_BPF_REG)) {
589 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 		/* Something bad happened, let's kill all regs */
591 		for (regno = 0; regno < MAX_BPF_REG; regno++)
592 			__mark_reg_not_init(regs + regno);
593 		return;
594 	}
595 	__mark_reg_not_init(regs + regno);
596 }
597 
598 static void init_reg_state(struct bpf_verifier_env *env,
599 			   struct bpf_reg_state *regs)
600 {
601 	int i;
602 
603 	for (i = 0; i < MAX_BPF_REG; i++) {
604 		mark_reg_not_init(env, regs, i);
605 		regs[i].live = REG_LIVE_NONE;
606 	}
607 
608 	/* frame pointer */
609 	regs[BPF_REG_FP].type = PTR_TO_STACK;
610 	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 
612 	/* 1st arg to a function */
613 	regs[BPF_REG_1].type = PTR_TO_CTX;
614 	mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616 
617 enum reg_arg_type {
618 	SRC_OP,		/* register is used as source operand */
619 	DST_OP,		/* register is used as destination operand */
620 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
621 };
622 
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 	struct bpf_verifier_state *parent = state->parent;
626 
627 	if (regno == BPF_REG_FP)
628 		/* We don't need to worry about FP liveness because it's read-only */
629 		return;
630 
631 	while (parent) {
632 		/* if read wasn't screened by an earlier write ... */
633 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 			break;
635 		/* ... then we depend on parent's value */
636 		parent->regs[regno].live |= REG_LIVE_READ;
637 		state = parent;
638 		parent = state->parent;
639 	}
640 }
641 
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 			 enum reg_arg_type t)
644 {
645 	struct bpf_reg_state *regs = env->cur_state->regs;
646 
647 	if (regno >= MAX_BPF_REG) {
648 		verbose(env, "R%d is invalid\n", regno);
649 		return -EINVAL;
650 	}
651 
652 	if (t == SRC_OP) {
653 		/* check whether register used as source operand can be read */
654 		if (regs[regno].type == NOT_INIT) {
655 			verbose(env, "R%d !read_ok\n", regno);
656 			return -EACCES;
657 		}
658 		mark_reg_read(env->cur_state, regno);
659 	} else {
660 		/* check whether register used as dest operand can be written to */
661 		if (regno == BPF_REG_FP) {
662 			verbose(env, "frame pointer is read only\n");
663 			return -EACCES;
664 		}
665 		regs[regno].live |= REG_LIVE_WRITTEN;
666 		if (t == DST_OP)
667 			mark_reg_unknown(env, regs, regno);
668 	}
669 	return 0;
670 }
671 
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 	switch (type) {
675 	case PTR_TO_MAP_VALUE:
676 	case PTR_TO_MAP_VALUE_OR_NULL:
677 	case PTR_TO_STACK:
678 	case PTR_TO_CTX:
679 	case PTR_TO_PACKET:
680 	case PTR_TO_PACKET_META:
681 	case PTR_TO_PACKET_END:
682 	case CONST_PTR_TO_MAP:
683 		return true;
684 	default:
685 		return false;
686 	}
687 }
688 
689 /* check_stack_read/write functions track spill/fill of registers,
690  * stack boundary and alignment are checked in check_mem_access()
691  */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 			     struct bpf_verifier_state *state, int off,
694 			     int size, int value_regno)
695 {
696 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697 
698 	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 				     true);
700 	if (err)
701 		return err;
702 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 	 * so it's aligned access and [off, off + size) are within stack limits
704 	 */
705 	if (!env->allow_ptr_leaks &&
706 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
707 	    size != BPF_REG_SIZE) {
708 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 		return -EACCES;
710 	}
711 
712 	if (value_regno >= 0 &&
713 	    is_spillable_regtype(state->regs[value_regno].type)) {
714 
715 		/* register containing pointer is being spilled into stack */
716 		if (size != BPF_REG_SIZE) {
717 			verbose(env, "invalid size of register spill\n");
718 			return -EACCES;
719 		}
720 
721 		/* save register state */
722 		state->stack[spi].spilled_ptr = state->regs[value_regno];
723 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724 
725 		for (i = 0; i < BPF_REG_SIZE; i++)
726 			state->stack[spi].slot_type[i] = STACK_SPILL;
727 	} else {
728 		/* regular write of data into stack */
729 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 
731 		for (i = 0; i < size; i++)
732 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 				STACK_MISC;
734 	}
735 	return 0;
736 }
737 
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 	struct bpf_verifier_state *parent = state->parent;
741 
742 	while (parent) {
743 		/* if read wasn't screened by an earlier write ... */
744 		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 			break;
746 		/* ... then we depend on parent's value */
747 		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 		state = parent;
749 		parent = state->parent;
750 	}
751 }
752 
753 static int check_stack_read(struct bpf_verifier_env *env,
754 			    struct bpf_verifier_state *state, int off, int size,
755 			    int value_regno)
756 {
757 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 	u8 *stype;
759 
760 	if (state->allocated_stack <= slot) {
761 		verbose(env, "invalid read from stack off %d+0 size %d\n",
762 			off, size);
763 		return -EACCES;
764 	}
765 	stype = state->stack[spi].slot_type;
766 
767 	if (stype[0] == STACK_SPILL) {
768 		if (size != BPF_REG_SIZE) {
769 			verbose(env, "invalid size of register spill\n");
770 			return -EACCES;
771 		}
772 		for (i = 1; i < BPF_REG_SIZE; i++) {
773 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 				verbose(env, "corrupted spill memory\n");
775 				return -EACCES;
776 			}
777 		}
778 
779 		if (value_regno >= 0) {
780 			/* restore register state from stack */
781 			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 			mark_stack_slot_read(state, spi);
783 		}
784 		return 0;
785 	} else {
786 		for (i = 0; i < size; i++) {
787 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 					off, i, size);
790 				return -EACCES;
791 			}
792 		}
793 		if (value_regno >= 0)
794 			/* have read misc data from the stack */
795 			mark_reg_unknown(env, state->regs, value_regno);
796 		return 0;
797 	}
798 }
799 
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 			      int size, bool zero_size_allowed)
803 {
804 	struct bpf_reg_state *regs = cur_regs(env);
805 	struct bpf_map *map = regs[regno].map_ptr;
806 
807 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 	    off + size > map->value_size) {
809 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 			map->value_size, off, size);
811 		return -EACCES;
812 	}
813 	return 0;
814 }
815 
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 			    int off, int size, bool zero_size_allowed)
819 {
820 	struct bpf_verifier_state *state = env->cur_state;
821 	struct bpf_reg_state *reg = &state->regs[regno];
822 	int err;
823 
824 	/* We may have adjusted the register to this map value, so we
825 	 * need to try adding each of min_value and max_value to off
826 	 * to make sure our theoretical access will be safe.
827 	 */
828 	if (env->log.level)
829 		print_verifier_state(env, state);
830 	/* The minimum value is only important with signed
831 	 * comparisons where we can't assume the floor of a
832 	 * value is 0.  If we are using signed variables for our
833 	 * index'es we need to make sure that whatever we use
834 	 * will have a set floor within our range.
835 	 */
836 	if (reg->smin_value < 0) {
837 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 			regno);
839 		return -EACCES;
840 	}
841 	err = __check_map_access(env, regno, reg->smin_value + off, size,
842 				 zero_size_allowed);
843 	if (err) {
844 		verbose(env, "R%d min value is outside of the array range\n",
845 			regno);
846 		return err;
847 	}
848 
849 	/* If we haven't set a max value then we need to bail since we can't be
850 	 * sure we won't do bad things.
851 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 	 */
853 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 			regno);
856 		return -EACCES;
857 	}
858 	err = __check_map_access(env, regno, reg->umax_value + off, size,
859 				 zero_size_allowed);
860 	if (err)
861 		verbose(env, "R%d max value is outside of the array range\n",
862 			regno);
863 	return err;
864 }
865 
866 #define MAX_PACKET_OFF 0xffff
867 
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 				       const struct bpf_call_arg_meta *meta,
870 				       enum bpf_access_type t)
871 {
872 	switch (env->prog->type) {
873 	case BPF_PROG_TYPE_LWT_IN:
874 	case BPF_PROG_TYPE_LWT_OUT:
875 		/* dst_input() and dst_output() can't write for now */
876 		if (t == BPF_WRITE)
877 			return false;
878 		/* fallthrough */
879 	case BPF_PROG_TYPE_SCHED_CLS:
880 	case BPF_PROG_TYPE_SCHED_ACT:
881 	case BPF_PROG_TYPE_XDP:
882 	case BPF_PROG_TYPE_LWT_XMIT:
883 	case BPF_PROG_TYPE_SK_SKB:
884 		if (meta)
885 			return meta->pkt_access;
886 
887 		env->seen_direct_write = true;
888 		return true;
889 	default:
890 		return false;
891 	}
892 }
893 
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 				 int off, int size, bool zero_size_allowed)
896 {
897 	struct bpf_reg_state *regs = cur_regs(env);
898 	struct bpf_reg_state *reg = &regs[regno];
899 
900 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 	    (u64)off + size > reg->range) {
902 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 			off, size, regno, reg->id, reg->off, reg->range);
904 		return -EACCES;
905 	}
906 	return 0;
907 }
908 
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 			       int size, bool zero_size_allowed)
911 {
912 	struct bpf_reg_state *regs = cur_regs(env);
913 	struct bpf_reg_state *reg = &regs[regno];
914 	int err;
915 
916 	/* We may have added a variable offset to the packet pointer; but any
917 	 * reg->range we have comes after that.  We are only checking the fixed
918 	 * offset.
919 	 */
920 
921 	/* We don't allow negative numbers, because we aren't tracking enough
922 	 * detail to prove they're safe.
923 	 */
924 	if (reg->smin_value < 0) {
925 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 			regno);
927 		return -EACCES;
928 	}
929 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 	if (err) {
931 		verbose(env, "R%d offset is outside of the packet\n", regno);
932 		return err;
933 	}
934 	return err;
935 }
936 
937 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 	struct bpf_insn_access_aux info = {
942 		.reg_type = *reg_type,
943 	};
944 
945 	if (env->ops->is_valid_access &&
946 	    env->ops->is_valid_access(off, size, t, &info)) {
947 		/* A non zero info.ctx_field_size indicates that this field is a
948 		 * candidate for later verifier transformation to load the whole
949 		 * field and then apply a mask when accessed with a narrower
950 		 * access than actual ctx access size. A zero info.ctx_field_size
951 		 * will only allow for whole field access and rejects any other
952 		 * type of narrower access.
953 		 */
954 		*reg_type = info.reg_type;
955 
956 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 		/* remember the offset of last byte accessed in ctx */
958 		if (env->prog->aux->max_ctx_offset < off + size)
959 			env->prog->aux->max_ctx_offset = off + size;
960 		return 0;
961 	}
962 
963 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 	return -EACCES;
965 }
966 
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 			       const struct bpf_reg_state *reg)
969 {
970 	if (allow_ptr_leaks)
971 		return false;
972 
973 	return reg->type != SCALAR_VALUE;
974 }
975 
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980 
981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 				   const struct bpf_reg_state *reg,
983 				   int off, int size, bool strict)
984 {
985 	struct tnum reg_off;
986 	int ip_align;
987 
988 	/* Byte size accesses are always allowed. */
989 	if (!strict || size == 1)
990 		return 0;
991 
992 	/* For platforms that do not have a Kconfig enabling
993 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
995 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 	 * to this code only in strict mode where we want to emulate
997 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
998 	 * unconditional IP align value of '2'.
999 	 */
1000 	ip_align = 2;
1001 
1002 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 	if (!tnum_is_aligned(reg_off, size)) {
1004 		char tn_buf[48];
1005 
1006 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 		verbose(env,
1008 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1009 			ip_align, tn_buf, reg->off, off, size);
1010 		return -EACCES;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 				       const struct bpf_reg_state *reg,
1018 				       const char *pointer_desc,
1019 				       int off, int size, bool strict)
1020 {
1021 	struct tnum reg_off;
1022 
1023 	/* Byte size accesses are always allowed. */
1024 	if (!strict || size == 1)
1025 		return 0;
1026 
1027 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 	if (!tnum_is_aligned(reg_off, size)) {
1029 		char tn_buf[48];
1030 
1031 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033 			pointer_desc, tn_buf, reg->off, off, size);
1034 		return -EACCES;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 			       const struct bpf_reg_state *reg,
1042 			       int off, int size)
1043 {
1044 	bool strict = env->strict_alignment;
1045 	const char *pointer_desc = "";
1046 
1047 	switch (reg->type) {
1048 	case PTR_TO_PACKET:
1049 	case PTR_TO_PACKET_META:
1050 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 		 * right in front, treat it the very same way.
1052 		 */
1053 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 	case PTR_TO_MAP_VALUE:
1055 		pointer_desc = "value ";
1056 		break;
1057 	case PTR_TO_CTX:
1058 		pointer_desc = "context ";
1059 		break;
1060 	case PTR_TO_STACK:
1061 		pointer_desc = "stack ";
1062 		break;
1063 	default:
1064 		break;
1065 	}
1066 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1067 					   strict);
1068 }
1069 
1070 /* check whether memory at (regno + off) is accessible for t = (read | write)
1071  * if t==write, value_regno is a register which value is stored into memory
1072  * if t==read, value_regno is a register which will receive the value from memory
1073  * if t==write && value_regno==-1, some unknown value is stored into memory
1074  * if t==read && value_regno==-1, don't care what we read from memory
1075  */
1076 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1077 			    int bpf_size, enum bpf_access_type t,
1078 			    int value_regno)
1079 {
1080 	struct bpf_verifier_state *state = env->cur_state;
1081 	struct bpf_reg_state *regs = cur_regs(env);
1082 	struct bpf_reg_state *reg = regs + regno;
1083 	int size, err = 0;
1084 
1085 	size = bpf_size_to_bytes(bpf_size);
1086 	if (size < 0)
1087 		return size;
1088 
1089 	/* alignment checks will add in reg->off themselves */
1090 	err = check_ptr_alignment(env, reg, off, size);
1091 	if (err)
1092 		return err;
1093 
1094 	/* for access checks, reg->off is just part of off */
1095 	off += reg->off;
1096 
1097 	if (reg->type == PTR_TO_MAP_VALUE) {
1098 		if (t == BPF_WRITE && value_regno >= 0 &&
1099 		    is_pointer_value(env, value_regno)) {
1100 			verbose(env, "R%d leaks addr into map\n", value_regno);
1101 			return -EACCES;
1102 		}
1103 
1104 		err = check_map_access(env, regno, off, size, false);
1105 		if (!err && t == BPF_READ && value_regno >= 0)
1106 			mark_reg_unknown(env, regs, value_regno);
1107 
1108 	} else if (reg->type == PTR_TO_CTX) {
1109 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110 
1111 		if (t == BPF_WRITE && value_regno >= 0 &&
1112 		    is_pointer_value(env, value_regno)) {
1113 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1114 			return -EACCES;
1115 		}
1116 		/* ctx accesses must be at a fixed offset, so that we can
1117 		 * determine what type of data were returned.
1118 		 */
1119 		if (reg->off) {
1120 			verbose(env,
1121 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1122 				regno, reg->off, off - reg->off);
1123 			return -EACCES;
1124 		}
1125 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1126 			char tn_buf[48];
1127 
1128 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1129 			verbose(env,
1130 				"variable ctx access var_off=%s off=%d size=%d",
1131 				tn_buf, off, size);
1132 			return -EACCES;
1133 		}
1134 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1135 		if (!err && t == BPF_READ && value_regno >= 0) {
1136 			/* ctx access returns either a scalar, or a
1137 			 * PTR_TO_PACKET[_META,_END]. In the latter
1138 			 * case, we know the offset is zero.
1139 			 */
1140 			if (reg_type == SCALAR_VALUE)
1141 				mark_reg_unknown(env, regs, value_regno);
1142 			else
1143 				mark_reg_known_zero(env, regs,
1144 						    value_regno);
1145 			regs[value_regno].id = 0;
1146 			regs[value_regno].off = 0;
1147 			regs[value_regno].range = 0;
1148 			regs[value_regno].type = reg_type;
1149 		}
1150 
1151 	} else if (reg->type == PTR_TO_STACK) {
1152 		/* stack accesses must be at a fixed offset, so that we can
1153 		 * determine what type of data were returned.
1154 		 * See check_stack_read().
1155 		 */
1156 		if (!tnum_is_const(reg->var_off)) {
1157 			char tn_buf[48];
1158 
1159 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1160 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1161 				tn_buf, off, size);
1162 			return -EACCES;
1163 		}
1164 		off += reg->var_off.value;
1165 		if (off >= 0 || off < -MAX_BPF_STACK) {
1166 			verbose(env, "invalid stack off=%d size=%d\n", off,
1167 				size);
1168 			return -EACCES;
1169 		}
1170 
1171 		if (env->prog->aux->stack_depth < -off)
1172 			env->prog->aux->stack_depth = -off;
1173 
1174 		if (t == BPF_WRITE)
1175 			err = check_stack_write(env, state, off, size,
1176 						value_regno);
1177 		else
1178 			err = check_stack_read(env, state, off, size,
1179 					       value_regno);
1180 	} else if (reg_is_pkt_pointer(reg)) {
1181 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1182 			verbose(env, "cannot write into packet\n");
1183 			return -EACCES;
1184 		}
1185 		if (t == BPF_WRITE && value_regno >= 0 &&
1186 		    is_pointer_value(env, value_regno)) {
1187 			verbose(env, "R%d leaks addr into packet\n",
1188 				value_regno);
1189 			return -EACCES;
1190 		}
1191 		err = check_packet_access(env, regno, off, size, false);
1192 		if (!err && t == BPF_READ && value_regno >= 0)
1193 			mark_reg_unknown(env, regs, value_regno);
1194 	} else {
1195 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1196 			reg_type_str[reg->type]);
1197 		return -EACCES;
1198 	}
1199 
1200 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201 	    regs[value_regno].type == SCALAR_VALUE) {
1202 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1203 		regs[value_regno].var_off =
1204 			tnum_cast(regs[value_regno].var_off, size);
1205 		__update_reg_bounds(&regs[value_regno]);
1206 	}
1207 	return err;
1208 }
1209 
1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 {
1212 	int err;
1213 
1214 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 	    insn->imm != 0) {
1216 		verbose(env, "BPF_XADD uses reserved fields\n");
1217 		return -EINVAL;
1218 	}
1219 
1220 	/* check src1 operand */
1221 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 	if (err)
1223 		return err;
1224 
1225 	/* check src2 operand */
1226 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 	if (err)
1228 		return err;
1229 
1230 	if (is_pointer_value(env, insn->src_reg)) {
1231 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1232 		return -EACCES;
1233 	}
1234 
1235 	/* check whether atomic_add can read the memory */
1236 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 			       BPF_SIZE(insn->code), BPF_READ, -1);
1238 	if (err)
1239 		return err;
1240 
1241 	/* check whether atomic_add can write into the same memory */
1242 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1244 }
1245 
1246 /* Does this register contain a constant zero? */
1247 static bool register_is_null(struct bpf_reg_state reg)
1248 {
1249 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250 }
1251 
1252 /* when register 'regno' is passed into function that will read 'access_size'
1253  * bytes from that pointer, make sure that it's within stack boundary
1254  * and all elements of stack are initialized.
1255  * Unlike most pointer bounds-checking functions, this one doesn't take an
1256  * 'off' argument, so it has to add in reg->off itself.
1257  */
1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 				int access_size, bool zero_size_allowed,
1260 				struct bpf_call_arg_meta *meta)
1261 {
1262 	struct bpf_verifier_state *state = env->cur_state;
1263 	struct bpf_reg_state *regs = state->regs;
1264 	int off, i, slot, spi;
1265 
1266 	if (regs[regno].type != PTR_TO_STACK) {
1267 		/* Allow zero-byte read from NULL, regardless of pointer type */
1268 		if (zero_size_allowed && access_size == 0 &&
1269 		    register_is_null(regs[regno]))
1270 			return 0;
1271 
1272 		verbose(env, "R%d type=%s expected=%s\n", regno,
1273 			reg_type_str[regs[regno].type],
1274 			reg_type_str[PTR_TO_STACK]);
1275 		return -EACCES;
1276 	}
1277 
1278 	/* Only allow fixed-offset stack reads */
1279 	if (!tnum_is_const(regs[regno].var_off)) {
1280 		char tn_buf[48];
1281 
1282 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1284 			regno, tn_buf);
1285 	}
1286 	off = regs[regno].off + regs[regno].var_off.value;
1287 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1289 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1290 			regno, off, access_size);
1291 		return -EACCES;
1292 	}
1293 
1294 	if (env->prog->aux->stack_depth < -off)
1295 		env->prog->aux->stack_depth = -off;
1296 
1297 	if (meta && meta->raw_mode) {
1298 		meta->access_size = access_size;
1299 		meta->regno = regno;
1300 		return 0;
1301 	}
1302 
1303 	for (i = 0; i < access_size; i++) {
1304 		slot = -(off + i) - 1;
1305 		spi = slot / BPF_REG_SIZE;
1306 		if (state->allocated_stack <= slot ||
1307 		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1308 			STACK_MISC) {
1309 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1310 				off, i, access_size);
1311 			return -EACCES;
1312 		}
1313 	}
1314 	return 0;
1315 }
1316 
1317 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1318 				   int access_size, bool zero_size_allowed,
1319 				   struct bpf_call_arg_meta *meta)
1320 {
1321 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1322 
1323 	switch (reg->type) {
1324 	case PTR_TO_PACKET:
1325 	case PTR_TO_PACKET_META:
1326 		return check_packet_access(env, regno, reg->off, access_size,
1327 					   zero_size_allowed);
1328 	case PTR_TO_MAP_VALUE:
1329 		return check_map_access(env, regno, reg->off, access_size,
1330 					zero_size_allowed);
1331 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1332 		return check_stack_boundary(env, regno, access_size,
1333 					    zero_size_allowed, meta);
1334 	}
1335 }
1336 
1337 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1338 			  enum bpf_arg_type arg_type,
1339 			  struct bpf_call_arg_meta *meta)
1340 {
1341 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1342 	enum bpf_reg_type expected_type, type = reg->type;
1343 	int err = 0;
1344 
1345 	if (arg_type == ARG_DONTCARE)
1346 		return 0;
1347 
1348 	err = check_reg_arg(env, regno, SRC_OP);
1349 	if (err)
1350 		return err;
1351 
1352 	if (arg_type == ARG_ANYTHING) {
1353 		if (is_pointer_value(env, regno)) {
1354 			verbose(env, "R%d leaks addr into helper function\n",
1355 				regno);
1356 			return -EACCES;
1357 		}
1358 		return 0;
1359 	}
1360 
1361 	if (type_is_pkt_pointer(type) &&
1362 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1363 		verbose(env, "helper access to the packet is not allowed\n");
1364 		return -EACCES;
1365 	}
1366 
1367 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1368 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1369 		expected_type = PTR_TO_STACK;
1370 		if (!type_is_pkt_pointer(type) &&
1371 		    type != expected_type)
1372 			goto err_type;
1373 	} else if (arg_type == ARG_CONST_SIZE ||
1374 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1375 		expected_type = SCALAR_VALUE;
1376 		if (type != expected_type)
1377 			goto err_type;
1378 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1379 		expected_type = CONST_PTR_TO_MAP;
1380 		if (type != expected_type)
1381 			goto err_type;
1382 	} else if (arg_type == ARG_PTR_TO_CTX) {
1383 		expected_type = PTR_TO_CTX;
1384 		if (type != expected_type)
1385 			goto err_type;
1386 	} else if (arg_type == ARG_PTR_TO_MEM ||
1387 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1388 		expected_type = PTR_TO_STACK;
1389 		/* One exception here. In case function allows for NULL to be
1390 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1391 		 * happens during stack boundary checking.
1392 		 */
1393 		if (register_is_null(*reg))
1394 			/* final test in check_stack_boundary() */;
1395 		else if (!type_is_pkt_pointer(type) &&
1396 			 type != PTR_TO_MAP_VALUE &&
1397 			 type != expected_type)
1398 			goto err_type;
1399 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1400 	} else {
1401 		verbose(env, "unsupported arg_type %d\n", arg_type);
1402 		return -EFAULT;
1403 	}
1404 
1405 	if (arg_type == ARG_CONST_MAP_PTR) {
1406 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1407 		meta->map_ptr = reg->map_ptr;
1408 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1409 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1410 		 * check that [key, key + map->key_size) are within
1411 		 * stack limits and initialized
1412 		 */
1413 		if (!meta->map_ptr) {
1414 			/* in function declaration map_ptr must come before
1415 			 * map_key, so that it's verified and known before
1416 			 * we have to check map_key here. Otherwise it means
1417 			 * that kernel subsystem misconfigured verifier
1418 			 */
1419 			verbose(env, "invalid map_ptr to access map->key\n");
1420 			return -EACCES;
1421 		}
1422 		if (type_is_pkt_pointer(type))
1423 			err = check_packet_access(env, regno, reg->off,
1424 						  meta->map_ptr->key_size,
1425 						  false);
1426 		else
1427 			err = check_stack_boundary(env, regno,
1428 						   meta->map_ptr->key_size,
1429 						   false, NULL);
1430 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1431 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1432 		 * check [value, value + map->value_size) validity
1433 		 */
1434 		if (!meta->map_ptr) {
1435 			/* kernel subsystem misconfigured verifier */
1436 			verbose(env, "invalid map_ptr to access map->value\n");
1437 			return -EACCES;
1438 		}
1439 		if (type_is_pkt_pointer(type))
1440 			err = check_packet_access(env, regno, reg->off,
1441 						  meta->map_ptr->value_size,
1442 						  false);
1443 		else
1444 			err = check_stack_boundary(env, regno,
1445 						   meta->map_ptr->value_size,
1446 						   false, NULL);
1447 	} else if (arg_type == ARG_CONST_SIZE ||
1448 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1449 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1450 
1451 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1452 		 * from stack pointer 'buf'. Check it
1453 		 * note: regno == len, regno - 1 == buf
1454 		 */
1455 		if (regno == 0) {
1456 			/* kernel subsystem misconfigured verifier */
1457 			verbose(env,
1458 				"ARG_CONST_SIZE cannot be first argument\n");
1459 			return -EACCES;
1460 		}
1461 
1462 		/* The register is SCALAR_VALUE; the access check
1463 		 * happens using its boundaries.
1464 		 */
1465 
1466 		if (!tnum_is_const(reg->var_off))
1467 			/* For unprivileged variable accesses, disable raw
1468 			 * mode so that the program is required to
1469 			 * initialize all the memory that the helper could
1470 			 * just partially fill up.
1471 			 */
1472 			meta = NULL;
1473 
1474 		if (reg->smin_value < 0) {
1475 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1476 				regno);
1477 			return -EACCES;
1478 		}
1479 
1480 		if (reg->umin_value == 0) {
1481 			err = check_helper_mem_access(env, regno - 1, 0,
1482 						      zero_size_allowed,
1483 						      meta);
1484 			if (err)
1485 				return err;
1486 		}
1487 
1488 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1489 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1490 				regno);
1491 			return -EACCES;
1492 		}
1493 		err = check_helper_mem_access(env, regno - 1,
1494 					      reg->umax_value,
1495 					      zero_size_allowed, meta);
1496 	}
1497 
1498 	return err;
1499 err_type:
1500 	verbose(env, "R%d type=%s expected=%s\n", regno,
1501 		reg_type_str[type], reg_type_str[expected_type]);
1502 	return -EACCES;
1503 }
1504 
1505 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1506 					struct bpf_map *map, int func_id)
1507 {
1508 	if (!map)
1509 		return 0;
1510 
1511 	/* We need a two way check, first is from map perspective ... */
1512 	switch (map->map_type) {
1513 	case BPF_MAP_TYPE_PROG_ARRAY:
1514 		if (func_id != BPF_FUNC_tail_call)
1515 			goto error;
1516 		break;
1517 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1518 		if (func_id != BPF_FUNC_perf_event_read &&
1519 		    func_id != BPF_FUNC_perf_event_output &&
1520 		    func_id != BPF_FUNC_perf_event_read_value)
1521 			goto error;
1522 		break;
1523 	case BPF_MAP_TYPE_STACK_TRACE:
1524 		if (func_id != BPF_FUNC_get_stackid)
1525 			goto error;
1526 		break;
1527 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1528 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1529 		    func_id != BPF_FUNC_current_task_under_cgroup)
1530 			goto error;
1531 		break;
1532 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1533 	 * allow to be modified from bpf side. So do not allow lookup elements
1534 	 * for now.
1535 	 */
1536 	case BPF_MAP_TYPE_DEVMAP:
1537 		if (func_id != BPF_FUNC_redirect_map)
1538 			goto error;
1539 		break;
1540 	/* Restrict bpf side of cpumap, open when use-cases appear */
1541 	case BPF_MAP_TYPE_CPUMAP:
1542 		if (func_id != BPF_FUNC_redirect_map)
1543 			goto error;
1544 		break;
1545 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1546 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1547 		if (func_id != BPF_FUNC_map_lookup_elem)
1548 			goto error;
1549 		break;
1550 	case BPF_MAP_TYPE_SOCKMAP:
1551 		if (func_id != BPF_FUNC_sk_redirect_map &&
1552 		    func_id != BPF_FUNC_sock_map_update &&
1553 		    func_id != BPF_FUNC_map_delete_elem)
1554 			goto error;
1555 		break;
1556 	default:
1557 		break;
1558 	}
1559 
1560 	/* ... and second from the function itself. */
1561 	switch (func_id) {
1562 	case BPF_FUNC_tail_call:
1563 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1564 			goto error;
1565 		break;
1566 	case BPF_FUNC_perf_event_read:
1567 	case BPF_FUNC_perf_event_output:
1568 	case BPF_FUNC_perf_event_read_value:
1569 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1570 			goto error;
1571 		break;
1572 	case BPF_FUNC_get_stackid:
1573 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1574 			goto error;
1575 		break;
1576 	case BPF_FUNC_current_task_under_cgroup:
1577 	case BPF_FUNC_skb_under_cgroup:
1578 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1579 			goto error;
1580 		break;
1581 	case BPF_FUNC_redirect_map:
1582 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1583 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1584 			goto error;
1585 		break;
1586 	case BPF_FUNC_sk_redirect_map:
1587 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1588 			goto error;
1589 		break;
1590 	case BPF_FUNC_sock_map_update:
1591 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1592 			goto error;
1593 		break;
1594 	default:
1595 		break;
1596 	}
1597 
1598 	return 0;
1599 error:
1600 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1601 		map->map_type, func_id_name(func_id), func_id);
1602 	return -EINVAL;
1603 }
1604 
1605 static int check_raw_mode(const struct bpf_func_proto *fn)
1606 {
1607 	int count = 0;
1608 
1609 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1610 		count++;
1611 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1612 		count++;
1613 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1614 		count++;
1615 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1616 		count++;
1617 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1618 		count++;
1619 
1620 	return count > 1 ? -EINVAL : 0;
1621 }
1622 
1623 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1624  * are now invalid, so turn them into unknown SCALAR_VALUE.
1625  */
1626 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1627 {
1628 	struct bpf_verifier_state *state = env->cur_state;
1629 	struct bpf_reg_state *regs = state->regs, *reg;
1630 	int i;
1631 
1632 	for (i = 0; i < MAX_BPF_REG; i++)
1633 		if (reg_is_pkt_pointer_any(&regs[i]))
1634 			mark_reg_unknown(env, regs, i);
1635 
1636 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1637 		if (state->stack[i].slot_type[0] != STACK_SPILL)
1638 			continue;
1639 		reg = &state->stack[i].spilled_ptr;
1640 		if (reg_is_pkt_pointer_any(reg))
1641 			__mark_reg_unknown(reg);
1642 	}
1643 }
1644 
1645 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1646 {
1647 	const struct bpf_func_proto *fn = NULL;
1648 	struct bpf_reg_state *regs;
1649 	struct bpf_call_arg_meta meta;
1650 	bool changes_data;
1651 	int i, err;
1652 
1653 	/* find function prototype */
1654 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1655 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1656 			func_id);
1657 		return -EINVAL;
1658 	}
1659 
1660 	if (env->ops->get_func_proto)
1661 		fn = env->ops->get_func_proto(func_id);
1662 
1663 	if (!fn) {
1664 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1665 			func_id);
1666 		return -EINVAL;
1667 	}
1668 
1669 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1670 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1671 		verbose(env, "cannot call GPL only function from proprietary program\n");
1672 		return -EINVAL;
1673 	}
1674 
1675 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1676 
1677 	memset(&meta, 0, sizeof(meta));
1678 	meta.pkt_access = fn->pkt_access;
1679 
1680 	/* We only support one arg being in raw mode at the moment, which
1681 	 * is sufficient for the helper functions we have right now.
1682 	 */
1683 	err = check_raw_mode(fn);
1684 	if (err) {
1685 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1686 			func_id_name(func_id), func_id);
1687 		return err;
1688 	}
1689 
1690 	/* check args */
1691 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1692 	if (err)
1693 		return err;
1694 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1695 	if (err)
1696 		return err;
1697 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1698 	if (err)
1699 		return err;
1700 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1701 	if (err)
1702 		return err;
1703 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1704 	if (err)
1705 		return err;
1706 
1707 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1708 	 * is inferred from register state.
1709 	 */
1710 	for (i = 0; i < meta.access_size; i++) {
1711 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1712 		if (err)
1713 			return err;
1714 	}
1715 
1716 	regs = cur_regs(env);
1717 	/* reset caller saved regs */
1718 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1719 		mark_reg_not_init(env, regs, caller_saved[i]);
1720 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1721 	}
1722 
1723 	/* update return register (already marked as written above) */
1724 	if (fn->ret_type == RET_INTEGER) {
1725 		/* sets type to SCALAR_VALUE */
1726 		mark_reg_unknown(env, regs, BPF_REG_0);
1727 	} else if (fn->ret_type == RET_VOID) {
1728 		regs[BPF_REG_0].type = NOT_INIT;
1729 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1730 		struct bpf_insn_aux_data *insn_aux;
1731 
1732 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1733 		/* There is no offset yet applied, variable or fixed */
1734 		mark_reg_known_zero(env, regs, BPF_REG_0);
1735 		regs[BPF_REG_0].off = 0;
1736 		/* remember map_ptr, so that check_map_access()
1737 		 * can check 'value_size' boundary of memory access
1738 		 * to map element returned from bpf_map_lookup_elem()
1739 		 */
1740 		if (meta.map_ptr == NULL) {
1741 			verbose(env,
1742 				"kernel subsystem misconfigured verifier\n");
1743 			return -EINVAL;
1744 		}
1745 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1746 		regs[BPF_REG_0].id = ++env->id_gen;
1747 		insn_aux = &env->insn_aux_data[insn_idx];
1748 		if (!insn_aux->map_ptr)
1749 			insn_aux->map_ptr = meta.map_ptr;
1750 		else if (insn_aux->map_ptr != meta.map_ptr)
1751 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1752 	} else {
1753 		verbose(env, "unknown return type %d of func %s#%d\n",
1754 			fn->ret_type, func_id_name(func_id), func_id);
1755 		return -EINVAL;
1756 	}
1757 
1758 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1759 	if (err)
1760 		return err;
1761 
1762 	if (changes_data)
1763 		clear_all_pkt_pointers(env);
1764 	return 0;
1765 }
1766 
1767 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1768 {
1769 	/* clear high 32 bits */
1770 	reg->var_off = tnum_cast(reg->var_off, 4);
1771 	/* Update bounds */
1772 	__update_reg_bounds(reg);
1773 }
1774 
1775 static bool signed_add_overflows(s64 a, s64 b)
1776 {
1777 	/* Do the add in u64, where overflow is well-defined */
1778 	s64 res = (s64)((u64)a + (u64)b);
1779 
1780 	if (b < 0)
1781 		return res > a;
1782 	return res < a;
1783 }
1784 
1785 static bool signed_sub_overflows(s64 a, s64 b)
1786 {
1787 	/* Do the sub in u64, where overflow is well-defined */
1788 	s64 res = (s64)((u64)a - (u64)b);
1789 
1790 	if (b < 0)
1791 		return res < a;
1792 	return res > a;
1793 }
1794 
1795 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1796  * Caller should also handle BPF_MOV case separately.
1797  * If we return -EACCES, caller may want to try again treating pointer as a
1798  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1799  */
1800 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1801 				   struct bpf_insn *insn,
1802 				   const struct bpf_reg_state *ptr_reg,
1803 				   const struct bpf_reg_state *off_reg)
1804 {
1805 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1806 	bool known = tnum_is_const(off_reg->var_off);
1807 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1808 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1809 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1810 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1811 	u8 opcode = BPF_OP(insn->code);
1812 	u32 dst = insn->dst_reg;
1813 
1814 	dst_reg = &regs[dst];
1815 
1816 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1817 		print_verifier_state(env, env->cur_state);
1818 		verbose(env,
1819 			"verifier internal error: known but bad sbounds\n");
1820 		return -EINVAL;
1821 	}
1822 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1823 		print_verifier_state(env, env->cur_state);
1824 		verbose(env,
1825 			"verifier internal error: known but bad ubounds\n");
1826 		return -EINVAL;
1827 	}
1828 
1829 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1830 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1831 		if (!env->allow_ptr_leaks)
1832 			verbose(env,
1833 				"R%d 32-bit pointer arithmetic prohibited\n",
1834 				dst);
1835 		return -EACCES;
1836 	}
1837 
1838 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1839 		if (!env->allow_ptr_leaks)
1840 			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1841 				dst);
1842 		return -EACCES;
1843 	}
1844 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1845 		if (!env->allow_ptr_leaks)
1846 			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1847 				dst);
1848 		return -EACCES;
1849 	}
1850 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1851 		if (!env->allow_ptr_leaks)
1852 			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1853 				dst);
1854 		return -EACCES;
1855 	}
1856 
1857 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1858 	 * The id may be overwritten later if we create a new variable offset.
1859 	 */
1860 	dst_reg->type = ptr_reg->type;
1861 	dst_reg->id = ptr_reg->id;
1862 
1863 	switch (opcode) {
1864 	case BPF_ADD:
1865 		/* We can take a fixed offset as long as it doesn't overflow
1866 		 * the s32 'off' field
1867 		 */
1868 		if (known && (ptr_reg->off + smin_val ==
1869 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1870 			/* pointer += K.  Accumulate it into fixed offset */
1871 			dst_reg->smin_value = smin_ptr;
1872 			dst_reg->smax_value = smax_ptr;
1873 			dst_reg->umin_value = umin_ptr;
1874 			dst_reg->umax_value = umax_ptr;
1875 			dst_reg->var_off = ptr_reg->var_off;
1876 			dst_reg->off = ptr_reg->off + smin_val;
1877 			dst_reg->range = ptr_reg->range;
1878 			break;
1879 		}
1880 		/* A new variable offset is created.  Note that off_reg->off
1881 		 * == 0, since it's a scalar.
1882 		 * dst_reg gets the pointer type and since some positive
1883 		 * integer value was added to the pointer, give it a new 'id'
1884 		 * if it's a PTR_TO_PACKET.
1885 		 * this creates a new 'base' pointer, off_reg (variable) gets
1886 		 * added into the variable offset, and we copy the fixed offset
1887 		 * from ptr_reg.
1888 		 */
1889 		if (signed_add_overflows(smin_ptr, smin_val) ||
1890 		    signed_add_overflows(smax_ptr, smax_val)) {
1891 			dst_reg->smin_value = S64_MIN;
1892 			dst_reg->smax_value = S64_MAX;
1893 		} else {
1894 			dst_reg->smin_value = smin_ptr + smin_val;
1895 			dst_reg->smax_value = smax_ptr + smax_val;
1896 		}
1897 		if (umin_ptr + umin_val < umin_ptr ||
1898 		    umax_ptr + umax_val < umax_ptr) {
1899 			dst_reg->umin_value = 0;
1900 			dst_reg->umax_value = U64_MAX;
1901 		} else {
1902 			dst_reg->umin_value = umin_ptr + umin_val;
1903 			dst_reg->umax_value = umax_ptr + umax_val;
1904 		}
1905 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1906 		dst_reg->off = ptr_reg->off;
1907 		if (reg_is_pkt_pointer(ptr_reg)) {
1908 			dst_reg->id = ++env->id_gen;
1909 			/* something was added to pkt_ptr, set range to zero */
1910 			dst_reg->range = 0;
1911 		}
1912 		break;
1913 	case BPF_SUB:
1914 		if (dst_reg == off_reg) {
1915 			/* scalar -= pointer.  Creates an unknown scalar */
1916 			if (!env->allow_ptr_leaks)
1917 				verbose(env, "R%d tried to subtract pointer from scalar\n",
1918 					dst);
1919 			return -EACCES;
1920 		}
1921 		/* We don't allow subtraction from FP, because (according to
1922 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1923 		 * be able to deal with it.
1924 		 */
1925 		if (ptr_reg->type == PTR_TO_STACK) {
1926 			if (!env->allow_ptr_leaks)
1927 				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1928 					dst);
1929 			return -EACCES;
1930 		}
1931 		if (known && (ptr_reg->off - smin_val ==
1932 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1933 			/* pointer -= K.  Subtract it from fixed offset */
1934 			dst_reg->smin_value = smin_ptr;
1935 			dst_reg->smax_value = smax_ptr;
1936 			dst_reg->umin_value = umin_ptr;
1937 			dst_reg->umax_value = umax_ptr;
1938 			dst_reg->var_off = ptr_reg->var_off;
1939 			dst_reg->id = ptr_reg->id;
1940 			dst_reg->off = ptr_reg->off - smin_val;
1941 			dst_reg->range = ptr_reg->range;
1942 			break;
1943 		}
1944 		/* A new variable offset is created.  If the subtrahend is known
1945 		 * nonnegative, then any reg->range we had before is still good.
1946 		 */
1947 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1948 		    signed_sub_overflows(smax_ptr, smin_val)) {
1949 			/* Overflow possible, we know nothing */
1950 			dst_reg->smin_value = S64_MIN;
1951 			dst_reg->smax_value = S64_MAX;
1952 		} else {
1953 			dst_reg->smin_value = smin_ptr - smax_val;
1954 			dst_reg->smax_value = smax_ptr - smin_val;
1955 		}
1956 		if (umin_ptr < umax_val) {
1957 			/* Overflow possible, we know nothing */
1958 			dst_reg->umin_value = 0;
1959 			dst_reg->umax_value = U64_MAX;
1960 		} else {
1961 			/* Cannot overflow (as long as bounds are consistent) */
1962 			dst_reg->umin_value = umin_ptr - umax_val;
1963 			dst_reg->umax_value = umax_ptr - umin_val;
1964 		}
1965 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1966 		dst_reg->off = ptr_reg->off;
1967 		if (reg_is_pkt_pointer(ptr_reg)) {
1968 			dst_reg->id = ++env->id_gen;
1969 			/* something was added to pkt_ptr, set range to zero */
1970 			if (smin_val < 0)
1971 				dst_reg->range = 0;
1972 		}
1973 		break;
1974 	case BPF_AND:
1975 	case BPF_OR:
1976 	case BPF_XOR:
1977 		/* bitwise ops on pointers are troublesome, prohibit for now.
1978 		 * (However, in principle we could allow some cases, e.g.
1979 		 * ptr &= ~3 which would reduce min_value by 3.)
1980 		 */
1981 		if (!env->allow_ptr_leaks)
1982 			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1983 				dst, bpf_alu_string[opcode >> 4]);
1984 		return -EACCES;
1985 	default:
1986 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
1987 		if (!env->allow_ptr_leaks)
1988 			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1989 				dst, bpf_alu_string[opcode >> 4]);
1990 		return -EACCES;
1991 	}
1992 
1993 	__update_reg_bounds(dst_reg);
1994 	__reg_deduce_bounds(dst_reg);
1995 	__reg_bound_offset(dst_reg);
1996 	return 0;
1997 }
1998 
1999 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2000 				      struct bpf_insn *insn,
2001 				      struct bpf_reg_state *dst_reg,
2002 				      struct bpf_reg_state src_reg)
2003 {
2004 	struct bpf_reg_state *regs = cur_regs(env);
2005 	u8 opcode = BPF_OP(insn->code);
2006 	bool src_known, dst_known;
2007 	s64 smin_val, smax_val;
2008 	u64 umin_val, umax_val;
2009 
2010 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2011 		/* 32-bit ALU ops are (32,32)->64 */
2012 		coerce_reg_to_32(dst_reg);
2013 		coerce_reg_to_32(&src_reg);
2014 	}
2015 	smin_val = src_reg.smin_value;
2016 	smax_val = src_reg.smax_value;
2017 	umin_val = src_reg.umin_value;
2018 	umax_val = src_reg.umax_value;
2019 	src_known = tnum_is_const(src_reg.var_off);
2020 	dst_known = tnum_is_const(dst_reg->var_off);
2021 
2022 	switch (opcode) {
2023 	case BPF_ADD:
2024 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2025 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2026 			dst_reg->smin_value = S64_MIN;
2027 			dst_reg->smax_value = S64_MAX;
2028 		} else {
2029 			dst_reg->smin_value += smin_val;
2030 			dst_reg->smax_value += smax_val;
2031 		}
2032 		if (dst_reg->umin_value + umin_val < umin_val ||
2033 		    dst_reg->umax_value + umax_val < umax_val) {
2034 			dst_reg->umin_value = 0;
2035 			dst_reg->umax_value = U64_MAX;
2036 		} else {
2037 			dst_reg->umin_value += umin_val;
2038 			dst_reg->umax_value += umax_val;
2039 		}
2040 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2041 		break;
2042 	case BPF_SUB:
2043 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2044 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2045 			/* Overflow possible, we know nothing */
2046 			dst_reg->smin_value = S64_MIN;
2047 			dst_reg->smax_value = S64_MAX;
2048 		} else {
2049 			dst_reg->smin_value -= smax_val;
2050 			dst_reg->smax_value -= smin_val;
2051 		}
2052 		if (dst_reg->umin_value < umax_val) {
2053 			/* Overflow possible, we know nothing */
2054 			dst_reg->umin_value = 0;
2055 			dst_reg->umax_value = U64_MAX;
2056 		} else {
2057 			/* Cannot overflow (as long as bounds are consistent) */
2058 			dst_reg->umin_value -= umax_val;
2059 			dst_reg->umax_value -= umin_val;
2060 		}
2061 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2062 		break;
2063 	case BPF_MUL:
2064 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2065 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2066 			/* Ain't nobody got time to multiply that sign */
2067 			__mark_reg_unbounded(dst_reg);
2068 			__update_reg_bounds(dst_reg);
2069 			break;
2070 		}
2071 		/* Both values are positive, so we can work with unsigned and
2072 		 * copy the result to signed (unless it exceeds S64_MAX).
2073 		 */
2074 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2075 			/* Potential overflow, we know nothing */
2076 			__mark_reg_unbounded(dst_reg);
2077 			/* (except what we can learn from the var_off) */
2078 			__update_reg_bounds(dst_reg);
2079 			break;
2080 		}
2081 		dst_reg->umin_value *= umin_val;
2082 		dst_reg->umax_value *= umax_val;
2083 		if (dst_reg->umax_value > S64_MAX) {
2084 			/* Overflow possible, we know nothing */
2085 			dst_reg->smin_value = S64_MIN;
2086 			dst_reg->smax_value = S64_MAX;
2087 		} else {
2088 			dst_reg->smin_value = dst_reg->umin_value;
2089 			dst_reg->smax_value = dst_reg->umax_value;
2090 		}
2091 		break;
2092 	case BPF_AND:
2093 		if (src_known && dst_known) {
2094 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2095 						  src_reg.var_off.value);
2096 			break;
2097 		}
2098 		/* We get our minimum from the var_off, since that's inherently
2099 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2100 		 */
2101 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2102 		dst_reg->umin_value = dst_reg->var_off.value;
2103 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2104 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2105 			/* Lose signed bounds when ANDing negative numbers,
2106 			 * ain't nobody got time for that.
2107 			 */
2108 			dst_reg->smin_value = S64_MIN;
2109 			dst_reg->smax_value = S64_MAX;
2110 		} else {
2111 			/* ANDing two positives gives a positive, so safe to
2112 			 * cast result into s64.
2113 			 */
2114 			dst_reg->smin_value = dst_reg->umin_value;
2115 			dst_reg->smax_value = dst_reg->umax_value;
2116 		}
2117 		/* We may learn something more from the var_off */
2118 		__update_reg_bounds(dst_reg);
2119 		break;
2120 	case BPF_OR:
2121 		if (src_known && dst_known) {
2122 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2123 						  src_reg.var_off.value);
2124 			break;
2125 		}
2126 		/* We get our maximum from the var_off, and our minimum is the
2127 		 * maximum of the operands' minima
2128 		 */
2129 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2130 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2131 		dst_reg->umax_value = dst_reg->var_off.value |
2132 				      dst_reg->var_off.mask;
2133 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2134 			/* Lose signed bounds when ORing negative numbers,
2135 			 * ain't nobody got time for that.
2136 			 */
2137 			dst_reg->smin_value = S64_MIN;
2138 			dst_reg->smax_value = S64_MAX;
2139 		} else {
2140 			/* ORing two positives gives a positive, so safe to
2141 			 * cast result into s64.
2142 			 */
2143 			dst_reg->smin_value = dst_reg->umin_value;
2144 			dst_reg->smax_value = dst_reg->umax_value;
2145 		}
2146 		/* We may learn something more from the var_off */
2147 		__update_reg_bounds(dst_reg);
2148 		break;
2149 	case BPF_LSH:
2150 		if (umax_val > 63) {
2151 			/* Shifts greater than 63 are undefined.  This includes
2152 			 * shifts by a negative number.
2153 			 */
2154 			mark_reg_unknown(env, regs, insn->dst_reg);
2155 			break;
2156 		}
2157 		/* We lose all sign bit information (except what we can pick
2158 		 * up from var_off)
2159 		 */
2160 		dst_reg->smin_value = S64_MIN;
2161 		dst_reg->smax_value = S64_MAX;
2162 		/* If we might shift our top bit out, then we know nothing */
2163 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2164 			dst_reg->umin_value = 0;
2165 			dst_reg->umax_value = U64_MAX;
2166 		} else {
2167 			dst_reg->umin_value <<= umin_val;
2168 			dst_reg->umax_value <<= umax_val;
2169 		}
2170 		if (src_known)
2171 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2172 		else
2173 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2174 		/* We may learn something more from the var_off */
2175 		__update_reg_bounds(dst_reg);
2176 		break;
2177 	case BPF_RSH:
2178 		if (umax_val > 63) {
2179 			/* Shifts greater than 63 are undefined.  This includes
2180 			 * shifts by a negative number.
2181 			 */
2182 			mark_reg_unknown(env, regs, insn->dst_reg);
2183 			break;
2184 		}
2185 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2186 		if (dst_reg->smin_value < 0) {
2187 			if (umin_val) {
2188 				/* Sign bit will be cleared */
2189 				dst_reg->smin_value = 0;
2190 			} else {
2191 				/* Lost sign bit information */
2192 				dst_reg->smin_value = S64_MIN;
2193 				dst_reg->smax_value = S64_MAX;
2194 			}
2195 		} else {
2196 			dst_reg->smin_value =
2197 				(u64)(dst_reg->smin_value) >> umax_val;
2198 		}
2199 		if (src_known)
2200 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2201 						       umin_val);
2202 		else
2203 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2204 		dst_reg->umin_value >>= umax_val;
2205 		dst_reg->umax_value >>= umin_val;
2206 		/* We may learn something more from the var_off */
2207 		__update_reg_bounds(dst_reg);
2208 		break;
2209 	default:
2210 		mark_reg_unknown(env, regs, insn->dst_reg);
2211 		break;
2212 	}
2213 
2214 	__reg_deduce_bounds(dst_reg);
2215 	__reg_bound_offset(dst_reg);
2216 	return 0;
2217 }
2218 
2219 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2220  * and var_off.
2221  */
2222 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2223 				   struct bpf_insn *insn)
2224 {
2225 	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2226 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2227 	u8 opcode = BPF_OP(insn->code);
2228 	int rc;
2229 
2230 	dst_reg = &regs[insn->dst_reg];
2231 	src_reg = NULL;
2232 	if (dst_reg->type != SCALAR_VALUE)
2233 		ptr_reg = dst_reg;
2234 	if (BPF_SRC(insn->code) == BPF_X) {
2235 		src_reg = &regs[insn->src_reg];
2236 		if (src_reg->type != SCALAR_VALUE) {
2237 			if (dst_reg->type != SCALAR_VALUE) {
2238 				/* Combining two pointers by any ALU op yields
2239 				 * an arbitrary scalar.
2240 				 */
2241 				if (!env->allow_ptr_leaks) {
2242 					verbose(env, "R%d pointer %s pointer prohibited\n",
2243 						insn->dst_reg,
2244 						bpf_alu_string[opcode >> 4]);
2245 					return -EACCES;
2246 				}
2247 				mark_reg_unknown(env, regs, insn->dst_reg);
2248 				return 0;
2249 			} else {
2250 				/* scalar += pointer
2251 				 * This is legal, but we have to reverse our
2252 				 * src/dest handling in computing the range
2253 				 */
2254 				rc = adjust_ptr_min_max_vals(env, insn,
2255 							     src_reg, dst_reg);
2256 				if (rc == -EACCES && env->allow_ptr_leaks) {
2257 					/* scalar += unknown scalar */
2258 					__mark_reg_unknown(&off_reg);
2259 					return adjust_scalar_min_max_vals(
2260 							env, insn,
2261 							dst_reg, off_reg);
2262 				}
2263 				return rc;
2264 			}
2265 		} else if (ptr_reg) {
2266 			/* pointer += scalar */
2267 			rc = adjust_ptr_min_max_vals(env, insn,
2268 						     dst_reg, src_reg);
2269 			if (rc == -EACCES && env->allow_ptr_leaks) {
2270 				/* unknown scalar += scalar */
2271 				__mark_reg_unknown(dst_reg);
2272 				return adjust_scalar_min_max_vals(
2273 						env, insn, dst_reg, *src_reg);
2274 			}
2275 			return rc;
2276 		}
2277 	} else {
2278 		/* Pretend the src is a reg with a known value, since we only
2279 		 * need to be able to read from this state.
2280 		 */
2281 		off_reg.type = SCALAR_VALUE;
2282 		__mark_reg_known(&off_reg, insn->imm);
2283 		src_reg = &off_reg;
2284 		if (ptr_reg) { /* pointer += K */
2285 			rc = adjust_ptr_min_max_vals(env, insn,
2286 						     ptr_reg, src_reg);
2287 			if (rc == -EACCES && env->allow_ptr_leaks) {
2288 				/* unknown scalar += K */
2289 				__mark_reg_unknown(dst_reg);
2290 				return adjust_scalar_min_max_vals(
2291 						env, insn, dst_reg, off_reg);
2292 			}
2293 			return rc;
2294 		}
2295 	}
2296 
2297 	/* Got here implies adding two SCALAR_VALUEs */
2298 	if (WARN_ON_ONCE(ptr_reg)) {
2299 		print_verifier_state(env, env->cur_state);
2300 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2301 		return -EINVAL;
2302 	}
2303 	if (WARN_ON(!src_reg)) {
2304 		print_verifier_state(env, env->cur_state);
2305 		verbose(env, "verifier internal error: no src_reg\n");
2306 		return -EINVAL;
2307 	}
2308 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2309 }
2310 
2311 /* check validity of 32-bit and 64-bit arithmetic operations */
2312 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2313 {
2314 	struct bpf_reg_state *regs = cur_regs(env);
2315 	u8 opcode = BPF_OP(insn->code);
2316 	int err;
2317 
2318 	if (opcode == BPF_END || opcode == BPF_NEG) {
2319 		if (opcode == BPF_NEG) {
2320 			if (BPF_SRC(insn->code) != 0 ||
2321 			    insn->src_reg != BPF_REG_0 ||
2322 			    insn->off != 0 || insn->imm != 0) {
2323 				verbose(env, "BPF_NEG uses reserved fields\n");
2324 				return -EINVAL;
2325 			}
2326 		} else {
2327 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2328 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2329 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2330 				verbose(env, "BPF_END uses reserved fields\n");
2331 				return -EINVAL;
2332 			}
2333 		}
2334 
2335 		/* check src operand */
2336 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2337 		if (err)
2338 			return err;
2339 
2340 		if (is_pointer_value(env, insn->dst_reg)) {
2341 			verbose(env, "R%d pointer arithmetic prohibited\n",
2342 				insn->dst_reg);
2343 			return -EACCES;
2344 		}
2345 
2346 		/* check dest operand */
2347 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2348 		if (err)
2349 			return err;
2350 
2351 	} else if (opcode == BPF_MOV) {
2352 
2353 		if (BPF_SRC(insn->code) == BPF_X) {
2354 			if (insn->imm != 0 || insn->off != 0) {
2355 				verbose(env, "BPF_MOV uses reserved fields\n");
2356 				return -EINVAL;
2357 			}
2358 
2359 			/* check src operand */
2360 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2361 			if (err)
2362 				return err;
2363 		} else {
2364 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2365 				verbose(env, "BPF_MOV uses reserved fields\n");
2366 				return -EINVAL;
2367 			}
2368 		}
2369 
2370 		/* check dest operand */
2371 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2372 		if (err)
2373 			return err;
2374 
2375 		if (BPF_SRC(insn->code) == BPF_X) {
2376 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2377 				/* case: R1 = R2
2378 				 * copy register state to dest reg
2379 				 */
2380 				regs[insn->dst_reg] = regs[insn->src_reg];
2381 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2382 			} else {
2383 				/* R1 = (u32) R2 */
2384 				if (is_pointer_value(env, insn->src_reg)) {
2385 					verbose(env,
2386 						"R%d partial copy of pointer\n",
2387 						insn->src_reg);
2388 					return -EACCES;
2389 				}
2390 				mark_reg_unknown(env, regs, insn->dst_reg);
2391 				/* high 32 bits are known zero. */
2392 				regs[insn->dst_reg].var_off = tnum_cast(
2393 						regs[insn->dst_reg].var_off, 4);
2394 				__update_reg_bounds(&regs[insn->dst_reg]);
2395 			}
2396 		} else {
2397 			/* case: R = imm
2398 			 * remember the value we stored into this reg
2399 			 */
2400 			regs[insn->dst_reg].type = SCALAR_VALUE;
2401 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2402 		}
2403 
2404 	} else if (opcode > BPF_END) {
2405 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2406 		return -EINVAL;
2407 
2408 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2409 
2410 		if (BPF_SRC(insn->code) == BPF_X) {
2411 			if (insn->imm != 0 || insn->off != 0) {
2412 				verbose(env, "BPF_ALU uses reserved fields\n");
2413 				return -EINVAL;
2414 			}
2415 			/* check src1 operand */
2416 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2417 			if (err)
2418 				return err;
2419 		} else {
2420 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2421 				verbose(env, "BPF_ALU uses reserved fields\n");
2422 				return -EINVAL;
2423 			}
2424 		}
2425 
2426 		/* check src2 operand */
2427 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2428 		if (err)
2429 			return err;
2430 
2431 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2432 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2433 			verbose(env, "div by zero\n");
2434 			return -EINVAL;
2435 		}
2436 
2437 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2438 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2439 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2440 
2441 			if (insn->imm < 0 || insn->imm >= size) {
2442 				verbose(env, "invalid shift %d\n", insn->imm);
2443 				return -EINVAL;
2444 			}
2445 		}
2446 
2447 		/* check dest operand */
2448 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2449 		if (err)
2450 			return err;
2451 
2452 		return adjust_reg_min_max_vals(env, insn);
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2459 				   struct bpf_reg_state *dst_reg,
2460 				   enum bpf_reg_type type,
2461 				   bool range_right_open)
2462 {
2463 	struct bpf_reg_state *regs = state->regs, *reg;
2464 	u16 new_range;
2465 	int i;
2466 
2467 	if (dst_reg->off < 0 ||
2468 	    (dst_reg->off == 0 && range_right_open))
2469 		/* This doesn't give us any range */
2470 		return;
2471 
2472 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2473 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2474 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2475 		 * than pkt_end, but that's because it's also less than pkt.
2476 		 */
2477 		return;
2478 
2479 	new_range = dst_reg->off;
2480 	if (range_right_open)
2481 		new_range--;
2482 
2483 	/* Examples for register markings:
2484 	 *
2485 	 * pkt_data in dst register:
2486 	 *
2487 	 *   r2 = r3;
2488 	 *   r2 += 8;
2489 	 *   if (r2 > pkt_end) goto <handle exception>
2490 	 *   <access okay>
2491 	 *
2492 	 *   r2 = r3;
2493 	 *   r2 += 8;
2494 	 *   if (r2 < pkt_end) goto <access okay>
2495 	 *   <handle exception>
2496 	 *
2497 	 *   Where:
2498 	 *     r2 == dst_reg, pkt_end == src_reg
2499 	 *     r2=pkt(id=n,off=8,r=0)
2500 	 *     r3=pkt(id=n,off=0,r=0)
2501 	 *
2502 	 * pkt_data in src register:
2503 	 *
2504 	 *   r2 = r3;
2505 	 *   r2 += 8;
2506 	 *   if (pkt_end >= r2) goto <access okay>
2507 	 *   <handle exception>
2508 	 *
2509 	 *   r2 = r3;
2510 	 *   r2 += 8;
2511 	 *   if (pkt_end <= r2) goto <handle exception>
2512 	 *   <access okay>
2513 	 *
2514 	 *   Where:
2515 	 *     pkt_end == dst_reg, r2 == src_reg
2516 	 *     r2=pkt(id=n,off=8,r=0)
2517 	 *     r3=pkt(id=n,off=0,r=0)
2518 	 *
2519 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2520 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2521 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
2522 	 * the check.
2523 	 */
2524 
2525 	/* If our ids match, then we must have the same max_value.  And we
2526 	 * don't care about the other reg's fixed offset, since if it's too big
2527 	 * the range won't allow anything.
2528 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2529 	 */
2530 	for (i = 0; i < MAX_BPF_REG; i++)
2531 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2532 			/* keep the maximum range already checked */
2533 			regs[i].range = max(regs[i].range, new_range);
2534 
2535 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2536 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2537 			continue;
2538 		reg = &state->stack[i].spilled_ptr;
2539 		if (reg->type == type && reg->id == dst_reg->id)
2540 			reg->range = max(reg->range, new_range);
2541 	}
2542 }
2543 
2544 /* Adjusts the register min/max values in the case that the dst_reg is the
2545  * variable register that we are working on, and src_reg is a constant or we're
2546  * simply doing a BPF_K check.
2547  * In JEQ/JNE cases we also adjust the var_off values.
2548  */
2549 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2550 			    struct bpf_reg_state *false_reg, u64 val,
2551 			    u8 opcode)
2552 {
2553 	/* If the dst_reg is a pointer, we can't learn anything about its
2554 	 * variable offset from the compare (unless src_reg were a pointer into
2555 	 * the same object, but we don't bother with that.
2556 	 * Since false_reg and true_reg have the same type by construction, we
2557 	 * only need to check one of them for pointerness.
2558 	 */
2559 	if (__is_pointer_value(false, false_reg))
2560 		return;
2561 
2562 	switch (opcode) {
2563 	case BPF_JEQ:
2564 		/* If this is false then we know nothing Jon Snow, but if it is
2565 		 * true then we know for sure.
2566 		 */
2567 		__mark_reg_known(true_reg, val);
2568 		break;
2569 	case BPF_JNE:
2570 		/* If this is true we know nothing Jon Snow, but if it is false
2571 		 * we know the value for sure;
2572 		 */
2573 		__mark_reg_known(false_reg, val);
2574 		break;
2575 	case BPF_JGT:
2576 		false_reg->umax_value = min(false_reg->umax_value, val);
2577 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2578 		break;
2579 	case BPF_JSGT:
2580 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2581 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2582 		break;
2583 	case BPF_JLT:
2584 		false_reg->umin_value = max(false_reg->umin_value, val);
2585 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2586 		break;
2587 	case BPF_JSLT:
2588 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2589 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2590 		break;
2591 	case BPF_JGE:
2592 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2593 		true_reg->umin_value = max(true_reg->umin_value, val);
2594 		break;
2595 	case BPF_JSGE:
2596 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2597 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2598 		break;
2599 	case BPF_JLE:
2600 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2601 		true_reg->umax_value = min(true_reg->umax_value, val);
2602 		break;
2603 	case BPF_JSLE:
2604 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2605 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2606 		break;
2607 	default:
2608 		break;
2609 	}
2610 
2611 	__reg_deduce_bounds(false_reg);
2612 	__reg_deduce_bounds(true_reg);
2613 	/* We might have learned some bits from the bounds. */
2614 	__reg_bound_offset(false_reg);
2615 	__reg_bound_offset(true_reg);
2616 	/* Intersecting with the old var_off might have improved our bounds
2617 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2618 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2619 	 */
2620 	__update_reg_bounds(false_reg);
2621 	__update_reg_bounds(true_reg);
2622 }
2623 
2624 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2625  * the variable reg.
2626  */
2627 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2628 				struct bpf_reg_state *false_reg, u64 val,
2629 				u8 opcode)
2630 {
2631 	if (__is_pointer_value(false, false_reg))
2632 		return;
2633 
2634 	switch (opcode) {
2635 	case BPF_JEQ:
2636 		/* If this is false then we know nothing Jon Snow, but if it is
2637 		 * true then we know for sure.
2638 		 */
2639 		__mark_reg_known(true_reg, val);
2640 		break;
2641 	case BPF_JNE:
2642 		/* If this is true we know nothing Jon Snow, but if it is false
2643 		 * we know the value for sure;
2644 		 */
2645 		__mark_reg_known(false_reg, val);
2646 		break;
2647 	case BPF_JGT:
2648 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2649 		false_reg->umin_value = max(false_reg->umin_value, val);
2650 		break;
2651 	case BPF_JSGT:
2652 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2653 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2654 		break;
2655 	case BPF_JLT:
2656 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2657 		false_reg->umax_value = min(false_reg->umax_value, val);
2658 		break;
2659 	case BPF_JSLT:
2660 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2661 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2662 		break;
2663 	case BPF_JGE:
2664 		true_reg->umax_value = min(true_reg->umax_value, val);
2665 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2666 		break;
2667 	case BPF_JSGE:
2668 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2669 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2670 		break;
2671 	case BPF_JLE:
2672 		true_reg->umin_value = max(true_reg->umin_value, val);
2673 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2674 		break;
2675 	case BPF_JSLE:
2676 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2677 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2678 		break;
2679 	default:
2680 		break;
2681 	}
2682 
2683 	__reg_deduce_bounds(false_reg);
2684 	__reg_deduce_bounds(true_reg);
2685 	/* We might have learned some bits from the bounds. */
2686 	__reg_bound_offset(false_reg);
2687 	__reg_bound_offset(true_reg);
2688 	/* Intersecting with the old var_off might have improved our bounds
2689 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2690 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2691 	 */
2692 	__update_reg_bounds(false_reg);
2693 	__update_reg_bounds(true_reg);
2694 }
2695 
2696 /* Regs are known to be equal, so intersect their min/max/var_off */
2697 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2698 				  struct bpf_reg_state *dst_reg)
2699 {
2700 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2701 							dst_reg->umin_value);
2702 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2703 							dst_reg->umax_value);
2704 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2705 							dst_reg->smin_value);
2706 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2707 							dst_reg->smax_value);
2708 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2709 							     dst_reg->var_off);
2710 	/* We might have learned new bounds from the var_off. */
2711 	__update_reg_bounds(src_reg);
2712 	__update_reg_bounds(dst_reg);
2713 	/* We might have learned something about the sign bit. */
2714 	__reg_deduce_bounds(src_reg);
2715 	__reg_deduce_bounds(dst_reg);
2716 	/* We might have learned some bits from the bounds. */
2717 	__reg_bound_offset(src_reg);
2718 	__reg_bound_offset(dst_reg);
2719 	/* Intersecting with the old var_off might have improved our bounds
2720 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2721 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2722 	 */
2723 	__update_reg_bounds(src_reg);
2724 	__update_reg_bounds(dst_reg);
2725 }
2726 
2727 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2728 				struct bpf_reg_state *true_dst,
2729 				struct bpf_reg_state *false_src,
2730 				struct bpf_reg_state *false_dst,
2731 				u8 opcode)
2732 {
2733 	switch (opcode) {
2734 	case BPF_JEQ:
2735 		__reg_combine_min_max(true_src, true_dst);
2736 		break;
2737 	case BPF_JNE:
2738 		__reg_combine_min_max(false_src, false_dst);
2739 		break;
2740 	}
2741 }
2742 
2743 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2744 			 bool is_null)
2745 {
2746 	struct bpf_reg_state *reg = &regs[regno];
2747 
2748 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2749 		/* Old offset (both fixed and variable parts) should
2750 		 * have been known-zero, because we don't allow pointer
2751 		 * arithmetic on pointers that might be NULL.
2752 		 */
2753 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2754 				 !tnum_equals_const(reg->var_off, 0) ||
2755 				 reg->off)) {
2756 			__mark_reg_known_zero(reg);
2757 			reg->off = 0;
2758 		}
2759 		if (is_null) {
2760 			reg->type = SCALAR_VALUE;
2761 		} else if (reg->map_ptr->inner_map_meta) {
2762 			reg->type = CONST_PTR_TO_MAP;
2763 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2764 		} else {
2765 			reg->type = PTR_TO_MAP_VALUE;
2766 		}
2767 		/* We don't need id from this point onwards anymore, thus we
2768 		 * should better reset it, so that state pruning has chances
2769 		 * to take effect.
2770 		 */
2771 		reg->id = 0;
2772 	}
2773 }
2774 
2775 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2776  * be folded together at some point.
2777  */
2778 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2779 			  bool is_null)
2780 {
2781 	struct bpf_reg_state *regs = state->regs;
2782 	u32 id = regs[regno].id;
2783 	int i;
2784 
2785 	for (i = 0; i < MAX_BPF_REG; i++)
2786 		mark_map_reg(regs, i, id, is_null);
2787 
2788 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2789 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2790 			continue;
2791 		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2792 	}
2793 }
2794 
2795 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2796 				   struct bpf_reg_state *dst_reg,
2797 				   struct bpf_reg_state *src_reg,
2798 				   struct bpf_verifier_state *this_branch,
2799 				   struct bpf_verifier_state *other_branch)
2800 {
2801 	if (BPF_SRC(insn->code) != BPF_X)
2802 		return false;
2803 
2804 	switch (BPF_OP(insn->code)) {
2805 	case BPF_JGT:
2806 		if ((dst_reg->type == PTR_TO_PACKET &&
2807 		     src_reg->type == PTR_TO_PACKET_END) ||
2808 		    (dst_reg->type == PTR_TO_PACKET_META &&
2809 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2810 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2811 			find_good_pkt_pointers(this_branch, dst_reg,
2812 					       dst_reg->type, false);
2813 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2814 			    src_reg->type == PTR_TO_PACKET) ||
2815 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2816 			    src_reg->type == PTR_TO_PACKET_META)) {
2817 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
2818 			find_good_pkt_pointers(other_branch, src_reg,
2819 					       src_reg->type, true);
2820 		} else {
2821 			return false;
2822 		}
2823 		break;
2824 	case BPF_JLT:
2825 		if ((dst_reg->type == PTR_TO_PACKET &&
2826 		     src_reg->type == PTR_TO_PACKET_END) ||
2827 		    (dst_reg->type == PTR_TO_PACKET_META &&
2828 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2829 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2830 			find_good_pkt_pointers(other_branch, dst_reg,
2831 					       dst_reg->type, true);
2832 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2833 			    src_reg->type == PTR_TO_PACKET) ||
2834 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2835 			    src_reg->type == PTR_TO_PACKET_META)) {
2836 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
2837 			find_good_pkt_pointers(this_branch, src_reg,
2838 					       src_reg->type, false);
2839 		} else {
2840 			return false;
2841 		}
2842 		break;
2843 	case BPF_JGE:
2844 		if ((dst_reg->type == PTR_TO_PACKET &&
2845 		     src_reg->type == PTR_TO_PACKET_END) ||
2846 		    (dst_reg->type == PTR_TO_PACKET_META &&
2847 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2848 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2849 			find_good_pkt_pointers(this_branch, dst_reg,
2850 					       dst_reg->type, true);
2851 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2852 			    src_reg->type == PTR_TO_PACKET) ||
2853 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2854 			    src_reg->type == PTR_TO_PACKET_META)) {
2855 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2856 			find_good_pkt_pointers(other_branch, src_reg,
2857 					       src_reg->type, false);
2858 		} else {
2859 			return false;
2860 		}
2861 		break;
2862 	case BPF_JLE:
2863 		if ((dst_reg->type == PTR_TO_PACKET &&
2864 		     src_reg->type == PTR_TO_PACKET_END) ||
2865 		    (dst_reg->type == PTR_TO_PACKET_META &&
2866 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2867 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2868 			find_good_pkt_pointers(other_branch, dst_reg,
2869 					       dst_reg->type, false);
2870 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
2871 			    src_reg->type == PTR_TO_PACKET) ||
2872 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2873 			    src_reg->type == PTR_TO_PACKET_META)) {
2874 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2875 			find_good_pkt_pointers(this_branch, src_reg,
2876 					       src_reg->type, true);
2877 		} else {
2878 			return false;
2879 		}
2880 		break;
2881 	default:
2882 		return false;
2883 	}
2884 
2885 	return true;
2886 }
2887 
2888 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2889 			     struct bpf_insn *insn, int *insn_idx)
2890 {
2891 	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2892 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2893 	u8 opcode = BPF_OP(insn->code);
2894 	int err;
2895 
2896 	if (opcode > BPF_JSLE) {
2897 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2898 		return -EINVAL;
2899 	}
2900 
2901 	if (BPF_SRC(insn->code) == BPF_X) {
2902 		if (insn->imm != 0) {
2903 			verbose(env, "BPF_JMP uses reserved fields\n");
2904 			return -EINVAL;
2905 		}
2906 
2907 		/* check src1 operand */
2908 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2909 		if (err)
2910 			return err;
2911 
2912 		if (is_pointer_value(env, insn->src_reg)) {
2913 			verbose(env, "R%d pointer comparison prohibited\n",
2914 				insn->src_reg);
2915 			return -EACCES;
2916 		}
2917 	} else {
2918 		if (insn->src_reg != BPF_REG_0) {
2919 			verbose(env, "BPF_JMP uses reserved fields\n");
2920 			return -EINVAL;
2921 		}
2922 	}
2923 
2924 	/* check src2 operand */
2925 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2926 	if (err)
2927 		return err;
2928 
2929 	dst_reg = &regs[insn->dst_reg];
2930 
2931 	/* detect if R == 0 where R was initialized to zero earlier */
2932 	if (BPF_SRC(insn->code) == BPF_K &&
2933 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2934 	    dst_reg->type == SCALAR_VALUE &&
2935 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2936 		if (opcode == BPF_JEQ) {
2937 			/* if (imm == imm) goto pc+off;
2938 			 * only follow the goto, ignore fall-through
2939 			 */
2940 			*insn_idx += insn->off;
2941 			return 0;
2942 		} else {
2943 			/* if (imm != imm) goto pc+off;
2944 			 * only follow fall-through branch, since
2945 			 * that's where the program will go
2946 			 */
2947 			return 0;
2948 		}
2949 	}
2950 
2951 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2952 	if (!other_branch)
2953 		return -EFAULT;
2954 
2955 	/* detect if we are comparing against a constant value so we can adjust
2956 	 * our min/max values for our dst register.
2957 	 * this is only legit if both are scalars (or pointers to the same
2958 	 * object, I suppose, but we don't support that right now), because
2959 	 * otherwise the different base pointers mean the offsets aren't
2960 	 * comparable.
2961 	 */
2962 	if (BPF_SRC(insn->code) == BPF_X) {
2963 		if (dst_reg->type == SCALAR_VALUE &&
2964 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2965 			if (tnum_is_const(regs[insn->src_reg].var_off))
2966 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2967 						dst_reg, regs[insn->src_reg].var_off.value,
2968 						opcode);
2969 			else if (tnum_is_const(dst_reg->var_off))
2970 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2971 						    &regs[insn->src_reg],
2972 						    dst_reg->var_off.value, opcode);
2973 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2974 				/* Comparing for equality, we can combine knowledge */
2975 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2976 						    &other_branch->regs[insn->dst_reg],
2977 						    &regs[insn->src_reg],
2978 						    &regs[insn->dst_reg], opcode);
2979 		}
2980 	} else if (dst_reg->type == SCALAR_VALUE) {
2981 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2982 					dst_reg, insn->imm, opcode);
2983 	}
2984 
2985 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2986 	if (BPF_SRC(insn->code) == BPF_K &&
2987 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2988 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2989 		/* Mark all identical map registers in each branch as either
2990 		 * safe or unknown depending R == 0 or R != 0 conditional.
2991 		 */
2992 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2993 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2994 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2995 					   this_branch, other_branch) &&
2996 		   is_pointer_value(env, insn->dst_reg)) {
2997 		verbose(env, "R%d pointer comparison prohibited\n",
2998 			insn->dst_reg);
2999 		return -EACCES;
3000 	}
3001 	if (env->log.level)
3002 		print_verifier_state(env, this_branch);
3003 	return 0;
3004 }
3005 
3006 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3007 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3008 {
3009 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3010 
3011 	return (struct bpf_map *) (unsigned long) imm64;
3012 }
3013 
3014 /* verify BPF_LD_IMM64 instruction */
3015 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3016 {
3017 	struct bpf_reg_state *regs = cur_regs(env);
3018 	int err;
3019 
3020 	if (BPF_SIZE(insn->code) != BPF_DW) {
3021 		verbose(env, "invalid BPF_LD_IMM insn\n");
3022 		return -EINVAL;
3023 	}
3024 	if (insn->off != 0) {
3025 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3026 		return -EINVAL;
3027 	}
3028 
3029 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3030 	if (err)
3031 		return err;
3032 
3033 	if (insn->src_reg == 0) {
3034 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3035 
3036 		regs[insn->dst_reg].type = SCALAR_VALUE;
3037 		__mark_reg_known(&regs[insn->dst_reg], imm);
3038 		return 0;
3039 	}
3040 
3041 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3042 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3043 
3044 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3045 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3046 	return 0;
3047 }
3048 
3049 static bool may_access_skb(enum bpf_prog_type type)
3050 {
3051 	switch (type) {
3052 	case BPF_PROG_TYPE_SOCKET_FILTER:
3053 	case BPF_PROG_TYPE_SCHED_CLS:
3054 	case BPF_PROG_TYPE_SCHED_ACT:
3055 		return true;
3056 	default:
3057 		return false;
3058 	}
3059 }
3060 
3061 /* verify safety of LD_ABS|LD_IND instructions:
3062  * - they can only appear in the programs where ctx == skb
3063  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3064  *   preserve R6-R9, and store return value into R0
3065  *
3066  * Implicit input:
3067  *   ctx == skb == R6 == CTX
3068  *
3069  * Explicit input:
3070  *   SRC == any register
3071  *   IMM == 32-bit immediate
3072  *
3073  * Output:
3074  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3075  */
3076 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3077 {
3078 	struct bpf_reg_state *regs = cur_regs(env);
3079 	u8 mode = BPF_MODE(insn->code);
3080 	int i, err;
3081 
3082 	if (!may_access_skb(env->prog->type)) {
3083 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3084 		return -EINVAL;
3085 	}
3086 
3087 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3088 	    BPF_SIZE(insn->code) == BPF_DW ||
3089 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3090 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3091 		return -EINVAL;
3092 	}
3093 
3094 	/* check whether implicit source operand (register R6) is readable */
3095 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3096 	if (err)
3097 		return err;
3098 
3099 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3100 		verbose(env,
3101 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3102 		return -EINVAL;
3103 	}
3104 
3105 	if (mode == BPF_IND) {
3106 		/* check explicit source operand */
3107 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3108 		if (err)
3109 			return err;
3110 	}
3111 
3112 	/* reset caller saved regs to unreadable */
3113 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3114 		mark_reg_not_init(env, regs, caller_saved[i]);
3115 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3116 	}
3117 
3118 	/* mark destination R0 register as readable, since it contains
3119 	 * the value fetched from the packet.
3120 	 * Already marked as written above.
3121 	 */
3122 	mark_reg_unknown(env, regs, BPF_REG_0);
3123 	return 0;
3124 }
3125 
3126 static int check_return_code(struct bpf_verifier_env *env)
3127 {
3128 	struct bpf_reg_state *reg;
3129 	struct tnum range = tnum_range(0, 1);
3130 
3131 	switch (env->prog->type) {
3132 	case BPF_PROG_TYPE_CGROUP_SKB:
3133 	case BPF_PROG_TYPE_CGROUP_SOCK:
3134 	case BPF_PROG_TYPE_SOCK_OPS:
3135 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3136 		break;
3137 	default:
3138 		return 0;
3139 	}
3140 
3141 	reg = cur_regs(env) + BPF_REG_0;
3142 	if (reg->type != SCALAR_VALUE) {
3143 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3144 			reg_type_str[reg->type]);
3145 		return -EINVAL;
3146 	}
3147 
3148 	if (!tnum_in(range, reg->var_off)) {
3149 		verbose(env, "At program exit the register R0 ");
3150 		if (!tnum_is_unknown(reg->var_off)) {
3151 			char tn_buf[48];
3152 
3153 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3154 			verbose(env, "has value %s", tn_buf);
3155 		} else {
3156 			verbose(env, "has unknown scalar value");
3157 		}
3158 		verbose(env, " should have been 0 or 1\n");
3159 		return -EINVAL;
3160 	}
3161 	return 0;
3162 }
3163 
3164 /* non-recursive DFS pseudo code
3165  * 1  procedure DFS-iterative(G,v):
3166  * 2      label v as discovered
3167  * 3      let S be a stack
3168  * 4      S.push(v)
3169  * 5      while S is not empty
3170  * 6            t <- S.pop()
3171  * 7            if t is what we're looking for:
3172  * 8                return t
3173  * 9            for all edges e in G.adjacentEdges(t) do
3174  * 10               if edge e is already labelled
3175  * 11                   continue with the next edge
3176  * 12               w <- G.adjacentVertex(t,e)
3177  * 13               if vertex w is not discovered and not explored
3178  * 14                   label e as tree-edge
3179  * 15                   label w as discovered
3180  * 16                   S.push(w)
3181  * 17                   continue at 5
3182  * 18               else if vertex w is discovered
3183  * 19                   label e as back-edge
3184  * 20               else
3185  * 21                   // vertex w is explored
3186  * 22                   label e as forward- or cross-edge
3187  * 23           label t as explored
3188  * 24           S.pop()
3189  *
3190  * convention:
3191  * 0x10 - discovered
3192  * 0x11 - discovered and fall-through edge labelled
3193  * 0x12 - discovered and fall-through and branch edges labelled
3194  * 0x20 - explored
3195  */
3196 
3197 enum {
3198 	DISCOVERED = 0x10,
3199 	EXPLORED = 0x20,
3200 	FALLTHROUGH = 1,
3201 	BRANCH = 2,
3202 };
3203 
3204 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3205 
3206 static int *insn_stack;	/* stack of insns to process */
3207 static int cur_stack;	/* current stack index */
3208 static int *insn_state;
3209 
3210 /* t, w, e - match pseudo-code above:
3211  * t - index of current instruction
3212  * w - next instruction
3213  * e - edge
3214  */
3215 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3216 {
3217 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3218 		return 0;
3219 
3220 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3221 		return 0;
3222 
3223 	if (w < 0 || w >= env->prog->len) {
3224 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3225 		return -EINVAL;
3226 	}
3227 
3228 	if (e == BRANCH)
3229 		/* mark branch target for state pruning */
3230 		env->explored_states[w] = STATE_LIST_MARK;
3231 
3232 	if (insn_state[w] == 0) {
3233 		/* tree-edge */
3234 		insn_state[t] = DISCOVERED | e;
3235 		insn_state[w] = DISCOVERED;
3236 		if (cur_stack >= env->prog->len)
3237 			return -E2BIG;
3238 		insn_stack[cur_stack++] = w;
3239 		return 1;
3240 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3241 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3242 		return -EINVAL;
3243 	} else if (insn_state[w] == EXPLORED) {
3244 		/* forward- or cross-edge */
3245 		insn_state[t] = DISCOVERED | e;
3246 	} else {
3247 		verbose(env, "insn state internal bug\n");
3248 		return -EFAULT;
3249 	}
3250 	return 0;
3251 }
3252 
3253 /* non-recursive depth-first-search to detect loops in BPF program
3254  * loop == back-edge in directed graph
3255  */
3256 static int check_cfg(struct bpf_verifier_env *env)
3257 {
3258 	struct bpf_insn *insns = env->prog->insnsi;
3259 	int insn_cnt = env->prog->len;
3260 	int ret = 0;
3261 	int i, t;
3262 
3263 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3264 	if (!insn_state)
3265 		return -ENOMEM;
3266 
3267 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3268 	if (!insn_stack) {
3269 		kfree(insn_state);
3270 		return -ENOMEM;
3271 	}
3272 
3273 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3274 	insn_stack[0] = 0; /* 0 is the first instruction */
3275 	cur_stack = 1;
3276 
3277 peek_stack:
3278 	if (cur_stack == 0)
3279 		goto check_state;
3280 	t = insn_stack[cur_stack - 1];
3281 
3282 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3283 		u8 opcode = BPF_OP(insns[t].code);
3284 
3285 		if (opcode == BPF_EXIT) {
3286 			goto mark_explored;
3287 		} else if (opcode == BPF_CALL) {
3288 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3289 			if (ret == 1)
3290 				goto peek_stack;
3291 			else if (ret < 0)
3292 				goto err_free;
3293 			if (t + 1 < insn_cnt)
3294 				env->explored_states[t + 1] = STATE_LIST_MARK;
3295 		} else if (opcode == BPF_JA) {
3296 			if (BPF_SRC(insns[t].code) != BPF_K) {
3297 				ret = -EINVAL;
3298 				goto err_free;
3299 			}
3300 			/* unconditional jump with single edge */
3301 			ret = push_insn(t, t + insns[t].off + 1,
3302 					FALLTHROUGH, env);
3303 			if (ret == 1)
3304 				goto peek_stack;
3305 			else if (ret < 0)
3306 				goto err_free;
3307 			/* tell verifier to check for equivalent states
3308 			 * after every call and jump
3309 			 */
3310 			if (t + 1 < insn_cnt)
3311 				env->explored_states[t + 1] = STATE_LIST_MARK;
3312 		} else {
3313 			/* conditional jump with two edges */
3314 			env->explored_states[t] = STATE_LIST_MARK;
3315 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3316 			if (ret == 1)
3317 				goto peek_stack;
3318 			else if (ret < 0)
3319 				goto err_free;
3320 
3321 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3322 			if (ret == 1)
3323 				goto peek_stack;
3324 			else if (ret < 0)
3325 				goto err_free;
3326 		}
3327 	} else {
3328 		/* all other non-branch instructions with single
3329 		 * fall-through edge
3330 		 */
3331 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3332 		if (ret == 1)
3333 			goto peek_stack;
3334 		else if (ret < 0)
3335 			goto err_free;
3336 	}
3337 
3338 mark_explored:
3339 	insn_state[t] = EXPLORED;
3340 	if (cur_stack-- <= 0) {
3341 		verbose(env, "pop stack internal bug\n");
3342 		ret = -EFAULT;
3343 		goto err_free;
3344 	}
3345 	goto peek_stack;
3346 
3347 check_state:
3348 	for (i = 0; i < insn_cnt; i++) {
3349 		if (insn_state[i] != EXPLORED) {
3350 			verbose(env, "unreachable insn %d\n", i);
3351 			ret = -EINVAL;
3352 			goto err_free;
3353 		}
3354 	}
3355 	ret = 0; /* cfg looks good */
3356 
3357 err_free:
3358 	kfree(insn_state);
3359 	kfree(insn_stack);
3360 	return ret;
3361 }
3362 
3363 /* check %cur's range satisfies %old's */
3364 static bool range_within(struct bpf_reg_state *old,
3365 			 struct bpf_reg_state *cur)
3366 {
3367 	return old->umin_value <= cur->umin_value &&
3368 	       old->umax_value >= cur->umax_value &&
3369 	       old->smin_value <= cur->smin_value &&
3370 	       old->smax_value >= cur->smax_value;
3371 }
3372 
3373 /* Maximum number of register states that can exist at once */
3374 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3375 struct idpair {
3376 	u32 old;
3377 	u32 cur;
3378 };
3379 
3380 /* If in the old state two registers had the same id, then they need to have
3381  * the same id in the new state as well.  But that id could be different from
3382  * the old state, so we need to track the mapping from old to new ids.
3383  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3384  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3385  * regs with a different old id could still have new id 9, we don't care about
3386  * that.
3387  * So we look through our idmap to see if this old id has been seen before.  If
3388  * so, we require the new id to match; otherwise, we add the id pair to the map.
3389  */
3390 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3391 {
3392 	unsigned int i;
3393 
3394 	for (i = 0; i < ID_MAP_SIZE; i++) {
3395 		if (!idmap[i].old) {
3396 			/* Reached an empty slot; haven't seen this id before */
3397 			idmap[i].old = old_id;
3398 			idmap[i].cur = cur_id;
3399 			return true;
3400 		}
3401 		if (idmap[i].old == old_id)
3402 			return idmap[i].cur == cur_id;
3403 	}
3404 	/* We ran out of idmap slots, which should be impossible */
3405 	WARN_ON_ONCE(1);
3406 	return false;
3407 }
3408 
3409 /* Returns true if (rold safe implies rcur safe) */
3410 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3411 		    struct idpair *idmap)
3412 {
3413 	if (!(rold->live & REG_LIVE_READ))
3414 		/* explored state didn't use this */
3415 		return true;
3416 
3417 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3418 		return true;
3419 
3420 	if (rold->type == NOT_INIT)
3421 		/* explored state can't have used this */
3422 		return true;
3423 	if (rcur->type == NOT_INIT)
3424 		return false;
3425 	switch (rold->type) {
3426 	case SCALAR_VALUE:
3427 		if (rcur->type == SCALAR_VALUE) {
3428 			/* new val must satisfy old val knowledge */
3429 			return range_within(rold, rcur) &&
3430 			       tnum_in(rold->var_off, rcur->var_off);
3431 		} else {
3432 			/* if we knew anything about the old value, we're not
3433 			 * equal, because we can't know anything about the
3434 			 * scalar value of the pointer in the new value.
3435 			 */
3436 			return rold->umin_value == 0 &&
3437 			       rold->umax_value == U64_MAX &&
3438 			       rold->smin_value == S64_MIN &&
3439 			       rold->smax_value == S64_MAX &&
3440 			       tnum_is_unknown(rold->var_off);
3441 		}
3442 	case PTR_TO_MAP_VALUE:
3443 		/* If the new min/max/var_off satisfy the old ones and
3444 		 * everything else matches, we are OK.
3445 		 * We don't care about the 'id' value, because nothing
3446 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3447 		 */
3448 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3449 		       range_within(rold, rcur) &&
3450 		       tnum_in(rold->var_off, rcur->var_off);
3451 	case PTR_TO_MAP_VALUE_OR_NULL:
3452 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3453 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3454 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3455 		 * checked, doing so could have affected others with the same
3456 		 * id, and we can't check for that because we lost the id when
3457 		 * we converted to a PTR_TO_MAP_VALUE.
3458 		 */
3459 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3460 			return false;
3461 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3462 			return false;
3463 		/* Check our ids match any regs they're supposed to */
3464 		return check_ids(rold->id, rcur->id, idmap);
3465 	case PTR_TO_PACKET_META:
3466 	case PTR_TO_PACKET:
3467 		if (rcur->type != rold->type)
3468 			return false;
3469 		/* We must have at least as much range as the old ptr
3470 		 * did, so that any accesses which were safe before are
3471 		 * still safe.  This is true even if old range < old off,
3472 		 * since someone could have accessed through (ptr - k), or
3473 		 * even done ptr -= k in a register, to get a safe access.
3474 		 */
3475 		if (rold->range > rcur->range)
3476 			return false;
3477 		/* If the offsets don't match, we can't trust our alignment;
3478 		 * nor can we be sure that we won't fall out of range.
3479 		 */
3480 		if (rold->off != rcur->off)
3481 			return false;
3482 		/* id relations must be preserved */
3483 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3484 			return false;
3485 		/* new val must satisfy old val knowledge */
3486 		return range_within(rold, rcur) &&
3487 		       tnum_in(rold->var_off, rcur->var_off);
3488 	case PTR_TO_CTX:
3489 	case CONST_PTR_TO_MAP:
3490 	case PTR_TO_STACK:
3491 	case PTR_TO_PACKET_END:
3492 		/* Only valid matches are exact, which memcmp() above
3493 		 * would have accepted
3494 		 */
3495 	default:
3496 		/* Don't know what's going on, just say it's not safe */
3497 		return false;
3498 	}
3499 
3500 	/* Shouldn't get here; if we do, say it's not safe */
3501 	WARN_ON_ONCE(1);
3502 	return false;
3503 }
3504 
3505 static bool stacksafe(struct bpf_verifier_state *old,
3506 		      struct bpf_verifier_state *cur,
3507 		      struct idpair *idmap)
3508 {
3509 	int i, spi;
3510 
3511 	/* if explored stack has more populated slots than current stack
3512 	 * such stacks are not equivalent
3513 	 */
3514 	if (old->allocated_stack > cur->allocated_stack)
3515 		return false;
3516 
3517 	/* walk slots of the explored stack and ignore any additional
3518 	 * slots in the current stack, since explored(safe) state
3519 	 * didn't use them
3520 	 */
3521 	for (i = 0; i < old->allocated_stack; i++) {
3522 		spi = i / BPF_REG_SIZE;
3523 
3524 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3525 			continue;
3526 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3527 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3528 			/* Ex: old explored (safe) state has STACK_SPILL in
3529 			 * this stack slot, but current has has STACK_MISC ->
3530 			 * this verifier states are not equivalent,
3531 			 * return false to continue verification of this path
3532 			 */
3533 			return false;
3534 		if (i % BPF_REG_SIZE)
3535 			continue;
3536 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
3537 			continue;
3538 		if (!regsafe(&old->stack[spi].spilled_ptr,
3539 			     &cur->stack[spi].spilled_ptr,
3540 			     idmap))
3541 			/* when explored and current stack slot are both storing
3542 			 * spilled registers, check that stored pointers types
3543 			 * are the same as well.
3544 			 * Ex: explored safe path could have stored
3545 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3546 			 * but current path has stored:
3547 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3548 			 * such verifier states are not equivalent.
3549 			 * return false to continue verification of this path
3550 			 */
3551 			return false;
3552 	}
3553 	return true;
3554 }
3555 
3556 /* compare two verifier states
3557  *
3558  * all states stored in state_list are known to be valid, since
3559  * verifier reached 'bpf_exit' instruction through them
3560  *
3561  * this function is called when verifier exploring different branches of
3562  * execution popped from the state stack. If it sees an old state that has
3563  * more strict register state and more strict stack state then this execution
3564  * branch doesn't need to be explored further, since verifier already
3565  * concluded that more strict state leads to valid finish.
3566  *
3567  * Therefore two states are equivalent if register state is more conservative
3568  * and explored stack state is more conservative than the current one.
3569  * Example:
3570  *       explored                   current
3571  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3572  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3573  *
3574  * In other words if current stack state (one being explored) has more
3575  * valid slots than old one that already passed validation, it means
3576  * the verifier can stop exploring and conclude that current state is valid too
3577  *
3578  * Similarly with registers. If explored state has register type as invalid
3579  * whereas register type in current state is meaningful, it means that
3580  * the current state will reach 'bpf_exit' instruction safely
3581  */
3582 static bool states_equal(struct bpf_verifier_env *env,
3583 			 struct bpf_verifier_state *old,
3584 			 struct bpf_verifier_state *cur)
3585 {
3586 	struct idpair *idmap;
3587 	bool ret = false;
3588 	int i;
3589 
3590 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3591 	/* If we failed to allocate the idmap, just say it's not safe */
3592 	if (!idmap)
3593 		return false;
3594 
3595 	for (i = 0; i < MAX_BPF_REG; i++) {
3596 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3597 			goto out_free;
3598 	}
3599 
3600 	if (!stacksafe(old, cur, idmap))
3601 		goto out_free;
3602 	ret = true;
3603 out_free:
3604 	kfree(idmap);
3605 	return ret;
3606 }
3607 
3608 /* A write screens off any subsequent reads; but write marks come from the
3609  * straight-line code between a state and its parent.  When we arrive at a
3610  * jump target (in the first iteration of the propagate_liveness() loop),
3611  * we didn't arrive by the straight-line code, so read marks in state must
3612  * propagate to parent regardless of state's write marks.
3613  */
3614 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3615 				  struct bpf_verifier_state *parent)
3616 {
3617 	bool writes = parent == state->parent; /* Observe write marks */
3618 	bool touched = false; /* any changes made? */
3619 	int i;
3620 
3621 	if (!parent)
3622 		return touched;
3623 	/* Propagate read liveness of registers... */
3624 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3625 	/* We don't need to worry about FP liveness because it's read-only */
3626 	for (i = 0; i < BPF_REG_FP; i++) {
3627 		if (parent->regs[i].live & REG_LIVE_READ)
3628 			continue;
3629 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3630 			continue;
3631 		if (state->regs[i].live & REG_LIVE_READ) {
3632 			parent->regs[i].live |= REG_LIVE_READ;
3633 			touched = true;
3634 		}
3635 	}
3636 	/* ... and stack slots */
3637 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3638 		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3639 		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3640 			continue;
3641 		if (state->stack[i].slot_type[0] != STACK_SPILL)
3642 			continue;
3643 		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3644 			continue;
3645 		if (writes &&
3646 		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3647 			continue;
3648 		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3649 			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3650 			touched = true;
3651 		}
3652 	}
3653 	return touched;
3654 }
3655 
3656 /* "parent" is "a state from which we reach the current state", but initially
3657  * it is not the state->parent (i.e. "the state whose straight-line code leads
3658  * to the current state"), instead it is the state that happened to arrive at
3659  * a (prunable) equivalent of the current state.  See comment above
3660  * do_propagate_liveness() for consequences of this.
3661  * This function is just a more efficient way of calling mark_reg_read() or
3662  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3663  * though it requires that parent != state->parent in the call arguments.
3664  */
3665 static void propagate_liveness(const struct bpf_verifier_state *state,
3666 			       struct bpf_verifier_state *parent)
3667 {
3668 	while (do_propagate_liveness(state, parent)) {
3669 		/* Something changed, so we need to feed those changes onward */
3670 		state = parent;
3671 		parent = state->parent;
3672 	}
3673 }
3674 
3675 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3676 {
3677 	struct bpf_verifier_state_list *new_sl;
3678 	struct bpf_verifier_state_list *sl;
3679 	struct bpf_verifier_state *cur = env->cur_state;
3680 	int i, err;
3681 
3682 	sl = env->explored_states[insn_idx];
3683 	if (!sl)
3684 		/* this 'insn_idx' instruction wasn't marked, so we will not
3685 		 * be doing state search here
3686 		 */
3687 		return 0;
3688 
3689 	while (sl != STATE_LIST_MARK) {
3690 		if (states_equal(env, &sl->state, cur)) {
3691 			/* reached equivalent register/stack state,
3692 			 * prune the search.
3693 			 * Registers read by the continuation are read by us.
3694 			 * If we have any write marks in env->cur_state, they
3695 			 * will prevent corresponding reads in the continuation
3696 			 * from reaching our parent (an explored_state).  Our
3697 			 * own state will get the read marks recorded, but
3698 			 * they'll be immediately forgotten as we're pruning
3699 			 * this state and will pop a new one.
3700 			 */
3701 			propagate_liveness(&sl->state, cur);
3702 			return 1;
3703 		}
3704 		sl = sl->next;
3705 	}
3706 
3707 	/* there were no equivalent states, remember current one.
3708 	 * technically the current state is not proven to be safe yet,
3709 	 * but it will either reach bpf_exit (which means it's safe) or
3710 	 * it will be rejected. Since there are no loops, we won't be
3711 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3712 	 */
3713 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3714 	if (!new_sl)
3715 		return -ENOMEM;
3716 
3717 	/* add new state to the head of linked list */
3718 	err = copy_verifier_state(&new_sl->state, cur);
3719 	if (err) {
3720 		free_verifier_state(&new_sl->state, false);
3721 		kfree(new_sl);
3722 		return err;
3723 	}
3724 	new_sl->next = env->explored_states[insn_idx];
3725 	env->explored_states[insn_idx] = new_sl;
3726 	/* connect new state to parentage chain */
3727 	cur->parent = &new_sl->state;
3728 	/* clear write marks in current state: the writes we did are not writes
3729 	 * our child did, so they don't screen off its reads from us.
3730 	 * (There are no read marks in current state, because reads always mark
3731 	 * their parent and current state never has children yet.  Only
3732 	 * explored_states can get read marks.)
3733 	 */
3734 	for (i = 0; i < BPF_REG_FP; i++)
3735 		cur->regs[i].live = REG_LIVE_NONE;
3736 	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3737 		if (cur->stack[i].slot_type[0] == STACK_SPILL)
3738 			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3739 	return 0;
3740 }
3741 
3742 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3743 				  int insn_idx, int prev_insn_idx)
3744 {
3745 	if (env->dev_ops && env->dev_ops->insn_hook)
3746 		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3747 
3748 	return 0;
3749 }
3750 
3751 static int do_check(struct bpf_verifier_env *env)
3752 {
3753 	struct bpf_verifier_state *state;
3754 	struct bpf_insn *insns = env->prog->insnsi;
3755 	struct bpf_reg_state *regs;
3756 	int insn_cnt = env->prog->len;
3757 	int insn_idx, prev_insn_idx = 0;
3758 	int insn_processed = 0;
3759 	bool do_print_state = false;
3760 
3761 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3762 	if (!state)
3763 		return -ENOMEM;
3764 	env->cur_state = state;
3765 	init_reg_state(env, state->regs);
3766 	state->parent = NULL;
3767 	insn_idx = 0;
3768 	for (;;) {
3769 		struct bpf_insn *insn;
3770 		u8 class;
3771 		int err;
3772 
3773 		if (insn_idx >= insn_cnt) {
3774 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3775 				insn_idx, insn_cnt);
3776 			return -EFAULT;
3777 		}
3778 
3779 		insn = &insns[insn_idx];
3780 		class = BPF_CLASS(insn->code);
3781 
3782 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3783 			verbose(env,
3784 				"BPF program is too large. Processed %d insn\n",
3785 				insn_processed);
3786 			return -E2BIG;
3787 		}
3788 
3789 		err = is_state_visited(env, insn_idx);
3790 		if (err < 0)
3791 			return err;
3792 		if (err == 1) {
3793 			/* found equivalent state, can prune the search */
3794 			if (env->log.level) {
3795 				if (do_print_state)
3796 					verbose(env, "\nfrom %d to %d: safe\n",
3797 						prev_insn_idx, insn_idx);
3798 				else
3799 					verbose(env, "%d: safe\n", insn_idx);
3800 			}
3801 			goto process_bpf_exit;
3802 		}
3803 
3804 		if (need_resched())
3805 			cond_resched();
3806 
3807 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
3808 			if (env->log.level > 1)
3809 				verbose(env, "%d:", insn_idx);
3810 			else
3811 				verbose(env, "\nfrom %d to %d:",
3812 					prev_insn_idx, insn_idx);
3813 			print_verifier_state(env, state);
3814 			do_print_state = false;
3815 		}
3816 
3817 		if (env->log.level) {
3818 			verbose(env, "%d: ", insn_idx);
3819 			print_bpf_insn(verbose, env, insn,
3820 				       env->allow_ptr_leaks);
3821 		}
3822 
3823 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3824 		if (err)
3825 			return err;
3826 
3827 		regs = cur_regs(env);
3828 		if (class == BPF_ALU || class == BPF_ALU64) {
3829 			err = check_alu_op(env, insn);
3830 			if (err)
3831 				return err;
3832 
3833 		} else if (class == BPF_LDX) {
3834 			enum bpf_reg_type *prev_src_type, src_reg_type;
3835 
3836 			/* check for reserved fields is already done */
3837 
3838 			/* check src operand */
3839 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3840 			if (err)
3841 				return err;
3842 
3843 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3844 			if (err)
3845 				return err;
3846 
3847 			src_reg_type = regs[insn->src_reg].type;
3848 
3849 			/* check that memory (src_reg + off) is readable,
3850 			 * the state of dst_reg will be updated by this func
3851 			 */
3852 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3853 					       BPF_SIZE(insn->code), BPF_READ,
3854 					       insn->dst_reg);
3855 			if (err)
3856 				return err;
3857 
3858 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3859 
3860 			if (*prev_src_type == NOT_INIT) {
3861 				/* saw a valid insn
3862 				 * dst_reg = *(u32 *)(src_reg + off)
3863 				 * save type to validate intersecting paths
3864 				 */
3865 				*prev_src_type = src_reg_type;
3866 
3867 			} else if (src_reg_type != *prev_src_type &&
3868 				   (src_reg_type == PTR_TO_CTX ||
3869 				    *prev_src_type == PTR_TO_CTX)) {
3870 				/* ABuser program is trying to use the same insn
3871 				 * dst_reg = *(u32*) (src_reg + off)
3872 				 * with different pointer types:
3873 				 * src_reg == ctx in one branch and
3874 				 * src_reg == stack|map in some other branch.
3875 				 * Reject it.
3876 				 */
3877 				verbose(env, "same insn cannot be used with different pointers\n");
3878 				return -EINVAL;
3879 			}
3880 
3881 		} else if (class == BPF_STX) {
3882 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3883 
3884 			if (BPF_MODE(insn->code) == BPF_XADD) {
3885 				err = check_xadd(env, insn_idx, insn);
3886 				if (err)
3887 					return err;
3888 				insn_idx++;
3889 				continue;
3890 			}
3891 
3892 			/* check src1 operand */
3893 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3894 			if (err)
3895 				return err;
3896 			/* check src2 operand */
3897 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3898 			if (err)
3899 				return err;
3900 
3901 			dst_reg_type = regs[insn->dst_reg].type;
3902 
3903 			/* check that memory (dst_reg + off) is writeable */
3904 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3905 					       BPF_SIZE(insn->code), BPF_WRITE,
3906 					       insn->src_reg);
3907 			if (err)
3908 				return err;
3909 
3910 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3911 
3912 			if (*prev_dst_type == NOT_INIT) {
3913 				*prev_dst_type = dst_reg_type;
3914 			} else if (dst_reg_type != *prev_dst_type &&
3915 				   (dst_reg_type == PTR_TO_CTX ||
3916 				    *prev_dst_type == PTR_TO_CTX)) {
3917 				verbose(env, "same insn cannot be used with different pointers\n");
3918 				return -EINVAL;
3919 			}
3920 
3921 		} else if (class == BPF_ST) {
3922 			if (BPF_MODE(insn->code) != BPF_MEM ||
3923 			    insn->src_reg != BPF_REG_0) {
3924 				verbose(env, "BPF_ST uses reserved fields\n");
3925 				return -EINVAL;
3926 			}
3927 			/* check src operand */
3928 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3929 			if (err)
3930 				return err;
3931 
3932 			/* check that memory (dst_reg + off) is writeable */
3933 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3934 					       BPF_SIZE(insn->code), BPF_WRITE,
3935 					       -1);
3936 			if (err)
3937 				return err;
3938 
3939 		} else if (class == BPF_JMP) {
3940 			u8 opcode = BPF_OP(insn->code);
3941 
3942 			if (opcode == BPF_CALL) {
3943 				if (BPF_SRC(insn->code) != BPF_K ||
3944 				    insn->off != 0 ||
3945 				    insn->src_reg != BPF_REG_0 ||
3946 				    insn->dst_reg != BPF_REG_0) {
3947 					verbose(env, "BPF_CALL uses reserved fields\n");
3948 					return -EINVAL;
3949 				}
3950 
3951 				err = check_call(env, insn->imm, insn_idx);
3952 				if (err)
3953 					return err;
3954 
3955 			} else if (opcode == BPF_JA) {
3956 				if (BPF_SRC(insn->code) != BPF_K ||
3957 				    insn->imm != 0 ||
3958 				    insn->src_reg != BPF_REG_0 ||
3959 				    insn->dst_reg != BPF_REG_0) {
3960 					verbose(env, "BPF_JA uses reserved fields\n");
3961 					return -EINVAL;
3962 				}
3963 
3964 				insn_idx += insn->off + 1;
3965 				continue;
3966 
3967 			} else if (opcode == BPF_EXIT) {
3968 				if (BPF_SRC(insn->code) != BPF_K ||
3969 				    insn->imm != 0 ||
3970 				    insn->src_reg != BPF_REG_0 ||
3971 				    insn->dst_reg != BPF_REG_0) {
3972 					verbose(env, "BPF_EXIT uses reserved fields\n");
3973 					return -EINVAL;
3974 				}
3975 
3976 				/* eBPF calling convetion is such that R0 is used
3977 				 * to return the value from eBPF program.
3978 				 * Make sure that it's readable at this time
3979 				 * of bpf_exit, which means that program wrote
3980 				 * something into it earlier
3981 				 */
3982 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3983 				if (err)
3984 					return err;
3985 
3986 				if (is_pointer_value(env, BPF_REG_0)) {
3987 					verbose(env, "R0 leaks addr as return value\n");
3988 					return -EACCES;
3989 				}
3990 
3991 				err = check_return_code(env);
3992 				if (err)
3993 					return err;
3994 process_bpf_exit:
3995 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
3996 				if (err < 0) {
3997 					if (err != -ENOENT)
3998 						return err;
3999 					break;
4000 				} else {
4001 					do_print_state = true;
4002 					continue;
4003 				}
4004 			} else {
4005 				err = check_cond_jmp_op(env, insn, &insn_idx);
4006 				if (err)
4007 					return err;
4008 			}
4009 		} else if (class == BPF_LD) {
4010 			u8 mode = BPF_MODE(insn->code);
4011 
4012 			if (mode == BPF_ABS || mode == BPF_IND) {
4013 				err = check_ld_abs(env, insn);
4014 				if (err)
4015 					return err;
4016 
4017 			} else if (mode == BPF_IMM) {
4018 				err = check_ld_imm(env, insn);
4019 				if (err)
4020 					return err;
4021 
4022 				insn_idx++;
4023 			} else {
4024 				verbose(env, "invalid BPF_LD mode\n");
4025 				return -EINVAL;
4026 			}
4027 		} else {
4028 			verbose(env, "unknown insn class %d\n", class);
4029 			return -EINVAL;
4030 		}
4031 
4032 		insn_idx++;
4033 	}
4034 
4035 	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4036 		env->prog->aux->stack_depth);
4037 	return 0;
4038 }
4039 
4040 static int check_map_prealloc(struct bpf_map *map)
4041 {
4042 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4043 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4044 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4045 		!(map->map_flags & BPF_F_NO_PREALLOC);
4046 }
4047 
4048 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4049 					struct bpf_map *map,
4050 					struct bpf_prog *prog)
4051 
4052 {
4053 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4054 	 * preallocated hash maps, since doing memory allocation
4055 	 * in overflow_handler can crash depending on where nmi got
4056 	 * triggered.
4057 	 */
4058 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4059 		if (!check_map_prealloc(map)) {
4060 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4061 			return -EINVAL;
4062 		}
4063 		if (map->inner_map_meta &&
4064 		    !check_map_prealloc(map->inner_map_meta)) {
4065 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4066 			return -EINVAL;
4067 		}
4068 	}
4069 	return 0;
4070 }
4071 
4072 /* look for pseudo eBPF instructions that access map FDs and
4073  * replace them with actual map pointers
4074  */
4075 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4076 {
4077 	struct bpf_insn *insn = env->prog->insnsi;
4078 	int insn_cnt = env->prog->len;
4079 	int i, j, err;
4080 
4081 	err = bpf_prog_calc_tag(env->prog);
4082 	if (err)
4083 		return err;
4084 
4085 	for (i = 0; i < insn_cnt; i++, insn++) {
4086 		if (BPF_CLASS(insn->code) == BPF_LDX &&
4087 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4088 			verbose(env, "BPF_LDX uses reserved fields\n");
4089 			return -EINVAL;
4090 		}
4091 
4092 		if (BPF_CLASS(insn->code) == BPF_STX &&
4093 		    ((BPF_MODE(insn->code) != BPF_MEM &&
4094 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4095 			verbose(env, "BPF_STX uses reserved fields\n");
4096 			return -EINVAL;
4097 		}
4098 
4099 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4100 			struct bpf_map *map;
4101 			struct fd f;
4102 
4103 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
4104 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4105 			    insn[1].off != 0) {
4106 				verbose(env, "invalid bpf_ld_imm64 insn\n");
4107 				return -EINVAL;
4108 			}
4109 
4110 			if (insn->src_reg == 0)
4111 				/* valid generic load 64-bit imm */
4112 				goto next_insn;
4113 
4114 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4115 				verbose(env,
4116 					"unrecognized bpf_ld_imm64 insn\n");
4117 				return -EINVAL;
4118 			}
4119 
4120 			f = fdget(insn->imm);
4121 			map = __bpf_map_get(f);
4122 			if (IS_ERR(map)) {
4123 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4124 					insn->imm);
4125 				return PTR_ERR(map);
4126 			}
4127 
4128 			err = check_map_prog_compatibility(env, map, env->prog);
4129 			if (err) {
4130 				fdput(f);
4131 				return err;
4132 			}
4133 
4134 			/* store map pointer inside BPF_LD_IMM64 instruction */
4135 			insn[0].imm = (u32) (unsigned long) map;
4136 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
4137 
4138 			/* check whether we recorded this map already */
4139 			for (j = 0; j < env->used_map_cnt; j++)
4140 				if (env->used_maps[j] == map) {
4141 					fdput(f);
4142 					goto next_insn;
4143 				}
4144 
4145 			if (env->used_map_cnt >= MAX_USED_MAPS) {
4146 				fdput(f);
4147 				return -E2BIG;
4148 			}
4149 
4150 			/* hold the map. If the program is rejected by verifier,
4151 			 * the map will be released by release_maps() or it
4152 			 * will be used by the valid program until it's unloaded
4153 			 * and all maps are released in free_bpf_prog_info()
4154 			 */
4155 			map = bpf_map_inc(map, false);
4156 			if (IS_ERR(map)) {
4157 				fdput(f);
4158 				return PTR_ERR(map);
4159 			}
4160 			env->used_maps[env->used_map_cnt++] = map;
4161 
4162 			fdput(f);
4163 next_insn:
4164 			insn++;
4165 			i++;
4166 		}
4167 	}
4168 
4169 	/* now all pseudo BPF_LD_IMM64 instructions load valid
4170 	 * 'struct bpf_map *' into a register instead of user map_fd.
4171 	 * These pointers will be used later by verifier to validate map access.
4172 	 */
4173 	return 0;
4174 }
4175 
4176 /* drop refcnt of maps used by the rejected program */
4177 static void release_maps(struct bpf_verifier_env *env)
4178 {
4179 	int i;
4180 
4181 	for (i = 0; i < env->used_map_cnt; i++)
4182 		bpf_map_put(env->used_maps[i]);
4183 }
4184 
4185 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4186 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4187 {
4188 	struct bpf_insn *insn = env->prog->insnsi;
4189 	int insn_cnt = env->prog->len;
4190 	int i;
4191 
4192 	for (i = 0; i < insn_cnt; i++, insn++)
4193 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4194 			insn->src_reg = 0;
4195 }
4196 
4197 /* single env->prog->insni[off] instruction was replaced with the range
4198  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4199  * [0, off) and [off, end) to new locations, so the patched range stays zero
4200  */
4201 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4202 				u32 off, u32 cnt)
4203 {
4204 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4205 
4206 	if (cnt == 1)
4207 		return 0;
4208 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4209 	if (!new_data)
4210 		return -ENOMEM;
4211 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4212 	memcpy(new_data + off + cnt - 1, old_data + off,
4213 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4214 	env->insn_aux_data = new_data;
4215 	vfree(old_data);
4216 	return 0;
4217 }
4218 
4219 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4220 					    const struct bpf_insn *patch, u32 len)
4221 {
4222 	struct bpf_prog *new_prog;
4223 
4224 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4225 	if (!new_prog)
4226 		return NULL;
4227 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4228 		return NULL;
4229 	return new_prog;
4230 }
4231 
4232 /* convert load instructions that access fields of 'struct __sk_buff'
4233  * into sequence of instructions that access fields of 'struct sk_buff'
4234  */
4235 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4236 {
4237 	const struct bpf_verifier_ops *ops = env->ops;
4238 	int i, cnt, size, ctx_field_size, delta = 0;
4239 	const int insn_cnt = env->prog->len;
4240 	struct bpf_insn insn_buf[16], *insn;
4241 	struct bpf_prog *new_prog;
4242 	enum bpf_access_type type;
4243 	bool is_narrower_load;
4244 	u32 target_size;
4245 
4246 	if (ops->gen_prologue) {
4247 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4248 					env->prog);
4249 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4250 			verbose(env, "bpf verifier is misconfigured\n");
4251 			return -EINVAL;
4252 		} else if (cnt) {
4253 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4254 			if (!new_prog)
4255 				return -ENOMEM;
4256 
4257 			env->prog = new_prog;
4258 			delta += cnt - 1;
4259 		}
4260 	}
4261 
4262 	if (!ops->convert_ctx_access)
4263 		return 0;
4264 
4265 	insn = env->prog->insnsi + delta;
4266 
4267 	for (i = 0; i < insn_cnt; i++, insn++) {
4268 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4269 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4270 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4271 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4272 			type = BPF_READ;
4273 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4274 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4275 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4276 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4277 			type = BPF_WRITE;
4278 		else
4279 			continue;
4280 
4281 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4282 			continue;
4283 
4284 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4285 		size = BPF_LDST_BYTES(insn);
4286 
4287 		/* If the read access is a narrower load of the field,
4288 		 * convert to a 4/8-byte load, to minimum program type specific
4289 		 * convert_ctx_access changes. If conversion is successful,
4290 		 * we will apply proper mask to the result.
4291 		 */
4292 		is_narrower_load = size < ctx_field_size;
4293 		if (is_narrower_load) {
4294 			u32 off = insn->off;
4295 			u8 size_code;
4296 
4297 			if (type == BPF_WRITE) {
4298 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4299 				return -EINVAL;
4300 			}
4301 
4302 			size_code = BPF_H;
4303 			if (ctx_field_size == 4)
4304 				size_code = BPF_W;
4305 			else if (ctx_field_size == 8)
4306 				size_code = BPF_DW;
4307 
4308 			insn->off = off & ~(ctx_field_size - 1);
4309 			insn->code = BPF_LDX | BPF_MEM | size_code;
4310 		}
4311 
4312 		target_size = 0;
4313 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4314 					      &target_size);
4315 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4316 		    (ctx_field_size && !target_size)) {
4317 			verbose(env, "bpf verifier is misconfigured\n");
4318 			return -EINVAL;
4319 		}
4320 
4321 		if (is_narrower_load && size < target_size) {
4322 			if (ctx_field_size <= 4)
4323 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4324 								(1 << size * 8) - 1);
4325 			else
4326 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4327 								(1 << size * 8) - 1);
4328 		}
4329 
4330 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4331 		if (!new_prog)
4332 			return -ENOMEM;
4333 
4334 		delta += cnt - 1;
4335 
4336 		/* keep walking new program and skip insns we just inserted */
4337 		env->prog = new_prog;
4338 		insn      = new_prog->insnsi + i + delta;
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 /* fixup insn->imm field of bpf_call instructions
4345  * and inline eligible helpers as explicit sequence of BPF instructions
4346  *
4347  * this function is called after eBPF program passed verification
4348  */
4349 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4350 {
4351 	struct bpf_prog *prog = env->prog;
4352 	struct bpf_insn *insn = prog->insnsi;
4353 	const struct bpf_func_proto *fn;
4354 	const int insn_cnt = prog->len;
4355 	struct bpf_insn insn_buf[16];
4356 	struct bpf_prog *new_prog;
4357 	struct bpf_map *map_ptr;
4358 	int i, cnt, delta = 0;
4359 
4360 	for (i = 0; i < insn_cnt; i++, insn++) {
4361 		if (insn->code != (BPF_JMP | BPF_CALL))
4362 			continue;
4363 
4364 		if (insn->imm == BPF_FUNC_get_route_realm)
4365 			prog->dst_needed = 1;
4366 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4367 			bpf_user_rnd_init_once();
4368 		if (insn->imm == BPF_FUNC_tail_call) {
4369 			/* If we tail call into other programs, we
4370 			 * cannot make any assumptions since they can
4371 			 * be replaced dynamically during runtime in
4372 			 * the program array.
4373 			 */
4374 			prog->cb_access = 1;
4375 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4376 
4377 			/* mark bpf_tail_call as different opcode to avoid
4378 			 * conditional branch in the interpeter for every normal
4379 			 * call and to prevent accidental JITing by JIT compiler
4380 			 * that doesn't support bpf_tail_call yet
4381 			 */
4382 			insn->imm = 0;
4383 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4384 			continue;
4385 		}
4386 
4387 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4388 		 * handlers are currently limited to 64 bit only.
4389 		 */
4390 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4391 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4392 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4393 			if (map_ptr == BPF_MAP_PTR_POISON ||
4394 			    !map_ptr->ops->map_gen_lookup)
4395 				goto patch_call_imm;
4396 
4397 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4398 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4399 				verbose(env, "bpf verifier is misconfigured\n");
4400 				return -EINVAL;
4401 			}
4402 
4403 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4404 						       cnt);
4405 			if (!new_prog)
4406 				return -ENOMEM;
4407 
4408 			delta += cnt - 1;
4409 
4410 			/* keep walking new program and skip insns we just inserted */
4411 			env->prog = prog = new_prog;
4412 			insn      = new_prog->insnsi + i + delta;
4413 			continue;
4414 		}
4415 
4416 		if (insn->imm == BPF_FUNC_redirect_map) {
4417 			/* Note, we cannot use prog directly as imm as subsequent
4418 			 * rewrites would still change the prog pointer. The only
4419 			 * stable address we can use is aux, which also works with
4420 			 * prog clones during blinding.
4421 			 */
4422 			u64 addr = (unsigned long)prog->aux;
4423 			struct bpf_insn r4_ld[] = {
4424 				BPF_LD_IMM64(BPF_REG_4, addr),
4425 				*insn,
4426 			};
4427 			cnt = ARRAY_SIZE(r4_ld);
4428 
4429 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4430 			if (!new_prog)
4431 				return -ENOMEM;
4432 
4433 			delta    += cnt - 1;
4434 			env->prog = prog = new_prog;
4435 			insn      = new_prog->insnsi + i + delta;
4436 		}
4437 patch_call_imm:
4438 		fn = env->ops->get_func_proto(insn->imm);
4439 		/* all functions that have prototype and verifier allowed
4440 		 * programs to call them, must be real in-kernel functions
4441 		 */
4442 		if (!fn->func) {
4443 			verbose(env,
4444 				"kernel subsystem misconfigured func %s#%d\n",
4445 				func_id_name(insn->imm), insn->imm);
4446 			return -EFAULT;
4447 		}
4448 		insn->imm = fn->func - __bpf_call_base;
4449 	}
4450 
4451 	return 0;
4452 }
4453 
4454 static void free_states(struct bpf_verifier_env *env)
4455 {
4456 	struct bpf_verifier_state_list *sl, *sln;
4457 	int i;
4458 
4459 	if (!env->explored_states)
4460 		return;
4461 
4462 	for (i = 0; i < env->prog->len; i++) {
4463 		sl = env->explored_states[i];
4464 
4465 		if (sl)
4466 			while (sl != STATE_LIST_MARK) {
4467 				sln = sl->next;
4468 				free_verifier_state(&sl->state, false);
4469 				kfree(sl);
4470 				sl = sln;
4471 			}
4472 	}
4473 
4474 	kfree(env->explored_states);
4475 }
4476 
4477 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4478 {
4479 	struct bpf_verifier_env *env;
4480 	struct bpf_verifer_log *log;
4481 	int ret = -EINVAL;
4482 
4483 	/* no program is valid */
4484 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4485 		return -EINVAL;
4486 
4487 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4488 	 * allocate/free it every time bpf_check() is called
4489 	 */
4490 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4491 	if (!env)
4492 		return -ENOMEM;
4493 	log = &env->log;
4494 
4495 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4496 				     (*prog)->len);
4497 	ret = -ENOMEM;
4498 	if (!env->insn_aux_data)
4499 		goto err_free_env;
4500 	env->prog = *prog;
4501 	env->ops = bpf_verifier_ops[env->prog->type];
4502 
4503 	/* grab the mutex to protect few globals used by verifier */
4504 	mutex_lock(&bpf_verifier_lock);
4505 
4506 	if (attr->log_level || attr->log_buf || attr->log_size) {
4507 		/* user requested verbose verifier output
4508 		 * and supplied buffer to store the verification trace
4509 		 */
4510 		log->level = attr->log_level;
4511 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4512 		log->len_total = attr->log_size;
4513 
4514 		ret = -EINVAL;
4515 		/* log attributes have to be sane */
4516 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4517 		    !log->level || !log->ubuf)
4518 			goto err_unlock;
4519 	}
4520 
4521 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4522 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4523 		env->strict_alignment = true;
4524 
4525 	if (env->prog->aux->offload) {
4526 		ret = bpf_prog_offload_verifier_prep(env);
4527 		if (ret)
4528 			goto err_unlock;
4529 	}
4530 
4531 	ret = replace_map_fd_with_map_ptr(env);
4532 	if (ret < 0)
4533 		goto skip_full_check;
4534 
4535 	env->explored_states = kcalloc(env->prog->len,
4536 				       sizeof(struct bpf_verifier_state_list *),
4537 				       GFP_USER);
4538 	ret = -ENOMEM;
4539 	if (!env->explored_states)
4540 		goto skip_full_check;
4541 
4542 	ret = check_cfg(env);
4543 	if (ret < 0)
4544 		goto skip_full_check;
4545 
4546 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4547 
4548 	ret = do_check(env);
4549 	if (env->cur_state) {
4550 		free_verifier_state(env->cur_state, true);
4551 		env->cur_state = NULL;
4552 	}
4553 
4554 skip_full_check:
4555 	while (!pop_stack(env, NULL, NULL));
4556 	free_states(env);
4557 
4558 	if (ret == 0)
4559 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4560 		ret = convert_ctx_accesses(env);
4561 
4562 	if (ret == 0)
4563 		ret = fixup_bpf_calls(env);
4564 
4565 	if (log->level && bpf_verifier_log_full(log))
4566 		ret = -ENOSPC;
4567 	if (log->level && !log->ubuf) {
4568 		ret = -EFAULT;
4569 		goto err_release_maps;
4570 	}
4571 
4572 	if (ret == 0 && env->used_map_cnt) {
4573 		/* if program passed verifier, update used_maps in bpf_prog_info */
4574 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4575 							  sizeof(env->used_maps[0]),
4576 							  GFP_KERNEL);
4577 
4578 		if (!env->prog->aux->used_maps) {
4579 			ret = -ENOMEM;
4580 			goto err_release_maps;
4581 		}
4582 
4583 		memcpy(env->prog->aux->used_maps, env->used_maps,
4584 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4585 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4586 
4587 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4588 		 * bpf_ld_imm64 instructions
4589 		 */
4590 		convert_pseudo_ld_imm64(env);
4591 	}
4592 
4593 err_release_maps:
4594 	if (!env->prog->aux->used_maps)
4595 		/* if we didn't copy map pointers into bpf_prog_info, release
4596 		 * them now. Otherwise free_bpf_prog_info() will release them.
4597 		 */
4598 		release_maps(env);
4599 	*prog = env->prog;
4600 err_unlock:
4601 	mutex_unlock(&bpf_verifier_lock);
4602 	vfree(env->insn_aux_data);
4603 err_free_env:
4604 	kfree(env);
4605 	return ret;
4606 }
4607