xref: /linux/kernel/bpf/verifier.c (revision bb118e86dfcc096b8a3889c1a5c88f214e1f65fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
202 static int ref_set_non_owning(struct bpf_verifier_env *env,
203 			      struct bpf_reg_state *reg);
204 static void specialize_kfunc(struct bpf_verifier_env *env,
205 			     u32 func_id, u16 offset, unsigned long *addr);
206 static bool is_trusted_reg(const struct bpf_reg_state *reg);
207 
208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
211 }
212 
213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
216 }
217 
218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
219 			      const struct bpf_map *map, bool unpriv)
220 {
221 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
222 	unpriv |= bpf_map_ptr_unpriv(aux);
223 	aux->map_ptr_state = (unsigned long)map |
224 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
225 }
226 
227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231 
232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236 
237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241 
242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 	bool poisoned = bpf_map_key_poisoned(aux);
245 
246 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249 
250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == 0;
254 }
255 
256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_CALL;
260 }
261 
262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 	return insn->code == (BPF_JMP | BPF_CALL) &&
265 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267 
268 struct bpf_call_arg_meta {
269 	struct bpf_map *map_ptr;
270 	bool raw_mode;
271 	bool pkt_access;
272 	u8 release_regno;
273 	int regno;
274 	int access_size;
275 	int mem_size;
276 	u64 msize_max_value;
277 	int ref_obj_id;
278 	int dynptr_id;
279 	int map_uid;
280 	int func_id;
281 	struct btf *btf;
282 	u32 btf_id;
283 	struct btf *ret_btf;
284 	u32 ret_btf_id;
285 	u32 subprogno;
286 	struct btf_field *kptr_field;
287 };
288 
289 struct bpf_kfunc_call_arg_meta {
290 	/* In parameters */
291 	struct btf *btf;
292 	u32 func_id;
293 	u32 kfunc_flags;
294 	const struct btf_type *func_proto;
295 	const char *func_name;
296 	/* Out parameters */
297 	u32 ref_obj_id;
298 	u8 release_regno;
299 	bool r0_rdonly;
300 	u32 ret_btf_id;
301 	u64 r0_size;
302 	u32 subprogno;
303 	struct {
304 		u64 value;
305 		bool found;
306 	} arg_constant;
307 
308 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 	 * generally to pass info about user-defined local kptr types to later
310 	 * verification logic
311 	 *   bpf_obj_drop/bpf_percpu_obj_drop
312 	 *     Record the local kptr type to be drop'd
313 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 	 *     Record the local kptr type to be refcount_incr'd and use
315 	 *     arg_owning_ref to determine whether refcount_acquire should be
316 	 *     fallible
317 	 */
318 	struct btf *arg_btf;
319 	u32 arg_btf_id;
320 	bool arg_owning_ref;
321 
322 	struct {
323 		struct btf_field *field;
324 	} arg_list_head;
325 	struct {
326 		struct btf_field *field;
327 	} arg_rbtree_root;
328 	struct {
329 		enum bpf_dynptr_type type;
330 		u32 id;
331 		u32 ref_obj_id;
332 	} initialized_dynptr;
333 	struct {
334 		u8 spi;
335 		u8 frameno;
336 	} iter;
337 	u64 mem_size;
338 };
339 
340 struct btf *btf_vmlinux;
341 
342 static DEFINE_MUTEX(bpf_verifier_lock);
343 static DEFINE_MUTEX(bpf_percpu_ma_lock);
344 
345 static const struct bpf_line_info *
346 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
347 {
348 	const struct bpf_line_info *linfo;
349 	const struct bpf_prog *prog;
350 	u32 i, nr_linfo;
351 
352 	prog = env->prog;
353 	nr_linfo = prog->aux->nr_linfo;
354 
355 	if (!nr_linfo || insn_off >= prog->len)
356 		return NULL;
357 
358 	linfo = prog->aux->linfo;
359 	for (i = 1; i < nr_linfo; i++)
360 		if (insn_off < linfo[i].insn_off)
361 			break;
362 
363 	return &linfo[i - 1];
364 }
365 
366 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
367 {
368 	struct bpf_verifier_env *env = private_data;
369 	va_list args;
370 
371 	if (!bpf_verifier_log_needed(&env->log))
372 		return;
373 
374 	va_start(args, fmt);
375 	bpf_verifier_vlog(&env->log, fmt, args);
376 	va_end(args);
377 }
378 
379 static const char *ltrim(const char *s)
380 {
381 	while (isspace(*s))
382 		s++;
383 
384 	return s;
385 }
386 
387 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
388 					 u32 insn_off,
389 					 const char *prefix_fmt, ...)
390 {
391 	const struct bpf_line_info *linfo;
392 
393 	if (!bpf_verifier_log_needed(&env->log))
394 		return;
395 
396 	linfo = find_linfo(env, insn_off);
397 	if (!linfo || linfo == env->prev_linfo)
398 		return;
399 
400 	if (prefix_fmt) {
401 		va_list args;
402 
403 		va_start(args, prefix_fmt);
404 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
405 		va_end(args);
406 	}
407 
408 	verbose(env, "%s\n",
409 		ltrim(btf_name_by_offset(env->prog->aux->btf,
410 					 linfo->line_off)));
411 
412 	env->prev_linfo = linfo;
413 }
414 
415 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
416 				   struct bpf_reg_state *reg,
417 				   struct tnum *range, const char *ctx,
418 				   const char *reg_name)
419 {
420 	char tn_buf[48];
421 
422 	verbose(env, "At %s the register %s ", ctx, reg_name);
423 	if (!tnum_is_unknown(reg->var_off)) {
424 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
425 		verbose(env, "has value %s", tn_buf);
426 	} else {
427 		verbose(env, "has unknown scalar value");
428 	}
429 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
430 	verbose(env, " should have been in %s\n", tn_buf);
431 }
432 
433 static bool type_is_pkt_pointer(enum bpf_reg_type type)
434 {
435 	type = base_type(type);
436 	return type == PTR_TO_PACKET ||
437 	       type == PTR_TO_PACKET_META;
438 }
439 
440 static bool type_is_sk_pointer(enum bpf_reg_type type)
441 {
442 	return type == PTR_TO_SOCKET ||
443 		type == PTR_TO_SOCK_COMMON ||
444 		type == PTR_TO_TCP_SOCK ||
445 		type == PTR_TO_XDP_SOCK;
446 }
447 
448 static bool type_may_be_null(u32 type)
449 {
450 	return type & PTR_MAYBE_NULL;
451 }
452 
453 static bool reg_not_null(const struct bpf_reg_state *reg)
454 {
455 	enum bpf_reg_type type;
456 
457 	type = reg->type;
458 	if (type_may_be_null(type))
459 		return false;
460 
461 	type = base_type(type);
462 	return type == PTR_TO_SOCKET ||
463 		type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_MAP_VALUE ||
465 		type == PTR_TO_MAP_KEY ||
466 		type == PTR_TO_SOCK_COMMON ||
467 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
468 		type == PTR_TO_MEM;
469 }
470 
471 static bool type_is_ptr_alloc_obj(u32 type)
472 {
473 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
474 }
475 
476 static bool type_is_non_owning_ref(u32 type)
477 {
478 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
479 }
480 
481 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
482 {
483 	struct btf_record *rec = NULL;
484 	struct btf_struct_meta *meta;
485 
486 	if (reg->type == PTR_TO_MAP_VALUE) {
487 		rec = reg->map_ptr->record;
488 	} else if (type_is_ptr_alloc_obj(reg->type)) {
489 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
490 		if (meta)
491 			rec = meta->record;
492 	}
493 	return rec;
494 }
495 
496 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
497 {
498 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
499 
500 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
501 }
502 
503 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
504 {
505 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
506 }
507 
508 static bool type_is_rdonly_mem(u32 type)
509 {
510 	return type & MEM_RDONLY;
511 }
512 
513 static bool is_acquire_function(enum bpf_func_id func_id,
514 				const struct bpf_map *map)
515 {
516 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
517 
518 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
519 	    func_id == BPF_FUNC_sk_lookup_udp ||
520 	    func_id == BPF_FUNC_skc_lookup_tcp ||
521 	    func_id == BPF_FUNC_ringbuf_reserve ||
522 	    func_id == BPF_FUNC_kptr_xchg)
523 		return true;
524 
525 	if (func_id == BPF_FUNC_map_lookup_elem &&
526 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
527 	     map_type == BPF_MAP_TYPE_SOCKHASH))
528 		return true;
529 
530 	return false;
531 }
532 
533 static bool is_ptr_cast_function(enum bpf_func_id func_id)
534 {
535 	return func_id == BPF_FUNC_tcp_sock ||
536 		func_id == BPF_FUNC_sk_fullsock ||
537 		func_id == BPF_FUNC_skc_to_tcp_sock ||
538 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
539 		func_id == BPF_FUNC_skc_to_udp6_sock ||
540 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
541 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
542 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
543 }
544 
545 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
546 {
547 	return func_id == BPF_FUNC_dynptr_data;
548 }
549 
550 static bool is_callback_calling_kfunc(u32 btf_id);
551 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
552 
553 static bool is_callback_calling_function(enum bpf_func_id func_id)
554 {
555 	return func_id == BPF_FUNC_for_each_map_elem ||
556 	       func_id == BPF_FUNC_timer_set_callback ||
557 	       func_id == BPF_FUNC_find_vma ||
558 	       func_id == BPF_FUNC_loop ||
559 	       func_id == BPF_FUNC_user_ringbuf_drain;
560 }
561 
562 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
563 {
564 	return func_id == BPF_FUNC_timer_set_callback;
565 }
566 
567 static bool is_storage_get_function(enum bpf_func_id func_id)
568 {
569 	return func_id == BPF_FUNC_sk_storage_get ||
570 	       func_id == BPF_FUNC_inode_storage_get ||
571 	       func_id == BPF_FUNC_task_storage_get ||
572 	       func_id == BPF_FUNC_cgrp_storage_get;
573 }
574 
575 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
576 					const struct bpf_map *map)
577 {
578 	int ref_obj_uses = 0;
579 
580 	if (is_ptr_cast_function(func_id))
581 		ref_obj_uses++;
582 	if (is_acquire_function(func_id, map))
583 		ref_obj_uses++;
584 	if (is_dynptr_ref_function(func_id))
585 		ref_obj_uses++;
586 
587 	return ref_obj_uses > 1;
588 }
589 
590 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
591 {
592 	return BPF_CLASS(insn->code) == BPF_STX &&
593 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
594 	       insn->imm == BPF_CMPXCHG;
595 }
596 
597 /* string representation of 'enum bpf_reg_type'
598  *
599  * Note that reg_type_str() can not appear more than once in a single verbose()
600  * statement.
601  */
602 static const char *reg_type_str(struct bpf_verifier_env *env,
603 				enum bpf_reg_type type)
604 {
605 	char postfix[16] = {0}, prefix[64] = {0};
606 	static const char * const str[] = {
607 		[NOT_INIT]		= "?",
608 		[SCALAR_VALUE]		= "scalar",
609 		[PTR_TO_CTX]		= "ctx",
610 		[CONST_PTR_TO_MAP]	= "map_ptr",
611 		[PTR_TO_MAP_VALUE]	= "map_value",
612 		[PTR_TO_STACK]		= "fp",
613 		[PTR_TO_PACKET]		= "pkt",
614 		[PTR_TO_PACKET_META]	= "pkt_meta",
615 		[PTR_TO_PACKET_END]	= "pkt_end",
616 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
617 		[PTR_TO_SOCKET]		= "sock",
618 		[PTR_TO_SOCK_COMMON]	= "sock_common",
619 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
620 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
621 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
622 		[PTR_TO_BTF_ID]		= "ptr_",
623 		[PTR_TO_MEM]		= "mem",
624 		[PTR_TO_BUF]		= "buf",
625 		[PTR_TO_FUNC]		= "func",
626 		[PTR_TO_MAP_KEY]	= "map_key",
627 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
628 	};
629 
630 	if (type & PTR_MAYBE_NULL) {
631 		if (base_type(type) == PTR_TO_BTF_ID)
632 			strncpy(postfix, "or_null_", 16);
633 		else
634 			strncpy(postfix, "_or_null", 16);
635 	}
636 
637 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
638 		 type & MEM_RDONLY ? "rdonly_" : "",
639 		 type & MEM_RINGBUF ? "ringbuf_" : "",
640 		 type & MEM_USER ? "user_" : "",
641 		 type & MEM_PERCPU ? "percpu_" : "",
642 		 type & MEM_RCU ? "rcu_" : "",
643 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
644 		 type & PTR_TRUSTED ? "trusted_" : ""
645 	);
646 
647 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
648 		 prefix, str[base_type(type)], postfix);
649 	return env->tmp_str_buf;
650 }
651 
652 static char slot_type_char[] = {
653 	[STACK_INVALID]	= '?',
654 	[STACK_SPILL]	= 'r',
655 	[STACK_MISC]	= 'm',
656 	[STACK_ZERO]	= '0',
657 	[STACK_DYNPTR]	= 'd',
658 	[STACK_ITER]	= 'i',
659 };
660 
661 static void print_liveness(struct bpf_verifier_env *env,
662 			   enum bpf_reg_liveness live)
663 {
664 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
665 	    verbose(env, "_");
666 	if (live & REG_LIVE_READ)
667 		verbose(env, "r");
668 	if (live & REG_LIVE_WRITTEN)
669 		verbose(env, "w");
670 	if (live & REG_LIVE_DONE)
671 		verbose(env, "D");
672 }
673 
674 static int __get_spi(s32 off)
675 {
676 	return (-off - 1) / BPF_REG_SIZE;
677 }
678 
679 static struct bpf_func_state *func(struct bpf_verifier_env *env,
680 				   const struct bpf_reg_state *reg)
681 {
682 	struct bpf_verifier_state *cur = env->cur_state;
683 
684 	return cur->frame[reg->frameno];
685 }
686 
687 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
688 {
689        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
690 
691        /* We need to check that slots between [spi - nr_slots + 1, spi] are
692 	* within [0, allocated_stack).
693 	*
694 	* Please note that the spi grows downwards. For example, a dynptr
695 	* takes the size of two stack slots; the first slot will be at
696 	* spi and the second slot will be at spi - 1.
697 	*/
698        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
699 }
700 
701 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
702 			          const char *obj_kind, int nr_slots)
703 {
704 	int off, spi;
705 
706 	if (!tnum_is_const(reg->var_off)) {
707 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
708 		return -EINVAL;
709 	}
710 
711 	off = reg->off + reg->var_off.value;
712 	if (off % BPF_REG_SIZE) {
713 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
714 		return -EINVAL;
715 	}
716 
717 	spi = __get_spi(off);
718 	if (spi + 1 < nr_slots) {
719 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
720 		return -EINVAL;
721 	}
722 
723 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
724 		return -ERANGE;
725 	return spi;
726 }
727 
728 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
729 {
730 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
731 }
732 
733 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
734 {
735 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
736 }
737 
738 static const char *btf_type_name(const struct btf *btf, u32 id)
739 {
740 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
741 }
742 
743 static const char *dynptr_type_str(enum bpf_dynptr_type type)
744 {
745 	switch (type) {
746 	case BPF_DYNPTR_TYPE_LOCAL:
747 		return "local";
748 	case BPF_DYNPTR_TYPE_RINGBUF:
749 		return "ringbuf";
750 	case BPF_DYNPTR_TYPE_SKB:
751 		return "skb";
752 	case BPF_DYNPTR_TYPE_XDP:
753 		return "xdp";
754 	case BPF_DYNPTR_TYPE_INVALID:
755 		return "<invalid>";
756 	default:
757 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
758 		return "<unknown>";
759 	}
760 }
761 
762 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
763 {
764 	if (!btf || btf_id == 0)
765 		return "<invalid>";
766 
767 	/* we already validated that type is valid and has conforming name */
768 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
769 }
770 
771 static const char *iter_state_str(enum bpf_iter_state state)
772 {
773 	switch (state) {
774 	case BPF_ITER_STATE_ACTIVE:
775 		return "active";
776 	case BPF_ITER_STATE_DRAINED:
777 		return "drained";
778 	case BPF_ITER_STATE_INVALID:
779 		return "<invalid>";
780 	default:
781 		WARN_ONCE(1, "unknown iter state %d\n", state);
782 		return "<unknown>";
783 	}
784 }
785 
786 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
787 {
788 	env->scratched_regs |= 1U << regno;
789 }
790 
791 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
792 {
793 	env->scratched_stack_slots |= 1ULL << spi;
794 }
795 
796 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
797 {
798 	return (env->scratched_regs >> regno) & 1;
799 }
800 
801 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
802 {
803 	return (env->scratched_stack_slots >> regno) & 1;
804 }
805 
806 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
807 {
808 	return env->scratched_regs || env->scratched_stack_slots;
809 }
810 
811 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
812 {
813 	env->scratched_regs = 0U;
814 	env->scratched_stack_slots = 0ULL;
815 }
816 
817 /* Used for printing the entire verifier state. */
818 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
819 {
820 	env->scratched_regs = ~0U;
821 	env->scratched_stack_slots = ~0ULL;
822 }
823 
824 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
825 {
826 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
827 	case DYNPTR_TYPE_LOCAL:
828 		return BPF_DYNPTR_TYPE_LOCAL;
829 	case DYNPTR_TYPE_RINGBUF:
830 		return BPF_DYNPTR_TYPE_RINGBUF;
831 	case DYNPTR_TYPE_SKB:
832 		return BPF_DYNPTR_TYPE_SKB;
833 	case DYNPTR_TYPE_XDP:
834 		return BPF_DYNPTR_TYPE_XDP;
835 	default:
836 		return BPF_DYNPTR_TYPE_INVALID;
837 	}
838 }
839 
840 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
841 {
842 	switch (type) {
843 	case BPF_DYNPTR_TYPE_LOCAL:
844 		return DYNPTR_TYPE_LOCAL;
845 	case BPF_DYNPTR_TYPE_RINGBUF:
846 		return DYNPTR_TYPE_RINGBUF;
847 	case BPF_DYNPTR_TYPE_SKB:
848 		return DYNPTR_TYPE_SKB;
849 	case BPF_DYNPTR_TYPE_XDP:
850 		return DYNPTR_TYPE_XDP;
851 	default:
852 		return 0;
853 	}
854 }
855 
856 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
857 {
858 	return type == BPF_DYNPTR_TYPE_RINGBUF;
859 }
860 
861 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
862 			      enum bpf_dynptr_type type,
863 			      bool first_slot, int dynptr_id);
864 
865 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
866 				struct bpf_reg_state *reg);
867 
868 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
869 				   struct bpf_reg_state *sreg1,
870 				   struct bpf_reg_state *sreg2,
871 				   enum bpf_dynptr_type type)
872 {
873 	int id = ++env->id_gen;
874 
875 	__mark_dynptr_reg(sreg1, type, true, id);
876 	__mark_dynptr_reg(sreg2, type, false, id);
877 }
878 
879 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
880 			       struct bpf_reg_state *reg,
881 			       enum bpf_dynptr_type type)
882 {
883 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
884 }
885 
886 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
887 				        struct bpf_func_state *state, int spi);
888 
889 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
890 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
891 {
892 	struct bpf_func_state *state = func(env, reg);
893 	enum bpf_dynptr_type type;
894 	int spi, i, err;
895 
896 	spi = dynptr_get_spi(env, reg);
897 	if (spi < 0)
898 		return spi;
899 
900 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
901 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
902 	 * to ensure that for the following example:
903 	 *	[d1][d1][d2][d2]
904 	 * spi    3   2   1   0
905 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
906 	 * case they do belong to same dynptr, second call won't see slot_type
907 	 * as STACK_DYNPTR and will simply skip destruction.
908 	 */
909 	err = destroy_if_dynptr_stack_slot(env, state, spi);
910 	if (err)
911 		return err;
912 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
913 	if (err)
914 		return err;
915 
916 	for (i = 0; i < BPF_REG_SIZE; i++) {
917 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
918 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
919 	}
920 
921 	type = arg_to_dynptr_type(arg_type);
922 	if (type == BPF_DYNPTR_TYPE_INVALID)
923 		return -EINVAL;
924 
925 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
926 			       &state->stack[spi - 1].spilled_ptr, type);
927 
928 	if (dynptr_type_refcounted(type)) {
929 		/* The id is used to track proper releasing */
930 		int id;
931 
932 		if (clone_ref_obj_id)
933 			id = clone_ref_obj_id;
934 		else
935 			id = acquire_reference_state(env, insn_idx);
936 
937 		if (id < 0)
938 			return id;
939 
940 		state->stack[spi].spilled_ptr.ref_obj_id = id;
941 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
942 	}
943 
944 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
945 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
946 
947 	return 0;
948 }
949 
950 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
951 {
952 	int i;
953 
954 	for (i = 0; i < BPF_REG_SIZE; i++) {
955 		state->stack[spi].slot_type[i] = STACK_INVALID;
956 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
957 	}
958 
959 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
960 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
961 
962 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
963 	 *
964 	 * While we don't allow reading STACK_INVALID, it is still possible to
965 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
966 	 * helpers or insns can do partial read of that part without failing,
967 	 * but check_stack_range_initialized, check_stack_read_var_off, and
968 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
969 	 * the slot conservatively. Hence we need to prevent those liveness
970 	 * marking walks.
971 	 *
972 	 * This was not a problem before because STACK_INVALID is only set by
973 	 * default (where the default reg state has its reg->parent as NULL), or
974 	 * in clean_live_states after REG_LIVE_DONE (at which point
975 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
976 	 * verifier state exploration (like we did above). Hence, for our case
977 	 * parentage chain will still be live (i.e. reg->parent may be
978 	 * non-NULL), while earlier reg->parent was NULL, so we need
979 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
980 	 * done later on reads or by mark_dynptr_read as well to unnecessary
981 	 * mark registers in verifier state.
982 	 */
983 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
984 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
985 }
986 
987 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
988 {
989 	struct bpf_func_state *state = func(env, reg);
990 	int spi, ref_obj_id, i;
991 
992 	spi = dynptr_get_spi(env, reg);
993 	if (spi < 0)
994 		return spi;
995 
996 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
997 		invalidate_dynptr(env, state, spi);
998 		return 0;
999 	}
1000 
1001 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1002 
1003 	/* If the dynptr has a ref_obj_id, then we need to invalidate
1004 	 * two things:
1005 	 *
1006 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1007 	 * 2) Any slices derived from this dynptr.
1008 	 */
1009 
1010 	/* Invalidate any slices associated with this dynptr */
1011 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1012 
1013 	/* Invalidate any dynptr clones */
1014 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1015 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1016 			continue;
1017 
1018 		/* it should always be the case that if the ref obj id
1019 		 * matches then the stack slot also belongs to a
1020 		 * dynptr
1021 		 */
1022 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1023 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1024 			return -EFAULT;
1025 		}
1026 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1027 			invalidate_dynptr(env, state, i);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1034 			       struct bpf_reg_state *reg);
1035 
1036 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1037 {
1038 	if (!env->allow_ptr_leaks)
1039 		__mark_reg_not_init(env, reg);
1040 	else
1041 		__mark_reg_unknown(env, reg);
1042 }
1043 
1044 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1045 				        struct bpf_func_state *state, int spi)
1046 {
1047 	struct bpf_func_state *fstate;
1048 	struct bpf_reg_state *dreg;
1049 	int i, dynptr_id;
1050 
1051 	/* We always ensure that STACK_DYNPTR is never set partially,
1052 	 * hence just checking for slot_type[0] is enough. This is
1053 	 * different for STACK_SPILL, where it may be only set for
1054 	 * 1 byte, so code has to use is_spilled_reg.
1055 	 */
1056 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1057 		return 0;
1058 
1059 	/* Reposition spi to first slot */
1060 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1061 		spi = spi + 1;
1062 
1063 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1064 		verbose(env, "cannot overwrite referenced dynptr\n");
1065 		return -EINVAL;
1066 	}
1067 
1068 	mark_stack_slot_scratched(env, spi);
1069 	mark_stack_slot_scratched(env, spi - 1);
1070 
1071 	/* Writing partially to one dynptr stack slot destroys both. */
1072 	for (i = 0; i < BPF_REG_SIZE; i++) {
1073 		state->stack[spi].slot_type[i] = STACK_INVALID;
1074 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1075 	}
1076 
1077 	dynptr_id = state->stack[spi].spilled_ptr.id;
1078 	/* Invalidate any slices associated with this dynptr */
1079 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1080 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1081 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1082 			continue;
1083 		if (dreg->dynptr_id == dynptr_id)
1084 			mark_reg_invalid(env, dreg);
1085 	}));
1086 
1087 	/* Do not release reference state, we are destroying dynptr on stack,
1088 	 * not using some helper to release it. Just reset register.
1089 	 */
1090 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1091 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1092 
1093 	/* Same reason as unmark_stack_slots_dynptr above */
1094 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1095 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1096 
1097 	return 0;
1098 }
1099 
1100 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1101 {
1102 	int spi;
1103 
1104 	if (reg->type == CONST_PTR_TO_DYNPTR)
1105 		return false;
1106 
1107 	spi = dynptr_get_spi(env, reg);
1108 
1109 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1110 	 * error because this just means the stack state hasn't been updated yet.
1111 	 * We will do check_mem_access to check and update stack bounds later.
1112 	 */
1113 	if (spi < 0 && spi != -ERANGE)
1114 		return false;
1115 
1116 	/* We don't need to check if the stack slots are marked by previous
1117 	 * dynptr initializations because we allow overwriting existing unreferenced
1118 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1119 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1120 	 * touching are completely destructed before we reinitialize them for a new
1121 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1122 	 * instead of delaying it until the end where the user will get "Unreleased
1123 	 * reference" error.
1124 	 */
1125 	return true;
1126 }
1127 
1128 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1129 {
1130 	struct bpf_func_state *state = func(env, reg);
1131 	int i, spi;
1132 
1133 	/* This already represents first slot of initialized bpf_dynptr.
1134 	 *
1135 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1136 	 * check_func_arg_reg_off's logic, so we don't need to check its
1137 	 * offset and alignment.
1138 	 */
1139 	if (reg->type == CONST_PTR_TO_DYNPTR)
1140 		return true;
1141 
1142 	spi = dynptr_get_spi(env, reg);
1143 	if (spi < 0)
1144 		return false;
1145 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1146 		return false;
1147 
1148 	for (i = 0; i < BPF_REG_SIZE; i++) {
1149 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1150 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1151 			return false;
1152 	}
1153 
1154 	return true;
1155 }
1156 
1157 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1158 				    enum bpf_arg_type arg_type)
1159 {
1160 	struct bpf_func_state *state = func(env, reg);
1161 	enum bpf_dynptr_type dynptr_type;
1162 	int spi;
1163 
1164 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1165 	if (arg_type == ARG_PTR_TO_DYNPTR)
1166 		return true;
1167 
1168 	dynptr_type = arg_to_dynptr_type(arg_type);
1169 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1170 		return reg->dynptr.type == dynptr_type;
1171 	} else {
1172 		spi = dynptr_get_spi(env, reg);
1173 		if (spi < 0)
1174 			return false;
1175 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1176 	}
1177 }
1178 
1179 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1180 
1181 static bool in_rcu_cs(struct bpf_verifier_env *env);
1182 
1183 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1184 
1185 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1186 				 struct bpf_kfunc_call_arg_meta *meta,
1187 				 struct bpf_reg_state *reg, int insn_idx,
1188 				 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 	struct bpf_func_state *state = func(env, reg);
1191 	int spi, i, j, id;
1192 
1193 	spi = iter_get_spi(env, reg, nr_slots);
1194 	if (spi < 0)
1195 		return spi;
1196 
1197 	id = acquire_reference_state(env, insn_idx);
1198 	if (id < 0)
1199 		return id;
1200 
1201 	for (i = 0; i < nr_slots; i++) {
1202 		struct bpf_stack_state *slot = &state->stack[spi - i];
1203 		struct bpf_reg_state *st = &slot->spilled_ptr;
1204 
1205 		__mark_reg_known_zero(st);
1206 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 		if (is_kfunc_rcu_protected(meta)) {
1208 			if (in_rcu_cs(env))
1209 				st->type |= MEM_RCU;
1210 			else
1211 				st->type |= PTR_UNTRUSTED;
1212 		}
1213 		st->live |= REG_LIVE_WRITTEN;
1214 		st->ref_obj_id = i == 0 ? id : 0;
1215 		st->iter.btf = btf;
1216 		st->iter.btf_id = btf_id;
1217 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1218 		st->iter.depth = 0;
1219 
1220 		for (j = 0; j < BPF_REG_SIZE; j++)
1221 			slot->slot_type[j] = STACK_ITER;
1222 
1223 		mark_stack_slot_scratched(env, spi - i);
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1230 				   struct bpf_reg_state *reg, int nr_slots)
1231 {
1232 	struct bpf_func_state *state = func(env, reg);
1233 	int spi, i, j;
1234 
1235 	spi = iter_get_spi(env, reg, nr_slots);
1236 	if (spi < 0)
1237 		return spi;
1238 
1239 	for (i = 0; i < nr_slots; i++) {
1240 		struct bpf_stack_state *slot = &state->stack[spi - i];
1241 		struct bpf_reg_state *st = &slot->spilled_ptr;
1242 
1243 		if (i == 0)
1244 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1245 
1246 		__mark_reg_not_init(env, st);
1247 
1248 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1249 		st->live |= REG_LIVE_WRITTEN;
1250 
1251 		for (j = 0; j < BPF_REG_SIZE; j++)
1252 			slot->slot_type[j] = STACK_INVALID;
1253 
1254 		mark_stack_slot_scratched(env, spi - i);
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1261 				     struct bpf_reg_state *reg, int nr_slots)
1262 {
1263 	struct bpf_func_state *state = func(env, reg);
1264 	int spi, i, j;
1265 
1266 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1267 	 * will do check_mem_access to check and update stack bounds later, so
1268 	 * return true for that case.
1269 	 */
1270 	spi = iter_get_spi(env, reg, nr_slots);
1271 	if (spi == -ERANGE)
1272 		return true;
1273 	if (spi < 0)
1274 		return false;
1275 
1276 	for (i = 0; i < nr_slots; i++) {
1277 		struct bpf_stack_state *slot = &state->stack[spi - i];
1278 
1279 		for (j = 0; j < BPF_REG_SIZE; j++)
1280 			if (slot->slot_type[j] == STACK_ITER)
1281 				return false;
1282 	}
1283 
1284 	return true;
1285 }
1286 
1287 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1288 				   struct btf *btf, u32 btf_id, int nr_slots)
1289 {
1290 	struct bpf_func_state *state = func(env, reg);
1291 	int spi, i, j;
1292 
1293 	spi = iter_get_spi(env, reg, nr_slots);
1294 	if (spi < 0)
1295 		return -EINVAL;
1296 
1297 	for (i = 0; i < nr_slots; i++) {
1298 		struct bpf_stack_state *slot = &state->stack[spi - i];
1299 		struct bpf_reg_state *st = &slot->spilled_ptr;
1300 
1301 		if (st->type & PTR_UNTRUSTED)
1302 			return -EPROTO;
1303 		/* only main (first) slot has ref_obj_id set */
1304 		if (i == 0 && !st->ref_obj_id)
1305 			return -EINVAL;
1306 		if (i != 0 && st->ref_obj_id)
1307 			return -EINVAL;
1308 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1309 			return -EINVAL;
1310 
1311 		for (j = 0; j < BPF_REG_SIZE; j++)
1312 			if (slot->slot_type[j] != STACK_ITER)
1313 				return -EINVAL;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /* Check if given stack slot is "special":
1320  *   - spilled register state (STACK_SPILL);
1321  *   - dynptr state (STACK_DYNPTR);
1322  *   - iter state (STACK_ITER).
1323  */
1324 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1325 {
1326 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1327 
1328 	switch (type) {
1329 	case STACK_SPILL:
1330 	case STACK_DYNPTR:
1331 	case STACK_ITER:
1332 		return true;
1333 	case STACK_INVALID:
1334 	case STACK_MISC:
1335 	case STACK_ZERO:
1336 		return false;
1337 	default:
1338 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1339 		return true;
1340 	}
1341 }
1342 
1343 /* The reg state of a pointer or a bounded scalar was saved when
1344  * it was spilled to the stack.
1345  */
1346 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1347 {
1348 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1349 }
1350 
1351 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1352 {
1353 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1354 	       stack->spilled_ptr.type == SCALAR_VALUE;
1355 }
1356 
1357 static void scrub_spilled_slot(u8 *stype)
1358 {
1359 	if (*stype != STACK_INVALID)
1360 		*stype = STACK_MISC;
1361 }
1362 
1363 static void print_scalar_ranges(struct bpf_verifier_env *env,
1364 				const struct bpf_reg_state *reg,
1365 				const char **sep)
1366 {
1367 	struct {
1368 		const char *name;
1369 		u64 val;
1370 		bool omit;
1371 	} minmaxs[] = {
1372 		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
1373 		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
1374 		{"umin",   reg->umin_value,         reg->umin_value == 0},
1375 		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
1376 		{"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN},
1377 		{"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX},
1378 		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
1379 		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
1380 	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
1381 	bool neg1, neg2;
1382 
1383 	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
1384 		if (m1->omit)
1385 			continue;
1386 
1387 		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
1388 
1389 		verbose(env, "%s%s=", *sep, m1->name);
1390 		*sep = ",";
1391 
1392 		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
1393 			if (m2->omit || m2->val != m1->val)
1394 				continue;
1395 			/* don't mix negatives with positives */
1396 			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
1397 			if (neg2 != neg1)
1398 				continue;
1399 			m2->omit = true;
1400 			verbose(env, "%s=", m2->name);
1401 		}
1402 
1403 		verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val);
1404 	}
1405 }
1406 
1407 static void print_verifier_state(struct bpf_verifier_env *env,
1408 				 const struct bpf_func_state *state,
1409 				 bool print_all)
1410 {
1411 	const struct bpf_reg_state *reg;
1412 	enum bpf_reg_type t;
1413 	int i;
1414 
1415 	if (state->frameno)
1416 		verbose(env, " frame%d:", state->frameno);
1417 	for (i = 0; i < MAX_BPF_REG; i++) {
1418 		reg = &state->regs[i];
1419 		t = reg->type;
1420 		if (t == NOT_INIT)
1421 			continue;
1422 		if (!print_all && !reg_scratched(env, i))
1423 			continue;
1424 		verbose(env, " R%d", i);
1425 		print_liveness(env, reg->live);
1426 		verbose(env, "=");
1427 		if (t == SCALAR_VALUE && reg->precise)
1428 			verbose(env, "P");
1429 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1430 		    tnum_is_const(reg->var_off)) {
1431 			/* reg->off should be 0 for SCALAR_VALUE */
1432 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1433 			verbose(env, "%lld", reg->var_off.value + reg->off);
1434 		} else {
1435 			const char *sep = "";
1436 
1437 			verbose(env, "%s", reg_type_str(env, t));
1438 			if (base_type(t) == PTR_TO_BTF_ID)
1439 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1440 			verbose(env, "(");
1441 /*
1442  * _a stands for append, was shortened to avoid multiline statements below.
1443  * This macro is used to output a comma separated list of attributes.
1444  */
1445 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1446 
1447 			if (reg->id)
1448 				verbose_a("id=%d", reg->id);
1449 			if (reg->ref_obj_id)
1450 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1451 			if (type_is_non_owning_ref(reg->type))
1452 				verbose_a("%s", "non_own_ref");
1453 			if (t != SCALAR_VALUE)
1454 				verbose_a("off=%d", reg->off);
1455 			if (type_is_pkt_pointer(t))
1456 				verbose_a("r=%d", reg->range);
1457 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1458 				 base_type(t) == PTR_TO_MAP_KEY ||
1459 				 base_type(t) == PTR_TO_MAP_VALUE)
1460 				verbose_a("ks=%d,vs=%d",
1461 					  reg->map_ptr->key_size,
1462 					  reg->map_ptr->value_size);
1463 			if (tnum_is_const(reg->var_off)) {
1464 				/* Typically an immediate SCALAR_VALUE, but
1465 				 * could be a pointer whose offset is too big
1466 				 * for reg->off
1467 				 */
1468 				verbose_a("imm=%llx", reg->var_off.value);
1469 			} else {
1470 				print_scalar_ranges(env, reg, &sep);
1471 				if (!tnum_is_unknown(reg->var_off)) {
1472 					char tn_buf[48];
1473 
1474 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1475 					verbose_a("var_off=%s", tn_buf);
1476 				}
1477 			}
1478 #undef verbose_a
1479 
1480 			verbose(env, ")");
1481 		}
1482 	}
1483 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1484 		char types_buf[BPF_REG_SIZE + 1];
1485 		bool valid = false;
1486 		int j;
1487 
1488 		for (j = 0; j < BPF_REG_SIZE; j++) {
1489 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1490 				valid = true;
1491 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1492 		}
1493 		types_buf[BPF_REG_SIZE] = 0;
1494 		if (!valid)
1495 			continue;
1496 		if (!print_all && !stack_slot_scratched(env, i))
1497 			continue;
1498 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1499 		case STACK_SPILL:
1500 			reg = &state->stack[i].spilled_ptr;
1501 			t = reg->type;
1502 
1503 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1504 			print_liveness(env, reg->live);
1505 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1506 			if (t == SCALAR_VALUE && reg->precise)
1507 				verbose(env, "P");
1508 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1509 				verbose(env, "%lld", reg->var_off.value + reg->off);
1510 			break;
1511 		case STACK_DYNPTR:
1512 			i += BPF_DYNPTR_NR_SLOTS - 1;
1513 			reg = &state->stack[i].spilled_ptr;
1514 
1515 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1516 			print_liveness(env, reg->live);
1517 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1518 			if (reg->ref_obj_id)
1519 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1520 			break;
1521 		case STACK_ITER:
1522 			/* only main slot has ref_obj_id set; skip others */
1523 			reg = &state->stack[i].spilled_ptr;
1524 			if (!reg->ref_obj_id)
1525 				continue;
1526 
1527 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1528 			print_liveness(env, reg->live);
1529 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1530 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1531 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1532 				reg->iter.depth);
1533 			break;
1534 		case STACK_MISC:
1535 		case STACK_ZERO:
1536 		default:
1537 			reg = &state->stack[i].spilled_ptr;
1538 
1539 			for (j = 0; j < BPF_REG_SIZE; j++)
1540 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1541 			types_buf[BPF_REG_SIZE] = 0;
1542 
1543 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1544 			print_liveness(env, reg->live);
1545 			verbose(env, "=%s", types_buf);
1546 			break;
1547 		}
1548 	}
1549 	if (state->acquired_refs && state->refs[0].id) {
1550 		verbose(env, " refs=%d", state->refs[0].id);
1551 		for (i = 1; i < state->acquired_refs; i++)
1552 			if (state->refs[i].id)
1553 				verbose(env, ",%d", state->refs[i].id);
1554 	}
1555 	if (state->in_callback_fn)
1556 		verbose(env, " cb");
1557 	if (state->in_async_callback_fn)
1558 		verbose(env, " async_cb");
1559 	verbose(env, "\n");
1560 	if (!print_all)
1561 		mark_verifier_state_clean(env);
1562 }
1563 
1564 static inline u32 vlog_alignment(u32 pos)
1565 {
1566 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1567 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1568 }
1569 
1570 static void print_insn_state(struct bpf_verifier_env *env,
1571 			     const struct bpf_func_state *state)
1572 {
1573 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1574 		/* remove new line character */
1575 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1576 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1577 	} else {
1578 		verbose(env, "%d:", env->insn_idx);
1579 	}
1580 	print_verifier_state(env, state, false);
1581 }
1582 
1583 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1584  * small to hold src. This is different from krealloc since we don't want to preserve
1585  * the contents of dst.
1586  *
1587  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1588  * not be allocated.
1589  */
1590 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1591 {
1592 	size_t alloc_bytes;
1593 	void *orig = dst;
1594 	size_t bytes;
1595 
1596 	if (ZERO_OR_NULL_PTR(src))
1597 		goto out;
1598 
1599 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1600 		return NULL;
1601 
1602 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1603 	dst = krealloc(orig, alloc_bytes, flags);
1604 	if (!dst) {
1605 		kfree(orig);
1606 		return NULL;
1607 	}
1608 
1609 	memcpy(dst, src, bytes);
1610 out:
1611 	return dst ? dst : ZERO_SIZE_PTR;
1612 }
1613 
1614 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1615  * small to hold new_n items. new items are zeroed out if the array grows.
1616  *
1617  * Contrary to krealloc_array, does not free arr if new_n is zero.
1618  */
1619 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1620 {
1621 	size_t alloc_size;
1622 	void *new_arr;
1623 
1624 	if (!new_n || old_n == new_n)
1625 		goto out;
1626 
1627 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1628 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1629 	if (!new_arr) {
1630 		kfree(arr);
1631 		return NULL;
1632 	}
1633 	arr = new_arr;
1634 
1635 	if (new_n > old_n)
1636 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1637 
1638 out:
1639 	return arr ? arr : ZERO_SIZE_PTR;
1640 }
1641 
1642 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1643 {
1644 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1645 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1646 	if (!dst->refs)
1647 		return -ENOMEM;
1648 
1649 	dst->acquired_refs = src->acquired_refs;
1650 	return 0;
1651 }
1652 
1653 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1654 {
1655 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1656 
1657 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1658 				GFP_KERNEL);
1659 	if (!dst->stack)
1660 		return -ENOMEM;
1661 
1662 	dst->allocated_stack = src->allocated_stack;
1663 	return 0;
1664 }
1665 
1666 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1667 {
1668 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1669 				    sizeof(struct bpf_reference_state));
1670 	if (!state->refs)
1671 		return -ENOMEM;
1672 
1673 	state->acquired_refs = n;
1674 	return 0;
1675 }
1676 
1677 static int grow_stack_state(struct bpf_func_state *state, int size)
1678 {
1679 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1680 
1681 	if (old_n >= n)
1682 		return 0;
1683 
1684 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1685 	if (!state->stack)
1686 		return -ENOMEM;
1687 
1688 	state->allocated_stack = size;
1689 	return 0;
1690 }
1691 
1692 /* Acquire a pointer id from the env and update the state->refs to include
1693  * this new pointer reference.
1694  * On success, returns a valid pointer id to associate with the register
1695  * On failure, returns a negative errno.
1696  */
1697 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1698 {
1699 	struct bpf_func_state *state = cur_func(env);
1700 	int new_ofs = state->acquired_refs;
1701 	int id, err;
1702 
1703 	err = resize_reference_state(state, state->acquired_refs + 1);
1704 	if (err)
1705 		return err;
1706 	id = ++env->id_gen;
1707 	state->refs[new_ofs].id = id;
1708 	state->refs[new_ofs].insn_idx = insn_idx;
1709 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1710 
1711 	return id;
1712 }
1713 
1714 /* release function corresponding to acquire_reference_state(). Idempotent. */
1715 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1716 {
1717 	int i, last_idx;
1718 
1719 	last_idx = state->acquired_refs - 1;
1720 	for (i = 0; i < state->acquired_refs; i++) {
1721 		if (state->refs[i].id == ptr_id) {
1722 			/* Cannot release caller references in callbacks */
1723 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1724 				return -EINVAL;
1725 			if (last_idx && i != last_idx)
1726 				memcpy(&state->refs[i], &state->refs[last_idx],
1727 				       sizeof(*state->refs));
1728 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1729 			state->acquired_refs--;
1730 			return 0;
1731 		}
1732 	}
1733 	return -EINVAL;
1734 }
1735 
1736 static void free_func_state(struct bpf_func_state *state)
1737 {
1738 	if (!state)
1739 		return;
1740 	kfree(state->refs);
1741 	kfree(state->stack);
1742 	kfree(state);
1743 }
1744 
1745 static void clear_jmp_history(struct bpf_verifier_state *state)
1746 {
1747 	kfree(state->jmp_history);
1748 	state->jmp_history = NULL;
1749 	state->jmp_history_cnt = 0;
1750 }
1751 
1752 static void free_verifier_state(struct bpf_verifier_state *state,
1753 				bool free_self)
1754 {
1755 	int i;
1756 
1757 	for (i = 0; i <= state->curframe; i++) {
1758 		free_func_state(state->frame[i]);
1759 		state->frame[i] = NULL;
1760 	}
1761 	clear_jmp_history(state);
1762 	if (free_self)
1763 		kfree(state);
1764 }
1765 
1766 /* copy verifier state from src to dst growing dst stack space
1767  * when necessary to accommodate larger src stack
1768  */
1769 static int copy_func_state(struct bpf_func_state *dst,
1770 			   const struct bpf_func_state *src)
1771 {
1772 	int err;
1773 
1774 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1775 	err = copy_reference_state(dst, src);
1776 	if (err)
1777 		return err;
1778 	return copy_stack_state(dst, src);
1779 }
1780 
1781 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1782 			       const struct bpf_verifier_state *src)
1783 {
1784 	struct bpf_func_state *dst;
1785 	int i, err;
1786 
1787 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1788 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1789 					    GFP_USER);
1790 	if (!dst_state->jmp_history)
1791 		return -ENOMEM;
1792 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1793 
1794 	/* if dst has more stack frames then src frame, free them, this is also
1795 	 * necessary in case of exceptional exits using bpf_throw.
1796 	 */
1797 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1798 		free_func_state(dst_state->frame[i]);
1799 		dst_state->frame[i] = NULL;
1800 	}
1801 	dst_state->speculative = src->speculative;
1802 	dst_state->active_rcu_lock = src->active_rcu_lock;
1803 	dst_state->curframe = src->curframe;
1804 	dst_state->active_lock.ptr = src->active_lock.ptr;
1805 	dst_state->active_lock.id = src->active_lock.id;
1806 	dst_state->branches = src->branches;
1807 	dst_state->parent = src->parent;
1808 	dst_state->first_insn_idx = src->first_insn_idx;
1809 	dst_state->last_insn_idx = src->last_insn_idx;
1810 	dst_state->dfs_depth = src->dfs_depth;
1811 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1812 	for (i = 0; i <= src->curframe; i++) {
1813 		dst = dst_state->frame[i];
1814 		if (!dst) {
1815 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1816 			if (!dst)
1817 				return -ENOMEM;
1818 			dst_state->frame[i] = dst;
1819 		}
1820 		err = copy_func_state(dst, src->frame[i]);
1821 		if (err)
1822 			return err;
1823 	}
1824 	return 0;
1825 }
1826 
1827 static u32 state_htab_size(struct bpf_verifier_env *env)
1828 {
1829 	return env->prog->len;
1830 }
1831 
1832 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1833 {
1834 	struct bpf_verifier_state *cur = env->cur_state;
1835 	struct bpf_func_state *state = cur->frame[cur->curframe];
1836 
1837 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1838 }
1839 
1840 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1841 {
1842 	int fr;
1843 
1844 	if (a->curframe != b->curframe)
1845 		return false;
1846 
1847 	for (fr = a->curframe; fr >= 0; fr--)
1848 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1849 			return false;
1850 
1851 	return true;
1852 }
1853 
1854 /* Open coded iterators allow back-edges in the state graph in order to
1855  * check unbounded loops that iterators.
1856  *
1857  * In is_state_visited() it is necessary to know if explored states are
1858  * part of some loops in order to decide whether non-exact states
1859  * comparison could be used:
1860  * - non-exact states comparison establishes sub-state relation and uses
1861  *   read and precision marks to do so, these marks are propagated from
1862  *   children states and thus are not guaranteed to be final in a loop;
1863  * - exact states comparison just checks if current and explored states
1864  *   are identical (and thus form a back-edge).
1865  *
1866  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1867  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1868  * algorithm for loop structure detection and gives an overview of
1869  * relevant terminology. It also has helpful illustrations.
1870  *
1871  * [1] https://api.semanticscholar.org/CorpusID:15784067
1872  *
1873  * We use a similar algorithm but because loop nested structure is
1874  * irrelevant for verifier ours is significantly simpler and resembles
1875  * strongly connected components algorithm from Sedgewick's textbook.
1876  *
1877  * Define topmost loop entry as a first node of the loop traversed in a
1878  * depth first search starting from initial state. The goal of the loop
1879  * tracking algorithm is to associate topmost loop entries with states
1880  * derived from these entries.
1881  *
1882  * For each step in the DFS states traversal algorithm needs to identify
1883  * the following situations:
1884  *
1885  *          initial                     initial                   initial
1886  *            |                           |                         |
1887  *            V                           V                         V
1888  *           ...                         ...           .---------> hdr
1889  *            |                           |            |            |
1890  *            V                           V            |            V
1891  *           cur                     .-> succ          |    .------...
1892  *            |                      |    |            |    |       |
1893  *            V                      |    V            |    V       V
1894  *           succ                    '-- cur           |   ...     ...
1895  *                                                     |    |       |
1896  *                                                     |    V       V
1897  *                                                     |   succ <- cur
1898  *                                                     |    |
1899  *                                                     |    V
1900  *                                                     |   ...
1901  *                                                     |    |
1902  *                                                     '----'
1903  *
1904  *  (A) successor state of cur   (B) successor state of cur or it's entry
1905  *      not yet traversed            are in current DFS path, thus cur and succ
1906  *                                   are members of the same outermost loop
1907  *
1908  *                      initial                  initial
1909  *                        |                        |
1910  *                        V                        V
1911  *                       ...                      ...
1912  *                        |                        |
1913  *                        V                        V
1914  *                .------...               .------...
1915  *                |       |                |       |
1916  *                V       V                V       V
1917  *           .-> hdr     ...              ...     ...
1918  *           |    |       |                |       |
1919  *           |    V       V                V       V
1920  *           |   succ <- cur              succ <- cur
1921  *           |    |                        |
1922  *           |    V                        V
1923  *           |   ...                      ...
1924  *           |    |                        |
1925  *           '----'                       exit
1926  *
1927  * (C) successor state of cur is a part of some loop but this loop
1928  *     does not include cur or successor state is not in a loop at all.
1929  *
1930  * Algorithm could be described as the following python code:
1931  *
1932  *     traversed = set()   # Set of traversed nodes
1933  *     entries = {}        # Mapping from node to loop entry
1934  *     depths = {}         # Depth level assigned to graph node
1935  *     path = set()        # Current DFS path
1936  *
1937  *     # Find outermost loop entry known for n
1938  *     def get_loop_entry(n):
1939  *         h = entries.get(n, None)
1940  *         while h in entries and entries[h] != h:
1941  *             h = entries[h]
1942  *         return h
1943  *
1944  *     # Update n's loop entry if h's outermost entry comes
1945  *     # before n's outermost entry in current DFS path.
1946  *     def update_loop_entry(n, h):
1947  *         n1 = get_loop_entry(n) or n
1948  *         h1 = get_loop_entry(h) or h
1949  *         if h1 in path and depths[h1] <= depths[n1]:
1950  *             entries[n] = h1
1951  *
1952  *     def dfs(n, depth):
1953  *         traversed.add(n)
1954  *         path.add(n)
1955  *         depths[n] = depth
1956  *         for succ in G.successors(n):
1957  *             if succ not in traversed:
1958  *                 # Case A: explore succ and update cur's loop entry
1959  *                 #         only if succ's entry is in current DFS path.
1960  *                 dfs(succ, depth + 1)
1961  *                 h = get_loop_entry(succ)
1962  *                 update_loop_entry(n, h)
1963  *             else:
1964  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1965  *                 update_loop_entry(n, succ)
1966  *         path.remove(n)
1967  *
1968  * To adapt this algorithm for use with verifier:
1969  * - use st->branch == 0 as a signal that DFS of succ had been finished
1970  *   and cur's loop entry has to be updated (case A), handle this in
1971  *   update_branch_counts();
1972  * - use st->branch > 0 as a signal that st is in the current DFS path;
1973  * - handle cases B and C in is_state_visited();
1974  * - update topmost loop entry for intermediate states in get_loop_entry().
1975  */
1976 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1977 {
1978 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1979 
1980 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1981 		topmost = topmost->loop_entry;
1982 	/* Update loop entries for intermediate states to avoid this
1983 	 * traversal in future get_loop_entry() calls.
1984 	 */
1985 	while (st && st->loop_entry != topmost) {
1986 		old = st->loop_entry;
1987 		st->loop_entry = topmost;
1988 		st = old;
1989 	}
1990 	return topmost;
1991 }
1992 
1993 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1994 {
1995 	struct bpf_verifier_state *cur1, *hdr1;
1996 
1997 	cur1 = get_loop_entry(cur) ?: cur;
1998 	hdr1 = get_loop_entry(hdr) ?: hdr;
1999 	/* The head1->branches check decides between cases B and C in
2000 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
2001 	 * head's topmost loop entry is not in current DFS path,
2002 	 * hence 'cur' and 'hdr' are not in the same loop and there is
2003 	 * no need to update cur->loop_entry.
2004 	 */
2005 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
2006 		cur->loop_entry = hdr;
2007 		hdr->used_as_loop_entry = true;
2008 	}
2009 }
2010 
2011 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2012 {
2013 	while (st) {
2014 		u32 br = --st->branches;
2015 
2016 		/* br == 0 signals that DFS exploration for 'st' is finished,
2017 		 * thus it is necessary to update parent's loop entry if it
2018 		 * turned out that st is a part of some loop.
2019 		 * This is a part of 'case A' in get_loop_entry() comment.
2020 		 */
2021 		if (br == 0 && st->parent && st->loop_entry)
2022 			update_loop_entry(st->parent, st->loop_entry);
2023 
2024 		/* WARN_ON(br > 1) technically makes sense here,
2025 		 * but see comment in push_stack(), hence:
2026 		 */
2027 		WARN_ONCE((int)br < 0,
2028 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2029 			  br);
2030 		if (br)
2031 			break;
2032 		st = st->parent;
2033 	}
2034 }
2035 
2036 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2037 		     int *insn_idx, bool pop_log)
2038 {
2039 	struct bpf_verifier_state *cur = env->cur_state;
2040 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2041 	int err;
2042 
2043 	if (env->head == NULL)
2044 		return -ENOENT;
2045 
2046 	if (cur) {
2047 		err = copy_verifier_state(cur, &head->st);
2048 		if (err)
2049 			return err;
2050 	}
2051 	if (pop_log)
2052 		bpf_vlog_reset(&env->log, head->log_pos);
2053 	if (insn_idx)
2054 		*insn_idx = head->insn_idx;
2055 	if (prev_insn_idx)
2056 		*prev_insn_idx = head->prev_insn_idx;
2057 	elem = head->next;
2058 	free_verifier_state(&head->st, false);
2059 	kfree(head);
2060 	env->head = elem;
2061 	env->stack_size--;
2062 	return 0;
2063 }
2064 
2065 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2066 					     int insn_idx, int prev_insn_idx,
2067 					     bool speculative)
2068 {
2069 	struct bpf_verifier_state *cur = env->cur_state;
2070 	struct bpf_verifier_stack_elem *elem;
2071 	int err;
2072 
2073 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2074 	if (!elem)
2075 		goto err;
2076 
2077 	elem->insn_idx = insn_idx;
2078 	elem->prev_insn_idx = prev_insn_idx;
2079 	elem->next = env->head;
2080 	elem->log_pos = env->log.end_pos;
2081 	env->head = elem;
2082 	env->stack_size++;
2083 	err = copy_verifier_state(&elem->st, cur);
2084 	if (err)
2085 		goto err;
2086 	elem->st.speculative |= speculative;
2087 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2088 		verbose(env, "The sequence of %d jumps is too complex.\n",
2089 			env->stack_size);
2090 		goto err;
2091 	}
2092 	if (elem->st.parent) {
2093 		++elem->st.parent->branches;
2094 		/* WARN_ON(branches > 2) technically makes sense here,
2095 		 * but
2096 		 * 1. speculative states will bump 'branches' for non-branch
2097 		 * instructions
2098 		 * 2. is_state_visited() heuristics may decide not to create
2099 		 * a new state for a sequence of branches and all such current
2100 		 * and cloned states will be pointing to a single parent state
2101 		 * which might have large 'branches' count.
2102 		 */
2103 	}
2104 	return &elem->st;
2105 err:
2106 	free_verifier_state(env->cur_state, true);
2107 	env->cur_state = NULL;
2108 	/* pop all elements and return */
2109 	while (!pop_stack(env, NULL, NULL, false));
2110 	return NULL;
2111 }
2112 
2113 #define CALLER_SAVED_REGS 6
2114 static const int caller_saved[CALLER_SAVED_REGS] = {
2115 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2116 };
2117 
2118 /* This helper doesn't clear reg->id */
2119 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2120 {
2121 	reg->var_off = tnum_const(imm);
2122 	reg->smin_value = (s64)imm;
2123 	reg->smax_value = (s64)imm;
2124 	reg->umin_value = imm;
2125 	reg->umax_value = imm;
2126 
2127 	reg->s32_min_value = (s32)imm;
2128 	reg->s32_max_value = (s32)imm;
2129 	reg->u32_min_value = (u32)imm;
2130 	reg->u32_max_value = (u32)imm;
2131 }
2132 
2133 /* Mark the unknown part of a register (variable offset or scalar value) as
2134  * known to have the value @imm.
2135  */
2136 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2137 {
2138 	/* Clear off and union(map_ptr, range) */
2139 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2140 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2141 	reg->id = 0;
2142 	reg->ref_obj_id = 0;
2143 	___mark_reg_known(reg, imm);
2144 }
2145 
2146 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2147 {
2148 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2149 	reg->s32_min_value = (s32)imm;
2150 	reg->s32_max_value = (s32)imm;
2151 	reg->u32_min_value = (u32)imm;
2152 	reg->u32_max_value = (u32)imm;
2153 }
2154 
2155 /* Mark the 'variable offset' part of a register as zero.  This should be
2156  * used only on registers holding a pointer type.
2157  */
2158 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2159 {
2160 	__mark_reg_known(reg, 0);
2161 }
2162 
2163 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2164 {
2165 	__mark_reg_known(reg, 0);
2166 	reg->type = SCALAR_VALUE;
2167 }
2168 
2169 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2170 				struct bpf_reg_state *regs, u32 regno)
2171 {
2172 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2173 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2174 		/* Something bad happened, let's kill all regs */
2175 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2176 			__mark_reg_not_init(env, regs + regno);
2177 		return;
2178 	}
2179 	__mark_reg_known_zero(regs + regno);
2180 }
2181 
2182 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2183 			      bool first_slot, int dynptr_id)
2184 {
2185 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2186 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2187 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2188 	 */
2189 	__mark_reg_known_zero(reg);
2190 	reg->type = CONST_PTR_TO_DYNPTR;
2191 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2192 	reg->id = dynptr_id;
2193 	reg->dynptr.type = type;
2194 	reg->dynptr.first_slot = first_slot;
2195 }
2196 
2197 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2198 {
2199 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2200 		const struct bpf_map *map = reg->map_ptr;
2201 
2202 		if (map->inner_map_meta) {
2203 			reg->type = CONST_PTR_TO_MAP;
2204 			reg->map_ptr = map->inner_map_meta;
2205 			/* transfer reg's id which is unique for every map_lookup_elem
2206 			 * as UID of the inner map.
2207 			 */
2208 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2209 				reg->map_uid = reg->id;
2210 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2211 			reg->type = PTR_TO_XDP_SOCK;
2212 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2213 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2214 			reg->type = PTR_TO_SOCKET;
2215 		} else {
2216 			reg->type = PTR_TO_MAP_VALUE;
2217 		}
2218 		return;
2219 	}
2220 
2221 	reg->type &= ~PTR_MAYBE_NULL;
2222 }
2223 
2224 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2225 				struct btf_field_graph_root *ds_head)
2226 {
2227 	__mark_reg_known_zero(&regs[regno]);
2228 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2229 	regs[regno].btf = ds_head->btf;
2230 	regs[regno].btf_id = ds_head->value_btf_id;
2231 	regs[regno].off = ds_head->node_offset;
2232 }
2233 
2234 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2235 {
2236 	return type_is_pkt_pointer(reg->type);
2237 }
2238 
2239 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2240 {
2241 	return reg_is_pkt_pointer(reg) ||
2242 	       reg->type == PTR_TO_PACKET_END;
2243 }
2244 
2245 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2246 {
2247 	return base_type(reg->type) == PTR_TO_MEM &&
2248 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2249 }
2250 
2251 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2252 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2253 				    enum bpf_reg_type which)
2254 {
2255 	/* The register can already have a range from prior markings.
2256 	 * This is fine as long as it hasn't been advanced from its
2257 	 * origin.
2258 	 */
2259 	return reg->type == which &&
2260 	       reg->id == 0 &&
2261 	       reg->off == 0 &&
2262 	       tnum_equals_const(reg->var_off, 0);
2263 }
2264 
2265 /* Reset the min/max bounds of a register */
2266 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2267 {
2268 	reg->smin_value = S64_MIN;
2269 	reg->smax_value = S64_MAX;
2270 	reg->umin_value = 0;
2271 	reg->umax_value = U64_MAX;
2272 
2273 	reg->s32_min_value = S32_MIN;
2274 	reg->s32_max_value = S32_MAX;
2275 	reg->u32_min_value = 0;
2276 	reg->u32_max_value = U32_MAX;
2277 }
2278 
2279 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2280 {
2281 	reg->smin_value = S64_MIN;
2282 	reg->smax_value = S64_MAX;
2283 	reg->umin_value = 0;
2284 	reg->umax_value = U64_MAX;
2285 }
2286 
2287 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2288 {
2289 	reg->s32_min_value = S32_MIN;
2290 	reg->s32_max_value = S32_MAX;
2291 	reg->u32_min_value = 0;
2292 	reg->u32_max_value = U32_MAX;
2293 }
2294 
2295 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2296 {
2297 	struct tnum var32_off = tnum_subreg(reg->var_off);
2298 
2299 	/* min signed is max(sign bit) | min(other bits) */
2300 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2301 			var32_off.value | (var32_off.mask & S32_MIN));
2302 	/* max signed is min(sign bit) | max(other bits) */
2303 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2304 			var32_off.value | (var32_off.mask & S32_MAX));
2305 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2306 	reg->u32_max_value = min(reg->u32_max_value,
2307 				 (u32)(var32_off.value | var32_off.mask));
2308 }
2309 
2310 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2311 {
2312 	/* min signed is max(sign bit) | min(other bits) */
2313 	reg->smin_value = max_t(s64, reg->smin_value,
2314 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2315 	/* max signed is min(sign bit) | max(other bits) */
2316 	reg->smax_value = min_t(s64, reg->smax_value,
2317 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2318 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2319 	reg->umax_value = min(reg->umax_value,
2320 			      reg->var_off.value | reg->var_off.mask);
2321 }
2322 
2323 static void __update_reg_bounds(struct bpf_reg_state *reg)
2324 {
2325 	__update_reg32_bounds(reg);
2326 	__update_reg64_bounds(reg);
2327 }
2328 
2329 /* Uses signed min/max values to inform unsigned, and vice-versa */
2330 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2331 {
2332 	/* Learn sign from signed bounds.
2333 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2334 	 * are the same, so combine.  This works even in the negative case, e.g.
2335 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2336 	 */
2337 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2338 		reg->s32_min_value = reg->u32_min_value =
2339 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2340 		reg->s32_max_value = reg->u32_max_value =
2341 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2342 		return;
2343 	}
2344 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2345 	 * boundary, so we must be careful.
2346 	 */
2347 	if ((s32)reg->u32_max_value >= 0) {
2348 		/* Positive.  We can't learn anything from the smin, but smax
2349 		 * is positive, hence safe.
2350 		 */
2351 		reg->s32_min_value = reg->u32_min_value;
2352 		reg->s32_max_value = reg->u32_max_value =
2353 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2354 	} else if ((s32)reg->u32_min_value < 0) {
2355 		/* Negative.  We can't learn anything from the smax, but smin
2356 		 * is negative, hence safe.
2357 		 */
2358 		reg->s32_min_value = reg->u32_min_value =
2359 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2360 		reg->s32_max_value = reg->u32_max_value;
2361 	}
2362 }
2363 
2364 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2365 {
2366 	/* Learn sign from signed bounds.
2367 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2368 	 * are the same, so combine.  This works even in the negative case, e.g.
2369 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2370 	 */
2371 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2372 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2373 							  reg->umin_value);
2374 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2375 							  reg->umax_value);
2376 		return;
2377 	}
2378 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2379 	 * boundary, so we must be careful.
2380 	 */
2381 	if ((s64)reg->umax_value >= 0) {
2382 		/* Positive.  We can't learn anything from the smin, but smax
2383 		 * is positive, hence safe.
2384 		 */
2385 		reg->smin_value = reg->umin_value;
2386 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2387 							  reg->umax_value);
2388 	} else if ((s64)reg->umin_value < 0) {
2389 		/* Negative.  We can't learn anything from the smax, but smin
2390 		 * is negative, hence safe.
2391 		 */
2392 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2393 							  reg->umin_value);
2394 		reg->smax_value = reg->umax_value;
2395 	}
2396 }
2397 
2398 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2399 {
2400 	__reg32_deduce_bounds(reg);
2401 	__reg64_deduce_bounds(reg);
2402 }
2403 
2404 /* Attempts to improve var_off based on unsigned min/max information */
2405 static void __reg_bound_offset(struct bpf_reg_state *reg)
2406 {
2407 	struct tnum var64_off = tnum_intersect(reg->var_off,
2408 					       tnum_range(reg->umin_value,
2409 							  reg->umax_value));
2410 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2411 					       tnum_range(reg->u32_min_value,
2412 							  reg->u32_max_value));
2413 
2414 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2415 }
2416 
2417 static void reg_bounds_sync(struct bpf_reg_state *reg)
2418 {
2419 	/* We might have learned new bounds from the var_off. */
2420 	__update_reg_bounds(reg);
2421 	/* We might have learned something about the sign bit. */
2422 	__reg_deduce_bounds(reg);
2423 	/* We might have learned some bits from the bounds. */
2424 	__reg_bound_offset(reg);
2425 	/* Intersecting with the old var_off might have improved our bounds
2426 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2427 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2428 	 */
2429 	__update_reg_bounds(reg);
2430 }
2431 
2432 static bool __reg32_bound_s64(s32 a)
2433 {
2434 	return a >= 0 && a <= S32_MAX;
2435 }
2436 
2437 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2438 {
2439 	reg->umin_value = reg->u32_min_value;
2440 	reg->umax_value = reg->u32_max_value;
2441 
2442 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2443 	 * be positive otherwise set to worse case bounds and refine later
2444 	 * from tnum.
2445 	 */
2446 	if (__reg32_bound_s64(reg->s32_min_value) &&
2447 	    __reg32_bound_s64(reg->s32_max_value)) {
2448 		reg->smin_value = reg->s32_min_value;
2449 		reg->smax_value = reg->s32_max_value;
2450 	} else {
2451 		reg->smin_value = 0;
2452 		reg->smax_value = U32_MAX;
2453 	}
2454 }
2455 
2456 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2457 {
2458 	/* special case when 64-bit register has upper 32-bit register
2459 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2460 	 * allowing us to use 32-bit bounds directly,
2461 	 */
2462 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2463 		__reg_assign_32_into_64(reg);
2464 	} else {
2465 		/* Otherwise the best we can do is push lower 32bit known and
2466 		 * unknown bits into register (var_off set from jmp logic)
2467 		 * then learn as much as possible from the 64-bit tnum
2468 		 * known and unknown bits. The previous smin/smax bounds are
2469 		 * invalid here because of jmp32 compare so mark them unknown
2470 		 * so they do not impact tnum bounds calculation.
2471 		 */
2472 		__mark_reg64_unbounded(reg);
2473 	}
2474 	reg_bounds_sync(reg);
2475 }
2476 
2477 static bool __reg64_bound_s32(s64 a)
2478 {
2479 	return a >= S32_MIN && a <= S32_MAX;
2480 }
2481 
2482 static bool __reg64_bound_u32(u64 a)
2483 {
2484 	return a >= U32_MIN && a <= U32_MAX;
2485 }
2486 
2487 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2488 {
2489 	__mark_reg32_unbounded(reg);
2490 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2491 		reg->s32_min_value = (s32)reg->smin_value;
2492 		reg->s32_max_value = (s32)reg->smax_value;
2493 	}
2494 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2495 		reg->u32_min_value = (u32)reg->umin_value;
2496 		reg->u32_max_value = (u32)reg->umax_value;
2497 	}
2498 	reg_bounds_sync(reg);
2499 }
2500 
2501 /* Mark a register as having a completely unknown (scalar) value. */
2502 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2503 			       struct bpf_reg_state *reg)
2504 {
2505 	/*
2506 	 * Clear type, off, and union(map_ptr, range) and
2507 	 * padding between 'type' and union
2508 	 */
2509 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2510 	reg->type = SCALAR_VALUE;
2511 	reg->id = 0;
2512 	reg->ref_obj_id = 0;
2513 	reg->var_off = tnum_unknown;
2514 	reg->frameno = 0;
2515 	reg->precise = !env->bpf_capable;
2516 	__mark_reg_unbounded(reg);
2517 }
2518 
2519 static void mark_reg_unknown(struct bpf_verifier_env *env,
2520 			     struct bpf_reg_state *regs, u32 regno)
2521 {
2522 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2523 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2524 		/* Something bad happened, let's kill all regs except FP */
2525 		for (regno = 0; regno < BPF_REG_FP; regno++)
2526 			__mark_reg_not_init(env, regs + regno);
2527 		return;
2528 	}
2529 	__mark_reg_unknown(env, regs + regno);
2530 }
2531 
2532 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2533 				struct bpf_reg_state *reg)
2534 {
2535 	__mark_reg_unknown(env, reg);
2536 	reg->type = NOT_INIT;
2537 }
2538 
2539 static void mark_reg_not_init(struct bpf_verifier_env *env,
2540 			      struct bpf_reg_state *regs, u32 regno)
2541 {
2542 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2543 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2544 		/* Something bad happened, let's kill all regs except FP */
2545 		for (regno = 0; regno < BPF_REG_FP; regno++)
2546 			__mark_reg_not_init(env, regs + regno);
2547 		return;
2548 	}
2549 	__mark_reg_not_init(env, regs + regno);
2550 }
2551 
2552 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2553 			    struct bpf_reg_state *regs, u32 regno,
2554 			    enum bpf_reg_type reg_type,
2555 			    struct btf *btf, u32 btf_id,
2556 			    enum bpf_type_flag flag)
2557 {
2558 	if (reg_type == SCALAR_VALUE) {
2559 		mark_reg_unknown(env, regs, regno);
2560 		return;
2561 	}
2562 	mark_reg_known_zero(env, regs, regno);
2563 	regs[regno].type = PTR_TO_BTF_ID | flag;
2564 	regs[regno].btf = btf;
2565 	regs[regno].btf_id = btf_id;
2566 }
2567 
2568 #define DEF_NOT_SUBREG	(0)
2569 static void init_reg_state(struct bpf_verifier_env *env,
2570 			   struct bpf_func_state *state)
2571 {
2572 	struct bpf_reg_state *regs = state->regs;
2573 	int i;
2574 
2575 	for (i = 0; i < MAX_BPF_REG; i++) {
2576 		mark_reg_not_init(env, regs, i);
2577 		regs[i].live = REG_LIVE_NONE;
2578 		regs[i].parent = NULL;
2579 		regs[i].subreg_def = DEF_NOT_SUBREG;
2580 	}
2581 
2582 	/* frame pointer */
2583 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2584 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2585 	regs[BPF_REG_FP].frameno = state->frameno;
2586 }
2587 
2588 #define BPF_MAIN_FUNC (-1)
2589 static void init_func_state(struct bpf_verifier_env *env,
2590 			    struct bpf_func_state *state,
2591 			    int callsite, int frameno, int subprogno)
2592 {
2593 	state->callsite = callsite;
2594 	state->frameno = frameno;
2595 	state->subprogno = subprogno;
2596 	state->callback_ret_range = tnum_range(0, 0);
2597 	init_reg_state(env, state);
2598 	mark_verifier_state_scratched(env);
2599 }
2600 
2601 /* Similar to push_stack(), but for async callbacks */
2602 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2603 						int insn_idx, int prev_insn_idx,
2604 						int subprog)
2605 {
2606 	struct bpf_verifier_stack_elem *elem;
2607 	struct bpf_func_state *frame;
2608 
2609 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2610 	if (!elem)
2611 		goto err;
2612 
2613 	elem->insn_idx = insn_idx;
2614 	elem->prev_insn_idx = prev_insn_idx;
2615 	elem->next = env->head;
2616 	elem->log_pos = env->log.end_pos;
2617 	env->head = elem;
2618 	env->stack_size++;
2619 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2620 		verbose(env,
2621 			"The sequence of %d jumps is too complex for async cb.\n",
2622 			env->stack_size);
2623 		goto err;
2624 	}
2625 	/* Unlike push_stack() do not copy_verifier_state().
2626 	 * The caller state doesn't matter.
2627 	 * This is async callback. It starts in a fresh stack.
2628 	 * Initialize it similar to do_check_common().
2629 	 */
2630 	elem->st.branches = 1;
2631 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2632 	if (!frame)
2633 		goto err;
2634 	init_func_state(env, frame,
2635 			BPF_MAIN_FUNC /* callsite */,
2636 			0 /* frameno within this callchain */,
2637 			subprog /* subprog number within this prog */);
2638 	elem->st.frame[0] = frame;
2639 	return &elem->st;
2640 err:
2641 	free_verifier_state(env->cur_state, true);
2642 	env->cur_state = NULL;
2643 	/* pop all elements and return */
2644 	while (!pop_stack(env, NULL, NULL, false));
2645 	return NULL;
2646 }
2647 
2648 
2649 enum reg_arg_type {
2650 	SRC_OP,		/* register is used as source operand */
2651 	DST_OP,		/* register is used as destination operand */
2652 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2653 };
2654 
2655 static int cmp_subprogs(const void *a, const void *b)
2656 {
2657 	return ((struct bpf_subprog_info *)a)->start -
2658 	       ((struct bpf_subprog_info *)b)->start;
2659 }
2660 
2661 static int find_subprog(struct bpf_verifier_env *env, int off)
2662 {
2663 	struct bpf_subprog_info *p;
2664 
2665 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2666 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2667 	if (!p)
2668 		return -ENOENT;
2669 	return p - env->subprog_info;
2670 
2671 }
2672 
2673 static int add_subprog(struct bpf_verifier_env *env, int off)
2674 {
2675 	int insn_cnt = env->prog->len;
2676 	int ret;
2677 
2678 	if (off >= insn_cnt || off < 0) {
2679 		verbose(env, "call to invalid destination\n");
2680 		return -EINVAL;
2681 	}
2682 	ret = find_subprog(env, off);
2683 	if (ret >= 0)
2684 		return ret;
2685 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2686 		verbose(env, "too many subprograms\n");
2687 		return -E2BIG;
2688 	}
2689 	/* determine subprog starts. The end is one before the next starts */
2690 	env->subprog_info[env->subprog_cnt++].start = off;
2691 	sort(env->subprog_info, env->subprog_cnt,
2692 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2693 	return env->subprog_cnt - 1;
2694 }
2695 
2696 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2697 {
2698 	struct bpf_prog_aux *aux = env->prog->aux;
2699 	struct btf *btf = aux->btf;
2700 	const struct btf_type *t;
2701 	u32 main_btf_id, id;
2702 	const char *name;
2703 	int ret, i;
2704 
2705 	/* Non-zero func_info_cnt implies valid btf */
2706 	if (!aux->func_info_cnt)
2707 		return 0;
2708 	main_btf_id = aux->func_info[0].type_id;
2709 
2710 	t = btf_type_by_id(btf, main_btf_id);
2711 	if (!t) {
2712 		verbose(env, "invalid btf id for main subprog in func_info\n");
2713 		return -EINVAL;
2714 	}
2715 
2716 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2717 	if (IS_ERR(name)) {
2718 		ret = PTR_ERR(name);
2719 		/* If there is no tag present, there is no exception callback */
2720 		if (ret == -ENOENT)
2721 			ret = 0;
2722 		else if (ret == -EEXIST)
2723 			verbose(env, "multiple exception callback tags for main subprog\n");
2724 		return ret;
2725 	}
2726 
2727 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2728 	if (ret < 0) {
2729 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2730 		return ret;
2731 	}
2732 	id = ret;
2733 	t = btf_type_by_id(btf, id);
2734 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2735 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2736 		return -EINVAL;
2737 	}
2738 	ret = 0;
2739 	for (i = 0; i < aux->func_info_cnt; i++) {
2740 		if (aux->func_info[i].type_id != id)
2741 			continue;
2742 		ret = aux->func_info[i].insn_off;
2743 		/* Further func_info and subprog checks will also happen
2744 		 * later, so assume this is the right insn_off for now.
2745 		 */
2746 		if (!ret) {
2747 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2748 			ret = -EINVAL;
2749 		}
2750 	}
2751 	if (!ret) {
2752 		verbose(env, "exception callback type id not found in func_info\n");
2753 		ret = -EINVAL;
2754 	}
2755 	return ret;
2756 }
2757 
2758 #define MAX_KFUNC_DESCS 256
2759 #define MAX_KFUNC_BTFS	256
2760 
2761 struct bpf_kfunc_desc {
2762 	struct btf_func_model func_model;
2763 	u32 func_id;
2764 	s32 imm;
2765 	u16 offset;
2766 	unsigned long addr;
2767 };
2768 
2769 struct bpf_kfunc_btf {
2770 	struct btf *btf;
2771 	struct module *module;
2772 	u16 offset;
2773 };
2774 
2775 struct bpf_kfunc_desc_tab {
2776 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2777 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2778 	 * available, therefore at the end of verification do_misc_fixups()
2779 	 * sorts this by imm and offset.
2780 	 */
2781 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2782 	u32 nr_descs;
2783 };
2784 
2785 struct bpf_kfunc_btf_tab {
2786 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2787 	u32 nr_descs;
2788 };
2789 
2790 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2791 {
2792 	const struct bpf_kfunc_desc *d0 = a;
2793 	const struct bpf_kfunc_desc *d1 = b;
2794 
2795 	/* func_id is not greater than BTF_MAX_TYPE */
2796 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2797 }
2798 
2799 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2800 {
2801 	const struct bpf_kfunc_btf *d0 = a;
2802 	const struct bpf_kfunc_btf *d1 = b;
2803 
2804 	return d0->offset - d1->offset;
2805 }
2806 
2807 static const struct bpf_kfunc_desc *
2808 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2809 {
2810 	struct bpf_kfunc_desc desc = {
2811 		.func_id = func_id,
2812 		.offset = offset,
2813 	};
2814 	struct bpf_kfunc_desc_tab *tab;
2815 
2816 	tab = prog->aux->kfunc_tab;
2817 	return bsearch(&desc, tab->descs, tab->nr_descs,
2818 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2819 }
2820 
2821 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2822 		       u16 btf_fd_idx, u8 **func_addr)
2823 {
2824 	const struct bpf_kfunc_desc *desc;
2825 
2826 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2827 	if (!desc)
2828 		return -EFAULT;
2829 
2830 	*func_addr = (u8 *)desc->addr;
2831 	return 0;
2832 }
2833 
2834 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2835 					 s16 offset)
2836 {
2837 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2838 	struct bpf_kfunc_btf_tab *tab;
2839 	struct bpf_kfunc_btf *b;
2840 	struct module *mod;
2841 	struct btf *btf;
2842 	int btf_fd;
2843 
2844 	tab = env->prog->aux->kfunc_btf_tab;
2845 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2846 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2847 	if (!b) {
2848 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2849 			verbose(env, "too many different module BTFs\n");
2850 			return ERR_PTR(-E2BIG);
2851 		}
2852 
2853 		if (bpfptr_is_null(env->fd_array)) {
2854 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2855 			return ERR_PTR(-EPROTO);
2856 		}
2857 
2858 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2859 					    offset * sizeof(btf_fd),
2860 					    sizeof(btf_fd)))
2861 			return ERR_PTR(-EFAULT);
2862 
2863 		btf = btf_get_by_fd(btf_fd);
2864 		if (IS_ERR(btf)) {
2865 			verbose(env, "invalid module BTF fd specified\n");
2866 			return btf;
2867 		}
2868 
2869 		if (!btf_is_module(btf)) {
2870 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2871 			btf_put(btf);
2872 			return ERR_PTR(-EINVAL);
2873 		}
2874 
2875 		mod = btf_try_get_module(btf);
2876 		if (!mod) {
2877 			btf_put(btf);
2878 			return ERR_PTR(-ENXIO);
2879 		}
2880 
2881 		b = &tab->descs[tab->nr_descs++];
2882 		b->btf = btf;
2883 		b->module = mod;
2884 		b->offset = offset;
2885 
2886 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2887 		     kfunc_btf_cmp_by_off, NULL);
2888 	}
2889 	return b->btf;
2890 }
2891 
2892 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2893 {
2894 	if (!tab)
2895 		return;
2896 
2897 	while (tab->nr_descs--) {
2898 		module_put(tab->descs[tab->nr_descs].module);
2899 		btf_put(tab->descs[tab->nr_descs].btf);
2900 	}
2901 	kfree(tab);
2902 }
2903 
2904 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2905 {
2906 	if (offset) {
2907 		if (offset < 0) {
2908 			/* In the future, this can be allowed to increase limit
2909 			 * of fd index into fd_array, interpreted as u16.
2910 			 */
2911 			verbose(env, "negative offset disallowed for kernel module function call\n");
2912 			return ERR_PTR(-EINVAL);
2913 		}
2914 
2915 		return __find_kfunc_desc_btf(env, offset);
2916 	}
2917 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2918 }
2919 
2920 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2921 {
2922 	const struct btf_type *func, *func_proto;
2923 	struct bpf_kfunc_btf_tab *btf_tab;
2924 	struct bpf_kfunc_desc_tab *tab;
2925 	struct bpf_prog_aux *prog_aux;
2926 	struct bpf_kfunc_desc *desc;
2927 	const char *func_name;
2928 	struct btf *desc_btf;
2929 	unsigned long call_imm;
2930 	unsigned long addr;
2931 	int err;
2932 
2933 	prog_aux = env->prog->aux;
2934 	tab = prog_aux->kfunc_tab;
2935 	btf_tab = prog_aux->kfunc_btf_tab;
2936 	if (!tab) {
2937 		if (!btf_vmlinux) {
2938 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2939 			return -ENOTSUPP;
2940 		}
2941 
2942 		if (!env->prog->jit_requested) {
2943 			verbose(env, "JIT is required for calling kernel function\n");
2944 			return -ENOTSUPP;
2945 		}
2946 
2947 		if (!bpf_jit_supports_kfunc_call()) {
2948 			verbose(env, "JIT does not support calling kernel function\n");
2949 			return -ENOTSUPP;
2950 		}
2951 
2952 		if (!env->prog->gpl_compatible) {
2953 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2954 			return -EINVAL;
2955 		}
2956 
2957 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2958 		if (!tab)
2959 			return -ENOMEM;
2960 		prog_aux->kfunc_tab = tab;
2961 	}
2962 
2963 	/* func_id == 0 is always invalid, but instead of returning an error, be
2964 	 * conservative and wait until the code elimination pass before returning
2965 	 * error, so that invalid calls that get pruned out can be in BPF programs
2966 	 * loaded from userspace.  It is also required that offset be untouched
2967 	 * for such calls.
2968 	 */
2969 	if (!func_id && !offset)
2970 		return 0;
2971 
2972 	if (!btf_tab && offset) {
2973 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2974 		if (!btf_tab)
2975 			return -ENOMEM;
2976 		prog_aux->kfunc_btf_tab = btf_tab;
2977 	}
2978 
2979 	desc_btf = find_kfunc_desc_btf(env, offset);
2980 	if (IS_ERR(desc_btf)) {
2981 		verbose(env, "failed to find BTF for kernel function\n");
2982 		return PTR_ERR(desc_btf);
2983 	}
2984 
2985 	if (find_kfunc_desc(env->prog, func_id, offset))
2986 		return 0;
2987 
2988 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2989 		verbose(env, "too many different kernel function calls\n");
2990 		return -E2BIG;
2991 	}
2992 
2993 	func = btf_type_by_id(desc_btf, func_id);
2994 	if (!func || !btf_type_is_func(func)) {
2995 		verbose(env, "kernel btf_id %u is not a function\n",
2996 			func_id);
2997 		return -EINVAL;
2998 	}
2999 	func_proto = btf_type_by_id(desc_btf, func->type);
3000 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3001 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3002 			func_id);
3003 		return -EINVAL;
3004 	}
3005 
3006 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3007 	addr = kallsyms_lookup_name(func_name);
3008 	if (!addr) {
3009 		verbose(env, "cannot find address for kernel function %s\n",
3010 			func_name);
3011 		return -EINVAL;
3012 	}
3013 	specialize_kfunc(env, func_id, offset, &addr);
3014 
3015 	if (bpf_jit_supports_far_kfunc_call()) {
3016 		call_imm = func_id;
3017 	} else {
3018 		call_imm = BPF_CALL_IMM(addr);
3019 		/* Check whether the relative offset overflows desc->imm */
3020 		if ((unsigned long)(s32)call_imm != call_imm) {
3021 			verbose(env, "address of kernel function %s is out of range\n",
3022 				func_name);
3023 			return -EINVAL;
3024 		}
3025 	}
3026 
3027 	if (bpf_dev_bound_kfunc_id(func_id)) {
3028 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3029 		if (err)
3030 			return err;
3031 	}
3032 
3033 	desc = &tab->descs[tab->nr_descs++];
3034 	desc->func_id = func_id;
3035 	desc->imm = call_imm;
3036 	desc->offset = offset;
3037 	desc->addr = addr;
3038 	err = btf_distill_func_proto(&env->log, desc_btf,
3039 				     func_proto, func_name,
3040 				     &desc->func_model);
3041 	if (!err)
3042 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3043 		     kfunc_desc_cmp_by_id_off, NULL);
3044 	return err;
3045 }
3046 
3047 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3048 {
3049 	const struct bpf_kfunc_desc *d0 = a;
3050 	const struct bpf_kfunc_desc *d1 = b;
3051 
3052 	if (d0->imm != d1->imm)
3053 		return d0->imm < d1->imm ? -1 : 1;
3054 	if (d0->offset != d1->offset)
3055 		return d0->offset < d1->offset ? -1 : 1;
3056 	return 0;
3057 }
3058 
3059 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3060 {
3061 	struct bpf_kfunc_desc_tab *tab;
3062 
3063 	tab = prog->aux->kfunc_tab;
3064 	if (!tab)
3065 		return;
3066 
3067 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3068 	     kfunc_desc_cmp_by_imm_off, NULL);
3069 }
3070 
3071 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3072 {
3073 	return !!prog->aux->kfunc_tab;
3074 }
3075 
3076 const struct btf_func_model *
3077 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3078 			 const struct bpf_insn *insn)
3079 {
3080 	const struct bpf_kfunc_desc desc = {
3081 		.imm = insn->imm,
3082 		.offset = insn->off,
3083 	};
3084 	const struct bpf_kfunc_desc *res;
3085 	struct bpf_kfunc_desc_tab *tab;
3086 
3087 	tab = prog->aux->kfunc_tab;
3088 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3089 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3090 
3091 	return res ? &res->func_model : NULL;
3092 }
3093 
3094 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3095 {
3096 	struct bpf_subprog_info *subprog = env->subprog_info;
3097 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3098 	struct bpf_insn *insn = env->prog->insnsi;
3099 
3100 	/* Add entry function. */
3101 	ret = add_subprog(env, 0);
3102 	if (ret)
3103 		return ret;
3104 
3105 	for (i = 0; i < insn_cnt; i++, insn++) {
3106 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3107 		    !bpf_pseudo_kfunc_call(insn))
3108 			continue;
3109 
3110 		if (!env->bpf_capable) {
3111 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3112 			return -EPERM;
3113 		}
3114 
3115 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3116 			ret = add_subprog(env, i + insn->imm + 1);
3117 		else
3118 			ret = add_kfunc_call(env, insn->imm, insn->off);
3119 
3120 		if (ret < 0)
3121 			return ret;
3122 	}
3123 
3124 	ret = bpf_find_exception_callback_insn_off(env);
3125 	if (ret < 0)
3126 		return ret;
3127 	ex_cb_insn = ret;
3128 
3129 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3130 	 * marked using BTF decl tag to serve as the exception callback.
3131 	 */
3132 	if (ex_cb_insn) {
3133 		ret = add_subprog(env, ex_cb_insn);
3134 		if (ret < 0)
3135 			return ret;
3136 		for (i = 1; i < env->subprog_cnt; i++) {
3137 			if (env->subprog_info[i].start != ex_cb_insn)
3138 				continue;
3139 			env->exception_callback_subprog = i;
3140 			break;
3141 		}
3142 	}
3143 
3144 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3145 	 * logic. 'subprog_cnt' should not be increased.
3146 	 */
3147 	subprog[env->subprog_cnt].start = insn_cnt;
3148 
3149 	if (env->log.level & BPF_LOG_LEVEL2)
3150 		for (i = 0; i < env->subprog_cnt; i++)
3151 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3152 
3153 	return 0;
3154 }
3155 
3156 static int check_subprogs(struct bpf_verifier_env *env)
3157 {
3158 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3159 	struct bpf_subprog_info *subprog = env->subprog_info;
3160 	struct bpf_insn *insn = env->prog->insnsi;
3161 	int insn_cnt = env->prog->len;
3162 
3163 	/* now check that all jumps are within the same subprog */
3164 	subprog_start = subprog[cur_subprog].start;
3165 	subprog_end = subprog[cur_subprog + 1].start;
3166 	for (i = 0; i < insn_cnt; i++) {
3167 		u8 code = insn[i].code;
3168 
3169 		if (code == (BPF_JMP | BPF_CALL) &&
3170 		    insn[i].src_reg == 0 &&
3171 		    insn[i].imm == BPF_FUNC_tail_call)
3172 			subprog[cur_subprog].has_tail_call = true;
3173 		if (BPF_CLASS(code) == BPF_LD &&
3174 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3175 			subprog[cur_subprog].has_ld_abs = true;
3176 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3177 			goto next;
3178 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3179 			goto next;
3180 		if (code == (BPF_JMP32 | BPF_JA))
3181 			off = i + insn[i].imm + 1;
3182 		else
3183 			off = i + insn[i].off + 1;
3184 		if (off < subprog_start || off >= subprog_end) {
3185 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3186 			return -EINVAL;
3187 		}
3188 next:
3189 		if (i == subprog_end - 1) {
3190 			/* to avoid fall-through from one subprog into another
3191 			 * the last insn of the subprog should be either exit
3192 			 * or unconditional jump back or bpf_throw call
3193 			 */
3194 			if (code != (BPF_JMP | BPF_EXIT) &&
3195 			    code != (BPF_JMP32 | BPF_JA) &&
3196 			    code != (BPF_JMP | BPF_JA)) {
3197 				verbose(env, "last insn is not an exit or jmp\n");
3198 				return -EINVAL;
3199 			}
3200 			subprog_start = subprog_end;
3201 			cur_subprog++;
3202 			if (cur_subprog < env->subprog_cnt)
3203 				subprog_end = subprog[cur_subprog + 1].start;
3204 		}
3205 	}
3206 	return 0;
3207 }
3208 
3209 /* Parentage chain of this register (or stack slot) should take care of all
3210  * issues like callee-saved registers, stack slot allocation time, etc.
3211  */
3212 static int mark_reg_read(struct bpf_verifier_env *env,
3213 			 const struct bpf_reg_state *state,
3214 			 struct bpf_reg_state *parent, u8 flag)
3215 {
3216 	bool writes = parent == state->parent; /* Observe write marks */
3217 	int cnt = 0;
3218 
3219 	while (parent) {
3220 		/* if read wasn't screened by an earlier write ... */
3221 		if (writes && state->live & REG_LIVE_WRITTEN)
3222 			break;
3223 		if (parent->live & REG_LIVE_DONE) {
3224 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3225 				reg_type_str(env, parent->type),
3226 				parent->var_off.value, parent->off);
3227 			return -EFAULT;
3228 		}
3229 		/* The first condition is more likely to be true than the
3230 		 * second, checked it first.
3231 		 */
3232 		if ((parent->live & REG_LIVE_READ) == flag ||
3233 		    parent->live & REG_LIVE_READ64)
3234 			/* The parentage chain never changes and
3235 			 * this parent was already marked as LIVE_READ.
3236 			 * There is no need to keep walking the chain again and
3237 			 * keep re-marking all parents as LIVE_READ.
3238 			 * This case happens when the same register is read
3239 			 * multiple times without writes into it in-between.
3240 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3241 			 * then no need to set the weak REG_LIVE_READ32.
3242 			 */
3243 			break;
3244 		/* ... then we depend on parent's value */
3245 		parent->live |= flag;
3246 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3247 		if (flag == REG_LIVE_READ64)
3248 			parent->live &= ~REG_LIVE_READ32;
3249 		state = parent;
3250 		parent = state->parent;
3251 		writes = true;
3252 		cnt++;
3253 	}
3254 
3255 	if (env->longest_mark_read_walk < cnt)
3256 		env->longest_mark_read_walk = cnt;
3257 	return 0;
3258 }
3259 
3260 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3261 {
3262 	struct bpf_func_state *state = func(env, reg);
3263 	int spi, ret;
3264 
3265 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3266 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3267 	 * check_kfunc_call.
3268 	 */
3269 	if (reg->type == CONST_PTR_TO_DYNPTR)
3270 		return 0;
3271 	spi = dynptr_get_spi(env, reg);
3272 	if (spi < 0)
3273 		return spi;
3274 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3275 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3276 	 * read.
3277 	 */
3278 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3279 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3280 	if (ret)
3281 		return ret;
3282 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3283 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3284 }
3285 
3286 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3287 			  int spi, int nr_slots)
3288 {
3289 	struct bpf_func_state *state = func(env, reg);
3290 	int err, i;
3291 
3292 	for (i = 0; i < nr_slots; i++) {
3293 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3294 
3295 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3296 		if (err)
3297 			return err;
3298 
3299 		mark_stack_slot_scratched(env, spi - i);
3300 	}
3301 
3302 	return 0;
3303 }
3304 
3305 /* This function is supposed to be used by the following 32-bit optimization
3306  * code only. It returns TRUE if the source or destination register operates
3307  * on 64-bit, otherwise return FALSE.
3308  */
3309 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3310 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3311 {
3312 	u8 code, class, op;
3313 
3314 	code = insn->code;
3315 	class = BPF_CLASS(code);
3316 	op = BPF_OP(code);
3317 	if (class == BPF_JMP) {
3318 		/* BPF_EXIT for "main" will reach here. Return TRUE
3319 		 * conservatively.
3320 		 */
3321 		if (op == BPF_EXIT)
3322 			return true;
3323 		if (op == BPF_CALL) {
3324 			/* BPF to BPF call will reach here because of marking
3325 			 * caller saved clobber with DST_OP_NO_MARK for which we
3326 			 * don't care the register def because they are anyway
3327 			 * marked as NOT_INIT already.
3328 			 */
3329 			if (insn->src_reg == BPF_PSEUDO_CALL)
3330 				return false;
3331 			/* Helper call will reach here because of arg type
3332 			 * check, conservatively return TRUE.
3333 			 */
3334 			if (t == SRC_OP)
3335 				return true;
3336 
3337 			return false;
3338 		}
3339 	}
3340 
3341 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3342 		return false;
3343 
3344 	if (class == BPF_ALU64 || class == BPF_JMP ||
3345 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3346 		return true;
3347 
3348 	if (class == BPF_ALU || class == BPF_JMP32)
3349 		return false;
3350 
3351 	if (class == BPF_LDX) {
3352 		if (t != SRC_OP)
3353 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3354 		/* LDX source must be ptr. */
3355 		return true;
3356 	}
3357 
3358 	if (class == BPF_STX) {
3359 		/* BPF_STX (including atomic variants) has multiple source
3360 		 * operands, one of which is a ptr. Check whether the caller is
3361 		 * asking about it.
3362 		 */
3363 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3364 			return true;
3365 		return BPF_SIZE(code) == BPF_DW;
3366 	}
3367 
3368 	if (class == BPF_LD) {
3369 		u8 mode = BPF_MODE(code);
3370 
3371 		/* LD_IMM64 */
3372 		if (mode == BPF_IMM)
3373 			return true;
3374 
3375 		/* Both LD_IND and LD_ABS return 32-bit data. */
3376 		if (t != SRC_OP)
3377 			return  false;
3378 
3379 		/* Implicit ctx ptr. */
3380 		if (regno == BPF_REG_6)
3381 			return true;
3382 
3383 		/* Explicit source could be any width. */
3384 		return true;
3385 	}
3386 
3387 	if (class == BPF_ST)
3388 		/* The only source register for BPF_ST is a ptr. */
3389 		return true;
3390 
3391 	/* Conservatively return true at default. */
3392 	return true;
3393 }
3394 
3395 /* Return the regno defined by the insn, or -1. */
3396 static int insn_def_regno(const struct bpf_insn *insn)
3397 {
3398 	switch (BPF_CLASS(insn->code)) {
3399 	case BPF_JMP:
3400 	case BPF_JMP32:
3401 	case BPF_ST:
3402 		return -1;
3403 	case BPF_STX:
3404 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3405 		    (insn->imm & BPF_FETCH)) {
3406 			if (insn->imm == BPF_CMPXCHG)
3407 				return BPF_REG_0;
3408 			else
3409 				return insn->src_reg;
3410 		} else {
3411 			return -1;
3412 		}
3413 	default:
3414 		return insn->dst_reg;
3415 	}
3416 }
3417 
3418 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3419 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3420 {
3421 	int dst_reg = insn_def_regno(insn);
3422 
3423 	if (dst_reg == -1)
3424 		return false;
3425 
3426 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3427 }
3428 
3429 static void mark_insn_zext(struct bpf_verifier_env *env,
3430 			   struct bpf_reg_state *reg)
3431 {
3432 	s32 def_idx = reg->subreg_def;
3433 
3434 	if (def_idx == DEF_NOT_SUBREG)
3435 		return;
3436 
3437 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3438 	/* The dst will be zero extended, so won't be sub-register anymore. */
3439 	reg->subreg_def = DEF_NOT_SUBREG;
3440 }
3441 
3442 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3443 			 enum reg_arg_type t)
3444 {
3445 	struct bpf_verifier_state *vstate = env->cur_state;
3446 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3447 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3448 	struct bpf_reg_state *reg, *regs = state->regs;
3449 	bool rw64;
3450 
3451 	if (regno >= MAX_BPF_REG) {
3452 		verbose(env, "R%d is invalid\n", regno);
3453 		return -EINVAL;
3454 	}
3455 
3456 	mark_reg_scratched(env, regno);
3457 
3458 	reg = &regs[regno];
3459 	rw64 = is_reg64(env, insn, regno, reg, t);
3460 	if (t == SRC_OP) {
3461 		/* check whether register used as source operand can be read */
3462 		if (reg->type == NOT_INIT) {
3463 			verbose(env, "R%d !read_ok\n", regno);
3464 			return -EACCES;
3465 		}
3466 		/* We don't need to worry about FP liveness because it's read-only */
3467 		if (regno == BPF_REG_FP)
3468 			return 0;
3469 
3470 		if (rw64)
3471 			mark_insn_zext(env, reg);
3472 
3473 		return mark_reg_read(env, reg, reg->parent,
3474 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3475 	} else {
3476 		/* check whether register used as dest operand can be written to */
3477 		if (regno == BPF_REG_FP) {
3478 			verbose(env, "frame pointer is read only\n");
3479 			return -EACCES;
3480 		}
3481 		reg->live |= REG_LIVE_WRITTEN;
3482 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3483 		if (t == DST_OP)
3484 			mark_reg_unknown(env, regs, regno);
3485 	}
3486 	return 0;
3487 }
3488 
3489 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3490 {
3491 	env->insn_aux_data[idx].jmp_point = true;
3492 }
3493 
3494 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3495 {
3496 	return env->insn_aux_data[insn_idx].jmp_point;
3497 }
3498 
3499 /* for any branch, call, exit record the history of jmps in the given state */
3500 static int push_jmp_history(struct bpf_verifier_env *env,
3501 			    struct bpf_verifier_state *cur)
3502 {
3503 	u32 cnt = cur->jmp_history_cnt;
3504 	struct bpf_idx_pair *p;
3505 	size_t alloc_size;
3506 
3507 	if (!is_jmp_point(env, env->insn_idx))
3508 		return 0;
3509 
3510 	cnt++;
3511 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3512 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3513 	if (!p)
3514 		return -ENOMEM;
3515 	p[cnt - 1].idx = env->insn_idx;
3516 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3517 	cur->jmp_history = p;
3518 	cur->jmp_history_cnt = cnt;
3519 	return 0;
3520 }
3521 
3522 /* Backtrack one insn at a time. If idx is not at the top of recorded
3523  * history then previous instruction came from straight line execution.
3524  * Return -ENOENT if we exhausted all instructions within given state.
3525  *
3526  * It's legal to have a bit of a looping with the same starting and ending
3527  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3528  * instruction index is the same as state's first_idx doesn't mean we are
3529  * done. If there is still some jump history left, we should keep going. We
3530  * need to take into account that we might have a jump history between given
3531  * state's parent and itself, due to checkpointing. In this case, we'll have
3532  * history entry recording a jump from last instruction of parent state and
3533  * first instruction of given state.
3534  */
3535 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3536 			     u32 *history)
3537 {
3538 	u32 cnt = *history;
3539 
3540 	if (i == st->first_insn_idx) {
3541 		if (cnt == 0)
3542 			return -ENOENT;
3543 		if (cnt == 1 && st->jmp_history[0].idx == i)
3544 			return -ENOENT;
3545 	}
3546 
3547 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3548 		i = st->jmp_history[cnt - 1].prev_idx;
3549 		(*history)--;
3550 	} else {
3551 		i--;
3552 	}
3553 	return i;
3554 }
3555 
3556 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3557 {
3558 	const struct btf_type *func;
3559 	struct btf *desc_btf;
3560 
3561 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3562 		return NULL;
3563 
3564 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3565 	if (IS_ERR(desc_btf))
3566 		return "<error>";
3567 
3568 	func = btf_type_by_id(desc_btf, insn->imm);
3569 	return btf_name_by_offset(desc_btf, func->name_off);
3570 }
3571 
3572 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3573 {
3574 	bt->frame = frame;
3575 }
3576 
3577 static inline void bt_reset(struct backtrack_state *bt)
3578 {
3579 	struct bpf_verifier_env *env = bt->env;
3580 
3581 	memset(bt, 0, sizeof(*bt));
3582 	bt->env = env;
3583 }
3584 
3585 static inline u32 bt_empty(struct backtrack_state *bt)
3586 {
3587 	u64 mask = 0;
3588 	int i;
3589 
3590 	for (i = 0; i <= bt->frame; i++)
3591 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3592 
3593 	return mask == 0;
3594 }
3595 
3596 static inline int bt_subprog_enter(struct backtrack_state *bt)
3597 {
3598 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3599 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3600 		WARN_ONCE(1, "verifier backtracking bug");
3601 		return -EFAULT;
3602 	}
3603 	bt->frame++;
3604 	return 0;
3605 }
3606 
3607 static inline int bt_subprog_exit(struct backtrack_state *bt)
3608 {
3609 	if (bt->frame == 0) {
3610 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3611 		WARN_ONCE(1, "verifier backtracking bug");
3612 		return -EFAULT;
3613 	}
3614 	bt->frame--;
3615 	return 0;
3616 }
3617 
3618 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3619 {
3620 	bt->reg_masks[frame] |= 1 << reg;
3621 }
3622 
3623 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3624 {
3625 	bt->reg_masks[frame] &= ~(1 << reg);
3626 }
3627 
3628 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3629 {
3630 	bt_set_frame_reg(bt, bt->frame, reg);
3631 }
3632 
3633 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3634 {
3635 	bt_clear_frame_reg(bt, bt->frame, reg);
3636 }
3637 
3638 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3639 {
3640 	bt->stack_masks[frame] |= 1ull << slot;
3641 }
3642 
3643 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3644 {
3645 	bt->stack_masks[frame] &= ~(1ull << slot);
3646 }
3647 
3648 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3649 {
3650 	bt_set_frame_slot(bt, bt->frame, slot);
3651 }
3652 
3653 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3654 {
3655 	bt_clear_frame_slot(bt, bt->frame, slot);
3656 }
3657 
3658 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3659 {
3660 	return bt->reg_masks[frame];
3661 }
3662 
3663 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3664 {
3665 	return bt->reg_masks[bt->frame];
3666 }
3667 
3668 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3669 {
3670 	return bt->stack_masks[frame];
3671 }
3672 
3673 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3674 {
3675 	return bt->stack_masks[bt->frame];
3676 }
3677 
3678 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3679 {
3680 	return bt->reg_masks[bt->frame] & (1 << reg);
3681 }
3682 
3683 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3684 {
3685 	return bt->stack_masks[bt->frame] & (1ull << slot);
3686 }
3687 
3688 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3689 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3690 {
3691 	DECLARE_BITMAP(mask, 64);
3692 	bool first = true;
3693 	int i, n;
3694 
3695 	buf[0] = '\0';
3696 
3697 	bitmap_from_u64(mask, reg_mask);
3698 	for_each_set_bit(i, mask, 32) {
3699 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3700 		first = false;
3701 		buf += n;
3702 		buf_sz -= n;
3703 		if (buf_sz < 0)
3704 			break;
3705 	}
3706 }
3707 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3708 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3709 {
3710 	DECLARE_BITMAP(mask, 64);
3711 	bool first = true;
3712 	int i, n;
3713 
3714 	buf[0] = '\0';
3715 
3716 	bitmap_from_u64(mask, stack_mask);
3717 	for_each_set_bit(i, mask, 64) {
3718 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3719 		first = false;
3720 		buf += n;
3721 		buf_sz -= n;
3722 		if (buf_sz < 0)
3723 			break;
3724 	}
3725 }
3726 
3727 /* For given verifier state backtrack_insn() is called from the last insn to
3728  * the first insn. Its purpose is to compute a bitmask of registers and
3729  * stack slots that needs precision in the parent verifier state.
3730  *
3731  * @idx is an index of the instruction we are currently processing;
3732  * @subseq_idx is an index of the subsequent instruction that:
3733  *   - *would be* executed next, if jump history is viewed in forward order;
3734  *   - *was* processed previously during backtracking.
3735  */
3736 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3737 			  struct backtrack_state *bt)
3738 {
3739 	const struct bpf_insn_cbs cbs = {
3740 		.cb_call	= disasm_kfunc_name,
3741 		.cb_print	= verbose,
3742 		.private_data	= env,
3743 	};
3744 	struct bpf_insn *insn = env->prog->insnsi + idx;
3745 	u8 class = BPF_CLASS(insn->code);
3746 	u8 opcode = BPF_OP(insn->code);
3747 	u8 mode = BPF_MODE(insn->code);
3748 	u32 dreg = insn->dst_reg;
3749 	u32 sreg = insn->src_reg;
3750 	u32 spi, i;
3751 
3752 	if (insn->code == 0)
3753 		return 0;
3754 	if (env->log.level & BPF_LOG_LEVEL2) {
3755 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3756 		verbose(env, "mark_precise: frame%d: regs=%s ",
3757 			bt->frame, env->tmp_str_buf);
3758 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3759 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3760 		verbose(env, "%d: ", idx);
3761 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3762 	}
3763 
3764 	if (class == BPF_ALU || class == BPF_ALU64) {
3765 		if (!bt_is_reg_set(bt, dreg))
3766 			return 0;
3767 		if (opcode == BPF_END || opcode == BPF_NEG) {
3768 			/* sreg is reserved and unused
3769 			 * dreg still need precision before this insn
3770 			 */
3771 			return 0;
3772 		} else if (opcode == BPF_MOV) {
3773 			if (BPF_SRC(insn->code) == BPF_X) {
3774 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3775 				 * dreg needs precision after this insn
3776 				 * sreg needs precision before this insn
3777 				 */
3778 				bt_clear_reg(bt, dreg);
3779 				bt_set_reg(bt, sreg);
3780 			} else {
3781 				/* dreg = K
3782 				 * dreg needs precision after this insn.
3783 				 * Corresponding register is already marked
3784 				 * as precise=true in this verifier state.
3785 				 * No further markings in parent are necessary
3786 				 */
3787 				bt_clear_reg(bt, dreg);
3788 			}
3789 		} else {
3790 			if (BPF_SRC(insn->code) == BPF_X) {
3791 				/* dreg += sreg
3792 				 * both dreg and sreg need precision
3793 				 * before this insn
3794 				 */
3795 				bt_set_reg(bt, sreg);
3796 			} /* else dreg += K
3797 			   * dreg still needs precision before this insn
3798 			   */
3799 		}
3800 	} else if (class == BPF_LDX) {
3801 		if (!bt_is_reg_set(bt, dreg))
3802 			return 0;
3803 		bt_clear_reg(bt, dreg);
3804 
3805 		/* scalars can only be spilled into stack w/o losing precision.
3806 		 * Load from any other memory can be zero extended.
3807 		 * The desire to keep that precision is already indicated
3808 		 * by 'precise' mark in corresponding register of this state.
3809 		 * No further tracking necessary.
3810 		 */
3811 		if (insn->src_reg != BPF_REG_FP)
3812 			return 0;
3813 
3814 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3815 		 * that [fp - off] slot contains scalar that needs to be
3816 		 * tracked with precision
3817 		 */
3818 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3819 		if (spi >= 64) {
3820 			verbose(env, "BUG spi %d\n", spi);
3821 			WARN_ONCE(1, "verifier backtracking bug");
3822 			return -EFAULT;
3823 		}
3824 		bt_set_slot(bt, spi);
3825 	} else if (class == BPF_STX || class == BPF_ST) {
3826 		if (bt_is_reg_set(bt, dreg))
3827 			/* stx & st shouldn't be using _scalar_ dst_reg
3828 			 * to access memory. It means backtracking
3829 			 * encountered a case of pointer subtraction.
3830 			 */
3831 			return -ENOTSUPP;
3832 		/* scalars can only be spilled into stack */
3833 		if (insn->dst_reg != BPF_REG_FP)
3834 			return 0;
3835 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3836 		if (spi >= 64) {
3837 			verbose(env, "BUG spi %d\n", spi);
3838 			WARN_ONCE(1, "verifier backtracking bug");
3839 			return -EFAULT;
3840 		}
3841 		if (!bt_is_slot_set(bt, spi))
3842 			return 0;
3843 		bt_clear_slot(bt, spi);
3844 		if (class == BPF_STX)
3845 			bt_set_reg(bt, sreg);
3846 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3847 		if (bpf_pseudo_call(insn)) {
3848 			int subprog_insn_idx, subprog;
3849 
3850 			subprog_insn_idx = idx + insn->imm + 1;
3851 			subprog = find_subprog(env, subprog_insn_idx);
3852 			if (subprog < 0)
3853 				return -EFAULT;
3854 
3855 			if (subprog_is_global(env, subprog)) {
3856 				/* check that jump history doesn't have any
3857 				 * extra instructions from subprog; the next
3858 				 * instruction after call to global subprog
3859 				 * should be literally next instruction in
3860 				 * caller program
3861 				 */
3862 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3863 				/* r1-r5 are invalidated after subprog call,
3864 				 * so for global func call it shouldn't be set
3865 				 * anymore
3866 				 */
3867 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3868 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3869 					WARN_ONCE(1, "verifier backtracking bug");
3870 					return -EFAULT;
3871 				}
3872 				/* global subprog always sets R0 */
3873 				bt_clear_reg(bt, BPF_REG_0);
3874 				return 0;
3875 			} else {
3876 				/* static subprog call instruction, which
3877 				 * means that we are exiting current subprog,
3878 				 * so only r1-r5 could be still requested as
3879 				 * precise, r0 and r6-r10 or any stack slot in
3880 				 * the current frame should be zero by now
3881 				 */
3882 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3883 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3884 					WARN_ONCE(1, "verifier backtracking bug");
3885 					return -EFAULT;
3886 				}
3887 				/* we don't track register spills perfectly,
3888 				 * so fallback to force-precise instead of failing */
3889 				if (bt_stack_mask(bt) != 0)
3890 					return -ENOTSUPP;
3891 				/* propagate r1-r5 to the caller */
3892 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3893 					if (bt_is_reg_set(bt, i)) {
3894 						bt_clear_reg(bt, i);
3895 						bt_set_frame_reg(bt, bt->frame - 1, i);
3896 					}
3897 				}
3898 				if (bt_subprog_exit(bt))
3899 					return -EFAULT;
3900 				return 0;
3901 			}
3902 		} else if ((bpf_helper_call(insn) &&
3903 			    is_callback_calling_function(insn->imm) &&
3904 			    !is_async_callback_calling_function(insn->imm)) ||
3905 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3906 			/* callback-calling helper or kfunc call, which means
3907 			 * we are exiting from subprog, but unlike the subprog
3908 			 * call handling above, we shouldn't propagate
3909 			 * precision of r1-r5 (if any requested), as they are
3910 			 * not actually arguments passed directly to callback
3911 			 * subprogs
3912 			 */
3913 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3914 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3915 				WARN_ONCE(1, "verifier backtracking bug");
3916 				return -EFAULT;
3917 			}
3918 			if (bt_stack_mask(bt) != 0)
3919 				return -ENOTSUPP;
3920 			/* clear r1-r5 in callback subprog's mask */
3921 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3922 				bt_clear_reg(bt, i);
3923 			if (bt_subprog_exit(bt))
3924 				return -EFAULT;
3925 			return 0;
3926 		} else if (opcode == BPF_CALL) {
3927 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3928 			 * catch this error later. Make backtracking conservative
3929 			 * with ENOTSUPP.
3930 			 */
3931 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3932 				return -ENOTSUPP;
3933 			/* regular helper call sets R0 */
3934 			bt_clear_reg(bt, BPF_REG_0);
3935 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3936 				/* if backtracing was looking for registers R1-R5
3937 				 * they should have been found already.
3938 				 */
3939 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3940 				WARN_ONCE(1, "verifier backtracking bug");
3941 				return -EFAULT;
3942 			}
3943 		} else if (opcode == BPF_EXIT) {
3944 			bool r0_precise;
3945 
3946 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3947 				/* if backtracing was looking for registers R1-R5
3948 				 * they should have been found already.
3949 				 */
3950 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3951 				WARN_ONCE(1, "verifier backtracking bug");
3952 				return -EFAULT;
3953 			}
3954 
3955 			/* BPF_EXIT in subprog or callback always returns
3956 			 * right after the call instruction, so by checking
3957 			 * whether the instruction at subseq_idx-1 is subprog
3958 			 * call or not we can distinguish actual exit from
3959 			 * *subprog* from exit from *callback*. In the former
3960 			 * case, we need to propagate r0 precision, if
3961 			 * necessary. In the former we never do that.
3962 			 */
3963 			r0_precise = subseq_idx - 1 >= 0 &&
3964 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3965 				     bt_is_reg_set(bt, BPF_REG_0);
3966 
3967 			bt_clear_reg(bt, BPF_REG_0);
3968 			if (bt_subprog_enter(bt))
3969 				return -EFAULT;
3970 
3971 			if (r0_precise)
3972 				bt_set_reg(bt, BPF_REG_0);
3973 			/* r6-r9 and stack slots will stay set in caller frame
3974 			 * bitmasks until we return back from callee(s)
3975 			 */
3976 			return 0;
3977 		} else if (BPF_SRC(insn->code) == BPF_X) {
3978 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3979 				return 0;
3980 			/* dreg <cond> sreg
3981 			 * Both dreg and sreg need precision before
3982 			 * this insn. If only sreg was marked precise
3983 			 * before it would be equally necessary to
3984 			 * propagate it to dreg.
3985 			 */
3986 			bt_set_reg(bt, dreg);
3987 			bt_set_reg(bt, sreg);
3988 			 /* else dreg <cond> K
3989 			  * Only dreg still needs precision before
3990 			  * this insn, so for the K-based conditional
3991 			  * there is nothing new to be marked.
3992 			  */
3993 		}
3994 	} else if (class == BPF_LD) {
3995 		if (!bt_is_reg_set(bt, dreg))
3996 			return 0;
3997 		bt_clear_reg(bt, dreg);
3998 		/* It's ld_imm64 or ld_abs or ld_ind.
3999 		 * For ld_imm64 no further tracking of precision
4000 		 * into parent is necessary
4001 		 */
4002 		if (mode == BPF_IND || mode == BPF_ABS)
4003 			/* to be analyzed */
4004 			return -ENOTSUPP;
4005 	}
4006 	return 0;
4007 }
4008 
4009 /* the scalar precision tracking algorithm:
4010  * . at the start all registers have precise=false.
4011  * . scalar ranges are tracked as normal through alu and jmp insns.
4012  * . once precise value of the scalar register is used in:
4013  *   .  ptr + scalar alu
4014  *   . if (scalar cond K|scalar)
4015  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4016  *   backtrack through the verifier states and mark all registers and
4017  *   stack slots with spilled constants that these scalar regisers
4018  *   should be precise.
4019  * . during state pruning two registers (or spilled stack slots)
4020  *   are equivalent if both are not precise.
4021  *
4022  * Note the verifier cannot simply walk register parentage chain,
4023  * since many different registers and stack slots could have been
4024  * used to compute single precise scalar.
4025  *
4026  * The approach of starting with precise=true for all registers and then
4027  * backtrack to mark a register as not precise when the verifier detects
4028  * that program doesn't care about specific value (e.g., when helper
4029  * takes register as ARG_ANYTHING parameter) is not safe.
4030  *
4031  * It's ok to walk single parentage chain of the verifier states.
4032  * It's possible that this backtracking will go all the way till 1st insn.
4033  * All other branches will be explored for needing precision later.
4034  *
4035  * The backtracking needs to deal with cases like:
4036  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4037  * r9 -= r8
4038  * r5 = r9
4039  * if r5 > 0x79f goto pc+7
4040  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4041  * r5 += 1
4042  * ...
4043  * call bpf_perf_event_output#25
4044  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4045  *
4046  * and this case:
4047  * r6 = 1
4048  * call foo // uses callee's r6 inside to compute r0
4049  * r0 += r6
4050  * if r0 == 0 goto
4051  *
4052  * to track above reg_mask/stack_mask needs to be independent for each frame.
4053  *
4054  * Also if parent's curframe > frame where backtracking started,
4055  * the verifier need to mark registers in both frames, otherwise callees
4056  * may incorrectly prune callers. This is similar to
4057  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4058  *
4059  * For now backtracking falls back into conservative marking.
4060  */
4061 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4062 				     struct bpf_verifier_state *st)
4063 {
4064 	struct bpf_func_state *func;
4065 	struct bpf_reg_state *reg;
4066 	int i, j;
4067 
4068 	if (env->log.level & BPF_LOG_LEVEL2) {
4069 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4070 			st->curframe);
4071 	}
4072 
4073 	/* big hammer: mark all scalars precise in this path.
4074 	 * pop_stack may still get !precise scalars.
4075 	 * We also skip current state and go straight to first parent state,
4076 	 * because precision markings in current non-checkpointed state are
4077 	 * not needed. See why in the comment in __mark_chain_precision below.
4078 	 */
4079 	for (st = st->parent; st; st = st->parent) {
4080 		for (i = 0; i <= st->curframe; i++) {
4081 			func = st->frame[i];
4082 			for (j = 0; j < BPF_REG_FP; j++) {
4083 				reg = &func->regs[j];
4084 				if (reg->type != SCALAR_VALUE || reg->precise)
4085 					continue;
4086 				reg->precise = true;
4087 				if (env->log.level & BPF_LOG_LEVEL2) {
4088 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4089 						i, j);
4090 				}
4091 			}
4092 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4093 				if (!is_spilled_reg(&func->stack[j]))
4094 					continue;
4095 				reg = &func->stack[j].spilled_ptr;
4096 				if (reg->type != SCALAR_VALUE || reg->precise)
4097 					continue;
4098 				reg->precise = true;
4099 				if (env->log.level & BPF_LOG_LEVEL2) {
4100 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4101 						i, -(j + 1) * 8);
4102 				}
4103 			}
4104 		}
4105 	}
4106 }
4107 
4108 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4109 {
4110 	struct bpf_func_state *func;
4111 	struct bpf_reg_state *reg;
4112 	int i, j;
4113 
4114 	for (i = 0; i <= st->curframe; i++) {
4115 		func = st->frame[i];
4116 		for (j = 0; j < BPF_REG_FP; j++) {
4117 			reg = &func->regs[j];
4118 			if (reg->type != SCALAR_VALUE)
4119 				continue;
4120 			reg->precise = false;
4121 		}
4122 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4123 			if (!is_spilled_reg(&func->stack[j]))
4124 				continue;
4125 			reg = &func->stack[j].spilled_ptr;
4126 			if (reg->type != SCALAR_VALUE)
4127 				continue;
4128 			reg->precise = false;
4129 		}
4130 	}
4131 }
4132 
4133 static bool idset_contains(struct bpf_idset *s, u32 id)
4134 {
4135 	u32 i;
4136 
4137 	for (i = 0; i < s->count; ++i)
4138 		if (s->ids[i] == id)
4139 			return true;
4140 
4141 	return false;
4142 }
4143 
4144 static int idset_push(struct bpf_idset *s, u32 id)
4145 {
4146 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4147 		return -EFAULT;
4148 	s->ids[s->count++] = id;
4149 	return 0;
4150 }
4151 
4152 static void idset_reset(struct bpf_idset *s)
4153 {
4154 	s->count = 0;
4155 }
4156 
4157 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4158  * Mark all registers with these IDs as precise.
4159  */
4160 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4161 {
4162 	struct bpf_idset *precise_ids = &env->idset_scratch;
4163 	struct backtrack_state *bt = &env->bt;
4164 	struct bpf_func_state *func;
4165 	struct bpf_reg_state *reg;
4166 	DECLARE_BITMAP(mask, 64);
4167 	int i, fr;
4168 
4169 	idset_reset(precise_ids);
4170 
4171 	for (fr = bt->frame; fr >= 0; fr--) {
4172 		func = st->frame[fr];
4173 
4174 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4175 		for_each_set_bit(i, mask, 32) {
4176 			reg = &func->regs[i];
4177 			if (!reg->id || reg->type != SCALAR_VALUE)
4178 				continue;
4179 			if (idset_push(precise_ids, reg->id))
4180 				return -EFAULT;
4181 		}
4182 
4183 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4184 		for_each_set_bit(i, mask, 64) {
4185 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4186 				break;
4187 			if (!is_spilled_scalar_reg(&func->stack[i]))
4188 				continue;
4189 			reg = &func->stack[i].spilled_ptr;
4190 			if (!reg->id)
4191 				continue;
4192 			if (idset_push(precise_ids, reg->id))
4193 				return -EFAULT;
4194 		}
4195 	}
4196 
4197 	for (fr = 0; fr <= st->curframe; ++fr) {
4198 		func = st->frame[fr];
4199 
4200 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4201 			reg = &func->regs[i];
4202 			if (!reg->id)
4203 				continue;
4204 			if (!idset_contains(precise_ids, reg->id))
4205 				continue;
4206 			bt_set_frame_reg(bt, fr, i);
4207 		}
4208 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4209 			if (!is_spilled_scalar_reg(&func->stack[i]))
4210 				continue;
4211 			reg = &func->stack[i].spilled_ptr;
4212 			if (!reg->id)
4213 				continue;
4214 			if (!idset_contains(precise_ids, reg->id))
4215 				continue;
4216 			bt_set_frame_slot(bt, fr, i);
4217 		}
4218 	}
4219 
4220 	return 0;
4221 }
4222 
4223 /*
4224  * __mark_chain_precision() backtracks BPF program instruction sequence and
4225  * chain of verifier states making sure that register *regno* (if regno >= 0)
4226  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4227  * SCALARS, as well as any other registers and slots that contribute to
4228  * a tracked state of given registers/stack slots, depending on specific BPF
4229  * assembly instructions (see backtrack_insns() for exact instruction handling
4230  * logic). This backtracking relies on recorded jmp_history and is able to
4231  * traverse entire chain of parent states. This process ends only when all the
4232  * necessary registers/slots and their transitive dependencies are marked as
4233  * precise.
4234  *
4235  * One important and subtle aspect is that precise marks *do not matter* in
4236  * the currently verified state (current state). It is important to understand
4237  * why this is the case.
4238  *
4239  * First, note that current state is the state that is not yet "checkpointed",
4240  * i.e., it is not yet put into env->explored_states, and it has no children
4241  * states as well. It's ephemeral, and can end up either a) being discarded if
4242  * compatible explored state is found at some point or BPF_EXIT instruction is
4243  * reached or b) checkpointed and put into env->explored_states, branching out
4244  * into one or more children states.
4245  *
4246  * In the former case, precise markings in current state are completely
4247  * ignored by state comparison code (see regsafe() for details). Only
4248  * checkpointed ("old") state precise markings are important, and if old
4249  * state's register/slot is precise, regsafe() assumes current state's
4250  * register/slot as precise and checks value ranges exactly and precisely. If
4251  * states turn out to be compatible, current state's necessary precise
4252  * markings and any required parent states' precise markings are enforced
4253  * after the fact with propagate_precision() logic, after the fact. But it's
4254  * important to realize that in this case, even after marking current state
4255  * registers/slots as precise, we immediately discard current state. So what
4256  * actually matters is any of the precise markings propagated into current
4257  * state's parent states, which are always checkpointed (due to b) case above).
4258  * As such, for scenario a) it doesn't matter if current state has precise
4259  * markings set or not.
4260  *
4261  * Now, for the scenario b), checkpointing and forking into child(ren)
4262  * state(s). Note that before current state gets to checkpointing step, any
4263  * processed instruction always assumes precise SCALAR register/slot
4264  * knowledge: if precise value or range is useful to prune jump branch, BPF
4265  * verifier takes this opportunity enthusiastically. Similarly, when
4266  * register's value is used to calculate offset or memory address, exact
4267  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4268  * what we mentioned above about state comparison ignoring precise markings
4269  * during state comparison, BPF verifier ignores and also assumes precise
4270  * markings *at will* during instruction verification process. But as verifier
4271  * assumes precision, it also propagates any precision dependencies across
4272  * parent states, which are not yet finalized, so can be further restricted
4273  * based on new knowledge gained from restrictions enforced by their children
4274  * states. This is so that once those parent states are finalized, i.e., when
4275  * they have no more active children state, state comparison logic in
4276  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4277  * required for correctness.
4278  *
4279  * To build a bit more intuition, note also that once a state is checkpointed,
4280  * the path we took to get to that state is not important. This is crucial
4281  * property for state pruning. When state is checkpointed and finalized at
4282  * some instruction index, it can be correctly and safely used to "short
4283  * circuit" any *compatible* state that reaches exactly the same instruction
4284  * index. I.e., if we jumped to that instruction from a completely different
4285  * code path than original finalized state was derived from, it doesn't
4286  * matter, current state can be discarded because from that instruction
4287  * forward having a compatible state will ensure we will safely reach the
4288  * exit. States describe preconditions for further exploration, but completely
4289  * forget the history of how we got here.
4290  *
4291  * This also means that even if we needed precise SCALAR range to get to
4292  * finalized state, but from that point forward *that same* SCALAR register is
4293  * never used in a precise context (i.e., it's precise value is not needed for
4294  * correctness), it's correct and safe to mark such register as "imprecise"
4295  * (i.e., precise marking set to false). This is what we rely on when we do
4296  * not set precise marking in current state. If no child state requires
4297  * precision for any given SCALAR register, it's safe to dictate that it can
4298  * be imprecise. If any child state does require this register to be precise,
4299  * we'll mark it precise later retroactively during precise markings
4300  * propagation from child state to parent states.
4301  *
4302  * Skipping precise marking setting in current state is a mild version of
4303  * relying on the above observation. But we can utilize this property even
4304  * more aggressively by proactively forgetting any precise marking in the
4305  * current state (which we inherited from the parent state), right before we
4306  * checkpoint it and branch off into new child state. This is done by
4307  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4308  * finalized states which help in short circuiting more future states.
4309  */
4310 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4311 {
4312 	struct backtrack_state *bt = &env->bt;
4313 	struct bpf_verifier_state *st = env->cur_state;
4314 	int first_idx = st->first_insn_idx;
4315 	int last_idx = env->insn_idx;
4316 	int subseq_idx = -1;
4317 	struct bpf_func_state *func;
4318 	struct bpf_reg_state *reg;
4319 	bool skip_first = true;
4320 	int i, fr, err;
4321 
4322 	if (!env->bpf_capable)
4323 		return 0;
4324 
4325 	/* set frame number from which we are starting to backtrack */
4326 	bt_init(bt, env->cur_state->curframe);
4327 
4328 	/* Do sanity checks against current state of register and/or stack
4329 	 * slot, but don't set precise flag in current state, as precision
4330 	 * tracking in the current state is unnecessary.
4331 	 */
4332 	func = st->frame[bt->frame];
4333 	if (regno >= 0) {
4334 		reg = &func->regs[regno];
4335 		if (reg->type != SCALAR_VALUE) {
4336 			WARN_ONCE(1, "backtracing misuse");
4337 			return -EFAULT;
4338 		}
4339 		bt_set_reg(bt, regno);
4340 	}
4341 
4342 	if (bt_empty(bt))
4343 		return 0;
4344 
4345 	for (;;) {
4346 		DECLARE_BITMAP(mask, 64);
4347 		u32 history = st->jmp_history_cnt;
4348 
4349 		if (env->log.level & BPF_LOG_LEVEL2) {
4350 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4351 				bt->frame, last_idx, first_idx, subseq_idx);
4352 		}
4353 
4354 		/* If some register with scalar ID is marked as precise,
4355 		 * make sure that all registers sharing this ID are also precise.
4356 		 * This is needed to estimate effect of find_equal_scalars().
4357 		 * Do this at the last instruction of each state,
4358 		 * bpf_reg_state::id fields are valid for these instructions.
4359 		 *
4360 		 * Allows to track precision in situation like below:
4361 		 *
4362 		 *     r2 = unknown value
4363 		 *     ...
4364 		 *   --- state #0 ---
4365 		 *     ...
4366 		 *     r1 = r2                 // r1 and r2 now share the same ID
4367 		 *     ...
4368 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4369 		 *     ...
4370 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4371 		 *     ...
4372 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4373 		 *     r3 = r10
4374 		 *     r3 += r1                // need to mark both r1 and r2
4375 		 */
4376 		if (mark_precise_scalar_ids(env, st))
4377 			return -EFAULT;
4378 
4379 		if (last_idx < 0) {
4380 			/* we are at the entry into subprog, which
4381 			 * is expected for global funcs, but only if
4382 			 * requested precise registers are R1-R5
4383 			 * (which are global func's input arguments)
4384 			 */
4385 			if (st->curframe == 0 &&
4386 			    st->frame[0]->subprogno > 0 &&
4387 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4388 			    bt_stack_mask(bt) == 0 &&
4389 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4390 				bitmap_from_u64(mask, bt_reg_mask(bt));
4391 				for_each_set_bit(i, mask, 32) {
4392 					reg = &st->frame[0]->regs[i];
4393 					bt_clear_reg(bt, i);
4394 					if (reg->type == SCALAR_VALUE)
4395 						reg->precise = true;
4396 				}
4397 				return 0;
4398 			}
4399 
4400 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4401 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4402 			WARN_ONCE(1, "verifier backtracking bug");
4403 			return -EFAULT;
4404 		}
4405 
4406 		for (i = last_idx;;) {
4407 			if (skip_first) {
4408 				err = 0;
4409 				skip_first = false;
4410 			} else {
4411 				err = backtrack_insn(env, i, subseq_idx, bt);
4412 			}
4413 			if (err == -ENOTSUPP) {
4414 				mark_all_scalars_precise(env, env->cur_state);
4415 				bt_reset(bt);
4416 				return 0;
4417 			} else if (err) {
4418 				return err;
4419 			}
4420 			if (bt_empty(bt))
4421 				/* Found assignment(s) into tracked register in this state.
4422 				 * Since this state is already marked, just return.
4423 				 * Nothing to be tracked further in the parent state.
4424 				 */
4425 				return 0;
4426 			subseq_idx = i;
4427 			i = get_prev_insn_idx(st, i, &history);
4428 			if (i == -ENOENT)
4429 				break;
4430 			if (i >= env->prog->len) {
4431 				/* This can happen if backtracking reached insn 0
4432 				 * and there are still reg_mask or stack_mask
4433 				 * to backtrack.
4434 				 * It means the backtracking missed the spot where
4435 				 * particular register was initialized with a constant.
4436 				 */
4437 				verbose(env, "BUG backtracking idx %d\n", i);
4438 				WARN_ONCE(1, "verifier backtracking bug");
4439 				return -EFAULT;
4440 			}
4441 		}
4442 		st = st->parent;
4443 		if (!st)
4444 			break;
4445 
4446 		for (fr = bt->frame; fr >= 0; fr--) {
4447 			func = st->frame[fr];
4448 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4449 			for_each_set_bit(i, mask, 32) {
4450 				reg = &func->regs[i];
4451 				if (reg->type != SCALAR_VALUE) {
4452 					bt_clear_frame_reg(bt, fr, i);
4453 					continue;
4454 				}
4455 				if (reg->precise)
4456 					bt_clear_frame_reg(bt, fr, i);
4457 				else
4458 					reg->precise = true;
4459 			}
4460 
4461 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4462 			for_each_set_bit(i, mask, 64) {
4463 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4464 					/* the sequence of instructions:
4465 					 * 2: (bf) r3 = r10
4466 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4467 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4468 					 * doesn't contain jmps. It's backtracked
4469 					 * as a single block.
4470 					 * During backtracking insn 3 is not recognized as
4471 					 * stack access, so at the end of backtracking
4472 					 * stack slot fp-8 is still marked in stack_mask.
4473 					 * However the parent state may not have accessed
4474 					 * fp-8 and it's "unallocated" stack space.
4475 					 * In such case fallback to conservative.
4476 					 */
4477 					mark_all_scalars_precise(env, env->cur_state);
4478 					bt_reset(bt);
4479 					return 0;
4480 				}
4481 
4482 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4483 					bt_clear_frame_slot(bt, fr, i);
4484 					continue;
4485 				}
4486 				reg = &func->stack[i].spilled_ptr;
4487 				if (reg->precise)
4488 					bt_clear_frame_slot(bt, fr, i);
4489 				else
4490 					reg->precise = true;
4491 			}
4492 			if (env->log.level & BPF_LOG_LEVEL2) {
4493 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4494 					     bt_frame_reg_mask(bt, fr));
4495 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4496 					fr, env->tmp_str_buf);
4497 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4498 					       bt_frame_stack_mask(bt, fr));
4499 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4500 				print_verifier_state(env, func, true);
4501 			}
4502 		}
4503 
4504 		if (bt_empty(bt))
4505 			return 0;
4506 
4507 		subseq_idx = first_idx;
4508 		last_idx = st->last_insn_idx;
4509 		first_idx = st->first_insn_idx;
4510 	}
4511 
4512 	/* if we still have requested precise regs or slots, we missed
4513 	 * something (e.g., stack access through non-r10 register), so
4514 	 * fallback to marking all precise
4515 	 */
4516 	if (!bt_empty(bt)) {
4517 		mark_all_scalars_precise(env, env->cur_state);
4518 		bt_reset(bt);
4519 	}
4520 
4521 	return 0;
4522 }
4523 
4524 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4525 {
4526 	return __mark_chain_precision(env, regno);
4527 }
4528 
4529 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4530  * desired reg and stack masks across all relevant frames
4531  */
4532 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4533 {
4534 	return __mark_chain_precision(env, -1);
4535 }
4536 
4537 static bool is_spillable_regtype(enum bpf_reg_type type)
4538 {
4539 	switch (base_type(type)) {
4540 	case PTR_TO_MAP_VALUE:
4541 	case PTR_TO_STACK:
4542 	case PTR_TO_CTX:
4543 	case PTR_TO_PACKET:
4544 	case PTR_TO_PACKET_META:
4545 	case PTR_TO_PACKET_END:
4546 	case PTR_TO_FLOW_KEYS:
4547 	case CONST_PTR_TO_MAP:
4548 	case PTR_TO_SOCKET:
4549 	case PTR_TO_SOCK_COMMON:
4550 	case PTR_TO_TCP_SOCK:
4551 	case PTR_TO_XDP_SOCK:
4552 	case PTR_TO_BTF_ID:
4553 	case PTR_TO_BUF:
4554 	case PTR_TO_MEM:
4555 	case PTR_TO_FUNC:
4556 	case PTR_TO_MAP_KEY:
4557 		return true;
4558 	default:
4559 		return false;
4560 	}
4561 }
4562 
4563 /* Does this register contain a constant zero? */
4564 static bool register_is_null(struct bpf_reg_state *reg)
4565 {
4566 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4567 }
4568 
4569 static bool register_is_const(struct bpf_reg_state *reg)
4570 {
4571 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4572 }
4573 
4574 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4575 {
4576 	return tnum_is_unknown(reg->var_off) &&
4577 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4578 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4579 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4580 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4581 }
4582 
4583 static bool register_is_bounded(struct bpf_reg_state *reg)
4584 {
4585 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4586 }
4587 
4588 static bool __is_pointer_value(bool allow_ptr_leaks,
4589 			       const struct bpf_reg_state *reg)
4590 {
4591 	if (allow_ptr_leaks)
4592 		return false;
4593 
4594 	return reg->type != SCALAR_VALUE;
4595 }
4596 
4597 /* Copy src state preserving dst->parent and dst->live fields */
4598 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4599 {
4600 	struct bpf_reg_state *parent = dst->parent;
4601 	enum bpf_reg_liveness live = dst->live;
4602 
4603 	*dst = *src;
4604 	dst->parent = parent;
4605 	dst->live = live;
4606 }
4607 
4608 static void save_register_state(struct bpf_func_state *state,
4609 				int spi, struct bpf_reg_state *reg,
4610 				int size)
4611 {
4612 	int i;
4613 
4614 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4615 	if (size == BPF_REG_SIZE)
4616 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4617 
4618 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4619 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4620 
4621 	/* size < 8 bytes spill */
4622 	for (; i; i--)
4623 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4624 }
4625 
4626 static bool is_bpf_st_mem(struct bpf_insn *insn)
4627 {
4628 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4629 }
4630 
4631 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4632  * stack boundary and alignment are checked in check_mem_access()
4633  */
4634 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4635 				       /* stack frame we're writing to */
4636 				       struct bpf_func_state *state,
4637 				       int off, int size, int value_regno,
4638 				       int insn_idx)
4639 {
4640 	struct bpf_func_state *cur; /* state of the current function */
4641 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4642 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4643 	struct bpf_reg_state *reg = NULL;
4644 	u32 dst_reg = insn->dst_reg;
4645 
4646 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4647 	if (err)
4648 		return err;
4649 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4650 	 * so it's aligned access and [off, off + size) are within stack limits
4651 	 */
4652 	if (!env->allow_ptr_leaks &&
4653 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4654 	    size != BPF_REG_SIZE) {
4655 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4656 		return -EACCES;
4657 	}
4658 
4659 	cur = env->cur_state->frame[env->cur_state->curframe];
4660 	if (value_regno >= 0)
4661 		reg = &cur->regs[value_regno];
4662 	if (!env->bypass_spec_v4) {
4663 		bool sanitize = reg && is_spillable_regtype(reg->type);
4664 
4665 		for (i = 0; i < size; i++) {
4666 			u8 type = state->stack[spi].slot_type[i];
4667 
4668 			if (type != STACK_MISC && type != STACK_ZERO) {
4669 				sanitize = true;
4670 				break;
4671 			}
4672 		}
4673 
4674 		if (sanitize)
4675 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4676 	}
4677 
4678 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4679 	if (err)
4680 		return err;
4681 
4682 	mark_stack_slot_scratched(env, spi);
4683 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4684 	    !register_is_null(reg) && env->bpf_capable) {
4685 		if (dst_reg != BPF_REG_FP) {
4686 			/* The backtracking logic can only recognize explicit
4687 			 * stack slot address like [fp - 8]. Other spill of
4688 			 * scalar via different register has to be conservative.
4689 			 * Backtrack from here and mark all registers as precise
4690 			 * that contributed into 'reg' being a constant.
4691 			 */
4692 			err = mark_chain_precision(env, value_regno);
4693 			if (err)
4694 				return err;
4695 		}
4696 		save_register_state(state, spi, reg, size);
4697 		/* Break the relation on a narrowing spill. */
4698 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4699 			state->stack[spi].spilled_ptr.id = 0;
4700 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4701 		   insn->imm != 0 && env->bpf_capable) {
4702 		struct bpf_reg_state fake_reg = {};
4703 
4704 		__mark_reg_known(&fake_reg, insn->imm);
4705 		fake_reg.type = SCALAR_VALUE;
4706 		save_register_state(state, spi, &fake_reg, size);
4707 	} else if (reg && is_spillable_regtype(reg->type)) {
4708 		/* register containing pointer is being spilled into stack */
4709 		if (size != BPF_REG_SIZE) {
4710 			verbose_linfo(env, insn_idx, "; ");
4711 			verbose(env, "invalid size of register spill\n");
4712 			return -EACCES;
4713 		}
4714 		if (state != cur && reg->type == PTR_TO_STACK) {
4715 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4716 			return -EINVAL;
4717 		}
4718 		save_register_state(state, spi, reg, size);
4719 	} else {
4720 		u8 type = STACK_MISC;
4721 
4722 		/* regular write of data into stack destroys any spilled ptr */
4723 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4724 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4725 		if (is_stack_slot_special(&state->stack[spi]))
4726 			for (i = 0; i < BPF_REG_SIZE; i++)
4727 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4728 
4729 		/* only mark the slot as written if all 8 bytes were written
4730 		 * otherwise read propagation may incorrectly stop too soon
4731 		 * when stack slots are partially written.
4732 		 * This heuristic means that read propagation will be
4733 		 * conservative, since it will add reg_live_read marks
4734 		 * to stack slots all the way to first state when programs
4735 		 * writes+reads less than 8 bytes
4736 		 */
4737 		if (size == BPF_REG_SIZE)
4738 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4739 
4740 		/* when we zero initialize stack slots mark them as such */
4741 		if ((reg && register_is_null(reg)) ||
4742 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4743 			/* backtracking doesn't work for STACK_ZERO yet. */
4744 			err = mark_chain_precision(env, value_regno);
4745 			if (err)
4746 				return err;
4747 			type = STACK_ZERO;
4748 		}
4749 
4750 		/* Mark slots affected by this stack write. */
4751 		for (i = 0; i < size; i++)
4752 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4753 				type;
4754 	}
4755 	return 0;
4756 }
4757 
4758 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4759  * known to contain a variable offset.
4760  * This function checks whether the write is permitted and conservatively
4761  * tracks the effects of the write, considering that each stack slot in the
4762  * dynamic range is potentially written to.
4763  *
4764  * 'off' includes 'regno->off'.
4765  * 'value_regno' can be -1, meaning that an unknown value is being written to
4766  * the stack.
4767  *
4768  * Spilled pointers in range are not marked as written because we don't know
4769  * what's going to be actually written. This means that read propagation for
4770  * future reads cannot be terminated by this write.
4771  *
4772  * For privileged programs, uninitialized stack slots are considered
4773  * initialized by this write (even though we don't know exactly what offsets
4774  * are going to be written to). The idea is that we don't want the verifier to
4775  * reject future reads that access slots written to through variable offsets.
4776  */
4777 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4778 				     /* func where register points to */
4779 				     struct bpf_func_state *state,
4780 				     int ptr_regno, int off, int size,
4781 				     int value_regno, int insn_idx)
4782 {
4783 	struct bpf_func_state *cur; /* state of the current function */
4784 	int min_off, max_off;
4785 	int i, err;
4786 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4787 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4788 	bool writing_zero = false;
4789 	/* set if the fact that we're writing a zero is used to let any
4790 	 * stack slots remain STACK_ZERO
4791 	 */
4792 	bool zero_used = false;
4793 
4794 	cur = env->cur_state->frame[env->cur_state->curframe];
4795 	ptr_reg = &cur->regs[ptr_regno];
4796 	min_off = ptr_reg->smin_value + off;
4797 	max_off = ptr_reg->smax_value + off + size;
4798 	if (value_regno >= 0)
4799 		value_reg = &cur->regs[value_regno];
4800 	if ((value_reg && register_is_null(value_reg)) ||
4801 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4802 		writing_zero = true;
4803 
4804 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4805 	if (err)
4806 		return err;
4807 
4808 	for (i = min_off; i < max_off; i++) {
4809 		int spi;
4810 
4811 		spi = __get_spi(i);
4812 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4813 		if (err)
4814 			return err;
4815 	}
4816 
4817 	/* Variable offset writes destroy any spilled pointers in range. */
4818 	for (i = min_off; i < max_off; i++) {
4819 		u8 new_type, *stype;
4820 		int slot, spi;
4821 
4822 		slot = -i - 1;
4823 		spi = slot / BPF_REG_SIZE;
4824 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4825 		mark_stack_slot_scratched(env, spi);
4826 
4827 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4828 			/* Reject the write if range we may write to has not
4829 			 * been initialized beforehand. If we didn't reject
4830 			 * here, the ptr status would be erased below (even
4831 			 * though not all slots are actually overwritten),
4832 			 * possibly opening the door to leaks.
4833 			 *
4834 			 * We do however catch STACK_INVALID case below, and
4835 			 * only allow reading possibly uninitialized memory
4836 			 * later for CAP_PERFMON, as the write may not happen to
4837 			 * that slot.
4838 			 */
4839 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4840 				insn_idx, i);
4841 			return -EINVAL;
4842 		}
4843 
4844 		/* Erase all spilled pointers. */
4845 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4846 
4847 		/* Update the slot type. */
4848 		new_type = STACK_MISC;
4849 		if (writing_zero && *stype == STACK_ZERO) {
4850 			new_type = STACK_ZERO;
4851 			zero_used = true;
4852 		}
4853 		/* If the slot is STACK_INVALID, we check whether it's OK to
4854 		 * pretend that it will be initialized by this write. The slot
4855 		 * might not actually be written to, and so if we mark it as
4856 		 * initialized future reads might leak uninitialized memory.
4857 		 * For privileged programs, we will accept such reads to slots
4858 		 * that may or may not be written because, if we're reject
4859 		 * them, the error would be too confusing.
4860 		 */
4861 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4862 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4863 					insn_idx, i);
4864 			return -EINVAL;
4865 		}
4866 		*stype = new_type;
4867 	}
4868 	if (zero_used) {
4869 		/* backtracking doesn't work for STACK_ZERO yet. */
4870 		err = mark_chain_precision(env, value_regno);
4871 		if (err)
4872 			return err;
4873 	}
4874 	return 0;
4875 }
4876 
4877 /* When register 'dst_regno' is assigned some values from stack[min_off,
4878  * max_off), we set the register's type according to the types of the
4879  * respective stack slots. If all the stack values are known to be zeros, then
4880  * so is the destination reg. Otherwise, the register is considered to be
4881  * SCALAR. This function does not deal with register filling; the caller must
4882  * ensure that all spilled registers in the stack range have been marked as
4883  * read.
4884  */
4885 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4886 				/* func where src register points to */
4887 				struct bpf_func_state *ptr_state,
4888 				int min_off, int max_off, int dst_regno)
4889 {
4890 	struct bpf_verifier_state *vstate = env->cur_state;
4891 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4892 	int i, slot, spi;
4893 	u8 *stype;
4894 	int zeros = 0;
4895 
4896 	for (i = min_off; i < max_off; i++) {
4897 		slot = -i - 1;
4898 		spi = slot / BPF_REG_SIZE;
4899 		mark_stack_slot_scratched(env, spi);
4900 		stype = ptr_state->stack[spi].slot_type;
4901 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4902 			break;
4903 		zeros++;
4904 	}
4905 	if (zeros == max_off - min_off) {
4906 		/* any access_size read into register is zero extended,
4907 		 * so the whole register == const_zero
4908 		 */
4909 		__mark_reg_const_zero(&state->regs[dst_regno]);
4910 		/* backtracking doesn't support STACK_ZERO yet,
4911 		 * so mark it precise here, so that later
4912 		 * backtracking can stop here.
4913 		 * Backtracking may not need this if this register
4914 		 * doesn't participate in pointer adjustment.
4915 		 * Forward propagation of precise flag is not
4916 		 * necessary either. This mark is only to stop
4917 		 * backtracking. Any register that contributed
4918 		 * to const 0 was marked precise before spill.
4919 		 */
4920 		state->regs[dst_regno].precise = true;
4921 	} else {
4922 		/* have read misc data from the stack */
4923 		mark_reg_unknown(env, state->regs, dst_regno);
4924 	}
4925 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4926 }
4927 
4928 /* Read the stack at 'off' and put the results into the register indicated by
4929  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4930  * spilled reg.
4931  *
4932  * 'dst_regno' can be -1, meaning that the read value is not going to a
4933  * register.
4934  *
4935  * The access is assumed to be within the current stack bounds.
4936  */
4937 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4938 				      /* func where src register points to */
4939 				      struct bpf_func_state *reg_state,
4940 				      int off, int size, int dst_regno)
4941 {
4942 	struct bpf_verifier_state *vstate = env->cur_state;
4943 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4944 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4945 	struct bpf_reg_state *reg;
4946 	u8 *stype, type;
4947 
4948 	stype = reg_state->stack[spi].slot_type;
4949 	reg = &reg_state->stack[spi].spilled_ptr;
4950 
4951 	mark_stack_slot_scratched(env, spi);
4952 
4953 	if (is_spilled_reg(&reg_state->stack[spi])) {
4954 		u8 spill_size = 1;
4955 
4956 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4957 			spill_size++;
4958 
4959 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4960 			if (reg->type != SCALAR_VALUE) {
4961 				verbose_linfo(env, env->insn_idx, "; ");
4962 				verbose(env, "invalid size of register fill\n");
4963 				return -EACCES;
4964 			}
4965 
4966 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4967 			if (dst_regno < 0)
4968 				return 0;
4969 
4970 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4971 				/* The earlier check_reg_arg() has decided the
4972 				 * subreg_def for this insn.  Save it first.
4973 				 */
4974 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4975 
4976 				copy_register_state(&state->regs[dst_regno], reg);
4977 				state->regs[dst_regno].subreg_def = subreg_def;
4978 			} else {
4979 				for (i = 0; i < size; i++) {
4980 					type = stype[(slot - i) % BPF_REG_SIZE];
4981 					if (type == STACK_SPILL)
4982 						continue;
4983 					if (type == STACK_MISC)
4984 						continue;
4985 					if (type == STACK_INVALID && env->allow_uninit_stack)
4986 						continue;
4987 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4988 						off, i, size);
4989 					return -EACCES;
4990 				}
4991 				mark_reg_unknown(env, state->regs, dst_regno);
4992 			}
4993 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4994 			return 0;
4995 		}
4996 
4997 		if (dst_regno >= 0) {
4998 			/* restore register state from stack */
4999 			copy_register_state(&state->regs[dst_regno], reg);
5000 			/* mark reg as written since spilled pointer state likely
5001 			 * has its liveness marks cleared by is_state_visited()
5002 			 * which resets stack/reg liveness for state transitions
5003 			 */
5004 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5005 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5006 			/* If dst_regno==-1, the caller is asking us whether
5007 			 * it is acceptable to use this value as a SCALAR_VALUE
5008 			 * (e.g. for XADD).
5009 			 * We must not allow unprivileged callers to do that
5010 			 * with spilled pointers.
5011 			 */
5012 			verbose(env, "leaking pointer from stack off %d\n",
5013 				off);
5014 			return -EACCES;
5015 		}
5016 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5017 	} else {
5018 		for (i = 0; i < size; i++) {
5019 			type = stype[(slot - i) % BPF_REG_SIZE];
5020 			if (type == STACK_MISC)
5021 				continue;
5022 			if (type == STACK_ZERO)
5023 				continue;
5024 			if (type == STACK_INVALID && env->allow_uninit_stack)
5025 				continue;
5026 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5027 				off, i, size);
5028 			return -EACCES;
5029 		}
5030 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5031 		if (dst_regno >= 0)
5032 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5033 	}
5034 	return 0;
5035 }
5036 
5037 enum bpf_access_src {
5038 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5039 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5040 };
5041 
5042 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5043 					 int regno, int off, int access_size,
5044 					 bool zero_size_allowed,
5045 					 enum bpf_access_src type,
5046 					 struct bpf_call_arg_meta *meta);
5047 
5048 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5049 {
5050 	return cur_regs(env) + regno;
5051 }
5052 
5053 /* Read the stack at 'ptr_regno + off' and put the result into the register
5054  * 'dst_regno'.
5055  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5056  * but not its variable offset.
5057  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5058  *
5059  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5060  * filling registers (i.e. reads of spilled register cannot be detected when
5061  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5062  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5063  * offset; for a fixed offset check_stack_read_fixed_off should be used
5064  * instead.
5065  */
5066 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5067 				    int ptr_regno, int off, int size, int dst_regno)
5068 {
5069 	/* The state of the source register. */
5070 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5071 	struct bpf_func_state *ptr_state = func(env, reg);
5072 	int err;
5073 	int min_off, max_off;
5074 
5075 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5076 	 */
5077 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5078 					    false, ACCESS_DIRECT, NULL);
5079 	if (err)
5080 		return err;
5081 
5082 	min_off = reg->smin_value + off;
5083 	max_off = reg->smax_value + off;
5084 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5085 	return 0;
5086 }
5087 
5088 /* check_stack_read dispatches to check_stack_read_fixed_off or
5089  * check_stack_read_var_off.
5090  *
5091  * The caller must ensure that the offset falls within the allocated stack
5092  * bounds.
5093  *
5094  * 'dst_regno' is a register which will receive the value from the stack. It
5095  * can be -1, meaning that the read value is not going to a register.
5096  */
5097 static int check_stack_read(struct bpf_verifier_env *env,
5098 			    int ptr_regno, int off, int size,
5099 			    int dst_regno)
5100 {
5101 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5102 	struct bpf_func_state *state = func(env, reg);
5103 	int err;
5104 	/* Some accesses are only permitted with a static offset. */
5105 	bool var_off = !tnum_is_const(reg->var_off);
5106 
5107 	/* The offset is required to be static when reads don't go to a
5108 	 * register, in order to not leak pointers (see
5109 	 * check_stack_read_fixed_off).
5110 	 */
5111 	if (dst_regno < 0 && var_off) {
5112 		char tn_buf[48];
5113 
5114 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5115 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5116 			tn_buf, off, size);
5117 		return -EACCES;
5118 	}
5119 	/* Variable offset is prohibited for unprivileged mode for simplicity
5120 	 * since it requires corresponding support in Spectre masking for stack
5121 	 * ALU. See also retrieve_ptr_limit(). The check in
5122 	 * check_stack_access_for_ptr_arithmetic() called by
5123 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5124 	 * with variable offsets, therefore no check is required here. Further,
5125 	 * just checking it here would be insufficient as speculative stack
5126 	 * writes could still lead to unsafe speculative behaviour.
5127 	 */
5128 	if (!var_off) {
5129 		off += reg->var_off.value;
5130 		err = check_stack_read_fixed_off(env, state, off, size,
5131 						 dst_regno);
5132 	} else {
5133 		/* Variable offset stack reads need more conservative handling
5134 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5135 		 * branch.
5136 		 */
5137 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5138 					       dst_regno);
5139 	}
5140 	return err;
5141 }
5142 
5143 
5144 /* check_stack_write dispatches to check_stack_write_fixed_off or
5145  * check_stack_write_var_off.
5146  *
5147  * 'ptr_regno' is the register used as a pointer into the stack.
5148  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5149  * 'value_regno' is the register whose value we're writing to the stack. It can
5150  * be -1, meaning that we're not writing from a register.
5151  *
5152  * The caller must ensure that the offset falls within the maximum stack size.
5153  */
5154 static int check_stack_write(struct bpf_verifier_env *env,
5155 			     int ptr_regno, int off, int size,
5156 			     int value_regno, int insn_idx)
5157 {
5158 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5159 	struct bpf_func_state *state = func(env, reg);
5160 	int err;
5161 
5162 	if (tnum_is_const(reg->var_off)) {
5163 		off += reg->var_off.value;
5164 		err = check_stack_write_fixed_off(env, state, off, size,
5165 						  value_regno, insn_idx);
5166 	} else {
5167 		/* Variable offset stack reads need more conservative handling
5168 		 * than fixed offset ones.
5169 		 */
5170 		err = check_stack_write_var_off(env, state,
5171 						ptr_regno, off, size,
5172 						value_regno, insn_idx);
5173 	}
5174 	return err;
5175 }
5176 
5177 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5178 				 int off, int size, enum bpf_access_type type)
5179 {
5180 	struct bpf_reg_state *regs = cur_regs(env);
5181 	struct bpf_map *map = regs[regno].map_ptr;
5182 	u32 cap = bpf_map_flags_to_cap(map);
5183 
5184 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5185 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5186 			map->value_size, off, size);
5187 		return -EACCES;
5188 	}
5189 
5190 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5191 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5192 			map->value_size, off, size);
5193 		return -EACCES;
5194 	}
5195 
5196 	return 0;
5197 }
5198 
5199 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5200 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5201 			      int off, int size, u32 mem_size,
5202 			      bool zero_size_allowed)
5203 {
5204 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5205 	struct bpf_reg_state *reg;
5206 
5207 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5208 		return 0;
5209 
5210 	reg = &cur_regs(env)[regno];
5211 	switch (reg->type) {
5212 	case PTR_TO_MAP_KEY:
5213 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5214 			mem_size, off, size);
5215 		break;
5216 	case PTR_TO_MAP_VALUE:
5217 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5218 			mem_size, off, size);
5219 		break;
5220 	case PTR_TO_PACKET:
5221 	case PTR_TO_PACKET_META:
5222 	case PTR_TO_PACKET_END:
5223 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5224 			off, size, regno, reg->id, off, mem_size);
5225 		break;
5226 	case PTR_TO_MEM:
5227 	default:
5228 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5229 			mem_size, off, size);
5230 	}
5231 
5232 	return -EACCES;
5233 }
5234 
5235 /* check read/write into a memory region with possible variable offset */
5236 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5237 				   int off, int size, u32 mem_size,
5238 				   bool zero_size_allowed)
5239 {
5240 	struct bpf_verifier_state *vstate = env->cur_state;
5241 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5242 	struct bpf_reg_state *reg = &state->regs[regno];
5243 	int err;
5244 
5245 	/* We may have adjusted the register pointing to memory region, so we
5246 	 * need to try adding each of min_value and max_value to off
5247 	 * to make sure our theoretical access will be safe.
5248 	 *
5249 	 * The minimum value is only important with signed
5250 	 * comparisons where we can't assume the floor of a
5251 	 * value is 0.  If we are using signed variables for our
5252 	 * index'es we need to make sure that whatever we use
5253 	 * will have a set floor within our range.
5254 	 */
5255 	if (reg->smin_value < 0 &&
5256 	    (reg->smin_value == S64_MIN ||
5257 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5258 	      reg->smin_value + off < 0)) {
5259 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5260 			regno);
5261 		return -EACCES;
5262 	}
5263 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5264 				 mem_size, zero_size_allowed);
5265 	if (err) {
5266 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5267 			regno);
5268 		return err;
5269 	}
5270 
5271 	/* If we haven't set a max value then we need to bail since we can't be
5272 	 * sure we won't do bad things.
5273 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5274 	 */
5275 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5276 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5277 			regno);
5278 		return -EACCES;
5279 	}
5280 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5281 				 mem_size, zero_size_allowed);
5282 	if (err) {
5283 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5284 			regno);
5285 		return err;
5286 	}
5287 
5288 	return 0;
5289 }
5290 
5291 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5292 			       const struct bpf_reg_state *reg, int regno,
5293 			       bool fixed_off_ok)
5294 {
5295 	/* Access to this pointer-typed register or passing it to a helper
5296 	 * is only allowed in its original, unmodified form.
5297 	 */
5298 
5299 	if (reg->off < 0) {
5300 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5301 			reg_type_str(env, reg->type), regno, reg->off);
5302 		return -EACCES;
5303 	}
5304 
5305 	if (!fixed_off_ok && reg->off) {
5306 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5307 			reg_type_str(env, reg->type), regno, reg->off);
5308 		return -EACCES;
5309 	}
5310 
5311 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5312 		char tn_buf[48];
5313 
5314 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5315 		verbose(env, "variable %s access var_off=%s disallowed\n",
5316 			reg_type_str(env, reg->type), tn_buf);
5317 		return -EACCES;
5318 	}
5319 
5320 	return 0;
5321 }
5322 
5323 int check_ptr_off_reg(struct bpf_verifier_env *env,
5324 		      const struct bpf_reg_state *reg, int regno)
5325 {
5326 	return __check_ptr_off_reg(env, reg, regno, false);
5327 }
5328 
5329 static int map_kptr_match_type(struct bpf_verifier_env *env,
5330 			       struct btf_field *kptr_field,
5331 			       struct bpf_reg_state *reg, u32 regno)
5332 {
5333 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5334 	int perm_flags;
5335 	const char *reg_name = "";
5336 
5337 	if (btf_is_kernel(reg->btf)) {
5338 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5339 
5340 		/* Only unreferenced case accepts untrusted pointers */
5341 		if (kptr_field->type == BPF_KPTR_UNREF)
5342 			perm_flags |= PTR_UNTRUSTED;
5343 	} else {
5344 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5345 		if (kptr_field->type == BPF_KPTR_PERCPU)
5346 			perm_flags |= MEM_PERCPU;
5347 	}
5348 
5349 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5350 		goto bad_type;
5351 
5352 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5353 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5354 
5355 	/* For ref_ptr case, release function check should ensure we get one
5356 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5357 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5358 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5359 	 * reg->off and reg->ref_obj_id are not needed here.
5360 	 */
5361 	if (__check_ptr_off_reg(env, reg, regno, true))
5362 		return -EACCES;
5363 
5364 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5365 	 * we also need to take into account the reg->off.
5366 	 *
5367 	 * We want to support cases like:
5368 	 *
5369 	 * struct foo {
5370 	 *         struct bar br;
5371 	 *         struct baz bz;
5372 	 * };
5373 	 *
5374 	 * struct foo *v;
5375 	 * v = func();	      // PTR_TO_BTF_ID
5376 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5377 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5378 	 *                    // first member type of struct after comparison fails
5379 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5380 	 *                    // to match type
5381 	 *
5382 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5383 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5384 	 * the struct to match type against first member of struct, i.e. reject
5385 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5386 	 * strict mode to true for type match.
5387 	 */
5388 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5389 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5390 				  kptr_field->type != BPF_KPTR_UNREF))
5391 		goto bad_type;
5392 	return 0;
5393 bad_type:
5394 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5395 		reg_type_str(env, reg->type), reg_name);
5396 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5397 	if (kptr_field->type == BPF_KPTR_UNREF)
5398 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5399 			targ_name);
5400 	else
5401 		verbose(env, "\n");
5402 	return -EINVAL;
5403 }
5404 
5405 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5406  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5407  */
5408 static bool in_rcu_cs(struct bpf_verifier_env *env)
5409 {
5410 	return env->cur_state->active_rcu_lock ||
5411 	       env->cur_state->active_lock.ptr ||
5412 	       !env->prog->aux->sleepable;
5413 }
5414 
5415 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5416 BTF_SET_START(rcu_protected_types)
5417 BTF_ID(struct, prog_test_ref_kfunc)
5418 #ifdef CONFIG_CGROUPS
5419 BTF_ID(struct, cgroup)
5420 #endif
5421 BTF_ID(struct, bpf_cpumask)
5422 BTF_ID(struct, task_struct)
5423 BTF_SET_END(rcu_protected_types)
5424 
5425 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5426 {
5427 	if (!btf_is_kernel(btf))
5428 		return false;
5429 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5430 }
5431 
5432 static bool rcu_safe_kptr(const struct btf_field *field)
5433 {
5434 	const struct btf_field_kptr *kptr = &field->kptr;
5435 
5436 	return field->type == BPF_KPTR_PERCPU ||
5437 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5438 }
5439 
5440 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5441 {
5442 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5443 		if (kptr_field->type != BPF_KPTR_PERCPU)
5444 			return PTR_MAYBE_NULL | MEM_RCU;
5445 		return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5446 	}
5447 	return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5448 }
5449 
5450 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5451 				 int value_regno, int insn_idx,
5452 				 struct btf_field *kptr_field)
5453 {
5454 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5455 	int class = BPF_CLASS(insn->code);
5456 	struct bpf_reg_state *val_reg;
5457 
5458 	/* Things we already checked for in check_map_access and caller:
5459 	 *  - Reject cases where variable offset may touch kptr
5460 	 *  - size of access (must be BPF_DW)
5461 	 *  - tnum_is_const(reg->var_off)
5462 	 *  - kptr_field->offset == off + reg->var_off.value
5463 	 */
5464 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5465 	if (BPF_MODE(insn->code) != BPF_MEM) {
5466 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5467 		return -EACCES;
5468 	}
5469 
5470 	/* We only allow loading referenced kptr, since it will be marked as
5471 	 * untrusted, similar to unreferenced kptr.
5472 	 */
5473 	if (class != BPF_LDX &&
5474 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5475 		verbose(env, "store to referenced kptr disallowed\n");
5476 		return -EACCES;
5477 	}
5478 
5479 	if (class == BPF_LDX) {
5480 		val_reg = reg_state(env, value_regno);
5481 		/* We can simply mark the value_regno receiving the pointer
5482 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5483 		 */
5484 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5485 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5486 		/* For mark_ptr_or_null_reg */
5487 		val_reg->id = ++env->id_gen;
5488 	} else if (class == BPF_STX) {
5489 		val_reg = reg_state(env, value_regno);
5490 		if (!register_is_null(val_reg) &&
5491 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5492 			return -EACCES;
5493 	} else if (class == BPF_ST) {
5494 		if (insn->imm) {
5495 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5496 				kptr_field->offset);
5497 			return -EACCES;
5498 		}
5499 	} else {
5500 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5501 		return -EACCES;
5502 	}
5503 	return 0;
5504 }
5505 
5506 /* check read/write into a map element with possible variable offset */
5507 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5508 			    int off, int size, bool zero_size_allowed,
5509 			    enum bpf_access_src src)
5510 {
5511 	struct bpf_verifier_state *vstate = env->cur_state;
5512 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5513 	struct bpf_reg_state *reg = &state->regs[regno];
5514 	struct bpf_map *map = reg->map_ptr;
5515 	struct btf_record *rec;
5516 	int err, i;
5517 
5518 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5519 				      zero_size_allowed);
5520 	if (err)
5521 		return err;
5522 
5523 	if (IS_ERR_OR_NULL(map->record))
5524 		return 0;
5525 	rec = map->record;
5526 	for (i = 0; i < rec->cnt; i++) {
5527 		struct btf_field *field = &rec->fields[i];
5528 		u32 p = field->offset;
5529 
5530 		/* If any part of a field  can be touched by load/store, reject
5531 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5532 		 * it is sufficient to check x1 < y2 && y1 < x2.
5533 		 */
5534 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5535 		    p < reg->umax_value + off + size) {
5536 			switch (field->type) {
5537 			case BPF_KPTR_UNREF:
5538 			case BPF_KPTR_REF:
5539 			case BPF_KPTR_PERCPU:
5540 				if (src != ACCESS_DIRECT) {
5541 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5542 					return -EACCES;
5543 				}
5544 				if (!tnum_is_const(reg->var_off)) {
5545 					verbose(env, "kptr access cannot have variable offset\n");
5546 					return -EACCES;
5547 				}
5548 				if (p != off + reg->var_off.value) {
5549 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5550 						p, off + reg->var_off.value);
5551 					return -EACCES;
5552 				}
5553 				if (size != bpf_size_to_bytes(BPF_DW)) {
5554 					verbose(env, "kptr access size must be BPF_DW\n");
5555 					return -EACCES;
5556 				}
5557 				break;
5558 			default:
5559 				verbose(env, "%s cannot be accessed directly by load/store\n",
5560 					btf_field_type_name(field->type));
5561 				return -EACCES;
5562 			}
5563 		}
5564 	}
5565 	return 0;
5566 }
5567 
5568 #define MAX_PACKET_OFF 0xffff
5569 
5570 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5571 				       const struct bpf_call_arg_meta *meta,
5572 				       enum bpf_access_type t)
5573 {
5574 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5575 
5576 	switch (prog_type) {
5577 	/* Program types only with direct read access go here! */
5578 	case BPF_PROG_TYPE_LWT_IN:
5579 	case BPF_PROG_TYPE_LWT_OUT:
5580 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5581 	case BPF_PROG_TYPE_SK_REUSEPORT:
5582 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5583 	case BPF_PROG_TYPE_CGROUP_SKB:
5584 		if (t == BPF_WRITE)
5585 			return false;
5586 		fallthrough;
5587 
5588 	/* Program types with direct read + write access go here! */
5589 	case BPF_PROG_TYPE_SCHED_CLS:
5590 	case BPF_PROG_TYPE_SCHED_ACT:
5591 	case BPF_PROG_TYPE_XDP:
5592 	case BPF_PROG_TYPE_LWT_XMIT:
5593 	case BPF_PROG_TYPE_SK_SKB:
5594 	case BPF_PROG_TYPE_SK_MSG:
5595 		if (meta)
5596 			return meta->pkt_access;
5597 
5598 		env->seen_direct_write = true;
5599 		return true;
5600 
5601 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5602 		if (t == BPF_WRITE)
5603 			env->seen_direct_write = true;
5604 
5605 		return true;
5606 
5607 	default:
5608 		return false;
5609 	}
5610 }
5611 
5612 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5613 			       int size, bool zero_size_allowed)
5614 {
5615 	struct bpf_reg_state *regs = cur_regs(env);
5616 	struct bpf_reg_state *reg = &regs[regno];
5617 	int err;
5618 
5619 	/* We may have added a variable offset to the packet pointer; but any
5620 	 * reg->range we have comes after that.  We are only checking the fixed
5621 	 * offset.
5622 	 */
5623 
5624 	/* We don't allow negative numbers, because we aren't tracking enough
5625 	 * detail to prove they're safe.
5626 	 */
5627 	if (reg->smin_value < 0) {
5628 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5629 			regno);
5630 		return -EACCES;
5631 	}
5632 
5633 	err = reg->range < 0 ? -EINVAL :
5634 	      __check_mem_access(env, regno, off, size, reg->range,
5635 				 zero_size_allowed);
5636 	if (err) {
5637 		verbose(env, "R%d offset is outside of the packet\n", regno);
5638 		return err;
5639 	}
5640 
5641 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5642 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5643 	 * otherwise find_good_pkt_pointers would have refused to set range info
5644 	 * that __check_mem_access would have rejected this pkt access.
5645 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5646 	 */
5647 	env->prog->aux->max_pkt_offset =
5648 		max_t(u32, env->prog->aux->max_pkt_offset,
5649 		      off + reg->umax_value + size - 1);
5650 
5651 	return err;
5652 }
5653 
5654 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5655 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5656 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5657 			    struct btf **btf, u32 *btf_id)
5658 {
5659 	struct bpf_insn_access_aux info = {
5660 		.reg_type = *reg_type,
5661 		.log = &env->log,
5662 	};
5663 
5664 	if (env->ops->is_valid_access &&
5665 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5666 		/* A non zero info.ctx_field_size indicates that this field is a
5667 		 * candidate for later verifier transformation to load the whole
5668 		 * field and then apply a mask when accessed with a narrower
5669 		 * access than actual ctx access size. A zero info.ctx_field_size
5670 		 * will only allow for whole field access and rejects any other
5671 		 * type of narrower access.
5672 		 */
5673 		*reg_type = info.reg_type;
5674 
5675 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5676 			*btf = info.btf;
5677 			*btf_id = info.btf_id;
5678 		} else {
5679 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5680 		}
5681 		/* remember the offset of last byte accessed in ctx */
5682 		if (env->prog->aux->max_ctx_offset < off + size)
5683 			env->prog->aux->max_ctx_offset = off + size;
5684 		return 0;
5685 	}
5686 
5687 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5688 	return -EACCES;
5689 }
5690 
5691 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5692 				  int size)
5693 {
5694 	if (size < 0 || off < 0 ||
5695 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5696 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5697 			off, size);
5698 		return -EACCES;
5699 	}
5700 	return 0;
5701 }
5702 
5703 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5704 			     u32 regno, int off, int size,
5705 			     enum bpf_access_type t)
5706 {
5707 	struct bpf_reg_state *regs = cur_regs(env);
5708 	struct bpf_reg_state *reg = &regs[regno];
5709 	struct bpf_insn_access_aux info = {};
5710 	bool valid;
5711 
5712 	if (reg->smin_value < 0) {
5713 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5714 			regno);
5715 		return -EACCES;
5716 	}
5717 
5718 	switch (reg->type) {
5719 	case PTR_TO_SOCK_COMMON:
5720 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5721 		break;
5722 	case PTR_TO_SOCKET:
5723 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5724 		break;
5725 	case PTR_TO_TCP_SOCK:
5726 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5727 		break;
5728 	case PTR_TO_XDP_SOCK:
5729 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5730 		break;
5731 	default:
5732 		valid = false;
5733 	}
5734 
5735 
5736 	if (valid) {
5737 		env->insn_aux_data[insn_idx].ctx_field_size =
5738 			info.ctx_field_size;
5739 		return 0;
5740 	}
5741 
5742 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5743 		regno, reg_type_str(env, reg->type), off, size);
5744 
5745 	return -EACCES;
5746 }
5747 
5748 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5749 {
5750 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5751 }
5752 
5753 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5754 {
5755 	const struct bpf_reg_state *reg = reg_state(env, regno);
5756 
5757 	return reg->type == PTR_TO_CTX;
5758 }
5759 
5760 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5761 {
5762 	const struct bpf_reg_state *reg = reg_state(env, regno);
5763 
5764 	return type_is_sk_pointer(reg->type);
5765 }
5766 
5767 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5768 {
5769 	const struct bpf_reg_state *reg = reg_state(env, regno);
5770 
5771 	return type_is_pkt_pointer(reg->type);
5772 }
5773 
5774 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5775 {
5776 	const struct bpf_reg_state *reg = reg_state(env, regno);
5777 
5778 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5779 	return reg->type == PTR_TO_FLOW_KEYS;
5780 }
5781 
5782 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5783 #ifdef CONFIG_NET
5784 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5785 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5786 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5787 #endif
5788 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5789 };
5790 
5791 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5792 {
5793 	/* A referenced register is always trusted. */
5794 	if (reg->ref_obj_id)
5795 		return true;
5796 
5797 	/* Types listed in the reg2btf_ids are always trusted */
5798 	if (reg2btf_ids[base_type(reg->type)])
5799 		return true;
5800 
5801 	/* If a register is not referenced, it is trusted if it has the
5802 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5803 	 * other type modifiers may be safe, but we elect to take an opt-in
5804 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5805 	 * not.
5806 	 *
5807 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5808 	 * for whether a register is trusted.
5809 	 */
5810 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5811 	       !bpf_type_has_unsafe_modifiers(reg->type);
5812 }
5813 
5814 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5815 {
5816 	return reg->type & MEM_RCU;
5817 }
5818 
5819 static void clear_trusted_flags(enum bpf_type_flag *flag)
5820 {
5821 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5822 }
5823 
5824 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5825 				   const struct bpf_reg_state *reg,
5826 				   int off, int size, bool strict)
5827 {
5828 	struct tnum reg_off;
5829 	int ip_align;
5830 
5831 	/* Byte size accesses are always allowed. */
5832 	if (!strict || size == 1)
5833 		return 0;
5834 
5835 	/* For platforms that do not have a Kconfig enabling
5836 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5837 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5838 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5839 	 * to this code only in strict mode where we want to emulate
5840 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5841 	 * unconditional IP align value of '2'.
5842 	 */
5843 	ip_align = 2;
5844 
5845 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5846 	if (!tnum_is_aligned(reg_off, size)) {
5847 		char tn_buf[48];
5848 
5849 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5850 		verbose(env,
5851 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5852 			ip_align, tn_buf, reg->off, off, size);
5853 		return -EACCES;
5854 	}
5855 
5856 	return 0;
5857 }
5858 
5859 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5860 				       const struct bpf_reg_state *reg,
5861 				       const char *pointer_desc,
5862 				       int off, int size, bool strict)
5863 {
5864 	struct tnum reg_off;
5865 
5866 	/* Byte size accesses are always allowed. */
5867 	if (!strict || size == 1)
5868 		return 0;
5869 
5870 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5871 	if (!tnum_is_aligned(reg_off, size)) {
5872 		char tn_buf[48];
5873 
5874 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5875 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5876 			pointer_desc, tn_buf, reg->off, off, size);
5877 		return -EACCES;
5878 	}
5879 
5880 	return 0;
5881 }
5882 
5883 static int check_ptr_alignment(struct bpf_verifier_env *env,
5884 			       const struct bpf_reg_state *reg, int off,
5885 			       int size, bool strict_alignment_once)
5886 {
5887 	bool strict = env->strict_alignment || strict_alignment_once;
5888 	const char *pointer_desc = "";
5889 
5890 	switch (reg->type) {
5891 	case PTR_TO_PACKET:
5892 	case PTR_TO_PACKET_META:
5893 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5894 		 * right in front, treat it the very same way.
5895 		 */
5896 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5897 	case PTR_TO_FLOW_KEYS:
5898 		pointer_desc = "flow keys ";
5899 		break;
5900 	case PTR_TO_MAP_KEY:
5901 		pointer_desc = "key ";
5902 		break;
5903 	case PTR_TO_MAP_VALUE:
5904 		pointer_desc = "value ";
5905 		break;
5906 	case PTR_TO_CTX:
5907 		pointer_desc = "context ";
5908 		break;
5909 	case PTR_TO_STACK:
5910 		pointer_desc = "stack ";
5911 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5912 		 * and check_stack_read_fixed_off() relies on stack accesses being
5913 		 * aligned.
5914 		 */
5915 		strict = true;
5916 		break;
5917 	case PTR_TO_SOCKET:
5918 		pointer_desc = "sock ";
5919 		break;
5920 	case PTR_TO_SOCK_COMMON:
5921 		pointer_desc = "sock_common ";
5922 		break;
5923 	case PTR_TO_TCP_SOCK:
5924 		pointer_desc = "tcp_sock ";
5925 		break;
5926 	case PTR_TO_XDP_SOCK:
5927 		pointer_desc = "xdp_sock ";
5928 		break;
5929 	default:
5930 		break;
5931 	}
5932 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5933 					   strict);
5934 }
5935 
5936 static int update_stack_depth(struct bpf_verifier_env *env,
5937 			      const struct bpf_func_state *func,
5938 			      int off)
5939 {
5940 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5941 
5942 	if (stack >= -off)
5943 		return 0;
5944 
5945 	/* update known max for given subprogram */
5946 	env->subprog_info[func->subprogno].stack_depth = -off;
5947 	return 0;
5948 }
5949 
5950 /* starting from main bpf function walk all instructions of the function
5951  * and recursively walk all callees that given function can call.
5952  * Ignore jump and exit insns.
5953  * Since recursion is prevented by check_cfg() this algorithm
5954  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5955  */
5956 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5957 {
5958 	struct bpf_subprog_info *subprog = env->subprog_info;
5959 	struct bpf_insn *insn = env->prog->insnsi;
5960 	int depth = 0, frame = 0, i, subprog_end;
5961 	bool tail_call_reachable = false;
5962 	int ret_insn[MAX_CALL_FRAMES];
5963 	int ret_prog[MAX_CALL_FRAMES];
5964 	int j;
5965 
5966 	i = subprog[idx].start;
5967 process_func:
5968 	/* protect against potential stack overflow that might happen when
5969 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5970 	 * depth for such case down to 256 so that the worst case scenario
5971 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5972 	 * 8k).
5973 	 *
5974 	 * To get the idea what might happen, see an example:
5975 	 * func1 -> sub rsp, 128
5976 	 *  subfunc1 -> sub rsp, 256
5977 	 *  tailcall1 -> add rsp, 256
5978 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5979 	 *   subfunc2 -> sub rsp, 64
5980 	 *   subfunc22 -> sub rsp, 128
5981 	 *   tailcall2 -> add rsp, 128
5982 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5983 	 *
5984 	 * tailcall will unwind the current stack frame but it will not get rid
5985 	 * of caller's stack as shown on the example above.
5986 	 */
5987 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5988 		verbose(env,
5989 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5990 			depth);
5991 		return -EACCES;
5992 	}
5993 	/* round up to 32-bytes, since this is granularity
5994 	 * of interpreter stack size
5995 	 */
5996 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5997 	if (depth > MAX_BPF_STACK) {
5998 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5999 			frame + 1, depth);
6000 		return -EACCES;
6001 	}
6002 continue_func:
6003 	subprog_end = subprog[idx + 1].start;
6004 	for (; i < subprog_end; i++) {
6005 		int next_insn, sidx;
6006 
6007 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6008 			bool err = false;
6009 
6010 			if (!is_bpf_throw_kfunc(insn + i))
6011 				continue;
6012 			if (subprog[idx].is_cb)
6013 				err = true;
6014 			for (int c = 0; c < frame && !err; c++) {
6015 				if (subprog[ret_prog[c]].is_cb) {
6016 					err = true;
6017 					break;
6018 				}
6019 			}
6020 			if (!err)
6021 				continue;
6022 			verbose(env,
6023 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6024 				i, idx);
6025 			return -EINVAL;
6026 		}
6027 
6028 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6029 			continue;
6030 		/* remember insn and function to return to */
6031 		ret_insn[frame] = i + 1;
6032 		ret_prog[frame] = idx;
6033 
6034 		/* find the callee */
6035 		next_insn = i + insn[i].imm + 1;
6036 		sidx = find_subprog(env, next_insn);
6037 		if (sidx < 0) {
6038 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6039 				  next_insn);
6040 			return -EFAULT;
6041 		}
6042 		if (subprog[sidx].is_async_cb) {
6043 			if (subprog[sidx].has_tail_call) {
6044 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6045 				return -EFAULT;
6046 			}
6047 			/* async callbacks don't increase bpf prog stack size unless called directly */
6048 			if (!bpf_pseudo_call(insn + i))
6049 				continue;
6050 			if (subprog[sidx].is_exception_cb) {
6051 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6052 				return -EINVAL;
6053 			}
6054 		}
6055 		i = next_insn;
6056 		idx = sidx;
6057 
6058 		if (subprog[idx].has_tail_call)
6059 			tail_call_reachable = true;
6060 
6061 		frame++;
6062 		if (frame >= MAX_CALL_FRAMES) {
6063 			verbose(env, "the call stack of %d frames is too deep !\n",
6064 				frame);
6065 			return -E2BIG;
6066 		}
6067 		goto process_func;
6068 	}
6069 	/* if tail call got detected across bpf2bpf calls then mark each of the
6070 	 * currently present subprog frames as tail call reachable subprogs;
6071 	 * this info will be utilized by JIT so that we will be preserving the
6072 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6073 	 */
6074 	if (tail_call_reachable)
6075 		for (j = 0; j < frame; j++) {
6076 			if (subprog[ret_prog[j]].is_exception_cb) {
6077 				verbose(env, "cannot tail call within exception cb\n");
6078 				return -EINVAL;
6079 			}
6080 			subprog[ret_prog[j]].tail_call_reachable = true;
6081 		}
6082 	if (subprog[0].tail_call_reachable)
6083 		env->prog->aux->tail_call_reachable = true;
6084 
6085 	/* end of for() loop means the last insn of the 'subprog'
6086 	 * was reached. Doesn't matter whether it was JA or EXIT
6087 	 */
6088 	if (frame == 0)
6089 		return 0;
6090 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
6091 	frame--;
6092 	i = ret_insn[frame];
6093 	idx = ret_prog[frame];
6094 	goto continue_func;
6095 }
6096 
6097 static int check_max_stack_depth(struct bpf_verifier_env *env)
6098 {
6099 	struct bpf_subprog_info *si = env->subprog_info;
6100 	int ret;
6101 
6102 	for (int i = 0; i < env->subprog_cnt; i++) {
6103 		if (!i || si[i].is_async_cb) {
6104 			ret = check_max_stack_depth_subprog(env, i);
6105 			if (ret < 0)
6106 				return ret;
6107 		}
6108 		continue;
6109 	}
6110 	return 0;
6111 }
6112 
6113 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6114 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6115 				  const struct bpf_insn *insn, int idx)
6116 {
6117 	int start = idx + insn->imm + 1, subprog;
6118 
6119 	subprog = find_subprog(env, start);
6120 	if (subprog < 0) {
6121 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6122 			  start);
6123 		return -EFAULT;
6124 	}
6125 	return env->subprog_info[subprog].stack_depth;
6126 }
6127 #endif
6128 
6129 static int __check_buffer_access(struct bpf_verifier_env *env,
6130 				 const char *buf_info,
6131 				 const struct bpf_reg_state *reg,
6132 				 int regno, int off, int size)
6133 {
6134 	if (off < 0) {
6135 		verbose(env,
6136 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6137 			regno, buf_info, off, size);
6138 		return -EACCES;
6139 	}
6140 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6141 		char tn_buf[48];
6142 
6143 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6144 		verbose(env,
6145 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6146 			regno, off, tn_buf);
6147 		return -EACCES;
6148 	}
6149 
6150 	return 0;
6151 }
6152 
6153 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6154 				  const struct bpf_reg_state *reg,
6155 				  int regno, int off, int size)
6156 {
6157 	int err;
6158 
6159 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6160 	if (err)
6161 		return err;
6162 
6163 	if (off + size > env->prog->aux->max_tp_access)
6164 		env->prog->aux->max_tp_access = off + size;
6165 
6166 	return 0;
6167 }
6168 
6169 static int check_buffer_access(struct bpf_verifier_env *env,
6170 			       const struct bpf_reg_state *reg,
6171 			       int regno, int off, int size,
6172 			       bool zero_size_allowed,
6173 			       u32 *max_access)
6174 {
6175 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6176 	int err;
6177 
6178 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6179 	if (err)
6180 		return err;
6181 
6182 	if (off + size > *max_access)
6183 		*max_access = off + size;
6184 
6185 	return 0;
6186 }
6187 
6188 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6189 static void zext_32_to_64(struct bpf_reg_state *reg)
6190 {
6191 	reg->var_off = tnum_subreg(reg->var_off);
6192 	__reg_assign_32_into_64(reg);
6193 }
6194 
6195 /* truncate register to smaller size (in bytes)
6196  * must be called with size < BPF_REG_SIZE
6197  */
6198 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6199 {
6200 	u64 mask;
6201 
6202 	/* clear high bits in bit representation */
6203 	reg->var_off = tnum_cast(reg->var_off, size);
6204 
6205 	/* fix arithmetic bounds */
6206 	mask = ((u64)1 << (size * 8)) - 1;
6207 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6208 		reg->umin_value &= mask;
6209 		reg->umax_value &= mask;
6210 	} else {
6211 		reg->umin_value = 0;
6212 		reg->umax_value = mask;
6213 	}
6214 	reg->smin_value = reg->umin_value;
6215 	reg->smax_value = reg->umax_value;
6216 
6217 	/* If size is smaller than 32bit register the 32bit register
6218 	 * values are also truncated so we push 64-bit bounds into
6219 	 * 32-bit bounds. Above were truncated < 32-bits already.
6220 	 */
6221 	if (size >= 4)
6222 		return;
6223 	__reg_combine_64_into_32(reg);
6224 }
6225 
6226 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6227 {
6228 	if (size == 1) {
6229 		reg->smin_value = reg->s32_min_value = S8_MIN;
6230 		reg->smax_value = reg->s32_max_value = S8_MAX;
6231 	} else if (size == 2) {
6232 		reg->smin_value = reg->s32_min_value = S16_MIN;
6233 		reg->smax_value = reg->s32_max_value = S16_MAX;
6234 	} else {
6235 		/* size == 4 */
6236 		reg->smin_value = reg->s32_min_value = S32_MIN;
6237 		reg->smax_value = reg->s32_max_value = S32_MAX;
6238 	}
6239 	reg->umin_value = reg->u32_min_value = 0;
6240 	reg->umax_value = U64_MAX;
6241 	reg->u32_max_value = U32_MAX;
6242 	reg->var_off = tnum_unknown;
6243 }
6244 
6245 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6246 {
6247 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6248 	u64 top_smax_value, top_smin_value;
6249 	u64 num_bits = size * 8;
6250 
6251 	if (tnum_is_const(reg->var_off)) {
6252 		u64_cval = reg->var_off.value;
6253 		if (size == 1)
6254 			reg->var_off = tnum_const((s8)u64_cval);
6255 		else if (size == 2)
6256 			reg->var_off = tnum_const((s16)u64_cval);
6257 		else
6258 			/* size == 4 */
6259 			reg->var_off = tnum_const((s32)u64_cval);
6260 
6261 		u64_cval = reg->var_off.value;
6262 		reg->smax_value = reg->smin_value = u64_cval;
6263 		reg->umax_value = reg->umin_value = u64_cval;
6264 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6265 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6266 		return;
6267 	}
6268 
6269 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6270 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6271 
6272 	if (top_smax_value != top_smin_value)
6273 		goto out;
6274 
6275 	/* find the s64_min and s64_min after sign extension */
6276 	if (size == 1) {
6277 		init_s64_max = (s8)reg->smax_value;
6278 		init_s64_min = (s8)reg->smin_value;
6279 	} else if (size == 2) {
6280 		init_s64_max = (s16)reg->smax_value;
6281 		init_s64_min = (s16)reg->smin_value;
6282 	} else {
6283 		init_s64_max = (s32)reg->smax_value;
6284 		init_s64_min = (s32)reg->smin_value;
6285 	}
6286 
6287 	s64_max = max(init_s64_max, init_s64_min);
6288 	s64_min = min(init_s64_max, init_s64_min);
6289 
6290 	/* both of s64_max/s64_min positive or negative */
6291 	if ((s64_max >= 0) == (s64_min >= 0)) {
6292 		reg->smin_value = reg->s32_min_value = s64_min;
6293 		reg->smax_value = reg->s32_max_value = s64_max;
6294 		reg->umin_value = reg->u32_min_value = s64_min;
6295 		reg->umax_value = reg->u32_max_value = s64_max;
6296 		reg->var_off = tnum_range(s64_min, s64_max);
6297 		return;
6298 	}
6299 
6300 out:
6301 	set_sext64_default_val(reg, size);
6302 }
6303 
6304 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6305 {
6306 	if (size == 1) {
6307 		reg->s32_min_value = S8_MIN;
6308 		reg->s32_max_value = S8_MAX;
6309 	} else {
6310 		/* size == 2 */
6311 		reg->s32_min_value = S16_MIN;
6312 		reg->s32_max_value = S16_MAX;
6313 	}
6314 	reg->u32_min_value = 0;
6315 	reg->u32_max_value = U32_MAX;
6316 }
6317 
6318 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6319 {
6320 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6321 	u32 top_smax_value, top_smin_value;
6322 	u32 num_bits = size * 8;
6323 
6324 	if (tnum_is_const(reg->var_off)) {
6325 		u32_val = reg->var_off.value;
6326 		if (size == 1)
6327 			reg->var_off = tnum_const((s8)u32_val);
6328 		else
6329 			reg->var_off = tnum_const((s16)u32_val);
6330 
6331 		u32_val = reg->var_off.value;
6332 		reg->s32_min_value = reg->s32_max_value = u32_val;
6333 		reg->u32_min_value = reg->u32_max_value = u32_val;
6334 		return;
6335 	}
6336 
6337 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6338 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6339 
6340 	if (top_smax_value != top_smin_value)
6341 		goto out;
6342 
6343 	/* find the s32_min and s32_min after sign extension */
6344 	if (size == 1) {
6345 		init_s32_max = (s8)reg->s32_max_value;
6346 		init_s32_min = (s8)reg->s32_min_value;
6347 	} else {
6348 		/* size == 2 */
6349 		init_s32_max = (s16)reg->s32_max_value;
6350 		init_s32_min = (s16)reg->s32_min_value;
6351 	}
6352 	s32_max = max(init_s32_max, init_s32_min);
6353 	s32_min = min(init_s32_max, init_s32_min);
6354 
6355 	if ((s32_min >= 0) == (s32_max >= 0)) {
6356 		reg->s32_min_value = s32_min;
6357 		reg->s32_max_value = s32_max;
6358 		reg->u32_min_value = (u32)s32_min;
6359 		reg->u32_max_value = (u32)s32_max;
6360 		return;
6361 	}
6362 
6363 out:
6364 	set_sext32_default_val(reg, size);
6365 }
6366 
6367 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6368 {
6369 	/* A map is considered read-only if the following condition are true:
6370 	 *
6371 	 * 1) BPF program side cannot change any of the map content. The
6372 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6373 	 *    and was set at map creation time.
6374 	 * 2) The map value(s) have been initialized from user space by a
6375 	 *    loader and then "frozen", such that no new map update/delete
6376 	 *    operations from syscall side are possible for the rest of
6377 	 *    the map's lifetime from that point onwards.
6378 	 * 3) Any parallel/pending map update/delete operations from syscall
6379 	 *    side have been completed. Only after that point, it's safe to
6380 	 *    assume that map value(s) are immutable.
6381 	 */
6382 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6383 	       READ_ONCE(map->frozen) &&
6384 	       !bpf_map_write_active(map);
6385 }
6386 
6387 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6388 			       bool is_ldsx)
6389 {
6390 	void *ptr;
6391 	u64 addr;
6392 	int err;
6393 
6394 	err = map->ops->map_direct_value_addr(map, &addr, off);
6395 	if (err)
6396 		return err;
6397 	ptr = (void *)(long)addr + off;
6398 
6399 	switch (size) {
6400 	case sizeof(u8):
6401 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6402 		break;
6403 	case sizeof(u16):
6404 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6405 		break;
6406 	case sizeof(u32):
6407 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6408 		break;
6409 	case sizeof(u64):
6410 		*val = *(u64 *)ptr;
6411 		break;
6412 	default:
6413 		return -EINVAL;
6414 	}
6415 	return 0;
6416 }
6417 
6418 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6419 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6420 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6421 
6422 /*
6423  * Allow list few fields as RCU trusted or full trusted.
6424  * This logic doesn't allow mix tagging and will be removed once GCC supports
6425  * btf_type_tag.
6426  */
6427 
6428 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6429 BTF_TYPE_SAFE_RCU(struct task_struct) {
6430 	const cpumask_t *cpus_ptr;
6431 	struct css_set __rcu *cgroups;
6432 	struct task_struct __rcu *real_parent;
6433 	struct task_struct *group_leader;
6434 };
6435 
6436 BTF_TYPE_SAFE_RCU(struct cgroup) {
6437 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6438 	struct kernfs_node *kn;
6439 };
6440 
6441 BTF_TYPE_SAFE_RCU(struct css_set) {
6442 	struct cgroup *dfl_cgrp;
6443 };
6444 
6445 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6446 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6447 	struct file __rcu *exe_file;
6448 };
6449 
6450 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6451  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6452  */
6453 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6454 	struct sock *sk;
6455 };
6456 
6457 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6458 	struct sock *sk;
6459 };
6460 
6461 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6462 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6463 	struct seq_file *seq;
6464 };
6465 
6466 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6467 	struct bpf_iter_meta *meta;
6468 	struct task_struct *task;
6469 };
6470 
6471 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6472 	struct file *file;
6473 };
6474 
6475 BTF_TYPE_SAFE_TRUSTED(struct file) {
6476 	struct inode *f_inode;
6477 };
6478 
6479 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6480 	/* no negative dentry-s in places where bpf can see it */
6481 	struct inode *d_inode;
6482 };
6483 
6484 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6485 	struct sock *sk;
6486 };
6487 
6488 static bool type_is_rcu(struct bpf_verifier_env *env,
6489 			struct bpf_reg_state *reg,
6490 			const char *field_name, u32 btf_id)
6491 {
6492 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6493 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6494 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6495 
6496 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6497 }
6498 
6499 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6500 				struct bpf_reg_state *reg,
6501 				const char *field_name, u32 btf_id)
6502 {
6503 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6504 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6505 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6506 
6507 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6508 }
6509 
6510 static bool type_is_trusted(struct bpf_verifier_env *env,
6511 			    struct bpf_reg_state *reg,
6512 			    const char *field_name, u32 btf_id)
6513 {
6514 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6515 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6516 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6517 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6518 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6519 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6520 
6521 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6522 }
6523 
6524 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6525 				   struct bpf_reg_state *regs,
6526 				   int regno, int off, int size,
6527 				   enum bpf_access_type atype,
6528 				   int value_regno)
6529 {
6530 	struct bpf_reg_state *reg = regs + regno;
6531 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6532 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6533 	const char *field_name = NULL;
6534 	enum bpf_type_flag flag = 0;
6535 	u32 btf_id = 0;
6536 	int ret;
6537 
6538 	if (!env->allow_ptr_leaks) {
6539 		verbose(env,
6540 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6541 			tname);
6542 		return -EPERM;
6543 	}
6544 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6545 		verbose(env,
6546 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6547 			tname);
6548 		return -EINVAL;
6549 	}
6550 	if (off < 0) {
6551 		verbose(env,
6552 			"R%d is ptr_%s invalid negative access: off=%d\n",
6553 			regno, tname, off);
6554 		return -EACCES;
6555 	}
6556 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6557 		char tn_buf[48];
6558 
6559 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6560 		verbose(env,
6561 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6562 			regno, tname, off, tn_buf);
6563 		return -EACCES;
6564 	}
6565 
6566 	if (reg->type & MEM_USER) {
6567 		verbose(env,
6568 			"R%d is ptr_%s access user memory: off=%d\n",
6569 			regno, tname, off);
6570 		return -EACCES;
6571 	}
6572 
6573 	if (reg->type & MEM_PERCPU) {
6574 		verbose(env,
6575 			"R%d is ptr_%s access percpu memory: off=%d\n",
6576 			regno, tname, off);
6577 		return -EACCES;
6578 	}
6579 
6580 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6581 		if (!btf_is_kernel(reg->btf)) {
6582 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6583 			return -EFAULT;
6584 		}
6585 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6586 	} else {
6587 		/* Writes are permitted with default btf_struct_access for
6588 		 * program allocated objects (which always have ref_obj_id > 0),
6589 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6590 		 */
6591 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6592 			verbose(env, "only read is supported\n");
6593 			return -EACCES;
6594 		}
6595 
6596 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6597 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6598 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6599 			return -EFAULT;
6600 		}
6601 
6602 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6603 	}
6604 
6605 	if (ret < 0)
6606 		return ret;
6607 
6608 	if (ret != PTR_TO_BTF_ID) {
6609 		/* just mark; */
6610 
6611 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6612 		/* If this is an untrusted pointer, all pointers formed by walking it
6613 		 * also inherit the untrusted flag.
6614 		 */
6615 		flag = PTR_UNTRUSTED;
6616 
6617 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6618 		/* By default any pointer obtained from walking a trusted pointer is no
6619 		 * longer trusted, unless the field being accessed has explicitly been
6620 		 * marked as inheriting its parent's state of trust (either full or RCU).
6621 		 * For example:
6622 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6623 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6624 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6625 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6626 		 *
6627 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6628 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6629 		 */
6630 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6631 			flag |= PTR_TRUSTED;
6632 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6633 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6634 				/* ignore __rcu tag and mark it MEM_RCU */
6635 				flag |= MEM_RCU;
6636 			} else if (flag & MEM_RCU ||
6637 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6638 				/* __rcu tagged pointers can be NULL */
6639 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6640 
6641 				/* We always trust them */
6642 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6643 				    flag & PTR_UNTRUSTED)
6644 					flag &= ~PTR_UNTRUSTED;
6645 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6646 				/* keep as-is */
6647 			} else {
6648 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6649 				clear_trusted_flags(&flag);
6650 			}
6651 		} else {
6652 			/*
6653 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6654 			 * aggressively mark as untrusted otherwise such
6655 			 * pointers will be plain PTR_TO_BTF_ID without flags
6656 			 * and will be allowed to be passed into helpers for
6657 			 * compat reasons.
6658 			 */
6659 			flag = PTR_UNTRUSTED;
6660 		}
6661 	} else {
6662 		/* Old compat. Deprecated */
6663 		clear_trusted_flags(&flag);
6664 	}
6665 
6666 	if (atype == BPF_READ && value_regno >= 0)
6667 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6668 
6669 	return 0;
6670 }
6671 
6672 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6673 				   struct bpf_reg_state *regs,
6674 				   int regno, int off, int size,
6675 				   enum bpf_access_type atype,
6676 				   int value_regno)
6677 {
6678 	struct bpf_reg_state *reg = regs + regno;
6679 	struct bpf_map *map = reg->map_ptr;
6680 	struct bpf_reg_state map_reg;
6681 	enum bpf_type_flag flag = 0;
6682 	const struct btf_type *t;
6683 	const char *tname;
6684 	u32 btf_id;
6685 	int ret;
6686 
6687 	if (!btf_vmlinux) {
6688 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6689 		return -ENOTSUPP;
6690 	}
6691 
6692 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6693 		verbose(env, "map_ptr access not supported for map type %d\n",
6694 			map->map_type);
6695 		return -ENOTSUPP;
6696 	}
6697 
6698 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6699 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6700 
6701 	if (!env->allow_ptr_leaks) {
6702 		verbose(env,
6703 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6704 			tname);
6705 		return -EPERM;
6706 	}
6707 
6708 	if (off < 0) {
6709 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6710 			regno, tname, off);
6711 		return -EACCES;
6712 	}
6713 
6714 	if (atype != BPF_READ) {
6715 		verbose(env, "only read from %s is supported\n", tname);
6716 		return -EACCES;
6717 	}
6718 
6719 	/* Simulate access to a PTR_TO_BTF_ID */
6720 	memset(&map_reg, 0, sizeof(map_reg));
6721 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6722 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6723 	if (ret < 0)
6724 		return ret;
6725 
6726 	if (value_regno >= 0)
6727 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6728 
6729 	return 0;
6730 }
6731 
6732 /* Check that the stack access at the given offset is within bounds. The
6733  * maximum valid offset is -1.
6734  *
6735  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6736  * -state->allocated_stack for reads.
6737  */
6738 static int check_stack_slot_within_bounds(int off,
6739 					  struct bpf_func_state *state,
6740 					  enum bpf_access_type t)
6741 {
6742 	int min_valid_off;
6743 
6744 	if (t == BPF_WRITE)
6745 		min_valid_off = -MAX_BPF_STACK;
6746 	else
6747 		min_valid_off = -state->allocated_stack;
6748 
6749 	if (off < min_valid_off || off > -1)
6750 		return -EACCES;
6751 	return 0;
6752 }
6753 
6754 /* Check that the stack access at 'regno + off' falls within the maximum stack
6755  * bounds.
6756  *
6757  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6758  */
6759 static int check_stack_access_within_bounds(
6760 		struct bpf_verifier_env *env,
6761 		int regno, int off, int access_size,
6762 		enum bpf_access_src src, enum bpf_access_type type)
6763 {
6764 	struct bpf_reg_state *regs = cur_regs(env);
6765 	struct bpf_reg_state *reg = regs + regno;
6766 	struct bpf_func_state *state = func(env, reg);
6767 	int min_off, max_off;
6768 	int err;
6769 	char *err_extra;
6770 
6771 	if (src == ACCESS_HELPER)
6772 		/* We don't know if helpers are reading or writing (or both). */
6773 		err_extra = " indirect access to";
6774 	else if (type == BPF_READ)
6775 		err_extra = " read from";
6776 	else
6777 		err_extra = " write to";
6778 
6779 	if (tnum_is_const(reg->var_off)) {
6780 		min_off = reg->var_off.value + off;
6781 		if (access_size > 0)
6782 			max_off = min_off + access_size - 1;
6783 		else
6784 			max_off = min_off;
6785 	} else {
6786 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6787 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6788 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6789 				err_extra, regno);
6790 			return -EACCES;
6791 		}
6792 		min_off = reg->smin_value + off;
6793 		if (access_size > 0)
6794 			max_off = reg->smax_value + off + access_size - 1;
6795 		else
6796 			max_off = min_off;
6797 	}
6798 
6799 	err = check_stack_slot_within_bounds(min_off, state, type);
6800 	if (!err)
6801 		err = check_stack_slot_within_bounds(max_off, state, type);
6802 
6803 	if (err) {
6804 		if (tnum_is_const(reg->var_off)) {
6805 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6806 				err_extra, regno, off, access_size);
6807 		} else {
6808 			char tn_buf[48];
6809 
6810 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6811 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6812 				err_extra, regno, tn_buf, access_size);
6813 		}
6814 	}
6815 	return err;
6816 }
6817 
6818 /* check whether memory at (regno + off) is accessible for t = (read | write)
6819  * if t==write, value_regno is a register which value is stored into memory
6820  * if t==read, value_regno is a register which will receive the value from memory
6821  * if t==write && value_regno==-1, some unknown value is stored into memory
6822  * if t==read && value_regno==-1, don't care what we read from memory
6823  */
6824 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6825 			    int off, int bpf_size, enum bpf_access_type t,
6826 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6827 {
6828 	struct bpf_reg_state *regs = cur_regs(env);
6829 	struct bpf_reg_state *reg = regs + regno;
6830 	struct bpf_func_state *state;
6831 	int size, err = 0;
6832 
6833 	size = bpf_size_to_bytes(bpf_size);
6834 	if (size < 0)
6835 		return size;
6836 
6837 	/* alignment checks will add in reg->off themselves */
6838 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6839 	if (err)
6840 		return err;
6841 
6842 	/* for access checks, reg->off is just part of off */
6843 	off += reg->off;
6844 
6845 	if (reg->type == PTR_TO_MAP_KEY) {
6846 		if (t == BPF_WRITE) {
6847 			verbose(env, "write to change key R%d not allowed\n", regno);
6848 			return -EACCES;
6849 		}
6850 
6851 		err = check_mem_region_access(env, regno, off, size,
6852 					      reg->map_ptr->key_size, false);
6853 		if (err)
6854 			return err;
6855 		if (value_regno >= 0)
6856 			mark_reg_unknown(env, regs, value_regno);
6857 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6858 		struct btf_field *kptr_field = NULL;
6859 
6860 		if (t == BPF_WRITE && value_regno >= 0 &&
6861 		    is_pointer_value(env, value_regno)) {
6862 			verbose(env, "R%d leaks addr into map\n", value_regno);
6863 			return -EACCES;
6864 		}
6865 		err = check_map_access_type(env, regno, off, size, t);
6866 		if (err)
6867 			return err;
6868 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6869 		if (err)
6870 			return err;
6871 		if (tnum_is_const(reg->var_off))
6872 			kptr_field = btf_record_find(reg->map_ptr->record,
6873 						     off + reg->var_off.value, BPF_KPTR);
6874 		if (kptr_field) {
6875 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6876 		} else if (t == BPF_READ && value_regno >= 0) {
6877 			struct bpf_map *map = reg->map_ptr;
6878 
6879 			/* if map is read-only, track its contents as scalars */
6880 			if (tnum_is_const(reg->var_off) &&
6881 			    bpf_map_is_rdonly(map) &&
6882 			    map->ops->map_direct_value_addr) {
6883 				int map_off = off + reg->var_off.value;
6884 				u64 val = 0;
6885 
6886 				err = bpf_map_direct_read(map, map_off, size,
6887 							  &val, is_ldsx);
6888 				if (err)
6889 					return err;
6890 
6891 				regs[value_regno].type = SCALAR_VALUE;
6892 				__mark_reg_known(&regs[value_regno], val);
6893 			} else {
6894 				mark_reg_unknown(env, regs, value_regno);
6895 			}
6896 		}
6897 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6898 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6899 
6900 		if (type_may_be_null(reg->type)) {
6901 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6902 				reg_type_str(env, reg->type));
6903 			return -EACCES;
6904 		}
6905 
6906 		if (t == BPF_WRITE && rdonly_mem) {
6907 			verbose(env, "R%d cannot write into %s\n",
6908 				regno, reg_type_str(env, reg->type));
6909 			return -EACCES;
6910 		}
6911 
6912 		if (t == BPF_WRITE && value_regno >= 0 &&
6913 		    is_pointer_value(env, value_regno)) {
6914 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6915 			return -EACCES;
6916 		}
6917 
6918 		err = check_mem_region_access(env, regno, off, size,
6919 					      reg->mem_size, false);
6920 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6921 			mark_reg_unknown(env, regs, value_regno);
6922 	} else if (reg->type == PTR_TO_CTX) {
6923 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6924 		struct btf *btf = NULL;
6925 		u32 btf_id = 0;
6926 
6927 		if (t == BPF_WRITE && value_regno >= 0 &&
6928 		    is_pointer_value(env, value_regno)) {
6929 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6930 			return -EACCES;
6931 		}
6932 
6933 		err = check_ptr_off_reg(env, reg, regno);
6934 		if (err < 0)
6935 			return err;
6936 
6937 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6938 				       &btf_id);
6939 		if (err)
6940 			verbose_linfo(env, insn_idx, "; ");
6941 		if (!err && t == BPF_READ && value_regno >= 0) {
6942 			/* ctx access returns either a scalar, or a
6943 			 * PTR_TO_PACKET[_META,_END]. In the latter
6944 			 * case, we know the offset is zero.
6945 			 */
6946 			if (reg_type == SCALAR_VALUE) {
6947 				mark_reg_unknown(env, regs, value_regno);
6948 			} else {
6949 				mark_reg_known_zero(env, regs,
6950 						    value_regno);
6951 				if (type_may_be_null(reg_type))
6952 					regs[value_regno].id = ++env->id_gen;
6953 				/* A load of ctx field could have different
6954 				 * actual load size with the one encoded in the
6955 				 * insn. When the dst is PTR, it is for sure not
6956 				 * a sub-register.
6957 				 */
6958 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6959 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6960 					regs[value_regno].btf = btf;
6961 					regs[value_regno].btf_id = btf_id;
6962 				}
6963 			}
6964 			regs[value_regno].type = reg_type;
6965 		}
6966 
6967 	} else if (reg->type == PTR_TO_STACK) {
6968 		/* Basic bounds checks. */
6969 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6970 		if (err)
6971 			return err;
6972 
6973 		state = func(env, reg);
6974 		err = update_stack_depth(env, state, off);
6975 		if (err)
6976 			return err;
6977 
6978 		if (t == BPF_READ)
6979 			err = check_stack_read(env, regno, off, size,
6980 					       value_regno);
6981 		else
6982 			err = check_stack_write(env, regno, off, size,
6983 						value_regno, insn_idx);
6984 	} else if (reg_is_pkt_pointer(reg)) {
6985 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6986 			verbose(env, "cannot write into packet\n");
6987 			return -EACCES;
6988 		}
6989 		if (t == BPF_WRITE && value_regno >= 0 &&
6990 		    is_pointer_value(env, value_regno)) {
6991 			verbose(env, "R%d leaks addr into packet\n",
6992 				value_regno);
6993 			return -EACCES;
6994 		}
6995 		err = check_packet_access(env, regno, off, size, false);
6996 		if (!err && t == BPF_READ && value_regno >= 0)
6997 			mark_reg_unknown(env, regs, value_regno);
6998 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6999 		if (t == BPF_WRITE && value_regno >= 0 &&
7000 		    is_pointer_value(env, value_regno)) {
7001 			verbose(env, "R%d leaks addr into flow keys\n",
7002 				value_regno);
7003 			return -EACCES;
7004 		}
7005 
7006 		err = check_flow_keys_access(env, off, size);
7007 		if (!err && t == BPF_READ && value_regno >= 0)
7008 			mark_reg_unknown(env, regs, value_regno);
7009 	} else if (type_is_sk_pointer(reg->type)) {
7010 		if (t == BPF_WRITE) {
7011 			verbose(env, "R%d cannot write into %s\n",
7012 				regno, reg_type_str(env, reg->type));
7013 			return -EACCES;
7014 		}
7015 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7016 		if (!err && value_regno >= 0)
7017 			mark_reg_unknown(env, regs, value_regno);
7018 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7019 		err = check_tp_buffer_access(env, reg, regno, off, size);
7020 		if (!err && t == BPF_READ && value_regno >= 0)
7021 			mark_reg_unknown(env, regs, value_regno);
7022 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7023 		   !type_may_be_null(reg->type)) {
7024 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7025 					      value_regno);
7026 	} else if (reg->type == CONST_PTR_TO_MAP) {
7027 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7028 					      value_regno);
7029 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7030 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7031 		u32 *max_access;
7032 
7033 		if (rdonly_mem) {
7034 			if (t == BPF_WRITE) {
7035 				verbose(env, "R%d cannot write into %s\n",
7036 					regno, reg_type_str(env, reg->type));
7037 				return -EACCES;
7038 			}
7039 			max_access = &env->prog->aux->max_rdonly_access;
7040 		} else {
7041 			max_access = &env->prog->aux->max_rdwr_access;
7042 		}
7043 
7044 		err = check_buffer_access(env, reg, regno, off, size, false,
7045 					  max_access);
7046 
7047 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7048 			mark_reg_unknown(env, regs, value_regno);
7049 	} else {
7050 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7051 			reg_type_str(env, reg->type));
7052 		return -EACCES;
7053 	}
7054 
7055 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7056 	    regs[value_regno].type == SCALAR_VALUE) {
7057 		if (!is_ldsx)
7058 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7059 			coerce_reg_to_size(&regs[value_regno], size);
7060 		else
7061 			coerce_reg_to_size_sx(&regs[value_regno], size);
7062 	}
7063 	return err;
7064 }
7065 
7066 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7067 {
7068 	int load_reg;
7069 	int err;
7070 
7071 	switch (insn->imm) {
7072 	case BPF_ADD:
7073 	case BPF_ADD | BPF_FETCH:
7074 	case BPF_AND:
7075 	case BPF_AND | BPF_FETCH:
7076 	case BPF_OR:
7077 	case BPF_OR | BPF_FETCH:
7078 	case BPF_XOR:
7079 	case BPF_XOR | BPF_FETCH:
7080 	case BPF_XCHG:
7081 	case BPF_CMPXCHG:
7082 		break;
7083 	default:
7084 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7085 		return -EINVAL;
7086 	}
7087 
7088 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7089 		verbose(env, "invalid atomic operand size\n");
7090 		return -EINVAL;
7091 	}
7092 
7093 	/* check src1 operand */
7094 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7095 	if (err)
7096 		return err;
7097 
7098 	/* check src2 operand */
7099 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7100 	if (err)
7101 		return err;
7102 
7103 	if (insn->imm == BPF_CMPXCHG) {
7104 		/* Check comparison of R0 with memory location */
7105 		const u32 aux_reg = BPF_REG_0;
7106 
7107 		err = check_reg_arg(env, aux_reg, SRC_OP);
7108 		if (err)
7109 			return err;
7110 
7111 		if (is_pointer_value(env, aux_reg)) {
7112 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7113 			return -EACCES;
7114 		}
7115 	}
7116 
7117 	if (is_pointer_value(env, insn->src_reg)) {
7118 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7119 		return -EACCES;
7120 	}
7121 
7122 	if (is_ctx_reg(env, insn->dst_reg) ||
7123 	    is_pkt_reg(env, insn->dst_reg) ||
7124 	    is_flow_key_reg(env, insn->dst_reg) ||
7125 	    is_sk_reg(env, insn->dst_reg)) {
7126 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7127 			insn->dst_reg,
7128 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7129 		return -EACCES;
7130 	}
7131 
7132 	if (insn->imm & BPF_FETCH) {
7133 		if (insn->imm == BPF_CMPXCHG)
7134 			load_reg = BPF_REG_0;
7135 		else
7136 			load_reg = insn->src_reg;
7137 
7138 		/* check and record load of old value */
7139 		err = check_reg_arg(env, load_reg, DST_OP);
7140 		if (err)
7141 			return err;
7142 	} else {
7143 		/* This instruction accesses a memory location but doesn't
7144 		 * actually load it into a register.
7145 		 */
7146 		load_reg = -1;
7147 	}
7148 
7149 	/* Check whether we can read the memory, with second call for fetch
7150 	 * case to simulate the register fill.
7151 	 */
7152 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7153 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7154 	if (!err && load_reg >= 0)
7155 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7156 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7157 				       true, false);
7158 	if (err)
7159 		return err;
7160 
7161 	/* Check whether we can write into the same memory. */
7162 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7163 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7164 	if (err)
7165 		return err;
7166 
7167 	return 0;
7168 }
7169 
7170 /* When register 'regno' is used to read the stack (either directly or through
7171  * a helper function) make sure that it's within stack boundary and, depending
7172  * on the access type, that all elements of the stack are initialized.
7173  *
7174  * 'off' includes 'regno->off', but not its dynamic part (if any).
7175  *
7176  * All registers that have been spilled on the stack in the slots within the
7177  * read offsets are marked as read.
7178  */
7179 static int check_stack_range_initialized(
7180 		struct bpf_verifier_env *env, int regno, int off,
7181 		int access_size, bool zero_size_allowed,
7182 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7183 {
7184 	struct bpf_reg_state *reg = reg_state(env, regno);
7185 	struct bpf_func_state *state = func(env, reg);
7186 	int err, min_off, max_off, i, j, slot, spi;
7187 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7188 	enum bpf_access_type bounds_check_type;
7189 	/* Some accesses can write anything into the stack, others are
7190 	 * read-only.
7191 	 */
7192 	bool clobber = false;
7193 
7194 	if (access_size == 0 && !zero_size_allowed) {
7195 		verbose(env, "invalid zero-sized read\n");
7196 		return -EACCES;
7197 	}
7198 
7199 	if (type == ACCESS_HELPER) {
7200 		/* The bounds checks for writes are more permissive than for
7201 		 * reads. However, if raw_mode is not set, we'll do extra
7202 		 * checks below.
7203 		 */
7204 		bounds_check_type = BPF_WRITE;
7205 		clobber = true;
7206 	} else {
7207 		bounds_check_type = BPF_READ;
7208 	}
7209 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7210 					       type, bounds_check_type);
7211 	if (err)
7212 		return err;
7213 
7214 
7215 	if (tnum_is_const(reg->var_off)) {
7216 		min_off = max_off = reg->var_off.value + off;
7217 	} else {
7218 		/* Variable offset is prohibited for unprivileged mode for
7219 		 * simplicity since it requires corresponding support in
7220 		 * Spectre masking for stack ALU.
7221 		 * See also retrieve_ptr_limit().
7222 		 */
7223 		if (!env->bypass_spec_v1) {
7224 			char tn_buf[48];
7225 
7226 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7227 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7228 				regno, err_extra, tn_buf);
7229 			return -EACCES;
7230 		}
7231 		/* Only initialized buffer on stack is allowed to be accessed
7232 		 * with variable offset. With uninitialized buffer it's hard to
7233 		 * guarantee that whole memory is marked as initialized on
7234 		 * helper return since specific bounds are unknown what may
7235 		 * cause uninitialized stack leaking.
7236 		 */
7237 		if (meta && meta->raw_mode)
7238 			meta = NULL;
7239 
7240 		min_off = reg->smin_value + off;
7241 		max_off = reg->smax_value + off;
7242 	}
7243 
7244 	if (meta && meta->raw_mode) {
7245 		/* Ensure we won't be overwriting dynptrs when simulating byte
7246 		 * by byte access in check_helper_call using meta.access_size.
7247 		 * This would be a problem if we have a helper in the future
7248 		 * which takes:
7249 		 *
7250 		 *	helper(uninit_mem, len, dynptr)
7251 		 *
7252 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7253 		 * may end up writing to dynptr itself when touching memory from
7254 		 * arg 1. This can be relaxed on a case by case basis for known
7255 		 * safe cases, but reject due to the possibilitiy of aliasing by
7256 		 * default.
7257 		 */
7258 		for (i = min_off; i < max_off + access_size; i++) {
7259 			int stack_off = -i - 1;
7260 
7261 			spi = __get_spi(i);
7262 			/* raw_mode may write past allocated_stack */
7263 			if (state->allocated_stack <= stack_off)
7264 				continue;
7265 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7266 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7267 				return -EACCES;
7268 			}
7269 		}
7270 		meta->access_size = access_size;
7271 		meta->regno = regno;
7272 		return 0;
7273 	}
7274 
7275 	for (i = min_off; i < max_off + access_size; i++) {
7276 		u8 *stype;
7277 
7278 		slot = -i - 1;
7279 		spi = slot / BPF_REG_SIZE;
7280 		if (state->allocated_stack <= slot)
7281 			goto err;
7282 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7283 		if (*stype == STACK_MISC)
7284 			goto mark;
7285 		if ((*stype == STACK_ZERO) ||
7286 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7287 			if (clobber) {
7288 				/* helper can write anything into the stack */
7289 				*stype = STACK_MISC;
7290 			}
7291 			goto mark;
7292 		}
7293 
7294 		if (is_spilled_reg(&state->stack[spi]) &&
7295 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7296 		     env->allow_ptr_leaks)) {
7297 			if (clobber) {
7298 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7299 				for (j = 0; j < BPF_REG_SIZE; j++)
7300 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7301 			}
7302 			goto mark;
7303 		}
7304 
7305 err:
7306 		if (tnum_is_const(reg->var_off)) {
7307 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7308 				err_extra, regno, min_off, i - min_off, access_size);
7309 		} else {
7310 			char tn_buf[48];
7311 
7312 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7313 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7314 				err_extra, regno, tn_buf, i - min_off, access_size);
7315 		}
7316 		return -EACCES;
7317 mark:
7318 		/* reading any byte out of 8-byte 'spill_slot' will cause
7319 		 * the whole slot to be marked as 'read'
7320 		 */
7321 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7322 			      state->stack[spi].spilled_ptr.parent,
7323 			      REG_LIVE_READ64);
7324 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7325 		 * be sure that whether stack slot is written to or not. Hence,
7326 		 * we must still conservatively propagate reads upwards even if
7327 		 * helper may write to the entire memory range.
7328 		 */
7329 	}
7330 	return update_stack_depth(env, state, min_off);
7331 }
7332 
7333 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7334 				   int access_size, bool zero_size_allowed,
7335 				   struct bpf_call_arg_meta *meta)
7336 {
7337 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7338 	u32 *max_access;
7339 
7340 	switch (base_type(reg->type)) {
7341 	case PTR_TO_PACKET:
7342 	case PTR_TO_PACKET_META:
7343 		return check_packet_access(env, regno, reg->off, access_size,
7344 					   zero_size_allowed);
7345 	case PTR_TO_MAP_KEY:
7346 		if (meta && meta->raw_mode) {
7347 			verbose(env, "R%d cannot write into %s\n", regno,
7348 				reg_type_str(env, reg->type));
7349 			return -EACCES;
7350 		}
7351 		return check_mem_region_access(env, regno, reg->off, access_size,
7352 					       reg->map_ptr->key_size, false);
7353 	case PTR_TO_MAP_VALUE:
7354 		if (check_map_access_type(env, regno, reg->off, access_size,
7355 					  meta && meta->raw_mode ? BPF_WRITE :
7356 					  BPF_READ))
7357 			return -EACCES;
7358 		return check_map_access(env, regno, reg->off, access_size,
7359 					zero_size_allowed, ACCESS_HELPER);
7360 	case PTR_TO_MEM:
7361 		if (type_is_rdonly_mem(reg->type)) {
7362 			if (meta && meta->raw_mode) {
7363 				verbose(env, "R%d cannot write into %s\n", regno,
7364 					reg_type_str(env, reg->type));
7365 				return -EACCES;
7366 			}
7367 		}
7368 		return check_mem_region_access(env, regno, reg->off,
7369 					       access_size, reg->mem_size,
7370 					       zero_size_allowed);
7371 	case PTR_TO_BUF:
7372 		if (type_is_rdonly_mem(reg->type)) {
7373 			if (meta && meta->raw_mode) {
7374 				verbose(env, "R%d cannot write into %s\n", regno,
7375 					reg_type_str(env, reg->type));
7376 				return -EACCES;
7377 			}
7378 
7379 			max_access = &env->prog->aux->max_rdonly_access;
7380 		} else {
7381 			max_access = &env->prog->aux->max_rdwr_access;
7382 		}
7383 		return check_buffer_access(env, reg, regno, reg->off,
7384 					   access_size, zero_size_allowed,
7385 					   max_access);
7386 	case PTR_TO_STACK:
7387 		return check_stack_range_initialized(
7388 				env,
7389 				regno, reg->off, access_size,
7390 				zero_size_allowed, ACCESS_HELPER, meta);
7391 	case PTR_TO_BTF_ID:
7392 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7393 					       access_size, BPF_READ, -1);
7394 	case PTR_TO_CTX:
7395 		/* in case the function doesn't know how to access the context,
7396 		 * (because we are in a program of type SYSCALL for example), we
7397 		 * can not statically check its size.
7398 		 * Dynamically check it now.
7399 		 */
7400 		if (!env->ops->convert_ctx_access) {
7401 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7402 			int offset = access_size - 1;
7403 
7404 			/* Allow zero-byte read from PTR_TO_CTX */
7405 			if (access_size == 0)
7406 				return zero_size_allowed ? 0 : -EACCES;
7407 
7408 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7409 						atype, -1, false, false);
7410 		}
7411 
7412 		fallthrough;
7413 	default: /* scalar_value or invalid ptr */
7414 		/* Allow zero-byte read from NULL, regardless of pointer type */
7415 		if (zero_size_allowed && access_size == 0 &&
7416 		    register_is_null(reg))
7417 			return 0;
7418 
7419 		verbose(env, "R%d type=%s ", regno,
7420 			reg_type_str(env, reg->type));
7421 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7422 		return -EACCES;
7423 	}
7424 }
7425 
7426 static int check_mem_size_reg(struct bpf_verifier_env *env,
7427 			      struct bpf_reg_state *reg, u32 regno,
7428 			      bool zero_size_allowed,
7429 			      struct bpf_call_arg_meta *meta)
7430 {
7431 	int err;
7432 
7433 	/* This is used to refine r0 return value bounds for helpers
7434 	 * that enforce this value as an upper bound on return values.
7435 	 * See do_refine_retval_range() for helpers that can refine
7436 	 * the return value. C type of helper is u32 so we pull register
7437 	 * bound from umax_value however, if negative verifier errors
7438 	 * out. Only upper bounds can be learned because retval is an
7439 	 * int type and negative retvals are allowed.
7440 	 */
7441 	meta->msize_max_value = reg->umax_value;
7442 
7443 	/* The register is SCALAR_VALUE; the access check
7444 	 * happens using its boundaries.
7445 	 */
7446 	if (!tnum_is_const(reg->var_off))
7447 		/* For unprivileged variable accesses, disable raw
7448 		 * mode so that the program is required to
7449 		 * initialize all the memory that the helper could
7450 		 * just partially fill up.
7451 		 */
7452 		meta = NULL;
7453 
7454 	if (reg->smin_value < 0) {
7455 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7456 			regno);
7457 		return -EACCES;
7458 	}
7459 
7460 	if (reg->umin_value == 0) {
7461 		err = check_helper_mem_access(env, regno - 1, 0,
7462 					      zero_size_allowed,
7463 					      meta);
7464 		if (err)
7465 			return err;
7466 	}
7467 
7468 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7469 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7470 			regno);
7471 		return -EACCES;
7472 	}
7473 	err = check_helper_mem_access(env, regno - 1,
7474 				      reg->umax_value,
7475 				      zero_size_allowed, meta);
7476 	if (!err)
7477 		err = mark_chain_precision(env, regno);
7478 	return err;
7479 }
7480 
7481 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7482 		   u32 regno, u32 mem_size)
7483 {
7484 	bool may_be_null = type_may_be_null(reg->type);
7485 	struct bpf_reg_state saved_reg;
7486 	struct bpf_call_arg_meta meta;
7487 	int err;
7488 
7489 	if (register_is_null(reg))
7490 		return 0;
7491 
7492 	memset(&meta, 0, sizeof(meta));
7493 	/* Assuming that the register contains a value check if the memory
7494 	 * access is safe. Temporarily save and restore the register's state as
7495 	 * the conversion shouldn't be visible to a caller.
7496 	 */
7497 	if (may_be_null) {
7498 		saved_reg = *reg;
7499 		mark_ptr_not_null_reg(reg);
7500 	}
7501 
7502 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7503 	/* Check access for BPF_WRITE */
7504 	meta.raw_mode = true;
7505 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7506 
7507 	if (may_be_null)
7508 		*reg = saved_reg;
7509 
7510 	return err;
7511 }
7512 
7513 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7514 				    u32 regno)
7515 {
7516 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7517 	bool may_be_null = type_may_be_null(mem_reg->type);
7518 	struct bpf_reg_state saved_reg;
7519 	struct bpf_call_arg_meta meta;
7520 	int err;
7521 
7522 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7523 
7524 	memset(&meta, 0, sizeof(meta));
7525 
7526 	if (may_be_null) {
7527 		saved_reg = *mem_reg;
7528 		mark_ptr_not_null_reg(mem_reg);
7529 	}
7530 
7531 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7532 	/* Check access for BPF_WRITE */
7533 	meta.raw_mode = true;
7534 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7535 
7536 	if (may_be_null)
7537 		*mem_reg = saved_reg;
7538 	return err;
7539 }
7540 
7541 /* Implementation details:
7542  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7543  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7544  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7545  * Two separate bpf_obj_new will also have different reg->id.
7546  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7547  * clears reg->id after value_or_null->value transition, since the verifier only
7548  * cares about the range of access to valid map value pointer and doesn't care
7549  * about actual address of the map element.
7550  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7551  * reg->id > 0 after value_or_null->value transition. By doing so
7552  * two bpf_map_lookups will be considered two different pointers that
7553  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7554  * returned from bpf_obj_new.
7555  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7556  * dead-locks.
7557  * Since only one bpf_spin_lock is allowed the checks are simpler than
7558  * reg_is_refcounted() logic. The verifier needs to remember only
7559  * one spin_lock instead of array of acquired_refs.
7560  * cur_state->active_lock remembers which map value element or allocated
7561  * object got locked and clears it after bpf_spin_unlock.
7562  */
7563 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7564 			     bool is_lock)
7565 {
7566 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7567 	struct bpf_verifier_state *cur = env->cur_state;
7568 	bool is_const = tnum_is_const(reg->var_off);
7569 	u64 val = reg->var_off.value;
7570 	struct bpf_map *map = NULL;
7571 	struct btf *btf = NULL;
7572 	struct btf_record *rec;
7573 
7574 	if (!is_const) {
7575 		verbose(env,
7576 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7577 			regno);
7578 		return -EINVAL;
7579 	}
7580 	if (reg->type == PTR_TO_MAP_VALUE) {
7581 		map = reg->map_ptr;
7582 		if (!map->btf) {
7583 			verbose(env,
7584 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7585 				map->name);
7586 			return -EINVAL;
7587 		}
7588 	} else {
7589 		btf = reg->btf;
7590 	}
7591 
7592 	rec = reg_btf_record(reg);
7593 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7594 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7595 			map ? map->name : "kptr");
7596 		return -EINVAL;
7597 	}
7598 	if (rec->spin_lock_off != val + reg->off) {
7599 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7600 			val + reg->off, rec->spin_lock_off);
7601 		return -EINVAL;
7602 	}
7603 	if (is_lock) {
7604 		if (cur->active_lock.ptr) {
7605 			verbose(env,
7606 				"Locking two bpf_spin_locks are not allowed\n");
7607 			return -EINVAL;
7608 		}
7609 		if (map)
7610 			cur->active_lock.ptr = map;
7611 		else
7612 			cur->active_lock.ptr = btf;
7613 		cur->active_lock.id = reg->id;
7614 	} else {
7615 		void *ptr;
7616 
7617 		if (map)
7618 			ptr = map;
7619 		else
7620 			ptr = btf;
7621 
7622 		if (!cur->active_lock.ptr) {
7623 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7624 			return -EINVAL;
7625 		}
7626 		if (cur->active_lock.ptr != ptr ||
7627 		    cur->active_lock.id != reg->id) {
7628 			verbose(env, "bpf_spin_unlock of different lock\n");
7629 			return -EINVAL;
7630 		}
7631 
7632 		invalidate_non_owning_refs(env);
7633 
7634 		cur->active_lock.ptr = NULL;
7635 		cur->active_lock.id = 0;
7636 	}
7637 	return 0;
7638 }
7639 
7640 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7641 			      struct bpf_call_arg_meta *meta)
7642 {
7643 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7644 	bool is_const = tnum_is_const(reg->var_off);
7645 	struct bpf_map *map = reg->map_ptr;
7646 	u64 val = reg->var_off.value;
7647 
7648 	if (!is_const) {
7649 		verbose(env,
7650 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7651 			regno);
7652 		return -EINVAL;
7653 	}
7654 	if (!map->btf) {
7655 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7656 			map->name);
7657 		return -EINVAL;
7658 	}
7659 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7660 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7661 		return -EINVAL;
7662 	}
7663 	if (map->record->timer_off != val + reg->off) {
7664 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7665 			val + reg->off, map->record->timer_off);
7666 		return -EINVAL;
7667 	}
7668 	if (meta->map_ptr) {
7669 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7670 		return -EFAULT;
7671 	}
7672 	meta->map_uid = reg->map_uid;
7673 	meta->map_ptr = map;
7674 	return 0;
7675 }
7676 
7677 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7678 			     struct bpf_call_arg_meta *meta)
7679 {
7680 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7681 	struct bpf_map *map_ptr = reg->map_ptr;
7682 	struct btf_field *kptr_field;
7683 	u32 kptr_off;
7684 
7685 	if (!tnum_is_const(reg->var_off)) {
7686 		verbose(env,
7687 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7688 			regno);
7689 		return -EINVAL;
7690 	}
7691 	if (!map_ptr->btf) {
7692 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7693 			map_ptr->name);
7694 		return -EINVAL;
7695 	}
7696 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7697 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7698 		return -EINVAL;
7699 	}
7700 
7701 	meta->map_ptr = map_ptr;
7702 	kptr_off = reg->off + reg->var_off.value;
7703 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7704 	if (!kptr_field) {
7705 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7706 		return -EACCES;
7707 	}
7708 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7709 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7710 		return -EACCES;
7711 	}
7712 	meta->kptr_field = kptr_field;
7713 	return 0;
7714 }
7715 
7716 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7717  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7718  *
7719  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7720  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7721  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7722  *
7723  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7724  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7725  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7726  * mutate the view of the dynptr and also possibly destroy it. In the latter
7727  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7728  * memory that dynptr points to.
7729  *
7730  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7731  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7732  * readonly dynptr view yet, hence only the first case is tracked and checked.
7733  *
7734  * This is consistent with how C applies the const modifier to a struct object,
7735  * where the pointer itself inside bpf_dynptr becomes const but not what it
7736  * points to.
7737  *
7738  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7739  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7740  */
7741 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7742 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7743 {
7744 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7745 	int err;
7746 
7747 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7748 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7749 	 */
7750 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7751 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7752 		return -EFAULT;
7753 	}
7754 
7755 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7756 	 *		 constructing a mutable bpf_dynptr object.
7757 	 *
7758 	 *		 Currently, this is only possible with PTR_TO_STACK
7759 	 *		 pointing to a region of at least 16 bytes which doesn't
7760 	 *		 contain an existing bpf_dynptr.
7761 	 *
7762 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7763 	 *		 mutated or destroyed. However, the memory it points to
7764 	 *		 may be mutated.
7765 	 *
7766 	 *  None       - Points to a initialized dynptr that can be mutated and
7767 	 *		 destroyed, including mutation of the memory it points
7768 	 *		 to.
7769 	 */
7770 	if (arg_type & MEM_UNINIT) {
7771 		int i;
7772 
7773 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7774 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7775 			return -EINVAL;
7776 		}
7777 
7778 		/* we write BPF_DW bits (8 bytes) at a time */
7779 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7780 			err = check_mem_access(env, insn_idx, regno,
7781 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7782 			if (err)
7783 				return err;
7784 		}
7785 
7786 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7787 	} else /* MEM_RDONLY and None case from above */ {
7788 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7789 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7790 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7791 			return -EINVAL;
7792 		}
7793 
7794 		if (!is_dynptr_reg_valid_init(env, reg)) {
7795 			verbose(env,
7796 				"Expected an initialized dynptr as arg #%d\n",
7797 				regno);
7798 			return -EINVAL;
7799 		}
7800 
7801 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7802 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7803 			verbose(env,
7804 				"Expected a dynptr of type %s as arg #%d\n",
7805 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7806 			return -EINVAL;
7807 		}
7808 
7809 		err = mark_dynptr_read(env, reg);
7810 	}
7811 	return err;
7812 }
7813 
7814 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7815 {
7816 	struct bpf_func_state *state = func(env, reg);
7817 
7818 	return state->stack[spi].spilled_ptr.ref_obj_id;
7819 }
7820 
7821 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7822 {
7823 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7824 }
7825 
7826 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7827 {
7828 	return meta->kfunc_flags & KF_ITER_NEW;
7829 }
7830 
7831 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7832 {
7833 	return meta->kfunc_flags & KF_ITER_NEXT;
7834 }
7835 
7836 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7837 {
7838 	return meta->kfunc_flags & KF_ITER_DESTROY;
7839 }
7840 
7841 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7842 {
7843 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7844 	 * kfunc is iter state pointer
7845 	 */
7846 	return arg == 0 && is_iter_kfunc(meta);
7847 }
7848 
7849 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7850 			    struct bpf_kfunc_call_arg_meta *meta)
7851 {
7852 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7853 	const struct btf_type *t;
7854 	const struct btf_param *arg;
7855 	int spi, err, i, nr_slots;
7856 	u32 btf_id;
7857 
7858 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7859 	arg = &btf_params(meta->func_proto)[0];
7860 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7861 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7862 	nr_slots = t->size / BPF_REG_SIZE;
7863 
7864 	if (is_iter_new_kfunc(meta)) {
7865 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7866 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7867 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7868 				iter_type_str(meta->btf, btf_id), regno);
7869 			return -EINVAL;
7870 		}
7871 
7872 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7873 			err = check_mem_access(env, insn_idx, regno,
7874 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7875 			if (err)
7876 				return err;
7877 		}
7878 
7879 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7880 		if (err)
7881 			return err;
7882 	} else {
7883 		/* iter_next() or iter_destroy() expect initialized iter state*/
7884 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7885 		switch (err) {
7886 		case 0:
7887 			break;
7888 		case -EINVAL:
7889 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7890 				iter_type_str(meta->btf, btf_id), regno);
7891 			return err;
7892 		case -EPROTO:
7893 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7894 			return err;
7895 		default:
7896 			return err;
7897 		}
7898 
7899 		spi = iter_get_spi(env, reg, nr_slots);
7900 		if (spi < 0)
7901 			return spi;
7902 
7903 		err = mark_iter_read(env, reg, spi, nr_slots);
7904 		if (err)
7905 			return err;
7906 
7907 		/* remember meta->iter info for process_iter_next_call() */
7908 		meta->iter.spi = spi;
7909 		meta->iter.frameno = reg->frameno;
7910 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7911 
7912 		if (is_iter_destroy_kfunc(meta)) {
7913 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7914 			if (err)
7915 				return err;
7916 		}
7917 	}
7918 
7919 	return 0;
7920 }
7921 
7922 /* Look for a previous loop entry at insn_idx: nearest parent state
7923  * stopped at insn_idx with callsites matching those in cur->frame.
7924  */
7925 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7926 						  struct bpf_verifier_state *cur,
7927 						  int insn_idx)
7928 {
7929 	struct bpf_verifier_state_list *sl;
7930 	struct bpf_verifier_state *st;
7931 
7932 	/* Explored states are pushed in stack order, most recent states come first */
7933 	sl = *explored_state(env, insn_idx);
7934 	for (; sl; sl = sl->next) {
7935 		/* If st->branches != 0 state is a part of current DFS verification path,
7936 		 * hence cur & st for a loop.
7937 		 */
7938 		st = &sl->state;
7939 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7940 		    st->dfs_depth < cur->dfs_depth)
7941 			return st;
7942 	}
7943 
7944 	return NULL;
7945 }
7946 
7947 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7948 static bool regs_exact(const struct bpf_reg_state *rold,
7949 		       const struct bpf_reg_state *rcur,
7950 		       struct bpf_idmap *idmap);
7951 
7952 static void maybe_widen_reg(struct bpf_verifier_env *env,
7953 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7954 			    struct bpf_idmap *idmap)
7955 {
7956 	if (rold->type != SCALAR_VALUE)
7957 		return;
7958 	if (rold->type != rcur->type)
7959 		return;
7960 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7961 		return;
7962 	__mark_reg_unknown(env, rcur);
7963 }
7964 
7965 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7966 				   struct bpf_verifier_state *old,
7967 				   struct bpf_verifier_state *cur)
7968 {
7969 	struct bpf_func_state *fold, *fcur;
7970 	int i, fr;
7971 
7972 	reset_idmap_scratch(env);
7973 	for (fr = old->curframe; fr >= 0; fr--) {
7974 		fold = old->frame[fr];
7975 		fcur = cur->frame[fr];
7976 
7977 		for (i = 0; i < MAX_BPF_REG; i++)
7978 			maybe_widen_reg(env,
7979 					&fold->regs[i],
7980 					&fcur->regs[i],
7981 					&env->idmap_scratch);
7982 
7983 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7984 			if (!is_spilled_reg(&fold->stack[i]) ||
7985 			    !is_spilled_reg(&fcur->stack[i]))
7986 				continue;
7987 
7988 			maybe_widen_reg(env,
7989 					&fold->stack[i].spilled_ptr,
7990 					&fcur->stack[i].spilled_ptr,
7991 					&env->idmap_scratch);
7992 		}
7993 	}
7994 	return 0;
7995 }
7996 
7997 /* process_iter_next_call() is called when verifier gets to iterator's next
7998  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7999  * to it as just "iter_next()" in comments below.
8000  *
8001  * BPF verifier relies on a crucial contract for any iter_next()
8002  * implementation: it should *eventually* return NULL, and once that happens
8003  * it should keep returning NULL. That is, once iterator exhausts elements to
8004  * iterate, it should never reset or spuriously return new elements.
8005  *
8006  * With the assumption of such contract, process_iter_next_call() simulates
8007  * a fork in the verifier state to validate loop logic correctness and safety
8008  * without having to simulate infinite amount of iterations.
8009  *
8010  * In current state, we first assume that iter_next() returned NULL and
8011  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8012  * conditions we should not form an infinite loop and should eventually reach
8013  * exit.
8014  *
8015  * Besides that, we also fork current state and enqueue it for later
8016  * verification. In a forked state we keep iterator state as ACTIVE
8017  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8018  * also bump iteration depth to prevent erroneous infinite loop detection
8019  * later on (see iter_active_depths_differ() comment for details). In this
8020  * state we assume that we'll eventually loop back to another iter_next()
8021  * calls (it could be in exactly same location or in some other instruction,
8022  * it doesn't matter, we don't make any unnecessary assumptions about this,
8023  * everything revolves around iterator state in a stack slot, not which
8024  * instruction is calling iter_next()). When that happens, we either will come
8025  * to iter_next() with equivalent state and can conclude that next iteration
8026  * will proceed in exactly the same way as we just verified, so it's safe to
8027  * assume that loop converges. If not, we'll go on another iteration
8028  * simulation with a different input state, until all possible starting states
8029  * are validated or we reach maximum number of instructions limit.
8030  *
8031  * This way, we will either exhaustively discover all possible input states
8032  * that iterator loop can start with and eventually will converge, or we'll
8033  * effectively regress into bounded loop simulation logic and either reach
8034  * maximum number of instructions if loop is not provably convergent, or there
8035  * is some statically known limit on number of iterations (e.g., if there is
8036  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8037  *
8038  * Iteration convergence logic in is_state_visited() relies on exact
8039  * states comparison, which ignores read and precision marks.
8040  * This is necessary because read and precision marks are not finalized
8041  * while in the loop. Exact comparison might preclude convergence for
8042  * simple programs like below:
8043  *
8044  *     i = 0;
8045  *     while(iter_next(&it))
8046  *       i++;
8047  *
8048  * At each iteration step i++ would produce a new distinct state and
8049  * eventually instruction processing limit would be reached.
8050  *
8051  * To avoid such behavior speculatively forget (widen) range for
8052  * imprecise scalar registers, if those registers were not precise at the
8053  * end of the previous iteration and do not match exactly.
8054  *
8055  * This is a conservative heuristic that allows to verify wide range of programs,
8056  * however it precludes verification of programs that conjure an
8057  * imprecise value on the first loop iteration and use it as precise on a second.
8058  * For example, the following safe program would fail to verify:
8059  *
8060  *     struct bpf_num_iter it;
8061  *     int arr[10];
8062  *     int i = 0, a = 0;
8063  *     bpf_iter_num_new(&it, 0, 10);
8064  *     while (bpf_iter_num_next(&it)) {
8065  *       if (a == 0) {
8066  *         a = 1;
8067  *         i = 7; // Because i changed verifier would forget
8068  *                // it's range on second loop entry.
8069  *       } else {
8070  *         arr[i] = 42; // This would fail to verify.
8071  *       }
8072  *     }
8073  *     bpf_iter_num_destroy(&it);
8074  */
8075 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8076 				  struct bpf_kfunc_call_arg_meta *meta)
8077 {
8078 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8079 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8080 	struct bpf_reg_state *cur_iter, *queued_iter;
8081 	int iter_frameno = meta->iter.frameno;
8082 	int iter_spi = meta->iter.spi;
8083 
8084 	BTF_TYPE_EMIT(struct bpf_iter);
8085 
8086 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8087 
8088 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8089 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8090 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8091 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8092 		return -EFAULT;
8093 	}
8094 
8095 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8096 		/* Because iter_next() call is a checkpoint is_state_visitied()
8097 		 * should guarantee parent state with same call sites and insn_idx.
8098 		 */
8099 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8100 		    !same_callsites(cur_st->parent, cur_st)) {
8101 			verbose(env, "bug: bad parent state for iter next call");
8102 			return -EFAULT;
8103 		}
8104 		/* Note cur_st->parent in the call below, it is necessary to skip
8105 		 * checkpoint created for cur_st by is_state_visited()
8106 		 * right at this instruction.
8107 		 */
8108 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8109 		/* branch out active iter state */
8110 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8111 		if (!queued_st)
8112 			return -ENOMEM;
8113 
8114 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8115 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8116 		queued_iter->iter.depth++;
8117 		if (prev_st)
8118 			widen_imprecise_scalars(env, prev_st, queued_st);
8119 
8120 		queued_fr = queued_st->frame[queued_st->curframe];
8121 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8122 	}
8123 
8124 	/* switch to DRAINED state, but keep the depth unchanged */
8125 	/* mark current iter state as drained and assume returned NULL */
8126 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8127 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8128 
8129 	return 0;
8130 }
8131 
8132 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8133 {
8134 	return type == ARG_CONST_SIZE ||
8135 	       type == ARG_CONST_SIZE_OR_ZERO;
8136 }
8137 
8138 static bool arg_type_is_release(enum bpf_arg_type type)
8139 {
8140 	return type & OBJ_RELEASE;
8141 }
8142 
8143 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8144 {
8145 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8146 }
8147 
8148 static int int_ptr_type_to_size(enum bpf_arg_type type)
8149 {
8150 	if (type == ARG_PTR_TO_INT)
8151 		return sizeof(u32);
8152 	else if (type == ARG_PTR_TO_LONG)
8153 		return sizeof(u64);
8154 
8155 	return -EINVAL;
8156 }
8157 
8158 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8159 				 const struct bpf_call_arg_meta *meta,
8160 				 enum bpf_arg_type *arg_type)
8161 {
8162 	if (!meta->map_ptr) {
8163 		/* kernel subsystem misconfigured verifier */
8164 		verbose(env, "invalid map_ptr to access map->type\n");
8165 		return -EACCES;
8166 	}
8167 
8168 	switch (meta->map_ptr->map_type) {
8169 	case BPF_MAP_TYPE_SOCKMAP:
8170 	case BPF_MAP_TYPE_SOCKHASH:
8171 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8172 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8173 		} else {
8174 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8175 			return -EINVAL;
8176 		}
8177 		break;
8178 	case BPF_MAP_TYPE_BLOOM_FILTER:
8179 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8180 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8181 		break;
8182 	default:
8183 		break;
8184 	}
8185 	return 0;
8186 }
8187 
8188 struct bpf_reg_types {
8189 	const enum bpf_reg_type types[10];
8190 	u32 *btf_id;
8191 };
8192 
8193 static const struct bpf_reg_types sock_types = {
8194 	.types = {
8195 		PTR_TO_SOCK_COMMON,
8196 		PTR_TO_SOCKET,
8197 		PTR_TO_TCP_SOCK,
8198 		PTR_TO_XDP_SOCK,
8199 	},
8200 };
8201 
8202 #ifdef CONFIG_NET
8203 static const struct bpf_reg_types btf_id_sock_common_types = {
8204 	.types = {
8205 		PTR_TO_SOCK_COMMON,
8206 		PTR_TO_SOCKET,
8207 		PTR_TO_TCP_SOCK,
8208 		PTR_TO_XDP_SOCK,
8209 		PTR_TO_BTF_ID,
8210 		PTR_TO_BTF_ID | PTR_TRUSTED,
8211 	},
8212 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8213 };
8214 #endif
8215 
8216 static const struct bpf_reg_types mem_types = {
8217 	.types = {
8218 		PTR_TO_STACK,
8219 		PTR_TO_PACKET,
8220 		PTR_TO_PACKET_META,
8221 		PTR_TO_MAP_KEY,
8222 		PTR_TO_MAP_VALUE,
8223 		PTR_TO_MEM,
8224 		PTR_TO_MEM | MEM_RINGBUF,
8225 		PTR_TO_BUF,
8226 		PTR_TO_BTF_ID | PTR_TRUSTED,
8227 	},
8228 };
8229 
8230 static const struct bpf_reg_types int_ptr_types = {
8231 	.types = {
8232 		PTR_TO_STACK,
8233 		PTR_TO_PACKET,
8234 		PTR_TO_PACKET_META,
8235 		PTR_TO_MAP_KEY,
8236 		PTR_TO_MAP_VALUE,
8237 	},
8238 };
8239 
8240 static const struct bpf_reg_types spin_lock_types = {
8241 	.types = {
8242 		PTR_TO_MAP_VALUE,
8243 		PTR_TO_BTF_ID | MEM_ALLOC,
8244 	}
8245 };
8246 
8247 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8248 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8249 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8250 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8251 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8252 static const struct bpf_reg_types btf_ptr_types = {
8253 	.types = {
8254 		PTR_TO_BTF_ID,
8255 		PTR_TO_BTF_ID | PTR_TRUSTED,
8256 		PTR_TO_BTF_ID | MEM_RCU,
8257 	},
8258 };
8259 static const struct bpf_reg_types percpu_btf_ptr_types = {
8260 	.types = {
8261 		PTR_TO_BTF_ID | MEM_PERCPU,
8262 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8263 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8264 	}
8265 };
8266 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8267 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8268 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8269 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8270 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8271 static const struct bpf_reg_types dynptr_types = {
8272 	.types = {
8273 		PTR_TO_STACK,
8274 		CONST_PTR_TO_DYNPTR,
8275 	}
8276 };
8277 
8278 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8279 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8280 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8281 	[ARG_CONST_SIZE]		= &scalar_types,
8282 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8283 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8284 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8285 	[ARG_PTR_TO_CTX]		= &context_types,
8286 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8287 #ifdef CONFIG_NET
8288 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8289 #endif
8290 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8291 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8292 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8293 	[ARG_PTR_TO_MEM]		= &mem_types,
8294 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8295 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8296 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8297 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8298 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8299 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8300 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8301 	[ARG_PTR_TO_TIMER]		= &timer_types,
8302 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8303 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8304 };
8305 
8306 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8307 			  enum bpf_arg_type arg_type,
8308 			  const u32 *arg_btf_id,
8309 			  struct bpf_call_arg_meta *meta)
8310 {
8311 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8312 	enum bpf_reg_type expected, type = reg->type;
8313 	const struct bpf_reg_types *compatible;
8314 	int i, j;
8315 
8316 	compatible = compatible_reg_types[base_type(arg_type)];
8317 	if (!compatible) {
8318 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8319 		return -EFAULT;
8320 	}
8321 
8322 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8323 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8324 	 *
8325 	 * Same for MAYBE_NULL:
8326 	 *
8327 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8328 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8329 	 *
8330 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8331 	 *
8332 	 * Therefore we fold these flags depending on the arg_type before comparison.
8333 	 */
8334 	if (arg_type & MEM_RDONLY)
8335 		type &= ~MEM_RDONLY;
8336 	if (arg_type & PTR_MAYBE_NULL)
8337 		type &= ~PTR_MAYBE_NULL;
8338 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8339 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8340 
8341 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8342 		type &= ~MEM_ALLOC;
8343 		type &= ~MEM_PERCPU;
8344 	}
8345 
8346 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8347 		expected = compatible->types[i];
8348 		if (expected == NOT_INIT)
8349 			break;
8350 
8351 		if (type == expected)
8352 			goto found;
8353 	}
8354 
8355 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8356 	for (j = 0; j + 1 < i; j++)
8357 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8358 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8359 	return -EACCES;
8360 
8361 found:
8362 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8363 		return 0;
8364 
8365 	if (compatible == &mem_types) {
8366 		if (!(arg_type & MEM_RDONLY)) {
8367 			verbose(env,
8368 				"%s() may write into memory pointed by R%d type=%s\n",
8369 				func_id_name(meta->func_id),
8370 				regno, reg_type_str(env, reg->type));
8371 			return -EACCES;
8372 		}
8373 		return 0;
8374 	}
8375 
8376 	switch ((int)reg->type) {
8377 	case PTR_TO_BTF_ID:
8378 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8379 	case PTR_TO_BTF_ID | MEM_RCU:
8380 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8381 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8382 	{
8383 		/* For bpf_sk_release, it needs to match against first member
8384 		 * 'struct sock_common', hence make an exception for it. This
8385 		 * allows bpf_sk_release to work for multiple socket types.
8386 		 */
8387 		bool strict_type_match = arg_type_is_release(arg_type) &&
8388 					 meta->func_id != BPF_FUNC_sk_release;
8389 
8390 		if (type_may_be_null(reg->type) &&
8391 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8392 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8393 			return -EACCES;
8394 		}
8395 
8396 		if (!arg_btf_id) {
8397 			if (!compatible->btf_id) {
8398 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8399 				return -EFAULT;
8400 			}
8401 			arg_btf_id = compatible->btf_id;
8402 		}
8403 
8404 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8405 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8406 				return -EACCES;
8407 		} else {
8408 			if (arg_btf_id == BPF_PTR_POISON) {
8409 				verbose(env, "verifier internal error:");
8410 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8411 					regno);
8412 				return -EACCES;
8413 			}
8414 
8415 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8416 						  btf_vmlinux, *arg_btf_id,
8417 						  strict_type_match)) {
8418 				verbose(env, "R%d is of type %s but %s is expected\n",
8419 					regno, btf_type_name(reg->btf, reg->btf_id),
8420 					btf_type_name(btf_vmlinux, *arg_btf_id));
8421 				return -EACCES;
8422 			}
8423 		}
8424 		break;
8425 	}
8426 	case PTR_TO_BTF_ID | MEM_ALLOC:
8427 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8428 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8429 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8430 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8431 			return -EFAULT;
8432 		}
8433 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8434 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8435 				return -EACCES;
8436 		}
8437 		break;
8438 	case PTR_TO_BTF_ID | MEM_PERCPU:
8439 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8440 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8441 		/* Handled by helper specific checks */
8442 		break;
8443 	default:
8444 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8445 		return -EFAULT;
8446 	}
8447 	return 0;
8448 }
8449 
8450 static struct btf_field *
8451 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8452 {
8453 	struct btf_field *field;
8454 	struct btf_record *rec;
8455 
8456 	rec = reg_btf_record(reg);
8457 	if (!rec)
8458 		return NULL;
8459 
8460 	field = btf_record_find(rec, off, fields);
8461 	if (!field)
8462 		return NULL;
8463 
8464 	return field;
8465 }
8466 
8467 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8468 			   const struct bpf_reg_state *reg, int regno,
8469 			   enum bpf_arg_type arg_type)
8470 {
8471 	u32 type = reg->type;
8472 
8473 	/* When referenced register is passed to release function, its fixed
8474 	 * offset must be 0.
8475 	 *
8476 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8477 	 * meta->release_regno.
8478 	 */
8479 	if (arg_type_is_release(arg_type)) {
8480 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8481 		 * may not directly point to the object being released, but to
8482 		 * dynptr pointing to such object, which might be at some offset
8483 		 * on the stack. In that case, we simply to fallback to the
8484 		 * default handling.
8485 		 */
8486 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8487 			return 0;
8488 
8489 		/* Doing check_ptr_off_reg check for the offset will catch this
8490 		 * because fixed_off_ok is false, but checking here allows us
8491 		 * to give the user a better error message.
8492 		 */
8493 		if (reg->off) {
8494 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8495 				regno);
8496 			return -EINVAL;
8497 		}
8498 		return __check_ptr_off_reg(env, reg, regno, false);
8499 	}
8500 
8501 	switch (type) {
8502 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8503 	case PTR_TO_STACK:
8504 	case PTR_TO_PACKET:
8505 	case PTR_TO_PACKET_META:
8506 	case PTR_TO_MAP_KEY:
8507 	case PTR_TO_MAP_VALUE:
8508 	case PTR_TO_MEM:
8509 	case PTR_TO_MEM | MEM_RDONLY:
8510 	case PTR_TO_MEM | MEM_RINGBUF:
8511 	case PTR_TO_BUF:
8512 	case PTR_TO_BUF | MEM_RDONLY:
8513 	case SCALAR_VALUE:
8514 		return 0;
8515 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8516 	 * fixed offset.
8517 	 */
8518 	case PTR_TO_BTF_ID:
8519 	case PTR_TO_BTF_ID | MEM_ALLOC:
8520 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8521 	case PTR_TO_BTF_ID | MEM_RCU:
8522 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8523 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8524 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8525 		 * its fixed offset must be 0. In the other cases, fixed offset
8526 		 * can be non-zero. This was already checked above. So pass
8527 		 * fixed_off_ok as true to allow fixed offset for all other
8528 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8529 		 * still need to do checks instead of returning.
8530 		 */
8531 		return __check_ptr_off_reg(env, reg, regno, true);
8532 	default:
8533 		return __check_ptr_off_reg(env, reg, regno, false);
8534 	}
8535 }
8536 
8537 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8538 						const struct bpf_func_proto *fn,
8539 						struct bpf_reg_state *regs)
8540 {
8541 	struct bpf_reg_state *state = NULL;
8542 	int i;
8543 
8544 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8545 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8546 			if (state) {
8547 				verbose(env, "verifier internal error: multiple dynptr args\n");
8548 				return NULL;
8549 			}
8550 			state = &regs[BPF_REG_1 + i];
8551 		}
8552 
8553 	if (!state)
8554 		verbose(env, "verifier internal error: no dynptr arg found\n");
8555 
8556 	return state;
8557 }
8558 
8559 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8560 {
8561 	struct bpf_func_state *state = func(env, reg);
8562 	int spi;
8563 
8564 	if (reg->type == CONST_PTR_TO_DYNPTR)
8565 		return reg->id;
8566 	spi = dynptr_get_spi(env, reg);
8567 	if (spi < 0)
8568 		return spi;
8569 	return state->stack[spi].spilled_ptr.id;
8570 }
8571 
8572 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8573 {
8574 	struct bpf_func_state *state = func(env, reg);
8575 	int spi;
8576 
8577 	if (reg->type == CONST_PTR_TO_DYNPTR)
8578 		return reg->ref_obj_id;
8579 	spi = dynptr_get_spi(env, reg);
8580 	if (spi < 0)
8581 		return spi;
8582 	return state->stack[spi].spilled_ptr.ref_obj_id;
8583 }
8584 
8585 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8586 					    struct bpf_reg_state *reg)
8587 {
8588 	struct bpf_func_state *state = func(env, reg);
8589 	int spi;
8590 
8591 	if (reg->type == CONST_PTR_TO_DYNPTR)
8592 		return reg->dynptr.type;
8593 
8594 	spi = __get_spi(reg->off);
8595 	if (spi < 0) {
8596 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8597 		return BPF_DYNPTR_TYPE_INVALID;
8598 	}
8599 
8600 	return state->stack[spi].spilled_ptr.dynptr.type;
8601 }
8602 
8603 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8604 			  struct bpf_call_arg_meta *meta,
8605 			  const struct bpf_func_proto *fn,
8606 			  int insn_idx)
8607 {
8608 	u32 regno = BPF_REG_1 + arg;
8609 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8610 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8611 	enum bpf_reg_type type = reg->type;
8612 	u32 *arg_btf_id = NULL;
8613 	int err = 0;
8614 
8615 	if (arg_type == ARG_DONTCARE)
8616 		return 0;
8617 
8618 	err = check_reg_arg(env, regno, SRC_OP);
8619 	if (err)
8620 		return err;
8621 
8622 	if (arg_type == ARG_ANYTHING) {
8623 		if (is_pointer_value(env, regno)) {
8624 			verbose(env, "R%d leaks addr into helper function\n",
8625 				regno);
8626 			return -EACCES;
8627 		}
8628 		return 0;
8629 	}
8630 
8631 	if (type_is_pkt_pointer(type) &&
8632 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8633 		verbose(env, "helper access to the packet is not allowed\n");
8634 		return -EACCES;
8635 	}
8636 
8637 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8638 		err = resolve_map_arg_type(env, meta, &arg_type);
8639 		if (err)
8640 			return err;
8641 	}
8642 
8643 	if (register_is_null(reg) && type_may_be_null(arg_type))
8644 		/* A NULL register has a SCALAR_VALUE type, so skip
8645 		 * type checking.
8646 		 */
8647 		goto skip_type_check;
8648 
8649 	/* arg_btf_id and arg_size are in a union. */
8650 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8651 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8652 		arg_btf_id = fn->arg_btf_id[arg];
8653 
8654 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8655 	if (err)
8656 		return err;
8657 
8658 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8659 	if (err)
8660 		return err;
8661 
8662 skip_type_check:
8663 	if (arg_type_is_release(arg_type)) {
8664 		if (arg_type_is_dynptr(arg_type)) {
8665 			struct bpf_func_state *state = func(env, reg);
8666 			int spi;
8667 
8668 			/* Only dynptr created on stack can be released, thus
8669 			 * the get_spi and stack state checks for spilled_ptr
8670 			 * should only be done before process_dynptr_func for
8671 			 * PTR_TO_STACK.
8672 			 */
8673 			if (reg->type == PTR_TO_STACK) {
8674 				spi = dynptr_get_spi(env, reg);
8675 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8676 					verbose(env, "arg %d is an unacquired reference\n", regno);
8677 					return -EINVAL;
8678 				}
8679 			} else {
8680 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8681 				return -EINVAL;
8682 			}
8683 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8684 			verbose(env, "R%d must be referenced when passed to release function\n",
8685 				regno);
8686 			return -EINVAL;
8687 		}
8688 		if (meta->release_regno) {
8689 			verbose(env, "verifier internal error: more than one release argument\n");
8690 			return -EFAULT;
8691 		}
8692 		meta->release_regno = regno;
8693 	}
8694 
8695 	if (reg->ref_obj_id) {
8696 		if (meta->ref_obj_id) {
8697 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8698 				regno, reg->ref_obj_id,
8699 				meta->ref_obj_id);
8700 			return -EFAULT;
8701 		}
8702 		meta->ref_obj_id = reg->ref_obj_id;
8703 	}
8704 
8705 	switch (base_type(arg_type)) {
8706 	case ARG_CONST_MAP_PTR:
8707 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8708 		if (meta->map_ptr) {
8709 			/* Use map_uid (which is unique id of inner map) to reject:
8710 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8711 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8712 			 * if (inner_map1 && inner_map2) {
8713 			 *     timer = bpf_map_lookup_elem(inner_map1);
8714 			 *     if (timer)
8715 			 *         // mismatch would have been allowed
8716 			 *         bpf_timer_init(timer, inner_map2);
8717 			 * }
8718 			 *
8719 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8720 			 */
8721 			if (meta->map_ptr != reg->map_ptr ||
8722 			    meta->map_uid != reg->map_uid) {
8723 				verbose(env,
8724 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8725 					meta->map_uid, reg->map_uid);
8726 				return -EINVAL;
8727 			}
8728 		}
8729 		meta->map_ptr = reg->map_ptr;
8730 		meta->map_uid = reg->map_uid;
8731 		break;
8732 	case ARG_PTR_TO_MAP_KEY:
8733 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8734 		 * check that [key, key + map->key_size) are within
8735 		 * stack limits and initialized
8736 		 */
8737 		if (!meta->map_ptr) {
8738 			/* in function declaration map_ptr must come before
8739 			 * map_key, so that it's verified and known before
8740 			 * we have to check map_key here. Otherwise it means
8741 			 * that kernel subsystem misconfigured verifier
8742 			 */
8743 			verbose(env, "invalid map_ptr to access map->key\n");
8744 			return -EACCES;
8745 		}
8746 		err = check_helper_mem_access(env, regno,
8747 					      meta->map_ptr->key_size, false,
8748 					      NULL);
8749 		break;
8750 	case ARG_PTR_TO_MAP_VALUE:
8751 		if (type_may_be_null(arg_type) && register_is_null(reg))
8752 			return 0;
8753 
8754 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8755 		 * check [value, value + map->value_size) validity
8756 		 */
8757 		if (!meta->map_ptr) {
8758 			/* kernel subsystem misconfigured verifier */
8759 			verbose(env, "invalid map_ptr to access map->value\n");
8760 			return -EACCES;
8761 		}
8762 		meta->raw_mode = arg_type & MEM_UNINIT;
8763 		err = check_helper_mem_access(env, regno,
8764 					      meta->map_ptr->value_size, false,
8765 					      meta);
8766 		break;
8767 	case ARG_PTR_TO_PERCPU_BTF_ID:
8768 		if (!reg->btf_id) {
8769 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8770 			return -EACCES;
8771 		}
8772 		meta->ret_btf = reg->btf;
8773 		meta->ret_btf_id = reg->btf_id;
8774 		break;
8775 	case ARG_PTR_TO_SPIN_LOCK:
8776 		if (in_rbtree_lock_required_cb(env)) {
8777 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8778 			return -EACCES;
8779 		}
8780 		if (meta->func_id == BPF_FUNC_spin_lock) {
8781 			err = process_spin_lock(env, regno, true);
8782 			if (err)
8783 				return err;
8784 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8785 			err = process_spin_lock(env, regno, false);
8786 			if (err)
8787 				return err;
8788 		} else {
8789 			verbose(env, "verifier internal error\n");
8790 			return -EFAULT;
8791 		}
8792 		break;
8793 	case ARG_PTR_TO_TIMER:
8794 		err = process_timer_func(env, regno, meta);
8795 		if (err)
8796 			return err;
8797 		break;
8798 	case ARG_PTR_TO_FUNC:
8799 		meta->subprogno = reg->subprogno;
8800 		break;
8801 	case ARG_PTR_TO_MEM:
8802 		/* The access to this pointer is only checked when we hit the
8803 		 * next is_mem_size argument below.
8804 		 */
8805 		meta->raw_mode = arg_type & MEM_UNINIT;
8806 		if (arg_type & MEM_FIXED_SIZE) {
8807 			err = check_helper_mem_access(env, regno,
8808 						      fn->arg_size[arg], false,
8809 						      meta);
8810 		}
8811 		break;
8812 	case ARG_CONST_SIZE:
8813 		err = check_mem_size_reg(env, reg, regno, false, meta);
8814 		break;
8815 	case ARG_CONST_SIZE_OR_ZERO:
8816 		err = check_mem_size_reg(env, reg, regno, true, meta);
8817 		break;
8818 	case ARG_PTR_TO_DYNPTR:
8819 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8820 		if (err)
8821 			return err;
8822 		break;
8823 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8824 		if (!tnum_is_const(reg->var_off)) {
8825 			verbose(env, "R%d is not a known constant'\n",
8826 				regno);
8827 			return -EACCES;
8828 		}
8829 		meta->mem_size = reg->var_off.value;
8830 		err = mark_chain_precision(env, regno);
8831 		if (err)
8832 			return err;
8833 		break;
8834 	case ARG_PTR_TO_INT:
8835 	case ARG_PTR_TO_LONG:
8836 	{
8837 		int size = int_ptr_type_to_size(arg_type);
8838 
8839 		err = check_helper_mem_access(env, regno, size, false, meta);
8840 		if (err)
8841 			return err;
8842 		err = check_ptr_alignment(env, reg, 0, size, true);
8843 		break;
8844 	}
8845 	case ARG_PTR_TO_CONST_STR:
8846 	{
8847 		struct bpf_map *map = reg->map_ptr;
8848 		int map_off;
8849 		u64 map_addr;
8850 		char *str_ptr;
8851 
8852 		if (!bpf_map_is_rdonly(map)) {
8853 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8854 			return -EACCES;
8855 		}
8856 
8857 		if (!tnum_is_const(reg->var_off)) {
8858 			verbose(env, "R%d is not a constant address'\n", regno);
8859 			return -EACCES;
8860 		}
8861 
8862 		if (!map->ops->map_direct_value_addr) {
8863 			verbose(env, "no direct value access support for this map type\n");
8864 			return -EACCES;
8865 		}
8866 
8867 		err = check_map_access(env, regno, reg->off,
8868 				       map->value_size - reg->off, false,
8869 				       ACCESS_HELPER);
8870 		if (err)
8871 			return err;
8872 
8873 		map_off = reg->off + reg->var_off.value;
8874 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8875 		if (err) {
8876 			verbose(env, "direct value access on string failed\n");
8877 			return err;
8878 		}
8879 
8880 		str_ptr = (char *)(long)(map_addr);
8881 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8882 			verbose(env, "string is not zero-terminated\n");
8883 			return -EINVAL;
8884 		}
8885 		break;
8886 	}
8887 	case ARG_PTR_TO_KPTR:
8888 		err = process_kptr_func(env, regno, meta);
8889 		if (err)
8890 			return err;
8891 		break;
8892 	}
8893 
8894 	return err;
8895 }
8896 
8897 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8898 {
8899 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8900 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8901 
8902 	if (func_id != BPF_FUNC_map_update_elem)
8903 		return false;
8904 
8905 	/* It's not possible to get access to a locked struct sock in these
8906 	 * contexts, so updating is safe.
8907 	 */
8908 	switch (type) {
8909 	case BPF_PROG_TYPE_TRACING:
8910 		if (eatype == BPF_TRACE_ITER)
8911 			return true;
8912 		break;
8913 	case BPF_PROG_TYPE_SOCKET_FILTER:
8914 	case BPF_PROG_TYPE_SCHED_CLS:
8915 	case BPF_PROG_TYPE_SCHED_ACT:
8916 	case BPF_PROG_TYPE_XDP:
8917 	case BPF_PROG_TYPE_SK_REUSEPORT:
8918 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8919 	case BPF_PROG_TYPE_SK_LOOKUP:
8920 		return true;
8921 	default:
8922 		break;
8923 	}
8924 
8925 	verbose(env, "cannot update sockmap in this context\n");
8926 	return false;
8927 }
8928 
8929 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8930 {
8931 	return env->prog->jit_requested &&
8932 	       bpf_jit_supports_subprog_tailcalls();
8933 }
8934 
8935 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8936 					struct bpf_map *map, int func_id)
8937 {
8938 	if (!map)
8939 		return 0;
8940 
8941 	/* We need a two way check, first is from map perspective ... */
8942 	switch (map->map_type) {
8943 	case BPF_MAP_TYPE_PROG_ARRAY:
8944 		if (func_id != BPF_FUNC_tail_call)
8945 			goto error;
8946 		break;
8947 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8948 		if (func_id != BPF_FUNC_perf_event_read &&
8949 		    func_id != BPF_FUNC_perf_event_output &&
8950 		    func_id != BPF_FUNC_skb_output &&
8951 		    func_id != BPF_FUNC_perf_event_read_value &&
8952 		    func_id != BPF_FUNC_xdp_output)
8953 			goto error;
8954 		break;
8955 	case BPF_MAP_TYPE_RINGBUF:
8956 		if (func_id != BPF_FUNC_ringbuf_output &&
8957 		    func_id != BPF_FUNC_ringbuf_reserve &&
8958 		    func_id != BPF_FUNC_ringbuf_query &&
8959 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8960 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8961 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8962 			goto error;
8963 		break;
8964 	case BPF_MAP_TYPE_USER_RINGBUF:
8965 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8966 			goto error;
8967 		break;
8968 	case BPF_MAP_TYPE_STACK_TRACE:
8969 		if (func_id != BPF_FUNC_get_stackid)
8970 			goto error;
8971 		break;
8972 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8973 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8974 		    func_id != BPF_FUNC_current_task_under_cgroup)
8975 			goto error;
8976 		break;
8977 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8978 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8979 		if (func_id != BPF_FUNC_get_local_storage)
8980 			goto error;
8981 		break;
8982 	case BPF_MAP_TYPE_DEVMAP:
8983 	case BPF_MAP_TYPE_DEVMAP_HASH:
8984 		if (func_id != BPF_FUNC_redirect_map &&
8985 		    func_id != BPF_FUNC_map_lookup_elem)
8986 			goto error;
8987 		break;
8988 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8989 	 * appear.
8990 	 */
8991 	case BPF_MAP_TYPE_CPUMAP:
8992 		if (func_id != BPF_FUNC_redirect_map)
8993 			goto error;
8994 		break;
8995 	case BPF_MAP_TYPE_XSKMAP:
8996 		if (func_id != BPF_FUNC_redirect_map &&
8997 		    func_id != BPF_FUNC_map_lookup_elem)
8998 			goto error;
8999 		break;
9000 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9001 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9002 		if (func_id != BPF_FUNC_map_lookup_elem)
9003 			goto error;
9004 		break;
9005 	case BPF_MAP_TYPE_SOCKMAP:
9006 		if (func_id != BPF_FUNC_sk_redirect_map &&
9007 		    func_id != BPF_FUNC_sock_map_update &&
9008 		    func_id != BPF_FUNC_map_delete_elem &&
9009 		    func_id != BPF_FUNC_msg_redirect_map &&
9010 		    func_id != BPF_FUNC_sk_select_reuseport &&
9011 		    func_id != BPF_FUNC_map_lookup_elem &&
9012 		    !may_update_sockmap(env, func_id))
9013 			goto error;
9014 		break;
9015 	case BPF_MAP_TYPE_SOCKHASH:
9016 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9017 		    func_id != BPF_FUNC_sock_hash_update &&
9018 		    func_id != BPF_FUNC_map_delete_elem &&
9019 		    func_id != BPF_FUNC_msg_redirect_hash &&
9020 		    func_id != BPF_FUNC_sk_select_reuseport &&
9021 		    func_id != BPF_FUNC_map_lookup_elem &&
9022 		    !may_update_sockmap(env, func_id))
9023 			goto error;
9024 		break;
9025 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9026 		if (func_id != BPF_FUNC_sk_select_reuseport)
9027 			goto error;
9028 		break;
9029 	case BPF_MAP_TYPE_QUEUE:
9030 	case BPF_MAP_TYPE_STACK:
9031 		if (func_id != BPF_FUNC_map_peek_elem &&
9032 		    func_id != BPF_FUNC_map_pop_elem &&
9033 		    func_id != BPF_FUNC_map_push_elem)
9034 			goto error;
9035 		break;
9036 	case BPF_MAP_TYPE_SK_STORAGE:
9037 		if (func_id != BPF_FUNC_sk_storage_get &&
9038 		    func_id != BPF_FUNC_sk_storage_delete &&
9039 		    func_id != BPF_FUNC_kptr_xchg)
9040 			goto error;
9041 		break;
9042 	case BPF_MAP_TYPE_INODE_STORAGE:
9043 		if (func_id != BPF_FUNC_inode_storage_get &&
9044 		    func_id != BPF_FUNC_inode_storage_delete &&
9045 		    func_id != BPF_FUNC_kptr_xchg)
9046 			goto error;
9047 		break;
9048 	case BPF_MAP_TYPE_TASK_STORAGE:
9049 		if (func_id != BPF_FUNC_task_storage_get &&
9050 		    func_id != BPF_FUNC_task_storage_delete &&
9051 		    func_id != BPF_FUNC_kptr_xchg)
9052 			goto error;
9053 		break;
9054 	case BPF_MAP_TYPE_CGRP_STORAGE:
9055 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9056 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9057 		    func_id != BPF_FUNC_kptr_xchg)
9058 			goto error;
9059 		break;
9060 	case BPF_MAP_TYPE_BLOOM_FILTER:
9061 		if (func_id != BPF_FUNC_map_peek_elem &&
9062 		    func_id != BPF_FUNC_map_push_elem)
9063 			goto error;
9064 		break;
9065 	default:
9066 		break;
9067 	}
9068 
9069 	/* ... and second from the function itself. */
9070 	switch (func_id) {
9071 	case BPF_FUNC_tail_call:
9072 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9073 			goto error;
9074 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9075 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9076 			return -EINVAL;
9077 		}
9078 		break;
9079 	case BPF_FUNC_perf_event_read:
9080 	case BPF_FUNC_perf_event_output:
9081 	case BPF_FUNC_perf_event_read_value:
9082 	case BPF_FUNC_skb_output:
9083 	case BPF_FUNC_xdp_output:
9084 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9085 			goto error;
9086 		break;
9087 	case BPF_FUNC_ringbuf_output:
9088 	case BPF_FUNC_ringbuf_reserve:
9089 	case BPF_FUNC_ringbuf_query:
9090 	case BPF_FUNC_ringbuf_reserve_dynptr:
9091 	case BPF_FUNC_ringbuf_submit_dynptr:
9092 	case BPF_FUNC_ringbuf_discard_dynptr:
9093 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9094 			goto error;
9095 		break;
9096 	case BPF_FUNC_user_ringbuf_drain:
9097 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9098 			goto error;
9099 		break;
9100 	case BPF_FUNC_get_stackid:
9101 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9102 			goto error;
9103 		break;
9104 	case BPF_FUNC_current_task_under_cgroup:
9105 	case BPF_FUNC_skb_under_cgroup:
9106 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9107 			goto error;
9108 		break;
9109 	case BPF_FUNC_redirect_map:
9110 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9111 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9112 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9113 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9114 			goto error;
9115 		break;
9116 	case BPF_FUNC_sk_redirect_map:
9117 	case BPF_FUNC_msg_redirect_map:
9118 	case BPF_FUNC_sock_map_update:
9119 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9120 			goto error;
9121 		break;
9122 	case BPF_FUNC_sk_redirect_hash:
9123 	case BPF_FUNC_msg_redirect_hash:
9124 	case BPF_FUNC_sock_hash_update:
9125 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9126 			goto error;
9127 		break;
9128 	case BPF_FUNC_get_local_storage:
9129 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9130 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9131 			goto error;
9132 		break;
9133 	case BPF_FUNC_sk_select_reuseport:
9134 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9135 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9136 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9137 			goto error;
9138 		break;
9139 	case BPF_FUNC_map_pop_elem:
9140 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9141 		    map->map_type != BPF_MAP_TYPE_STACK)
9142 			goto error;
9143 		break;
9144 	case BPF_FUNC_map_peek_elem:
9145 	case BPF_FUNC_map_push_elem:
9146 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9147 		    map->map_type != BPF_MAP_TYPE_STACK &&
9148 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9149 			goto error;
9150 		break;
9151 	case BPF_FUNC_map_lookup_percpu_elem:
9152 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9153 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9154 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9155 			goto error;
9156 		break;
9157 	case BPF_FUNC_sk_storage_get:
9158 	case BPF_FUNC_sk_storage_delete:
9159 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9160 			goto error;
9161 		break;
9162 	case BPF_FUNC_inode_storage_get:
9163 	case BPF_FUNC_inode_storage_delete:
9164 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9165 			goto error;
9166 		break;
9167 	case BPF_FUNC_task_storage_get:
9168 	case BPF_FUNC_task_storage_delete:
9169 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9170 			goto error;
9171 		break;
9172 	case BPF_FUNC_cgrp_storage_get:
9173 	case BPF_FUNC_cgrp_storage_delete:
9174 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9175 			goto error;
9176 		break;
9177 	default:
9178 		break;
9179 	}
9180 
9181 	return 0;
9182 error:
9183 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9184 		map->map_type, func_id_name(func_id), func_id);
9185 	return -EINVAL;
9186 }
9187 
9188 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9189 {
9190 	int count = 0;
9191 
9192 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9193 		count++;
9194 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9195 		count++;
9196 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9197 		count++;
9198 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9199 		count++;
9200 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9201 		count++;
9202 
9203 	/* We only support one arg being in raw mode at the moment,
9204 	 * which is sufficient for the helper functions we have
9205 	 * right now.
9206 	 */
9207 	return count <= 1;
9208 }
9209 
9210 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9211 {
9212 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9213 	bool has_size = fn->arg_size[arg] != 0;
9214 	bool is_next_size = false;
9215 
9216 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9217 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9218 
9219 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9220 		return is_next_size;
9221 
9222 	return has_size == is_next_size || is_next_size == is_fixed;
9223 }
9224 
9225 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9226 {
9227 	/* bpf_xxx(..., buf, len) call will access 'len'
9228 	 * bytes from memory 'buf'. Both arg types need
9229 	 * to be paired, so make sure there's no buggy
9230 	 * helper function specification.
9231 	 */
9232 	if (arg_type_is_mem_size(fn->arg1_type) ||
9233 	    check_args_pair_invalid(fn, 0) ||
9234 	    check_args_pair_invalid(fn, 1) ||
9235 	    check_args_pair_invalid(fn, 2) ||
9236 	    check_args_pair_invalid(fn, 3) ||
9237 	    check_args_pair_invalid(fn, 4))
9238 		return false;
9239 
9240 	return true;
9241 }
9242 
9243 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9244 {
9245 	int i;
9246 
9247 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9248 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9249 			return !!fn->arg_btf_id[i];
9250 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9251 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9252 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9253 		    /* arg_btf_id and arg_size are in a union. */
9254 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9255 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9256 			return false;
9257 	}
9258 
9259 	return true;
9260 }
9261 
9262 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9263 {
9264 	return check_raw_mode_ok(fn) &&
9265 	       check_arg_pair_ok(fn) &&
9266 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9267 }
9268 
9269 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9270  * are now invalid, so turn them into unknown SCALAR_VALUE.
9271  *
9272  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9273  * since these slices point to packet data.
9274  */
9275 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9276 {
9277 	struct bpf_func_state *state;
9278 	struct bpf_reg_state *reg;
9279 
9280 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9281 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9282 			mark_reg_invalid(env, reg);
9283 	}));
9284 }
9285 
9286 enum {
9287 	AT_PKT_END = -1,
9288 	BEYOND_PKT_END = -2,
9289 };
9290 
9291 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9292 {
9293 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9294 	struct bpf_reg_state *reg = &state->regs[regn];
9295 
9296 	if (reg->type != PTR_TO_PACKET)
9297 		/* PTR_TO_PACKET_META is not supported yet */
9298 		return;
9299 
9300 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9301 	 * How far beyond pkt_end it goes is unknown.
9302 	 * if (!range_open) it's the case of pkt >= pkt_end
9303 	 * if (range_open) it's the case of pkt > pkt_end
9304 	 * hence this pointer is at least 1 byte bigger than pkt_end
9305 	 */
9306 	if (range_open)
9307 		reg->range = BEYOND_PKT_END;
9308 	else
9309 		reg->range = AT_PKT_END;
9310 }
9311 
9312 /* The pointer with the specified id has released its reference to kernel
9313  * resources. Identify all copies of the same pointer and clear the reference.
9314  */
9315 static int release_reference(struct bpf_verifier_env *env,
9316 			     int ref_obj_id)
9317 {
9318 	struct bpf_func_state *state;
9319 	struct bpf_reg_state *reg;
9320 	int err;
9321 
9322 	err = release_reference_state(cur_func(env), ref_obj_id);
9323 	if (err)
9324 		return err;
9325 
9326 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9327 		if (reg->ref_obj_id == ref_obj_id)
9328 			mark_reg_invalid(env, reg);
9329 	}));
9330 
9331 	return 0;
9332 }
9333 
9334 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9335 {
9336 	struct bpf_func_state *unused;
9337 	struct bpf_reg_state *reg;
9338 
9339 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9340 		if (type_is_non_owning_ref(reg->type))
9341 			mark_reg_invalid(env, reg);
9342 	}));
9343 }
9344 
9345 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9346 				    struct bpf_reg_state *regs)
9347 {
9348 	int i;
9349 
9350 	/* after the call registers r0 - r5 were scratched */
9351 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9352 		mark_reg_not_init(env, regs, caller_saved[i]);
9353 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9354 	}
9355 }
9356 
9357 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9358 				   struct bpf_func_state *caller,
9359 				   struct bpf_func_state *callee,
9360 				   int insn_idx);
9361 
9362 static int set_callee_state(struct bpf_verifier_env *env,
9363 			    struct bpf_func_state *caller,
9364 			    struct bpf_func_state *callee, int insn_idx);
9365 
9366 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9367 			     int *insn_idx, int subprog,
9368 			     set_callee_state_fn set_callee_state_cb)
9369 {
9370 	struct bpf_verifier_state *state = env->cur_state;
9371 	struct bpf_func_state *caller, *callee;
9372 	int err;
9373 
9374 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9375 		verbose(env, "the call stack of %d frames is too deep\n",
9376 			state->curframe + 2);
9377 		return -E2BIG;
9378 	}
9379 
9380 	caller = state->frame[state->curframe];
9381 	if (state->frame[state->curframe + 1]) {
9382 		verbose(env, "verifier bug. Frame %d already allocated\n",
9383 			state->curframe + 1);
9384 		return -EFAULT;
9385 	}
9386 
9387 	err = btf_check_subprog_call(env, subprog, caller->regs);
9388 	if (err == -EFAULT)
9389 		return err;
9390 	if (subprog_is_global(env, subprog)) {
9391 		if (err) {
9392 			verbose(env, "Caller passes invalid args into func#%d\n",
9393 				subprog);
9394 			return err;
9395 		} else {
9396 			if (env->log.level & BPF_LOG_LEVEL)
9397 				verbose(env,
9398 					"Func#%d is global and valid. Skipping.\n",
9399 					subprog);
9400 			clear_caller_saved_regs(env, caller->regs);
9401 
9402 			/* All global functions return a 64-bit SCALAR_VALUE */
9403 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
9404 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9405 
9406 			/* continue with next insn after call */
9407 			return 0;
9408 		}
9409 	}
9410 
9411 	/* set_callee_state is used for direct subprog calls, but we are
9412 	 * interested in validating only BPF helpers that can call subprogs as
9413 	 * callbacks
9414 	 */
9415 	if (set_callee_state_cb != set_callee_state) {
9416 		env->subprog_info[subprog].is_cb = true;
9417 		if (bpf_pseudo_kfunc_call(insn) &&
9418 		    !is_callback_calling_kfunc(insn->imm)) {
9419 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9420 				func_id_name(insn->imm), insn->imm);
9421 			return -EFAULT;
9422 		} else if (!bpf_pseudo_kfunc_call(insn) &&
9423 			   !is_callback_calling_function(insn->imm)) { /* helper */
9424 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9425 				func_id_name(insn->imm), insn->imm);
9426 			return -EFAULT;
9427 		}
9428 	}
9429 
9430 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9431 	    insn->src_reg == 0 &&
9432 	    insn->imm == BPF_FUNC_timer_set_callback) {
9433 		struct bpf_verifier_state *async_cb;
9434 
9435 		/* there is no real recursion here. timer callbacks are async */
9436 		env->subprog_info[subprog].is_async_cb = true;
9437 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9438 					 *insn_idx, subprog);
9439 		if (!async_cb)
9440 			return -EFAULT;
9441 		callee = async_cb->frame[0];
9442 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9443 
9444 		/* Convert bpf_timer_set_callback() args into timer callback args */
9445 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
9446 		if (err)
9447 			return err;
9448 
9449 		clear_caller_saved_regs(env, caller->regs);
9450 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9451 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9452 		/* continue with next insn after call */
9453 		return 0;
9454 	}
9455 
9456 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9457 	if (!callee)
9458 		return -ENOMEM;
9459 	state->frame[state->curframe + 1] = callee;
9460 
9461 	/* callee cannot access r0, r6 - r9 for reading and has to write
9462 	 * into its own stack before reading from it.
9463 	 * callee can read/write into caller's stack
9464 	 */
9465 	init_func_state(env, callee,
9466 			/* remember the callsite, it will be used by bpf_exit */
9467 			*insn_idx /* callsite */,
9468 			state->curframe + 1 /* frameno within this callchain */,
9469 			subprog /* subprog number within this prog */);
9470 
9471 	/* Transfer references to the callee */
9472 	err = copy_reference_state(callee, caller);
9473 	if (err)
9474 		goto err_out;
9475 
9476 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
9477 	if (err)
9478 		goto err_out;
9479 
9480 	clear_caller_saved_regs(env, caller->regs);
9481 
9482 	/* only increment it after check_reg_arg() finished */
9483 	state->curframe++;
9484 
9485 	/* and go analyze first insn of the callee */
9486 	*insn_idx = env->subprog_info[subprog].start - 1;
9487 
9488 	if (env->log.level & BPF_LOG_LEVEL) {
9489 		verbose(env, "caller:\n");
9490 		print_verifier_state(env, caller, true);
9491 		verbose(env, "callee:\n");
9492 		print_verifier_state(env, callee, true);
9493 	}
9494 	return 0;
9495 
9496 err_out:
9497 	free_func_state(callee);
9498 	state->frame[state->curframe + 1] = NULL;
9499 	return err;
9500 }
9501 
9502 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9503 				   struct bpf_func_state *caller,
9504 				   struct bpf_func_state *callee)
9505 {
9506 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9507 	 *      void *callback_ctx, u64 flags);
9508 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9509 	 *      void *callback_ctx);
9510 	 */
9511 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9512 
9513 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9514 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9515 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9516 
9517 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9518 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9519 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9520 
9521 	/* pointer to stack or null */
9522 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9523 
9524 	/* unused */
9525 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9526 	return 0;
9527 }
9528 
9529 static int set_callee_state(struct bpf_verifier_env *env,
9530 			    struct bpf_func_state *caller,
9531 			    struct bpf_func_state *callee, int insn_idx)
9532 {
9533 	int i;
9534 
9535 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9536 	 * pointers, which connects us up to the liveness chain
9537 	 */
9538 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9539 		callee->regs[i] = caller->regs[i];
9540 	return 0;
9541 }
9542 
9543 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9544 			   int *insn_idx)
9545 {
9546 	int subprog, target_insn;
9547 
9548 	target_insn = *insn_idx + insn->imm + 1;
9549 	subprog = find_subprog(env, target_insn);
9550 	if (subprog < 0) {
9551 		verbose(env, "verifier bug. No program starts at insn %d\n",
9552 			target_insn);
9553 		return -EFAULT;
9554 	}
9555 
9556 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9557 }
9558 
9559 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9560 				       struct bpf_func_state *caller,
9561 				       struct bpf_func_state *callee,
9562 				       int insn_idx)
9563 {
9564 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9565 	struct bpf_map *map;
9566 	int err;
9567 
9568 	if (bpf_map_ptr_poisoned(insn_aux)) {
9569 		verbose(env, "tail_call abusing map_ptr\n");
9570 		return -EINVAL;
9571 	}
9572 
9573 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9574 	if (!map->ops->map_set_for_each_callback_args ||
9575 	    !map->ops->map_for_each_callback) {
9576 		verbose(env, "callback function not allowed for map\n");
9577 		return -ENOTSUPP;
9578 	}
9579 
9580 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9581 	if (err)
9582 		return err;
9583 
9584 	callee->in_callback_fn = true;
9585 	callee->callback_ret_range = tnum_range(0, 1);
9586 	return 0;
9587 }
9588 
9589 static int set_loop_callback_state(struct bpf_verifier_env *env,
9590 				   struct bpf_func_state *caller,
9591 				   struct bpf_func_state *callee,
9592 				   int insn_idx)
9593 {
9594 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9595 	 *	    u64 flags);
9596 	 * callback_fn(u32 index, void *callback_ctx);
9597 	 */
9598 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9599 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9600 
9601 	/* unused */
9602 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9603 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9604 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9605 
9606 	callee->in_callback_fn = true;
9607 	callee->callback_ret_range = tnum_range(0, 1);
9608 	return 0;
9609 }
9610 
9611 static int set_timer_callback_state(struct bpf_verifier_env *env,
9612 				    struct bpf_func_state *caller,
9613 				    struct bpf_func_state *callee,
9614 				    int insn_idx)
9615 {
9616 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9617 
9618 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9619 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9620 	 */
9621 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9622 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9623 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9624 
9625 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9626 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9627 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9628 
9629 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9630 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9631 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9632 
9633 	/* unused */
9634 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9635 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9636 	callee->in_async_callback_fn = true;
9637 	callee->callback_ret_range = tnum_range(0, 1);
9638 	return 0;
9639 }
9640 
9641 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9642 				       struct bpf_func_state *caller,
9643 				       struct bpf_func_state *callee,
9644 				       int insn_idx)
9645 {
9646 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9647 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9648 	 * (callback_fn)(struct task_struct *task,
9649 	 *               struct vm_area_struct *vma, void *callback_ctx);
9650 	 */
9651 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9652 
9653 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9654 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9655 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9656 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9657 
9658 	/* pointer to stack or null */
9659 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9660 
9661 	/* unused */
9662 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9663 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9664 	callee->in_callback_fn = true;
9665 	callee->callback_ret_range = tnum_range(0, 1);
9666 	return 0;
9667 }
9668 
9669 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9670 					   struct bpf_func_state *caller,
9671 					   struct bpf_func_state *callee,
9672 					   int insn_idx)
9673 {
9674 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9675 	 *			  callback_ctx, u64 flags);
9676 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9677 	 */
9678 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9679 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9680 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9681 
9682 	/* unused */
9683 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9684 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9685 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9686 
9687 	callee->in_callback_fn = true;
9688 	callee->callback_ret_range = tnum_range(0, 1);
9689 	return 0;
9690 }
9691 
9692 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9693 					 struct bpf_func_state *caller,
9694 					 struct bpf_func_state *callee,
9695 					 int insn_idx)
9696 {
9697 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9698 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9699 	 *
9700 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9701 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9702 	 * by this point, so look at 'root'
9703 	 */
9704 	struct btf_field *field;
9705 
9706 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9707 				      BPF_RB_ROOT);
9708 	if (!field || !field->graph_root.value_btf_id)
9709 		return -EFAULT;
9710 
9711 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9712 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9713 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9714 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9715 
9716 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9717 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9718 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9719 	callee->in_callback_fn = true;
9720 	callee->callback_ret_range = tnum_range(0, 1);
9721 	return 0;
9722 }
9723 
9724 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9725 
9726 /* Are we currently verifying the callback for a rbtree helper that must
9727  * be called with lock held? If so, no need to complain about unreleased
9728  * lock
9729  */
9730 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9731 {
9732 	struct bpf_verifier_state *state = env->cur_state;
9733 	struct bpf_insn *insn = env->prog->insnsi;
9734 	struct bpf_func_state *callee;
9735 	int kfunc_btf_id;
9736 
9737 	if (!state->curframe)
9738 		return false;
9739 
9740 	callee = state->frame[state->curframe];
9741 
9742 	if (!callee->in_callback_fn)
9743 		return false;
9744 
9745 	kfunc_btf_id = insn[callee->callsite].imm;
9746 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9747 }
9748 
9749 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9750 {
9751 	struct bpf_verifier_state *state = env->cur_state;
9752 	struct bpf_func_state *caller, *callee;
9753 	struct bpf_reg_state *r0;
9754 	int err;
9755 
9756 	callee = state->frame[state->curframe];
9757 	r0 = &callee->regs[BPF_REG_0];
9758 	if (r0->type == PTR_TO_STACK) {
9759 		/* technically it's ok to return caller's stack pointer
9760 		 * (or caller's caller's pointer) back to the caller,
9761 		 * since these pointers are valid. Only current stack
9762 		 * pointer will be invalid as soon as function exits,
9763 		 * but let's be conservative
9764 		 */
9765 		verbose(env, "cannot return stack pointer to the caller\n");
9766 		return -EINVAL;
9767 	}
9768 
9769 	caller = state->frame[state->curframe - 1];
9770 	if (callee->in_callback_fn) {
9771 		/* enforce R0 return value range [0, 1]. */
9772 		struct tnum range = callee->callback_ret_range;
9773 
9774 		if (r0->type != SCALAR_VALUE) {
9775 			verbose(env, "R0 not a scalar value\n");
9776 			return -EACCES;
9777 		}
9778 		if (!tnum_in(range, r0->var_off)) {
9779 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9780 			return -EINVAL;
9781 		}
9782 	} else {
9783 		/* return to the caller whatever r0 had in the callee */
9784 		caller->regs[BPF_REG_0] = *r0;
9785 	}
9786 
9787 	/* callback_fn frame should have released its own additions to parent's
9788 	 * reference state at this point, or check_reference_leak would
9789 	 * complain, hence it must be the same as the caller. There is no need
9790 	 * to copy it back.
9791 	 */
9792 	if (!callee->in_callback_fn) {
9793 		/* Transfer references to the caller */
9794 		err = copy_reference_state(caller, callee);
9795 		if (err)
9796 			return err;
9797 	}
9798 
9799 	*insn_idx = callee->callsite + 1;
9800 	if (env->log.level & BPF_LOG_LEVEL) {
9801 		verbose(env, "returning from callee:\n");
9802 		print_verifier_state(env, callee, true);
9803 		verbose(env, "to caller at %d:\n", *insn_idx);
9804 		print_verifier_state(env, caller, true);
9805 	}
9806 	/* clear everything in the callee. In case of exceptional exits using
9807 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9808 	free_func_state(callee);
9809 	state->frame[state->curframe--] = NULL;
9810 	return 0;
9811 }
9812 
9813 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9814 				   int func_id,
9815 				   struct bpf_call_arg_meta *meta)
9816 {
9817 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9818 
9819 	if (ret_type != RET_INTEGER)
9820 		return;
9821 
9822 	switch (func_id) {
9823 	case BPF_FUNC_get_stack:
9824 	case BPF_FUNC_get_task_stack:
9825 	case BPF_FUNC_probe_read_str:
9826 	case BPF_FUNC_probe_read_kernel_str:
9827 	case BPF_FUNC_probe_read_user_str:
9828 		ret_reg->smax_value = meta->msize_max_value;
9829 		ret_reg->s32_max_value = meta->msize_max_value;
9830 		ret_reg->smin_value = -MAX_ERRNO;
9831 		ret_reg->s32_min_value = -MAX_ERRNO;
9832 		reg_bounds_sync(ret_reg);
9833 		break;
9834 	case BPF_FUNC_get_smp_processor_id:
9835 		ret_reg->umax_value = nr_cpu_ids - 1;
9836 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9837 		ret_reg->smax_value = nr_cpu_ids - 1;
9838 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9839 		ret_reg->umin_value = 0;
9840 		ret_reg->u32_min_value = 0;
9841 		ret_reg->smin_value = 0;
9842 		ret_reg->s32_min_value = 0;
9843 		reg_bounds_sync(ret_reg);
9844 		break;
9845 	}
9846 }
9847 
9848 static int
9849 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9850 		int func_id, int insn_idx)
9851 {
9852 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9853 	struct bpf_map *map = meta->map_ptr;
9854 
9855 	if (func_id != BPF_FUNC_tail_call &&
9856 	    func_id != BPF_FUNC_map_lookup_elem &&
9857 	    func_id != BPF_FUNC_map_update_elem &&
9858 	    func_id != BPF_FUNC_map_delete_elem &&
9859 	    func_id != BPF_FUNC_map_push_elem &&
9860 	    func_id != BPF_FUNC_map_pop_elem &&
9861 	    func_id != BPF_FUNC_map_peek_elem &&
9862 	    func_id != BPF_FUNC_for_each_map_elem &&
9863 	    func_id != BPF_FUNC_redirect_map &&
9864 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9865 		return 0;
9866 
9867 	if (map == NULL) {
9868 		verbose(env, "kernel subsystem misconfigured verifier\n");
9869 		return -EINVAL;
9870 	}
9871 
9872 	/* In case of read-only, some additional restrictions
9873 	 * need to be applied in order to prevent altering the
9874 	 * state of the map from program side.
9875 	 */
9876 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9877 	    (func_id == BPF_FUNC_map_delete_elem ||
9878 	     func_id == BPF_FUNC_map_update_elem ||
9879 	     func_id == BPF_FUNC_map_push_elem ||
9880 	     func_id == BPF_FUNC_map_pop_elem)) {
9881 		verbose(env, "write into map forbidden\n");
9882 		return -EACCES;
9883 	}
9884 
9885 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9886 		bpf_map_ptr_store(aux, meta->map_ptr,
9887 				  !meta->map_ptr->bypass_spec_v1);
9888 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9889 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9890 				  !meta->map_ptr->bypass_spec_v1);
9891 	return 0;
9892 }
9893 
9894 static int
9895 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9896 		int func_id, int insn_idx)
9897 {
9898 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9899 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9900 	struct bpf_map *map = meta->map_ptr;
9901 	u64 val, max;
9902 	int err;
9903 
9904 	if (func_id != BPF_FUNC_tail_call)
9905 		return 0;
9906 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9907 		verbose(env, "kernel subsystem misconfigured verifier\n");
9908 		return -EINVAL;
9909 	}
9910 
9911 	reg = &regs[BPF_REG_3];
9912 	val = reg->var_off.value;
9913 	max = map->max_entries;
9914 
9915 	if (!(register_is_const(reg) && val < max)) {
9916 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9917 		return 0;
9918 	}
9919 
9920 	err = mark_chain_precision(env, BPF_REG_3);
9921 	if (err)
9922 		return err;
9923 	if (bpf_map_key_unseen(aux))
9924 		bpf_map_key_store(aux, val);
9925 	else if (!bpf_map_key_poisoned(aux) &&
9926 		  bpf_map_key_immediate(aux) != val)
9927 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9928 	return 0;
9929 }
9930 
9931 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9932 {
9933 	struct bpf_func_state *state = cur_func(env);
9934 	bool refs_lingering = false;
9935 	int i;
9936 
9937 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9938 		return 0;
9939 
9940 	for (i = 0; i < state->acquired_refs; i++) {
9941 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9942 			continue;
9943 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9944 			state->refs[i].id, state->refs[i].insn_idx);
9945 		refs_lingering = true;
9946 	}
9947 	return refs_lingering ? -EINVAL : 0;
9948 }
9949 
9950 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9951 				   struct bpf_reg_state *regs)
9952 {
9953 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9954 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9955 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9956 	struct bpf_bprintf_data data = {};
9957 	int err, fmt_map_off, num_args;
9958 	u64 fmt_addr;
9959 	char *fmt;
9960 
9961 	/* data must be an array of u64 */
9962 	if (data_len_reg->var_off.value % 8)
9963 		return -EINVAL;
9964 	num_args = data_len_reg->var_off.value / 8;
9965 
9966 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9967 	 * and map_direct_value_addr is set.
9968 	 */
9969 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9970 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9971 						  fmt_map_off);
9972 	if (err) {
9973 		verbose(env, "verifier bug\n");
9974 		return -EFAULT;
9975 	}
9976 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9977 
9978 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9979 	 * can focus on validating the format specifiers.
9980 	 */
9981 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9982 	if (err < 0)
9983 		verbose(env, "Invalid format string\n");
9984 
9985 	return err;
9986 }
9987 
9988 static int check_get_func_ip(struct bpf_verifier_env *env)
9989 {
9990 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9991 	int func_id = BPF_FUNC_get_func_ip;
9992 
9993 	if (type == BPF_PROG_TYPE_TRACING) {
9994 		if (!bpf_prog_has_trampoline(env->prog)) {
9995 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9996 				func_id_name(func_id), func_id);
9997 			return -ENOTSUPP;
9998 		}
9999 		return 0;
10000 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10001 		return 0;
10002 	}
10003 
10004 	verbose(env, "func %s#%d not supported for program type %d\n",
10005 		func_id_name(func_id), func_id, type);
10006 	return -ENOTSUPP;
10007 }
10008 
10009 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10010 {
10011 	return &env->insn_aux_data[env->insn_idx];
10012 }
10013 
10014 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10015 {
10016 	struct bpf_reg_state *regs = cur_regs(env);
10017 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10018 	bool reg_is_null = register_is_null(reg);
10019 
10020 	if (reg_is_null)
10021 		mark_chain_precision(env, BPF_REG_4);
10022 
10023 	return reg_is_null;
10024 }
10025 
10026 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10027 {
10028 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10029 
10030 	if (!state->initialized) {
10031 		state->initialized = 1;
10032 		state->fit_for_inline = loop_flag_is_zero(env);
10033 		state->callback_subprogno = subprogno;
10034 		return;
10035 	}
10036 
10037 	if (!state->fit_for_inline)
10038 		return;
10039 
10040 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10041 				 state->callback_subprogno == subprogno);
10042 }
10043 
10044 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10045 			     int *insn_idx_p)
10046 {
10047 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10048 	bool returns_cpu_specific_alloc_ptr = false;
10049 	const struct bpf_func_proto *fn = NULL;
10050 	enum bpf_return_type ret_type;
10051 	enum bpf_type_flag ret_flag;
10052 	struct bpf_reg_state *regs;
10053 	struct bpf_call_arg_meta meta;
10054 	int insn_idx = *insn_idx_p;
10055 	bool changes_data;
10056 	int i, err, func_id;
10057 
10058 	/* find function prototype */
10059 	func_id = insn->imm;
10060 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10061 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10062 			func_id);
10063 		return -EINVAL;
10064 	}
10065 
10066 	if (env->ops->get_func_proto)
10067 		fn = env->ops->get_func_proto(func_id, env->prog);
10068 	if (!fn) {
10069 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10070 			func_id);
10071 		return -EINVAL;
10072 	}
10073 
10074 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10075 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10076 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10077 		return -EINVAL;
10078 	}
10079 
10080 	if (fn->allowed && !fn->allowed(env->prog)) {
10081 		verbose(env, "helper call is not allowed in probe\n");
10082 		return -EINVAL;
10083 	}
10084 
10085 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10086 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10087 		return -EINVAL;
10088 	}
10089 
10090 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10091 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10092 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10093 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10094 			func_id_name(func_id), func_id);
10095 		return -EINVAL;
10096 	}
10097 
10098 	memset(&meta, 0, sizeof(meta));
10099 	meta.pkt_access = fn->pkt_access;
10100 
10101 	err = check_func_proto(fn, func_id);
10102 	if (err) {
10103 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10104 			func_id_name(func_id), func_id);
10105 		return err;
10106 	}
10107 
10108 	if (env->cur_state->active_rcu_lock) {
10109 		if (fn->might_sleep) {
10110 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10111 				func_id_name(func_id), func_id);
10112 			return -EINVAL;
10113 		}
10114 
10115 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10116 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10117 	}
10118 
10119 	meta.func_id = func_id;
10120 	/* check args */
10121 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10122 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10123 		if (err)
10124 			return err;
10125 	}
10126 
10127 	err = record_func_map(env, &meta, func_id, insn_idx);
10128 	if (err)
10129 		return err;
10130 
10131 	err = record_func_key(env, &meta, func_id, insn_idx);
10132 	if (err)
10133 		return err;
10134 
10135 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10136 	 * is inferred from register state.
10137 	 */
10138 	for (i = 0; i < meta.access_size; i++) {
10139 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10140 				       BPF_WRITE, -1, false, false);
10141 		if (err)
10142 			return err;
10143 	}
10144 
10145 	regs = cur_regs(env);
10146 
10147 	if (meta.release_regno) {
10148 		err = -EINVAL;
10149 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10150 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10151 		 * is safe to do directly.
10152 		 */
10153 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10154 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10155 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10156 				return -EFAULT;
10157 			}
10158 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10159 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10160 			u32 ref_obj_id = meta.ref_obj_id;
10161 			bool in_rcu = in_rcu_cs(env);
10162 			struct bpf_func_state *state;
10163 			struct bpf_reg_state *reg;
10164 
10165 			err = release_reference_state(cur_func(env), ref_obj_id);
10166 			if (!err) {
10167 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10168 					if (reg->ref_obj_id == ref_obj_id) {
10169 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10170 							reg->ref_obj_id = 0;
10171 							reg->type &= ~MEM_ALLOC;
10172 							reg->type |= MEM_RCU;
10173 						} else {
10174 							mark_reg_invalid(env, reg);
10175 						}
10176 					}
10177 				}));
10178 			}
10179 		} else if (meta.ref_obj_id) {
10180 			err = release_reference(env, meta.ref_obj_id);
10181 		} else if (register_is_null(&regs[meta.release_regno])) {
10182 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10183 			 * released is NULL, which must be > R0.
10184 			 */
10185 			err = 0;
10186 		}
10187 		if (err) {
10188 			verbose(env, "func %s#%d reference has not been acquired before\n",
10189 				func_id_name(func_id), func_id);
10190 			return err;
10191 		}
10192 	}
10193 
10194 	switch (func_id) {
10195 	case BPF_FUNC_tail_call:
10196 		err = check_reference_leak(env, false);
10197 		if (err) {
10198 			verbose(env, "tail_call would lead to reference leak\n");
10199 			return err;
10200 		}
10201 		break;
10202 	case BPF_FUNC_get_local_storage:
10203 		/* check that flags argument in get_local_storage(map, flags) is 0,
10204 		 * this is required because get_local_storage() can't return an error.
10205 		 */
10206 		if (!register_is_null(&regs[BPF_REG_2])) {
10207 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10208 			return -EINVAL;
10209 		}
10210 		break;
10211 	case BPF_FUNC_for_each_map_elem:
10212 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10213 					set_map_elem_callback_state);
10214 		break;
10215 	case BPF_FUNC_timer_set_callback:
10216 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10217 					set_timer_callback_state);
10218 		break;
10219 	case BPF_FUNC_find_vma:
10220 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10221 					set_find_vma_callback_state);
10222 		break;
10223 	case BPF_FUNC_snprintf:
10224 		err = check_bpf_snprintf_call(env, regs);
10225 		break;
10226 	case BPF_FUNC_loop:
10227 		update_loop_inline_state(env, meta.subprogno);
10228 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10229 					set_loop_callback_state);
10230 		break;
10231 	case BPF_FUNC_dynptr_from_mem:
10232 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10233 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10234 				reg_type_str(env, regs[BPF_REG_1].type));
10235 			return -EACCES;
10236 		}
10237 		break;
10238 	case BPF_FUNC_set_retval:
10239 		if (prog_type == BPF_PROG_TYPE_LSM &&
10240 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10241 			if (!env->prog->aux->attach_func_proto->type) {
10242 				/* Make sure programs that attach to void
10243 				 * hooks don't try to modify return value.
10244 				 */
10245 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10246 				return -EINVAL;
10247 			}
10248 		}
10249 		break;
10250 	case BPF_FUNC_dynptr_data:
10251 	{
10252 		struct bpf_reg_state *reg;
10253 		int id, ref_obj_id;
10254 
10255 		reg = get_dynptr_arg_reg(env, fn, regs);
10256 		if (!reg)
10257 			return -EFAULT;
10258 
10259 
10260 		if (meta.dynptr_id) {
10261 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10262 			return -EFAULT;
10263 		}
10264 		if (meta.ref_obj_id) {
10265 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10266 			return -EFAULT;
10267 		}
10268 
10269 		id = dynptr_id(env, reg);
10270 		if (id < 0) {
10271 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10272 			return id;
10273 		}
10274 
10275 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10276 		if (ref_obj_id < 0) {
10277 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10278 			return ref_obj_id;
10279 		}
10280 
10281 		meta.dynptr_id = id;
10282 		meta.ref_obj_id = ref_obj_id;
10283 
10284 		break;
10285 	}
10286 	case BPF_FUNC_dynptr_write:
10287 	{
10288 		enum bpf_dynptr_type dynptr_type;
10289 		struct bpf_reg_state *reg;
10290 
10291 		reg = get_dynptr_arg_reg(env, fn, regs);
10292 		if (!reg)
10293 			return -EFAULT;
10294 
10295 		dynptr_type = dynptr_get_type(env, reg);
10296 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10297 			return -EFAULT;
10298 
10299 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10300 			/* this will trigger clear_all_pkt_pointers(), which will
10301 			 * invalidate all dynptr slices associated with the skb
10302 			 */
10303 			changes_data = true;
10304 
10305 		break;
10306 	}
10307 	case BPF_FUNC_per_cpu_ptr:
10308 	case BPF_FUNC_this_cpu_ptr:
10309 	{
10310 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10311 		const struct btf_type *type;
10312 
10313 		if (reg->type & MEM_RCU) {
10314 			type = btf_type_by_id(reg->btf, reg->btf_id);
10315 			if (!type || !btf_type_is_struct(type)) {
10316 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10317 				return -EFAULT;
10318 			}
10319 			returns_cpu_specific_alloc_ptr = true;
10320 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10321 		}
10322 		break;
10323 	}
10324 	case BPF_FUNC_user_ringbuf_drain:
10325 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10326 					set_user_ringbuf_callback_state);
10327 		break;
10328 	}
10329 
10330 	if (err)
10331 		return err;
10332 
10333 	/* reset caller saved regs */
10334 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10335 		mark_reg_not_init(env, regs, caller_saved[i]);
10336 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10337 	}
10338 
10339 	/* helper call returns 64-bit value. */
10340 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10341 
10342 	/* update return register (already marked as written above) */
10343 	ret_type = fn->ret_type;
10344 	ret_flag = type_flag(ret_type);
10345 
10346 	switch (base_type(ret_type)) {
10347 	case RET_INTEGER:
10348 		/* sets type to SCALAR_VALUE */
10349 		mark_reg_unknown(env, regs, BPF_REG_0);
10350 		break;
10351 	case RET_VOID:
10352 		regs[BPF_REG_0].type = NOT_INIT;
10353 		break;
10354 	case RET_PTR_TO_MAP_VALUE:
10355 		/* There is no offset yet applied, variable or fixed */
10356 		mark_reg_known_zero(env, regs, BPF_REG_0);
10357 		/* remember map_ptr, so that check_map_access()
10358 		 * can check 'value_size' boundary of memory access
10359 		 * to map element returned from bpf_map_lookup_elem()
10360 		 */
10361 		if (meta.map_ptr == NULL) {
10362 			verbose(env,
10363 				"kernel subsystem misconfigured verifier\n");
10364 			return -EINVAL;
10365 		}
10366 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10367 		regs[BPF_REG_0].map_uid = meta.map_uid;
10368 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10369 		if (!type_may_be_null(ret_type) &&
10370 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10371 			regs[BPF_REG_0].id = ++env->id_gen;
10372 		}
10373 		break;
10374 	case RET_PTR_TO_SOCKET:
10375 		mark_reg_known_zero(env, regs, BPF_REG_0);
10376 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10377 		break;
10378 	case RET_PTR_TO_SOCK_COMMON:
10379 		mark_reg_known_zero(env, regs, BPF_REG_0);
10380 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10381 		break;
10382 	case RET_PTR_TO_TCP_SOCK:
10383 		mark_reg_known_zero(env, regs, BPF_REG_0);
10384 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10385 		break;
10386 	case RET_PTR_TO_MEM:
10387 		mark_reg_known_zero(env, regs, BPF_REG_0);
10388 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10389 		regs[BPF_REG_0].mem_size = meta.mem_size;
10390 		break;
10391 	case RET_PTR_TO_MEM_OR_BTF_ID:
10392 	{
10393 		const struct btf_type *t;
10394 
10395 		mark_reg_known_zero(env, regs, BPF_REG_0);
10396 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10397 		if (!btf_type_is_struct(t)) {
10398 			u32 tsize;
10399 			const struct btf_type *ret;
10400 			const char *tname;
10401 
10402 			/* resolve the type size of ksym. */
10403 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10404 			if (IS_ERR(ret)) {
10405 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10406 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10407 					tname, PTR_ERR(ret));
10408 				return -EINVAL;
10409 			}
10410 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10411 			regs[BPF_REG_0].mem_size = tsize;
10412 		} else {
10413 			if (returns_cpu_specific_alloc_ptr) {
10414 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10415 			} else {
10416 				/* MEM_RDONLY may be carried from ret_flag, but it
10417 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10418 				 * it will confuse the check of PTR_TO_BTF_ID in
10419 				 * check_mem_access().
10420 				 */
10421 				ret_flag &= ~MEM_RDONLY;
10422 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10423 			}
10424 
10425 			regs[BPF_REG_0].btf = meta.ret_btf;
10426 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10427 		}
10428 		break;
10429 	}
10430 	case RET_PTR_TO_BTF_ID:
10431 	{
10432 		struct btf *ret_btf;
10433 		int ret_btf_id;
10434 
10435 		mark_reg_known_zero(env, regs, BPF_REG_0);
10436 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10437 		if (func_id == BPF_FUNC_kptr_xchg) {
10438 			ret_btf = meta.kptr_field->kptr.btf;
10439 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10440 			if (!btf_is_kernel(ret_btf)) {
10441 				regs[BPF_REG_0].type |= MEM_ALLOC;
10442 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10443 					regs[BPF_REG_0].type |= MEM_PERCPU;
10444 			}
10445 		} else {
10446 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10447 				verbose(env, "verifier internal error:");
10448 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10449 					func_id_name(func_id));
10450 				return -EINVAL;
10451 			}
10452 			ret_btf = btf_vmlinux;
10453 			ret_btf_id = *fn->ret_btf_id;
10454 		}
10455 		if (ret_btf_id == 0) {
10456 			verbose(env, "invalid return type %u of func %s#%d\n",
10457 				base_type(ret_type), func_id_name(func_id),
10458 				func_id);
10459 			return -EINVAL;
10460 		}
10461 		regs[BPF_REG_0].btf = ret_btf;
10462 		regs[BPF_REG_0].btf_id = ret_btf_id;
10463 		break;
10464 	}
10465 	default:
10466 		verbose(env, "unknown return type %u of func %s#%d\n",
10467 			base_type(ret_type), func_id_name(func_id), func_id);
10468 		return -EINVAL;
10469 	}
10470 
10471 	if (type_may_be_null(regs[BPF_REG_0].type))
10472 		regs[BPF_REG_0].id = ++env->id_gen;
10473 
10474 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10475 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10476 			func_id_name(func_id), func_id);
10477 		return -EFAULT;
10478 	}
10479 
10480 	if (is_dynptr_ref_function(func_id))
10481 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10482 
10483 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10484 		/* For release_reference() */
10485 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10486 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10487 		int id = acquire_reference_state(env, insn_idx);
10488 
10489 		if (id < 0)
10490 			return id;
10491 		/* For mark_ptr_or_null_reg() */
10492 		regs[BPF_REG_0].id = id;
10493 		/* For release_reference() */
10494 		regs[BPF_REG_0].ref_obj_id = id;
10495 	}
10496 
10497 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10498 
10499 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10500 	if (err)
10501 		return err;
10502 
10503 	if ((func_id == BPF_FUNC_get_stack ||
10504 	     func_id == BPF_FUNC_get_task_stack) &&
10505 	    !env->prog->has_callchain_buf) {
10506 		const char *err_str;
10507 
10508 #ifdef CONFIG_PERF_EVENTS
10509 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10510 		err_str = "cannot get callchain buffer for func %s#%d\n";
10511 #else
10512 		err = -ENOTSUPP;
10513 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10514 #endif
10515 		if (err) {
10516 			verbose(env, err_str, func_id_name(func_id), func_id);
10517 			return err;
10518 		}
10519 
10520 		env->prog->has_callchain_buf = true;
10521 	}
10522 
10523 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10524 		env->prog->call_get_stack = true;
10525 
10526 	if (func_id == BPF_FUNC_get_func_ip) {
10527 		if (check_get_func_ip(env))
10528 			return -ENOTSUPP;
10529 		env->prog->call_get_func_ip = true;
10530 	}
10531 
10532 	if (changes_data)
10533 		clear_all_pkt_pointers(env);
10534 	return 0;
10535 }
10536 
10537 /* mark_btf_func_reg_size() is used when the reg size is determined by
10538  * the BTF func_proto's return value size and argument.
10539  */
10540 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10541 				   size_t reg_size)
10542 {
10543 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10544 
10545 	if (regno == BPF_REG_0) {
10546 		/* Function return value */
10547 		reg->live |= REG_LIVE_WRITTEN;
10548 		reg->subreg_def = reg_size == sizeof(u64) ?
10549 			DEF_NOT_SUBREG : env->insn_idx + 1;
10550 	} else {
10551 		/* Function argument */
10552 		if (reg_size == sizeof(u64)) {
10553 			mark_insn_zext(env, reg);
10554 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10555 		} else {
10556 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10557 		}
10558 	}
10559 }
10560 
10561 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10562 {
10563 	return meta->kfunc_flags & KF_ACQUIRE;
10564 }
10565 
10566 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10567 {
10568 	return meta->kfunc_flags & KF_RELEASE;
10569 }
10570 
10571 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10572 {
10573 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10574 }
10575 
10576 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10577 {
10578 	return meta->kfunc_flags & KF_SLEEPABLE;
10579 }
10580 
10581 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10582 {
10583 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10584 }
10585 
10586 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10587 {
10588 	return meta->kfunc_flags & KF_RCU;
10589 }
10590 
10591 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10592 {
10593 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10594 }
10595 
10596 static bool __kfunc_param_match_suffix(const struct btf *btf,
10597 				       const struct btf_param *arg,
10598 				       const char *suffix)
10599 {
10600 	int suffix_len = strlen(suffix), len;
10601 	const char *param_name;
10602 
10603 	/* In the future, this can be ported to use BTF tagging */
10604 	param_name = btf_name_by_offset(btf, arg->name_off);
10605 	if (str_is_empty(param_name))
10606 		return false;
10607 	len = strlen(param_name);
10608 	if (len < suffix_len)
10609 		return false;
10610 	param_name += len - suffix_len;
10611 	return !strncmp(param_name, suffix, suffix_len);
10612 }
10613 
10614 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10615 				  const struct btf_param *arg,
10616 				  const struct bpf_reg_state *reg)
10617 {
10618 	const struct btf_type *t;
10619 
10620 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10621 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10622 		return false;
10623 
10624 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10625 }
10626 
10627 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10628 					const struct btf_param *arg,
10629 					const struct bpf_reg_state *reg)
10630 {
10631 	const struct btf_type *t;
10632 
10633 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10634 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10635 		return false;
10636 
10637 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10638 }
10639 
10640 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10641 {
10642 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10643 }
10644 
10645 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10646 {
10647 	return __kfunc_param_match_suffix(btf, arg, "__k");
10648 }
10649 
10650 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10651 {
10652 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10653 }
10654 
10655 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10656 {
10657 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10658 }
10659 
10660 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10661 {
10662 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10663 }
10664 
10665 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10666 {
10667 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10668 }
10669 
10670 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10671 {
10672 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10673 }
10674 
10675 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10676 					  const struct btf_param *arg,
10677 					  const char *name)
10678 {
10679 	int len, target_len = strlen(name);
10680 	const char *param_name;
10681 
10682 	param_name = btf_name_by_offset(btf, arg->name_off);
10683 	if (str_is_empty(param_name))
10684 		return false;
10685 	len = strlen(param_name);
10686 	if (len != target_len)
10687 		return false;
10688 	if (strcmp(param_name, name))
10689 		return false;
10690 
10691 	return true;
10692 }
10693 
10694 enum {
10695 	KF_ARG_DYNPTR_ID,
10696 	KF_ARG_LIST_HEAD_ID,
10697 	KF_ARG_LIST_NODE_ID,
10698 	KF_ARG_RB_ROOT_ID,
10699 	KF_ARG_RB_NODE_ID,
10700 };
10701 
10702 BTF_ID_LIST(kf_arg_btf_ids)
10703 BTF_ID(struct, bpf_dynptr_kern)
10704 BTF_ID(struct, bpf_list_head)
10705 BTF_ID(struct, bpf_list_node)
10706 BTF_ID(struct, bpf_rb_root)
10707 BTF_ID(struct, bpf_rb_node)
10708 
10709 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10710 				    const struct btf_param *arg, int type)
10711 {
10712 	const struct btf_type *t;
10713 	u32 res_id;
10714 
10715 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10716 	if (!t)
10717 		return false;
10718 	if (!btf_type_is_ptr(t))
10719 		return false;
10720 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10721 	if (!t)
10722 		return false;
10723 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10724 }
10725 
10726 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10727 {
10728 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10729 }
10730 
10731 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10732 {
10733 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10734 }
10735 
10736 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10737 {
10738 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10739 }
10740 
10741 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10742 {
10743 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10744 }
10745 
10746 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10747 {
10748 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10749 }
10750 
10751 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10752 				  const struct btf_param *arg)
10753 {
10754 	const struct btf_type *t;
10755 
10756 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10757 	if (!t)
10758 		return false;
10759 
10760 	return true;
10761 }
10762 
10763 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10764 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10765 					const struct btf *btf,
10766 					const struct btf_type *t, int rec)
10767 {
10768 	const struct btf_type *member_type;
10769 	const struct btf_member *member;
10770 	u32 i;
10771 
10772 	if (!btf_type_is_struct(t))
10773 		return false;
10774 
10775 	for_each_member(i, t, member) {
10776 		const struct btf_array *array;
10777 
10778 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10779 		if (btf_type_is_struct(member_type)) {
10780 			if (rec >= 3) {
10781 				verbose(env, "max struct nesting depth exceeded\n");
10782 				return false;
10783 			}
10784 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10785 				return false;
10786 			continue;
10787 		}
10788 		if (btf_type_is_array(member_type)) {
10789 			array = btf_array(member_type);
10790 			if (!array->nelems)
10791 				return false;
10792 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10793 			if (!btf_type_is_scalar(member_type))
10794 				return false;
10795 			continue;
10796 		}
10797 		if (!btf_type_is_scalar(member_type))
10798 			return false;
10799 	}
10800 	return true;
10801 }
10802 
10803 enum kfunc_ptr_arg_type {
10804 	KF_ARG_PTR_TO_CTX,
10805 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10806 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10807 	KF_ARG_PTR_TO_DYNPTR,
10808 	KF_ARG_PTR_TO_ITER,
10809 	KF_ARG_PTR_TO_LIST_HEAD,
10810 	KF_ARG_PTR_TO_LIST_NODE,
10811 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10812 	KF_ARG_PTR_TO_MEM,
10813 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10814 	KF_ARG_PTR_TO_CALLBACK,
10815 	KF_ARG_PTR_TO_RB_ROOT,
10816 	KF_ARG_PTR_TO_RB_NODE,
10817 	KF_ARG_PTR_TO_NULL,
10818 };
10819 
10820 enum special_kfunc_type {
10821 	KF_bpf_obj_new_impl,
10822 	KF_bpf_obj_drop_impl,
10823 	KF_bpf_refcount_acquire_impl,
10824 	KF_bpf_list_push_front_impl,
10825 	KF_bpf_list_push_back_impl,
10826 	KF_bpf_list_pop_front,
10827 	KF_bpf_list_pop_back,
10828 	KF_bpf_cast_to_kern_ctx,
10829 	KF_bpf_rdonly_cast,
10830 	KF_bpf_rcu_read_lock,
10831 	KF_bpf_rcu_read_unlock,
10832 	KF_bpf_rbtree_remove,
10833 	KF_bpf_rbtree_add_impl,
10834 	KF_bpf_rbtree_first,
10835 	KF_bpf_dynptr_from_skb,
10836 	KF_bpf_dynptr_from_xdp,
10837 	KF_bpf_dynptr_slice,
10838 	KF_bpf_dynptr_slice_rdwr,
10839 	KF_bpf_dynptr_clone,
10840 	KF_bpf_percpu_obj_new_impl,
10841 	KF_bpf_percpu_obj_drop_impl,
10842 	KF_bpf_throw,
10843 	KF_bpf_iter_css_task_new,
10844 };
10845 
10846 BTF_SET_START(special_kfunc_set)
10847 BTF_ID(func, bpf_obj_new_impl)
10848 BTF_ID(func, bpf_obj_drop_impl)
10849 BTF_ID(func, bpf_refcount_acquire_impl)
10850 BTF_ID(func, bpf_list_push_front_impl)
10851 BTF_ID(func, bpf_list_push_back_impl)
10852 BTF_ID(func, bpf_list_pop_front)
10853 BTF_ID(func, bpf_list_pop_back)
10854 BTF_ID(func, bpf_cast_to_kern_ctx)
10855 BTF_ID(func, bpf_rdonly_cast)
10856 BTF_ID(func, bpf_rbtree_remove)
10857 BTF_ID(func, bpf_rbtree_add_impl)
10858 BTF_ID(func, bpf_rbtree_first)
10859 BTF_ID(func, bpf_dynptr_from_skb)
10860 BTF_ID(func, bpf_dynptr_from_xdp)
10861 BTF_ID(func, bpf_dynptr_slice)
10862 BTF_ID(func, bpf_dynptr_slice_rdwr)
10863 BTF_ID(func, bpf_dynptr_clone)
10864 BTF_ID(func, bpf_percpu_obj_new_impl)
10865 BTF_ID(func, bpf_percpu_obj_drop_impl)
10866 BTF_ID(func, bpf_throw)
10867 #ifdef CONFIG_CGROUPS
10868 BTF_ID(func, bpf_iter_css_task_new)
10869 #endif
10870 BTF_SET_END(special_kfunc_set)
10871 
10872 BTF_ID_LIST(special_kfunc_list)
10873 BTF_ID(func, bpf_obj_new_impl)
10874 BTF_ID(func, bpf_obj_drop_impl)
10875 BTF_ID(func, bpf_refcount_acquire_impl)
10876 BTF_ID(func, bpf_list_push_front_impl)
10877 BTF_ID(func, bpf_list_push_back_impl)
10878 BTF_ID(func, bpf_list_pop_front)
10879 BTF_ID(func, bpf_list_pop_back)
10880 BTF_ID(func, bpf_cast_to_kern_ctx)
10881 BTF_ID(func, bpf_rdonly_cast)
10882 BTF_ID(func, bpf_rcu_read_lock)
10883 BTF_ID(func, bpf_rcu_read_unlock)
10884 BTF_ID(func, bpf_rbtree_remove)
10885 BTF_ID(func, bpf_rbtree_add_impl)
10886 BTF_ID(func, bpf_rbtree_first)
10887 BTF_ID(func, bpf_dynptr_from_skb)
10888 BTF_ID(func, bpf_dynptr_from_xdp)
10889 BTF_ID(func, bpf_dynptr_slice)
10890 BTF_ID(func, bpf_dynptr_slice_rdwr)
10891 BTF_ID(func, bpf_dynptr_clone)
10892 BTF_ID(func, bpf_percpu_obj_new_impl)
10893 BTF_ID(func, bpf_percpu_obj_drop_impl)
10894 BTF_ID(func, bpf_throw)
10895 #ifdef CONFIG_CGROUPS
10896 BTF_ID(func, bpf_iter_css_task_new)
10897 #else
10898 BTF_ID_UNUSED
10899 #endif
10900 
10901 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10902 {
10903 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10904 	    meta->arg_owning_ref) {
10905 		return false;
10906 	}
10907 
10908 	return meta->kfunc_flags & KF_RET_NULL;
10909 }
10910 
10911 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10912 {
10913 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10914 }
10915 
10916 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10917 {
10918 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10919 }
10920 
10921 static enum kfunc_ptr_arg_type
10922 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10923 		       struct bpf_kfunc_call_arg_meta *meta,
10924 		       const struct btf_type *t, const struct btf_type *ref_t,
10925 		       const char *ref_tname, const struct btf_param *args,
10926 		       int argno, int nargs)
10927 {
10928 	u32 regno = argno + 1;
10929 	struct bpf_reg_state *regs = cur_regs(env);
10930 	struct bpf_reg_state *reg = &regs[regno];
10931 	bool arg_mem_size = false;
10932 
10933 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10934 		return KF_ARG_PTR_TO_CTX;
10935 
10936 	/* In this function, we verify the kfunc's BTF as per the argument type,
10937 	 * leaving the rest of the verification with respect to the register
10938 	 * type to our caller. When a set of conditions hold in the BTF type of
10939 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10940 	 */
10941 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10942 		return KF_ARG_PTR_TO_CTX;
10943 
10944 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10945 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10946 
10947 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10948 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10949 
10950 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10951 		return KF_ARG_PTR_TO_DYNPTR;
10952 
10953 	if (is_kfunc_arg_iter(meta, argno))
10954 		return KF_ARG_PTR_TO_ITER;
10955 
10956 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10957 		return KF_ARG_PTR_TO_LIST_HEAD;
10958 
10959 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10960 		return KF_ARG_PTR_TO_LIST_NODE;
10961 
10962 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10963 		return KF_ARG_PTR_TO_RB_ROOT;
10964 
10965 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10966 		return KF_ARG_PTR_TO_RB_NODE;
10967 
10968 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10969 		if (!btf_type_is_struct(ref_t)) {
10970 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10971 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10972 			return -EINVAL;
10973 		}
10974 		return KF_ARG_PTR_TO_BTF_ID;
10975 	}
10976 
10977 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10978 		return KF_ARG_PTR_TO_CALLBACK;
10979 
10980 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
10981 		return KF_ARG_PTR_TO_NULL;
10982 
10983 	if (argno + 1 < nargs &&
10984 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10985 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10986 		arg_mem_size = true;
10987 
10988 	/* This is the catch all argument type of register types supported by
10989 	 * check_helper_mem_access. However, we only allow when argument type is
10990 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10991 	 * arg_mem_size is true, the pointer can be void *.
10992 	 */
10993 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10994 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10995 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10996 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10997 		return -EINVAL;
10998 	}
10999 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11000 }
11001 
11002 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11003 					struct bpf_reg_state *reg,
11004 					const struct btf_type *ref_t,
11005 					const char *ref_tname, u32 ref_id,
11006 					struct bpf_kfunc_call_arg_meta *meta,
11007 					int argno)
11008 {
11009 	const struct btf_type *reg_ref_t;
11010 	bool strict_type_match = false;
11011 	const struct btf *reg_btf;
11012 	const char *reg_ref_tname;
11013 	u32 reg_ref_id;
11014 
11015 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11016 		reg_btf = reg->btf;
11017 		reg_ref_id = reg->btf_id;
11018 	} else {
11019 		reg_btf = btf_vmlinux;
11020 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11021 	}
11022 
11023 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11024 	 * or releasing a reference, or are no-cast aliases. We do _not_
11025 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11026 	 * as we want to enable BPF programs to pass types that are bitwise
11027 	 * equivalent without forcing them to explicitly cast with something
11028 	 * like bpf_cast_to_kern_ctx().
11029 	 *
11030 	 * For example, say we had a type like the following:
11031 	 *
11032 	 * struct bpf_cpumask {
11033 	 *	cpumask_t cpumask;
11034 	 *	refcount_t usage;
11035 	 * };
11036 	 *
11037 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11038 	 * to a struct cpumask, so it would be safe to pass a struct
11039 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11040 	 *
11041 	 * The philosophy here is similar to how we allow scalars of different
11042 	 * types to be passed to kfuncs as long as the size is the same. The
11043 	 * only difference here is that we're simply allowing
11044 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11045 	 * resolve types.
11046 	 */
11047 	if (is_kfunc_acquire(meta) ||
11048 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11049 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11050 		strict_type_match = true;
11051 
11052 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11053 
11054 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11055 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11056 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11057 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11058 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11059 			btf_type_str(reg_ref_t), reg_ref_tname);
11060 		return -EINVAL;
11061 	}
11062 	return 0;
11063 }
11064 
11065 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11066 {
11067 	struct bpf_verifier_state *state = env->cur_state;
11068 	struct btf_record *rec = reg_btf_record(reg);
11069 
11070 	if (!state->active_lock.ptr) {
11071 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11072 		return -EFAULT;
11073 	}
11074 
11075 	if (type_flag(reg->type) & NON_OWN_REF) {
11076 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11077 		return -EFAULT;
11078 	}
11079 
11080 	reg->type |= NON_OWN_REF;
11081 	if (rec->refcount_off >= 0)
11082 		reg->type |= MEM_RCU;
11083 
11084 	return 0;
11085 }
11086 
11087 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11088 {
11089 	struct bpf_func_state *state, *unused;
11090 	struct bpf_reg_state *reg;
11091 	int i;
11092 
11093 	state = cur_func(env);
11094 
11095 	if (!ref_obj_id) {
11096 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11097 			     "owning -> non-owning conversion\n");
11098 		return -EFAULT;
11099 	}
11100 
11101 	for (i = 0; i < state->acquired_refs; i++) {
11102 		if (state->refs[i].id != ref_obj_id)
11103 			continue;
11104 
11105 		/* Clear ref_obj_id here so release_reference doesn't clobber
11106 		 * the whole reg
11107 		 */
11108 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11109 			if (reg->ref_obj_id == ref_obj_id) {
11110 				reg->ref_obj_id = 0;
11111 				ref_set_non_owning(env, reg);
11112 			}
11113 		}));
11114 		return 0;
11115 	}
11116 
11117 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11118 	return -EFAULT;
11119 }
11120 
11121 /* Implementation details:
11122  *
11123  * Each register points to some region of memory, which we define as an
11124  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11125  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11126  * allocation. The lock and the data it protects are colocated in the same
11127  * memory region.
11128  *
11129  * Hence, everytime a register holds a pointer value pointing to such
11130  * allocation, the verifier preserves a unique reg->id for it.
11131  *
11132  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11133  * bpf_spin_lock is called.
11134  *
11135  * To enable this, lock state in the verifier captures two values:
11136  *	active_lock.ptr = Register's type specific pointer
11137  *	active_lock.id  = A unique ID for each register pointer value
11138  *
11139  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11140  * supported register types.
11141  *
11142  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11143  * allocated objects is the reg->btf pointer.
11144  *
11145  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11146  * can establish the provenance of the map value statically for each distinct
11147  * lookup into such maps. They always contain a single map value hence unique
11148  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11149  *
11150  * So, in case of global variables, they use array maps with max_entries = 1,
11151  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11152  * into the same map value as max_entries is 1, as described above).
11153  *
11154  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11155  * outer map pointer (in verifier context), but each lookup into an inner map
11156  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11157  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11158  * will get different reg->id assigned to each lookup, hence different
11159  * active_lock.id.
11160  *
11161  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11162  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11163  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11164  */
11165 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11166 {
11167 	void *ptr;
11168 	u32 id;
11169 
11170 	switch ((int)reg->type) {
11171 	case PTR_TO_MAP_VALUE:
11172 		ptr = reg->map_ptr;
11173 		break;
11174 	case PTR_TO_BTF_ID | MEM_ALLOC:
11175 		ptr = reg->btf;
11176 		break;
11177 	default:
11178 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11179 		return -EFAULT;
11180 	}
11181 	id = reg->id;
11182 
11183 	if (!env->cur_state->active_lock.ptr)
11184 		return -EINVAL;
11185 	if (env->cur_state->active_lock.ptr != ptr ||
11186 	    env->cur_state->active_lock.id != id) {
11187 		verbose(env, "held lock and object are not in the same allocation\n");
11188 		return -EINVAL;
11189 	}
11190 	return 0;
11191 }
11192 
11193 static bool is_bpf_list_api_kfunc(u32 btf_id)
11194 {
11195 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11196 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11197 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11198 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11199 }
11200 
11201 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11202 {
11203 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11204 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11205 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11206 }
11207 
11208 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11209 {
11210 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11211 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11212 }
11213 
11214 static bool is_callback_calling_kfunc(u32 btf_id)
11215 {
11216 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11217 }
11218 
11219 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11220 {
11221 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11222 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11223 }
11224 
11225 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11226 {
11227 	return is_bpf_rbtree_api_kfunc(btf_id);
11228 }
11229 
11230 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11231 					  enum btf_field_type head_field_type,
11232 					  u32 kfunc_btf_id)
11233 {
11234 	bool ret;
11235 
11236 	switch (head_field_type) {
11237 	case BPF_LIST_HEAD:
11238 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11239 		break;
11240 	case BPF_RB_ROOT:
11241 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11242 		break;
11243 	default:
11244 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11245 			btf_field_type_name(head_field_type));
11246 		return false;
11247 	}
11248 
11249 	if (!ret)
11250 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11251 			btf_field_type_name(head_field_type));
11252 	return ret;
11253 }
11254 
11255 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11256 					  enum btf_field_type node_field_type,
11257 					  u32 kfunc_btf_id)
11258 {
11259 	bool ret;
11260 
11261 	switch (node_field_type) {
11262 	case BPF_LIST_NODE:
11263 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11264 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11265 		break;
11266 	case BPF_RB_NODE:
11267 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11268 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11269 		break;
11270 	default:
11271 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11272 			btf_field_type_name(node_field_type));
11273 		return false;
11274 	}
11275 
11276 	if (!ret)
11277 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11278 			btf_field_type_name(node_field_type));
11279 	return ret;
11280 }
11281 
11282 static int
11283 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11284 				   struct bpf_reg_state *reg, u32 regno,
11285 				   struct bpf_kfunc_call_arg_meta *meta,
11286 				   enum btf_field_type head_field_type,
11287 				   struct btf_field **head_field)
11288 {
11289 	const char *head_type_name;
11290 	struct btf_field *field;
11291 	struct btf_record *rec;
11292 	u32 head_off;
11293 
11294 	if (meta->btf != btf_vmlinux) {
11295 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11296 		return -EFAULT;
11297 	}
11298 
11299 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11300 		return -EFAULT;
11301 
11302 	head_type_name = btf_field_type_name(head_field_type);
11303 	if (!tnum_is_const(reg->var_off)) {
11304 		verbose(env,
11305 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11306 			regno, head_type_name);
11307 		return -EINVAL;
11308 	}
11309 
11310 	rec = reg_btf_record(reg);
11311 	head_off = reg->off + reg->var_off.value;
11312 	field = btf_record_find(rec, head_off, head_field_type);
11313 	if (!field) {
11314 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11315 		return -EINVAL;
11316 	}
11317 
11318 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11319 	if (check_reg_allocation_locked(env, reg)) {
11320 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11321 			rec->spin_lock_off, head_type_name);
11322 		return -EINVAL;
11323 	}
11324 
11325 	if (*head_field) {
11326 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11327 		return -EFAULT;
11328 	}
11329 	*head_field = field;
11330 	return 0;
11331 }
11332 
11333 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11334 					   struct bpf_reg_state *reg, u32 regno,
11335 					   struct bpf_kfunc_call_arg_meta *meta)
11336 {
11337 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11338 							  &meta->arg_list_head.field);
11339 }
11340 
11341 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11342 					     struct bpf_reg_state *reg, u32 regno,
11343 					     struct bpf_kfunc_call_arg_meta *meta)
11344 {
11345 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11346 							  &meta->arg_rbtree_root.field);
11347 }
11348 
11349 static int
11350 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11351 				   struct bpf_reg_state *reg, u32 regno,
11352 				   struct bpf_kfunc_call_arg_meta *meta,
11353 				   enum btf_field_type head_field_type,
11354 				   enum btf_field_type node_field_type,
11355 				   struct btf_field **node_field)
11356 {
11357 	const char *node_type_name;
11358 	const struct btf_type *et, *t;
11359 	struct btf_field *field;
11360 	u32 node_off;
11361 
11362 	if (meta->btf != btf_vmlinux) {
11363 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11364 		return -EFAULT;
11365 	}
11366 
11367 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11368 		return -EFAULT;
11369 
11370 	node_type_name = btf_field_type_name(node_field_type);
11371 	if (!tnum_is_const(reg->var_off)) {
11372 		verbose(env,
11373 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11374 			regno, node_type_name);
11375 		return -EINVAL;
11376 	}
11377 
11378 	node_off = reg->off + reg->var_off.value;
11379 	field = reg_find_field_offset(reg, node_off, node_field_type);
11380 	if (!field || field->offset != node_off) {
11381 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11382 		return -EINVAL;
11383 	}
11384 
11385 	field = *node_field;
11386 
11387 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11388 	t = btf_type_by_id(reg->btf, reg->btf_id);
11389 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11390 				  field->graph_root.value_btf_id, true)) {
11391 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11392 			"in struct %s, but arg is at offset=%d in struct %s\n",
11393 			btf_field_type_name(head_field_type),
11394 			btf_field_type_name(node_field_type),
11395 			field->graph_root.node_offset,
11396 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11397 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11398 		return -EINVAL;
11399 	}
11400 	meta->arg_btf = reg->btf;
11401 	meta->arg_btf_id = reg->btf_id;
11402 
11403 	if (node_off != field->graph_root.node_offset) {
11404 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11405 			node_off, btf_field_type_name(node_field_type),
11406 			field->graph_root.node_offset,
11407 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11408 		return -EINVAL;
11409 	}
11410 
11411 	return 0;
11412 }
11413 
11414 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11415 					   struct bpf_reg_state *reg, u32 regno,
11416 					   struct bpf_kfunc_call_arg_meta *meta)
11417 {
11418 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11419 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11420 						  &meta->arg_list_head.field);
11421 }
11422 
11423 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11424 					     struct bpf_reg_state *reg, u32 regno,
11425 					     struct bpf_kfunc_call_arg_meta *meta)
11426 {
11427 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11428 						  BPF_RB_ROOT, BPF_RB_NODE,
11429 						  &meta->arg_rbtree_root.field);
11430 }
11431 
11432 /*
11433  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11434  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11435  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11436  * them can only be attached to some specific hook points.
11437  */
11438 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11439 {
11440 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11441 
11442 	switch (prog_type) {
11443 	case BPF_PROG_TYPE_LSM:
11444 		return true;
11445 	case BPF_PROG_TYPE_TRACING:
11446 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11447 			return true;
11448 		fallthrough;
11449 	default:
11450 		return env->prog->aux->sleepable;
11451 	}
11452 }
11453 
11454 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11455 			    int insn_idx)
11456 {
11457 	const char *func_name = meta->func_name, *ref_tname;
11458 	const struct btf *btf = meta->btf;
11459 	const struct btf_param *args;
11460 	struct btf_record *rec;
11461 	u32 i, nargs;
11462 	int ret;
11463 
11464 	args = (const struct btf_param *)(meta->func_proto + 1);
11465 	nargs = btf_type_vlen(meta->func_proto);
11466 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11467 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11468 			MAX_BPF_FUNC_REG_ARGS);
11469 		return -EINVAL;
11470 	}
11471 
11472 	/* Check that BTF function arguments match actual types that the
11473 	 * verifier sees.
11474 	 */
11475 	for (i = 0; i < nargs; i++) {
11476 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11477 		const struct btf_type *t, *ref_t, *resolve_ret;
11478 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11479 		u32 regno = i + 1, ref_id, type_size;
11480 		bool is_ret_buf_sz = false;
11481 		int kf_arg_type;
11482 
11483 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11484 
11485 		if (is_kfunc_arg_ignore(btf, &args[i]))
11486 			continue;
11487 
11488 		if (btf_type_is_scalar(t)) {
11489 			if (reg->type != SCALAR_VALUE) {
11490 				verbose(env, "R%d is not a scalar\n", regno);
11491 				return -EINVAL;
11492 			}
11493 
11494 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11495 				if (meta->arg_constant.found) {
11496 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11497 					return -EFAULT;
11498 				}
11499 				if (!tnum_is_const(reg->var_off)) {
11500 					verbose(env, "R%d must be a known constant\n", regno);
11501 					return -EINVAL;
11502 				}
11503 				ret = mark_chain_precision(env, regno);
11504 				if (ret < 0)
11505 					return ret;
11506 				meta->arg_constant.found = true;
11507 				meta->arg_constant.value = reg->var_off.value;
11508 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11509 				meta->r0_rdonly = true;
11510 				is_ret_buf_sz = true;
11511 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11512 				is_ret_buf_sz = true;
11513 			}
11514 
11515 			if (is_ret_buf_sz) {
11516 				if (meta->r0_size) {
11517 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11518 					return -EINVAL;
11519 				}
11520 
11521 				if (!tnum_is_const(reg->var_off)) {
11522 					verbose(env, "R%d is not a const\n", regno);
11523 					return -EINVAL;
11524 				}
11525 
11526 				meta->r0_size = reg->var_off.value;
11527 				ret = mark_chain_precision(env, regno);
11528 				if (ret)
11529 					return ret;
11530 			}
11531 			continue;
11532 		}
11533 
11534 		if (!btf_type_is_ptr(t)) {
11535 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11536 			return -EINVAL;
11537 		}
11538 
11539 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11540 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11541 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11542 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11543 			return -EACCES;
11544 		}
11545 
11546 		if (reg->ref_obj_id) {
11547 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11548 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11549 					regno, reg->ref_obj_id,
11550 					meta->ref_obj_id);
11551 				return -EFAULT;
11552 			}
11553 			meta->ref_obj_id = reg->ref_obj_id;
11554 			if (is_kfunc_release(meta))
11555 				meta->release_regno = regno;
11556 		}
11557 
11558 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11559 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11560 
11561 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11562 		if (kf_arg_type < 0)
11563 			return kf_arg_type;
11564 
11565 		switch (kf_arg_type) {
11566 		case KF_ARG_PTR_TO_NULL:
11567 			continue;
11568 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11569 		case KF_ARG_PTR_TO_BTF_ID:
11570 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11571 				break;
11572 
11573 			if (!is_trusted_reg(reg)) {
11574 				if (!is_kfunc_rcu(meta)) {
11575 					verbose(env, "R%d must be referenced or trusted\n", regno);
11576 					return -EINVAL;
11577 				}
11578 				if (!is_rcu_reg(reg)) {
11579 					verbose(env, "R%d must be a rcu pointer\n", regno);
11580 					return -EINVAL;
11581 				}
11582 			}
11583 
11584 			fallthrough;
11585 		case KF_ARG_PTR_TO_CTX:
11586 			/* Trusted arguments have the same offset checks as release arguments */
11587 			arg_type |= OBJ_RELEASE;
11588 			break;
11589 		case KF_ARG_PTR_TO_DYNPTR:
11590 		case KF_ARG_PTR_TO_ITER:
11591 		case KF_ARG_PTR_TO_LIST_HEAD:
11592 		case KF_ARG_PTR_TO_LIST_NODE:
11593 		case KF_ARG_PTR_TO_RB_ROOT:
11594 		case KF_ARG_PTR_TO_RB_NODE:
11595 		case KF_ARG_PTR_TO_MEM:
11596 		case KF_ARG_PTR_TO_MEM_SIZE:
11597 		case KF_ARG_PTR_TO_CALLBACK:
11598 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11599 			/* Trusted by default */
11600 			break;
11601 		default:
11602 			WARN_ON_ONCE(1);
11603 			return -EFAULT;
11604 		}
11605 
11606 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11607 			arg_type |= OBJ_RELEASE;
11608 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11609 		if (ret < 0)
11610 			return ret;
11611 
11612 		switch (kf_arg_type) {
11613 		case KF_ARG_PTR_TO_CTX:
11614 			if (reg->type != PTR_TO_CTX) {
11615 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11616 				return -EINVAL;
11617 			}
11618 
11619 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11620 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11621 				if (ret < 0)
11622 					return -EINVAL;
11623 				meta->ret_btf_id  = ret;
11624 			}
11625 			break;
11626 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11627 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11628 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11629 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11630 					return -EINVAL;
11631 				}
11632 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11633 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11634 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11635 					return -EINVAL;
11636 				}
11637 			} else {
11638 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11639 				return -EINVAL;
11640 			}
11641 			if (!reg->ref_obj_id) {
11642 				verbose(env, "allocated object must be referenced\n");
11643 				return -EINVAL;
11644 			}
11645 			if (meta->btf == btf_vmlinux) {
11646 				meta->arg_btf = reg->btf;
11647 				meta->arg_btf_id = reg->btf_id;
11648 			}
11649 			break;
11650 		case KF_ARG_PTR_TO_DYNPTR:
11651 		{
11652 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11653 			int clone_ref_obj_id = 0;
11654 
11655 			if (reg->type != PTR_TO_STACK &&
11656 			    reg->type != CONST_PTR_TO_DYNPTR) {
11657 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11658 				return -EINVAL;
11659 			}
11660 
11661 			if (reg->type == CONST_PTR_TO_DYNPTR)
11662 				dynptr_arg_type |= MEM_RDONLY;
11663 
11664 			if (is_kfunc_arg_uninit(btf, &args[i]))
11665 				dynptr_arg_type |= MEM_UNINIT;
11666 
11667 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11668 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11669 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11670 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11671 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11672 				   (dynptr_arg_type & MEM_UNINIT)) {
11673 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11674 
11675 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11676 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11677 					return -EFAULT;
11678 				}
11679 
11680 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11681 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11682 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11683 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11684 					return -EFAULT;
11685 				}
11686 			}
11687 
11688 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11689 			if (ret < 0)
11690 				return ret;
11691 
11692 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11693 				int id = dynptr_id(env, reg);
11694 
11695 				if (id < 0) {
11696 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11697 					return id;
11698 				}
11699 				meta->initialized_dynptr.id = id;
11700 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11701 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11702 			}
11703 
11704 			break;
11705 		}
11706 		case KF_ARG_PTR_TO_ITER:
11707 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11708 				if (!check_css_task_iter_allowlist(env)) {
11709 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11710 					return -EINVAL;
11711 				}
11712 			}
11713 			ret = process_iter_arg(env, regno, insn_idx, meta);
11714 			if (ret < 0)
11715 				return ret;
11716 			break;
11717 		case KF_ARG_PTR_TO_LIST_HEAD:
11718 			if (reg->type != PTR_TO_MAP_VALUE &&
11719 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11720 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11721 				return -EINVAL;
11722 			}
11723 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11724 				verbose(env, "allocated object must be referenced\n");
11725 				return -EINVAL;
11726 			}
11727 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11728 			if (ret < 0)
11729 				return ret;
11730 			break;
11731 		case KF_ARG_PTR_TO_RB_ROOT:
11732 			if (reg->type != PTR_TO_MAP_VALUE &&
11733 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11734 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11735 				return -EINVAL;
11736 			}
11737 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11738 				verbose(env, "allocated object must be referenced\n");
11739 				return -EINVAL;
11740 			}
11741 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11742 			if (ret < 0)
11743 				return ret;
11744 			break;
11745 		case KF_ARG_PTR_TO_LIST_NODE:
11746 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11747 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11748 				return -EINVAL;
11749 			}
11750 			if (!reg->ref_obj_id) {
11751 				verbose(env, "allocated object must be referenced\n");
11752 				return -EINVAL;
11753 			}
11754 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11755 			if (ret < 0)
11756 				return ret;
11757 			break;
11758 		case KF_ARG_PTR_TO_RB_NODE:
11759 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11760 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11761 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11762 					return -EINVAL;
11763 				}
11764 				if (in_rbtree_lock_required_cb(env)) {
11765 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11766 					return -EINVAL;
11767 				}
11768 			} else {
11769 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11770 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11771 					return -EINVAL;
11772 				}
11773 				if (!reg->ref_obj_id) {
11774 					verbose(env, "allocated object must be referenced\n");
11775 					return -EINVAL;
11776 				}
11777 			}
11778 
11779 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11780 			if (ret < 0)
11781 				return ret;
11782 			break;
11783 		case KF_ARG_PTR_TO_BTF_ID:
11784 			/* Only base_type is checked, further checks are done here */
11785 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11786 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11787 			    !reg2btf_ids[base_type(reg->type)]) {
11788 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11789 				verbose(env, "expected %s or socket\n",
11790 					reg_type_str(env, base_type(reg->type) |
11791 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11792 				return -EINVAL;
11793 			}
11794 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11795 			if (ret < 0)
11796 				return ret;
11797 			break;
11798 		case KF_ARG_PTR_TO_MEM:
11799 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11800 			if (IS_ERR(resolve_ret)) {
11801 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11802 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11803 				return -EINVAL;
11804 			}
11805 			ret = check_mem_reg(env, reg, regno, type_size);
11806 			if (ret < 0)
11807 				return ret;
11808 			break;
11809 		case KF_ARG_PTR_TO_MEM_SIZE:
11810 		{
11811 			struct bpf_reg_state *buff_reg = &regs[regno];
11812 			const struct btf_param *buff_arg = &args[i];
11813 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11814 			const struct btf_param *size_arg = &args[i + 1];
11815 
11816 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11817 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11818 				if (ret < 0) {
11819 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11820 					return ret;
11821 				}
11822 			}
11823 
11824 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11825 				if (meta->arg_constant.found) {
11826 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11827 					return -EFAULT;
11828 				}
11829 				if (!tnum_is_const(size_reg->var_off)) {
11830 					verbose(env, "R%d must be a known constant\n", regno + 1);
11831 					return -EINVAL;
11832 				}
11833 				meta->arg_constant.found = true;
11834 				meta->arg_constant.value = size_reg->var_off.value;
11835 			}
11836 
11837 			/* Skip next '__sz' or '__szk' argument */
11838 			i++;
11839 			break;
11840 		}
11841 		case KF_ARG_PTR_TO_CALLBACK:
11842 			if (reg->type != PTR_TO_FUNC) {
11843 				verbose(env, "arg%d expected pointer to func\n", i);
11844 				return -EINVAL;
11845 			}
11846 			meta->subprogno = reg->subprogno;
11847 			break;
11848 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11849 			if (!type_is_ptr_alloc_obj(reg->type)) {
11850 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11851 				return -EINVAL;
11852 			}
11853 			if (!type_is_non_owning_ref(reg->type))
11854 				meta->arg_owning_ref = true;
11855 
11856 			rec = reg_btf_record(reg);
11857 			if (!rec) {
11858 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11859 				return -EFAULT;
11860 			}
11861 
11862 			if (rec->refcount_off < 0) {
11863 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11864 				return -EINVAL;
11865 			}
11866 
11867 			meta->arg_btf = reg->btf;
11868 			meta->arg_btf_id = reg->btf_id;
11869 			break;
11870 		}
11871 	}
11872 
11873 	if (is_kfunc_release(meta) && !meta->release_regno) {
11874 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11875 			func_name);
11876 		return -EINVAL;
11877 	}
11878 
11879 	return 0;
11880 }
11881 
11882 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11883 			    struct bpf_insn *insn,
11884 			    struct bpf_kfunc_call_arg_meta *meta,
11885 			    const char **kfunc_name)
11886 {
11887 	const struct btf_type *func, *func_proto;
11888 	u32 func_id, *kfunc_flags;
11889 	const char *func_name;
11890 	struct btf *desc_btf;
11891 
11892 	if (kfunc_name)
11893 		*kfunc_name = NULL;
11894 
11895 	if (!insn->imm)
11896 		return -EINVAL;
11897 
11898 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11899 	if (IS_ERR(desc_btf))
11900 		return PTR_ERR(desc_btf);
11901 
11902 	func_id = insn->imm;
11903 	func = btf_type_by_id(desc_btf, func_id);
11904 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11905 	if (kfunc_name)
11906 		*kfunc_name = func_name;
11907 	func_proto = btf_type_by_id(desc_btf, func->type);
11908 
11909 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11910 	if (!kfunc_flags) {
11911 		return -EACCES;
11912 	}
11913 
11914 	memset(meta, 0, sizeof(*meta));
11915 	meta->btf = desc_btf;
11916 	meta->func_id = func_id;
11917 	meta->kfunc_flags = *kfunc_flags;
11918 	meta->func_proto = func_proto;
11919 	meta->func_name = func_name;
11920 
11921 	return 0;
11922 }
11923 
11924 static int check_return_code(struct bpf_verifier_env *env, int regno);
11925 
11926 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11927 			    int *insn_idx_p)
11928 {
11929 	const struct btf_type *t, *ptr_type;
11930 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11931 	struct bpf_reg_state *regs = cur_regs(env);
11932 	const char *func_name, *ptr_type_name;
11933 	bool sleepable, rcu_lock, rcu_unlock;
11934 	struct bpf_kfunc_call_arg_meta meta;
11935 	struct bpf_insn_aux_data *insn_aux;
11936 	int err, insn_idx = *insn_idx_p;
11937 	const struct btf_param *args;
11938 	const struct btf_type *ret_t;
11939 	struct btf *desc_btf;
11940 
11941 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11942 	if (!insn->imm)
11943 		return 0;
11944 
11945 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11946 	if (err == -EACCES && func_name)
11947 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11948 	if (err)
11949 		return err;
11950 	desc_btf = meta.btf;
11951 	insn_aux = &env->insn_aux_data[insn_idx];
11952 
11953 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11954 
11955 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11956 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11957 		return -EACCES;
11958 	}
11959 
11960 	sleepable = is_kfunc_sleepable(&meta);
11961 	if (sleepable && !env->prog->aux->sleepable) {
11962 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11963 		return -EACCES;
11964 	}
11965 
11966 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11967 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11968 
11969 	if (env->cur_state->active_rcu_lock) {
11970 		struct bpf_func_state *state;
11971 		struct bpf_reg_state *reg;
11972 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
11973 
11974 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11975 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11976 			return -EACCES;
11977 		}
11978 
11979 		if (rcu_lock) {
11980 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11981 			return -EINVAL;
11982 		} else if (rcu_unlock) {
11983 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
11984 				if (reg->type & MEM_RCU) {
11985 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11986 					reg->type |= PTR_UNTRUSTED;
11987 				}
11988 			}));
11989 			env->cur_state->active_rcu_lock = false;
11990 		} else if (sleepable) {
11991 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11992 			return -EACCES;
11993 		}
11994 	} else if (rcu_lock) {
11995 		env->cur_state->active_rcu_lock = true;
11996 	} else if (rcu_unlock) {
11997 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11998 		return -EINVAL;
11999 	}
12000 
12001 	/* Check the arguments */
12002 	err = check_kfunc_args(env, &meta, insn_idx);
12003 	if (err < 0)
12004 		return err;
12005 	/* In case of release function, we get register number of refcounted
12006 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12007 	 */
12008 	if (meta.release_regno) {
12009 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12010 		if (err) {
12011 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12012 				func_name, meta.func_id);
12013 			return err;
12014 		}
12015 	}
12016 
12017 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12018 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12019 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12020 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12021 		insn_aux->insert_off = regs[BPF_REG_2].off;
12022 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12023 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12024 		if (err) {
12025 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12026 				func_name, meta.func_id);
12027 			return err;
12028 		}
12029 
12030 		err = release_reference(env, release_ref_obj_id);
12031 		if (err) {
12032 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12033 				func_name, meta.func_id);
12034 			return err;
12035 		}
12036 	}
12037 
12038 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12039 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
12040 					set_rbtree_add_callback_state);
12041 		if (err) {
12042 			verbose(env, "kfunc %s#%d failed callback verification\n",
12043 				func_name, meta.func_id);
12044 			return err;
12045 		}
12046 	}
12047 
12048 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12049 		if (!bpf_jit_supports_exceptions()) {
12050 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12051 				func_name, meta.func_id);
12052 			return -ENOTSUPP;
12053 		}
12054 		env->seen_exception = true;
12055 
12056 		/* In the case of the default callback, the cookie value passed
12057 		 * to bpf_throw becomes the return value of the program.
12058 		 */
12059 		if (!env->exception_callback_subprog) {
12060 			err = check_return_code(env, BPF_REG_1);
12061 			if (err < 0)
12062 				return err;
12063 		}
12064 	}
12065 
12066 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12067 		mark_reg_not_init(env, regs, caller_saved[i]);
12068 
12069 	/* Check return type */
12070 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12071 
12072 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12073 		/* Only exception is bpf_obj_new_impl */
12074 		if (meta.btf != btf_vmlinux ||
12075 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12076 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12077 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12078 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12079 			return -EINVAL;
12080 		}
12081 	}
12082 
12083 	if (btf_type_is_scalar(t)) {
12084 		mark_reg_unknown(env, regs, BPF_REG_0);
12085 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12086 	} else if (btf_type_is_ptr(t)) {
12087 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12088 
12089 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12090 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12091 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12092 				struct btf_struct_meta *struct_meta;
12093 				struct btf *ret_btf;
12094 				u32 ret_btf_id;
12095 
12096 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12097 					return -ENOMEM;
12098 
12099 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12100 					if (!bpf_global_percpu_ma_set) {
12101 						mutex_lock(&bpf_percpu_ma_lock);
12102 						if (!bpf_global_percpu_ma_set) {
12103 							err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true);
12104 							if (!err)
12105 								bpf_global_percpu_ma_set = true;
12106 						}
12107 						mutex_unlock(&bpf_percpu_ma_lock);
12108 						if (err)
12109 							return err;
12110 					}
12111 				}
12112 
12113 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12114 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12115 					return -EINVAL;
12116 				}
12117 
12118 				ret_btf = env->prog->aux->btf;
12119 				ret_btf_id = meta.arg_constant.value;
12120 
12121 				/* This may be NULL due to user not supplying a BTF */
12122 				if (!ret_btf) {
12123 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12124 					return -EINVAL;
12125 				}
12126 
12127 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12128 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12129 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12130 					return -EINVAL;
12131 				}
12132 
12133 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12134 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12135 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12136 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12137 						return -EINVAL;
12138 					}
12139 
12140 					if (struct_meta) {
12141 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12142 						return -EINVAL;
12143 					}
12144 				}
12145 
12146 				mark_reg_known_zero(env, regs, BPF_REG_0);
12147 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12148 				regs[BPF_REG_0].btf = ret_btf;
12149 				regs[BPF_REG_0].btf_id = ret_btf_id;
12150 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12151 					regs[BPF_REG_0].type |= MEM_PERCPU;
12152 
12153 				insn_aux->obj_new_size = ret_t->size;
12154 				insn_aux->kptr_struct_meta = struct_meta;
12155 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12156 				mark_reg_known_zero(env, regs, BPF_REG_0);
12157 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12158 				regs[BPF_REG_0].btf = meta.arg_btf;
12159 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12160 
12161 				insn_aux->kptr_struct_meta =
12162 					btf_find_struct_meta(meta.arg_btf,
12163 							     meta.arg_btf_id);
12164 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12165 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12166 				struct btf_field *field = meta.arg_list_head.field;
12167 
12168 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12169 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12170 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12171 				struct btf_field *field = meta.arg_rbtree_root.field;
12172 
12173 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12174 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12175 				mark_reg_known_zero(env, regs, BPF_REG_0);
12176 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12177 				regs[BPF_REG_0].btf = desc_btf;
12178 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12179 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12180 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12181 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12182 					verbose(env,
12183 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12184 					return -EINVAL;
12185 				}
12186 
12187 				mark_reg_known_zero(env, regs, BPF_REG_0);
12188 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12189 				regs[BPF_REG_0].btf = desc_btf;
12190 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12191 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12192 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12193 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12194 
12195 				mark_reg_known_zero(env, regs, BPF_REG_0);
12196 
12197 				if (!meta.arg_constant.found) {
12198 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12199 					return -EFAULT;
12200 				}
12201 
12202 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12203 
12204 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12205 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12206 
12207 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12208 					regs[BPF_REG_0].type |= MEM_RDONLY;
12209 				} else {
12210 					/* this will set env->seen_direct_write to true */
12211 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12212 						verbose(env, "the prog does not allow writes to packet data\n");
12213 						return -EINVAL;
12214 					}
12215 				}
12216 
12217 				if (!meta.initialized_dynptr.id) {
12218 					verbose(env, "verifier internal error: no dynptr id\n");
12219 					return -EFAULT;
12220 				}
12221 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12222 
12223 				/* we don't need to set BPF_REG_0's ref obj id
12224 				 * because packet slices are not refcounted (see
12225 				 * dynptr_type_refcounted)
12226 				 */
12227 			} else {
12228 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12229 					meta.func_name);
12230 				return -EFAULT;
12231 			}
12232 		} else if (!__btf_type_is_struct(ptr_type)) {
12233 			if (!meta.r0_size) {
12234 				__u32 sz;
12235 
12236 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12237 					meta.r0_size = sz;
12238 					meta.r0_rdonly = true;
12239 				}
12240 			}
12241 			if (!meta.r0_size) {
12242 				ptr_type_name = btf_name_by_offset(desc_btf,
12243 								   ptr_type->name_off);
12244 				verbose(env,
12245 					"kernel function %s returns pointer type %s %s is not supported\n",
12246 					func_name,
12247 					btf_type_str(ptr_type),
12248 					ptr_type_name);
12249 				return -EINVAL;
12250 			}
12251 
12252 			mark_reg_known_zero(env, regs, BPF_REG_0);
12253 			regs[BPF_REG_0].type = PTR_TO_MEM;
12254 			regs[BPF_REG_0].mem_size = meta.r0_size;
12255 
12256 			if (meta.r0_rdonly)
12257 				regs[BPF_REG_0].type |= MEM_RDONLY;
12258 
12259 			/* Ensures we don't access the memory after a release_reference() */
12260 			if (meta.ref_obj_id)
12261 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12262 		} else {
12263 			mark_reg_known_zero(env, regs, BPF_REG_0);
12264 			regs[BPF_REG_0].btf = desc_btf;
12265 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12266 			regs[BPF_REG_0].btf_id = ptr_type_id;
12267 		}
12268 
12269 		if (is_kfunc_ret_null(&meta)) {
12270 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12271 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12272 			regs[BPF_REG_0].id = ++env->id_gen;
12273 		}
12274 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12275 		if (is_kfunc_acquire(&meta)) {
12276 			int id = acquire_reference_state(env, insn_idx);
12277 
12278 			if (id < 0)
12279 				return id;
12280 			if (is_kfunc_ret_null(&meta))
12281 				regs[BPF_REG_0].id = id;
12282 			regs[BPF_REG_0].ref_obj_id = id;
12283 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12284 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12285 		}
12286 
12287 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12288 			regs[BPF_REG_0].id = ++env->id_gen;
12289 	} else if (btf_type_is_void(t)) {
12290 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12291 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12292 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12293 				insn_aux->kptr_struct_meta =
12294 					btf_find_struct_meta(meta.arg_btf,
12295 							     meta.arg_btf_id);
12296 			}
12297 		}
12298 	}
12299 
12300 	nargs = btf_type_vlen(meta.func_proto);
12301 	args = (const struct btf_param *)(meta.func_proto + 1);
12302 	for (i = 0; i < nargs; i++) {
12303 		u32 regno = i + 1;
12304 
12305 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12306 		if (btf_type_is_ptr(t))
12307 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12308 		else
12309 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12310 			mark_btf_func_reg_size(env, regno, t->size);
12311 	}
12312 
12313 	if (is_iter_next_kfunc(&meta)) {
12314 		err = process_iter_next_call(env, insn_idx, &meta);
12315 		if (err)
12316 			return err;
12317 	}
12318 
12319 	return 0;
12320 }
12321 
12322 static bool signed_add_overflows(s64 a, s64 b)
12323 {
12324 	/* Do the add in u64, where overflow is well-defined */
12325 	s64 res = (s64)((u64)a + (u64)b);
12326 
12327 	if (b < 0)
12328 		return res > a;
12329 	return res < a;
12330 }
12331 
12332 static bool signed_add32_overflows(s32 a, s32 b)
12333 {
12334 	/* Do the add in u32, where overflow is well-defined */
12335 	s32 res = (s32)((u32)a + (u32)b);
12336 
12337 	if (b < 0)
12338 		return res > a;
12339 	return res < a;
12340 }
12341 
12342 static bool signed_sub_overflows(s64 a, s64 b)
12343 {
12344 	/* Do the sub in u64, where overflow is well-defined */
12345 	s64 res = (s64)((u64)a - (u64)b);
12346 
12347 	if (b < 0)
12348 		return res < a;
12349 	return res > a;
12350 }
12351 
12352 static bool signed_sub32_overflows(s32 a, s32 b)
12353 {
12354 	/* Do the sub in u32, where overflow is well-defined */
12355 	s32 res = (s32)((u32)a - (u32)b);
12356 
12357 	if (b < 0)
12358 		return res < a;
12359 	return res > a;
12360 }
12361 
12362 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12363 				  const struct bpf_reg_state *reg,
12364 				  enum bpf_reg_type type)
12365 {
12366 	bool known = tnum_is_const(reg->var_off);
12367 	s64 val = reg->var_off.value;
12368 	s64 smin = reg->smin_value;
12369 
12370 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12371 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12372 			reg_type_str(env, type), val);
12373 		return false;
12374 	}
12375 
12376 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12377 		verbose(env, "%s pointer offset %d is not allowed\n",
12378 			reg_type_str(env, type), reg->off);
12379 		return false;
12380 	}
12381 
12382 	if (smin == S64_MIN) {
12383 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12384 			reg_type_str(env, type));
12385 		return false;
12386 	}
12387 
12388 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12389 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12390 			smin, reg_type_str(env, type));
12391 		return false;
12392 	}
12393 
12394 	return true;
12395 }
12396 
12397 enum {
12398 	REASON_BOUNDS	= -1,
12399 	REASON_TYPE	= -2,
12400 	REASON_PATHS	= -3,
12401 	REASON_LIMIT	= -4,
12402 	REASON_STACK	= -5,
12403 };
12404 
12405 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12406 			      u32 *alu_limit, bool mask_to_left)
12407 {
12408 	u32 max = 0, ptr_limit = 0;
12409 
12410 	switch (ptr_reg->type) {
12411 	case PTR_TO_STACK:
12412 		/* Offset 0 is out-of-bounds, but acceptable start for the
12413 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12414 		 * offset where we would need to deal with min/max bounds is
12415 		 * currently prohibited for unprivileged.
12416 		 */
12417 		max = MAX_BPF_STACK + mask_to_left;
12418 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12419 		break;
12420 	case PTR_TO_MAP_VALUE:
12421 		max = ptr_reg->map_ptr->value_size;
12422 		ptr_limit = (mask_to_left ?
12423 			     ptr_reg->smin_value :
12424 			     ptr_reg->umax_value) + ptr_reg->off;
12425 		break;
12426 	default:
12427 		return REASON_TYPE;
12428 	}
12429 
12430 	if (ptr_limit >= max)
12431 		return REASON_LIMIT;
12432 	*alu_limit = ptr_limit;
12433 	return 0;
12434 }
12435 
12436 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12437 				    const struct bpf_insn *insn)
12438 {
12439 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12440 }
12441 
12442 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12443 				       u32 alu_state, u32 alu_limit)
12444 {
12445 	/* If we arrived here from different branches with different
12446 	 * state or limits to sanitize, then this won't work.
12447 	 */
12448 	if (aux->alu_state &&
12449 	    (aux->alu_state != alu_state ||
12450 	     aux->alu_limit != alu_limit))
12451 		return REASON_PATHS;
12452 
12453 	/* Corresponding fixup done in do_misc_fixups(). */
12454 	aux->alu_state = alu_state;
12455 	aux->alu_limit = alu_limit;
12456 	return 0;
12457 }
12458 
12459 static int sanitize_val_alu(struct bpf_verifier_env *env,
12460 			    struct bpf_insn *insn)
12461 {
12462 	struct bpf_insn_aux_data *aux = cur_aux(env);
12463 
12464 	if (can_skip_alu_sanitation(env, insn))
12465 		return 0;
12466 
12467 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12468 }
12469 
12470 static bool sanitize_needed(u8 opcode)
12471 {
12472 	return opcode == BPF_ADD || opcode == BPF_SUB;
12473 }
12474 
12475 struct bpf_sanitize_info {
12476 	struct bpf_insn_aux_data aux;
12477 	bool mask_to_left;
12478 };
12479 
12480 static struct bpf_verifier_state *
12481 sanitize_speculative_path(struct bpf_verifier_env *env,
12482 			  const struct bpf_insn *insn,
12483 			  u32 next_idx, u32 curr_idx)
12484 {
12485 	struct bpf_verifier_state *branch;
12486 	struct bpf_reg_state *regs;
12487 
12488 	branch = push_stack(env, next_idx, curr_idx, true);
12489 	if (branch && insn) {
12490 		regs = branch->frame[branch->curframe]->regs;
12491 		if (BPF_SRC(insn->code) == BPF_K) {
12492 			mark_reg_unknown(env, regs, insn->dst_reg);
12493 		} else if (BPF_SRC(insn->code) == BPF_X) {
12494 			mark_reg_unknown(env, regs, insn->dst_reg);
12495 			mark_reg_unknown(env, regs, insn->src_reg);
12496 		}
12497 	}
12498 	return branch;
12499 }
12500 
12501 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12502 			    struct bpf_insn *insn,
12503 			    const struct bpf_reg_state *ptr_reg,
12504 			    const struct bpf_reg_state *off_reg,
12505 			    struct bpf_reg_state *dst_reg,
12506 			    struct bpf_sanitize_info *info,
12507 			    const bool commit_window)
12508 {
12509 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12510 	struct bpf_verifier_state *vstate = env->cur_state;
12511 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12512 	bool off_is_neg = off_reg->smin_value < 0;
12513 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12514 	u8 opcode = BPF_OP(insn->code);
12515 	u32 alu_state, alu_limit;
12516 	struct bpf_reg_state tmp;
12517 	bool ret;
12518 	int err;
12519 
12520 	if (can_skip_alu_sanitation(env, insn))
12521 		return 0;
12522 
12523 	/* We already marked aux for masking from non-speculative
12524 	 * paths, thus we got here in the first place. We only care
12525 	 * to explore bad access from here.
12526 	 */
12527 	if (vstate->speculative)
12528 		goto do_sim;
12529 
12530 	if (!commit_window) {
12531 		if (!tnum_is_const(off_reg->var_off) &&
12532 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12533 			return REASON_BOUNDS;
12534 
12535 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12536 				     (opcode == BPF_SUB && !off_is_neg);
12537 	}
12538 
12539 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12540 	if (err < 0)
12541 		return err;
12542 
12543 	if (commit_window) {
12544 		/* In commit phase we narrow the masking window based on
12545 		 * the observed pointer move after the simulated operation.
12546 		 */
12547 		alu_state = info->aux.alu_state;
12548 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12549 	} else {
12550 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12551 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12552 		alu_state |= ptr_is_dst_reg ?
12553 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12554 
12555 		/* Limit pruning on unknown scalars to enable deep search for
12556 		 * potential masking differences from other program paths.
12557 		 */
12558 		if (!off_is_imm)
12559 			env->explore_alu_limits = true;
12560 	}
12561 
12562 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12563 	if (err < 0)
12564 		return err;
12565 do_sim:
12566 	/* If we're in commit phase, we're done here given we already
12567 	 * pushed the truncated dst_reg into the speculative verification
12568 	 * stack.
12569 	 *
12570 	 * Also, when register is a known constant, we rewrite register-based
12571 	 * operation to immediate-based, and thus do not need masking (and as
12572 	 * a consequence, do not need to simulate the zero-truncation either).
12573 	 */
12574 	if (commit_window || off_is_imm)
12575 		return 0;
12576 
12577 	/* Simulate and find potential out-of-bounds access under
12578 	 * speculative execution from truncation as a result of
12579 	 * masking when off was not within expected range. If off
12580 	 * sits in dst, then we temporarily need to move ptr there
12581 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12582 	 * for cases where we use K-based arithmetic in one direction
12583 	 * and truncated reg-based in the other in order to explore
12584 	 * bad access.
12585 	 */
12586 	if (!ptr_is_dst_reg) {
12587 		tmp = *dst_reg;
12588 		copy_register_state(dst_reg, ptr_reg);
12589 	}
12590 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12591 					env->insn_idx);
12592 	if (!ptr_is_dst_reg && ret)
12593 		*dst_reg = tmp;
12594 	return !ret ? REASON_STACK : 0;
12595 }
12596 
12597 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12598 {
12599 	struct bpf_verifier_state *vstate = env->cur_state;
12600 
12601 	/* If we simulate paths under speculation, we don't update the
12602 	 * insn as 'seen' such that when we verify unreachable paths in
12603 	 * the non-speculative domain, sanitize_dead_code() can still
12604 	 * rewrite/sanitize them.
12605 	 */
12606 	if (!vstate->speculative)
12607 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12608 }
12609 
12610 static int sanitize_err(struct bpf_verifier_env *env,
12611 			const struct bpf_insn *insn, int reason,
12612 			const struct bpf_reg_state *off_reg,
12613 			const struct bpf_reg_state *dst_reg)
12614 {
12615 	static const char *err = "pointer arithmetic with it prohibited for !root";
12616 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12617 	u32 dst = insn->dst_reg, src = insn->src_reg;
12618 
12619 	switch (reason) {
12620 	case REASON_BOUNDS:
12621 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12622 			off_reg == dst_reg ? dst : src, err);
12623 		break;
12624 	case REASON_TYPE:
12625 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12626 			off_reg == dst_reg ? src : dst, err);
12627 		break;
12628 	case REASON_PATHS:
12629 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12630 			dst, op, err);
12631 		break;
12632 	case REASON_LIMIT:
12633 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12634 			dst, op, err);
12635 		break;
12636 	case REASON_STACK:
12637 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12638 			dst, err);
12639 		break;
12640 	default:
12641 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12642 			reason);
12643 		break;
12644 	}
12645 
12646 	return -EACCES;
12647 }
12648 
12649 /* check that stack access falls within stack limits and that 'reg' doesn't
12650  * have a variable offset.
12651  *
12652  * Variable offset is prohibited for unprivileged mode for simplicity since it
12653  * requires corresponding support in Spectre masking for stack ALU.  See also
12654  * retrieve_ptr_limit().
12655  *
12656  *
12657  * 'off' includes 'reg->off'.
12658  */
12659 static int check_stack_access_for_ptr_arithmetic(
12660 				struct bpf_verifier_env *env,
12661 				int regno,
12662 				const struct bpf_reg_state *reg,
12663 				int off)
12664 {
12665 	if (!tnum_is_const(reg->var_off)) {
12666 		char tn_buf[48];
12667 
12668 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12669 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12670 			regno, tn_buf, off);
12671 		return -EACCES;
12672 	}
12673 
12674 	if (off >= 0 || off < -MAX_BPF_STACK) {
12675 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12676 			"prohibited for !root; off=%d\n", regno, off);
12677 		return -EACCES;
12678 	}
12679 
12680 	return 0;
12681 }
12682 
12683 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12684 				 const struct bpf_insn *insn,
12685 				 const struct bpf_reg_state *dst_reg)
12686 {
12687 	u32 dst = insn->dst_reg;
12688 
12689 	/* For unprivileged we require that resulting offset must be in bounds
12690 	 * in order to be able to sanitize access later on.
12691 	 */
12692 	if (env->bypass_spec_v1)
12693 		return 0;
12694 
12695 	switch (dst_reg->type) {
12696 	case PTR_TO_STACK:
12697 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12698 					dst_reg->off + dst_reg->var_off.value))
12699 			return -EACCES;
12700 		break;
12701 	case PTR_TO_MAP_VALUE:
12702 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12703 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12704 				"prohibited for !root\n", dst);
12705 			return -EACCES;
12706 		}
12707 		break;
12708 	default:
12709 		break;
12710 	}
12711 
12712 	return 0;
12713 }
12714 
12715 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12716  * Caller should also handle BPF_MOV case separately.
12717  * If we return -EACCES, caller may want to try again treating pointer as a
12718  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12719  */
12720 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12721 				   struct bpf_insn *insn,
12722 				   const struct bpf_reg_state *ptr_reg,
12723 				   const struct bpf_reg_state *off_reg)
12724 {
12725 	struct bpf_verifier_state *vstate = env->cur_state;
12726 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12727 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12728 	bool known = tnum_is_const(off_reg->var_off);
12729 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12730 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12731 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12732 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12733 	struct bpf_sanitize_info info = {};
12734 	u8 opcode = BPF_OP(insn->code);
12735 	u32 dst = insn->dst_reg;
12736 	int ret;
12737 
12738 	dst_reg = &regs[dst];
12739 
12740 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12741 	    smin_val > smax_val || umin_val > umax_val) {
12742 		/* Taint dst register if offset had invalid bounds derived from
12743 		 * e.g. dead branches.
12744 		 */
12745 		__mark_reg_unknown(env, dst_reg);
12746 		return 0;
12747 	}
12748 
12749 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12750 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12751 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12752 			__mark_reg_unknown(env, dst_reg);
12753 			return 0;
12754 		}
12755 
12756 		verbose(env,
12757 			"R%d 32-bit pointer arithmetic prohibited\n",
12758 			dst);
12759 		return -EACCES;
12760 	}
12761 
12762 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12763 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12764 			dst, reg_type_str(env, ptr_reg->type));
12765 		return -EACCES;
12766 	}
12767 
12768 	switch (base_type(ptr_reg->type)) {
12769 	case CONST_PTR_TO_MAP:
12770 		/* smin_val represents the known value */
12771 		if (known && smin_val == 0 && opcode == BPF_ADD)
12772 			break;
12773 		fallthrough;
12774 	case PTR_TO_PACKET_END:
12775 	case PTR_TO_SOCKET:
12776 	case PTR_TO_SOCK_COMMON:
12777 	case PTR_TO_TCP_SOCK:
12778 	case PTR_TO_XDP_SOCK:
12779 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12780 			dst, reg_type_str(env, ptr_reg->type));
12781 		return -EACCES;
12782 	default:
12783 		break;
12784 	}
12785 
12786 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12787 	 * The id may be overwritten later if we create a new variable offset.
12788 	 */
12789 	dst_reg->type = ptr_reg->type;
12790 	dst_reg->id = ptr_reg->id;
12791 
12792 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12793 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12794 		return -EINVAL;
12795 
12796 	/* pointer types do not carry 32-bit bounds at the moment. */
12797 	__mark_reg32_unbounded(dst_reg);
12798 
12799 	if (sanitize_needed(opcode)) {
12800 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12801 				       &info, false);
12802 		if (ret < 0)
12803 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12804 	}
12805 
12806 	switch (opcode) {
12807 	case BPF_ADD:
12808 		/* We can take a fixed offset as long as it doesn't overflow
12809 		 * the s32 'off' field
12810 		 */
12811 		if (known && (ptr_reg->off + smin_val ==
12812 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12813 			/* pointer += K.  Accumulate it into fixed offset */
12814 			dst_reg->smin_value = smin_ptr;
12815 			dst_reg->smax_value = smax_ptr;
12816 			dst_reg->umin_value = umin_ptr;
12817 			dst_reg->umax_value = umax_ptr;
12818 			dst_reg->var_off = ptr_reg->var_off;
12819 			dst_reg->off = ptr_reg->off + smin_val;
12820 			dst_reg->raw = ptr_reg->raw;
12821 			break;
12822 		}
12823 		/* A new variable offset is created.  Note that off_reg->off
12824 		 * == 0, since it's a scalar.
12825 		 * dst_reg gets the pointer type and since some positive
12826 		 * integer value was added to the pointer, give it a new 'id'
12827 		 * if it's a PTR_TO_PACKET.
12828 		 * this creates a new 'base' pointer, off_reg (variable) gets
12829 		 * added into the variable offset, and we copy the fixed offset
12830 		 * from ptr_reg.
12831 		 */
12832 		if (signed_add_overflows(smin_ptr, smin_val) ||
12833 		    signed_add_overflows(smax_ptr, smax_val)) {
12834 			dst_reg->smin_value = S64_MIN;
12835 			dst_reg->smax_value = S64_MAX;
12836 		} else {
12837 			dst_reg->smin_value = smin_ptr + smin_val;
12838 			dst_reg->smax_value = smax_ptr + smax_val;
12839 		}
12840 		if (umin_ptr + umin_val < umin_ptr ||
12841 		    umax_ptr + umax_val < umax_ptr) {
12842 			dst_reg->umin_value = 0;
12843 			dst_reg->umax_value = U64_MAX;
12844 		} else {
12845 			dst_reg->umin_value = umin_ptr + umin_val;
12846 			dst_reg->umax_value = umax_ptr + umax_val;
12847 		}
12848 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12849 		dst_reg->off = ptr_reg->off;
12850 		dst_reg->raw = ptr_reg->raw;
12851 		if (reg_is_pkt_pointer(ptr_reg)) {
12852 			dst_reg->id = ++env->id_gen;
12853 			/* something was added to pkt_ptr, set range to zero */
12854 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12855 		}
12856 		break;
12857 	case BPF_SUB:
12858 		if (dst_reg == off_reg) {
12859 			/* scalar -= pointer.  Creates an unknown scalar */
12860 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12861 				dst);
12862 			return -EACCES;
12863 		}
12864 		/* We don't allow subtraction from FP, because (according to
12865 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12866 		 * be able to deal with it.
12867 		 */
12868 		if (ptr_reg->type == PTR_TO_STACK) {
12869 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12870 				dst);
12871 			return -EACCES;
12872 		}
12873 		if (known && (ptr_reg->off - smin_val ==
12874 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12875 			/* pointer -= K.  Subtract it from fixed offset */
12876 			dst_reg->smin_value = smin_ptr;
12877 			dst_reg->smax_value = smax_ptr;
12878 			dst_reg->umin_value = umin_ptr;
12879 			dst_reg->umax_value = umax_ptr;
12880 			dst_reg->var_off = ptr_reg->var_off;
12881 			dst_reg->id = ptr_reg->id;
12882 			dst_reg->off = ptr_reg->off - smin_val;
12883 			dst_reg->raw = ptr_reg->raw;
12884 			break;
12885 		}
12886 		/* A new variable offset is created.  If the subtrahend is known
12887 		 * nonnegative, then any reg->range we had before is still good.
12888 		 */
12889 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12890 		    signed_sub_overflows(smax_ptr, smin_val)) {
12891 			/* Overflow possible, we know nothing */
12892 			dst_reg->smin_value = S64_MIN;
12893 			dst_reg->smax_value = S64_MAX;
12894 		} else {
12895 			dst_reg->smin_value = smin_ptr - smax_val;
12896 			dst_reg->smax_value = smax_ptr - smin_val;
12897 		}
12898 		if (umin_ptr < umax_val) {
12899 			/* Overflow possible, we know nothing */
12900 			dst_reg->umin_value = 0;
12901 			dst_reg->umax_value = U64_MAX;
12902 		} else {
12903 			/* Cannot overflow (as long as bounds are consistent) */
12904 			dst_reg->umin_value = umin_ptr - umax_val;
12905 			dst_reg->umax_value = umax_ptr - umin_val;
12906 		}
12907 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12908 		dst_reg->off = ptr_reg->off;
12909 		dst_reg->raw = ptr_reg->raw;
12910 		if (reg_is_pkt_pointer(ptr_reg)) {
12911 			dst_reg->id = ++env->id_gen;
12912 			/* something was added to pkt_ptr, set range to zero */
12913 			if (smin_val < 0)
12914 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12915 		}
12916 		break;
12917 	case BPF_AND:
12918 	case BPF_OR:
12919 	case BPF_XOR:
12920 		/* bitwise ops on pointers are troublesome, prohibit. */
12921 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12922 			dst, bpf_alu_string[opcode >> 4]);
12923 		return -EACCES;
12924 	default:
12925 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12926 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12927 			dst, bpf_alu_string[opcode >> 4]);
12928 		return -EACCES;
12929 	}
12930 
12931 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12932 		return -EINVAL;
12933 	reg_bounds_sync(dst_reg);
12934 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12935 		return -EACCES;
12936 	if (sanitize_needed(opcode)) {
12937 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12938 				       &info, true);
12939 		if (ret < 0)
12940 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12941 	}
12942 
12943 	return 0;
12944 }
12945 
12946 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12947 				 struct bpf_reg_state *src_reg)
12948 {
12949 	s32 smin_val = src_reg->s32_min_value;
12950 	s32 smax_val = src_reg->s32_max_value;
12951 	u32 umin_val = src_reg->u32_min_value;
12952 	u32 umax_val = src_reg->u32_max_value;
12953 
12954 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12955 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12956 		dst_reg->s32_min_value = S32_MIN;
12957 		dst_reg->s32_max_value = S32_MAX;
12958 	} else {
12959 		dst_reg->s32_min_value += smin_val;
12960 		dst_reg->s32_max_value += smax_val;
12961 	}
12962 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12963 	    dst_reg->u32_max_value + umax_val < umax_val) {
12964 		dst_reg->u32_min_value = 0;
12965 		dst_reg->u32_max_value = U32_MAX;
12966 	} else {
12967 		dst_reg->u32_min_value += umin_val;
12968 		dst_reg->u32_max_value += umax_val;
12969 	}
12970 }
12971 
12972 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12973 			       struct bpf_reg_state *src_reg)
12974 {
12975 	s64 smin_val = src_reg->smin_value;
12976 	s64 smax_val = src_reg->smax_value;
12977 	u64 umin_val = src_reg->umin_value;
12978 	u64 umax_val = src_reg->umax_value;
12979 
12980 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12981 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12982 		dst_reg->smin_value = S64_MIN;
12983 		dst_reg->smax_value = S64_MAX;
12984 	} else {
12985 		dst_reg->smin_value += smin_val;
12986 		dst_reg->smax_value += smax_val;
12987 	}
12988 	if (dst_reg->umin_value + umin_val < umin_val ||
12989 	    dst_reg->umax_value + umax_val < umax_val) {
12990 		dst_reg->umin_value = 0;
12991 		dst_reg->umax_value = U64_MAX;
12992 	} else {
12993 		dst_reg->umin_value += umin_val;
12994 		dst_reg->umax_value += umax_val;
12995 	}
12996 }
12997 
12998 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12999 				 struct bpf_reg_state *src_reg)
13000 {
13001 	s32 smin_val = src_reg->s32_min_value;
13002 	s32 smax_val = src_reg->s32_max_value;
13003 	u32 umin_val = src_reg->u32_min_value;
13004 	u32 umax_val = src_reg->u32_max_value;
13005 
13006 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13007 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13008 		/* Overflow possible, we know nothing */
13009 		dst_reg->s32_min_value = S32_MIN;
13010 		dst_reg->s32_max_value = S32_MAX;
13011 	} else {
13012 		dst_reg->s32_min_value -= smax_val;
13013 		dst_reg->s32_max_value -= smin_val;
13014 	}
13015 	if (dst_reg->u32_min_value < umax_val) {
13016 		/* Overflow possible, we know nothing */
13017 		dst_reg->u32_min_value = 0;
13018 		dst_reg->u32_max_value = U32_MAX;
13019 	} else {
13020 		/* Cannot overflow (as long as bounds are consistent) */
13021 		dst_reg->u32_min_value -= umax_val;
13022 		dst_reg->u32_max_value -= umin_val;
13023 	}
13024 }
13025 
13026 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13027 			       struct bpf_reg_state *src_reg)
13028 {
13029 	s64 smin_val = src_reg->smin_value;
13030 	s64 smax_val = src_reg->smax_value;
13031 	u64 umin_val = src_reg->umin_value;
13032 	u64 umax_val = src_reg->umax_value;
13033 
13034 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13035 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13036 		/* Overflow possible, we know nothing */
13037 		dst_reg->smin_value = S64_MIN;
13038 		dst_reg->smax_value = S64_MAX;
13039 	} else {
13040 		dst_reg->smin_value -= smax_val;
13041 		dst_reg->smax_value -= smin_val;
13042 	}
13043 	if (dst_reg->umin_value < umax_val) {
13044 		/* Overflow possible, we know nothing */
13045 		dst_reg->umin_value = 0;
13046 		dst_reg->umax_value = U64_MAX;
13047 	} else {
13048 		/* Cannot overflow (as long as bounds are consistent) */
13049 		dst_reg->umin_value -= umax_val;
13050 		dst_reg->umax_value -= umin_val;
13051 	}
13052 }
13053 
13054 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13055 				 struct bpf_reg_state *src_reg)
13056 {
13057 	s32 smin_val = src_reg->s32_min_value;
13058 	u32 umin_val = src_reg->u32_min_value;
13059 	u32 umax_val = src_reg->u32_max_value;
13060 
13061 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13062 		/* Ain't nobody got time to multiply that sign */
13063 		__mark_reg32_unbounded(dst_reg);
13064 		return;
13065 	}
13066 	/* Both values are positive, so we can work with unsigned and
13067 	 * copy the result to signed (unless it exceeds S32_MAX).
13068 	 */
13069 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13070 		/* Potential overflow, we know nothing */
13071 		__mark_reg32_unbounded(dst_reg);
13072 		return;
13073 	}
13074 	dst_reg->u32_min_value *= umin_val;
13075 	dst_reg->u32_max_value *= umax_val;
13076 	if (dst_reg->u32_max_value > S32_MAX) {
13077 		/* Overflow possible, we know nothing */
13078 		dst_reg->s32_min_value = S32_MIN;
13079 		dst_reg->s32_max_value = S32_MAX;
13080 	} else {
13081 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13082 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13083 	}
13084 }
13085 
13086 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13087 			       struct bpf_reg_state *src_reg)
13088 {
13089 	s64 smin_val = src_reg->smin_value;
13090 	u64 umin_val = src_reg->umin_value;
13091 	u64 umax_val = src_reg->umax_value;
13092 
13093 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13094 		/* Ain't nobody got time to multiply that sign */
13095 		__mark_reg64_unbounded(dst_reg);
13096 		return;
13097 	}
13098 	/* Both values are positive, so we can work with unsigned and
13099 	 * copy the result to signed (unless it exceeds S64_MAX).
13100 	 */
13101 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13102 		/* Potential overflow, we know nothing */
13103 		__mark_reg64_unbounded(dst_reg);
13104 		return;
13105 	}
13106 	dst_reg->umin_value *= umin_val;
13107 	dst_reg->umax_value *= umax_val;
13108 	if (dst_reg->umax_value > S64_MAX) {
13109 		/* Overflow possible, we know nothing */
13110 		dst_reg->smin_value = S64_MIN;
13111 		dst_reg->smax_value = S64_MAX;
13112 	} else {
13113 		dst_reg->smin_value = dst_reg->umin_value;
13114 		dst_reg->smax_value = dst_reg->umax_value;
13115 	}
13116 }
13117 
13118 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13119 				 struct bpf_reg_state *src_reg)
13120 {
13121 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13122 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13123 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13124 	s32 smin_val = src_reg->s32_min_value;
13125 	u32 umax_val = src_reg->u32_max_value;
13126 
13127 	if (src_known && dst_known) {
13128 		__mark_reg32_known(dst_reg, var32_off.value);
13129 		return;
13130 	}
13131 
13132 	/* We get our minimum from the var_off, since that's inherently
13133 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13134 	 */
13135 	dst_reg->u32_min_value = var32_off.value;
13136 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13137 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13138 		/* Lose signed bounds when ANDing negative numbers,
13139 		 * ain't nobody got time for that.
13140 		 */
13141 		dst_reg->s32_min_value = S32_MIN;
13142 		dst_reg->s32_max_value = S32_MAX;
13143 	} else {
13144 		/* ANDing two positives gives a positive, so safe to
13145 		 * cast result into s64.
13146 		 */
13147 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13148 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13149 	}
13150 }
13151 
13152 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13153 			       struct bpf_reg_state *src_reg)
13154 {
13155 	bool src_known = tnum_is_const(src_reg->var_off);
13156 	bool dst_known = tnum_is_const(dst_reg->var_off);
13157 	s64 smin_val = src_reg->smin_value;
13158 	u64 umax_val = src_reg->umax_value;
13159 
13160 	if (src_known && dst_known) {
13161 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13162 		return;
13163 	}
13164 
13165 	/* We get our minimum from the var_off, since that's inherently
13166 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13167 	 */
13168 	dst_reg->umin_value = dst_reg->var_off.value;
13169 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13170 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13171 		/* Lose signed bounds when ANDing negative numbers,
13172 		 * ain't nobody got time for that.
13173 		 */
13174 		dst_reg->smin_value = S64_MIN;
13175 		dst_reg->smax_value = S64_MAX;
13176 	} else {
13177 		/* ANDing two positives gives a positive, so safe to
13178 		 * cast result into s64.
13179 		 */
13180 		dst_reg->smin_value = dst_reg->umin_value;
13181 		dst_reg->smax_value = dst_reg->umax_value;
13182 	}
13183 	/* We may learn something more from the var_off */
13184 	__update_reg_bounds(dst_reg);
13185 }
13186 
13187 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13188 				struct bpf_reg_state *src_reg)
13189 {
13190 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13191 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13192 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13193 	s32 smin_val = src_reg->s32_min_value;
13194 	u32 umin_val = src_reg->u32_min_value;
13195 
13196 	if (src_known && dst_known) {
13197 		__mark_reg32_known(dst_reg, var32_off.value);
13198 		return;
13199 	}
13200 
13201 	/* We get our maximum from the var_off, and our minimum is the
13202 	 * maximum of the operands' minima
13203 	 */
13204 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13205 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13206 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13207 		/* Lose signed bounds when ORing negative numbers,
13208 		 * ain't nobody got time for that.
13209 		 */
13210 		dst_reg->s32_min_value = S32_MIN;
13211 		dst_reg->s32_max_value = S32_MAX;
13212 	} else {
13213 		/* ORing two positives gives a positive, so safe to
13214 		 * cast result into s64.
13215 		 */
13216 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13217 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13218 	}
13219 }
13220 
13221 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13222 			      struct bpf_reg_state *src_reg)
13223 {
13224 	bool src_known = tnum_is_const(src_reg->var_off);
13225 	bool dst_known = tnum_is_const(dst_reg->var_off);
13226 	s64 smin_val = src_reg->smin_value;
13227 	u64 umin_val = src_reg->umin_value;
13228 
13229 	if (src_known && dst_known) {
13230 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13231 		return;
13232 	}
13233 
13234 	/* We get our maximum from the var_off, and our minimum is the
13235 	 * maximum of the operands' minima
13236 	 */
13237 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13238 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13239 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13240 		/* Lose signed bounds when ORing negative numbers,
13241 		 * ain't nobody got time for that.
13242 		 */
13243 		dst_reg->smin_value = S64_MIN;
13244 		dst_reg->smax_value = S64_MAX;
13245 	} else {
13246 		/* ORing two positives gives a positive, so safe to
13247 		 * cast result into s64.
13248 		 */
13249 		dst_reg->smin_value = dst_reg->umin_value;
13250 		dst_reg->smax_value = dst_reg->umax_value;
13251 	}
13252 	/* We may learn something more from the var_off */
13253 	__update_reg_bounds(dst_reg);
13254 }
13255 
13256 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13257 				 struct bpf_reg_state *src_reg)
13258 {
13259 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13260 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13261 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13262 	s32 smin_val = src_reg->s32_min_value;
13263 
13264 	if (src_known && dst_known) {
13265 		__mark_reg32_known(dst_reg, var32_off.value);
13266 		return;
13267 	}
13268 
13269 	/* We get both minimum and maximum from the var32_off. */
13270 	dst_reg->u32_min_value = var32_off.value;
13271 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13272 
13273 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13274 		/* XORing two positive sign numbers gives a positive,
13275 		 * so safe to cast u32 result into s32.
13276 		 */
13277 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13278 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13279 	} else {
13280 		dst_reg->s32_min_value = S32_MIN;
13281 		dst_reg->s32_max_value = S32_MAX;
13282 	}
13283 }
13284 
13285 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13286 			       struct bpf_reg_state *src_reg)
13287 {
13288 	bool src_known = tnum_is_const(src_reg->var_off);
13289 	bool dst_known = tnum_is_const(dst_reg->var_off);
13290 	s64 smin_val = src_reg->smin_value;
13291 
13292 	if (src_known && dst_known) {
13293 		/* dst_reg->var_off.value has been updated earlier */
13294 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13295 		return;
13296 	}
13297 
13298 	/* We get both minimum and maximum from the var_off. */
13299 	dst_reg->umin_value = dst_reg->var_off.value;
13300 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13301 
13302 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13303 		/* XORing two positive sign numbers gives a positive,
13304 		 * so safe to cast u64 result into s64.
13305 		 */
13306 		dst_reg->smin_value = dst_reg->umin_value;
13307 		dst_reg->smax_value = dst_reg->umax_value;
13308 	} else {
13309 		dst_reg->smin_value = S64_MIN;
13310 		dst_reg->smax_value = S64_MAX;
13311 	}
13312 
13313 	__update_reg_bounds(dst_reg);
13314 }
13315 
13316 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13317 				   u64 umin_val, u64 umax_val)
13318 {
13319 	/* We lose all sign bit information (except what we can pick
13320 	 * up from var_off)
13321 	 */
13322 	dst_reg->s32_min_value = S32_MIN;
13323 	dst_reg->s32_max_value = S32_MAX;
13324 	/* If we might shift our top bit out, then we know nothing */
13325 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13326 		dst_reg->u32_min_value = 0;
13327 		dst_reg->u32_max_value = U32_MAX;
13328 	} else {
13329 		dst_reg->u32_min_value <<= umin_val;
13330 		dst_reg->u32_max_value <<= umax_val;
13331 	}
13332 }
13333 
13334 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13335 				 struct bpf_reg_state *src_reg)
13336 {
13337 	u32 umax_val = src_reg->u32_max_value;
13338 	u32 umin_val = src_reg->u32_min_value;
13339 	/* u32 alu operation will zext upper bits */
13340 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13341 
13342 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13343 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13344 	/* Not required but being careful mark reg64 bounds as unknown so
13345 	 * that we are forced to pick them up from tnum and zext later and
13346 	 * if some path skips this step we are still safe.
13347 	 */
13348 	__mark_reg64_unbounded(dst_reg);
13349 	__update_reg32_bounds(dst_reg);
13350 }
13351 
13352 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13353 				   u64 umin_val, u64 umax_val)
13354 {
13355 	/* Special case <<32 because it is a common compiler pattern to sign
13356 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13357 	 * positive we know this shift will also be positive so we can track
13358 	 * bounds correctly. Otherwise we lose all sign bit information except
13359 	 * what we can pick up from var_off. Perhaps we can generalize this
13360 	 * later to shifts of any length.
13361 	 */
13362 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13363 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13364 	else
13365 		dst_reg->smax_value = S64_MAX;
13366 
13367 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13368 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13369 	else
13370 		dst_reg->smin_value = S64_MIN;
13371 
13372 	/* If we might shift our top bit out, then we know nothing */
13373 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13374 		dst_reg->umin_value = 0;
13375 		dst_reg->umax_value = U64_MAX;
13376 	} else {
13377 		dst_reg->umin_value <<= umin_val;
13378 		dst_reg->umax_value <<= umax_val;
13379 	}
13380 }
13381 
13382 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13383 			       struct bpf_reg_state *src_reg)
13384 {
13385 	u64 umax_val = src_reg->umax_value;
13386 	u64 umin_val = src_reg->umin_value;
13387 
13388 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13389 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13390 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13391 
13392 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13393 	/* We may learn something more from the var_off */
13394 	__update_reg_bounds(dst_reg);
13395 }
13396 
13397 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13398 				 struct bpf_reg_state *src_reg)
13399 {
13400 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13401 	u32 umax_val = src_reg->u32_max_value;
13402 	u32 umin_val = src_reg->u32_min_value;
13403 
13404 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13405 	 * be negative, then either:
13406 	 * 1) src_reg might be zero, so the sign bit of the result is
13407 	 *    unknown, so we lose our signed bounds
13408 	 * 2) it's known negative, thus the unsigned bounds capture the
13409 	 *    signed bounds
13410 	 * 3) the signed bounds cross zero, so they tell us nothing
13411 	 *    about the result
13412 	 * If the value in dst_reg is known nonnegative, then again the
13413 	 * unsigned bounds capture the signed bounds.
13414 	 * Thus, in all cases it suffices to blow away our signed bounds
13415 	 * and rely on inferring new ones from the unsigned bounds and
13416 	 * var_off of the result.
13417 	 */
13418 	dst_reg->s32_min_value = S32_MIN;
13419 	dst_reg->s32_max_value = S32_MAX;
13420 
13421 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13422 	dst_reg->u32_min_value >>= umax_val;
13423 	dst_reg->u32_max_value >>= umin_val;
13424 
13425 	__mark_reg64_unbounded(dst_reg);
13426 	__update_reg32_bounds(dst_reg);
13427 }
13428 
13429 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13430 			       struct bpf_reg_state *src_reg)
13431 {
13432 	u64 umax_val = src_reg->umax_value;
13433 	u64 umin_val = src_reg->umin_value;
13434 
13435 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13436 	 * be negative, then either:
13437 	 * 1) src_reg might be zero, so the sign bit of the result is
13438 	 *    unknown, so we lose our signed bounds
13439 	 * 2) it's known negative, thus the unsigned bounds capture the
13440 	 *    signed bounds
13441 	 * 3) the signed bounds cross zero, so they tell us nothing
13442 	 *    about the result
13443 	 * If the value in dst_reg is known nonnegative, then again the
13444 	 * unsigned bounds capture the signed bounds.
13445 	 * Thus, in all cases it suffices to blow away our signed bounds
13446 	 * and rely on inferring new ones from the unsigned bounds and
13447 	 * var_off of the result.
13448 	 */
13449 	dst_reg->smin_value = S64_MIN;
13450 	dst_reg->smax_value = S64_MAX;
13451 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13452 	dst_reg->umin_value >>= umax_val;
13453 	dst_reg->umax_value >>= umin_val;
13454 
13455 	/* Its not easy to operate on alu32 bounds here because it depends
13456 	 * on bits being shifted in. Take easy way out and mark unbounded
13457 	 * so we can recalculate later from tnum.
13458 	 */
13459 	__mark_reg32_unbounded(dst_reg);
13460 	__update_reg_bounds(dst_reg);
13461 }
13462 
13463 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13464 				  struct bpf_reg_state *src_reg)
13465 {
13466 	u64 umin_val = src_reg->u32_min_value;
13467 
13468 	/* Upon reaching here, src_known is true and
13469 	 * umax_val is equal to umin_val.
13470 	 */
13471 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13472 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13473 
13474 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13475 
13476 	/* blow away the dst_reg umin_value/umax_value and rely on
13477 	 * dst_reg var_off to refine the result.
13478 	 */
13479 	dst_reg->u32_min_value = 0;
13480 	dst_reg->u32_max_value = U32_MAX;
13481 
13482 	__mark_reg64_unbounded(dst_reg);
13483 	__update_reg32_bounds(dst_reg);
13484 }
13485 
13486 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13487 				struct bpf_reg_state *src_reg)
13488 {
13489 	u64 umin_val = src_reg->umin_value;
13490 
13491 	/* Upon reaching here, src_known is true and umax_val is equal
13492 	 * to umin_val.
13493 	 */
13494 	dst_reg->smin_value >>= umin_val;
13495 	dst_reg->smax_value >>= umin_val;
13496 
13497 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13498 
13499 	/* blow away the dst_reg umin_value/umax_value and rely on
13500 	 * dst_reg var_off to refine the result.
13501 	 */
13502 	dst_reg->umin_value = 0;
13503 	dst_reg->umax_value = U64_MAX;
13504 
13505 	/* Its not easy to operate on alu32 bounds here because it depends
13506 	 * on bits being shifted in from upper 32-bits. Take easy way out
13507 	 * and mark unbounded so we can recalculate later from tnum.
13508 	 */
13509 	__mark_reg32_unbounded(dst_reg);
13510 	__update_reg_bounds(dst_reg);
13511 }
13512 
13513 /* WARNING: This function does calculations on 64-bit values, but the actual
13514  * execution may occur on 32-bit values. Therefore, things like bitshifts
13515  * need extra checks in the 32-bit case.
13516  */
13517 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13518 				      struct bpf_insn *insn,
13519 				      struct bpf_reg_state *dst_reg,
13520 				      struct bpf_reg_state src_reg)
13521 {
13522 	struct bpf_reg_state *regs = cur_regs(env);
13523 	u8 opcode = BPF_OP(insn->code);
13524 	bool src_known;
13525 	s64 smin_val, smax_val;
13526 	u64 umin_val, umax_val;
13527 	s32 s32_min_val, s32_max_val;
13528 	u32 u32_min_val, u32_max_val;
13529 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13530 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13531 	int ret;
13532 
13533 	smin_val = src_reg.smin_value;
13534 	smax_val = src_reg.smax_value;
13535 	umin_val = src_reg.umin_value;
13536 	umax_val = src_reg.umax_value;
13537 
13538 	s32_min_val = src_reg.s32_min_value;
13539 	s32_max_val = src_reg.s32_max_value;
13540 	u32_min_val = src_reg.u32_min_value;
13541 	u32_max_val = src_reg.u32_max_value;
13542 
13543 	if (alu32) {
13544 		src_known = tnum_subreg_is_const(src_reg.var_off);
13545 		if ((src_known &&
13546 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13547 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13548 			/* Taint dst register if offset had invalid bounds
13549 			 * derived from e.g. dead branches.
13550 			 */
13551 			__mark_reg_unknown(env, dst_reg);
13552 			return 0;
13553 		}
13554 	} else {
13555 		src_known = tnum_is_const(src_reg.var_off);
13556 		if ((src_known &&
13557 		     (smin_val != smax_val || umin_val != umax_val)) ||
13558 		    smin_val > smax_val || umin_val > umax_val) {
13559 			/* Taint dst register if offset had invalid bounds
13560 			 * derived from e.g. dead branches.
13561 			 */
13562 			__mark_reg_unknown(env, dst_reg);
13563 			return 0;
13564 		}
13565 	}
13566 
13567 	if (!src_known &&
13568 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13569 		__mark_reg_unknown(env, dst_reg);
13570 		return 0;
13571 	}
13572 
13573 	if (sanitize_needed(opcode)) {
13574 		ret = sanitize_val_alu(env, insn);
13575 		if (ret < 0)
13576 			return sanitize_err(env, insn, ret, NULL, NULL);
13577 	}
13578 
13579 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13580 	 * There are two classes of instructions: The first class we track both
13581 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13582 	 * greatest amount of precision when alu operations are mixed with jmp32
13583 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13584 	 * and BPF_OR. This is possible because these ops have fairly easy to
13585 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13586 	 * See alu32 verifier tests for examples. The second class of
13587 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13588 	 * with regards to tracking sign/unsigned bounds because the bits may
13589 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13590 	 * the reg unbounded in the subreg bound space and use the resulting
13591 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13592 	 */
13593 	switch (opcode) {
13594 	case BPF_ADD:
13595 		scalar32_min_max_add(dst_reg, &src_reg);
13596 		scalar_min_max_add(dst_reg, &src_reg);
13597 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13598 		break;
13599 	case BPF_SUB:
13600 		scalar32_min_max_sub(dst_reg, &src_reg);
13601 		scalar_min_max_sub(dst_reg, &src_reg);
13602 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13603 		break;
13604 	case BPF_MUL:
13605 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13606 		scalar32_min_max_mul(dst_reg, &src_reg);
13607 		scalar_min_max_mul(dst_reg, &src_reg);
13608 		break;
13609 	case BPF_AND:
13610 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13611 		scalar32_min_max_and(dst_reg, &src_reg);
13612 		scalar_min_max_and(dst_reg, &src_reg);
13613 		break;
13614 	case BPF_OR:
13615 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13616 		scalar32_min_max_or(dst_reg, &src_reg);
13617 		scalar_min_max_or(dst_reg, &src_reg);
13618 		break;
13619 	case BPF_XOR:
13620 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13621 		scalar32_min_max_xor(dst_reg, &src_reg);
13622 		scalar_min_max_xor(dst_reg, &src_reg);
13623 		break;
13624 	case BPF_LSH:
13625 		if (umax_val >= insn_bitness) {
13626 			/* Shifts greater than 31 or 63 are undefined.
13627 			 * This includes shifts by a negative number.
13628 			 */
13629 			mark_reg_unknown(env, regs, insn->dst_reg);
13630 			break;
13631 		}
13632 		if (alu32)
13633 			scalar32_min_max_lsh(dst_reg, &src_reg);
13634 		else
13635 			scalar_min_max_lsh(dst_reg, &src_reg);
13636 		break;
13637 	case BPF_RSH:
13638 		if (umax_val >= insn_bitness) {
13639 			/* Shifts greater than 31 or 63 are undefined.
13640 			 * This includes shifts by a negative number.
13641 			 */
13642 			mark_reg_unknown(env, regs, insn->dst_reg);
13643 			break;
13644 		}
13645 		if (alu32)
13646 			scalar32_min_max_rsh(dst_reg, &src_reg);
13647 		else
13648 			scalar_min_max_rsh(dst_reg, &src_reg);
13649 		break;
13650 	case BPF_ARSH:
13651 		if (umax_val >= insn_bitness) {
13652 			/* Shifts greater than 31 or 63 are undefined.
13653 			 * This includes shifts by a negative number.
13654 			 */
13655 			mark_reg_unknown(env, regs, insn->dst_reg);
13656 			break;
13657 		}
13658 		if (alu32)
13659 			scalar32_min_max_arsh(dst_reg, &src_reg);
13660 		else
13661 			scalar_min_max_arsh(dst_reg, &src_reg);
13662 		break;
13663 	default:
13664 		mark_reg_unknown(env, regs, insn->dst_reg);
13665 		break;
13666 	}
13667 
13668 	/* ALU32 ops are zero extended into 64bit register */
13669 	if (alu32)
13670 		zext_32_to_64(dst_reg);
13671 	reg_bounds_sync(dst_reg);
13672 	return 0;
13673 }
13674 
13675 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13676  * and var_off.
13677  */
13678 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13679 				   struct bpf_insn *insn)
13680 {
13681 	struct bpf_verifier_state *vstate = env->cur_state;
13682 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13683 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13684 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13685 	u8 opcode = BPF_OP(insn->code);
13686 	int err;
13687 
13688 	dst_reg = &regs[insn->dst_reg];
13689 	src_reg = NULL;
13690 	if (dst_reg->type != SCALAR_VALUE)
13691 		ptr_reg = dst_reg;
13692 	else
13693 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13694 		 * incorrectly propagated into other registers by find_equal_scalars()
13695 		 */
13696 		dst_reg->id = 0;
13697 	if (BPF_SRC(insn->code) == BPF_X) {
13698 		src_reg = &regs[insn->src_reg];
13699 		if (src_reg->type != SCALAR_VALUE) {
13700 			if (dst_reg->type != SCALAR_VALUE) {
13701 				/* Combining two pointers by any ALU op yields
13702 				 * an arbitrary scalar. Disallow all math except
13703 				 * pointer subtraction
13704 				 */
13705 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13706 					mark_reg_unknown(env, regs, insn->dst_reg);
13707 					return 0;
13708 				}
13709 				verbose(env, "R%d pointer %s pointer prohibited\n",
13710 					insn->dst_reg,
13711 					bpf_alu_string[opcode >> 4]);
13712 				return -EACCES;
13713 			} else {
13714 				/* scalar += pointer
13715 				 * This is legal, but we have to reverse our
13716 				 * src/dest handling in computing the range
13717 				 */
13718 				err = mark_chain_precision(env, insn->dst_reg);
13719 				if (err)
13720 					return err;
13721 				return adjust_ptr_min_max_vals(env, insn,
13722 							       src_reg, dst_reg);
13723 			}
13724 		} else if (ptr_reg) {
13725 			/* pointer += scalar */
13726 			err = mark_chain_precision(env, insn->src_reg);
13727 			if (err)
13728 				return err;
13729 			return adjust_ptr_min_max_vals(env, insn,
13730 						       dst_reg, src_reg);
13731 		} else if (dst_reg->precise) {
13732 			/* if dst_reg is precise, src_reg should be precise as well */
13733 			err = mark_chain_precision(env, insn->src_reg);
13734 			if (err)
13735 				return err;
13736 		}
13737 	} else {
13738 		/* Pretend the src is a reg with a known value, since we only
13739 		 * need to be able to read from this state.
13740 		 */
13741 		off_reg.type = SCALAR_VALUE;
13742 		__mark_reg_known(&off_reg, insn->imm);
13743 		src_reg = &off_reg;
13744 		if (ptr_reg) /* pointer += K */
13745 			return adjust_ptr_min_max_vals(env, insn,
13746 						       ptr_reg, src_reg);
13747 	}
13748 
13749 	/* Got here implies adding two SCALAR_VALUEs */
13750 	if (WARN_ON_ONCE(ptr_reg)) {
13751 		print_verifier_state(env, state, true);
13752 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13753 		return -EINVAL;
13754 	}
13755 	if (WARN_ON(!src_reg)) {
13756 		print_verifier_state(env, state, true);
13757 		verbose(env, "verifier internal error: no src_reg\n");
13758 		return -EINVAL;
13759 	}
13760 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13761 }
13762 
13763 /* check validity of 32-bit and 64-bit arithmetic operations */
13764 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13765 {
13766 	struct bpf_reg_state *regs = cur_regs(env);
13767 	u8 opcode = BPF_OP(insn->code);
13768 	int err;
13769 
13770 	if (opcode == BPF_END || opcode == BPF_NEG) {
13771 		if (opcode == BPF_NEG) {
13772 			if (BPF_SRC(insn->code) != BPF_K ||
13773 			    insn->src_reg != BPF_REG_0 ||
13774 			    insn->off != 0 || insn->imm != 0) {
13775 				verbose(env, "BPF_NEG uses reserved fields\n");
13776 				return -EINVAL;
13777 			}
13778 		} else {
13779 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13780 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13781 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13782 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13783 				verbose(env, "BPF_END uses reserved fields\n");
13784 				return -EINVAL;
13785 			}
13786 		}
13787 
13788 		/* check src operand */
13789 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13790 		if (err)
13791 			return err;
13792 
13793 		if (is_pointer_value(env, insn->dst_reg)) {
13794 			verbose(env, "R%d pointer arithmetic prohibited\n",
13795 				insn->dst_reg);
13796 			return -EACCES;
13797 		}
13798 
13799 		/* check dest operand */
13800 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13801 		if (err)
13802 			return err;
13803 
13804 	} else if (opcode == BPF_MOV) {
13805 
13806 		if (BPF_SRC(insn->code) == BPF_X) {
13807 			if (insn->imm != 0) {
13808 				verbose(env, "BPF_MOV uses reserved fields\n");
13809 				return -EINVAL;
13810 			}
13811 
13812 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13813 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13814 					verbose(env, "BPF_MOV uses reserved fields\n");
13815 					return -EINVAL;
13816 				}
13817 			} else {
13818 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13819 				    insn->off != 32) {
13820 					verbose(env, "BPF_MOV uses reserved fields\n");
13821 					return -EINVAL;
13822 				}
13823 			}
13824 
13825 			/* check src operand */
13826 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13827 			if (err)
13828 				return err;
13829 		} else {
13830 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13831 				verbose(env, "BPF_MOV uses reserved fields\n");
13832 				return -EINVAL;
13833 			}
13834 		}
13835 
13836 		/* check dest operand, mark as required later */
13837 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13838 		if (err)
13839 			return err;
13840 
13841 		if (BPF_SRC(insn->code) == BPF_X) {
13842 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13843 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13844 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13845 				       !tnum_is_const(src_reg->var_off);
13846 
13847 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13848 				if (insn->off == 0) {
13849 					/* case: R1 = R2
13850 					 * copy register state to dest reg
13851 					 */
13852 					if (need_id)
13853 						/* Assign src and dst registers the same ID
13854 						 * that will be used by find_equal_scalars()
13855 						 * to propagate min/max range.
13856 						 */
13857 						src_reg->id = ++env->id_gen;
13858 					copy_register_state(dst_reg, src_reg);
13859 					dst_reg->live |= REG_LIVE_WRITTEN;
13860 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13861 				} else {
13862 					/* case: R1 = (s8, s16 s32)R2 */
13863 					if (is_pointer_value(env, insn->src_reg)) {
13864 						verbose(env,
13865 							"R%d sign-extension part of pointer\n",
13866 							insn->src_reg);
13867 						return -EACCES;
13868 					} else if (src_reg->type == SCALAR_VALUE) {
13869 						bool no_sext;
13870 
13871 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13872 						if (no_sext && need_id)
13873 							src_reg->id = ++env->id_gen;
13874 						copy_register_state(dst_reg, src_reg);
13875 						if (!no_sext)
13876 							dst_reg->id = 0;
13877 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13878 						dst_reg->live |= REG_LIVE_WRITTEN;
13879 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13880 					} else {
13881 						mark_reg_unknown(env, regs, insn->dst_reg);
13882 					}
13883 				}
13884 			} else {
13885 				/* R1 = (u32) R2 */
13886 				if (is_pointer_value(env, insn->src_reg)) {
13887 					verbose(env,
13888 						"R%d partial copy of pointer\n",
13889 						insn->src_reg);
13890 					return -EACCES;
13891 				} else if (src_reg->type == SCALAR_VALUE) {
13892 					if (insn->off == 0) {
13893 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13894 
13895 						if (is_src_reg_u32 && need_id)
13896 							src_reg->id = ++env->id_gen;
13897 						copy_register_state(dst_reg, src_reg);
13898 						/* Make sure ID is cleared if src_reg is not in u32
13899 						 * range otherwise dst_reg min/max could be incorrectly
13900 						 * propagated into src_reg by find_equal_scalars()
13901 						 */
13902 						if (!is_src_reg_u32)
13903 							dst_reg->id = 0;
13904 						dst_reg->live |= REG_LIVE_WRITTEN;
13905 						dst_reg->subreg_def = env->insn_idx + 1;
13906 					} else {
13907 						/* case: W1 = (s8, s16)W2 */
13908 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13909 
13910 						if (no_sext && need_id)
13911 							src_reg->id = ++env->id_gen;
13912 						copy_register_state(dst_reg, src_reg);
13913 						if (!no_sext)
13914 							dst_reg->id = 0;
13915 						dst_reg->live |= REG_LIVE_WRITTEN;
13916 						dst_reg->subreg_def = env->insn_idx + 1;
13917 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13918 					}
13919 				} else {
13920 					mark_reg_unknown(env, regs,
13921 							 insn->dst_reg);
13922 				}
13923 				zext_32_to_64(dst_reg);
13924 				reg_bounds_sync(dst_reg);
13925 			}
13926 		} else {
13927 			/* case: R = imm
13928 			 * remember the value we stored into this reg
13929 			 */
13930 			/* clear any state __mark_reg_known doesn't set */
13931 			mark_reg_unknown(env, regs, insn->dst_reg);
13932 			regs[insn->dst_reg].type = SCALAR_VALUE;
13933 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13934 				__mark_reg_known(regs + insn->dst_reg,
13935 						 insn->imm);
13936 			} else {
13937 				__mark_reg_known(regs + insn->dst_reg,
13938 						 (u32)insn->imm);
13939 			}
13940 		}
13941 
13942 	} else if (opcode > BPF_END) {
13943 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13944 		return -EINVAL;
13945 
13946 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13947 
13948 		if (BPF_SRC(insn->code) == BPF_X) {
13949 			if (insn->imm != 0 || insn->off > 1 ||
13950 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13951 				verbose(env, "BPF_ALU uses reserved fields\n");
13952 				return -EINVAL;
13953 			}
13954 			/* check src1 operand */
13955 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13956 			if (err)
13957 				return err;
13958 		} else {
13959 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13960 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13961 				verbose(env, "BPF_ALU uses reserved fields\n");
13962 				return -EINVAL;
13963 			}
13964 		}
13965 
13966 		/* check src2 operand */
13967 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13968 		if (err)
13969 			return err;
13970 
13971 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13972 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13973 			verbose(env, "div by zero\n");
13974 			return -EINVAL;
13975 		}
13976 
13977 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13978 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13979 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13980 
13981 			if (insn->imm < 0 || insn->imm >= size) {
13982 				verbose(env, "invalid shift %d\n", insn->imm);
13983 				return -EINVAL;
13984 			}
13985 		}
13986 
13987 		/* check dest operand */
13988 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13989 		if (err)
13990 			return err;
13991 
13992 		return adjust_reg_min_max_vals(env, insn);
13993 	}
13994 
13995 	return 0;
13996 }
13997 
13998 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13999 				   struct bpf_reg_state *dst_reg,
14000 				   enum bpf_reg_type type,
14001 				   bool range_right_open)
14002 {
14003 	struct bpf_func_state *state;
14004 	struct bpf_reg_state *reg;
14005 	int new_range;
14006 
14007 	if (dst_reg->off < 0 ||
14008 	    (dst_reg->off == 0 && range_right_open))
14009 		/* This doesn't give us any range */
14010 		return;
14011 
14012 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14013 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14014 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14015 		 * than pkt_end, but that's because it's also less than pkt.
14016 		 */
14017 		return;
14018 
14019 	new_range = dst_reg->off;
14020 	if (range_right_open)
14021 		new_range++;
14022 
14023 	/* Examples for register markings:
14024 	 *
14025 	 * pkt_data in dst register:
14026 	 *
14027 	 *   r2 = r3;
14028 	 *   r2 += 8;
14029 	 *   if (r2 > pkt_end) goto <handle exception>
14030 	 *   <access okay>
14031 	 *
14032 	 *   r2 = r3;
14033 	 *   r2 += 8;
14034 	 *   if (r2 < pkt_end) goto <access okay>
14035 	 *   <handle exception>
14036 	 *
14037 	 *   Where:
14038 	 *     r2 == dst_reg, pkt_end == src_reg
14039 	 *     r2=pkt(id=n,off=8,r=0)
14040 	 *     r3=pkt(id=n,off=0,r=0)
14041 	 *
14042 	 * pkt_data in src register:
14043 	 *
14044 	 *   r2 = r3;
14045 	 *   r2 += 8;
14046 	 *   if (pkt_end >= r2) goto <access okay>
14047 	 *   <handle exception>
14048 	 *
14049 	 *   r2 = r3;
14050 	 *   r2 += 8;
14051 	 *   if (pkt_end <= r2) goto <handle exception>
14052 	 *   <access okay>
14053 	 *
14054 	 *   Where:
14055 	 *     pkt_end == dst_reg, r2 == src_reg
14056 	 *     r2=pkt(id=n,off=8,r=0)
14057 	 *     r3=pkt(id=n,off=0,r=0)
14058 	 *
14059 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14060 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14061 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14062 	 * the check.
14063 	 */
14064 
14065 	/* If our ids match, then we must have the same max_value.  And we
14066 	 * don't care about the other reg's fixed offset, since if it's too big
14067 	 * the range won't allow anything.
14068 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14069 	 */
14070 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14071 		if (reg->type == type && reg->id == dst_reg->id)
14072 			/* keep the maximum range already checked */
14073 			reg->range = max(reg->range, new_range);
14074 	}));
14075 }
14076 
14077 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
14078 {
14079 	struct tnum subreg = tnum_subreg(reg->var_off);
14080 	s32 sval = (s32)val;
14081 
14082 	switch (opcode) {
14083 	case BPF_JEQ:
14084 		if (tnum_is_const(subreg))
14085 			return !!tnum_equals_const(subreg, val);
14086 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14087 			return 0;
14088 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14089 			return 0;
14090 		break;
14091 	case BPF_JNE:
14092 		if (tnum_is_const(subreg))
14093 			return !tnum_equals_const(subreg, val);
14094 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14095 			return 1;
14096 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14097 			return 1;
14098 		break;
14099 	case BPF_JSET:
14100 		if ((~subreg.mask & subreg.value) & val)
14101 			return 1;
14102 		if (!((subreg.mask | subreg.value) & val))
14103 			return 0;
14104 		break;
14105 	case BPF_JGT:
14106 		if (reg->u32_min_value > val)
14107 			return 1;
14108 		else if (reg->u32_max_value <= val)
14109 			return 0;
14110 		break;
14111 	case BPF_JSGT:
14112 		if (reg->s32_min_value > sval)
14113 			return 1;
14114 		else if (reg->s32_max_value <= sval)
14115 			return 0;
14116 		break;
14117 	case BPF_JLT:
14118 		if (reg->u32_max_value < val)
14119 			return 1;
14120 		else if (reg->u32_min_value >= val)
14121 			return 0;
14122 		break;
14123 	case BPF_JSLT:
14124 		if (reg->s32_max_value < sval)
14125 			return 1;
14126 		else if (reg->s32_min_value >= sval)
14127 			return 0;
14128 		break;
14129 	case BPF_JGE:
14130 		if (reg->u32_min_value >= val)
14131 			return 1;
14132 		else if (reg->u32_max_value < val)
14133 			return 0;
14134 		break;
14135 	case BPF_JSGE:
14136 		if (reg->s32_min_value >= sval)
14137 			return 1;
14138 		else if (reg->s32_max_value < sval)
14139 			return 0;
14140 		break;
14141 	case BPF_JLE:
14142 		if (reg->u32_max_value <= val)
14143 			return 1;
14144 		else if (reg->u32_min_value > val)
14145 			return 0;
14146 		break;
14147 	case BPF_JSLE:
14148 		if (reg->s32_max_value <= sval)
14149 			return 1;
14150 		else if (reg->s32_min_value > sval)
14151 			return 0;
14152 		break;
14153 	}
14154 
14155 	return -1;
14156 }
14157 
14158 
14159 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
14160 {
14161 	s64 sval = (s64)val;
14162 
14163 	switch (opcode) {
14164 	case BPF_JEQ:
14165 		if (tnum_is_const(reg->var_off))
14166 			return !!tnum_equals_const(reg->var_off, val);
14167 		else if (val < reg->umin_value || val > reg->umax_value)
14168 			return 0;
14169 		else if (sval < reg->smin_value || sval > reg->smax_value)
14170 			return 0;
14171 		break;
14172 	case BPF_JNE:
14173 		if (tnum_is_const(reg->var_off))
14174 			return !tnum_equals_const(reg->var_off, val);
14175 		else if (val < reg->umin_value || val > reg->umax_value)
14176 			return 1;
14177 		else if (sval < reg->smin_value || sval > reg->smax_value)
14178 			return 1;
14179 		break;
14180 	case BPF_JSET:
14181 		if ((~reg->var_off.mask & reg->var_off.value) & val)
14182 			return 1;
14183 		if (!((reg->var_off.mask | reg->var_off.value) & val))
14184 			return 0;
14185 		break;
14186 	case BPF_JGT:
14187 		if (reg->umin_value > val)
14188 			return 1;
14189 		else if (reg->umax_value <= val)
14190 			return 0;
14191 		break;
14192 	case BPF_JSGT:
14193 		if (reg->smin_value > sval)
14194 			return 1;
14195 		else if (reg->smax_value <= sval)
14196 			return 0;
14197 		break;
14198 	case BPF_JLT:
14199 		if (reg->umax_value < val)
14200 			return 1;
14201 		else if (reg->umin_value >= val)
14202 			return 0;
14203 		break;
14204 	case BPF_JSLT:
14205 		if (reg->smax_value < sval)
14206 			return 1;
14207 		else if (reg->smin_value >= sval)
14208 			return 0;
14209 		break;
14210 	case BPF_JGE:
14211 		if (reg->umin_value >= val)
14212 			return 1;
14213 		else if (reg->umax_value < val)
14214 			return 0;
14215 		break;
14216 	case BPF_JSGE:
14217 		if (reg->smin_value >= sval)
14218 			return 1;
14219 		else if (reg->smax_value < sval)
14220 			return 0;
14221 		break;
14222 	case BPF_JLE:
14223 		if (reg->umax_value <= val)
14224 			return 1;
14225 		else if (reg->umin_value > val)
14226 			return 0;
14227 		break;
14228 	case BPF_JSLE:
14229 		if (reg->smax_value <= sval)
14230 			return 1;
14231 		else if (reg->smin_value > sval)
14232 			return 0;
14233 		break;
14234 	}
14235 
14236 	return -1;
14237 }
14238 
14239 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14240  * and return:
14241  *  1 - branch will be taken and "goto target" will be executed
14242  *  0 - branch will not be taken and fall-through to next insn
14243  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14244  *      range [0,10]
14245  */
14246 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14247 			   bool is_jmp32)
14248 {
14249 	if (__is_pointer_value(false, reg)) {
14250 		if (!reg_not_null(reg))
14251 			return -1;
14252 
14253 		/* If pointer is valid tests against zero will fail so we can
14254 		 * use this to direct branch taken.
14255 		 */
14256 		if (val != 0)
14257 			return -1;
14258 
14259 		switch (opcode) {
14260 		case BPF_JEQ:
14261 			return 0;
14262 		case BPF_JNE:
14263 			return 1;
14264 		default:
14265 			return -1;
14266 		}
14267 	}
14268 
14269 	if (is_jmp32)
14270 		return is_branch32_taken(reg, val, opcode);
14271 	return is_branch64_taken(reg, val, opcode);
14272 }
14273 
14274 static int flip_opcode(u32 opcode)
14275 {
14276 	/* How can we transform "a <op> b" into "b <op> a"? */
14277 	static const u8 opcode_flip[16] = {
14278 		/* these stay the same */
14279 		[BPF_JEQ  >> 4] = BPF_JEQ,
14280 		[BPF_JNE  >> 4] = BPF_JNE,
14281 		[BPF_JSET >> 4] = BPF_JSET,
14282 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14283 		[BPF_JGE  >> 4] = BPF_JLE,
14284 		[BPF_JGT  >> 4] = BPF_JLT,
14285 		[BPF_JLE  >> 4] = BPF_JGE,
14286 		[BPF_JLT  >> 4] = BPF_JGT,
14287 		[BPF_JSGE >> 4] = BPF_JSLE,
14288 		[BPF_JSGT >> 4] = BPF_JSLT,
14289 		[BPF_JSLE >> 4] = BPF_JSGE,
14290 		[BPF_JSLT >> 4] = BPF_JSGT
14291 	};
14292 	return opcode_flip[opcode >> 4];
14293 }
14294 
14295 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14296 				   struct bpf_reg_state *src_reg,
14297 				   u8 opcode)
14298 {
14299 	struct bpf_reg_state *pkt;
14300 
14301 	if (src_reg->type == PTR_TO_PACKET_END) {
14302 		pkt = dst_reg;
14303 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14304 		pkt = src_reg;
14305 		opcode = flip_opcode(opcode);
14306 	} else {
14307 		return -1;
14308 	}
14309 
14310 	if (pkt->range >= 0)
14311 		return -1;
14312 
14313 	switch (opcode) {
14314 	case BPF_JLE:
14315 		/* pkt <= pkt_end */
14316 		fallthrough;
14317 	case BPF_JGT:
14318 		/* pkt > pkt_end */
14319 		if (pkt->range == BEYOND_PKT_END)
14320 			/* pkt has at last one extra byte beyond pkt_end */
14321 			return opcode == BPF_JGT;
14322 		break;
14323 	case BPF_JLT:
14324 		/* pkt < pkt_end */
14325 		fallthrough;
14326 	case BPF_JGE:
14327 		/* pkt >= pkt_end */
14328 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14329 			return opcode == BPF_JGE;
14330 		break;
14331 	}
14332 	return -1;
14333 }
14334 
14335 /* Adjusts the register min/max values in the case that the dst_reg is the
14336  * variable register that we are working on, and src_reg is a constant or we're
14337  * simply doing a BPF_K check.
14338  * In JEQ/JNE cases we also adjust the var_off values.
14339  */
14340 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14341 			    struct bpf_reg_state *false_reg,
14342 			    u64 val, u32 val32,
14343 			    u8 opcode, bool is_jmp32)
14344 {
14345 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14346 	struct tnum false_64off = false_reg->var_off;
14347 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14348 	struct tnum true_64off = true_reg->var_off;
14349 	s64 sval = (s64)val;
14350 	s32 sval32 = (s32)val32;
14351 
14352 	/* If the dst_reg is a pointer, we can't learn anything about its
14353 	 * variable offset from the compare (unless src_reg were a pointer into
14354 	 * the same object, but we don't bother with that.
14355 	 * Since false_reg and true_reg have the same type by construction, we
14356 	 * only need to check one of them for pointerness.
14357 	 */
14358 	if (__is_pointer_value(false, false_reg))
14359 		return;
14360 
14361 	switch (opcode) {
14362 	/* JEQ/JNE comparison doesn't change the register equivalence.
14363 	 *
14364 	 * r1 = r2;
14365 	 * if (r1 == 42) goto label;
14366 	 * ...
14367 	 * label: // here both r1 and r2 are known to be 42.
14368 	 *
14369 	 * Hence when marking register as known preserve it's ID.
14370 	 */
14371 	case BPF_JEQ:
14372 		if (is_jmp32) {
14373 			__mark_reg32_known(true_reg, val32);
14374 			true_32off = tnum_subreg(true_reg->var_off);
14375 		} else {
14376 			___mark_reg_known(true_reg, val);
14377 			true_64off = true_reg->var_off;
14378 		}
14379 		break;
14380 	case BPF_JNE:
14381 		if (is_jmp32) {
14382 			__mark_reg32_known(false_reg, val32);
14383 			false_32off = tnum_subreg(false_reg->var_off);
14384 		} else {
14385 			___mark_reg_known(false_reg, val);
14386 			false_64off = false_reg->var_off;
14387 		}
14388 		break;
14389 	case BPF_JSET:
14390 		if (is_jmp32) {
14391 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14392 			if (is_power_of_2(val32))
14393 				true_32off = tnum_or(true_32off,
14394 						     tnum_const(val32));
14395 		} else {
14396 			false_64off = tnum_and(false_64off, tnum_const(~val));
14397 			if (is_power_of_2(val))
14398 				true_64off = tnum_or(true_64off,
14399 						     tnum_const(val));
14400 		}
14401 		break;
14402 	case BPF_JGE:
14403 	case BPF_JGT:
14404 	{
14405 		if (is_jmp32) {
14406 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14407 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14408 
14409 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14410 						       false_umax);
14411 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14412 						      true_umin);
14413 		} else {
14414 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14415 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14416 
14417 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14418 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14419 		}
14420 		break;
14421 	}
14422 	case BPF_JSGE:
14423 	case BPF_JSGT:
14424 	{
14425 		if (is_jmp32) {
14426 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14427 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14428 
14429 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14430 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14431 		} else {
14432 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14433 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14434 
14435 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14436 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14437 		}
14438 		break;
14439 	}
14440 	case BPF_JLE:
14441 	case BPF_JLT:
14442 	{
14443 		if (is_jmp32) {
14444 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14445 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14446 
14447 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14448 						       false_umin);
14449 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14450 						      true_umax);
14451 		} else {
14452 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14453 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14454 
14455 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14456 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14457 		}
14458 		break;
14459 	}
14460 	case BPF_JSLE:
14461 	case BPF_JSLT:
14462 	{
14463 		if (is_jmp32) {
14464 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14465 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14466 
14467 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14468 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14469 		} else {
14470 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14471 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14472 
14473 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14474 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14475 		}
14476 		break;
14477 	}
14478 	default:
14479 		return;
14480 	}
14481 
14482 	if (is_jmp32) {
14483 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14484 					     tnum_subreg(false_32off));
14485 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14486 					    tnum_subreg(true_32off));
14487 		__reg_combine_32_into_64(false_reg);
14488 		__reg_combine_32_into_64(true_reg);
14489 	} else {
14490 		false_reg->var_off = false_64off;
14491 		true_reg->var_off = true_64off;
14492 		__reg_combine_64_into_32(false_reg);
14493 		__reg_combine_64_into_32(true_reg);
14494 	}
14495 }
14496 
14497 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14498  * the variable reg.
14499  */
14500 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14501 				struct bpf_reg_state *false_reg,
14502 				u64 val, u32 val32,
14503 				u8 opcode, bool is_jmp32)
14504 {
14505 	opcode = flip_opcode(opcode);
14506 	/* This uses zero as "not present in table"; luckily the zero opcode,
14507 	 * BPF_JA, can't get here.
14508 	 */
14509 	if (opcode)
14510 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14511 }
14512 
14513 /* Regs are known to be equal, so intersect their min/max/var_off */
14514 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14515 				  struct bpf_reg_state *dst_reg)
14516 {
14517 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14518 							dst_reg->umin_value);
14519 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14520 							dst_reg->umax_value);
14521 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14522 							dst_reg->smin_value);
14523 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14524 							dst_reg->smax_value);
14525 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14526 							     dst_reg->var_off);
14527 	reg_bounds_sync(src_reg);
14528 	reg_bounds_sync(dst_reg);
14529 }
14530 
14531 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14532 				struct bpf_reg_state *true_dst,
14533 				struct bpf_reg_state *false_src,
14534 				struct bpf_reg_state *false_dst,
14535 				u8 opcode)
14536 {
14537 	switch (opcode) {
14538 	case BPF_JEQ:
14539 		__reg_combine_min_max(true_src, true_dst);
14540 		break;
14541 	case BPF_JNE:
14542 		__reg_combine_min_max(false_src, false_dst);
14543 		break;
14544 	}
14545 }
14546 
14547 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14548 				 struct bpf_reg_state *reg, u32 id,
14549 				 bool is_null)
14550 {
14551 	if (type_may_be_null(reg->type) && reg->id == id &&
14552 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14553 		/* Old offset (both fixed and variable parts) should have been
14554 		 * known-zero, because we don't allow pointer arithmetic on
14555 		 * pointers that might be NULL. If we see this happening, don't
14556 		 * convert the register.
14557 		 *
14558 		 * But in some cases, some helpers that return local kptrs
14559 		 * advance offset for the returned pointer. In those cases, it
14560 		 * is fine to expect to see reg->off.
14561 		 */
14562 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14563 			return;
14564 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14565 		    WARN_ON_ONCE(reg->off))
14566 			return;
14567 
14568 		if (is_null) {
14569 			reg->type = SCALAR_VALUE;
14570 			/* We don't need id and ref_obj_id from this point
14571 			 * onwards anymore, thus we should better reset it,
14572 			 * so that state pruning has chances to take effect.
14573 			 */
14574 			reg->id = 0;
14575 			reg->ref_obj_id = 0;
14576 
14577 			return;
14578 		}
14579 
14580 		mark_ptr_not_null_reg(reg);
14581 
14582 		if (!reg_may_point_to_spin_lock(reg)) {
14583 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14584 			 * in release_reference().
14585 			 *
14586 			 * reg->id is still used by spin_lock ptr. Other
14587 			 * than spin_lock ptr type, reg->id can be reset.
14588 			 */
14589 			reg->id = 0;
14590 		}
14591 	}
14592 }
14593 
14594 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14595  * be folded together at some point.
14596  */
14597 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14598 				  bool is_null)
14599 {
14600 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14601 	struct bpf_reg_state *regs = state->regs, *reg;
14602 	u32 ref_obj_id = regs[regno].ref_obj_id;
14603 	u32 id = regs[regno].id;
14604 
14605 	if (ref_obj_id && ref_obj_id == id && is_null)
14606 		/* regs[regno] is in the " == NULL" branch.
14607 		 * No one could have freed the reference state before
14608 		 * doing the NULL check.
14609 		 */
14610 		WARN_ON_ONCE(release_reference_state(state, id));
14611 
14612 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14613 		mark_ptr_or_null_reg(state, reg, id, is_null);
14614 	}));
14615 }
14616 
14617 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14618 				   struct bpf_reg_state *dst_reg,
14619 				   struct bpf_reg_state *src_reg,
14620 				   struct bpf_verifier_state *this_branch,
14621 				   struct bpf_verifier_state *other_branch)
14622 {
14623 	if (BPF_SRC(insn->code) != BPF_X)
14624 		return false;
14625 
14626 	/* Pointers are always 64-bit. */
14627 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14628 		return false;
14629 
14630 	switch (BPF_OP(insn->code)) {
14631 	case BPF_JGT:
14632 		if ((dst_reg->type == PTR_TO_PACKET &&
14633 		     src_reg->type == PTR_TO_PACKET_END) ||
14634 		    (dst_reg->type == PTR_TO_PACKET_META &&
14635 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14636 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14637 			find_good_pkt_pointers(this_branch, dst_reg,
14638 					       dst_reg->type, false);
14639 			mark_pkt_end(other_branch, insn->dst_reg, true);
14640 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14641 			    src_reg->type == PTR_TO_PACKET) ||
14642 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14643 			    src_reg->type == PTR_TO_PACKET_META)) {
14644 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14645 			find_good_pkt_pointers(other_branch, src_reg,
14646 					       src_reg->type, true);
14647 			mark_pkt_end(this_branch, insn->src_reg, false);
14648 		} else {
14649 			return false;
14650 		}
14651 		break;
14652 	case BPF_JLT:
14653 		if ((dst_reg->type == PTR_TO_PACKET &&
14654 		     src_reg->type == PTR_TO_PACKET_END) ||
14655 		    (dst_reg->type == PTR_TO_PACKET_META &&
14656 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14657 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14658 			find_good_pkt_pointers(other_branch, dst_reg,
14659 					       dst_reg->type, true);
14660 			mark_pkt_end(this_branch, insn->dst_reg, false);
14661 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14662 			    src_reg->type == PTR_TO_PACKET) ||
14663 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14664 			    src_reg->type == PTR_TO_PACKET_META)) {
14665 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14666 			find_good_pkt_pointers(this_branch, src_reg,
14667 					       src_reg->type, false);
14668 			mark_pkt_end(other_branch, insn->src_reg, true);
14669 		} else {
14670 			return false;
14671 		}
14672 		break;
14673 	case BPF_JGE:
14674 		if ((dst_reg->type == PTR_TO_PACKET &&
14675 		     src_reg->type == PTR_TO_PACKET_END) ||
14676 		    (dst_reg->type == PTR_TO_PACKET_META &&
14677 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14678 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14679 			find_good_pkt_pointers(this_branch, dst_reg,
14680 					       dst_reg->type, true);
14681 			mark_pkt_end(other_branch, insn->dst_reg, false);
14682 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14683 			    src_reg->type == PTR_TO_PACKET) ||
14684 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14685 			    src_reg->type == PTR_TO_PACKET_META)) {
14686 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14687 			find_good_pkt_pointers(other_branch, src_reg,
14688 					       src_reg->type, false);
14689 			mark_pkt_end(this_branch, insn->src_reg, true);
14690 		} else {
14691 			return false;
14692 		}
14693 		break;
14694 	case BPF_JLE:
14695 		if ((dst_reg->type == PTR_TO_PACKET &&
14696 		     src_reg->type == PTR_TO_PACKET_END) ||
14697 		    (dst_reg->type == PTR_TO_PACKET_META &&
14698 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14699 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14700 			find_good_pkt_pointers(other_branch, dst_reg,
14701 					       dst_reg->type, false);
14702 			mark_pkt_end(this_branch, insn->dst_reg, true);
14703 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14704 			    src_reg->type == PTR_TO_PACKET) ||
14705 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14706 			    src_reg->type == PTR_TO_PACKET_META)) {
14707 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14708 			find_good_pkt_pointers(this_branch, src_reg,
14709 					       src_reg->type, true);
14710 			mark_pkt_end(other_branch, insn->src_reg, false);
14711 		} else {
14712 			return false;
14713 		}
14714 		break;
14715 	default:
14716 		return false;
14717 	}
14718 
14719 	return true;
14720 }
14721 
14722 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14723 			       struct bpf_reg_state *known_reg)
14724 {
14725 	struct bpf_func_state *state;
14726 	struct bpf_reg_state *reg;
14727 
14728 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14729 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14730 			copy_register_state(reg, known_reg);
14731 	}));
14732 }
14733 
14734 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14735 			     struct bpf_insn *insn, int *insn_idx)
14736 {
14737 	struct bpf_verifier_state *this_branch = env->cur_state;
14738 	struct bpf_verifier_state *other_branch;
14739 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14740 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14741 	struct bpf_reg_state *eq_branch_regs;
14742 	u8 opcode = BPF_OP(insn->code);
14743 	bool is_jmp32;
14744 	int pred = -1;
14745 	int err;
14746 
14747 	/* Only conditional jumps are expected to reach here. */
14748 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14749 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14750 		return -EINVAL;
14751 	}
14752 
14753 	/* check src2 operand */
14754 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14755 	if (err)
14756 		return err;
14757 
14758 	dst_reg = &regs[insn->dst_reg];
14759 	if (BPF_SRC(insn->code) == BPF_X) {
14760 		if (insn->imm != 0) {
14761 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14762 			return -EINVAL;
14763 		}
14764 
14765 		/* check src1 operand */
14766 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14767 		if (err)
14768 			return err;
14769 
14770 		src_reg = &regs[insn->src_reg];
14771 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14772 		    is_pointer_value(env, insn->src_reg)) {
14773 			verbose(env, "R%d pointer comparison prohibited\n",
14774 				insn->src_reg);
14775 			return -EACCES;
14776 		}
14777 	} else {
14778 		if (insn->src_reg != BPF_REG_0) {
14779 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14780 			return -EINVAL;
14781 		}
14782 	}
14783 
14784 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14785 
14786 	if (BPF_SRC(insn->code) == BPF_K) {
14787 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14788 	} else if (src_reg->type == SCALAR_VALUE &&
14789 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14790 		pred = is_branch_taken(dst_reg,
14791 				       tnum_subreg(src_reg->var_off).value,
14792 				       opcode,
14793 				       is_jmp32);
14794 	} else if (src_reg->type == SCALAR_VALUE &&
14795 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14796 		pred = is_branch_taken(dst_reg,
14797 				       src_reg->var_off.value,
14798 				       opcode,
14799 				       is_jmp32);
14800 	} else if (dst_reg->type == SCALAR_VALUE &&
14801 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14802 		pred = is_branch_taken(src_reg,
14803 				       tnum_subreg(dst_reg->var_off).value,
14804 				       flip_opcode(opcode),
14805 				       is_jmp32);
14806 	} else if (dst_reg->type == SCALAR_VALUE &&
14807 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14808 		pred = is_branch_taken(src_reg,
14809 				       dst_reg->var_off.value,
14810 				       flip_opcode(opcode),
14811 				       is_jmp32);
14812 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14813 		   reg_is_pkt_pointer_any(src_reg) &&
14814 		   !is_jmp32) {
14815 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14816 	}
14817 
14818 	if (pred >= 0) {
14819 		/* If we get here with a dst_reg pointer type it is because
14820 		 * above is_branch_taken() special cased the 0 comparison.
14821 		 */
14822 		if (!__is_pointer_value(false, dst_reg))
14823 			err = mark_chain_precision(env, insn->dst_reg);
14824 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14825 		    !__is_pointer_value(false, src_reg))
14826 			err = mark_chain_precision(env, insn->src_reg);
14827 		if (err)
14828 			return err;
14829 	}
14830 
14831 	if (pred == 1) {
14832 		/* Only follow the goto, ignore fall-through. If needed, push
14833 		 * the fall-through branch for simulation under speculative
14834 		 * execution.
14835 		 */
14836 		if (!env->bypass_spec_v1 &&
14837 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14838 					       *insn_idx))
14839 			return -EFAULT;
14840 		if (env->log.level & BPF_LOG_LEVEL)
14841 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14842 		*insn_idx += insn->off;
14843 		return 0;
14844 	} else if (pred == 0) {
14845 		/* Only follow the fall-through branch, since that's where the
14846 		 * program will go. If needed, push the goto branch for
14847 		 * simulation under speculative execution.
14848 		 */
14849 		if (!env->bypass_spec_v1 &&
14850 		    !sanitize_speculative_path(env, insn,
14851 					       *insn_idx + insn->off + 1,
14852 					       *insn_idx))
14853 			return -EFAULT;
14854 		if (env->log.level & BPF_LOG_LEVEL)
14855 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14856 		return 0;
14857 	}
14858 
14859 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14860 				  false);
14861 	if (!other_branch)
14862 		return -EFAULT;
14863 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14864 
14865 	/* detect if we are comparing against a constant value so we can adjust
14866 	 * our min/max values for our dst register.
14867 	 * this is only legit if both are scalars (or pointers to the same
14868 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14869 	 * because otherwise the different base pointers mean the offsets aren't
14870 	 * comparable.
14871 	 */
14872 	if (BPF_SRC(insn->code) == BPF_X) {
14873 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14874 
14875 		if (dst_reg->type == SCALAR_VALUE &&
14876 		    src_reg->type == SCALAR_VALUE) {
14877 			if (tnum_is_const(src_reg->var_off) ||
14878 			    (is_jmp32 &&
14879 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14880 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14881 						dst_reg,
14882 						src_reg->var_off.value,
14883 						tnum_subreg(src_reg->var_off).value,
14884 						opcode, is_jmp32);
14885 			else if (tnum_is_const(dst_reg->var_off) ||
14886 				 (is_jmp32 &&
14887 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14888 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14889 						    src_reg,
14890 						    dst_reg->var_off.value,
14891 						    tnum_subreg(dst_reg->var_off).value,
14892 						    opcode, is_jmp32);
14893 			else if (!is_jmp32 &&
14894 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14895 				/* Comparing for equality, we can combine knowledge */
14896 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14897 						    &other_branch_regs[insn->dst_reg],
14898 						    src_reg, dst_reg, opcode);
14899 			if (src_reg->id &&
14900 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14901 				find_equal_scalars(this_branch, src_reg);
14902 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14903 			}
14904 
14905 		}
14906 	} else if (dst_reg->type == SCALAR_VALUE) {
14907 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14908 					dst_reg, insn->imm, (u32)insn->imm,
14909 					opcode, is_jmp32);
14910 	}
14911 
14912 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14913 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14914 		find_equal_scalars(this_branch, dst_reg);
14915 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14916 	}
14917 
14918 	/* if one pointer register is compared to another pointer
14919 	 * register check if PTR_MAYBE_NULL could be lifted.
14920 	 * E.g. register A - maybe null
14921 	 *      register B - not null
14922 	 * for JNE A, B, ... - A is not null in the false branch;
14923 	 * for JEQ A, B, ... - A is not null in the true branch.
14924 	 *
14925 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14926 	 * not need to be null checked by the BPF program, i.e.,
14927 	 * could be null even without PTR_MAYBE_NULL marking, so
14928 	 * only propagate nullness when neither reg is that type.
14929 	 */
14930 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14931 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14932 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14933 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14934 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14935 		eq_branch_regs = NULL;
14936 		switch (opcode) {
14937 		case BPF_JEQ:
14938 			eq_branch_regs = other_branch_regs;
14939 			break;
14940 		case BPF_JNE:
14941 			eq_branch_regs = regs;
14942 			break;
14943 		default:
14944 			/* do nothing */
14945 			break;
14946 		}
14947 		if (eq_branch_regs) {
14948 			if (type_may_be_null(src_reg->type))
14949 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14950 			else
14951 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14952 		}
14953 	}
14954 
14955 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14956 	 * NOTE: these optimizations below are related with pointer comparison
14957 	 *       which will never be JMP32.
14958 	 */
14959 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14960 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14961 	    type_may_be_null(dst_reg->type)) {
14962 		/* Mark all identical registers in each branch as either
14963 		 * safe or unknown depending R == 0 or R != 0 conditional.
14964 		 */
14965 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14966 				      opcode == BPF_JNE);
14967 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14968 				      opcode == BPF_JEQ);
14969 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14970 					   this_branch, other_branch) &&
14971 		   is_pointer_value(env, insn->dst_reg)) {
14972 		verbose(env, "R%d pointer comparison prohibited\n",
14973 			insn->dst_reg);
14974 		return -EACCES;
14975 	}
14976 	if (env->log.level & BPF_LOG_LEVEL)
14977 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14978 	return 0;
14979 }
14980 
14981 /* verify BPF_LD_IMM64 instruction */
14982 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14983 {
14984 	struct bpf_insn_aux_data *aux = cur_aux(env);
14985 	struct bpf_reg_state *regs = cur_regs(env);
14986 	struct bpf_reg_state *dst_reg;
14987 	struct bpf_map *map;
14988 	int err;
14989 
14990 	if (BPF_SIZE(insn->code) != BPF_DW) {
14991 		verbose(env, "invalid BPF_LD_IMM insn\n");
14992 		return -EINVAL;
14993 	}
14994 	if (insn->off != 0) {
14995 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14996 		return -EINVAL;
14997 	}
14998 
14999 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15000 	if (err)
15001 		return err;
15002 
15003 	dst_reg = &regs[insn->dst_reg];
15004 	if (insn->src_reg == 0) {
15005 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15006 
15007 		dst_reg->type = SCALAR_VALUE;
15008 		__mark_reg_known(&regs[insn->dst_reg], imm);
15009 		return 0;
15010 	}
15011 
15012 	/* All special src_reg cases are listed below. From this point onwards
15013 	 * we either succeed and assign a corresponding dst_reg->type after
15014 	 * zeroing the offset, or fail and reject the program.
15015 	 */
15016 	mark_reg_known_zero(env, regs, insn->dst_reg);
15017 
15018 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15019 		dst_reg->type = aux->btf_var.reg_type;
15020 		switch (base_type(dst_reg->type)) {
15021 		case PTR_TO_MEM:
15022 			dst_reg->mem_size = aux->btf_var.mem_size;
15023 			break;
15024 		case PTR_TO_BTF_ID:
15025 			dst_reg->btf = aux->btf_var.btf;
15026 			dst_reg->btf_id = aux->btf_var.btf_id;
15027 			break;
15028 		default:
15029 			verbose(env, "bpf verifier is misconfigured\n");
15030 			return -EFAULT;
15031 		}
15032 		return 0;
15033 	}
15034 
15035 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15036 		struct bpf_prog_aux *aux = env->prog->aux;
15037 		u32 subprogno = find_subprog(env,
15038 					     env->insn_idx + insn->imm + 1);
15039 
15040 		if (!aux->func_info) {
15041 			verbose(env, "missing btf func_info\n");
15042 			return -EINVAL;
15043 		}
15044 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15045 			verbose(env, "callback function not static\n");
15046 			return -EINVAL;
15047 		}
15048 
15049 		dst_reg->type = PTR_TO_FUNC;
15050 		dst_reg->subprogno = subprogno;
15051 		return 0;
15052 	}
15053 
15054 	map = env->used_maps[aux->map_index];
15055 	dst_reg->map_ptr = map;
15056 
15057 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15058 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15059 		dst_reg->type = PTR_TO_MAP_VALUE;
15060 		dst_reg->off = aux->map_off;
15061 		WARN_ON_ONCE(map->max_entries != 1);
15062 		/* We want reg->id to be same (0) as map_value is not distinct */
15063 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15064 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15065 		dst_reg->type = CONST_PTR_TO_MAP;
15066 	} else {
15067 		verbose(env, "bpf verifier is misconfigured\n");
15068 		return -EINVAL;
15069 	}
15070 
15071 	return 0;
15072 }
15073 
15074 static bool may_access_skb(enum bpf_prog_type type)
15075 {
15076 	switch (type) {
15077 	case BPF_PROG_TYPE_SOCKET_FILTER:
15078 	case BPF_PROG_TYPE_SCHED_CLS:
15079 	case BPF_PROG_TYPE_SCHED_ACT:
15080 		return true;
15081 	default:
15082 		return false;
15083 	}
15084 }
15085 
15086 /* verify safety of LD_ABS|LD_IND instructions:
15087  * - they can only appear in the programs where ctx == skb
15088  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15089  *   preserve R6-R9, and store return value into R0
15090  *
15091  * Implicit input:
15092  *   ctx == skb == R6 == CTX
15093  *
15094  * Explicit input:
15095  *   SRC == any register
15096  *   IMM == 32-bit immediate
15097  *
15098  * Output:
15099  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15100  */
15101 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15102 {
15103 	struct bpf_reg_state *regs = cur_regs(env);
15104 	static const int ctx_reg = BPF_REG_6;
15105 	u8 mode = BPF_MODE(insn->code);
15106 	int i, err;
15107 
15108 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15109 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15110 		return -EINVAL;
15111 	}
15112 
15113 	if (!env->ops->gen_ld_abs) {
15114 		verbose(env, "bpf verifier is misconfigured\n");
15115 		return -EINVAL;
15116 	}
15117 
15118 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15119 	    BPF_SIZE(insn->code) == BPF_DW ||
15120 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15121 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15122 		return -EINVAL;
15123 	}
15124 
15125 	/* check whether implicit source operand (register R6) is readable */
15126 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15127 	if (err)
15128 		return err;
15129 
15130 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15131 	 * gen_ld_abs() may terminate the program at runtime, leading to
15132 	 * reference leak.
15133 	 */
15134 	err = check_reference_leak(env, false);
15135 	if (err) {
15136 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15137 		return err;
15138 	}
15139 
15140 	if (env->cur_state->active_lock.ptr) {
15141 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15142 		return -EINVAL;
15143 	}
15144 
15145 	if (env->cur_state->active_rcu_lock) {
15146 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15147 		return -EINVAL;
15148 	}
15149 
15150 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15151 		verbose(env,
15152 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15153 		return -EINVAL;
15154 	}
15155 
15156 	if (mode == BPF_IND) {
15157 		/* check explicit source operand */
15158 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15159 		if (err)
15160 			return err;
15161 	}
15162 
15163 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15164 	if (err < 0)
15165 		return err;
15166 
15167 	/* reset caller saved regs to unreadable */
15168 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15169 		mark_reg_not_init(env, regs, caller_saved[i]);
15170 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15171 	}
15172 
15173 	/* mark destination R0 register as readable, since it contains
15174 	 * the value fetched from the packet.
15175 	 * Already marked as written above.
15176 	 */
15177 	mark_reg_unknown(env, regs, BPF_REG_0);
15178 	/* ld_abs load up to 32-bit skb data. */
15179 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15180 	return 0;
15181 }
15182 
15183 static int check_return_code(struct bpf_verifier_env *env, int regno)
15184 {
15185 	struct tnum enforce_attach_type_range = tnum_unknown;
15186 	const struct bpf_prog *prog = env->prog;
15187 	struct bpf_reg_state *reg;
15188 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
15189 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15190 	int err;
15191 	struct bpf_func_state *frame = env->cur_state->frame[0];
15192 	const bool is_subprog = frame->subprogno;
15193 
15194 	/* LSM and struct_ops func-ptr's return type could be "void" */
15195 	if (!is_subprog || frame->in_exception_callback_fn) {
15196 		switch (prog_type) {
15197 		case BPF_PROG_TYPE_LSM:
15198 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15199 				/* See below, can be 0 or 0-1 depending on hook. */
15200 				break;
15201 			fallthrough;
15202 		case BPF_PROG_TYPE_STRUCT_OPS:
15203 			if (!prog->aux->attach_func_proto->type)
15204 				return 0;
15205 			break;
15206 		default:
15207 			break;
15208 		}
15209 	}
15210 
15211 	/* eBPF calling convention is such that R0 is used
15212 	 * to return the value from eBPF program.
15213 	 * Make sure that it's readable at this time
15214 	 * of bpf_exit, which means that program wrote
15215 	 * something into it earlier
15216 	 */
15217 	err = check_reg_arg(env, regno, SRC_OP);
15218 	if (err)
15219 		return err;
15220 
15221 	if (is_pointer_value(env, regno)) {
15222 		verbose(env, "R%d leaks addr as return value\n", regno);
15223 		return -EACCES;
15224 	}
15225 
15226 	reg = cur_regs(env) + regno;
15227 
15228 	if (frame->in_async_callback_fn) {
15229 		/* enforce return zero from async callbacks like timer */
15230 		if (reg->type != SCALAR_VALUE) {
15231 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
15232 				regno, reg_type_str(env, reg->type));
15233 			return -EINVAL;
15234 		}
15235 
15236 		if (!tnum_in(const_0, reg->var_off)) {
15237 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15238 			return -EINVAL;
15239 		}
15240 		return 0;
15241 	}
15242 
15243 	if (is_subprog && !frame->in_exception_callback_fn) {
15244 		if (reg->type != SCALAR_VALUE) {
15245 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15246 				regno, reg_type_str(env, reg->type));
15247 			return -EINVAL;
15248 		}
15249 		return 0;
15250 	}
15251 
15252 	switch (prog_type) {
15253 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15254 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15255 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15256 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15257 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15258 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15259 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15260 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15261 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15262 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15263 			range = tnum_range(1, 1);
15264 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15265 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15266 			range = tnum_range(0, 3);
15267 		break;
15268 	case BPF_PROG_TYPE_CGROUP_SKB:
15269 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15270 			range = tnum_range(0, 3);
15271 			enforce_attach_type_range = tnum_range(2, 3);
15272 		}
15273 		break;
15274 	case BPF_PROG_TYPE_CGROUP_SOCK:
15275 	case BPF_PROG_TYPE_SOCK_OPS:
15276 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15277 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15278 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15279 		break;
15280 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15281 		if (!env->prog->aux->attach_btf_id)
15282 			return 0;
15283 		range = tnum_const(0);
15284 		break;
15285 	case BPF_PROG_TYPE_TRACING:
15286 		switch (env->prog->expected_attach_type) {
15287 		case BPF_TRACE_FENTRY:
15288 		case BPF_TRACE_FEXIT:
15289 			range = tnum_const(0);
15290 			break;
15291 		case BPF_TRACE_RAW_TP:
15292 		case BPF_MODIFY_RETURN:
15293 			return 0;
15294 		case BPF_TRACE_ITER:
15295 			break;
15296 		default:
15297 			return -ENOTSUPP;
15298 		}
15299 		break;
15300 	case BPF_PROG_TYPE_SK_LOOKUP:
15301 		range = tnum_range(SK_DROP, SK_PASS);
15302 		break;
15303 
15304 	case BPF_PROG_TYPE_LSM:
15305 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15306 			/* Regular BPF_PROG_TYPE_LSM programs can return
15307 			 * any value.
15308 			 */
15309 			return 0;
15310 		}
15311 		if (!env->prog->aux->attach_func_proto->type) {
15312 			/* Make sure programs that attach to void
15313 			 * hooks don't try to modify return value.
15314 			 */
15315 			range = tnum_range(1, 1);
15316 		}
15317 		break;
15318 
15319 	case BPF_PROG_TYPE_NETFILTER:
15320 		range = tnum_range(NF_DROP, NF_ACCEPT);
15321 		break;
15322 	case BPF_PROG_TYPE_EXT:
15323 		/* freplace program can return anything as its return value
15324 		 * depends on the to-be-replaced kernel func or bpf program.
15325 		 */
15326 	default:
15327 		return 0;
15328 	}
15329 
15330 	if (reg->type != SCALAR_VALUE) {
15331 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
15332 			regno, reg_type_str(env, reg->type));
15333 		return -EINVAL;
15334 	}
15335 
15336 	if (!tnum_in(range, reg->var_off)) {
15337 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15338 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15339 		    prog_type == BPF_PROG_TYPE_LSM &&
15340 		    !prog->aux->attach_func_proto->type)
15341 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15342 		return -EINVAL;
15343 	}
15344 
15345 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15346 	    tnum_in(enforce_attach_type_range, reg->var_off))
15347 		env->prog->enforce_expected_attach_type = 1;
15348 	return 0;
15349 }
15350 
15351 /* non-recursive DFS pseudo code
15352  * 1  procedure DFS-iterative(G,v):
15353  * 2      label v as discovered
15354  * 3      let S be a stack
15355  * 4      S.push(v)
15356  * 5      while S is not empty
15357  * 6            t <- S.peek()
15358  * 7            if t is what we're looking for:
15359  * 8                return t
15360  * 9            for all edges e in G.adjacentEdges(t) do
15361  * 10               if edge e is already labelled
15362  * 11                   continue with the next edge
15363  * 12               w <- G.adjacentVertex(t,e)
15364  * 13               if vertex w is not discovered and not explored
15365  * 14                   label e as tree-edge
15366  * 15                   label w as discovered
15367  * 16                   S.push(w)
15368  * 17                   continue at 5
15369  * 18               else if vertex w is discovered
15370  * 19                   label e as back-edge
15371  * 20               else
15372  * 21                   // vertex w is explored
15373  * 22                   label e as forward- or cross-edge
15374  * 23           label t as explored
15375  * 24           S.pop()
15376  *
15377  * convention:
15378  * 0x10 - discovered
15379  * 0x11 - discovered and fall-through edge labelled
15380  * 0x12 - discovered and fall-through and branch edges labelled
15381  * 0x20 - explored
15382  */
15383 
15384 enum {
15385 	DISCOVERED = 0x10,
15386 	EXPLORED = 0x20,
15387 	FALLTHROUGH = 1,
15388 	BRANCH = 2,
15389 };
15390 
15391 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15392 {
15393 	env->insn_aux_data[idx].prune_point = true;
15394 }
15395 
15396 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15397 {
15398 	return env->insn_aux_data[insn_idx].prune_point;
15399 }
15400 
15401 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15402 {
15403 	env->insn_aux_data[idx].force_checkpoint = true;
15404 }
15405 
15406 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15407 {
15408 	return env->insn_aux_data[insn_idx].force_checkpoint;
15409 }
15410 
15411 
15412 enum {
15413 	DONE_EXPLORING = 0,
15414 	KEEP_EXPLORING = 1,
15415 };
15416 
15417 /* t, w, e - match pseudo-code above:
15418  * t - index of current instruction
15419  * w - next instruction
15420  * e - edge
15421  */
15422 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15423 {
15424 	int *insn_stack = env->cfg.insn_stack;
15425 	int *insn_state = env->cfg.insn_state;
15426 
15427 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15428 		return DONE_EXPLORING;
15429 
15430 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15431 		return DONE_EXPLORING;
15432 
15433 	if (w < 0 || w >= env->prog->len) {
15434 		verbose_linfo(env, t, "%d: ", t);
15435 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15436 		return -EINVAL;
15437 	}
15438 
15439 	if (e == BRANCH) {
15440 		/* mark branch target for state pruning */
15441 		mark_prune_point(env, w);
15442 		mark_jmp_point(env, w);
15443 	}
15444 
15445 	if (insn_state[w] == 0) {
15446 		/* tree-edge */
15447 		insn_state[t] = DISCOVERED | e;
15448 		insn_state[w] = DISCOVERED;
15449 		if (env->cfg.cur_stack >= env->prog->len)
15450 			return -E2BIG;
15451 		insn_stack[env->cfg.cur_stack++] = w;
15452 		return KEEP_EXPLORING;
15453 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15454 		if (env->bpf_capable)
15455 			return DONE_EXPLORING;
15456 		verbose_linfo(env, t, "%d: ", t);
15457 		verbose_linfo(env, w, "%d: ", w);
15458 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15459 		return -EINVAL;
15460 	} else if (insn_state[w] == EXPLORED) {
15461 		/* forward- or cross-edge */
15462 		insn_state[t] = DISCOVERED | e;
15463 	} else {
15464 		verbose(env, "insn state internal bug\n");
15465 		return -EFAULT;
15466 	}
15467 	return DONE_EXPLORING;
15468 }
15469 
15470 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15471 				struct bpf_verifier_env *env,
15472 				bool visit_callee)
15473 {
15474 	int ret, insn_sz;
15475 
15476 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15477 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15478 	if (ret)
15479 		return ret;
15480 
15481 	mark_prune_point(env, t + insn_sz);
15482 	/* when we exit from subprog, we need to record non-linear history */
15483 	mark_jmp_point(env, t + insn_sz);
15484 
15485 	if (visit_callee) {
15486 		mark_prune_point(env, t);
15487 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15488 	}
15489 	return ret;
15490 }
15491 
15492 /* Visits the instruction at index t and returns one of the following:
15493  *  < 0 - an error occurred
15494  *  DONE_EXPLORING - the instruction was fully explored
15495  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15496  */
15497 static int visit_insn(int t, struct bpf_verifier_env *env)
15498 {
15499 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15500 	int ret, off, insn_sz;
15501 
15502 	if (bpf_pseudo_func(insn))
15503 		return visit_func_call_insn(t, insns, env, true);
15504 
15505 	/* All non-branch instructions have a single fall-through edge. */
15506 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15507 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15508 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15509 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15510 	}
15511 
15512 	switch (BPF_OP(insn->code)) {
15513 	case BPF_EXIT:
15514 		return DONE_EXPLORING;
15515 
15516 	case BPF_CALL:
15517 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15518 			/* Mark this call insn as a prune point to trigger
15519 			 * is_state_visited() check before call itself is
15520 			 * processed by __check_func_call(). Otherwise new
15521 			 * async state will be pushed for further exploration.
15522 			 */
15523 			mark_prune_point(env, t);
15524 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15525 			struct bpf_kfunc_call_arg_meta meta;
15526 
15527 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15528 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15529 				mark_prune_point(env, t);
15530 				/* Checking and saving state checkpoints at iter_next() call
15531 				 * is crucial for fast convergence of open-coded iterator loop
15532 				 * logic, so we need to force it. If we don't do that,
15533 				 * is_state_visited() might skip saving a checkpoint, causing
15534 				 * unnecessarily long sequence of not checkpointed
15535 				 * instructions and jumps, leading to exhaustion of jump
15536 				 * history buffer, and potentially other undesired outcomes.
15537 				 * It is expected that with correct open-coded iterators
15538 				 * convergence will happen quickly, so we don't run a risk of
15539 				 * exhausting memory.
15540 				 */
15541 				mark_force_checkpoint(env, t);
15542 			}
15543 		}
15544 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15545 
15546 	case BPF_JA:
15547 		if (BPF_SRC(insn->code) != BPF_K)
15548 			return -EINVAL;
15549 
15550 		if (BPF_CLASS(insn->code) == BPF_JMP)
15551 			off = insn->off;
15552 		else
15553 			off = insn->imm;
15554 
15555 		/* unconditional jump with single edge */
15556 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15557 		if (ret)
15558 			return ret;
15559 
15560 		mark_prune_point(env, t + off + 1);
15561 		mark_jmp_point(env, t + off + 1);
15562 
15563 		return ret;
15564 
15565 	default:
15566 		/* conditional jump with two edges */
15567 		mark_prune_point(env, t);
15568 
15569 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15570 		if (ret)
15571 			return ret;
15572 
15573 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15574 	}
15575 }
15576 
15577 /* non-recursive depth-first-search to detect loops in BPF program
15578  * loop == back-edge in directed graph
15579  */
15580 static int check_cfg(struct bpf_verifier_env *env)
15581 {
15582 	int insn_cnt = env->prog->len;
15583 	int *insn_stack, *insn_state;
15584 	int ex_insn_beg, i, ret = 0;
15585 	bool ex_done = false;
15586 
15587 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15588 	if (!insn_state)
15589 		return -ENOMEM;
15590 
15591 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15592 	if (!insn_stack) {
15593 		kvfree(insn_state);
15594 		return -ENOMEM;
15595 	}
15596 
15597 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15598 	insn_stack[0] = 0; /* 0 is the first instruction */
15599 	env->cfg.cur_stack = 1;
15600 
15601 walk_cfg:
15602 	while (env->cfg.cur_stack > 0) {
15603 		int t = insn_stack[env->cfg.cur_stack - 1];
15604 
15605 		ret = visit_insn(t, env);
15606 		switch (ret) {
15607 		case DONE_EXPLORING:
15608 			insn_state[t] = EXPLORED;
15609 			env->cfg.cur_stack--;
15610 			break;
15611 		case KEEP_EXPLORING:
15612 			break;
15613 		default:
15614 			if (ret > 0) {
15615 				verbose(env, "visit_insn internal bug\n");
15616 				ret = -EFAULT;
15617 			}
15618 			goto err_free;
15619 		}
15620 	}
15621 
15622 	if (env->cfg.cur_stack < 0) {
15623 		verbose(env, "pop stack internal bug\n");
15624 		ret = -EFAULT;
15625 		goto err_free;
15626 	}
15627 
15628 	if (env->exception_callback_subprog && !ex_done) {
15629 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15630 
15631 		insn_state[ex_insn_beg] = DISCOVERED;
15632 		insn_stack[0] = ex_insn_beg;
15633 		env->cfg.cur_stack = 1;
15634 		ex_done = true;
15635 		goto walk_cfg;
15636 	}
15637 
15638 	for (i = 0; i < insn_cnt; i++) {
15639 		struct bpf_insn *insn = &env->prog->insnsi[i];
15640 
15641 		if (insn_state[i] != EXPLORED) {
15642 			verbose(env, "unreachable insn %d\n", i);
15643 			ret = -EINVAL;
15644 			goto err_free;
15645 		}
15646 		if (bpf_is_ldimm64(insn)) {
15647 			if (insn_state[i + 1] != 0) {
15648 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15649 				ret = -EINVAL;
15650 				goto err_free;
15651 			}
15652 			i++; /* skip second half of ldimm64 */
15653 		}
15654 	}
15655 	ret = 0; /* cfg looks good */
15656 
15657 err_free:
15658 	kvfree(insn_state);
15659 	kvfree(insn_stack);
15660 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15661 	return ret;
15662 }
15663 
15664 static int check_abnormal_return(struct bpf_verifier_env *env)
15665 {
15666 	int i;
15667 
15668 	for (i = 1; i < env->subprog_cnt; i++) {
15669 		if (env->subprog_info[i].has_ld_abs) {
15670 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15671 			return -EINVAL;
15672 		}
15673 		if (env->subprog_info[i].has_tail_call) {
15674 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15675 			return -EINVAL;
15676 		}
15677 	}
15678 	return 0;
15679 }
15680 
15681 /* The minimum supported BTF func info size */
15682 #define MIN_BPF_FUNCINFO_SIZE	8
15683 #define MAX_FUNCINFO_REC_SIZE	252
15684 
15685 static int check_btf_func_early(struct bpf_verifier_env *env,
15686 				const union bpf_attr *attr,
15687 				bpfptr_t uattr)
15688 {
15689 	u32 krec_size = sizeof(struct bpf_func_info);
15690 	const struct btf_type *type, *func_proto;
15691 	u32 i, nfuncs, urec_size, min_size;
15692 	struct bpf_func_info *krecord;
15693 	struct bpf_prog *prog;
15694 	const struct btf *btf;
15695 	u32 prev_offset = 0;
15696 	bpfptr_t urecord;
15697 	int ret = -ENOMEM;
15698 
15699 	nfuncs = attr->func_info_cnt;
15700 	if (!nfuncs) {
15701 		if (check_abnormal_return(env))
15702 			return -EINVAL;
15703 		return 0;
15704 	}
15705 
15706 	urec_size = attr->func_info_rec_size;
15707 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15708 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15709 	    urec_size % sizeof(u32)) {
15710 		verbose(env, "invalid func info rec size %u\n", urec_size);
15711 		return -EINVAL;
15712 	}
15713 
15714 	prog = env->prog;
15715 	btf = prog->aux->btf;
15716 
15717 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15718 	min_size = min_t(u32, krec_size, urec_size);
15719 
15720 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15721 	if (!krecord)
15722 		return -ENOMEM;
15723 
15724 	for (i = 0; i < nfuncs; i++) {
15725 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15726 		if (ret) {
15727 			if (ret == -E2BIG) {
15728 				verbose(env, "nonzero tailing record in func info");
15729 				/* set the size kernel expects so loader can zero
15730 				 * out the rest of the record.
15731 				 */
15732 				if (copy_to_bpfptr_offset(uattr,
15733 							  offsetof(union bpf_attr, func_info_rec_size),
15734 							  &min_size, sizeof(min_size)))
15735 					ret = -EFAULT;
15736 			}
15737 			goto err_free;
15738 		}
15739 
15740 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15741 			ret = -EFAULT;
15742 			goto err_free;
15743 		}
15744 
15745 		/* check insn_off */
15746 		ret = -EINVAL;
15747 		if (i == 0) {
15748 			if (krecord[i].insn_off) {
15749 				verbose(env,
15750 					"nonzero insn_off %u for the first func info record",
15751 					krecord[i].insn_off);
15752 				goto err_free;
15753 			}
15754 		} else if (krecord[i].insn_off <= prev_offset) {
15755 			verbose(env,
15756 				"same or smaller insn offset (%u) than previous func info record (%u)",
15757 				krecord[i].insn_off, prev_offset);
15758 			goto err_free;
15759 		}
15760 
15761 		/* check type_id */
15762 		type = btf_type_by_id(btf, krecord[i].type_id);
15763 		if (!type || !btf_type_is_func(type)) {
15764 			verbose(env, "invalid type id %d in func info",
15765 				krecord[i].type_id);
15766 			goto err_free;
15767 		}
15768 
15769 		func_proto = btf_type_by_id(btf, type->type);
15770 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15771 			/* btf_func_check() already verified it during BTF load */
15772 			goto err_free;
15773 
15774 		prev_offset = krecord[i].insn_off;
15775 		bpfptr_add(&urecord, urec_size);
15776 	}
15777 
15778 	prog->aux->func_info = krecord;
15779 	prog->aux->func_info_cnt = nfuncs;
15780 	return 0;
15781 
15782 err_free:
15783 	kvfree(krecord);
15784 	return ret;
15785 }
15786 
15787 static int check_btf_func(struct bpf_verifier_env *env,
15788 			  const union bpf_attr *attr,
15789 			  bpfptr_t uattr)
15790 {
15791 	const struct btf_type *type, *func_proto, *ret_type;
15792 	u32 i, nfuncs, urec_size;
15793 	struct bpf_func_info *krecord;
15794 	struct bpf_func_info_aux *info_aux = NULL;
15795 	struct bpf_prog *prog;
15796 	const struct btf *btf;
15797 	bpfptr_t urecord;
15798 	bool scalar_return;
15799 	int ret = -ENOMEM;
15800 
15801 	nfuncs = attr->func_info_cnt;
15802 	if (!nfuncs) {
15803 		if (check_abnormal_return(env))
15804 			return -EINVAL;
15805 		return 0;
15806 	}
15807 	if (nfuncs != env->subprog_cnt) {
15808 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15809 		return -EINVAL;
15810 	}
15811 
15812 	urec_size = attr->func_info_rec_size;
15813 
15814 	prog = env->prog;
15815 	btf = prog->aux->btf;
15816 
15817 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15818 
15819 	krecord = prog->aux->func_info;
15820 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15821 	if (!info_aux)
15822 		return -ENOMEM;
15823 
15824 	for (i = 0; i < nfuncs; i++) {
15825 		/* check insn_off */
15826 		ret = -EINVAL;
15827 
15828 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15829 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15830 			goto err_free;
15831 		}
15832 
15833 		/* Already checked type_id */
15834 		type = btf_type_by_id(btf, krecord[i].type_id);
15835 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15836 		/* Already checked func_proto */
15837 		func_proto = btf_type_by_id(btf, type->type);
15838 
15839 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15840 		scalar_return =
15841 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15842 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15843 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15844 			goto err_free;
15845 		}
15846 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15847 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15848 			goto err_free;
15849 		}
15850 
15851 		bpfptr_add(&urecord, urec_size);
15852 	}
15853 
15854 	prog->aux->func_info_aux = info_aux;
15855 	return 0;
15856 
15857 err_free:
15858 	kfree(info_aux);
15859 	return ret;
15860 }
15861 
15862 static void adjust_btf_func(struct bpf_verifier_env *env)
15863 {
15864 	struct bpf_prog_aux *aux = env->prog->aux;
15865 	int i;
15866 
15867 	if (!aux->func_info)
15868 		return;
15869 
15870 	/* func_info is not available for hidden subprogs */
15871 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15872 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15873 }
15874 
15875 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15876 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15877 
15878 static int check_btf_line(struct bpf_verifier_env *env,
15879 			  const union bpf_attr *attr,
15880 			  bpfptr_t uattr)
15881 {
15882 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15883 	struct bpf_subprog_info *sub;
15884 	struct bpf_line_info *linfo;
15885 	struct bpf_prog *prog;
15886 	const struct btf *btf;
15887 	bpfptr_t ulinfo;
15888 	int err;
15889 
15890 	nr_linfo = attr->line_info_cnt;
15891 	if (!nr_linfo)
15892 		return 0;
15893 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15894 		return -EINVAL;
15895 
15896 	rec_size = attr->line_info_rec_size;
15897 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15898 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15899 	    rec_size & (sizeof(u32) - 1))
15900 		return -EINVAL;
15901 
15902 	/* Need to zero it in case the userspace may
15903 	 * pass in a smaller bpf_line_info object.
15904 	 */
15905 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15906 			 GFP_KERNEL | __GFP_NOWARN);
15907 	if (!linfo)
15908 		return -ENOMEM;
15909 
15910 	prog = env->prog;
15911 	btf = prog->aux->btf;
15912 
15913 	s = 0;
15914 	sub = env->subprog_info;
15915 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15916 	expected_size = sizeof(struct bpf_line_info);
15917 	ncopy = min_t(u32, expected_size, rec_size);
15918 	for (i = 0; i < nr_linfo; i++) {
15919 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15920 		if (err) {
15921 			if (err == -E2BIG) {
15922 				verbose(env, "nonzero tailing record in line_info");
15923 				if (copy_to_bpfptr_offset(uattr,
15924 							  offsetof(union bpf_attr, line_info_rec_size),
15925 							  &expected_size, sizeof(expected_size)))
15926 					err = -EFAULT;
15927 			}
15928 			goto err_free;
15929 		}
15930 
15931 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15932 			err = -EFAULT;
15933 			goto err_free;
15934 		}
15935 
15936 		/*
15937 		 * Check insn_off to ensure
15938 		 * 1) strictly increasing AND
15939 		 * 2) bounded by prog->len
15940 		 *
15941 		 * The linfo[0].insn_off == 0 check logically falls into
15942 		 * the later "missing bpf_line_info for func..." case
15943 		 * because the first linfo[0].insn_off must be the
15944 		 * first sub also and the first sub must have
15945 		 * subprog_info[0].start == 0.
15946 		 */
15947 		if ((i && linfo[i].insn_off <= prev_offset) ||
15948 		    linfo[i].insn_off >= prog->len) {
15949 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15950 				i, linfo[i].insn_off, prev_offset,
15951 				prog->len);
15952 			err = -EINVAL;
15953 			goto err_free;
15954 		}
15955 
15956 		if (!prog->insnsi[linfo[i].insn_off].code) {
15957 			verbose(env,
15958 				"Invalid insn code at line_info[%u].insn_off\n",
15959 				i);
15960 			err = -EINVAL;
15961 			goto err_free;
15962 		}
15963 
15964 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15965 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15966 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15967 			err = -EINVAL;
15968 			goto err_free;
15969 		}
15970 
15971 		if (s != env->subprog_cnt) {
15972 			if (linfo[i].insn_off == sub[s].start) {
15973 				sub[s].linfo_idx = i;
15974 				s++;
15975 			} else if (sub[s].start < linfo[i].insn_off) {
15976 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15977 				err = -EINVAL;
15978 				goto err_free;
15979 			}
15980 		}
15981 
15982 		prev_offset = linfo[i].insn_off;
15983 		bpfptr_add(&ulinfo, rec_size);
15984 	}
15985 
15986 	if (s != env->subprog_cnt) {
15987 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15988 			env->subprog_cnt - s, s);
15989 		err = -EINVAL;
15990 		goto err_free;
15991 	}
15992 
15993 	prog->aux->linfo = linfo;
15994 	prog->aux->nr_linfo = nr_linfo;
15995 
15996 	return 0;
15997 
15998 err_free:
15999 	kvfree(linfo);
16000 	return err;
16001 }
16002 
16003 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16004 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16005 
16006 static int check_core_relo(struct bpf_verifier_env *env,
16007 			   const union bpf_attr *attr,
16008 			   bpfptr_t uattr)
16009 {
16010 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16011 	struct bpf_core_relo core_relo = {};
16012 	struct bpf_prog *prog = env->prog;
16013 	const struct btf *btf = prog->aux->btf;
16014 	struct bpf_core_ctx ctx = {
16015 		.log = &env->log,
16016 		.btf = btf,
16017 	};
16018 	bpfptr_t u_core_relo;
16019 	int err;
16020 
16021 	nr_core_relo = attr->core_relo_cnt;
16022 	if (!nr_core_relo)
16023 		return 0;
16024 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16025 		return -EINVAL;
16026 
16027 	rec_size = attr->core_relo_rec_size;
16028 	if (rec_size < MIN_CORE_RELO_SIZE ||
16029 	    rec_size > MAX_CORE_RELO_SIZE ||
16030 	    rec_size % sizeof(u32))
16031 		return -EINVAL;
16032 
16033 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16034 	expected_size = sizeof(struct bpf_core_relo);
16035 	ncopy = min_t(u32, expected_size, rec_size);
16036 
16037 	/* Unlike func_info and line_info, copy and apply each CO-RE
16038 	 * relocation record one at a time.
16039 	 */
16040 	for (i = 0; i < nr_core_relo; i++) {
16041 		/* future proofing when sizeof(bpf_core_relo) changes */
16042 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16043 		if (err) {
16044 			if (err == -E2BIG) {
16045 				verbose(env, "nonzero tailing record in core_relo");
16046 				if (copy_to_bpfptr_offset(uattr,
16047 							  offsetof(union bpf_attr, core_relo_rec_size),
16048 							  &expected_size, sizeof(expected_size)))
16049 					err = -EFAULT;
16050 			}
16051 			break;
16052 		}
16053 
16054 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16055 			err = -EFAULT;
16056 			break;
16057 		}
16058 
16059 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16060 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16061 				i, core_relo.insn_off, prog->len);
16062 			err = -EINVAL;
16063 			break;
16064 		}
16065 
16066 		err = bpf_core_apply(&ctx, &core_relo, i,
16067 				     &prog->insnsi[core_relo.insn_off / 8]);
16068 		if (err)
16069 			break;
16070 		bpfptr_add(&u_core_relo, rec_size);
16071 	}
16072 	return err;
16073 }
16074 
16075 static int check_btf_info_early(struct bpf_verifier_env *env,
16076 				const union bpf_attr *attr,
16077 				bpfptr_t uattr)
16078 {
16079 	struct btf *btf;
16080 	int err;
16081 
16082 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16083 		if (check_abnormal_return(env))
16084 			return -EINVAL;
16085 		return 0;
16086 	}
16087 
16088 	btf = btf_get_by_fd(attr->prog_btf_fd);
16089 	if (IS_ERR(btf))
16090 		return PTR_ERR(btf);
16091 	if (btf_is_kernel(btf)) {
16092 		btf_put(btf);
16093 		return -EACCES;
16094 	}
16095 	env->prog->aux->btf = btf;
16096 
16097 	err = check_btf_func_early(env, attr, uattr);
16098 	if (err)
16099 		return err;
16100 	return 0;
16101 }
16102 
16103 static int check_btf_info(struct bpf_verifier_env *env,
16104 			  const union bpf_attr *attr,
16105 			  bpfptr_t uattr)
16106 {
16107 	int err;
16108 
16109 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16110 		if (check_abnormal_return(env))
16111 			return -EINVAL;
16112 		return 0;
16113 	}
16114 
16115 	err = check_btf_func(env, attr, uattr);
16116 	if (err)
16117 		return err;
16118 
16119 	err = check_btf_line(env, attr, uattr);
16120 	if (err)
16121 		return err;
16122 
16123 	err = check_core_relo(env, attr, uattr);
16124 	if (err)
16125 		return err;
16126 
16127 	return 0;
16128 }
16129 
16130 /* check %cur's range satisfies %old's */
16131 static bool range_within(struct bpf_reg_state *old,
16132 			 struct bpf_reg_state *cur)
16133 {
16134 	return old->umin_value <= cur->umin_value &&
16135 	       old->umax_value >= cur->umax_value &&
16136 	       old->smin_value <= cur->smin_value &&
16137 	       old->smax_value >= cur->smax_value &&
16138 	       old->u32_min_value <= cur->u32_min_value &&
16139 	       old->u32_max_value >= cur->u32_max_value &&
16140 	       old->s32_min_value <= cur->s32_min_value &&
16141 	       old->s32_max_value >= cur->s32_max_value;
16142 }
16143 
16144 /* If in the old state two registers had the same id, then they need to have
16145  * the same id in the new state as well.  But that id could be different from
16146  * the old state, so we need to track the mapping from old to new ids.
16147  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16148  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16149  * regs with a different old id could still have new id 9, we don't care about
16150  * that.
16151  * So we look through our idmap to see if this old id has been seen before.  If
16152  * so, we require the new id to match; otherwise, we add the id pair to the map.
16153  */
16154 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16155 {
16156 	struct bpf_id_pair *map = idmap->map;
16157 	unsigned int i;
16158 
16159 	/* either both IDs should be set or both should be zero */
16160 	if (!!old_id != !!cur_id)
16161 		return false;
16162 
16163 	if (old_id == 0) /* cur_id == 0 as well */
16164 		return true;
16165 
16166 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16167 		if (!map[i].old) {
16168 			/* Reached an empty slot; haven't seen this id before */
16169 			map[i].old = old_id;
16170 			map[i].cur = cur_id;
16171 			return true;
16172 		}
16173 		if (map[i].old == old_id)
16174 			return map[i].cur == cur_id;
16175 		if (map[i].cur == cur_id)
16176 			return false;
16177 	}
16178 	/* We ran out of idmap slots, which should be impossible */
16179 	WARN_ON_ONCE(1);
16180 	return false;
16181 }
16182 
16183 /* Similar to check_ids(), but allocate a unique temporary ID
16184  * for 'old_id' or 'cur_id' of zero.
16185  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16186  */
16187 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16188 {
16189 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16190 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16191 
16192 	return check_ids(old_id, cur_id, idmap);
16193 }
16194 
16195 static void clean_func_state(struct bpf_verifier_env *env,
16196 			     struct bpf_func_state *st)
16197 {
16198 	enum bpf_reg_liveness live;
16199 	int i, j;
16200 
16201 	for (i = 0; i < BPF_REG_FP; i++) {
16202 		live = st->regs[i].live;
16203 		/* liveness must not touch this register anymore */
16204 		st->regs[i].live |= REG_LIVE_DONE;
16205 		if (!(live & REG_LIVE_READ))
16206 			/* since the register is unused, clear its state
16207 			 * to make further comparison simpler
16208 			 */
16209 			__mark_reg_not_init(env, &st->regs[i]);
16210 	}
16211 
16212 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16213 		live = st->stack[i].spilled_ptr.live;
16214 		/* liveness must not touch this stack slot anymore */
16215 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16216 		if (!(live & REG_LIVE_READ)) {
16217 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16218 			for (j = 0; j < BPF_REG_SIZE; j++)
16219 				st->stack[i].slot_type[j] = STACK_INVALID;
16220 		}
16221 	}
16222 }
16223 
16224 static void clean_verifier_state(struct bpf_verifier_env *env,
16225 				 struct bpf_verifier_state *st)
16226 {
16227 	int i;
16228 
16229 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16230 		/* all regs in this state in all frames were already marked */
16231 		return;
16232 
16233 	for (i = 0; i <= st->curframe; i++)
16234 		clean_func_state(env, st->frame[i]);
16235 }
16236 
16237 /* the parentage chains form a tree.
16238  * the verifier states are added to state lists at given insn and
16239  * pushed into state stack for future exploration.
16240  * when the verifier reaches bpf_exit insn some of the verifer states
16241  * stored in the state lists have their final liveness state already,
16242  * but a lot of states will get revised from liveness point of view when
16243  * the verifier explores other branches.
16244  * Example:
16245  * 1: r0 = 1
16246  * 2: if r1 == 100 goto pc+1
16247  * 3: r0 = 2
16248  * 4: exit
16249  * when the verifier reaches exit insn the register r0 in the state list of
16250  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16251  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16252  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16253  *
16254  * Since the verifier pushes the branch states as it sees them while exploring
16255  * the program the condition of walking the branch instruction for the second
16256  * time means that all states below this branch were already explored and
16257  * their final liveness marks are already propagated.
16258  * Hence when the verifier completes the search of state list in is_state_visited()
16259  * we can call this clean_live_states() function to mark all liveness states
16260  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16261  * will not be used.
16262  * This function also clears the registers and stack for states that !READ
16263  * to simplify state merging.
16264  *
16265  * Important note here that walking the same branch instruction in the callee
16266  * doesn't meant that the states are DONE. The verifier has to compare
16267  * the callsites
16268  */
16269 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16270 			      struct bpf_verifier_state *cur)
16271 {
16272 	struct bpf_verifier_state_list *sl;
16273 
16274 	sl = *explored_state(env, insn);
16275 	while (sl) {
16276 		if (sl->state.branches)
16277 			goto next;
16278 		if (sl->state.insn_idx != insn ||
16279 		    !same_callsites(&sl->state, cur))
16280 			goto next;
16281 		clean_verifier_state(env, &sl->state);
16282 next:
16283 		sl = sl->next;
16284 	}
16285 }
16286 
16287 static bool regs_exact(const struct bpf_reg_state *rold,
16288 		       const struct bpf_reg_state *rcur,
16289 		       struct bpf_idmap *idmap)
16290 {
16291 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16292 	       check_ids(rold->id, rcur->id, idmap) &&
16293 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16294 }
16295 
16296 /* Returns true if (rold safe implies rcur safe) */
16297 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16298 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16299 {
16300 	if (exact)
16301 		return regs_exact(rold, rcur, idmap);
16302 
16303 	if (!(rold->live & REG_LIVE_READ))
16304 		/* explored state didn't use this */
16305 		return true;
16306 	if (rold->type == NOT_INIT)
16307 		/* explored state can't have used this */
16308 		return true;
16309 	if (rcur->type == NOT_INIT)
16310 		return false;
16311 
16312 	/* Enforce that register types have to match exactly, including their
16313 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16314 	 * rule.
16315 	 *
16316 	 * One can make a point that using a pointer register as unbounded
16317 	 * SCALAR would be technically acceptable, but this could lead to
16318 	 * pointer leaks because scalars are allowed to leak while pointers
16319 	 * are not. We could make this safe in special cases if root is
16320 	 * calling us, but it's probably not worth the hassle.
16321 	 *
16322 	 * Also, register types that are *not* MAYBE_NULL could technically be
16323 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16324 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16325 	 * to the same map).
16326 	 * However, if the old MAYBE_NULL register then got NULL checked,
16327 	 * doing so could have affected others with the same id, and we can't
16328 	 * check for that because we lost the id when we converted to
16329 	 * a non-MAYBE_NULL variant.
16330 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16331 	 * non-MAYBE_NULL registers as well.
16332 	 */
16333 	if (rold->type != rcur->type)
16334 		return false;
16335 
16336 	switch (base_type(rold->type)) {
16337 	case SCALAR_VALUE:
16338 		if (env->explore_alu_limits) {
16339 			/* explore_alu_limits disables tnum_in() and range_within()
16340 			 * logic and requires everything to be strict
16341 			 */
16342 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16343 			       check_scalar_ids(rold->id, rcur->id, idmap);
16344 		}
16345 		if (!rold->precise)
16346 			return true;
16347 		/* Why check_ids() for scalar registers?
16348 		 *
16349 		 * Consider the following BPF code:
16350 		 *   1: r6 = ... unbound scalar, ID=a ...
16351 		 *   2: r7 = ... unbound scalar, ID=b ...
16352 		 *   3: if (r6 > r7) goto +1
16353 		 *   4: r6 = r7
16354 		 *   5: if (r6 > X) goto ...
16355 		 *   6: ... memory operation using r7 ...
16356 		 *
16357 		 * First verification path is [1-6]:
16358 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16359 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16360 		 *   r7 <= X, because r6 and r7 share same id.
16361 		 * Next verification path is [1-4, 6].
16362 		 *
16363 		 * Instruction (6) would be reached in two states:
16364 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16365 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16366 		 *
16367 		 * Use check_ids() to distinguish these states.
16368 		 * ---
16369 		 * Also verify that new value satisfies old value range knowledge.
16370 		 */
16371 		return range_within(rold, rcur) &&
16372 		       tnum_in(rold->var_off, rcur->var_off) &&
16373 		       check_scalar_ids(rold->id, rcur->id, idmap);
16374 	case PTR_TO_MAP_KEY:
16375 	case PTR_TO_MAP_VALUE:
16376 	case PTR_TO_MEM:
16377 	case PTR_TO_BUF:
16378 	case PTR_TO_TP_BUFFER:
16379 		/* If the new min/max/var_off satisfy the old ones and
16380 		 * everything else matches, we are OK.
16381 		 */
16382 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16383 		       range_within(rold, rcur) &&
16384 		       tnum_in(rold->var_off, rcur->var_off) &&
16385 		       check_ids(rold->id, rcur->id, idmap) &&
16386 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16387 	case PTR_TO_PACKET_META:
16388 	case PTR_TO_PACKET:
16389 		/* We must have at least as much range as the old ptr
16390 		 * did, so that any accesses which were safe before are
16391 		 * still safe.  This is true even if old range < old off,
16392 		 * since someone could have accessed through (ptr - k), or
16393 		 * even done ptr -= k in a register, to get a safe access.
16394 		 */
16395 		if (rold->range > rcur->range)
16396 			return false;
16397 		/* If the offsets don't match, we can't trust our alignment;
16398 		 * nor can we be sure that we won't fall out of range.
16399 		 */
16400 		if (rold->off != rcur->off)
16401 			return false;
16402 		/* id relations must be preserved */
16403 		if (!check_ids(rold->id, rcur->id, idmap))
16404 			return false;
16405 		/* new val must satisfy old val knowledge */
16406 		return range_within(rold, rcur) &&
16407 		       tnum_in(rold->var_off, rcur->var_off);
16408 	case PTR_TO_STACK:
16409 		/* two stack pointers are equal only if they're pointing to
16410 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16411 		 */
16412 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16413 	default:
16414 		return regs_exact(rold, rcur, idmap);
16415 	}
16416 }
16417 
16418 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16419 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16420 {
16421 	int i, spi;
16422 
16423 	/* walk slots of the explored stack and ignore any additional
16424 	 * slots in the current stack, since explored(safe) state
16425 	 * didn't use them
16426 	 */
16427 	for (i = 0; i < old->allocated_stack; i++) {
16428 		struct bpf_reg_state *old_reg, *cur_reg;
16429 
16430 		spi = i / BPF_REG_SIZE;
16431 
16432 		if (exact &&
16433 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16434 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16435 			return false;
16436 
16437 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16438 			i += BPF_REG_SIZE - 1;
16439 			/* explored state didn't use this */
16440 			continue;
16441 		}
16442 
16443 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16444 			continue;
16445 
16446 		if (env->allow_uninit_stack &&
16447 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16448 			continue;
16449 
16450 		/* explored stack has more populated slots than current stack
16451 		 * and these slots were used
16452 		 */
16453 		if (i >= cur->allocated_stack)
16454 			return false;
16455 
16456 		/* if old state was safe with misc data in the stack
16457 		 * it will be safe with zero-initialized stack.
16458 		 * The opposite is not true
16459 		 */
16460 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16461 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16462 			continue;
16463 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16464 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16465 			/* Ex: old explored (safe) state has STACK_SPILL in
16466 			 * this stack slot, but current has STACK_MISC ->
16467 			 * this verifier states are not equivalent,
16468 			 * return false to continue verification of this path
16469 			 */
16470 			return false;
16471 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16472 			continue;
16473 		/* Both old and cur are having same slot_type */
16474 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16475 		case STACK_SPILL:
16476 			/* when explored and current stack slot are both storing
16477 			 * spilled registers, check that stored pointers types
16478 			 * are the same as well.
16479 			 * Ex: explored safe path could have stored
16480 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16481 			 * but current path has stored:
16482 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16483 			 * such verifier states are not equivalent.
16484 			 * return false to continue verification of this path
16485 			 */
16486 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16487 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16488 				return false;
16489 			break;
16490 		case STACK_DYNPTR:
16491 			old_reg = &old->stack[spi].spilled_ptr;
16492 			cur_reg = &cur->stack[spi].spilled_ptr;
16493 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16494 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16495 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16496 				return false;
16497 			break;
16498 		case STACK_ITER:
16499 			old_reg = &old->stack[spi].spilled_ptr;
16500 			cur_reg = &cur->stack[spi].spilled_ptr;
16501 			/* iter.depth is not compared between states as it
16502 			 * doesn't matter for correctness and would otherwise
16503 			 * prevent convergence; we maintain it only to prevent
16504 			 * infinite loop check triggering, see
16505 			 * iter_active_depths_differ()
16506 			 */
16507 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16508 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16509 			    old_reg->iter.state != cur_reg->iter.state ||
16510 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16511 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16512 				return false;
16513 			break;
16514 		case STACK_MISC:
16515 		case STACK_ZERO:
16516 		case STACK_INVALID:
16517 			continue;
16518 		/* Ensure that new unhandled slot types return false by default */
16519 		default:
16520 			return false;
16521 		}
16522 	}
16523 	return true;
16524 }
16525 
16526 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16527 		    struct bpf_idmap *idmap)
16528 {
16529 	int i;
16530 
16531 	if (old->acquired_refs != cur->acquired_refs)
16532 		return false;
16533 
16534 	for (i = 0; i < old->acquired_refs; i++) {
16535 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16536 			return false;
16537 	}
16538 
16539 	return true;
16540 }
16541 
16542 /* compare two verifier states
16543  *
16544  * all states stored in state_list are known to be valid, since
16545  * verifier reached 'bpf_exit' instruction through them
16546  *
16547  * this function is called when verifier exploring different branches of
16548  * execution popped from the state stack. If it sees an old state that has
16549  * more strict register state and more strict stack state then this execution
16550  * branch doesn't need to be explored further, since verifier already
16551  * concluded that more strict state leads to valid finish.
16552  *
16553  * Therefore two states are equivalent if register state is more conservative
16554  * and explored stack state is more conservative than the current one.
16555  * Example:
16556  *       explored                   current
16557  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16558  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16559  *
16560  * In other words if current stack state (one being explored) has more
16561  * valid slots than old one that already passed validation, it means
16562  * the verifier can stop exploring and conclude that current state is valid too
16563  *
16564  * Similarly with registers. If explored state has register type as invalid
16565  * whereas register type in current state is meaningful, it means that
16566  * the current state will reach 'bpf_exit' instruction safely
16567  */
16568 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16569 			      struct bpf_func_state *cur, bool exact)
16570 {
16571 	int i;
16572 
16573 	for (i = 0; i < MAX_BPF_REG; i++)
16574 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16575 			     &env->idmap_scratch, exact))
16576 			return false;
16577 
16578 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16579 		return false;
16580 
16581 	if (!refsafe(old, cur, &env->idmap_scratch))
16582 		return false;
16583 
16584 	return true;
16585 }
16586 
16587 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16588 {
16589 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16590 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16591 }
16592 
16593 static bool states_equal(struct bpf_verifier_env *env,
16594 			 struct bpf_verifier_state *old,
16595 			 struct bpf_verifier_state *cur,
16596 			 bool exact)
16597 {
16598 	int i;
16599 
16600 	if (old->curframe != cur->curframe)
16601 		return false;
16602 
16603 	reset_idmap_scratch(env);
16604 
16605 	/* Verification state from speculative execution simulation
16606 	 * must never prune a non-speculative execution one.
16607 	 */
16608 	if (old->speculative && !cur->speculative)
16609 		return false;
16610 
16611 	if (old->active_lock.ptr != cur->active_lock.ptr)
16612 		return false;
16613 
16614 	/* Old and cur active_lock's have to be either both present
16615 	 * or both absent.
16616 	 */
16617 	if (!!old->active_lock.id != !!cur->active_lock.id)
16618 		return false;
16619 
16620 	if (old->active_lock.id &&
16621 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16622 		return false;
16623 
16624 	if (old->active_rcu_lock != cur->active_rcu_lock)
16625 		return false;
16626 
16627 	/* for states to be equal callsites have to be the same
16628 	 * and all frame states need to be equivalent
16629 	 */
16630 	for (i = 0; i <= old->curframe; i++) {
16631 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16632 			return false;
16633 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16634 			return false;
16635 	}
16636 	return true;
16637 }
16638 
16639 /* Return 0 if no propagation happened. Return negative error code if error
16640  * happened. Otherwise, return the propagated bit.
16641  */
16642 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16643 				  struct bpf_reg_state *reg,
16644 				  struct bpf_reg_state *parent_reg)
16645 {
16646 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16647 	u8 flag = reg->live & REG_LIVE_READ;
16648 	int err;
16649 
16650 	/* When comes here, read flags of PARENT_REG or REG could be any of
16651 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16652 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16653 	 */
16654 	if (parent_flag == REG_LIVE_READ64 ||
16655 	    /* Or if there is no read flag from REG. */
16656 	    !flag ||
16657 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16658 	    parent_flag == flag)
16659 		return 0;
16660 
16661 	err = mark_reg_read(env, reg, parent_reg, flag);
16662 	if (err)
16663 		return err;
16664 
16665 	return flag;
16666 }
16667 
16668 /* A write screens off any subsequent reads; but write marks come from the
16669  * straight-line code between a state and its parent.  When we arrive at an
16670  * equivalent state (jump target or such) we didn't arrive by the straight-line
16671  * code, so read marks in the state must propagate to the parent regardless
16672  * of the state's write marks. That's what 'parent == state->parent' comparison
16673  * in mark_reg_read() is for.
16674  */
16675 static int propagate_liveness(struct bpf_verifier_env *env,
16676 			      const struct bpf_verifier_state *vstate,
16677 			      struct bpf_verifier_state *vparent)
16678 {
16679 	struct bpf_reg_state *state_reg, *parent_reg;
16680 	struct bpf_func_state *state, *parent;
16681 	int i, frame, err = 0;
16682 
16683 	if (vparent->curframe != vstate->curframe) {
16684 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16685 		     vparent->curframe, vstate->curframe);
16686 		return -EFAULT;
16687 	}
16688 	/* Propagate read liveness of registers... */
16689 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16690 	for (frame = 0; frame <= vstate->curframe; frame++) {
16691 		parent = vparent->frame[frame];
16692 		state = vstate->frame[frame];
16693 		parent_reg = parent->regs;
16694 		state_reg = state->regs;
16695 		/* We don't need to worry about FP liveness, it's read-only */
16696 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16697 			err = propagate_liveness_reg(env, &state_reg[i],
16698 						     &parent_reg[i]);
16699 			if (err < 0)
16700 				return err;
16701 			if (err == REG_LIVE_READ64)
16702 				mark_insn_zext(env, &parent_reg[i]);
16703 		}
16704 
16705 		/* Propagate stack slots. */
16706 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16707 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16708 			parent_reg = &parent->stack[i].spilled_ptr;
16709 			state_reg = &state->stack[i].spilled_ptr;
16710 			err = propagate_liveness_reg(env, state_reg,
16711 						     parent_reg);
16712 			if (err < 0)
16713 				return err;
16714 		}
16715 	}
16716 	return 0;
16717 }
16718 
16719 /* find precise scalars in the previous equivalent state and
16720  * propagate them into the current state
16721  */
16722 static int propagate_precision(struct bpf_verifier_env *env,
16723 			       const struct bpf_verifier_state *old)
16724 {
16725 	struct bpf_reg_state *state_reg;
16726 	struct bpf_func_state *state;
16727 	int i, err = 0, fr;
16728 	bool first;
16729 
16730 	for (fr = old->curframe; fr >= 0; fr--) {
16731 		state = old->frame[fr];
16732 		state_reg = state->regs;
16733 		first = true;
16734 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16735 			if (state_reg->type != SCALAR_VALUE ||
16736 			    !state_reg->precise ||
16737 			    !(state_reg->live & REG_LIVE_READ))
16738 				continue;
16739 			if (env->log.level & BPF_LOG_LEVEL2) {
16740 				if (first)
16741 					verbose(env, "frame %d: propagating r%d", fr, i);
16742 				else
16743 					verbose(env, ",r%d", i);
16744 			}
16745 			bt_set_frame_reg(&env->bt, fr, i);
16746 			first = false;
16747 		}
16748 
16749 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16750 			if (!is_spilled_reg(&state->stack[i]))
16751 				continue;
16752 			state_reg = &state->stack[i].spilled_ptr;
16753 			if (state_reg->type != SCALAR_VALUE ||
16754 			    !state_reg->precise ||
16755 			    !(state_reg->live & REG_LIVE_READ))
16756 				continue;
16757 			if (env->log.level & BPF_LOG_LEVEL2) {
16758 				if (first)
16759 					verbose(env, "frame %d: propagating fp%d",
16760 						fr, (-i - 1) * BPF_REG_SIZE);
16761 				else
16762 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16763 			}
16764 			bt_set_frame_slot(&env->bt, fr, i);
16765 			first = false;
16766 		}
16767 		if (!first)
16768 			verbose(env, "\n");
16769 	}
16770 
16771 	err = mark_chain_precision_batch(env);
16772 	if (err < 0)
16773 		return err;
16774 
16775 	return 0;
16776 }
16777 
16778 static bool states_maybe_looping(struct bpf_verifier_state *old,
16779 				 struct bpf_verifier_state *cur)
16780 {
16781 	struct bpf_func_state *fold, *fcur;
16782 	int i, fr = cur->curframe;
16783 
16784 	if (old->curframe != fr)
16785 		return false;
16786 
16787 	fold = old->frame[fr];
16788 	fcur = cur->frame[fr];
16789 	for (i = 0; i < MAX_BPF_REG; i++)
16790 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16791 			   offsetof(struct bpf_reg_state, parent)))
16792 			return false;
16793 	return true;
16794 }
16795 
16796 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16797 {
16798 	return env->insn_aux_data[insn_idx].is_iter_next;
16799 }
16800 
16801 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16802  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16803  * states to match, which otherwise would look like an infinite loop. So while
16804  * iter_next() calls are taken care of, we still need to be careful and
16805  * prevent erroneous and too eager declaration of "ininite loop", when
16806  * iterators are involved.
16807  *
16808  * Here's a situation in pseudo-BPF assembly form:
16809  *
16810  *   0: again:                          ; set up iter_next() call args
16811  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16812  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16813  *   3:   if r0 == 0 goto done
16814  *   4:   ... something useful here ...
16815  *   5:   goto again                    ; another iteration
16816  *   6: done:
16817  *   7:   r1 = &it
16818  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16819  *   9:   exit
16820  *
16821  * This is a typical loop. Let's assume that we have a prune point at 1:,
16822  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16823  * again`, assuming other heuristics don't get in a way).
16824  *
16825  * When we first time come to 1:, let's say we have some state X. We proceed
16826  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16827  * Now we come back to validate that forked ACTIVE state. We proceed through
16828  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16829  * are converging. But the problem is that we don't know that yet, as this
16830  * convergence has to happen at iter_next() call site only. So if nothing is
16831  * done, at 1: verifier will use bounded loop logic and declare infinite
16832  * looping (and would be *technically* correct, if not for iterator's
16833  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16834  * don't want that. So what we do in process_iter_next_call() when we go on
16835  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16836  * a different iteration. So when we suspect an infinite loop, we additionally
16837  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16838  * pretend we are not looping and wait for next iter_next() call.
16839  *
16840  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16841  * loop, because that would actually mean infinite loop, as DRAINED state is
16842  * "sticky", and so we'll keep returning into the same instruction with the
16843  * same state (at least in one of possible code paths).
16844  *
16845  * This approach allows to keep infinite loop heuristic even in the face of
16846  * active iterator. E.g., C snippet below is and will be detected as
16847  * inifintely looping:
16848  *
16849  *   struct bpf_iter_num it;
16850  *   int *p, x;
16851  *
16852  *   bpf_iter_num_new(&it, 0, 10);
16853  *   while ((p = bpf_iter_num_next(&t))) {
16854  *       x = p;
16855  *       while (x--) {} // <<-- infinite loop here
16856  *   }
16857  *
16858  */
16859 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16860 {
16861 	struct bpf_reg_state *slot, *cur_slot;
16862 	struct bpf_func_state *state;
16863 	int i, fr;
16864 
16865 	for (fr = old->curframe; fr >= 0; fr--) {
16866 		state = old->frame[fr];
16867 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16868 			if (state->stack[i].slot_type[0] != STACK_ITER)
16869 				continue;
16870 
16871 			slot = &state->stack[i].spilled_ptr;
16872 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16873 				continue;
16874 
16875 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16876 			if (cur_slot->iter.depth != slot->iter.depth)
16877 				return true;
16878 		}
16879 	}
16880 	return false;
16881 }
16882 
16883 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16884 {
16885 	struct bpf_verifier_state_list *new_sl;
16886 	struct bpf_verifier_state_list *sl, **pprev;
16887 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16888 	int i, j, n, err, states_cnt = 0;
16889 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16890 	bool add_new_state = force_new_state;
16891 	bool force_exact;
16892 
16893 	/* bpf progs typically have pruning point every 4 instructions
16894 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16895 	 * Do not add new state for future pruning if the verifier hasn't seen
16896 	 * at least 2 jumps and at least 8 instructions.
16897 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16898 	 * In tests that amounts to up to 50% reduction into total verifier
16899 	 * memory consumption and 20% verifier time speedup.
16900 	 */
16901 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16902 	    env->insn_processed - env->prev_insn_processed >= 8)
16903 		add_new_state = true;
16904 
16905 	pprev = explored_state(env, insn_idx);
16906 	sl = *pprev;
16907 
16908 	clean_live_states(env, insn_idx, cur);
16909 
16910 	while (sl) {
16911 		states_cnt++;
16912 		if (sl->state.insn_idx != insn_idx)
16913 			goto next;
16914 
16915 		if (sl->state.branches) {
16916 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16917 
16918 			if (frame->in_async_callback_fn &&
16919 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16920 				/* Different async_entry_cnt means that the verifier is
16921 				 * processing another entry into async callback.
16922 				 * Seeing the same state is not an indication of infinite
16923 				 * loop or infinite recursion.
16924 				 * But finding the same state doesn't mean that it's safe
16925 				 * to stop processing the current state. The previous state
16926 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16927 				 * Checking in_async_callback_fn alone is not enough either.
16928 				 * Since the verifier still needs to catch infinite loops
16929 				 * inside async callbacks.
16930 				 */
16931 				goto skip_inf_loop_check;
16932 			}
16933 			/* BPF open-coded iterators loop detection is special.
16934 			 * states_maybe_looping() logic is too simplistic in detecting
16935 			 * states that *might* be equivalent, because it doesn't know
16936 			 * about ID remapping, so don't even perform it.
16937 			 * See process_iter_next_call() and iter_active_depths_differ()
16938 			 * for overview of the logic. When current and one of parent
16939 			 * states are detected as equivalent, it's a good thing: we prove
16940 			 * convergence and can stop simulating further iterations.
16941 			 * It's safe to assume that iterator loop will finish, taking into
16942 			 * account iter_next() contract of eventually returning
16943 			 * sticky NULL result.
16944 			 *
16945 			 * Note, that states have to be compared exactly in this case because
16946 			 * read and precision marks might not be finalized inside the loop.
16947 			 * E.g. as in the program below:
16948 			 *
16949 			 *     1. r7 = -16
16950 			 *     2. r6 = bpf_get_prandom_u32()
16951 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16952 			 *     4.   if (r6 != 42) {
16953 			 *     5.     r7 = -32
16954 			 *     6.     r6 = bpf_get_prandom_u32()
16955 			 *     7.     continue
16956 			 *     8.   }
16957 			 *     9.   r0 = r10
16958 			 *    10.   r0 += r7
16959 			 *    11.   r8 = *(u64 *)(r0 + 0)
16960 			 *    12.   r6 = bpf_get_prandom_u32()
16961 			 *    13. }
16962 			 *
16963 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16964 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16965 			 * not have read or precision mark for r7 yet, thus inexact states
16966 			 * comparison would discard current state with r7=-32
16967 			 * => unsafe memory access at 11 would not be caught.
16968 			 */
16969 			if (is_iter_next_insn(env, insn_idx)) {
16970 				if (states_equal(env, &sl->state, cur, true)) {
16971 					struct bpf_func_state *cur_frame;
16972 					struct bpf_reg_state *iter_state, *iter_reg;
16973 					int spi;
16974 
16975 					cur_frame = cur->frame[cur->curframe];
16976 					/* btf_check_iter_kfuncs() enforces that
16977 					 * iter state pointer is always the first arg
16978 					 */
16979 					iter_reg = &cur_frame->regs[BPF_REG_1];
16980 					/* current state is valid due to states_equal(),
16981 					 * so we can assume valid iter and reg state,
16982 					 * no need for extra (re-)validations
16983 					 */
16984 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16985 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16986 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16987 						update_loop_entry(cur, &sl->state);
16988 						goto hit;
16989 					}
16990 				}
16991 				goto skip_inf_loop_check;
16992 			}
16993 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16994 			if (states_maybe_looping(&sl->state, cur) &&
16995 			    states_equal(env, &sl->state, cur, false) &&
16996 			    !iter_active_depths_differ(&sl->state, cur)) {
16997 				verbose_linfo(env, insn_idx, "; ");
16998 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16999 				verbose(env, "cur state:");
17000 				print_verifier_state(env, cur->frame[cur->curframe], true);
17001 				verbose(env, "old state:");
17002 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17003 				return -EINVAL;
17004 			}
17005 			/* if the verifier is processing a loop, avoid adding new state
17006 			 * too often, since different loop iterations have distinct
17007 			 * states and may not help future pruning.
17008 			 * This threshold shouldn't be too low to make sure that
17009 			 * a loop with large bound will be rejected quickly.
17010 			 * The most abusive loop will be:
17011 			 * r1 += 1
17012 			 * if r1 < 1000000 goto pc-2
17013 			 * 1M insn_procssed limit / 100 == 10k peak states.
17014 			 * This threshold shouldn't be too high either, since states
17015 			 * at the end of the loop are likely to be useful in pruning.
17016 			 */
17017 skip_inf_loop_check:
17018 			if (!force_new_state &&
17019 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17020 			    env->insn_processed - env->prev_insn_processed < 100)
17021 				add_new_state = false;
17022 			goto miss;
17023 		}
17024 		/* If sl->state is a part of a loop and this loop's entry is a part of
17025 		 * current verification path then states have to be compared exactly.
17026 		 * 'force_exact' is needed to catch the following case:
17027 		 *
17028 		 *                initial     Here state 'succ' was processed first,
17029 		 *                  |         it was eventually tracked to produce a
17030 		 *                  V         state identical to 'hdr'.
17031 		 *     .---------> hdr        All branches from 'succ' had been explored
17032 		 *     |            |         and thus 'succ' has its .branches == 0.
17033 		 *     |            V
17034 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17035 		 *     |    |       |         to the same instruction + callsites.
17036 		 *     |    V       V         In such case it is necessary to check
17037 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17038 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17039 		 *     |    V       V         same loop exact flag has to be set.
17040 		 *     |   succ <- cur        To check if that is the case, verify
17041 		 *     |    |                 if loop entry of 'succ' is in current
17042 		 *     |    V                 DFS path.
17043 		 *     |   ...
17044 		 *     |    |
17045 		 *     '----'
17046 		 *
17047 		 * Additional details are in the comment before get_loop_entry().
17048 		 */
17049 		loop_entry = get_loop_entry(&sl->state);
17050 		force_exact = loop_entry && loop_entry->branches > 0;
17051 		if (states_equal(env, &sl->state, cur, force_exact)) {
17052 			if (force_exact)
17053 				update_loop_entry(cur, loop_entry);
17054 hit:
17055 			sl->hit_cnt++;
17056 			/* reached equivalent register/stack state,
17057 			 * prune the search.
17058 			 * Registers read by the continuation are read by us.
17059 			 * If we have any write marks in env->cur_state, they
17060 			 * will prevent corresponding reads in the continuation
17061 			 * from reaching our parent (an explored_state).  Our
17062 			 * own state will get the read marks recorded, but
17063 			 * they'll be immediately forgotten as we're pruning
17064 			 * this state and will pop a new one.
17065 			 */
17066 			err = propagate_liveness(env, &sl->state, cur);
17067 
17068 			/* if previous state reached the exit with precision and
17069 			 * current state is equivalent to it (except precsion marks)
17070 			 * the precision needs to be propagated back in
17071 			 * the current state.
17072 			 */
17073 			err = err ? : push_jmp_history(env, cur);
17074 			err = err ? : propagate_precision(env, &sl->state);
17075 			if (err)
17076 				return err;
17077 			return 1;
17078 		}
17079 miss:
17080 		/* when new state is not going to be added do not increase miss count.
17081 		 * Otherwise several loop iterations will remove the state
17082 		 * recorded earlier. The goal of these heuristics is to have
17083 		 * states from some iterations of the loop (some in the beginning
17084 		 * and some at the end) to help pruning.
17085 		 */
17086 		if (add_new_state)
17087 			sl->miss_cnt++;
17088 		/* heuristic to determine whether this state is beneficial
17089 		 * to keep checking from state equivalence point of view.
17090 		 * Higher numbers increase max_states_per_insn and verification time,
17091 		 * but do not meaningfully decrease insn_processed.
17092 		 * 'n' controls how many times state could miss before eviction.
17093 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17094 		 * too early would hinder iterator convergence.
17095 		 */
17096 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17097 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17098 			/* the state is unlikely to be useful. Remove it to
17099 			 * speed up verification
17100 			 */
17101 			*pprev = sl->next;
17102 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17103 			    !sl->state.used_as_loop_entry) {
17104 				u32 br = sl->state.branches;
17105 
17106 				WARN_ONCE(br,
17107 					  "BUG live_done but branches_to_explore %d\n",
17108 					  br);
17109 				free_verifier_state(&sl->state, false);
17110 				kfree(sl);
17111 				env->peak_states--;
17112 			} else {
17113 				/* cannot free this state, since parentage chain may
17114 				 * walk it later. Add it for free_list instead to
17115 				 * be freed at the end of verification
17116 				 */
17117 				sl->next = env->free_list;
17118 				env->free_list = sl;
17119 			}
17120 			sl = *pprev;
17121 			continue;
17122 		}
17123 next:
17124 		pprev = &sl->next;
17125 		sl = *pprev;
17126 	}
17127 
17128 	if (env->max_states_per_insn < states_cnt)
17129 		env->max_states_per_insn = states_cnt;
17130 
17131 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17132 		return 0;
17133 
17134 	if (!add_new_state)
17135 		return 0;
17136 
17137 	/* There were no equivalent states, remember the current one.
17138 	 * Technically the current state is not proven to be safe yet,
17139 	 * but it will either reach outer most bpf_exit (which means it's safe)
17140 	 * or it will be rejected. When there are no loops the verifier won't be
17141 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17142 	 * again on the way to bpf_exit.
17143 	 * When looping the sl->state.branches will be > 0 and this state
17144 	 * will not be considered for equivalence until branches == 0.
17145 	 */
17146 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17147 	if (!new_sl)
17148 		return -ENOMEM;
17149 	env->total_states++;
17150 	env->peak_states++;
17151 	env->prev_jmps_processed = env->jmps_processed;
17152 	env->prev_insn_processed = env->insn_processed;
17153 
17154 	/* forget precise markings we inherited, see __mark_chain_precision */
17155 	if (env->bpf_capable)
17156 		mark_all_scalars_imprecise(env, cur);
17157 
17158 	/* add new state to the head of linked list */
17159 	new = &new_sl->state;
17160 	err = copy_verifier_state(new, cur);
17161 	if (err) {
17162 		free_verifier_state(new, false);
17163 		kfree(new_sl);
17164 		return err;
17165 	}
17166 	new->insn_idx = insn_idx;
17167 	WARN_ONCE(new->branches != 1,
17168 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17169 
17170 	cur->parent = new;
17171 	cur->first_insn_idx = insn_idx;
17172 	cur->dfs_depth = new->dfs_depth + 1;
17173 	clear_jmp_history(cur);
17174 	new_sl->next = *explored_state(env, insn_idx);
17175 	*explored_state(env, insn_idx) = new_sl;
17176 	/* connect new state to parentage chain. Current frame needs all
17177 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17178 	 * to the stack implicitly by JITs) so in callers' frames connect just
17179 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17180 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17181 	 * from callee with its full parentage chain, anyway.
17182 	 */
17183 	/* clear write marks in current state: the writes we did are not writes
17184 	 * our child did, so they don't screen off its reads from us.
17185 	 * (There are no read marks in current state, because reads always mark
17186 	 * their parent and current state never has children yet.  Only
17187 	 * explored_states can get read marks.)
17188 	 */
17189 	for (j = 0; j <= cur->curframe; j++) {
17190 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17191 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17192 		for (i = 0; i < BPF_REG_FP; i++)
17193 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17194 	}
17195 
17196 	/* all stack frames are accessible from callee, clear them all */
17197 	for (j = 0; j <= cur->curframe; j++) {
17198 		struct bpf_func_state *frame = cur->frame[j];
17199 		struct bpf_func_state *newframe = new->frame[j];
17200 
17201 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17202 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17203 			frame->stack[i].spilled_ptr.parent =
17204 						&newframe->stack[i].spilled_ptr;
17205 		}
17206 	}
17207 	return 0;
17208 }
17209 
17210 /* Return true if it's OK to have the same insn return a different type. */
17211 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17212 {
17213 	switch (base_type(type)) {
17214 	case PTR_TO_CTX:
17215 	case PTR_TO_SOCKET:
17216 	case PTR_TO_SOCK_COMMON:
17217 	case PTR_TO_TCP_SOCK:
17218 	case PTR_TO_XDP_SOCK:
17219 	case PTR_TO_BTF_ID:
17220 		return false;
17221 	default:
17222 		return true;
17223 	}
17224 }
17225 
17226 /* If an instruction was previously used with particular pointer types, then we
17227  * need to be careful to avoid cases such as the below, where it may be ok
17228  * for one branch accessing the pointer, but not ok for the other branch:
17229  *
17230  * R1 = sock_ptr
17231  * goto X;
17232  * ...
17233  * R1 = some_other_valid_ptr;
17234  * goto X;
17235  * ...
17236  * R2 = *(u32 *)(R1 + 0);
17237  */
17238 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17239 {
17240 	return src != prev && (!reg_type_mismatch_ok(src) ||
17241 			       !reg_type_mismatch_ok(prev));
17242 }
17243 
17244 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17245 			     bool allow_trust_missmatch)
17246 {
17247 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17248 
17249 	if (*prev_type == NOT_INIT) {
17250 		/* Saw a valid insn
17251 		 * dst_reg = *(u32 *)(src_reg + off)
17252 		 * save type to validate intersecting paths
17253 		 */
17254 		*prev_type = type;
17255 	} else if (reg_type_mismatch(type, *prev_type)) {
17256 		/* Abuser program is trying to use the same insn
17257 		 * dst_reg = *(u32*) (src_reg + off)
17258 		 * with different pointer types:
17259 		 * src_reg == ctx in one branch and
17260 		 * src_reg == stack|map in some other branch.
17261 		 * Reject it.
17262 		 */
17263 		if (allow_trust_missmatch &&
17264 		    base_type(type) == PTR_TO_BTF_ID &&
17265 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17266 			/*
17267 			 * Have to support a use case when one path through
17268 			 * the program yields TRUSTED pointer while another
17269 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17270 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17271 			 */
17272 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17273 		} else {
17274 			verbose(env, "same insn cannot be used with different pointers\n");
17275 			return -EINVAL;
17276 		}
17277 	}
17278 
17279 	return 0;
17280 }
17281 
17282 static int do_check(struct bpf_verifier_env *env)
17283 {
17284 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17285 	struct bpf_verifier_state *state = env->cur_state;
17286 	struct bpf_insn *insns = env->prog->insnsi;
17287 	struct bpf_reg_state *regs;
17288 	int insn_cnt = env->prog->len;
17289 	bool do_print_state = false;
17290 	int prev_insn_idx = -1;
17291 
17292 	for (;;) {
17293 		bool exception_exit = false;
17294 		struct bpf_insn *insn;
17295 		u8 class;
17296 		int err;
17297 
17298 		env->prev_insn_idx = prev_insn_idx;
17299 		if (env->insn_idx >= insn_cnt) {
17300 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17301 				env->insn_idx, insn_cnt);
17302 			return -EFAULT;
17303 		}
17304 
17305 		insn = &insns[env->insn_idx];
17306 		class = BPF_CLASS(insn->code);
17307 
17308 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17309 			verbose(env,
17310 				"BPF program is too large. Processed %d insn\n",
17311 				env->insn_processed);
17312 			return -E2BIG;
17313 		}
17314 
17315 		state->last_insn_idx = env->prev_insn_idx;
17316 
17317 		if (is_prune_point(env, env->insn_idx)) {
17318 			err = is_state_visited(env, env->insn_idx);
17319 			if (err < 0)
17320 				return err;
17321 			if (err == 1) {
17322 				/* found equivalent state, can prune the search */
17323 				if (env->log.level & BPF_LOG_LEVEL) {
17324 					if (do_print_state)
17325 						verbose(env, "\nfrom %d to %d%s: safe\n",
17326 							env->prev_insn_idx, env->insn_idx,
17327 							env->cur_state->speculative ?
17328 							" (speculative execution)" : "");
17329 					else
17330 						verbose(env, "%d: safe\n", env->insn_idx);
17331 				}
17332 				goto process_bpf_exit;
17333 			}
17334 		}
17335 
17336 		if (is_jmp_point(env, env->insn_idx)) {
17337 			err = push_jmp_history(env, state);
17338 			if (err)
17339 				return err;
17340 		}
17341 
17342 		if (signal_pending(current))
17343 			return -EAGAIN;
17344 
17345 		if (need_resched())
17346 			cond_resched();
17347 
17348 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17349 			verbose(env, "\nfrom %d to %d%s:",
17350 				env->prev_insn_idx, env->insn_idx,
17351 				env->cur_state->speculative ?
17352 				" (speculative execution)" : "");
17353 			print_verifier_state(env, state->frame[state->curframe], true);
17354 			do_print_state = false;
17355 		}
17356 
17357 		if (env->log.level & BPF_LOG_LEVEL) {
17358 			const struct bpf_insn_cbs cbs = {
17359 				.cb_call	= disasm_kfunc_name,
17360 				.cb_print	= verbose,
17361 				.private_data	= env,
17362 			};
17363 
17364 			if (verifier_state_scratched(env))
17365 				print_insn_state(env, state->frame[state->curframe]);
17366 
17367 			verbose_linfo(env, env->insn_idx, "; ");
17368 			env->prev_log_pos = env->log.end_pos;
17369 			verbose(env, "%d: ", env->insn_idx);
17370 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17371 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17372 			env->prev_log_pos = env->log.end_pos;
17373 		}
17374 
17375 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17376 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17377 							   env->prev_insn_idx);
17378 			if (err)
17379 				return err;
17380 		}
17381 
17382 		regs = cur_regs(env);
17383 		sanitize_mark_insn_seen(env);
17384 		prev_insn_idx = env->insn_idx;
17385 
17386 		if (class == BPF_ALU || class == BPF_ALU64) {
17387 			err = check_alu_op(env, insn);
17388 			if (err)
17389 				return err;
17390 
17391 		} else if (class == BPF_LDX) {
17392 			enum bpf_reg_type src_reg_type;
17393 
17394 			/* check for reserved fields is already done */
17395 
17396 			/* check src operand */
17397 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17398 			if (err)
17399 				return err;
17400 
17401 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17402 			if (err)
17403 				return err;
17404 
17405 			src_reg_type = regs[insn->src_reg].type;
17406 
17407 			/* check that memory (src_reg + off) is readable,
17408 			 * the state of dst_reg will be updated by this func
17409 			 */
17410 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17411 					       insn->off, BPF_SIZE(insn->code),
17412 					       BPF_READ, insn->dst_reg, false,
17413 					       BPF_MODE(insn->code) == BPF_MEMSX);
17414 			if (err)
17415 				return err;
17416 
17417 			err = save_aux_ptr_type(env, src_reg_type, true);
17418 			if (err)
17419 				return err;
17420 		} else if (class == BPF_STX) {
17421 			enum bpf_reg_type dst_reg_type;
17422 
17423 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17424 				err = check_atomic(env, env->insn_idx, insn);
17425 				if (err)
17426 					return err;
17427 				env->insn_idx++;
17428 				continue;
17429 			}
17430 
17431 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17432 				verbose(env, "BPF_STX uses reserved fields\n");
17433 				return -EINVAL;
17434 			}
17435 
17436 			/* check src1 operand */
17437 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17438 			if (err)
17439 				return err;
17440 			/* check src2 operand */
17441 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17442 			if (err)
17443 				return err;
17444 
17445 			dst_reg_type = regs[insn->dst_reg].type;
17446 
17447 			/* check that memory (dst_reg + off) is writeable */
17448 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17449 					       insn->off, BPF_SIZE(insn->code),
17450 					       BPF_WRITE, insn->src_reg, false, false);
17451 			if (err)
17452 				return err;
17453 
17454 			err = save_aux_ptr_type(env, dst_reg_type, false);
17455 			if (err)
17456 				return err;
17457 		} else if (class == BPF_ST) {
17458 			enum bpf_reg_type dst_reg_type;
17459 
17460 			if (BPF_MODE(insn->code) != BPF_MEM ||
17461 			    insn->src_reg != BPF_REG_0) {
17462 				verbose(env, "BPF_ST uses reserved fields\n");
17463 				return -EINVAL;
17464 			}
17465 			/* check src operand */
17466 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17467 			if (err)
17468 				return err;
17469 
17470 			dst_reg_type = regs[insn->dst_reg].type;
17471 
17472 			/* check that memory (dst_reg + off) is writeable */
17473 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17474 					       insn->off, BPF_SIZE(insn->code),
17475 					       BPF_WRITE, -1, false, false);
17476 			if (err)
17477 				return err;
17478 
17479 			err = save_aux_ptr_type(env, dst_reg_type, false);
17480 			if (err)
17481 				return err;
17482 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17483 			u8 opcode = BPF_OP(insn->code);
17484 
17485 			env->jmps_processed++;
17486 			if (opcode == BPF_CALL) {
17487 				if (BPF_SRC(insn->code) != BPF_K ||
17488 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17489 				     && insn->off != 0) ||
17490 				    (insn->src_reg != BPF_REG_0 &&
17491 				     insn->src_reg != BPF_PSEUDO_CALL &&
17492 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17493 				    insn->dst_reg != BPF_REG_0 ||
17494 				    class == BPF_JMP32) {
17495 					verbose(env, "BPF_CALL uses reserved fields\n");
17496 					return -EINVAL;
17497 				}
17498 
17499 				if (env->cur_state->active_lock.ptr) {
17500 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17501 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17502 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17503 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17504 						verbose(env, "function calls are not allowed while holding a lock\n");
17505 						return -EINVAL;
17506 					}
17507 				}
17508 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17509 					err = check_func_call(env, insn, &env->insn_idx);
17510 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17511 					err = check_kfunc_call(env, insn, &env->insn_idx);
17512 					if (!err && is_bpf_throw_kfunc(insn)) {
17513 						exception_exit = true;
17514 						goto process_bpf_exit_full;
17515 					}
17516 				} else {
17517 					err = check_helper_call(env, insn, &env->insn_idx);
17518 				}
17519 				if (err)
17520 					return err;
17521 
17522 				mark_reg_scratched(env, BPF_REG_0);
17523 			} else if (opcode == BPF_JA) {
17524 				if (BPF_SRC(insn->code) != BPF_K ||
17525 				    insn->src_reg != BPF_REG_0 ||
17526 				    insn->dst_reg != BPF_REG_0 ||
17527 				    (class == BPF_JMP && insn->imm != 0) ||
17528 				    (class == BPF_JMP32 && insn->off != 0)) {
17529 					verbose(env, "BPF_JA uses reserved fields\n");
17530 					return -EINVAL;
17531 				}
17532 
17533 				if (class == BPF_JMP)
17534 					env->insn_idx += insn->off + 1;
17535 				else
17536 					env->insn_idx += insn->imm + 1;
17537 				continue;
17538 
17539 			} else if (opcode == BPF_EXIT) {
17540 				if (BPF_SRC(insn->code) != BPF_K ||
17541 				    insn->imm != 0 ||
17542 				    insn->src_reg != BPF_REG_0 ||
17543 				    insn->dst_reg != BPF_REG_0 ||
17544 				    class == BPF_JMP32) {
17545 					verbose(env, "BPF_EXIT uses reserved fields\n");
17546 					return -EINVAL;
17547 				}
17548 process_bpf_exit_full:
17549 				if (env->cur_state->active_lock.ptr &&
17550 				    !in_rbtree_lock_required_cb(env)) {
17551 					verbose(env, "bpf_spin_unlock is missing\n");
17552 					return -EINVAL;
17553 				}
17554 
17555 				if (env->cur_state->active_rcu_lock &&
17556 				    !in_rbtree_lock_required_cb(env)) {
17557 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17558 					return -EINVAL;
17559 				}
17560 
17561 				/* We must do check_reference_leak here before
17562 				 * prepare_func_exit to handle the case when
17563 				 * state->curframe > 0, it may be a callback
17564 				 * function, for which reference_state must
17565 				 * match caller reference state when it exits.
17566 				 */
17567 				err = check_reference_leak(env, exception_exit);
17568 				if (err)
17569 					return err;
17570 
17571 				/* The side effect of the prepare_func_exit
17572 				 * which is being skipped is that it frees
17573 				 * bpf_func_state. Typically, process_bpf_exit
17574 				 * will only be hit with outermost exit.
17575 				 * copy_verifier_state in pop_stack will handle
17576 				 * freeing of any extra bpf_func_state left over
17577 				 * from not processing all nested function
17578 				 * exits. We also skip return code checks as
17579 				 * they are not needed for exceptional exits.
17580 				 */
17581 				if (exception_exit)
17582 					goto process_bpf_exit;
17583 
17584 				if (state->curframe) {
17585 					/* exit from nested function */
17586 					err = prepare_func_exit(env, &env->insn_idx);
17587 					if (err)
17588 						return err;
17589 					do_print_state = true;
17590 					continue;
17591 				}
17592 
17593 				err = check_return_code(env, BPF_REG_0);
17594 				if (err)
17595 					return err;
17596 process_bpf_exit:
17597 				mark_verifier_state_scratched(env);
17598 				update_branch_counts(env, env->cur_state);
17599 				err = pop_stack(env, &prev_insn_idx,
17600 						&env->insn_idx, pop_log);
17601 				if (err < 0) {
17602 					if (err != -ENOENT)
17603 						return err;
17604 					break;
17605 				} else {
17606 					do_print_state = true;
17607 					continue;
17608 				}
17609 			} else {
17610 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17611 				if (err)
17612 					return err;
17613 			}
17614 		} else if (class == BPF_LD) {
17615 			u8 mode = BPF_MODE(insn->code);
17616 
17617 			if (mode == BPF_ABS || mode == BPF_IND) {
17618 				err = check_ld_abs(env, insn);
17619 				if (err)
17620 					return err;
17621 
17622 			} else if (mode == BPF_IMM) {
17623 				err = check_ld_imm(env, insn);
17624 				if (err)
17625 					return err;
17626 
17627 				env->insn_idx++;
17628 				sanitize_mark_insn_seen(env);
17629 			} else {
17630 				verbose(env, "invalid BPF_LD mode\n");
17631 				return -EINVAL;
17632 			}
17633 		} else {
17634 			verbose(env, "unknown insn class %d\n", class);
17635 			return -EINVAL;
17636 		}
17637 
17638 		env->insn_idx++;
17639 	}
17640 
17641 	return 0;
17642 }
17643 
17644 static int find_btf_percpu_datasec(struct btf *btf)
17645 {
17646 	const struct btf_type *t;
17647 	const char *tname;
17648 	int i, n;
17649 
17650 	/*
17651 	 * Both vmlinux and module each have their own ".data..percpu"
17652 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17653 	 * types to look at only module's own BTF types.
17654 	 */
17655 	n = btf_nr_types(btf);
17656 	if (btf_is_module(btf))
17657 		i = btf_nr_types(btf_vmlinux);
17658 	else
17659 		i = 1;
17660 
17661 	for(; i < n; i++) {
17662 		t = btf_type_by_id(btf, i);
17663 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17664 			continue;
17665 
17666 		tname = btf_name_by_offset(btf, t->name_off);
17667 		if (!strcmp(tname, ".data..percpu"))
17668 			return i;
17669 	}
17670 
17671 	return -ENOENT;
17672 }
17673 
17674 /* replace pseudo btf_id with kernel symbol address */
17675 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17676 			       struct bpf_insn *insn,
17677 			       struct bpf_insn_aux_data *aux)
17678 {
17679 	const struct btf_var_secinfo *vsi;
17680 	const struct btf_type *datasec;
17681 	struct btf_mod_pair *btf_mod;
17682 	const struct btf_type *t;
17683 	const char *sym_name;
17684 	bool percpu = false;
17685 	u32 type, id = insn->imm;
17686 	struct btf *btf;
17687 	s32 datasec_id;
17688 	u64 addr;
17689 	int i, btf_fd, err;
17690 
17691 	btf_fd = insn[1].imm;
17692 	if (btf_fd) {
17693 		btf = btf_get_by_fd(btf_fd);
17694 		if (IS_ERR(btf)) {
17695 			verbose(env, "invalid module BTF object FD specified.\n");
17696 			return -EINVAL;
17697 		}
17698 	} else {
17699 		if (!btf_vmlinux) {
17700 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17701 			return -EINVAL;
17702 		}
17703 		btf = btf_vmlinux;
17704 		btf_get(btf);
17705 	}
17706 
17707 	t = btf_type_by_id(btf, id);
17708 	if (!t) {
17709 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17710 		err = -ENOENT;
17711 		goto err_put;
17712 	}
17713 
17714 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17715 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17716 		err = -EINVAL;
17717 		goto err_put;
17718 	}
17719 
17720 	sym_name = btf_name_by_offset(btf, t->name_off);
17721 	addr = kallsyms_lookup_name(sym_name);
17722 	if (!addr) {
17723 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17724 			sym_name);
17725 		err = -ENOENT;
17726 		goto err_put;
17727 	}
17728 	insn[0].imm = (u32)addr;
17729 	insn[1].imm = addr >> 32;
17730 
17731 	if (btf_type_is_func(t)) {
17732 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17733 		aux->btf_var.mem_size = 0;
17734 		goto check_btf;
17735 	}
17736 
17737 	datasec_id = find_btf_percpu_datasec(btf);
17738 	if (datasec_id > 0) {
17739 		datasec = btf_type_by_id(btf, datasec_id);
17740 		for_each_vsi(i, datasec, vsi) {
17741 			if (vsi->type == id) {
17742 				percpu = true;
17743 				break;
17744 			}
17745 		}
17746 	}
17747 
17748 	type = t->type;
17749 	t = btf_type_skip_modifiers(btf, type, NULL);
17750 	if (percpu) {
17751 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17752 		aux->btf_var.btf = btf;
17753 		aux->btf_var.btf_id = type;
17754 	} else if (!btf_type_is_struct(t)) {
17755 		const struct btf_type *ret;
17756 		const char *tname;
17757 		u32 tsize;
17758 
17759 		/* resolve the type size of ksym. */
17760 		ret = btf_resolve_size(btf, t, &tsize);
17761 		if (IS_ERR(ret)) {
17762 			tname = btf_name_by_offset(btf, t->name_off);
17763 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17764 				tname, PTR_ERR(ret));
17765 			err = -EINVAL;
17766 			goto err_put;
17767 		}
17768 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17769 		aux->btf_var.mem_size = tsize;
17770 	} else {
17771 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17772 		aux->btf_var.btf = btf;
17773 		aux->btf_var.btf_id = type;
17774 	}
17775 check_btf:
17776 	/* check whether we recorded this BTF (and maybe module) already */
17777 	for (i = 0; i < env->used_btf_cnt; i++) {
17778 		if (env->used_btfs[i].btf == btf) {
17779 			btf_put(btf);
17780 			return 0;
17781 		}
17782 	}
17783 
17784 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17785 		err = -E2BIG;
17786 		goto err_put;
17787 	}
17788 
17789 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17790 	btf_mod->btf = btf;
17791 	btf_mod->module = NULL;
17792 
17793 	/* if we reference variables from kernel module, bump its refcount */
17794 	if (btf_is_module(btf)) {
17795 		btf_mod->module = btf_try_get_module(btf);
17796 		if (!btf_mod->module) {
17797 			err = -ENXIO;
17798 			goto err_put;
17799 		}
17800 	}
17801 
17802 	env->used_btf_cnt++;
17803 
17804 	return 0;
17805 err_put:
17806 	btf_put(btf);
17807 	return err;
17808 }
17809 
17810 static bool is_tracing_prog_type(enum bpf_prog_type type)
17811 {
17812 	switch (type) {
17813 	case BPF_PROG_TYPE_KPROBE:
17814 	case BPF_PROG_TYPE_TRACEPOINT:
17815 	case BPF_PROG_TYPE_PERF_EVENT:
17816 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17817 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17818 		return true;
17819 	default:
17820 		return false;
17821 	}
17822 }
17823 
17824 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17825 					struct bpf_map *map,
17826 					struct bpf_prog *prog)
17827 
17828 {
17829 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17830 
17831 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17832 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17833 		if (is_tracing_prog_type(prog_type)) {
17834 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17835 			return -EINVAL;
17836 		}
17837 	}
17838 
17839 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17840 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17841 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17842 			return -EINVAL;
17843 		}
17844 
17845 		if (is_tracing_prog_type(prog_type)) {
17846 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17847 			return -EINVAL;
17848 		}
17849 	}
17850 
17851 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17852 		if (is_tracing_prog_type(prog_type)) {
17853 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17854 			return -EINVAL;
17855 		}
17856 	}
17857 
17858 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17859 	    !bpf_offload_prog_map_match(prog, map)) {
17860 		verbose(env, "offload device mismatch between prog and map\n");
17861 		return -EINVAL;
17862 	}
17863 
17864 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17865 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17866 		return -EINVAL;
17867 	}
17868 
17869 	if (prog->aux->sleepable)
17870 		switch (map->map_type) {
17871 		case BPF_MAP_TYPE_HASH:
17872 		case BPF_MAP_TYPE_LRU_HASH:
17873 		case BPF_MAP_TYPE_ARRAY:
17874 		case BPF_MAP_TYPE_PERCPU_HASH:
17875 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17876 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17877 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17878 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17879 		case BPF_MAP_TYPE_RINGBUF:
17880 		case BPF_MAP_TYPE_USER_RINGBUF:
17881 		case BPF_MAP_TYPE_INODE_STORAGE:
17882 		case BPF_MAP_TYPE_SK_STORAGE:
17883 		case BPF_MAP_TYPE_TASK_STORAGE:
17884 		case BPF_MAP_TYPE_CGRP_STORAGE:
17885 			break;
17886 		default:
17887 			verbose(env,
17888 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17889 			return -EINVAL;
17890 		}
17891 
17892 	return 0;
17893 }
17894 
17895 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17896 {
17897 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17898 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17899 }
17900 
17901 /* find and rewrite pseudo imm in ld_imm64 instructions:
17902  *
17903  * 1. if it accesses map FD, replace it with actual map pointer.
17904  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17905  *
17906  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17907  */
17908 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17909 {
17910 	struct bpf_insn *insn = env->prog->insnsi;
17911 	int insn_cnt = env->prog->len;
17912 	int i, j, err;
17913 
17914 	err = bpf_prog_calc_tag(env->prog);
17915 	if (err)
17916 		return err;
17917 
17918 	for (i = 0; i < insn_cnt; i++, insn++) {
17919 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17920 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17921 		    insn->imm != 0)) {
17922 			verbose(env, "BPF_LDX uses reserved fields\n");
17923 			return -EINVAL;
17924 		}
17925 
17926 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17927 			struct bpf_insn_aux_data *aux;
17928 			struct bpf_map *map;
17929 			struct fd f;
17930 			u64 addr;
17931 			u32 fd;
17932 
17933 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17934 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17935 			    insn[1].off != 0) {
17936 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17937 				return -EINVAL;
17938 			}
17939 
17940 			if (insn[0].src_reg == 0)
17941 				/* valid generic load 64-bit imm */
17942 				goto next_insn;
17943 
17944 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17945 				aux = &env->insn_aux_data[i];
17946 				err = check_pseudo_btf_id(env, insn, aux);
17947 				if (err)
17948 					return err;
17949 				goto next_insn;
17950 			}
17951 
17952 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17953 				aux = &env->insn_aux_data[i];
17954 				aux->ptr_type = PTR_TO_FUNC;
17955 				goto next_insn;
17956 			}
17957 
17958 			/* In final convert_pseudo_ld_imm64() step, this is
17959 			 * converted into regular 64-bit imm load insn.
17960 			 */
17961 			switch (insn[0].src_reg) {
17962 			case BPF_PSEUDO_MAP_VALUE:
17963 			case BPF_PSEUDO_MAP_IDX_VALUE:
17964 				break;
17965 			case BPF_PSEUDO_MAP_FD:
17966 			case BPF_PSEUDO_MAP_IDX:
17967 				if (insn[1].imm == 0)
17968 					break;
17969 				fallthrough;
17970 			default:
17971 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17972 				return -EINVAL;
17973 			}
17974 
17975 			switch (insn[0].src_reg) {
17976 			case BPF_PSEUDO_MAP_IDX_VALUE:
17977 			case BPF_PSEUDO_MAP_IDX:
17978 				if (bpfptr_is_null(env->fd_array)) {
17979 					verbose(env, "fd_idx without fd_array is invalid\n");
17980 					return -EPROTO;
17981 				}
17982 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17983 							    insn[0].imm * sizeof(fd),
17984 							    sizeof(fd)))
17985 					return -EFAULT;
17986 				break;
17987 			default:
17988 				fd = insn[0].imm;
17989 				break;
17990 			}
17991 
17992 			f = fdget(fd);
17993 			map = __bpf_map_get(f);
17994 			if (IS_ERR(map)) {
17995 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17996 					insn[0].imm);
17997 				return PTR_ERR(map);
17998 			}
17999 
18000 			err = check_map_prog_compatibility(env, map, env->prog);
18001 			if (err) {
18002 				fdput(f);
18003 				return err;
18004 			}
18005 
18006 			aux = &env->insn_aux_data[i];
18007 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18008 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18009 				addr = (unsigned long)map;
18010 			} else {
18011 				u32 off = insn[1].imm;
18012 
18013 				if (off >= BPF_MAX_VAR_OFF) {
18014 					verbose(env, "direct value offset of %u is not allowed\n", off);
18015 					fdput(f);
18016 					return -EINVAL;
18017 				}
18018 
18019 				if (!map->ops->map_direct_value_addr) {
18020 					verbose(env, "no direct value access support for this map type\n");
18021 					fdput(f);
18022 					return -EINVAL;
18023 				}
18024 
18025 				err = map->ops->map_direct_value_addr(map, &addr, off);
18026 				if (err) {
18027 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18028 						map->value_size, off);
18029 					fdput(f);
18030 					return err;
18031 				}
18032 
18033 				aux->map_off = off;
18034 				addr += off;
18035 			}
18036 
18037 			insn[0].imm = (u32)addr;
18038 			insn[1].imm = addr >> 32;
18039 
18040 			/* check whether we recorded this map already */
18041 			for (j = 0; j < env->used_map_cnt; j++) {
18042 				if (env->used_maps[j] == map) {
18043 					aux->map_index = j;
18044 					fdput(f);
18045 					goto next_insn;
18046 				}
18047 			}
18048 
18049 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18050 				fdput(f);
18051 				return -E2BIG;
18052 			}
18053 
18054 			/* hold the map. If the program is rejected by verifier,
18055 			 * the map will be released by release_maps() or it
18056 			 * will be used by the valid program until it's unloaded
18057 			 * and all maps are released in free_used_maps()
18058 			 */
18059 			bpf_map_inc(map);
18060 
18061 			aux->map_index = env->used_map_cnt;
18062 			env->used_maps[env->used_map_cnt++] = map;
18063 
18064 			if (bpf_map_is_cgroup_storage(map) &&
18065 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18066 				verbose(env, "only one cgroup storage of each type is allowed\n");
18067 				fdput(f);
18068 				return -EBUSY;
18069 			}
18070 
18071 			fdput(f);
18072 next_insn:
18073 			insn++;
18074 			i++;
18075 			continue;
18076 		}
18077 
18078 		/* Basic sanity check before we invest more work here. */
18079 		if (!bpf_opcode_in_insntable(insn->code)) {
18080 			verbose(env, "unknown opcode %02x\n", insn->code);
18081 			return -EINVAL;
18082 		}
18083 	}
18084 
18085 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18086 	 * 'struct bpf_map *' into a register instead of user map_fd.
18087 	 * These pointers will be used later by verifier to validate map access.
18088 	 */
18089 	return 0;
18090 }
18091 
18092 /* drop refcnt of maps used by the rejected program */
18093 static void release_maps(struct bpf_verifier_env *env)
18094 {
18095 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18096 			     env->used_map_cnt);
18097 }
18098 
18099 /* drop refcnt of maps used by the rejected program */
18100 static void release_btfs(struct bpf_verifier_env *env)
18101 {
18102 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18103 			     env->used_btf_cnt);
18104 }
18105 
18106 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18107 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18108 {
18109 	struct bpf_insn *insn = env->prog->insnsi;
18110 	int insn_cnt = env->prog->len;
18111 	int i;
18112 
18113 	for (i = 0; i < insn_cnt; i++, insn++) {
18114 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18115 			continue;
18116 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18117 			continue;
18118 		insn->src_reg = 0;
18119 	}
18120 }
18121 
18122 /* single env->prog->insni[off] instruction was replaced with the range
18123  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18124  * [0, off) and [off, end) to new locations, so the patched range stays zero
18125  */
18126 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18127 				 struct bpf_insn_aux_data *new_data,
18128 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18129 {
18130 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18131 	struct bpf_insn *insn = new_prog->insnsi;
18132 	u32 old_seen = old_data[off].seen;
18133 	u32 prog_len;
18134 	int i;
18135 
18136 	/* aux info at OFF always needs adjustment, no matter fast path
18137 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18138 	 * original insn at old prog.
18139 	 */
18140 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18141 
18142 	if (cnt == 1)
18143 		return;
18144 	prog_len = new_prog->len;
18145 
18146 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18147 	memcpy(new_data + off + cnt - 1, old_data + off,
18148 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18149 	for (i = off; i < off + cnt - 1; i++) {
18150 		/* Expand insni[off]'s seen count to the patched range. */
18151 		new_data[i].seen = old_seen;
18152 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18153 	}
18154 	env->insn_aux_data = new_data;
18155 	vfree(old_data);
18156 }
18157 
18158 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18159 {
18160 	int i;
18161 
18162 	if (len == 1)
18163 		return;
18164 	/* NOTE: fake 'exit' subprog should be updated as well. */
18165 	for (i = 0; i <= env->subprog_cnt; i++) {
18166 		if (env->subprog_info[i].start <= off)
18167 			continue;
18168 		env->subprog_info[i].start += len - 1;
18169 	}
18170 }
18171 
18172 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18173 {
18174 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18175 	int i, sz = prog->aux->size_poke_tab;
18176 	struct bpf_jit_poke_descriptor *desc;
18177 
18178 	for (i = 0; i < sz; i++) {
18179 		desc = &tab[i];
18180 		if (desc->insn_idx <= off)
18181 			continue;
18182 		desc->insn_idx += len - 1;
18183 	}
18184 }
18185 
18186 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18187 					    const struct bpf_insn *patch, u32 len)
18188 {
18189 	struct bpf_prog *new_prog;
18190 	struct bpf_insn_aux_data *new_data = NULL;
18191 
18192 	if (len > 1) {
18193 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18194 					      sizeof(struct bpf_insn_aux_data)));
18195 		if (!new_data)
18196 			return NULL;
18197 	}
18198 
18199 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18200 	if (IS_ERR(new_prog)) {
18201 		if (PTR_ERR(new_prog) == -ERANGE)
18202 			verbose(env,
18203 				"insn %d cannot be patched due to 16-bit range\n",
18204 				env->insn_aux_data[off].orig_idx);
18205 		vfree(new_data);
18206 		return NULL;
18207 	}
18208 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18209 	adjust_subprog_starts(env, off, len);
18210 	adjust_poke_descs(new_prog, off, len);
18211 	return new_prog;
18212 }
18213 
18214 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18215 					      u32 off, u32 cnt)
18216 {
18217 	int i, j;
18218 
18219 	/* find first prog starting at or after off (first to remove) */
18220 	for (i = 0; i < env->subprog_cnt; i++)
18221 		if (env->subprog_info[i].start >= off)
18222 			break;
18223 	/* find first prog starting at or after off + cnt (first to stay) */
18224 	for (j = i; j < env->subprog_cnt; j++)
18225 		if (env->subprog_info[j].start >= off + cnt)
18226 			break;
18227 	/* if j doesn't start exactly at off + cnt, we are just removing
18228 	 * the front of previous prog
18229 	 */
18230 	if (env->subprog_info[j].start != off + cnt)
18231 		j--;
18232 
18233 	if (j > i) {
18234 		struct bpf_prog_aux *aux = env->prog->aux;
18235 		int move;
18236 
18237 		/* move fake 'exit' subprog as well */
18238 		move = env->subprog_cnt + 1 - j;
18239 
18240 		memmove(env->subprog_info + i,
18241 			env->subprog_info + j,
18242 			sizeof(*env->subprog_info) * move);
18243 		env->subprog_cnt -= j - i;
18244 
18245 		/* remove func_info */
18246 		if (aux->func_info) {
18247 			move = aux->func_info_cnt - j;
18248 
18249 			memmove(aux->func_info + i,
18250 				aux->func_info + j,
18251 				sizeof(*aux->func_info) * move);
18252 			aux->func_info_cnt -= j - i;
18253 			/* func_info->insn_off is set after all code rewrites,
18254 			 * in adjust_btf_func() - no need to adjust
18255 			 */
18256 		}
18257 	} else {
18258 		/* convert i from "first prog to remove" to "first to adjust" */
18259 		if (env->subprog_info[i].start == off)
18260 			i++;
18261 	}
18262 
18263 	/* update fake 'exit' subprog as well */
18264 	for (; i <= env->subprog_cnt; i++)
18265 		env->subprog_info[i].start -= cnt;
18266 
18267 	return 0;
18268 }
18269 
18270 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18271 				      u32 cnt)
18272 {
18273 	struct bpf_prog *prog = env->prog;
18274 	u32 i, l_off, l_cnt, nr_linfo;
18275 	struct bpf_line_info *linfo;
18276 
18277 	nr_linfo = prog->aux->nr_linfo;
18278 	if (!nr_linfo)
18279 		return 0;
18280 
18281 	linfo = prog->aux->linfo;
18282 
18283 	/* find first line info to remove, count lines to be removed */
18284 	for (i = 0; i < nr_linfo; i++)
18285 		if (linfo[i].insn_off >= off)
18286 			break;
18287 
18288 	l_off = i;
18289 	l_cnt = 0;
18290 	for (; i < nr_linfo; i++)
18291 		if (linfo[i].insn_off < off + cnt)
18292 			l_cnt++;
18293 		else
18294 			break;
18295 
18296 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18297 	 * last removed linfo.  prog is already modified, so prog->len == off
18298 	 * means no live instructions after (tail of the program was removed).
18299 	 */
18300 	if (prog->len != off && l_cnt &&
18301 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18302 		l_cnt--;
18303 		linfo[--i].insn_off = off + cnt;
18304 	}
18305 
18306 	/* remove the line info which refer to the removed instructions */
18307 	if (l_cnt) {
18308 		memmove(linfo + l_off, linfo + i,
18309 			sizeof(*linfo) * (nr_linfo - i));
18310 
18311 		prog->aux->nr_linfo -= l_cnt;
18312 		nr_linfo = prog->aux->nr_linfo;
18313 	}
18314 
18315 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18316 	for (i = l_off; i < nr_linfo; i++)
18317 		linfo[i].insn_off -= cnt;
18318 
18319 	/* fix up all subprogs (incl. 'exit') which start >= off */
18320 	for (i = 0; i <= env->subprog_cnt; i++)
18321 		if (env->subprog_info[i].linfo_idx > l_off) {
18322 			/* program may have started in the removed region but
18323 			 * may not be fully removed
18324 			 */
18325 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18326 				env->subprog_info[i].linfo_idx -= l_cnt;
18327 			else
18328 				env->subprog_info[i].linfo_idx = l_off;
18329 		}
18330 
18331 	return 0;
18332 }
18333 
18334 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18335 {
18336 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18337 	unsigned int orig_prog_len = env->prog->len;
18338 	int err;
18339 
18340 	if (bpf_prog_is_offloaded(env->prog->aux))
18341 		bpf_prog_offload_remove_insns(env, off, cnt);
18342 
18343 	err = bpf_remove_insns(env->prog, off, cnt);
18344 	if (err)
18345 		return err;
18346 
18347 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18348 	if (err)
18349 		return err;
18350 
18351 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18352 	if (err)
18353 		return err;
18354 
18355 	memmove(aux_data + off,	aux_data + off + cnt,
18356 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18357 
18358 	return 0;
18359 }
18360 
18361 /* The verifier does more data flow analysis than llvm and will not
18362  * explore branches that are dead at run time. Malicious programs can
18363  * have dead code too. Therefore replace all dead at-run-time code
18364  * with 'ja -1'.
18365  *
18366  * Just nops are not optimal, e.g. if they would sit at the end of the
18367  * program and through another bug we would manage to jump there, then
18368  * we'd execute beyond program memory otherwise. Returning exception
18369  * code also wouldn't work since we can have subprogs where the dead
18370  * code could be located.
18371  */
18372 static void sanitize_dead_code(struct bpf_verifier_env *env)
18373 {
18374 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18375 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18376 	struct bpf_insn *insn = env->prog->insnsi;
18377 	const int insn_cnt = env->prog->len;
18378 	int i;
18379 
18380 	for (i = 0; i < insn_cnt; i++) {
18381 		if (aux_data[i].seen)
18382 			continue;
18383 		memcpy(insn + i, &trap, sizeof(trap));
18384 		aux_data[i].zext_dst = false;
18385 	}
18386 }
18387 
18388 static bool insn_is_cond_jump(u8 code)
18389 {
18390 	u8 op;
18391 
18392 	op = BPF_OP(code);
18393 	if (BPF_CLASS(code) == BPF_JMP32)
18394 		return op != BPF_JA;
18395 
18396 	if (BPF_CLASS(code) != BPF_JMP)
18397 		return false;
18398 
18399 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18400 }
18401 
18402 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18403 {
18404 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18405 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18406 	struct bpf_insn *insn = env->prog->insnsi;
18407 	const int insn_cnt = env->prog->len;
18408 	int i;
18409 
18410 	for (i = 0; i < insn_cnt; i++, insn++) {
18411 		if (!insn_is_cond_jump(insn->code))
18412 			continue;
18413 
18414 		if (!aux_data[i + 1].seen)
18415 			ja.off = insn->off;
18416 		else if (!aux_data[i + 1 + insn->off].seen)
18417 			ja.off = 0;
18418 		else
18419 			continue;
18420 
18421 		if (bpf_prog_is_offloaded(env->prog->aux))
18422 			bpf_prog_offload_replace_insn(env, i, &ja);
18423 
18424 		memcpy(insn, &ja, sizeof(ja));
18425 	}
18426 }
18427 
18428 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18429 {
18430 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18431 	int insn_cnt = env->prog->len;
18432 	int i, err;
18433 
18434 	for (i = 0; i < insn_cnt; i++) {
18435 		int j;
18436 
18437 		j = 0;
18438 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18439 			j++;
18440 		if (!j)
18441 			continue;
18442 
18443 		err = verifier_remove_insns(env, i, j);
18444 		if (err)
18445 			return err;
18446 		insn_cnt = env->prog->len;
18447 	}
18448 
18449 	return 0;
18450 }
18451 
18452 static int opt_remove_nops(struct bpf_verifier_env *env)
18453 {
18454 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18455 	struct bpf_insn *insn = env->prog->insnsi;
18456 	int insn_cnt = env->prog->len;
18457 	int i, err;
18458 
18459 	for (i = 0; i < insn_cnt; i++) {
18460 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18461 			continue;
18462 
18463 		err = verifier_remove_insns(env, i, 1);
18464 		if (err)
18465 			return err;
18466 		insn_cnt--;
18467 		i--;
18468 	}
18469 
18470 	return 0;
18471 }
18472 
18473 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18474 					 const union bpf_attr *attr)
18475 {
18476 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18477 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18478 	int i, patch_len, delta = 0, len = env->prog->len;
18479 	struct bpf_insn *insns = env->prog->insnsi;
18480 	struct bpf_prog *new_prog;
18481 	bool rnd_hi32;
18482 
18483 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18484 	zext_patch[1] = BPF_ZEXT_REG(0);
18485 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18486 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18487 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18488 	for (i = 0; i < len; i++) {
18489 		int adj_idx = i + delta;
18490 		struct bpf_insn insn;
18491 		int load_reg;
18492 
18493 		insn = insns[adj_idx];
18494 		load_reg = insn_def_regno(&insn);
18495 		if (!aux[adj_idx].zext_dst) {
18496 			u8 code, class;
18497 			u32 imm_rnd;
18498 
18499 			if (!rnd_hi32)
18500 				continue;
18501 
18502 			code = insn.code;
18503 			class = BPF_CLASS(code);
18504 			if (load_reg == -1)
18505 				continue;
18506 
18507 			/* NOTE: arg "reg" (the fourth one) is only used for
18508 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18509 			 *       here.
18510 			 */
18511 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18512 				if (class == BPF_LD &&
18513 				    BPF_MODE(code) == BPF_IMM)
18514 					i++;
18515 				continue;
18516 			}
18517 
18518 			/* ctx load could be transformed into wider load. */
18519 			if (class == BPF_LDX &&
18520 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18521 				continue;
18522 
18523 			imm_rnd = get_random_u32();
18524 			rnd_hi32_patch[0] = insn;
18525 			rnd_hi32_patch[1].imm = imm_rnd;
18526 			rnd_hi32_patch[3].dst_reg = load_reg;
18527 			patch = rnd_hi32_patch;
18528 			patch_len = 4;
18529 			goto apply_patch_buffer;
18530 		}
18531 
18532 		/* Add in an zero-extend instruction if a) the JIT has requested
18533 		 * it or b) it's a CMPXCHG.
18534 		 *
18535 		 * The latter is because: BPF_CMPXCHG always loads a value into
18536 		 * R0, therefore always zero-extends. However some archs'
18537 		 * equivalent instruction only does this load when the
18538 		 * comparison is successful. This detail of CMPXCHG is
18539 		 * orthogonal to the general zero-extension behaviour of the
18540 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18541 		 */
18542 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18543 			continue;
18544 
18545 		/* Zero-extension is done by the caller. */
18546 		if (bpf_pseudo_kfunc_call(&insn))
18547 			continue;
18548 
18549 		if (WARN_ON(load_reg == -1)) {
18550 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18551 			return -EFAULT;
18552 		}
18553 
18554 		zext_patch[0] = insn;
18555 		zext_patch[1].dst_reg = load_reg;
18556 		zext_patch[1].src_reg = load_reg;
18557 		patch = zext_patch;
18558 		patch_len = 2;
18559 apply_patch_buffer:
18560 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18561 		if (!new_prog)
18562 			return -ENOMEM;
18563 		env->prog = new_prog;
18564 		insns = new_prog->insnsi;
18565 		aux = env->insn_aux_data;
18566 		delta += patch_len - 1;
18567 	}
18568 
18569 	return 0;
18570 }
18571 
18572 /* convert load instructions that access fields of a context type into a
18573  * sequence of instructions that access fields of the underlying structure:
18574  *     struct __sk_buff    -> struct sk_buff
18575  *     struct bpf_sock_ops -> struct sock
18576  */
18577 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18578 {
18579 	const struct bpf_verifier_ops *ops = env->ops;
18580 	int i, cnt, size, ctx_field_size, delta = 0;
18581 	const int insn_cnt = env->prog->len;
18582 	struct bpf_insn insn_buf[16], *insn;
18583 	u32 target_size, size_default, off;
18584 	struct bpf_prog *new_prog;
18585 	enum bpf_access_type type;
18586 	bool is_narrower_load;
18587 
18588 	if (ops->gen_prologue || env->seen_direct_write) {
18589 		if (!ops->gen_prologue) {
18590 			verbose(env, "bpf verifier is misconfigured\n");
18591 			return -EINVAL;
18592 		}
18593 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18594 					env->prog);
18595 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18596 			verbose(env, "bpf verifier is misconfigured\n");
18597 			return -EINVAL;
18598 		} else if (cnt) {
18599 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18600 			if (!new_prog)
18601 				return -ENOMEM;
18602 
18603 			env->prog = new_prog;
18604 			delta += cnt - 1;
18605 		}
18606 	}
18607 
18608 	if (bpf_prog_is_offloaded(env->prog->aux))
18609 		return 0;
18610 
18611 	insn = env->prog->insnsi + delta;
18612 
18613 	for (i = 0; i < insn_cnt; i++, insn++) {
18614 		bpf_convert_ctx_access_t convert_ctx_access;
18615 		u8 mode;
18616 
18617 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18618 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18619 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18620 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18621 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18622 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18623 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18624 			type = BPF_READ;
18625 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18626 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18627 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18628 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18629 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18630 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18631 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18632 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18633 			type = BPF_WRITE;
18634 		} else {
18635 			continue;
18636 		}
18637 
18638 		if (type == BPF_WRITE &&
18639 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18640 			struct bpf_insn patch[] = {
18641 				*insn,
18642 				BPF_ST_NOSPEC(),
18643 			};
18644 
18645 			cnt = ARRAY_SIZE(patch);
18646 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18647 			if (!new_prog)
18648 				return -ENOMEM;
18649 
18650 			delta    += cnt - 1;
18651 			env->prog = new_prog;
18652 			insn      = new_prog->insnsi + i + delta;
18653 			continue;
18654 		}
18655 
18656 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18657 		case PTR_TO_CTX:
18658 			if (!ops->convert_ctx_access)
18659 				continue;
18660 			convert_ctx_access = ops->convert_ctx_access;
18661 			break;
18662 		case PTR_TO_SOCKET:
18663 		case PTR_TO_SOCK_COMMON:
18664 			convert_ctx_access = bpf_sock_convert_ctx_access;
18665 			break;
18666 		case PTR_TO_TCP_SOCK:
18667 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18668 			break;
18669 		case PTR_TO_XDP_SOCK:
18670 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18671 			break;
18672 		case PTR_TO_BTF_ID:
18673 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18674 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18675 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18676 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18677 		 * any faults for loads into such types. BPF_WRITE is disallowed
18678 		 * for this case.
18679 		 */
18680 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18681 			if (type == BPF_READ) {
18682 				if (BPF_MODE(insn->code) == BPF_MEM)
18683 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18684 						     BPF_SIZE((insn)->code);
18685 				else
18686 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18687 						     BPF_SIZE((insn)->code);
18688 				env->prog->aux->num_exentries++;
18689 			}
18690 			continue;
18691 		default:
18692 			continue;
18693 		}
18694 
18695 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18696 		size = BPF_LDST_BYTES(insn);
18697 		mode = BPF_MODE(insn->code);
18698 
18699 		/* If the read access is a narrower load of the field,
18700 		 * convert to a 4/8-byte load, to minimum program type specific
18701 		 * convert_ctx_access changes. If conversion is successful,
18702 		 * we will apply proper mask to the result.
18703 		 */
18704 		is_narrower_load = size < ctx_field_size;
18705 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18706 		off = insn->off;
18707 		if (is_narrower_load) {
18708 			u8 size_code;
18709 
18710 			if (type == BPF_WRITE) {
18711 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18712 				return -EINVAL;
18713 			}
18714 
18715 			size_code = BPF_H;
18716 			if (ctx_field_size == 4)
18717 				size_code = BPF_W;
18718 			else if (ctx_field_size == 8)
18719 				size_code = BPF_DW;
18720 
18721 			insn->off = off & ~(size_default - 1);
18722 			insn->code = BPF_LDX | BPF_MEM | size_code;
18723 		}
18724 
18725 		target_size = 0;
18726 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18727 					 &target_size);
18728 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18729 		    (ctx_field_size && !target_size)) {
18730 			verbose(env, "bpf verifier is misconfigured\n");
18731 			return -EINVAL;
18732 		}
18733 
18734 		if (is_narrower_load && size < target_size) {
18735 			u8 shift = bpf_ctx_narrow_access_offset(
18736 				off, size, size_default) * 8;
18737 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18738 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18739 				return -EINVAL;
18740 			}
18741 			if (ctx_field_size <= 4) {
18742 				if (shift)
18743 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18744 									insn->dst_reg,
18745 									shift);
18746 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18747 								(1 << size * 8) - 1);
18748 			} else {
18749 				if (shift)
18750 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18751 									insn->dst_reg,
18752 									shift);
18753 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18754 								(1ULL << size * 8) - 1);
18755 			}
18756 		}
18757 		if (mode == BPF_MEMSX)
18758 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18759 						       insn->dst_reg, insn->dst_reg,
18760 						       size * 8, 0);
18761 
18762 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18763 		if (!new_prog)
18764 			return -ENOMEM;
18765 
18766 		delta += cnt - 1;
18767 
18768 		/* keep walking new program and skip insns we just inserted */
18769 		env->prog = new_prog;
18770 		insn      = new_prog->insnsi + i + delta;
18771 	}
18772 
18773 	return 0;
18774 }
18775 
18776 static int jit_subprogs(struct bpf_verifier_env *env)
18777 {
18778 	struct bpf_prog *prog = env->prog, **func, *tmp;
18779 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18780 	struct bpf_map *map_ptr;
18781 	struct bpf_insn *insn;
18782 	void *old_bpf_func;
18783 	int err, num_exentries;
18784 
18785 	if (env->subprog_cnt <= 1)
18786 		return 0;
18787 
18788 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18789 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18790 			continue;
18791 
18792 		/* Upon error here we cannot fall back to interpreter but
18793 		 * need a hard reject of the program. Thus -EFAULT is
18794 		 * propagated in any case.
18795 		 */
18796 		subprog = find_subprog(env, i + insn->imm + 1);
18797 		if (subprog < 0) {
18798 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18799 				  i + insn->imm + 1);
18800 			return -EFAULT;
18801 		}
18802 		/* temporarily remember subprog id inside insn instead of
18803 		 * aux_data, since next loop will split up all insns into funcs
18804 		 */
18805 		insn->off = subprog;
18806 		/* remember original imm in case JIT fails and fallback
18807 		 * to interpreter will be needed
18808 		 */
18809 		env->insn_aux_data[i].call_imm = insn->imm;
18810 		/* point imm to __bpf_call_base+1 from JITs point of view */
18811 		insn->imm = 1;
18812 		if (bpf_pseudo_func(insn))
18813 			/* jit (e.g. x86_64) may emit fewer instructions
18814 			 * if it learns a u32 imm is the same as a u64 imm.
18815 			 * Force a non zero here.
18816 			 */
18817 			insn[1].imm = 1;
18818 	}
18819 
18820 	err = bpf_prog_alloc_jited_linfo(prog);
18821 	if (err)
18822 		goto out_undo_insn;
18823 
18824 	err = -ENOMEM;
18825 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18826 	if (!func)
18827 		goto out_undo_insn;
18828 
18829 	for (i = 0; i < env->subprog_cnt; i++) {
18830 		subprog_start = subprog_end;
18831 		subprog_end = env->subprog_info[i + 1].start;
18832 
18833 		len = subprog_end - subprog_start;
18834 		/* bpf_prog_run() doesn't call subprogs directly,
18835 		 * hence main prog stats include the runtime of subprogs.
18836 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18837 		 * func[i]->stats will never be accessed and stays NULL
18838 		 */
18839 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18840 		if (!func[i])
18841 			goto out_free;
18842 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18843 		       len * sizeof(struct bpf_insn));
18844 		func[i]->type = prog->type;
18845 		func[i]->len = len;
18846 		if (bpf_prog_calc_tag(func[i]))
18847 			goto out_free;
18848 		func[i]->is_func = 1;
18849 		func[i]->aux->func_idx = i;
18850 		/* Below members will be freed only at prog->aux */
18851 		func[i]->aux->btf = prog->aux->btf;
18852 		func[i]->aux->func_info = prog->aux->func_info;
18853 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18854 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18855 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18856 
18857 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18858 			struct bpf_jit_poke_descriptor *poke;
18859 
18860 			poke = &prog->aux->poke_tab[j];
18861 			if (poke->insn_idx < subprog_end &&
18862 			    poke->insn_idx >= subprog_start)
18863 				poke->aux = func[i]->aux;
18864 		}
18865 
18866 		func[i]->aux->name[0] = 'F';
18867 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18868 		func[i]->jit_requested = 1;
18869 		func[i]->blinding_requested = prog->blinding_requested;
18870 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18871 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18872 		func[i]->aux->linfo = prog->aux->linfo;
18873 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18874 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18875 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18876 		num_exentries = 0;
18877 		insn = func[i]->insnsi;
18878 		for (j = 0; j < func[i]->len; j++, insn++) {
18879 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18880 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18881 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18882 				num_exentries++;
18883 		}
18884 		func[i]->aux->num_exentries = num_exentries;
18885 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18886 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18887 		if (!i)
18888 			func[i]->aux->exception_boundary = env->seen_exception;
18889 		func[i] = bpf_int_jit_compile(func[i]);
18890 		if (!func[i]->jited) {
18891 			err = -ENOTSUPP;
18892 			goto out_free;
18893 		}
18894 		cond_resched();
18895 	}
18896 
18897 	/* at this point all bpf functions were successfully JITed
18898 	 * now populate all bpf_calls with correct addresses and
18899 	 * run last pass of JIT
18900 	 */
18901 	for (i = 0; i < env->subprog_cnt; i++) {
18902 		insn = func[i]->insnsi;
18903 		for (j = 0; j < func[i]->len; j++, insn++) {
18904 			if (bpf_pseudo_func(insn)) {
18905 				subprog = insn->off;
18906 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18907 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18908 				continue;
18909 			}
18910 			if (!bpf_pseudo_call(insn))
18911 				continue;
18912 			subprog = insn->off;
18913 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18914 		}
18915 
18916 		/* we use the aux data to keep a list of the start addresses
18917 		 * of the JITed images for each function in the program
18918 		 *
18919 		 * for some architectures, such as powerpc64, the imm field
18920 		 * might not be large enough to hold the offset of the start
18921 		 * address of the callee's JITed image from __bpf_call_base
18922 		 *
18923 		 * in such cases, we can lookup the start address of a callee
18924 		 * by using its subprog id, available from the off field of
18925 		 * the call instruction, as an index for this list
18926 		 */
18927 		func[i]->aux->func = func;
18928 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18929 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18930 	}
18931 	for (i = 0; i < env->subprog_cnt; i++) {
18932 		old_bpf_func = func[i]->bpf_func;
18933 		tmp = bpf_int_jit_compile(func[i]);
18934 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18935 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18936 			err = -ENOTSUPP;
18937 			goto out_free;
18938 		}
18939 		cond_resched();
18940 	}
18941 
18942 	/* finally lock prog and jit images for all functions and
18943 	 * populate kallsysm. Begin at the first subprogram, since
18944 	 * bpf_prog_load will add the kallsyms for the main program.
18945 	 */
18946 	for (i = 1; i < env->subprog_cnt; i++) {
18947 		bpf_prog_lock_ro(func[i]);
18948 		bpf_prog_kallsyms_add(func[i]);
18949 	}
18950 
18951 	/* Last step: make now unused interpreter insns from main
18952 	 * prog consistent for later dump requests, so they can
18953 	 * later look the same as if they were interpreted only.
18954 	 */
18955 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18956 		if (bpf_pseudo_func(insn)) {
18957 			insn[0].imm = env->insn_aux_data[i].call_imm;
18958 			insn[1].imm = insn->off;
18959 			insn->off = 0;
18960 			continue;
18961 		}
18962 		if (!bpf_pseudo_call(insn))
18963 			continue;
18964 		insn->off = env->insn_aux_data[i].call_imm;
18965 		subprog = find_subprog(env, i + insn->off + 1);
18966 		insn->imm = subprog;
18967 	}
18968 
18969 	prog->jited = 1;
18970 	prog->bpf_func = func[0]->bpf_func;
18971 	prog->jited_len = func[0]->jited_len;
18972 	prog->aux->extable = func[0]->aux->extable;
18973 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18974 	prog->aux->func = func;
18975 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18976 	prog->aux->real_func_cnt = env->subprog_cnt;
18977 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18978 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18979 	bpf_prog_jit_attempt_done(prog);
18980 	return 0;
18981 out_free:
18982 	/* We failed JIT'ing, so at this point we need to unregister poke
18983 	 * descriptors from subprogs, so that kernel is not attempting to
18984 	 * patch it anymore as we're freeing the subprog JIT memory.
18985 	 */
18986 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18987 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18988 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18989 	}
18990 	/* At this point we're guaranteed that poke descriptors are not
18991 	 * live anymore. We can just unlink its descriptor table as it's
18992 	 * released with the main prog.
18993 	 */
18994 	for (i = 0; i < env->subprog_cnt; i++) {
18995 		if (!func[i])
18996 			continue;
18997 		func[i]->aux->poke_tab = NULL;
18998 		bpf_jit_free(func[i]);
18999 	}
19000 	kfree(func);
19001 out_undo_insn:
19002 	/* cleanup main prog to be interpreted */
19003 	prog->jit_requested = 0;
19004 	prog->blinding_requested = 0;
19005 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19006 		if (!bpf_pseudo_call(insn))
19007 			continue;
19008 		insn->off = 0;
19009 		insn->imm = env->insn_aux_data[i].call_imm;
19010 	}
19011 	bpf_prog_jit_attempt_done(prog);
19012 	return err;
19013 }
19014 
19015 static int fixup_call_args(struct bpf_verifier_env *env)
19016 {
19017 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19018 	struct bpf_prog *prog = env->prog;
19019 	struct bpf_insn *insn = prog->insnsi;
19020 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19021 	int i, depth;
19022 #endif
19023 	int err = 0;
19024 
19025 	if (env->prog->jit_requested &&
19026 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19027 		err = jit_subprogs(env);
19028 		if (err == 0)
19029 			return 0;
19030 		if (err == -EFAULT)
19031 			return err;
19032 	}
19033 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19034 	if (has_kfunc_call) {
19035 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19036 		return -EINVAL;
19037 	}
19038 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19039 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19040 		 * have to be rejected, since interpreter doesn't support them yet.
19041 		 */
19042 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19043 		return -EINVAL;
19044 	}
19045 	for (i = 0; i < prog->len; i++, insn++) {
19046 		if (bpf_pseudo_func(insn)) {
19047 			/* When JIT fails the progs with callback calls
19048 			 * have to be rejected, since interpreter doesn't support them yet.
19049 			 */
19050 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19051 			return -EINVAL;
19052 		}
19053 
19054 		if (!bpf_pseudo_call(insn))
19055 			continue;
19056 		depth = get_callee_stack_depth(env, insn, i);
19057 		if (depth < 0)
19058 			return depth;
19059 		bpf_patch_call_args(insn, depth);
19060 	}
19061 	err = 0;
19062 #endif
19063 	return err;
19064 }
19065 
19066 /* replace a generic kfunc with a specialized version if necessary */
19067 static void specialize_kfunc(struct bpf_verifier_env *env,
19068 			     u32 func_id, u16 offset, unsigned long *addr)
19069 {
19070 	struct bpf_prog *prog = env->prog;
19071 	bool seen_direct_write;
19072 	void *xdp_kfunc;
19073 	bool is_rdonly;
19074 
19075 	if (bpf_dev_bound_kfunc_id(func_id)) {
19076 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19077 		if (xdp_kfunc) {
19078 			*addr = (unsigned long)xdp_kfunc;
19079 			return;
19080 		}
19081 		/* fallback to default kfunc when not supported by netdev */
19082 	}
19083 
19084 	if (offset)
19085 		return;
19086 
19087 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19088 		seen_direct_write = env->seen_direct_write;
19089 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19090 
19091 		if (is_rdonly)
19092 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19093 
19094 		/* restore env->seen_direct_write to its original value, since
19095 		 * may_access_direct_pkt_data mutates it
19096 		 */
19097 		env->seen_direct_write = seen_direct_write;
19098 	}
19099 }
19100 
19101 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19102 					    u16 struct_meta_reg,
19103 					    u16 node_offset_reg,
19104 					    struct bpf_insn *insn,
19105 					    struct bpf_insn *insn_buf,
19106 					    int *cnt)
19107 {
19108 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19109 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19110 
19111 	insn_buf[0] = addr[0];
19112 	insn_buf[1] = addr[1];
19113 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19114 	insn_buf[3] = *insn;
19115 	*cnt = 4;
19116 }
19117 
19118 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19119 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19120 {
19121 	const struct bpf_kfunc_desc *desc;
19122 
19123 	if (!insn->imm) {
19124 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19125 		return -EINVAL;
19126 	}
19127 
19128 	*cnt = 0;
19129 
19130 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19131 	 * __bpf_call_base, unless the JIT needs to call functions that are
19132 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19133 	 */
19134 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19135 	if (!desc) {
19136 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19137 			insn->imm);
19138 		return -EFAULT;
19139 	}
19140 
19141 	if (!bpf_jit_supports_far_kfunc_call())
19142 		insn->imm = BPF_CALL_IMM(desc->addr);
19143 	if (insn->off)
19144 		return 0;
19145 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19146 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19147 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19148 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19149 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19150 
19151 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19152 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19153 				insn_idx);
19154 			return -EFAULT;
19155 		}
19156 
19157 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19158 		insn_buf[1] = addr[0];
19159 		insn_buf[2] = addr[1];
19160 		insn_buf[3] = *insn;
19161 		*cnt = 4;
19162 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19163 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19164 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19165 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19166 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19167 
19168 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19169 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19170 				insn_idx);
19171 			return -EFAULT;
19172 		}
19173 
19174 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19175 		    !kptr_struct_meta) {
19176 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19177 				insn_idx);
19178 			return -EFAULT;
19179 		}
19180 
19181 		insn_buf[0] = addr[0];
19182 		insn_buf[1] = addr[1];
19183 		insn_buf[2] = *insn;
19184 		*cnt = 3;
19185 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19186 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19187 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19188 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19189 		int struct_meta_reg = BPF_REG_3;
19190 		int node_offset_reg = BPF_REG_4;
19191 
19192 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19193 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19194 			struct_meta_reg = BPF_REG_4;
19195 			node_offset_reg = BPF_REG_5;
19196 		}
19197 
19198 		if (!kptr_struct_meta) {
19199 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19200 				insn_idx);
19201 			return -EFAULT;
19202 		}
19203 
19204 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19205 						node_offset_reg, insn, insn_buf, cnt);
19206 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19207 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19208 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19209 		*cnt = 1;
19210 	}
19211 	return 0;
19212 }
19213 
19214 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19215 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19216 {
19217 	struct bpf_subprog_info *info = env->subprog_info;
19218 	int cnt = env->subprog_cnt;
19219 	struct bpf_prog *prog;
19220 
19221 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19222 	if (env->hidden_subprog_cnt) {
19223 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19224 		return -EFAULT;
19225 	}
19226 	/* We're not patching any existing instruction, just appending the new
19227 	 * ones for the hidden subprog. Hence all of the adjustment operations
19228 	 * in bpf_patch_insn_data are no-ops.
19229 	 */
19230 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19231 	if (!prog)
19232 		return -ENOMEM;
19233 	env->prog = prog;
19234 	info[cnt + 1].start = info[cnt].start;
19235 	info[cnt].start = prog->len - len + 1;
19236 	env->subprog_cnt++;
19237 	env->hidden_subprog_cnt++;
19238 	return 0;
19239 }
19240 
19241 /* Do various post-verification rewrites in a single program pass.
19242  * These rewrites simplify JIT and interpreter implementations.
19243  */
19244 static int do_misc_fixups(struct bpf_verifier_env *env)
19245 {
19246 	struct bpf_prog *prog = env->prog;
19247 	enum bpf_attach_type eatype = prog->expected_attach_type;
19248 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19249 	struct bpf_insn *insn = prog->insnsi;
19250 	const struct bpf_func_proto *fn;
19251 	const int insn_cnt = prog->len;
19252 	const struct bpf_map_ops *ops;
19253 	struct bpf_insn_aux_data *aux;
19254 	struct bpf_insn insn_buf[16];
19255 	struct bpf_prog *new_prog;
19256 	struct bpf_map *map_ptr;
19257 	int i, ret, cnt, delta = 0;
19258 
19259 	if (env->seen_exception && !env->exception_callback_subprog) {
19260 		struct bpf_insn patch[] = {
19261 			env->prog->insnsi[insn_cnt - 1],
19262 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19263 			BPF_EXIT_INSN(),
19264 		};
19265 
19266 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19267 		if (ret < 0)
19268 			return ret;
19269 		prog = env->prog;
19270 		insn = prog->insnsi;
19271 
19272 		env->exception_callback_subprog = env->subprog_cnt - 1;
19273 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19274 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
19275 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
19276 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
19277 	}
19278 
19279 	for (i = 0; i < insn_cnt; i++, insn++) {
19280 		/* Make divide-by-zero exceptions impossible. */
19281 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19282 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19283 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19284 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19285 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19286 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19287 			struct bpf_insn *patchlet;
19288 			struct bpf_insn chk_and_div[] = {
19289 				/* [R,W]x div 0 -> 0 */
19290 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19291 					     BPF_JNE | BPF_K, insn->src_reg,
19292 					     0, 2, 0),
19293 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19294 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19295 				*insn,
19296 			};
19297 			struct bpf_insn chk_and_mod[] = {
19298 				/* [R,W]x mod 0 -> [R,W]x */
19299 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19300 					     BPF_JEQ | BPF_K, insn->src_reg,
19301 					     0, 1 + (is64 ? 0 : 1), 0),
19302 				*insn,
19303 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19304 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19305 			};
19306 
19307 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19308 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19309 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19310 
19311 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19312 			if (!new_prog)
19313 				return -ENOMEM;
19314 
19315 			delta    += cnt - 1;
19316 			env->prog = prog = new_prog;
19317 			insn      = new_prog->insnsi + i + delta;
19318 			continue;
19319 		}
19320 
19321 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19322 		if (BPF_CLASS(insn->code) == BPF_LD &&
19323 		    (BPF_MODE(insn->code) == BPF_ABS ||
19324 		     BPF_MODE(insn->code) == BPF_IND)) {
19325 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19326 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19327 				verbose(env, "bpf verifier is misconfigured\n");
19328 				return -EINVAL;
19329 			}
19330 
19331 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19332 			if (!new_prog)
19333 				return -ENOMEM;
19334 
19335 			delta    += cnt - 1;
19336 			env->prog = prog = new_prog;
19337 			insn      = new_prog->insnsi + i + delta;
19338 			continue;
19339 		}
19340 
19341 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19342 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19343 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19344 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19345 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19346 			struct bpf_insn *patch = &insn_buf[0];
19347 			bool issrc, isneg, isimm;
19348 			u32 off_reg;
19349 
19350 			aux = &env->insn_aux_data[i + delta];
19351 			if (!aux->alu_state ||
19352 			    aux->alu_state == BPF_ALU_NON_POINTER)
19353 				continue;
19354 
19355 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19356 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19357 				BPF_ALU_SANITIZE_SRC;
19358 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19359 
19360 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19361 			if (isimm) {
19362 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19363 			} else {
19364 				if (isneg)
19365 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19366 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19367 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19368 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19369 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19370 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19371 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19372 			}
19373 			if (!issrc)
19374 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19375 			insn->src_reg = BPF_REG_AX;
19376 			if (isneg)
19377 				insn->code = insn->code == code_add ?
19378 					     code_sub : code_add;
19379 			*patch++ = *insn;
19380 			if (issrc && isneg && !isimm)
19381 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19382 			cnt = patch - insn_buf;
19383 
19384 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19385 			if (!new_prog)
19386 				return -ENOMEM;
19387 
19388 			delta    += cnt - 1;
19389 			env->prog = prog = new_prog;
19390 			insn      = new_prog->insnsi + i + delta;
19391 			continue;
19392 		}
19393 
19394 		if (insn->code != (BPF_JMP | BPF_CALL))
19395 			continue;
19396 		if (insn->src_reg == BPF_PSEUDO_CALL)
19397 			continue;
19398 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19399 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19400 			if (ret)
19401 				return ret;
19402 			if (cnt == 0)
19403 				continue;
19404 
19405 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19406 			if (!new_prog)
19407 				return -ENOMEM;
19408 
19409 			delta	 += cnt - 1;
19410 			env->prog = prog = new_prog;
19411 			insn	  = new_prog->insnsi + i + delta;
19412 			continue;
19413 		}
19414 
19415 		if (insn->imm == BPF_FUNC_get_route_realm)
19416 			prog->dst_needed = 1;
19417 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19418 			bpf_user_rnd_init_once();
19419 		if (insn->imm == BPF_FUNC_override_return)
19420 			prog->kprobe_override = 1;
19421 		if (insn->imm == BPF_FUNC_tail_call) {
19422 			/* If we tail call into other programs, we
19423 			 * cannot make any assumptions since they can
19424 			 * be replaced dynamically during runtime in
19425 			 * the program array.
19426 			 */
19427 			prog->cb_access = 1;
19428 			if (!allow_tail_call_in_subprogs(env))
19429 				prog->aux->stack_depth = MAX_BPF_STACK;
19430 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19431 
19432 			/* mark bpf_tail_call as different opcode to avoid
19433 			 * conditional branch in the interpreter for every normal
19434 			 * call and to prevent accidental JITing by JIT compiler
19435 			 * that doesn't support bpf_tail_call yet
19436 			 */
19437 			insn->imm = 0;
19438 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19439 
19440 			aux = &env->insn_aux_data[i + delta];
19441 			if (env->bpf_capable && !prog->blinding_requested &&
19442 			    prog->jit_requested &&
19443 			    !bpf_map_key_poisoned(aux) &&
19444 			    !bpf_map_ptr_poisoned(aux) &&
19445 			    !bpf_map_ptr_unpriv(aux)) {
19446 				struct bpf_jit_poke_descriptor desc = {
19447 					.reason = BPF_POKE_REASON_TAIL_CALL,
19448 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19449 					.tail_call.key = bpf_map_key_immediate(aux),
19450 					.insn_idx = i + delta,
19451 				};
19452 
19453 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19454 				if (ret < 0) {
19455 					verbose(env, "adding tail call poke descriptor failed\n");
19456 					return ret;
19457 				}
19458 
19459 				insn->imm = ret + 1;
19460 				continue;
19461 			}
19462 
19463 			if (!bpf_map_ptr_unpriv(aux))
19464 				continue;
19465 
19466 			/* instead of changing every JIT dealing with tail_call
19467 			 * emit two extra insns:
19468 			 * if (index >= max_entries) goto out;
19469 			 * index &= array->index_mask;
19470 			 * to avoid out-of-bounds cpu speculation
19471 			 */
19472 			if (bpf_map_ptr_poisoned(aux)) {
19473 				verbose(env, "tail_call abusing map_ptr\n");
19474 				return -EINVAL;
19475 			}
19476 
19477 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19478 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19479 						  map_ptr->max_entries, 2);
19480 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19481 						    container_of(map_ptr,
19482 								 struct bpf_array,
19483 								 map)->index_mask);
19484 			insn_buf[2] = *insn;
19485 			cnt = 3;
19486 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19487 			if (!new_prog)
19488 				return -ENOMEM;
19489 
19490 			delta    += cnt - 1;
19491 			env->prog = prog = new_prog;
19492 			insn      = new_prog->insnsi + i + delta;
19493 			continue;
19494 		}
19495 
19496 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19497 			/* The verifier will process callback_fn as many times as necessary
19498 			 * with different maps and the register states prepared by
19499 			 * set_timer_callback_state will be accurate.
19500 			 *
19501 			 * The following use case is valid:
19502 			 *   map1 is shared by prog1, prog2, prog3.
19503 			 *   prog1 calls bpf_timer_init for some map1 elements
19504 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19505 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19506 			 *   prog3 calls bpf_timer_start for some map1 elements.
19507 			 *     Those that were not both bpf_timer_init-ed and
19508 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19509 			 */
19510 			struct bpf_insn ld_addrs[2] = {
19511 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19512 			};
19513 
19514 			insn_buf[0] = ld_addrs[0];
19515 			insn_buf[1] = ld_addrs[1];
19516 			insn_buf[2] = *insn;
19517 			cnt = 3;
19518 
19519 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19520 			if (!new_prog)
19521 				return -ENOMEM;
19522 
19523 			delta    += cnt - 1;
19524 			env->prog = prog = new_prog;
19525 			insn      = new_prog->insnsi + i + delta;
19526 			goto patch_call_imm;
19527 		}
19528 
19529 		if (is_storage_get_function(insn->imm)) {
19530 			if (!env->prog->aux->sleepable ||
19531 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19532 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19533 			else
19534 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19535 			insn_buf[1] = *insn;
19536 			cnt = 2;
19537 
19538 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19539 			if (!new_prog)
19540 				return -ENOMEM;
19541 
19542 			delta += cnt - 1;
19543 			env->prog = prog = new_prog;
19544 			insn = new_prog->insnsi + i + delta;
19545 			goto patch_call_imm;
19546 		}
19547 
19548 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19549 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19550 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19551 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19552 			 */
19553 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19554 			insn_buf[1] = *insn;
19555 			cnt = 2;
19556 
19557 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19558 			if (!new_prog)
19559 				return -ENOMEM;
19560 
19561 			delta += cnt - 1;
19562 			env->prog = prog = new_prog;
19563 			insn = new_prog->insnsi + i + delta;
19564 			goto patch_call_imm;
19565 		}
19566 
19567 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19568 		 * and other inlining handlers are currently limited to 64 bit
19569 		 * only.
19570 		 */
19571 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19572 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19573 		     insn->imm == BPF_FUNC_map_update_elem ||
19574 		     insn->imm == BPF_FUNC_map_delete_elem ||
19575 		     insn->imm == BPF_FUNC_map_push_elem   ||
19576 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19577 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19578 		     insn->imm == BPF_FUNC_redirect_map    ||
19579 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19580 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19581 			aux = &env->insn_aux_data[i + delta];
19582 			if (bpf_map_ptr_poisoned(aux))
19583 				goto patch_call_imm;
19584 
19585 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19586 			ops = map_ptr->ops;
19587 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19588 			    ops->map_gen_lookup) {
19589 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19590 				if (cnt == -EOPNOTSUPP)
19591 					goto patch_map_ops_generic;
19592 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19593 					verbose(env, "bpf verifier is misconfigured\n");
19594 					return -EINVAL;
19595 				}
19596 
19597 				new_prog = bpf_patch_insn_data(env, i + delta,
19598 							       insn_buf, cnt);
19599 				if (!new_prog)
19600 					return -ENOMEM;
19601 
19602 				delta    += cnt - 1;
19603 				env->prog = prog = new_prog;
19604 				insn      = new_prog->insnsi + i + delta;
19605 				continue;
19606 			}
19607 
19608 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19609 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19610 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19611 				     (long (*)(struct bpf_map *map, void *key))NULL));
19612 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19613 				     (long (*)(struct bpf_map *map, void *key, void *value,
19614 					      u64 flags))NULL));
19615 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19616 				     (long (*)(struct bpf_map *map, void *value,
19617 					      u64 flags))NULL));
19618 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19619 				     (long (*)(struct bpf_map *map, void *value))NULL));
19620 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19621 				     (long (*)(struct bpf_map *map, void *value))NULL));
19622 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19623 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19624 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19625 				     (long (*)(struct bpf_map *map,
19626 					      bpf_callback_t callback_fn,
19627 					      void *callback_ctx,
19628 					      u64 flags))NULL));
19629 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19630 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19631 
19632 patch_map_ops_generic:
19633 			switch (insn->imm) {
19634 			case BPF_FUNC_map_lookup_elem:
19635 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19636 				continue;
19637 			case BPF_FUNC_map_update_elem:
19638 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19639 				continue;
19640 			case BPF_FUNC_map_delete_elem:
19641 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19642 				continue;
19643 			case BPF_FUNC_map_push_elem:
19644 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19645 				continue;
19646 			case BPF_FUNC_map_pop_elem:
19647 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19648 				continue;
19649 			case BPF_FUNC_map_peek_elem:
19650 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19651 				continue;
19652 			case BPF_FUNC_redirect_map:
19653 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19654 				continue;
19655 			case BPF_FUNC_for_each_map_elem:
19656 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19657 				continue;
19658 			case BPF_FUNC_map_lookup_percpu_elem:
19659 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19660 				continue;
19661 			}
19662 
19663 			goto patch_call_imm;
19664 		}
19665 
19666 		/* Implement bpf_jiffies64 inline. */
19667 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19668 		    insn->imm == BPF_FUNC_jiffies64) {
19669 			struct bpf_insn ld_jiffies_addr[2] = {
19670 				BPF_LD_IMM64(BPF_REG_0,
19671 					     (unsigned long)&jiffies),
19672 			};
19673 
19674 			insn_buf[0] = ld_jiffies_addr[0];
19675 			insn_buf[1] = ld_jiffies_addr[1];
19676 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19677 						  BPF_REG_0, 0);
19678 			cnt = 3;
19679 
19680 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19681 						       cnt);
19682 			if (!new_prog)
19683 				return -ENOMEM;
19684 
19685 			delta    += cnt - 1;
19686 			env->prog = prog = new_prog;
19687 			insn      = new_prog->insnsi + i + delta;
19688 			continue;
19689 		}
19690 
19691 		/* Implement bpf_get_func_arg inline. */
19692 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19693 		    insn->imm == BPF_FUNC_get_func_arg) {
19694 			/* Load nr_args from ctx - 8 */
19695 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19696 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19697 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19698 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19699 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19700 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19701 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19702 			insn_buf[7] = BPF_JMP_A(1);
19703 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19704 			cnt = 9;
19705 
19706 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19707 			if (!new_prog)
19708 				return -ENOMEM;
19709 
19710 			delta    += cnt - 1;
19711 			env->prog = prog = new_prog;
19712 			insn      = new_prog->insnsi + i + delta;
19713 			continue;
19714 		}
19715 
19716 		/* Implement bpf_get_func_ret inline. */
19717 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19718 		    insn->imm == BPF_FUNC_get_func_ret) {
19719 			if (eatype == BPF_TRACE_FEXIT ||
19720 			    eatype == BPF_MODIFY_RETURN) {
19721 				/* Load nr_args from ctx - 8 */
19722 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19723 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19724 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19725 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19726 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19727 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19728 				cnt = 6;
19729 			} else {
19730 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19731 				cnt = 1;
19732 			}
19733 
19734 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19735 			if (!new_prog)
19736 				return -ENOMEM;
19737 
19738 			delta    += cnt - 1;
19739 			env->prog = prog = new_prog;
19740 			insn      = new_prog->insnsi + i + delta;
19741 			continue;
19742 		}
19743 
19744 		/* Implement get_func_arg_cnt inline. */
19745 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19746 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19747 			/* Load nr_args from ctx - 8 */
19748 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19749 
19750 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19751 			if (!new_prog)
19752 				return -ENOMEM;
19753 
19754 			env->prog = prog = new_prog;
19755 			insn      = new_prog->insnsi + i + delta;
19756 			continue;
19757 		}
19758 
19759 		/* Implement bpf_get_func_ip inline. */
19760 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19761 		    insn->imm == BPF_FUNC_get_func_ip) {
19762 			/* Load IP address from ctx - 16 */
19763 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19764 
19765 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19766 			if (!new_prog)
19767 				return -ENOMEM;
19768 
19769 			env->prog = prog = new_prog;
19770 			insn      = new_prog->insnsi + i + delta;
19771 			continue;
19772 		}
19773 
19774 patch_call_imm:
19775 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19776 		/* all functions that have prototype and verifier allowed
19777 		 * programs to call them, must be real in-kernel functions
19778 		 */
19779 		if (!fn->func) {
19780 			verbose(env,
19781 				"kernel subsystem misconfigured func %s#%d\n",
19782 				func_id_name(insn->imm), insn->imm);
19783 			return -EFAULT;
19784 		}
19785 		insn->imm = fn->func - __bpf_call_base;
19786 	}
19787 
19788 	/* Since poke tab is now finalized, publish aux to tracker. */
19789 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19790 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19791 		if (!map_ptr->ops->map_poke_track ||
19792 		    !map_ptr->ops->map_poke_untrack ||
19793 		    !map_ptr->ops->map_poke_run) {
19794 			verbose(env, "bpf verifier is misconfigured\n");
19795 			return -EINVAL;
19796 		}
19797 
19798 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19799 		if (ret < 0) {
19800 			verbose(env, "tracking tail call prog failed\n");
19801 			return ret;
19802 		}
19803 	}
19804 
19805 	sort_kfunc_descs_by_imm_off(env->prog);
19806 
19807 	return 0;
19808 }
19809 
19810 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19811 					int position,
19812 					s32 stack_base,
19813 					u32 callback_subprogno,
19814 					u32 *cnt)
19815 {
19816 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19817 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19818 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19819 	int reg_loop_max = BPF_REG_6;
19820 	int reg_loop_cnt = BPF_REG_7;
19821 	int reg_loop_ctx = BPF_REG_8;
19822 
19823 	struct bpf_prog *new_prog;
19824 	u32 callback_start;
19825 	u32 call_insn_offset;
19826 	s32 callback_offset;
19827 
19828 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19829 	 * be careful to modify this code in sync.
19830 	 */
19831 	struct bpf_insn insn_buf[] = {
19832 		/* Return error and jump to the end of the patch if
19833 		 * expected number of iterations is too big.
19834 		 */
19835 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19836 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19837 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19838 		/* spill R6, R7, R8 to use these as loop vars */
19839 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19840 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19841 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19842 		/* initialize loop vars */
19843 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19844 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19845 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19846 		/* loop header,
19847 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19848 		 */
19849 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19850 		/* callback call,
19851 		 * correct callback offset would be set after patching
19852 		 */
19853 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19854 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19855 		BPF_CALL_REL(0),
19856 		/* increment loop counter */
19857 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19858 		/* jump to loop header if callback returned 0 */
19859 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19860 		/* return value of bpf_loop,
19861 		 * set R0 to the number of iterations
19862 		 */
19863 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19864 		/* restore original values of R6, R7, R8 */
19865 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19866 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19867 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19868 	};
19869 
19870 	*cnt = ARRAY_SIZE(insn_buf);
19871 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19872 	if (!new_prog)
19873 		return new_prog;
19874 
19875 	/* callback start is known only after patching */
19876 	callback_start = env->subprog_info[callback_subprogno].start;
19877 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19878 	call_insn_offset = position + 12;
19879 	callback_offset = callback_start - call_insn_offset - 1;
19880 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19881 
19882 	return new_prog;
19883 }
19884 
19885 static bool is_bpf_loop_call(struct bpf_insn *insn)
19886 {
19887 	return insn->code == (BPF_JMP | BPF_CALL) &&
19888 		insn->src_reg == 0 &&
19889 		insn->imm == BPF_FUNC_loop;
19890 }
19891 
19892 /* For all sub-programs in the program (including main) check
19893  * insn_aux_data to see if there are bpf_loop calls that require
19894  * inlining. If such calls are found the calls are replaced with a
19895  * sequence of instructions produced by `inline_bpf_loop` function and
19896  * subprog stack_depth is increased by the size of 3 registers.
19897  * This stack space is used to spill values of the R6, R7, R8.  These
19898  * registers are used to store the loop bound, counter and context
19899  * variables.
19900  */
19901 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19902 {
19903 	struct bpf_subprog_info *subprogs = env->subprog_info;
19904 	int i, cur_subprog = 0, cnt, delta = 0;
19905 	struct bpf_insn *insn = env->prog->insnsi;
19906 	int insn_cnt = env->prog->len;
19907 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19908 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19909 	u16 stack_depth_extra = 0;
19910 
19911 	for (i = 0; i < insn_cnt; i++, insn++) {
19912 		struct bpf_loop_inline_state *inline_state =
19913 			&env->insn_aux_data[i + delta].loop_inline_state;
19914 
19915 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19916 			struct bpf_prog *new_prog;
19917 
19918 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19919 			new_prog = inline_bpf_loop(env,
19920 						   i + delta,
19921 						   -(stack_depth + stack_depth_extra),
19922 						   inline_state->callback_subprogno,
19923 						   &cnt);
19924 			if (!new_prog)
19925 				return -ENOMEM;
19926 
19927 			delta     += cnt - 1;
19928 			env->prog  = new_prog;
19929 			insn       = new_prog->insnsi + i + delta;
19930 		}
19931 
19932 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19933 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19934 			cur_subprog++;
19935 			stack_depth = subprogs[cur_subprog].stack_depth;
19936 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19937 			stack_depth_extra = 0;
19938 		}
19939 	}
19940 
19941 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19942 
19943 	return 0;
19944 }
19945 
19946 static void free_states(struct bpf_verifier_env *env)
19947 {
19948 	struct bpf_verifier_state_list *sl, *sln;
19949 	int i;
19950 
19951 	sl = env->free_list;
19952 	while (sl) {
19953 		sln = sl->next;
19954 		free_verifier_state(&sl->state, false);
19955 		kfree(sl);
19956 		sl = sln;
19957 	}
19958 	env->free_list = NULL;
19959 
19960 	if (!env->explored_states)
19961 		return;
19962 
19963 	for (i = 0; i < state_htab_size(env); i++) {
19964 		sl = env->explored_states[i];
19965 
19966 		while (sl) {
19967 			sln = sl->next;
19968 			free_verifier_state(&sl->state, false);
19969 			kfree(sl);
19970 			sl = sln;
19971 		}
19972 		env->explored_states[i] = NULL;
19973 	}
19974 }
19975 
19976 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19977 {
19978 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19979 	struct bpf_verifier_state *state;
19980 	struct bpf_reg_state *regs;
19981 	int ret, i;
19982 
19983 	env->prev_linfo = NULL;
19984 	env->pass_cnt++;
19985 
19986 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19987 	if (!state)
19988 		return -ENOMEM;
19989 	state->curframe = 0;
19990 	state->speculative = false;
19991 	state->branches = 1;
19992 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19993 	if (!state->frame[0]) {
19994 		kfree(state);
19995 		return -ENOMEM;
19996 	}
19997 	env->cur_state = state;
19998 	init_func_state(env, state->frame[0],
19999 			BPF_MAIN_FUNC /* callsite */,
20000 			0 /* frameno */,
20001 			subprog);
20002 	state->first_insn_idx = env->subprog_info[subprog].start;
20003 	state->last_insn_idx = -1;
20004 
20005 	regs = state->frame[state->curframe]->regs;
20006 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20007 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
20008 		if (ret)
20009 			goto out;
20010 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
20011 			if (regs[i].type == PTR_TO_CTX)
20012 				mark_reg_known_zero(env, regs, i);
20013 			else if (regs[i].type == SCALAR_VALUE)
20014 				mark_reg_unknown(env, regs, i);
20015 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
20016 				const u32 mem_size = regs[i].mem_size;
20017 
20018 				mark_reg_known_zero(env, regs, i);
20019 				regs[i].mem_size = mem_size;
20020 				regs[i].id = ++env->id_gen;
20021 			}
20022 		}
20023 		if (is_ex_cb) {
20024 			state->frame[0]->in_exception_callback_fn = true;
20025 			env->subprog_info[subprog].is_cb = true;
20026 			env->subprog_info[subprog].is_async_cb = true;
20027 			env->subprog_info[subprog].is_exception_cb = true;
20028 		}
20029 	} else {
20030 		/* 1st arg to a function */
20031 		regs[BPF_REG_1].type = PTR_TO_CTX;
20032 		mark_reg_known_zero(env, regs, BPF_REG_1);
20033 		ret = btf_check_subprog_arg_match(env, subprog, regs);
20034 		if (ret == -EFAULT)
20035 			/* unlikely verifier bug. abort.
20036 			 * ret == 0 and ret < 0 are sadly acceptable for
20037 			 * main() function due to backward compatibility.
20038 			 * Like socket filter program may be written as:
20039 			 * int bpf_prog(struct pt_regs *ctx)
20040 			 * and never dereference that ctx in the program.
20041 			 * 'struct pt_regs' is a type mismatch for socket
20042 			 * filter that should be using 'struct __sk_buff'.
20043 			 */
20044 			goto out;
20045 	}
20046 
20047 	ret = do_check(env);
20048 out:
20049 	/* check for NULL is necessary, since cur_state can be freed inside
20050 	 * do_check() under memory pressure.
20051 	 */
20052 	if (env->cur_state) {
20053 		free_verifier_state(env->cur_state, true);
20054 		env->cur_state = NULL;
20055 	}
20056 	while (!pop_stack(env, NULL, NULL, false));
20057 	if (!ret && pop_log)
20058 		bpf_vlog_reset(&env->log, 0);
20059 	free_states(env);
20060 	return ret;
20061 }
20062 
20063 /* Verify all global functions in a BPF program one by one based on their BTF.
20064  * All global functions must pass verification. Otherwise the whole program is rejected.
20065  * Consider:
20066  * int bar(int);
20067  * int foo(int f)
20068  * {
20069  *    return bar(f);
20070  * }
20071  * int bar(int b)
20072  * {
20073  *    ...
20074  * }
20075  * foo() will be verified first for R1=any_scalar_value. During verification it
20076  * will be assumed that bar() already verified successfully and call to bar()
20077  * from foo() will be checked for type match only. Later bar() will be verified
20078  * independently to check that it's safe for R1=any_scalar_value.
20079  */
20080 static int do_check_subprogs(struct bpf_verifier_env *env)
20081 {
20082 	struct bpf_prog_aux *aux = env->prog->aux;
20083 	int i, ret;
20084 
20085 	if (!aux->func_info)
20086 		return 0;
20087 
20088 	for (i = 1; i < env->subprog_cnt; i++) {
20089 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
20090 			continue;
20091 		env->insn_idx = env->subprog_info[i].start;
20092 		WARN_ON_ONCE(env->insn_idx == 0);
20093 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
20094 		if (ret) {
20095 			return ret;
20096 		} else if (env->log.level & BPF_LOG_LEVEL) {
20097 			verbose(env,
20098 				"Func#%d is safe for any args that match its prototype\n",
20099 				i);
20100 		}
20101 	}
20102 	return 0;
20103 }
20104 
20105 static int do_check_main(struct bpf_verifier_env *env)
20106 {
20107 	int ret;
20108 
20109 	env->insn_idx = 0;
20110 	ret = do_check_common(env, 0, false);
20111 	if (!ret)
20112 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20113 	return ret;
20114 }
20115 
20116 
20117 static void print_verification_stats(struct bpf_verifier_env *env)
20118 {
20119 	int i;
20120 
20121 	if (env->log.level & BPF_LOG_STATS) {
20122 		verbose(env, "verification time %lld usec\n",
20123 			div_u64(env->verification_time, 1000));
20124 		verbose(env, "stack depth ");
20125 		for (i = 0; i < env->subprog_cnt; i++) {
20126 			u32 depth = env->subprog_info[i].stack_depth;
20127 
20128 			verbose(env, "%d", depth);
20129 			if (i + 1 < env->subprog_cnt)
20130 				verbose(env, "+");
20131 		}
20132 		verbose(env, "\n");
20133 	}
20134 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20135 		"total_states %d peak_states %d mark_read %d\n",
20136 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20137 		env->max_states_per_insn, env->total_states,
20138 		env->peak_states, env->longest_mark_read_walk);
20139 }
20140 
20141 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20142 {
20143 	const struct btf_type *t, *func_proto;
20144 	const struct bpf_struct_ops *st_ops;
20145 	const struct btf_member *member;
20146 	struct bpf_prog *prog = env->prog;
20147 	u32 btf_id, member_idx;
20148 	const char *mname;
20149 
20150 	if (!prog->gpl_compatible) {
20151 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20152 		return -EINVAL;
20153 	}
20154 
20155 	btf_id = prog->aux->attach_btf_id;
20156 	st_ops = bpf_struct_ops_find(btf_id);
20157 	if (!st_ops) {
20158 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20159 			btf_id);
20160 		return -ENOTSUPP;
20161 	}
20162 
20163 	t = st_ops->type;
20164 	member_idx = prog->expected_attach_type;
20165 	if (member_idx >= btf_type_vlen(t)) {
20166 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20167 			member_idx, st_ops->name);
20168 		return -EINVAL;
20169 	}
20170 
20171 	member = &btf_type_member(t)[member_idx];
20172 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20173 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20174 					       NULL);
20175 	if (!func_proto) {
20176 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20177 			mname, member_idx, st_ops->name);
20178 		return -EINVAL;
20179 	}
20180 
20181 	if (st_ops->check_member) {
20182 		int err = st_ops->check_member(t, member, prog);
20183 
20184 		if (err) {
20185 			verbose(env, "attach to unsupported member %s of struct %s\n",
20186 				mname, st_ops->name);
20187 			return err;
20188 		}
20189 	}
20190 
20191 	prog->aux->attach_func_proto = func_proto;
20192 	prog->aux->attach_func_name = mname;
20193 	env->ops = st_ops->verifier_ops;
20194 
20195 	return 0;
20196 }
20197 #define SECURITY_PREFIX "security_"
20198 
20199 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20200 {
20201 	if (within_error_injection_list(addr) ||
20202 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20203 		return 0;
20204 
20205 	return -EINVAL;
20206 }
20207 
20208 /* list of non-sleepable functions that are otherwise on
20209  * ALLOW_ERROR_INJECTION list
20210  */
20211 BTF_SET_START(btf_non_sleepable_error_inject)
20212 /* Three functions below can be called from sleepable and non-sleepable context.
20213  * Assume non-sleepable from bpf safety point of view.
20214  */
20215 BTF_ID(func, __filemap_add_folio)
20216 BTF_ID(func, should_fail_alloc_page)
20217 BTF_ID(func, should_failslab)
20218 BTF_SET_END(btf_non_sleepable_error_inject)
20219 
20220 static int check_non_sleepable_error_inject(u32 btf_id)
20221 {
20222 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20223 }
20224 
20225 int bpf_check_attach_target(struct bpf_verifier_log *log,
20226 			    const struct bpf_prog *prog,
20227 			    const struct bpf_prog *tgt_prog,
20228 			    u32 btf_id,
20229 			    struct bpf_attach_target_info *tgt_info)
20230 {
20231 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20232 	const char prefix[] = "btf_trace_";
20233 	int ret = 0, subprog = -1, i;
20234 	const struct btf_type *t;
20235 	bool conservative = true;
20236 	const char *tname;
20237 	struct btf *btf;
20238 	long addr = 0;
20239 	struct module *mod = NULL;
20240 
20241 	if (!btf_id) {
20242 		bpf_log(log, "Tracing programs must provide btf_id\n");
20243 		return -EINVAL;
20244 	}
20245 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20246 	if (!btf) {
20247 		bpf_log(log,
20248 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20249 		return -EINVAL;
20250 	}
20251 	t = btf_type_by_id(btf, btf_id);
20252 	if (!t) {
20253 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20254 		return -EINVAL;
20255 	}
20256 	tname = btf_name_by_offset(btf, t->name_off);
20257 	if (!tname) {
20258 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20259 		return -EINVAL;
20260 	}
20261 	if (tgt_prog) {
20262 		struct bpf_prog_aux *aux = tgt_prog->aux;
20263 
20264 		if (bpf_prog_is_dev_bound(prog->aux) &&
20265 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20266 			bpf_log(log, "Target program bound device mismatch");
20267 			return -EINVAL;
20268 		}
20269 
20270 		for (i = 0; i < aux->func_info_cnt; i++)
20271 			if (aux->func_info[i].type_id == btf_id) {
20272 				subprog = i;
20273 				break;
20274 			}
20275 		if (subprog == -1) {
20276 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20277 			return -EINVAL;
20278 		}
20279 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20280 			bpf_log(log,
20281 				"%s programs cannot attach to exception callback\n",
20282 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20283 			return -EINVAL;
20284 		}
20285 		conservative = aux->func_info_aux[subprog].unreliable;
20286 		if (prog_extension) {
20287 			if (conservative) {
20288 				bpf_log(log,
20289 					"Cannot replace static functions\n");
20290 				return -EINVAL;
20291 			}
20292 			if (!prog->jit_requested) {
20293 				bpf_log(log,
20294 					"Extension programs should be JITed\n");
20295 				return -EINVAL;
20296 			}
20297 		}
20298 		if (!tgt_prog->jited) {
20299 			bpf_log(log, "Can attach to only JITed progs\n");
20300 			return -EINVAL;
20301 		}
20302 		if (tgt_prog->type == prog->type) {
20303 			/* Cannot fentry/fexit another fentry/fexit program.
20304 			 * Cannot attach program extension to another extension.
20305 			 * It's ok to attach fentry/fexit to extension program.
20306 			 */
20307 			bpf_log(log, "Cannot recursively attach\n");
20308 			return -EINVAL;
20309 		}
20310 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20311 		    prog_extension &&
20312 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20313 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20314 			/* Program extensions can extend all program types
20315 			 * except fentry/fexit. The reason is the following.
20316 			 * The fentry/fexit programs are used for performance
20317 			 * analysis, stats and can be attached to any program
20318 			 * type except themselves. When extension program is
20319 			 * replacing XDP function it is necessary to allow
20320 			 * performance analysis of all functions. Both original
20321 			 * XDP program and its program extension. Hence
20322 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20323 			 * allowed. If extending of fentry/fexit was allowed it
20324 			 * would be possible to create long call chain
20325 			 * fentry->extension->fentry->extension beyond
20326 			 * reasonable stack size. Hence extending fentry is not
20327 			 * allowed.
20328 			 */
20329 			bpf_log(log, "Cannot extend fentry/fexit\n");
20330 			return -EINVAL;
20331 		}
20332 	} else {
20333 		if (prog_extension) {
20334 			bpf_log(log, "Cannot replace kernel functions\n");
20335 			return -EINVAL;
20336 		}
20337 	}
20338 
20339 	switch (prog->expected_attach_type) {
20340 	case BPF_TRACE_RAW_TP:
20341 		if (tgt_prog) {
20342 			bpf_log(log,
20343 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20344 			return -EINVAL;
20345 		}
20346 		if (!btf_type_is_typedef(t)) {
20347 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20348 				btf_id);
20349 			return -EINVAL;
20350 		}
20351 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20352 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20353 				btf_id, tname);
20354 			return -EINVAL;
20355 		}
20356 		tname += sizeof(prefix) - 1;
20357 		t = btf_type_by_id(btf, t->type);
20358 		if (!btf_type_is_ptr(t))
20359 			/* should never happen in valid vmlinux build */
20360 			return -EINVAL;
20361 		t = btf_type_by_id(btf, t->type);
20362 		if (!btf_type_is_func_proto(t))
20363 			/* should never happen in valid vmlinux build */
20364 			return -EINVAL;
20365 
20366 		break;
20367 	case BPF_TRACE_ITER:
20368 		if (!btf_type_is_func(t)) {
20369 			bpf_log(log, "attach_btf_id %u is not a function\n",
20370 				btf_id);
20371 			return -EINVAL;
20372 		}
20373 		t = btf_type_by_id(btf, t->type);
20374 		if (!btf_type_is_func_proto(t))
20375 			return -EINVAL;
20376 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20377 		if (ret)
20378 			return ret;
20379 		break;
20380 	default:
20381 		if (!prog_extension)
20382 			return -EINVAL;
20383 		fallthrough;
20384 	case BPF_MODIFY_RETURN:
20385 	case BPF_LSM_MAC:
20386 	case BPF_LSM_CGROUP:
20387 	case BPF_TRACE_FENTRY:
20388 	case BPF_TRACE_FEXIT:
20389 		if (!btf_type_is_func(t)) {
20390 			bpf_log(log, "attach_btf_id %u is not a function\n",
20391 				btf_id);
20392 			return -EINVAL;
20393 		}
20394 		if (prog_extension &&
20395 		    btf_check_type_match(log, prog, btf, t))
20396 			return -EINVAL;
20397 		t = btf_type_by_id(btf, t->type);
20398 		if (!btf_type_is_func_proto(t))
20399 			return -EINVAL;
20400 
20401 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20402 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20403 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20404 			return -EINVAL;
20405 
20406 		if (tgt_prog && conservative)
20407 			t = NULL;
20408 
20409 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20410 		if (ret < 0)
20411 			return ret;
20412 
20413 		if (tgt_prog) {
20414 			if (subprog == 0)
20415 				addr = (long) tgt_prog->bpf_func;
20416 			else
20417 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20418 		} else {
20419 			if (btf_is_module(btf)) {
20420 				mod = btf_try_get_module(btf);
20421 				if (mod)
20422 					addr = find_kallsyms_symbol_value(mod, tname);
20423 				else
20424 					addr = 0;
20425 			} else {
20426 				addr = kallsyms_lookup_name(tname);
20427 			}
20428 			if (!addr) {
20429 				module_put(mod);
20430 				bpf_log(log,
20431 					"The address of function %s cannot be found\n",
20432 					tname);
20433 				return -ENOENT;
20434 			}
20435 		}
20436 
20437 		if (prog->aux->sleepable) {
20438 			ret = -EINVAL;
20439 			switch (prog->type) {
20440 			case BPF_PROG_TYPE_TRACING:
20441 
20442 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20443 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20444 				 */
20445 				if (!check_non_sleepable_error_inject(btf_id) &&
20446 				    within_error_injection_list(addr))
20447 					ret = 0;
20448 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20449 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20450 				 */
20451 				else {
20452 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20453 										prog);
20454 
20455 					if (flags && (*flags & KF_SLEEPABLE))
20456 						ret = 0;
20457 				}
20458 				break;
20459 			case BPF_PROG_TYPE_LSM:
20460 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20461 				 * Only some of them are sleepable.
20462 				 */
20463 				if (bpf_lsm_is_sleepable_hook(btf_id))
20464 					ret = 0;
20465 				break;
20466 			default:
20467 				break;
20468 			}
20469 			if (ret) {
20470 				module_put(mod);
20471 				bpf_log(log, "%s is not sleepable\n", tname);
20472 				return ret;
20473 			}
20474 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20475 			if (tgt_prog) {
20476 				module_put(mod);
20477 				bpf_log(log, "can't modify return codes of BPF programs\n");
20478 				return -EINVAL;
20479 			}
20480 			ret = -EINVAL;
20481 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20482 			    !check_attach_modify_return(addr, tname))
20483 				ret = 0;
20484 			if (ret) {
20485 				module_put(mod);
20486 				bpf_log(log, "%s() is not modifiable\n", tname);
20487 				return ret;
20488 			}
20489 		}
20490 
20491 		break;
20492 	}
20493 	tgt_info->tgt_addr = addr;
20494 	tgt_info->tgt_name = tname;
20495 	tgt_info->tgt_type = t;
20496 	tgt_info->tgt_mod = mod;
20497 	return 0;
20498 }
20499 
20500 BTF_SET_START(btf_id_deny)
20501 BTF_ID_UNUSED
20502 #ifdef CONFIG_SMP
20503 BTF_ID(func, migrate_disable)
20504 BTF_ID(func, migrate_enable)
20505 #endif
20506 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20507 BTF_ID(func, rcu_read_unlock_strict)
20508 #endif
20509 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20510 BTF_ID(func, preempt_count_add)
20511 BTF_ID(func, preempt_count_sub)
20512 #endif
20513 #ifdef CONFIG_PREEMPT_RCU
20514 BTF_ID(func, __rcu_read_lock)
20515 BTF_ID(func, __rcu_read_unlock)
20516 #endif
20517 BTF_SET_END(btf_id_deny)
20518 
20519 static bool can_be_sleepable(struct bpf_prog *prog)
20520 {
20521 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20522 		switch (prog->expected_attach_type) {
20523 		case BPF_TRACE_FENTRY:
20524 		case BPF_TRACE_FEXIT:
20525 		case BPF_MODIFY_RETURN:
20526 		case BPF_TRACE_ITER:
20527 			return true;
20528 		default:
20529 			return false;
20530 		}
20531 	}
20532 	return prog->type == BPF_PROG_TYPE_LSM ||
20533 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20534 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20535 }
20536 
20537 static int check_attach_btf_id(struct bpf_verifier_env *env)
20538 {
20539 	struct bpf_prog *prog = env->prog;
20540 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20541 	struct bpf_attach_target_info tgt_info = {};
20542 	u32 btf_id = prog->aux->attach_btf_id;
20543 	struct bpf_trampoline *tr;
20544 	int ret;
20545 	u64 key;
20546 
20547 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20548 		if (prog->aux->sleepable)
20549 			/* attach_btf_id checked to be zero already */
20550 			return 0;
20551 		verbose(env, "Syscall programs can only be sleepable\n");
20552 		return -EINVAL;
20553 	}
20554 
20555 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20556 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20557 		return -EINVAL;
20558 	}
20559 
20560 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20561 		return check_struct_ops_btf_id(env);
20562 
20563 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20564 	    prog->type != BPF_PROG_TYPE_LSM &&
20565 	    prog->type != BPF_PROG_TYPE_EXT)
20566 		return 0;
20567 
20568 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20569 	if (ret)
20570 		return ret;
20571 
20572 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20573 		/* to make freplace equivalent to their targets, they need to
20574 		 * inherit env->ops and expected_attach_type for the rest of the
20575 		 * verification
20576 		 */
20577 		env->ops = bpf_verifier_ops[tgt_prog->type];
20578 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20579 	}
20580 
20581 	/* store info about the attachment target that will be used later */
20582 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20583 	prog->aux->attach_func_name = tgt_info.tgt_name;
20584 	prog->aux->mod = tgt_info.tgt_mod;
20585 
20586 	if (tgt_prog) {
20587 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20588 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20589 	}
20590 
20591 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20592 		prog->aux->attach_btf_trace = true;
20593 		return 0;
20594 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20595 		if (!bpf_iter_prog_supported(prog))
20596 			return -EINVAL;
20597 		return 0;
20598 	}
20599 
20600 	if (prog->type == BPF_PROG_TYPE_LSM) {
20601 		ret = bpf_lsm_verify_prog(&env->log, prog);
20602 		if (ret < 0)
20603 			return ret;
20604 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20605 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20606 		return -EINVAL;
20607 	}
20608 
20609 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20610 	tr = bpf_trampoline_get(key, &tgt_info);
20611 	if (!tr)
20612 		return -ENOMEM;
20613 
20614 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20615 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20616 
20617 	prog->aux->dst_trampoline = tr;
20618 	return 0;
20619 }
20620 
20621 struct btf *bpf_get_btf_vmlinux(void)
20622 {
20623 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20624 		mutex_lock(&bpf_verifier_lock);
20625 		if (!btf_vmlinux)
20626 			btf_vmlinux = btf_parse_vmlinux();
20627 		mutex_unlock(&bpf_verifier_lock);
20628 	}
20629 	return btf_vmlinux;
20630 }
20631 
20632 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20633 {
20634 	u64 start_time = ktime_get_ns();
20635 	struct bpf_verifier_env *env;
20636 	int i, len, ret = -EINVAL, err;
20637 	u32 log_true_size;
20638 	bool is_priv;
20639 
20640 	/* no program is valid */
20641 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20642 		return -EINVAL;
20643 
20644 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20645 	 * allocate/free it every time bpf_check() is called
20646 	 */
20647 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20648 	if (!env)
20649 		return -ENOMEM;
20650 
20651 	env->bt.env = env;
20652 
20653 	len = (*prog)->len;
20654 	env->insn_aux_data =
20655 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20656 	ret = -ENOMEM;
20657 	if (!env->insn_aux_data)
20658 		goto err_free_env;
20659 	for (i = 0; i < len; i++)
20660 		env->insn_aux_data[i].orig_idx = i;
20661 	env->prog = *prog;
20662 	env->ops = bpf_verifier_ops[env->prog->type];
20663 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20664 	is_priv = bpf_capable();
20665 
20666 	bpf_get_btf_vmlinux();
20667 
20668 	/* grab the mutex to protect few globals used by verifier */
20669 	if (!is_priv)
20670 		mutex_lock(&bpf_verifier_lock);
20671 
20672 	/* user could have requested verbose verifier output
20673 	 * and supplied buffer to store the verification trace
20674 	 */
20675 	ret = bpf_vlog_init(&env->log, attr->log_level,
20676 			    (char __user *) (unsigned long) attr->log_buf,
20677 			    attr->log_size);
20678 	if (ret)
20679 		goto err_unlock;
20680 
20681 	mark_verifier_state_clean(env);
20682 
20683 	if (IS_ERR(btf_vmlinux)) {
20684 		/* Either gcc or pahole or kernel are broken. */
20685 		verbose(env, "in-kernel BTF is malformed\n");
20686 		ret = PTR_ERR(btf_vmlinux);
20687 		goto skip_full_check;
20688 	}
20689 
20690 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20691 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20692 		env->strict_alignment = true;
20693 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20694 		env->strict_alignment = false;
20695 
20696 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20697 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20698 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20699 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20700 	env->bpf_capable = bpf_capable();
20701 
20702 	if (is_priv)
20703 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20704 
20705 	env->explored_states = kvcalloc(state_htab_size(env),
20706 				       sizeof(struct bpf_verifier_state_list *),
20707 				       GFP_USER);
20708 	ret = -ENOMEM;
20709 	if (!env->explored_states)
20710 		goto skip_full_check;
20711 
20712 	ret = check_btf_info_early(env, attr, uattr);
20713 	if (ret < 0)
20714 		goto skip_full_check;
20715 
20716 	ret = add_subprog_and_kfunc(env);
20717 	if (ret < 0)
20718 		goto skip_full_check;
20719 
20720 	ret = check_subprogs(env);
20721 	if (ret < 0)
20722 		goto skip_full_check;
20723 
20724 	ret = check_btf_info(env, attr, uattr);
20725 	if (ret < 0)
20726 		goto skip_full_check;
20727 
20728 	ret = check_attach_btf_id(env);
20729 	if (ret)
20730 		goto skip_full_check;
20731 
20732 	ret = resolve_pseudo_ldimm64(env);
20733 	if (ret < 0)
20734 		goto skip_full_check;
20735 
20736 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20737 		ret = bpf_prog_offload_verifier_prep(env->prog);
20738 		if (ret)
20739 			goto skip_full_check;
20740 	}
20741 
20742 	ret = check_cfg(env);
20743 	if (ret < 0)
20744 		goto skip_full_check;
20745 
20746 	ret = do_check_subprogs(env);
20747 	ret = ret ?: do_check_main(env);
20748 
20749 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20750 		ret = bpf_prog_offload_finalize(env);
20751 
20752 skip_full_check:
20753 	kvfree(env->explored_states);
20754 
20755 	if (ret == 0)
20756 		ret = check_max_stack_depth(env);
20757 
20758 	/* instruction rewrites happen after this point */
20759 	if (ret == 0)
20760 		ret = optimize_bpf_loop(env);
20761 
20762 	if (is_priv) {
20763 		if (ret == 0)
20764 			opt_hard_wire_dead_code_branches(env);
20765 		if (ret == 0)
20766 			ret = opt_remove_dead_code(env);
20767 		if (ret == 0)
20768 			ret = opt_remove_nops(env);
20769 	} else {
20770 		if (ret == 0)
20771 			sanitize_dead_code(env);
20772 	}
20773 
20774 	if (ret == 0)
20775 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20776 		ret = convert_ctx_accesses(env);
20777 
20778 	if (ret == 0)
20779 		ret = do_misc_fixups(env);
20780 
20781 	/* do 32-bit optimization after insn patching has done so those patched
20782 	 * insns could be handled correctly.
20783 	 */
20784 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20785 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20786 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20787 								     : false;
20788 	}
20789 
20790 	if (ret == 0)
20791 		ret = fixup_call_args(env);
20792 
20793 	env->verification_time = ktime_get_ns() - start_time;
20794 	print_verification_stats(env);
20795 	env->prog->aux->verified_insns = env->insn_processed;
20796 
20797 	/* preserve original error even if log finalization is successful */
20798 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20799 	if (err)
20800 		ret = err;
20801 
20802 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20803 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20804 				  &log_true_size, sizeof(log_true_size))) {
20805 		ret = -EFAULT;
20806 		goto err_release_maps;
20807 	}
20808 
20809 	if (ret)
20810 		goto err_release_maps;
20811 
20812 	if (env->used_map_cnt) {
20813 		/* if program passed verifier, update used_maps in bpf_prog_info */
20814 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20815 							  sizeof(env->used_maps[0]),
20816 							  GFP_KERNEL);
20817 
20818 		if (!env->prog->aux->used_maps) {
20819 			ret = -ENOMEM;
20820 			goto err_release_maps;
20821 		}
20822 
20823 		memcpy(env->prog->aux->used_maps, env->used_maps,
20824 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20825 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20826 	}
20827 	if (env->used_btf_cnt) {
20828 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20829 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20830 							  sizeof(env->used_btfs[0]),
20831 							  GFP_KERNEL);
20832 		if (!env->prog->aux->used_btfs) {
20833 			ret = -ENOMEM;
20834 			goto err_release_maps;
20835 		}
20836 
20837 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20838 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20839 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20840 	}
20841 	if (env->used_map_cnt || env->used_btf_cnt) {
20842 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20843 		 * bpf_ld_imm64 instructions
20844 		 */
20845 		convert_pseudo_ld_imm64(env);
20846 	}
20847 
20848 	adjust_btf_func(env);
20849 
20850 err_release_maps:
20851 	if (!env->prog->aux->used_maps)
20852 		/* if we didn't copy map pointers into bpf_prog_info, release
20853 		 * them now. Otherwise free_used_maps() will release them.
20854 		 */
20855 		release_maps(env);
20856 	if (!env->prog->aux->used_btfs)
20857 		release_btfs(env);
20858 
20859 	/* extension progs temporarily inherit the attach_type of their targets
20860 	   for verification purposes, so set it back to zero before returning
20861 	 */
20862 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20863 		env->prog->expected_attach_type = 0;
20864 
20865 	*prog = env->prog;
20866 err_unlock:
20867 	if (!is_priv)
20868 		mutex_unlock(&bpf_verifier_lock);
20869 	vfree(env->insn_aux_data);
20870 err_free_env:
20871 	kfree(env);
20872 	return ret;
20873 }
20874