xref: /linux/kernel/bpf/verifier.c (revision b7d3826c2ed6c3e626e7ae796c5df2c0d2551c6a)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_verifier.h>
19 #include <linux/filter.h>
20 #include <net/netlink.h>
21 #include <linux/file.h>
22 #include <linux/vmalloc.h>
23 #include <linux/stringify.h>
24 #include <linux/bsearch.h>
25 #include <linux/sort.h>
26 #include <linux/perf_event.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 };
175 
176 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
177 #define BPF_COMPLEXITY_LIMIT_STACK	1024
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_state = (unsigned long)map |
200 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 struct bpf_call_arg_meta {
204 	struct bpf_map *map_ptr;
205 	bool raw_mode;
206 	bool pkt_access;
207 	int regno;
208 	int access_size;
209 	s64 msize_smax_value;
210 	u64 msize_umax_value;
211 	int ptr_id;
212 };
213 
214 static DEFINE_MUTEX(bpf_verifier_lock);
215 
216 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
217 		       va_list args)
218 {
219 	unsigned int n;
220 
221 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
222 
223 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
224 		  "verifier log line truncated - local buffer too short\n");
225 
226 	n = min(log->len_total - log->len_used - 1, n);
227 	log->kbuf[n] = '\0';
228 
229 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
230 		log->len_used += n;
231 	else
232 		log->ubuf = NULL;
233 }
234 
235 /* log_level controls verbosity level of eBPF verifier.
236  * bpf_verifier_log_write() is used to dump the verification trace to the log,
237  * so the user can figure out what's wrong with the program
238  */
239 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
240 					   const char *fmt, ...)
241 {
242 	va_list args;
243 
244 	if (!bpf_verifier_log_needed(&env->log))
245 		return;
246 
247 	va_start(args, fmt);
248 	bpf_verifier_vlog(&env->log, fmt, args);
249 	va_end(args);
250 }
251 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
252 
253 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
254 {
255 	struct bpf_verifier_env *env = private_data;
256 	va_list args;
257 
258 	if (!bpf_verifier_log_needed(&env->log))
259 		return;
260 
261 	va_start(args, fmt);
262 	bpf_verifier_vlog(&env->log, fmt, args);
263 	va_end(args);
264 }
265 
266 static bool type_is_pkt_pointer(enum bpf_reg_type type)
267 {
268 	return type == PTR_TO_PACKET ||
269 	       type == PTR_TO_PACKET_META;
270 }
271 
272 static bool reg_type_may_be_null(enum bpf_reg_type type)
273 {
274 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
275 	       type == PTR_TO_SOCKET_OR_NULL;
276 }
277 
278 static bool type_is_refcounted(enum bpf_reg_type type)
279 {
280 	return type == PTR_TO_SOCKET;
281 }
282 
283 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
284 {
285 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
286 }
287 
288 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
289 {
290 	return type_is_refcounted(reg->type);
291 }
292 
293 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
294 {
295 	return type_is_refcounted_or_null(reg->type);
296 }
297 
298 static bool arg_type_is_refcounted(enum bpf_arg_type type)
299 {
300 	return type == ARG_PTR_TO_SOCKET;
301 }
302 
303 /* Determine whether the function releases some resources allocated by another
304  * function call. The first reference type argument will be assumed to be
305  * released by release_reference().
306  */
307 static bool is_release_function(enum bpf_func_id func_id)
308 {
309 	return func_id == BPF_FUNC_sk_release;
310 }
311 
312 /* string representation of 'enum bpf_reg_type' */
313 static const char * const reg_type_str[] = {
314 	[NOT_INIT]		= "?",
315 	[SCALAR_VALUE]		= "inv",
316 	[PTR_TO_CTX]		= "ctx",
317 	[CONST_PTR_TO_MAP]	= "map_ptr",
318 	[PTR_TO_MAP_VALUE]	= "map_value",
319 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
320 	[PTR_TO_STACK]		= "fp",
321 	[PTR_TO_PACKET]		= "pkt",
322 	[PTR_TO_PACKET_META]	= "pkt_meta",
323 	[PTR_TO_PACKET_END]	= "pkt_end",
324 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
325 	[PTR_TO_SOCKET]		= "sock",
326 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
327 };
328 
329 static char slot_type_char[] = {
330 	[STACK_INVALID]	= '?',
331 	[STACK_SPILL]	= 'r',
332 	[STACK_MISC]	= 'm',
333 	[STACK_ZERO]	= '0',
334 };
335 
336 static void print_liveness(struct bpf_verifier_env *env,
337 			   enum bpf_reg_liveness live)
338 {
339 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
340 	    verbose(env, "_");
341 	if (live & REG_LIVE_READ)
342 		verbose(env, "r");
343 	if (live & REG_LIVE_WRITTEN)
344 		verbose(env, "w");
345 }
346 
347 static struct bpf_func_state *func(struct bpf_verifier_env *env,
348 				   const struct bpf_reg_state *reg)
349 {
350 	struct bpf_verifier_state *cur = env->cur_state;
351 
352 	return cur->frame[reg->frameno];
353 }
354 
355 static void print_verifier_state(struct bpf_verifier_env *env,
356 				 const struct bpf_func_state *state)
357 {
358 	const struct bpf_reg_state *reg;
359 	enum bpf_reg_type t;
360 	int i;
361 
362 	if (state->frameno)
363 		verbose(env, " frame%d:", state->frameno);
364 	for (i = 0; i < MAX_BPF_REG; i++) {
365 		reg = &state->regs[i];
366 		t = reg->type;
367 		if (t == NOT_INIT)
368 			continue;
369 		verbose(env, " R%d", i);
370 		print_liveness(env, reg->live);
371 		verbose(env, "=%s", reg_type_str[t]);
372 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
373 		    tnum_is_const(reg->var_off)) {
374 			/* reg->off should be 0 for SCALAR_VALUE */
375 			verbose(env, "%lld", reg->var_off.value + reg->off);
376 			if (t == PTR_TO_STACK)
377 				verbose(env, ",call_%d", func(env, reg)->callsite);
378 		} else {
379 			verbose(env, "(id=%d", reg->id);
380 			if (t != SCALAR_VALUE)
381 				verbose(env, ",off=%d", reg->off);
382 			if (type_is_pkt_pointer(t))
383 				verbose(env, ",r=%d", reg->range);
384 			else if (t == CONST_PTR_TO_MAP ||
385 				 t == PTR_TO_MAP_VALUE ||
386 				 t == PTR_TO_MAP_VALUE_OR_NULL)
387 				verbose(env, ",ks=%d,vs=%d",
388 					reg->map_ptr->key_size,
389 					reg->map_ptr->value_size);
390 			if (tnum_is_const(reg->var_off)) {
391 				/* Typically an immediate SCALAR_VALUE, but
392 				 * could be a pointer whose offset is too big
393 				 * for reg->off
394 				 */
395 				verbose(env, ",imm=%llx", reg->var_off.value);
396 			} else {
397 				if (reg->smin_value != reg->umin_value &&
398 				    reg->smin_value != S64_MIN)
399 					verbose(env, ",smin_value=%lld",
400 						(long long)reg->smin_value);
401 				if (reg->smax_value != reg->umax_value &&
402 				    reg->smax_value != S64_MAX)
403 					verbose(env, ",smax_value=%lld",
404 						(long long)reg->smax_value);
405 				if (reg->umin_value != 0)
406 					verbose(env, ",umin_value=%llu",
407 						(unsigned long long)reg->umin_value);
408 				if (reg->umax_value != U64_MAX)
409 					verbose(env, ",umax_value=%llu",
410 						(unsigned long long)reg->umax_value);
411 				if (!tnum_is_unknown(reg->var_off)) {
412 					char tn_buf[48];
413 
414 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
415 					verbose(env, ",var_off=%s", tn_buf);
416 				}
417 			}
418 			verbose(env, ")");
419 		}
420 	}
421 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
422 		char types_buf[BPF_REG_SIZE + 1];
423 		bool valid = false;
424 		int j;
425 
426 		for (j = 0; j < BPF_REG_SIZE; j++) {
427 			if (state->stack[i].slot_type[j] != STACK_INVALID)
428 				valid = true;
429 			types_buf[j] = slot_type_char[
430 					state->stack[i].slot_type[j]];
431 		}
432 		types_buf[BPF_REG_SIZE] = 0;
433 		if (!valid)
434 			continue;
435 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
436 		print_liveness(env, state->stack[i].spilled_ptr.live);
437 		if (state->stack[i].slot_type[0] == STACK_SPILL)
438 			verbose(env, "=%s",
439 				reg_type_str[state->stack[i].spilled_ptr.type]);
440 		else
441 			verbose(env, "=%s", types_buf);
442 	}
443 	if (state->acquired_refs && state->refs[0].id) {
444 		verbose(env, " refs=%d", state->refs[0].id);
445 		for (i = 1; i < state->acquired_refs; i++)
446 			if (state->refs[i].id)
447 				verbose(env, ",%d", state->refs[i].id);
448 	}
449 	verbose(env, "\n");
450 }
451 
452 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
453 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
454 			       const struct bpf_func_state *src)	\
455 {									\
456 	if (!src->FIELD)						\
457 		return 0;						\
458 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
459 		/* internal bug, make state invalid to reject the program */ \
460 		memset(dst, 0, sizeof(*dst));				\
461 		return -EFAULT;						\
462 	}								\
463 	memcpy(dst->FIELD, src->FIELD,					\
464 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
465 	return 0;							\
466 }
467 /* copy_reference_state() */
468 COPY_STATE_FN(reference, acquired_refs, refs, 1)
469 /* copy_stack_state() */
470 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
471 #undef COPY_STATE_FN
472 
473 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
474 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
475 				  bool copy_old)			\
476 {									\
477 	u32 old_size = state->COUNT;					\
478 	struct bpf_##NAME##_state *new_##FIELD;				\
479 	int slot = size / SIZE;						\
480 									\
481 	if (size <= old_size || !size) {				\
482 		if (copy_old)						\
483 			return 0;					\
484 		state->COUNT = slot * SIZE;				\
485 		if (!size && old_size) {				\
486 			kfree(state->FIELD);				\
487 			state->FIELD = NULL;				\
488 		}							\
489 		return 0;						\
490 	}								\
491 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
492 				    GFP_KERNEL);			\
493 	if (!new_##FIELD)						\
494 		return -ENOMEM;						\
495 	if (copy_old) {							\
496 		if (state->FIELD)					\
497 			memcpy(new_##FIELD, state->FIELD,		\
498 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
499 		memset(new_##FIELD + old_size / SIZE, 0,		\
500 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
501 	}								\
502 	state->COUNT = slot * SIZE;					\
503 	kfree(state->FIELD);						\
504 	state->FIELD = new_##FIELD;					\
505 	return 0;							\
506 }
507 /* realloc_reference_state() */
508 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
509 /* realloc_stack_state() */
510 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
511 #undef REALLOC_STATE_FN
512 
513 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
514  * make it consume minimal amount of memory. check_stack_write() access from
515  * the program calls into realloc_func_state() to grow the stack size.
516  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
517  * which realloc_stack_state() copies over. It points to previous
518  * bpf_verifier_state which is never reallocated.
519  */
520 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
521 			      int refs_size, bool copy_old)
522 {
523 	int err = realloc_reference_state(state, refs_size, copy_old);
524 	if (err)
525 		return err;
526 	return realloc_stack_state(state, stack_size, copy_old);
527 }
528 
529 /* Acquire a pointer id from the env and update the state->refs to include
530  * this new pointer reference.
531  * On success, returns a valid pointer id to associate with the register
532  * On failure, returns a negative errno.
533  */
534 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
535 {
536 	struct bpf_func_state *state = cur_func(env);
537 	int new_ofs = state->acquired_refs;
538 	int id, err;
539 
540 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
541 	if (err)
542 		return err;
543 	id = ++env->id_gen;
544 	state->refs[new_ofs].id = id;
545 	state->refs[new_ofs].insn_idx = insn_idx;
546 
547 	return id;
548 }
549 
550 /* release function corresponding to acquire_reference_state(). Idempotent. */
551 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
552 {
553 	int i, last_idx;
554 
555 	if (!ptr_id)
556 		return -EFAULT;
557 
558 	last_idx = state->acquired_refs - 1;
559 	for (i = 0; i < state->acquired_refs; i++) {
560 		if (state->refs[i].id == ptr_id) {
561 			if (last_idx && i != last_idx)
562 				memcpy(&state->refs[i], &state->refs[last_idx],
563 				       sizeof(*state->refs));
564 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
565 			state->acquired_refs--;
566 			return 0;
567 		}
568 	}
569 	return -EFAULT;
570 }
571 
572 /* variation on the above for cases where we expect that there must be an
573  * outstanding reference for the specified ptr_id.
574  */
575 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
576 {
577 	struct bpf_func_state *state = cur_func(env);
578 	int err;
579 
580 	err = __release_reference_state(state, ptr_id);
581 	if (WARN_ON_ONCE(err != 0))
582 		verbose(env, "verifier internal error: can't release reference\n");
583 	return err;
584 }
585 
586 static int transfer_reference_state(struct bpf_func_state *dst,
587 				    struct bpf_func_state *src)
588 {
589 	int err = realloc_reference_state(dst, src->acquired_refs, false);
590 	if (err)
591 		return err;
592 	err = copy_reference_state(dst, src);
593 	if (err)
594 		return err;
595 	return 0;
596 }
597 
598 static void free_func_state(struct bpf_func_state *state)
599 {
600 	if (!state)
601 		return;
602 	kfree(state->refs);
603 	kfree(state->stack);
604 	kfree(state);
605 }
606 
607 static void free_verifier_state(struct bpf_verifier_state *state,
608 				bool free_self)
609 {
610 	int i;
611 
612 	for (i = 0; i <= state->curframe; i++) {
613 		free_func_state(state->frame[i]);
614 		state->frame[i] = NULL;
615 	}
616 	if (free_self)
617 		kfree(state);
618 }
619 
620 /* copy verifier state from src to dst growing dst stack space
621  * when necessary to accommodate larger src stack
622  */
623 static int copy_func_state(struct bpf_func_state *dst,
624 			   const struct bpf_func_state *src)
625 {
626 	int err;
627 
628 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
629 				 false);
630 	if (err)
631 		return err;
632 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
633 	err = copy_reference_state(dst, src);
634 	if (err)
635 		return err;
636 	return copy_stack_state(dst, src);
637 }
638 
639 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
640 			       const struct bpf_verifier_state *src)
641 {
642 	struct bpf_func_state *dst;
643 	int i, err;
644 
645 	/* if dst has more stack frames then src frame, free them */
646 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
647 		free_func_state(dst_state->frame[i]);
648 		dst_state->frame[i] = NULL;
649 	}
650 	dst_state->curframe = src->curframe;
651 	for (i = 0; i <= src->curframe; i++) {
652 		dst = dst_state->frame[i];
653 		if (!dst) {
654 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
655 			if (!dst)
656 				return -ENOMEM;
657 			dst_state->frame[i] = dst;
658 		}
659 		err = copy_func_state(dst, src->frame[i]);
660 		if (err)
661 			return err;
662 	}
663 	return 0;
664 }
665 
666 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
667 		     int *insn_idx)
668 {
669 	struct bpf_verifier_state *cur = env->cur_state;
670 	struct bpf_verifier_stack_elem *elem, *head = env->head;
671 	int err;
672 
673 	if (env->head == NULL)
674 		return -ENOENT;
675 
676 	if (cur) {
677 		err = copy_verifier_state(cur, &head->st);
678 		if (err)
679 			return err;
680 	}
681 	if (insn_idx)
682 		*insn_idx = head->insn_idx;
683 	if (prev_insn_idx)
684 		*prev_insn_idx = head->prev_insn_idx;
685 	elem = head->next;
686 	free_verifier_state(&head->st, false);
687 	kfree(head);
688 	env->head = elem;
689 	env->stack_size--;
690 	return 0;
691 }
692 
693 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
694 					     int insn_idx, int prev_insn_idx)
695 {
696 	struct bpf_verifier_state *cur = env->cur_state;
697 	struct bpf_verifier_stack_elem *elem;
698 	int err;
699 
700 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
701 	if (!elem)
702 		goto err;
703 
704 	elem->insn_idx = insn_idx;
705 	elem->prev_insn_idx = prev_insn_idx;
706 	elem->next = env->head;
707 	env->head = elem;
708 	env->stack_size++;
709 	err = copy_verifier_state(&elem->st, cur);
710 	if (err)
711 		goto err;
712 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
713 		verbose(env, "BPF program is too complex\n");
714 		goto err;
715 	}
716 	return &elem->st;
717 err:
718 	free_verifier_state(env->cur_state, true);
719 	env->cur_state = NULL;
720 	/* pop all elements and return */
721 	while (!pop_stack(env, NULL, NULL));
722 	return NULL;
723 }
724 
725 #define CALLER_SAVED_REGS 6
726 static const int caller_saved[CALLER_SAVED_REGS] = {
727 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
728 };
729 
730 static void __mark_reg_not_init(struct bpf_reg_state *reg);
731 
732 /* Mark the unknown part of a register (variable offset or scalar value) as
733  * known to have the value @imm.
734  */
735 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
736 {
737 	/* Clear id, off, and union(map_ptr, range) */
738 	memset(((u8 *)reg) + sizeof(reg->type), 0,
739 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
740 	reg->var_off = tnum_const(imm);
741 	reg->smin_value = (s64)imm;
742 	reg->smax_value = (s64)imm;
743 	reg->umin_value = imm;
744 	reg->umax_value = imm;
745 }
746 
747 /* Mark the 'variable offset' part of a register as zero.  This should be
748  * used only on registers holding a pointer type.
749  */
750 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
751 {
752 	__mark_reg_known(reg, 0);
753 }
754 
755 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
756 {
757 	__mark_reg_known(reg, 0);
758 	reg->type = SCALAR_VALUE;
759 }
760 
761 static void mark_reg_known_zero(struct bpf_verifier_env *env,
762 				struct bpf_reg_state *regs, u32 regno)
763 {
764 	if (WARN_ON(regno >= MAX_BPF_REG)) {
765 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
766 		/* Something bad happened, let's kill all regs */
767 		for (regno = 0; regno < MAX_BPF_REG; regno++)
768 			__mark_reg_not_init(regs + regno);
769 		return;
770 	}
771 	__mark_reg_known_zero(regs + regno);
772 }
773 
774 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
775 {
776 	return type_is_pkt_pointer(reg->type);
777 }
778 
779 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
780 {
781 	return reg_is_pkt_pointer(reg) ||
782 	       reg->type == PTR_TO_PACKET_END;
783 }
784 
785 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
786 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
787 				    enum bpf_reg_type which)
788 {
789 	/* The register can already have a range from prior markings.
790 	 * This is fine as long as it hasn't been advanced from its
791 	 * origin.
792 	 */
793 	return reg->type == which &&
794 	       reg->id == 0 &&
795 	       reg->off == 0 &&
796 	       tnum_equals_const(reg->var_off, 0);
797 }
798 
799 /* Attempts to improve min/max values based on var_off information */
800 static void __update_reg_bounds(struct bpf_reg_state *reg)
801 {
802 	/* min signed is max(sign bit) | min(other bits) */
803 	reg->smin_value = max_t(s64, reg->smin_value,
804 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
805 	/* max signed is min(sign bit) | max(other bits) */
806 	reg->smax_value = min_t(s64, reg->smax_value,
807 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
808 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
809 	reg->umax_value = min(reg->umax_value,
810 			      reg->var_off.value | reg->var_off.mask);
811 }
812 
813 /* Uses signed min/max values to inform unsigned, and vice-versa */
814 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
815 {
816 	/* Learn sign from signed bounds.
817 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
818 	 * are the same, so combine.  This works even in the negative case, e.g.
819 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
820 	 */
821 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
822 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
823 							  reg->umin_value);
824 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
825 							  reg->umax_value);
826 		return;
827 	}
828 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
829 	 * boundary, so we must be careful.
830 	 */
831 	if ((s64)reg->umax_value >= 0) {
832 		/* Positive.  We can't learn anything from the smin, but smax
833 		 * is positive, hence safe.
834 		 */
835 		reg->smin_value = reg->umin_value;
836 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
837 							  reg->umax_value);
838 	} else if ((s64)reg->umin_value < 0) {
839 		/* Negative.  We can't learn anything from the smax, but smin
840 		 * is negative, hence safe.
841 		 */
842 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
843 							  reg->umin_value);
844 		reg->smax_value = reg->umax_value;
845 	}
846 }
847 
848 /* Attempts to improve var_off based on unsigned min/max information */
849 static void __reg_bound_offset(struct bpf_reg_state *reg)
850 {
851 	reg->var_off = tnum_intersect(reg->var_off,
852 				      tnum_range(reg->umin_value,
853 						 reg->umax_value));
854 }
855 
856 /* Reset the min/max bounds of a register */
857 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
858 {
859 	reg->smin_value = S64_MIN;
860 	reg->smax_value = S64_MAX;
861 	reg->umin_value = 0;
862 	reg->umax_value = U64_MAX;
863 }
864 
865 /* Mark a register as having a completely unknown (scalar) value. */
866 static void __mark_reg_unknown(struct bpf_reg_state *reg)
867 {
868 	/*
869 	 * Clear type, id, off, and union(map_ptr, range) and
870 	 * padding between 'type' and union
871 	 */
872 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
873 	reg->type = SCALAR_VALUE;
874 	reg->var_off = tnum_unknown;
875 	reg->frameno = 0;
876 	__mark_reg_unbounded(reg);
877 }
878 
879 static void mark_reg_unknown(struct bpf_verifier_env *env,
880 			     struct bpf_reg_state *regs, u32 regno)
881 {
882 	if (WARN_ON(regno >= MAX_BPF_REG)) {
883 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
884 		/* Something bad happened, let's kill all regs except FP */
885 		for (regno = 0; regno < BPF_REG_FP; regno++)
886 			__mark_reg_not_init(regs + regno);
887 		return;
888 	}
889 	__mark_reg_unknown(regs + regno);
890 }
891 
892 static void __mark_reg_not_init(struct bpf_reg_state *reg)
893 {
894 	__mark_reg_unknown(reg);
895 	reg->type = NOT_INIT;
896 }
897 
898 static void mark_reg_not_init(struct bpf_verifier_env *env,
899 			      struct bpf_reg_state *regs, u32 regno)
900 {
901 	if (WARN_ON(regno >= MAX_BPF_REG)) {
902 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
903 		/* Something bad happened, let's kill all regs except FP */
904 		for (regno = 0; regno < BPF_REG_FP; regno++)
905 			__mark_reg_not_init(regs + regno);
906 		return;
907 	}
908 	__mark_reg_not_init(regs + regno);
909 }
910 
911 static void init_reg_state(struct bpf_verifier_env *env,
912 			   struct bpf_func_state *state)
913 {
914 	struct bpf_reg_state *regs = state->regs;
915 	int i;
916 
917 	for (i = 0; i < MAX_BPF_REG; i++) {
918 		mark_reg_not_init(env, regs, i);
919 		regs[i].live = REG_LIVE_NONE;
920 		regs[i].parent = NULL;
921 	}
922 
923 	/* frame pointer */
924 	regs[BPF_REG_FP].type = PTR_TO_STACK;
925 	mark_reg_known_zero(env, regs, BPF_REG_FP);
926 	regs[BPF_REG_FP].frameno = state->frameno;
927 
928 	/* 1st arg to a function */
929 	regs[BPF_REG_1].type = PTR_TO_CTX;
930 	mark_reg_known_zero(env, regs, BPF_REG_1);
931 }
932 
933 #define BPF_MAIN_FUNC (-1)
934 static void init_func_state(struct bpf_verifier_env *env,
935 			    struct bpf_func_state *state,
936 			    int callsite, int frameno, int subprogno)
937 {
938 	state->callsite = callsite;
939 	state->frameno = frameno;
940 	state->subprogno = subprogno;
941 	init_reg_state(env, state);
942 }
943 
944 enum reg_arg_type {
945 	SRC_OP,		/* register is used as source operand */
946 	DST_OP,		/* register is used as destination operand */
947 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
948 };
949 
950 static int cmp_subprogs(const void *a, const void *b)
951 {
952 	return ((struct bpf_subprog_info *)a)->start -
953 	       ((struct bpf_subprog_info *)b)->start;
954 }
955 
956 static int find_subprog(struct bpf_verifier_env *env, int off)
957 {
958 	struct bpf_subprog_info *p;
959 
960 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
961 		    sizeof(env->subprog_info[0]), cmp_subprogs);
962 	if (!p)
963 		return -ENOENT;
964 	return p - env->subprog_info;
965 
966 }
967 
968 static int add_subprog(struct bpf_verifier_env *env, int off)
969 {
970 	int insn_cnt = env->prog->len;
971 	int ret;
972 
973 	if (off >= insn_cnt || off < 0) {
974 		verbose(env, "call to invalid destination\n");
975 		return -EINVAL;
976 	}
977 	ret = find_subprog(env, off);
978 	if (ret >= 0)
979 		return 0;
980 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
981 		verbose(env, "too many subprograms\n");
982 		return -E2BIG;
983 	}
984 	env->subprog_info[env->subprog_cnt++].start = off;
985 	sort(env->subprog_info, env->subprog_cnt,
986 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
987 	return 0;
988 }
989 
990 static int check_subprogs(struct bpf_verifier_env *env)
991 {
992 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
993 	struct bpf_subprog_info *subprog = env->subprog_info;
994 	struct bpf_insn *insn = env->prog->insnsi;
995 	int insn_cnt = env->prog->len;
996 
997 	/* Add entry function. */
998 	ret = add_subprog(env, 0);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/* determine subprog starts. The end is one before the next starts */
1003 	for (i = 0; i < insn_cnt; i++) {
1004 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1005 			continue;
1006 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1007 			continue;
1008 		if (!env->allow_ptr_leaks) {
1009 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1010 			return -EPERM;
1011 		}
1012 		ret = add_subprog(env, i + insn[i].imm + 1);
1013 		if (ret < 0)
1014 			return ret;
1015 	}
1016 
1017 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1018 	 * logic. 'subprog_cnt' should not be increased.
1019 	 */
1020 	subprog[env->subprog_cnt].start = insn_cnt;
1021 
1022 	if (env->log.level > 1)
1023 		for (i = 0; i < env->subprog_cnt; i++)
1024 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1025 
1026 	/* now check that all jumps are within the same subprog */
1027 	subprog_start = subprog[cur_subprog].start;
1028 	subprog_end = subprog[cur_subprog + 1].start;
1029 	for (i = 0; i < insn_cnt; i++) {
1030 		u8 code = insn[i].code;
1031 
1032 		if (BPF_CLASS(code) != BPF_JMP)
1033 			goto next;
1034 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1035 			goto next;
1036 		off = i + insn[i].off + 1;
1037 		if (off < subprog_start || off >= subprog_end) {
1038 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1039 			return -EINVAL;
1040 		}
1041 next:
1042 		if (i == subprog_end - 1) {
1043 			/* to avoid fall-through from one subprog into another
1044 			 * the last insn of the subprog should be either exit
1045 			 * or unconditional jump back
1046 			 */
1047 			if (code != (BPF_JMP | BPF_EXIT) &&
1048 			    code != (BPF_JMP | BPF_JA)) {
1049 				verbose(env, "last insn is not an exit or jmp\n");
1050 				return -EINVAL;
1051 			}
1052 			subprog_start = subprog_end;
1053 			cur_subprog++;
1054 			if (cur_subprog < env->subprog_cnt)
1055 				subprog_end = subprog[cur_subprog + 1].start;
1056 		}
1057 	}
1058 	return 0;
1059 }
1060 
1061 /* Parentage chain of this register (or stack slot) should take care of all
1062  * issues like callee-saved registers, stack slot allocation time, etc.
1063  */
1064 static int mark_reg_read(struct bpf_verifier_env *env,
1065 			 const struct bpf_reg_state *state,
1066 			 struct bpf_reg_state *parent)
1067 {
1068 	bool writes = parent == state->parent; /* Observe write marks */
1069 
1070 	while (parent) {
1071 		/* if read wasn't screened by an earlier write ... */
1072 		if (writes && state->live & REG_LIVE_WRITTEN)
1073 			break;
1074 		/* ... then we depend on parent's value */
1075 		parent->live |= REG_LIVE_READ;
1076 		state = parent;
1077 		parent = state->parent;
1078 		writes = true;
1079 	}
1080 	return 0;
1081 }
1082 
1083 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1084 			 enum reg_arg_type t)
1085 {
1086 	struct bpf_verifier_state *vstate = env->cur_state;
1087 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1088 	struct bpf_reg_state *regs = state->regs;
1089 
1090 	if (regno >= MAX_BPF_REG) {
1091 		verbose(env, "R%d is invalid\n", regno);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (t == SRC_OP) {
1096 		/* check whether register used as source operand can be read */
1097 		if (regs[regno].type == NOT_INIT) {
1098 			verbose(env, "R%d !read_ok\n", regno);
1099 			return -EACCES;
1100 		}
1101 		/* We don't need to worry about FP liveness because it's read-only */
1102 		if (regno != BPF_REG_FP)
1103 			return mark_reg_read(env, &regs[regno],
1104 					     regs[regno].parent);
1105 	} else {
1106 		/* check whether register used as dest operand can be written to */
1107 		if (regno == BPF_REG_FP) {
1108 			verbose(env, "frame pointer is read only\n");
1109 			return -EACCES;
1110 		}
1111 		regs[regno].live |= REG_LIVE_WRITTEN;
1112 		if (t == DST_OP)
1113 			mark_reg_unknown(env, regs, regno);
1114 	}
1115 	return 0;
1116 }
1117 
1118 static bool is_spillable_regtype(enum bpf_reg_type type)
1119 {
1120 	switch (type) {
1121 	case PTR_TO_MAP_VALUE:
1122 	case PTR_TO_MAP_VALUE_OR_NULL:
1123 	case PTR_TO_STACK:
1124 	case PTR_TO_CTX:
1125 	case PTR_TO_PACKET:
1126 	case PTR_TO_PACKET_META:
1127 	case PTR_TO_PACKET_END:
1128 	case PTR_TO_FLOW_KEYS:
1129 	case CONST_PTR_TO_MAP:
1130 	case PTR_TO_SOCKET:
1131 	case PTR_TO_SOCKET_OR_NULL:
1132 		return true;
1133 	default:
1134 		return false;
1135 	}
1136 }
1137 
1138 /* Does this register contain a constant zero? */
1139 static bool register_is_null(struct bpf_reg_state *reg)
1140 {
1141 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1142 }
1143 
1144 /* check_stack_read/write functions track spill/fill of registers,
1145  * stack boundary and alignment are checked in check_mem_access()
1146  */
1147 static int check_stack_write(struct bpf_verifier_env *env,
1148 			     struct bpf_func_state *state, /* func where register points to */
1149 			     int off, int size, int value_regno, int insn_idx)
1150 {
1151 	struct bpf_func_state *cur; /* state of the current function */
1152 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1153 	enum bpf_reg_type type;
1154 
1155 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1156 				 state->acquired_refs, true);
1157 	if (err)
1158 		return err;
1159 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1160 	 * so it's aligned access and [off, off + size) are within stack limits
1161 	 */
1162 	if (!env->allow_ptr_leaks &&
1163 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1164 	    size != BPF_REG_SIZE) {
1165 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1166 		return -EACCES;
1167 	}
1168 
1169 	cur = env->cur_state->frame[env->cur_state->curframe];
1170 	if (value_regno >= 0 &&
1171 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1172 
1173 		/* register containing pointer is being spilled into stack */
1174 		if (size != BPF_REG_SIZE) {
1175 			verbose(env, "invalid size of register spill\n");
1176 			return -EACCES;
1177 		}
1178 
1179 		if (state != cur && type == PTR_TO_STACK) {
1180 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1181 			return -EINVAL;
1182 		}
1183 
1184 		/* save register state */
1185 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1186 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1187 
1188 		for (i = 0; i < BPF_REG_SIZE; i++) {
1189 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1190 			    !env->allow_ptr_leaks) {
1191 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1192 				int soff = (-spi - 1) * BPF_REG_SIZE;
1193 
1194 				/* detected reuse of integer stack slot with a pointer
1195 				 * which means either llvm is reusing stack slot or
1196 				 * an attacker is trying to exploit CVE-2018-3639
1197 				 * (speculative store bypass)
1198 				 * Have to sanitize that slot with preemptive
1199 				 * store of zero.
1200 				 */
1201 				if (*poff && *poff != soff) {
1202 					/* disallow programs where single insn stores
1203 					 * into two different stack slots, since verifier
1204 					 * cannot sanitize them
1205 					 */
1206 					verbose(env,
1207 						"insn %d cannot access two stack slots fp%d and fp%d",
1208 						insn_idx, *poff, soff);
1209 					return -EINVAL;
1210 				}
1211 				*poff = soff;
1212 			}
1213 			state->stack[spi].slot_type[i] = STACK_SPILL;
1214 		}
1215 	} else {
1216 		u8 type = STACK_MISC;
1217 
1218 		/* regular write of data into stack destroys any spilled ptr */
1219 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1220 
1221 		/* only mark the slot as written if all 8 bytes were written
1222 		 * otherwise read propagation may incorrectly stop too soon
1223 		 * when stack slots are partially written.
1224 		 * This heuristic means that read propagation will be
1225 		 * conservative, since it will add reg_live_read marks
1226 		 * to stack slots all the way to first state when programs
1227 		 * writes+reads less than 8 bytes
1228 		 */
1229 		if (size == BPF_REG_SIZE)
1230 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1231 
1232 		/* when we zero initialize stack slots mark them as such */
1233 		if (value_regno >= 0 &&
1234 		    register_is_null(&cur->regs[value_regno]))
1235 			type = STACK_ZERO;
1236 
1237 		for (i = 0; i < size; i++)
1238 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1239 				type;
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int check_stack_read(struct bpf_verifier_env *env,
1245 			    struct bpf_func_state *reg_state /* func where register points to */,
1246 			    int off, int size, int value_regno)
1247 {
1248 	struct bpf_verifier_state *vstate = env->cur_state;
1249 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1250 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1251 	u8 *stype;
1252 
1253 	if (reg_state->allocated_stack <= slot) {
1254 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1255 			off, size);
1256 		return -EACCES;
1257 	}
1258 	stype = reg_state->stack[spi].slot_type;
1259 
1260 	if (stype[0] == STACK_SPILL) {
1261 		if (size != BPF_REG_SIZE) {
1262 			verbose(env, "invalid size of register spill\n");
1263 			return -EACCES;
1264 		}
1265 		for (i = 1; i < BPF_REG_SIZE; i++) {
1266 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1267 				verbose(env, "corrupted spill memory\n");
1268 				return -EACCES;
1269 			}
1270 		}
1271 
1272 		if (value_regno >= 0) {
1273 			/* restore register state from stack */
1274 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1275 			/* mark reg as written since spilled pointer state likely
1276 			 * has its liveness marks cleared by is_state_visited()
1277 			 * which resets stack/reg liveness for state transitions
1278 			 */
1279 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1280 		}
1281 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1282 			      reg_state->stack[spi].spilled_ptr.parent);
1283 		return 0;
1284 	} else {
1285 		int zeros = 0;
1286 
1287 		for (i = 0; i < size; i++) {
1288 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1289 				continue;
1290 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1291 				zeros++;
1292 				continue;
1293 			}
1294 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1295 				off, i, size);
1296 			return -EACCES;
1297 		}
1298 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1299 			      reg_state->stack[spi].spilled_ptr.parent);
1300 		if (value_regno >= 0) {
1301 			if (zeros == size) {
1302 				/* any size read into register is zero extended,
1303 				 * so the whole register == const_zero
1304 				 */
1305 				__mark_reg_const_zero(&state->regs[value_regno]);
1306 			} else {
1307 				/* have read misc data from the stack */
1308 				mark_reg_unknown(env, state->regs, value_regno);
1309 			}
1310 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1311 		}
1312 		return 0;
1313 	}
1314 }
1315 
1316 /* check read/write into map element returned by bpf_map_lookup_elem() */
1317 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1318 			      int size, bool zero_size_allowed)
1319 {
1320 	struct bpf_reg_state *regs = cur_regs(env);
1321 	struct bpf_map *map = regs[regno].map_ptr;
1322 
1323 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1324 	    off + size > map->value_size) {
1325 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1326 			map->value_size, off, size);
1327 		return -EACCES;
1328 	}
1329 	return 0;
1330 }
1331 
1332 /* check read/write into a map element with possible variable offset */
1333 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1334 			    int off, int size, bool zero_size_allowed)
1335 {
1336 	struct bpf_verifier_state *vstate = env->cur_state;
1337 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1338 	struct bpf_reg_state *reg = &state->regs[regno];
1339 	int err;
1340 
1341 	/* We may have adjusted the register to this map value, so we
1342 	 * need to try adding each of min_value and max_value to off
1343 	 * to make sure our theoretical access will be safe.
1344 	 */
1345 	if (env->log.level)
1346 		print_verifier_state(env, state);
1347 	/* The minimum value is only important with signed
1348 	 * comparisons where we can't assume the floor of a
1349 	 * value is 0.  If we are using signed variables for our
1350 	 * index'es we need to make sure that whatever we use
1351 	 * will have a set floor within our range.
1352 	 */
1353 	if (reg->smin_value < 0) {
1354 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1355 			regno);
1356 		return -EACCES;
1357 	}
1358 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1359 				 zero_size_allowed);
1360 	if (err) {
1361 		verbose(env, "R%d min value is outside of the array range\n",
1362 			regno);
1363 		return err;
1364 	}
1365 
1366 	/* If we haven't set a max value then we need to bail since we can't be
1367 	 * sure we won't do bad things.
1368 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1369 	 */
1370 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1371 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1372 			regno);
1373 		return -EACCES;
1374 	}
1375 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1376 				 zero_size_allowed);
1377 	if (err)
1378 		verbose(env, "R%d max value is outside of the array range\n",
1379 			regno);
1380 	return err;
1381 }
1382 
1383 #define MAX_PACKET_OFF 0xffff
1384 
1385 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1386 				       const struct bpf_call_arg_meta *meta,
1387 				       enum bpf_access_type t)
1388 {
1389 	switch (env->prog->type) {
1390 	case BPF_PROG_TYPE_LWT_IN:
1391 	case BPF_PROG_TYPE_LWT_OUT:
1392 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1393 	case BPF_PROG_TYPE_SK_REUSEPORT:
1394 		/* dst_input() and dst_output() can't write for now */
1395 		if (t == BPF_WRITE)
1396 			return false;
1397 		/* fallthrough */
1398 	case BPF_PROG_TYPE_SCHED_CLS:
1399 	case BPF_PROG_TYPE_SCHED_ACT:
1400 	case BPF_PROG_TYPE_XDP:
1401 	case BPF_PROG_TYPE_LWT_XMIT:
1402 	case BPF_PROG_TYPE_SK_SKB:
1403 	case BPF_PROG_TYPE_SK_MSG:
1404 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1405 		if (meta)
1406 			return meta->pkt_access;
1407 
1408 		env->seen_direct_write = true;
1409 		return true;
1410 	default:
1411 		return false;
1412 	}
1413 }
1414 
1415 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1416 				 int off, int size, bool zero_size_allowed)
1417 {
1418 	struct bpf_reg_state *regs = cur_regs(env);
1419 	struct bpf_reg_state *reg = &regs[regno];
1420 
1421 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1422 	    (u64)off + size > reg->range) {
1423 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1424 			off, size, regno, reg->id, reg->off, reg->range);
1425 		return -EACCES;
1426 	}
1427 	return 0;
1428 }
1429 
1430 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1431 			       int size, bool zero_size_allowed)
1432 {
1433 	struct bpf_reg_state *regs = cur_regs(env);
1434 	struct bpf_reg_state *reg = &regs[regno];
1435 	int err;
1436 
1437 	/* We may have added a variable offset to the packet pointer; but any
1438 	 * reg->range we have comes after that.  We are only checking the fixed
1439 	 * offset.
1440 	 */
1441 
1442 	/* We don't allow negative numbers, because we aren't tracking enough
1443 	 * detail to prove they're safe.
1444 	 */
1445 	if (reg->smin_value < 0) {
1446 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1447 			regno);
1448 		return -EACCES;
1449 	}
1450 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1451 	if (err) {
1452 		verbose(env, "R%d offset is outside of the packet\n", regno);
1453 		return err;
1454 	}
1455 	return err;
1456 }
1457 
1458 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1459 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1460 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1461 {
1462 	struct bpf_insn_access_aux info = {
1463 		.reg_type = *reg_type,
1464 	};
1465 
1466 	if (env->ops->is_valid_access &&
1467 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1468 		/* A non zero info.ctx_field_size indicates that this field is a
1469 		 * candidate for later verifier transformation to load the whole
1470 		 * field and then apply a mask when accessed with a narrower
1471 		 * access than actual ctx access size. A zero info.ctx_field_size
1472 		 * will only allow for whole field access and rejects any other
1473 		 * type of narrower access.
1474 		 */
1475 		*reg_type = info.reg_type;
1476 
1477 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1478 		/* remember the offset of last byte accessed in ctx */
1479 		if (env->prog->aux->max_ctx_offset < off + size)
1480 			env->prog->aux->max_ctx_offset = off + size;
1481 		return 0;
1482 	}
1483 
1484 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1485 	return -EACCES;
1486 }
1487 
1488 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1489 				  int size)
1490 {
1491 	if (size < 0 || off < 0 ||
1492 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1493 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1494 			off, size);
1495 		return -EACCES;
1496 	}
1497 	return 0;
1498 }
1499 
1500 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1501 			     int size, enum bpf_access_type t)
1502 {
1503 	struct bpf_reg_state *regs = cur_regs(env);
1504 	struct bpf_reg_state *reg = &regs[regno];
1505 	struct bpf_insn_access_aux info;
1506 
1507 	if (reg->smin_value < 0) {
1508 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1509 			regno);
1510 		return -EACCES;
1511 	}
1512 
1513 	if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1514 		verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1515 			off, size);
1516 		return -EACCES;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static bool __is_pointer_value(bool allow_ptr_leaks,
1523 			       const struct bpf_reg_state *reg)
1524 {
1525 	if (allow_ptr_leaks)
1526 		return false;
1527 
1528 	return reg->type != SCALAR_VALUE;
1529 }
1530 
1531 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1532 {
1533 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1534 }
1535 
1536 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1537 {
1538 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1539 
1540 	return reg->type == PTR_TO_CTX ||
1541 	       reg->type == PTR_TO_SOCKET;
1542 }
1543 
1544 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1545 {
1546 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1547 
1548 	return type_is_pkt_pointer(reg->type);
1549 }
1550 
1551 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1552 				   const struct bpf_reg_state *reg,
1553 				   int off, int size, bool strict)
1554 {
1555 	struct tnum reg_off;
1556 	int ip_align;
1557 
1558 	/* Byte size accesses are always allowed. */
1559 	if (!strict || size == 1)
1560 		return 0;
1561 
1562 	/* For platforms that do not have a Kconfig enabling
1563 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1564 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1565 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1566 	 * to this code only in strict mode where we want to emulate
1567 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1568 	 * unconditional IP align value of '2'.
1569 	 */
1570 	ip_align = 2;
1571 
1572 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1573 	if (!tnum_is_aligned(reg_off, size)) {
1574 		char tn_buf[48];
1575 
1576 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1577 		verbose(env,
1578 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1579 			ip_align, tn_buf, reg->off, off, size);
1580 		return -EACCES;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1587 				       const struct bpf_reg_state *reg,
1588 				       const char *pointer_desc,
1589 				       int off, int size, bool strict)
1590 {
1591 	struct tnum reg_off;
1592 
1593 	/* Byte size accesses are always allowed. */
1594 	if (!strict || size == 1)
1595 		return 0;
1596 
1597 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1598 	if (!tnum_is_aligned(reg_off, size)) {
1599 		char tn_buf[48];
1600 
1601 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1602 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1603 			pointer_desc, tn_buf, reg->off, off, size);
1604 		return -EACCES;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static int check_ptr_alignment(struct bpf_verifier_env *env,
1611 			       const struct bpf_reg_state *reg, int off,
1612 			       int size, bool strict_alignment_once)
1613 {
1614 	bool strict = env->strict_alignment || strict_alignment_once;
1615 	const char *pointer_desc = "";
1616 
1617 	switch (reg->type) {
1618 	case PTR_TO_PACKET:
1619 	case PTR_TO_PACKET_META:
1620 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1621 		 * right in front, treat it the very same way.
1622 		 */
1623 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1624 	case PTR_TO_FLOW_KEYS:
1625 		pointer_desc = "flow keys ";
1626 		break;
1627 	case PTR_TO_MAP_VALUE:
1628 		pointer_desc = "value ";
1629 		break;
1630 	case PTR_TO_CTX:
1631 		pointer_desc = "context ";
1632 		break;
1633 	case PTR_TO_STACK:
1634 		pointer_desc = "stack ";
1635 		/* The stack spill tracking logic in check_stack_write()
1636 		 * and check_stack_read() relies on stack accesses being
1637 		 * aligned.
1638 		 */
1639 		strict = true;
1640 		break;
1641 	case PTR_TO_SOCKET:
1642 		pointer_desc = "sock ";
1643 		break;
1644 	default:
1645 		break;
1646 	}
1647 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1648 					   strict);
1649 }
1650 
1651 static int update_stack_depth(struct bpf_verifier_env *env,
1652 			      const struct bpf_func_state *func,
1653 			      int off)
1654 {
1655 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1656 
1657 	if (stack >= -off)
1658 		return 0;
1659 
1660 	/* update known max for given subprogram */
1661 	env->subprog_info[func->subprogno].stack_depth = -off;
1662 	return 0;
1663 }
1664 
1665 /* starting from main bpf function walk all instructions of the function
1666  * and recursively walk all callees that given function can call.
1667  * Ignore jump and exit insns.
1668  * Since recursion is prevented by check_cfg() this algorithm
1669  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1670  */
1671 static int check_max_stack_depth(struct bpf_verifier_env *env)
1672 {
1673 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1674 	struct bpf_subprog_info *subprog = env->subprog_info;
1675 	struct bpf_insn *insn = env->prog->insnsi;
1676 	int ret_insn[MAX_CALL_FRAMES];
1677 	int ret_prog[MAX_CALL_FRAMES];
1678 
1679 process_func:
1680 	/* round up to 32-bytes, since this is granularity
1681 	 * of interpreter stack size
1682 	 */
1683 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1684 	if (depth > MAX_BPF_STACK) {
1685 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1686 			frame + 1, depth);
1687 		return -EACCES;
1688 	}
1689 continue_func:
1690 	subprog_end = subprog[idx + 1].start;
1691 	for (; i < subprog_end; i++) {
1692 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1693 			continue;
1694 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1695 			continue;
1696 		/* remember insn and function to return to */
1697 		ret_insn[frame] = i + 1;
1698 		ret_prog[frame] = idx;
1699 
1700 		/* find the callee */
1701 		i = i + insn[i].imm + 1;
1702 		idx = find_subprog(env, i);
1703 		if (idx < 0) {
1704 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1705 				  i);
1706 			return -EFAULT;
1707 		}
1708 		frame++;
1709 		if (frame >= MAX_CALL_FRAMES) {
1710 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1711 			return -EFAULT;
1712 		}
1713 		goto process_func;
1714 	}
1715 	/* end of for() loop means the last insn of the 'subprog'
1716 	 * was reached. Doesn't matter whether it was JA or EXIT
1717 	 */
1718 	if (frame == 0)
1719 		return 0;
1720 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1721 	frame--;
1722 	i = ret_insn[frame];
1723 	idx = ret_prog[frame];
1724 	goto continue_func;
1725 }
1726 
1727 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1728 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1729 				  const struct bpf_insn *insn, int idx)
1730 {
1731 	int start = idx + insn->imm + 1, subprog;
1732 
1733 	subprog = find_subprog(env, start);
1734 	if (subprog < 0) {
1735 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1736 			  start);
1737 		return -EFAULT;
1738 	}
1739 	return env->subprog_info[subprog].stack_depth;
1740 }
1741 #endif
1742 
1743 static int check_ctx_reg(struct bpf_verifier_env *env,
1744 			 const struct bpf_reg_state *reg, int regno)
1745 {
1746 	/* Access to ctx or passing it to a helper is only allowed in
1747 	 * its original, unmodified form.
1748 	 */
1749 
1750 	if (reg->off) {
1751 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1752 			regno, reg->off);
1753 		return -EACCES;
1754 	}
1755 
1756 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1757 		char tn_buf[48];
1758 
1759 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1760 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1761 		return -EACCES;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 /* truncate register to smaller size (in bytes)
1768  * must be called with size < BPF_REG_SIZE
1769  */
1770 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1771 {
1772 	u64 mask;
1773 
1774 	/* clear high bits in bit representation */
1775 	reg->var_off = tnum_cast(reg->var_off, size);
1776 
1777 	/* fix arithmetic bounds */
1778 	mask = ((u64)1 << (size * 8)) - 1;
1779 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1780 		reg->umin_value &= mask;
1781 		reg->umax_value &= mask;
1782 	} else {
1783 		reg->umin_value = 0;
1784 		reg->umax_value = mask;
1785 	}
1786 	reg->smin_value = reg->umin_value;
1787 	reg->smax_value = reg->umax_value;
1788 }
1789 
1790 /* check whether memory at (regno + off) is accessible for t = (read | write)
1791  * if t==write, value_regno is a register which value is stored into memory
1792  * if t==read, value_regno is a register which will receive the value from memory
1793  * if t==write && value_regno==-1, some unknown value is stored into memory
1794  * if t==read && value_regno==-1, don't care what we read from memory
1795  */
1796 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1797 			    int off, int bpf_size, enum bpf_access_type t,
1798 			    int value_regno, bool strict_alignment_once)
1799 {
1800 	struct bpf_reg_state *regs = cur_regs(env);
1801 	struct bpf_reg_state *reg = regs + regno;
1802 	struct bpf_func_state *state;
1803 	int size, err = 0;
1804 
1805 	size = bpf_size_to_bytes(bpf_size);
1806 	if (size < 0)
1807 		return size;
1808 
1809 	/* alignment checks will add in reg->off themselves */
1810 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1811 	if (err)
1812 		return err;
1813 
1814 	/* for access checks, reg->off is just part of off */
1815 	off += reg->off;
1816 
1817 	if (reg->type == PTR_TO_MAP_VALUE) {
1818 		if (t == BPF_WRITE && value_regno >= 0 &&
1819 		    is_pointer_value(env, value_regno)) {
1820 			verbose(env, "R%d leaks addr into map\n", value_regno);
1821 			return -EACCES;
1822 		}
1823 
1824 		err = check_map_access(env, regno, off, size, false);
1825 		if (!err && t == BPF_READ && value_regno >= 0)
1826 			mark_reg_unknown(env, regs, value_regno);
1827 
1828 	} else if (reg->type == PTR_TO_CTX) {
1829 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1830 
1831 		if (t == BPF_WRITE && value_regno >= 0 &&
1832 		    is_pointer_value(env, value_regno)) {
1833 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1834 			return -EACCES;
1835 		}
1836 
1837 		err = check_ctx_reg(env, reg, regno);
1838 		if (err < 0)
1839 			return err;
1840 
1841 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1842 		if (!err && t == BPF_READ && value_regno >= 0) {
1843 			/* ctx access returns either a scalar, or a
1844 			 * PTR_TO_PACKET[_META,_END]. In the latter
1845 			 * case, we know the offset is zero.
1846 			 */
1847 			if (reg_type == SCALAR_VALUE)
1848 				mark_reg_unknown(env, regs, value_regno);
1849 			else
1850 				mark_reg_known_zero(env, regs,
1851 						    value_regno);
1852 			regs[value_regno].type = reg_type;
1853 		}
1854 
1855 	} else if (reg->type == PTR_TO_STACK) {
1856 		/* stack accesses must be at a fixed offset, so that we can
1857 		 * determine what type of data were returned.
1858 		 * See check_stack_read().
1859 		 */
1860 		if (!tnum_is_const(reg->var_off)) {
1861 			char tn_buf[48];
1862 
1863 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1864 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1865 				tn_buf, off, size);
1866 			return -EACCES;
1867 		}
1868 		off += reg->var_off.value;
1869 		if (off >= 0 || off < -MAX_BPF_STACK) {
1870 			verbose(env, "invalid stack off=%d size=%d\n", off,
1871 				size);
1872 			return -EACCES;
1873 		}
1874 
1875 		state = func(env, reg);
1876 		err = update_stack_depth(env, state, off);
1877 		if (err)
1878 			return err;
1879 
1880 		if (t == BPF_WRITE)
1881 			err = check_stack_write(env, state, off, size,
1882 						value_regno, insn_idx);
1883 		else
1884 			err = check_stack_read(env, state, off, size,
1885 					       value_regno);
1886 	} else if (reg_is_pkt_pointer(reg)) {
1887 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1888 			verbose(env, "cannot write into packet\n");
1889 			return -EACCES;
1890 		}
1891 		if (t == BPF_WRITE && value_regno >= 0 &&
1892 		    is_pointer_value(env, value_regno)) {
1893 			verbose(env, "R%d leaks addr into packet\n",
1894 				value_regno);
1895 			return -EACCES;
1896 		}
1897 		err = check_packet_access(env, regno, off, size, false);
1898 		if (!err && t == BPF_READ && value_regno >= 0)
1899 			mark_reg_unknown(env, regs, value_regno);
1900 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
1901 		if (t == BPF_WRITE && value_regno >= 0 &&
1902 		    is_pointer_value(env, value_regno)) {
1903 			verbose(env, "R%d leaks addr into flow keys\n",
1904 				value_regno);
1905 			return -EACCES;
1906 		}
1907 
1908 		err = check_flow_keys_access(env, off, size);
1909 		if (!err && t == BPF_READ && value_regno >= 0)
1910 			mark_reg_unknown(env, regs, value_regno);
1911 	} else if (reg->type == PTR_TO_SOCKET) {
1912 		if (t == BPF_WRITE) {
1913 			verbose(env, "cannot write into socket\n");
1914 			return -EACCES;
1915 		}
1916 		err = check_sock_access(env, regno, off, size, t);
1917 		if (!err && value_regno >= 0)
1918 			mark_reg_unknown(env, regs, value_regno);
1919 	} else {
1920 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1921 			reg_type_str[reg->type]);
1922 		return -EACCES;
1923 	}
1924 
1925 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1926 	    regs[value_regno].type == SCALAR_VALUE) {
1927 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1928 		coerce_reg_to_size(&regs[value_regno], size);
1929 	}
1930 	return err;
1931 }
1932 
1933 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1934 {
1935 	int err;
1936 
1937 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1938 	    insn->imm != 0) {
1939 		verbose(env, "BPF_XADD uses reserved fields\n");
1940 		return -EINVAL;
1941 	}
1942 
1943 	/* check src1 operand */
1944 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1945 	if (err)
1946 		return err;
1947 
1948 	/* check src2 operand */
1949 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1950 	if (err)
1951 		return err;
1952 
1953 	if (is_pointer_value(env, insn->src_reg)) {
1954 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1955 		return -EACCES;
1956 	}
1957 
1958 	if (is_ctx_reg(env, insn->dst_reg) ||
1959 	    is_pkt_reg(env, insn->dst_reg)) {
1960 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1961 			insn->dst_reg, reg_type_str[insn->dst_reg]);
1962 		return -EACCES;
1963 	}
1964 
1965 	/* check whether atomic_add can read the memory */
1966 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1967 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1968 	if (err)
1969 		return err;
1970 
1971 	/* check whether atomic_add can write into the same memory */
1972 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1973 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1974 }
1975 
1976 /* when register 'regno' is passed into function that will read 'access_size'
1977  * bytes from that pointer, make sure that it's within stack boundary
1978  * and all elements of stack are initialized.
1979  * Unlike most pointer bounds-checking functions, this one doesn't take an
1980  * 'off' argument, so it has to add in reg->off itself.
1981  */
1982 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1983 				int access_size, bool zero_size_allowed,
1984 				struct bpf_call_arg_meta *meta)
1985 {
1986 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1987 	struct bpf_func_state *state = func(env, reg);
1988 	int off, i, slot, spi;
1989 
1990 	if (reg->type != PTR_TO_STACK) {
1991 		/* Allow zero-byte read from NULL, regardless of pointer type */
1992 		if (zero_size_allowed && access_size == 0 &&
1993 		    register_is_null(reg))
1994 			return 0;
1995 
1996 		verbose(env, "R%d type=%s expected=%s\n", regno,
1997 			reg_type_str[reg->type],
1998 			reg_type_str[PTR_TO_STACK]);
1999 		return -EACCES;
2000 	}
2001 
2002 	/* Only allow fixed-offset stack reads */
2003 	if (!tnum_is_const(reg->var_off)) {
2004 		char tn_buf[48];
2005 
2006 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2007 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2008 			regno, tn_buf);
2009 		return -EACCES;
2010 	}
2011 	off = reg->off + reg->var_off.value;
2012 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2013 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2014 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2015 			regno, off, access_size);
2016 		return -EACCES;
2017 	}
2018 
2019 	if (meta && meta->raw_mode) {
2020 		meta->access_size = access_size;
2021 		meta->regno = regno;
2022 		return 0;
2023 	}
2024 
2025 	for (i = 0; i < access_size; i++) {
2026 		u8 *stype;
2027 
2028 		slot = -(off + i) - 1;
2029 		spi = slot / BPF_REG_SIZE;
2030 		if (state->allocated_stack <= slot)
2031 			goto err;
2032 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2033 		if (*stype == STACK_MISC)
2034 			goto mark;
2035 		if (*stype == STACK_ZERO) {
2036 			/* helper can write anything into the stack */
2037 			*stype = STACK_MISC;
2038 			goto mark;
2039 		}
2040 err:
2041 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2042 			off, i, access_size);
2043 		return -EACCES;
2044 mark:
2045 		/* reading any byte out of 8-byte 'spill_slot' will cause
2046 		 * the whole slot to be marked as 'read'
2047 		 */
2048 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2049 			      state->stack[spi].spilled_ptr.parent);
2050 	}
2051 	return update_stack_depth(env, state, off);
2052 }
2053 
2054 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2055 				   int access_size, bool zero_size_allowed,
2056 				   struct bpf_call_arg_meta *meta)
2057 {
2058 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2059 
2060 	switch (reg->type) {
2061 	case PTR_TO_PACKET:
2062 	case PTR_TO_PACKET_META:
2063 		return check_packet_access(env, regno, reg->off, access_size,
2064 					   zero_size_allowed);
2065 	case PTR_TO_FLOW_KEYS:
2066 		return check_flow_keys_access(env, reg->off, access_size);
2067 	case PTR_TO_MAP_VALUE:
2068 		return check_map_access(env, regno, reg->off, access_size,
2069 					zero_size_allowed);
2070 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2071 		return check_stack_boundary(env, regno, access_size,
2072 					    zero_size_allowed, meta);
2073 	}
2074 }
2075 
2076 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2077 {
2078 	return type == ARG_PTR_TO_MEM ||
2079 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2080 	       type == ARG_PTR_TO_UNINIT_MEM;
2081 }
2082 
2083 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2084 {
2085 	return type == ARG_CONST_SIZE ||
2086 	       type == ARG_CONST_SIZE_OR_ZERO;
2087 }
2088 
2089 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2090 			  enum bpf_arg_type arg_type,
2091 			  struct bpf_call_arg_meta *meta)
2092 {
2093 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2094 	enum bpf_reg_type expected_type, type = reg->type;
2095 	int err = 0;
2096 
2097 	if (arg_type == ARG_DONTCARE)
2098 		return 0;
2099 
2100 	err = check_reg_arg(env, regno, SRC_OP);
2101 	if (err)
2102 		return err;
2103 
2104 	if (arg_type == ARG_ANYTHING) {
2105 		if (is_pointer_value(env, regno)) {
2106 			verbose(env, "R%d leaks addr into helper function\n",
2107 				regno);
2108 			return -EACCES;
2109 		}
2110 		return 0;
2111 	}
2112 
2113 	if (type_is_pkt_pointer(type) &&
2114 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2115 		verbose(env, "helper access to the packet is not allowed\n");
2116 		return -EACCES;
2117 	}
2118 
2119 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2120 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
2121 		expected_type = PTR_TO_STACK;
2122 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2123 		    type != expected_type)
2124 			goto err_type;
2125 	} else if (arg_type == ARG_CONST_SIZE ||
2126 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2127 		expected_type = SCALAR_VALUE;
2128 		if (type != expected_type)
2129 			goto err_type;
2130 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2131 		expected_type = CONST_PTR_TO_MAP;
2132 		if (type != expected_type)
2133 			goto err_type;
2134 	} else if (arg_type == ARG_PTR_TO_CTX) {
2135 		expected_type = PTR_TO_CTX;
2136 		if (type != expected_type)
2137 			goto err_type;
2138 		err = check_ctx_reg(env, reg, regno);
2139 		if (err < 0)
2140 			return err;
2141 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2142 		expected_type = PTR_TO_SOCKET;
2143 		if (type != expected_type)
2144 			goto err_type;
2145 		if (meta->ptr_id || !reg->id) {
2146 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2147 				meta->ptr_id, reg->id);
2148 			return -EFAULT;
2149 		}
2150 		meta->ptr_id = reg->id;
2151 	} else if (arg_type_is_mem_ptr(arg_type)) {
2152 		expected_type = PTR_TO_STACK;
2153 		/* One exception here. In case function allows for NULL to be
2154 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2155 		 * happens during stack boundary checking.
2156 		 */
2157 		if (register_is_null(reg) &&
2158 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2159 			/* final test in check_stack_boundary() */;
2160 		else if (!type_is_pkt_pointer(type) &&
2161 			 type != PTR_TO_MAP_VALUE &&
2162 			 type != expected_type)
2163 			goto err_type;
2164 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2165 	} else {
2166 		verbose(env, "unsupported arg_type %d\n", arg_type);
2167 		return -EFAULT;
2168 	}
2169 
2170 	if (arg_type == ARG_CONST_MAP_PTR) {
2171 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2172 		meta->map_ptr = reg->map_ptr;
2173 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2174 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2175 		 * check that [key, key + map->key_size) are within
2176 		 * stack limits and initialized
2177 		 */
2178 		if (!meta->map_ptr) {
2179 			/* in function declaration map_ptr must come before
2180 			 * map_key, so that it's verified and known before
2181 			 * we have to check map_key here. Otherwise it means
2182 			 * that kernel subsystem misconfigured verifier
2183 			 */
2184 			verbose(env, "invalid map_ptr to access map->key\n");
2185 			return -EACCES;
2186 		}
2187 		err = check_helper_mem_access(env, regno,
2188 					      meta->map_ptr->key_size, false,
2189 					      NULL);
2190 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2191 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2192 		 * check [value, value + map->value_size) validity
2193 		 */
2194 		if (!meta->map_ptr) {
2195 			/* kernel subsystem misconfigured verifier */
2196 			verbose(env, "invalid map_ptr to access map->value\n");
2197 			return -EACCES;
2198 		}
2199 		err = check_helper_mem_access(env, regno,
2200 					      meta->map_ptr->value_size, false,
2201 					      NULL);
2202 	} else if (arg_type_is_mem_size(arg_type)) {
2203 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2204 
2205 		/* remember the mem_size which may be used later
2206 		 * to refine return values.
2207 		 */
2208 		meta->msize_smax_value = reg->smax_value;
2209 		meta->msize_umax_value = reg->umax_value;
2210 
2211 		/* The register is SCALAR_VALUE; the access check
2212 		 * happens using its boundaries.
2213 		 */
2214 		if (!tnum_is_const(reg->var_off))
2215 			/* For unprivileged variable accesses, disable raw
2216 			 * mode so that the program is required to
2217 			 * initialize all the memory that the helper could
2218 			 * just partially fill up.
2219 			 */
2220 			meta = NULL;
2221 
2222 		if (reg->smin_value < 0) {
2223 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2224 				regno);
2225 			return -EACCES;
2226 		}
2227 
2228 		if (reg->umin_value == 0) {
2229 			err = check_helper_mem_access(env, regno - 1, 0,
2230 						      zero_size_allowed,
2231 						      meta);
2232 			if (err)
2233 				return err;
2234 		}
2235 
2236 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2237 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2238 				regno);
2239 			return -EACCES;
2240 		}
2241 		err = check_helper_mem_access(env, regno - 1,
2242 					      reg->umax_value,
2243 					      zero_size_allowed, meta);
2244 	}
2245 
2246 	return err;
2247 err_type:
2248 	verbose(env, "R%d type=%s expected=%s\n", regno,
2249 		reg_type_str[type], reg_type_str[expected_type]);
2250 	return -EACCES;
2251 }
2252 
2253 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2254 					struct bpf_map *map, int func_id)
2255 {
2256 	if (!map)
2257 		return 0;
2258 
2259 	/* We need a two way check, first is from map perspective ... */
2260 	switch (map->map_type) {
2261 	case BPF_MAP_TYPE_PROG_ARRAY:
2262 		if (func_id != BPF_FUNC_tail_call)
2263 			goto error;
2264 		break;
2265 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2266 		if (func_id != BPF_FUNC_perf_event_read &&
2267 		    func_id != BPF_FUNC_perf_event_output &&
2268 		    func_id != BPF_FUNC_perf_event_read_value)
2269 			goto error;
2270 		break;
2271 	case BPF_MAP_TYPE_STACK_TRACE:
2272 		if (func_id != BPF_FUNC_get_stackid)
2273 			goto error;
2274 		break;
2275 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2276 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2277 		    func_id != BPF_FUNC_current_task_under_cgroup)
2278 			goto error;
2279 		break;
2280 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2281 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2282 		if (func_id != BPF_FUNC_get_local_storage)
2283 			goto error;
2284 		break;
2285 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2286 	 * allow to be modified from bpf side. So do not allow lookup elements
2287 	 * for now.
2288 	 */
2289 	case BPF_MAP_TYPE_DEVMAP:
2290 		if (func_id != BPF_FUNC_redirect_map)
2291 			goto error;
2292 		break;
2293 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2294 	 * appear.
2295 	 */
2296 	case BPF_MAP_TYPE_CPUMAP:
2297 	case BPF_MAP_TYPE_XSKMAP:
2298 		if (func_id != BPF_FUNC_redirect_map)
2299 			goto error;
2300 		break;
2301 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2302 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2303 		if (func_id != BPF_FUNC_map_lookup_elem)
2304 			goto error;
2305 		break;
2306 	case BPF_MAP_TYPE_SOCKMAP:
2307 		if (func_id != BPF_FUNC_sk_redirect_map &&
2308 		    func_id != BPF_FUNC_sock_map_update &&
2309 		    func_id != BPF_FUNC_map_delete_elem &&
2310 		    func_id != BPF_FUNC_msg_redirect_map)
2311 			goto error;
2312 		break;
2313 	case BPF_MAP_TYPE_SOCKHASH:
2314 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2315 		    func_id != BPF_FUNC_sock_hash_update &&
2316 		    func_id != BPF_FUNC_map_delete_elem &&
2317 		    func_id != BPF_FUNC_msg_redirect_hash)
2318 			goto error;
2319 		break;
2320 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2321 		if (func_id != BPF_FUNC_sk_select_reuseport)
2322 			goto error;
2323 		break;
2324 	default:
2325 		break;
2326 	}
2327 
2328 	/* ... and second from the function itself. */
2329 	switch (func_id) {
2330 	case BPF_FUNC_tail_call:
2331 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2332 			goto error;
2333 		if (env->subprog_cnt > 1) {
2334 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2335 			return -EINVAL;
2336 		}
2337 		break;
2338 	case BPF_FUNC_perf_event_read:
2339 	case BPF_FUNC_perf_event_output:
2340 	case BPF_FUNC_perf_event_read_value:
2341 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2342 			goto error;
2343 		break;
2344 	case BPF_FUNC_get_stackid:
2345 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2346 			goto error;
2347 		break;
2348 	case BPF_FUNC_current_task_under_cgroup:
2349 	case BPF_FUNC_skb_under_cgroup:
2350 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2351 			goto error;
2352 		break;
2353 	case BPF_FUNC_redirect_map:
2354 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2355 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2356 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2357 			goto error;
2358 		break;
2359 	case BPF_FUNC_sk_redirect_map:
2360 	case BPF_FUNC_msg_redirect_map:
2361 	case BPF_FUNC_sock_map_update:
2362 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2363 			goto error;
2364 		break;
2365 	case BPF_FUNC_sk_redirect_hash:
2366 	case BPF_FUNC_msg_redirect_hash:
2367 	case BPF_FUNC_sock_hash_update:
2368 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2369 			goto error;
2370 		break;
2371 	case BPF_FUNC_get_local_storage:
2372 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2373 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2374 			goto error;
2375 		break;
2376 	case BPF_FUNC_sk_select_reuseport:
2377 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2378 			goto error;
2379 		break;
2380 	default:
2381 		break;
2382 	}
2383 
2384 	return 0;
2385 error:
2386 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2387 		map->map_type, func_id_name(func_id), func_id);
2388 	return -EINVAL;
2389 }
2390 
2391 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2392 {
2393 	int count = 0;
2394 
2395 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2396 		count++;
2397 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2398 		count++;
2399 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2400 		count++;
2401 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2402 		count++;
2403 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2404 		count++;
2405 
2406 	/* We only support one arg being in raw mode at the moment,
2407 	 * which is sufficient for the helper functions we have
2408 	 * right now.
2409 	 */
2410 	return count <= 1;
2411 }
2412 
2413 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2414 				    enum bpf_arg_type arg_next)
2415 {
2416 	return (arg_type_is_mem_ptr(arg_curr) &&
2417 	        !arg_type_is_mem_size(arg_next)) ||
2418 	       (!arg_type_is_mem_ptr(arg_curr) &&
2419 		arg_type_is_mem_size(arg_next));
2420 }
2421 
2422 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2423 {
2424 	/* bpf_xxx(..., buf, len) call will access 'len'
2425 	 * bytes from memory 'buf'. Both arg types need
2426 	 * to be paired, so make sure there's no buggy
2427 	 * helper function specification.
2428 	 */
2429 	if (arg_type_is_mem_size(fn->arg1_type) ||
2430 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2431 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2432 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2433 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2434 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2435 		return false;
2436 
2437 	return true;
2438 }
2439 
2440 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2441 {
2442 	int count = 0;
2443 
2444 	if (arg_type_is_refcounted(fn->arg1_type))
2445 		count++;
2446 	if (arg_type_is_refcounted(fn->arg2_type))
2447 		count++;
2448 	if (arg_type_is_refcounted(fn->arg3_type))
2449 		count++;
2450 	if (arg_type_is_refcounted(fn->arg4_type))
2451 		count++;
2452 	if (arg_type_is_refcounted(fn->arg5_type))
2453 		count++;
2454 
2455 	/* We only support one arg being unreferenced at the moment,
2456 	 * which is sufficient for the helper functions we have right now.
2457 	 */
2458 	return count <= 1;
2459 }
2460 
2461 static int check_func_proto(const struct bpf_func_proto *fn)
2462 {
2463 	return check_raw_mode_ok(fn) &&
2464 	       check_arg_pair_ok(fn) &&
2465 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2466 }
2467 
2468 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2469  * are now invalid, so turn them into unknown SCALAR_VALUE.
2470  */
2471 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2472 				     struct bpf_func_state *state)
2473 {
2474 	struct bpf_reg_state *regs = state->regs, *reg;
2475 	int i;
2476 
2477 	for (i = 0; i < MAX_BPF_REG; i++)
2478 		if (reg_is_pkt_pointer_any(&regs[i]))
2479 			mark_reg_unknown(env, regs, i);
2480 
2481 	bpf_for_each_spilled_reg(i, state, reg) {
2482 		if (!reg)
2483 			continue;
2484 		if (reg_is_pkt_pointer_any(reg))
2485 			__mark_reg_unknown(reg);
2486 	}
2487 }
2488 
2489 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2490 {
2491 	struct bpf_verifier_state *vstate = env->cur_state;
2492 	int i;
2493 
2494 	for (i = 0; i <= vstate->curframe; i++)
2495 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2496 }
2497 
2498 static void release_reg_references(struct bpf_verifier_env *env,
2499 				   struct bpf_func_state *state, int id)
2500 {
2501 	struct bpf_reg_state *regs = state->regs, *reg;
2502 	int i;
2503 
2504 	for (i = 0; i < MAX_BPF_REG; i++)
2505 		if (regs[i].id == id)
2506 			mark_reg_unknown(env, regs, i);
2507 
2508 	bpf_for_each_spilled_reg(i, state, reg) {
2509 		if (!reg)
2510 			continue;
2511 		if (reg_is_refcounted(reg) && reg->id == id)
2512 			__mark_reg_unknown(reg);
2513 	}
2514 }
2515 
2516 /* The pointer with the specified id has released its reference to kernel
2517  * resources. Identify all copies of the same pointer and clear the reference.
2518  */
2519 static int release_reference(struct bpf_verifier_env *env,
2520 			     struct bpf_call_arg_meta *meta)
2521 {
2522 	struct bpf_verifier_state *vstate = env->cur_state;
2523 	int i;
2524 
2525 	for (i = 0; i <= vstate->curframe; i++)
2526 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2527 
2528 	return release_reference_state(env, meta->ptr_id);
2529 }
2530 
2531 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2532 			   int *insn_idx)
2533 {
2534 	struct bpf_verifier_state *state = env->cur_state;
2535 	struct bpf_func_state *caller, *callee;
2536 	int i, err, subprog, target_insn;
2537 
2538 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2539 		verbose(env, "the call stack of %d frames is too deep\n",
2540 			state->curframe + 2);
2541 		return -E2BIG;
2542 	}
2543 
2544 	target_insn = *insn_idx + insn->imm;
2545 	subprog = find_subprog(env, target_insn + 1);
2546 	if (subprog < 0) {
2547 		verbose(env, "verifier bug. No program starts at insn %d\n",
2548 			target_insn + 1);
2549 		return -EFAULT;
2550 	}
2551 
2552 	caller = state->frame[state->curframe];
2553 	if (state->frame[state->curframe + 1]) {
2554 		verbose(env, "verifier bug. Frame %d already allocated\n",
2555 			state->curframe + 1);
2556 		return -EFAULT;
2557 	}
2558 
2559 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2560 	if (!callee)
2561 		return -ENOMEM;
2562 	state->frame[state->curframe + 1] = callee;
2563 
2564 	/* callee cannot access r0, r6 - r9 for reading and has to write
2565 	 * into its own stack before reading from it.
2566 	 * callee can read/write into caller's stack
2567 	 */
2568 	init_func_state(env, callee,
2569 			/* remember the callsite, it will be used by bpf_exit */
2570 			*insn_idx /* callsite */,
2571 			state->curframe + 1 /* frameno within this callchain */,
2572 			subprog /* subprog number within this prog */);
2573 
2574 	/* Transfer references to the callee */
2575 	err = transfer_reference_state(callee, caller);
2576 	if (err)
2577 		return err;
2578 
2579 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2580 	 * pointers, which connects us up to the liveness chain
2581 	 */
2582 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2583 		callee->regs[i] = caller->regs[i];
2584 
2585 	/* after the call registers r0 - r5 were scratched */
2586 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2587 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2588 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2589 	}
2590 
2591 	/* only increment it after check_reg_arg() finished */
2592 	state->curframe++;
2593 
2594 	/* and go analyze first insn of the callee */
2595 	*insn_idx = target_insn;
2596 
2597 	if (env->log.level) {
2598 		verbose(env, "caller:\n");
2599 		print_verifier_state(env, caller);
2600 		verbose(env, "callee:\n");
2601 		print_verifier_state(env, callee);
2602 	}
2603 	return 0;
2604 }
2605 
2606 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2607 {
2608 	struct bpf_verifier_state *state = env->cur_state;
2609 	struct bpf_func_state *caller, *callee;
2610 	struct bpf_reg_state *r0;
2611 	int err;
2612 
2613 	callee = state->frame[state->curframe];
2614 	r0 = &callee->regs[BPF_REG_0];
2615 	if (r0->type == PTR_TO_STACK) {
2616 		/* technically it's ok to return caller's stack pointer
2617 		 * (or caller's caller's pointer) back to the caller,
2618 		 * since these pointers are valid. Only current stack
2619 		 * pointer will be invalid as soon as function exits,
2620 		 * but let's be conservative
2621 		 */
2622 		verbose(env, "cannot return stack pointer to the caller\n");
2623 		return -EINVAL;
2624 	}
2625 
2626 	state->curframe--;
2627 	caller = state->frame[state->curframe];
2628 	/* return to the caller whatever r0 had in the callee */
2629 	caller->regs[BPF_REG_0] = *r0;
2630 
2631 	/* Transfer references to the caller */
2632 	err = transfer_reference_state(caller, callee);
2633 	if (err)
2634 		return err;
2635 
2636 	*insn_idx = callee->callsite + 1;
2637 	if (env->log.level) {
2638 		verbose(env, "returning from callee:\n");
2639 		print_verifier_state(env, callee);
2640 		verbose(env, "to caller at %d:\n", *insn_idx);
2641 		print_verifier_state(env, caller);
2642 	}
2643 	/* clear everything in the callee */
2644 	free_func_state(callee);
2645 	state->frame[state->curframe + 1] = NULL;
2646 	return 0;
2647 }
2648 
2649 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2650 				   int func_id,
2651 				   struct bpf_call_arg_meta *meta)
2652 {
2653 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2654 
2655 	if (ret_type != RET_INTEGER ||
2656 	    (func_id != BPF_FUNC_get_stack &&
2657 	     func_id != BPF_FUNC_probe_read_str))
2658 		return;
2659 
2660 	ret_reg->smax_value = meta->msize_smax_value;
2661 	ret_reg->umax_value = meta->msize_umax_value;
2662 	__reg_deduce_bounds(ret_reg);
2663 	__reg_bound_offset(ret_reg);
2664 }
2665 
2666 static int
2667 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2668 		int func_id, int insn_idx)
2669 {
2670 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2671 
2672 	if (func_id != BPF_FUNC_tail_call &&
2673 	    func_id != BPF_FUNC_map_lookup_elem &&
2674 	    func_id != BPF_FUNC_map_update_elem &&
2675 	    func_id != BPF_FUNC_map_delete_elem)
2676 		return 0;
2677 
2678 	if (meta->map_ptr == NULL) {
2679 		verbose(env, "kernel subsystem misconfigured verifier\n");
2680 		return -EINVAL;
2681 	}
2682 
2683 	if (!BPF_MAP_PTR(aux->map_state))
2684 		bpf_map_ptr_store(aux, meta->map_ptr,
2685 				  meta->map_ptr->unpriv_array);
2686 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2687 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2688 				  meta->map_ptr->unpriv_array);
2689 	return 0;
2690 }
2691 
2692 static int check_reference_leak(struct bpf_verifier_env *env)
2693 {
2694 	struct bpf_func_state *state = cur_func(env);
2695 	int i;
2696 
2697 	for (i = 0; i < state->acquired_refs; i++) {
2698 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2699 			state->refs[i].id, state->refs[i].insn_idx);
2700 	}
2701 	return state->acquired_refs ? -EINVAL : 0;
2702 }
2703 
2704 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2705 {
2706 	const struct bpf_func_proto *fn = NULL;
2707 	struct bpf_reg_state *regs;
2708 	struct bpf_call_arg_meta meta;
2709 	bool changes_data;
2710 	int i, err;
2711 
2712 	/* find function prototype */
2713 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2714 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2715 			func_id);
2716 		return -EINVAL;
2717 	}
2718 
2719 	if (env->ops->get_func_proto)
2720 		fn = env->ops->get_func_proto(func_id, env->prog);
2721 	if (!fn) {
2722 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2723 			func_id);
2724 		return -EINVAL;
2725 	}
2726 
2727 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2728 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2729 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2730 		return -EINVAL;
2731 	}
2732 
2733 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2734 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2735 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2736 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2737 			func_id_name(func_id), func_id);
2738 		return -EINVAL;
2739 	}
2740 
2741 	memset(&meta, 0, sizeof(meta));
2742 	meta.pkt_access = fn->pkt_access;
2743 
2744 	err = check_func_proto(fn);
2745 	if (err) {
2746 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2747 			func_id_name(func_id), func_id);
2748 		return err;
2749 	}
2750 
2751 	/* check args */
2752 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2753 	if (err)
2754 		return err;
2755 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2756 	if (err)
2757 		return err;
2758 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2759 	if (err)
2760 		return err;
2761 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2762 	if (err)
2763 		return err;
2764 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2765 	if (err)
2766 		return err;
2767 
2768 	err = record_func_map(env, &meta, func_id, insn_idx);
2769 	if (err)
2770 		return err;
2771 
2772 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2773 	 * is inferred from register state.
2774 	 */
2775 	for (i = 0; i < meta.access_size; i++) {
2776 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2777 				       BPF_WRITE, -1, false);
2778 		if (err)
2779 			return err;
2780 	}
2781 
2782 	if (func_id == BPF_FUNC_tail_call) {
2783 		err = check_reference_leak(env);
2784 		if (err) {
2785 			verbose(env, "tail_call would lead to reference leak\n");
2786 			return err;
2787 		}
2788 	} else if (is_release_function(func_id)) {
2789 		err = release_reference(env, &meta);
2790 		if (err)
2791 			return err;
2792 	}
2793 
2794 	regs = cur_regs(env);
2795 
2796 	/* check that flags argument in get_local_storage(map, flags) is 0,
2797 	 * this is required because get_local_storage() can't return an error.
2798 	 */
2799 	if (func_id == BPF_FUNC_get_local_storage &&
2800 	    !register_is_null(&regs[BPF_REG_2])) {
2801 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2802 		return -EINVAL;
2803 	}
2804 
2805 	/* reset caller saved regs */
2806 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2807 		mark_reg_not_init(env, regs, caller_saved[i]);
2808 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2809 	}
2810 
2811 	/* update return register (already marked as written above) */
2812 	if (fn->ret_type == RET_INTEGER) {
2813 		/* sets type to SCALAR_VALUE */
2814 		mark_reg_unknown(env, regs, BPF_REG_0);
2815 	} else if (fn->ret_type == RET_VOID) {
2816 		regs[BPF_REG_0].type = NOT_INIT;
2817 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2818 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2819 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
2820 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2821 		else
2822 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2823 		/* There is no offset yet applied, variable or fixed */
2824 		mark_reg_known_zero(env, regs, BPF_REG_0);
2825 		/* remember map_ptr, so that check_map_access()
2826 		 * can check 'value_size' boundary of memory access
2827 		 * to map element returned from bpf_map_lookup_elem()
2828 		 */
2829 		if (meta.map_ptr == NULL) {
2830 			verbose(env,
2831 				"kernel subsystem misconfigured verifier\n");
2832 			return -EINVAL;
2833 		}
2834 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2835 		regs[BPF_REG_0].id = ++env->id_gen;
2836 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2837 		int id = acquire_reference_state(env, insn_idx);
2838 		if (id < 0)
2839 			return id;
2840 		mark_reg_known_zero(env, regs, BPF_REG_0);
2841 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2842 		regs[BPF_REG_0].id = id;
2843 	} else {
2844 		verbose(env, "unknown return type %d of func %s#%d\n",
2845 			fn->ret_type, func_id_name(func_id), func_id);
2846 		return -EINVAL;
2847 	}
2848 
2849 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2850 
2851 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2852 	if (err)
2853 		return err;
2854 
2855 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2856 		const char *err_str;
2857 
2858 #ifdef CONFIG_PERF_EVENTS
2859 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2860 		err_str = "cannot get callchain buffer for func %s#%d\n";
2861 #else
2862 		err = -ENOTSUPP;
2863 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2864 #endif
2865 		if (err) {
2866 			verbose(env, err_str, func_id_name(func_id), func_id);
2867 			return err;
2868 		}
2869 
2870 		env->prog->has_callchain_buf = true;
2871 	}
2872 
2873 	if (changes_data)
2874 		clear_all_pkt_pointers(env);
2875 	return 0;
2876 }
2877 
2878 static bool signed_add_overflows(s64 a, s64 b)
2879 {
2880 	/* Do the add in u64, where overflow is well-defined */
2881 	s64 res = (s64)((u64)a + (u64)b);
2882 
2883 	if (b < 0)
2884 		return res > a;
2885 	return res < a;
2886 }
2887 
2888 static bool signed_sub_overflows(s64 a, s64 b)
2889 {
2890 	/* Do the sub in u64, where overflow is well-defined */
2891 	s64 res = (s64)((u64)a - (u64)b);
2892 
2893 	if (b < 0)
2894 		return res < a;
2895 	return res > a;
2896 }
2897 
2898 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2899 				  const struct bpf_reg_state *reg,
2900 				  enum bpf_reg_type type)
2901 {
2902 	bool known = tnum_is_const(reg->var_off);
2903 	s64 val = reg->var_off.value;
2904 	s64 smin = reg->smin_value;
2905 
2906 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2907 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2908 			reg_type_str[type], val);
2909 		return false;
2910 	}
2911 
2912 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2913 		verbose(env, "%s pointer offset %d is not allowed\n",
2914 			reg_type_str[type], reg->off);
2915 		return false;
2916 	}
2917 
2918 	if (smin == S64_MIN) {
2919 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2920 			reg_type_str[type]);
2921 		return false;
2922 	}
2923 
2924 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2925 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2926 			smin, reg_type_str[type]);
2927 		return false;
2928 	}
2929 
2930 	return true;
2931 }
2932 
2933 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2934  * Caller should also handle BPF_MOV case separately.
2935  * If we return -EACCES, caller may want to try again treating pointer as a
2936  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2937  */
2938 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2939 				   struct bpf_insn *insn,
2940 				   const struct bpf_reg_state *ptr_reg,
2941 				   const struct bpf_reg_state *off_reg)
2942 {
2943 	struct bpf_verifier_state *vstate = env->cur_state;
2944 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2945 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2946 	bool known = tnum_is_const(off_reg->var_off);
2947 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2948 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2949 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2950 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2951 	u8 opcode = BPF_OP(insn->code);
2952 	u32 dst = insn->dst_reg;
2953 
2954 	dst_reg = &regs[dst];
2955 
2956 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2957 	    smin_val > smax_val || umin_val > umax_val) {
2958 		/* Taint dst register if offset had invalid bounds derived from
2959 		 * e.g. dead branches.
2960 		 */
2961 		__mark_reg_unknown(dst_reg);
2962 		return 0;
2963 	}
2964 
2965 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2966 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2967 		verbose(env,
2968 			"R%d 32-bit pointer arithmetic prohibited\n",
2969 			dst);
2970 		return -EACCES;
2971 	}
2972 
2973 	switch (ptr_reg->type) {
2974 	case PTR_TO_MAP_VALUE_OR_NULL:
2975 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
2976 			dst, reg_type_str[ptr_reg->type]);
2977 		return -EACCES;
2978 	case CONST_PTR_TO_MAP:
2979 	case PTR_TO_PACKET_END:
2980 	case PTR_TO_SOCKET:
2981 	case PTR_TO_SOCKET_OR_NULL:
2982 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
2983 			dst, reg_type_str[ptr_reg->type]);
2984 		return -EACCES;
2985 	default:
2986 		break;
2987 	}
2988 
2989 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2990 	 * The id may be overwritten later if we create a new variable offset.
2991 	 */
2992 	dst_reg->type = ptr_reg->type;
2993 	dst_reg->id = ptr_reg->id;
2994 
2995 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2996 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2997 		return -EINVAL;
2998 
2999 	switch (opcode) {
3000 	case BPF_ADD:
3001 		/* We can take a fixed offset as long as it doesn't overflow
3002 		 * the s32 'off' field
3003 		 */
3004 		if (known && (ptr_reg->off + smin_val ==
3005 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3006 			/* pointer += K.  Accumulate it into fixed offset */
3007 			dst_reg->smin_value = smin_ptr;
3008 			dst_reg->smax_value = smax_ptr;
3009 			dst_reg->umin_value = umin_ptr;
3010 			dst_reg->umax_value = umax_ptr;
3011 			dst_reg->var_off = ptr_reg->var_off;
3012 			dst_reg->off = ptr_reg->off + smin_val;
3013 			dst_reg->range = ptr_reg->range;
3014 			break;
3015 		}
3016 		/* A new variable offset is created.  Note that off_reg->off
3017 		 * == 0, since it's a scalar.
3018 		 * dst_reg gets the pointer type and since some positive
3019 		 * integer value was added to the pointer, give it a new 'id'
3020 		 * if it's a PTR_TO_PACKET.
3021 		 * this creates a new 'base' pointer, off_reg (variable) gets
3022 		 * added into the variable offset, and we copy the fixed offset
3023 		 * from ptr_reg.
3024 		 */
3025 		if (signed_add_overflows(smin_ptr, smin_val) ||
3026 		    signed_add_overflows(smax_ptr, smax_val)) {
3027 			dst_reg->smin_value = S64_MIN;
3028 			dst_reg->smax_value = S64_MAX;
3029 		} else {
3030 			dst_reg->smin_value = smin_ptr + smin_val;
3031 			dst_reg->smax_value = smax_ptr + smax_val;
3032 		}
3033 		if (umin_ptr + umin_val < umin_ptr ||
3034 		    umax_ptr + umax_val < umax_ptr) {
3035 			dst_reg->umin_value = 0;
3036 			dst_reg->umax_value = U64_MAX;
3037 		} else {
3038 			dst_reg->umin_value = umin_ptr + umin_val;
3039 			dst_reg->umax_value = umax_ptr + umax_val;
3040 		}
3041 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3042 		dst_reg->off = ptr_reg->off;
3043 		if (reg_is_pkt_pointer(ptr_reg)) {
3044 			dst_reg->id = ++env->id_gen;
3045 			/* something was added to pkt_ptr, set range to zero */
3046 			dst_reg->range = 0;
3047 		}
3048 		break;
3049 	case BPF_SUB:
3050 		if (dst_reg == off_reg) {
3051 			/* scalar -= pointer.  Creates an unknown scalar */
3052 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3053 				dst);
3054 			return -EACCES;
3055 		}
3056 		/* We don't allow subtraction from FP, because (according to
3057 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3058 		 * be able to deal with it.
3059 		 */
3060 		if (ptr_reg->type == PTR_TO_STACK) {
3061 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3062 				dst);
3063 			return -EACCES;
3064 		}
3065 		if (known && (ptr_reg->off - smin_val ==
3066 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3067 			/* pointer -= K.  Subtract it from fixed offset */
3068 			dst_reg->smin_value = smin_ptr;
3069 			dst_reg->smax_value = smax_ptr;
3070 			dst_reg->umin_value = umin_ptr;
3071 			dst_reg->umax_value = umax_ptr;
3072 			dst_reg->var_off = ptr_reg->var_off;
3073 			dst_reg->id = ptr_reg->id;
3074 			dst_reg->off = ptr_reg->off - smin_val;
3075 			dst_reg->range = ptr_reg->range;
3076 			break;
3077 		}
3078 		/* A new variable offset is created.  If the subtrahend is known
3079 		 * nonnegative, then any reg->range we had before is still good.
3080 		 */
3081 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3082 		    signed_sub_overflows(smax_ptr, smin_val)) {
3083 			/* Overflow possible, we know nothing */
3084 			dst_reg->smin_value = S64_MIN;
3085 			dst_reg->smax_value = S64_MAX;
3086 		} else {
3087 			dst_reg->smin_value = smin_ptr - smax_val;
3088 			dst_reg->smax_value = smax_ptr - smin_val;
3089 		}
3090 		if (umin_ptr < umax_val) {
3091 			/* Overflow possible, we know nothing */
3092 			dst_reg->umin_value = 0;
3093 			dst_reg->umax_value = U64_MAX;
3094 		} else {
3095 			/* Cannot overflow (as long as bounds are consistent) */
3096 			dst_reg->umin_value = umin_ptr - umax_val;
3097 			dst_reg->umax_value = umax_ptr - umin_val;
3098 		}
3099 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3100 		dst_reg->off = ptr_reg->off;
3101 		if (reg_is_pkt_pointer(ptr_reg)) {
3102 			dst_reg->id = ++env->id_gen;
3103 			/* something was added to pkt_ptr, set range to zero */
3104 			if (smin_val < 0)
3105 				dst_reg->range = 0;
3106 		}
3107 		break;
3108 	case BPF_AND:
3109 	case BPF_OR:
3110 	case BPF_XOR:
3111 		/* bitwise ops on pointers are troublesome, prohibit. */
3112 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3113 			dst, bpf_alu_string[opcode >> 4]);
3114 		return -EACCES;
3115 	default:
3116 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3117 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3118 			dst, bpf_alu_string[opcode >> 4]);
3119 		return -EACCES;
3120 	}
3121 
3122 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3123 		return -EINVAL;
3124 
3125 	__update_reg_bounds(dst_reg);
3126 	__reg_deduce_bounds(dst_reg);
3127 	__reg_bound_offset(dst_reg);
3128 	return 0;
3129 }
3130 
3131 /* WARNING: This function does calculations on 64-bit values, but the actual
3132  * execution may occur on 32-bit values. Therefore, things like bitshifts
3133  * need extra checks in the 32-bit case.
3134  */
3135 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3136 				      struct bpf_insn *insn,
3137 				      struct bpf_reg_state *dst_reg,
3138 				      struct bpf_reg_state src_reg)
3139 {
3140 	struct bpf_reg_state *regs = cur_regs(env);
3141 	u8 opcode = BPF_OP(insn->code);
3142 	bool src_known, dst_known;
3143 	s64 smin_val, smax_val;
3144 	u64 umin_val, umax_val;
3145 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3146 
3147 	if (insn_bitness == 32) {
3148 		/* Relevant for 32-bit RSH: Information can propagate towards
3149 		 * LSB, so it isn't sufficient to only truncate the output to
3150 		 * 32 bits.
3151 		 */
3152 		coerce_reg_to_size(dst_reg, 4);
3153 		coerce_reg_to_size(&src_reg, 4);
3154 	}
3155 
3156 	smin_val = src_reg.smin_value;
3157 	smax_val = src_reg.smax_value;
3158 	umin_val = src_reg.umin_value;
3159 	umax_val = src_reg.umax_value;
3160 	src_known = tnum_is_const(src_reg.var_off);
3161 	dst_known = tnum_is_const(dst_reg->var_off);
3162 
3163 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3164 	    smin_val > smax_val || umin_val > umax_val) {
3165 		/* Taint dst register if offset had invalid bounds derived from
3166 		 * e.g. dead branches.
3167 		 */
3168 		__mark_reg_unknown(dst_reg);
3169 		return 0;
3170 	}
3171 
3172 	if (!src_known &&
3173 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3174 		__mark_reg_unknown(dst_reg);
3175 		return 0;
3176 	}
3177 
3178 	switch (opcode) {
3179 	case BPF_ADD:
3180 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3181 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3182 			dst_reg->smin_value = S64_MIN;
3183 			dst_reg->smax_value = S64_MAX;
3184 		} else {
3185 			dst_reg->smin_value += smin_val;
3186 			dst_reg->smax_value += smax_val;
3187 		}
3188 		if (dst_reg->umin_value + umin_val < umin_val ||
3189 		    dst_reg->umax_value + umax_val < umax_val) {
3190 			dst_reg->umin_value = 0;
3191 			dst_reg->umax_value = U64_MAX;
3192 		} else {
3193 			dst_reg->umin_value += umin_val;
3194 			dst_reg->umax_value += umax_val;
3195 		}
3196 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3197 		break;
3198 	case BPF_SUB:
3199 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3200 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3201 			/* Overflow possible, we know nothing */
3202 			dst_reg->smin_value = S64_MIN;
3203 			dst_reg->smax_value = S64_MAX;
3204 		} else {
3205 			dst_reg->smin_value -= smax_val;
3206 			dst_reg->smax_value -= smin_val;
3207 		}
3208 		if (dst_reg->umin_value < umax_val) {
3209 			/* Overflow possible, we know nothing */
3210 			dst_reg->umin_value = 0;
3211 			dst_reg->umax_value = U64_MAX;
3212 		} else {
3213 			/* Cannot overflow (as long as bounds are consistent) */
3214 			dst_reg->umin_value -= umax_val;
3215 			dst_reg->umax_value -= umin_val;
3216 		}
3217 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3218 		break;
3219 	case BPF_MUL:
3220 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3221 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3222 			/* Ain't nobody got time to multiply that sign */
3223 			__mark_reg_unbounded(dst_reg);
3224 			__update_reg_bounds(dst_reg);
3225 			break;
3226 		}
3227 		/* Both values are positive, so we can work with unsigned and
3228 		 * copy the result to signed (unless it exceeds S64_MAX).
3229 		 */
3230 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3231 			/* Potential overflow, we know nothing */
3232 			__mark_reg_unbounded(dst_reg);
3233 			/* (except what we can learn from the var_off) */
3234 			__update_reg_bounds(dst_reg);
3235 			break;
3236 		}
3237 		dst_reg->umin_value *= umin_val;
3238 		dst_reg->umax_value *= umax_val;
3239 		if (dst_reg->umax_value > S64_MAX) {
3240 			/* Overflow possible, we know nothing */
3241 			dst_reg->smin_value = S64_MIN;
3242 			dst_reg->smax_value = S64_MAX;
3243 		} else {
3244 			dst_reg->smin_value = dst_reg->umin_value;
3245 			dst_reg->smax_value = dst_reg->umax_value;
3246 		}
3247 		break;
3248 	case BPF_AND:
3249 		if (src_known && dst_known) {
3250 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3251 						  src_reg.var_off.value);
3252 			break;
3253 		}
3254 		/* We get our minimum from the var_off, since that's inherently
3255 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3256 		 */
3257 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3258 		dst_reg->umin_value = dst_reg->var_off.value;
3259 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3260 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3261 			/* Lose signed bounds when ANDing negative numbers,
3262 			 * ain't nobody got time for that.
3263 			 */
3264 			dst_reg->smin_value = S64_MIN;
3265 			dst_reg->smax_value = S64_MAX;
3266 		} else {
3267 			/* ANDing two positives gives a positive, so safe to
3268 			 * cast result into s64.
3269 			 */
3270 			dst_reg->smin_value = dst_reg->umin_value;
3271 			dst_reg->smax_value = dst_reg->umax_value;
3272 		}
3273 		/* We may learn something more from the var_off */
3274 		__update_reg_bounds(dst_reg);
3275 		break;
3276 	case BPF_OR:
3277 		if (src_known && dst_known) {
3278 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3279 						  src_reg.var_off.value);
3280 			break;
3281 		}
3282 		/* We get our maximum from the var_off, and our minimum is the
3283 		 * maximum of the operands' minima
3284 		 */
3285 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3286 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3287 		dst_reg->umax_value = dst_reg->var_off.value |
3288 				      dst_reg->var_off.mask;
3289 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3290 			/* Lose signed bounds when ORing negative numbers,
3291 			 * ain't nobody got time for that.
3292 			 */
3293 			dst_reg->smin_value = S64_MIN;
3294 			dst_reg->smax_value = S64_MAX;
3295 		} else {
3296 			/* ORing two positives gives a positive, so safe to
3297 			 * cast result into s64.
3298 			 */
3299 			dst_reg->smin_value = dst_reg->umin_value;
3300 			dst_reg->smax_value = dst_reg->umax_value;
3301 		}
3302 		/* We may learn something more from the var_off */
3303 		__update_reg_bounds(dst_reg);
3304 		break;
3305 	case BPF_LSH:
3306 		if (umax_val >= insn_bitness) {
3307 			/* Shifts greater than 31 or 63 are undefined.
3308 			 * This includes shifts by a negative number.
3309 			 */
3310 			mark_reg_unknown(env, regs, insn->dst_reg);
3311 			break;
3312 		}
3313 		/* We lose all sign bit information (except what we can pick
3314 		 * up from var_off)
3315 		 */
3316 		dst_reg->smin_value = S64_MIN;
3317 		dst_reg->smax_value = S64_MAX;
3318 		/* If we might shift our top bit out, then we know nothing */
3319 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3320 			dst_reg->umin_value = 0;
3321 			dst_reg->umax_value = U64_MAX;
3322 		} else {
3323 			dst_reg->umin_value <<= umin_val;
3324 			dst_reg->umax_value <<= umax_val;
3325 		}
3326 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3327 		/* We may learn something more from the var_off */
3328 		__update_reg_bounds(dst_reg);
3329 		break;
3330 	case BPF_RSH:
3331 		if (umax_val >= insn_bitness) {
3332 			/* Shifts greater than 31 or 63 are undefined.
3333 			 * This includes shifts by a negative number.
3334 			 */
3335 			mark_reg_unknown(env, regs, insn->dst_reg);
3336 			break;
3337 		}
3338 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3339 		 * be negative, then either:
3340 		 * 1) src_reg might be zero, so the sign bit of the result is
3341 		 *    unknown, so we lose our signed bounds
3342 		 * 2) it's known negative, thus the unsigned bounds capture the
3343 		 *    signed bounds
3344 		 * 3) the signed bounds cross zero, so they tell us nothing
3345 		 *    about the result
3346 		 * If the value in dst_reg is known nonnegative, then again the
3347 		 * unsigned bounts capture the signed bounds.
3348 		 * Thus, in all cases it suffices to blow away our signed bounds
3349 		 * and rely on inferring new ones from the unsigned bounds and
3350 		 * var_off of the result.
3351 		 */
3352 		dst_reg->smin_value = S64_MIN;
3353 		dst_reg->smax_value = S64_MAX;
3354 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3355 		dst_reg->umin_value >>= umax_val;
3356 		dst_reg->umax_value >>= umin_val;
3357 		/* We may learn something more from the var_off */
3358 		__update_reg_bounds(dst_reg);
3359 		break;
3360 	case BPF_ARSH:
3361 		if (umax_val >= insn_bitness) {
3362 			/* Shifts greater than 31 or 63 are undefined.
3363 			 * This includes shifts by a negative number.
3364 			 */
3365 			mark_reg_unknown(env, regs, insn->dst_reg);
3366 			break;
3367 		}
3368 
3369 		/* Upon reaching here, src_known is true and
3370 		 * umax_val is equal to umin_val.
3371 		 */
3372 		dst_reg->smin_value >>= umin_val;
3373 		dst_reg->smax_value >>= umin_val;
3374 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3375 
3376 		/* blow away the dst_reg umin_value/umax_value and rely on
3377 		 * dst_reg var_off to refine the result.
3378 		 */
3379 		dst_reg->umin_value = 0;
3380 		dst_reg->umax_value = U64_MAX;
3381 		__update_reg_bounds(dst_reg);
3382 		break;
3383 	default:
3384 		mark_reg_unknown(env, regs, insn->dst_reg);
3385 		break;
3386 	}
3387 
3388 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3389 		/* 32-bit ALU ops are (32,32)->32 */
3390 		coerce_reg_to_size(dst_reg, 4);
3391 	}
3392 
3393 	__reg_deduce_bounds(dst_reg);
3394 	__reg_bound_offset(dst_reg);
3395 	return 0;
3396 }
3397 
3398 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3399  * and var_off.
3400  */
3401 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3402 				   struct bpf_insn *insn)
3403 {
3404 	struct bpf_verifier_state *vstate = env->cur_state;
3405 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3406 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3407 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3408 	u8 opcode = BPF_OP(insn->code);
3409 
3410 	dst_reg = &regs[insn->dst_reg];
3411 	src_reg = NULL;
3412 	if (dst_reg->type != SCALAR_VALUE)
3413 		ptr_reg = dst_reg;
3414 	if (BPF_SRC(insn->code) == BPF_X) {
3415 		src_reg = &regs[insn->src_reg];
3416 		if (src_reg->type != SCALAR_VALUE) {
3417 			if (dst_reg->type != SCALAR_VALUE) {
3418 				/* Combining two pointers by any ALU op yields
3419 				 * an arbitrary scalar. Disallow all math except
3420 				 * pointer subtraction
3421 				 */
3422 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3423 					mark_reg_unknown(env, regs, insn->dst_reg);
3424 					return 0;
3425 				}
3426 				verbose(env, "R%d pointer %s pointer prohibited\n",
3427 					insn->dst_reg,
3428 					bpf_alu_string[opcode >> 4]);
3429 				return -EACCES;
3430 			} else {
3431 				/* scalar += pointer
3432 				 * This is legal, but we have to reverse our
3433 				 * src/dest handling in computing the range
3434 				 */
3435 				return adjust_ptr_min_max_vals(env, insn,
3436 							       src_reg, dst_reg);
3437 			}
3438 		} else if (ptr_reg) {
3439 			/* pointer += scalar */
3440 			return adjust_ptr_min_max_vals(env, insn,
3441 						       dst_reg, src_reg);
3442 		}
3443 	} else {
3444 		/* Pretend the src is a reg with a known value, since we only
3445 		 * need to be able to read from this state.
3446 		 */
3447 		off_reg.type = SCALAR_VALUE;
3448 		__mark_reg_known(&off_reg, insn->imm);
3449 		src_reg = &off_reg;
3450 		if (ptr_reg) /* pointer += K */
3451 			return adjust_ptr_min_max_vals(env, insn,
3452 						       ptr_reg, src_reg);
3453 	}
3454 
3455 	/* Got here implies adding two SCALAR_VALUEs */
3456 	if (WARN_ON_ONCE(ptr_reg)) {
3457 		print_verifier_state(env, state);
3458 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3459 		return -EINVAL;
3460 	}
3461 	if (WARN_ON(!src_reg)) {
3462 		print_verifier_state(env, state);
3463 		verbose(env, "verifier internal error: no src_reg\n");
3464 		return -EINVAL;
3465 	}
3466 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3467 }
3468 
3469 /* check validity of 32-bit and 64-bit arithmetic operations */
3470 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3471 {
3472 	struct bpf_reg_state *regs = cur_regs(env);
3473 	u8 opcode = BPF_OP(insn->code);
3474 	int err;
3475 
3476 	if (opcode == BPF_END || opcode == BPF_NEG) {
3477 		if (opcode == BPF_NEG) {
3478 			if (BPF_SRC(insn->code) != 0 ||
3479 			    insn->src_reg != BPF_REG_0 ||
3480 			    insn->off != 0 || insn->imm != 0) {
3481 				verbose(env, "BPF_NEG uses reserved fields\n");
3482 				return -EINVAL;
3483 			}
3484 		} else {
3485 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3486 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3487 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3488 				verbose(env, "BPF_END uses reserved fields\n");
3489 				return -EINVAL;
3490 			}
3491 		}
3492 
3493 		/* check src operand */
3494 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3495 		if (err)
3496 			return err;
3497 
3498 		if (is_pointer_value(env, insn->dst_reg)) {
3499 			verbose(env, "R%d pointer arithmetic prohibited\n",
3500 				insn->dst_reg);
3501 			return -EACCES;
3502 		}
3503 
3504 		/* check dest operand */
3505 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3506 		if (err)
3507 			return err;
3508 
3509 	} else if (opcode == BPF_MOV) {
3510 
3511 		if (BPF_SRC(insn->code) == BPF_X) {
3512 			if (insn->imm != 0 || insn->off != 0) {
3513 				verbose(env, "BPF_MOV uses reserved fields\n");
3514 				return -EINVAL;
3515 			}
3516 
3517 			/* check src operand */
3518 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3519 			if (err)
3520 				return err;
3521 		} else {
3522 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3523 				verbose(env, "BPF_MOV uses reserved fields\n");
3524 				return -EINVAL;
3525 			}
3526 		}
3527 
3528 		/* check dest operand, mark as required later */
3529 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3530 		if (err)
3531 			return err;
3532 
3533 		if (BPF_SRC(insn->code) == BPF_X) {
3534 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3535 				/* case: R1 = R2
3536 				 * copy register state to dest reg
3537 				 */
3538 				regs[insn->dst_reg] = regs[insn->src_reg];
3539 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3540 			} else {
3541 				/* R1 = (u32) R2 */
3542 				if (is_pointer_value(env, insn->src_reg)) {
3543 					verbose(env,
3544 						"R%d partial copy of pointer\n",
3545 						insn->src_reg);
3546 					return -EACCES;
3547 				}
3548 				mark_reg_unknown(env, regs, insn->dst_reg);
3549 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3550 			}
3551 		} else {
3552 			/* case: R = imm
3553 			 * remember the value we stored into this reg
3554 			 */
3555 			/* clear any state __mark_reg_known doesn't set */
3556 			mark_reg_unknown(env, regs, insn->dst_reg);
3557 			regs[insn->dst_reg].type = SCALAR_VALUE;
3558 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3559 				__mark_reg_known(regs + insn->dst_reg,
3560 						 insn->imm);
3561 			} else {
3562 				__mark_reg_known(regs + insn->dst_reg,
3563 						 (u32)insn->imm);
3564 			}
3565 		}
3566 
3567 	} else if (opcode > BPF_END) {
3568 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3569 		return -EINVAL;
3570 
3571 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3572 
3573 		if (BPF_SRC(insn->code) == BPF_X) {
3574 			if (insn->imm != 0 || insn->off != 0) {
3575 				verbose(env, "BPF_ALU uses reserved fields\n");
3576 				return -EINVAL;
3577 			}
3578 			/* check src1 operand */
3579 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3580 			if (err)
3581 				return err;
3582 		} else {
3583 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3584 				verbose(env, "BPF_ALU uses reserved fields\n");
3585 				return -EINVAL;
3586 			}
3587 		}
3588 
3589 		/* check src2 operand */
3590 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3591 		if (err)
3592 			return err;
3593 
3594 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3595 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3596 			verbose(env, "div by zero\n");
3597 			return -EINVAL;
3598 		}
3599 
3600 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3601 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3602 			return -EINVAL;
3603 		}
3604 
3605 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3606 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3607 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3608 
3609 			if (insn->imm < 0 || insn->imm >= size) {
3610 				verbose(env, "invalid shift %d\n", insn->imm);
3611 				return -EINVAL;
3612 			}
3613 		}
3614 
3615 		/* check dest operand */
3616 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3617 		if (err)
3618 			return err;
3619 
3620 		return adjust_reg_min_max_vals(env, insn);
3621 	}
3622 
3623 	return 0;
3624 }
3625 
3626 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3627 				   struct bpf_reg_state *dst_reg,
3628 				   enum bpf_reg_type type,
3629 				   bool range_right_open)
3630 {
3631 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3632 	struct bpf_reg_state *regs = state->regs, *reg;
3633 	u16 new_range;
3634 	int i, j;
3635 
3636 	if (dst_reg->off < 0 ||
3637 	    (dst_reg->off == 0 && range_right_open))
3638 		/* This doesn't give us any range */
3639 		return;
3640 
3641 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3642 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3643 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3644 		 * than pkt_end, but that's because it's also less than pkt.
3645 		 */
3646 		return;
3647 
3648 	new_range = dst_reg->off;
3649 	if (range_right_open)
3650 		new_range--;
3651 
3652 	/* Examples for register markings:
3653 	 *
3654 	 * pkt_data in dst register:
3655 	 *
3656 	 *   r2 = r3;
3657 	 *   r2 += 8;
3658 	 *   if (r2 > pkt_end) goto <handle exception>
3659 	 *   <access okay>
3660 	 *
3661 	 *   r2 = r3;
3662 	 *   r2 += 8;
3663 	 *   if (r2 < pkt_end) goto <access okay>
3664 	 *   <handle exception>
3665 	 *
3666 	 *   Where:
3667 	 *     r2 == dst_reg, pkt_end == src_reg
3668 	 *     r2=pkt(id=n,off=8,r=0)
3669 	 *     r3=pkt(id=n,off=0,r=0)
3670 	 *
3671 	 * pkt_data in src register:
3672 	 *
3673 	 *   r2 = r3;
3674 	 *   r2 += 8;
3675 	 *   if (pkt_end >= r2) goto <access okay>
3676 	 *   <handle exception>
3677 	 *
3678 	 *   r2 = r3;
3679 	 *   r2 += 8;
3680 	 *   if (pkt_end <= r2) goto <handle exception>
3681 	 *   <access okay>
3682 	 *
3683 	 *   Where:
3684 	 *     pkt_end == dst_reg, r2 == src_reg
3685 	 *     r2=pkt(id=n,off=8,r=0)
3686 	 *     r3=pkt(id=n,off=0,r=0)
3687 	 *
3688 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3689 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3690 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3691 	 * the check.
3692 	 */
3693 
3694 	/* If our ids match, then we must have the same max_value.  And we
3695 	 * don't care about the other reg's fixed offset, since if it's too big
3696 	 * the range won't allow anything.
3697 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3698 	 */
3699 	for (i = 0; i < MAX_BPF_REG; i++)
3700 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3701 			/* keep the maximum range already checked */
3702 			regs[i].range = max(regs[i].range, new_range);
3703 
3704 	for (j = 0; j <= vstate->curframe; j++) {
3705 		state = vstate->frame[j];
3706 		bpf_for_each_spilled_reg(i, state, reg) {
3707 			if (!reg)
3708 				continue;
3709 			if (reg->type == type && reg->id == dst_reg->id)
3710 				reg->range = max(reg->range, new_range);
3711 		}
3712 	}
3713 }
3714 
3715 /* Adjusts the register min/max values in the case that the dst_reg is the
3716  * variable register that we are working on, and src_reg is a constant or we're
3717  * simply doing a BPF_K check.
3718  * In JEQ/JNE cases we also adjust the var_off values.
3719  */
3720 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3721 			    struct bpf_reg_state *false_reg, u64 val,
3722 			    u8 opcode)
3723 {
3724 	/* If the dst_reg is a pointer, we can't learn anything about its
3725 	 * variable offset from the compare (unless src_reg were a pointer into
3726 	 * the same object, but we don't bother with that.
3727 	 * Since false_reg and true_reg have the same type by construction, we
3728 	 * only need to check one of them for pointerness.
3729 	 */
3730 	if (__is_pointer_value(false, false_reg))
3731 		return;
3732 
3733 	switch (opcode) {
3734 	case BPF_JEQ:
3735 		/* If this is false then we know nothing Jon Snow, but if it is
3736 		 * true then we know for sure.
3737 		 */
3738 		__mark_reg_known(true_reg, val);
3739 		break;
3740 	case BPF_JNE:
3741 		/* If this is true we know nothing Jon Snow, but if it is false
3742 		 * we know the value for sure;
3743 		 */
3744 		__mark_reg_known(false_reg, val);
3745 		break;
3746 	case BPF_JGT:
3747 		false_reg->umax_value = min(false_reg->umax_value, val);
3748 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3749 		break;
3750 	case BPF_JSGT:
3751 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3752 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3753 		break;
3754 	case BPF_JLT:
3755 		false_reg->umin_value = max(false_reg->umin_value, val);
3756 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3757 		break;
3758 	case BPF_JSLT:
3759 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3760 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3761 		break;
3762 	case BPF_JGE:
3763 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3764 		true_reg->umin_value = max(true_reg->umin_value, val);
3765 		break;
3766 	case BPF_JSGE:
3767 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3768 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3769 		break;
3770 	case BPF_JLE:
3771 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3772 		true_reg->umax_value = min(true_reg->umax_value, val);
3773 		break;
3774 	case BPF_JSLE:
3775 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3776 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3777 		break;
3778 	default:
3779 		break;
3780 	}
3781 
3782 	__reg_deduce_bounds(false_reg);
3783 	__reg_deduce_bounds(true_reg);
3784 	/* We might have learned some bits from the bounds. */
3785 	__reg_bound_offset(false_reg);
3786 	__reg_bound_offset(true_reg);
3787 	/* Intersecting with the old var_off might have improved our bounds
3788 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3789 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3790 	 */
3791 	__update_reg_bounds(false_reg);
3792 	__update_reg_bounds(true_reg);
3793 }
3794 
3795 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3796  * the variable reg.
3797  */
3798 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3799 				struct bpf_reg_state *false_reg, u64 val,
3800 				u8 opcode)
3801 {
3802 	if (__is_pointer_value(false, false_reg))
3803 		return;
3804 
3805 	switch (opcode) {
3806 	case BPF_JEQ:
3807 		/* If this is false then we know nothing Jon Snow, but if it is
3808 		 * true then we know for sure.
3809 		 */
3810 		__mark_reg_known(true_reg, val);
3811 		break;
3812 	case BPF_JNE:
3813 		/* If this is true we know nothing Jon Snow, but if it is false
3814 		 * we know the value for sure;
3815 		 */
3816 		__mark_reg_known(false_reg, val);
3817 		break;
3818 	case BPF_JGT:
3819 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3820 		false_reg->umin_value = max(false_reg->umin_value, val);
3821 		break;
3822 	case BPF_JSGT:
3823 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3824 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3825 		break;
3826 	case BPF_JLT:
3827 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3828 		false_reg->umax_value = min(false_reg->umax_value, val);
3829 		break;
3830 	case BPF_JSLT:
3831 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3832 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3833 		break;
3834 	case BPF_JGE:
3835 		true_reg->umax_value = min(true_reg->umax_value, val);
3836 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3837 		break;
3838 	case BPF_JSGE:
3839 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3840 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3841 		break;
3842 	case BPF_JLE:
3843 		true_reg->umin_value = max(true_reg->umin_value, val);
3844 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3845 		break;
3846 	case BPF_JSLE:
3847 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3848 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3849 		break;
3850 	default:
3851 		break;
3852 	}
3853 
3854 	__reg_deduce_bounds(false_reg);
3855 	__reg_deduce_bounds(true_reg);
3856 	/* We might have learned some bits from the bounds. */
3857 	__reg_bound_offset(false_reg);
3858 	__reg_bound_offset(true_reg);
3859 	/* Intersecting with the old var_off might have improved our bounds
3860 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3861 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3862 	 */
3863 	__update_reg_bounds(false_reg);
3864 	__update_reg_bounds(true_reg);
3865 }
3866 
3867 /* Regs are known to be equal, so intersect their min/max/var_off */
3868 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3869 				  struct bpf_reg_state *dst_reg)
3870 {
3871 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3872 							dst_reg->umin_value);
3873 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3874 							dst_reg->umax_value);
3875 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3876 							dst_reg->smin_value);
3877 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3878 							dst_reg->smax_value);
3879 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3880 							     dst_reg->var_off);
3881 	/* We might have learned new bounds from the var_off. */
3882 	__update_reg_bounds(src_reg);
3883 	__update_reg_bounds(dst_reg);
3884 	/* We might have learned something about the sign bit. */
3885 	__reg_deduce_bounds(src_reg);
3886 	__reg_deduce_bounds(dst_reg);
3887 	/* We might have learned some bits from the bounds. */
3888 	__reg_bound_offset(src_reg);
3889 	__reg_bound_offset(dst_reg);
3890 	/* Intersecting with the old var_off might have improved our bounds
3891 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3892 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3893 	 */
3894 	__update_reg_bounds(src_reg);
3895 	__update_reg_bounds(dst_reg);
3896 }
3897 
3898 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3899 				struct bpf_reg_state *true_dst,
3900 				struct bpf_reg_state *false_src,
3901 				struct bpf_reg_state *false_dst,
3902 				u8 opcode)
3903 {
3904 	switch (opcode) {
3905 	case BPF_JEQ:
3906 		__reg_combine_min_max(true_src, true_dst);
3907 		break;
3908 	case BPF_JNE:
3909 		__reg_combine_min_max(false_src, false_dst);
3910 		break;
3911 	}
3912 }
3913 
3914 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
3915 				 struct bpf_reg_state *reg, u32 id,
3916 				 bool is_null)
3917 {
3918 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
3919 		/* Old offset (both fixed and variable parts) should
3920 		 * have been known-zero, because we don't allow pointer
3921 		 * arithmetic on pointers that might be NULL.
3922 		 */
3923 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3924 				 !tnum_equals_const(reg->var_off, 0) ||
3925 				 reg->off)) {
3926 			__mark_reg_known_zero(reg);
3927 			reg->off = 0;
3928 		}
3929 		if (is_null) {
3930 			reg->type = SCALAR_VALUE;
3931 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3932 			if (reg->map_ptr->inner_map_meta) {
3933 				reg->type = CONST_PTR_TO_MAP;
3934 				reg->map_ptr = reg->map_ptr->inner_map_meta;
3935 			} else {
3936 				reg->type = PTR_TO_MAP_VALUE;
3937 			}
3938 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3939 			reg->type = PTR_TO_SOCKET;
3940 		}
3941 		if (is_null || !reg_is_refcounted(reg)) {
3942 			/* We don't need id from this point onwards anymore,
3943 			 * thus we should better reset it, so that state
3944 			 * pruning has chances to take effect.
3945 			 */
3946 			reg->id = 0;
3947 		}
3948 	}
3949 }
3950 
3951 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3952  * be folded together at some point.
3953  */
3954 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
3955 				  bool is_null)
3956 {
3957 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3958 	struct bpf_reg_state *reg, *regs = state->regs;
3959 	u32 id = regs[regno].id;
3960 	int i, j;
3961 
3962 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
3963 		__release_reference_state(state, id);
3964 
3965 	for (i = 0; i < MAX_BPF_REG; i++)
3966 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
3967 
3968 	for (j = 0; j <= vstate->curframe; j++) {
3969 		state = vstate->frame[j];
3970 		bpf_for_each_spilled_reg(i, state, reg) {
3971 			if (!reg)
3972 				continue;
3973 			mark_ptr_or_null_reg(state, reg, id, is_null);
3974 		}
3975 	}
3976 }
3977 
3978 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3979 				   struct bpf_reg_state *dst_reg,
3980 				   struct bpf_reg_state *src_reg,
3981 				   struct bpf_verifier_state *this_branch,
3982 				   struct bpf_verifier_state *other_branch)
3983 {
3984 	if (BPF_SRC(insn->code) != BPF_X)
3985 		return false;
3986 
3987 	switch (BPF_OP(insn->code)) {
3988 	case BPF_JGT:
3989 		if ((dst_reg->type == PTR_TO_PACKET &&
3990 		     src_reg->type == PTR_TO_PACKET_END) ||
3991 		    (dst_reg->type == PTR_TO_PACKET_META &&
3992 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3993 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3994 			find_good_pkt_pointers(this_branch, dst_reg,
3995 					       dst_reg->type, false);
3996 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3997 			    src_reg->type == PTR_TO_PACKET) ||
3998 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3999 			    src_reg->type == PTR_TO_PACKET_META)) {
4000 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4001 			find_good_pkt_pointers(other_branch, src_reg,
4002 					       src_reg->type, true);
4003 		} else {
4004 			return false;
4005 		}
4006 		break;
4007 	case BPF_JLT:
4008 		if ((dst_reg->type == PTR_TO_PACKET &&
4009 		     src_reg->type == PTR_TO_PACKET_END) ||
4010 		    (dst_reg->type == PTR_TO_PACKET_META &&
4011 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4012 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4013 			find_good_pkt_pointers(other_branch, dst_reg,
4014 					       dst_reg->type, true);
4015 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4016 			    src_reg->type == PTR_TO_PACKET) ||
4017 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4018 			    src_reg->type == PTR_TO_PACKET_META)) {
4019 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4020 			find_good_pkt_pointers(this_branch, src_reg,
4021 					       src_reg->type, false);
4022 		} else {
4023 			return false;
4024 		}
4025 		break;
4026 	case BPF_JGE:
4027 		if ((dst_reg->type == PTR_TO_PACKET &&
4028 		     src_reg->type == PTR_TO_PACKET_END) ||
4029 		    (dst_reg->type == PTR_TO_PACKET_META &&
4030 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4031 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4032 			find_good_pkt_pointers(this_branch, dst_reg,
4033 					       dst_reg->type, true);
4034 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4035 			    src_reg->type == PTR_TO_PACKET) ||
4036 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4037 			    src_reg->type == PTR_TO_PACKET_META)) {
4038 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4039 			find_good_pkt_pointers(other_branch, src_reg,
4040 					       src_reg->type, false);
4041 		} else {
4042 			return false;
4043 		}
4044 		break;
4045 	case BPF_JLE:
4046 		if ((dst_reg->type == PTR_TO_PACKET &&
4047 		     src_reg->type == PTR_TO_PACKET_END) ||
4048 		    (dst_reg->type == PTR_TO_PACKET_META &&
4049 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4050 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4051 			find_good_pkt_pointers(other_branch, dst_reg,
4052 					       dst_reg->type, false);
4053 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4054 			    src_reg->type == PTR_TO_PACKET) ||
4055 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4056 			    src_reg->type == PTR_TO_PACKET_META)) {
4057 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4058 			find_good_pkt_pointers(this_branch, src_reg,
4059 					       src_reg->type, true);
4060 		} else {
4061 			return false;
4062 		}
4063 		break;
4064 	default:
4065 		return false;
4066 	}
4067 
4068 	return true;
4069 }
4070 
4071 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4072 			     struct bpf_insn *insn, int *insn_idx)
4073 {
4074 	struct bpf_verifier_state *this_branch = env->cur_state;
4075 	struct bpf_verifier_state *other_branch;
4076 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4077 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4078 	u8 opcode = BPF_OP(insn->code);
4079 	int err;
4080 
4081 	if (opcode > BPF_JSLE) {
4082 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4083 		return -EINVAL;
4084 	}
4085 
4086 	if (BPF_SRC(insn->code) == BPF_X) {
4087 		if (insn->imm != 0) {
4088 			verbose(env, "BPF_JMP uses reserved fields\n");
4089 			return -EINVAL;
4090 		}
4091 
4092 		/* check src1 operand */
4093 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4094 		if (err)
4095 			return err;
4096 
4097 		if (is_pointer_value(env, insn->src_reg)) {
4098 			verbose(env, "R%d pointer comparison prohibited\n",
4099 				insn->src_reg);
4100 			return -EACCES;
4101 		}
4102 	} else {
4103 		if (insn->src_reg != BPF_REG_0) {
4104 			verbose(env, "BPF_JMP uses reserved fields\n");
4105 			return -EINVAL;
4106 		}
4107 	}
4108 
4109 	/* check src2 operand */
4110 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4111 	if (err)
4112 		return err;
4113 
4114 	dst_reg = &regs[insn->dst_reg];
4115 
4116 	/* detect if R == 0 where R was initialized to zero earlier */
4117 	if (BPF_SRC(insn->code) == BPF_K &&
4118 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4119 	    dst_reg->type == SCALAR_VALUE &&
4120 	    tnum_is_const(dst_reg->var_off)) {
4121 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
4122 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
4123 			/* if (imm == imm) goto pc+off;
4124 			 * only follow the goto, ignore fall-through
4125 			 */
4126 			*insn_idx += insn->off;
4127 			return 0;
4128 		} else {
4129 			/* if (imm != imm) goto pc+off;
4130 			 * only follow fall-through branch, since
4131 			 * that's where the program will go
4132 			 */
4133 			return 0;
4134 		}
4135 	}
4136 
4137 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4138 	if (!other_branch)
4139 		return -EFAULT;
4140 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4141 
4142 	/* detect if we are comparing against a constant value so we can adjust
4143 	 * our min/max values for our dst register.
4144 	 * this is only legit if both are scalars (or pointers to the same
4145 	 * object, I suppose, but we don't support that right now), because
4146 	 * otherwise the different base pointers mean the offsets aren't
4147 	 * comparable.
4148 	 */
4149 	if (BPF_SRC(insn->code) == BPF_X) {
4150 		if (dst_reg->type == SCALAR_VALUE &&
4151 		    regs[insn->src_reg].type == SCALAR_VALUE) {
4152 			if (tnum_is_const(regs[insn->src_reg].var_off))
4153 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4154 						dst_reg, regs[insn->src_reg].var_off.value,
4155 						opcode);
4156 			else if (tnum_is_const(dst_reg->var_off))
4157 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4158 						    &regs[insn->src_reg],
4159 						    dst_reg->var_off.value, opcode);
4160 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4161 				/* Comparing for equality, we can combine knowledge */
4162 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4163 						    &other_branch_regs[insn->dst_reg],
4164 						    &regs[insn->src_reg],
4165 						    &regs[insn->dst_reg], opcode);
4166 		}
4167 	} else if (dst_reg->type == SCALAR_VALUE) {
4168 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4169 					dst_reg, insn->imm, opcode);
4170 	}
4171 
4172 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4173 	if (BPF_SRC(insn->code) == BPF_K &&
4174 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4175 	    reg_type_may_be_null(dst_reg->type)) {
4176 		/* Mark all identical registers in each branch as either
4177 		 * safe or unknown depending R == 0 or R != 0 conditional.
4178 		 */
4179 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4180 				      opcode == BPF_JNE);
4181 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4182 				      opcode == BPF_JEQ);
4183 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4184 					   this_branch, other_branch) &&
4185 		   is_pointer_value(env, insn->dst_reg)) {
4186 		verbose(env, "R%d pointer comparison prohibited\n",
4187 			insn->dst_reg);
4188 		return -EACCES;
4189 	}
4190 	if (env->log.level)
4191 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4192 	return 0;
4193 }
4194 
4195 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4196 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4197 {
4198 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4199 
4200 	return (struct bpf_map *) (unsigned long) imm64;
4201 }
4202 
4203 /* verify BPF_LD_IMM64 instruction */
4204 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4205 {
4206 	struct bpf_reg_state *regs = cur_regs(env);
4207 	int err;
4208 
4209 	if (BPF_SIZE(insn->code) != BPF_DW) {
4210 		verbose(env, "invalid BPF_LD_IMM insn\n");
4211 		return -EINVAL;
4212 	}
4213 	if (insn->off != 0) {
4214 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4215 		return -EINVAL;
4216 	}
4217 
4218 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4219 	if (err)
4220 		return err;
4221 
4222 	if (insn->src_reg == 0) {
4223 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4224 
4225 		regs[insn->dst_reg].type = SCALAR_VALUE;
4226 		__mark_reg_known(&regs[insn->dst_reg], imm);
4227 		return 0;
4228 	}
4229 
4230 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4231 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4232 
4233 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4234 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4235 	return 0;
4236 }
4237 
4238 static bool may_access_skb(enum bpf_prog_type type)
4239 {
4240 	switch (type) {
4241 	case BPF_PROG_TYPE_SOCKET_FILTER:
4242 	case BPF_PROG_TYPE_SCHED_CLS:
4243 	case BPF_PROG_TYPE_SCHED_ACT:
4244 		return true;
4245 	default:
4246 		return false;
4247 	}
4248 }
4249 
4250 /* verify safety of LD_ABS|LD_IND instructions:
4251  * - they can only appear in the programs where ctx == skb
4252  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4253  *   preserve R6-R9, and store return value into R0
4254  *
4255  * Implicit input:
4256  *   ctx == skb == R6 == CTX
4257  *
4258  * Explicit input:
4259  *   SRC == any register
4260  *   IMM == 32-bit immediate
4261  *
4262  * Output:
4263  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4264  */
4265 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4266 {
4267 	struct bpf_reg_state *regs = cur_regs(env);
4268 	u8 mode = BPF_MODE(insn->code);
4269 	int i, err;
4270 
4271 	if (!may_access_skb(env->prog->type)) {
4272 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4273 		return -EINVAL;
4274 	}
4275 
4276 	if (!env->ops->gen_ld_abs) {
4277 		verbose(env, "bpf verifier is misconfigured\n");
4278 		return -EINVAL;
4279 	}
4280 
4281 	if (env->subprog_cnt > 1) {
4282 		/* when program has LD_ABS insn JITs and interpreter assume
4283 		 * that r1 == ctx == skb which is not the case for callees
4284 		 * that can have arbitrary arguments. It's problematic
4285 		 * for main prog as well since JITs would need to analyze
4286 		 * all functions in order to make proper register save/restore
4287 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4288 		 */
4289 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4290 		return -EINVAL;
4291 	}
4292 
4293 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4294 	    BPF_SIZE(insn->code) == BPF_DW ||
4295 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4296 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4297 		return -EINVAL;
4298 	}
4299 
4300 	/* check whether implicit source operand (register R6) is readable */
4301 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4302 	if (err)
4303 		return err;
4304 
4305 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4306 	 * gen_ld_abs() may terminate the program at runtime, leading to
4307 	 * reference leak.
4308 	 */
4309 	err = check_reference_leak(env);
4310 	if (err) {
4311 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4312 		return err;
4313 	}
4314 
4315 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4316 		verbose(env,
4317 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4318 		return -EINVAL;
4319 	}
4320 
4321 	if (mode == BPF_IND) {
4322 		/* check explicit source operand */
4323 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4324 		if (err)
4325 			return err;
4326 	}
4327 
4328 	/* reset caller saved regs to unreadable */
4329 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4330 		mark_reg_not_init(env, regs, caller_saved[i]);
4331 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4332 	}
4333 
4334 	/* mark destination R0 register as readable, since it contains
4335 	 * the value fetched from the packet.
4336 	 * Already marked as written above.
4337 	 */
4338 	mark_reg_unknown(env, regs, BPF_REG_0);
4339 	return 0;
4340 }
4341 
4342 static int check_return_code(struct bpf_verifier_env *env)
4343 {
4344 	struct bpf_reg_state *reg;
4345 	struct tnum range = tnum_range(0, 1);
4346 
4347 	switch (env->prog->type) {
4348 	case BPF_PROG_TYPE_CGROUP_SKB:
4349 	case BPF_PROG_TYPE_CGROUP_SOCK:
4350 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4351 	case BPF_PROG_TYPE_SOCK_OPS:
4352 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4353 		break;
4354 	default:
4355 		return 0;
4356 	}
4357 
4358 	reg = cur_regs(env) + BPF_REG_0;
4359 	if (reg->type != SCALAR_VALUE) {
4360 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4361 			reg_type_str[reg->type]);
4362 		return -EINVAL;
4363 	}
4364 
4365 	if (!tnum_in(range, reg->var_off)) {
4366 		verbose(env, "At program exit the register R0 ");
4367 		if (!tnum_is_unknown(reg->var_off)) {
4368 			char tn_buf[48];
4369 
4370 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4371 			verbose(env, "has value %s", tn_buf);
4372 		} else {
4373 			verbose(env, "has unknown scalar value");
4374 		}
4375 		verbose(env, " should have been 0 or 1\n");
4376 		return -EINVAL;
4377 	}
4378 	return 0;
4379 }
4380 
4381 /* non-recursive DFS pseudo code
4382  * 1  procedure DFS-iterative(G,v):
4383  * 2      label v as discovered
4384  * 3      let S be a stack
4385  * 4      S.push(v)
4386  * 5      while S is not empty
4387  * 6            t <- S.pop()
4388  * 7            if t is what we're looking for:
4389  * 8                return t
4390  * 9            for all edges e in G.adjacentEdges(t) do
4391  * 10               if edge e is already labelled
4392  * 11                   continue with the next edge
4393  * 12               w <- G.adjacentVertex(t,e)
4394  * 13               if vertex w is not discovered and not explored
4395  * 14                   label e as tree-edge
4396  * 15                   label w as discovered
4397  * 16                   S.push(w)
4398  * 17                   continue at 5
4399  * 18               else if vertex w is discovered
4400  * 19                   label e as back-edge
4401  * 20               else
4402  * 21                   // vertex w is explored
4403  * 22                   label e as forward- or cross-edge
4404  * 23           label t as explored
4405  * 24           S.pop()
4406  *
4407  * convention:
4408  * 0x10 - discovered
4409  * 0x11 - discovered and fall-through edge labelled
4410  * 0x12 - discovered and fall-through and branch edges labelled
4411  * 0x20 - explored
4412  */
4413 
4414 enum {
4415 	DISCOVERED = 0x10,
4416 	EXPLORED = 0x20,
4417 	FALLTHROUGH = 1,
4418 	BRANCH = 2,
4419 };
4420 
4421 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4422 
4423 static int *insn_stack;	/* stack of insns to process */
4424 static int cur_stack;	/* current stack index */
4425 static int *insn_state;
4426 
4427 /* t, w, e - match pseudo-code above:
4428  * t - index of current instruction
4429  * w - next instruction
4430  * e - edge
4431  */
4432 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4433 {
4434 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4435 		return 0;
4436 
4437 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4438 		return 0;
4439 
4440 	if (w < 0 || w >= env->prog->len) {
4441 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4442 		return -EINVAL;
4443 	}
4444 
4445 	if (e == BRANCH)
4446 		/* mark branch target for state pruning */
4447 		env->explored_states[w] = STATE_LIST_MARK;
4448 
4449 	if (insn_state[w] == 0) {
4450 		/* tree-edge */
4451 		insn_state[t] = DISCOVERED | e;
4452 		insn_state[w] = DISCOVERED;
4453 		if (cur_stack >= env->prog->len)
4454 			return -E2BIG;
4455 		insn_stack[cur_stack++] = w;
4456 		return 1;
4457 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4458 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4459 		return -EINVAL;
4460 	} else if (insn_state[w] == EXPLORED) {
4461 		/* forward- or cross-edge */
4462 		insn_state[t] = DISCOVERED | e;
4463 	} else {
4464 		verbose(env, "insn state internal bug\n");
4465 		return -EFAULT;
4466 	}
4467 	return 0;
4468 }
4469 
4470 /* non-recursive depth-first-search to detect loops in BPF program
4471  * loop == back-edge in directed graph
4472  */
4473 static int check_cfg(struct bpf_verifier_env *env)
4474 {
4475 	struct bpf_insn *insns = env->prog->insnsi;
4476 	int insn_cnt = env->prog->len;
4477 	int ret = 0;
4478 	int i, t;
4479 
4480 	ret = check_subprogs(env);
4481 	if (ret < 0)
4482 		return ret;
4483 
4484 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4485 	if (!insn_state)
4486 		return -ENOMEM;
4487 
4488 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4489 	if (!insn_stack) {
4490 		kfree(insn_state);
4491 		return -ENOMEM;
4492 	}
4493 
4494 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4495 	insn_stack[0] = 0; /* 0 is the first instruction */
4496 	cur_stack = 1;
4497 
4498 peek_stack:
4499 	if (cur_stack == 0)
4500 		goto check_state;
4501 	t = insn_stack[cur_stack - 1];
4502 
4503 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4504 		u8 opcode = BPF_OP(insns[t].code);
4505 
4506 		if (opcode == BPF_EXIT) {
4507 			goto mark_explored;
4508 		} else if (opcode == BPF_CALL) {
4509 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4510 			if (ret == 1)
4511 				goto peek_stack;
4512 			else if (ret < 0)
4513 				goto err_free;
4514 			if (t + 1 < insn_cnt)
4515 				env->explored_states[t + 1] = STATE_LIST_MARK;
4516 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4517 				env->explored_states[t] = STATE_LIST_MARK;
4518 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4519 				if (ret == 1)
4520 					goto peek_stack;
4521 				else if (ret < 0)
4522 					goto err_free;
4523 			}
4524 		} else if (opcode == BPF_JA) {
4525 			if (BPF_SRC(insns[t].code) != BPF_K) {
4526 				ret = -EINVAL;
4527 				goto err_free;
4528 			}
4529 			/* unconditional jump with single edge */
4530 			ret = push_insn(t, t + insns[t].off + 1,
4531 					FALLTHROUGH, env);
4532 			if (ret == 1)
4533 				goto peek_stack;
4534 			else if (ret < 0)
4535 				goto err_free;
4536 			/* tell verifier to check for equivalent states
4537 			 * after every call and jump
4538 			 */
4539 			if (t + 1 < insn_cnt)
4540 				env->explored_states[t + 1] = STATE_LIST_MARK;
4541 		} else {
4542 			/* conditional jump with two edges */
4543 			env->explored_states[t] = STATE_LIST_MARK;
4544 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4545 			if (ret == 1)
4546 				goto peek_stack;
4547 			else if (ret < 0)
4548 				goto err_free;
4549 
4550 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4551 			if (ret == 1)
4552 				goto peek_stack;
4553 			else if (ret < 0)
4554 				goto err_free;
4555 		}
4556 	} else {
4557 		/* all other non-branch instructions with single
4558 		 * fall-through edge
4559 		 */
4560 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4561 		if (ret == 1)
4562 			goto peek_stack;
4563 		else if (ret < 0)
4564 			goto err_free;
4565 	}
4566 
4567 mark_explored:
4568 	insn_state[t] = EXPLORED;
4569 	if (cur_stack-- <= 0) {
4570 		verbose(env, "pop stack internal bug\n");
4571 		ret = -EFAULT;
4572 		goto err_free;
4573 	}
4574 	goto peek_stack;
4575 
4576 check_state:
4577 	for (i = 0; i < insn_cnt; i++) {
4578 		if (insn_state[i] != EXPLORED) {
4579 			verbose(env, "unreachable insn %d\n", i);
4580 			ret = -EINVAL;
4581 			goto err_free;
4582 		}
4583 	}
4584 	ret = 0; /* cfg looks good */
4585 
4586 err_free:
4587 	kfree(insn_state);
4588 	kfree(insn_stack);
4589 	return ret;
4590 }
4591 
4592 /* check %cur's range satisfies %old's */
4593 static bool range_within(struct bpf_reg_state *old,
4594 			 struct bpf_reg_state *cur)
4595 {
4596 	return old->umin_value <= cur->umin_value &&
4597 	       old->umax_value >= cur->umax_value &&
4598 	       old->smin_value <= cur->smin_value &&
4599 	       old->smax_value >= cur->smax_value;
4600 }
4601 
4602 /* Maximum number of register states that can exist at once */
4603 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4604 struct idpair {
4605 	u32 old;
4606 	u32 cur;
4607 };
4608 
4609 /* If in the old state two registers had the same id, then they need to have
4610  * the same id in the new state as well.  But that id could be different from
4611  * the old state, so we need to track the mapping from old to new ids.
4612  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4613  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4614  * regs with a different old id could still have new id 9, we don't care about
4615  * that.
4616  * So we look through our idmap to see if this old id has been seen before.  If
4617  * so, we require the new id to match; otherwise, we add the id pair to the map.
4618  */
4619 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4620 {
4621 	unsigned int i;
4622 
4623 	for (i = 0; i < ID_MAP_SIZE; i++) {
4624 		if (!idmap[i].old) {
4625 			/* Reached an empty slot; haven't seen this id before */
4626 			idmap[i].old = old_id;
4627 			idmap[i].cur = cur_id;
4628 			return true;
4629 		}
4630 		if (idmap[i].old == old_id)
4631 			return idmap[i].cur == cur_id;
4632 	}
4633 	/* We ran out of idmap slots, which should be impossible */
4634 	WARN_ON_ONCE(1);
4635 	return false;
4636 }
4637 
4638 /* Returns true if (rold safe implies rcur safe) */
4639 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4640 		    struct idpair *idmap)
4641 {
4642 	bool equal;
4643 
4644 	if (!(rold->live & REG_LIVE_READ))
4645 		/* explored state didn't use this */
4646 		return true;
4647 
4648 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4649 
4650 	if (rold->type == PTR_TO_STACK)
4651 		/* two stack pointers are equal only if they're pointing to
4652 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4653 		 */
4654 		return equal && rold->frameno == rcur->frameno;
4655 
4656 	if (equal)
4657 		return true;
4658 
4659 	if (rold->type == NOT_INIT)
4660 		/* explored state can't have used this */
4661 		return true;
4662 	if (rcur->type == NOT_INIT)
4663 		return false;
4664 	switch (rold->type) {
4665 	case SCALAR_VALUE:
4666 		if (rcur->type == SCALAR_VALUE) {
4667 			/* new val must satisfy old val knowledge */
4668 			return range_within(rold, rcur) &&
4669 			       tnum_in(rold->var_off, rcur->var_off);
4670 		} else {
4671 			/* We're trying to use a pointer in place of a scalar.
4672 			 * Even if the scalar was unbounded, this could lead to
4673 			 * pointer leaks because scalars are allowed to leak
4674 			 * while pointers are not. We could make this safe in
4675 			 * special cases if root is calling us, but it's
4676 			 * probably not worth the hassle.
4677 			 */
4678 			return false;
4679 		}
4680 	case PTR_TO_MAP_VALUE:
4681 		/* If the new min/max/var_off satisfy the old ones and
4682 		 * everything else matches, we are OK.
4683 		 * We don't care about the 'id' value, because nothing
4684 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4685 		 */
4686 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4687 		       range_within(rold, rcur) &&
4688 		       tnum_in(rold->var_off, rcur->var_off);
4689 	case PTR_TO_MAP_VALUE_OR_NULL:
4690 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4691 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4692 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4693 		 * checked, doing so could have affected others with the same
4694 		 * id, and we can't check for that because we lost the id when
4695 		 * we converted to a PTR_TO_MAP_VALUE.
4696 		 */
4697 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4698 			return false;
4699 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4700 			return false;
4701 		/* Check our ids match any regs they're supposed to */
4702 		return check_ids(rold->id, rcur->id, idmap);
4703 	case PTR_TO_PACKET_META:
4704 	case PTR_TO_PACKET:
4705 		if (rcur->type != rold->type)
4706 			return false;
4707 		/* We must have at least as much range as the old ptr
4708 		 * did, so that any accesses which were safe before are
4709 		 * still safe.  This is true even if old range < old off,
4710 		 * since someone could have accessed through (ptr - k), or
4711 		 * even done ptr -= k in a register, to get a safe access.
4712 		 */
4713 		if (rold->range > rcur->range)
4714 			return false;
4715 		/* If the offsets don't match, we can't trust our alignment;
4716 		 * nor can we be sure that we won't fall out of range.
4717 		 */
4718 		if (rold->off != rcur->off)
4719 			return false;
4720 		/* id relations must be preserved */
4721 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4722 			return false;
4723 		/* new val must satisfy old val knowledge */
4724 		return range_within(rold, rcur) &&
4725 		       tnum_in(rold->var_off, rcur->var_off);
4726 	case PTR_TO_CTX:
4727 	case CONST_PTR_TO_MAP:
4728 	case PTR_TO_PACKET_END:
4729 	case PTR_TO_FLOW_KEYS:
4730 	case PTR_TO_SOCKET:
4731 	case PTR_TO_SOCKET_OR_NULL:
4732 		/* Only valid matches are exact, which memcmp() above
4733 		 * would have accepted
4734 		 */
4735 	default:
4736 		/* Don't know what's going on, just say it's not safe */
4737 		return false;
4738 	}
4739 
4740 	/* Shouldn't get here; if we do, say it's not safe */
4741 	WARN_ON_ONCE(1);
4742 	return false;
4743 }
4744 
4745 static bool stacksafe(struct bpf_func_state *old,
4746 		      struct bpf_func_state *cur,
4747 		      struct idpair *idmap)
4748 {
4749 	int i, spi;
4750 
4751 	/* if explored stack has more populated slots than current stack
4752 	 * such stacks are not equivalent
4753 	 */
4754 	if (old->allocated_stack > cur->allocated_stack)
4755 		return false;
4756 
4757 	/* walk slots of the explored stack and ignore any additional
4758 	 * slots in the current stack, since explored(safe) state
4759 	 * didn't use them
4760 	 */
4761 	for (i = 0; i < old->allocated_stack; i++) {
4762 		spi = i / BPF_REG_SIZE;
4763 
4764 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4765 			/* explored state didn't use this */
4766 			continue;
4767 
4768 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4769 			continue;
4770 		/* if old state was safe with misc data in the stack
4771 		 * it will be safe with zero-initialized stack.
4772 		 * The opposite is not true
4773 		 */
4774 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4775 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4776 			continue;
4777 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4778 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4779 			/* Ex: old explored (safe) state has STACK_SPILL in
4780 			 * this stack slot, but current has has STACK_MISC ->
4781 			 * this verifier states are not equivalent,
4782 			 * return false to continue verification of this path
4783 			 */
4784 			return false;
4785 		if (i % BPF_REG_SIZE)
4786 			continue;
4787 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4788 			continue;
4789 		if (!regsafe(&old->stack[spi].spilled_ptr,
4790 			     &cur->stack[spi].spilled_ptr,
4791 			     idmap))
4792 			/* when explored and current stack slot are both storing
4793 			 * spilled registers, check that stored pointers types
4794 			 * are the same as well.
4795 			 * Ex: explored safe path could have stored
4796 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4797 			 * but current path has stored:
4798 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4799 			 * such verifier states are not equivalent.
4800 			 * return false to continue verification of this path
4801 			 */
4802 			return false;
4803 	}
4804 	return true;
4805 }
4806 
4807 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4808 {
4809 	if (old->acquired_refs != cur->acquired_refs)
4810 		return false;
4811 	return !memcmp(old->refs, cur->refs,
4812 		       sizeof(*old->refs) * old->acquired_refs);
4813 }
4814 
4815 /* compare two verifier states
4816  *
4817  * all states stored in state_list are known to be valid, since
4818  * verifier reached 'bpf_exit' instruction through them
4819  *
4820  * this function is called when verifier exploring different branches of
4821  * execution popped from the state stack. If it sees an old state that has
4822  * more strict register state and more strict stack state then this execution
4823  * branch doesn't need to be explored further, since verifier already
4824  * concluded that more strict state leads to valid finish.
4825  *
4826  * Therefore two states are equivalent if register state is more conservative
4827  * and explored stack state is more conservative than the current one.
4828  * Example:
4829  *       explored                   current
4830  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4831  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4832  *
4833  * In other words if current stack state (one being explored) has more
4834  * valid slots than old one that already passed validation, it means
4835  * the verifier can stop exploring and conclude that current state is valid too
4836  *
4837  * Similarly with registers. If explored state has register type as invalid
4838  * whereas register type in current state is meaningful, it means that
4839  * the current state will reach 'bpf_exit' instruction safely
4840  */
4841 static bool func_states_equal(struct bpf_func_state *old,
4842 			      struct bpf_func_state *cur)
4843 {
4844 	struct idpair *idmap;
4845 	bool ret = false;
4846 	int i;
4847 
4848 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4849 	/* If we failed to allocate the idmap, just say it's not safe */
4850 	if (!idmap)
4851 		return false;
4852 
4853 	for (i = 0; i < MAX_BPF_REG; i++) {
4854 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4855 			goto out_free;
4856 	}
4857 
4858 	if (!stacksafe(old, cur, idmap))
4859 		goto out_free;
4860 
4861 	if (!refsafe(old, cur))
4862 		goto out_free;
4863 	ret = true;
4864 out_free:
4865 	kfree(idmap);
4866 	return ret;
4867 }
4868 
4869 static bool states_equal(struct bpf_verifier_env *env,
4870 			 struct bpf_verifier_state *old,
4871 			 struct bpf_verifier_state *cur)
4872 {
4873 	int i;
4874 
4875 	if (old->curframe != cur->curframe)
4876 		return false;
4877 
4878 	/* for states to be equal callsites have to be the same
4879 	 * and all frame states need to be equivalent
4880 	 */
4881 	for (i = 0; i <= old->curframe; i++) {
4882 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4883 			return false;
4884 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4885 			return false;
4886 	}
4887 	return true;
4888 }
4889 
4890 /* A write screens off any subsequent reads; but write marks come from the
4891  * straight-line code between a state and its parent.  When we arrive at an
4892  * equivalent state (jump target or such) we didn't arrive by the straight-line
4893  * code, so read marks in the state must propagate to the parent regardless
4894  * of the state's write marks. That's what 'parent == state->parent' comparison
4895  * in mark_reg_read() is for.
4896  */
4897 static int propagate_liveness(struct bpf_verifier_env *env,
4898 			      const struct bpf_verifier_state *vstate,
4899 			      struct bpf_verifier_state *vparent)
4900 {
4901 	int i, frame, err = 0;
4902 	struct bpf_func_state *state, *parent;
4903 
4904 	if (vparent->curframe != vstate->curframe) {
4905 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4906 		     vparent->curframe, vstate->curframe);
4907 		return -EFAULT;
4908 	}
4909 	/* Propagate read liveness of registers... */
4910 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4911 	/* We don't need to worry about FP liveness because it's read-only */
4912 	for (i = 0; i < BPF_REG_FP; i++) {
4913 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4914 			continue;
4915 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4916 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4917 					    &vparent->frame[vstate->curframe]->regs[i]);
4918 			if (err)
4919 				return err;
4920 		}
4921 	}
4922 
4923 	/* ... and stack slots */
4924 	for (frame = 0; frame <= vstate->curframe; frame++) {
4925 		state = vstate->frame[frame];
4926 		parent = vparent->frame[frame];
4927 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4928 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4929 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4930 				continue;
4931 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4932 				mark_reg_read(env, &state->stack[i].spilled_ptr,
4933 					      &parent->stack[i].spilled_ptr);
4934 		}
4935 	}
4936 	return err;
4937 }
4938 
4939 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4940 {
4941 	struct bpf_verifier_state_list *new_sl;
4942 	struct bpf_verifier_state_list *sl;
4943 	struct bpf_verifier_state *cur = env->cur_state, *new;
4944 	int i, j, err;
4945 
4946 	sl = env->explored_states[insn_idx];
4947 	if (!sl)
4948 		/* this 'insn_idx' instruction wasn't marked, so we will not
4949 		 * be doing state search here
4950 		 */
4951 		return 0;
4952 
4953 	while (sl != STATE_LIST_MARK) {
4954 		if (states_equal(env, &sl->state, cur)) {
4955 			/* reached equivalent register/stack state,
4956 			 * prune the search.
4957 			 * Registers read by the continuation are read by us.
4958 			 * If we have any write marks in env->cur_state, they
4959 			 * will prevent corresponding reads in the continuation
4960 			 * from reaching our parent (an explored_state).  Our
4961 			 * own state will get the read marks recorded, but
4962 			 * they'll be immediately forgotten as we're pruning
4963 			 * this state and will pop a new one.
4964 			 */
4965 			err = propagate_liveness(env, &sl->state, cur);
4966 			if (err)
4967 				return err;
4968 			return 1;
4969 		}
4970 		sl = sl->next;
4971 	}
4972 
4973 	/* there were no equivalent states, remember current one.
4974 	 * technically the current state is not proven to be safe yet,
4975 	 * but it will either reach outer most bpf_exit (which means it's safe)
4976 	 * or it will be rejected. Since there are no loops, we won't be
4977 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4978 	 * again on the way to bpf_exit
4979 	 */
4980 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4981 	if (!new_sl)
4982 		return -ENOMEM;
4983 
4984 	/* add new state to the head of linked list */
4985 	new = &new_sl->state;
4986 	err = copy_verifier_state(new, cur);
4987 	if (err) {
4988 		free_verifier_state(new, false);
4989 		kfree(new_sl);
4990 		return err;
4991 	}
4992 	new_sl->next = env->explored_states[insn_idx];
4993 	env->explored_states[insn_idx] = new_sl;
4994 	/* connect new state to parentage chain */
4995 	for (i = 0; i < BPF_REG_FP; i++)
4996 		cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
4997 	/* clear write marks in current state: the writes we did are not writes
4998 	 * our child did, so they don't screen off its reads from us.
4999 	 * (There are no read marks in current state, because reads always mark
5000 	 * their parent and current state never has children yet.  Only
5001 	 * explored_states can get read marks.)
5002 	 */
5003 	for (i = 0; i < BPF_REG_FP; i++)
5004 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5005 
5006 	/* all stack frames are accessible from callee, clear them all */
5007 	for (j = 0; j <= cur->curframe; j++) {
5008 		struct bpf_func_state *frame = cur->frame[j];
5009 		struct bpf_func_state *newframe = new->frame[j];
5010 
5011 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5012 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5013 			frame->stack[i].spilled_ptr.parent =
5014 						&newframe->stack[i].spilled_ptr;
5015 		}
5016 	}
5017 	return 0;
5018 }
5019 
5020 /* Return true if it's OK to have the same insn return a different type. */
5021 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5022 {
5023 	switch (type) {
5024 	case PTR_TO_CTX:
5025 	case PTR_TO_SOCKET:
5026 	case PTR_TO_SOCKET_OR_NULL:
5027 		return false;
5028 	default:
5029 		return true;
5030 	}
5031 }
5032 
5033 /* If an instruction was previously used with particular pointer types, then we
5034  * need to be careful to avoid cases such as the below, where it may be ok
5035  * for one branch accessing the pointer, but not ok for the other branch:
5036  *
5037  * R1 = sock_ptr
5038  * goto X;
5039  * ...
5040  * R1 = some_other_valid_ptr;
5041  * goto X;
5042  * ...
5043  * R2 = *(u32 *)(R1 + 0);
5044  */
5045 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5046 {
5047 	return src != prev && (!reg_type_mismatch_ok(src) ||
5048 			       !reg_type_mismatch_ok(prev));
5049 }
5050 
5051 static int do_check(struct bpf_verifier_env *env)
5052 {
5053 	struct bpf_verifier_state *state;
5054 	struct bpf_insn *insns = env->prog->insnsi;
5055 	struct bpf_reg_state *regs;
5056 	int insn_cnt = env->prog->len, i;
5057 	int insn_idx, prev_insn_idx = 0;
5058 	int insn_processed = 0;
5059 	bool do_print_state = false;
5060 
5061 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5062 	if (!state)
5063 		return -ENOMEM;
5064 	state->curframe = 0;
5065 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5066 	if (!state->frame[0]) {
5067 		kfree(state);
5068 		return -ENOMEM;
5069 	}
5070 	env->cur_state = state;
5071 	init_func_state(env, state->frame[0],
5072 			BPF_MAIN_FUNC /* callsite */,
5073 			0 /* frameno */,
5074 			0 /* subprogno, zero == main subprog */);
5075 	insn_idx = 0;
5076 	for (;;) {
5077 		struct bpf_insn *insn;
5078 		u8 class;
5079 		int err;
5080 
5081 		if (insn_idx >= insn_cnt) {
5082 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5083 				insn_idx, insn_cnt);
5084 			return -EFAULT;
5085 		}
5086 
5087 		insn = &insns[insn_idx];
5088 		class = BPF_CLASS(insn->code);
5089 
5090 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5091 			verbose(env,
5092 				"BPF program is too large. Processed %d insn\n",
5093 				insn_processed);
5094 			return -E2BIG;
5095 		}
5096 
5097 		err = is_state_visited(env, insn_idx);
5098 		if (err < 0)
5099 			return err;
5100 		if (err == 1) {
5101 			/* found equivalent state, can prune the search */
5102 			if (env->log.level) {
5103 				if (do_print_state)
5104 					verbose(env, "\nfrom %d to %d: safe\n",
5105 						prev_insn_idx, insn_idx);
5106 				else
5107 					verbose(env, "%d: safe\n", insn_idx);
5108 			}
5109 			goto process_bpf_exit;
5110 		}
5111 
5112 		if (need_resched())
5113 			cond_resched();
5114 
5115 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5116 			if (env->log.level > 1)
5117 				verbose(env, "%d:", insn_idx);
5118 			else
5119 				verbose(env, "\nfrom %d to %d:",
5120 					prev_insn_idx, insn_idx);
5121 			print_verifier_state(env, state->frame[state->curframe]);
5122 			do_print_state = false;
5123 		}
5124 
5125 		if (env->log.level) {
5126 			const struct bpf_insn_cbs cbs = {
5127 				.cb_print	= verbose,
5128 				.private_data	= env,
5129 			};
5130 
5131 			verbose(env, "%d: ", insn_idx);
5132 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5133 		}
5134 
5135 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5136 			err = bpf_prog_offload_verify_insn(env, insn_idx,
5137 							   prev_insn_idx);
5138 			if (err)
5139 				return err;
5140 		}
5141 
5142 		regs = cur_regs(env);
5143 		env->insn_aux_data[insn_idx].seen = true;
5144 
5145 		if (class == BPF_ALU || class == BPF_ALU64) {
5146 			err = check_alu_op(env, insn);
5147 			if (err)
5148 				return err;
5149 
5150 		} else if (class == BPF_LDX) {
5151 			enum bpf_reg_type *prev_src_type, src_reg_type;
5152 
5153 			/* check for reserved fields is already done */
5154 
5155 			/* check src operand */
5156 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5157 			if (err)
5158 				return err;
5159 
5160 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5161 			if (err)
5162 				return err;
5163 
5164 			src_reg_type = regs[insn->src_reg].type;
5165 
5166 			/* check that memory (src_reg + off) is readable,
5167 			 * the state of dst_reg will be updated by this func
5168 			 */
5169 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5170 					       BPF_SIZE(insn->code), BPF_READ,
5171 					       insn->dst_reg, false);
5172 			if (err)
5173 				return err;
5174 
5175 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5176 
5177 			if (*prev_src_type == NOT_INIT) {
5178 				/* saw a valid insn
5179 				 * dst_reg = *(u32 *)(src_reg + off)
5180 				 * save type to validate intersecting paths
5181 				 */
5182 				*prev_src_type = src_reg_type;
5183 
5184 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5185 				/* ABuser program is trying to use the same insn
5186 				 * dst_reg = *(u32*) (src_reg + off)
5187 				 * with different pointer types:
5188 				 * src_reg == ctx in one branch and
5189 				 * src_reg == stack|map in some other branch.
5190 				 * Reject it.
5191 				 */
5192 				verbose(env, "same insn cannot be used with different pointers\n");
5193 				return -EINVAL;
5194 			}
5195 
5196 		} else if (class == BPF_STX) {
5197 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5198 
5199 			if (BPF_MODE(insn->code) == BPF_XADD) {
5200 				err = check_xadd(env, insn_idx, insn);
5201 				if (err)
5202 					return err;
5203 				insn_idx++;
5204 				continue;
5205 			}
5206 
5207 			/* check src1 operand */
5208 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5209 			if (err)
5210 				return err;
5211 			/* check src2 operand */
5212 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5213 			if (err)
5214 				return err;
5215 
5216 			dst_reg_type = regs[insn->dst_reg].type;
5217 
5218 			/* check that memory (dst_reg + off) is writeable */
5219 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5220 					       BPF_SIZE(insn->code), BPF_WRITE,
5221 					       insn->src_reg, false);
5222 			if (err)
5223 				return err;
5224 
5225 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5226 
5227 			if (*prev_dst_type == NOT_INIT) {
5228 				*prev_dst_type = dst_reg_type;
5229 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5230 				verbose(env, "same insn cannot be used with different pointers\n");
5231 				return -EINVAL;
5232 			}
5233 
5234 		} else if (class == BPF_ST) {
5235 			if (BPF_MODE(insn->code) != BPF_MEM ||
5236 			    insn->src_reg != BPF_REG_0) {
5237 				verbose(env, "BPF_ST uses reserved fields\n");
5238 				return -EINVAL;
5239 			}
5240 			/* check src operand */
5241 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5242 			if (err)
5243 				return err;
5244 
5245 			if (is_ctx_reg(env, insn->dst_reg)) {
5246 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5247 					insn->dst_reg, reg_type_str[insn->dst_reg]);
5248 				return -EACCES;
5249 			}
5250 
5251 			/* check that memory (dst_reg + off) is writeable */
5252 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5253 					       BPF_SIZE(insn->code), BPF_WRITE,
5254 					       -1, false);
5255 			if (err)
5256 				return err;
5257 
5258 		} else if (class == BPF_JMP) {
5259 			u8 opcode = BPF_OP(insn->code);
5260 
5261 			if (opcode == BPF_CALL) {
5262 				if (BPF_SRC(insn->code) != BPF_K ||
5263 				    insn->off != 0 ||
5264 				    (insn->src_reg != BPF_REG_0 &&
5265 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5266 				    insn->dst_reg != BPF_REG_0) {
5267 					verbose(env, "BPF_CALL uses reserved fields\n");
5268 					return -EINVAL;
5269 				}
5270 
5271 				if (insn->src_reg == BPF_PSEUDO_CALL)
5272 					err = check_func_call(env, insn, &insn_idx);
5273 				else
5274 					err = check_helper_call(env, insn->imm, insn_idx);
5275 				if (err)
5276 					return err;
5277 
5278 			} else if (opcode == BPF_JA) {
5279 				if (BPF_SRC(insn->code) != BPF_K ||
5280 				    insn->imm != 0 ||
5281 				    insn->src_reg != BPF_REG_0 ||
5282 				    insn->dst_reg != BPF_REG_0) {
5283 					verbose(env, "BPF_JA uses reserved fields\n");
5284 					return -EINVAL;
5285 				}
5286 
5287 				insn_idx += insn->off + 1;
5288 				continue;
5289 
5290 			} else if (opcode == BPF_EXIT) {
5291 				if (BPF_SRC(insn->code) != BPF_K ||
5292 				    insn->imm != 0 ||
5293 				    insn->src_reg != BPF_REG_0 ||
5294 				    insn->dst_reg != BPF_REG_0) {
5295 					verbose(env, "BPF_EXIT uses reserved fields\n");
5296 					return -EINVAL;
5297 				}
5298 
5299 				if (state->curframe) {
5300 					/* exit from nested function */
5301 					prev_insn_idx = insn_idx;
5302 					err = prepare_func_exit(env, &insn_idx);
5303 					if (err)
5304 						return err;
5305 					do_print_state = true;
5306 					continue;
5307 				}
5308 
5309 				err = check_reference_leak(env);
5310 				if (err)
5311 					return err;
5312 
5313 				/* eBPF calling convetion is such that R0 is used
5314 				 * to return the value from eBPF program.
5315 				 * Make sure that it's readable at this time
5316 				 * of bpf_exit, which means that program wrote
5317 				 * something into it earlier
5318 				 */
5319 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5320 				if (err)
5321 					return err;
5322 
5323 				if (is_pointer_value(env, BPF_REG_0)) {
5324 					verbose(env, "R0 leaks addr as return value\n");
5325 					return -EACCES;
5326 				}
5327 
5328 				err = check_return_code(env);
5329 				if (err)
5330 					return err;
5331 process_bpf_exit:
5332 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
5333 				if (err < 0) {
5334 					if (err != -ENOENT)
5335 						return err;
5336 					break;
5337 				} else {
5338 					do_print_state = true;
5339 					continue;
5340 				}
5341 			} else {
5342 				err = check_cond_jmp_op(env, insn, &insn_idx);
5343 				if (err)
5344 					return err;
5345 			}
5346 		} else if (class == BPF_LD) {
5347 			u8 mode = BPF_MODE(insn->code);
5348 
5349 			if (mode == BPF_ABS || mode == BPF_IND) {
5350 				err = check_ld_abs(env, insn);
5351 				if (err)
5352 					return err;
5353 
5354 			} else if (mode == BPF_IMM) {
5355 				err = check_ld_imm(env, insn);
5356 				if (err)
5357 					return err;
5358 
5359 				insn_idx++;
5360 				env->insn_aux_data[insn_idx].seen = true;
5361 			} else {
5362 				verbose(env, "invalid BPF_LD mode\n");
5363 				return -EINVAL;
5364 			}
5365 		} else {
5366 			verbose(env, "unknown insn class %d\n", class);
5367 			return -EINVAL;
5368 		}
5369 
5370 		insn_idx++;
5371 	}
5372 
5373 	verbose(env, "processed %d insns (limit %d), stack depth ",
5374 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5375 	for (i = 0; i < env->subprog_cnt; i++) {
5376 		u32 depth = env->subprog_info[i].stack_depth;
5377 
5378 		verbose(env, "%d", depth);
5379 		if (i + 1 < env->subprog_cnt)
5380 			verbose(env, "+");
5381 	}
5382 	verbose(env, "\n");
5383 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5384 	return 0;
5385 }
5386 
5387 static int check_map_prealloc(struct bpf_map *map)
5388 {
5389 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5390 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5391 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5392 		!(map->map_flags & BPF_F_NO_PREALLOC);
5393 }
5394 
5395 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5396 					struct bpf_map *map,
5397 					struct bpf_prog *prog)
5398 
5399 {
5400 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5401 	 * preallocated hash maps, since doing memory allocation
5402 	 * in overflow_handler can crash depending on where nmi got
5403 	 * triggered.
5404 	 */
5405 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5406 		if (!check_map_prealloc(map)) {
5407 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5408 			return -EINVAL;
5409 		}
5410 		if (map->inner_map_meta &&
5411 		    !check_map_prealloc(map->inner_map_meta)) {
5412 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5413 			return -EINVAL;
5414 		}
5415 	}
5416 
5417 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5418 	    !bpf_offload_prog_map_match(prog, map)) {
5419 		verbose(env, "offload device mismatch between prog and map\n");
5420 		return -EINVAL;
5421 	}
5422 
5423 	return 0;
5424 }
5425 
5426 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5427 {
5428 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5429 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5430 }
5431 
5432 /* look for pseudo eBPF instructions that access map FDs and
5433  * replace them with actual map pointers
5434  */
5435 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5436 {
5437 	struct bpf_insn *insn = env->prog->insnsi;
5438 	int insn_cnt = env->prog->len;
5439 	int i, j, err;
5440 
5441 	err = bpf_prog_calc_tag(env->prog);
5442 	if (err)
5443 		return err;
5444 
5445 	for (i = 0; i < insn_cnt; i++, insn++) {
5446 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5447 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5448 			verbose(env, "BPF_LDX uses reserved fields\n");
5449 			return -EINVAL;
5450 		}
5451 
5452 		if (BPF_CLASS(insn->code) == BPF_STX &&
5453 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5454 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5455 			verbose(env, "BPF_STX uses reserved fields\n");
5456 			return -EINVAL;
5457 		}
5458 
5459 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5460 			struct bpf_map *map;
5461 			struct fd f;
5462 
5463 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5464 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5465 			    insn[1].off != 0) {
5466 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5467 				return -EINVAL;
5468 			}
5469 
5470 			if (insn->src_reg == 0)
5471 				/* valid generic load 64-bit imm */
5472 				goto next_insn;
5473 
5474 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5475 				verbose(env,
5476 					"unrecognized bpf_ld_imm64 insn\n");
5477 				return -EINVAL;
5478 			}
5479 
5480 			f = fdget(insn->imm);
5481 			map = __bpf_map_get(f);
5482 			if (IS_ERR(map)) {
5483 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5484 					insn->imm);
5485 				return PTR_ERR(map);
5486 			}
5487 
5488 			err = check_map_prog_compatibility(env, map, env->prog);
5489 			if (err) {
5490 				fdput(f);
5491 				return err;
5492 			}
5493 
5494 			/* store map pointer inside BPF_LD_IMM64 instruction */
5495 			insn[0].imm = (u32) (unsigned long) map;
5496 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5497 
5498 			/* check whether we recorded this map already */
5499 			for (j = 0; j < env->used_map_cnt; j++)
5500 				if (env->used_maps[j] == map) {
5501 					fdput(f);
5502 					goto next_insn;
5503 				}
5504 
5505 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5506 				fdput(f);
5507 				return -E2BIG;
5508 			}
5509 
5510 			/* hold the map. If the program is rejected by verifier,
5511 			 * the map will be released by release_maps() or it
5512 			 * will be used by the valid program until it's unloaded
5513 			 * and all maps are released in free_used_maps()
5514 			 */
5515 			map = bpf_map_inc(map, false);
5516 			if (IS_ERR(map)) {
5517 				fdput(f);
5518 				return PTR_ERR(map);
5519 			}
5520 			env->used_maps[env->used_map_cnt++] = map;
5521 
5522 			if (bpf_map_is_cgroup_storage(map) &&
5523 			    bpf_cgroup_storage_assign(env->prog, map)) {
5524 				verbose(env, "only one cgroup storage of each type is allowed\n");
5525 				fdput(f);
5526 				return -EBUSY;
5527 			}
5528 
5529 			fdput(f);
5530 next_insn:
5531 			insn++;
5532 			i++;
5533 			continue;
5534 		}
5535 
5536 		/* Basic sanity check before we invest more work here. */
5537 		if (!bpf_opcode_in_insntable(insn->code)) {
5538 			verbose(env, "unknown opcode %02x\n", insn->code);
5539 			return -EINVAL;
5540 		}
5541 	}
5542 
5543 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5544 	 * 'struct bpf_map *' into a register instead of user map_fd.
5545 	 * These pointers will be used later by verifier to validate map access.
5546 	 */
5547 	return 0;
5548 }
5549 
5550 /* drop refcnt of maps used by the rejected program */
5551 static void release_maps(struct bpf_verifier_env *env)
5552 {
5553 	enum bpf_cgroup_storage_type stype;
5554 	int i;
5555 
5556 	for_each_cgroup_storage_type(stype) {
5557 		if (!env->prog->aux->cgroup_storage[stype])
5558 			continue;
5559 		bpf_cgroup_storage_release(env->prog,
5560 			env->prog->aux->cgroup_storage[stype]);
5561 	}
5562 
5563 	for (i = 0; i < env->used_map_cnt; i++)
5564 		bpf_map_put(env->used_maps[i]);
5565 }
5566 
5567 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5568 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5569 {
5570 	struct bpf_insn *insn = env->prog->insnsi;
5571 	int insn_cnt = env->prog->len;
5572 	int i;
5573 
5574 	for (i = 0; i < insn_cnt; i++, insn++)
5575 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5576 			insn->src_reg = 0;
5577 }
5578 
5579 /* single env->prog->insni[off] instruction was replaced with the range
5580  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5581  * [0, off) and [off, end) to new locations, so the patched range stays zero
5582  */
5583 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5584 				u32 off, u32 cnt)
5585 {
5586 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5587 	int i;
5588 
5589 	if (cnt == 1)
5590 		return 0;
5591 	new_data = vzalloc(array_size(prog_len,
5592 				      sizeof(struct bpf_insn_aux_data)));
5593 	if (!new_data)
5594 		return -ENOMEM;
5595 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5596 	memcpy(new_data + off + cnt - 1, old_data + off,
5597 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5598 	for (i = off; i < off + cnt - 1; i++)
5599 		new_data[i].seen = true;
5600 	env->insn_aux_data = new_data;
5601 	vfree(old_data);
5602 	return 0;
5603 }
5604 
5605 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5606 {
5607 	int i;
5608 
5609 	if (len == 1)
5610 		return;
5611 	/* NOTE: fake 'exit' subprog should be updated as well. */
5612 	for (i = 0; i <= env->subprog_cnt; i++) {
5613 		if (env->subprog_info[i].start < off)
5614 			continue;
5615 		env->subprog_info[i].start += len - 1;
5616 	}
5617 }
5618 
5619 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5620 					    const struct bpf_insn *patch, u32 len)
5621 {
5622 	struct bpf_prog *new_prog;
5623 
5624 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5625 	if (!new_prog)
5626 		return NULL;
5627 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5628 		return NULL;
5629 	adjust_subprog_starts(env, off, len);
5630 	return new_prog;
5631 }
5632 
5633 /* The verifier does more data flow analysis than llvm and will not
5634  * explore branches that are dead at run time. Malicious programs can
5635  * have dead code too. Therefore replace all dead at-run-time code
5636  * with 'ja -1'.
5637  *
5638  * Just nops are not optimal, e.g. if they would sit at the end of the
5639  * program and through another bug we would manage to jump there, then
5640  * we'd execute beyond program memory otherwise. Returning exception
5641  * code also wouldn't work since we can have subprogs where the dead
5642  * code could be located.
5643  */
5644 static void sanitize_dead_code(struct bpf_verifier_env *env)
5645 {
5646 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5647 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5648 	struct bpf_insn *insn = env->prog->insnsi;
5649 	const int insn_cnt = env->prog->len;
5650 	int i;
5651 
5652 	for (i = 0; i < insn_cnt; i++) {
5653 		if (aux_data[i].seen)
5654 			continue;
5655 		memcpy(insn + i, &trap, sizeof(trap));
5656 	}
5657 }
5658 
5659 /* convert load instructions that access fields of a context type into a
5660  * sequence of instructions that access fields of the underlying structure:
5661  *     struct __sk_buff    -> struct sk_buff
5662  *     struct bpf_sock_ops -> struct sock
5663  */
5664 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5665 {
5666 	const struct bpf_verifier_ops *ops = env->ops;
5667 	int i, cnt, size, ctx_field_size, delta = 0;
5668 	const int insn_cnt = env->prog->len;
5669 	struct bpf_insn insn_buf[16], *insn;
5670 	struct bpf_prog *new_prog;
5671 	enum bpf_access_type type;
5672 	bool is_narrower_load;
5673 	u32 target_size;
5674 
5675 	if (ops->gen_prologue) {
5676 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5677 					env->prog);
5678 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5679 			verbose(env, "bpf verifier is misconfigured\n");
5680 			return -EINVAL;
5681 		} else if (cnt) {
5682 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5683 			if (!new_prog)
5684 				return -ENOMEM;
5685 
5686 			env->prog = new_prog;
5687 			delta += cnt - 1;
5688 		}
5689 	}
5690 
5691 	if (bpf_prog_is_dev_bound(env->prog->aux))
5692 		return 0;
5693 
5694 	insn = env->prog->insnsi + delta;
5695 
5696 	for (i = 0; i < insn_cnt; i++, insn++) {
5697 		bpf_convert_ctx_access_t convert_ctx_access;
5698 
5699 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5700 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5701 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5702 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5703 			type = BPF_READ;
5704 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5705 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5706 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5707 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5708 			type = BPF_WRITE;
5709 		else
5710 			continue;
5711 
5712 		if (type == BPF_WRITE &&
5713 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5714 			struct bpf_insn patch[] = {
5715 				/* Sanitize suspicious stack slot with zero.
5716 				 * There are no memory dependencies for this store,
5717 				 * since it's only using frame pointer and immediate
5718 				 * constant of zero
5719 				 */
5720 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5721 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5722 					   0),
5723 				/* the original STX instruction will immediately
5724 				 * overwrite the same stack slot with appropriate value
5725 				 */
5726 				*insn,
5727 			};
5728 
5729 			cnt = ARRAY_SIZE(patch);
5730 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5731 			if (!new_prog)
5732 				return -ENOMEM;
5733 
5734 			delta    += cnt - 1;
5735 			env->prog = new_prog;
5736 			insn      = new_prog->insnsi + i + delta;
5737 			continue;
5738 		}
5739 
5740 		switch (env->insn_aux_data[i + delta].ptr_type) {
5741 		case PTR_TO_CTX:
5742 			if (!ops->convert_ctx_access)
5743 				continue;
5744 			convert_ctx_access = ops->convert_ctx_access;
5745 			break;
5746 		case PTR_TO_SOCKET:
5747 			convert_ctx_access = bpf_sock_convert_ctx_access;
5748 			break;
5749 		default:
5750 			continue;
5751 		}
5752 
5753 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5754 		size = BPF_LDST_BYTES(insn);
5755 
5756 		/* If the read access is a narrower load of the field,
5757 		 * convert to a 4/8-byte load, to minimum program type specific
5758 		 * convert_ctx_access changes. If conversion is successful,
5759 		 * we will apply proper mask to the result.
5760 		 */
5761 		is_narrower_load = size < ctx_field_size;
5762 		if (is_narrower_load) {
5763 			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5764 			u32 off = insn->off;
5765 			u8 size_code;
5766 
5767 			if (type == BPF_WRITE) {
5768 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5769 				return -EINVAL;
5770 			}
5771 
5772 			size_code = BPF_H;
5773 			if (ctx_field_size == 4)
5774 				size_code = BPF_W;
5775 			else if (ctx_field_size == 8)
5776 				size_code = BPF_DW;
5777 
5778 			insn->off = off & ~(size_default - 1);
5779 			insn->code = BPF_LDX | BPF_MEM | size_code;
5780 		}
5781 
5782 		target_size = 0;
5783 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5784 					 &target_size);
5785 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5786 		    (ctx_field_size && !target_size)) {
5787 			verbose(env, "bpf verifier is misconfigured\n");
5788 			return -EINVAL;
5789 		}
5790 
5791 		if (is_narrower_load && size < target_size) {
5792 			if (ctx_field_size <= 4)
5793 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5794 								(1 << size * 8) - 1);
5795 			else
5796 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5797 								(1 << size * 8) - 1);
5798 		}
5799 
5800 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5801 		if (!new_prog)
5802 			return -ENOMEM;
5803 
5804 		delta += cnt - 1;
5805 
5806 		/* keep walking new program and skip insns we just inserted */
5807 		env->prog = new_prog;
5808 		insn      = new_prog->insnsi + i + delta;
5809 	}
5810 
5811 	return 0;
5812 }
5813 
5814 static int jit_subprogs(struct bpf_verifier_env *env)
5815 {
5816 	struct bpf_prog *prog = env->prog, **func, *tmp;
5817 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5818 	struct bpf_insn *insn;
5819 	void *old_bpf_func;
5820 	int err = -ENOMEM;
5821 
5822 	if (env->subprog_cnt <= 1)
5823 		return 0;
5824 
5825 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5826 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5827 		    insn->src_reg != BPF_PSEUDO_CALL)
5828 			continue;
5829 		/* Upon error here we cannot fall back to interpreter but
5830 		 * need a hard reject of the program. Thus -EFAULT is
5831 		 * propagated in any case.
5832 		 */
5833 		subprog = find_subprog(env, i + insn->imm + 1);
5834 		if (subprog < 0) {
5835 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5836 				  i + insn->imm + 1);
5837 			return -EFAULT;
5838 		}
5839 		/* temporarily remember subprog id inside insn instead of
5840 		 * aux_data, since next loop will split up all insns into funcs
5841 		 */
5842 		insn->off = subprog;
5843 		/* remember original imm in case JIT fails and fallback
5844 		 * to interpreter will be needed
5845 		 */
5846 		env->insn_aux_data[i].call_imm = insn->imm;
5847 		/* point imm to __bpf_call_base+1 from JITs point of view */
5848 		insn->imm = 1;
5849 	}
5850 
5851 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5852 	if (!func)
5853 		goto out_undo_insn;
5854 
5855 	for (i = 0; i < env->subprog_cnt; i++) {
5856 		subprog_start = subprog_end;
5857 		subprog_end = env->subprog_info[i + 1].start;
5858 
5859 		len = subprog_end - subprog_start;
5860 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5861 		if (!func[i])
5862 			goto out_free;
5863 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5864 		       len * sizeof(struct bpf_insn));
5865 		func[i]->type = prog->type;
5866 		func[i]->len = len;
5867 		if (bpf_prog_calc_tag(func[i]))
5868 			goto out_free;
5869 		func[i]->is_func = 1;
5870 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5871 		 * Long term would need debug info to populate names
5872 		 */
5873 		func[i]->aux->name[0] = 'F';
5874 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5875 		func[i]->jit_requested = 1;
5876 		func[i] = bpf_int_jit_compile(func[i]);
5877 		if (!func[i]->jited) {
5878 			err = -ENOTSUPP;
5879 			goto out_free;
5880 		}
5881 		cond_resched();
5882 	}
5883 	/* at this point all bpf functions were successfully JITed
5884 	 * now populate all bpf_calls with correct addresses and
5885 	 * run last pass of JIT
5886 	 */
5887 	for (i = 0; i < env->subprog_cnt; i++) {
5888 		insn = func[i]->insnsi;
5889 		for (j = 0; j < func[i]->len; j++, insn++) {
5890 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5891 			    insn->src_reg != BPF_PSEUDO_CALL)
5892 				continue;
5893 			subprog = insn->off;
5894 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5895 				func[subprog]->bpf_func -
5896 				__bpf_call_base;
5897 		}
5898 
5899 		/* we use the aux data to keep a list of the start addresses
5900 		 * of the JITed images for each function in the program
5901 		 *
5902 		 * for some architectures, such as powerpc64, the imm field
5903 		 * might not be large enough to hold the offset of the start
5904 		 * address of the callee's JITed image from __bpf_call_base
5905 		 *
5906 		 * in such cases, we can lookup the start address of a callee
5907 		 * by using its subprog id, available from the off field of
5908 		 * the call instruction, as an index for this list
5909 		 */
5910 		func[i]->aux->func = func;
5911 		func[i]->aux->func_cnt = env->subprog_cnt;
5912 	}
5913 	for (i = 0; i < env->subprog_cnt; i++) {
5914 		old_bpf_func = func[i]->bpf_func;
5915 		tmp = bpf_int_jit_compile(func[i]);
5916 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5917 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5918 			err = -ENOTSUPP;
5919 			goto out_free;
5920 		}
5921 		cond_resched();
5922 	}
5923 
5924 	/* finally lock prog and jit images for all functions and
5925 	 * populate kallsysm
5926 	 */
5927 	for (i = 0; i < env->subprog_cnt; i++) {
5928 		bpf_prog_lock_ro(func[i]);
5929 		bpf_prog_kallsyms_add(func[i]);
5930 	}
5931 
5932 	/* Last step: make now unused interpreter insns from main
5933 	 * prog consistent for later dump requests, so they can
5934 	 * later look the same as if they were interpreted only.
5935 	 */
5936 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5937 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5938 		    insn->src_reg != BPF_PSEUDO_CALL)
5939 			continue;
5940 		insn->off = env->insn_aux_data[i].call_imm;
5941 		subprog = find_subprog(env, i + insn->off + 1);
5942 		insn->imm = subprog;
5943 	}
5944 
5945 	prog->jited = 1;
5946 	prog->bpf_func = func[0]->bpf_func;
5947 	prog->aux->func = func;
5948 	prog->aux->func_cnt = env->subprog_cnt;
5949 	return 0;
5950 out_free:
5951 	for (i = 0; i < env->subprog_cnt; i++)
5952 		if (func[i])
5953 			bpf_jit_free(func[i]);
5954 	kfree(func);
5955 out_undo_insn:
5956 	/* cleanup main prog to be interpreted */
5957 	prog->jit_requested = 0;
5958 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5959 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5960 		    insn->src_reg != BPF_PSEUDO_CALL)
5961 			continue;
5962 		insn->off = 0;
5963 		insn->imm = env->insn_aux_data[i].call_imm;
5964 	}
5965 	return err;
5966 }
5967 
5968 static int fixup_call_args(struct bpf_verifier_env *env)
5969 {
5970 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5971 	struct bpf_prog *prog = env->prog;
5972 	struct bpf_insn *insn = prog->insnsi;
5973 	int i, depth;
5974 #endif
5975 	int err = 0;
5976 
5977 	if (env->prog->jit_requested &&
5978 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
5979 		err = jit_subprogs(env);
5980 		if (err == 0)
5981 			return 0;
5982 		if (err == -EFAULT)
5983 			return err;
5984 	}
5985 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5986 	for (i = 0; i < prog->len; i++, insn++) {
5987 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5988 		    insn->src_reg != BPF_PSEUDO_CALL)
5989 			continue;
5990 		depth = get_callee_stack_depth(env, insn, i);
5991 		if (depth < 0)
5992 			return depth;
5993 		bpf_patch_call_args(insn, depth);
5994 	}
5995 	err = 0;
5996 #endif
5997 	return err;
5998 }
5999 
6000 /* fixup insn->imm field of bpf_call instructions
6001  * and inline eligible helpers as explicit sequence of BPF instructions
6002  *
6003  * this function is called after eBPF program passed verification
6004  */
6005 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6006 {
6007 	struct bpf_prog *prog = env->prog;
6008 	struct bpf_insn *insn = prog->insnsi;
6009 	const struct bpf_func_proto *fn;
6010 	const int insn_cnt = prog->len;
6011 	const struct bpf_map_ops *ops;
6012 	struct bpf_insn_aux_data *aux;
6013 	struct bpf_insn insn_buf[16];
6014 	struct bpf_prog *new_prog;
6015 	struct bpf_map *map_ptr;
6016 	int i, cnt, delta = 0;
6017 
6018 	for (i = 0; i < insn_cnt; i++, insn++) {
6019 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6020 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6021 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6022 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6023 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6024 			struct bpf_insn mask_and_div[] = {
6025 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6026 				/* Rx div 0 -> 0 */
6027 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6028 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6029 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6030 				*insn,
6031 			};
6032 			struct bpf_insn mask_and_mod[] = {
6033 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6034 				/* Rx mod 0 -> Rx */
6035 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6036 				*insn,
6037 			};
6038 			struct bpf_insn *patchlet;
6039 
6040 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6041 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6042 				patchlet = mask_and_div + (is64 ? 1 : 0);
6043 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6044 			} else {
6045 				patchlet = mask_and_mod + (is64 ? 1 : 0);
6046 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6047 			}
6048 
6049 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6050 			if (!new_prog)
6051 				return -ENOMEM;
6052 
6053 			delta    += cnt - 1;
6054 			env->prog = prog = new_prog;
6055 			insn      = new_prog->insnsi + i + delta;
6056 			continue;
6057 		}
6058 
6059 		if (BPF_CLASS(insn->code) == BPF_LD &&
6060 		    (BPF_MODE(insn->code) == BPF_ABS ||
6061 		     BPF_MODE(insn->code) == BPF_IND)) {
6062 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6063 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6064 				verbose(env, "bpf verifier is misconfigured\n");
6065 				return -EINVAL;
6066 			}
6067 
6068 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6069 			if (!new_prog)
6070 				return -ENOMEM;
6071 
6072 			delta    += cnt - 1;
6073 			env->prog = prog = new_prog;
6074 			insn      = new_prog->insnsi + i + delta;
6075 			continue;
6076 		}
6077 
6078 		if (insn->code != (BPF_JMP | BPF_CALL))
6079 			continue;
6080 		if (insn->src_reg == BPF_PSEUDO_CALL)
6081 			continue;
6082 
6083 		if (insn->imm == BPF_FUNC_get_route_realm)
6084 			prog->dst_needed = 1;
6085 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6086 			bpf_user_rnd_init_once();
6087 		if (insn->imm == BPF_FUNC_override_return)
6088 			prog->kprobe_override = 1;
6089 		if (insn->imm == BPF_FUNC_tail_call) {
6090 			/* If we tail call into other programs, we
6091 			 * cannot make any assumptions since they can
6092 			 * be replaced dynamically during runtime in
6093 			 * the program array.
6094 			 */
6095 			prog->cb_access = 1;
6096 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6097 
6098 			/* mark bpf_tail_call as different opcode to avoid
6099 			 * conditional branch in the interpeter for every normal
6100 			 * call and to prevent accidental JITing by JIT compiler
6101 			 * that doesn't support bpf_tail_call yet
6102 			 */
6103 			insn->imm = 0;
6104 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6105 
6106 			aux = &env->insn_aux_data[i + delta];
6107 			if (!bpf_map_ptr_unpriv(aux))
6108 				continue;
6109 
6110 			/* instead of changing every JIT dealing with tail_call
6111 			 * emit two extra insns:
6112 			 * if (index >= max_entries) goto out;
6113 			 * index &= array->index_mask;
6114 			 * to avoid out-of-bounds cpu speculation
6115 			 */
6116 			if (bpf_map_ptr_poisoned(aux)) {
6117 				verbose(env, "tail_call abusing map_ptr\n");
6118 				return -EINVAL;
6119 			}
6120 
6121 			map_ptr = BPF_MAP_PTR(aux->map_state);
6122 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6123 						  map_ptr->max_entries, 2);
6124 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6125 						    container_of(map_ptr,
6126 								 struct bpf_array,
6127 								 map)->index_mask);
6128 			insn_buf[2] = *insn;
6129 			cnt = 3;
6130 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6131 			if (!new_prog)
6132 				return -ENOMEM;
6133 
6134 			delta    += cnt - 1;
6135 			env->prog = prog = new_prog;
6136 			insn      = new_prog->insnsi + i + delta;
6137 			continue;
6138 		}
6139 
6140 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6141 		 * and other inlining handlers are currently limited to 64 bit
6142 		 * only.
6143 		 */
6144 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6145 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6146 		     insn->imm == BPF_FUNC_map_update_elem ||
6147 		     insn->imm == BPF_FUNC_map_delete_elem)) {
6148 			aux = &env->insn_aux_data[i + delta];
6149 			if (bpf_map_ptr_poisoned(aux))
6150 				goto patch_call_imm;
6151 
6152 			map_ptr = BPF_MAP_PTR(aux->map_state);
6153 			ops = map_ptr->ops;
6154 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6155 			    ops->map_gen_lookup) {
6156 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6157 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6158 					verbose(env, "bpf verifier is misconfigured\n");
6159 					return -EINVAL;
6160 				}
6161 
6162 				new_prog = bpf_patch_insn_data(env, i + delta,
6163 							       insn_buf, cnt);
6164 				if (!new_prog)
6165 					return -ENOMEM;
6166 
6167 				delta    += cnt - 1;
6168 				env->prog = prog = new_prog;
6169 				insn      = new_prog->insnsi + i + delta;
6170 				continue;
6171 			}
6172 
6173 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6174 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6175 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6176 				     (int (*)(struct bpf_map *map, void *key))NULL));
6177 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6178 				     (int (*)(struct bpf_map *map, void *key, void *value,
6179 					      u64 flags))NULL));
6180 			switch (insn->imm) {
6181 			case BPF_FUNC_map_lookup_elem:
6182 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6183 					    __bpf_call_base;
6184 				continue;
6185 			case BPF_FUNC_map_update_elem:
6186 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6187 					    __bpf_call_base;
6188 				continue;
6189 			case BPF_FUNC_map_delete_elem:
6190 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6191 					    __bpf_call_base;
6192 				continue;
6193 			}
6194 
6195 			goto patch_call_imm;
6196 		}
6197 
6198 patch_call_imm:
6199 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6200 		/* all functions that have prototype and verifier allowed
6201 		 * programs to call them, must be real in-kernel functions
6202 		 */
6203 		if (!fn->func) {
6204 			verbose(env,
6205 				"kernel subsystem misconfigured func %s#%d\n",
6206 				func_id_name(insn->imm), insn->imm);
6207 			return -EFAULT;
6208 		}
6209 		insn->imm = fn->func - __bpf_call_base;
6210 	}
6211 
6212 	return 0;
6213 }
6214 
6215 static void free_states(struct bpf_verifier_env *env)
6216 {
6217 	struct bpf_verifier_state_list *sl, *sln;
6218 	int i;
6219 
6220 	if (!env->explored_states)
6221 		return;
6222 
6223 	for (i = 0; i < env->prog->len; i++) {
6224 		sl = env->explored_states[i];
6225 
6226 		if (sl)
6227 			while (sl != STATE_LIST_MARK) {
6228 				sln = sl->next;
6229 				free_verifier_state(&sl->state, false);
6230 				kfree(sl);
6231 				sl = sln;
6232 			}
6233 	}
6234 
6235 	kfree(env->explored_states);
6236 }
6237 
6238 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6239 {
6240 	struct bpf_verifier_env *env;
6241 	struct bpf_verifier_log *log;
6242 	int ret = -EINVAL;
6243 
6244 	/* no program is valid */
6245 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6246 		return -EINVAL;
6247 
6248 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6249 	 * allocate/free it every time bpf_check() is called
6250 	 */
6251 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6252 	if (!env)
6253 		return -ENOMEM;
6254 	log = &env->log;
6255 
6256 	env->insn_aux_data =
6257 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6258 				   (*prog)->len));
6259 	ret = -ENOMEM;
6260 	if (!env->insn_aux_data)
6261 		goto err_free_env;
6262 	env->prog = *prog;
6263 	env->ops = bpf_verifier_ops[env->prog->type];
6264 
6265 	/* grab the mutex to protect few globals used by verifier */
6266 	mutex_lock(&bpf_verifier_lock);
6267 
6268 	if (attr->log_level || attr->log_buf || attr->log_size) {
6269 		/* user requested verbose verifier output
6270 		 * and supplied buffer to store the verification trace
6271 		 */
6272 		log->level = attr->log_level;
6273 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6274 		log->len_total = attr->log_size;
6275 
6276 		ret = -EINVAL;
6277 		/* log attributes have to be sane */
6278 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6279 		    !log->level || !log->ubuf)
6280 			goto err_unlock;
6281 	}
6282 
6283 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6284 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6285 		env->strict_alignment = true;
6286 
6287 	ret = replace_map_fd_with_map_ptr(env);
6288 	if (ret < 0)
6289 		goto skip_full_check;
6290 
6291 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6292 		ret = bpf_prog_offload_verifier_prep(env);
6293 		if (ret)
6294 			goto skip_full_check;
6295 	}
6296 
6297 	env->explored_states = kcalloc(env->prog->len,
6298 				       sizeof(struct bpf_verifier_state_list *),
6299 				       GFP_USER);
6300 	ret = -ENOMEM;
6301 	if (!env->explored_states)
6302 		goto skip_full_check;
6303 
6304 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6305 
6306 	ret = check_cfg(env);
6307 	if (ret < 0)
6308 		goto skip_full_check;
6309 
6310 	ret = do_check(env);
6311 	if (env->cur_state) {
6312 		free_verifier_state(env->cur_state, true);
6313 		env->cur_state = NULL;
6314 	}
6315 
6316 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6317 		ret = bpf_prog_offload_finalize(env);
6318 
6319 skip_full_check:
6320 	while (!pop_stack(env, NULL, NULL));
6321 	free_states(env);
6322 
6323 	if (ret == 0)
6324 		sanitize_dead_code(env);
6325 
6326 	if (ret == 0)
6327 		ret = check_max_stack_depth(env);
6328 
6329 	if (ret == 0)
6330 		/* program is valid, convert *(u32*)(ctx + off) accesses */
6331 		ret = convert_ctx_accesses(env);
6332 
6333 	if (ret == 0)
6334 		ret = fixup_bpf_calls(env);
6335 
6336 	if (ret == 0)
6337 		ret = fixup_call_args(env);
6338 
6339 	if (log->level && bpf_verifier_log_full(log))
6340 		ret = -ENOSPC;
6341 	if (log->level && !log->ubuf) {
6342 		ret = -EFAULT;
6343 		goto err_release_maps;
6344 	}
6345 
6346 	if (ret == 0 && env->used_map_cnt) {
6347 		/* if program passed verifier, update used_maps in bpf_prog_info */
6348 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6349 							  sizeof(env->used_maps[0]),
6350 							  GFP_KERNEL);
6351 
6352 		if (!env->prog->aux->used_maps) {
6353 			ret = -ENOMEM;
6354 			goto err_release_maps;
6355 		}
6356 
6357 		memcpy(env->prog->aux->used_maps, env->used_maps,
6358 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
6359 		env->prog->aux->used_map_cnt = env->used_map_cnt;
6360 
6361 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
6362 		 * bpf_ld_imm64 instructions
6363 		 */
6364 		convert_pseudo_ld_imm64(env);
6365 	}
6366 
6367 err_release_maps:
6368 	if (!env->prog->aux->used_maps)
6369 		/* if we didn't copy map pointers into bpf_prog_info, release
6370 		 * them now. Otherwise free_used_maps() will release them.
6371 		 */
6372 		release_maps(env);
6373 	*prog = env->prog;
6374 err_unlock:
6375 	mutex_unlock(&bpf_verifier_lock);
6376 	vfree(env->insn_aux_data);
6377 err_free_env:
6378 	kfree(env);
6379 	return ret;
6380 }
6381