xref: /linux/kernel/bpf/verifier.c (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #define BPF_LINK_TYPE(_id, _name)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 #undef BPF_LINK_TYPE
38 };
39 
40 /* bpf_check() is a static code analyzer that walks eBPF program
41  * instruction by instruction and updates register/stack state.
42  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43  *
44  * The first pass is depth-first-search to check that the program is a DAG.
45  * It rejects the following programs:
46  * - larger than BPF_MAXINSNS insns
47  * - if loop is present (detected via back-edge)
48  * - unreachable insns exist (shouldn't be a forest. program = one function)
49  * - out of bounds or malformed jumps
50  * The second pass is all possible path descent from the 1st insn.
51  * Since it's analyzing all paths through the program, the length of the
52  * analysis is limited to 64k insn, which may be hit even if total number of
53  * insn is less then 4K, but there are too many branches that change stack/regs.
54  * Number of 'branches to be analyzed' is limited to 1k
55  *
56  * On entry to each instruction, each register has a type, and the instruction
57  * changes the types of the registers depending on instruction semantics.
58  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59  * copied to R1.
60  *
61  * All registers are 64-bit.
62  * R0 - return register
63  * R1-R5 argument passing registers
64  * R6-R9 callee saved registers
65  * R10 - frame pointer read-only
66  *
67  * At the start of BPF program the register R1 contains a pointer to bpf_context
68  * and has type PTR_TO_CTX.
69  *
70  * Verifier tracks arithmetic operations on pointers in case:
71  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73  * 1st insn copies R10 (which has FRAME_PTR) type into R1
74  * and 2nd arithmetic instruction is pattern matched to recognize
75  * that it wants to construct a pointer to some element within stack.
76  * So after 2nd insn, the register R1 has type PTR_TO_STACK
77  * (and -20 constant is saved for further stack bounds checking).
78  * Meaning that this reg is a pointer to stack plus known immediate constant.
79  *
80  * Most of the time the registers have SCALAR_VALUE type, which
81  * means the register has some value, but it's not a valid pointer.
82  * (like pointer plus pointer becomes SCALAR_VALUE type)
83  *
84  * When verifier sees load or store instructions the type of base register
85  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86  * four pointer types recognized by check_mem_access() function.
87  *
88  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89  * and the range of [ptr, ptr + map's value_size) is accessible.
90  *
91  * registers used to pass values to function calls are checked against
92  * function argument constraints.
93  *
94  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95  * It means that the register type passed to this function must be
96  * PTR_TO_STACK and it will be used inside the function as
97  * 'pointer to map element key'
98  *
99  * For example the argument constraints for bpf_map_lookup_elem():
100  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101  *   .arg1_type = ARG_CONST_MAP_PTR,
102  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
103  *
104  * ret_type says that this function returns 'pointer to map elem value or null'
105  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106  * 2nd argument should be a pointer to stack, which will be used inside
107  * the helper function as a pointer to map element key.
108  *
109  * On the kernel side the helper function looks like:
110  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111  * {
112  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113  *    void *key = (void *) (unsigned long) r2;
114  *    void *value;
115  *
116  *    here kernel can access 'key' and 'map' pointers safely, knowing that
117  *    [key, key + map->key_size) bytes are valid and were initialized on
118  *    the stack of eBPF program.
119  * }
120  *
121  * Corresponding eBPF program may look like:
122  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
123  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
125  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126  * here verifier looks at prototype of map_lookup_elem() and sees:
127  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129  *
130  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132  * and were initialized prior to this call.
133  * If it's ok, then verifier allows this BPF_CALL insn and looks at
134  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
136  * returns either pointer to map value or NULL.
137  *
138  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139  * insn, the register holding that pointer in the true branch changes state to
140  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141  * branch. See check_cond_jmp_op().
142  *
143  * After the call R0 is set to return type of the function and registers R1-R5
144  * are set to NOT_INIT to indicate that they are no longer readable.
145  *
146  * The following reference types represent a potential reference to a kernel
147  * resource which, after first being allocated, must be checked and freed by
148  * the BPF program:
149  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150  *
151  * When the verifier sees a helper call return a reference type, it allocates a
152  * pointer id for the reference and stores it in the current function state.
153  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155  * passes through a NULL-check conditional. For the branch wherein the state is
156  * changed to CONST_IMM, the verifier releases the reference.
157  *
158  * For each helper function that allocates a reference, such as
159  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160  * bpf_sk_release(). When a reference type passes into the release function,
161  * the verifier also releases the reference. If any unchecked or unreleased
162  * reference remains at the end of the program, the verifier rejects it.
163  */
164 
165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
166 struct bpf_verifier_stack_elem {
167 	/* verifer state is 'st'
168 	 * before processing instruction 'insn_idx'
169 	 * and after processing instruction 'prev_insn_idx'
170 	 */
171 	struct bpf_verifier_state st;
172 	int insn_idx;
173 	int prev_insn_idx;
174 	struct bpf_verifier_stack_elem *next;
175 	/* length of verifier log at the time this state was pushed on stack */
176 	u32 log_pos;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_KEY_POISON	(1ULL << 63)
183 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
184 
185 #define BPF_MAP_PTR_UNPRIV	1UL
186 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
187 					  POISON_POINTER_DELTA))
188 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 
190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
191 {
192 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
193 }
194 
195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
196 {
197 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
198 }
199 
200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
201 			      const struct bpf_map *map, bool unpriv)
202 {
203 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
204 	unpriv |= bpf_map_ptr_unpriv(aux);
205 	aux->map_ptr_state = (unsigned long)map |
206 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
207 }
208 
209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_key_state & BPF_MAP_KEY_POISON;
212 }
213 
214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
215 {
216 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
217 }
218 
219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
220 {
221 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
222 }
223 
224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
225 {
226 	bool poisoned = bpf_map_key_poisoned(aux);
227 
228 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
229 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
230 }
231 
232 static bool bpf_pseudo_call(const struct bpf_insn *insn)
233 {
234 	return insn->code == (BPF_JMP | BPF_CALL) &&
235 	       insn->src_reg == BPF_PSEUDO_CALL;
236 }
237 
238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
239 {
240 	return insn->code == (BPF_JMP | BPF_CALL) &&
241 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
242 }
243 
244 struct bpf_call_arg_meta {
245 	struct bpf_map *map_ptr;
246 	bool raw_mode;
247 	bool pkt_access;
248 	int regno;
249 	int access_size;
250 	int mem_size;
251 	u64 msize_max_value;
252 	int ref_obj_id;
253 	int map_uid;
254 	int func_id;
255 	struct btf *btf;
256 	u32 btf_id;
257 	struct btf *ret_btf;
258 	u32 ret_btf_id;
259 	u32 subprogno;
260 };
261 
262 struct btf *btf_vmlinux;
263 
264 static DEFINE_MUTEX(bpf_verifier_lock);
265 
266 static const struct bpf_line_info *
267 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
268 {
269 	const struct bpf_line_info *linfo;
270 	const struct bpf_prog *prog;
271 	u32 i, nr_linfo;
272 
273 	prog = env->prog;
274 	nr_linfo = prog->aux->nr_linfo;
275 
276 	if (!nr_linfo || insn_off >= prog->len)
277 		return NULL;
278 
279 	linfo = prog->aux->linfo;
280 	for (i = 1; i < nr_linfo; i++)
281 		if (insn_off < linfo[i].insn_off)
282 			break;
283 
284 	return &linfo[i - 1];
285 }
286 
287 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
288 		       va_list args)
289 {
290 	unsigned int n;
291 
292 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
293 
294 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
295 		  "verifier log line truncated - local buffer too short\n");
296 
297 	if (log->level == BPF_LOG_KERNEL) {
298 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
299 
300 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
301 		return;
302 	}
303 
304 	n = min(log->len_total - log->len_used - 1, n);
305 	log->kbuf[n] = '\0';
306 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
307 		log->len_used += n;
308 	else
309 		log->ubuf = NULL;
310 }
311 
312 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
313 {
314 	char zero = 0;
315 
316 	if (!bpf_verifier_log_needed(log))
317 		return;
318 
319 	log->len_used = new_pos;
320 	if (put_user(zero, log->ubuf + new_pos))
321 		log->ubuf = NULL;
322 }
323 
324 /* log_level controls verbosity level of eBPF verifier.
325  * bpf_verifier_log_write() is used to dump the verification trace to the log,
326  * so the user can figure out what's wrong with the program
327  */
328 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
329 					   const char *fmt, ...)
330 {
331 	va_list args;
332 
333 	if (!bpf_verifier_log_needed(&env->log))
334 		return;
335 
336 	va_start(args, fmt);
337 	bpf_verifier_vlog(&env->log, fmt, args);
338 	va_end(args);
339 }
340 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
341 
342 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
343 {
344 	struct bpf_verifier_env *env = private_data;
345 	va_list args;
346 
347 	if (!bpf_verifier_log_needed(&env->log))
348 		return;
349 
350 	va_start(args, fmt);
351 	bpf_verifier_vlog(&env->log, fmt, args);
352 	va_end(args);
353 }
354 
355 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
356 			    const char *fmt, ...)
357 {
358 	va_list args;
359 
360 	if (!bpf_verifier_log_needed(log))
361 		return;
362 
363 	va_start(args, fmt);
364 	bpf_verifier_vlog(log, fmt, args);
365 	va_end(args);
366 }
367 
368 static const char *ltrim(const char *s)
369 {
370 	while (isspace(*s))
371 		s++;
372 
373 	return s;
374 }
375 
376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
377 					 u32 insn_off,
378 					 const char *prefix_fmt, ...)
379 {
380 	const struct bpf_line_info *linfo;
381 
382 	if (!bpf_verifier_log_needed(&env->log))
383 		return;
384 
385 	linfo = find_linfo(env, insn_off);
386 	if (!linfo || linfo == env->prev_linfo)
387 		return;
388 
389 	if (prefix_fmt) {
390 		va_list args;
391 
392 		va_start(args, prefix_fmt);
393 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
394 		va_end(args);
395 	}
396 
397 	verbose(env, "%s\n",
398 		ltrim(btf_name_by_offset(env->prog->aux->btf,
399 					 linfo->line_off)));
400 
401 	env->prev_linfo = linfo;
402 }
403 
404 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
405 				   struct bpf_reg_state *reg,
406 				   struct tnum *range, const char *ctx,
407 				   const char *reg_name)
408 {
409 	char tn_buf[48];
410 
411 	verbose(env, "At %s the register %s ", ctx, reg_name);
412 	if (!tnum_is_unknown(reg->var_off)) {
413 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
414 		verbose(env, "has value %s", tn_buf);
415 	} else {
416 		verbose(env, "has unknown scalar value");
417 	}
418 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
419 	verbose(env, " should have been in %s\n", tn_buf);
420 }
421 
422 static bool type_is_pkt_pointer(enum bpf_reg_type type)
423 {
424 	return type == PTR_TO_PACKET ||
425 	       type == PTR_TO_PACKET_META;
426 }
427 
428 static bool type_is_sk_pointer(enum bpf_reg_type type)
429 {
430 	return type == PTR_TO_SOCKET ||
431 		type == PTR_TO_SOCK_COMMON ||
432 		type == PTR_TO_TCP_SOCK ||
433 		type == PTR_TO_XDP_SOCK;
434 }
435 
436 static bool reg_type_not_null(enum bpf_reg_type type)
437 {
438 	return type == PTR_TO_SOCKET ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_MAP_VALUE ||
441 		type == PTR_TO_MAP_KEY ||
442 		type == PTR_TO_SOCK_COMMON;
443 }
444 
445 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
446 {
447 	return reg->type == PTR_TO_MAP_VALUE &&
448 		map_value_has_spin_lock(reg->map_ptr);
449 }
450 
451 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
452 {
453 	return base_type(type) == PTR_TO_SOCKET ||
454 		base_type(type) == PTR_TO_TCP_SOCK ||
455 		base_type(type) == PTR_TO_MEM;
456 }
457 
458 static bool type_is_rdonly_mem(u32 type)
459 {
460 	return type & MEM_RDONLY;
461 }
462 
463 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
464 {
465 	return type == ARG_PTR_TO_SOCK_COMMON;
466 }
467 
468 static bool type_may_be_null(u32 type)
469 {
470 	return type & PTR_MAYBE_NULL;
471 }
472 
473 /* Determine whether the function releases some resources allocated by another
474  * function call. The first reference type argument will be assumed to be
475  * released by release_reference().
476  */
477 static bool is_release_function(enum bpf_func_id func_id)
478 {
479 	return func_id == BPF_FUNC_sk_release ||
480 	       func_id == BPF_FUNC_ringbuf_submit ||
481 	       func_id == BPF_FUNC_ringbuf_discard;
482 }
483 
484 static bool may_be_acquire_function(enum bpf_func_id func_id)
485 {
486 	return func_id == BPF_FUNC_sk_lookup_tcp ||
487 		func_id == BPF_FUNC_sk_lookup_udp ||
488 		func_id == BPF_FUNC_skc_lookup_tcp ||
489 		func_id == BPF_FUNC_map_lookup_elem ||
490 	        func_id == BPF_FUNC_ringbuf_reserve;
491 }
492 
493 static bool is_acquire_function(enum bpf_func_id func_id,
494 				const struct bpf_map *map)
495 {
496 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
497 
498 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
499 	    func_id == BPF_FUNC_sk_lookup_udp ||
500 	    func_id == BPF_FUNC_skc_lookup_tcp ||
501 	    func_id == BPF_FUNC_ringbuf_reserve)
502 		return true;
503 
504 	if (func_id == BPF_FUNC_map_lookup_elem &&
505 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
506 	     map_type == BPF_MAP_TYPE_SOCKHASH))
507 		return true;
508 
509 	return false;
510 }
511 
512 static bool is_ptr_cast_function(enum bpf_func_id func_id)
513 {
514 	return func_id == BPF_FUNC_tcp_sock ||
515 		func_id == BPF_FUNC_sk_fullsock ||
516 		func_id == BPF_FUNC_skc_to_tcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
518 		func_id == BPF_FUNC_skc_to_udp6_sock ||
519 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
520 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
521 }
522 
523 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
524 {
525 	return BPF_CLASS(insn->code) == BPF_STX &&
526 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
527 	       insn->imm == BPF_CMPXCHG;
528 }
529 
530 /* string representation of 'enum bpf_reg_type'
531  *
532  * Note that reg_type_str() can not appear more than once in a single verbose()
533  * statement.
534  */
535 static const char *reg_type_str(struct bpf_verifier_env *env,
536 				enum bpf_reg_type type)
537 {
538 	char postfix[16] = {0}, prefix[16] = {0};
539 	static const char * const str[] = {
540 		[NOT_INIT]		= "?",
541 		[SCALAR_VALUE]		= "inv",
542 		[PTR_TO_CTX]		= "ctx",
543 		[CONST_PTR_TO_MAP]	= "map_ptr",
544 		[PTR_TO_MAP_VALUE]	= "map_value",
545 		[PTR_TO_STACK]		= "fp",
546 		[PTR_TO_PACKET]		= "pkt",
547 		[PTR_TO_PACKET_META]	= "pkt_meta",
548 		[PTR_TO_PACKET_END]	= "pkt_end",
549 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
550 		[PTR_TO_SOCKET]		= "sock",
551 		[PTR_TO_SOCK_COMMON]	= "sock_common",
552 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
553 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
554 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
555 		[PTR_TO_BTF_ID]		= "ptr_",
556 		[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
557 		[PTR_TO_MEM]		= "mem",
558 		[PTR_TO_BUF]		= "buf",
559 		[PTR_TO_FUNC]		= "func",
560 		[PTR_TO_MAP_KEY]	= "map_key",
561 	};
562 
563 	if (type & PTR_MAYBE_NULL) {
564 		if (base_type(type) == PTR_TO_BTF_ID ||
565 		    base_type(type) == PTR_TO_PERCPU_BTF_ID)
566 			strncpy(postfix, "or_null_", 16);
567 		else
568 			strncpy(postfix, "_or_null", 16);
569 	}
570 
571 	if (type & MEM_RDONLY)
572 		strncpy(prefix, "rdonly_", 16);
573 
574 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
575 		 prefix, str[base_type(type)], postfix);
576 	return env->type_str_buf;
577 }
578 
579 static char slot_type_char[] = {
580 	[STACK_INVALID]	= '?',
581 	[STACK_SPILL]	= 'r',
582 	[STACK_MISC]	= 'm',
583 	[STACK_ZERO]	= '0',
584 };
585 
586 static void print_liveness(struct bpf_verifier_env *env,
587 			   enum bpf_reg_liveness live)
588 {
589 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
590 	    verbose(env, "_");
591 	if (live & REG_LIVE_READ)
592 		verbose(env, "r");
593 	if (live & REG_LIVE_WRITTEN)
594 		verbose(env, "w");
595 	if (live & REG_LIVE_DONE)
596 		verbose(env, "D");
597 }
598 
599 static struct bpf_func_state *func(struct bpf_verifier_env *env,
600 				   const struct bpf_reg_state *reg)
601 {
602 	struct bpf_verifier_state *cur = env->cur_state;
603 
604 	return cur->frame[reg->frameno];
605 }
606 
607 static const char *kernel_type_name(const struct btf* btf, u32 id)
608 {
609 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
610 }
611 
612 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
613 {
614 	env->scratched_regs |= 1U << regno;
615 }
616 
617 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
618 {
619 	env->scratched_stack_slots |= 1UL << spi;
620 }
621 
622 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
623 {
624 	return (env->scratched_regs >> regno) & 1;
625 }
626 
627 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
628 {
629 	return (env->scratched_stack_slots >> regno) & 1;
630 }
631 
632 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
633 {
634 	return env->scratched_regs || env->scratched_stack_slots;
635 }
636 
637 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
638 {
639 	env->scratched_regs = 0U;
640 	env->scratched_stack_slots = 0UL;
641 }
642 
643 /* Used for printing the entire verifier state. */
644 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
645 {
646 	env->scratched_regs = ~0U;
647 	env->scratched_stack_slots = ~0UL;
648 }
649 
650 /* The reg state of a pointer or a bounded scalar was saved when
651  * it was spilled to the stack.
652  */
653 static bool is_spilled_reg(const struct bpf_stack_state *stack)
654 {
655 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
656 }
657 
658 static void scrub_spilled_slot(u8 *stype)
659 {
660 	if (*stype != STACK_INVALID)
661 		*stype = STACK_MISC;
662 }
663 
664 static void print_verifier_state(struct bpf_verifier_env *env,
665 				 const struct bpf_func_state *state,
666 				 bool print_all)
667 {
668 	const struct bpf_reg_state *reg;
669 	enum bpf_reg_type t;
670 	int i;
671 
672 	if (state->frameno)
673 		verbose(env, " frame%d:", state->frameno);
674 	for (i = 0; i < MAX_BPF_REG; i++) {
675 		reg = &state->regs[i];
676 		t = reg->type;
677 		if (t == NOT_INIT)
678 			continue;
679 		if (!print_all && !reg_scratched(env, i))
680 			continue;
681 		verbose(env, " R%d", i);
682 		print_liveness(env, reg->live);
683 		verbose(env, "=%s", reg_type_str(env, t));
684 		if (t == SCALAR_VALUE && reg->precise)
685 			verbose(env, "P");
686 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
687 		    tnum_is_const(reg->var_off)) {
688 			/* reg->off should be 0 for SCALAR_VALUE */
689 			verbose(env, "%lld", reg->var_off.value + reg->off);
690 		} else {
691 			if (base_type(t) == PTR_TO_BTF_ID ||
692 			    base_type(t) == PTR_TO_PERCPU_BTF_ID)
693 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
694 			verbose(env, "(id=%d", reg->id);
695 			if (reg_type_may_be_refcounted_or_null(t))
696 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
697 			if (t != SCALAR_VALUE)
698 				verbose(env, ",off=%d", reg->off);
699 			if (type_is_pkt_pointer(t))
700 				verbose(env, ",r=%d", reg->range);
701 			else if (base_type(t) == CONST_PTR_TO_MAP ||
702 				 base_type(t) == PTR_TO_MAP_KEY ||
703 				 base_type(t) == PTR_TO_MAP_VALUE)
704 				verbose(env, ",ks=%d,vs=%d",
705 					reg->map_ptr->key_size,
706 					reg->map_ptr->value_size);
707 			if (tnum_is_const(reg->var_off)) {
708 				/* Typically an immediate SCALAR_VALUE, but
709 				 * could be a pointer whose offset is too big
710 				 * for reg->off
711 				 */
712 				verbose(env, ",imm=%llx", reg->var_off.value);
713 			} else {
714 				if (reg->smin_value != reg->umin_value &&
715 				    reg->smin_value != S64_MIN)
716 					verbose(env, ",smin_value=%lld",
717 						(long long)reg->smin_value);
718 				if (reg->smax_value != reg->umax_value &&
719 				    reg->smax_value != S64_MAX)
720 					verbose(env, ",smax_value=%lld",
721 						(long long)reg->smax_value);
722 				if (reg->umin_value != 0)
723 					verbose(env, ",umin_value=%llu",
724 						(unsigned long long)reg->umin_value);
725 				if (reg->umax_value != U64_MAX)
726 					verbose(env, ",umax_value=%llu",
727 						(unsigned long long)reg->umax_value);
728 				if (!tnum_is_unknown(reg->var_off)) {
729 					char tn_buf[48];
730 
731 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
732 					verbose(env, ",var_off=%s", tn_buf);
733 				}
734 				if (reg->s32_min_value != reg->smin_value &&
735 				    reg->s32_min_value != S32_MIN)
736 					verbose(env, ",s32_min_value=%d",
737 						(int)(reg->s32_min_value));
738 				if (reg->s32_max_value != reg->smax_value &&
739 				    reg->s32_max_value != S32_MAX)
740 					verbose(env, ",s32_max_value=%d",
741 						(int)(reg->s32_max_value));
742 				if (reg->u32_min_value != reg->umin_value &&
743 				    reg->u32_min_value != U32_MIN)
744 					verbose(env, ",u32_min_value=%d",
745 						(int)(reg->u32_min_value));
746 				if (reg->u32_max_value != reg->umax_value &&
747 				    reg->u32_max_value != U32_MAX)
748 					verbose(env, ",u32_max_value=%d",
749 						(int)(reg->u32_max_value));
750 			}
751 			verbose(env, ")");
752 		}
753 	}
754 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
755 		char types_buf[BPF_REG_SIZE + 1];
756 		bool valid = false;
757 		int j;
758 
759 		for (j = 0; j < BPF_REG_SIZE; j++) {
760 			if (state->stack[i].slot_type[j] != STACK_INVALID)
761 				valid = true;
762 			types_buf[j] = slot_type_char[
763 					state->stack[i].slot_type[j]];
764 		}
765 		types_buf[BPF_REG_SIZE] = 0;
766 		if (!valid)
767 			continue;
768 		if (!print_all && !stack_slot_scratched(env, i))
769 			continue;
770 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
771 		print_liveness(env, state->stack[i].spilled_ptr.live);
772 		if (is_spilled_reg(&state->stack[i])) {
773 			reg = &state->stack[i].spilled_ptr;
774 			t = reg->type;
775 			verbose(env, "=%s", reg_type_str(env, t));
776 			if (t == SCALAR_VALUE && reg->precise)
777 				verbose(env, "P");
778 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
779 				verbose(env, "%lld", reg->var_off.value + reg->off);
780 		} else {
781 			verbose(env, "=%s", types_buf);
782 		}
783 	}
784 	if (state->acquired_refs && state->refs[0].id) {
785 		verbose(env, " refs=%d", state->refs[0].id);
786 		for (i = 1; i < state->acquired_refs; i++)
787 			if (state->refs[i].id)
788 				verbose(env, ",%d", state->refs[i].id);
789 	}
790 	if (state->in_callback_fn)
791 		verbose(env, " cb");
792 	if (state->in_async_callback_fn)
793 		verbose(env, " async_cb");
794 	verbose(env, "\n");
795 	mark_verifier_state_clean(env);
796 }
797 
798 static inline u32 vlog_alignment(u32 pos)
799 {
800 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
801 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
802 }
803 
804 static void print_insn_state(struct bpf_verifier_env *env,
805 			     const struct bpf_func_state *state)
806 {
807 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
808 		/* remove new line character */
809 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
810 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
811 	} else {
812 		verbose(env, "%d:", env->insn_idx);
813 	}
814 	print_verifier_state(env, state, false);
815 }
816 
817 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
818  * small to hold src. This is different from krealloc since we don't want to preserve
819  * the contents of dst.
820  *
821  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
822  * not be allocated.
823  */
824 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
825 {
826 	size_t bytes;
827 
828 	if (ZERO_OR_NULL_PTR(src))
829 		goto out;
830 
831 	if (unlikely(check_mul_overflow(n, size, &bytes)))
832 		return NULL;
833 
834 	if (ksize(dst) < bytes) {
835 		kfree(dst);
836 		dst = kmalloc_track_caller(bytes, flags);
837 		if (!dst)
838 			return NULL;
839 	}
840 
841 	memcpy(dst, src, bytes);
842 out:
843 	return dst ? dst : ZERO_SIZE_PTR;
844 }
845 
846 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
847  * small to hold new_n items. new items are zeroed out if the array grows.
848  *
849  * Contrary to krealloc_array, does not free arr if new_n is zero.
850  */
851 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
852 {
853 	if (!new_n || old_n == new_n)
854 		goto out;
855 
856 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
857 	if (!arr)
858 		return NULL;
859 
860 	if (new_n > old_n)
861 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
862 
863 out:
864 	return arr ? arr : ZERO_SIZE_PTR;
865 }
866 
867 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
868 {
869 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
870 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
871 	if (!dst->refs)
872 		return -ENOMEM;
873 
874 	dst->acquired_refs = src->acquired_refs;
875 	return 0;
876 }
877 
878 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
879 {
880 	size_t n = src->allocated_stack / BPF_REG_SIZE;
881 
882 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
883 				GFP_KERNEL);
884 	if (!dst->stack)
885 		return -ENOMEM;
886 
887 	dst->allocated_stack = src->allocated_stack;
888 	return 0;
889 }
890 
891 static int resize_reference_state(struct bpf_func_state *state, size_t n)
892 {
893 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
894 				    sizeof(struct bpf_reference_state));
895 	if (!state->refs)
896 		return -ENOMEM;
897 
898 	state->acquired_refs = n;
899 	return 0;
900 }
901 
902 static int grow_stack_state(struct bpf_func_state *state, int size)
903 {
904 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
905 
906 	if (old_n >= n)
907 		return 0;
908 
909 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
910 	if (!state->stack)
911 		return -ENOMEM;
912 
913 	state->allocated_stack = size;
914 	return 0;
915 }
916 
917 /* Acquire a pointer id from the env and update the state->refs to include
918  * this new pointer reference.
919  * On success, returns a valid pointer id to associate with the register
920  * On failure, returns a negative errno.
921  */
922 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
923 {
924 	struct bpf_func_state *state = cur_func(env);
925 	int new_ofs = state->acquired_refs;
926 	int id, err;
927 
928 	err = resize_reference_state(state, state->acquired_refs + 1);
929 	if (err)
930 		return err;
931 	id = ++env->id_gen;
932 	state->refs[new_ofs].id = id;
933 	state->refs[new_ofs].insn_idx = insn_idx;
934 
935 	return id;
936 }
937 
938 /* release function corresponding to acquire_reference_state(). Idempotent. */
939 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
940 {
941 	int i, last_idx;
942 
943 	last_idx = state->acquired_refs - 1;
944 	for (i = 0; i < state->acquired_refs; i++) {
945 		if (state->refs[i].id == ptr_id) {
946 			if (last_idx && i != last_idx)
947 				memcpy(&state->refs[i], &state->refs[last_idx],
948 				       sizeof(*state->refs));
949 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
950 			state->acquired_refs--;
951 			return 0;
952 		}
953 	}
954 	return -EINVAL;
955 }
956 
957 static void free_func_state(struct bpf_func_state *state)
958 {
959 	if (!state)
960 		return;
961 	kfree(state->refs);
962 	kfree(state->stack);
963 	kfree(state);
964 }
965 
966 static void clear_jmp_history(struct bpf_verifier_state *state)
967 {
968 	kfree(state->jmp_history);
969 	state->jmp_history = NULL;
970 	state->jmp_history_cnt = 0;
971 }
972 
973 static void free_verifier_state(struct bpf_verifier_state *state,
974 				bool free_self)
975 {
976 	int i;
977 
978 	for (i = 0; i <= state->curframe; i++) {
979 		free_func_state(state->frame[i]);
980 		state->frame[i] = NULL;
981 	}
982 	clear_jmp_history(state);
983 	if (free_self)
984 		kfree(state);
985 }
986 
987 /* copy verifier state from src to dst growing dst stack space
988  * when necessary to accommodate larger src stack
989  */
990 static int copy_func_state(struct bpf_func_state *dst,
991 			   const struct bpf_func_state *src)
992 {
993 	int err;
994 
995 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
996 	err = copy_reference_state(dst, src);
997 	if (err)
998 		return err;
999 	return copy_stack_state(dst, src);
1000 }
1001 
1002 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1003 			       const struct bpf_verifier_state *src)
1004 {
1005 	struct bpf_func_state *dst;
1006 	int i, err;
1007 
1008 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1009 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1010 					    GFP_USER);
1011 	if (!dst_state->jmp_history)
1012 		return -ENOMEM;
1013 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1014 
1015 	/* if dst has more stack frames then src frame, free them */
1016 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1017 		free_func_state(dst_state->frame[i]);
1018 		dst_state->frame[i] = NULL;
1019 	}
1020 	dst_state->speculative = src->speculative;
1021 	dst_state->curframe = src->curframe;
1022 	dst_state->active_spin_lock = src->active_spin_lock;
1023 	dst_state->branches = src->branches;
1024 	dst_state->parent = src->parent;
1025 	dst_state->first_insn_idx = src->first_insn_idx;
1026 	dst_state->last_insn_idx = src->last_insn_idx;
1027 	for (i = 0; i <= src->curframe; i++) {
1028 		dst = dst_state->frame[i];
1029 		if (!dst) {
1030 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1031 			if (!dst)
1032 				return -ENOMEM;
1033 			dst_state->frame[i] = dst;
1034 		}
1035 		err = copy_func_state(dst, src->frame[i]);
1036 		if (err)
1037 			return err;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1043 {
1044 	while (st) {
1045 		u32 br = --st->branches;
1046 
1047 		/* WARN_ON(br > 1) technically makes sense here,
1048 		 * but see comment in push_stack(), hence:
1049 		 */
1050 		WARN_ONCE((int)br < 0,
1051 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1052 			  br);
1053 		if (br)
1054 			break;
1055 		st = st->parent;
1056 	}
1057 }
1058 
1059 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1060 		     int *insn_idx, bool pop_log)
1061 {
1062 	struct bpf_verifier_state *cur = env->cur_state;
1063 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1064 	int err;
1065 
1066 	if (env->head == NULL)
1067 		return -ENOENT;
1068 
1069 	if (cur) {
1070 		err = copy_verifier_state(cur, &head->st);
1071 		if (err)
1072 			return err;
1073 	}
1074 	if (pop_log)
1075 		bpf_vlog_reset(&env->log, head->log_pos);
1076 	if (insn_idx)
1077 		*insn_idx = head->insn_idx;
1078 	if (prev_insn_idx)
1079 		*prev_insn_idx = head->prev_insn_idx;
1080 	elem = head->next;
1081 	free_verifier_state(&head->st, false);
1082 	kfree(head);
1083 	env->head = elem;
1084 	env->stack_size--;
1085 	return 0;
1086 }
1087 
1088 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1089 					     int insn_idx, int prev_insn_idx,
1090 					     bool speculative)
1091 {
1092 	struct bpf_verifier_state *cur = env->cur_state;
1093 	struct bpf_verifier_stack_elem *elem;
1094 	int err;
1095 
1096 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1097 	if (!elem)
1098 		goto err;
1099 
1100 	elem->insn_idx = insn_idx;
1101 	elem->prev_insn_idx = prev_insn_idx;
1102 	elem->next = env->head;
1103 	elem->log_pos = env->log.len_used;
1104 	env->head = elem;
1105 	env->stack_size++;
1106 	err = copy_verifier_state(&elem->st, cur);
1107 	if (err)
1108 		goto err;
1109 	elem->st.speculative |= speculative;
1110 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1111 		verbose(env, "The sequence of %d jumps is too complex.\n",
1112 			env->stack_size);
1113 		goto err;
1114 	}
1115 	if (elem->st.parent) {
1116 		++elem->st.parent->branches;
1117 		/* WARN_ON(branches > 2) technically makes sense here,
1118 		 * but
1119 		 * 1. speculative states will bump 'branches' for non-branch
1120 		 * instructions
1121 		 * 2. is_state_visited() heuristics may decide not to create
1122 		 * a new state for a sequence of branches and all such current
1123 		 * and cloned states will be pointing to a single parent state
1124 		 * which might have large 'branches' count.
1125 		 */
1126 	}
1127 	return &elem->st;
1128 err:
1129 	free_verifier_state(env->cur_state, true);
1130 	env->cur_state = NULL;
1131 	/* pop all elements and return */
1132 	while (!pop_stack(env, NULL, NULL, false));
1133 	return NULL;
1134 }
1135 
1136 #define CALLER_SAVED_REGS 6
1137 static const int caller_saved[CALLER_SAVED_REGS] = {
1138 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1139 };
1140 
1141 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1142 				struct bpf_reg_state *reg);
1143 
1144 /* This helper doesn't clear reg->id */
1145 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1146 {
1147 	reg->var_off = tnum_const(imm);
1148 	reg->smin_value = (s64)imm;
1149 	reg->smax_value = (s64)imm;
1150 	reg->umin_value = imm;
1151 	reg->umax_value = imm;
1152 
1153 	reg->s32_min_value = (s32)imm;
1154 	reg->s32_max_value = (s32)imm;
1155 	reg->u32_min_value = (u32)imm;
1156 	reg->u32_max_value = (u32)imm;
1157 }
1158 
1159 /* Mark the unknown part of a register (variable offset or scalar value) as
1160  * known to have the value @imm.
1161  */
1162 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1163 {
1164 	/* Clear id, off, and union(map_ptr, range) */
1165 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1166 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1167 	___mark_reg_known(reg, imm);
1168 }
1169 
1170 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1171 {
1172 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1173 	reg->s32_min_value = (s32)imm;
1174 	reg->s32_max_value = (s32)imm;
1175 	reg->u32_min_value = (u32)imm;
1176 	reg->u32_max_value = (u32)imm;
1177 }
1178 
1179 /* Mark the 'variable offset' part of a register as zero.  This should be
1180  * used only on registers holding a pointer type.
1181  */
1182 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1183 {
1184 	__mark_reg_known(reg, 0);
1185 }
1186 
1187 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1188 {
1189 	__mark_reg_known(reg, 0);
1190 	reg->type = SCALAR_VALUE;
1191 }
1192 
1193 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1194 				struct bpf_reg_state *regs, u32 regno)
1195 {
1196 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1197 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1198 		/* Something bad happened, let's kill all regs */
1199 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1200 			__mark_reg_not_init(env, regs + regno);
1201 		return;
1202 	}
1203 	__mark_reg_known_zero(regs + regno);
1204 }
1205 
1206 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1207 {
1208 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1209 		const struct bpf_map *map = reg->map_ptr;
1210 
1211 		if (map->inner_map_meta) {
1212 			reg->type = CONST_PTR_TO_MAP;
1213 			reg->map_ptr = map->inner_map_meta;
1214 			/* transfer reg's id which is unique for every map_lookup_elem
1215 			 * as UID of the inner map.
1216 			 */
1217 			if (map_value_has_timer(map->inner_map_meta))
1218 				reg->map_uid = reg->id;
1219 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1220 			reg->type = PTR_TO_XDP_SOCK;
1221 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1222 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1223 			reg->type = PTR_TO_SOCKET;
1224 		} else {
1225 			reg->type = PTR_TO_MAP_VALUE;
1226 		}
1227 		return;
1228 	}
1229 
1230 	reg->type &= ~PTR_MAYBE_NULL;
1231 }
1232 
1233 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1234 {
1235 	return type_is_pkt_pointer(reg->type);
1236 }
1237 
1238 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1239 {
1240 	return reg_is_pkt_pointer(reg) ||
1241 	       reg->type == PTR_TO_PACKET_END;
1242 }
1243 
1244 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1245 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1246 				    enum bpf_reg_type which)
1247 {
1248 	/* The register can already have a range from prior markings.
1249 	 * This is fine as long as it hasn't been advanced from its
1250 	 * origin.
1251 	 */
1252 	return reg->type == which &&
1253 	       reg->id == 0 &&
1254 	       reg->off == 0 &&
1255 	       tnum_equals_const(reg->var_off, 0);
1256 }
1257 
1258 /* Reset the min/max bounds of a register */
1259 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1260 {
1261 	reg->smin_value = S64_MIN;
1262 	reg->smax_value = S64_MAX;
1263 	reg->umin_value = 0;
1264 	reg->umax_value = U64_MAX;
1265 
1266 	reg->s32_min_value = S32_MIN;
1267 	reg->s32_max_value = S32_MAX;
1268 	reg->u32_min_value = 0;
1269 	reg->u32_max_value = U32_MAX;
1270 }
1271 
1272 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1273 {
1274 	reg->smin_value = S64_MIN;
1275 	reg->smax_value = S64_MAX;
1276 	reg->umin_value = 0;
1277 	reg->umax_value = U64_MAX;
1278 }
1279 
1280 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1281 {
1282 	reg->s32_min_value = S32_MIN;
1283 	reg->s32_max_value = S32_MAX;
1284 	reg->u32_min_value = 0;
1285 	reg->u32_max_value = U32_MAX;
1286 }
1287 
1288 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1289 {
1290 	struct tnum var32_off = tnum_subreg(reg->var_off);
1291 
1292 	/* min signed is max(sign bit) | min(other bits) */
1293 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1294 			var32_off.value | (var32_off.mask & S32_MIN));
1295 	/* max signed is min(sign bit) | max(other bits) */
1296 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1297 			var32_off.value | (var32_off.mask & S32_MAX));
1298 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1299 	reg->u32_max_value = min(reg->u32_max_value,
1300 				 (u32)(var32_off.value | var32_off.mask));
1301 }
1302 
1303 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1304 {
1305 	/* min signed is max(sign bit) | min(other bits) */
1306 	reg->smin_value = max_t(s64, reg->smin_value,
1307 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1308 	/* max signed is min(sign bit) | max(other bits) */
1309 	reg->smax_value = min_t(s64, reg->smax_value,
1310 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1311 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1312 	reg->umax_value = min(reg->umax_value,
1313 			      reg->var_off.value | reg->var_off.mask);
1314 }
1315 
1316 static void __update_reg_bounds(struct bpf_reg_state *reg)
1317 {
1318 	__update_reg32_bounds(reg);
1319 	__update_reg64_bounds(reg);
1320 }
1321 
1322 /* Uses signed min/max values to inform unsigned, and vice-versa */
1323 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1324 {
1325 	/* Learn sign from signed bounds.
1326 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1327 	 * are the same, so combine.  This works even in the negative case, e.g.
1328 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1329 	 */
1330 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1331 		reg->s32_min_value = reg->u32_min_value =
1332 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1333 		reg->s32_max_value = reg->u32_max_value =
1334 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1335 		return;
1336 	}
1337 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1338 	 * boundary, so we must be careful.
1339 	 */
1340 	if ((s32)reg->u32_max_value >= 0) {
1341 		/* Positive.  We can't learn anything from the smin, but smax
1342 		 * is positive, hence safe.
1343 		 */
1344 		reg->s32_min_value = reg->u32_min_value;
1345 		reg->s32_max_value = reg->u32_max_value =
1346 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1347 	} else if ((s32)reg->u32_min_value < 0) {
1348 		/* Negative.  We can't learn anything from the smax, but smin
1349 		 * is negative, hence safe.
1350 		 */
1351 		reg->s32_min_value = reg->u32_min_value =
1352 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1353 		reg->s32_max_value = reg->u32_max_value;
1354 	}
1355 }
1356 
1357 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1358 {
1359 	/* Learn sign from signed bounds.
1360 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1361 	 * are the same, so combine.  This works even in the negative case, e.g.
1362 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1363 	 */
1364 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1365 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1366 							  reg->umin_value);
1367 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1368 							  reg->umax_value);
1369 		return;
1370 	}
1371 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1372 	 * boundary, so we must be careful.
1373 	 */
1374 	if ((s64)reg->umax_value >= 0) {
1375 		/* Positive.  We can't learn anything from the smin, but smax
1376 		 * is positive, hence safe.
1377 		 */
1378 		reg->smin_value = reg->umin_value;
1379 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1380 							  reg->umax_value);
1381 	} else if ((s64)reg->umin_value < 0) {
1382 		/* Negative.  We can't learn anything from the smax, but smin
1383 		 * is negative, hence safe.
1384 		 */
1385 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1386 							  reg->umin_value);
1387 		reg->smax_value = reg->umax_value;
1388 	}
1389 }
1390 
1391 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1392 {
1393 	__reg32_deduce_bounds(reg);
1394 	__reg64_deduce_bounds(reg);
1395 }
1396 
1397 /* Attempts to improve var_off based on unsigned min/max information */
1398 static void __reg_bound_offset(struct bpf_reg_state *reg)
1399 {
1400 	struct tnum var64_off = tnum_intersect(reg->var_off,
1401 					       tnum_range(reg->umin_value,
1402 							  reg->umax_value));
1403 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1404 						tnum_range(reg->u32_min_value,
1405 							   reg->u32_max_value));
1406 
1407 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1408 }
1409 
1410 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1411 {
1412 	reg->umin_value = reg->u32_min_value;
1413 	reg->umax_value = reg->u32_max_value;
1414 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1415 	 * but must be positive otherwise set to worse case bounds
1416 	 * and refine later from tnum.
1417 	 */
1418 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1419 		reg->smax_value = reg->s32_max_value;
1420 	else
1421 		reg->smax_value = U32_MAX;
1422 	if (reg->s32_min_value >= 0)
1423 		reg->smin_value = reg->s32_min_value;
1424 	else
1425 		reg->smin_value = 0;
1426 }
1427 
1428 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1429 {
1430 	/* special case when 64-bit register has upper 32-bit register
1431 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1432 	 * allowing us to use 32-bit bounds directly,
1433 	 */
1434 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1435 		__reg_assign_32_into_64(reg);
1436 	} else {
1437 		/* Otherwise the best we can do is push lower 32bit known and
1438 		 * unknown bits into register (var_off set from jmp logic)
1439 		 * then learn as much as possible from the 64-bit tnum
1440 		 * known and unknown bits. The previous smin/smax bounds are
1441 		 * invalid here because of jmp32 compare so mark them unknown
1442 		 * so they do not impact tnum bounds calculation.
1443 		 */
1444 		__mark_reg64_unbounded(reg);
1445 		__update_reg_bounds(reg);
1446 	}
1447 
1448 	/* Intersecting with the old var_off might have improved our bounds
1449 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1450 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1451 	 */
1452 	__reg_deduce_bounds(reg);
1453 	__reg_bound_offset(reg);
1454 	__update_reg_bounds(reg);
1455 }
1456 
1457 static bool __reg64_bound_s32(s64 a)
1458 {
1459 	return a >= S32_MIN && a <= S32_MAX;
1460 }
1461 
1462 static bool __reg64_bound_u32(u64 a)
1463 {
1464 	return a >= U32_MIN && a <= U32_MAX;
1465 }
1466 
1467 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1468 {
1469 	__mark_reg32_unbounded(reg);
1470 
1471 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1472 		reg->s32_min_value = (s32)reg->smin_value;
1473 		reg->s32_max_value = (s32)reg->smax_value;
1474 	}
1475 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1476 		reg->u32_min_value = (u32)reg->umin_value;
1477 		reg->u32_max_value = (u32)reg->umax_value;
1478 	}
1479 
1480 	/* Intersecting with the old var_off might have improved our bounds
1481 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1482 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1483 	 */
1484 	__reg_deduce_bounds(reg);
1485 	__reg_bound_offset(reg);
1486 	__update_reg_bounds(reg);
1487 }
1488 
1489 /* Mark a register as having a completely unknown (scalar) value. */
1490 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1491 			       struct bpf_reg_state *reg)
1492 {
1493 	/*
1494 	 * Clear type, id, off, and union(map_ptr, range) and
1495 	 * padding between 'type' and union
1496 	 */
1497 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1498 	reg->type = SCALAR_VALUE;
1499 	reg->var_off = tnum_unknown;
1500 	reg->frameno = 0;
1501 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1502 	__mark_reg_unbounded(reg);
1503 }
1504 
1505 static void mark_reg_unknown(struct bpf_verifier_env *env,
1506 			     struct bpf_reg_state *regs, u32 regno)
1507 {
1508 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1509 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1510 		/* Something bad happened, let's kill all regs except FP */
1511 		for (regno = 0; regno < BPF_REG_FP; regno++)
1512 			__mark_reg_not_init(env, regs + regno);
1513 		return;
1514 	}
1515 	__mark_reg_unknown(env, regs + regno);
1516 }
1517 
1518 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1519 				struct bpf_reg_state *reg)
1520 {
1521 	__mark_reg_unknown(env, reg);
1522 	reg->type = NOT_INIT;
1523 }
1524 
1525 static void mark_reg_not_init(struct bpf_verifier_env *env,
1526 			      struct bpf_reg_state *regs, u32 regno)
1527 {
1528 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1529 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1530 		/* Something bad happened, let's kill all regs except FP */
1531 		for (regno = 0; regno < BPF_REG_FP; regno++)
1532 			__mark_reg_not_init(env, regs + regno);
1533 		return;
1534 	}
1535 	__mark_reg_not_init(env, regs + regno);
1536 }
1537 
1538 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1539 			    struct bpf_reg_state *regs, u32 regno,
1540 			    enum bpf_reg_type reg_type,
1541 			    struct btf *btf, u32 btf_id)
1542 {
1543 	if (reg_type == SCALAR_VALUE) {
1544 		mark_reg_unknown(env, regs, regno);
1545 		return;
1546 	}
1547 	mark_reg_known_zero(env, regs, regno);
1548 	regs[regno].type = PTR_TO_BTF_ID;
1549 	regs[regno].btf = btf;
1550 	regs[regno].btf_id = btf_id;
1551 }
1552 
1553 #define DEF_NOT_SUBREG	(0)
1554 static void init_reg_state(struct bpf_verifier_env *env,
1555 			   struct bpf_func_state *state)
1556 {
1557 	struct bpf_reg_state *regs = state->regs;
1558 	int i;
1559 
1560 	for (i = 0; i < MAX_BPF_REG; i++) {
1561 		mark_reg_not_init(env, regs, i);
1562 		regs[i].live = REG_LIVE_NONE;
1563 		regs[i].parent = NULL;
1564 		regs[i].subreg_def = DEF_NOT_SUBREG;
1565 	}
1566 
1567 	/* frame pointer */
1568 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1569 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1570 	regs[BPF_REG_FP].frameno = state->frameno;
1571 }
1572 
1573 #define BPF_MAIN_FUNC (-1)
1574 static void init_func_state(struct bpf_verifier_env *env,
1575 			    struct bpf_func_state *state,
1576 			    int callsite, int frameno, int subprogno)
1577 {
1578 	state->callsite = callsite;
1579 	state->frameno = frameno;
1580 	state->subprogno = subprogno;
1581 	init_reg_state(env, state);
1582 	mark_verifier_state_scratched(env);
1583 }
1584 
1585 /* Similar to push_stack(), but for async callbacks */
1586 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1587 						int insn_idx, int prev_insn_idx,
1588 						int subprog)
1589 {
1590 	struct bpf_verifier_stack_elem *elem;
1591 	struct bpf_func_state *frame;
1592 
1593 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1594 	if (!elem)
1595 		goto err;
1596 
1597 	elem->insn_idx = insn_idx;
1598 	elem->prev_insn_idx = prev_insn_idx;
1599 	elem->next = env->head;
1600 	elem->log_pos = env->log.len_used;
1601 	env->head = elem;
1602 	env->stack_size++;
1603 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1604 		verbose(env,
1605 			"The sequence of %d jumps is too complex for async cb.\n",
1606 			env->stack_size);
1607 		goto err;
1608 	}
1609 	/* Unlike push_stack() do not copy_verifier_state().
1610 	 * The caller state doesn't matter.
1611 	 * This is async callback. It starts in a fresh stack.
1612 	 * Initialize it similar to do_check_common().
1613 	 */
1614 	elem->st.branches = 1;
1615 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1616 	if (!frame)
1617 		goto err;
1618 	init_func_state(env, frame,
1619 			BPF_MAIN_FUNC /* callsite */,
1620 			0 /* frameno within this callchain */,
1621 			subprog /* subprog number within this prog */);
1622 	elem->st.frame[0] = frame;
1623 	return &elem->st;
1624 err:
1625 	free_verifier_state(env->cur_state, true);
1626 	env->cur_state = NULL;
1627 	/* pop all elements and return */
1628 	while (!pop_stack(env, NULL, NULL, false));
1629 	return NULL;
1630 }
1631 
1632 
1633 enum reg_arg_type {
1634 	SRC_OP,		/* register is used as source operand */
1635 	DST_OP,		/* register is used as destination operand */
1636 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1637 };
1638 
1639 static int cmp_subprogs(const void *a, const void *b)
1640 {
1641 	return ((struct bpf_subprog_info *)a)->start -
1642 	       ((struct bpf_subprog_info *)b)->start;
1643 }
1644 
1645 static int find_subprog(struct bpf_verifier_env *env, int off)
1646 {
1647 	struct bpf_subprog_info *p;
1648 
1649 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1650 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1651 	if (!p)
1652 		return -ENOENT;
1653 	return p - env->subprog_info;
1654 
1655 }
1656 
1657 static int add_subprog(struct bpf_verifier_env *env, int off)
1658 {
1659 	int insn_cnt = env->prog->len;
1660 	int ret;
1661 
1662 	if (off >= insn_cnt || off < 0) {
1663 		verbose(env, "call to invalid destination\n");
1664 		return -EINVAL;
1665 	}
1666 	ret = find_subprog(env, off);
1667 	if (ret >= 0)
1668 		return ret;
1669 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1670 		verbose(env, "too many subprograms\n");
1671 		return -E2BIG;
1672 	}
1673 	/* determine subprog starts. The end is one before the next starts */
1674 	env->subprog_info[env->subprog_cnt++].start = off;
1675 	sort(env->subprog_info, env->subprog_cnt,
1676 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1677 	return env->subprog_cnt - 1;
1678 }
1679 
1680 #define MAX_KFUNC_DESCS 256
1681 #define MAX_KFUNC_BTFS	256
1682 
1683 struct bpf_kfunc_desc {
1684 	struct btf_func_model func_model;
1685 	u32 func_id;
1686 	s32 imm;
1687 	u16 offset;
1688 };
1689 
1690 struct bpf_kfunc_btf {
1691 	struct btf *btf;
1692 	struct module *module;
1693 	u16 offset;
1694 };
1695 
1696 struct bpf_kfunc_desc_tab {
1697 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1698 	u32 nr_descs;
1699 };
1700 
1701 struct bpf_kfunc_btf_tab {
1702 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1703 	u32 nr_descs;
1704 };
1705 
1706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1707 {
1708 	const struct bpf_kfunc_desc *d0 = a;
1709 	const struct bpf_kfunc_desc *d1 = b;
1710 
1711 	/* func_id is not greater than BTF_MAX_TYPE */
1712 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1713 }
1714 
1715 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1716 {
1717 	const struct bpf_kfunc_btf *d0 = a;
1718 	const struct bpf_kfunc_btf *d1 = b;
1719 
1720 	return d0->offset - d1->offset;
1721 }
1722 
1723 static const struct bpf_kfunc_desc *
1724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1725 {
1726 	struct bpf_kfunc_desc desc = {
1727 		.func_id = func_id,
1728 		.offset = offset,
1729 	};
1730 	struct bpf_kfunc_desc_tab *tab;
1731 
1732 	tab = prog->aux->kfunc_tab;
1733 	return bsearch(&desc, tab->descs, tab->nr_descs,
1734 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1735 }
1736 
1737 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1738 					 s16 offset, struct module **btf_modp)
1739 {
1740 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1741 	struct bpf_kfunc_btf_tab *tab;
1742 	struct bpf_kfunc_btf *b;
1743 	struct module *mod;
1744 	struct btf *btf;
1745 	int btf_fd;
1746 
1747 	tab = env->prog->aux->kfunc_btf_tab;
1748 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1749 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1750 	if (!b) {
1751 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1752 			verbose(env, "too many different module BTFs\n");
1753 			return ERR_PTR(-E2BIG);
1754 		}
1755 
1756 		if (bpfptr_is_null(env->fd_array)) {
1757 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1758 			return ERR_PTR(-EPROTO);
1759 		}
1760 
1761 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1762 					    offset * sizeof(btf_fd),
1763 					    sizeof(btf_fd)))
1764 			return ERR_PTR(-EFAULT);
1765 
1766 		btf = btf_get_by_fd(btf_fd);
1767 		if (IS_ERR(btf)) {
1768 			verbose(env, "invalid module BTF fd specified\n");
1769 			return btf;
1770 		}
1771 
1772 		if (!btf_is_module(btf)) {
1773 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1774 			btf_put(btf);
1775 			return ERR_PTR(-EINVAL);
1776 		}
1777 
1778 		mod = btf_try_get_module(btf);
1779 		if (!mod) {
1780 			btf_put(btf);
1781 			return ERR_PTR(-ENXIO);
1782 		}
1783 
1784 		b = &tab->descs[tab->nr_descs++];
1785 		b->btf = btf;
1786 		b->module = mod;
1787 		b->offset = offset;
1788 
1789 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1790 		     kfunc_btf_cmp_by_off, NULL);
1791 	}
1792 	if (btf_modp)
1793 		*btf_modp = b->module;
1794 	return b->btf;
1795 }
1796 
1797 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1798 {
1799 	if (!tab)
1800 		return;
1801 
1802 	while (tab->nr_descs--) {
1803 		module_put(tab->descs[tab->nr_descs].module);
1804 		btf_put(tab->descs[tab->nr_descs].btf);
1805 	}
1806 	kfree(tab);
1807 }
1808 
1809 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1810 				       u32 func_id, s16 offset,
1811 				       struct module **btf_modp)
1812 {
1813 	if (offset) {
1814 		if (offset < 0) {
1815 			/* In the future, this can be allowed to increase limit
1816 			 * of fd index into fd_array, interpreted as u16.
1817 			 */
1818 			verbose(env, "negative offset disallowed for kernel module function call\n");
1819 			return ERR_PTR(-EINVAL);
1820 		}
1821 
1822 		return __find_kfunc_desc_btf(env, offset, btf_modp);
1823 	}
1824 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1825 }
1826 
1827 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1828 {
1829 	const struct btf_type *func, *func_proto;
1830 	struct bpf_kfunc_btf_tab *btf_tab;
1831 	struct bpf_kfunc_desc_tab *tab;
1832 	struct bpf_prog_aux *prog_aux;
1833 	struct bpf_kfunc_desc *desc;
1834 	const char *func_name;
1835 	struct btf *desc_btf;
1836 	unsigned long addr;
1837 	int err;
1838 
1839 	prog_aux = env->prog->aux;
1840 	tab = prog_aux->kfunc_tab;
1841 	btf_tab = prog_aux->kfunc_btf_tab;
1842 	if (!tab) {
1843 		if (!btf_vmlinux) {
1844 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1845 			return -ENOTSUPP;
1846 		}
1847 
1848 		if (!env->prog->jit_requested) {
1849 			verbose(env, "JIT is required for calling kernel function\n");
1850 			return -ENOTSUPP;
1851 		}
1852 
1853 		if (!bpf_jit_supports_kfunc_call()) {
1854 			verbose(env, "JIT does not support calling kernel function\n");
1855 			return -ENOTSUPP;
1856 		}
1857 
1858 		if (!env->prog->gpl_compatible) {
1859 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1860 			return -EINVAL;
1861 		}
1862 
1863 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1864 		if (!tab)
1865 			return -ENOMEM;
1866 		prog_aux->kfunc_tab = tab;
1867 	}
1868 
1869 	/* func_id == 0 is always invalid, but instead of returning an error, be
1870 	 * conservative and wait until the code elimination pass before returning
1871 	 * error, so that invalid calls that get pruned out can be in BPF programs
1872 	 * loaded from userspace.  It is also required that offset be untouched
1873 	 * for such calls.
1874 	 */
1875 	if (!func_id && !offset)
1876 		return 0;
1877 
1878 	if (!btf_tab && offset) {
1879 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1880 		if (!btf_tab)
1881 			return -ENOMEM;
1882 		prog_aux->kfunc_btf_tab = btf_tab;
1883 	}
1884 
1885 	desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1886 	if (IS_ERR(desc_btf)) {
1887 		verbose(env, "failed to find BTF for kernel function\n");
1888 		return PTR_ERR(desc_btf);
1889 	}
1890 
1891 	if (find_kfunc_desc(env->prog, func_id, offset))
1892 		return 0;
1893 
1894 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1895 		verbose(env, "too many different kernel function calls\n");
1896 		return -E2BIG;
1897 	}
1898 
1899 	func = btf_type_by_id(desc_btf, func_id);
1900 	if (!func || !btf_type_is_func(func)) {
1901 		verbose(env, "kernel btf_id %u is not a function\n",
1902 			func_id);
1903 		return -EINVAL;
1904 	}
1905 	func_proto = btf_type_by_id(desc_btf, func->type);
1906 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1907 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1908 			func_id);
1909 		return -EINVAL;
1910 	}
1911 
1912 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1913 	addr = kallsyms_lookup_name(func_name);
1914 	if (!addr) {
1915 		verbose(env, "cannot find address for kernel function %s\n",
1916 			func_name);
1917 		return -EINVAL;
1918 	}
1919 
1920 	desc = &tab->descs[tab->nr_descs++];
1921 	desc->func_id = func_id;
1922 	desc->imm = BPF_CALL_IMM(addr);
1923 	desc->offset = offset;
1924 	err = btf_distill_func_proto(&env->log, desc_btf,
1925 				     func_proto, func_name,
1926 				     &desc->func_model);
1927 	if (!err)
1928 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1929 		     kfunc_desc_cmp_by_id_off, NULL);
1930 	return err;
1931 }
1932 
1933 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1934 {
1935 	const struct bpf_kfunc_desc *d0 = a;
1936 	const struct bpf_kfunc_desc *d1 = b;
1937 
1938 	if (d0->imm > d1->imm)
1939 		return 1;
1940 	else if (d0->imm < d1->imm)
1941 		return -1;
1942 	return 0;
1943 }
1944 
1945 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1946 {
1947 	struct bpf_kfunc_desc_tab *tab;
1948 
1949 	tab = prog->aux->kfunc_tab;
1950 	if (!tab)
1951 		return;
1952 
1953 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1954 	     kfunc_desc_cmp_by_imm, NULL);
1955 }
1956 
1957 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1958 {
1959 	return !!prog->aux->kfunc_tab;
1960 }
1961 
1962 const struct btf_func_model *
1963 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1964 			 const struct bpf_insn *insn)
1965 {
1966 	const struct bpf_kfunc_desc desc = {
1967 		.imm = insn->imm,
1968 	};
1969 	const struct bpf_kfunc_desc *res;
1970 	struct bpf_kfunc_desc_tab *tab;
1971 
1972 	tab = prog->aux->kfunc_tab;
1973 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1974 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1975 
1976 	return res ? &res->func_model : NULL;
1977 }
1978 
1979 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1980 {
1981 	struct bpf_subprog_info *subprog = env->subprog_info;
1982 	struct bpf_insn *insn = env->prog->insnsi;
1983 	int i, ret, insn_cnt = env->prog->len;
1984 
1985 	/* Add entry function. */
1986 	ret = add_subprog(env, 0);
1987 	if (ret)
1988 		return ret;
1989 
1990 	for (i = 0; i < insn_cnt; i++, insn++) {
1991 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1992 		    !bpf_pseudo_kfunc_call(insn))
1993 			continue;
1994 
1995 		if (!env->bpf_capable) {
1996 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1997 			return -EPERM;
1998 		}
1999 
2000 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2001 			ret = add_subprog(env, i + insn->imm + 1);
2002 		else
2003 			ret = add_kfunc_call(env, insn->imm, insn->off);
2004 
2005 		if (ret < 0)
2006 			return ret;
2007 	}
2008 
2009 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2010 	 * logic. 'subprog_cnt' should not be increased.
2011 	 */
2012 	subprog[env->subprog_cnt].start = insn_cnt;
2013 
2014 	if (env->log.level & BPF_LOG_LEVEL2)
2015 		for (i = 0; i < env->subprog_cnt; i++)
2016 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2017 
2018 	return 0;
2019 }
2020 
2021 static int check_subprogs(struct bpf_verifier_env *env)
2022 {
2023 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2024 	struct bpf_subprog_info *subprog = env->subprog_info;
2025 	struct bpf_insn *insn = env->prog->insnsi;
2026 	int insn_cnt = env->prog->len;
2027 
2028 	/* now check that all jumps are within the same subprog */
2029 	subprog_start = subprog[cur_subprog].start;
2030 	subprog_end = subprog[cur_subprog + 1].start;
2031 	for (i = 0; i < insn_cnt; i++) {
2032 		u8 code = insn[i].code;
2033 
2034 		if (code == (BPF_JMP | BPF_CALL) &&
2035 		    insn[i].imm == BPF_FUNC_tail_call &&
2036 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2037 			subprog[cur_subprog].has_tail_call = true;
2038 		if (BPF_CLASS(code) == BPF_LD &&
2039 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2040 			subprog[cur_subprog].has_ld_abs = true;
2041 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2042 			goto next;
2043 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2044 			goto next;
2045 		off = i + insn[i].off + 1;
2046 		if (off < subprog_start || off >= subprog_end) {
2047 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2048 			return -EINVAL;
2049 		}
2050 next:
2051 		if (i == subprog_end - 1) {
2052 			/* to avoid fall-through from one subprog into another
2053 			 * the last insn of the subprog should be either exit
2054 			 * or unconditional jump back
2055 			 */
2056 			if (code != (BPF_JMP | BPF_EXIT) &&
2057 			    code != (BPF_JMP | BPF_JA)) {
2058 				verbose(env, "last insn is not an exit or jmp\n");
2059 				return -EINVAL;
2060 			}
2061 			subprog_start = subprog_end;
2062 			cur_subprog++;
2063 			if (cur_subprog < env->subprog_cnt)
2064 				subprog_end = subprog[cur_subprog + 1].start;
2065 		}
2066 	}
2067 	return 0;
2068 }
2069 
2070 /* Parentage chain of this register (or stack slot) should take care of all
2071  * issues like callee-saved registers, stack slot allocation time, etc.
2072  */
2073 static int mark_reg_read(struct bpf_verifier_env *env,
2074 			 const struct bpf_reg_state *state,
2075 			 struct bpf_reg_state *parent, u8 flag)
2076 {
2077 	bool writes = parent == state->parent; /* Observe write marks */
2078 	int cnt = 0;
2079 
2080 	while (parent) {
2081 		/* if read wasn't screened by an earlier write ... */
2082 		if (writes && state->live & REG_LIVE_WRITTEN)
2083 			break;
2084 		if (parent->live & REG_LIVE_DONE) {
2085 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2086 				reg_type_str(env, parent->type),
2087 				parent->var_off.value, parent->off);
2088 			return -EFAULT;
2089 		}
2090 		/* The first condition is more likely to be true than the
2091 		 * second, checked it first.
2092 		 */
2093 		if ((parent->live & REG_LIVE_READ) == flag ||
2094 		    parent->live & REG_LIVE_READ64)
2095 			/* The parentage chain never changes and
2096 			 * this parent was already marked as LIVE_READ.
2097 			 * There is no need to keep walking the chain again and
2098 			 * keep re-marking all parents as LIVE_READ.
2099 			 * This case happens when the same register is read
2100 			 * multiple times without writes into it in-between.
2101 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2102 			 * then no need to set the weak REG_LIVE_READ32.
2103 			 */
2104 			break;
2105 		/* ... then we depend on parent's value */
2106 		parent->live |= flag;
2107 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2108 		if (flag == REG_LIVE_READ64)
2109 			parent->live &= ~REG_LIVE_READ32;
2110 		state = parent;
2111 		parent = state->parent;
2112 		writes = true;
2113 		cnt++;
2114 	}
2115 
2116 	if (env->longest_mark_read_walk < cnt)
2117 		env->longest_mark_read_walk = cnt;
2118 	return 0;
2119 }
2120 
2121 /* This function is supposed to be used by the following 32-bit optimization
2122  * code only. It returns TRUE if the source or destination register operates
2123  * on 64-bit, otherwise return FALSE.
2124  */
2125 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2126 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2127 {
2128 	u8 code, class, op;
2129 
2130 	code = insn->code;
2131 	class = BPF_CLASS(code);
2132 	op = BPF_OP(code);
2133 	if (class == BPF_JMP) {
2134 		/* BPF_EXIT for "main" will reach here. Return TRUE
2135 		 * conservatively.
2136 		 */
2137 		if (op == BPF_EXIT)
2138 			return true;
2139 		if (op == BPF_CALL) {
2140 			/* BPF to BPF call will reach here because of marking
2141 			 * caller saved clobber with DST_OP_NO_MARK for which we
2142 			 * don't care the register def because they are anyway
2143 			 * marked as NOT_INIT already.
2144 			 */
2145 			if (insn->src_reg == BPF_PSEUDO_CALL)
2146 				return false;
2147 			/* Helper call will reach here because of arg type
2148 			 * check, conservatively return TRUE.
2149 			 */
2150 			if (t == SRC_OP)
2151 				return true;
2152 
2153 			return false;
2154 		}
2155 	}
2156 
2157 	if (class == BPF_ALU64 || class == BPF_JMP ||
2158 	    /* BPF_END always use BPF_ALU class. */
2159 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2160 		return true;
2161 
2162 	if (class == BPF_ALU || class == BPF_JMP32)
2163 		return false;
2164 
2165 	if (class == BPF_LDX) {
2166 		if (t != SRC_OP)
2167 			return BPF_SIZE(code) == BPF_DW;
2168 		/* LDX source must be ptr. */
2169 		return true;
2170 	}
2171 
2172 	if (class == BPF_STX) {
2173 		/* BPF_STX (including atomic variants) has multiple source
2174 		 * operands, one of which is a ptr. Check whether the caller is
2175 		 * asking about it.
2176 		 */
2177 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2178 			return true;
2179 		return BPF_SIZE(code) == BPF_DW;
2180 	}
2181 
2182 	if (class == BPF_LD) {
2183 		u8 mode = BPF_MODE(code);
2184 
2185 		/* LD_IMM64 */
2186 		if (mode == BPF_IMM)
2187 			return true;
2188 
2189 		/* Both LD_IND and LD_ABS return 32-bit data. */
2190 		if (t != SRC_OP)
2191 			return  false;
2192 
2193 		/* Implicit ctx ptr. */
2194 		if (regno == BPF_REG_6)
2195 			return true;
2196 
2197 		/* Explicit source could be any width. */
2198 		return true;
2199 	}
2200 
2201 	if (class == BPF_ST)
2202 		/* The only source register for BPF_ST is a ptr. */
2203 		return true;
2204 
2205 	/* Conservatively return true at default. */
2206 	return true;
2207 }
2208 
2209 /* Return the regno defined by the insn, or -1. */
2210 static int insn_def_regno(const struct bpf_insn *insn)
2211 {
2212 	switch (BPF_CLASS(insn->code)) {
2213 	case BPF_JMP:
2214 	case BPF_JMP32:
2215 	case BPF_ST:
2216 		return -1;
2217 	case BPF_STX:
2218 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2219 		    (insn->imm & BPF_FETCH)) {
2220 			if (insn->imm == BPF_CMPXCHG)
2221 				return BPF_REG_0;
2222 			else
2223 				return insn->src_reg;
2224 		} else {
2225 			return -1;
2226 		}
2227 	default:
2228 		return insn->dst_reg;
2229 	}
2230 }
2231 
2232 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2233 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2234 {
2235 	int dst_reg = insn_def_regno(insn);
2236 
2237 	if (dst_reg == -1)
2238 		return false;
2239 
2240 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2241 }
2242 
2243 static void mark_insn_zext(struct bpf_verifier_env *env,
2244 			   struct bpf_reg_state *reg)
2245 {
2246 	s32 def_idx = reg->subreg_def;
2247 
2248 	if (def_idx == DEF_NOT_SUBREG)
2249 		return;
2250 
2251 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2252 	/* The dst will be zero extended, so won't be sub-register anymore. */
2253 	reg->subreg_def = DEF_NOT_SUBREG;
2254 }
2255 
2256 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2257 			 enum reg_arg_type t)
2258 {
2259 	struct bpf_verifier_state *vstate = env->cur_state;
2260 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2261 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2262 	struct bpf_reg_state *reg, *regs = state->regs;
2263 	bool rw64;
2264 
2265 	if (regno >= MAX_BPF_REG) {
2266 		verbose(env, "R%d is invalid\n", regno);
2267 		return -EINVAL;
2268 	}
2269 
2270 	mark_reg_scratched(env, regno);
2271 
2272 	reg = &regs[regno];
2273 	rw64 = is_reg64(env, insn, regno, reg, t);
2274 	if (t == SRC_OP) {
2275 		/* check whether register used as source operand can be read */
2276 		if (reg->type == NOT_INIT) {
2277 			verbose(env, "R%d !read_ok\n", regno);
2278 			return -EACCES;
2279 		}
2280 		/* We don't need to worry about FP liveness because it's read-only */
2281 		if (regno == BPF_REG_FP)
2282 			return 0;
2283 
2284 		if (rw64)
2285 			mark_insn_zext(env, reg);
2286 
2287 		return mark_reg_read(env, reg, reg->parent,
2288 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2289 	} else {
2290 		/* check whether register used as dest operand can be written to */
2291 		if (regno == BPF_REG_FP) {
2292 			verbose(env, "frame pointer is read only\n");
2293 			return -EACCES;
2294 		}
2295 		reg->live |= REG_LIVE_WRITTEN;
2296 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2297 		if (t == DST_OP)
2298 			mark_reg_unknown(env, regs, regno);
2299 	}
2300 	return 0;
2301 }
2302 
2303 /* for any branch, call, exit record the history of jmps in the given state */
2304 static int push_jmp_history(struct bpf_verifier_env *env,
2305 			    struct bpf_verifier_state *cur)
2306 {
2307 	u32 cnt = cur->jmp_history_cnt;
2308 	struct bpf_idx_pair *p;
2309 
2310 	cnt++;
2311 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2312 	if (!p)
2313 		return -ENOMEM;
2314 	p[cnt - 1].idx = env->insn_idx;
2315 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2316 	cur->jmp_history = p;
2317 	cur->jmp_history_cnt = cnt;
2318 	return 0;
2319 }
2320 
2321 /* Backtrack one insn at a time. If idx is not at the top of recorded
2322  * history then previous instruction came from straight line execution.
2323  */
2324 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2325 			     u32 *history)
2326 {
2327 	u32 cnt = *history;
2328 
2329 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2330 		i = st->jmp_history[cnt - 1].prev_idx;
2331 		(*history)--;
2332 	} else {
2333 		i--;
2334 	}
2335 	return i;
2336 }
2337 
2338 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2339 {
2340 	const struct btf_type *func;
2341 	struct btf *desc_btf;
2342 
2343 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2344 		return NULL;
2345 
2346 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2347 	if (IS_ERR(desc_btf))
2348 		return "<error>";
2349 
2350 	func = btf_type_by_id(desc_btf, insn->imm);
2351 	return btf_name_by_offset(desc_btf, func->name_off);
2352 }
2353 
2354 /* For given verifier state backtrack_insn() is called from the last insn to
2355  * the first insn. Its purpose is to compute a bitmask of registers and
2356  * stack slots that needs precision in the parent verifier state.
2357  */
2358 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2359 			  u32 *reg_mask, u64 *stack_mask)
2360 {
2361 	const struct bpf_insn_cbs cbs = {
2362 		.cb_call	= disasm_kfunc_name,
2363 		.cb_print	= verbose,
2364 		.private_data	= env,
2365 	};
2366 	struct bpf_insn *insn = env->prog->insnsi + idx;
2367 	u8 class = BPF_CLASS(insn->code);
2368 	u8 opcode = BPF_OP(insn->code);
2369 	u8 mode = BPF_MODE(insn->code);
2370 	u32 dreg = 1u << insn->dst_reg;
2371 	u32 sreg = 1u << insn->src_reg;
2372 	u32 spi;
2373 
2374 	if (insn->code == 0)
2375 		return 0;
2376 	if (env->log.level & BPF_LOG_LEVEL2) {
2377 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2378 		verbose(env, "%d: ", idx);
2379 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2380 	}
2381 
2382 	if (class == BPF_ALU || class == BPF_ALU64) {
2383 		if (!(*reg_mask & dreg))
2384 			return 0;
2385 		if (opcode == BPF_MOV) {
2386 			if (BPF_SRC(insn->code) == BPF_X) {
2387 				/* dreg = sreg
2388 				 * dreg needs precision after this insn
2389 				 * sreg needs precision before this insn
2390 				 */
2391 				*reg_mask &= ~dreg;
2392 				*reg_mask |= sreg;
2393 			} else {
2394 				/* dreg = K
2395 				 * dreg needs precision after this insn.
2396 				 * Corresponding register is already marked
2397 				 * as precise=true in this verifier state.
2398 				 * No further markings in parent are necessary
2399 				 */
2400 				*reg_mask &= ~dreg;
2401 			}
2402 		} else {
2403 			if (BPF_SRC(insn->code) == BPF_X) {
2404 				/* dreg += sreg
2405 				 * both dreg and sreg need precision
2406 				 * before this insn
2407 				 */
2408 				*reg_mask |= sreg;
2409 			} /* else dreg += K
2410 			   * dreg still needs precision before this insn
2411 			   */
2412 		}
2413 	} else if (class == BPF_LDX) {
2414 		if (!(*reg_mask & dreg))
2415 			return 0;
2416 		*reg_mask &= ~dreg;
2417 
2418 		/* scalars can only be spilled into stack w/o losing precision.
2419 		 * Load from any other memory can be zero extended.
2420 		 * The desire to keep that precision is already indicated
2421 		 * by 'precise' mark in corresponding register of this state.
2422 		 * No further tracking necessary.
2423 		 */
2424 		if (insn->src_reg != BPF_REG_FP)
2425 			return 0;
2426 		if (BPF_SIZE(insn->code) != BPF_DW)
2427 			return 0;
2428 
2429 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2430 		 * that [fp - off] slot contains scalar that needs to be
2431 		 * tracked with precision
2432 		 */
2433 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2434 		if (spi >= 64) {
2435 			verbose(env, "BUG spi %d\n", spi);
2436 			WARN_ONCE(1, "verifier backtracking bug");
2437 			return -EFAULT;
2438 		}
2439 		*stack_mask |= 1ull << spi;
2440 	} else if (class == BPF_STX || class == BPF_ST) {
2441 		if (*reg_mask & dreg)
2442 			/* stx & st shouldn't be using _scalar_ dst_reg
2443 			 * to access memory. It means backtracking
2444 			 * encountered a case of pointer subtraction.
2445 			 */
2446 			return -ENOTSUPP;
2447 		/* scalars can only be spilled into stack */
2448 		if (insn->dst_reg != BPF_REG_FP)
2449 			return 0;
2450 		if (BPF_SIZE(insn->code) != BPF_DW)
2451 			return 0;
2452 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2453 		if (spi >= 64) {
2454 			verbose(env, "BUG spi %d\n", spi);
2455 			WARN_ONCE(1, "verifier backtracking bug");
2456 			return -EFAULT;
2457 		}
2458 		if (!(*stack_mask & (1ull << spi)))
2459 			return 0;
2460 		*stack_mask &= ~(1ull << spi);
2461 		if (class == BPF_STX)
2462 			*reg_mask |= sreg;
2463 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2464 		if (opcode == BPF_CALL) {
2465 			if (insn->src_reg == BPF_PSEUDO_CALL)
2466 				return -ENOTSUPP;
2467 			/* regular helper call sets R0 */
2468 			*reg_mask &= ~1;
2469 			if (*reg_mask & 0x3f) {
2470 				/* if backtracing was looking for registers R1-R5
2471 				 * they should have been found already.
2472 				 */
2473 				verbose(env, "BUG regs %x\n", *reg_mask);
2474 				WARN_ONCE(1, "verifier backtracking bug");
2475 				return -EFAULT;
2476 			}
2477 		} else if (opcode == BPF_EXIT) {
2478 			return -ENOTSUPP;
2479 		}
2480 	} else if (class == BPF_LD) {
2481 		if (!(*reg_mask & dreg))
2482 			return 0;
2483 		*reg_mask &= ~dreg;
2484 		/* It's ld_imm64 or ld_abs or ld_ind.
2485 		 * For ld_imm64 no further tracking of precision
2486 		 * into parent is necessary
2487 		 */
2488 		if (mode == BPF_IND || mode == BPF_ABS)
2489 			/* to be analyzed */
2490 			return -ENOTSUPP;
2491 	}
2492 	return 0;
2493 }
2494 
2495 /* the scalar precision tracking algorithm:
2496  * . at the start all registers have precise=false.
2497  * . scalar ranges are tracked as normal through alu and jmp insns.
2498  * . once precise value of the scalar register is used in:
2499  *   .  ptr + scalar alu
2500  *   . if (scalar cond K|scalar)
2501  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2502  *   backtrack through the verifier states and mark all registers and
2503  *   stack slots with spilled constants that these scalar regisers
2504  *   should be precise.
2505  * . during state pruning two registers (or spilled stack slots)
2506  *   are equivalent if both are not precise.
2507  *
2508  * Note the verifier cannot simply walk register parentage chain,
2509  * since many different registers and stack slots could have been
2510  * used to compute single precise scalar.
2511  *
2512  * The approach of starting with precise=true for all registers and then
2513  * backtrack to mark a register as not precise when the verifier detects
2514  * that program doesn't care about specific value (e.g., when helper
2515  * takes register as ARG_ANYTHING parameter) is not safe.
2516  *
2517  * It's ok to walk single parentage chain of the verifier states.
2518  * It's possible that this backtracking will go all the way till 1st insn.
2519  * All other branches will be explored for needing precision later.
2520  *
2521  * The backtracking needs to deal with cases like:
2522  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2523  * r9 -= r8
2524  * r5 = r9
2525  * if r5 > 0x79f goto pc+7
2526  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2527  * r5 += 1
2528  * ...
2529  * call bpf_perf_event_output#25
2530  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2531  *
2532  * and this case:
2533  * r6 = 1
2534  * call foo // uses callee's r6 inside to compute r0
2535  * r0 += r6
2536  * if r0 == 0 goto
2537  *
2538  * to track above reg_mask/stack_mask needs to be independent for each frame.
2539  *
2540  * Also if parent's curframe > frame where backtracking started,
2541  * the verifier need to mark registers in both frames, otherwise callees
2542  * may incorrectly prune callers. This is similar to
2543  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2544  *
2545  * For now backtracking falls back into conservative marking.
2546  */
2547 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2548 				     struct bpf_verifier_state *st)
2549 {
2550 	struct bpf_func_state *func;
2551 	struct bpf_reg_state *reg;
2552 	int i, j;
2553 
2554 	/* big hammer: mark all scalars precise in this path.
2555 	 * pop_stack may still get !precise scalars.
2556 	 */
2557 	for (; st; st = st->parent)
2558 		for (i = 0; i <= st->curframe; i++) {
2559 			func = st->frame[i];
2560 			for (j = 0; j < BPF_REG_FP; j++) {
2561 				reg = &func->regs[j];
2562 				if (reg->type != SCALAR_VALUE)
2563 					continue;
2564 				reg->precise = true;
2565 			}
2566 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2567 				if (!is_spilled_reg(&func->stack[j]))
2568 					continue;
2569 				reg = &func->stack[j].spilled_ptr;
2570 				if (reg->type != SCALAR_VALUE)
2571 					continue;
2572 				reg->precise = true;
2573 			}
2574 		}
2575 }
2576 
2577 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2578 				  int spi)
2579 {
2580 	struct bpf_verifier_state *st = env->cur_state;
2581 	int first_idx = st->first_insn_idx;
2582 	int last_idx = env->insn_idx;
2583 	struct bpf_func_state *func;
2584 	struct bpf_reg_state *reg;
2585 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2586 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2587 	bool skip_first = true;
2588 	bool new_marks = false;
2589 	int i, err;
2590 
2591 	if (!env->bpf_capable)
2592 		return 0;
2593 
2594 	func = st->frame[st->curframe];
2595 	if (regno >= 0) {
2596 		reg = &func->regs[regno];
2597 		if (reg->type != SCALAR_VALUE) {
2598 			WARN_ONCE(1, "backtracing misuse");
2599 			return -EFAULT;
2600 		}
2601 		if (!reg->precise)
2602 			new_marks = true;
2603 		else
2604 			reg_mask = 0;
2605 		reg->precise = true;
2606 	}
2607 
2608 	while (spi >= 0) {
2609 		if (!is_spilled_reg(&func->stack[spi])) {
2610 			stack_mask = 0;
2611 			break;
2612 		}
2613 		reg = &func->stack[spi].spilled_ptr;
2614 		if (reg->type != SCALAR_VALUE) {
2615 			stack_mask = 0;
2616 			break;
2617 		}
2618 		if (!reg->precise)
2619 			new_marks = true;
2620 		else
2621 			stack_mask = 0;
2622 		reg->precise = true;
2623 		break;
2624 	}
2625 
2626 	if (!new_marks)
2627 		return 0;
2628 	if (!reg_mask && !stack_mask)
2629 		return 0;
2630 	for (;;) {
2631 		DECLARE_BITMAP(mask, 64);
2632 		u32 history = st->jmp_history_cnt;
2633 
2634 		if (env->log.level & BPF_LOG_LEVEL2)
2635 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2636 		for (i = last_idx;;) {
2637 			if (skip_first) {
2638 				err = 0;
2639 				skip_first = false;
2640 			} else {
2641 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2642 			}
2643 			if (err == -ENOTSUPP) {
2644 				mark_all_scalars_precise(env, st);
2645 				return 0;
2646 			} else if (err) {
2647 				return err;
2648 			}
2649 			if (!reg_mask && !stack_mask)
2650 				/* Found assignment(s) into tracked register in this state.
2651 				 * Since this state is already marked, just return.
2652 				 * Nothing to be tracked further in the parent state.
2653 				 */
2654 				return 0;
2655 			if (i == first_idx)
2656 				break;
2657 			i = get_prev_insn_idx(st, i, &history);
2658 			if (i >= env->prog->len) {
2659 				/* This can happen if backtracking reached insn 0
2660 				 * and there are still reg_mask or stack_mask
2661 				 * to backtrack.
2662 				 * It means the backtracking missed the spot where
2663 				 * particular register was initialized with a constant.
2664 				 */
2665 				verbose(env, "BUG backtracking idx %d\n", i);
2666 				WARN_ONCE(1, "verifier backtracking bug");
2667 				return -EFAULT;
2668 			}
2669 		}
2670 		st = st->parent;
2671 		if (!st)
2672 			break;
2673 
2674 		new_marks = false;
2675 		func = st->frame[st->curframe];
2676 		bitmap_from_u64(mask, reg_mask);
2677 		for_each_set_bit(i, mask, 32) {
2678 			reg = &func->regs[i];
2679 			if (reg->type != SCALAR_VALUE) {
2680 				reg_mask &= ~(1u << i);
2681 				continue;
2682 			}
2683 			if (!reg->precise)
2684 				new_marks = true;
2685 			reg->precise = true;
2686 		}
2687 
2688 		bitmap_from_u64(mask, stack_mask);
2689 		for_each_set_bit(i, mask, 64) {
2690 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2691 				/* the sequence of instructions:
2692 				 * 2: (bf) r3 = r10
2693 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2694 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2695 				 * doesn't contain jmps. It's backtracked
2696 				 * as a single block.
2697 				 * During backtracking insn 3 is not recognized as
2698 				 * stack access, so at the end of backtracking
2699 				 * stack slot fp-8 is still marked in stack_mask.
2700 				 * However the parent state may not have accessed
2701 				 * fp-8 and it's "unallocated" stack space.
2702 				 * In such case fallback to conservative.
2703 				 */
2704 				mark_all_scalars_precise(env, st);
2705 				return 0;
2706 			}
2707 
2708 			if (!is_spilled_reg(&func->stack[i])) {
2709 				stack_mask &= ~(1ull << i);
2710 				continue;
2711 			}
2712 			reg = &func->stack[i].spilled_ptr;
2713 			if (reg->type != SCALAR_VALUE) {
2714 				stack_mask &= ~(1ull << i);
2715 				continue;
2716 			}
2717 			if (!reg->precise)
2718 				new_marks = true;
2719 			reg->precise = true;
2720 		}
2721 		if (env->log.level & BPF_LOG_LEVEL2) {
2722 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2723 				new_marks ? "didn't have" : "already had",
2724 				reg_mask, stack_mask);
2725 			print_verifier_state(env, func, true);
2726 		}
2727 
2728 		if (!reg_mask && !stack_mask)
2729 			break;
2730 		if (!new_marks)
2731 			break;
2732 
2733 		last_idx = st->last_insn_idx;
2734 		first_idx = st->first_insn_idx;
2735 	}
2736 	return 0;
2737 }
2738 
2739 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2740 {
2741 	return __mark_chain_precision(env, regno, -1);
2742 }
2743 
2744 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2745 {
2746 	return __mark_chain_precision(env, -1, spi);
2747 }
2748 
2749 static bool is_spillable_regtype(enum bpf_reg_type type)
2750 {
2751 	switch (base_type(type)) {
2752 	case PTR_TO_MAP_VALUE:
2753 	case PTR_TO_STACK:
2754 	case PTR_TO_CTX:
2755 	case PTR_TO_PACKET:
2756 	case PTR_TO_PACKET_META:
2757 	case PTR_TO_PACKET_END:
2758 	case PTR_TO_FLOW_KEYS:
2759 	case CONST_PTR_TO_MAP:
2760 	case PTR_TO_SOCKET:
2761 	case PTR_TO_SOCK_COMMON:
2762 	case PTR_TO_TCP_SOCK:
2763 	case PTR_TO_XDP_SOCK:
2764 	case PTR_TO_BTF_ID:
2765 	case PTR_TO_BUF:
2766 	case PTR_TO_PERCPU_BTF_ID:
2767 	case PTR_TO_MEM:
2768 	case PTR_TO_FUNC:
2769 	case PTR_TO_MAP_KEY:
2770 		return true;
2771 	default:
2772 		return false;
2773 	}
2774 }
2775 
2776 /* Does this register contain a constant zero? */
2777 static bool register_is_null(struct bpf_reg_state *reg)
2778 {
2779 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2780 }
2781 
2782 static bool register_is_const(struct bpf_reg_state *reg)
2783 {
2784 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2785 }
2786 
2787 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2788 {
2789 	return tnum_is_unknown(reg->var_off) &&
2790 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2791 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2792 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2793 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2794 }
2795 
2796 static bool register_is_bounded(struct bpf_reg_state *reg)
2797 {
2798 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2799 }
2800 
2801 static bool __is_pointer_value(bool allow_ptr_leaks,
2802 			       const struct bpf_reg_state *reg)
2803 {
2804 	if (allow_ptr_leaks)
2805 		return false;
2806 
2807 	return reg->type != SCALAR_VALUE;
2808 }
2809 
2810 static void save_register_state(struct bpf_func_state *state,
2811 				int spi, struct bpf_reg_state *reg,
2812 				int size)
2813 {
2814 	int i;
2815 
2816 	state->stack[spi].spilled_ptr = *reg;
2817 	if (size == BPF_REG_SIZE)
2818 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2819 
2820 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2821 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2822 
2823 	/* size < 8 bytes spill */
2824 	for (; i; i--)
2825 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2826 }
2827 
2828 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2829  * stack boundary and alignment are checked in check_mem_access()
2830  */
2831 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2832 				       /* stack frame we're writing to */
2833 				       struct bpf_func_state *state,
2834 				       int off, int size, int value_regno,
2835 				       int insn_idx)
2836 {
2837 	struct bpf_func_state *cur; /* state of the current function */
2838 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2839 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2840 	struct bpf_reg_state *reg = NULL;
2841 
2842 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2843 	if (err)
2844 		return err;
2845 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2846 	 * so it's aligned access and [off, off + size) are within stack limits
2847 	 */
2848 	if (!env->allow_ptr_leaks &&
2849 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2850 	    size != BPF_REG_SIZE) {
2851 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2852 		return -EACCES;
2853 	}
2854 
2855 	cur = env->cur_state->frame[env->cur_state->curframe];
2856 	if (value_regno >= 0)
2857 		reg = &cur->regs[value_regno];
2858 	if (!env->bypass_spec_v4) {
2859 		bool sanitize = reg && is_spillable_regtype(reg->type);
2860 
2861 		for (i = 0; i < size; i++) {
2862 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2863 				sanitize = true;
2864 				break;
2865 			}
2866 		}
2867 
2868 		if (sanitize)
2869 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2870 	}
2871 
2872 	mark_stack_slot_scratched(env, spi);
2873 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2874 	    !register_is_null(reg) && env->bpf_capable) {
2875 		if (dst_reg != BPF_REG_FP) {
2876 			/* The backtracking logic can only recognize explicit
2877 			 * stack slot address like [fp - 8]. Other spill of
2878 			 * scalar via different register has to be conservative.
2879 			 * Backtrack from here and mark all registers as precise
2880 			 * that contributed into 'reg' being a constant.
2881 			 */
2882 			err = mark_chain_precision(env, value_regno);
2883 			if (err)
2884 				return err;
2885 		}
2886 		save_register_state(state, spi, reg, size);
2887 	} else if (reg && is_spillable_regtype(reg->type)) {
2888 		/* register containing pointer is being spilled into stack */
2889 		if (size != BPF_REG_SIZE) {
2890 			verbose_linfo(env, insn_idx, "; ");
2891 			verbose(env, "invalid size of register spill\n");
2892 			return -EACCES;
2893 		}
2894 		if (state != cur && reg->type == PTR_TO_STACK) {
2895 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2896 			return -EINVAL;
2897 		}
2898 		save_register_state(state, spi, reg, size);
2899 	} else {
2900 		u8 type = STACK_MISC;
2901 
2902 		/* regular write of data into stack destroys any spilled ptr */
2903 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2904 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2905 		if (is_spilled_reg(&state->stack[spi]))
2906 			for (i = 0; i < BPF_REG_SIZE; i++)
2907 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2908 
2909 		/* only mark the slot as written if all 8 bytes were written
2910 		 * otherwise read propagation may incorrectly stop too soon
2911 		 * when stack slots are partially written.
2912 		 * This heuristic means that read propagation will be
2913 		 * conservative, since it will add reg_live_read marks
2914 		 * to stack slots all the way to first state when programs
2915 		 * writes+reads less than 8 bytes
2916 		 */
2917 		if (size == BPF_REG_SIZE)
2918 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2919 
2920 		/* when we zero initialize stack slots mark them as such */
2921 		if (reg && register_is_null(reg)) {
2922 			/* backtracking doesn't work for STACK_ZERO yet. */
2923 			err = mark_chain_precision(env, value_regno);
2924 			if (err)
2925 				return err;
2926 			type = STACK_ZERO;
2927 		}
2928 
2929 		/* Mark slots affected by this stack write. */
2930 		for (i = 0; i < size; i++)
2931 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2932 				type;
2933 	}
2934 	return 0;
2935 }
2936 
2937 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2938  * known to contain a variable offset.
2939  * This function checks whether the write is permitted and conservatively
2940  * tracks the effects of the write, considering that each stack slot in the
2941  * dynamic range is potentially written to.
2942  *
2943  * 'off' includes 'regno->off'.
2944  * 'value_regno' can be -1, meaning that an unknown value is being written to
2945  * the stack.
2946  *
2947  * Spilled pointers in range are not marked as written because we don't know
2948  * what's going to be actually written. This means that read propagation for
2949  * future reads cannot be terminated by this write.
2950  *
2951  * For privileged programs, uninitialized stack slots are considered
2952  * initialized by this write (even though we don't know exactly what offsets
2953  * are going to be written to). The idea is that we don't want the verifier to
2954  * reject future reads that access slots written to through variable offsets.
2955  */
2956 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2957 				     /* func where register points to */
2958 				     struct bpf_func_state *state,
2959 				     int ptr_regno, int off, int size,
2960 				     int value_regno, int insn_idx)
2961 {
2962 	struct bpf_func_state *cur; /* state of the current function */
2963 	int min_off, max_off;
2964 	int i, err;
2965 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2966 	bool writing_zero = false;
2967 	/* set if the fact that we're writing a zero is used to let any
2968 	 * stack slots remain STACK_ZERO
2969 	 */
2970 	bool zero_used = false;
2971 
2972 	cur = env->cur_state->frame[env->cur_state->curframe];
2973 	ptr_reg = &cur->regs[ptr_regno];
2974 	min_off = ptr_reg->smin_value + off;
2975 	max_off = ptr_reg->smax_value + off + size;
2976 	if (value_regno >= 0)
2977 		value_reg = &cur->regs[value_regno];
2978 	if (value_reg && register_is_null(value_reg))
2979 		writing_zero = true;
2980 
2981 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2982 	if (err)
2983 		return err;
2984 
2985 
2986 	/* Variable offset writes destroy any spilled pointers in range. */
2987 	for (i = min_off; i < max_off; i++) {
2988 		u8 new_type, *stype;
2989 		int slot, spi;
2990 
2991 		slot = -i - 1;
2992 		spi = slot / BPF_REG_SIZE;
2993 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2994 		mark_stack_slot_scratched(env, spi);
2995 
2996 		if (!env->allow_ptr_leaks
2997 				&& *stype != NOT_INIT
2998 				&& *stype != SCALAR_VALUE) {
2999 			/* Reject the write if there's are spilled pointers in
3000 			 * range. If we didn't reject here, the ptr status
3001 			 * would be erased below (even though not all slots are
3002 			 * actually overwritten), possibly opening the door to
3003 			 * leaks.
3004 			 */
3005 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3006 				insn_idx, i);
3007 			return -EINVAL;
3008 		}
3009 
3010 		/* Erase all spilled pointers. */
3011 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3012 
3013 		/* Update the slot type. */
3014 		new_type = STACK_MISC;
3015 		if (writing_zero && *stype == STACK_ZERO) {
3016 			new_type = STACK_ZERO;
3017 			zero_used = true;
3018 		}
3019 		/* If the slot is STACK_INVALID, we check whether it's OK to
3020 		 * pretend that it will be initialized by this write. The slot
3021 		 * might not actually be written to, and so if we mark it as
3022 		 * initialized future reads might leak uninitialized memory.
3023 		 * For privileged programs, we will accept such reads to slots
3024 		 * that may or may not be written because, if we're reject
3025 		 * them, the error would be too confusing.
3026 		 */
3027 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3028 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3029 					insn_idx, i);
3030 			return -EINVAL;
3031 		}
3032 		*stype = new_type;
3033 	}
3034 	if (zero_used) {
3035 		/* backtracking doesn't work for STACK_ZERO yet. */
3036 		err = mark_chain_precision(env, value_regno);
3037 		if (err)
3038 			return err;
3039 	}
3040 	return 0;
3041 }
3042 
3043 /* When register 'dst_regno' is assigned some values from stack[min_off,
3044  * max_off), we set the register's type according to the types of the
3045  * respective stack slots. If all the stack values are known to be zeros, then
3046  * so is the destination reg. Otherwise, the register is considered to be
3047  * SCALAR. This function does not deal with register filling; the caller must
3048  * ensure that all spilled registers in the stack range have been marked as
3049  * read.
3050  */
3051 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3052 				/* func where src register points to */
3053 				struct bpf_func_state *ptr_state,
3054 				int min_off, int max_off, int dst_regno)
3055 {
3056 	struct bpf_verifier_state *vstate = env->cur_state;
3057 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3058 	int i, slot, spi;
3059 	u8 *stype;
3060 	int zeros = 0;
3061 
3062 	for (i = min_off; i < max_off; i++) {
3063 		slot = -i - 1;
3064 		spi = slot / BPF_REG_SIZE;
3065 		stype = ptr_state->stack[spi].slot_type;
3066 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3067 			break;
3068 		zeros++;
3069 	}
3070 	if (zeros == max_off - min_off) {
3071 		/* any access_size read into register is zero extended,
3072 		 * so the whole register == const_zero
3073 		 */
3074 		__mark_reg_const_zero(&state->regs[dst_regno]);
3075 		/* backtracking doesn't support STACK_ZERO yet,
3076 		 * so mark it precise here, so that later
3077 		 * backtracking can stop here.
3078 		 * Backtracking may not need this if this register
3079 		 * doesn't participate in pointer adjustment.
3080 		 * Forward propagation of precise flag is not
3081 		 * necessary either. This mark is only to stop
3082 		 * backtracking. Any register that contributed
3083 		 * to const 0 was marked precise before spill.
3084 		 */
3085 		state->regs[dst_regno].precise = true;
3086 	} else {
3087 		/* have read misc data from the stack */
3088 		mark_reg_unknown(env, state->regs, dst_regno);
3089 	}
3090 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3091 }
3092 
3093 /* Read the stack at 'off' and put the results into the register indicated by
3094  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3095  * spilled reg.
3096  *
3097  * 'dst_regno' can be -1, meaning that the read value is not going to a
3098  * register.
3099  *
3100  * The access is assumed to be within the current stack bounds.
3101  */
3102 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3103 				      /* func where src register points to */
3104 				      struct bpf_func_state *reg_state,
3105 				      int off, int size, int dst_regno)
3106 {
3107 	struct bpf_verifier_state *vstate = env->cur_state;
3108 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3109 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3110 	struct bpf_reg_state *reg;
3111 	u8 *stype, type;
3112 
3113 	stype = reg_state->stack[spi].slot_type;
3114 	reg = &reg_state->stack[spi].spilled_ptr;
3115 
3116 	if (is_spilled_reg(&reg_state->stack[spi])) {
3117 		u8 spill_size = 1;
3118 
3119 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3120 			spill_size++;
3121 
3122 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3123 			if (reg->type != SCALAR_VALUE) {
3124 				verbose_linfo(env, env->insn_idx, "; ");
3125 				verbose(env, "invalid size of register fill\n");
3126 				return -EACCES;
3127 			}
3128 
3129 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3130 			if (dst_regno < 0)
3131 				return 0;
3132 
3133 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3134 				/* The earlier check_reg_arg() has decided the
3135 				 * subreg_def for this insn.  Save it first.
3136 				 */
3137 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3138 
3139 				state->regs[dst_regno] = *reg;
3140 				state->regs[dst_regno].subreg_def = subreg_def;
3141 			} else {
3142 				for (i = 0; i < size; i++) {
3143 					type = stype[(slot - i) % BPF_REG_SIZE];
3144 					if (type == STACK_SPILL)
3145 						continue;
3146 					if (type == STACK_MISC)
3147 						continue;
3148 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3149 						off, i, size);
3150 					return -EACCES;
3151 				}
3152 				mark_reg_unknown(env, state->regs, dst_regno);
3153 			}
3154 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3155 			return 0;
3156 		}
3157 
3158 		if (dst_regno >= 0) {
3159 			/* restore register state from stack */
3160 			state->regs[dst_regno] = *reg;
3161 			/* mark reg as written since spilled pointer state likely
3162 			 * has its liveness marks cleared by is_state_visited()
3163 			 * which resets stack/reg liveness for state transitions
3164 			 */
3165 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3166 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3167 			/* If dst_regno==-1, the caller is asking us whether
3168 			 * it is acceptable to use this value as a SCALAR_VALUE
3169 			 * (e.g. for XADD).
3170 			 * We must not allow unprivileged callers to do that
3171 			 * with spilled pointers.
3172 			 */
3173 			verbose(env, "leaking pointer from stack off %d\n",
3174 				off);
3175 			return -EACCES;
3176 		}
3177 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3178 	} else {
3179 		for (i = 0; i < size; i++) {
3180 			type = stype[(slot - i) % BPF_REG_SIZE];
3181 			if (type == STACK_MISC)
3182 				continue;
3183 			if (type == STACK_ZERO)
3184 				continue;
3185 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3186 				off, i, size);
3187 			return -EACCES;
3188 		}
3189 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3190 		if (dst_regno >= 0)
3191 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3192 	}
3193 	return 0;
3194 }
3195 
3196 enum stack_access_src {
3197 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3198 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3199 };
3200 
3201 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3202 					 int regno, int off, int access_size,
3203 					 bool zero_size_allowed,
3204 					 enum stack_access_src type,
3205 					 struct bpf_call_arg_meta *meta);
3206 
3207 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3208 {
3209 	return cur_regs(env) + regno;
3210 }
3211 
3212 /* Read the stack at 'ptr_regno + off' and put the result into the register
3213  * 'dst_regno'.
3214  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3215  * but not its variable offset.
3216  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3217  *
3218  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3219  * filling registers (i.e. reads of spilled register cannot be detected when
3220  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3221  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3222  * offset; for a fixed offset check_stack_read_fixed_off should be used
3223  * instead.
3224  */
3225 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3226 				    int ptr_regno, int off, int size, int dst_regno)
3227 {
3228 	/* The state of the source register. */
3229 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3230 	struct bpf_func_state *ptr_state = func(env, reg);
3231 	int err;
3232 	int min_off, max_off;
3233 
3234 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3235 	 */
3236 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3237 					    false, ACCESS_DIRECT, NULL);
3238 	if (err)
3239 		return err;
3240 
3241 	min_off = reg->smin_value + off;
3242 	max_off = reg->smax_value + off;
3243 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3244 	return 0;
3245 }
3246 
3247 /* check_stack_read dispatches to check_stack_read_fixed_off or
3248  * check_stack_read_var_off.
3249  *
3250  * The caller must ensure that the offset falls within the allocated stack
3251  * bounds.
3252  *
3253  * 'dst_regno' is a register which will receive the value from the stack. It
3254  * can be -1, meaning that the read value is not going to a register.
3255  */
3256 static int check_stack_read(struct bpf_verifier_env *env,
3257 			    int ptr_regno, int off, int size,
3258 			    int dst_regno)
3259 {
3260 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3261 	struct bpf_func_state *state = func(env, reg);
3262 	int err;
3263 	/* Some accesses are only permitted with a static offset. */
3264 	bool var_off = !tnum_is_const(reg->var_off);
3265 
3266 	/* The offset is required to be static when reads don't go to a
3267 	 * register, in order to not leak pointers (see
3268 	 * check_stack_read_fixed_off).
3269 	 */
3270 	if (dst_regno < 0 && var_off) {
3271 		char tn_buf[48];
3272 
3273 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3274 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3275 			tn_buf, off, size);
3276 		return -EACCES;
3277 	}
3278 	/* Variable offset is prohibited for unprivileged mode for simplicity
3279 	 * since it requires corresponding support in Spectre masking for stack
3280 	 * ALU. See also retrieve_ptr_limit().
3281 	 */
3282 	if (!env->bypass_spec_v1 && var_off) {
3283 		char tn_buf[48];
3284 
3285 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3286 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3287 				ptr_regno, tn_buf);
3288 		return -EACCES;
3289 	}
3290 
3291 	if (!var_off) {
3292 		off += reg->var_off.value;
3293 		err = check_stack_read_fixed_off(env, state, off, size,
3294 						 dst_regno);
3295 	} else {
3296 		/* Variable offset stack reads need more conservative handling
3297 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3298 		 * branch.
3299 		 */
3300 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3301 					       dst_regno);
3302 	}
3303 	return err;
3304 }
3305 
3306 
3307 /* check_stack_write dispatches to check_stack_write_fixed_off or
3308  * check_stack_write_var_off.
3309  *
3310  * 'ptr_regno' is the register used as a pointer into the stack.
3311  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3312  * 'value_regno' is the register whose value we're writing to the stack. It can
3313  * be -1, meaning that we're not writing from a register.
3314  *
3315  * The caller must ensure that the offset falls within the maximum stack size.
3316  */
3317 static int check_stack_write(struct bpf_verifier_env *env,
3318 			     int ptr_regno, int off, int size,
3319 			     int value_regno, int insn_idx)
3320 {
3321 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3322 	struct bpf_func_state *state = func(env, reg);
3323 	int err;
3324 
3325 	if (tnum_is_const(reg->var_off)) {
3326 		off += reg->var_off.value;
3327 		err = check_stack_write_fixed_off(env, state, off, size,
3328 						  value_regno, insn_idx);
3329 	} else {
3330 		/* Variable offset stack reads need more conservative handling
3331 		 * than fixed offset ones.
3332 		 */
3333 		err = check_stack_write_var_off(env, state,
3334 						ptr_regno, off, size,
3335 						value_regno, insn_idx);
3336 	}
3337 	return err;
3338 }
3339 
3340 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3341 				 int off, int size, enum bpf_access_type type)
3342 {
3343 	struct bpf_reg_state *regs = cur_regs(env);
3344 	struct bpf_map *map = regs[regno].map_ptr;
3345 	u32 cap = bpf_map_flags_to_cap(map);
3346 
3347 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3348 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3349 			map->value_size, off, size);
3350 		return -EACCES;
3351 	}
3352 
3353 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3354 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3355 			map->value_size, off, size);
3356 		return -EACCES;
3357 	}
3358 
3359 	return 0;
3360 }
3361 
3362 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3363 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3364 			      int off, int size, u32 mem_size,
3365 			      bool zero_size_allowed)
3366 {
3367 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3368 	struct bpf_reg_state *reg;
3369 
3370 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3371 		return 0;
3372 
3373 	reg = &cur_regs(env)[regno];
3374 	switch (reg->type) {
3375 	case PTR_TO_MAP_KEY:
3376 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3377 			mem_size, off, size);
3378 		break;
3379 	case PTR_TO_MAP_VALUE:
3380 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3381 			mem_size, off, size);
3382 		break;
3383 	case PTR_TO_PACKET:
3384 	case PTR_TO_PACKET_META:
3385 	case PTR_TO_PACKET_END:
3386 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3387 			off, size, regno, reg->id, off, mem_size);
3388 		break;
3389 	case PTR_TO_MEM:
3390 	default:
3391 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3392 			mem_size, off, size);
3393 	}
3394 
3395 	return -EACCES;
3396 }
3397 
3398 /* check read/write into a memory region with possible variable offset */
3399 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3400 				   int off, int size, u32 mem_size,
3401 				   bool zero_size_allowed)
3402 {
3403 	struct bpf_verifier_state *vstate = env->cur_state;
3404 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3405 	struct bpf_reg_state *reg = &state->regs[regno];
3406 	int err;
3407 
3408 	/* We may have adjusted the register pointing to memory region, so we
3409 	 * need to try adding each of min_value and max_value to off
3410 	 * to make sure our theoretical access will be safe.
3411 	 *
3412 	 * The minimum value is only important with signed
3413 	 * comparisons where we can't assume the floor of a
3414 	 * value is 0.  If we are using signed variables for our
3415 	 * index'es we need to make sure that whatever we use
3416 	 * will have a set floor within our range.
3417 	 */
3418 	if (reg->smin_value < 0 &&
3419 	    (reg->smin_value == S64_MIN ||
3420 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3421 	      reg->smin_value + off < 0)) {
3422 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3423 			regno);
3424 		return -EACCES;
3425 	}
3426 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3427 				 mem_size, zero_size_allowed);
3428 	if (err) {
3429 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3430 			regno);
3431 		return err;
3432 	}
3433 
3434 	/* If we haven't set a max value then we need to bail since we can't be
3435 	 * sure we won't do bad things.
3436 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3437 	 */
3438 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3439 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3440 			regno);
3441 		return -EACCES;
3442 	}
3443 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3444 				 mem_size, zero_size_allowed);
3445 	if (err) {
3446 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3447 			regno);
3448 		return err;
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 /* check read/write into a map element with possible variable offset */
3455 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3456 			    int off, int size, bool zero_size_allowed)
3457 {
3458 	struct bpf_verifier_state *vstate = env->cur_state;
3459 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3460 	struct bpf_reg_state *reg = &state->regs[regno];
3461 	struct bpf_map *map = reg->map_ptr;
3462 	int err;
3463 
3464 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3465 				      zero_size_allowed);
3466 	if (err)
3467 		return err;
3468 
3469 	if (map_value_has_spin_lock(map)) {
3470 		u32 lock = map->spin_lock_off;
3471 
3472 		/* if any part of struct bpf_spin_lock can be touched by
3473 		 * load/store reject this program.
3474 		 * To check that [x1, x2) overlaps with [y1, y2)
3475 		 * it is sufficient to check x1 < y2 && y1 < x2.
3476 		 */
3477 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3478 		     lock < reg->umax_value + off + size) {
3479 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3480 			return -EACCES;
3481 		}
3482 	}
3483 	if (map_value_has_timer(map)) {
3484 		u32 t = map->timer_off;
3485 
3486 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3487 		     t < reg->umax_value + off + size) {
3488 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3489 			return -EACCES;
3490 		}
3491 	}
3492 	return err;
3493 }
3494 
3495 #define MAX_PACKET_OFF 0xffff
3496 
3497 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3498 {
3499 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3500 }
3501 
3502 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3503 				       const struct bpf_call_arg_meta *meta,
3504 				       enum bpf_access_type t)
3505 {
3506 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3507 
3508 	switch (prog_type) {
3509 	/* Program types only with direct read access go here! */
3510 	case BPF_PROG_TYPE_LWT_IN:
3511 	case BPF_PROG_TYPE_LWT_OUT:
3512 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3513 	case BPF_PROG_TYPE_SK_REUSEPORT:
3514 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3515 	case BPF_PROG_TYPE_CGROUP_SKB:
3516 		if (t == BPF_WRITE)
3517 			return false;
3518 		fallthrough;
3519 
3520 	/* Program types with direct read + write access go here! */
3521 	case BPF_PROG_TYPE_SCHED_CLS:
3522 	case BPF_PROG_TYPE_SCHED_ACT:
3523 	case BPF_PROG_TYPE_XDP:
3524 	case BPF_PROG_TYPE_LWT_XMIT:
3525 	case BPF_PROG_TYPE_SK_SKB:
3526 	case BPF_PROG_TYPE_SK_MSG:
3527 		if (meta)
3528 			return meta->pkt_access;
3529 
3530 		env->seen_direct_write = true;
3531 		return true;
3532 
3533 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3534 		if (t == BPF_WRITE)
3535 			env->seen_direct_write = true;
3536 
3537 		return true;
3538 
3539 	default:
3540 		return false;
3541 	}
3542 }
3543 
3544 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3545 			       int size, bool zero_size_allowed)
3546 {
3547 	struct bpf_reg_state *regs = cur_regs(env);
3548 	struct bpf_reg_state *reg = &regs[regno];
3549 	int err;
3550 
3551 	/* We may have added a variable offset to the packet pointer; but any
3552 	 * reg->range we have comes after that.  We are only checking the fixed
3553 	 * offset.
3554 	 */
3555 
3556 	/* We don't allow negative numbers, because we aren't tracking enough
3557 	 * detail to prove they're safe.
3558 	 */
3559 	if (reg->smin_value < 0) {
3560 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3561 			regno);
3562 		return -EACCES;
3563 	}
3564 
3565 	err = reg->range < 0 ? -EINVAL :
3566 	      __check_mem_access(env, regno, off, size, reg->range,
3567 				 zero_size_allowed);
3568 	if (err) {
3569 		verbose(env, "R%d offset is outside of the packet\n", regno);
3570 		return err;
3571 	}
3572 
3573 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3574 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3575 	 * otherwise find_good_pkt_pointers would have refused to set range info
3576 	 * that __check_mem_access would have rejected this pkt access.
3577 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3578 	 */
3579 	env->prog->aux->max_pkt_offset =
3580 		max_t(u32, env->prog->aux->max_pkt_offset,
3581 		      off + reg->umax_value + size - 1);
3582 
3583 	return err;
3584 }
3585 
3586 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3587 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3588 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3589 			    struct btf **btf, u32 *btf_id)
3590 {
3591 	struct bpf_insn_access_aux info = {
3592 		.reg_type = *reg_type,
3593 		.log = &env->log,
3594 	};
3595 
3596 	if (env->ops->is_valid_access &&
3597 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3598 		/* A non zero info.ctx_field_size indicates that this field is a
3599 		 * candidate for later verifier transformation to load the whole
3600 		 * field and then apply a mask when accessed with a narrower
3601 		 * access than actual ctx access size. A zero info.ctx_field_size
3602 		 * will only allow for whole field access and rejects any other
3603 		 * type of narrower access.
3604 		 */
3605 		*reg_type = info.reg_type;
3606 
3607 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3608 			*btf = info.btf;
3609 			*btf_id = info.btf_id;
3610 		} else {
3611 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3612 		}
3613 		/* remember the offset of last byte accessed in ctx */
3614 		if (env->prog->aux->max_ctx_offset < off + size)
3615 			env->prog->aux->max_ctx_offset = off + size;
3616 		return 0;
3617 	}
3618 
3619 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3620 	return -EACCES;
3621 }
3622 
3623 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3624 				  int size)
3625 {
3626 	if (size < 0 || off < 0 ||
3627 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3628 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3629 			off, size);
3630 		return -EACCES;
3631 	}
3632 	return 0;
3633 }
3634 
3635 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3636 			     u32 regno, int off, int size,
3637 			     enum bpf_access_type t)
3638 {
3639 	struct bpf_reg_state *regs = cur_regs(env);
3640 	struct bpf_reg_state *reg = &regs[regno];
3641 	struct bpf_insn_access_aux info = {};
3642 	bool valid;
3643 
3644 	if (reg->smin_value < 0) {
3645 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3646 			regno);
3647 		return -EACCES;
3648 	}
3649 
3650 	switch (reg->type) {
3651 	case PTR_TO_SOCK_COMMON:
3652 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3653 		break;
3654 	case PTR_TO_SOCKET:
3655 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3656 		break;
3657 	case PTR_TO_TCP_SOCK:
3658 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3659 		break;
3660 	case PTR_TO_XDP_SOCK:
3661 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3662 		break;
3663 	default:
3664 		valid = false;
3665 	}
3666 
3667 
3668 	if (valid) {
3669 		env->insn_aux_data[insn_idx].ctx_field_size =
3670 			info.ctx_field_size;
3671 		return 0;
3672 	}
3673 
3674 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3675 		regno, reg_type_str(env, reg->type), off, size);
3676 
3677 	return -EACCES;
3678 }
3679 
3680 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3681 {
3682 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3683 }
3684 
3685 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3686 {
3687 	const struct bpf_reg_state *reg = reg_state(env, regno);
3688 
3689 	return reg->type == PTR_TO_CTX;
3690 }
3691 
3692 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3693 {
3694 	const struct bpf_reg_state *reg = reg_state(env, regno);
3695 
3696 	return type_is_sk_pointer(reg->type);
3697 }
3698 
3699 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3700 {
3701 	const struct bpf_reg_state *reg = reg_state(env, regno);
3702 
3703 	return type_is_pkt_pointer(reg->type);
3704 }
3705 
3706 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3707 {
3708 	const struct bpf_reg_state *reg = reg_state(env, regno);
3709 
3710 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3711 	return reg->type == PTR_TO_FLOW_KEYS;
3712 }
3713 
3714 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3715 				   const struct bpf_reg_state *reg,
3716 				   int off, int size, bool strict)
3717 {
3718 	struct tnum reg_off;
3719 	int ip_align;
3720 
3721 	/* Byte size accesses are always allowed. */
3722 	if (!strict || size == 1)
3723 		return 0;
3724 
3725 	/* For platforms that do not have a Kconfig enabling
3726 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3727 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3728 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3729 	 * to this code only in strict mode where we want to emulate
3730 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3731 	 * unconditional IP align value of '2'.
3732 	 */
3733 	ip_align = 2;
3734 
3735 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3736 	if (!tnum_is_aligned(reg_off, size)) {
3737 		char tn_buf[48];
3738 
3739 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3740 		verbose(env,
3741 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3742 			ip_align, tn_buf, reg->off, off, size);
3743 		return -EACCES;
3744 	}
3745 
3746 	return 0;
3747 }
3748 
3749 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3750 				       const struct bpf_reg_state *reg,
3751 				       const char *pointer_desc,
3752 				       int off, int size, bool strict)
3753 {
3754 	struct tnum reg_off;
3755 
3756 	/* Byte size accesses are always allowed. */
3757 	if (!strict || size == 1)
3758 		return 0;
3759 
3760 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3761 	if (!tnum_is_aligned(reg_off, size)) {
3762 		char tn_buf[48];
3763 
3764 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3765 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3766 			pointer_desc, tn_buf, reg->off, off, size);
3767 		return -EACCES;
3768 	}
3769 
3770 	return 0;
3771 }
3772 
3773 static int check_ptr_alignment(struct bpf_verifier_env *env,
3774 			       const struct bpf_reg_state *reg, int off,
3775 			       int size, bool strict_alignment_once)
3776 {
3777 	bool strict = env->strict_alignment || strict_alignment_once;
3778 	const char *pointer_desc = "";
3779 
3780 	switch (reg->type) {
3781 	case PTR_TO_PACKET:
3782 	case PTR_TO_PACKET_META:
3783 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3784 		 * right in front, treat it the very same way.
3785 		 */
3786 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3787 	case PTR_TO_FLOW_KEYS:
3788 		pointer_desc = "flow keys ";
3789 		break;
3790 	case PTR_TO_MAP_KEY:
3791 		pointer_desc = "key ";
3792 		break;
3793 	case PTR_TO_MAP_VALUE:
3794 		pointer_desc = "value ";
3795 		break;
3796 	case PTR_TO_CTX:
3797 		pointer_desc = "context ";
3798 		break;
3799 	case PTR_TO_STACK:
3800 		pointer_desc = "stack ";
3801 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3802 		 * and check_stack_read_fixed_off() relies on stack accesses being
3803 		 * aligned.
3804 		 */
3805 		strict = true;
3806 		break;
3807 	case PTR_TO_SOCKET:
3808 		pointer_desc = "sock ";
3809 		break;
3810 	case PTR_TO_SOCK_COMMON:
3811 		pointer_desc = "sock_common ";
3812 		break;
3813 	case PTR_TO_TCP_SOCK:
3814 		pointer_desc = "tcp_sock ";
3815 		break;
3816 	case PTR_TO_XDP_SOCK:
3817 		pointer_desc = "xdp_sock ";
3818 		break;
3819 	default:
3820 		break;
3821 	}
3822 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3823 					   strict);
3824 }
3825 
3826 static int update_stack_depth(struct bpf_verifier_env *env,
3827 			      const struct bpf_func_state *func,
3828 			      int off)
3829 {
3830 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3831 
3832 	if (stack >= -off)
3833 		return 0;
3834 
3835 	/* update known max for given subprogram */
3836 	env->subprog_info[func->subprogno].stack_depth = -off;
3837 	return 0;
3838 }
3839 
3840 /* starting from main bpf function walk all instructions of the function
3841  * and recursively walk all callees that given function can call.
3842  * Ignore jump and exit insns.
3843  * Since recursion is prevented by check_cfg() this algorithm
3844  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3845  */
3846 static int check_max_stack_depth(struct bpf_verifier_env *env)
3847 {
3848 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3849 	struct bpf_subprog_info *subprog = env->subprog_info;
3850 	struct bpf_insn *insn = env->prog->insnsi;
3851 	bool tail_call_reachable = false;
3852 	int ret_insn[MAX_CALL_FRAMES];
3853 	int ret_prog[MAX_CALL_FRAMES];
3854 	int j;
3855 
3856 process_func:
3857 	/* protect against potential stack overflow that might happen when
3858 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3859 	 * depth for such case down to 256 so that the worst case scenario
3860 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3861 	 * 8k).
3862 	 *
3863 	 * To get the idea what might happen, see an example:
3864 	 * func1 -> sub rsp, 128
3865 	 *  subfunc1 -> sub rsp, 256
3866 	 *  tailcall1 -> add rsp, 256
3867 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3868 	 *   subfunc2 -> sub rsp, 64
3869 	 *   subfunc22 -> sub rsp, 128
3870 	 *   tailcall2 -> add rsp, 128
3871 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3872 	 *
3873 	 * tailcall will unwind the current stack frame but it will not get rid
3874 	 * of caller's stack as shown on the example above.
3875 	 */
3876 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3877 		verbose(env,
3878 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3879 			depth);
3880 		return -EACCES;
3881 	}
3882 	/* round up to 32-bytes, since this is granularity
3883 	 * of interpreter stack size
3884 	 */
3885 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3886 	if (depth > MAX_BPF_STACK) {
3887 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3888 			frame + 1, depth);
3889 		return -EACCES;
3890 	}
3891 continue_func:
3892 	subprog_end = subprog[idx + 1].start;
3893 	for (; i < subprog_end; i++) {
3894 		int next_insn;
3895 
3896 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3897 			continue;
3898 		/* remember insn and function to return to */
3899 		ret_insn[frame] = i + 1;
3900 		ret_prog[frame] = idx;
3901 
3902 		/* find the callee */
3903 		next_insn = i + insn[i].imm + 1;
3904 		idx = find_subprog(env, next_insn);
3905 		if (idx < 0) {
3906 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3907 				  next_insn);
3908 			return -EFAULT;
3909 		}
3910 		if (subprog[idx].is_async_cb) {
3911 			if (subprog[idx].has_tail_call) {
3912 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3913 				return -EFAULT;
3914 			}
3915 			 /* async callbacks don't increase bpf prog stack size */
3916 			continue;
3917 		}
3918 		i = next_insn;
3919 
3920 		if (subprog[idx].has_tail_call)
3921 			tail_call_reachable = true;
3922 
3923 		frame++;
3924 		if (frame >= MAX_CALL_FRAMES) {
3925 			verbose(env, "the call stack of %d frames is too deep !\n",
3926 				frame);
3927 			return -E2BIG;
3928 		}
3929 		goto process_func;
3930 	}
3931 	/* if tail call got detected across bpf2bpf calls then mark each of the
3932 	 * currently present subprog frames as tail call reachable subprogs;
3933 	 * this info will be utilized by JIT so that we will be preserving the
3934 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3935 	 */
3936 	if (tail_call_reachable)
3937 		for (j = 0; j < frame; j++)
3938 			subprog[ret_prog[j]].tail_call_reachable = true;
3939 	if (subprog[0].tail_call_reachable)
3940 		env->prog->aux->tail_call_reachable = true;
3941 
3942 	/* end of for() loop means the last insn of the 'subprog'
3943 	 * was reached. Doesn't matter whether it was JA or EXIT
3944 	 */
3945 	if (frame == 0)
3946 		return 0;
3947 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3948 	frame--;
3949 	i = ret_insn[frame];
3950 	idx = ret_prog[frame];
3951 	goto continue_func;
3952 }
3953 
3954 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3955 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3956 				  const struct bpf_insn *insn, int idx)
3957 {
3958 	int start = idx + insn->imm + 1, subprog;
3959 
3960 	subprog = find_subprog(env, start);
3961 	if (subprog < 0) {
3962 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3963 			  start);
3964 		return -EFAULT;
3965 	}
3966 	return env->subprog_info[subprog].stack_depth;
3967 }
3968 #endif
3969 
3970 int check_ctx_reg(struct bpf_verifier_env *env,
3971 		  const struct bpf_reg_state *reg, int regno)
3972 {
3973 	/* Access to ctx or passing it to a helper is only allowed in
3974 	 * its original, unmodified form.
3975 	 */
3976 
3977 	if (reg->off) {
3978 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3979 			regno, reg->off);
3980 		return -EACCES;
3981 	}
3982 
3983 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3984 		char tn_buf[48];
3985 
3986 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3987 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3988 		return -EACCES;
3989 	}
3990 
3991 	return 0;
3992 }
3993 
3994 static int __check_buffer_access(struct bpf_verifier_env *env,
3995 				 const char *buf_info,
3996 				 const struct bpf_reg_state *reg,
3997 				 int regno, int off, int size)
3998 {
3999 	if (off < 0) {
4000 		verbose(env,
4001 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4002 			regno, buf_info, off, size);
4003 		return -EACCES;
4004 	}
4005 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4006 		char tn_buf[48];
4007 
4008 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4009 		verbose(env,
4010 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4011 			regno, off, tn_buf);
4012 		return -EACCES;
4013 	}
4014 
4015 	return 0;
4016 }
4017 
4018 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4019 				  const struct bpf_reg_state *reg,
4020 				  int regno, int off, int size)
4021 {
4022 	int err;
4023 
4024 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4025 	if (err)
4026 		return err;
4027 
4028 	if (off + size > env->prog->aux->max_tp_access)
4029 		env->prog->aux->max_tp_access = off + size;
4030 
4031 	return 0;
4032 }
4033 
4034 static int check_buffer_access(struct bpf_verifier_env *env,
4035 			       const struct bpf_reg_state *reg,
4036 			       int regno, int off, int size,
4037 			       bool zero_size_allowed,
4038 			       const char *buf_info,
4039 			       u32 *max_access)
4040 {
4041 	int err;
4042 
4043 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4044 	if (err)
4045 		return err;
4046 
4047 	if (off + size > *max_access)
4048 		*max_access = off + size;
4049 
4050 	return 0;
4051 }
4052 
4053 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4054 static void zext_32_to_64(struct bpf_reg_state *reg)
4055 {
4056 	reg->var_off = tnum_subreg(reg->var_off);
4057 	__reg_assign_32_into_64(reg);
4058 }
4059 
4060 /* truncate register to smaller size (in bytes)
4061  * must be called with size < BPF_REG_SIZE
4062  */
4063 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4064 {
4065 	u64 mask;
4066 
4067 	/* clear high bits in bit representation */
4068 	reg->var_off = tnum_cast(reg->var_off, size);
4069 
4070 	/* fix arithmetic bounds */
4071 	mask = ((u64)1 << (size * 8)) - 1;
4072 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4073 		reg->umin_value &= mask;
4074 		reg->umax_value &= mask;
4075 	} else {
4076 		reg->umin_value = 0;
4077 		reg->umax_value = mask;
4078 	}
4079 	reg->smin_value = reg->umin_value;
4080 	reg->smax_value = reg->umax_value;
4081 
4082 	/* If size is smaller than 32bit register the 32bit register
4083 	 * values are also truncated so we push 64-bit bounds into
4084 	 * 32-bit bounds. Above were truncated < 32-bits already.
4085 	 */
4086 	if (size >= 4)
4087 		return;
4088 	__reg_combine_64_into_32(reg);
4089 }
4090 
4091 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4092 {
4093 	/* A map is considered read-only if the following condition are true:
4094 	 *
4095 	 * 1) BPF program side cannot change any of the map content. The
4096 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4097 	 *    and was set at map creation time.
4098 	 * 2) The map value(s) have been initialized from user space by a
4099 	 *    loader and then "frozen", such that no new map update/delete
4100 	 *    operations from syscall side are possible for the rest of
4101 	 *    the map's lifetime from that point onwards.
4102 	 * 3) Any parallel/pending map update/delete operations from syscall
4103 	 *    side have been completed. Only after that point, it's safe to
4104 	 *    assume that map value(s) are immutable.
4105 	 */
4106 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4107 	       READ_ONCE(map->frozen) &&
4108 	       !bpf_map_write_active(map);
4109 }
4110 
4111 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4112 {
4113 	void *ptr;
4114 	u64 addr;
4115 	int err;
4116 
4117 	err = map->ops->map_direct_value_addr(map, &addr, off);
4118 	if (err)
4119 		return err;
4120 	ptr = (void *)(long)addr + off;
4121 
4122 	switch (size) {
4123 	case sizeof(u8):
4124 		*val = (u64)*(u8 *)ptr;
4125 		break;
4126 	case sizeof(u16):
4127 		*val = (u64)*(u16 *)ptr;
4128 		break;
4129 	case sizeof(u32):
4130 		*val = (u64)*(u32 *)ptr;
4131 		break;
4132 	case sizeof(u64):
4133 		*val = *(u64 *)ptr;
4134 		break;
4135 	default:
4136 		return -EINVAL;
4137 	}
4138 	return 0;
4139 }
4140 
4141 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4142 				   struct bpf_reg_state *regs,
4143 				   int regno, int off, int size,
4144 				   enum bpf_access_type atype,
4145 				   int value_regno)
4146 {
4147 	struct bpf_reg_state *reg = regs + regno;
4148 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4149 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4150 	u32 btf_id;
4151 	int ret;
4152 
4153 	if (off < 0) {
4154 		verbose(env,
4155 			"R%d is ptr_%s invalid negative access: off=%d\n",
4156 			regno, tname, off);
4157 		return -EACCES;
4158 	}
4159 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4160 		char tn_buf[48];
4161 
4162 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4163 		verbose(env,
4164 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4165 			regno, tname, off, tn_buf);
4166 		return -EACCES;
4167 	}
4168 
4169 	if (env->ops->btf_struct_access) {
4170 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4171 						  off, size, atype, &btf_id);
4172 	} else {
4173 		if (atype != BPF_READ) {
4174 			verbose(env, "only read is supported\n");
4175 			return -EACCES;
4176 		}
4177 
4178 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4179 					atype, &btf_id);
4180 	}
4181 
4182 	if (ret < 0)
4183 		return ret;
4184 
4185 	if (atype == BPF_READ && value_regno >= 0)
4186 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4187 
4188 	return 0;
4189 }
4190 
4191 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4192 				   struct bpf_reg_state *regs,
4193 				   int regno, int off, int size,
4194 				   enum bpf_access_type atype,
4195 				   int value_regno)
4196 {
4197 	struct bpf_reg_state *reg = regs + regno;
4198 	struct bpf_map *map = reg->map_ptr;
4199 	const struct btf_type *t;
4200 	const char *tname;
4201 	u32 btf_id;
4202 	int ret;
4203 
4204 	if (!btf_vmlinux) {
4205 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4206 		return -ENOTSUPP;
4207 	}
4208 
4209 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4210 		verbose(env, "map_ptr access not supported for map type %d\n",
4211 			map->map_type);
4212 		return -ENOTSUPP;
4213 	}
4214 
4215 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4216 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4217 
4218 	if (!env->allow_ptr_to_map_access) {
4219 		verbose(env,
4220 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4221 			tname);
4222 		return -EPERM;
4223 	}
4224 
4225 	if (off < 0) {
4226 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4227 			regno, tname, off);
4228 		return -EACCES;
4229 	}
4230 
4231 	if (atype != BPF_READ) {
4232 		verbose(env, "only read from %s is supported\n", tname);
4233 		return -EACCES;
4234 	}
4235 
4236 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4237 	if (ret < 0)
4238 		return ret;
4239 
4240 	if (value_regno >= 0)
4241 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4242 
4243 	return 0;
4244 }
4245 
4246 /* Check that the stack access at the given offset is within bounds. The
4247  * maximum valid offset is -1.
4248  *
4249  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4250  * -state->allocated_stack for reads.
4251  */
4252 static int check_stack_slot_within_bounds(int off,
4253 					  struct bpf_func_state *state,
4254 					  enum bpf_access_type t)
4255 {
4256 	int min_valid_off;
4257 
4258 	if (t == BPF_WRITE)
4259 		min_valid_off = -MAX_BPF_STACK;
4260 	else
4261 		min_valid_off = -state->allocated_stack;
4262 
4263 	if (off < min_valid_off || off > -1)
4264 		return -EACCES;
4265 	return 0;
4266 }
4267 
4268 /* Check that the stack access at 'regno + off' falls within the maximum stack
4269  * bounds.
4270  *
4271  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4272  */
4273 static int check_stack_access_within_bounds(
4274 		struct bpf_verifier_env *env,
4275 		int regno, int off, int access_size,
4276 		enum stack_access_src src, enum bpf_access_type type)
4277 {
4278 	struct bpf_reg_state *regs = cur_regs(env);
4279 	struct bpf_reg_state *reg = regs + regno;
4280 	struct bpf_func_state *state = func(env, reg);
4281 	int min_off, max_off;
4282 	int err;
4283 	char *err_extra;
4284 
4285 	if (src == ACCESS_HELPER)
4286 		/* We don't know if helpers are reading or writing (or both). */
4287 		err_extra = " indirect access to";
4288 	else if (type == BPF_READ)
4289 		err_extra = " read from";
4290 	else
4291 		err_extra = " write to";
4292 
4293 	if (tnum_is_const(reg->var_off)) {
4294 		min_off = reg->var_off.value + off;
4295 		if (access_size > 0)
4296 			max_off = min_off + access_size - 1;
4297 		else
4298 			max_off = min_off;
4299 	} else {
4300 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4301 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4302 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4303 				err_extra, regno);
4304 			return -EACCES;
4305 		}
4306 		min_off = reg->smin_value + off;
4307 		if (access_size > 0)
4308 			max_off = reg->smax_value + off + access_size - 1;
4309 		else
4310 			max_off = min_off;
4311 	}
4312 
4313 	err = check_stack_slot_within_bounds(min_off, state, type);
4314 	if (!err)
4315 		err = check_stack_slot_within_bounds(max_off, state, type);
4316 
4317 	if (err) {
4318 		if (tnum_is_const(reg->var_off)) {
4319 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4320 				err_extra, regno, off, access_size);
4321 		} else {
4322 			char tn_buf[48];
4323 
4324 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4325 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4326 				err_extra, regno, tn_buf, access_size);
4327 		}
4328 	}
4329 	return err;
4330 }
4331 
4332 /* check whether memory at (regno + off) is accessible for t = (read | write)
4333  * if t==write, value_regno is a register which value is stored into memory
4334  * if t==read, value_regno is a register which will receive the value from memory
4335  * if t==write && value_regno==-1, some unknown value is stored into memory
4336  * if t==read && value_regno==-1, don't care what we read from memory
4337  */
4338 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4339 			    int off, int bpf_size, enum bpf_access_type t,
4340 			    int value_regno, bool strict_alignment_once)
4341 {
4342 	struct bpf_reg_state *regs = cur_regs(env);
4343 	struct bpf_reg_state *reg = regs + regno;
4344 	struct bpf_func_state *state;
4345 	int size, err = 0;
4346 
4347 	size = bpf_size_to_bytes(bpf_size);
4348 	if (size < 0)
4349 		return size;
4350 
4351 	/* alignment checks will add in reg->off themselves */
4352 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4353 	if (err)
4354 		return err;
4355 
4356 	/* for access checks, reg->off is just part of off */
4357 	off += reg->off;
4358 
4359 	if (reg->type == PTR_TO_MAP_KEY) {
4360 		if (t == BPF_WRITE) {
4361 			verbose(env, "write to change key R%d not allowed\n", regno);
4362 			return -EACCES;
4363 		}
4364 
4365 		err = check_mem_region_access(env, regno, off, size,
4366 					      reg->map_ptr->key_size, false);
4367 		if (err)
4368 			return err;
4369 		if (value_regno >= 0)
4370 			mark_reg_unknown(env, regs, value_regno);
4371 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4372 		if (t == BPF_WRITE && value_regno >= 0 &&
4373 		    is_pointer_value(env, value_regno)) {
4374 			verbose(env, "R%d leaks addr into map\n", value_regno);
4375 			return -EACCES;
4376 		}
4377 		err = check_map_access_type(env, regno, off, size, t);
4378 		if (err)
4379 			return err;
4380 		err = check_map_access(env, regno, off, size, false);
4381 		if (!err && t == BPF_READ && value_regno >= 0) {
4382 			struct bpf_map *map = reg->map_ptr;
4383 
4384 			/* if map is read-only, track its contents as scalars */
4385 			if (tnum_is_const(reg->var_off) &&
4386 			    bpf_map_is_rdonly(map) &&
4387 			    map->ops->map_direct_value_addr) {
4388 				int map_off = off + reg->var_off.value;
4389 				u64 val = 0;
4390 
4391 				err = bpf_map_direct_read(map, map_off, size,
4392 							  &val);
4393 				if (err)
4394 					return err;
4395 
4396 				regs[value_regno].type = SCALAR_VALUE;
4397 				__mark_reg_known(&regs[value_regno], val);
4398 			} else {
4399 				mark_reg_unknown(env, regs, value_regno);
4400 			}
4401 		}
4402 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4403 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4404 
4405 		if (type_may_be_null(reg->type)) {
4406 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4407 				reg_type_str(env, reg->type));
4408 			return -EACCES;
4409 		}
4410 
4411 		if (t == BPF_WRITE && rdonly_mem) {
4412 			verbose(env, "R%d cannot write into %s\n",
4413 				regno, reg_type_str(env, reg->type));
4414 			return -EACCES;
4415 		}
4416 
4417 		if (t == BPF_WRITE && value_regno >= 0 &&
4418 		    is_pointer_value(env, value_regno)) {
4419 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4420 			return -EACCES;
4421 		}
4422 
4423 		err = check_mem_region_access(env, regno, off, size,
4424 					      reg->mem_size, false);
4425 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4426 			mark_reg_unknown(env, regs, value_regno);
4427 	} else if (reg->type == PTR_TO_CTX) {
4428 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4429 		struct btf *btf = NULL;
4430 		u32 btf_id = 0;
4431 
4432 		if (t == BPF_WRITE && value_regno >= 0 &&
4433 		    is_pointer_value(env, value_regno)) {
4434 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4435 			return -EACCES;
4436 		}
4437 
4438 		err = check_ctx_reg(env, reg, regno);
4439 		if (err < 0)
4440 			return err;
4441 
4442 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4443 		if (err)
4444 			verbose_linfo(env, insn_idx, "; ");
4445 		if (!err && t == BPF_READ && value_regno >= 0) {
4446 			/* ctx access returns either a scalar, or a
4447 			 * PTR_TO_PACKET[_META,_END]. In the latter
4448 			 * case, we know the offset is zero.
4449 			 */
4450 			if (reg_type == SCALAR_VALUE) {
4451 				mark_reg_unknown(env, regs, value_regno);
4452 			} else {
4453 				mark_reg_known_zero(env, regs,
4454 						    value_regno);
4455 				if (type_may_be_null(reg_type))
4456 					regs[value_regno].id = ++env->id_gen;
4457 				/* A load of ctx field could have different
4458 				 * actual load size with the one encoded in the
4459 				 * insn. When the dst is PTR, it is for sure not
4460 				 * a sub-register.
4461 				 */
4462 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4463 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4464 					regs[value_regno].btf = btf;
4465 					regs[value_regno].btf_id = btf_id;
4466 				}
4467 			}
4468 			regs[value_regno].type = reg_type;
4469 		}
4470 
4471 	} else if (reg->type == PTR_TO_STACK) {
4472 		/* Basic bounds checks. */
4473 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4474 		if (err)
4475 			return err;
4476 
4477 		state = func(env, reg);
4478 		err = update_stack_depth(env, state, off);
4479 		if (err)
4480 			return err;
4481 
4482 		if (t == BPF_READ)
4483 			err = check_stack_read(env, regno, off, size,
4484 					       value_regno);
4485 		else
4486 			err = check_stack_write(env, regno, off, size,
4487 						value_regno, insn_idx);
4488 	} else if (reg_is_pkt_pointer(reg)) {
4489 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4490 			verbose(env, "cannot write into packet\n");
4491 			return -EACCES;
4492 		}
4493 		if (t == BPF_WRITE && value_regno >= 0 &&
4494 		    is_pointer_value(env, value_regno)) {
4495 			verbose(env, "R%d leaks addr into packet\n",
4496 				value_regno);
4497 			return -EACCES;
4498 		}
4499 		err = check_packet_access(env, regno, off, size, false);
4500 		if (!err && t == BPF_READ && value_regno >= 0)
4501 			mark_reg_unknown(env, regs, value_regno);
4502 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4503 		if (t == BPF_WRITE && value_regno >= 0 &&
4504 		    is_pointer_value(env, value_regno)) {
4505 			verbose(env, "R%d leaks addr into flow keys\n",
4506 				value_regno);
4507 			return -EACCES;
4508 		}
4509 
4510 		err = check_flow_keys_access(env, off, size);
4511 		if (!err && t == BPF_READ && value_regno >= 0)
4512 			mark_reg_unknown(env, regs, value_regno);
4513 	} else if (type_is_sk_pointer(reg->type)) {
4514 		if (t == BPF_WRITE) {
4515 			verbose(env, "R%d cannot write into %s\n",
4516 				regno, reg_type_str(env, reg->type));
4517 			return -EACCES;
4518 		}
4519 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4520 		if (!err && value_regno >= 0)
4521 			mark_reg_unknown(env, regs, value_regno);
4522 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4523 		err = check_tp_buffer_access(env, reg, regno, off, size);
4524 		if (!err && t == BPF_READ && value_regno >= 0)
4525 			mark_reg_unknown(env, regs, value_regno);
4526 	} else if (reg->type == PTR_TO_BTF_ID) {
4527 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4528 					      value_regno);
4529 	} else if (reg->type == CONST_PTR_TO_MAP) {
4530 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4531 					      value_regno);
4532 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4533 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4534 		const char *buf_info;
4535 		u32 *max_access;
4536 
4537 		if (rdonly_mem) {
4538 			if (t == BPF_WRITE) {
4539 				verbose(env, "R%d cannot write into %s\n",
4540 					regno, reg_type_str(env, reg->type));
4541 				return -EACCES;
4542 			}
4543 			buf_info = "rdonly";
4544 			max_access = &env->prog->aux->max_rdonly_access;
4545 		} else {
4546 			buf_info = "rdwr";
4547 			max_access = &env->prog->aux->max_rdwr_access;
4548 		}
4549 
4550 		err = check_buffer_access(env, reg, regno, off, size, false,
4551 					  buf_info, max_access);
4552 
4553 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4554 			mark_reg_unknown(env, regs, value_regno);
4555 	} else {
4556 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4557 			reg_type_str(env, reg->type));
4558 		return -EACCES;
4559 	}
4560 
4561 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4562 	    regs[value_regno].type == SCALAR_VALUE) {
4563 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4564 		coerce_reg_to_size(&regs[value_regno], size);
4565 	}
4566 	return err;
4567 }
4568 
4569 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4570 {
4571 	int load_reg;
4572 	int err;
4573 
4574 	switch (insn->imm) {
4575 	case BPF_ADD:
4576 	case BPF_ADD | BPF_FETCH:
4577 	case BPF_AND:
4578 	case BPF_AND | BPF_FETCH:
4579 	case BPF_OR:
4580 	case BPF_OR | BPF_FETCH:
4581 	case BPF_XOR:
4582 	case BPF_XOR | BPF_FETCH:
4583 	case BPF_XCHG:
4584 	case BPF_CMPXCHG:
4585 		break;
4586 	default:
4587 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4588 		return -EINVAL;
4589 	}
4590 
4591 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4592 		verbose(env, "invalid atomic operand size\n");
4593 		return -EINVAL;
4594 	}
4595 
4596 	/* check src1 operand */
4597 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4598 	if (err)
4599 		return err;
4600 
4601 	/* check src2 operand */
4602 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4603 	if (err)
4604 		return err;
4605 
4606 	if (insn->imm == BPF_CMPXCHG) {
4607 		/* Check comparison of R0 with memory location */
4608 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4609 		if (err)
4610 			return err;
4611 	}
4612 
4613 	if (is_pointer_value(env, insn->src_reg)) {
4614 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4615 		return -EACCES;
4616 	}
4617 
4618 	if (is_ctx_reg(env, insn->dst_reg) ||
4619 	    is_pkt_reg(env, insn->dst_reg) ||
4620 	    is_flow_key_reg(env, insn->dst_reg) ||
4621 	    is_sk_reg(env, insn->dst_reg)) {
4622 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4623 			insn->dst_reg,
4624 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4625 		return -EACCES;
4626 	}
4627 
4628 	if (insn->imm & BPF_FETCH) {
4629 		if (insn->imm == BPF_CMPXCHG)
4630 			load_reg = BPF_REG_0;
4631 		else
4632 			load_reg = insn->src_reg;
4633 
4634 		/* check and record load of old value */
4635 		err = check_reg_arg(env, load_reg, DST_OP);
4636 		if (err)
4637 			return err;
4638 	} else {
4639 		/* This instruction accesses a memory location but doesn't
4640 		 * actually load it into a register.
4641 		 */
4642 		load_reg = -1;
4643 	}
4644 
4645 	/* check whether we can read the memory */
4646 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4647 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4648 	if (err)
4649 		return err;
4650 
4651 	/* check whether we can write into the same memory */
4652 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4653 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4654 	if (err)
4655 		return err;
4656 
4657 	return 0;
4658 }
4659 
4660 /* When register 'regno' is used to read the stack (either directly or through
4661  * a helper function) make sure that it's within stack boundary and, depending
4662  * on the access type, that all elements of the stack are initialized.
4663  *
4664  * 'off' includes 'regno->off', but not its dynamic part (if any).
4665  *
4666  * All registers that have been spilled on the stack in the slots within the
4667  * read offsets are marked as read.
4668  */
4669 static int check_stack_range_initialized(
4670 		struct bpf_verifier_env *env, int regno, int off,
4671 		int access_size, bool zero_size_allowed,
4672 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4673 {
4674 	struct bpf_reg_state *reg = reg_state(env, regno);
4675 	struct bpf_func_state *state = func(env, reg);
4676 	int err, min_off, max_off, i, j, slot, spi;
4677 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4678 	enum bpf_access_type bounds_check_type;
4679 	/* Some accesses can write anything into the stack, others are
4680 	 * read-only.
4681 	 */
4682 	bool clobber = false;
4683 
4684 	if (access_size == 0 && !zero_size_allowed) {
4685 		verbose(env, "invalid zero-sized read\n");
4686 		return -EACCES;
4687 	}
4688 
4689 	if (type == ACCESS_HELPER) {
4690 		/* The bounds checks for writes are more permissive than for
4691 		 * reads. However, if raw_mode is not set, we'll do extra
4692 		 * checks below.
4693 		 */
4694 		bounds_check_type = BPF_WRITE;
4695 		clobber = true;
4696 	} else {
4697 		bounds_check_type = BPF_READ;
4698 	}
4699 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4700 					       type, bounds_check_type);
4701 	if (err)
4702 		return err;
4703 
4704 
4705 	if (tnum_is_const(reg->var_off)) {
4706 		min_off = max_off = reg->var_off.value + off;
4707 	} else {
4708 		/* Variable offset is prohibited for unprivileged mode for
4709 		 * simplicity since it requires corresponding support in
4710 		 * Spectre masking for stack ALU.
4711 		 * See also retrieve_ptr_limit().
4712 		 */
4713 		if (!env->bypass_spec_v1) {
4714 			char tn_buf[48];
4715 
4716 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4717 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4718 				regno, err_extra, tn_buf);
4719 			return -EACCES;
4720 		}
4721 		/* Only initialized buffer on stack is allowed to be accessed
4722 		 * with variable offset. With uninitialized buffer it's hard to
4723 		 * guarantee that whole memory is marked as initialized on
4724 		 * helper return since specific bounds are unknown what may
4725 		 * cause uninitialized stack leaking.
4726 		 */
4727 		if (meta && meta->raw_mode)
4728 			meta = NULL;
4729 
4730 		min_off = reg->smin_value + off;
4731 		max_off = reg->smax_value + off;
4732 	}
4733 
4734 	if (meta && meta->raw_mode) {
4735 		meta->access_size = access_size;
4736 		meta->regno = regno;
4737 		return 0;
4738 	}
4739 
4740 	for (i = min_off; i < max_off + access_size; i++) {
4741 		u8 *stype;
4742 
4743 		slot = -i - 1;
4744 		spi = slot / BPF_REG_SIZE;
4745 		if (state->allocated_stack <= slot)
4746 			goto err;
4747 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4748 		if (*stype == STACK_MISC)
4749 			goto mark;
4750 		if (*stype == STACK_ZERO) {
4751 			if (clobber) {
4752 				/* helper can write anything into the stack */
4753 				*stype = STACK_MISC;
4754 			}
4755 			goto mark;
4756 		}
4757 
4758 		if (is_spilled_reg(&state->stack[spi]) &&
4759 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4760 			goto mark;
4761 
4762 		if (is_spilled_reg(&state->stack[spi]) &&
4763 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4764 		     env->allow_ptr_leaks)) {
4765 			if (clobber) {
4766 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4767 				for (j = 0; j < BPF_REG_SIZE; j++)
4768 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4769 			}
4770 			goto mark;
4771 		}
4772 
4773 err:
4774 		if (tnum_is_const(reg->var_off)) {
4775 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4776 				err_extra, regno, min_off, i - min_off, access_size);
4777 		} else {
4778 			char tn_buf[48];
4779 
4780 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4781 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4782 				err_extra, regno, tn_buf, i - min_off, access_size);
4783 		}
4784 		return -EACCES;
4785 mark:
4786 		/* reading any byte out of 8-byte 'spill_slot' will cause
4787 		 * the whole slot to be marked as 'read'
4788 		 */
4789 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4790 			      state->stack[spi].spilled_ptr.parent,
4791 			      REG_LIVE_READ64);
4792 	}
4793 	return update_stack_depth(env, state, min_off);
4794 }
4795 
4796 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4797 				   int access_size, bool zero_size_allowed,
4798 				   struct bpf_call_arg_meta *meta)
4799 {
4800 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4801 	const char *buf_info;
4802 	u32 *max_access;
4803 
4804 	switch (base_type(reg->type)) {
4805 	case PTR_TO_PACKET:
4806 	case PTR_TO_PACKET_META:
4807 		return check_packet_access(env, regno, reg->off, access_size,
4808 					   zero_size_allowed);
4809 	case PTR_TO_MAP_KEY:
4810 		return check_mem_region_access(env, regno, reg->off, access_size,
4811 					       reg->map_ptr->key_size, false);
4812 	case PTR_TO_MAP_VALUE:
4813 		if (check_map_access_type(env, regno, reg->off, access_size,
4814 					  meta && meta->raw_mode ? BPF_WRITE :
4815 					  BPF_READ))
4816 			return -EACCES;
4817 		return check_map_access(env, regno, reg->off, access_size,
4818 					zero_size_allowed);
4819 	case PTR_TO_MEM:
4820 		return check_mem_region_access(env, regno, reg->off,
4821 					       access_size, reg->mem_size,
4822 					       zero_size_allowed);
4823 	case PTR_TO_BUF:
4824 		if (type_is_rdonly_mem(reg->type)) {
4825 			if (meta && meta->raw_mode)
4826 				return -EACCES;
4827 
4828 			buf_info = "rdonly";
4829 			max_access = &env->prog->aux->max_rdonly_access;
4830 		} else {
4831 			buf_info = "rdwr";
4832 			max_access = &env->prog->aux->max_rdwr_access;
4833 		}
4834 		return check_buffer_access(env, reg, regno, reg->off,
4835 					   access_size, zero_size_allowed,
4836 					   buf_info, max_access);
4837 	case PTR_TO_STACK:
4838 		return check_stack_range_initialized(
4839 				env,
4840 				regno, reg->off, access_size,
4841 				zero_size_allowed, ACCESS_HELPER, meta);
4842 	default: /* scalar_value or invalid ptr */
4843 		/* Allow zero-byte read from NULL, regardless of pointer type */
4844 		if (zero_size_allowed && access_size == 0 &&
4845 		    register_is_null(reg))
4846 			return 0;
4847 
4848 		verbose(env, "R%d type=%s ", regno,
4849 			reg_type_str(env, reg->type));
4850 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4851 		return -EACCES;
4852 	}
4853 }
4854 
4855 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4856 		   u32 regno, u32 mem_size)
4857 {
4858 	if (register_is_null(reg))
4859 		return 0;
4860 
4861 	if (type_may_be_null(reg->type)) {
4862 		/* Assuming that the register contains a value check if the memory
4863 		 * access is safe. Temporarily save and restore the register's state as
4864 		 * the conversion shouldn't be visible to a caller.
4865 		 */
4866 		const struct bpf_reg_state saved_reg = *reg;
4867 		int rv;
4868 
4869 		mark_ptr_not_null_reg(reg);
4870 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4871 		*reg = saved_reg;
4872 		return rv;
4873 	}
4874 
4875 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4876 }
4877 
4878 /* Implementation details:
4879  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4880  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4881  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4882  * value_or_null->value transition, since the verifier only cares about
4883  * the range of access to valid map value pointer and doesn't care about actual
4884  * address of the map element.
4885  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4886  * reg->id > 0 after value_or_null->value transition. By doing so
4887  * two bpf_map_lookups will be considered two different pointers that
4888  * point to different bpf_spin_locks.
4889  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4890  * dead-locks.
4891  * Since only one bpf_spin_lock is allowed the checks are simpler than
4892  * reg_is_refcounted() logic. The verifier needs to remember only
4893  * one spin_lock instead of array of acquired_refs.
4894  * cur_state->active_spin_lock remembers which map value element got locked
4895  * and clears it after bpf_spin_unlock.
4896  */
4897 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4898 			     bool is_lock)
4899 {
4900 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4901 	struct bpf_verifier_state *cur = env->cur_state;
4902 	bool is_const = tnum_is_const(reg->var_off);
4903 	struct bpf_map *map = reg->map_ptr;
4904 	u64 val = reg->var_off.value;
4905 
4906 	if (!is_const) {
4907 		verbose(env,
4908 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4909 			regno);
4910 		return -EINVAL;
4911 	}
4912 	if (!map->btf) {
4913 		verbose(env,
4914 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4915 			map->name);
4916 		return -EINVAL;
4917 	}
4918 	if (!map_value_has_spin_lock(map)) {
4919 		if (map->spin_lock_off == -E2BIG)
4920 			verbose(env,
4921 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4922 				map->name);
4923 		else if (map->spin_lock_off == -ENOENT)
4924 			verbose(env,
4925 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4926 				map->name);
4927 		else
4928 			verbose(env,
4929 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4930 				map->name);
4931 		return -EINVAL;
4932 	}
4933 	if (map->spin_lock_off != val + reg->off) {
4934 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4935 			val + reg->off);
4936 		return -EINVAL;
4937 	}
4938 	if (is_lock) {
4939 		if (cur->active_spin_lock) {
4940 			verbose(env,
4941 				"Locking two bpf_spin_locks are not allowed\n");
4942 			return -EINVAL;
4943 		}
4944 		cur->active_spin_lock = reg->id;
4945 	} else {
4946 		if (!cur->active_spin_lock) {
4947 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4948 			return -EINVAL;
4949 		}
4950 		if (cur->active_spin_lock != reg->id) {
4951 			verbose(env, "bpf_spin_unlock of different lock\n");
4952 			return -EINVAL;
4953 		}
4954 		cur->active_spin_lock = 0;
4955 	}
4956 	return 0;
4957 }
4958 
4959 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4960 			      struct bpf_call_arg_meta *meta)
4961 {
4962 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4963 	bool is_const = tnum_is_const(reg->var_off);
4964 	struct bpf_map *map = reg->map_ptr;
4965 	u64 val = reg->var_off.value;
4966 
4967 	if (!is_const) {
4968 		verbose(env,
4969 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4970 			regno);
4971 		return -EINVAL;
4972 	}
4973 	if (!map->btf) {
4974 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4975 			map->name);
4976 		return -EINVAL;
4977 	}
4978 	if (!map_value_has_timer(map)) {
4979 		if (map->timer_off == -E2BIG)
4980 			verbose(env,
4981 				"map '%s' has more than one 'struct bpf_timer'\n",
4982 				map->name);
4983 		else if (map->timer_off == -ENOENT)
4984 			verbose(env,
4985 				"map '%s' doesn't have 'struct bpf_timer'\n",
4986 				map->name);
4987 		else
4988 			verbose(env,
4989 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4990 				map->name);
4991 		return -EINVAL;
4992 	}
4993 	if (map->timer_off != val + reg->off) {
4994 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4995 			val + reg->off, map->timer_off);
4996 		return -EINVAL;
4997 	}
4998 	if (meta->map_ptr) {
4999 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5000 		return -EFAULT;
5001 	}
5002 	meta->map_uid = reg->map_uid;
5003 	meta->map_ptr = map;
5004 	return 0;
5005 }
5006 
5007 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5008 {
5009 	return base_type(type) == ARG_PTR_TO_MEM ||
5010 	       base_type(type) == ARG_PTR_TO_UNINIT_MEM;
5011 }
5012 
5013 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5014 {
5015 	return type == ARG_CONST_SIZE ||
5016 	       type == ARG_CONST_SIZE_OR_ZERO;
5017 }
5018 
5019 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5020 {
5021 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5022 }
5023 
5024 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5025 {
5026 	return type == ARG_PTR_TO_INT ||
5027 	       type == ARG_PTR_TO_LONG;
5028 }
5029 
5030 static int int_ptr_type_to_size(enum bpf_arg_type type)
5031 {
5032 	if (type == ARG_PTR_TO_INT)
5033 		return sizeof(u32);
5034 	else if (type == ARG_PTR_TO_LONG)
5035 		return sizeof(u64);
5036 
5037 	return -EINVAL;
5038 }
5039 
5040 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5041 				 const struct bpf_call_arg_meta *meta,
5042 				 enum bpf_arg_type *arg_type)
5043 {
5044 	if (!meta->map_ptr) {
5045 		/* kernel subsystem misconfigured verifier */
5046 		verbose(env, "invalid map_ptr to access map->type\n");
5047 		return -EACCES;
5048 	}
5049 
5050 	switch (meta->map_ptr->map_type) {
5051 	case BPF_MAP_TYPE_SOCKMAP:
5052 	case BPF_MAP_TYPE_SOCKHASH:
5053 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5054 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5055 		} else {
5056 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5057 			return -EINVAL;
5058 		}
5059 		break;
5060 	case BPF_MAP_TYPE_BLOOM_FILTER:
5061 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5062 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5063 		break;
5064 	default:
5065 		break;
5066 	}
5067 	return 0;
5068 }
5069 
5070 struct bpf_reg_types {
5071 	const enum bpf_reg_type types[10];
5072 	u32 *btf_id;
5073 };
5074 
5075 static const struct bpf_reg_types map_key_value_types = {
5076 	.types = {
5077 		PTR_TO_STACK,
5078 		PTR_TO_PACKET,
5079 		PTR_TO_PACKET_META,
5080 		PTR_TO_MAP_KEY,
5081 		PTR_TO_MAP_VALUE,
5082 	},
5083 };
5084 
5085 static const struct bpf_reg_types sock_types = {
5086 	.types = {
5087 		PTR_TO_SOCK_COMMON,
5088 		PTR_TO_SOCKET,
5089 		PTR_TO_TCP_SOCK,
5090 		PTR_TO_XDP_SOCK,
5091 	},
5092 };
5093 
5094 #ifdef CONFIG_NET
5095 static const struct bpf_reg_types btf_id_sock_common_types = {
5096 	.types = {
5097 		PTR_TO_SOCK_COMMON,
5098 		PTR_TO_SOCKET,
5099 		PTR_TO_TCP_SOCK,
5100 		PTR_TO_XDP_SOCK,
5101 		PTR_TO_BTF_ID,
5102 	},
5103 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5104 };
5105 #endif
5106 
5107 static const struct bpf_reg_types mem_types = {
5108 	.types = {
5109 		PTR_TO_STACK,
5110 		PTR_TO_PACKET,
5111 		PTR_TO_PACKET_META,
5112 		PTR_TO_MAP_KEY,
5113 		PTR_TO_MAP_VALUE,
5114 		PTR_TO_MEM,
5115 		PTR_TO_BUF,
5116 	},
5117 };
5118 
5119 static const struct bpf_reg_types int_ptr_types = {
5120 	.types = {
5121 		PTR_TO_STACK,
5122 		PTR_TO_PACKET,
5123 		PTR_TO_PACKET_META,
5124 		PTR_TO_MAP_KEY,
5125 		PTR_TO_MAP_VALUE,
5126 	},
5127 };
5128 
5129 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5130 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5131 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5132 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5133 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5134 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5135 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5136 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5137 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5138 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5139 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5140 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5141 
5142 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5143 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5144 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5145 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5146 	[ARG_CONST_SIZE]		= &scalar_types,
5147 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5148 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5149 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5150 	[ARG_PTR_TO_CTX]		= &context_types,
5151 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5152 #ifdef CONFIG_NET
5153 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5154 #endif
5155 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5156 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5157 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5158 	[ARG_PTR_TO_MEM]		= &mem_types,
5159 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5160 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5161 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5162 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5163 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5164 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5165 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5166 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5167 	[ARG_PTR_TO_TIMER]		= &timer_types,
5168 };
5169 
5170 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5171 			  enum bpf_arg_type arg_type,
5172 			  const u32 *arg_btf_id)
5173 {
5174 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5175 	enum bpf_reg_type expected, type = reg->type;
5176 	const struct bpf_reg_types *compatible;
5177 	int i, j;
5178 
5179 	compatible = compatible_reg_types[base_type(arg_type)];
5180 	if (!compatible) {
5181 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5182 		return -EFAULT;
5183 	}
5184 
5185 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5186 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5187 	 *
5188 	 * Same for MAYBE_NULL:
5189 	 *
5190 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5191 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5192 	 *
5193 	 * Therefore we fold these flags depending on the arg_type before comparison.
5194 	 */
5195 	if (arg_type & MEM_RDONLY)
5196 		type &= ~MEM_RDONLY;
5197 	if (arg_type & PTR_MAYBE_NULL)
5198 		type &= ~PTR_MAYBE_NULL;
5199 
5200 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5201 		expected = compatible->types[i];
5202 		if (expected == NOT_INIT)
5203 			break;
5204 
5205 		if (type == expected)
5206 			goto found;
5207 	}
5208 
5209 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5210 	for (j = 0; j + 1 < i; j++)
5211 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5212 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5213 	return -EACCES;
5214 
5215 found:
5216 	if (reg->type == PTR_TO_BTF_ID) {
5217 		if (!arg_btf_id) {
5218 			if (!compatible->btf_id) {
5219 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5220 				return -EFAULT;
5221 			}
5222 			arg_btf_id = compatible->btf_id;
5223 		}
5224 
5225 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5226 					  btf_vmlinux, *arg_btf_id)) {
5227 			verbose(env, "R%d is of type %s but %s is expected\n",
5228 				regno, kernel_type_name(reg->btf, reg->btf_id),
5229 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5230 			return -EACCES;
5231 		}
5232 
5233 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5234 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5235 				regno);
5236 			return -EACCES;
5237 		}
5238 	}
5239 
5240 	return 0;
5241 }
5242 
5243 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5244 			  struct bpf_call_arg_meta *meta,
5245 			  const struct bpf_func_proto *fn)
5246 {
5247 	u32 regno = BPF_REG_1 + arg;
5248 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5249 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5250 	enum bpf_reg_type type = reg->type;
5251 	int err = 0;
5252 
5253 	if (arg_type == ARG_DONTCARE)
5254 		return 0;
5255 
5256 	err = check_reg_arg(env, regno, SRC_OP);
5257 	if (err)
5258 		return err;
5259 
5260 	if (arg_type == ARG_ANYTHING) {
5261 		if (is_pointer_value(env, regno)) {
5262 			verbose(env, "R%d leaks addr into helper function\n",
5263 				regno);
5264 			return -EACCES;
5265 		}
5266 		return 0;
5267 	}
5268 
5269 	if (type_is_pkt_pointer(type) &&
5270 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5271 		verbose(env, "helper access to the packet is not allowed\n");
5272 		return -EACCES;
5273 	}
5274 
5275 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5276 	    base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5277 		err = resolve_map_arg_type(env, meta, &arg_type);
5278 		if (err)
5279 			return err;
5280 	}
5281 
5282 	if (register_is_null(reg) && type_may_be_null(arg_type))
5283 		/* A NULL register has a SCALAR_VALUE type, so skip
5284 		 * type checking.
5285 		 */
5286 		goto skip_type_check;
5287 
5288 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5289 	if (err)
5290 		return err;
5291 
5292 	if (type == PTR_TO_CTX) {
5293 		err = check_ctx_reg(env, reg, regno);
5294 		if (err < 0)
5295 			return err;
5296 	}
5297 
5298 skip_type_check:
5299 	if (reg->ref_obj_id) {
5300 		if (meta->ref_obj_id) {
5301 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5302 				regno, reg->ref_obj_id,
5303 				meta->ref_obj_id);
5304 			return -EFAULT;
5305 		}
5306 		meta->ref_obj_id = reg->ref_obj_id;
5307 	}
5308 
5309 	if (arg_type == ARG_CONST_MAP_PTR) {
5310 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5311 		if (meta->map_ptr) {
5312 			/* Use map_uid (which is unique id of inner map) to reject:
5313 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5314 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5315 			 * if (inner_map1 && inner_map2) {
5316 			 *     timer = bpf_map_lookup_elem(inner_map1);
5317 			 *     if (timer)
5318 			 *         // mismatch would have been allowed
5319 			 *         bpf_timer_init(timer, inner_map2);
5320 			 * }
5321 			 *
5322 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5323 			 */
5324 			if (meta->map_ptr != reg->map_ptr ||
5325 			    meta->map_uid != reg->map_uid) {
5326 				verbose(env,
5327 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5328 					meta->map_uid, reg->map_uid);
5329 				return -EINVAL;
5330 			}
5331 		}
5332 		meta->map_ptr = reg->map_ptr;
5333 		meta->map_uid = reg->map_uid;
5334 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5335 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5336 		 * check that [key, key + map->key_size) are within
5337 		 * stack limits and initialized
5338 		 */
5339 		if (!meta->map_ptr) {
5340 			/* in function declaration map_ptr must come before
5341 			 * map_key, so that it's verified and known before
5342 			 * we have to check map_key here. Otherwise it means
5343 			 * that kernel subsystem misconfigured verifier
5344 			 */
5345 			verbose(env, "invalid map_ptr to access map->key\n");
5346 			return -EACCES;
5347 		}
5348 		err = check_helper_mem_access(env, regno,
5349 					      meta->map_ptr->key_size, false,
5350 					      NULL);
5351 	} else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5352 		   base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5353 		if (type_may_be_null(arg_type) && register_is_null(reg))
5354 			return 0;
5355 
5356 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5357 		 * check [value, value + map->value_size) validity
5358 		 */
5359 		if (!meta->map_ptr) {
5360 			/* kernel subsystem misconfigured verifier */
5361 			verbose(env, "invalid map_ptr to access map->value\n");
5362 			return -EACCES;
5363 		}
5364 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5365 		err = check_helper_mem_access(env, regno,
5366 					      meta->map_ptr->value_size, false,
5367 					      meta);
5368 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5369 		if (!reg->btf_id) {
5370 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5371 			return -EACCES;
5372 		}
5373 		meta->ret_btf = reg->btf;
5374 		meta->ret_btf_id = reg->btf_id;
5375 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5376 		if (meta->func_id == BPF_FUNC_spin_lock) {
5377 			if (process_spin_lock(env, regno, true))
5378 				return -EACCES;
5379 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5380 			if (process_spin_lock(env, regno, false))
5381 				return -EACCES;
5382 		} else {
5383 			verbose(env, "verifier internal error\n");
5384 			return -EFAULT;
5385 		}
5386 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5387 		if (process_timer_func(env, regno, meta))
5388 			return -EACCES;
5389 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5390 		meta->subprogno = reg->subprogno;
5391 	} else if (arg_type_is_mem_ptr(arg_type)) {
5392 		/* The access to this pointer is only checked when we hit the
5393 		 * next is_mem_size argument below.
5394 		 */
5395 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5396 	} else if (arg_type_is_mem_size(arg_type)) {
5397 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5398 
5399 		/* This is used to refine r0 return value bounds for helpers
5400 		 * that enforce this value as an upper bound on return values.
5401 		 * See do_refine_retval_range() for helpers that can refine
5402 		 * the return value. C type of helper is u32 so we pull register
5403 		 * bound from umax_value however, if negative verifier errors
5404 		 * out. Only upper bounds can be learned because retval is an
5405 		 * int type and negative retvals are allowed.
5406 		 */
5407 		meta->msize_max_value = reg->umax_value;
5408 
5409 		/* The register is SCALAR_VALUE; the access check
5410 		 * happens using its boundaries.
5411 		 */
5412 		if (!tnum_is_const(reg->var_off))
5413 			/* For unprivileged variable accesses, disable raw
5414 			 * mode so that the program is required to
5415 			 * initialize all the memory that the helper could
5416 			 * just partially fill up.
5417 			 */
5418 			meta = NULL;
5419 
5420 		if (reg->smin_value < 0) {
5421 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5422 				regno);
5423 			return -EACCES;
5424 		}
5425 
5426 		if (reg->umin_value == 0) {
5427 			err = check_helper_mem_access(env, regno - 1, 0,
5428 						      zero_size_allowed,
5429 						      meta);
5430 			if (err)
5431 				return err;
5432 		}
5433 
5434 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5435 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5436 				regno);
5437 			return -EACCES;
5438 		}
5439 		err = check_helper_mem_access(env, regno - 1,
5440 					      reg->umax_value,
5441 					      zero_size_allowed, meta);
5442 		if (!err)
5443 			err = mark_chain_precision(env, regno);
5444 	} else if (arg_type_is_alloc_size(arg_type)) {
5445 		if (!tnum_is_const(reg->var_off)) {
5446 			verbose(env, "R%d is not a known constant'\n",
5447 				regno);
5448 			return -EACCES;
5449 		}
5450 		meta->mem_size = reg->var_off.value;
5451 	} else if (arg_type_is_int_ptr(arg_type)) {
5452 		int size = int_ptr_type_to_size(arg_type);
5453 
5454 		err = check_helper_mem_access(env, regno, size, false, meta);
5455 		if (err)
5456 			return err;
5457 		err = check_ptr_alignment(env, reg, 0, size, true);
5458 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5459 		struct bpf_map *map = reg->map_ptr;
5460 		int map_off;
5461 		u64 map_addr;
5462 		char *str_ptr;
5463 
5464 		if (!bpf_map_is_rdonly(map)) {
5465 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5466 			return -EACCES;
5467 		}
5468 
5469 		if (!tnum_is_const(reg->var_off)) {
5470 			verbose(env, "R%d is not a constant address'\n", regno);
5471 			return -EACCES;
5472 		}
5473 
5474 		if (!map->ops->map_direct_value_addr) {
5475 			verbose(env, "no direct value access support for this map type\n");
5476 			return -EACCES;
5477 		}
5478 
5479 		err = check_map_access(env, regno, reg->off,
5480 				       map->value_size - reg->off, false);
5481 		if (err)
5482 			return err;
5483 
5484 		map_off = reg->off + reg->var_off.value;
5485 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5486 		if (err) {
5487 			verbose(env, "direct value access on string failed\n");
5488 			return err;
5489 		}
5490 
5491 		str_ptr = (char *)(long)(map_addr);
5492 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5493 			verbose(env, "string is not zero-terminated\n");
5494 			return -EINVAL;
5495 		}
5496 	}
5497 
5498 	return err;
5499 }
5500 
5501 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5502 {
5503 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5504 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5505 
5506 	if (func_id != BPF_FUNC_map_update_elem)
5507 		return false;
5508 
5509 	/* It's not possible to get access to a locked struct sock in these
5510 	 * contexts, so updating is safe.
5511 	 */
5512 	switch (type) {
5513 	case BPF_PROG_TYPE_TRACING:
5514 		if (eatype == BPF_TRACE_ITER)
5515 			return true;
5516 		break;
5517 	case BPF_PROG_TYPE_SOCKET_FILTER:
5518 	case BPF_PROG_TYPE_SCHED_CLS:
5519 	case BPF_PROG_TYPE_SCHED_ACT:
5520 	case BPF_PROG_TYPE_XDP:
5521 	case BPF_PROG_TYPE_SK_REUSEPORT:
5522 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5523 	case BPF_PROG_TYPE_SK_LOOKUP:
5524 		return true;
5525 	default:
5526 		break;
5527 	}
5528 
5529 	verbose(env, "cannot update sockmap in this context\n");
5530 	return false;
5531 }
5532 
5533 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5534 {
5535 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5536 }
5537 
5538 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5539 					struct bpf_map *map, int func_id)
5540 {
5541 	if (!map)
5542 		return 0;
5543 
5544 	/* We need a two way check, first is from map perspective ... */
5545 	switch (map->map_type) {
5546 	case BPF_MAP_TYPE_PROG_ARRAY:
5547 		if (func_id != BPF_FUNC_tail_call)
5548 			goto error;
5549 		break;
5550 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5551 		if (func_id != BPF_FUNC_perf_event_read &&
5552 		    func_id != BPF_FUNC_perf_event_output &&
5553 		    func_id != BPF_FUNC_skb_output &&
5554 		    func_id != BPF_FUNC_perf_event_read_value &&
5555 		    func_id != BPF_FUNC_xdp_output)
5556 			goto error;
5557 		break;
5558 	case BPF_MAP_TYPE_RINGBUF:
5559 		if (func_id != BPF_FUNC_ringbuf_output &&
5560 		    func_id != BPF_FUNC_ringbuf_reserve &&
5561 		    func_id != BPF_FUNC_ringbuf_query)
5562 			goto error;
5563 		break;
5564 	case BPF_MAP_TYPE_STACK_TRACE:
5565 		if (func_id != BPF_FUNC_get_stackid)
5566 			goto error;
5567 		break;
5568 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5569 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5570 		    func_id != BPF_FUNC_current_task_under_cgroup)
5571 			goto error;
5572 		break;
5573 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5574 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5575 		if (func_id != BPF_FUNC_get_local_storage)
5576 			goto error;
5577 		break;
5578 	case BPF_MAP_TYPE_DEVMAP:
5579 	case BPF_MAP_TYPE_DEVMAP_HASH:
5580 		if (func_id != BPF_FUNC_redirect_map &&
5581 		    func_id != BPF_FUNC_map_lookup_elem)
5582 			goto error;
5583 		break;
5584 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5585 	 * appear.
5586 	 */
5587 	case BPF_MAP_TYPE_CPUMAP:
5588 		if (func_id != BPF_FUNC_redirect_map)
5589 			goto error;
5590 		break;
5591 	case BPF_MAP_TYPE_XSKMAP:
5592 		if (func_id != BPF_FUNC_redirect_map &&
5593 		    func_id != BPF_FUNC_map_lookup_elem)
5594 			goto error;
5595 		break;
5596 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5597 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5598 		if (func_id != BPF_FUNC_map_lookup_elem)
5599 			goto error;
5600 		break;
5601 	case BPF_MAP_TYPE_SOCKMAP:
5602 		if (func_id != BPF_FUNC_sk_redirect_map &&
5603 		    func_id != BPF_FUNC_sock_map_update &&
5604 		    func_id != BPF_FUNC_map_delete_elem &&
5605 		    func_id != BPF_FUNC_msg_redirect_map &&
5606 		    func_id != BPF_FUNC_sk_select_reuseport &&
5607 		    func_id != BPF_FUNC_map_lookup_elem &&
5608 		    !may_update_sockmap(env, func_id))
5609 			goto error;
5610 		break;
5611 	case BPF_MAP_TYPE_SOCKHASH:
5612 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5613 		    func_id != BPF_FUNC_sock_hash_update &&
5614 		    func_id != BPF_FUNC_map_delete_elem &&
5615 		    func_id != BPF_FUNC_msg_redirect_hash &&
5616 		    func_id != BPF_FUNC_sk_select_reuseport &&
5617 		    func_id != BPF_FUNC_map_lookup_elem &&
5618 		    !may_update_sockmap(env, func_id))
5619 			goto error;
5620 		break;
5621 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5622 		if (func_id != BPF_FUNC_sk_select_reuseport)
5623 			goto error;
5624 		break;
5625 	case BPF_MAP_TYPE_QUEUE:
5626 	case BPF_MAP_TYPE_STACK:
5627 		if (func_id != BPF_FUNC_map_peek_elem &&
5628 		    func_id != BPF_FUNC_map_pop_elem &&
5629 		    func_id != BPF_FUNC_map_push_elem)
5630 			goto error;
5631 		break;
5632 	case BPF_MAP_TYPE_SK_STORAGE:
5633 		if (func_id != BPF_FUNC_sk_storage_get &&
5634 		    func_id != BPF_FUNC_sk_storage_delete)
5635 			goto error;
5636 		break;
5637 	case BPF_MAP_TYPE_INODE_STORAGE:
5638 		if (func_id != BPF_FUNC_inode_storage_get &&
5639 		    func_id != BPF_FUNC_inode_storage_delete)
5640 			goto error;
5641 		break;
5642 	case BPF_MAP_TYPE_TASK_STORAGE:
5643 		if (func_id != BPF_FUNC_task_storage_get &&
5644 		    func_id != BPF_FUNC_task_storage_delete)
5645 			goto error;
5646 		break;
5647 	case BPF_MAP_TYPE_BLOOM_FILTER:
5648 		if (func_id != BPF_FUNC_map_peek_elem &&
5649 		    func_id != BPF_FUNC_map_push_elem)
5650 			goto error;
5651 		break;
5652 	default:
5653 		break;
5654 	}
5655 
5656 	/* ... and second from the function itself. */
5657 	switch (func_id) {
5658 	case BPF_FUNC_tail_call:
5659 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5660 			goto error;
5661 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5662 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5663 			return -EINVAL;
5664 		}
5665 		break;
5666 	case BPF_FUNC_perf_event_read:
5667 	case BPF_FUNC_perf_event_output:
5668 	case BPF_FUNC_perf_event_read_value:
5669 	case BPF_FUNC_skb_output:
5670 	case BPF_FUNC_xdp_output:
5671 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5672 			goto error;
5673 		break;
5674 	case BPF_FUNC_ringbuf_output:
5675 	case BPF_FUNC_ringbuf_reserve:
5676 	case BPF_FUNC_ringbuf_query:
5677 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5678 			goto error;
5679 		break;
5680 	case BPF_FUNC_get_stackid:
5681 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5682 			goto error;
5683 		break;
5684 	case BPF_FUNC_current_task_under_cgroup:
5685 	case BPF_FUNC_skb_under_cgroup:
5686 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5687 			goto error;
5688 		break;
5689 	case BPF_FUNC_redirect_map:
5690 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5691 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5692 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5693 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5694 			goto error;
5695 		break;
5696 	case BPF_FUNC_sk_redirect_map:
5697 	case BPF_FUNC_msg_redirect_map:
5698 	case BPF_FUNC_sock_map_update:
5699 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5700 			goto error;
5701 		break;
5702 	case BPF_FUNC_sk_redirect_hash:
5703 	case BPF_FUNC_msg_redirect_hash:
5704 	case BPF_FUNC_sock_hash_update:
5705 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5706 			goto error;
5707 		break;
5708 	case BPF_FUNC_get_local_storage:
5709 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5710 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5711 			goto error;
5712 		break;
5713 	case BPF_FUNC_sk_select_reuseport:
5714 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5715 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5716 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5717 			goto error;
5718 		break;
5719 	case BPF_FUNC_map_pop_elem:
5720 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5721 		    map->map_type != BPF_MAP_TYPE_STACK)
5722 			goto error;
5723 		break;
5724 	case BPF_FUNC_map_peek_elem:
5725 	case BPF_FUNC_map_push_elem:
5726 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5727 		    map->map_type != BPF_MAP_TYPE_STACK &&
5728 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5729 			goto error;
5730 		break;
5731 	case BPF_FUNC_sk_storage_get:
5732 	case BPF_FUNC_sk_storage_delete:
5733 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5734 			goto error;
5735 		break;
5736 	case BPF_FUNC_inode_storage_get:
5737 	case BPF_FUNC_inode_storage_delete:
5738 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5739 			goto error;
5740 		break;
5741 	case BPF_FUNC_task_storage_get:
5742 	case BPF_FUNC_task_storage_delete:
5743 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5744 			goto error;
5745 		break;
5746 	default:
5747 		break;
5748 	}
5749 
5750 	return 0;
5751 error:
5752 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5753 		map->map_type, func_id_name(func_id), func_id);
5754 	return -EINVAL;
5755 }
5756 
5757 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5758 {
5759 	int count = 0;
5760 
5761 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5762 		count++;
5763 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5764 		count++;
5765 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5766 		count++;
5767 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5768 		count++;
5769 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5770 		count++;
5771 
5772 	/* We only support one arg being in raw mode at the moment,
5773 	 * which is sufficient for the helper functions we have
5774 	 * right now.
5775 	 */
5776 	return count <= 1;
5777 }
5778 
5779 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5780 				    enum bpf_arg_type arg_next)
5781 {
5782 	return (arg_type_is_mem_ptr(arg_curr) &&
5783 	        !arg_type_is_mem_size(arg_next)) ||
5784 	       (!arg_type_is_mem_ptr(arg_curr) &&
5785 		arg_type_is_mem_size(arg_next));
5786 }
5787 
5788 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5789 {
5790 	/* bpf_xxx(..., buf, len) call will access 'len'
5791 	 * bytes from memory 'buf'. Both arg types need
5792 	 * to be paired, so make sure there's no buggy
5793 	 * helper function specification.
5794 	 */
5795 	if (arg_type_is_mem_size(fn->arg1_type) ||
5796 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5797 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5798 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5799 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5800 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5801 		return false;
5802 
5803 	return true;
5804 }
5805 
5806 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5807 {
5808 	int count = 0;
5809 
5810 	if (arg_type_may_be_refcounted(fn->arg1_type))
5811 		count++;
5812 	if (arg_type_may_be_refcounted(fn->arg2_type))
5813 		count++;
5814 	if (arg_type_may_be_refcounted(fn->arg3_type))
5815 		count++;
5816 	if (arg_type_may_be_refcounted(fn->arg4_type))
5817 		count++;
5818 	if (arg_type_may_be_refcounted(fn->arg5_type))
5819 		count++;
5820 
5821 	/* A reference acquiring function cannot acquire
5822 	 * another refcounted ptr.
5823 	 */
5824 	if (may_be_acquire_function(func_id) && count)
5825 		return false;
5826 
5827 	/* We only support one arg being unreferenced at the moment,
5828 	 * which is sufficient for the helper functions we have right now.
5829 	 */
5830 	return count <= 1;
5831 }
5832 
5833 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5834 {
5835 	int i;
5836 
5837 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5838 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5839 			return false;
5840 
5841 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5842 			return false;
5843 	}
5844 
5845 	return true;
5846 }
5847 
5848 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5849 {
5850 	return check_raw_mode_ok(fn) &&
5851 	       check_arg_pair_ok(fn) &&
5852 	       check_btf_id_ok(fn) &&
5853 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5854 }
5855 
5856 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5857  * are now invalid, so turn them into unknown SCALAR_VALUE.
5858  */
5859 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5860 				     struct bpf_func_state *state)
5861 {
5862 	struct bpf_reg_state *regs = state->regs, *reg;
5863 	int i;
5864 
5865 	for (i = 0; i < MAX_BPF_REG; i++)
5866 		if (reg_is_pkt_pointer_any(&regs[i]))
5867 			mark_reg_unknown(env, regs, i);
5868 
5869 	bpf_for_each_spilled_reg(i, state, reg) {
5870 		if (!reg)
5871 			continue;
5872 		if (reg_is_pkt_pointer_any(reg))
5873 			__mark_reg_unknown(env, reg);
5874 	}
5875 }
5876 
5877 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5878 {
5879 	struct bpf_verifier_state *vstate = env->cur_state;
5880 	int i;
5881 
5882 	for (i = 0; i <= vstate->curframe; i++)
5883 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5884 }
5885 
5886 enum {
5887 	AT_PKT_END = -1,
5888 	BEYOND_PKT_END = -2,
5889 };
5890 
5891 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5892 {
5893 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5894 	struct bpf_reg_state *reg = &state->regs[regn];
5895 
5896 	if (reg->type != PTR_TO_PACKET)
5897 		/* PTR_TO_PACKET_META is not supported yet */
5898 		return;
5899 
5900 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5901 	 * How far beyond pkt_end it goes is unknown.
5902 	 * if (!range_open) it's the case of pkt >= pkt_end
5903 	 * if (range_open) it's the case of pkt > pkt_end
5904 	 * hence this pointer is at least 1 byte bigger than pkt_end
5905 	 */
5906 	if (range_open)
5907 		reg->range = BEYOND_PKT_END;
5908 	else
5909 		reg->range = AT_PKT_END;
5910 }
5911 
5912 static void release_reg_references(struct bpf_verifier_env *env,
5913 				   struct bpf_func_state *state,
5914 				   int ref_obj_id)
5915 {
5916 	struct bpf_reg_state *regs = state->regs, *reg;
5917 	int i;
5918 
5919 	for (i = 0; i < MAX_BPF_REG; i++)
5920 		if (regs[i].ref_obj_id == ref_obj_id)
5921 			mark_reg_unknown(env, regs, i);
5922 
5923 	bpf_for_each_spilled_reg(i, state, reg) {
5924 		if (!reg)
5925 			continue;
5926 		if (reg->ref_obj_id == ref_obj_id)
5927 			__mark_reg_unknown(env, reg);
5928 	}
5929 }
5930 
5931 /* The pointer with the specified id has released its reference to kernel
5932  * resources. Identify all copies of the same pointer and clear the reference.
5933  */
5934 static int release_reference(struct bpf_verifier_env *env,
5935 			     int ref_obj_id)
5936 {
5937 	struct bpf_verifier_state *vstate = env->cur_state;
5938 	int err;
5939 	int i;
5940 
5941 	err = release_reference_state(cur_func(env), ref_obj_id);
5942 	if (err)
5943 		return err;
5944 
5945 	for (i = 0; i <= vstate->curframe; i++)
5946 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5947 
5948 	return 0;
5949 }
5950 
5951 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5952 				    struct bpf_reg_state *regs)
5953 {
5954 	int i;
5955 
5956 	/* after the call registers r0 - r5 were scratched */
5957 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5958 		mark_reg_not_init(env, regs, caller_saved[i]);
5959 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5960 	}
5961 }
5962 
5963 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5964 				   struct bpf_func_state *caller,
5965 				   struct bpf_func_state *callee,
5966 				   int insn_idx);
5967 
5968 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5969 			     int *insn_idx, int subprog,
5970 			     set_callee_state_fn set_callee_state_cb)
5971 {
5972 	struct bpf_verifier_state *state = env->cur_state;
5973 	struct bpf_func_info_aux *func_info_aux;
5974 	struct bpf_func_state *caller, *callee;
5975 	int err;
5976 	bool is_global = false;
5977 
5978 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5979 		verbose(env, "the call stack of %d frames is too deep\n",
5980 			state->curframe + 2);
5981 		return -E2BIG;
5982 	}
5983 
5984 	caller = state->frame[state->curframe];
5985 	if (state->frame[state->curframe + 1]) {
5986 		verbose(env, "verifier bug. Frame %d already allocated\n",
5987 			state->curframe + 1);
5988 		return -EFAULT;
5989 	}
5990 
5991 	func_info_aux = env->prog->aux->func_info_aux;
5992 	if (func_info_aux)
5993 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5994 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5995 	if (err == -EFAULT)
5996 		return err;
5997 	if (is_global) {
5998 		if (err) {
5999 			verbose(env, "Caller passes invalid args into func#%d\n",
6000 				subprog);
6001 			return err;
6002 		} else {
6003 			if (env->log.level & BPF_LOG_LEVEL)
6004 				verbose(env,
6005 					"Func#%d is global and valid. Skipping.\n",
6006 					subprog);
6007 			clear_caller_saved_regs(env, caller->regs);
6008 
6009 			/* All global functions return a 64-bit SCALAR_VALUE */
6010 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6011 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6012 
6013 			/* continue with next insn after call */
6014 			return 0;
6015 		}
6016 	}
6017 
6018 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6019 	    insn->imm == BPF_FUNC_timer_set_callback) {
6020 		struct bpf_verifier_state *async_cb;
6021 
6022 		/* there is no real recursion here. timer callbacks are async */
6023 		env->subprog_info[subprog].is_async_cb = true;
6024 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6025 					 *insn_idx, subprog);
6026 		if (!async_cb)
6027 			return -EFAULT;
6028 		callee = async_cb->frame[0];
6029 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6030 
6031 		/* Convert bpf_timer_set_callback() args into timer callback args */
6032 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6033 		if (err)
6034 			return err;
6035 
6036 		clear_caller_saved_regs(env, caller->regs);
6037 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6038 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6039 		/* continue with next insn after call */
6040 		return 0;
6041 	}
6042 
6043 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6044 	if (!callee)
6045 		return -ENOMEM;
6046 	state->frame[state->curframe + 1] = callee;
6047 
6048 	/* callee cannot access r0, r6 - r9 for reading and has to write
6049 	 * into its own stack before reading from it.
6050 	 * callee can read/write into caller's stack
6051 	 */
6052 	init_func_state(env, callee,
6053 			/* remember the callsite, it will be used by bpf_exit */
6054 			*insn_idx /* callsite */,
6055 			state->curframe + 1 /* frameno within this callchain */,
6056 			subprog /* subprog number within this prog */);
6057 
6058 	/* Transfer references to the callee */
6059 	err = copy_reference_state(callee, caller);
6060 	if (err)
6061 		return err;
6062 
6063 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6064 	if (err)
6065 		return err;
6066 
6067 	clear_caller_saved_regs(env, caller->regs);
6068 
6069 	/* only increment it after check_reg_arg() finished */
6070 	state->curframe++;
6071 
6072 	/* and go analyze first insn of the callee */
6073 	*insn_idx = env->subprog_info[subprog].start - 1;
6074 
6075 	if (env->log.level & BPF_LOG_LEVEL) {
6076 		verbose(env, "caller:\n");
6077 		print_verifier_state(env, caller, true);
6078 		verbose(env, "callee:\n");
6079 		print_verifier_state(env, callee, true);
6080 	}
6081 	return 0;
6082 }
6083 
6084 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6085 				   struct bpf_func_state *caller,
6086 				   struct bpf_func_state *callee)
6087 {
6088 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6089 	 *      void *callback_ctx, u64 flags);
6090 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6091 	 *      void *callback_ctx);
6092 	 */
6093 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6094 
6095 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6096 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6097 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6098 
6099 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6100 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6101 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6102 
6103 	/* pointer to stack or null */
6104 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6105 
6106 	/* unused */
6107 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6108 	return 0;
6109 }
6110 
6111 static int set_callee_state(struct bpf_verifier_env *env,
6112 			    struct bpf_func_state *caller,
6113 			    struct bpf_func_state *callee, int insn_idx)
6114 {
6115 	int i;
6116 
6117 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6118 	 * pointers, which connects us up to the liveness chain
6119 	 */
6120 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6121 		callee->regs[i] = caller->regs[i];
6122 	return 0;
6123 }
6124 
6125 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6126 			   int *insn_idx)
6127 {
6128 	int subprog, target_insn;
6129 
6130 	target_insn = *insn_idx + insn->imm + 1;
6131 	subprog = find_subprog(env, target_insn);
6132 	if (subprog < 0) {
6133 		verbose(env, "verifier bug. No program starts at insn %d\n",
6134 			target_insn);
6135 		return -EFAULT;
6136 	}
6137 
6138 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6139 }
6140 
6141 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6142 				       struct bpf_func_state *caller,
6143 				       struct bpf_func_state *callee,
6144 				       int insn_idx)
6145 {
6146 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6147 	struct bpf_map *map;
6148 	int err;
6149 
6150 	if (bpf_map_ptr_poisoned(insn_aux)) {
6151 		verbose(env, "tail_call abusing map_ptr\n");
6152 		return -EINVAL;
6153 	}
6154 
6155 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6156 	if (!map->ops->map_set_for_each_callback_args ||
6157 	    !map->ops->map_for_each_callback) {
6158 		verbose(env, "callback function not allowed for map\n");
6159 		return -ENOTSUPP;
6160 	}
6161 
6162 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6163 	if (err)
6164 		return err;
6165 
6166 	callee->in_callback_fn = true;
6167 	return 0;
6168 }
6169 
6170 static int set_loop_callback_state(struct bpf_verifier_env *env,
6171 				   struct bpf_func_state *caller,
6172 				   struct bpf_func_state *callee,
6173 				   int insn_idx)
6174 {
6175 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6176 	 *	    u64 flags);
6177 	 * callback_fn(u32 index, void *callback_ctx);
6178 	 */
6179 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6180 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6181 
6182 	/* unused */
6183 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6184 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6185 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6186 
6187 	callee->in_callback_fn = true;
6188 	return 0;
6189 }
6190 
6191 static int set_timer_callback_state(struct bpf_verifier_env *env,
6192 				    struct bpf_func_state *caller,
6193 				    struct bpf_func_state *callee,
6194 				    int insn_idx)
6195 {
6196 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6197 
6198 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6199 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6200 	 */
6201 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6202 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6203 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6204 
6205 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6206 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6207 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6208 
6209 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6210 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6211 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6212 
6213 	/* unused */
6214 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6215 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6216 	callee->in_async_callback_fn = true;
6217 	return 0;
6218 }
6219 
6220 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6221 				       struct bpf_func_state *caller,
6222 				       struct bpf_func_state *callee,
6223 				       int insn_idx)
6224 {
6225 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6226 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6227 	 * (callback_fn)(struct task_struct *task,
6228 	 *               struct vm_area_struct *vma, void *callback_ctx);
6229 	 */
6230 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6231 
6232 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6233 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6234 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6235 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6236 
6237 	/* pointer to stack or null */
6238 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6239 
6240 	/* unused */
6241 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6242 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6243 	callee->in_callback_fn = true;
6244 	return 0;
6245 }
6246 
6247 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6248 {
6249 	struct bpf_verifier_state *state = env->cur_state;
6250 	struct bpf_func_state *caller, *callee;
6251 	struct bpf_reg_state *r0;
6252 	int err;
6253 
6254 	callee = state->frame[state->curframe];
6255 	r0 = &callee->regs[BPF_REG_0];
6256 	if (r0->type == PTR_TO_STACK) {
6257 		/* technically it's ok to return caller's stack pointer
6258 		 * (or caller's caller's pointer) back to the caller,
6259 		 * since these pointers are valid. Only current stack
6260 		 * pointer will be invalid as soon as function exits,
6261 		 * but let's be conservative
6262 		 */
6263 		verbose(env, "cannot return stack pointer to the caller\n");
6264 		return -EINVAL;
6265 	}
6266 
6267 	state->curframe--;
6268 	caller = state->frame[state->curframe];
6269 	if (callee->in_callback_fn) {
6270 		/* enforce R0 return value range [0, 1]. */
6271 		struct tnum range = tnum_range(0, 1);
6272 
6273 		if (r0->type != SCALAR_VALUE) {
6274 			verbose(env, "R0 not a scalar value\n");
6275 			return -EACCES;
6276 		}
6277 		if (!tnum_in(range, r0->var_off)) {
6278 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6279 			return -EINVAL;
6280 		}
6281 	} else {
6282 		/* return to the caller whatever r0 had in the callee */
6283 		caller->regs[BPF_REG_0] = *r0;
6284 	}
6285 
6286 	/* Transfer references to the caller */
6287 	err = copy_reference_state(caller, callee);
6288 	if (err)
6289 		return err;
6290 
6291 	*insn_idx = callee->callsite + 1;
6292 	if (env->log.level & BPF_LOG_LEVEL) {
6293 		verbose(env, "returning from callee:\n");
6294 		print_verifier_state(env, callee, true);
6295 		verbose(env, "to caller at %d:\n", *insn_idx);
6296 		print_verifier_state(env, caller, true);
6297 	}
6298 	/* clear everything in the callee */
6299 	free_func_state(callee);
6300 	state->frame[state->curframe + 1] = NULL;
6301 	return 0;
6302 }
6303 
6304 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6305 				   int func_id,
6306 				   struct bpf_call_arg_meta *meta)
6307 {
6308 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6309 
6310 	if (ret_type != RET_INTEGER ||
6311 	    (func_id != BPF_FUNC_get_stack &&
6312 	     func_id != BPF_FUNC_get_task_stack &&
6313 	     func_id != BPF_FUNC_probe_read_str &&
6314 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6315 	     func_id != BPF_FUNC_probe_read_user_str))
6316 		return;
6317 
6318 	ret_reg->smax_value = meta->msize_max_value;
6319 	ret_reg->s32_max_value = meta->msize_max_value;
6320 	ret_reg->smin_value = -MAX_ERRNO;
6321 	ret_reg->s32_min_value = -MAX_ERRNO;
6322 	__reg_deduce_bounds(ret_reg);
6323 	__reg_bound_offset(ret_reg);
6324 	__update_reg_bounds(ret_reg);
6325 }
6326 
6327 static int
6328 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6329 		int func_id, int insn_idx)
6330 {
6331 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6332 	struct bpf_map *map = meta->map_ptr;
6333 
6334 	if (func_id != BPF_FUNC_tail_call &&
6335 	    func_id != BPF_FUNC_map_lookup_elem &&
6336 	    func_id != BPF_FUNC_map_update_elem &&
6337 	    func_id != BPF_FUNC_map_delete_elem &&
6338 	    func_id != BPF_FUNC_map_push_elem &&
6339 	    func_id != BPF_FUNC_map_pop_elem &&
6340 	    func_id != BPF_FUNC_map_peek_elem &&
6341 	    func_id != BPF_FUNC_for_each_map_elem &&
6342 	    func_id != BPF_FUNC_redirect_map)
6343 		return 0;
6344 
6345 	if (map == NULL) {
6346 		verbose(env, "kernel subsystem misconfigured verifier\n");
6347 		return -EINVAL;
6348 	}
6349 
6350 	/* In case of read-only, some additional restrictions
6351 	 * need to be applied in order to prevent altering the
6352 	 * state of the map from program side.
6353 	 */
6354 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6355 	    (func_id == BPF_FUNC_map_delete_elem ||
6356 	     func_id == BPF_FUNC_map_update_elem ||
6357 	     func_id == BPF_FUNC_map_push_elem ||
6358 	     func_id == BPF_FUNC_map_pop_elem)) {
6359 		verbose(env, "write into map forbidden\n");
6360 		return -EACCES;
6361 	}
6362 
6363 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6364 		bpf_map_ptr_store(aux, meta->map_ptr,
6365 				  !meta->map_ptr->bypass_spec_v1);
6366 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6367 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6368 				  !meta->map_ptr->bypass_spec_v1);
6369 	return 0;
6370 }
6371 
6372 static int
6373 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6374 		int func_id, int insn_idx)
6375 {
6376 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6377 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6378 	struct bpf_map *map = meta->map_ptr;
6379 	struct tnum range;
6380 	u64 val;
6381 	int err;
6382 
6383 	if (func_id != BPF_FUNC_tail_call)
6384 		return 0;
6385 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6386 		verbose(env, "kernel subsystem misconfigured verifier\n");
6387 		return -EINVAL;
6388 	}
6389 
6390 	range = tnum_range(0, map->max_entries - 1);
6391 	reg = &regs[BPF_REG_3];
6392 
6393 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6394 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6395 		return 0;
6396 	}
6397 
6398 	err = mark_chain_precision(env, BPF_REG_3);
6399 	if (err)
6400 		return err;
6401 
6402 	val = reg->var_off.value;
6403 	if (bpf_map_key_unseen(aux))
6404 		bpf_map_key_store(aux, val);
6405 	else if (!bpf_map_key_poisoned(aux) &&
6406 		  bpf_map_key_immediate(aux) != val)
6407 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6408 	return 0;
6409 }
6410 
6411 static int check_reference_leak(struct bpf_verifier_env *env)
6412 {
6413 	struct bpf_func_state *state = cur_func(env);
6414 	int i;
6415 
6416 	for (i = 0; i < state->acquired_refs; i++) {
6417 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6418 			state->refs[i].id, state->refs[i].insn_idx);
6419 	}
6420 	return state->acquired_refs ? -EINVAL : 0;
6421 }
6422 
6423 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6424 				   struct bpf_reg_state *regs)
6425 {
6426 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6427 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6428 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6429 	int err, fmt_map_off, num_args;
6430 	u64 fmt_addr;
6431 	char *fmt;
6432 
6433 	/* data must be an array of u64 */
6434 	if (data_len_reg->var_off.value % 8)
6435 		return -EINVAL;
6436 	num_args = data_len_reg->var_off.value / 8;
6437 
6438 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6439 	 * and map_direct_value_addr is set.
6440 	 */
6441 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6442 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6443 						  fmt_map_off);
6444 	if (err) {
6445 		verbose(env, "verifier bug\n");
6446 		return -EFAULT;
6447 	}
6448 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6449 
6450 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6451 	 * can focus on validating the format specifiers.
6452 	 */
6453 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6454 	if (err < 0)
6455 		verbose(env, "Invalid format string\n");
6456 
6457 	return err;
6458 }
6459 
6460 static int check_get_func_ip(struct bpf_verifier_env *env)
6461 {
6462 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6463 	int func_id = BPF_FUNC_get_func_ip;
6464 
6465 	if (type == BPF_PROG_TYPE_TRACING) {
6466 		if (!bpf_prog_has_trampoline(env->prog)) {
6467 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6468 				func_id_name(func_id), func_id);
6469 			return -ENOTSUPP;
6470 		}
6471 		return 0;
6472 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6473 		return 0;
6474 	}
6475 
6476 	verbose(env, "func %s#%d not supported for program type %d\n",
6477 		func_id_name(func_id), func_id, type);
6478 	return -ENOTSUPP;
6479 }
6480 
6481 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6482 			     int *insn_idx_p)
6483 {
6484 	const struct bpf_func_proto *fn = NULL;
6485 	enum bpf_return_type ret_type;
6486 	enum bpf_type_flag ret_flag;
6487 	struct bpf_reg_state *regs;
6488 	struct bpf_call_arg_meta meta;
6489 	int insn_idx = *insn_idx_p;
6490 	bool changes_data;
6491 	int i, err, func_id;
6492 
6493 	/* find function prototype */
6494 	func_id = insn->imm;
6495 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6496 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6497 			func_id);
6498 		return -EINVAL;
6499 	}
6500 
6501 	if (env->ops->get_func_proto)
6502 		fn = env->ops->get_func_proto(func_id, env->prog);
6503 	if (!fn) {
6504 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6505 			func_id);
6506 		return -EINVAL;
6507 	}
6508 
6509 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6510 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6511 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6512 		return -EINVAL;
6513 	}
6514 
6515 	if (fn->allowed && !fn->allowed(env->prog)) {
6516 		verbose(env, "helper call is not allowed in probe\n");
6517 		return -EINVAL;
6518 	}
6519 
6520 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6521 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6522 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6523 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6524 			func_id_name(func_id), func_id);
6525 		return -EINVAL;
6526 	}
6527 
6528 	memset(&meta, 0, sizeof(meta));
6529 	meta.pkt_access = fn->pkt_access;
6530 
6531 	err = check_func_proto(fn, func_id);
6532 	if (err) {
6533 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6534 			func_id_name(func_id), func_id);
6535 		return err;
6536 	}
6537 
6538 	meta.func_id = func_id;
6539 	/* check args */
6540 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6541 		err = check_func_arg(env, i, &meta, fn);
6542 		if (err)
6543 			return err;
6544 	}
6545 
6546 	err = record_func_map(env, &meta, func_id, insn_idx);
6547 	if (err)
6548 		return err;
6549 
6550 	err = record_func_key(env, &meta, func_id, insn_idx);
6551 	if (err)
6552 		return err;
6553 
6554 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6555 	 * is inferred from register state.
6556 	 */
6557 	for (i = 0; i < meta.access_size; i++) {
6558 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6559 				       BPF_WRITE, -1, false);
6560 		if (err)
6561 			return err;
6562 	}
6563 
6564 	if (is_release_function(func_id)) {
6565 		err = release_reference(env, meta.ref_obj_id);
6566 		if (err) {
6567 			verbose(env, "func %s#%d reference has not been acquired before\n",
6568 				func_id_name(func_id), func_id);
6569 			return err;
6570 		}
6571 	}
6572 
6573 	regs = cur_regs(env);
6574 
6575 	switch (func_id) {
6576 	case BPF_FUNC_tail_call:
6577 		err = check_reference_leak(env);
6578 		if (err) {
6579 			verbose(env, "tail_call would lead to reference leak\n");
6580 			return err;
6581 		}
6582 		break;
6583 	case BPF_FUNC_get_local_storage:
6584 		/* check that flags argument in get_local_storage(map, flags) is 0,
6585 		 * this is required because get_local_storage() can't return an error.
6586 		 */
6587 		if (!register_is_null(&regs[BPF_REG_2])) {
6588 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6589 			return -EINVAL;
6590 		}
6591 		break;
6592 	case BPF_FUNC_for_each_map_elem:
6593 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6594 					set_map_elem_callback_state);
6595 		break;
6596 	case BPF_FUNC_timer_set_callback:
6597 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6598 					set_timer_callback_state);
6599 		break;
6600 	case BPF_FUNC_find_vma:
6601 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6602 					set_find_vma_callback_state);
6603 		break;
6604 	case BPF_FUNC_snprintf:
6605 		err = check_bpf_snprintf_call(env, regs);
6606 		break;
6607 	case BPF_FUNC_loop:
6608 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6609 					set_loop_callback_state);
6610 		break;
6611 	}
6612 
6613 	if (err)
6614 		return err;
6615 
6616 	/* reset caller saved regs */
6617 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6618 		mark_reg_not_init(env, regs, caller_saved[i]);
6619 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6620 	}
6621 
6622 	/* helper call returns 64-bit value. */
6623 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6624 
6625 	/* update return register (already marked as written above) */
6626 	ret_type = fn->ret_type;
6627 	ret_flag = type_flag(fn->ret_type);
6628 	if (ret_type == RET_INTEGER) {
6629 		/* sets type to SCALAR_VALUE */
6630 		mark_reg_unknown(env, regs, BPF_REG_0);
6631 	} else if (ret_type == RET_VOID) {
6632 		regs[BPF_REG_0].type = NOT_INIT;
6633 	} else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
6634 		/* There is no offset yet applied, variable or fixed */
6635 		mark_reg_known_zero(env, regs, BPF_REG_0);
6636 		/* remember map_ptr, so that check_map_access()
6637 		 * can check 'value_size' boundary of memory access
6638 		 * to map element returned from bpf_map_lookup_elem()
6639 		 */
6640 		if (meta.map_ptr == NULL) {
6641 			verbose(env,
6642 				"kernel subsystem misconfigured verifier\n");
6643 			return -EINVAL;
6644 		}
6645 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6646 		regs[BPF_REG_0].map_uid = meta.map_uid;
6647 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
6648 		if (!type_may_be_null(ret_type) &&
6649 		    map_value_has_spin_lock(meta.map_ptr)) {
6650 			regs[BPF_REG_0].id = ++env->id_gen;
6651 		}
6652 	} else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
6653 		mark_reg_known_zero(env, regs, BPF_REG_0);
6654 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
6655 	} else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
6656 		mark_reg_known_zero(env, regs, BPF_REG_0);
6657 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
6658 	} else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
6659 		mark_reg_known_zero(env, regs, BPF_REG_0);
6660 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
6661 	} else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
6662 		mark_reg_known_zero(env, regs, BPF_REG_0);
6663 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6664 		regs[BPF_REG_0].mem_size = meta.mem_size;
6665 	} else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
6666 		const struct btf_type *t;
6667 
6668 		mark_reg_known_zero(env, regs, BPF_REG_0);
6669 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6670 		if (!btf_type_is_struct(t)) {
6671 			u32 tsize;
6672 			const struct btf_type *ret;
6673 			const char *tname;
6674 
6675 			/* resolve the type size of ksym. */
6676 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6677 			if (IS_ERR(ret)) {
6678 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6679 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6680 					tname, PTR_ERR(ret));
6681 				return -EINVAL;
6682 			}
6683 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
6684 			regs[BPF_REG_0].mem_size = tsize;
6685 		} else {
6686 			/* MEM_RDONLY may be carried from ret_flag, but it
6687 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
6688 			 * it will confuse the check of PTR_TO_BTF_ID in
6689 			 * check_mem_access().
6690 			 */
6691 			ret_flag &= ~MEM_RDONLY;
6692 
6693 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6694 			regs[BPF_REG_0].btf = meta.ret_btf;
6695 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6696 		}
6697 	} else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
6698 		int ret_btf_id;
6699 
6700 		mark_reg_known_zero(env, regs, BPF_REG_0);
6701 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
6702 		ret_btf_id = *fn->ret_btf_id;
6703 		if (ret_btf_id == 0) {
6704 			verbose(env, "invalid return type %u of func %s#%d\n",
6705 				base_type(ret_type), func_id_name(func_id),
6706 				func_id);
6707 			return -EINVAL;
6708 		}
6709 		/* current BPF helper definitions are only coming from
6710 		 * built-in code with type IDs from  vmlinux BTF
6711 		 */
6712 		regs[BPF_REG_0].btf = btf_vmlinux;
6713 		regs[BPF_REG_0].btf_id = ret_btf_id;
6714 	} else {
6715 		verbose(env, "unknown return type %u of func %s#%d\n",
6716 			base_type(ret_type), func_id_name(func_id), func_id);
6717 		return -EINVAL;
6718 	}
6719 
6720 	if (type_may_be_null(regs[BPF_REG_0].type))
6721 		regs[BPF_REG_0].id = ++env->id_gen;
6722 
6723 	if (is_ptr_cast_function(func_id)) {
6724 		/* For release_reference() */
6725 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6726 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6727 		int id = acquire_reference_state(env, insn_idx);
6728 
6729 		if (id < 0)
6730 			return id;
6731 		/* For mark_ptr_or_null_reg() */
6732 		regs[BPF_REG_0].id = id;
6733 		/* For release_reference() */
6734 		regs[BPF_REG_0].ref_obj_id = id;
6735 	}
6736 
6737 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6738 
6739 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6740 	if (err)
6741 		return err;
6742 
6743 	if ((func_id == BPF_FUNC_get_stack ||
6744 	     func_id == BPF_FUNC_get_task_stack) &&
6745 	    !env->prog->has_callchain_buf) {
6746 		const char *err_str;
6747 
6748 #ifdef CONFIG_PERF_EVENTS
6749 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6750 		err_str = "cannot get callchain buffer for func %s#%d\n";
6751 #else
6752 		err = -ENOTSUPP;
6753 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6754 #endif
6755 		if (err) {
6756 			verbose(env, err_str, func_id_name(func_id), func_id);
6757 			return err;
6758 		}
6759 
6760 		env->prog->has_callchain_buf = true;
6761 	}
6762 
6763 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6764 		env->prog->call_get_stack = true;
6765 
6766 	if (func_id == BPF_FUNC_get_func_ip) {
6767 		if (check_get_func_ip(env))
6768 			return -ENOTSUPP;
6769 		env->prog->call_get_func_ip = true;
6770 	}
6771 
6772 	if (changes_data)
6773 		clear_all_pkt_pointers(env);
6774 	return 0;
6775 }
6776 
6777 /* mark_btf_func_reg_size() is used when the reg size is determined by
6778  * the BTF func_proto's return value size and argument.
6779  */
6780 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6781 				   size_t reg_size)
6782 {
6783 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6784 
6785 	if (regno == BPF_REG_0) {
6786 		/* Function return value */
6787 		reg->live |= REG_LIVE_WRITTEN;
6788 		reg->subreg_def = reg_size == sizeof(u64) ?
6789 			DEF_NOT_SUBREG : env->insn_idx + 1;
6790 	} else {
6791 		/* Function argument */
6792 		if (reg_size == sizeof(u64)) {
6793 			mark_insn_zext(env, reg);
6794 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6795 		} else {
6796 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6797 		}
6798 	}
6799 }
6800 
6801 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6802 {
6803 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6804 	struct bpf_reg_state *regs = cur_regs(env);
6805 	const char *func_name, *ptr_type_name;
6806 	u32 i, nargs, func_id, ptr_type_id;
6807 	struct module *btf_mod = NULL;
6808 	const struct btf_param *args;
6809 	struct btf *desc_btf;
6810 	int err;
6811 
6812 	/* skip for now, but return error when we find this in fixup_kfunc_call */
6813 	if (!insn->imm)
6814 		return 0;
6815 
6816 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6817 	if (IS_ERR(desc_btf))
6818 		return PTR_ERR(desc_btf);
6819 
6820 	func_id = insn->imm;
6821 	func = btf_type_by_id(desc_btf, func_id);
6822 	func_name = btf_name_by_offset(desc_btf, func->name_off);
6823 	func_proto = btf_type_by_id(desc_btf, func->type);
6824 
6825 	if (!env->ops->check_kfunc_call ||
6826 	    !env->ops->check_kfunc_call(func_id, btf_mod)) {
6827 		verbose(env, "calling kernel function %s is not allowed\n",
6828 			func_name);
6829 		return -EACCES;
6830 	}
6831 
6832 	/* Check the arguments */
6833 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
6834 	if (err)
6835 		return err;
6836 
6837 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6838 		mark_reg_not_init(env, regs, caller_saved[i]);
6839 
6840 	/* Check return type */
6841 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
6842 	if (btf_type_is_scalar(t)) {
6843 		mark_reg_unknown(env, regs, BPF_REG_0);
6844 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6845 	} else if (btf_type_is_ptr(t)) {
6846 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
6847 						   &ptr_type_id);
6848 		if (!btf_type_is_struct(ptr_type)) {
6849 			ptr_type_name = btf_name_by_offset(desc_btf,
6850 							   ptr_type->name_off);
6851 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6852 				func_name, btf_type_str(ptr_type),
6853 				ptr_type_name);
6854 			return -EINVAL;
6855 		}
6856 		mark_reg_known_zero(env, regs, BPF_REG_0);
6857 		regs[BPF_REG_0].btf = desc_btf;
6858 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6859 		regs[BPF_REG_0].btf_id = ptr_type_id;
6860 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6861 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6862 
6863 	nargs = btf_type_vlen(func_proto);
6864 	args = (const struct btf_param *)(func_proto + 1);
6865 	for (i = 0; i < nargs; i++) {
6866 		u32 regno = i + 1;
6867 
6868 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
6869 		if (btf_type_is_ptr(t))
6870 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6871 		else
6872 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6873 			mark_btf_func_reg_size(env, regno, t->size);
6874 	}
6875 
6876 	return 0;
6877 }
6878 
6879 static bool signed_add_overflows(s64 a, s64 b)
6880 {
6881 	/* Do the add in u64, where overflow is well-defined */
6882 	s64 res = (s64)((u64)a + (u64)b);
6883 
6884 	if (b < 0)
6885 		return res > a;
6886 	return res < a;
6887 }
6888 
6889 static bool signed_add32_overflows(s32 a, s32 b)
6890 {
6891 	/* Do the add in u32, where overflow is well-defined */
6892 	s32 res = (s32)((u32)a + (u32)b);
6893 
6894 	if (b < 0)
6895 		return res > a;
6896 	return res < a;
6897 }
6898 
6899 static bool signed_sub_overflows(s64 a, s64 b)
6900 {
6901 	/* Do the sub in u64, where overflow is well-defined */
6902 	s64 res = (s64)((u64)a - (u64)b);
6903 
6904 	if (b < 0)
6905 		return res < a;
6906 	return res > a;
6907 }
6908 
6909 static bool signed_sub32_overflows(s32 a, s32 b)
6910 {
6911 	/* Do the sub in u32, where overflow is well-defined */
6912 	s32 res = (s32)((u32)a - (u32)b);
6913 
6914 	if (b < 0)
6915 		return res < a;
6916 	return res > a;
6917 }
6918 
6919 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6920 				  const struct bpf_reg_state *reg,
6921 				  enum bpf_reg_type type)
6922 {
6923 	bool known = tnum_is_const(reg->var_off);
6924 	s64 val = reg->var_off.value;
6925 	s64 smin = reg->smin_value;
6926 
6927 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6928 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6929 			reg_type_str(env, type), val);
6930 		return false;
6931 	}
6932 
6933 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6934 		verbose(env, "%s pointer offset %d is not allowed\n",
6935 			reg_type_str(env, type), reg->off);
6936 		return false;
6937 	}
6938 
6939 	if (smin == S64_MIN) {
6940 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6941 			reg_type_str(env, type));
6942 		return false;
6943 	}
6944 
6945 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6946 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6947 			smin, reg_type_str(env, type));
6948 		return false;
6949 	}
6950 
6951 	return true;
6952 }
6953 
6954 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6955 {
6956 	return &env->insn_aux_data[env->insn_idx];
6957 }
6958 
6959 enum {
6960 	REASON_BOUNDS	= -1,
6961 	REASON_TYPE	= -2,
6962 	REASON_PATHS	= -3,
6963 	REASON_LIMIT	= -4,
6964 	REASON_STACK	= -5,
6965 };
6966 
6967 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6968 			      u32 *alu_limit, bool mask_to_left)
6969 {
6970 	u32 max = 0, ptr_limit = 0;
6971 
6972 	switch (ptr_reg->type) {
6973 	case PTR_TO_STACK:
6974 		/* Offset 0 is out-of-bounds, but acceptable start for the
6975 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6976 		 * offset where we would need to deal with min/max bounds is
6977 		 * currently prohibited for unprivileged.
6978 		 */
6979 		max = MAX_BPF_STACK + mask_to_left;
6980 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6981 		break;
6982 	case PTR_TO_MAP_VALUE:
6983 		max = ptr_reg->map_ptr->value_size;
6984 		ptr_limit = (mask_to_left ?
6985 			     ptr_reg->smin_value :
6986 			     ptr_reg->umax_value) + ptr_reg->off;
6987 		break;
6988 	default:
6989 		return REASON_TYPE;
6990 	}
6991 
6992 	if (ptr_limit >= max)
6993 		return REASON_LIMIT;
6994 	*alu_limit = ptr_limit;
6995 	return 0;
6996 }
6997 
6998 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6999 				    const struct bpf_insn *insn)
7000 {
7001 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7002 }
7003 
7004 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7005 				       u32 alu_state, u32 alu_limit)
7006 {
7007 	/* If we arrived here from different branches with different
7008 	 * state or limits to sanitize, then this won't work.
7009 	 */
7010 	if (aux->alu_state &&
7011 	    (aux->alu_state != alu_state ||
7012 	     aux->alu_limit != alu_limit))
7013 		return REASON_PATHS;
7014 
7015 	/* Corresponding fixup done in do_misc_fixups(). */
7016 	aux->alu_state = alu_state;
7017 	aux->alu_limit = alu_limit;
7018 	return 0;
7019 }
7020 
7021 static int sanitize_val_alu(struct bpf_verifier_env *env,
7022 			    struct bpf_insn *insn)
7023 {
7024 	struct bpf_insn_aux_data *aux = cur_aux(env);
7025 
7026 	if (can_skip_alu_sanitation(env, insn))
7027 		return 0;
7028 
7029 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7030 }
7031 
7032 static bool sanitize_needed(u8 opcode)
7033 {
7034 	return opcode == BPF_ADD || opcode == BPF_SUB;
7035 }
7036 
7037 struct bpf_sanitize_info {
7038 	struct bpf_insn_aux_data aux;
7039 	bool mask_to_left;
7040 };
7041 
7042 static struct bpf_verifier_state *
7043 sanitize_speculative_path(struct bpf_verifier_env *env,
7044 			  const struct bpf_insn *insn,
7045 			  u32 next_idx, u32 curr_idx)
7046 {
7047 	struct bpf_verifier_state *branch;
7048 	struct bpf_reg_state *regs;
7049 
7050 	branch = push_stack(env, next_idx, curr_idx, true);
7051 	if (branch && insn) {
7052 		regs = branch->frame[branch->curframe]->regs;
7053 		if (BPF_SRC(insn->code) == BPF_K) {
7054 			mark_reg_unknown(env, regs, insn->dst_reg);
7055 		} else if (BPF_SRC(insn->code) == BPF_X) {
7056 			mark_reg_unknown(env, regs, insn->dst_reg);
7057 			mark_reg_unknown(env, regs, insn->src_reg);
7058 		}
7059 	}
7060 	return branch;
7061 }
7062 
7063 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7064 			    struct bpf_insn *insn,
7065 			    const struct bpf_reg_state *ptr_reg,
7066 			    const struct bpf_reg_state *off_reg,
7067 			    struct bpf_reg_state *dst_reg,
7068 			    struct bpf_sanitize_info *info,
7069 			    const bool commit_window)
7070 {
7071 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7072 	struct bpf_verifier_state *vstate = env->cur_state;
7073 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7074 	bool off_is_neg = off_reg->smin_value < 0;
7075 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7076 	u8 opcode = BPF_OP(insn->code);
7077 	u32 alu_state, alu_limit;
7078 	struct bpf_reg_state tmp;
7079 	bool ret;
7080 	int err;
7081 
7082 	if (can_skip_alu_sanitation(env, insn))
7083 		return 0;
7084 
7085 	/* We already marked aux for masking from non-speculative
7086 	 * paths, thus we got here in the first place. We only care
7087 	 * to explore bad access from here.
7088 	 */
7089 	if (vstate->speculative)
7090 		goto do_sim;
7091 
7092 	if (!commit_window) {
7093 		if (!tnum_is_const(off_reg->var_off) &&
7094 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7095 			return REASON_BOUNDS;
7096 
7097 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7098 				     (opcode == BPF_SUB && !off_is_neg);
7099 	}
7100 
7101 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7102 	if (err < 0)
7103 		return err;
7104 
7105 	if (commit_window) {
7106 		/* In commit phase we narrow the masking window based on
7107 		 * the observed pointer move after the simulated operation.
7108 		 */
7109 		alu_state = info->aux.alu_state;
7110 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7111 	} else {
7112 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7113 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7114 		alu_state |= ptr_is_dst_reg ?
7115 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7116 
7117 		/* Limit pruning on unknown scalars to enable deep search for
7118 		 * potential masking differences from other program paths.
7119 		 */
7120 		if (!off_is_imm)
7121 			env->explore_alu_limits = true;
7122 	}
7123 
7124 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7125 	if (err < 0)
7126 		return err;
7127 do_sim:
7128 	/* If we're in commit phase, we're done here given we already
7129 	 * pushed the truncated dst_reg into the speculative verification
7130 	 * stack.
7131 	 *
7132 	 * Also, when register is a known constant, we rewrite register-based
7133 	 * operation to immediate-based, and thus do not need masking (and as
7134 	 * a consequence, do not need to simulate the zero-truncation either).
7135 	 */
7136 	if (commit_window || off_is_imm)
7137 		return 0;
7138 
7139 	/* Simulate and find potential out-of-bounds access under
7140 	 * speculative execution from truncation as a result of
7141 	 * masking when off was not within expected range. If off
7142 	 * sits in dst, then we temporarily need to move ptr there
7143 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7144 	 * for cases where we use K-based arithmetic in one direction
7145 	 * and truncated reg-based in the other in order to explore
7146 	 * bad access.
7147 	 */
7148 	if (!ptr_is_dst_reg) {
7149 		tmp = *dst_reg;
7150 		*dst_reg = *ptr_reg;
7151 	}
7152 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7153 					env->insn_idx);
7154 	if (!ptr_is_dst_reg && ret)
7155 		*dst_reg = tmp;
7156 	return !ret ? REASON_STACK : 0;
7157 }
7158 
7159 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7160 {
7161 	struct bpf_verifier_state *vstate = env->cur_state;
7162 
7163 	/* If we simulate paths under speculation, we don't update the
7164 	 * insn as 'seen' such that when we verify unreachable paths in
7165 	 * the non-speculative domain, sanitize_dead_code() can still
7166 	 * rewrite/sanitize them.
7167 	 */
7168 	if (!vstate->speculative)
7169 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7170 }
7171 
7172 static int sanitize_err(struct bpf_verifier_env *env,
7173 			const struct bpf_insn *insn, int reason,
7174 			const struct bpf_reg_state *off_reg,
7175 			const struct bpf_reg_state *dst_reg)
7176 {
7177 	static const char *err = "pointer arithmetic with it prohibited for !root";
7178 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7179 	u32 dst = insn->dst_reg, src = insn->src_reg;
7180 
7181 	switch (reason) {
7182 	case REASON_BOUNDS:
7183 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7184 			off_reg == dst_reg ? dst : src, err);
7185 		break;
7186 	case REASON_TYPE:
7187 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7188 			off_reg == dst_reg ? src : dst, err);
7189 		break;
7190 	case REASON_PATHS:
7191 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7192 			dst, op, err);
7193 		break;
7194 	case REASON_LIMIT:
7195 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7196 			dst, op, err);
7197 		break;
7198 	case REASON_STACK:
7199 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7200 			dst, err);
7201 		break;
7202 	default:
7203 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7204 			reason);
7205 		break;
7206 	}
7207 
7208 	return -EACCES;
7209 }
7210 
7211 /* check that stack access falls within stack limits and that 'reg' doesn't
7212  * have a variable offset.
7213  *
7214  * Variable offset is prohibited for unprivileged mode for simplicity since it
7215  * requires corresponding support in Spectre masking for stack ALU.  See also
7216  * retrieve_ptr_limit().
7217  *
7218  *
7219  * 'off' includes 'reg->off'.
7220  */
7221 static int check_stack_access_for_ptr_arithmetic(
7222 				struct bpf_verifier_env *env,
7223 				int regno,
7224 				const struct bpf_reg_state *reg,
7225 				int off)
7226 {
7227 	if (!tnum_is_const(reg->var_off)) {
7228 		char tn_buf[48];
7229 
7230 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7231 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7232 			regno, tn_buf, off);
7233 		return -EACCES;
7234 	}
7235 
7236 	if (off >= 0 || off < -MAX_BPF_STACK) {
7237 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7238 			"prohibited for !root; off=%d\n", regno, off);
7239 		return -EACCES;
7240 	}
7241 
7242 	return 0;
7243 }
7244 
7245 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7246 				 const struct bpf_insn *insn,
7247 				 const struct bpf_reg_state *dst_reg)
7248 {
7249 	u32 dst = insn->dst_reg;
7250 
7251 	/* For unprivileged we require that resulting offset must be in bounds
7252 	 * in order to be able to sanitize access later on.
7253 	 */
7254 	if (env->bypass_spec_v1)
7255 		return 0;
7256 
7257 	switch (dst_reg->type) {
7258 	case PTR_TO_STACK:
7259 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7260 					dst_reg->off + dst_reg->var_off.value))
7261 			return -EACCES;
7262 		break;
7263 	case PTR_TO_MAP_VALUE:
7264 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7265 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7266 				"prohibited for !root\n", dst);
7267 			return -EACCES;
7268 		}
7269 		break;
7270 	default:
7271 		break;
7272 	}
7273 
7274 	return 0;
7275 }
7276 
7277 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7278  * Caller should also handle BPF_MOV case separately.
7279  * If we return -EACCES, caller may want to try again treating pointer as a
7280  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7281  */
7282 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7283 				   struct bpf_insn *insn,
7284 				   const struct bpf_reg_state *ptr_reg,
7285 				   const struct bpf_reg_state *off_reg)
7286 {
7287 	struct bpf_verifier_state *vstate = env->cur_state;
7288 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7289 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7290 	bool known = tnum_is_const(off_reg->var_off);
7291 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7292 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7293 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7294 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7295 	struct bpf_sanitize_info info = {};
7296 	u8 opcode = BPF_OP(insn->code);
7297 	u32 dst = insn->dst_reg;
7298 	int ret;
7299 
7300 	dst_reg = &regs[dst];
7301 
7302 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7303 	    smin_val > smax_val || umin_val > umax_val) {
7304 		/* Taint dst register if offset had invalid bounds derived from
7305 		 * e.g. dead branches.
7306 		 */
7307 		__mark_reg_unknown(env, dst_reg);
7308 		return 0;
7309 	}
7310 
7311 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7312 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7313 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7314 			__mark_reg_unknown(env, dst_reg);
7315 			return 0;
7316 		}
7317 
7318 		verbose(env,
7319 			"R%d 32-bit pointer arithmetic prohibited\n",
7320 			dst);
7321 		return -EACCES;
7322 	}
7323 
7324 	if (ptr_reg->type & PTR_MAYBE_NULL) {
7325 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7326 			dst, reg_type_str(env, ptr_reg->type));
7327 		return -EACCES;
7328 	}
7329 
7330 	switch (base_type(ptr_reg->type)) {
7331 	case CONST_PTR_TO_MAP:
7332 		/* smin_val represents the known value */
7333 		if (known && smin_val == 0 && opcode == BPF_ADD)
7334 			break;
7335 		fallthrough;
7336 	case PTR_TO_PACKET_END:
7337 	case PTR_TO_SOCKET:
7338 	case PTR_TO_SOCK_COMMON:
7339 	case PTR_TO_TCP_SOCK:
7340 	case PTR_TO_XDP_SOCK:
7341 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7342 			dst, reg_type_str(env, ptr_reg->type));
7343 		return -EACCES;
7344 	default:
7345 		break;
7346 	}
7347 
7348 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7349 	 * The id may be overwritten later if we create a new variable offset.
7350 	 */
7351 	dst_reg->type = ptr_reg->type;
7352 	dst_reg->id = ptr_reg->id;
7353 
7354 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7355 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7356 		return -EINVAL;
7357 
7358 	/* pointer types do not carry 32-bit bounds at the moment. */
7359 	__mark_reg32_unbounded(dst_reg);
7360 
7361 	if (sanitize_needed(opcode)) {
7362 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7363 				       &info, false);
7364 		if (ret < 0)
7365 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7366 	}
7367 
7368 	switch (opcode) {
7369 	case BPF_ADD:
7370 		/* We can take a fixed offset as long as it doesn't overflow
7371 		 * the s32 'off' field
7372 		 */
7373 		if (known && (ptr_reg->off + smin_val ==
7374 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7375 			/* pointer += K.  Accumulate it into fixed offset */
7376 			dst_reg->smin_value = smin_ptr;
7377 			dst_reg->smax_value = smax_ptr;
7378 			dst_reg->umin_value = umin_ptr;
7379 			dst_reg->umax_value = umax_ptr;
7380 			dst_reg->var_off = ptr_reg->var_off;
7381 			dst_reg->off = ptr_reg->off + smin_val;
7382 			dst_reg->raw = ptr_reg->raw;
7383 			break;
7384 		}
7385 		/* A new variable offset is created.  Note that off_reg->off
7386 		 * == 0, since it's a scalar.
7387 		 * dst_reg gets the pointer type and since some positive
7388 		 * integer value was added to the pointer, give it a new 'id'
7389 		 * if it's a PTR_TO_PACKET.
7390 		 * this creates a new 'base' pointer, off_reg (variable) gets
7391 		 * added into the variable offset, and we copy the fixed offset
7392 		 * from ptr_reg.
7393 		 */
7394 		if (signed_add_overflows(smin_ptr, smin_val) ||
7395 		    signed_add_overflows(smax_ptr, smax_val)) {
7396 			dst_reg->smin_value = S64_MIN;
7397 			dst_reg->smax_value = S64_MAX;
7398 		} else {
7399 			dst_reg->smin_value = smin_ptr + smin_val;
7400 			dst_reg->smax_value = smax_ptr + smax_val;
7401 		}
7402 		if (umin_ptr + umin_val < umin_ptr ||
7403 		    umax_ptr + umax_val < umax_ptr) {
7404 			dst_reg->umin_value = 0;
7405 			dst_reg->umax_value = U64_MAX;
7406 		} else {
7407 			dst_reg->umin_value = umin_ptr + umin_val;
7408 			dst_reg->umax_value = umax_ptr + umax_val;
7409 		}
7410 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7411 		dst_reg->off = ptr_reg->off;
7412 		dst_reg->raw = ptr_reg->raw;
7413 		if (reg_is_pkt_pointer(ptr_reg)) {
7414 			dst_reg->id = ++env->id_gen;
7415 			/* something was added to pkt_ptr, set range to zero */
7416 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7417 		}
7418 		break;
7419 	case BPF_SUB:
7420 		if (dst_reg == off_reg) {
7421 			/* scalar -= pointer.  Creates an unknown scalar */
7422 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7423 				dst);
7424 			return -EACCES;
7425 		}
7426 		/* We don't allow subtraction from FP, because (according to
7427 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7428 		 * be able to deal with it.
7429 		 */
7430 		if (ptr_reg->type == PTR_TO_STACK) {
7431 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7432 				dst);
7433 			return -EACCES;
7434 		}
7435 		if (known && (ptr_reg->off - smin_val ==
7436 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7437 			/* pointer -= K.  Subtract it from fixed offset */
7438 			dst_reg->smin_value = smin_ptr;
7439 			dst_reg->smax_value = smax_ptr;
7440 			dst_reg->umin_value = umin_ptr;
7441 			dst_reg->umax_value = umax_ptr;
7442 			dst_reg->var_off = ptr_reg->var_off;
7443 			dst_reg->id = ptr_reg->id;
7444 			dst_reg->off = ptr_reg->off - smin_val;
7445 			dst_reg->raw = ptr_reg->raw;
7446 			break;
7447 		}
7448 		/* A new variable offset is created.  If the subtrahend is known
7449 		 * nonnegative, then any reg->range we had before is still good.
7450 		 */
7451 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7452 		    signed_sub_overflows(smax_ptr, smin_val)) {
7453 			/* Overflow possible, we know nothing */
7454 			dst_reg->smin_value = S64_MIN;
7455 			dst_reg->smax_value = S64_MAX;
7456 		} else {
7457 			dst_reg->smin_value = smin_ptr - smax_val;
7458 			dst_reg->smax_value = smax_ptr - smin_val;
7459 		}
7460 		if (umin_ptr < umax_val) {
7461 			/* Overflow possible, we know nothing */
7462 			dst_reg->umin_value = 0;
7463 			dst_reg->umax_value = U64_MAX;
7464 		} else {
7465 			/* Cannot overflow (as long as bounds are consistent) */
7466 			dst_reg->umin_value = umin_ptr - umax_val;
7467 			dst_reg->umax_value = umax_ptr - umin_val;
7468 		}
7469 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7470 		dst_reg->off = ptr_reg->off;
7471 		dst_reg->raw = ptr_reg->raw;
7472 		if (reg_is_pkt_pointer(ptr_reg)) {
7473 			dst_reg->id = ++env->id_gen;
7474 			/* something was added to pkt_ptr, set range to zero */
7475 			if (smin_val < 0)
7476 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7477 		}
7478 		break;
7479 	case BPF_AND:
7480 	case BPF_OR:
7481 	case BPF_XOR:
7482 		/* bitwise ops on pointers are troublesome, prohibit. */
7483 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7484 			dst, bpf_alu_string[opcode >> 4]);
7485 		return -EACCES;
7486 	default:
7487 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7488 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7489 			dst, bpf_alu_string[opcode >> 4]);
7490 		return -EACCES;
7491 	}
7492 
7493 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7494 		return -EINVAL;
7495 
7496 	__update_reg_bounds(dst_reg);
7497 	__reg_deduce_bounds(dst_reg);
7498 	__reg_bound_offset(dst_reg);
7499 
7500 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7501 		return -EACCES;
7502 	if (sanitize_needed(opcode)) {
7503 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7504 				       &info, true);
7505 		if (ret < 0)
7506 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7507 	}
7508 
7509 	return 0;
7510 }
7511 
7512 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7513 				 struct bpf_reg_state *src_reg)
7514 {
7515 	s32 smin_val = src_reg->s32_min_value;
7516 	s32 smax_val = src_reg->s32_max_value;
7517 	u32 umin_val = src_reg->u32_min_value;
7518 	u32 umax_val = src_reg->u32_max_value;
7519 
7520 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7521 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7522 		dst_reg->s32_min_value = S32_MIN;
7523 		dst_reg->s32_max_value = S32_MAX;
7524 	} else {
7525 		dst_reg->s32_min_value += smin_val;
7526 		dst_reg->s32_max_value += smax_val;
7527 	}
7528 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7529 	    dst_reg->u32_max_value + umax_val < umax_val) {
7530 		dst_reg->u32_min_value = 0;
7531 		dst_reg->u32_max_value = U32_MAX;
7532 	} else {
7533 		dst_reg->u32_min_value += umin_val;
7534 		dst_reg->u32_max_value += umax_val;
7535 	}
7536 }
7537 
7538 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7539 			       struct bpf_reg_state *src_reg)
7540 {
7541 	s64 smin_val = src_reg->smin_value;
7542 	s64 smax_val = src_reg->smax_value;
7543 	u64 umin_val = src_reg->umin_value;
7544 	u64 umax_val = src_reg->umax_value;
7545 
7546 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7547 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7548 		dst_reg->smin_value = S64_MIN;
7549 		dst_reg->smax_value = S64_MAX;
7550 	} else {
7551 		dst_reg->smin_value += smin_val;
7552 		dst_reg->smax_value += smax_val;
7553 	}
7554 	if (dst_reg->umin_value + umin_val < umin_val ||
7555 	    dst_reg->umax_value + umax_val < umax_val) {
7556 		dst_reg->umin_value = 0;
7557 		dst_reg->umax_value = U64_MAX;
7558 	} else {
7559 		dst_reg->umin_value += umin_val;
7560 		dst_reg->umax_value += umax_val;
7561 	}
7562 }
7563 
7564 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7565 				 struct bpf_reg_state *src_reg)
7566 {
7567 	s32 smin_val = src_reg->s32_min_value;
7568 	s32 smax_val = src_reg->s32_max_value;
7569 	u32 umin_val = src_reg->u32_min_value;
7570 	u32 umax_val = src_reg->u32_max_value;
7571 
7572 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7573 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7574 		/* Overflow possible, we know nothing */
7575 		dst_reg->s32_min_value = S32_MIN;
7576 		dst_reg->s32_max_value = S32_MAX;
7577 	} else {
7578 		dst_reg->s32_min_value -= smax_val;
7579 		dst_reg->s32_max_value -= smin_val;
7580 	}
7581 	if (dst_reg->u32_min_value < umax_val) {
7582 		/* Overflow possible, we know nothing */
7583 		dst_reg->u32_min_value = 0;
7584 		dst_reg->u32_max_value = U32_MAX;
7585 	} else {
7586 		/* Cannot overflow (as long as bounds are consistent) */
7587 		dst_reg->u32_min_value -= umax_val;
7588 		dst_reg->u32_max_value -= umin_val;
7589 	}
7590 }
7591 
7592 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7593 			       struct bpf_reg_state *src_reg)
7594 {
7595 	s64 smin_val = src_reg->smin_value;
7596 	s64 smax_val = src_reg->smax_value;
7597 	u64 umin_val = src_reg->umin_value;
7598 	u64 umax_val = src_reg->umax_value;
7599 
7600 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7601 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7602 		/* Overflow possible, we know nothing */
7603 		dst_reg->smin_value = S64_MIN;
7604 		dst_reg->smax_value = S64_MAX;
7605 	} else {
7606 		dst_reg->smin_value -= smax_val;
7607 		dst_reg->smax_value -= smin_val;
7608 	}
7609 	if (dst_reg->umin_value < umax_val) {
7610 		/* Overflow possible, we know nothing */
7611 		dst_reg->umin_value = 0;
7612 		dst_reg->umax_value = U64_MAX;
7613 	} else {
7614 		/* Cannot overflow (as long as bounds are consistent) */
7615 		dst_reg->umin_value -= umax_val;
7616 		dst_reg->umax_value -= umin_val;
7617 	}
7618 }
7619 
7620 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7621 				 struct bpf_reg_state *src_reg)
7622 {
7623 	s32 smin_val = src_reg->s32_min_value;
7624 	u32 umin_val = src_reg->u32_min_value;
7625 	u32 umax_val = src_reg->u32_max_value;
7626 
7627 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7628 		/* Ain't nobody got time to multiply that sign */
7629 		__mark_reg32_unbounded(dst_reg);
7630 		return;
7631 	}
7632 	/* Both values are positive, so we can work with unsigned and
7633 	 * copy the result to signed (unless it exceeds S32_MAX).
7634 	 */
7635 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7636 		/* Potential overflow, we know nothing */
7637 		__mark_reg32_unbounded(dst_reg);
7638 		return;
7639 	}
7640 	dst_reg->u32_min_value *= umin_val;
7641 	dst_reg->u32_max_value *= umax_val;
7642 	if (dst_reg->u32_max_value > S32_MAX) {
7643 		/* Overflow possible, we know nothing */
7644 		dst_reg->s32_min_value = S32_MIN;
7645 		dst_reg->s32_max_value = S32_MAX;
7646 	} else {
7647 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7648 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7649 	}
7650 }
7651 
7652 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7653 			       struct bpf_reg_state *src_reg)
7654 {
7655 	s64 smin_val = src_reg->smin_value;
7656 	u64 umin_val = src_reg->umin_value;
7657 	u64 umax_val = src_reg->umax_value;
7658 
7659 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7660 		/* Ain't nobody got time to multiply that sign */
7661 		__mark_reg64_unbounded(dst_reg);
7662 		return;
7663 	}
7664 	/* Both values are positive, so we can work with unsigned and
7665 	 * copy the result to signed (unless it exceeds S64_MAX).
7666 	 */
7667 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7668 		/* Potential overflow, we know nothing */
7669 		__mark_reg64_unbounded(dst_reg);
7670 		return;
7671 	}
7672 	dst_reg->umin_value *= umin_val;
7673 	dst_reg->umax_value *= umax_val;
7674 	if (dst_reg->umax_value > S64_MAX) {
7675 		/* Overflow possible, we know nothing */
7676 		dst_reg->smin_value = S64_MIN;
7677 		dst_reg->smax_value = S64_MAX;
7678 	} else {
7679 		dst_reg->smin_value = dst_reg->umin_value;
7680 		dst_reg->smax_value = dst_reg->umax_value;
7681 	}
7682 }
7683 
7684 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7685 				 struct bpf_reg_state *src_reg)
7686 {
7687 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7688 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7689 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7690 	s32 smin_val = src_reg->s32_min_value;
7691 	u32 umax_val = src_reg->u32_max_value;
7692 
7693 	if (src_known && dst_known) {
7694 		__mark_reg32_known(dst_reg, var32_off.value);
7695 		return;
7696 	}
7697 
7698 	/* We get our minimum from the var_off, since that's inherently
7699 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7700 	 */
7701 	dst_reg->u32_min_value = var32_off.value;
7702 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7703 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7704 		/* Lose signed bounds when ANDing negative numbers,
7705 		 * ain't nobody got time for that.
7706 		 */
7707 		dst_reg->s32_min_value = S32_MIN;
7708 		dst_reg->s32_max_value = S32_MAX;
7709 	} else {
7710 		/* ANDing two positives gives a positive, so safe to
7711 		 * cast result into s64.
7712 		 */
7713 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7714 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7715 	}
7716 }
7717 
7718 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7719 			       struct bpf_reg_state *src_reg)
7720 {
7721 	bool src_known = tnum_is_const(src_reg->var_off);
7722 	bool dst_known = tnum_is_const(dst_reg->var_off);
7723 	s64 smin_val = src_reg->smin_value;
7724 	u64 umax_val = src_reg->umax_value;
7725 
7726 	if (src_known && dst_known) {
7727 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7728 		return;
7729 	}
7730 
7731 	/* We get our minimum from the var_off, since that's inherently
7732 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7733 	 */
7734 	dst_reg->umin_value = dst_reg->var_off.value;
7735 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7736 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7737 		/* Lose signed bounds when ANDing negative numbers,
7738 		 * ain't nobody got time for that.
7739 		 */
7740 		dst_reg->smin_value = S64_MIN;
7741 		dst_reg->smax_value = S64_MAX;
7742 	} else {
7743 		/* ANDing two positives gives a positive, so safe to
7744 		 * cast result into s64.
7745 		 */
7746 		dst_reg->smin_value = dst_reg->umin_value;
7747 		dst_reg->smax_value = dst_reg->umax_value;
7748 	}
7749 	/* We may learn something more from the var_off */
7750 	__update_reg_bounds(dst_reg);
7751 }
7752 
7753 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7754 				struct bpf_reg_state *src_reg)
7755 {
7756 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7757 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7758 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7759 	s32 smin_val = src_reg->s32_min_value;
7760 	u32 umin_val = src_reg->u32_min_value;
7761 
7762 	if (src_known && dst_known) {
7763 		__mark_reg32_known(dst_reg, var32_off.value);
7764 		return;
7765 	}
7766 
7767 	/* We get our maximum from the var_off, and our minimum is the
7768 	 * maximum of the operands' minima
7769 	 */
7770 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7771 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7772 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7773 		/* Lose signed bounds when ORing negative numbers,
7774 		 * ain't nobody got time for that.
7775 		 */
7776 		dst_reg->s32_min_value = S32_MIN;
7777 		dst_reg->s32_max_value = S32_MAX;
7778 	} else {
7779 		/* ORing two positives gives a positive, so safe to
7780 		 * cast result into s64.
7781 		 */
7782 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7783 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7784 	}
7785 }
7786 
7787 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7788 			      struct bpf_reg_state *src_reg)
7789 {
7790 	bool src_known = tnum_is_const(src_reg->var_off);
7791 	bool dst_known = tnum_is_const(dst_reg->var_off);
7792 	s64 smin_val = src_reg->smin_value;
7793 	u64 umin_val = src_reg->umin_value;
7794 
7795 	if (src_known && dst_known) {
7796 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7797 		return;
7798 	}
7799 
7800 	/* We get our maximum from the var_off, and our minimum is the
7801 	 * maximum of the operands' minima
7802 	 */
7803 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7804 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7805 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7806 		/* Lose signed bounds when ORing negative numbers,
7807 		 * ain't nobody got time for that.
7808 		 */
7809 		dst_reg->smin_value = S64_MIN;
7810 		dst_reg->smax_value = S64_MAX;
7811 	} else {
7812 		/* ORing two positives gives a positive, so safe to
7813 		 * cast result into s64.
7814 		 */
7815 		dst_reg->smin_value = dst_reg->umin_value;
7816 		dst_reg->smax_value = dst_reg->umax_value;
7817 	}
7818 	/* We may learn something more from the var_off */
7819 	__update_reg_bounds(dst_reg);
7820 }
7821 
7822 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7823 				 struct bpf_reg_state *src_reg)
7824 {
7825 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7826 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7827 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7828 	s32 smin_val = src_reg->s32_min_value;
7829 
7830 	if (src_known && dst_known) {
7831 		__mark_reg32_known(dst_reg, var32_off.value);
7832 		return;
7833 	}
7834 
7835 	/* We get both minimum and maximum from the var32_off. */
7836 	dst_reg->u32_min_value = var32_off.value;
7837 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7838 
7839 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7840 		/* XORing two positive sign numbers gives a positive,
7841 		 * so safe to cast u32 result into s32.
7842 		 */
7843 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7844 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7845 	} else {
7846 		dst_reg->s32_min_value = S32_MIN;
7847 		dst_reg->s32_max_value = S32_MAX;
7848 	}
7849 }
7850 
7851 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7852 			       struct bpf_reg_state *src_reg)
7853 {
7854 	bool src_known = tnum_is_const(src_reg->var_off);
7855 	bool dst_known = tnum_is_const(dst_reg->var_off);
7856 	s64 smin_val = src_reg->smin_value;
7857 
7858 	if (src_known && dst_known) {
7859 		/* dst_reg->var_off.value has been updated earlier */
7860 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7861 		return;
7862 	}
7863 
7864 	/* We get both minimum and maximum from the var_off. */
7865 	dst_reg->umin_value = dst_reg->var_off.value;
7866 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7867 
7868 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7869 		/* XORing two positive sign numbers gives a positive,
7870 		 * so safe to cast u64 result into s64.
7871 		 */
7872 		dst_reg->smin_value = dst_reg->umin_value;
7873 		dst_reg->smax_value = dst_reg->umax_value;
7874 	} else {
7875 		dst_reg->smin_value = S64_MIN;
7876 		dst_reg->smax_value = S64_MAX;
7877 	}
7878 
7879 	__update_reg_bounds(dst_reg);
7880 }
7881 
7882 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7883 				   u64 umin_val, u64 umax_val)
7884 {
7885 	/* We lose all sign bit information (except what we can pick
7886 	 * up from var_off)
7887 	 */
7888 	dst_reg->s32_min_value = S32_MIN;
7889 	dst_reg->s32_max_value = S32_MAX;
7890 	/* If we might shift our top bit out, then we know nothing */
7891 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7892 		dst_reg->u32_min_value = 0;
7893 		dst_reg->u32_max_value = U32_MAX;
7894 	} else {
7895 		dst_reg->u32_min_value <<= umin_val;
7896 		dst_reg->u32_max_value <<= umax_val;
7897 	}
7898 }
7899 
7900 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7901 				 struct bpf_reg_state *src_reg)
7902 {
7903 	u32 umax_val = src_reg->u32_max_value;
7904 	u32 umin_val = src_reg->u32_min_value;
7905 	/* u32 alu operation will zext upper bits */
7906 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7907 
7908 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7909 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7910 	/* Not required but being careful mark reg64 bounds as unknown so
7911 	 * that we are forced to pick them up from tnum and zext later and
7912 	 * if some path skips this step we are still safe.
7913 	 */
7914 	__mark_reg64_unbounded(dst_reg);
7915 	__update_reg32_bounds(dst_reg);
7916 }
7917 
7918 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7919 				   u64 umin_val, u64 umax_val)
7920 {
7921 	/* Special case <<32 because it is a common compiler pattern to sign
7922 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7923 	 * positive we know this shift will also be positive so we can track
7924 	 * bounds correctly. Otherwise we lose all sign bit information except
7925 	 * what we can pick up from var_off. Perhaps we can generalize this
7926 	 * later to shifts of any length.
7927 	 */
7928 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7929 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7930 	else
7931 		dst_reg->smax_value = S64_MAX;
7932 
7933 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7934 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7935 	else
7936 		dst_reg->smin_value = S64_MIN;
7937 
7938 	/* If we might shift our top bit out, then we know nothing */
7939 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7940 		dst_reg->umin_value = 0;
7941 		dst_reg->umax_value = U64_MAX;
7942 	} else {
7943 		dst_reg->umin_value <<= umin_val;
7944 		dst_reg->umax_value <<= umax_val;
7945 	}
7946 }
7947 
7948 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7949 			       struct bpf_reg_state *src_reg)
7950 {
7951 	u64 umax_val = src_reg->umax_value;
7952 	u64 umin_val = src_reg->umin_value;
7953 
7954 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7955 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7956 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7957 
7958 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7959 	/* We may learn something more from the var_off */
7960 	__update_reg_bounds(dst_reg);
7961 }
7962 
7963 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7964 				 struct bpf_reg_state *src_reg)
7965 {
7966 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7967 	u32 umax_val = src_reg->u32_max_value;
7968 	u32 umin_val = src_reg->u32_min_value;
7969 
7970 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7971 	 * be negative, then either:
7972 	 * 1) src_reg might be zero, so the sign bit of the result is
7973 	 *    unknown, so we lose our signed bounds
7974 	 * 2) it's known negative, thus the unsigned bounds capture the
7975 	 *    signed bounds
7976 	 * 3) the signed bounds cross zero, so they tell us nothing
7977 	 *    about the result
7978 	 * If the value in dst_reg is known nonnegative, then again the
7979 	 * unsigned bounds capture the signed bounds.
7980 	 * Thus, in all cases it suffices to blow away our signed bounds
7981 	 * and rely on inferring new ones from the unsigned bounds and
7982 	 * var_off of the result.
7983 	 */
7984 	dst_reg->s32_min_value = S32_MIN;
7985 	dst_reg->s32_max_value = S32_MAX;
7986 
7987 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7988 	dst_reg->u32_min_value >>= umax_val;
7989 	dst_reg->u32_max_value >>= umin_val;
7990 
7991 	__mark_reg64_unbounded(dst_reg);
7992 	__update_reg32_bounds(dst_reg);
7993 }
7994 
7995 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7996 			       struct bpf_reg_state *src_reg)
7997 {
7998 	u64 umax_val = src_reg->umax_value;
7999 	u64 umin_val = src_reg->umin_value;
8000 
8001 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8002 	 * be negative, then either:
8003 	 * 1) src_reg might be zero, so the sign bit of the result is
8004 	 *    unknown, so we lose our signed bounds
8005 	 * 2) it's known negative, thus the unsigned bounds capture the
8006 	 *    signed bounds
8007 	 * 3) the signed bounds cross zero, so they tell us nothing
8008 	 *    about the result
8009 	 * If the value in dst_reg is known nonnegative, then again the
8010 	 * unsigned bounds capture the signed bounds.
8011 	 * Thus, in all cases it suffices to blow away our signed bounds
8012 	 * and rely on inferring new ones from the unsigned bounds and
8013 	 * var_off of the result.
8014 	 */
8015 	dst_reg->smin_value = S64_MIN;
8016 	dst_reg->smax_value = S64_MAX;
8017 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8018 	dst_reg->umin_value >>= umax_val;
8019 	dst_reg->umax_value >>= umin_val;
8020 
8021 	/* Its not easy to operate on alu32 bounds here because it depends
8022 	 * on bits being shifted in. Take easy way out and mark unbounded
8023 	 * so we can recalculate later from tnum.
8024 	 */
8025 	__mark_reg32_unbounded(dst_reg);
8026 	__update_reg_bounds(dst_reg);
8027 }
8028 
8029 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8030 				  struct bpf_reg_state *src_reg)
8031 {
8032 	u64 umin_val = src_reg->u32_min_value;
8033 
8034 	/* Upon reaching here, src_known is true and
8035 	 * umax_val is equal to umin_val.
8036 	 */
8037 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8038 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8039 
8040 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8041 
8042 	/* blow away the dst_reg umin_value/umax_value and rely on
8043 	 * dst_reg var_off to refine the result.
8044 	 */
8045 	dst_reg->u32_min_value = 0;
8046 	dst_reg->u32_max_value = U32_MAX;
8047 
8048 	__mark_reg64_unbounded(dst_reg);
8049 	__update_reg32_bounds(dst_reg);
8050 }
8051 
8052 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8053 				struct bpf_reg_state *src_reg)
8054 {
8055 	u64 umin_val = src_reg->umin_value;
8056 
8057 	/* Upon reaching here, src_known is true and umax_val is equal
8058 	 * to umin_val.
8059 	 */
8060 	dst_reg->smin_value >>= umin_val;
8061 	dst_reg->smax_value >>= umin_val;
8062 
8063 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8064 
8065 	/* blow away the dst_reg umin_value/umax_value and rely on
8066 	 * dst_reg var_off to refine the result.
8067 	 */
8068 	dst_reg->umin_value = 0;
8069 	dst_reg->umax_value = U64_MAX;
8070 
8071 	/* Its not easy to operate on alu32 bounds here because it depends
8072 	 * on bits being shifted in from upper 32-bits. Take easy way out
8073 	 * and mark unbounded so we can recalculate later from tnum.
8074 	 */
8075 	__mark_reg32_unbounded(dst_reg);
8076 	__update_reg_bounds(dst_reg);
8077 }
8078 
8079 /* WARNING: This function does calculations on 64-bit values, but the actual
8080  * execution may occur on 32-bit values. Therefore, things like bitshifts
8081  * need extra checks in the 32-bit case.
8082  */
8083 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8084 				      struct bpf_insn *insn,
8085 				      struct bpf_reg_state *dst_reg,
8086 				      struct bpf_reg_state src_reg)
8087 {
8088 	struct bpf_reg_state *regs = cur_regs(env);
8089 	u8 opcode = BPF_OP(insn->code);
8090 	bool src_known;
8091 	s64 smin_val, smax_val;
8092 	u64 umin_val, umax_val;
8093 	s32 s32_min_val, s32_max_val;
8094 	u32 u32_min_val, u32_max_val;
8095 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8096 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8097 	int ret;
8098 
8099 	smin_val = src_reg.smin_value;
8100 	smax_val = src_reg.smax_value;
8101 	umin_val = src_reg.umin_value;
8102 	umax_val = src_reg.umax_value;
8103 
8104 	s32_min_val = src_reg.s32_min_value;
8105 	s32_max_val = src_reg.s32_max_value;
8106 	u32_min_val = src_reg.u32_min_value;
8107 	u32_max_val = src_reg.u32_max_value;
8108 
8109 	if (alu32) {
8110 		src_known = tnum_subreg_is_const(src_reg.var_off);
8111 		if ((src_known &&
8112 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8113 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8114 			/* Taint dst register if offset had invalid bounds
8115 			 * derived from e.g. dead branches.
8116 			 */
8117 			__mark_reg_unknown(env, dst_reg);
8118 			return 0;
8119 		}
8120 	} else {
8121 		src_known = tnum_is_const(src_reg.var_off);
8122 		if ((src_known &&
8123 		     (smin_val != smax_val || umin_val != umax_val)) ||
8124 		    smin_val > smax_val || umin_val > umax_val) {
8125 			/* Taint dst register if offset had invalid bounds
8126 			 * derived from e.g. dead branches.
8127 			 */
8128 			__mark_reg_unknown(env, dst_reg);
8129 			return 0;
8130 		}
8131 	}
8132 
8133 	if (!src_known &&
8134 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8135 		__mark_reg_unknown(env, dst_reg);
8136 		return 0;
8137 	}
8138 
8139 	if (sanitize_needed(opcode)) {
8140 		ret = sanitize_val_alu(env, insn);
8141 		if (ret < 0)
8142 			return sanitize_err(env, insn, ret, NULL, NULL);
8143 	}
8144 
8145 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8146 	 * There are two classes of instructions: The first class we track both
8147 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8148 	 * greatest amount of precision when alu operations are mixed with jmp32
8149 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8150 	 * and BPF_OR. This is possible because these ops have fairly easy to
8151 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8152 	 * See alu32 verifier tests for examples. The second class of
8153 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8154 	 * with regards to tracking sign/unsigned bounds because the bits may
8155 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8156 	 * the reg unbounded in the subreg bound space and use the resulting
8157 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8158 	 */
8159 	switch (opcode) {
8160 	case BPF_ADD:
8161 		scalar32_min_max_add(dst_reg, &src_reg);
8162 		scalar_min_max_add(dst_reg, &src_reg);
8163 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8164 		break;
8165 	case BPF_SUB:
8166 		scalar32_min_max_sub(dst_reg, &src_reg);
8167 		scalar_min_max_sub(dst_reg, &src_reg);
8168 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8169 		break;
8170 	case BPF_MUL:
8171 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8172 		scalar32_min_max_mul(dst_reg, &src_reg);
8173 		scalar_min_max_mul(dst_reg, &src_reg);
8174 		break;
8175 	case BPF_AND:
8176 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8177 		scalar32_min_max_and(dst_reg, &src_reg);
8178 		scalar_min_max_and(dst_reg, &src_reg);
8179 		break;
8180 	case BPF_OR:
8181 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8182 		scalar32_min_max_or(dst_reg, &src_reg);
8183 		scalar_min_max_or(dst_reg, &src_reg);
8184 		break;
8185 	case BPF_XOR:
8186 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8187 		scalar32_min_max_xor(dst_reg, &src_reg);
8188 		scalar_min_max_xor(dst_reg, &src_reg);
8189 		break;
8190 	case BPF_LSH:
8191 		if (umax_val >= insn_bitness) {
8192 			/* Shifts greater than 31 or 63 are undefined.
8193 			 * This includes shifts by a negative number.
8194 			 */
8195 			mark_reg_unknown(env, regs, insn->dst_reg);
8196 			break;
8197 		}
8198 		if (alu32)
8199 			scalar32_min_max_lsh(dst_reg, &src_reg);
8200 		else
8201 			scalar_min_max_lsh(dst_reg, &src_reg);
8202 		break;
8203 	case BPF_RSH:
8204 		if (umax_val >= insn_bitness) {
8205 			/* Shifts greater than 31 or 63 are undefined.
8206 			 * This includes shifts by a negative number.
8207 			 */
8208 			mark_reg_unknown(env, regs, insn->dst_reg);
8209 			break;
8210 		}
8211 		if (alu32)
8212 			scalar32_min_max_rsh(dst_reg, &src_reg);
8213 		else
8214 			scalar_min_max_rsh(dst_reg, &src_reg);
8215 		break;
8216 	case BPF_ARSH:
8217 		if (umax_val >= insn_bitness) {
8218 			/* Shifts greater than 31 or 63 are undefined.
8219 			 * This includes shifts by a negative number.
8220 			 */
8221 			mark_reg_unknown(env, regs, insn->dst_reg);
8222 			break;
8223 		}
8224 		if (alu32)
8225 			scalar32_min_max_arsh(dst_reg, &src_reg);
8226 		else
8227 			scalar_min_max_arsh(dst_reg, &src_reg);
8228 		break;
8229 	default:
8230 		mark_reg_unknown(env, regs, insn->dst_reg);
8231 		break;
8232 	}
8233 
8234 	/* ALU32 ops are zero extended into 64bit register */
8235 	if (alu32)
8236 		zext_32_to_64(dst_reg);
8237 
8238 	__update_reg_bounds(dst_reg);
8239 	__reg_deduce_bounds(dst_reg);
8240 	__reg_bound_offset(dst_reg);
8241 	return 0;
8242 }
8243 
8244 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8245  * and var_off.
8246  */
8247 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8248 				   struct bpf_insn *insn)
8249 {
8250 	struct bpf_verifier_state *vstate = env->cur_state;
8251 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8252 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8253 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8254 	u8 opcode = BPF_OP(insn->code);
8255 	int err;
8256 
8257 	dst_reg = &regs[insn->dst_reg];
8258 	src_reg = NULL;
8259 	if (dst_reg->type != SCALAR_VALUE)
8260 		ptr_reg = dst_reg;
8261 	else
8262 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8263 		 * incorrectly propagated into other registers by find_equal_scalars()
8264 		 */
8265 		dst_reg->id = 0;
8266 	if (BPF_SRC(insn->code) == BPF_X) {
8267 		src_reg = &regs[insn->src_reg];
8268 		if (src_reg->type != SCALAR_VALUE) {
8269 			if (dst_reg->type != SCALAR_VALUE) {
8270 				/* Combining two pointers by any ALU op yields
8271 				 * an arbitrary scalar. Disallow all math except
8272 				 * pointer subtraction
8273 				 */
8274 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8275 					mark_reg_unknown(env, regs, insn->dst_reg);
8276 					return 0;
8277 				}
8278 				verbose(env, "R%d pointer %s pointer prohibited\n",
8279 					insn->dst_reg,
8280 					bpf_alu_string[opcode >> 4]);
8281 				return -EACCES;
8282 			} else {
8283 				/* scalar += pointer
8284 				 * This is legal, but we have to reverse our
8285 				 * src/dest handling in computing the range
8286 				 */
8287 				err = mark_chain_precision(env, insn->dst_reg);
8288 				if (err)
8289 					return err;
8290 				return adjust_ptr_min_max_vals(env, insn,
8291 							       src_reg, dst_reg);
8292 			}
8293 		} else if (ptr_reg) {
8294 			/* pointer += scalar */
8295 			err = mark_chain_precision(env, insn->src_reg);
8296 			if (err)
8297 				return err;
8298 			return adjust_ptr_min_max_vals(env, insn,
8299 						       dst_reg, src_reg);
8300 		}
8301 	} else {
8302 		/* Pretend the src is a reg with a known value, since we only
8303 		 * need to be able to read from this state.
8304 		 */
8305 		off_reg.type = SCALAR_VALUE;
8306 		__mark_reg_known(&off_reg, insn->imm);
8307 		src_reg = &off_reg;
8308 		if (ptr_reg) /* pointer += K */
8309 			return adjust_ptr_min_max_vals(env, insn,
8310 						       ptr_reg, src_reg);
8311 	}
8312 
8313 	/* Got here implies adding two SCALAR_VALUEs */
8314 	if (WARN_ON_ONCE(ptr_reg)) {
8315 		print_verifier_state(env, state, true);
8316 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8317 		return -EINVAL;
8318 	}
8319 	if (WARN_ON(!src_reg)) {
8320 		print_verifier_state(env, state, true);
8321 		verbose(env, "verifier internal error: no src_reg\n");
8322 		return -EINVAL;
8323 	}
8324 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8325 }
8326 
8327 /* check validity of 32-bit and 64-bit arithmetic operations */
8328 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8329 {
8330 	struct bpf_reg_state *regs = cur_regs(env);
8331 	u8 opcode = BPF_OP(insn->code);
8332 	int err;
8333 
8334 	if (opcode == BPF_END || opcode == BPF_NEG) {
8335 		if (opcode == BPF_NEG) {
8336 			if (BPF_SRC(insn->code) != 0 ||
8337 			    insn->src_reg != BPF_REG_0 ||
8338 			    insn->off != 0 || insn->imm != 0) {
8339 				verbose(env, "BPF_NEG uses reserved fields\n");
8340 				return -EINVAL;
8341 			}
8342 		} else {
8343 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8344 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8345 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8346 				verbose(env, "BPF_END uses reserved fields\n");
8347 				return -EINVAL;
8348 			}
8349 		}
8350 
8351 		/* check src operand */
8352 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8353 		if (err)
8354 			return err;
8355 
8356 		if (is_pointer_value(env, insn->dst_reg)) {
8357 			verbose(env, "R%d pointer arithmetic prohibited\n",
8358 				insn->dst_reg);
8359 			return -EACCES;
8360 		}
8361 
8362 		/* check dest operand */
8363 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8364 		if (err)
8365 			return err;
8366 
8367 	} else if (opcode == BPF_MOV) {
8368 
8369 		if (BPF_SRC(insn->code) == BPF_X) {
8370 			if (insn->imm != 0 || insn->off != 0) {
8371 				verbose(env, "BPF_MOV uses reserved fields\n");
8372 				return -EINVAL;
8373 			}
8374 
8375 			/* check src operand */
8376 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8377 			if (err)
8378 				return err;
8379 		} else {
8380 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8381 				verbose(env, "BPF_MOV uses reserved fields\n");
8382 				return -EINVAL;
8383 			}
8384 		}
8385 
8386 		/* check dest operand, mark as required later */
8387 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8388 		if (err)
8389 			return err;
8390 
8391 		if (BPF_SRC(insn->code) == BPF_X) {
8392 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8393 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8394 
8395 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8396 				/* case: R1 = R2
8397 				 * copy register state to dest reg
8398 				 */
8399 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8400 					/* Assign src and dst registers the same ID
8401 					 * that will be used by find_equal_scalars()
8402 					 * to propagate min/max range.
8403 					 */
8404 					src_reg->id = ++env->id_gen;
8405 				*dst_reg = *src_reg;
8406 				dst_reg->live |= REG_LIVE_WRITTEN;
8407 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8408 			} else {
8409 				/* R1 = (u32) R2 */
8410 				if (is_pointer_value(env, insn->src_reg)) {
8411 					verbose(env,
8412 						"R%d partial copy of pointer\n",
8413 						insn->src_reg);
8414 					return -EACCES;
8415 				} else if (src_reg->type == SCALAR_VALUE) {
8416 					*dst_reg = *src_reg;
8417 					/* Make sure ID is cleared otherwise
8418 					 * dst_reg min/max could be incorrectly
8419 					 * propagated into src_reg by find_equal_scalars()
8420 					 */
8421 					dst_reg->id = 0;
8422 					dst_reg->live |= REG_LIVE_WRITTEN;
8423 					dst_reg->subreg_def = env->insn_idx + 1;
8424 				} else {
8425 					mark_reg_unknown(env, regs,
8426 							 insn->dst_reg);
8427 				}
8428 				zext_32_to_64(dst_reg);
8429 			}
8430 		} else {
8431 			/* case: R = imm
8432 			 * remember the value we stored into this reg
8433 			 */
8434 			/* clear any state __mark_reg_known doesn't set */
8435 			mark_reg_unknown(env, regs, insn->dst_reg);
8436 			regs[insn->dst_reg].type = SCALAR_VALUE;
8437 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8438 				__mark_reg_known(regs + insn->dst_reg,
8439 						 insn->imm);
8440 			} else {
8441 				__mark_reg_known(regs + insn->dst_reg,
8442 						 (u32)insn->imm);
8443 			}
8444 		}
8445 
8446 	} else if (opcode > BPF_END) {
8447 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8448 		return -EINVAL;
8449 
8450 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8451 
8452 		if (BPF_SRC(insn->code) == BPF_X) {
8453 			if (insn->imm != 0 || insn->off != 0) {
8454 				verbose(env, "BPF_ALU uses reserved fields\n");
8455 				return -EINVAL;
8456 			}
8457 			/* check src1 operand */
8458 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8459 			if (err)
8460 				return err;
8461 		} else {
8462 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8463 				verbose(env, "BPF_ALU uses reserved fields\n");
8464 				return -EINVAL;
8465 			}
8466 		}
8467 
8468 		/* check src2 operand */
8469 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8470 		if (err)
8471 			return err;
8472 
8473 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8474 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8475 			verbose(env, "div by zero\n");
8476 			return -EINVAL;
8477 		}
8478 
8479 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8480 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8481 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8482 
8483 			if (insn->imm < 0 || insn->imm >= size) {
8484 				verbose(env, "invalid shift %d\n", insn->imm);
8485 				return -EINVAL;
8486 			}
8487 		}
8488 
8489 		/* check dest operand */
8490 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8491 		if (err)
8492 			return err;
8493 
8494 		return adjust_reg_min_max_vals(env, insn);
8495 	}
8496 
8497 	return 0;
8498 }
8499 
8500 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8501 				     struct bpf_reg_state *dst_reg,
8502 				     enum bpf_reg_type type, int new_range)
8503 {
8504 	struct bpf_reg_state *reg;
8505 	int i;
8506 
8507 	for (i = 0; i < MAX_BPF_REG; i++) {
8508 		reg = &state->regs[i];
8509 		if (reg->type == type && reg->id == dst_reg->id)
8510 			/* keep the maximum range already checked */
8511 			reg->range = max(reg->range, new_range);
8512 	}
8513 
8514 	bpf_for_each_spilled_reg(i, state, reg) {
8515 		if (!reg)
8516 			continue;
8517 		if (reg->type == type && reg->id == dst_reg->id)
8518 			reg->range = max(reg->range, new_range);
8519 	}
8520 }
8521 
8522 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8523 				   struct bpf_reg_state *dst_reg,
8524 				   enum bpf_reg_type type,
8525 				   bool range_right_open)
8526 {
8527 	int new_range, i;
8528 
8529 	if (dst_reg->off < 0 ||
8530 	    (dst_reg->off == 0 && range_right_open))
8531 		/* This doesn't give us any range */
8532 		return;
8533 
8534 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8535 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8536 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8537 		 * than pkt_end, but that's because it's also less than pkt.
8538 		 */
8539 		return;
8540 
8541 	new_range = dst_reg->off;
8542 	if (range_right_open)
8543 		new_range++;
8544 
8545 	/* Examples for register markings:
8546 	 *
8547 	 * pkt_data in dst register:
8548 	 *
8549 	 *   r2 = r3;
8550 	 *   r2 += 8;
8551 	 *   if (r2 > pkt_end) goto <handle exception>
8552 	 *   <access okay>
8553 	 *
8554 	 *   r2 = r3;
8555 	 *   r2 += 8;
8556 	 *   if (r2 < pkt_end) goto <access okay>
8557 	 *   <handle exception>
8558 	 *
8559 	 *   Where:
8560 	 *     r2 == dst_reg, pkt_end == src_reg
8561 	 *     r2=pkt(id=n,off=8,r=0)
8562 	 *     r3=pkt(id=n,off=0,r=0)
8563 	 *
8564 	 * pkt_data in src register:
8565 	 *
8566 	 *   r2 = r3;
8567 	 *   r2 += 8;
8568 	 *   if (pkt_end >= r2) goto <access okay>
8569 	 *   <handle exception>
8570 	 *
8571 	 *   r2 = r3;
8572 	 *   r2 += 8;
8573 	 *   if (pkt_end <= r2) goto <handle exception>
8574 	 *   <access okay>
8575 	 *
8576 	 *   Where:
8577 	 *     pkt_end == dst_reg, r2 == src_reg
8578 	 *     r2=pkt(id=n,off=8,r=0)
8579 	 *     r3=pkt(id=n,off=0,r=0)
8580 	 *
8581 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8582 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8583 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8584 	 * the check.
8585 	 */
8586 
8587 	/* If our ids match, then we must have the same max_value.  And we
8588 	 * don't care about the other reg's fixed offset, since if it's too big
8589 	 * the range won't allow anything.
8590 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8591 	 */
8592 	for (i = 0; i <= vstate->curframe; i++)
8593 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8594 					 new_range);
8595 }
8596 
8597 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8598 {
8599 	struct tnum subreg = tnum_subreg(reg->var_off);
8600 	s32 sval = (s32)val;
8601 
8602 	switch (opcode) {
8603 	case BPF_JEQ:
8604 		if (tnum_is_const(subreg))
8605 			return !!tnum_equals_const(subreg, val);
8606 		break;
8607 	case BPF_JNE:
8608 		if (tnum_is_const(subreg))
8609 			return !tnum_equals_const(subreg, val);
8610 		break;
8611 	case BPF_JSET:
8612 		if ((~subreg.mask & subreg.value) & val)
8613 			return 1;
8614 		if (!((subreg.mask | subreg.value) & val))
8615 			return 0;
8616 		break;
8617 	case BPF_JGT:
8618 		if (reg->u32_min_value > val)
8619 			return 1;
8620 		else if (reg->u32_max_value <= val)
8621 			return 0;
8622 		break;
8623 	case BPF_JSGT:
8624 		if (reg->s32_min_value > sval)
8625 			return 1;
8626 		else if (reg->s32_max_value <= sval)
8627 			return 0;
8628 		break;
8629 	case BPF_JLT:
8630 		if (reg->u32_max_value < val)
8631 			return 1;
8632 		else if (reg->u32_min_value >= val)
8633 			return 0;
8634 		break;
8635 	case BPF_JSLT:
8636 		if (reg->s32_max_value < sval)
8637 			return 1;
8638 		else if (reg->s32_min_value >= sval)
8639 			return 0;
8640 		break;
8641 	case BPF_JGE:
8642 		if (reg->u32_min_value >= val)
8643 			return 1;
8644 		else if (reg->u32_max_value < val)
8645 			return 0;
8646 		break;
8647 	case BPF_JSGE:
8648 		if (reg->s32_min_value >= sval)
8649 			return 1;
8650 		else if (reg->s32_max_value < sval)
8651 			return 0;
8652 		break;
8653 	case BPF_JLE:
8654 		if (reg->u32_max_value <= val)
8655 			return 1;
8656 		else if (reg->u32_min_value > val)
8657 			return 0;
8658 		break;
8659 	case BPF_JSLE:
8660 		if (reg->s32_max_value <= sval)
8661 			return 1;
8662 		else if (reg->s32_min_value > sval)
8663 			return 0;
8664 		break;
8665 	}
8666 
8667 	return -1;
8668 }
8669 
8670 
8671 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8672 {
8673 	s64 sval = (s64)val;
8674 
8675 	switch (opcode) {
8676 	case BPF_JEQ:
8677 		if (tnum_is_const(reg->var_off))
8678 			return !!tnum_equals_const(reg->var_off, val);
8679 		break;
8680 	case BPF_JNE:
8681 		if (tnum_is_const(reg->var_off))
8682 			return !tnum_equals_const(reg->var_off, val);
8683 		break;
8684 	case BPF_JSET:
8685 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8686 			return 1;
8687 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8688 			return 0;
8689 		break;
8690 	case BPF_JGT:
8691 		if (reg->umin_value > val)
8692 			return 1;
8693 		else if (reg->umax_value <= val)
8694 			return 0;
8695 		break;
8696 	case BPF_JSGT:
8697 		if (reg->smin_value > sval)
8698 			return 1;
8699 		else if (reg->smax_value <= sval)
8700 			return 0;
8701 		break;
8702 	case BPF_JLT:
8703 		if (reg->umax_value < val)
8704 			return 1;
8705 		else if (reg->umin_value >= val)
8706 			return 0;
8707 		break;
8708 	case BPF_JSLT:
8709 		if (reg->smax_value < sval)
8710 			return 1;
8711 		else if (reg->smin_value >= sval)
8712 			return 0;
8713 		break;
8714 	case BPF_JGE:
8715 		if (reg->umin_value >= val)
8716 			return 1;
8717 		else if (reg->umax_value < val)
8718 			return 0;
8719 		break;
8720 	case BPF_JSGE:
8721 		if (reg->smin_value >= sval)
8722 			return 1;
8723 		else if (reg->smax_value < sval)
8724 			return 0;
8725 		break;
8726 	case BPF_JLE:
8727 		if (reg->umax_value <= val)
8728 			return 1;
8729 		else if (reg->umin_value > val)
8730 			return 0;
8731 		break;
8732 	case BPF_JSLE:
8733 		if (reg->smax_value <= sval)
8734 			return 1;
8735 		else if (reg->smin_value > sval)
8736 			return 0;
8737 		break;
8738 	}
8739 
8740 	return -1;
8741 }
8742 
8743 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8744  * and return:
8745  *  1 - branch will be taken and "goto target" will be executed
8746  *  0 - branch will not be taken and fall-through to next insn
8747  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8748  *      range [0,10]
8749  */
8750 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8751 			   bool is_jmp32)
8752 {
8753 	if (__is_pointer_value(false, reg)) {
8754 		if (!reg_type_not_null(reg->type))
8755 			return -1;
8756 
8757 		/* If pointer is valid tests against zero will fail so we can
8758 		 * use this to direct branch taken.
8759 		 */
8760 		if (val != 0)
8761 			return -1;
8762 
8763 		switch (opcode) {
8764 		case BPF_JEQ:
8765 			return 0;
8766 		case BPF_JNE:
8767 			return 1;
8768 		default:
8769 			return -1;
8770 		}
8771 	}
8772 
8773 	if (is_jmp32)
8774 		return is_branch32_taken(reg, val, opcode);
8775 	return is_branch64_taken(reg, val, opcode);
8776 }
8777 
8778 static int flip_opcode(u32 opcode)
8779 {
8780 	/* How can we transform "a <op> b" into "b <op> a"? */
8781 	static const u8 opcode_flip[16] = {
8782 		/* these stay the same */
8783 		[BPF_JEQ  >> 4] = BPF_JEQ,
8784 		[BPF_JNE  >> 4] = BPF_JNE,
8785 		[BPF_JSET >> 4] = BPF_JSET,
8786 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8787 		[BPF_JGE  >> 4] = BPF_JLE,
8788 		[BPF_JGT  >> 4] = BPF_JLT,
8789 		[BPF_JLE  >> 4] = BPF_JGE,
8790 		[BPF_JLT  >> 4] = BPF_JGT,
8791 		[BPF_JSGE >> 4] = BPF_JSLE,
8792 		[BPF_JSGT >> 4] = BPF_JSLT,
8793 		[BPF_JSLE >> 4] = BPF_JSGE,
8794 		[BPF_JSLT >> 4] = BPF_JSGT
8795 	};
8796 	return opcode_flip[opcode >> 4];
8797 }
8798 
8799 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8800 				   struct bpf_reg_state *src_reg,
8801 				   u8 opcode)
8802 {
8803 	struct bpf_reg_state *pkt;
8804 
8805 	if (src_reg->type == PTR_TO_PACKET_END) {
8806 		pkt = dst_reg;
8807 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8808 		pkt = src_reg;
8809 		opcode = flip_opcode(opcode);
8810 	} else {
8811 		return -1;
8812 	}
8813 
8814 	if (pkt->range >= 0)
8815 		return -1;
8816 
8817 	switch (opcode) {
8818 	case BPF_JLE:
8819 		/* pkt <= pkt_end */
8820 		fallthrough;
8821 	case BPF_JGT:
8822 		/* pkt > pkt_end */
8823 		if (pkt->range == BEYOND_PKT_END)
8824 			/* pkt has at last one extra byte beyond pkt_end */
8825 			return opcode == BPF_JGT;
8826 		break;
8827 	case BPF_JLT:
8828 		/* pkt < pkt_end */
8829 		fallthrough;
8830 	case BPF_JGE:
8831 		/* pkt >= pkt_end */
8832 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8833 			return opcode == BPF_JGE;
8834 		break;
8835 	}
8836 	return -1;
8837 }
8838 
8839 /* Adjusts the register min/max values in the case that the dst_reg is the
8840  * variable register that we are working on, and src_reg is a constant or we're
8841  * simply doing a BPF_K check.
8842  * In JEQ/JNE cases we also adjust the var_off values.
8843  */
8844 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8845 			    struct bpf_reg_state *false_reg,
8846 			    u64 val, u32 val32,
8847 			    u8 opcode, bool is_jmp32)
8848 {
8849 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8850 	struct tnum false_64off = false_reg->var_off;
8851 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8852 	struct tnum true_64off = true_reg->var_off;
8853 	s64 sval = (s64)val;
8854 	s32 sval32 = (s32)val32;
8855 
8856 	/* If the dst_reg is a pointer, we can't learn anything about its
8857 	 * variable offset from the compare (unless src_reg were a pointer into
8858 	 * the same object, but we don't bother with that.
8859 	 * Since false_reg and true_reg have the same type by construction, we
8860 	 * only need to check one of them for pointerness.
8861 	 */
8862 	if (__is_pointer_value(false, false_reg))
8863 		return;
8864 
8865 	switch (opcode) {
8866 	case BPF_JEQ:
8867 	case BPF_JNE:
8868 	{
8869 		struct bpf_reg_state *reg =
8870 			opcode == BPF_JEQ ? true_reg : false_reg;
8871 
8872 		/* JEQ/JNE comparison doesn't change the register equivalence.
8873 		 * r1 = r2;
8874 		 * if (r1 == 42) goto label;
8875 		 * ...
8876 		 * label: // here both r1 and r2 are known to be 42.
8877 		 *
8878 		 * Hence when marking register as known preserve it's ID.
8879 		 */
8880 		if (is_jmp32)
8881 			__mark_reg32_known(reg, val32);
8882 		else
8883 			___mark_reg_known(reg, val);
8884 		break;
8885 	}
8886 	case BPF_JSET:
8887 		if (is_jmp32) {
8888 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8889 			if (is_power_of_2(val32))
8890 				true_32off = tnum_or(true_32off,
8891 						     tnum_const(val32));
8892 		} else {
8893 			false_64off = tnum_and(false_64off, tnum_const(~val));
8894 			if (is_power_of_2(val))
8895 				true_64off = tnum_or(true_64off,
8896 						     tnum_const(val));
8897 		}
8898 		break;
8899 	case BPF_JGE:
8900 	case BPF_JGT:
8901 	{
8902 		if (is_jmp32) {
8903 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8904 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8905 
8906 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8907 						       false_umax);
8908 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8909 						      true_umin);
8910 		} else {
8911 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8912 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8913 
8914 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8915 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8916 		}
8917 		break;
8918 	}
8919 	case BPF_JSGE:
8920 	case BPF_JSGT:
8921 	{
8922 		if (is_jmp32) {
8923 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8924 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8925 
8926 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8927 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8928 		} else {
8929 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8930 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8931 
8932 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8933 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8934 		}
8935 		break;
8936 	}
8937 	case BPF_JLE:
8938 	case BPF_JLT:
8939 	{
8940 		if (is_jmp32) {
8941 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8942 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8943 
8944 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8945 						       false_umin);
8946 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8947 						      true_umax);
8948 		} else {
8949 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8950 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8951 
8952 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8953 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8954 		}
8955 		break;
8956 	}
8957 	case BPF_JSLE:
8958 	case BPF_JSLT:
8959 	{
8960 		if (is_jmp32) {
8961 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8962 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8963 
8964 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8965 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8966 		} else {
8967 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8968 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8969 
8970 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8971 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8972 		}
8973 		break;
8974 	}
8975 	default:
8976 		return;
8977 	}
8978 
8979 	if (is_jmp32) {
8980 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8981 					     tnum_subreg(false_32off));
8982 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8983 					    tnum_subreg(true_32off));
8984 		__reg_combine_32_into_64(false_reg);
8985 		__reg_combine_32_into_64(true_reg);
8986 	} else {
8987 		false_reg->var_off = false_64off;
8988 		true_reg->var_off = true_64off;
8989 		__reg_combine_64_into_32(false_reg);
8990 		__reg_combine_64_into_32(true_reg);
8991 	}
8992 }
8993 
8994 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8995  * the variable reg.
8996  */
8997 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8998 				struct bpf_reg_state *false_reg,
8999 				u64 val, u32 val32,
9000 				u8 opcode, bool is_jmp32)
9001 {
9002 	opcode = flip_opcode(opcode);
9003 	/* This uses zero as "not present in table"; luckily the zero opcode,
9004 	 * BPF_JA, can't get here.
9005 	 */
9006 	if (opcode)
9007 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9008 }
9009 
9010 /* Regs are known to be equal, so intersect their min/max/var_off */
9011 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9012 				  struct bpf_reg_state *dst_reg)
9013 {
9014 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9015 							dst_reg->umin_value);
9016 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9017 							dst_reg->umax_value);
9018 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9019 							dst_reg->smin_value);
9020 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9021 							dst_reg->smax_value);
9022 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9023 							     dst_reg->var_off);
9024 	/* We might have learned new bounds from the var_off. */
9025 	__update_reg_bounds(src_reg);
9026 	__update_reg_bounds(dst_reg);
9027 	/* We might have learned something about the sign bit. */
9028 	__reg_deduce_bounds(src_reg);
9029 	__reg_deduce_bounds(dst_reg);
9030 	/* We might have learned some bits from the bounds. */
9031 	__reg_bound_offset(src_reg);
9032 	__reg_bound_offset(dst_reg);
9033 	/* Intersecting with the old var_off might have improved our bounds
9034 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
9035 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
9036 	 */
9037 	__update_reg_bounds(src_reg);
9038 	__update_reg_bounds(dst_reg);
9039 }
9040 
9041 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9042 				struct bpf_reg_state *true_dst,
9043 				struct bpf_reg_state *false_src,
9044 				struct bpf_reg_state *false_dst,
9045 				u8 opcode)
9046 {
9047 	switch (opcode) {
9048 	case BPF_JEQ:
9049 		__reg_combine_min_max(true_src, true_dst);
9050 		break;
9051 	case BPF_JNE:
9052 		__reg_combine_min_max(false_src, false_dst);
9053 		break;
9054 	}
9055 }
9056 
9057 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9058 				 struct bpf_reg_state *reg, u32 id,
9059 				 bool is_null)
9060 {
9061 	if (type_may_be_null(reg->type) && reg->id == id &&
9062 	    !WARN_ON_ONCE(!reg->id)) {
9063 		/* Old offset (both fixed and variable parts) should
9064 		 * have been known-zero, because we don't allow pointer
9065 		 * arithmetic on pointers that might be NULL.
9066 		 */
9067 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9068 				 !tnum_equals_const(reg->var_off, 0) ||
9069 				 reg->off)) {
9070 			__mark_reg_known_zero(reg);
9071 			reg->off = 0;
9072 		}
9073 		if (is_null) {
9074 			reg->type = SCALAR_VALUE;
9075 			/* We don't need id and ref_obj_id from this point
9076 			 * onwards anymore, thus we should better reset it,
9077 			 * so that state pruning has chances to take effect.
9078 			 */
9079 			reg->id = 0;
9080 			reg->ref_obj_id = 0;
9081 
9082 			return;
9083 		}
9084 
9085 		mark_ptr_not_null_reg(reg);
9086 
9087 		if (!reg_may_point_to_spin_lock(reg)) {
9088 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9089 			 * in release_reg_references().
9090 			 *
9091 			 * reg->id is still used by spin_lock ptr. Other
9092 			 * than spin_lock ptr type, reg->id can be reset.
9093 			 */
9094 			reg->id = 0;
9095 		}
9096 	}
9097 }
9098 
9099 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9100 				    bool is_null)
9101 {
9102 	struct bpf_reg_state *reg;
9103 	int i;
9104 
9105 	for (i = 0; i < MAX_BPF_REG; i++)
9106 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9107 
9108 	bpf_for_each_spilled_reg(i, state, reg) {
9109 		if (!reg)
9110 			continue;
9111 		mark_ptr_or_null_reg(state, reg, id, is_null);
9112 	}
9113 }
9114 
9115 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9116  * be folded together at some point.
9117  */
9118 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9119 				  bool is_null)
9120 {
9121 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9122 	struct bpf_reg_state *regs = state->regs;
9123 	u32 ref_obj_id = regs[regno].ref_obj_id;
9124 	u32 id = regs[regno].id;
9125 	int i;
9126 
9127 	if (ref_obj_id && ref_obj_id == id && is_null)
9128 		/* regs[regno] is in the " == NULL" branch.
9129 		 * No one could have freed the reference state before
9130 		 * doing the NULL check.
9131 		 */
9132 		WARN_ON_ONCE(release_reference_state(state, id));
9133 
9134 	for (i = 0; i <= vstate->curframe; i++)
9135 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9136 }
9137 
9138 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9139 				   struct bpf_reg_state *dst_reg,
9140 				   struct bpf_reg_state *src_reg,
9141 				   struct bpf_verifier_state *this_branch,
9142 				   struct bpf_verifier_state *other_branch)
9143 {
9144 	if (BPF_SRC(insn->code) != BPF_X)
9145 		return false;
9146 
9147 	/* Pointers are always 64-bit. */
9148 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9149 		return false;
9150 
9151 	switch (BPF_OP(insn->code)) {
9152 	case BPF_JGT:
9153 		if ((dst_reg->type == PTR_TO_PACKET &&
9154 		     src_reg->type == PTR_TO_PACKET_END) ||
9155 		    (dst_reg->type == PTR_TO_PACKET_META &&
9156 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9157 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9158 			find_good_pkt_pointers(this_branch, dst_reg,
9159 					       dst_reg->type, false);
9160 			mark_pkt_end(other_branch, insn->dst_reg, true);
9161 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9162 			    src_reg->type == PTR_TO_PACKET) ||
9163 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9164 			    src_reg->type == PTR_TO_PACKET_META)) {
9165 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9166 			find_good_pkt_pointers(other_branch, src_reg,
9167 					       src_reg->type, true);
9168 			mark_pkt_end(this_branch, insn->src_reg, false);
9169 		} else {
9170 			return false;
9171 		}
9172 		break;
9173 	case BPF_JLT:
9174 		if ((dst_reg->type == PTR_TO_PACKET &&
9175 		     src_reg->type == PTR_TO_PACKET_END) ||
9176 		    (dst_reg->type == PTR_TO_PACKET_META &&
9177 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9178 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9179 			find_good_pkt_pointers(other_branch, dst_reg,
9180 					       dst_reg->type, true);
9181 			mark_pkt_end(this_branch, insn->dst_reg, false);
9182 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9183 			    src_reg->type == PTR_TO_PACKET) ||
9184 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9185 			    src_reg->type == PTR_TO_PACKET_META)) {
9186 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9187 			find_good_pkt_pointers(this_branch, src_reg,
9188 					       src_reg->type, false);
9189 			mark_pkt_end(other_branch, insn->src_reg, true);
9190 		} else {
9191 			return false;
9192 		}
9193 		break;
9194 	case BPF_JGE:
9195 		if ((dst_reg->type == PTR_TO_PACKET &&
9196 		     src_reg->type == PTR_TO_PACKET_END) ||
9197 		    (dst_reg->type == PTR_TO_PACKET_META &&
9198 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9199 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9200 			find_good_pkt_pointers(this_branch, dst_reg,
9201 					       dst_reg->type, true);
9202 			mark_pkt_end(other_branch, insn->dst_reg, false);
9203 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9204 			    src_reg->type == PTR_TO_PACKET) ||
9205 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9206 			    src_reg->type == PTR_TO_PACKET_META)) {
9207 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9208 			find_good_pkt_pointers(other_branch, src_reg,
9209 					       src_reg->type, false);
9210 			mark_pkt_end(this_branch, insn->src_reg, true);
9211 		} else {
9212 			return false;
9213 		}
9214 		break;
9215 	case BPF_JLE:
9216 		if ((dst_reg->type == PTR_TO_PACKET &&
9217 		     src_reg->type == PTR_TO_PACKET_END) ||
9218 		    (dst_reg->type == PTR_TO_PACKET_META &&
9219 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9220 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9221 			find_good_pkt_pointers(other_branch, dst_reg,
9222 					       dst_reg->type, false);
9223 			mark_pkt_end(this_branch, insn->dst_reg, true);
9224 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9225 			    src_reg->type == PTR_TO_PACKET) ||
9226 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9227 			    src_reg->type == PTR_TO_PACKET_META)) {
9228 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9229 			find_good_pkt_pointers(this_branch, src_reg,
9230 					       src_reg->type, true);
9231 			mark_pkt_end(other_branch, insn->src_reg, false);
9232 		} else {
9233 			return false;
9234 		}
9235 		break;
9236 	default:
9237 		return false;
9238 	}
9239 
9240 	return true;
9241 }
9242 
9243 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9244 			       struct bpf_reg_state *known_reg)
9245 {
9246 	struct bpf_func_state *state;
9247 	struct bpf_reg_state *reg;
9248 	int i, j;
9249 
9250 	for (i = 0; i <= vstate->curframe; i++) {
9251 		state = vstate->frame[i];
9252 		for (j = 0; j < MAX_BPF_REG; j++) {
9253 			reg = &state->regs[j];
9254 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9255 				*reg = *known_reg;
9256 		}
9257 
9258 		bpf_for_each_spilled_reg(j, state, reg) {
9259 			if (!reg)
9260 				continue;
9261 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9262 				*reg = *known_reg;
9263 		}
9264 	}
9265 }
9266 
9267 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9268 			     struct bpf_insn *insn, int *insn_idx)
9269 {
9270 	struct bpf_verifier_state *this_branch = env->cur_state;
9271 	struct bpf_verifier_state *other_branch;
9272 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9273 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9274 	u8 opcode = BPF_OP(insn->code);
9275 	bool is_jmp32;
9276 	int pred = -1;
9277 	int err;
9278 
9279 	/* Only conditional jumps are expected to reach here. */
9280 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9281 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9282 		return -EINVAL;
9283 	}
9284 
9285 	if (BPF_SRC(insn->code) == BPF_X) {
9286 		if (insn->imm != 0) {
9287 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9288 			return -EINVAL;
9289 		}
9290 
9291 		/* check src1 operand */
9292 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9293 		if (err)
9294 			return err;
9295 
9296 		if (is_pointer_value(env, insn->src_reg)) {
9297 			verbose(env, "R%d pointer comparison prohibited\n",
9298 				insn->src_reg);
9299 			return -EACCES;
9300 		}
9301 		src_reg = &regs[insn->src_reg];
9302 	} else {
9303 		if (insn->src_reg != BPF_REG_0) {
9304 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9305 			return -EINVAL;
9306 		}
9307 	}
9308 
9309 	/* check src2 operand */
9310 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9311 	if (err)
9312 		return err;
9313 
9314 	dst_reg = &regs[insn->dst_reg];
9315 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9316 
9317 	if (BPF_SRC(insn->code) == BPF_K) {
9318 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9319 	} else if (src_reg->type == SCALAR_VALUE &&
9320 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9321 		pred = is_branch_taken(dst_reg,
9322 				       tnum_subreg(src_reg->var_off).value,
9323 				       opcode,
9324 				       is_jmp32);
9325 	} else if (src_reg->type == SCALAR_VALUE &&
9326 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9327 		pred = is_branch_taken(dst_reg,
9328 				       src_reg->var_off.value,
9329 				       opcode,
9330 				       is_jmp32);
9331 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9332 		   reg_is_pkt_pointer_any(src_reg) &&
9333 		   !is_jmp32) {
9334 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9335 	}
9336 
9337 	if (pred >= 0) {
9338 		/* If we get here with a dst_reg pointer type it is because
9339 		 * above is_branch_taken() special cased the 0 comparison.
9340 		 */
9341 		if (!__is_pointer_value(false, dst_reg))
9342 			err = mark_chain_precision(env, insn->dst_reg);
9343 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9344 		    !__is_pointer_value(false, src_reg))
9345 			err = mark_chain_precision(env, insn->src_reg);
9346 		if (err)
9347 			return err;
9348 	}
9349 
9350 	if (pred == 1) {
9351 		/* Only follow the goto, ignore fall-through. If needed, push
9352 		 * the fall-through branch for simulation under speculative
9353 		 * execution.
9354 		 */
9355 		if (!env->bypass_spec_v1 &&
9356 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9357 					       *insn_idx))
9358 			return -EFAULT;
9359 		*insn_idx += insn->off;
9360 		return 0;
9361 	} else if (pred == 0) {
9362 		/* Only follow the fall-through branch, since that's where the
9363 		 * program will go. If needed, push the goto branch for
9364 		 * simulation under speculative execution.
9365 		 */
9366 		if (!env->bypass_spec_v1 &&
9367 		    !sanitize_speculative_path(env, insn,
9368 					       *insn_idx + insn->off + 1,
9369 					       *insn_idx))
9370 			return -EFAULT;
9371 		return 0;
9372 	}
9373 
9374 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9375 				  false);
9376 	if (!other_branch)
9377 		return -EFAULT;
9378 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9379 
9380 	/* detect if we are comparing against a constant value so we can adjust
9381 	 * our min/max values for our dst register.
9382 	 * this is only legit if both are scalars (or pointers to the same
9383 	 * object, I suppose, but we don't support that right now), because
9384 	 * otherwise the different base pointers mean the offsets aren't
9385 	 * comparable.
9386 	 */
9387 	if (BPF_SRC(insn->code) == BPF_X) {
9388 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9389 
9390 		if (dst_reg->type == SCALAR_VALUE &&
9391 		    src_reg->type == SCALAR_VALUE) {
9392 			if (tnum_is_const(src_reg->var_off) ||
9393 			    (is_jmp32 &&
9394 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9395 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9396 						dst_reg,
9397 						src_reg->var_off.value,
9398 						tnum_subreg(src_reg->var_off).value,
9399 						opcode, is_jmp32);
9400 			else if (tnum_is_const(dst_reg->var_off) ||
9401 				 (is_jmp32 &&
9402 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9403 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9404 						    src_reg,
9405 						    dst_reg->var_off.value,
9406 						    tnum_subreg(dst_reg->var_off).value,
9407 						    opcode, is_jmp32);
9408 			else if (!is_jmp32 &&
9409 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9410 				/* Comparing for equality, we can combine knowledge */
9411 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9412 						    &other_branch_regs[insn->dst_reg],
9413 						    src_reg, dst_reg, opcode);
9414 			if (src_reg->id &&
9415 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9416 				find_equal_scalars(this_branch, src_reg);
9417 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9418 			}
9419 
9420 		}
9421 	} else if (dst_reg->type == SCALAR_VALUE) {
9422 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9423 					dst_reg, insn->imm, (u32)insn->imm,
9424 					opcode, is_jmp32);
9425 	}
9426 
9427 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9428 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9429 		find_equal_scalars(this_branch, dst_reg);
9430 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9431 	}
9432 
9433 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9434 	 * NOTE: these optimizations below are related with pointer comparison
9435 	 *       which will never be JMP32.
9436 	 */
9437 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9438 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9439 	    type_may_be_null(dst_reg->type)) {
9440 		/* Mark all identical registers in each branch as either
9441 		 * safe or unknown depending R == 0 or R != 0 conditional.
9442 		 */
9443 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9444 				      opcode == BPF_JNE);
9445 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9446 				      opcode == BPF_JEQ);
9447 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9448 					   this_branch, other_branch) &&
9449 		   is_pointer_value(env, insn->dst_reg)) {
9450 		verbose(env, "R%d pointer comparison prohibited\n",
9451 			insn->dst_reg);
9452 		return -EACCES;
9453 	}
9454 	if (env->log.level & BPF_LOG_LEVEL)
9455 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
9456 	return 0;
9457 }
9458 
9459 /* verify BPF_LD_IMM64 instruction */
9460 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9461 {
9462 	struct bpf_insn_aux_data *aux = cur_aux(env);
9463 	struct bpf_reg_state *regs = cur_regs(env);
9464 	struct bpf_reg_state *dst_reg;
9465 	struct bpf_map *map;
9466 	int err;
9467 
9468 	if (BPF_SIZE(insn->code) != BPF_DW) {
9469 		verbose(env, "invalid BPF_LD_IMM insn\n");
9470 		return -EINVAL;
9471 	}
9472 	if (insn->off != 0) {
9473 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9474 		return -EINVAL;
9475 	}
9476 
9477 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9478 	if (err)
9479 		return err;
9480 
9481 	dst_reg = &regs[insn->dst_reg];
9482 	if (insn->src_reg == 0) {
9483 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9484 
9485 		dst_reg->type = SCALAR_VALUE;
9486 		__mark_reg_known(&regs[insn->dst_reg], imm);
9487 		return 0;
9488 	}
9489 
9490 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9491 		mark_reg_known_zero(env, regs, insn->dst_reg);
9492 
9493 		dst_reg->type = aux->btf_var.reg_type;
9494 		switch (base_type(dst_reg->type)) {
9495 		case PTR_TO_MEM:
9496 			dst_reg->mem_size = aux->btf_var.mem_size;
9497 			break;
9498 		case PTR_TO_BTF_ID:
9499 		case PTR_TO_PERCPU_BTF_ID:
9500 			dst_reg->btf = aux->btf_var.btf;
9501 			dst_reg->btf_id = aux->btf_var.btf_id;
9502 			break;
9503 		default:
9504 			verbose(env, "bpf verifier is misconfigured\n");
9505 			return -EFAULT;
9506 		}
9507 		return 0;
9508 	}
9509 
9510 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9511 		struct bpf_prog_aux *aux = env->prog->aux;
9512 		u32 subprogno = find_subprog(env,
9513 					     env->insn_idx + insn->imm + 1);
9514 
9515 		if (!aux->func_info) {
9516 			verbose(env, "missing btf func_info\n");
9517 			return -EINVAL;
9518 		}
9519 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9520 			verbose(env, "callback function not static\n");
9521 			return -EINVAL;
9522 		}
9523 
9524 		dst_reg->type = PTR_TO_FUNC;
9525 		dst_reg->subprogno = subprogno;
9526 		return 0;
9527 	}
9528 
9529 	map = env->used_maps[aux->map_index];
9530 	mark_reg_known_zero(env, regs, insn->dst_reg);
9531 	dst_reg->map_ptr = map;
9532 
9533 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9534 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9535 		dst_reg->type = PTR_TO_MAP_VALUE;
9536 		dst_reg->off = aux->map_off;
9537 		if (map_value_has_spin_lock(map))
9538 			dst_reg->id = ++env->id_gen;
9539 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9540 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9541 		dst_reg->type = CONST_PTR_TO_MAP;
9542 	} else {
9543 		verbose(env, "bpf verifier is misconfigured\n");
9544 		return -EINVAL;
9545 	}
9546 
9547 	return 0;
9548 }
9549 
9550 static bool may_access_skb(enum bpf_prog_type type)
9551 {
9552 	switch (type) {
9553 	case BPF_PROG_TYPE_SOCKET_FILTER:
9554 	case BPF_PROG_TYPE_SCHED_CLS:
9555 	case BPF_PROG_TYPE_SCHED_ACT:
9556 		return true;
9557 	default:
9558 		return false;
9559 	}
9560 }
9561 
9562 /* verify safety of LD_ABS|LD_IND instructions:
9563  * - they can only appear in the programs where ctx == skb
9564  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9565  *   preserve R6-R9, and store return value into R0
9566  *
9567  * Implicit input:
9568  *   ctx == skb == R6 == CTX
9569  *
9570  * Explicit input:
9571  *   SRC == any register
9572  *   IMM == 32-bit immediate
9573  *
9574  * Output:
9575  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9576  */
9577 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9578 {
9579 	struct bpf_reg_state *regs = cur_regs(env);
9580 	static const int ctx_reg = BPF_REG_6;
9581 	u8 mode = BPF_MODE(insn->code);
9582 	int i, err;
9583 
9584 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9585 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9586 		return -EINVAL;
9587 	}
9588 
9589 	if (!env->ops->gen_ld_abs) {
9590 		verbose(env, "bpf verifier is misconfigured\n");
9591 		return -EINVAL;
9592 	}
9593 
9594 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9595 	    BPF_SIZE(insn->code) == BPF_DW ||
9596 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9597 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9598 		return -EINVAL;
9599 	}
9600 
9601 	/* check whether implicit source operand (register R6) is readable */
9602 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9603 	if (err)
9604 		return err;
9605 
9606 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9607 	 * gen_ld_abs() may terminate the program at runtime, leading to
9608 	 * reference leak.
9609 	 */
9610 	err = check_reference_leak(env);
9611 	if (err) {
9612 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9613 		return err;
9614 	}
9615 
9616 	if (env->cur_state->active_spin_lock) {
9617 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9618 		return -EINVAL;
9619 	}
9620 
9621 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9622 		verbose(env,
9623 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9624 		return -EINVAL;
9625 	}
9626 
9627 	if (mode == BPF_IND) {
9628 		/* check explicit source operand */
9629 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9630 		if (err)
9631 			return err;
9632 	}
9633 
9634 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9635 	if (err < 0)
9636 		return err;
9637 
9638 	/* reset caller saved regs to unreadable */
9639 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9640 		mark_reg_not_init(env, regs, caller_saved[i]);
9641 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9642 	}
9643 
9644 	/* mark destination R0 register as readable, since it contains
9645 	 * the value fetched from the packet.
9646 	 * Already marked as written above.
9647 	 */
9648 	mark_reg_unknown(env, regs, BPF_REG_0);
9649 	/* ld_abs load up to 32-bit skb data. */
9650 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9651 	return 0;
9652 }
9653 
9654 static int check_return_code(struct bpf_verifier_env *env)
9655 {
9656 	struct tnum enforce_attach_type_range = tnum_unknown;
9657 	const struct bpf_prog *prog = env->prog;
9658 	struct bpf_reg_state *reg;
9659 	struct tnum range = tnum_range(0, 1);
9660 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9661 	int err;
9662 	struct bpf_func_state *frame = env->cur_state->frame[0];
9663 	const bool is_subprog = frame->subprogno;
9664 
9665 	/* LSM and struct_ops func-ptr's return type could be "void" */
9666 	if (!is_subprog &&
9667 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9668 	     prog_type == BPF_PROG_TYPE_LSM) &&
9669 	    !prog->aux->attach_func_proto->type)
9670 		return 0;
9671 
9672 	/* eBPF calling convention is such that R0 is used
9673 	 * to return the value from eBPF program.
9674 	 * Make sure that it's readable at this time
9675 	 * of bpf_exit, which means that program wrote
9676 	 * something into it earlier
9677 	 */
9678 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9679 	if (err)
9680 		return err;
9681 
9682 	if (is_pointer_value(env, BPF_REG_0)) {
9683 		verbose(env, "R0 leaks addr as return value\n");
9684 		return -EACCES;
9685 	}
9686 
9687 	reg = cur_regs(env) + BPF_REG_0;
9688 
9689 	if (frame->in_async_callback_fn) {
9690 		/* enforce return zero from async callbacks like timer */
9691 		if (reg->type != SCALAR_VALUE) {
9692 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9693 				reg_type_str(env, reg->type));
9694 			return -EINVAL;
9695 		}
9696 
9697 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9698 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9699 			return -EINVAL;
9700 		}
9701 		return 0;
9702 	}
9703 
9704 	if (is_subprog) {
9705 		if (reg->type != SCALAR_VALUE) {
9706 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9707 				reg_type_str(env, reg->type));
9708 			return -EINVAL;
9709 		}
9710 		return 0;
9711 	}
9712 
9713 	switch (prog_type) {
9714 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9715 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9716 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9717 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9718 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9719 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9720 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9721 			range = tnum_range(1, 1);
9722 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9723 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9724 			range = tnum_range(0, 3);
9725 		break;
9726 	case BPF_PROG_TYPE_CGROUP_SKB:
9727 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9728 			range = tnum_range(0, 3);
9729 			enforce_attach_type_range = tnum_range(2, 3);
9730 		}
9731 		break;
9732 	case BPF_PROG_TYPE_CGROUP_SOCK:
9733 	case BPF_PROG_TYPE_SOCK_OPS:
9734 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9735 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9736 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9737 		break;
9738 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9739 		if (!env->prog->aux->attach_btf_id)
9740 			return 0;
9741 		range = tnum_const(0);
9742 		break;
9743 	case BPF_PROG_TYPE_TRACING:
9744 		switch (env->prog->expected_attach_type) {
9745 		case BPF_TRACE_FENTRY:
9746 		case BPF_TRACE_FEXIT:
9747 			range = tnum_const(0);
9748 			break;
9749 		case BPF_TRACE_RAW_TP:
9750 		case BPF_MODIFY_RETURN:
9751 			return 0;
9752 		case BPF_TRACE_ITER:
9753 			break;
9754 		default:
9755 			return -ENOTSUPP;
9756 		}
9757 		break;
9758 	case BPF_PROG_TYPE_SK_LOOKUP:
9759 		range = tnum_range(SK_DROP, SK_PASS);
9760 		break;
9761 	case BPF_PROG_TYPE_EXT:
9762 		/* freplace program can return anything as its return value
9763 		 * depends on the to-be-replaced kernel func or bpf program.
9764 		 */
9765 	default:
9766 		return 0;
9767 	}
9768 
9769 	if (reg->type != SCALAR_VALUE) {
9770 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9771 			reg_type_str(env, reg->type));
9772 		return -EINVAL;
9773 	}
9774 
9775 	if (!tnum_in(range, reg->var_off)) {
9776 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9777 		return -EINVAL;
9778 	}
9779 
9780 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9781 	    tnum_in(enforce_attach_type_range, reg->var_off))
9782 		env->prog->enforce_expected_attach_type = 1;
9783 	return 0;
9784 }
9785 
9786 /* non-recursive DFS pseudo code
9787  * 1  procedure DFS-iterative(G,v):
9788  * 2      label v as discovered
9789  * 3      let S be a stack
9790  * 4      S.push(v)
9791  * 5      while S is not empty
9792  * 6            t <- S.pop()
9793  * 7            if t is what we're looking for:
9794  * 8                return t
9795  * 9            for all edges e in G.adjacentEdges(t) do
9796  * 10               if edge e is already labelled
9797  * 11                   continue with the next edge
9798  * 12               w <- G.adjacentVertex(t,e)
9799  * 13               if vertex w is not discovered and not explored
9800  * 14                   label e as tree-edge
9801  * 15                   label w as discovered
9802  * 16                   S.push(w)
9803  * 17                   continue at 5
9804  * 18               else if vertex w is discovered
9805  * 19                   label e as back-edge
9806  * 20               else
9807  * 21                   // vertex w is explored
9808  * 22                   label e as forward- or cross-edge
9809  * 23           label t as explored
9810  * 24           S.pop()
9811  *
9812  * convention:
9813  * 0x10 - discovered
9814  * 0x11 - discovered and fall-through edge labelled
9815  * 0x12 - discovered and fall-through and branch edges labelled
9816  * 0x20 - explored
9817  */
9818 
9819 enum {
9820 	DISCOVERED = 0x10,
9821 	EXPLORED = 0x20,
9822 	FALLTHROUGH = 1,
9823 	BRANCH = 2,
9824 };
9825 
9826 static u32 state_htab_size(struct bpf_verifier_env *env)
9827 {
9828 	return env->prog->len;
9829 }
9830 
9831 static struct bpf_verifier_state_list **explored_state(
9832 					struct bpf_verifier_env *env,
9833 					int idx)
9834 {
9835 	struct bpf_verifier_state *cur = env->cur_state;
9836 	struct bpf_func_state *state = cur->frame[cur->curframe];
9837 
9838 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9839 }
9840 
9841 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9842 {
9843 	env->insn_aux_data[idx].prune_point = true;
9844 }
9845 
9846 enum {
9847 	DONE_EXPLORING = 0,
9848 	KEEP_EXPLORING = 1,
9849 };
9850 
9851 /* t, w, e - match pseudo-code above:
9852  * t - index of current instruction
9853  * w - next instruction
9854  * e - edge
9855  */
9856 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9857 		     bool loop_ok)
9858 {
9859 	int *insn_stack = env->cfg.insn_stack;
9860 	int *insn_state = env->cfg.insn_state;
9861 
9862 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9863 		return DONE_EXPLORING;
9864 
9865 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9866 		return DONE_EXPLORING;
9867 
9868 	if (w < 0 || w >= env->prog->len) {
9869 		verbose_linfo(env, t, "%d: ", t);
9870 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9871 		return -EINVAL;
9872 	}
9873 
9874 	if (e == BRANCH)
9875 		/* mark branch target for state pruning */
9876 		init_explored_state(env, w);
9877 
9878 	if (insn_state[w] == 0) {
9879 		/* tree-edge */
9880 		insn_state[t] = DISCOVERED | e;
9881 		insn_state[w] = DISCOVERED;
9882 		if (env->cfg.cur_stack >= env->prog->len)
9883 			return -E2BIG;
9884 		insn_stack[env->cfg.cur_stack++] = w;
9885 		return KEEP_EXPLORING;
9886 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9887 		if (loop_ok && env->bpf_capable)
9888 			return DONE_EXPLORING;
9889 		verbose_linfo(env, t, "%d: ", t);
9890 		verbose_linfo(env, w, "%d: ", w);
9891 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9892 		return -EINVAL;
9893 	} else if (insn_state[w] == EXPLORED) {
9894 		/* forward- or cross-edge */
9895 		insn_state[t] = DISCOVERED | e;
9896 	} else {
9897 		verbose(env, "insn state internal bug\n");
9898 		return -EFAULT;
9899 	}
9900 	return DONE_EXPLORING;
9901 }
9902 
9903 static int visit_func_call_insn(int t, int insn_cnt,
9904 				struct bpf_insn *insns,
9905 				struct bpf_verifier_env *env,
9906 				bool visit_callee)
9907 {
9908 	int ret;
9909 
9910 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9911 	if (ret)
9912 		return ret;
9913 
9914 	if (t + 1 < insn_cnt)
9915 		init_explored_state(env, t + 1);
9916 	if (visit_callee) {
9917 		init_explored_state(env, t);
9918 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9919 				/* It's ok to allow recursion from CFG point of
9920 				 * view. __check_func_call() will do the actual
9921 				 * check.
9922 				 */
9923 				bpf_pseudo_func(insns + t));
9924 	}
9925 	return ret;
9926 }
9927 
9928 /* Visits the instruction at index t and returns one of the following:
9929  *  < 0 - an error occurred
9930  *  DONE_EXPLORING - the instruction was fully explored
9931  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9932  */
9933 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9934 {
9935 	struct bpf_insn *insns = env->prog->insnsi;
9936 	int ret;
9937 
9938 	if (bpf_pseudo_func(insns + t))
9939 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9940 
9941 	/* All non-branch instructions have a single fall-through edge. */
9942 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9943 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9944 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9945 
9946 	switch (BPF_OP(insns[t].code)) {
9947 	case BPF_EXIT:
9948 		return DONE_EXPLORING;
9949 
9950 	case BPF_CALL:
9951 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9952 			/* Mark this call insn to trigger is_state_visited() check
9953 			 * before call itself is processed by __check_func_call().
9954 			 * Otherwise new async state will be pushed for further
9955 			 * exploration.
9956 			 */
9957 			init_explored_state(env, t);
9958 		return visit_func_call_insn(t, insn_cnt, insns, env,
9959 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9960 
9961 	case BPF_JA:
9962 		if (BPF_SRC(insns[t].code) != BPF_K)
9963 			return -EINVAL;
9964 
9965 		/* unconditional jump with single edge */
9966 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9967 				true);
9968 		if (ret)
9969 			return ret;
9970 
9971 		/* unconditional jmp is not a good pruning point,
9972 		 * but it's marked, since backtracking needs
9973 		 * to record jmp history in is_state_visited().
9974 		 */
9975 		init_explored_state(env, t + insns[t].off + 1);
9976 		/* tell verifier to check for equivalent states
9977 		 * after every call and jump
9978 		 */
9979 		if (t + 1 < insn_cnt)
9980 			init_explored_state(env, t + 1);
9981 
9982 		return ret;
9983 
9984 	default:
9985 		/* conditional jump with two edges */
9986 		init_explored_state(env, t);
9987 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9988 		if (ret)
9989 			return ret;
9990 
9991 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9992 	}
9993 }
9994 
9995 /* non-recursive depth-first-search to detect loops in BPF program
9996  * loop == back-edge in directed graph
9997  */
9998 static int check_cfg(struct bpf_verifier_env *env)
9999 {
10000 	int insn_cnt = env->prog->len;
10001 	int *insn_stack, *insn_state;
10002 	int ret = 0;
10003 	int i;
10004 
10005 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10006 	if (!insn_state)
10007 		return -ENOMEM;
10008 
10009 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10010 	if (!insn_stack) {
10011 		kvfree(insn_state);
10012 		return -ENOMEM;
10013 	}
10014 
10015 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10016 	insn_stack[0] = 0; /* 0 is the first instruction */
10017 	env->cfg.cur_stack = 1;
10018 
10019 	while (env->cfg.cur_stack > 0) {
10020 		int t = insn_stack[env->cfg.cur_stack - 1];
10021 
10022 		ret = visit_insn(t, insn_cnt, env);
10023 		switch (ret) {
10024 		case DONE_EXPLORING:
10025 			insn_state[t] = EXPLORED;
10026 			env->cfg.cur_stack--;
10027 			break;
10028 		case KEEP_EXPLORING:
10029 			break;
10030 		default:
10031 			if (ret > 0) {
10032 				verbose(env, "visit_insn internal bug\n");
10033 				ret = -EFAULT;
10034 			}
10035 			goto err_free;
10036 		}
10037 	}
10038 
10039 	if (env->cfg.cur_stack < 0) {
10040 		verbose(env, "pop stack internal bug\n");
10041 		ret = -EFAULT;
10042 		goto err_free;
10043 	}
10044 
10045 	for (i = 0; i < insn_cnt; i++) {
10046 		if (insn_state[i] != EXPLORED) {
10047 			verbose(env, "unreachable insn %d\n", i);
10048 			ret = -EINVAL;
10049 			goto err_free;
10050 		}
10051 	}
10052 	ret = 0; /* cfg looks good */
10053 
10054 err_free:
10055 	kvfree(insn_state);
10056 	kvfree(insn_stack);
10057 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10058 	return ret;
10059 }
10060 
10061 static int check_abnormal_return(struct bpf_verifier_env *env)
10062 {
10063 	int i;
10064 
10065 	for (i = 1; i < env->subprog_cnt; i++) {
10066 		if (env->subprog_info[i].has_ld_abs) {
10067 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10068 			return -EINVAL;
10069 		}
10070 		if (env->subprog_info[i].has_tail_call) {
10071 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10072 			return -EINVAL;
10073 		}
10074 	}
10075 	return 0;
10076 }
10077 
10078 /* The minimum supported BTF func info size */
10079 #define MIN_BPF_FUNCINFO_SIZE	8
10080 #define MAX_FUNCINFO_REC_SIZE	252
10081 
10082 static int check_btf_func(struct bpf_verifier_env *env,
10083 			  const union bpf_attr *attr,
10084 			  bpfptr_t uattr)
10085 {
10086 	const struct btf_type *type, *func_proto, *ret_type;
10087 	u32 i, nfuncs, urec_size, min_size;
10088 	u32 krec_size = sizeof(struct bpf_func_info);
10089 	struct bpf_func_info *krecord;
10090 	struct bpf_func_info_aux *info_aux = NULL;
10091 	struct bpf_prog *prog;
10092 	const struct btf *btf;
10093 	bpfptr_t urecord;
10094 	u32 prev_offset = 0;
10095 	bool scalar_return;
10096 	int ret = -ENOMEM;
10097 
10098 	nfuncs = attr->func_info_cnt;
10099 	if (!nfuncs) {
10100 		if (check_abnormal_return(env))
10101 			return -EINVAL;
10102 		return 0;
10103 	}
10104 
10105 	if (nfuncs != env->subprog_cnt) {
10106 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10107 		return -EINVAL;
10108 	}
10109 
10110 	urec_size = attr->func_info_rec_size;
10111 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10112 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10113 	    urec_size % sizeof(u32)) {
10114 		verbose(env, "invalid func info rec size %u\n", urec_size);
10115 		return -EINVAL;
10116 	}
10117 
10118 	prog = env->prog;
10119 	btf = prog->aux->btf;
10120 
10121 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10122 	min_size = min_t(u32, krec_size, urec_size);
10123 
10124 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10125 	if (!krecord)
10126 		return -ENOMEM;
10127 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10128 	if (!info_aux)
10129 		goto err_free;
10130 
10131 	for (i = 0; i < nfuncs; i++) {
10132 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10133 		if (ret) {
10134 			if (ret == -E2BIG) {
10135 				verbose(env, "nonzero tailing record in func info");
10136 				/* set the size kernel expects so loader can zero
10137 				 * out the rest of the record.
10138 				 */
10139 				if (copy_to_bpfptr_offset(uattr,
10140 							  offsetof(union bpf_attr, func_info_rec_size),
10141 							  &min_size, sizeof(min_size)))
10142 					ret = -EFAULT;
10143 			}
10144 			goto err_free;
10145 		}
10146 
10147 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10148 			ret = -EFAULT;
10149 			goto err_free;
10150 		}
10151 
10152 		/* check insn_off */
10153 		ret = -EINVAL;
10154 		if (i == 0) {
10155 			if (krecord[i].insn_off) {
10156 				verbose(env,
10157 					"nonzero insn_off %u for the first func info record",
10158 					krecord[i].insn_off);
10159 				goto err_free;
10160 			}
10161 		} else if (krecord[i].insn_off <= prev_offset) {
10162 			verbose(env,
10163 				"same or smaller insn offset (%u) than previous func info record (%u)",
10164 				krecord[i].insn_off, prev_offset);
10165 			goto err_free;
10166 		}
10167 
10168 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10169 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10170 			goto err_free;
10171 		}
10172 
10173 		/* check type_id */
10174 		type = btf_type_by_id(btf, krecord[i].type_id);
10175 		if (!type || !btf_type_is_func(type)) {
10176 			verbose(env, "invalid type id %d in func info",
10177 				krecord[i].type_id);
10178 			goto err_free;
10179 		}
10180 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10181 
10182 		func_proto = btf_type_by_id(btf, type->type);
10183 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10184 			/* btf_func_check() already verified it during BTF load */
10185 			goto err_free;
10186 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10187 		scalar_return =
10188 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10189 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10190 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10191 			goto err_free;
10192 		}
10193 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10194 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10195 			goto err_free;
10196 		}
10197 
10198 		prev_offset = krecord[i].insn_off;
10199 		bpfptr_add(&urecord, urec_size);
10200 	}
10201 
10202 	prog->aux->func_info = krecord;
10203 	prog->aux->func_info_cnt = nfuncs;
10204 	prog->aux->func_info_aux = info_aux;
10205 	return 0;
10206 
10207 err_free:
10208 	kvfree(krecord);
10209 	kfree(info_aux);
10210 	return ret;
10211 }
10212 
10213 static void adjust_btf_func(struct bpf_verifier_env *env)
10214 {
10215 	struct bpf_prog_aux *aux = env->prog->aux;
10216 	int i;
10217 
10218 	if (!aux->func_info)
10219 		return;
10220 
10221 	for (i = 0; i < env->subprog_cnt; i++)
10222 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10223 }
10224 
10225 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
10226 		sizeof(((struct bpf_line_info *)(0))->line_col))
10227 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10228 
10229 static int check_btf_line(struct bpf_verifier_env *env,
10230 			  const union bpf_attr *attr,
10231 			  bpfptr_t uattr)
10232 {
10233 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10234 	struct bpf_subprog_info *sub;
10235 	struct bpf_line_info *linfo;
10236 	struct bpf_prog *prog;
10237 	const struct btf *btf;
10238 	bpfptr_t ulinfo;
10239 	int err;
10240 
10241 	nr_linfo = attr->line_info_cnt;
10242 	if (!nr_linfo)
10243 		return 0;
10244 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10245 		return -EINVAL;
10246 
10247 	rec_size = attr->line_info_rec_size;
10248 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10249 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10250 	    rec_size & (sizeof(u32) - 1))
10251 		return -EINVAL;
10252 
10253 	/* Need to zero it in case the userspace may
10254 	 * pass in a smaller bpf_line_info object.
10255 	 */
10256 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10257 			 GFP_KERNEL | __GFP_NOWARN);
10258 	if (!linfo)
10259 		return -ENOMEM;
10260 
10261 	prog = env->prog;
10262 	btf = prog->aux->btf;
10263 
10264 	s = 0;
10265 	sub = env->subprog_info;
10266 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10267 	expected_size = sizeof(struct bpf_line_info);
10268 	ncopy = min_t(u32, expected_size, rec_size);
10269 	for (i = 0; i < nr_linfo; i++) {
10270 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10271 		if (err) {
10272 			if (err == -E2BIG) {
10273 				verbose(env, "nonzero tailing record in line_info");
10274 				if (copy_to_bpfptr_offset(uattr,
10275 							  offsetof(union bpf_attr, line_info_rec_size),
10276 							  &expected_size, sizeof(expected_size)))
10277 					err = -EFAULT;
10278 			}
10279 			goto err_free;
10280 		}
10281 
10282 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10283 			err = -EFAULT;
10284 			goto err_free;
10285 		}
10286 
10287 		/*
10288 		 * Check insn_off to ensure
10289 		 * 1) strictly increasing AND
10290 		 * 2) bounded by prog->len
10291 		 *
10292 		 * The linfo[0].insn_off == 0 check logically falls into
10293 		 * the later "missing bpf_line_info for func..." case
10294 		 * because the first linfo[0].insn_off must be the
10295 		 * first sub also and the first sub must have
10296 		 * subprog_info[0].start == 0.
10297 		 */
10298 		if ((i && linfo[i].insn_off <= prev_offset) ||
10299 		    linfo[i].insn_off >= prog->len) {
10300 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10301 				i, linfo[i].insn_off, prev_offset,
10302 				prog->len);
10303 			err = -EINVAL;
10304 			goto err_free;
10305 		}
10306 
10307 		if (!prog->insnsi[linfo[i].insn_off].code) {
10308 			verbose(env,
10309 				"Invalid insn code at line_info[%u].insn_off\n",
10310 				i);
10311 			err = -EINVAL;
10312 			goto err_free;
10313 		}
10314 
10315 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10316 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10317 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10318 			err = -EINVAL;
10319 			goto err_free;
10320 		}
10321 
10322 		if (s != env->subprog_cnt) {
10323 			if (linfo[i].insn_off == sub[s].start) {
10324 				sub[s].linfo_idx = i;
10325 				s++;
10326 			} else if (sub[s].start < linfo[i].insn_off) {
10327 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10328 				err = -EINVAL;
10329 				goto err_free;
10330 			}
10331 		}
10332 
10333 		prev_offset = linfo[i].insn_off;
10334 		bpfptr_add(&ulinfo, rec_size);
10335 	}
10336 
10337 	if (s != env->subprog_cnt) {
10338 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10339 			env->subprog_cnt - s, s);
10340 		err = -EINVAL;
10341 		goto err_free;
10342 	}
10343 
10344 	prog->aux->linfo = linfo;
10345 	prog->aux->nr_linfo = nr_linfo;
10346 
10347 	return 0;
10348 
10349 err_free:
10350 	kvfree(linfo);
10351 	return err;
10352 }
10353 
10354 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
10355 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
10356 
10357 static int check_core_relo(struct bpf_verifier_env *env,
10358 			   const union bpf_attr *attr,
10359 			   bpfptr_t uattr)
10360 {
10361 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
10362 	struct bpf_core_relo core_relo = {};
10363 	struct bpf_prog *prog = env->prog;
10364 	const struct btf *btf = prog->aux->btf;
10365 	struct bpf_core_ctx ctx = {
10366 		.log = &env->log,
10367 		.btf = btf,
10368 	};
10369 	bpfptr_t u_core_relo;
10370 	int err;
10371 
10372 	nr_core_relo = attr->core_relo_cnt;
10373 	if (!nr_core_relo)
10374 		return 0;
10375 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
10376 		return -EINVAL;
10377 
10378 	rec_size = attr->core_relo_rec_size;
10379 	if (rec_size < MIN_CORE_RELO_SIZE ||
10380 	    rec_size > MAX_CORE_RELO_SIZE ||
10381 	    rec_size % sizeof(u32))
10382 		return -EINVAL;
10383 
10384 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
10385 	expected_size = sizeof(struct bpf_core_relo);
10386 	ncopy = min_t(u32, expected_size, rec_size);
10387 
10388 	/* Unlike func_info and line_info, copy and apply each CO-RE
10389 	 * relocation record one at a time.
10390 	 */
10391 	for (i = 0; i < nr_core_relo; i++) {
10392 		/* future proofing when sizeof(bpf_core_relo) changes */
10393 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
10394 		if (err) {
10395 			if (err == -E2BIG) {
10396 				verbose(env, "nonzero tailing record in core_relo");
10397 				if (copy_to_bpfptr_offset(uattr,
10398 							  offsetof(union bpf_attr, core_relo_rec_size),
10399 							  &expected_size, sizeof(expected_size)))
10400 					err = -EFAULT;
10401 			}
10402 			break;
10403 		}
10404 
10405 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
10406 			err = -EFAULT;
10407 			break;
10408 		}
10409 
10410 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
10411 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
10412 				i, core_relo.insn_off, prog->len);
10413 			err = -EINVAL;
10414 			break;
10415 		}
10416 
10417 		err = bpf_core_apply(&ctx, &core_relo, i,
10418 				     &prog->insnsi[core_relo.insn_off / 8]);
10419 		if (err)
10420 			break;
10421 		bpfptr_add(&u_core_relo, rec_size);
10422 	}
10423 	return err;
10424 }
10425 
10426 static int check_btf_info(struct bpf_verifier_env *env,
10427 			  const union bpf_attr *attr,
10428 			  bpfptr_t uattr)
10429 {
10430 	struct btf *btf;
10431 	int err;
10432 
10433 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10434 		if (check_abnormal_return(env))
10435 			return -EINVAL;
10436 		return 0;
10437 	}
10438 
10439 	btf = btf_get_by_fd(attr->prog_btf_fd);
10440 	if (IS_ERR(btf))
10441 		return PTR_ERR(btf);
10442 	if (btf_is_kernel(btf)) {
10443 		btf_put(btf);
10444 		return -EACCES;
10445 	}
10446 	env->prog->aux->btf = btf;
10447 
10448 	err = check_btf_func(env, attr, uattr);
10449 	if (err)
10450 		return err;
10451 
10452 	err = check_btf_line(env, attr, uattr);
10453 	if (err)
10454 		return err;
10455 
10456 	err = check_core_relo(env, attr, uattr);
10457 	if (err)
10458 		return err;
10459 
10460 	return 0;
10461 }
10462 
10463 /* check %cur's range satisfies %old's */
10464 static bool range_within(struct bpf_reg_state *old,
10465 			 struct bpf_reg_state *cur)
10466 {
10467 	return old->umin_value <= cur->umin_value &&
10468 	       old->umax_value >= cur->umax_value &&
10469 	       old->smin_value <= cur->smin_value &&
10470 	       old->smax_value >= cur->smax_value &&
10471 	       old->u32_min_value <= cur->u32_min_value &&
10472 	       old->u32_max_value >= cur->u32_max_value &&
10473 	       old->s32_min_value <= cur->s32_min_value &&
10474 	       old->s32_max_value >= cur->s32_max_value;
10475 }
10476 
10477 /* If in the old state two registers had the same id, then they need to have
10478  * the same id in the new state as well.  But that id could be different from
10479  * the old state, so we need to track the mapping from old to new ids.
10480  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10481  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10482  * regs with a different old id could still have new id 9, we don't care about
10483  * that.
10484  * So we look through our idmap to see if this old id has been seen before.  If
10485  * so, we require the new id to match; otherwise, we add the id pair to the map.
10486  */
10487 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10488 {
10489 	unsigned int i;
10490 
10491 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10492 		if (!idmap[i].old) {
10493 			/* Reached an empty slot; haven't seen this id before */
10494 			idmap[i].old = old_id;
10495 			idmap[i].cur = cur_id;
10496 			return true;
10497 		}
10498 		if (idmap[i].old == old_id)
10499 			return idmap[i].cur == cur_id;
10500 	}
10501 	/* We ran out of idmap slots, which should be impossible */
10502 	WARN_ON_ONCE(1);
10503 	return false;
10504 }
10505 
10506 static void clean_func_state(struct bpf_verifier_env *env,
10507 			     struct bpf_func_state *st)
10508 {
10509 	enum bpf_reg_liveness live;
10510 	int i, j;
10511 
10512 	for (i = 0; i < BPF_REG_FP; i++) {
10513 		live = st->regs[i].live;
10514 		/* liveness must not touch this register anymore */
10515 		st->regs[i].live |= REG_LIVE_DONE;
10516 		if (!(live & REG_LIVE_READ))
10517 			/* since the register is unused, clear its state
10518 			 * to make further comparison simpler
10519 			 */
10520 			__mark_reg_not_init(env, &st->regs[i]);
10521 	}
10522 
10523 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10524 		live = st->stack[i].spilled_ptr.live;
10525 		/* liveness must not touch this stack slot anymore */
10526 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10527 		if (!(live & REG_LIVE_READ)) {
10528 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10529 			for (j = 0; j < BPF_REG_SIZE; j++)
10530 				st->stack[i].slot_type[j] = STACK_INVALID;
10531 		}
10532 	}
10533 }
10534 
10535 static void clean_verifier_state(struct bpf_verifier_env *env,
10536 				 struct bpf_verifier_state *st)
10537 {
10538 	int i;
10539 
10540 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10541 		/* all regs in this state in all frames were already marked */
10542 		return;
10543 
10544 	for (i = 0; i <= st->curframe; i++)
10545 		clean_func_state(env, st->frame[i]);
10546 }
10547 
10548 /* the parentage chains form a tree.
10549  * the verifier states are added to state lists at given insn and
10550  * pushed into state stack for future exploration.
10551  * when the verifier reaches bpf_exit insn some of the verifer states
10552  * stored in the state lists have their final liveness state already,
10553  * but a lot of states will get revised from liveness point of view when
10554  * the verifier explores other branches.
10555  * Example:
10556  * 1: r0 = 1
10557  * 2: if r1 == 100 goto pc+1
10558  * 3: r0 = 2
10559  * 4: exit
10560  * when the verifier reaches exit insn the register r0 in the state list of
10561  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10562  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10563  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10564  *
10565  * Since the verifier pushes the branch states as it sees them while exploring
10566  * the program the condition of walking the branch instruction for the second
10567  * time means that all states below this branch were already explored and
10568  * their final liveness marks are already propagated.
10569  * Hence when the verifier completes the search of state list in is_state_visited()
10570  * we can call this clean_live_states() function to mark all liveness states
10571  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10572  * will not be used.
10573  * This function also clears the registers and stack for states that !READ
10574  * to simplify state merging.
10575  *
10576  * Important note here that walking the same branch instruction in the callee
10577  * doesn't meant that the states are DONE. The verifier has to compare
10578  * the callsites
10579  */
10580 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10581 			      struct bpf_verifier_state *cur)
10582 {
10583 	struct bpf_verifier_state_list *sl;
10584 	int i;
10585 
10586 	sl = *explored_state(env, insn);
10587 	while (sl) {
10588 		if (sl->state.branches)
10589 			goto next;
10590 		if (sl->state.insn_idx != insn ||
10591 		    sl->state.curframe != cur->curframe)
10592 			goto next;
10593 		for (i = 0; i <= cur->curframe; i++)
10594 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10595 				goto next;
10596 		clean_verifier_state(env, &sl->state);
10597 next:
10598 		sl = sl->next;
10599 	}
10600 }
10601 
10602 /* Returns true if (rold safe implies rcur safe) */
10603 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10604 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10605 {
10606 	bool equal;
10607 
10608 	if (!(rold->live & REG_LIVE_READ))
10609 		/* explored state didn't use this */
10610 		return true;
10611 
10612 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10613 
10614 	if (rold->type == PTR_TO_STACK)
10615 		/* two stack pointers are equal only if they're pointing to
10616 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10617 		 */
10618 		return equal && rold->frameno == rcur->frameno;
10619 
10620 	if (equal)
10621 		return true;
10622 
10623 	if (rold->type == NOT_INIT)
10624 		/* explored state can't have used this */
10625 		return true;
10626 	if (rcur->type == NOT_INIT)
10627 		return false;
10628 	switch (base_type(rold->type)) {
10629 	case SCALAR_VALUE:
10630 		if (env->explore_alu_limits)
10631 			return false;
10632 		if (rcur->type == SCALAR_VALUE) {
10633 			if (!rold->precise && !rcur->precise)
10634 				return true;
10635 			/* new val must satisfy old val knowledge */
10636 			return range_within(rold, rcur) &&
10637 			       tnum_in(rold->var_off, rcur->var_off);
10638 		} else {
10639 			/* We're trying to use a pointer in place of a scalar.
10640 			 * Even if the scalar was unbounded, this could lead to
10641 			 * pointer leaks because scalars are allowed to leak
10642 			 * while pointers are not. We could make this safe in
10643 			 * special cases if root is calling us, but it's
10644 			 * probably not worth the hassle.
10645 			 */
10646 			return false;
10647 		}
10648 	case PTR_TO_MAP_KEY:
10649 	case PTR_TO_MAP_VALUE:
10650 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10651 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10652 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10653 		 * checked, doing so could have affected others with the same
10654 		 * id, and we can't check for that because we lost the id when
10655 		 * we converted to a PTR_TO_MAP_VALUE.
10656 		 */
10657 		if (type_may_be_null(rold->type)) {
10658 			if (!type_may_be_null(rcur->type))
10659 				return false;
10660 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10661 				return false;
10662 			/* Check our ids match any regs they're supposed to */
10663 			return check_ids(rold->id, rcur->id, idmap);
10664 		}
10665 
10666 		/* If the new min/max/var_off satisfy the old ones and
10667 		 * everything else matches, we are OK.
10668 		 * 'id' is not compared, since it's only used for maps with
10669 		 * bpf_spin_lock inside map element and in such cases if
10670 		 * the rest of the prog is valid for one map element then
10671 		 * it's valid for all map elements regardless of the key
10672 		 * used in bpf_map_lookup()
10673 		 */
10674 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10675 		       range_within(rold, rcur) &&
10676 		       tnum_in(rold->var_off, rcur->var_off);
10677 	case PTR_TO_PACKET_META:
10678 	case PTR_TO_PACKET:
10679 		if (rcur->type != rold->type)
10680 			return false;
10681 		/* We must have at least as much range as the old ptr
10682 		 * did, so that any accesses which were safe before are
10683 		 * still safe.  This is true even if old range < old off,
10684 		 * since someone could have accessed through (ptr - k), or
10685 		 * even done ptr -= k in a register, to get a safe access.
10686 		 */
10687 		if (rold->range > rcur->range)
10688 			return false;
10689 		/* If the offsets don't match, we can't trust our alignment;
10690 		 * nor can we be sure that we won't fall out of range.
10691 		 */
10692 		if (rold->off != rcur->off)
10693 			return false;
10694 		/* id relations must be preserved */
10695 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10696 			return false;
10697 		/* new val must satisfy old val knowledge */
10698 		return range_within(rold, rcur) &&
10699 		       tnum_in(rold->var_off, rcur->var_off);
10700 	case PTR_TO_CTX:
10701 	case CONST_PTR_TO_MAP:
10702 	case PTR_TO_PACKET_END:
10703 	case PTR_TO_FLOW_KEYS:
10704 	case PTR_TO_SOCKET:
10705 	case PTR_TO_SOCK_COMMON:
10706 	case PTR_TO_TCP_SOCK:
10707 	case PTR_TO_XDP_SOCK:
10708 		/* Only valid matches are exact, which memcmp() above
10709 		 * would have accepted
10710 		 */
10711 	default:
10712 		/* Don't know what's going on, just say it's not safe */
10713 		return false;
10714 	}
10715 
10716 	/* Shouldn't get here; if we do, say it's not safe */
10717 	WARN_ON_ONCE(1);
10718 	return false;
10719 }
10720 
10721 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10722 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10723 {
10724 	int i, spi;
10725 
10726 	/* walk slots of the explored stack and ignore any additional
10727 	 * slots in the current stack, since explored(safe) state
10728 	 * didn't use them
10729 	 */
10730 	for (i = 0; i < old->allocated_stack; i++) {
10731 		spi = i / BPF_REG_SIZE;
10732 
10733 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10734 			i += BPF_REG_SIZE - 1;
10735 			/* explored state didn't use this */
10736 			continue;
10737 		}
10738 
10739 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10740 			continue;
10741 
10742 		/* explored stack has more populated slots than current stack
10743 		 * and these slots were used
10744 		 */
10745 		if (i >= cur->allocated_stack)
10746 			return false;
10747 
10748 		/* if old state was safe with misc data in the stack
10749 		 * it will be safe with zero-initialized stack.
10750 		 * The opposite is not true
10751 		 */
10752 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10753 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10754 			continue;
10755 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10756 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10757 			/* Ex: old explored (safe) state has STACK_SPILL in
10758 			 * this stack slot, but current has STACK_MISC ->
10759 			 * this verifier states are not equivalent,
10760 			 * return false to continue verification of this path
10761 			 */
10762 			return false;
10763 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10764 			continue;
10765 		if (!is_spilled_reg(&old->stack[spi]))
10766 			continue;
10767 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10768 			     &cur->stack[spi].spilled_ptr, idmap))
10769 			/* when explored and current stack slot are both storing
10770 			 * spilled registers, check that stored pointers types
10771 			 * are the same as well.
10772 			 * Ex: explored safe path could have stored
10773 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10774 			 * but current path has stored:
10775 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10776 			 * such verifier states are not equivalent.
10777 			 * return false to continue verification of this path
10778 			 */
10779 			return false;
10780 	}
10781 	return true;
10782 }
10783 
10784 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10785 {
10786 	if (old->acquired_refs != cur->acquired_refs)
10787 		return false;
10788 	return !memcmp(old->refs, cur->refs,
10789 		       sizeof(*old->refs) * old->acquired_refs);
10790 }
10791 
10792 /* compare two verifier states
10793  *
10794  * all states stored in state_list are known to be valid, since
10795  * verifier reached 'bpf_exit' instruction through them
10796  *
10797  * this function is called when verifier exploring different branches of
10798  * execution popped from the state stack. If it sees an old state that has
10799  * more strict register state and more strict stack state then this execution
10800  * branch doesn't need to be explored further, since verifier already
10801  * concluded that more strict state leads to valid finish.
10802  *
10803  * Therefore two states are equivalent if register state is more conservative
10804  * and explored stack state is more conservative than the current one.
10805  * Example:
10806  *       explored                   current
10807  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10808  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10809  *
10810  * In other words if current stack state (one being explored) has more
10811  * valid slots than old one that already passed validation, it means
10812  * the verifier can stop exploring and conclude that current state is valid too
10813  *
10814  * Similarly with registers. If explored state has register type as invalid
10815  * whereas register type in current state is meaningful, it means that
10816  * the current state will reach 'bpf_exit' instruction safely
10817  */
10818 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10819 			      struct bpf_func_state *cur)
10820 {
10821 	int i;
10822 
10823 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10824 	for (i = 0; i < MAX_BPF_REG; i++)
10825 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10826 			     env->idmap_scratch))
10827 			return false;
10828 
10829 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10830 		return false;
10831 
10832 	if (!refsafe(old, cur))
10833 		return false;
10834 
10835 	return true;
10836 }
10837 
10838 static bool states_equal(struct bpf_verifier_env *env,
10839 			 struct bpf_verifier_state *old,
10840 			 struct bpf_verifier_state *cur)
10841 {
10842 	int i;
10843 
10844 	if (old->curframe != cur->curframe)
10845 		return false;
10846 
10847 	/* Verification state from speculative execution simulation
10848 	 * must never prune a non-speculative execution one.
10849 	 */
10850 	if (old->speculative && !cur->speculative)
10851 		return false;
10852 
10853 	if (old->active_spin_lock != cur->active_spin_lock)
10854 		return false;
10855 
10856 	/* for states to be equal callsites have to be the same
10857 	 * and all frame states need to be equivalent
10858 	 */
10859 	for (i = 0; i <= old->curframe; i++) {
10860 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10861 			return false;
10862 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10863 			return false;
10864 	}
10865 	return true;
10866 }
10867 
10868 /* Return 0 if no propagation happened. Return negative error code if error
10869  * happened. Otherwise, return the propagated bit.
10870  */
10871 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10872 				  struct bpf_reg_state *reg,
10873 				  struct bpf_reg_state *parent_reg)
10874 {
10875 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10876 	u8 flag = reg->live & REG_LIVE_READ;
10877 	int err;
10878 
10879 	/* When comes here, read flags of PARENT_REG or REG could be any of
10880 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10881 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10882 	 */
10883 	if (parent_flag == REG_LIVE_READ64 ||
10884 	    /* Or if there is no read flag from REG. */
10885 	    !flag ||
10886 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10887 	    parent_flag == flag)
10888 		return 0;
10889 
10890 	err = mark_reg_read(env, reg, parent_reg, flag);
10891 	if (err)
10892 		return err;
10893 
10894 	return flag;
10895 }
10896 
10897 /* A write screens off any subsequent reads; but write marks come from the
10898  * straight-line code between a state and its parent.  When we arrive at an
10899  * equivalent state (jump target or such) we didn't arrive by the straight-line
10900  * code, so read marks in the state must propagate to the parent regardless
10901  * of the state's write marks. That's what 'parent == state->parent' comparison
10902  * in mark_reg_read() is for.
10903  */
10904 static int propagate_liveness(struct bpf_verifier_env *env,
10905 			      const struct bpf_verifier_state *vstate,
10906 			      struct bpf_verifier_state *vparent)
10907 {
10908 	struct bpf_reg_state *state_reg, *parent_reg;
10909 	struct bpf_func_state *state, *parent;
10910 	int i, frame, err = 0;
10911 
10912 	if (vparent->curframe != vstate->curframe) {
10913 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10914 		     vparent->curframe, vstate->curframe);
10915 		return -EFAULT;
10916 	}
10917 	/* Propagate read liveness of registers... */
10918 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10919 	for (frame = 0; frame <= vstate->curframe; frame++) {
10920 		parent = vparent->frame[frame];
10921 		state = vstate->frame[frame];
10922 		parent_reg = parent->regs;
10923 		state_reg = state->regs;
10924 		/* We don't need to worry about FP liveness, it's read-only */
10925 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10926 			err = propagate_liveness_reg(env, &state_reg[i],
10927 						     &parent_reg[i]);
10928 			if (err < 0)
10929 				return err;
10930 			if (err == REG_LIVE_READ64)
10931 				mark_insn_zext(env, &parent_reg[i]);
10932 		}
10933 
10934 		/* Propagate stack slots. */
10935 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10936 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10937 			parent_reg = &parent->stack[i].spilled_ptr;
10938 			state_reg = &state->stack[i].spilled_ptr;
10939 			err = propagate_liveness_reg(env, state_reg,
10940 						     parent_reg);
10941 			if (err < 0)
10942 				return err;
10943 		}
10944 	}
10945 	return 0;
10946 }
10947 
10948 /* find precise scalars in the previous equivalent state and
10949  * propagate them into the current state
10950  */
10951 static int propagate_precision(struct bpf_verifier_env *env,
10952 			       const struct bpf_verifier_state *old)
10953 {
10954 	struct bpf_reg_state *state_reg;
10955 	struct bpf_func_state *state;
10956 	int i, err = 0;
10957 
10958 	state = old->frame[old->curframe];
10959 	state_reg = state->regs;
10960 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10961 		if (state_reg->type != SCALAR_VALUE ||
10962 		    !state_reg->precise)
10963 			continue;
10964 		if (env->log.level & BPF_LOG_LEVEL2)
10965 			verbose(env, "propagating r%d\n", i);
10966 		err = mark_chain_precision(env, i);
10967 		if (err < 0)
10968 			return err;
10969 	}
10970 
10971 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10972 		if (!is_spilled_reg(&state->stack[i]))
10973 			continue;
10974 		state_reg = &state->stack[i].spilled_ptr;
10975 		if (state_reg->type != SCALAR_VALUE ||
10976 		    !state_reg->precise)
10977 			continue;
10978 		if (env->log.level & BPF_LOG_LEVEL2)
10979 			verbose(env, "propagating fp%d\n",
10980 				(-i - 1) * BPF_REG_SIZE);
10981 		err = mark_chain_precision_stack(env, i);
10982 		if (err < 0)
10983 			return err;
10984 	}
10985 	return 0;
10986 }
10987 
10988 static bool states_maybe_looping(struct bpf_verifier_state *old,
10989 				 struct bpf_verifier_state *cur)
10990 {
10991 	struct bpf_func_state *fold, *fcur;
10992 	int i, fr = cur->curframe;
10993 
10994 	if (old->curframe != fr)
10995 		return false;
10996 
10997 	fold = old->frame[fr];
10998 	fcur = cur->frame[fr];
10999 	for (i = 0; i < MAX_BPF_REG; i++)
11000 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11001 			   offsetof(struct bpf_reg_state, parent)))
11002 			return false;
11003 	return true;
11004 }
11005 
11006 
11007 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11008 {
11009 	struct bpf_verifier_state_list *new_sl;
11010 	struct bpf_verifier_state_list *sl, **pprev;
11011 	struct bpf_verifier_state *cur = env->cur_state, *new;
11012 	int i, j, err, states_cnt = 0;
11013 	bool add_new_state = env->test_state_freq ? true : false;
11014 
11015 	cur->last_insn_idx = env->prev_insn_idx;
11016 	if (!env->insn_aux_data[insn_idx].prune_point)
11017 		/* this 'insn_idx' instruction wasn't marked, so we will not
11018 		 * be doing state search here
11019 		 */
11020 		return 0;
11021 
11022 	/* bpf progs typically have pruning point every 4 instructions
11023 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11024 	 * Do not add new state for future pruning if the verifier hasn't seen
11025 	 * at least 2 jumps and at least 8 instructions.
11026 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11027 	 * In tests that amounts to up to 50% reduction into total verifier
11028 	 * memory consumption and 20% verifier time speedup.
11029 	 */
11030 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11031 	    env->insn_processed - env->prev_insn_processed >= 8)
11032 		add_new_state = true;
11033 
11034 	pprev = explored_state(env, insn_idx);
11035 	sl = *pprev;
11036 
11037 	clean_live_states(env, insn_idx, cur);
11038 
11039 	while (sl) {
11040 		states_cnt++;
11041 		if (sl->state.insn_idx != insn_idx)
11042 			goto next;
11043 
11044 		if (sl->state.branches) {
11045 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11046 
11047 			if (frame->in_async_callback_fn &&
11048 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11049 				/* Different async_entry_cnt means that the verifier is
11050 				 * processing another entry into async callback.
11051 				 * Seeing the same state is not an indication of infinite
11052 				 * loop or infinite recursion.
11053 				 * But finding the same state doesn't mean that it's safe
11054 				 * to stop processing the current state. The previous state
11055 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11056 				 * Checking in_async_callback_fn alone is not enough either.
11057 				 * Since the verifier still needs to catch infinite loops
11058 				 * inside async callbacks.
11059 				 */
11060 			} else if (states_maybe_looping(&sl->state, cur) &&
11061 				   states_equal(env, &sl->state, cur)) {
11062 				verbose_linfo(env, insn_idx, "; ");
11063 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11064 				return -EINVAL;
11065 			}
11066 			/* if the verifier is processing a loop, avoid adding new state
11067 			 * too often, since different loop iterations have distinct
11068 			 * states and may not help future pruning.
11069 			 * This threshold shouldn't be too low to make sure that
11070 			 * a loop with large bound will be rejected quickly.
11071 			 * The most abusive loop will be:
11072 			 * r1 += 1
11073 			 * if r1 < 1000000 goto pc-2
11074 			 * 1M insn_procssed limit / 100 == 10k peak states.
11075 			 * This threshold shouldn't be too high either, since states
11076 			 * at the end of the loop are likely to be useful in pruning.
11077 			 */
11078 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11079 			    env->insn_processed - env->prev_insn_processed < 100)
11080 				add_new_state = false;
11081 			goto miss;
11082 		}
11083 		if (states_equal(env, &sl->state, cur)) {
11084 			sl->hit_cnt++;
11085 			/* reached equivalent register/stack state,
11086 			 * prune the search.
11087 			 * Registers read by the continuation are read by us.
11088 			 * If we have any write marks in env->cur_state, they
11089 			 * will prevent corresponding reads in the continuation
11090 			 * from reaching our parent (an explored_state).  Our
11091 			 * own state will get the read marks recorded, but
11092 			 * they'll be immediately forgotten as we're pruning
11093 			 * this state and will pop a new one.
11094 			 */
11095 			err = propagate_liveness(env, &sl->state, cur);
11096 
11097 			/* if previous state reached the exit with precision and
11098 			 * current state is equivalent to it (except precsion marks)
11099 			 * the precision needs to be propagated back in
11100 			 * the current state.
11101 			 */
11102 			err = err ? : push_jmp_history(env, cur);
11103 			err = err ? : propagate_precision(env, &sl->state);
11104 			if (err)
11105 				return err;
11106 			return 1;
11107 		}
11108 miss:
11109 		/* when new state is not going to be added do not increase miss count.
11110 		 * Otherwise several loop iterations will remove the state
11111 		 * recorded earlier. The goal of these heuristics is to have
11112 		 * states from some iterations of the loop (some in the beginning
11113 		 * and some at the end) to help pruning.
11114 		 */
11115 		if (add_new_state)
11116 			sl->miss_cnt++;
11117 		/* heuristic to determine whether this state is beneficial
11118 		 * to keep checking from state equivalence point of view.
11119 		 * Higher numbers increase max_states_per_insn and verification time,
11120 		 * but do not meaningfully decrease insn_processed.
11121 		 */
11122 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11123 			/* the state is unlikely to be useful. Remove it to
11124 			 * speed up verification
11125 			 */
11126 			*pprev = sl->next;
11127 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11128 				u32 br = sl->state.branches;
11129 
11130 				WARN_ONCE(br,
11131 					  "BUG live_done but branches_to_explore %d\n",
11132 					  br);
11133 				free_verifier_state(&sl->state, false);
11134 				kfree(sl);
11135 				env->peak_states--;
11136 			} else {
11137 				/* cannot free this state, since parentage chain may
11138 				 * walk it later. Add it for free_list instead to
11139 				 * be freed at the end of verification
11140 				 */
11141 				sl->next = env->free_list;
11142 				env->free_list = sl;
11143 			}
11144 			sl = *pprev;
11145 			continue;
11146 		}
11147 next:
11148 		pprev = &sl->next;
11149 		sl = *pprev;
11150 	}
11151 
11152 	if (env->max_states_per_insn < states_cnt)
11153 		env->max_states_per_insn = states_cnt;
11154 
11155 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11156 		return push_jmp_history(env, cur);
11157 
11158 	if (!add_new_state)
11159 		return push_jmp_history(env, cur);
11160 
11161 	/* There were no equivalent states, remember the current one.
11162 	 * Technically the current state is not proven to be safe yet,
11163 	 * but it will either reach outer most bpf_exit (which means it's safe)
11164 	 * or it will be rejected. When there are no loops the verifier won't be
11165 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11166 	 * again on the way to bpf_exit.
11167 	 * When looping the sl->state.branches will be > 0 and this state
11168 	 * will not be considered for equivalence until branches == 0.
11169 	 */
11170 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11171 	if (!new_sl)
11172 		return -ENOMEM;
11173 	env->total_states++;
11174 	env->peak_states++;
11175 	env->prev_jmps_processed = env->jmps_processed;
11176 	env->prev_insn_processed = env->insn_processed;
11177 
11178 	/* add new state to the head of linked list */
11179 	new = &new_sl->state;
11180 	err = copy_verifier_state(new, cur);
11181 	if (err) {
11182 		free_verifier_state(new, false);
11183 		kfree(new_sl);
11184 		return err;
11185 	}
11186 	new->insn_idx = insn_idx;
11187 	WARN_ONCE(new->branches != 1,
11188 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11189 
11190 	cur->parent = new;
11191 	cur->first_insn_idx = insn_idx;
11192 	clear_jmp_history(cur);
11193 	new_sl->next = *explored_state(env, insn_idx);
11194 	*explored_state(env, insn_idx) = new_sl;
11195 	/* connect new state to parentage chain. Current frame needs all
11196 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11197 	 * to the stack implicitly by JITs) so in callers' frames connect just
11198 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11199 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11200 	 * from callee with its full parentage chain, anyway.
11201 	 */
11202 	/* clear write marks in current state: the writes we did are not writes
11203 	 * our child did, so they don't screen off its reads from us.
11204 	 * (There are no read marks in current state, because reads always mark
11205 	 * their parent and current state never has children yet.  Only
11206 	 * explored_states can get read marks.)
11207 	 */
11208 	for (j = 0; j <= cur->curframe; j++) {
11209 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11210 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11211 		for (i = 0; i < BPF_REG_FP; i++)
11212 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11213 	}
11214 
11215 	/* all stack frames are accessible from callee, clear them all */
11216 	for (j = 0; j <= cur->curframe; j++) {
11217 		struct bpf_func_state *frame = cur->frame[j];
11218 		struct bpf_func_state *newframe = new->frame[j];
11219 
11220 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11221 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11222 			frame->stack[i].spilled_ptr.parent =
11223 						&newframe->stack[i].spilled_ptr;
11224 		}
11225 	}
11226 	return 0;
11227 }
11228 
11229 /* Return true if it's OK to have the same insn return a different type. */
11230 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11231 {
11232 	switch (base_type(type)) {
11233 	case PTR_TO_CTX:
11234 	case PTR_TO_SOCKET:
11235 	case PTR_TO_SOCK_COMMON:
11236 	case PTR_TO_TCP_SOCK:
11237 	case PTR_TO_XDP_SOCK:
11238 	case PTR_TO_BTF_ID:
11239 		return false;
11240 	default:
11241 		return true;
11242 	}
11243 }
11244 
11245 /* If an instruction was previously used with particular pointer types, then we
11246  * need to be careful to avoid cases such as the below, where it may be ok
11247  * for one branch accessing the pointer, but not ok for the other branch:
11248  *
11249  * R1 = sock_ptr
11250  * goto X;
11251  * ...
11252  * R1 = some_other_valid_ptr;
11253  * goto X;
11254  * ...
11255  * R2 = *(u32 *)(R1 + 0);
11256  */
11257 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11258 {
11259 	return src != prev && (!reg_type_mismatch_ok(src) ||
11260 			       !reg_type_mismatch_ok(prev));
11261 }
11262 
11263 static int do_check(struct bpf_verifier_env *env)
11264 {
11265 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11266 	struct bpf_verifier_state *state = env->cur_state;
11267 	struct bpf_insn *insns = env->prog->insnsi;
11268 	struct bpf_reg_state *regs;
11269 	int insn_cnt = env->prog->len;
11270 	bool do_print_state = false;
11271 	int prev_insn_idx = -1;
11272 
11273 	for (;;) {
11274 		struct bpf_insn *insn;
11275 		u8 class;
11276 		int err;
11277 
11278 		env->prev_insn_idx = prev_insn_idx;
11279 		if (env->insn_idx >= insn_cnt) {
11280 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11281 				env->insn_idx, insn_cnt);
11282 			return -EFAULT;
11283 		}
11284 
11285 		insn = &insns[env->insn_idx];
11286 		class = BPF_CLASS(insn->code);
11287 
11288 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11289 			verbose(env,
11290 				"BPF program is too large. Processed %d insn\n",
11291 				env->insn_processed);
11292 			return -E2BIG;
11293 		}
11294 
11295 		err = is_state_visited(env, env->insn_idx);
11296 		if (err < 0)
11297 			return err;
11298 		if (err == 1) {
11299 			/* found equivalent state, can prune the search */
11300 			if (env->log.level & BPF_LOG_LEVEL) {
11301 				if (do_print_state)
11302 					verbose(env, "\nfrom %d to %d%s: safe\n",
11303 						env->prev_insn_idx, env->insn_idx,
11304 						env->cur_state->speculative ?
11305 						" (speculative execution)" : "");
11306 				else
11307 					verbose(env, "%d: safe\n", env->insn_idx);
11308 			}
11309 			goto process_bpf_exit;
11310 		}
11311 
11312 		if (signal_pending(current))
11313 			return -EAGAIN;
11314 
11315 		if (need_resched())
11316 			cond_resched();
11317 
11318 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
11319 			verbose(env, "\nfrom %d to %d%s:",
11320 				env->prev_insn_idx, env->insn_idx,
11321 				env->cur_state->speculative ?
11322 				" (speculative execution)" : "");
11323 			print_verifier_state(env, state->frame[state->curframe], true);
11324 			do_print_state = false;
11325 		}
11326 
11327 		if (env->log.level & BPF_LOG_LEVEL) {
11328 			const struct bpf_insn_cbs cbs = {
11329 				.cb_call	= disasm_kfunc_name,
11330 				.cb_print	= verbose,
11331 				.private_data	= env,
11332 			};
11333 
11334 			if (verifier_state_scratched(env))
11335 				print_insn_state(env, state->frame[state->curframe]);
11336 
11337 			verbose_linfo(env, env->insn_idx, "; ");
11338 			env->prev_log_len = env->log.len_used;
11339 			verbose(env, "%d: ", env->insn_idx);
11340 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11341 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
11342 			env->prev_log_len = env->log.len_used;
11343 		}
11344 
11345 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11346 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11347 							   env->prev_insn_idx);
11348 			if (err)
11349 				return err;
11350 		}
11351 
11352 		regs = cur_regs(env);
11353 		sanitize_mark_insn_seen(env);
11354 		prev_insn_idx = env->insn_idx;
11355 
11356 		if (class == BPF_ALU || class == BPF_ALU64) {
11357 			err = check_alu_op(env, insn);
11358 			if (err)
11359 				return err;
11360 
11361 		} else if (class == BPF_LDX) {
11362 			enum bpf_reg_type *prev_src_type, src_reg_type;
11363 
11364 			/* check for reserved fields is already done */
11365 
11366 			/* check src operand */
11367 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11368 			if (err)
11369 				return err;
11370 
11371 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11372 			if (err)
11373 				return err;
11374 
11375 			src_reg_type = regs[insn->src_reg].type;
11376 
11377 			/* check that memory (src_reg + off) is readable,
11378 			 * the state of dst_reg will be updated by this func
11379 			 */
11380 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11381 					       insn->off, BPF_SIZE(insn->code),
11382 					       BPF_READ, insn->dst_reg, false);
11383 			if (err)
11384 				return err;
11385 
11386 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11387 
11388 			if (*prev_src_type == NOT_INIT) {
11389 				/* saw a valid insn
11390 				 * dst_reg = *(u32 *)(src_reg + off)
11391 				 * save type to validate intersecting paths
11392 				 */
11393 				*prev_src_type = src_reg_type;
11394 
11395 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11396 				/* ABuser program is trying to use the same insn
11397 				 * dst_reg = *(u32*) (src_reg + off)
11398 				 * with different pointer types:
11399 				 * src_reg == ctx in one branch and
11400 				 * src_reg == stack|map in some other branch.
11401 				 * Reject it.
11402 				 */
11403 				verbose(env, "same insn cannot be used with different pointers\n");
11404 				return -EINVAL;
11405 			}
11406 
11407 		} else if (class == BPF_STX) {
11408 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11409 
11410 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11411 				err = check_atomic(env, env->insn_idx, insn);
11412 				if (err)
11413 					return err;
11414 				env->insn_idx++;
11415 				continue;
11416 			}
11417 
11418 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11419 				verbose(env, "BPF_STX uses reserved fields\n");
11420 				return -EINVAL;
11421 			}
11422 
11423 			/* check src1 operand */
11424 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11425 			if (err)
11426 				return err;
11427 			/* check src2 operand */
11428 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11429 			if (err)
11430 				return err;
11431 
11432 			dst_reg_type = regs[insn->dst_reg].type;
11433 
11434 			/* check that memory (dst_reg + off) is writeable */
11435 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11436 					       insn->off, BPF_SIZE(insn->code),
11437 					       BPF_WRITE, insn->src_reg, false);
11438 			if (err)
11439 				return err;
11440 
11441 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11442 
11443 			if (*prev_dst_type == NOT_INIT) {
11444 				*prev_dst_type = dst_reg_type;
11445 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11446 				verbose(env, "same insn cannot be used with different pointers\n");
11447 				return -EINVAL;
11448 			}
11449 
11450 		} else if (class == BPF_ST) {
11451 			if (BPF_MODE(insn->code) != BPF_MEM ||
11452 			    insn->src_reg != BPF_REG_0) {
11453 				verbose(env, "BPF_ST uses reserved fields\n");
11454 				return -EINVAL;
11455 			}
11456 			/* check src operand */
11457 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11458 			if (err)
11459 				return err;
11460 
11461 			if (is_ctx_reg(env, insn->dst_reg)) {
11462 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11463 					insn->dst_reg,
11464 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
11465 				return -EACCES;
11466 			}
11467 
11468 			/* check that memory (dst_reg + off) is writeable */
11469 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11470 					       insn->off, BPF_SIZE(insn->code),
11471 					       BPF_WRITE, -1, false);
11472 			if (err)
11473 				return err;
11474 
11475 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11476 			u8 opcode = BPF_OP(insn->code);
11477 
11478 			env->jmps_processed++;
11479 			if (opcode == BPF_CALL) {
11480 				if (BPF_SRC(insn->code) != BPF_K ||
11481 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11482 				     && insn->off != 0) ||
11483 				    (insn->src_reg != BPF_REG_0 &&
11484 				     insn->src_reg != BPF_PSEUDO_CALL &&
11485 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11486 				    insn->dst_reg != BPF_REG_0 ||
11487 				    class == BPF_JMP32) {
11488 					verbose(env, "BPF_CALL uses reserved fields\n");
11489 					return -EINVAL;
11490 				}
11491 
11492 				if (env->cur_state->active_spin_lock &&
11493 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11494 				     insn->imm != BPF_FUNC_spin_unlock)) {
11495 					verbose(env, "function calls are not allowed while holding a lock\n");
11496 					return -EINVAL;
11497 				}
11498 				if (insn->src_reg == BPF_PSEUDO_CALL)
11499 					err = check_func_call(env, insn, &env->insn_idx);
11500 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11501 					err = check_kfunc_call(env, insn);
11502 				else
11503 					err = check_helper_call(env, insn, &env->insn_idx);
11504 				if (err)
11505 					return err;
11506 			} else if (opcode == BPF_JA) {
11507 				if (BPF_SRC(insn->code) != BPF_K ||
11508 				    insn->imm != 0 ||
11509 				    insn->src_reg != BPF_REG_0 ||
11510 				    insn->dst_reg != BPF_REG_0 ||
11511 				    class == BPF_JMP32) {
11512 					verbose(env, "BPF_JA uses reserved fields\n");
11513 					return -EINVAL;
11514 				}
11515 
11516 				env->insn_idx += insn->off + 1;
11517 				continue;
11518 
11519 			} else if (opcode == BPF_EXIT) {
11520 				if (BPF_SRC(insn->code) != BPF_K ||
11521 				    insn->imm != 0 ||
11522 				    insn->src_reg != BPF_REG_0 ||
11523 				    insn->dst_reg != BPF_REG_0 ||
11524 				    class == BPF_JMP32) {
11525 					verbose(env, "BPF_EXIT uses reserved fields\n");
11526 					return -EINVAL;
11527 				}
11528 
11529 				if (env->cur_state->active_spin_lock) {
11530 					verbose(env, "bpf_spin_unlock is missing\n");
11531 					return -EINVAL;
11532 				}
11533 
11534 				if (state->curframe) {
11535 					/* exit from nested function */
11536 					err = prepare_func_exit(env, &env->insn_idx);
11537 					if (err)
11538 						return err;
11539 					do_print_state = true;
11540 					continue;
11541 				}
11542 
11543 				err = check_reference_leak(env);
11544 				if (err)
11545 					return err;
11546 
11547 				err = check_return_code(env);
11548 				if (err)
11549 					return err;
11550 process_bpf_exit:
11551 				mark_verifier_state_scratched(env);
11552 				update_branch_counts(env, env->cur_state);
11553 				err = pop_stack(env, &prev_insn_idx,
11554 						&env->insn_idx, pop_log);
11555 				if (err < 0) {
11556 					if (err != -ENOENT)
11557 						return err;
11558 					break;
11559 				} else {
11560 					do_print_state = true;
11561 					continue;
11562 				}
11563 			} else {
11564 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11565 				if (err)
11566 					return err;
11567 			}
11568 		} else if (class == BPF_LD) {
11569 			u8 mode = BPF_MODE(insn->code);
11570 
11571 			if (mode == BPF_ABS || mode == BPF_IND) {
11572 				err = check_ld_abs(env, insn);
11573 				if (err)
11574 					return err;
11575 
11576 			} else if (mode == BPF_IMM) {
11577 				err = check_ld_imm(env, insn);
11578 				if (err)
11579 					return err;
11580 
11581 				env->insn_idx++;
11582 				sanitize_mark_insn_seen(env);
11583 			} else {
11584 				verbose(env, "invalid BPF_LD mode\n");
11585 				return -EINVAL;
11586 			}
11587 		} else {
11588 			verbose(env, "unknown insn class %d\n", class);
11589 			return -EINVAL;
11590 		}
11591 
11592 		env->insn_idx++;
11593 	}
11594 
11595 	return 0;
11596 }
11597 
11598 static int find_btf_percpu_datasec(struct btf *btf)
11599 {
11600 	const struct btf_type *t;
11601 	const char *tname;
11602 	int i, n;
11603 
11604 	/*
11605 	 * Both vmlinux and module each have their own ".data..percpu"
11606 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11607 	 * types to look at only module's own BTF types.
11608 	 */
11609 	n = btf_nr_types(btf);
11610 	if (btf_is_module(btf))
11611 		i = btf_nr_types(btf_vmlinux);
11612 	else
11613 		i = 1;
11614 
11615 	for(; i < n; i++) {
11616 		t = btf_type_by_id(btf, i);
11617 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11618 			continue;
11619 
11620 		tname = btf_name_by_offset(btf, t->name_off);
11621 		if (!strcmp(tname, ".data..percpu"))
11622 			return i;
11623 	}
11624 
11625 	return -ENOENT;
11626 }
11627 
11628 /* replace pseudo btf_id with kernel symbol address */
11629 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11630 			       struct bpf_insn *insn,
11631 			       struct bpf_insn_aux_data *aux)
11632 {
11633 	const struct btf_var_secinfo *vsi;
11634 	const struct btf_type *datasec;
11635 	struct btf_mod_pair *btf_mod;
11636 	const struct btf_type *t;
11637 	const char *sym_name;
11638 	bool percpu = false;
11639 	u32 type, id = insn->imm;
11640 	struct btf *btf;
11641 	s32 datasec_id;
11642 	u64 addr;
11643 	int i, btf_fd, err;
11644 
11645 	btf_fd = insn[1].imm;
11646 	if (btf_fd) {
11647 		btf = btf_get_by_fd(btf_fd);
11648 		if (IS_ERR(btf)) {
11649 			verbose(env, "invalid module BTF object FD specified.\n");
11650 			return -EINVAL;
11651 		}
11652 	} else {
11653 		if (!btf_vmlinux) {
11654 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11655 			return -EINVAL;
11656 		}
11657 		btf = btf_vmlinux;
11658 		btf_get(btf);
11659 	}
11660 
11661 	t = btf_type_by_id(btf, id);
11662 	if (!t) {
11663 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11664 		err = -ENOENT;
11665 		goto err_put;
11666 	}
11667 
11668 	if (!btf_type_is_var(t)) {
11669 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11670 		err = -EINVAL;
11671 		goto err_put;
11672 	}
11673 
11674 	sym_name = btf_name_by_offset(btf, t->name_off);
11675 	addr = kallsyms_lookup_name(sym_name);
11676 	if (!addr) {
11677 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11678 			sym_name);
11679 		err = -ENOENT;
11680 		goto err_put;
11681 	}
11682 
11683 	datasec_id = find_btf_percpu_datasec(btf);
11684 	if (datasec_id > 0) {
11685 		datasec = btf_type_by_id(btf, datasec_id);
11686 		for_each_vsi(i, datasec, vsi) {
11687 			if (vsi->type == id) {
11688 				percpu = true;
11689 				break;
11690 			}
11691 		}
11692 	}
11693 
11694 	insn[0].imm = (u32)addr;
11695 	insn[1].imm = addr >> 32;
11696 
11697 	type = t->type;
11698 	t = btf_type_skip_modifiers(btf, type, NULL);
11699 	if (percpu) {
11700 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11701 		aux->btf_var.btf = btf;
11702 		aux->btf_var.btf_id = type;
11703 	} else if (!btf_type_is_struct(t)) {
11704 		const struct btf_type *ret;
11705 		const char *tname;
11706 		u32 tsize;
11707 
11708 		/* resolve the type size of ksym. */
11709 		ret = btf_resolve_size(btf, t, &tsize);
11710 		if (IS_ERR(ret)) {
11711 			tname = btf_name_by_offset(btf, t->name_off);
11712 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11713 				tname, PTR_ERR(ret));
11714 			err = -EINVAL;
11715 			goto err_put;
11716 		}
11717 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
11718 		aux->btf_var.mem_size = tsize;
11719 	} else {
11720 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11721 		aux->btf_var.btf = btf;
11722 		aux->btf_var.btf_id = type;
11723 	}
11724 
11725 	/* check whether we recorded this BTF (and maybe module) already */
11726 	for (i = 0; i < env->used_btf_cnt; i++) {
11727 		if (env->used_btfs[i].btf == btf) {
11728 			btf_put(btf);
11729 			return 0;
11730 		}
11731 	}
11732 
11733 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11734 		err = -E2BIG;
11735 		goto err_put;
11736 	}
11737 
11738 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11739 	btf_mod->btf = btf;
11740 	btf_mod->module = NULL;
11741 
11742 	/* if we reference variables from kernel module, bump its refcount */
11743 	if (btf_is_module(btf)) {
11744 		btf_mod->module = btf_try_get_module(btf);
11745 		if (!btf_mod->module) {
11746 			err = -ENXIO;
11747 			goto err_put;
11748 		}
11749 	}
11750 
11751 	env->used_btf_cnt++;
11752 
11753 	return 0;
11754 err_put:
11755 	btf_put(btf);
11756 	return err;
11757 }
11758 
11759 static int check_map_prealloc(struct bpf_map *map)
11760 {
11761 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11762 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11763 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11764 		!(map->map_flags & BPF_F_NO_PREALLOC);
11765 }
11766 
11767 static bool is_tracing_prog_type(enum bpf_prog_type type)
11768 {
11769 	switch (type) {
11770 	case BPF_PROG_TYPE_KPROBE:
11771 	case BPF_PROG_TYPE_TRACEPOINT:
11772 	case BPF_PROG_TYPE_PERF_EVENT:
11773 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11774 		return true;
11775 	default:
11776 		return false;
11777 	}
11778 }
11779 
11780 static bool is_preallocated_map(struct bpf_map *map)
11781 {
11782 	if (!check_map_prealloc(map))
11783 		return false;
11784 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11785 		return false;
11786 	return true;
11787 }
11788 
11789 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11790 					struct bpf_map *map,
11791 					struct bpf_prog *prog)
11792 
11793 {
11794 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11795 	/*
11796 	 * Validate that trace type programs use preallocated hash maps.
11797 	 *
11798 	 * For programs attached to PERF events this is mandatory as the
11799 	 * perf NMI can hit any arbitrary code sequence.
11800 	 *
11801 	 * All other trace types using preallocated hash maps are unsafe as
11802 	 * well because tracepoint or kprobes can be inside locked regions
11803 	 * of the memory allocator or at a place where a recursion into the
11804 	 * memory allocator would see inconsistent state.
11805 	 *
11806 	 * On RT enabled kernels run-time allocation of all trace type
11807 	 * programs is strictly prohibited due to lock type constraints. On
11808 	 * !RT kernels it is allowed for backwards compatibility reasons for
11809 	 * now, but warnings are emitted so developers are made aware of
11810 	 * the unsafety and can fix their programs before this is enforced.
11811 	 */
11812 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11813 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11814 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11815 			return -EINVAL;
11816 		}
11817 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11818 			verbose(env, "trace type programs can only use preallocated hash map\n");
11819 			return -EINVAL;
11820 		}
11821 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11822 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11823 	}
11824 
11825 	if (map_value_has_spin_lock(map)) {
11826 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11827 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11828 			return -EINVAL;
11829 		}
11830 
11831 		if (is_tracing_prog_type(prog_type)) {
11832 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11833 			return -EINVAL;
11834 		}
11835 
11836 		if (prog->aux->sleepable) {
11837 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11838 			return -EINVAL;
11839 		}
11840 	}
11841 
11842 	if (map_value_has_timer(map)) {
11843 		if (is_tracing_prog_type(prog_type)) {
11844 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
11845 			return -EINVAL;
11846 		}
11847 	}
11848 
11849 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11850 	    !bpf_offload_prog_map_match(prog, map)) {
11851 		verbose(env, "offload device mismatch between prog and map\n");
11852 		return -EINVAL;
11853 	}
11854 
11855 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11856 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11857 		return -EINVAL;
11858 	}
11859 
11860 	if (prog->aux->sleepable)
11861 		switch (map->map_type) {
11862 		case BPF_MAP_TYPE_HASH:
11863 		case BPF_MAP_TYPE_LRU_HASH:
11864 		case BPF_MAP_TYPE_ARRAY:
11865 		case BPF_MAP_TYPE_PERCPU_HASH:
11866 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11867 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11868 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11869 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11870 			if (!is_preallocated_map(map)) {
11871 				verbose(env,
11872 					"Sleepable programs can only use preallocated maps\n");
11873 				return -EINVAL;
11874 			}
11875 			break;
11876 		case BPF_MAP_TYPE_RINGBUF:
11877 			break;
11878 		default:
11879 			verbose(env,
11880 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11881 			return -EINVAL;
11882 		}
11883 
11884 	return 0;
11885 }
11886 
11887 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11888 {
11889 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11890 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11891 }
11892 
11893 /* find and rewrite pseudo imm in ld_imm64 instructions:
11894  *
11895  * 1. if it accesses map FD, replace it with actual map pointer.
11896  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11897  *
11898  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11899  */
11900 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11901 {
11902 	struct bpf_insn *insn = env->prog->insnsi;
11903 	int insn_cnt = env->prog->len;
11904 	int i, j, err;
11905 
11906 	err = bpf_prog_calc_tag(env->prog);
11907 	if (err)
11908 		return err;
11909 
11910 	for (i = 0; i < insn_cnt; i++, insn++) {
11911 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11912 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11913 			verbose(env, "BPF_LDX uses reserved fields\n");
11914 			return -EINVAL;
11915 		}
11916 
11917 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11918 			struct bpf_insn_aux_data *aux;
11919 			struct bpf_map *map;
11920 			struct fd f;
11921 			u64 addr;
11922 			u32 fd;
11923 
11924 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11925 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11926 			    insn[1].off != 0) {
11927 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11928 				return -EINVAL;
11929 			}
11930 
11931 			if (insn[0].src_reg == 0)
11932 				/* valid generic load 64-bit imm */
11933 				goto next_insn;
11934 
11935 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11936 				aux = &env->insn_aux_data[i];
11937 				err = check_pseudo_btf_id(env, insn, aux);
11938 				if (err)
11939 					return err;
11940 				goto next_insn;
11941 			}
11942 
11943 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11944 				aux = &env->insn_aux_data[i];
11945 				aux->ptr_type = PTR_TO_FUNC;
11946 				goto next_insn;
11947 			}
11948 
11949 			/* In final convert_pseudo_ld_imm64() step, this is
11950 			 * converted into regular 64-bit imm load insn.
11951 			 */
11952 			switch (insn[0].src_reg) {
11953 			case BPF_PSEUDO_MAP_VALUE:
11954 			case BPF_PSEUDO_MAP_IDX_VALUE:
11955 				break;
11956 			case BPF_PSEUDO_MAP_FD:
11957 			case BPF_PSEUDO_MAP_IDX:
11958 				if (insn[1].imm == 0)
11959 					break;
11960 				fallthrough;
11961 			default:
11962 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11963 				return -EINVAL;
11964 			}
11965 
11966 			switch (insn[0].src_reg) {
11967 			case BPF_PSEUDO_MAP_IDX_VALUE:
11968 			case BPF_PSEUDO_MAP_IDX:
11969 				if (bpfptr_is_null(env->fd_array)) {
11970 					verbose(env, "fd_idx without fd_array is invalid\n");
11971 					return -EPROTO;
11972 				}
11973 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11974 							    insn[0].imm * sizeof(fd),
11975 							    sizeof(fd)))
11976 					return -EFAULT;
11977 				break;
11978 			default:
11979 				fd = insn[0].imm;
11980 				break;
11981 			}
11982 
11983 			f = fdget(fd);
11984 			map = __bpf_map_get(f);
11985 			if (IS_ERR(map)) {
11986 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11987 					insn[0].imm);
11988 				return PTR_ERR(map);
11989 			}
11990 
11991 			err = check_map_prog_compatibility(env, map, env->prog);
11992 			if (err) {
11993 				fdput(f);
11994 				return err;
11995 			}
11996 
11997 			aux = &env->insn_aux_data[i];
11998 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11999 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12000 				addr = (unsigned long)map;
12001 			} else {
12002 				u32 off = insn[1].imm;
12003 
12004 				if (off >= BPF_MAX_VAR_OFF) {
12005 					verbose(env, "direct value offset of %u is not allowed\n", off);
12006 					fdput(f);
12007 					return -EINVAL;
12008 				}
12009 
12010 				if (!map->ops->map_direct_value_addr) {
12011 					verbose(env, "no direct value access support for this map type\n");
12012 					fdput(f);
12013 					return -EINVAL;
12014 				}
12015 
12016 				err = map->ops->map_direct_value_addr(map, &addr, off);
12017 				if (err) {
12018 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12019 						map->value_size, off);
12020 					fdput(f);
12021 					return err;
12022 				}
12023 
12024 				aux->map_off = off;
12025 				addr += off;
12026 			}
12027 
12028 			insn[0].imm = (u32)addr;
12029 			insn[1].imm = addr >> 32;
12030 
12031 			/* check whether we recorded this map already */
12032 			for (j = 0; j < env->used_map_cnt; j++) {
12033 				if (env->used_maps[j] == map) {
12034 					aux->map_index = j;
12035 					fdput(f);
12036 					goto next_insn;
12037 				}
12038 			}
12039 
12040 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12041 				fdput(f);
12042 				return -E2BIG;
12043 			}
12044 
12045 			/* hold the map. If the program is rejected by verifier,
12046 			 * the map will be released by release_maps() or it
12047 			 * will be used by the valid program until it's unloaded
12048 			 * and all maps are released in free_used_maps()
12049 			 */
12050 			bpf_map_inc(map);
12051 
12052 			aux->map_index = env->used_map_cnt;
12053 			env->used_maps[env->used_map_cnt++] = map;
12054 
12055 			if (bpf_map_is_cgroup_storage(map) &&
12056 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12057 				verbose(env, "only one cgroup storage of each type is allowed\n");
12058 				fdput(f);
12059 				return -EBUSY;
12060 			}
12061 
12062 			fdput(f);
12063 next_insn:
12064 			insn++;
12065 			i++;
12066 			continue;
12067 		}
12068 
12069 		/* Basic sanity check before we invest more work here. */
12070 		if (!bpf_opcode_in_insntable(insn->code)) {
12071 			verbose(env, "unknown opcode %02x\n", insn->code);
12072 			return -EINVAL;
12073 		}
12074 	}
12075 
12076 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12077 	 * 'struct bpf_map *' into a register instead of user map_fd.
12078 	 * These pointers will be used later by verifier to validate map access.
12079 	 */
12080 	return 0;
12081 }
12082 
12083 /* drop refcnt of maps used by the rejected program */
12084 static void release_maps(struct bpf_verifier_env *env)
12085 {
12086 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12087 			     env->used_map_cnt);
12088 }
12089 
12090 /* drop refcnt of maps used by the rejected program */
12091 static void release_btfs(struct bpf_verifier_env *env)
12092 {
12093 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12094 			     env->used_btf_cnt);
12095 }
12096 
12097 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12098 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12099 {
12100 	struct bpf_insn *insn = env->prog->insnsi;
12101 	int insn_cnt = env->prog->len;
12102 	int i;
12103 
12104 	for (i = 0; i < insn_cnt; i++, insn++) {
12105 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12106 			continue;
12107 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12108 			continue;
12109 		insn->src_reg = 0;
12110 	}
12111 }
12112 
12113 /* single env->prog->insni[off] instruction was replaced with the range
12114  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12115  * [0, off) and [off, end) to new locations, so the patched range stays zero
12116  */
12117 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12118 				 struct bpf_insn_aux_data *new_data,
12119 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12120 {
12121 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12122 	struct bpf_insn *insn = new_prog->insnsi;
12123 	u32 old_seen = old_data[off].seen;
12124 	u32 prog_len;
12125 	int i;
12126 
12127 	/* aux info at OFF always needs adjustment, no matter fast path
12128 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12129 	 * original insn at old prog.
12130 	 */
12131 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12132 
12133 	if (cnt == 1)
12134 		return;
12135 	prog_len = new_prog->len;
12136 
12137 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12138 	memcpy(new_data + off + cnt - 1, old_data + off,
12139 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12140 	for (i = off; i < off + cnt - 1; i++) {
12141 		/* Expand insni[off]'s seen count to the patched range. */
12142 		new_data[i].seen = old_seen;
12143 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12144 	}
12145 	env->insn_aux_data = new_data;
12146 	vfree(old_data);
12147 }
12148 
12149 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12150 {
12151 	int i;
12152 
12153 	if (len == 1)
12154 		return;
12155 	/* NOTE: fake 'exit' subprog should be updated as well. */
12156 	for (i = 0; i <= env->subprog_cnt; i++) {
12157 		if (env->subprog_info[i].start <= off)
12158 			continue;
12159 		env->subprog_info[i].start += len - 1;
12160 	}
12161 }
12162 
12163 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12164 {
12165 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12166 	int i, sz = prog->aux->size_poke_tab;
12167 	struct bpf_jit_poke_descriptor *desc;
12168 
12169 	for (i = 0; i < sz; i++) {
12170 		desc = &tab[i];
12171 		if (desc->insn_idx <= off)
12172 			continue;
12173 		desc->insn_idx += len - 1;
12174 	}
12175 }
12176 
12177 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12178 					    const struct bpf_insn *patch, u32 len)
12179 {
12180 	struct bpf_prog *new_prog;
12181 	struct bpf_insn_aux_data *new_data = NULL;
12182 
12183 	if (len > 1) {
12184 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12185 					      sizeof(struct bpf_insn_aux_data)));
12186 		if (!new_data)
12187 			return NULL;
12188 	}
12189 
12190 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12191 	if (IS_ERR(new_prog)) {
12192 		if (PTR_ERR(new_prog) == -ERANGE)
12193 			verbose(env,
12194 				"insn %d cannot be patched due to 16-bit range\n",
12195 				env->insn_aux_data[off].orig_idx);
12196 		vfree(new_data);
12197 		return NULL;
12198 	}
12199 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12200 	adjust_subprog_starts(env, off, len);
12201 	adjust_poke_descs(new_prog, off, len);
12202 	return new_prog;
12203 }
12204 
12205 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12206 					      u32 off, u32 cnt)
12207 {
12208 	int i, j;
12209 
12210 	/* find first prog starting at or after off (first to remove) */
12211 	for (i = 0; i < env->subprog_cnt; i++)
12212 		if (env->subprog_info[i].start >= off)
12213 			break;
12214 	/* find first prog starting at or after off + cnt (first to stay) */
12215 	for (j = i; j < env->subprog_cnt; j++)
12216 		if (env->subprog_info[j].start >= off + cnt)
12217 			break;
12218 	/* if j doesn't start exactly at off + cnt, we are just removing
12219 	 * the front of previous prog
12220 	 */
12221 	if (env->subprog_info[j].start != off + cnt)
12222 		j--;
12223 
12224 	if (j > i) {
12225 		struct bpf_prog_aux *aux = env->prog->aux;
12226 		int move;
12227 
12228 		/* move fake 'exit' subprog as well */
12229 		move = env->subprog_cnt + 1 - j;
12230 
12231 		memmove(env->subprog_info + i,
12232 			env->subprog_info + j,
12233 			sizeof(*env->subprog_info) * move);
12234 		env->subprog_cnt -= j - i;
12235 
12236 		/* remove func_info */
12237 		if (aux->func_info) {
12238 			move = aux->func_info_cnt - j;
12239 
12240 			memmove(aux->func_info + i,
12241 				aux->func_info + j,
12242 				sizeof(*aux->func_info) * move);
12243 			aux->func_info_cnt -= j - i;
12244 			/* func_info->insn_off is set after all code rewrites,
12245 			 * in adjust_btf_func() - no need to adjust
12246 			 */
12247 		}
12248 	} else {
12249 		/* convert i from "first prog to remove" to "first to adjust" */
12250 		if (env->subprog_info[i].start == off)
12251 			i++;
12252 	}
12253 
12254 	/* update fake 'exit' subprog as well */
12255 	for (; i <= env->subprog_cnt; i++)
12256 		env->subprog_info[i].start -= cnt;
12257 
12258 	return 0;
12259 }
12260 
12261 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12262 				      u32 cnt)
12263 {
12264 	struct bpf_prog *prog = env->prog;
12265 	u32 i, l_off, l_cnt, nr_linfo;
12266 	struct bpf_line_info *linfo;
12267 
12268 	nr_linfo = prog->aux->nr_linfo;
12269 	if (!nr_linfo)
12270 		return 0;
12271 
12272 	linfo = prog->aux->linfo;
12273 
12274 	/* find first line info to remove, count lines to be removed */
12275 	for (i = 0; i < nr_linfo; i++)
12276 		if (linfo[i].insn_off >= off)
12277 			break;
12278 
12279 	l_off = i;
12280 	l_cnt = 0;
12281 	for (; i < nr_linfo; i++)
12282 		if (linfo[i].insn_off < off + cnt)
12283 			l_cnt++;
12284 		else
12285 			break;
12286 
12287 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12288 	 * last removed linfo.  prog is already modified, so prog->len == off
12289 	 * means no live instructions after (tail of the program was removed).
12290 	 */
12291 	if (prog->len != off && l_cnt &&
12292 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12293 		l_cnt--;
12294 		linfo[--i].insn_off = off + cnt;
12295 	}
12296 
12297 	/* remove the line info which refer to the removed instructions */
12298 	if (l_cnt) {
12299 		memmove(linfo + l_off, linfo + i,
12300 			sizeof(*linfo) * (nr_linfo - i));
12301 
12302 		prog->aux->nr_linfo -= l_cnt;
12303 		nr_linfo = prog->aux->nr_linfo;
12304 	}
12305 
12306 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12307 	for (i = l_off; i < nr_linfo; i++)
12308 		linfo[i].insn_off -= cnt;
12309 
12310 	/* fix up all subprogs (incl. 'exit') which start >= off */
12311 	for (i = 0; i <= env->subprog_cnt; i++)
12312 		if (env->subprog_info[i].linfo_idx > l_off) {
12313 			/* program may have started in the removed region but
12314 			 * may not be fully removed
12315 			 */
12316 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12317 				env->subprog_info[i].linfo_idx -= l_cnt;
12318 			else
12319 				env->subprog_info[i].linfo_idx = l_off;
12320 		}
12321 
12322 	return 0;
12323 }
12324 
12325 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12326 {
12327 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12328 	unsigned int orig_prog_len = env->prog->len;
12329 	int err;
12330 
12331 	if (bpf_prog_is_dev_bound(env->prog->aux))
12332 		bpf_prog_offload_remove_insns(env, off, cnt);
12333 
12334 	err = bpf_remove_insns(env->prog, off, cnt);
12335 	if (err)
12336 		return err;
12337 
12338 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12339 	if (err)
12340 		return err;
12341 
12342 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12343 	if (err)
12344 		return err;
12345 
12346 	memmove(aux_data + off,	aux_data + off + cnt,
12347 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12348 
12349 	return 0;
12350 }
12351 
12352 /* The verifier does more data flow analysis than llvm and will not
12353  * explore branches that are dead at run time. Malicious programs can
12354  * have dead code too. Therefore replace all dead at-run-time code
12355  * with 'ja -1'.
12356  *
12357  * Just nops are not optimal, e.g. if they would sit at the end of the
12358  * program and through another bug we would manage to jump there, then
12359  * we'd execute beyond program memory otherwise. Returning exception
12360  * code also wouldn't work since we can have subprogs where the dead
12361  * code could be located.
12362  */
12363 static void sanitize_dead_code(struct bpf_verifier_env *env)
12364 {
12365 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12366 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12367 	struct bpf_insn *insn = env->prog->insnsi;
12368 	const int insn_cnt = env->prog->len;
12369 	int i;
12370 
12371 	for (i = 0; i < insn_cnt; i++) {
12372 		if (aux_data[i].seen)
12373 			continue;
12374 		memcpy(insn + i, &trap, sizeof(trap));
12375 		aux_data[i].zext_dst = false;
12376 	}
12377 }
12378 
12379 static bool insn_is_cond_jump(u8 code)
12380 {
12381 	u8 op;
12382 
12383 	if (BPF_CLASS(code) == BPF_JMP32)
12384 		return true;
12385 
12386 	if (BPF_CLASS(code) != BPF_JMP)
12387 		return false;
12388 
12389 	op = BPF_OP(code);
12390 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12391 }
12392 
12393 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12394 {
12395 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12396 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12397 	struct bpf_insn *insn = env->prog->insnsi;
12398 	const int insn_cnt = env->prog->len;
12399 	int i;
12400 
12401 	for (i = 0; i < insn_cnt; i++, insn++) {
12402 		if (!insn_is_cond_jump(insn->code))
12403 			continue;
12404 
12405 		if (!aux_data[i + 1].seen)
12406 			ja.off = insn->off;
12407 		else if (!aux_data[i + 1 + insn->off].seen)
12408 			ja.off = 0;
12409 		else
12410 			continue;
12411 
12412 		if (bpf_prog_is_dev_bound(env->prog->aux))
12413 			bpf_prog_offload_replace_insn(env, i, &ja);
12414 
12415 		memcpy(insn, &ja, sizeof(ja));
12416 	}
12417 }
12418 
12419 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12420 {
12421 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12422 	int insn_cnt = env->prog->len;
12423 	int i, err;
12424 
12425 	for (i = 0; i < insn_cnt; i++) {
12426 		int j;
12427 
12428 		j = 0;
12429 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12430 			j++;
12431 		if (!j)
12432 			continue;
12433 
12434 		err = verifier_remove_insns(env, i, j);
12435 		if (err)
12436 			return err;
12437 		insn_cnt = env->prog->len;
12438 	}
12439 
12440 	return 0;
12441 }
12442 
12443 static int opt_remove_nops(struct bpf_verifier_env *env)
12444 {
12445 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12446 	struct bpf_insn *insn = env->prog->insnsi;
12447 	int insn_cnt = env->prog->len;
12448 	int i, err;
12449 
12450 	for (i = 0; i < insn_cnt; i++) {
12451 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12452 			continue;
12453 
12454 		err = verifier_remove_insns(env, i, 1);
12455 		if (err)
12456 			return err;
12457 		insn_cnt--;
12458 		i--;
12459 	}
12460 
12461 	return 0;
12462 }
12463 
12464 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12465 					 const union bpf_attr *attr)
12466 {
12467 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12468 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12469 	int i, patch_len, delta = 0, len = env->prog->len;
12470 	struct bpf_insn *insns = env->prog->insnsi;
12471 	struct bpf_prog *new_prog;
12472 	bool rnd_hi32;
12473 
12474 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12475 	zext_patch[1] = BPF_ZEXT_REG(0);
12476 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12477 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12478 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12479 	for (i = 0; i < len; i++) {
12480 		int adj_idx = i + delta;
12481 		struct bpf_insn insn;
12482 		int load_reg;
12483 
12484 		insn = insns[adj_idx];
12485 		load_reg = insn_def_regno(&insn);
12486 		if (!aux[adj_idx].zext_dst) {
12487 			u8 code, class;
12488 			u32 imm_rnd;
12489 
12490 			if (!rnd_hi32)
12491 				continue;
12492 
12493 			code = insn.code;
12494 			class = BPF_CLASS(code);
12495 			if (load_reg == -1)
12496 				continue;
12497 
12498 			/* NOTE: arg "reg" (the fourth one) is only used for
12499 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12500 			 *       here.
12501 			 */
12502 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12503 				if (class == BPF_LD &&
12504 				    BPF_MODE(code) == BPF_IMM)
12505 					i++;
12506 				continue;
12507 			}
12508 
12509 			/* ctx load could be transformed into wider load. */
12510 			if (class == BPF_LDX &&
12511 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12512 				continue;
12513 
12514 			imm_rnd = get_random_int();
12515 			rnd_hi32_patch[0] = insn;
12516 			rnd_hi32_patch[1].imm = imm_rnd;
12517 			rnd_hi32_patch[3].dst_reg = load_reg;
12518 			patch = rnd_hi32_patch;
12519 			patch_len = 4;
12520 			goto apply_patch_buffer;
12521 		}
12522 
12523 		/* Add in an zero-extend instruction if a) the JIT has requested
12524 		 * it or b) it's a CMPXCHG.
12525 		 *
12526 		 * The latter is because: BPF_CMPXCHG always loads a value into
12527 		 * R0, therefore always zero-extends. However some archs'
12528 		 * equivalent instruction only does this load when the
12529 		 * comparison is successful. This detail of CMPXCHG is
12530 		 * orthogonal to the general zero-extension behaviour of the
12531 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12532 		 */
12533 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12534 			continue;
12535 
12536 		if (WARN_ON(load_reg == -1)) {
12537 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12538 			return -EFAULT;
12539 		}
12540 
12541 		zext_patch[0] = insn;
12542 		zext_patch[1].dst_reg = load_reg;
12543 		zext_patch[1].src_reg = load_reg;
12544 		patch = zext_patch;
12545 		patch_len = 2;
12546 apply_patch_buffer:
12547 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12548 		if (!new_prog)
12549 			return -ENOMEM;
12550 		env->prog = new_prog;
12551 		insns = new_prog->insnsi;
12552 		aux = env->insn_aux_data;
12553 		delta += patch_len - 1;
12554 	}
12555 
12556 	return 0;
12557 }
12558 
12559 /* convert load instructions that access fields of a context type into a
12560  * sequence of instructions that access fields of the underlying structure:
12561  *     struct __sk_buff    -> struct sk_buff
12562  *     struct bpf_sock_ops -> struct sock
12563  */
12564 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12565 {
12566 	const struct bpf_verifier_ops *ops = env->ops;
12567 	int i, cnt, size, ctx_field_size, delta = 0;
12568 	const int insn_cnt = env->prog->len;
12569 	struct bpf_insn insn_buf[16], *insn;
12570 	u32 target_size, size_default, off;
12571 	struct bpf_prog *new_prog;
12572 	enum bpf_access_type type;
12573 	bool is_narrower_load;
12574 
12575 	if (ops->gen_prologue || env->seen_direct_write) {
12576 		if (!ops->gen_prologue) {
12577 			verbose(env, "bpf verifier is misconfigured\n");
12578 			return -EINVAL;
12579 		}
12580 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12581 					env->prog);
12582 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12583 			verbose(env, "bpf verifier is misconfigured\n");
12584 			return -EINVAL;
12585 		} else if (cnt) {
12586 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12587 			if (!new_prog)
12588 				return -ENOMEM;
12589 
12590 			env->prog = new_prog;
12591 			delta += cnt - 1;
12592 		}
12593 	}
12594 
12595 	if (bpf_prog_is_dev_bound(env->prog->aux))
12596 		return 0;
12597 
12598 	insn = env->prog->insnsi + delta;
12599 
12600 	for (i = 0; i < insn_cnt; i++, insn++) {
12601 		bpf_convert_ctx_access_t convert_ctx_access;
12602 		bool ctx_access;
12603 
12604 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12605 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12606 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12607 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12608 			type = BPF_READ;
12609 			ctx_access = true;
12610 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12611 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12612 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12613 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12614 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12615 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12616 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12617 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12618 			type = BPF_WRITE;
12619 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12620 		} else {
12621 			continue;
12622 		}
12623 
12624 		if (type == BPF_WRITE &&
12625 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12626 			struct bpf_insn patch[] = {
12627 				*insn,
12628 				BPF_ST_NOSPEC(),
12629 			};
12630 
12631 			cnt = ARRAY_SIZE(patch);
12632 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12633 			if (!new_prog)
12634 				return -ENOMEM;
12635 
12636 			delta    += cnt - 1;
12637 			env->prog = new_prog;
12638 			insn      = new_prog->insnsi + i + delta;
12639 			continue;
12640 		}
12641 
12642 		if (!ctx_access)
12643 			continue;
12644 
12645 		switch (env->insn_aux_data[i + delta].ptr_type) {
12646 		case PTR_TO_CTX:
12647 			if (!ops->convert_ctx_access)
12648 				continue;
12649 			convert_ctx_access = ops->convert_ctx_access;
12650 			break;
12651 		case PTR_TO_SOCKET:
12652 		case PTR_TO_SOCK_COMMON:
12653 			convert_ctx_access = bpf_sock_convert_ctx_access;
12654 			break;
12655 		case PTR_TO_TCP_SOCK:
12656 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12657 			break;
12658 		case PTR_TO_XDP_SOCK:
12659 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12660 			break;
12661 		case PTR_TO_BTF_ID:
12662 			if (type == BPF_READ) {
12663 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12664 					BPF_SIZE((insn)->code);
12665 				env->prog->aux->num_exentries++;
12666 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12667 				verbose(env, "Writes through BTF pointers are not allowed\n");
12668 				return -EINVAL;
12669 			}
12670 			continue;
12671 		default:
12672 			continue;
12673 		}
12674 
12675 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12676 		size = BPF_LDST_BYTES(insn);
12677 
12678 		/* If the read access is a narrower load of the field,
12679 		 * convert to a 4/8-byte load, to minimum program type specific
12680 		 * convert_ctx_access changes. If conversion is successful,
12681 		 * we will apply proper mask to the result.
12682 		 */
12683 		is_narrower_load = size < ctx_field_size;
12684 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12685 		off = insn->off;
12686 		if (is_narrower_load) {
12687 			u8 size_code;
12688 
12689 			if (type == BPF_WRITE) {
12690 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12691 				return -EINVAL;
12692 			}
12693 
12694 			size_code = BPF_H;
12695 			if (ctx_field_size == 4)
12696 				size_code = BPF_W;
12697 			else if (ctx_field_size == 8)
12698 				size_code = BPF_DW;
12699 
12700 			insn->off = off & ~(size_default - 1);
12701 			insn->code = BPF_LDX | BPF_MEM | size_code;
12702 		}
12703 
12704 		target_size = 0;
12705 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12706 					 &target_size);
12707 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12708 		    (ctx_field_size && !target_size)) {
12709 			verbose(env, "bpf verifier is misconfigured\n");
12710 			return -EINVAL;
12711 		}
12712 
12713 		if (is_narrower_load && size < target_size) {
12714 			u8 shift = bpf_ctx_narrow_access_offset(
12715 				off, size, size_default) * 8;
12716 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12717 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12718 				return -EINVAL;
12719 			}
12720 			if (ctx_field_size <= 4) {
12721 				if (shift)
12722 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12723 									insn->dst_reg,
12724 									shift);
12725 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12726 								(1 << size * 8) - 1);
12727 			} else {
12728 				if (shift)
12729 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12730 									insn->dst_reg,
12731 									shift);
12732 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12733 								(1ULL << size * 8) - 1);
12734 			}
12735 		}
12736 
12737 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12738 		if (!new_prog)
12739 			return -ENOMEM;
12740 
12741 		delta += cnt - 1;
12742 
12743 		/* keep walking new program and skip insns we just inserted */
12744 		env->prog = new_prog;
12745 		insn      = new_prog->insnsi + i + delta;
12746 	}
12747 
12748 	return 0;
12749 }
12750 
12751 static int jit_subprogs(struct bpf_verifier_env *env)
12752 {
12753 	struct bpf_prog *prog = env->prog, **func, *tmp;
12754 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12755 	struct bpf_map *map_ptr;
12756 	struct bpf_insn *insn;
12757 	void *old_bpf_func;
12758 	int err, num_exentries;
12759 
12760 	if (env->subprog_cnt <= 1)
12761 		return 0;
12762 
12763 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12764 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12765 			continue;
12766 
12767 		/* Upon error here we cannot fall back to interpreter but
12768 		 * need a hard reject of the program. Thus -EFAULT is
12769 		 * propagated in any case.
12770 		 */
12771 		subprog = find_subprog(env, i + insn->imm + 1);
12772 		if (subprog < 0) {
12773 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12774 				  i + insn->imm + 1);
12775 			return -EFAULT;
12776 		}
12777 		/* temporarily remember subprog id inside insn instead of
12778 		 * aux_data, since next loop will split up all insns into funcs
12779 		 */
12780 		insn->off = subprog;
12781 		/* remember original imm in case JIT fails and fallback
12782 		 * to interpreter will be needed
12783 		 */
12784 		env->insn_aux_data[i].call_imm = insn->imm;
12785 		/* point imm to __bpf_call_base+1 from JITs point of view */
12786 		insn->imm = 1;
12787 		if (bpf_pseudo_func(insn))
12788 			/* jit (e.g. x86_64) may emit fewer instructions
12789 			 * if it learns a u32 imm is the same as a u64 imm.
12790 			 * Force a non zero here.
12791 			 */
12792 			insn[1].imm = 1;
12793 	}
12794 
12795 	err = bpf_prog_alloc_jited_linfo(prog);
12796 	if (err)
12797 		goto out_undo_insn;
12798 
12799 	err = -ENOMEM;
12800 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12801 	if (!func)
12802 		goto out_undo_insn;
12803 
12804 	for (i = 0; i < env->subprog_cnt; i++) {
12805 		subprog_start = subprog_end;
12806 		subprog_end = env->subprog_info[i + 1].start;
12807 
12808 		len = subprog_end - subprog_start;
12809 		/* bpf_prog_run() doesn't call subprogs directly,
12810 		 * hence main prog stats include the runtime of subprogs.
12811 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12812 		 * func[i]->stats will never be accessed and stays NULL
12813 		 */
12814 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12815 		if (!func[i])
12816 			goto out_free;
12817 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12818 		       len * sizeof(struct bpf_insn));
12819 		func[i]->type = prog->type;
12820 		func[i]->len = len;
12821 		if (bpf_prog_calc_tag(func[i]))
12822 			goto out_free;
12823 		func[i]->is_func = 1;
12824 		func[i]->aux->func_idx = i;
12825 		/* Below members will be freed only at prog->aux */
12826 		func[i]->aux->btf = prog->aux->btf;
12827 		func[i]->aux->func_info = prog->aux->func_info;
12828 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12829 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12830 
12831 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12832 			struct bpf_jit_poke_descriptor *poke;
12833 
12834 			poke = &prog->aux->poke_tab[j];
12835 			if (poke->insn_idx < subprog_end &&
12836 			    poke->insn_idx >= subprog_start)
12837 				poke->aux = func[i]->aux;
12838 		}
12839 
12840 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12841 		 * Long term would need debug info to populate names
12842 		 */
12843 		func[i]->aux->name[0] = 'F';
12844 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12845 		func[i]->jit_requested = 1;
12846 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12847 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
12848 		func[i]->aux->linfo = prog->aux->linfo;
12849 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12850 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12851 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12852 		num_exentries = 0;
12853 		insn = func[i]->insnsi;
12854 		for (j = 0; j < func[i]->len; j++, insn++) {
12855 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12856 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12857 				num_exentries++;
12858 		}
12859 		func[i]->aux->num_exentries = num_exentries;
12860 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12861 		func[i] = bpf_int_jit_compile(func[i]);
12862 		if (!func[i]->jited) {
12863 			err = -ENOTSUPP;
12864 			goto out_free;
12865 		}
12866 		cond_resched();
12867 	}
12868 
12869 	/* at this point all bpf functions were successfully JITed
12870 	 * now populate all bpf_calls with correct addresses and
12871 	 * run last pass of JIT
12872 	 */
12873 	for (i = 0; i < env->subprog_cnt; i++) {
12874 		insn = func[i]->insnsi;
12875 		for (j = 0; j < func[i]->len; j++, insn++) {
12876 			if (bpf_pseudo_func(insn)) {
12877 				subprog = insn->off;
12878 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12879 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12880 				continue;
12881 			}
12882 			if (!bpf_pseudo_call(insn))
12883 				continue;
12884 			subprog = insn->off;
12885 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
12886 		}
12887 
12888 		/* we use the aux data to keep a list of the start addresses
12889 		 * of the JITed images for each function in the program
12890 		 *
12891 		 * for some architectures, such as powerpc64, the imm field
12892 		 * might not be large enough to hold the offset of the start
12893 		 * address of the callee's JITed image from __bpf_call_base
12894 		 *
12895 		 * in such cases, we can lookup the start address of a callee
12896 		 * by using its subprog id, available from the off field of
12897 		 * the call instruction, as an index for this list
12898 		 */
12899 		func[i]->aux->func = func;
12900 		func[i]->aux->func_cnt = env->subprog_cnt;
12901 	}
12902 	for (i = 0; i < env->subprog_cnt; i++) {
12903 		old_bpf_func = func[i]->bpf_func;
12904 		tmp = bpf_int_jit_compile(func[i]);
12905 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12906 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12907 			err = -ENOTSUPP;
12908 			goto out_free;
12909 		}
12910 		cond_resched();
12911 	}
12912 
12913 	/* finally lock prog and jit images for all functions and
12914 	 * populate kallsysm
12915 	 */
12916 	for (i = 0; i < env->subprog_cnt; i++) {
12917 		bpf_prog_lock_ro(func[i]);
12918 		bpf_prog_kallsyms_add(func[i]);
12919 	}
12920 
12921 	/* Last step: make now unused interpreter insns from main
12922 	 * prog consistent for later dump requests, so they can
12923 	 * later look the same as if they were interpreted only.
12924 	 */
12925 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12926 		if (bpf_pseudo_func(insn)) {
12927 			insn[0].imm = env->insn_aux_data[i].call_imm;
12928 			insn[1].imm = insn->off;
12929 			insn->off = 0;
12930 			continue;
12931 		}
12932 		if (!bpf_pseudo_call(insn))
12933 			continue;
12934 		insn->off = env->insn_aux_data[i].call_imm;
12935 		subprog = find_subprog(env, i + insn->off + 1);
12936 		insn->imm = subprog;
12937 	}
12938 
12939 	prog->jited = 1;
12940 	prog->bpf_func = func[0]->bpf_func;
12941 	prog->aux->func = func;
12942 	prog->aux->func_cnt = env->subprog_cnt;
12943 	bpf_prog_jit_attempt_done(prog);
12944 	return 0;
12945 out_free:
12946 	/* We failed JIT'ing, so at this point we need to unregister poke
12947 	 * descriptors from subprogs, so that kernel is not attempting to
12948 	 * patch it anymore as we're freeing the subprog JIT memory.
12949 	 */
12950 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12951 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12952 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12953 	}
12954 	/* At this point we're guaranteed that poke descriptors are not
12955 	 * live anymore. We can just unlink its descriptor table as it's
12956 	 * released with the main prog.
12957 	 */
12958 	for (i = 0; i < env->subprog_cnt; i++) {
12959 		if (!func[i])
12960 			continue;
12961 		func[i]->aux->poke_tab = NULL;
12962 		bpf_jit_free(func[i]);
12963 	}
12964 	kfree(func);
12965 out_undo_insn:
12966 	/* cleanup main prog to be interpreted */
12967 	prog->jit_requested = 0;
12968 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12969 		if (!bpf_pseudo_call(insn))
12970 			continue;
12971 		insn->off = 0;
12972 		insn->imm = env->insn_aux_data[i].call_imm;
12973 	}
12974 	bpf_prog_jit_attempt_done(prog);
12975 	return err;
12976 }
12977 
12978 static int fixup_call_args(struct bpf_verifier_env *env)
12979 {
12980 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12981 	struct bpf_prog *prog = env->prog;
12982 	struct bpf_insn *insn = prog->insnsi;
12983 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12984 	int i, depth;
12985 #endif
12986 	int err = 0;
12987 
12988 	if (env->prog->jit_requested &&
12989 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12990 		err = jit_subprogs(env);
12991 		if (err == 0)
12992 			return 0;
12993 		if (err == -EFAULT)
12994 			return err;
12995 	}
12996 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12997 	if (has_kfunc_call) {
12998 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12999 		return -EINVAL;
13000 	}
13001 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13002 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13003 		 * have to be rejected, since interpreter doesn't support them yet.
13004 		 */
13005 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13006 		return -EINVAL;
13007 	}
13008 	for (i = 0; i < prog->len; i++, insn++) {
13009 		if (bpf_pseudo_func(insn)) {
13010 			/* When JIT fails the progs with callback calls
13011 			 * have to be rejected, since interpreter doesn't support them yet.
13012 			 */
13013 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13014 			return -EINVAL;
13015 		}
13016 
13017 		if (!bpf_pseudo_call(insn))
13018 			continue;
13019 		depth = get_callee_stack_depth(env, insn, i);
13020 		if (depth < 0)
13021 			return depth;
13022 		bpf_patch_call_args(insn, depth);
13023 	}
13024 	err = 0;
13025 #endif
13026 	return err;
13027 }
13028 
13029 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13030 			    struct bpf_insn *insn)
13031 {
13032 	const struct bpf_kfunc_desc *desc;
13033 
13034 	if (!insn->imm) {
13035 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13036 		return -EINVAL;
13037 	}
13038 
13039 	/* insn->imm has the btf func_id. Replace it with
13040 	 * an address (relative to __bpf_base_call).
13041 	 */
13042 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13043 	if (!desc) {
13044 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13045 			insn->imm);
13046 		return -EFAULT;
13047 	}
13048 
13049 	insn->imm = desc->imm;
13050 
13051 	return 0;
13052 }
13053 
13054 /* Do various post-verification rewrites in a single program pass.
13055  * These rewrites simplify JIT and interpreter implementations.
13056  */
13057 static int do_misc_fixups(struct bpf_verifier_env *env)
13058 {
13059 	struct bpf_prog *prog = env->prog;
13060 	enum bpf_attach_type eatype = prog->expected_attach_type;
13061 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
13062 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13063 	struct bpf_insn *insn = prog->insnsi;
13064 	const struct bpf_func_proto *fn;
13065 	const int insn_cnt = prog->len;
13066 	const struct bpf_map_ops *ops;
13067 	struct bpf_insn_aux_data *aux;
13068 	struct bpf_insn insn_buf[16];
13069 	struct bpf_prog *new_prog;
13070 	struct bpf_map *map_ptr;
13071 	int i, ret, cnt, delta = 0;
13072 
13073 	for (i = 0; i < insn_cnt; i++, insn++) {
13074 		/* Make divide-by-zero exceptions impossible. */
13075 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13076 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13077 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13078 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13079 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13080 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13081 			struct bpf_insn *patchlet;
13082 			struct bpf_insn chk_and_div[] = {
13083 				/* [R,W]x div 0 -> 0 */
13084 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13085 					     BPF_JNE | BPF_K, insn->src_reg,
13086 					     0, 2, 0),
13087 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13088 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13089 				*insn,
13090 			};
13091 			struct bpf_insn chk_and_mod[] = {
13092 				/* [R,W]x mod 0 -> [R,W]x */
13093 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13094 					     BPF_JEQ | BPF_K, insn->src_reg,
13095 					     0, 1 + (is64 ? 0 : 1), 0),
13096 				*insn,
13097 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13098 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13099 			};
13100 
13101 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13102 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13103 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13104 
13105 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13106 			if (!new_prog)
13107 				return -ENOMEM;
13108 
13109 			delta    += cnt - 1;
13110 			env->prog = prog = new_prog;
13111 			insn      = new_prog->insnsi + i + delta;
13112 			continue;
13113 		}
13114 
13115 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13116 		if (BPF_CLASS(insn->code) == BPF_LD &&
13117 		    (BPF_MODE(insn->code) == BPF_ABS ||
13118 		     BPF_MODE(insn->code) == BPF_IND)) {
13119 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13120 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13121 				verbose(env, "bpf verifier is misconfigured\n");
13122 				return -EINVAL;
13123 			}
13124 
13125 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13126 			if (!new_prog)
13127 				return -ENOMEM;
13128 
13129 			delta    += cnt - 1;
13130 			env->prog = prog = new_prog;
13131 			insn      = new_prog->insnsi + i + delta;
13132 			continue;
13133 		}
13134 
13135 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13136 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13137 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13138 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13139 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13140 			struct bpf_insn *patch = &insn_buf[0];
13141 			bool issrc, isneg, isimm;
13142 			u32 off_reg;
13143 
13144 			aux = &env->insn_aux_data[i + delta];
13145 			if (!aux->alu_state ||
13146 			    aux->alu_state == BPF_ALU_NON_POINTER)
13147 				continue;
13148 
13149 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13150 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13151 				BPF_ALU_SANITIZE_SRC;
13152 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13153 
13154 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13155 			if (isimm) {
13156 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13157 			} else {
13158 				if (isneg)
13159 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13160 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13161 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13162 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13163 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13164 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13165 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13166 			}
13167 			if (!issrc)
13168 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13169 			insn->src_reg = BPF_REG_AX;
13170 			if (isneg)
13171 				insn->code = insn->code == code_add ?
13172 					     code_sub : code_add;
13173 			*patch++ = *insn;
13174 			if (issrc && isneg && !isimm)
13175 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13176 			cnt = patch - insn_buf;
13177 
13178 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13179 			if (!new_prog)
13180 				return -ENOMEM;
13181 
13182 			delta    += cnt - 1;
13183 			env->prog = prog = new_prog;
13184 			insn      = new_prog->insnsi + i + delta;
13185 			continue;
13186 		}
13187 
13188 		if (insn->code != (BPF_JMP | BPF_CALL))
13189 			continue;
13190 		if (insn->src_reg == BPF_PSEUDO_CALL)
13191 			continue;
13192 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13193 			ret = fixup_kfunc_call(env, insn);
13194 			if (ret)
13195 				return ret;
13196 			continue;
13197 		}
13198 
13199 		if (insn->imm == BPF_FUNC_get_route_realm)
13200 			prog->dst_needed = 1;
13201 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13202 			bpf_user_rnd_init_once();
13203 		if (insn->imm == BPF_FUNC_override_return)
13204 			prog->kprobe_override = 1;
13205 		if (insn->imm == BPF_FUNC_tail_call) {
13206 			/* If we tail call into other programs, we
13207 			 * cannot make any assumptions since they can
13208 			 * be replaced dynamically during runtime in
13209 			 * the program array.
13210 			 */
13211 			prog->cb_access = 1;
13212 			if (!allow_tail_call_in_subprogs(env))
13213 				prog->aux->stack_depth = MAX_BPF_STACK;
13214 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13215 
13216 			/* mark bpf_tail_call as different opcode to avoid
13217 			 * conditional branch in the interpreter for every normal
13218 			 * call and to prevent accidental JITing by JIT compiler
13219 			 * that doesn't support bpf_tail_call yet
13220 			 */
13221 			insn->imm = 0;
13222 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13223 
13224 			aux = &env->insn_aux_data[i + delta];
13225 			if (env->bpf_capable && !expect_blinding &&
13226 			    prog->jit_requested &&
13227 			    !bpf_map_key_poisoned(aux) &&
13228 			    !bpf_map_ptr_poisoned(aux) &&
13229 			    !bpf_map_ptr_unpriv(aux)) {
13230 				struct bpf_jit_poke_descriptor desc = {
13231 					.reason = BPF_POKE_REASON_TAIL_CALL,
13232 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13233 					.tail_call.key = bpf_map_key_immediate(aux),
13234 					.insn_idx = i + delta,
13235 				};
13236 
13237 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13238 				if (ret < 0) {
13239 					verbose(env, "adding tail call poke descriptor failed\n");
13240 					return ret;
13241 				}
13242 
13243 				insn->imm = ret + 1;
13244 				continue;
13245 			}
13246 
13247 			if (!bpf_map_ptr_unpriv(aux))
13248 				continue;
13249 
13250 			/* instead of changing every JIT dealing with tail_call
13251 			 * emit two extra insns:
13252 			 * if (index >= max_entries) goto out;
13253 			 * index &= array->index_mask;
13254 			 * to avoid out-of-bounds cpu speculation
13255 			 */
13256 			if (bpf_map_ptr_poisoned(aux)) {
13257 				verbose(env, "tail_call abusing map_ptr\n");
13258 				return -EINVAL;
13259 			}
13260 
13261 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13262 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13263 						  map_ptr->max_entries, 2);
13264 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13265 						    container_of(map_ptr,
13266 								 struct bpf_array,
13267 								 map)->index_mask);
13268 			insn_buf[2] = *insn;
13269 			cnt = 3;
13270 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13271 			if (!new_prog)
13272 				return -ENOMEM;
13273 
13274 			delta    += cnt - 1;
13275 			env->prog = prog = new_prog;
13276 			insn      = new_prog->insnsi + i + delta;
13277 			continue;
13278 		}
13279 
13280 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13281 			/* The verifier will process callback_fn as many times as necessary
13282 			 * with different maps and the register states prepared by
13283 			 * set_timer_callback_state will be accurate.
13284 			 *
13285 			 * The following use case is valid:
13286 			 *   map1 is shared by prog1, prog2, prog3.
13287 			 *   prog1 calls bpf_timer_init for some map1 elements
13288 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13289 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13290 			 *   prog3 calls bpf_timer_start for some map1 elements.
13291 			 *     Those that were not both bpf_timer_init-ed and
13292 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13293 			 */
13294 			struct bpf_insn ld_addrs[2] = {
13295 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13296 			};
13297 
13298 			insn_buf[0] = ld_addrs[0];
13299 			insn_buf[1] = ld_addrs[1];
13300 			insn_buf[2] = *insn;
13301 			cnt = 3;
13302 
13303 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13304 			if (!new_prog)
13305 				return -ENOMEM;
13306 
13307 			delta    += cnt - 1;
13308 			env->prog = prog = new_prog;
13309 			insn      = new_prog->insnsi + i + delta;
13310 			goto patch_call_imm;
13311 		}
13312 
13313 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13314 		 * and other inlining handlers are currently limited to 64 bit
13315 		 * only.
13316 		 */
13317 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13318 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13319 		     insn->imm == BPF_FUNC_map_update_elem ||
13320 		     insn->imm == BPF_FUNC_map_delete_elem ||
13321 		     insn->imm == BPF_FUNC_map_push_elem   ||
13322 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13323 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13324 		     insn->imm == BPF_FUNC_redirect_map    ||
13325 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13326 			aux = &env->insn_aux_data[i + delta];
13327 			if (bpf_map_ptr_poisoned(aux))
13328 				goto patch_call_imm;
13329 
13330 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13331 			ops = map_ptr->ops;
13332 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13333 			    ops->map_gen_lookup) {
13334 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13335 				if (cnt == -EOPNOTSUPP)
13336 					goto patch_map_ops_generic;
13337 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13338 					verbose(env, "bpf verifier is misconfigured\n");
13339 					return -EINVAL;
13340 				}
13341 
13342 				new_prog = bpf_patch_insn_data(env, i + delta,
13343 							       insn_buf, cnt);
13344 				if (!new_prog)
13345 					return -ENOMEM;
13346 
13347 				delta    += cnt - 1;
13348 				env->prog = prog = new_prog;
13349 				insn      = new_prog->insnsi + i + delta;
13350 				continue;
13351 			}
13352 
13353 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13354 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13355 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13356 				     (int (*)(struct bpf_map *map, void *key))NULL));
13357 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13358 				     (int (*)(struct bpf_map *map, void *key, void *value,
13359 					      u64 flags))NULL));
13360 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13361 				     (int (*)(struct bpf_map *map, void *value,
13362 					      u64 flags))NULL));
13363 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13364 				     (int (*)(struct bpf_map *map, void *value))NULL));
13365 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13366 				     (int (*)(struct bpf_map *map, void *value))NULL));
13367 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13368 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13369 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13370 				     (int (*)(struct bpf_map *map,
13371 					      bpf_callback_t callback_fn,
13372 					      void *callback_ctx,
13373 					      u64 flags))NULL));
13374 
13375 patch_map_ops_generic:
13376 			switch (insn->imm) {
13377 			case BPF_FUNC_map_lookup_elem:
13378 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13379 				continue;
13380 			case BPF_FUNC_map_update_elem:
13381 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13382 				continue;
13383 			case BPF_FUNC_map_delete_elem:
13384 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13385 				continue;
13386 			case BPF_FUNC_map_push_elem:
13387 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13388 				continue;
13389 			case BPF_FUNC_map_pop_elem:
13390 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13391 				continue;
13392 			case BPF_FUNC_map_peek_elem:
13393 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13394 				continue;
13395 			case BPF_FUNC_redirect_map:
13396 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13397 				continue;
13398 			case BPF_FUNC_for_each_map_elem:
13399 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13400 				continue;
13401 			}
13402 
13403 			goto patch_call_imm;
13404 		}
13405 
13406 		/* Implement bpf_jiffies64 inline. */
13407 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13408 		    insn->imm == BPF_FUNC_jiffies64) {
13409 			struct bpf_insn ld_jiffies_addr[2] = {
13410 				BPF_LD_IMM64(BPF_REG_0,
13411 					     (unsigned long)&jiffies),
13412 			};
13413 
13414 			insn_buf[0] = ld_jiffies_addr[0];
13415 			insn_buf[1] = ld_jiffies_addr[1];
13416 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13417 						  BPF_REG_0, 0);
13418 			cnt = 3;
13419 
13420 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13421 						       cnt);
13422 			if (!new_prog)
13423 				return -ENOMEM;
13424 
13425 			delta    += cnt - 1;
13426 			env->prog = prog = new_prog;
13427 			insn      = new_prog->insnsi + i + delta;
13428 			continue;
13429 		}
13430 
13431 		/* Implement bpf_get_func_arg inline. */
13432 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13433 		    insn->imm == BPF_FUNC_get_func_arg) {
13434 			/* Load nr_args from ctx - 8 */
13435 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13436 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
13437 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
13438 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
13439 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
13440 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13441 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
13442 			insn_buf[7] = BPF_JMP_A(1);
13443 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
13444 			cnt = 9;
13445 
13446 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13447 			if (!new_prog)
13448 				return -ENOMEM;
13449 
13450 			delta    += cnt - 1;
13451 			env->prog = prog = new_prog;
13452 			insn      = new_prog->insnsi + i + delta;
13453 			continue;
13454 		}
13455 
13456 		/* Implement bpf_get_func_ret inline. */
13457 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13458 		    insn->imm == BPF_FUNC_get_func_ret) {
13459 			if (eatype == BPF_TRACE_FEXIT ||
13460 			    eatype == BPF_MODIFY_RETURN) {
13461 				/* Load nr_args from ctx - 8 */
13462 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13463 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
13464 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
13465 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13466 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
13467 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
13468 				cnt = 6;
13469 			} else {
13470 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
13471 				cnt = 1;
13472 			}
13473 
13474 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13475 			if (!new_prog)
13476 				return -ENOMEM;
13477 
13478 			delta    += cnt - 1;
13479 			env->prog = prog = new_prog;
13480 			insn      = new_prog->insnsi + i + delta;
13481 			continue;
13482 		}
13483 
13484 		/* Implement get_func_arg_cnt inline. */
13485 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13486 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
13487 			/* Load nr_args from ctx - 8 */
13488 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13489 
13490 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13491 			if (!new_prog)
13492 				return -ENOMEM;
13493 
13494 			env->prog = prog = new_prog;
13495 			insn      = new_prog->insnsi + i + delta;
13496 			continue;
13497 		}
13498 
13499 		/* Implement bpf_get_func_ip inline. */
13500 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13501 		    insn->imm == BPF_FUNC_get_func_ip) {
13502 			/* Load IP address from ctx - 16 */
13503 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
13504 
13505 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13506 			if (!new_prog)
13507 				return -ENOMEM;
13508 
13509 			env->prog = prog = new_prog;
13510 			insn      = new_prog->insnsi + i + delta;
13511 			continue;
13512 		}
13513 
13514 patch_call_imm:
13515 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13516 		/* all functions that have prototype and verifier allowed
13517 		 * programs to call them, must be real in-kernel functions
13518 		 */
13519 		if (!fn->func) {
13520 			verbose(env,
13521 				"kernel subsystem misconfigured func %s#%d\n",
13522 				func_id_name(insn->imm), insn->imm);
13523 			return -EFAULT;
13524 		}
13525 		insn->imm = fn->func - __bpf_call_base;
13526 	}
13527 
13528 	/* Since poke tab is now finalized, publish aux to tracker. */
13529 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13530 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13531 		if (!map_ptr->ops->map_poke_track ||
13532 		    !map_ptr->ops->map_poke_untrack ||
13533 		    !map_ptr->ops->map_poke_run) {
13534 			verbose(env, "bpf verifier is misconfigured\n");
13535 			return -EINVAL;
13536 		}
13537 
13538 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13539 		if (ret < 0) {
13540 			verbose(env, "tracking tail call prog failed\n");
13541 			return ret;
13542 		}
13543 	}
13544 
13545 	sort_kfunc_descs_by_imm(env->prog);
13546 
13547 	return 0;
13548 }
13549 
13550 static void free_states(struct bpf_verifier_env *env)
13551 {
13552 	struct bpf_verifier_state_list *sl, *sln;
13553 	int i;
13554 
13555 	sl = env->free_list;
13556 	while (sl) {
13557 		sln = sl->next;
13558 		free_verifier_state(&sl->state, false);
13559 		kfree(sl);
13560 		sl = sln;
13561 	}
13562 	env->free_list = NULL;
13563 
13564 	if (!env->explored_states)
13565 		return;
13566 
13567 	for (i = 0; i < state_htab_size(env); i++) {
13568 		sl = env->explored_states[i];
13569 
13570 		while (sl) {
13571 			sln = sl->next;
13572 			free_verifier_state(&sl->state, false);
13573 			kfree(sl);
13574 			sl = sln;
13575 		}
13576 		env->explored_states[i] = NULL;
13577 	}
13578 }
13579 
13580 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13581 {
13582 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13583 	struct bpf_verifier_state *state;
13584 	struct bpf_reg_state *regs;
13585 	int ret, i;
13586 
13587 	env->prev_linfo = NULL;
13588 	env->pass_cnt++;
13589 
13590 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13591 	if (!state)
13592 		return -ENOMEM;
13593 	state->curframe = 0;
13594 	state->speculative = false;
13595 	state->branches = 1;
13596 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13597 	if (!state->frame[0]) {
13598 		kfree(state);
13599 		return -ENOMEM;
13600 	}
13601 	env->cur_state = state;
13602 	init_func_state(env, state->frame[0],
13603 			BPF_MAIN_FUNC /* callsite */,
13604 			0 /* frameno */,
13605 			subprog);
13606 
13607 	regs = state->frame[state->curframe]->regs;
13608 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13609 		ret = btf_prepare_func_args(env, subprog, regs);
13610 		if (ret)
13611 			goto out;
13612 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13613 			if (regs[i].type == PTR_TO_CTX)
13614 				mark_reg_known_zero(env, regs, i);
13615 			else if (regs[i].type == SCALAR_VALUE)
13616 				mark_reg_unknown(env, regs, i);
13617 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
13618 				const u32 mem_size = regs[i].mem_size;
13619 
13620 				mark_reg_known_zero(env, regs, i);
13621 				regs[i].mem_size = mem_size;
13622 				regs[i].id = ++env->id_gen;
13623 			}
13624 		}
13625 	} else {
13626 		/* 1st arg to a function */
13627 		regs[BPF_REG_1].type = PTR_TO_CTX;
13628 		mark_reg_known_zero(env, regs, BPF_REG_1);
13629 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13630 		if (ret == -EFAULT)
13631 			/* unlikely verifier bug. abort.
13632 			 * ret == 0 and ret < 0 are sadly acceptable for
13633 			 * main() function due to backward compatibility.
13634 			 * Like socket filter program may be written as:
13635 			 * int bpf_prog(struct pt_regs *ctx)
13636 			 * and never dereference that ctx in the program.
13637 			 * 'struct pt_regs' is a type mismatch for socket
13638 			 * filter that should be using 'struct __sk_buff'.
13639 			 */
13640 			goto out;
13641 	}
13642 
13643 	ret = do_check(env);
13644 out:
13645 	/* check for NULL is necessary, since cur_state can be freed inside
13646 	 * do_check() under memory pressure.
13647 	 */
13648 	if (env->cur_state) {
13649 		free_verifier_state(env->cur_state, true);
13650 		env->cur_state = NULL;
13651 	}
13652 	while (!pop_stack(env, NULL, NULL, false));
13653 	if (!ret && pop_log)
13654 		bpf_vlog_reset(&env->log, 0);
13655 	free_states(env);
13656 	return ret;
13657 }
13658 
13659 /* Verify all global functions in a BPF program one by one based on their BTF.
13660  * All global functions must pass verification. Otherwise the whole program is rejected.
13661  * Consider:
13662  * int bar(int);
13663  * int foo(int f)
13664  * {
13665  *    return bar(f);
13666  * }
13667  * int bar(int b)
13668  * {
13669  *    ...
13670  * }
13671  * foo() will be verified first for R1=any_scalar_value. During verification it
13672  * will be assumed that bar() already verified successfully and call to bar()
13673  * from foo() will be checked for type match only. Later bar() will be verified
13674  * independently to check that it's safe for R1=any_scalar_value.
13675  */
13676 static int do_check_subprogs(struct bpf_verifier_env *env)
13677 {
13678 	struct bpf_prog_aux *aux = env->prog->aux;
13679 	int i, ret;
13680 
13681 	if (!aux->func_info)
13682 		return 0;
13683 
13684 	for (i = 1; i < env->subprog_cnt; i++) {
13685 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13686 			continue;
13687 		env->insn_idx = env->subprog_info[i].start;
13688 		WARN_ON_ONCE(env->insn_idx == 0);
13689 		ret = do_check_common(env, i);
13690 		if (ret) {
13691 			return ret;
13692 		} else if (env->log.level & BPF_LOG_LEVEL) {
13693 			verbose(env,
13694 				"Func#%d is safe for any args that match its prototype\n",
13695 				i);
13696 		}
13697 	}
13698 	return 0;
13699 }
13700 
13701 static int do_check_main(struct bpf_verifier_env *env)
13702 {
13703 	int ret;
13704 
13705 	env->insn_idx = 0;
13706 	ret = do_check_common(env, 0);
13707 	if (!ret)
13708 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13709 	return ret;
13710 }
13711 
13712 
13713 static void print_verification_stats(struct bpf_verifier_env *env)
13714 {
13715 	int i;
13716 
13717 	if (env->log.level & BPF_LOG_STATS) {
13718 		verbose(env, "verification time %lld usec\n",
13719 			div_u64(env->verification_time, 1000));
13720 		verbose(env, "stack depth ");
13721 		for (i = 0; i < env->subprog_cnt; i++) {
13722 			u32 depth = env->subprog_info[i].stack_depth;
13723 
13724 			verbose(env, "%d", depth);
13725 			if (i + 1 < env->subprog_cnt)
13726 				verbose(env, "+");
13727 		}
13728 		verbose(env, "\n");
13729 	}
13730 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13731 		"total_states %d peak_states %d mark_read %d\n",
13732 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13733 		env->max_states_per_insn, env->total_states,
13734 		env->peak_states, env->longest_mark_read_walk);
13735 }
13736 
13737 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13738 {
13739 	const struct btf_type *t, *func_proto;
13740 	const struct bpf_struct_ops *st_ops;
13741 	const struct btf_member *member;
13742 	struct bpf_prog *prog = env->prog;
13743 	u32 btf_id, member_idx;
13744 	const char *mname;
13745 
13746 	if (!prog->gpl_compatible) {
13747 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13748 		return -EINVAL;
13749 	}
13750 
13751 	btf_id = prog->aux->attach_btf_id;
13752 	st_ops = bpf_struct_ops_find(btf_id);
13753 	if (!st_ops) {
13754 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13755 			btf_id);
13756 		return -ENOTSUPP;
13757 	}
13758 
13759 	t = st_ops->type;
13760 	member_idx = prog->expected_attach_type;
13761 	if (member_idx >= btf_type_vlen(t)) {
13762 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13763 			member_idx, st_ops->name);
13764 		return -EINVAL;
13765 	}
13766 
13767 	member = &btf_type_member(t)[member_idx];
13768 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13769 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13770 					       NULL);
13771 	if (!func_proto) {
13772 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13773 			mname, member_idx, st_ops->name);
13774 		return -EINVAL;
13775 	}
13776 
13777 	if (st_ops->check_member) {
13778 		int err = st_ops->check_member(t, member);
13779 
13780 		if (err) {
13781 			verbose(env, "attach to unsupported member %s of struct %s\n",
13782 				mname, st_ops->name);
13783 			return err;
13784 		}
13785 	}
13786 
13787 	prog->aux->attach_func_proto = func_proto;
13788 	prog->aux->attach_func_name = mname;
13789 	env->ops = st_ops->verifier_ops;
13790 
13791 	return 0;
13792 }
13793 #define SECURITY_PREFIX "security_"
13794 
13795 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13796 {
13797 	if (within_error_injection_list(addr) ||
13798 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13799 		return 0;
13800 
13801 	return -EINVAL;
13802 }
13803 
13804 /* list of non-sleepable functions that are otherwise on
13805  * ALLOW_ERROR_INJECTION list
13806  */
13807 BTF_SET_START(btf_non_sleepable_error_inject)
13808 /* Three functions below can be called from sleepable and non-sleepable context.
13809  * Assume non-sleepable from bpf safety point of view.
13810  */
13811 BTF_ID(func, __filemap_add_folio)
13812 BTF_ID(func, should_fail_alloc_page)
13813 BTF_ID(func, should_failslab)
13814 BTF_SET_END(btf_non_sleepable_error_inject)
13815 
13816 static int check_non_sleepable_error_inject(u32 btf_id)
13817 {
13818 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13819 }
13820 
13821 int bpf_check_attach_target(struct bpf_verifier_log *log,
13822 			    const struct bpf_prog *prog,
13823 			    const struct bpf_prog *tgt_prog,
13824 			    u32 btf_id,
13825 			    struct bpf_attach_target_info *tgt_info)
13826 {
13827 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13828 	const char prefix[] = "btf_trace_";
13829 	int ret = 0, subprog = -1, i;
13830 	const struct btf_type *t;
13831 	bool conservative = true;
13832 	const char *tname;
13833 	struct btf *btf;
13834 	long addr = 0;
13835 
13836 	if (!btf_id) {
13837 		bpf_log(log, "Tracing programs must provide btf_id\n");
13838 		return -EINVAL;
13839 	}
13840 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13841 	if (!btf) {
13842 		bpf_log(log,
13843 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13844 		return -EINVAL;
13845 	}
13846 	t = btf_type_by_id(btf, btf_id);
13847 	if (!t) {
13848 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13849 		return -EINVAL;
13850 	}
13851 	tname = btf_name_by_offset(btf, t->name_off);
13852 	if (!tname) {
13853 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13854 		return -EINVAL;
13855 	}
13856 	if (tgt_prog) {
13857 		struct bpf_prog_aux *aux = tgt_prog->aux;
13858 
13859 		for (i = 0; i < aux->func_info_cnt; i++)
13860 			if (aux->func_info[i].type_id == btf_id) {
13861 				subprog = i;
13862 				break;
13863 			}
13864 		if (subprog == -1) {
13865 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13866 			return -EINVAL;
13867 		}
13868 		conservative = aux->func_info_aux[subprog].unreliable;
13869 		if (prog_extension) {
13870 			if (conservative) {
13871 				bpf_log(log,
13872 					"Cannot replace static functions\n");
13873 				return -EINVAL;
13874 			}
13875 			if (!prog->jit_requested) {
13876 				bpf_log(log,
13877 					"Extension programs should be JITed\n");
13878 				return -EINVAL;
13879 			}
13880 		}
13881 		if (!tgt_prog->jited) {
13882 			bpf_log(log, "Can attach to only JITed progs\n");
13883 			return -EINVAL;
13884 		}
13885 		if (tgt_prog->type == prog->type) {
13886 			/* Cannot fentry/fexit another fentry/fexit program.
13887 			 * Cannot attach program extension to another extension.
13888 			 * It's ok to attach fentry/fexit to extension program.
13889 			 */
13890 			bpf_log(log, "Cannot recursively attach\n");
13891 			return -EINVAL;
13892 		}
13893 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13894 		    prog_extension &&
13895 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13896 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13897 			/* Program extensions can extend all program types
13898 			 * except fentry/fexit. The reason is the following.
13899 			 * The fentry/fexit programs are used for performance
13900 			 * analysis, stats and can be attached to any program
13901 			 * type except themselves. When extension program is
13902 			 * replacing XDP function it is necessary to allow
13903 			 * performance analysis of all functions. Both original
13904 			 * XDP program and its program extension. Hence
13905 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13906 			 * allowed. If extending of fentry/fexit was allowed it
13907 			 * would be possible to create long call chain
13908 			 * fentry->extension->fentry->extension beyond
13909 			 * reasonable stack size. Hence extending fentry is not
13910 			 * allowed.
13911 			 */
13912 			bpf_log(log, "Cannot extend fentry/fexit\n");
13913 			return -EINVAL;
13914 		}
13915 	} else {
13916 		if (prog_extension) {
13917 			bpf_log(log, "Cannot replace kernel functions\n");
13918 			return -EINVAL;
13919 		}
13920 	}
13921 
13922 	switch (prog->expected_attach_type) {
13923 	case BPF_TRACE_RAW_TP:
13924 		if (tgt_prog) {
13925 			bpf_log(log,
13926 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13927 			return -EINVAL;
13928 		}
13929 		if (!btf_type_is_typedef(t)) {
13930 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13931 				btf_id);
13932 			return -EINVAL;
13933 		}
13934 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13935 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13936 				btf_id, tname);
13937 			return -EINVAL;
13938 		}
13939 		tname += sizeof(prefix) - 1;
13940 		t = btf_type_by_id(btf, t->type);
13941 		if (!btf_type_is_ptr(t))
13942 			/* should never happen in valid vmlinux build */
13943 			return -EINVAL;
13944 		t = btf_type_by_id(btf, t->type);
13945 		if (!btf_type_is_func_proto(t))
13946 			/* should never happen in valid vmlinux build */
13947 			return -EINVAL;
13948 
13949 		break;
13950 	case BPF_TRACE_ITER:
13951 		if (!btf_type_is_func(t)) {
13952 			bpf_log(log, "attach_btf_id %u is not a function\n",
13953 				btf_id);
13954 			return -EINVAL;
13955 		}
13956 		t = btf_type_by_id(btf, t->type);
13957 		if (!btf_type_is_func_proto(t))
13958 			return -EINVAL;
13959 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13960 		if (ret)
13961 			return ret;
13962 		break;
13963 	default:
13964 		if (!prog_extension)
13965 			return -EINVAL;
13966 		fallthrough;
13967 	case BPF_MODIFY_RETURN:
13968 	case BPF_LSM_MAC:
13969 	case BPF_TRACE_FENTRY:
13970 	case BPF_TRACE_FEXIT:
13971 		if (!btf_type_is_func(t)) {
13972 			bpf_log(log, "attach_btf_id %u is not a function\n",
13973 				btf_id);
13974 			return -EINVAL;
13975 		}
13976 		if (prog_extension &&
13977 		    btf_check_type_match(log, prog, btf, t))
13978 			return -EINVAL;
13979 		t = btf_type_by_id(btf, t->type);
13980 		if (!btf_type_is_func_proto(t))
13981 			return -EINVAL;
13982 
13983 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13984 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13985 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13986 			return -EINVAL;
13987 
13988 		if (tgt_prog && conservative)
13989 			t = NULL;
13990 
13991 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13992 		if (ret < 0)
13993 			return ret;
13994 
13995 		if (tgt_prog) {
13996 			if (subprog == 0)
13997 				addr = (long) tgt_prog->bpf_func;
13998 			else
13999 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
14000 		} else {
14001 			addr = kallsyms_lookup_name(tname);
14002 			if (!addr) {
14003 				bpf_log(log,
14004 					"The address of function %s cannot be found\n",
14005 					tname);
14006 				return -ENOENT;
14007 			}
14008 		}
14009 
14010 		if (prog->aux->sleepable) {
14011 			ret = -EINVAL;
14012 			switch (prog->type) {
14013 			case BPF_PROG_TYPE_TRACING:
14014 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
14015 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14016 				 */
14017 				if (!check_non_sleepable_error_inject(btf_id) &&
14018 				    within_error_injection_list(addr))
14019 					ret = 0;
14020 				break;
14021 			case BPF_PROG_TYPE_LSM:
14022 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
14023 				 * Only some of them are sleepable.
14024 				 */
14025 				if (bpf_lsm_is_sleepable_hook(btf_id))
14026 					ret = 0;
14027 				break;
14028 			default:
14029 				break;
14030 			}
14031 			if (ret) {
14032 				bpf_log(log, "%s is not sleepable\n", tname);
14033 				return ret;
14034 			}
14035 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
14036 			if (tgt_prog) {
14037 				bpf_log(log, "can't modify return codes of BPF programs\n");
14038 				return -EINVAL;
14039 			}
14040 			ret = check_attach_modify_return(addr, tname);
14041 			if (ret) {
14042 				bpf_log(log, "%s() is not modifiable\n", tname);
14043 				return ret;
14044 			}
14045 		}
14046 
14047 		break;
14048 	}
14049 	tgt_info->tgt_addr = addr;
14050 	tgt_info->tgt_name = tname;
14051 	tgt_info->tgt_type = t;
14052 	return 0;
14053 }
14054 
14055 BTF_SET_START(btf_id_deny)
14056 BTF_ID_UNUSED
14057 #ifdef CONFIG_SMP
14058 BTF_ID(func, migrate_disable)
14059 BTF_ID(func, migrate_enable)
14060 #endif
14061 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
14062 BTF_ID(func, rcu_read_unlock_strict)
14063 #endif
14064 BTF_SET_END(btf_id_deny)
14065 
14066 static int check_attach_btf_id(struct bpf_verifier_env *env)
14067 {
14068 	struct bpf_prog *prog = env->prog;
14069 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
14070 	struct bpf_attach_target_info tgt_info = {};
14071 	u32 btf_id = prog->aux->attach_btf_id;
14072 	struct bpf_trampoline *tr;
14073 	int ret;
14074 	u64 key;
14075 
14076 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
14077 		if (prog->aux->sleepable)
14078 			/* attach_btf_id checked to be zero already */
14079 			return 0;
14080 		verbose(env, "Syscall programs can only be sleepable\n");
14081 		return -EINVAL;
14082 	}
14083 
14084 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
14085 	    prog->type != BPF_PROG_TYPE_LSM) {
14086 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
14087 		return -EINVAL;
14088 	}
14089 
14090 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
14091 		return check_struct_ops_btf_id(env);
14092 
14093 	if (prog->type != BPF_PROG_TYPE_TRACING &&
14094 	    prog->type != BPF_PROG_TYPE_LSM &&
14095 	    prog->type != BPF_PROG_TYPE_EXT)
14096 		return 0;
14097 
14098 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
14099 	if (ret)
14100 		return ret;
14101 
14102 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
14103 		/* to make freplace equivalent to their targets, they need to
14104 		 * inherit env->ops and expected_attach_type for the rest of the
14105 		 * verification
14106 		 */
14107 		env->ops = bpf_verifier_ops[tgt_prog->type];
14108 		prog->expected_attach_type = tgt_prog->expected_attach_type;
14109 	}
14110 
14111 	/* store info about the attachment target that will be used later */
14112 	prog->aux->attach_func_proto = tgt_info.tgt_type;
14113 	prog->aux->attach_func_name = tgt_info.tgt_name;
14114 
14115 	if (tgt_prog) {
14116 		prog->aux->saved_dst_prog_type = tgt_prog->type;
14117 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
14118 	}
14119 
14120 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
14121 		prog->aux->attach_btf_trace = true;
14122 		return 0;
14123 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
14124 		if (!bpf_iter_prog_supported(prog))
14125 			return -EINVAL;
14126 		return 0;
14127 	}
14128 
14129 	if (prog->type == BPF_PROG_TYPE_LSM) {
14130 		ret = bpf_lsm_verify_prog(&env->log, prog);
14131 		if (ret < 0)
14132 			return ret;
14133 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
14134 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
14135 		return -EINVAL;
14136 	}
14137 
14138 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
14139 	tr = bpf_trampoline_get(key, &tgt_info);
14140 	if (!tr)
14141 		return -ENOMEM;
14142 
14143 	prog->aux->dst_trampoline = tr;
14144 	return 0;
14145 }
14146 
14147 struct btf *bpf_get_btf_vmlinux(void)
14148 {
14149 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
14150 		mutex_lock(&bpf_verifier_lock);
14151 		if (!btf_vmlinux)
14152 			btf_vmlinux = btf_parse_vmlinux();
14153 		mutex_unlock(&bpf_verifier_lock);
14154 	}
14155 	return btf_vmlinux;
14156 }
14157 
14158 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
14159 {
14160 	u64 start_time = ktime_get_ns();
14161 	struct bpf_verifier_env *env;
14162 	struct bpf_verifier_log *log;
14163 	int i, len, ret = -EINVAL;
14164 	bool is_priv;
14165 
14166 	/* no program is valid */
14167 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
14168 		return -EINVAL;
14169 
14170 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
14171 	 * allocate/free it every time bpf_check() is called
14172 	 */
14173 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
14174 	if (!env)
14175 		return -ENOMEM;
14176 	log = &env->log;
14177 
14178 	len = (*prog)->len;
14179 	env->insn_aux_data =
14180 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
14181 	ret = -ENOMEM;
14182 	if (!env->insn_aux_data)
14183 		goto err_free_env;
14184 	for (i = 0; i < len; i++)
14185 		env->insn_aux_data[i].orig_idx = i;
14186 	env->prog = *prog;
14187 	env->ops = bpf_verifier_ops[env->prog->type];
14188 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
14189 	is_priv = bpf_capable();
14190 
14191 	bpf_get_btf_vmlinux();
14192 
14193 	/* grab the mutex to protect few globals used by verifier */
14194 	if (!is_priv)
14195 		mutex_lock(&bpf_verifier_lock);
14196 
14197 	if (attr->log_level || attr->log_buf || attr->log_size) {
14198 		/* user requested verbose verifier output
14199 		 * and supplied buffer to store the verification trace
14200 		 */
14201 		log->level = attr->log_level;
14202 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
14203 		log->len_total = attr->log_size;
14204 
14205 		/* log attributes have to be sane */
14206 		if (!bpf_verifier_log_attr_valid(log)) {
14207 			ret = -EINVAL;
14208 			goto err_unlock;
14209 		}
14210 	}
14211 
14212 	mark_verifier_state_clean(env);
14213 
14214 	if (IS_ERR(btf_vmlinux)) {
14215 		/* Either gcc or pahole or kernel are broken. */
14216 		verbose(env, "in-kernel BTF is malformed\n");
14217 		ret = PTR_ERR(btf_vmlinux);
14218 		goto skip_full_check;
14219 	}
14220 
14221 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14222 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
14223 		env->strict_alignment = true;
14224 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14225 		env->strict_alignment = false;
14226 
14227 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
14228 	env->allow_uninit_stack = bpf_allow_uninit_stack();
14229 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
14230 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
14231 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
14232 	env->bpf_capable = bpf_capable();
14233 
14234 	if (is_priv)
14235 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14236 
14237 	env->explored_states = kvcalloc(state_htab_size(env),
14238 				       sizeof(struct bpf_verifier_state_list *),
14239 				       GFP_USER);
14240 	ret = -ENOMEM;
14241 	if (!env->explored_states)
14242 		goto skip_full_check;
14243 
14244 	ret = add_subprog_and_kfunc(env);
14245 	if (ret < 0)
14246 		goto skip_full_check;
14247 
14248 	ret = check_subprogs(env);
14249 	if (ret < 0)
14250 		goto skip_full_check;
14251 
14252 	ret = check_btf_info(env, attr, uattr);
14253 	if (ret < 0)
14254 		goto skip_full_check;
14255 
14256 	ret = check_attach_btf_id(env);
14257 	if (ret)
14258 		goto skip_full_check;
14259 
14260 	ret = resolve_pseudo_ldimm64(env);
14261 	if (ret < 0)
14262 		goto skip_full_check;
14263 
14264 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
14265 		ret = bpf_prog_offload_verifier_prep(env->prog);
14266 		if (ret)
14267 			goto skip_full_check;
14268 	}
14269 
14270 	ret = check_cfg(env);
14271 	if (ret < 0)
14272 		goto skip_full_check;
14273 
14274 	ret = do_check_subprogs(env);
14275 	ret = ret ?: do_check_main(env);
14276 
14277 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14278 		ret = bpf_prog_offload_finalize(env);
14279 
14280 skip_full_check:
14281 	kvfree(env->explored_states);
14282 
14283 	if (ret == 0)
14284 		ret = check_max_stack_depth(env);
14285 
14286 	/* instruction rewrites happen after this point */
14287 	if (is_priv) {
14288 		if (ret == 0)
14289 			opt_hard_wire_dead_code_branches(env);
14290 		if (ret == 0)
14291 			ret = opt_remove_dead_code(env);
14292 		if (ret == 0)
14293 			ret = opt_remove_nops(env);
14294 	} else {
14295 		if (ret == 0)
14296 			sanitize_dead_code(env);
14297 	}
14298 
14299 	if (ret == 0)
14300 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14301 		ret = convert_ctx_accesses(env);
14302 
14303 	if (ret == 0)
14304 		ret = do_misc_fixups(env);
14305 
14306 	/* do 32-bit optimization after insn patching has done so those patched
14307 	 * insns could be handled correctly.
14308 	 */
14309 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14310 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14311 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14312 								     : false;
14313 	}
14314 
14315 	if (ret == 0)
14316 		ret = fixup_call_args(env);
14317 
14318 	env->verification_time = ktime_get_ns() - start_time;
14319 	print_verification_stats(env);
14320 	env->prog->aux->verified_insns = env->insn_processed;
14321 
14322 	if (log->level && bpf_verifier_log_full(log))
14323 		ret = -ENOSPC;
14324 	if (log->level && !log->ubuf) {
14325 		ret = -EFAULT;
14326 		goto err_release_maps;
14327 	}
14328 
14329 	if (ret)
14330 		goto err_release_maps;
14331 
14332 	if (env->used_map_cnt) {
14333 		/* if program passed verifier, update used_maps in bpf_prog_info */
14334 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14335 							  sizeof(env->used_maps[0]),
14336 							  GFP_KERNEL);
14337 
14338 		if (!env->prog->aux->used_maps) {
14339 			ret = -ENOMEM;
14340 			goto err_release_maps;
14341 		}
14342 
14343 		memcpy(env->prog->aux->used_maps, env->used_maps,
14344 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14345 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14346 	}
14347 	if (env->used_btf_cnt) {
14348 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14349 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14350 							  sizeof(env->used_btfs[0]),
14351 							  GFP_KERNEL);
14352 		if (!env->prog->aux->used_btfs) {
14353 			ret = -ENOMEM;
14354 			goto err_release_maps;
14355 		}
14356 
14357 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14358 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14359 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14360 	}
14361 	if (env->used_map_cnt || env->used_btf_cnt) {
14362 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14363 		 * bpf_ld_imm64 instructions
14364 		 */
14365 		convert_pseudo_ld_imm64(env);
14366 	}
14367 
14368 	adjust_btf_func(env);
14369 
14370 err_release_maps:
14371 	if (!env->prog->aux->used_maps)
14372 		/* if we didn't copy map pointers into bpf_prog_info, release
14373 		 * them now. Otherwise free_used_maps() will release them.
14374 		 */
14375 		release_maps(env);
14376 	if (!env->prog->aux->used_btfs)
14377 		release_btfs(env);
14378 
14379 	/* extension progs temporarily inherit the attach_type of their targets
14380 	   for verification purposes, so set it back to zero before returning
14381 	 */
14382 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14383 		env->prog->expected_attach_type = 0;
14384 
14385 	*prog = env->prog;
14386 err_unlock:
14387 	if (!is_priv)
14388 		mutex_unlock(&bpf_verifier_lock);
14389 	vfree(env->insn_aux_data);
14390 err_free_env:
14391 	kfree(env);
14392 	return ret;
14393 }
14394