xref: /linux/kernel/bpf/verifier.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84  * types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  */
144 
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 	/* verifer state is 'st'
148 	 * before processing instruction 'insn_idx'
149 	 * and after processing instruction 'prev_insn_idx'
150 	 */
151 	struct bpf_verifier_state st;
152 	int insn_idx;
153 	int prev_insn_idx;
154 	struct bpf_verifier_stack_elem *next;
155 };
156 
157 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 #define BPF_COMPLEXITY_LIMIT_STACK	1024
159 
160 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 
162 struct bpf_call_arg_meta {
163 	struct bpf_map *map_ptr;
164 	bool raw_mode;
165 	bool pkt_access;
166 	int regno;
167 	int access_size;
168 	s64 msize_smax_value;
169 	u64 msize_umax_value;
170 };
171 
172 static DEFINE_MUTEX(bpf_verifier_lock);
173 
174 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
175 		       va_list args)
176 {
177 	unsigned int n;
178 
179 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
180 
181 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
182 		  "verifier log line truncated - local buffer too short\n");
183 
184 	n = min(log->len_total - log->len_used - 1, n);
185 	log->kbuf[n] = '\0';
186 
187 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
188 		log->len_used += n;
189 	else
190 		log->ubuf = NULL;
191 }
192 
193 /* log_level controls verbosity level of eBPF verifier.
194  * bpf_verifier_log_write() is used to dump the verification trace to the log,
195  * so the user can figure out what's wrong with the program
196  */
197 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
198 					   const char *fmt, ...)
199 {
200 	va_list args;
201 
202 	if (!bpf_verifier_log_needed(&env->log))
203 		return;
204 
205 	va_start(args, fmt);
206 	bpf_verifier_vlog(&env->log, fmt, args);
207 	va_end(args);
208 }
209 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
210 
211 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
212 {
213 	struct bpf_verifier_env *env = private_data;
214 	va_list args;
215 
216 	if (!bpf_verifier_log_needed(&env->log))
217 		return;
218 
219 	va_start(args, fmt);
220 	bpf_verifier_vlog(&env->log, fmt, args);
221 	va_end(args);
222 }
223 
224 static bool type_is_pkt_pointer(enum bpf_reg_type type)
225 {
226 	return type == PTR_TO_PACKET ||
227 	       type == PTR_TO_PACKET_META;
228 }
229 
230 /* string representation of 'enum bpf_reg_type' */
231 static const char * const reg_type_str[] = {
232 	[NOT_INIT]		= "?",
233 	[SCALAR_VALUE]		= "inv",
234 	[PTR_TO_CTX]		= "ctx",
235 	[CONST_PTR_TO_MAP]	= "map_ptr",
236 	[PTR_TO_MAP_VALUE]	= "map_value",
237 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
238 	[PTR_TO_STACK]		= "fp",
239 	[PTR_TO_PACKET]		= "pkt",
240 	[PTR_TO_PACKET_META]	= "pkt_meta",
241 	[PTR_TO_PACKET_END]	= "pkt_end",
242 };
243 
244 static void print_liveness(struct bpf_verifier_env *env,
245 			   enum bpf_reg_liveness live)
246 {
247 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
248 	    verbose(env, "_");
249 	if (live & REG_LIVE_READ)
250 		verbose(env, "r");
251 	if (live & REG_LIVE_WRITTEN)
252 		verbose(env, "w");
253 }
254 
255 static struct bpf_func_state *func(struct bpf_verifier_env *env,
256 				   const struct bpf_reg_state *reg)
257 {
258 	struct bpf_verifier_state *cur = env->cur_state;
259 
260 	return cur->frame[reg->frameno];
261 }
262 
263 static void print_verifier_state(struct bpf_verifier_env *env,
264 				 const struct bpf_func_state *state)
265 {
266 	const struct bpf_reg_state *reg;
267 	enum bpf_reg_type t;
268 	int i;
269 
270 	if (state->frameno)
271 		verbose(env, " frame%d:", state->frameno);
272 	for (i = 0; i < MAX_BPF_REG; i++) {
273 		reg = &state->regs[i];
274 		t = reg->type;
275 		if (t == NOT_INIT)
276 			continue;
277 		verbose(env, " R%d", i);
278 		print_liveness(env, reg->live);
279 		verbose(env, "=%s", reg_type_str[t]);
280 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
281 		    tnum_is_const(reg->var_off)) {
282 			/* reg->off should be 0 for SCALAR_VALUE */
283 			verbose(env, "%lld", reg->var_off.value + reg->off);
284 			if (t == PTR_TO_STACK)
285 				verbose(env, ",call_%d", func(env, reg)->callsite);
286 		} else {
287 			verbose(env, "(id=%d", reg->id);
288 			if (t != SCALAR_VALUE)
289 				verbose(env, ",off=%d", reg->off);
290 			if (type_is_pkt_pointer(t))
291 				verbose(env, ",r=%d", reg->range);
292 			else if (t == CONST_PTR_TO_MAP ||
293 				 t == PTR_TO_MAP_VALUE ||
294 				 t == PTR_TO_MAP_VALUE_OR_NULL)
295 				verbose(env, ",ks=%d,vs=%d",
296 					reg->map_ptr->key_size,
297 					reg->map_ptr->value_size);
298 			if (tnum_is_const(reg->var_off)) {
299 				/* Typically an immediate SCALAR_VALUE, but
300 				 * could be a pointer whose offset is too big
301 				 * for reg->off
302 				 */
303 				verbose(env, ",imm=%llx", reg->var_off.value);
304 			} else {
305 				if (reg->smin_value != reg->umin_value &&
306 				    reg->smin_value != S64_MIN)
307 					verbose(env, ",smin_value=%lld",
308 						(long long)reg->smin_value);
309 				if (reg->smax_value != reg->umax_value &&
310 				    reg->smax_value != S64_MAX)
311 					verbose(env, ",smax_value=%lld",
312 						(long long)reg->smax_value);
313 				if (reg->umin_value != 0)
314 					verbose(env, ",umin_value=%llu",
315 						(unsigned long long)reg->umin_value);
316 				if (reg->umax_value != U64_MAX)
317 					verbose(env, ",umax_value=%llu",
318 						(unsigned long long)reg->umax_value);
319 				if (!tnum_is_unknown(reg->var_off)) {
320 					char tn_buf[48];
321 
322 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323 					verbose(env, ",var_off=%s", tn_buf);
324 				}
325 			}
326 			verbose(env, ")");
327 		}
328 	}
329 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
331 			verbose(env, " fp%d",
332 				(-i - 1) * BPF_REG_SIZE);
333 			print_liveness(env, state->stack[i].spilled_ptr.live);
334 			verbose(env, "=%s",
335 				reg_type_str[state->stack[i].spilled_ptr.type]);
336 		}
337 		if (state->stack[i].slot_type[0] == STACK_ZERO)
338 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339 	}
340 	verbose(env, "\n");
341 }
342 
343 static int copy_stack_state(struct bpf_func_state *dst,
344 			    const struct bpf_func_state *src)
345 {
346 	if (!src->stack)
347 		return 0;
348 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
349 		/* internal bug, make state invalid to reject the program */
350 		memset(dst, 0, sizeof(*dst));
351 		return -EFAULT;
352 	}
353 	memcpy(dst->stack, src->stack,
354 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
355 	return 0;
356 }
357 
358 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359  * make it consume minimal amount of memory. check_stack_write() access from
360  * the program calls into realloc_func_state() to grow the stack size.
361  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362  * which this function copies over. It points to previous bpf_verifier_state
363  * which is never reallocated
364  */
365 static int realloc_func_state(struct bpf_func_state *state, int size,
366 			      bool copy_old)
367 {
368 	u32 old_size = state->allocated_stack;
369 	struct bpf_stack_state *new_stack;
370 	int slot = size / BPF_REG_SIZE;
371 
372 	if (size <= old_size || !size) {
373 		if (copy_old)
374 			return 0;
375 		state->allocated_stack = slot * BPF_REG_SIZE;
376 		if (!size && old_size) {
377 			kfree(state->stack);
378 			state->stack = NULL;
379 		}
380 		return 0;
381 	}
382 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
383 				  GFP_KERNEL);
384 	if (!new_stack)
385 		return -ENOMEM;
386 	if (copy_old) {
387 		if (state->stack)
388 			memcpy(new_stack, state->stack,
389 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
390 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
391 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
392 	}
393 	state->allocated_stack = slot * BPF_REG_SIZE;
394 	kfree(state->stack);
395 	state->stack = new_stack;
396 	return 0;
397 }
398 
399 static void free_func_state(struct bpf_func_state *state)
400 {
401 	if (!state)
402 		return;
403 	kfree(state->stack);
404 	kfree(state);
405 }
406 
407 static void free_verifier_state(struct bpf_verifier_state *state,
408 				bool free_self)
409 {
410 	int i;
411 
412 	for (i = 0; i <= state->curframe; i++) {
413 		free_func_state(state->frame[i]);
414 		state->frame[i] = NULL;
415 	}
416 	if (free_self)
417 		kfree(state);
418 }
419 
420 /* copy verifier state from src to dst growing dst stack space
421  * when necessary to accommodate larger src stack
422  */
423 static int copy_func_state(struct bpf_func_state *dst,
424 			   const struct bpf_func_state *src)
425 {
426 	int err;
427 
428 	err = realloc_func_state(dst, src->allocated_stack, false);
429 	if (err)
430 		return err;
431 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 	return copy_stack_state(dst, src);
433 }
434 
435 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
436 			       const struct bpf_verifier_state *src)
437 {
438 	struct bpf_func_state *dst;
439 	int i, err;
440 
441 	/* if dst has more stack frames then src frame, free them */
442 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
443 		free_func_state(dst_state->frame[i]);
444 		dst_state->frame[i] = NULL;
445 	}
446 	dst_state->curframe = src->curframe;
447 	dst_state->parent = src->parent;
448 	for (i = 0; i <= src->curframe; i++) {
449 		dst = dst_state->frame[i];
450 		if (!dst) {
451 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
452 			if (!dst)
453 				return -ENOMEM;
454 			dst_state->frame[i] = dst;
455 		}
456 		err = copy_func_state(dst, src->frame[i]);
457 		if (err)
458 			return err;
459 	}
460 	return 0;
461 }
462 
463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
464 		     int *insn_idx)
465 {
466 	struct bpf_verifier_state *cur = env->cur_state;
467 	struct bpf_verifier_stack_elem *elem, *head = env->head;
468 	int err;
469 
470 	if (env->head == NULL)
471 		return -ENOENT;
472 
473 	if (cur) {
474 		err = copy_verifier_state(cur, &head->st);
475 		if (err)
476 			return err;
477 	}
478 	if (insn_idx)
479 		*insn_idx = head->insn_idx;
480 	if (prev_insn_idx)
481 		*prev_insn_idx = head->prev_insn_idx;
482 	elem = head->next;
483 	free_verifier_state(&head->st, false);
484 	kfree(head);
485 	env->head = elem;
486 	env->stack_size--;
487 	return 0;
488 }
489 
490 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
491 					     int insn_idx, int prev_insn_idx)
492 {
493 	struct bpf_verifier_state *cur = env->cur_state;
494 	struct bpf_verifier_stack_elem *elem;
495 	int err;
496 
497 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 	if (!elem)
499 		goto err;
500 
501 	elem->insn_idx = insn_idx;
502 	elem->prev_insn_idx = prev_insn_idx;
503 	elem->next = env->head;
504 	env->head = elem;
505 	env->stack_size++;
506 	err = copy_verifier_state(&elem->st, cur);
507 	if (err)
508 		goto err;
509 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510 		verbose(env, "BPF program is too complex\n");
511 		goto err;
512 	}
513 	return &elem->st;
514 err:
515 	free_verifier_state(env->cur_state, true);
516 	env->cur_state = NULL;
517 	/* pop all elements and return */
518 	while (!pop_stack(env, NULL, NULL));
519 	return NULL;
520 }
521 
522 #define CALLER_SAVED_REGS 6
523 static const int caller_saved[CALLER_SAVED_REGS] = {
524 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
525 };
526 
527 static void __mark_reg_not_init(struct bpf_reg_state *reg);
528 
529 /* Mark the unknown part of a register (variable offset or scalar value) as
530  * known to have the value @imm.
531  */
532 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
533 {
534 	reg->id = 0;
535 	reg->var_off = tnum_const(imm);
536 	reg->smin_value = (s64)imm;
537 	reg->smax_value = (s64)imm;
538 	reg->umin_value = imm;
539 	reg->umax_value = imm;
540 }
541 
542 /* Mark the 'variable offset' part of a register as zero.  This should be
543  * used only on registers holding a pointer type.
544  */
545 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546 {
547 	__mark_reg_known(reg, 0);
548 }
549 
550 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
551 {
552 	__mark_reg_known(reg, 0);
553 	reg->off = 0;
554 	reg->type = SCALAR_VALUE;
555 }
556 
557 static void mark_reg_known_zero(struct bpf_verifier_env *env,
558 				struct bpf_reg_state *regs, u32 regno)
559 {
560 	if (WARN_ON(regno >= MAX_BPF_REG)) {
561 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 		/* Something bad happened, let's kill all regs */
563 		for (regno = 0; regno < MAX_BPF_REG; regno++)
564 			__mark_reg_not_init(regs + regno);
565 		return;
566 	}
567 	__mark_reg_known_zero(regs + regno);
568 }
569 
570 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
571 {
572 	return type_is_pkt_pointer(reg->type);
573 }
574 
575 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
576 {
577 	return reg_is_pkt_pointer(reg) ||
578 	       reg->type == PTR_TO_PACKET_END;
579 }
580 
581 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
583 				    enum bpf_reg_type which)
584 {
585 	/* The register can already have a range from prior markings.
586 	 * This is fine as long as it hasn't been advanced from its
587 	 * origin.
588 	 */
589 	return reg->type == which &&
590 	       reg->id == 0 &&
591 	       reg->off == 0 &&
592 	       tnum_equals_const(reg->var_off, 0);
593 }
594 
595 /* Attempts to improve min/max values based on var_off information */
596 static void __update_reg_bounds(struct bpf_reg_state *reg)
597 {
598 	/* min signed is max(sign bit) | min(other bits) */
599 	reg->smin_value = max_t(s64, reg->smin_value,
600 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
601 	/* max signed is min(sign bit) | max(other bits) */
602 	reg->smax_value = min_t(s64, reg->smax_value,
603 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
604 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
605 	reg->umax_value = min(reg->umax_value,
606 			      reg->var_off.value | reg->var_off.mask);
607 }
608 
609 /* Uses signed min/max values to inform unsigned, and vice-versa */
610 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
611 {
612 	/* Learn sign from signed bounds.
613 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 	 * are the same, so combine.  This works even in the negative case, e.g.
615 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
616 	 */
617 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
618 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
619 							  reg->umin_value);
620 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
621 							  reg->umax_value);
622 		return;
623 	}
624 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
625 	 * boundary, so we must be careful.
626 	 */
627 	if ((s64)reg->umax_value >= 0) {
628 		/* Positive.  We can't learn anything from the smin, but smax
629 		 * is positive, hence safe.
630 		 */
631 		reg->smin_value = reg->umin_value;
632 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
633 							  reg->umax_value);
634 	} else if ((s64)reg->umin_value < 0) {
635 		/* Negative.  We can't learn anything from the smax, but smin
636 		 * is negative, hence safe.
637 		 */
638 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
639 							  reg->umin_value);
640 		reg->smax_value = reg->umax_value;
641 	}
642 }
643 
644 /* Attempts to improve var_off based on unsigned min/max information */
645 static void __reg_bound_offset(struct bpf_reg_state *reg)
646 {
647 	reg->var_off = tnum_intersect(reg->var_off,
648 				      tnum_range(reg->umin_value,
649 						 reg->umax_value));
650 }
651 
652 /* Reset the min/max bounds of a register */
653 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
654 {
655 	reg->smin_value = S64_MIN;
656 	reg->smax_value = S64_MAX;
657 	reg->umin_value = 0;
658 	reg->umax_value = U64_MAX;
659 }
660 
661 /* Mark a register as having a completely unknown (scalar) value. */
662 static void __mark_reg_unknown(struct bpf_reg_state *reg)
663 {
664 	reg->type = SCALAR_VALUE;
665 	reg->id = 0;
666 	reg->off = 0;
667 	reg->var_off = tnum_unknown;
668 	reg->frameno = 0;
669 	__mark_reg_unbounded(reg);
670 }
671 
672 static void mark_reg_unknown(struct bpf_verifier_env *env,
673 			     struct bpf_reg_state *regs, u32 regno)
674 {
675 	if (WARN_ON(regno >= MAX_BPF_REG)) {
676 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 		/* Something bad happened, let's kill all regs except FP */
678 		for (regno = 0; regno < BPF_REG_FP; regno++)
679 			__mark_reg_not_init(regs + regno);
680 		return;
681 	}
682 	__mark_reg_unknown(regs + regno);
683 }
684 
685 static void __mark_reg_not_init(struct bpf_reg_state *reg)
686 {
687 	__mark_reg_unknown(reg);
688 	reg->type = NOT_INIT;
689 }
690 
691 static void mark_reg_not_init(struct bpf_verifier_env *env,
692 			      struct bpf_reg_state *regs, u32 regno)
693 {
694 	if (WARN_ON(regno >= MAX_BPF_REG)) {
695 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 		/* Something bad happened, let's kill all regs except FP */
697 		for (regno = 0; regno < BPF_REG_FP; regno++)
698 			__mark_reg_not_init(regs + regno);
699 		return;
700 	}
701 	__mark_reg_not_init(regs + regno);
702 }
703 
704 static void init_reg_state(struct bpf_verifier_env *env,
705 			   struct bpf_func_state *state)
706 {
707 	struct bpf_reg_state *regs = state->regs;
708 	int i;
709 
710 	for (i = 0; i < MAX_BPF_REG; i++) {
711 		mark_reg_not_init(env, regs, i);
712 		regs[i].live = REG_LIVE_NONE;
713 	}
714 
715 	/* frame pointer */
716 	regs[BPF_REG_FP].type = PTR_TO_STACK;
717 	mark_reg_known_zero(env, regs, BPF_REG_FP);
718 	regs[BPF_REG_FP].frameno = state->frameno;
719 
720 	/* 1st arg to a function */
721 	regs[BPF_REG_1].type = PTR_TO_CTX;
722 	mark_reg_known_zero(env, regs, BPF_REG_1);
723 }
724 
725 #define BPF_MAIN_FUNC (-1)
726 static void init_func_state(struct bpf_verifier_env *env,
727 			    struct bpf_func_state *state,
728 			    int callsite, int frameno, int subprogno)
729 {
730 	state->callsite = callsite;
731 	state->frameno = frameno;
732 	state->subprogno = subprogno;
733 	init_reg_state(env, state);
734 }
735 
736 enum reg_arg_type {
737 	SRC_OP,		/* register is used as source operand */
738 	DST_OP,		/* register is used as destination operand */
739 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
740 };
741 
742 static int cmp_subprogs(const void *a, const void *b)
743 {
744 	return ((struct bpf_subprog_info *)a)->start -
745 	       ((struct bpf_subprog_info *)b)->start;
746 }
747 
748 static int find_subprog(struct bpf_verifier_env *env, int off)
749 {
750 	struct bpf_subprog_info *p;
751 
752 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
753 		    sizeof(env->subprog_info[0]), cmp_subprogs);
754 	if (!p)
755 		return -ENOENT;
756 	return p - env->subprog_info;
757 
758 }
759 
760 static int add_subprog(struct bpf_verifier_env *env, int off)
761 {
762 	int insn_cnt = env->prog->len;
763 	int ret;
764 
765 	if (off >= insn_cnt || off < 0) {
766 		verbose(env, "call to invalid destination\n");
767 		return -EINVAL;
768 	}
769 	ret = find_subprog(env, off);
770 	if (ret >= 0)
771 		return 0;
772 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
773 		verbose(env, "too many subprograms\n");
774 		return -E2BIG;
775 	}
776 	env->subprog_info[env->subprog_cnt++].start = off;
777 	sort(env->subprog_info, env->subprog_cnt,
778 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
779 	return 0;
780 }
781 
782 static int check_subprogs(struct bpf_verifier_env *env)
783 {
784 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
785 	struct bpf_subprog_info *subprog = env->subprog_info;
786 	struct bpf_insn *insn = env->prog->insnsi;
787 	int insn_cnt = env->prog->len;
788 
789 	/* Add entry function. */
790 	ret = add_subprog(env, 0);
791 	if (ret < 0)
792 		return ret;
793 
794 	/* determine subprog starts. The end is one before the next starts */
795 	for (i = 0; i < insn_cnt; i++) {
796 		if (insn[i].code != (BPF_JMP | BPF_CALL))
797 			continue;
798 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
799 			continue;
800 		if (!env->allow_ptr_leaks) {
801 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
802 			return -EPERM;
803 		}
804 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
805 			verbose(env, "function calls in offloaded programs are not supported yet\n");
806 			return -EINVAL;
807 		}
808 		ret = add_subprog(env, i + insn[i].imm + 1);
809 		if (ret < 0)
810 			return ret;
811 	}
812 
813 	/* Add a fake 'exit' subprog which could simplify subprog iteration
814 	 * logic. 'subprog_cnt' should not be increased.
815 	 */
816 	subprog[env->subprog_cnt].start = insn_cnt;
817 
818 	if (env->log.level > 1)
819 		for (i = 0; i < env->subprog_cnt; i++)
820 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
821 
822 	/* now check that all jumps are within the same subprog */
823 	subprog_start = subprog[cur_subprog].start;
824 	subprog_end = subprog[cur_subprog + 1].start;
825 	for (i = 0; i < insn_cnt; i++) {
826 		u8 code = insn[i].code;
827 
828 		if (BPF_CLASS(code) != BPF_JMP)
829 			goto next;
830 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
831 			goto next;
832 		off = i + insn[i].off + 1;
833 		if (off < subprog_start || off >= subprog_end) {
834 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
835 			return -EINVAL;
836 		}
837 next:
838 		if (i == subprog_end - 1) {
839 			/* to avoid fall-through from one subprog into another
840 			 * the last insn of the subprog should be either exit
841 			 * or unconditional jump back
842 			 */
843 			if (code != (BPF_JMP | BPF_EXIT) &&
844 			    code != (BPF_JMP | BPF_JA)) {
845 				verbose(env, "last insn is not an exit or jmp\n");
846 				return -EINVAL;
847 			}
848 			subprog_start = subprog_end;
849 			cur_subprog++;
850 			if (cur_subprog < env->subprog_cnt)
851 				subprog_end = subprog[cur_subprog + 1].start;
852 		}
853 	}
854 	return 0;
855 }
856 
857 static
858 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
859 				       const struct bpf_verifier_state *state,
860 				       struct bpf_verifier_state *parent,
861 				       u32 regno)
862 {
863 	struct bpf_verifier_state *tmp = NULL;
864 
865 	/* 'parent' could be a state of caller and
866 	 * 'state' could be a state of callee. In such case
867 	 * parent->curframe < state->curframe
868 	 * and it's ok for r1 - r5 registers
869 	 *
870 	 * 'parent' could be a callee's state after it bpf_exit-ed.
871 	 * In such case parent->curframe > state->curframe
872 	 * and it's ok for r0 only
873 	 */
874 	if (parent->curframe == state->curframe ||
875 	    (parent->curframe < state->curframe &&
876 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
877 	    (parent->curframe > state->curframe &&
878 	       regno == BPF_REG_0))
879 		return parent;
880 
881 	if (parent->curframe > state->curframe &&
882 	    regno >= BPF_REG_6) {
883 		/* for callee saved regs we have to skip the whole chain
884 		 * of states that belong to callee and mark as LIVE_READ
885 		 * the registers before the call
886 		 */
887 		tmp = parent;
888 		while (tmp && tmp->curframe != state->curframe) {
889 			tmp = tmp->parent;
890 		}
891 		if (!tmp)
892 			goto bug;
893 		parent = tmp;
894 	} else {
895 		goto bug;
896 	}
897 	return parent;
898 bug:
899 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
900 	verbose(env, "regno %d parent frame %d current frame %d\n",
901 		regno, parent->curframe, state->curframe);
902 	return NULL;
903 }
904 
905 static int mark_reg_read(struct bpf_verifier_env *env,
906 			 const struct bpf_verifier_state *state,
907 			 struct bpf_verifier_state *parent,
908 			 u32 regno)
909 {
910 	bool writes = parent == state->parent; /* Observe write marks */
911 
912 	if (regno == BPF_REG_FP)
913 		/* We don't need to worry about FP liveness because it's read-only */
914 		return 0;
915 
916 	while (parent) {
917 		/* if read wasn't screened by an earlier write ... */
918 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
919 			break;
920 		parent = skip_callee(env, state, parent, regno);
921 		if (!parent)
922 			return -EFAULT;
923 		/* ... then we depend on parent's value */
924 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
925 		state = parent;
926 		parent = state->parent;
927 		writes = true;
928 	}
929 	return 0;
930 }
931 
932 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
933 			 enum reg_arg_type t)
934 {
935 	struct bpf_verifier_state *vstate = env->cur_state;
936 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
937 	struct bpf_reg_state *regs = state->regs;
938 
939 	if (regno >= MAX_BPF_REG) {
940 		verbose(env, "R%d is invalid\n", regno);
941 		return -EINVAL;
942 	}
943 
944 	if (t == SRC_OP) {
945 		/* check whether register used as source operand can be read */
946 		if (regs[regno].type == NOT_INIT) {
947 			verbose(env, "R%d !read_ok\n", regno);
948 			return -EACCES;
949 		}
950 		return mark_reg_read(env, vstate, vstate->parent, regno);
951 	} else {
952 		/* check whether register used as dest operand can be written to */
953 		if (regno == BPF_REG_FP) {
954 			verbose(env, "frame pointer is read only\n");
955 			return -EACCES;
956 		}
957 		regs[regno].live |= REG_LIVE_WRITTEN;
958 		if (t == DST_OP)
959 			mark_reg_unknown(env, regs, regno);
960 	}
961 	return 0;
962 }
963 
964 static bool is_spillable_regtype(enum bpf_reg_type type)
965 {
966 	switch (type) {
967 	case PTR_TO_MAP_VALUE:
968 	case PTR_TO_MAP_VALUE_OR_NULL:
969 	case PTR_TO_STACK:
970 	case PTR_TO_CTX:
971 	case PTR_TO_PACKET:
972 	case PTR_TO_PACKET_META:
973 	case PTR_TO_PACKET_END:
974 	case CONST_PTR_TO_MAP:
975 		return true;
976 	default:
977 		return false;
978 	}
979 }
980 
981 /* Does this register contain a constant zero? */
982 static bool register_is_null(struct bpf_reg_state *reg)
983 {
984 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
985 }
986 
987 /* check_stack_read/write functions track spill/fill of registers,
988  * stack boundary and alignment are checked in check_mem_access()
989  */
990 static int check_stack_write(struct bpf_verifier_env *env,
991 			     struct bpf_func_state *state, /* func where register points to */
992 			     int off, int size, int value_regno)
993 {
994 	struct bpf_func_state *cur; /* state of the current function */
995 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
996 	enum bpf_reg_type type;
997 
998 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
999 				 true);
1000 	if (err)
1001 		return err;
1002 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 	 * so it's aligned access and [off, off + size) are within stack limits
1004 	 */
1005 	if (!env->allow_ptr_leaks &&
1006 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1007 	    size != BPF_REG_SIZE) {
1008 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1009 		return -EACCES;
1010 	}
1011 
1012 	cur = env->cur_state->frame[env->cur_state->curframe];
1013 	if (value_regno >= 0 &&
1014 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1015 
1016 		/* register containing pointer is being spilled into stack */
1017 		if (size != BPF_REG_SIZE) {
1018 			verbose(env, "invalid size of register spill\n");
1019 			return -EACCES;
1020 		}
1021 
1022 		if (state != cur && type == PTR_TO_STACK) {
1023 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1024 			return -EINVAL;
1025 		}
1026 
1027 		/* save register state */
1028 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1029 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030 
1031 		for (i = 0; i < BPF_REG_SIZE; i++)
1032 			state->stack[spi].slot_type[i] = STACK_SPILL;
1033 	} else {
1034 		u8 type = STACK_MISC;
1035 
1036 		/* regular write of data into stack */
1037 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1038 
1039 		/* only mark the slot as written if all 8 bytes were written
1040 		 * otherwise read propagation may incorrectly stop too soon
1041 		 * when stack slots are partially written.
1042 		 * This heuristic means that read propagation will be
1043 		 * conservative, since it will add reg_live_read marks
1044 		 * to stack slots all the way to first state when programs
1045 		 * writes+reads less than 8 bytes
1046 		 */
1047 		if (size == BPF_REG_SIZE)
1048 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1049 
1050 		/* when we zero initialize stack slots mark them as such */
1051 		if (value_regno >= 0 &&
1052 		    register_is_null(&cur->regs[value_regno]))
1053 			type = STACK_ZERO;
1054 
1055 		for (i = 0; i < size; i++)
1056 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1057 				type;
1058 	}
1059 	return 0;
1060 }
1061 
1062 /* registers of every function are unique and mark_reg_read() propagates
1063  * the liveness in the following cases:
1064  * - from callee into caller for R1 - R5 that were used as arguments
1065  * - from caller into callee for R0 that used as result of the call
1066  * - from caller to the same caller skipping states of the callee for R6 - R9,
1067  *   since R6 - R9 are callee saved by implicit function prologue and
1068  *   caller's R6 != callee's R6, so when we propagate liveness up to
1069  *   parent states we need to skip callee states for R6 - R9.
1070  *
1071  * stack slot marking is different, since stacks of caller and callee are
1072  * accessible in both (since caller can pass a pointer to caller's stack to
1073  * callee which can pass it to another function), hence mark_stack_slot_read()
1074  * has to propagate the stack liveness to all parent states at given frame number.
1075  * Consider code:
1076  * f1() {
1077  *   ptr = fp - 8;
1078  *   *ptr = ctx;
1079  *   call f2 {
1080  *      .. = *ptr;
1081  *   }
1082  *   .. = *ptr;
1083  * }
1084  * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085  * to mark liveness at the f1's frame and not f2's frame.
1086  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087  * to propagate liveness to f2 states at f1's frame level and further into
1088  * f1 states at f1's frame level until write into that stack slot
1089  */
1090 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1091 				 const struct bpf_verifier_state *state,
1092 				 struct bpf_verifier_state *parent,
1093 				 int slot, int frameno)
1094 {
1095 	bool writes = parent == state->parent; /* Observe write marks */
1096 
1097 	while (parent) {
1098 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1099 			/* since LIVE_WRITTEN mark is only done for full 8-byte
1100 			 * write the read marks are conservative and parent
1101 			 * state may not even have the stack allocated. In such case
1102 			 * end the propagation, since the loop reached beginning
1103 			 * of the function
1104 			 */
1105 			break;
1106 		/* if read wasn't screened by an earlier write ... */
1107 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1108 			break;
1109 		/* ... then we depend on parent's value */
1110 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1111 		state = parent;
1112 		parent = state->parent;
1113 		writes = true;
1114 	}
1115 }
1116 
1117 static int check_stack_read(struct bpf_verifier_env *env,
1118 			    struct bpf_func_state *reg_state /* func where register points to */,
1119 			    int off, int size, int value_regno)
1120 {
1121 	struct bpf_verifier_state *vstate = env->cur_state;
1122 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1123 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1124 	u8 *stype;
1125 
1126 	if (reg_state->allocated_stack <= slot) {
1127 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1128 			off, size);
1129 		return -EACCES;
1130 	}
1131 	stype = reg_state->stack[spi].slot_type;
1132 
1133 	if (stype[0] == STACK_SPILL) {
1134 		if (size != BPF_REG_SIZE) {
1135 			verbose(env, "invalid size of register spill\n");
1136 			return -EACCES;
1137 		}
1138 		for (i = 1; i < BPF_REG_SIZE; i++) {
1139 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1140 				verbose(env, "corrupted spill memory\n");
1141 				return -EACCES;
1142 			}
1143 		}
1144 
1145 		if (value_regno >= 0) {
1146 			/* restore register state from stack */
1147 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1148 			/* mark reg as written since spilled pointer state likely
1149 			 * has its liveness marks cleared by is_state_visited()
1150 			 * which resets stack/reg liveness for state transitions
1151 			 */
1152 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1153 		}
1154 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1155 				     reg_state->frameno);
1156 		return 0;
1157 	} else {
1158 		int zeros = 0;
1159 
1160 		for (i = 0; i < size; i++) {
1161 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1162 				continue;
1163 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1164 				zeros++;
1165 				continue;
1166 			}
1167 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1168 				off, i, size);
1169 			return -EACCES;
1170 		}
1171 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1172 				     reg_state->frameno);
1173 		if (value_regno >= 0) {
1174 			if (zeros == size) {
1175 				/* any size read into register is zero extended,
1176 				 * so the whole register == const_zero
1177 				 */
1178 				__mark_reg_const_zero(&state->regs[value_regno]);
1179 			} else {
1180 				/* have read misc data from the stack */
1181 				mark_reg_unknown(env, state->regs, value_regno);
1182 			}
1183 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1184 		}
1185 		return 0;
1186 	}
1187 }
1188 
1189 /* check read/write into map element returned by bpf_map_lookup_elem() */
1190 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1191 			      int size, bool zero_size_allowed)
1192 {
1193 	struct bpf_reg_state *regs = cur_regs(env);
1194 	struct bpf_map *map = regs[regno].map_ptr;
1195 
1196 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1197 	    off + size > map->value_size) {
1198 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 			map->value_size, off, size);
1200 		return -EACCES;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /* check read/write into a map element with possible variable offset */
1206 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1207 			    int off, int size, bool zero_size_allowed)
1208 {
1209 	struct bpf_verifier_state *vstate = env->cur_state;
1210 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1211 	struct bpf_reg_state *reg = &state->regs[regno];
1212 	int err;
1213 
1214 	/* We may have adjusted the register to this map value, so we
1215 	 * need to try adding each of min_value and max_value to off
1216 	 * to make sure our theoretical access will be safe.
1217 	 */
1218 	if (env->log.level)
1219 		print_verifier_state(env, state);
1220 	/* The minimum value is only important with signed
1221 	 * comparisons where we can't assume the floor of a
1222 	 * value is 0.  If we are using signed variables for our
1223 	 * index'es we need to make sure that whatever we use
1224 	 * will have a set floor within our range.
1225 	 */
1226 	if (reg->smin_value < 0) {
1227 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1228 			regno);
1229 		return -EACCES;
1230 	}
1231 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1232 				 zero_size_allowed);
1233 	if (err) {
1234 		verbose(env, "R%d min value is outside of the array range\n",
1235 			regno);
1236 		return err;
1237 	}
1238 
1239 	/* If we haven't set a max value then we need to bail since we can't be
1240 	 * sure we won't do bad things.
1241 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1242 	 */
1243 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1244 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1245 			regno);
1246 		return -EACCES;
1247 	}
1248 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1249 				 zero_size_allowed);
1250 	if (err)
1251 		verbose(env, "R%d max value is outside of the array range\n",
1252 			regno);
1253 	return err;
1254 }
1255 
1256 #define MAX_PACKET_OFF 0xffff
1257 
1258 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1259 				       const struct bpf_call_arg_meta *meta,
1260 				       enum bpf_access_type t)
1261 {
1262 	switch (env->prog->type) {
1263 	case BPF_PROG_TYPE_LWT_IN:
1264 	case BPF_PROG_TYPE_LWT_OUT:
1265 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1266 		/* dst_input() and dst_output() can't write for now */
1267 		if (t == BPF_WRITE)
1268 			return false;
1269 		/* fallthrough */
1270 	case BPF_PROG_TYPE_SCHED_CLS:
1271 	case BPF_PROG_TYPE_SCHED_ACT:
1272 	case BPF_PROG_TYPE_XDP:
1273 	case BPF_PROG_TYPE_LWT_XMIT:
1274 	case BPF_PROG_TYPE_SK_SKB:
1275 	case BPF_PROG_TYPE_SK_MSG:
1276 		if (meta)
1277 			return meta->pkt_access;
1278 
1279 		env->seen_direct_write = true;
1280 		return true;
1281 	default:
1282 		return false;
1283 	}
1284 }
1285 
1286 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1287 				 int off, int size, bool zero_size_allowed)
1288 {
1289 	struct bpf_reg_state *regs = cur_regs(env);
1290 	struct bpf_reg_state *reg = &regs[regno];
1291 
1292 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1293 	    (u64)off + size > reg->range) {
1294 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1295 			off, size, regno, reg->id, reg->off, reg->range);
1296 		return -EACCES;
1297 	}
1298 	return 0;
1299 }
1300 
1301 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1302 			       int size, bool zero_size_allowed)
1303 {
1304 	struct bpf_reg_state *regs = cur_regs(env);
1305 	struct bpf_reg_state *reg = &regs[regno];
1306 	int err;
1307 
1308 	/* We may have added a variable offset to the packet pointer; but any
1309 	 * reg->range we have comes after that.  We are only checking the fixed
1310 	 * offset.
1311 	 */
1312 
1313 	/* We don't allow negative numbers, because we aren't tracking enough
1314 	 * detail to prove they're safe.
1315 	 */
1316 	if (reg->smin_value < 0) {
1317 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1318 			regno);
1319 		return -EACCES;
1320 	}
1321 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1322 	if (err) {
1323 		verbose(env, "R%d offset is outside of the packet\n", regno);
1324 		return err;
1325 	}
1326 	return err;
1327 }
1328 
1329 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1330 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1331 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1332 {
1333 	struct bpf_insn_access_aux info = {
1334 		.reg_type = *reg_type,
1335 	};
1336 
1337 	if (env->ops->is_valid_access &&
1338 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1339 		/* A non zero info.ctx_field_size indicates that this field is a
1340 		 * candidate for later verifier transformation to load the whole
1341 		 * field and then apply a mask when accessed with a narrower
1342 		 * access than actual ctx access size. A zero info.ctx_field_size
1343 		 * will only allow for whole field access and rejects any other
1344 		 * type of narrower access.
1345 		 */
1346 		*reg_type = info.reg_type;
1347 
1348 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1349 		/* remember the offset of last byte accessed in ctx */
1350 		if (env->prog->aux->max_ctx_offset < off + size)
1351 			env->prog->aux->max_ctx_offset = off + size;
1352 		return 0;
1353 	}
1354 
1355 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1356 	return -EACCES;
1357 }
1358 
1359 static bool __is_pointer_value(bool allow_ptr_leaks,
1360 			       const struct bpf_reg_state *reg)
1361 {
1362 	if (allow_ptr_leaks)
1363 		return false;
1364 
1365 	return reg->type != SCALAR_VALUE;
1366 }
1367 
1368 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1369 {
1370 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1371 }
1372 
1373 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1374 {
1375 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1376 
1377 	return reg->type == PTR_TO_CTX;
1378 }
1379 
1380 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1381 {
1382 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1383 
1384 	return type_is_pkt_pointer(reg->type);
1385 }
1386 
1387 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1388 				   const struct bpf_reg_state *reg,
1389 				   int off, int size, bool strict)
1390 {
1391 	struct tnum reg_off;
1392 	int ip_align;
1393 
1394 	/* Byte size accesses are always allowed. */
1395 	if (!strict || size == 1)
1396 		return 0;
1397 
1398 	/* For platforms that do not have a Kconfig enabling
1399 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1400 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1401 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1402 	 * to this code only in strict mode where we want to emulate
1403 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1404 	 * unconditional IP align value of '2'.
1405 	 */
1406 	ip_align = 2;
1407 
1408 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1409 	if (!tnum_is_aligned(reg_off, size)) {
1410 		char tn_buf[48];
1411 
1412 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1413 		verbose(env,
1414 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1415 			ip_align, tn_buf, reg->off, off, size);
1416 		return -EACCES;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1423 				       const struct bpf_reg_state *reg,
1424 				       const char *pointer_desc,
1425 				       int off, int size, bool strict)
1426 {
1427 	struct tnum reg_off;
1428 
1429 	/* Byte size accesses are always allowed. */
1430 	if (!strict || size == 1)
1431 		return 0;
1432 
1433 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1434 	if (!tnum_is_aligned(reg_off, size)) {
1435 		char tn_buf[48];
1436 
1437 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1438 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1439 			pointer_desc, tn_buf, reg->off, off, size);
1440 		return -EACCES;
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int check_ptr_alignment(struct bpf_verifier_env *env,
1447 			       const struct bpf_reg_state *reg, int off,
1448 			       int size, bool strict_alignment_once)
1449 {
1450 	bool strict = env->strict_alignment || strict_alignment_once;
1451 	const char *pointer_desc = "";
1452 
1453 	switch (reg->type) {
1454 	case PTR_TO_PACKET:
1455 	case PTR_TO_PACKET_META:
1456 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1457 		 * right in front, treat it the very same way.
1458 		 */
1459 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1460 	case PTR_TO_MAP_VALUE:
1461 		pointer_desc = "value ";
1462 		break;
1463 	case PTR_TO_CTX:
1464 		pointer_desc = "context ";
1465 		break;
1466 	case PTR_TO_STACK:
1467 		pointer_desc = "stack ";
1468 		/* The stack spill tracking logic in check_stack_write()
1469 		 * and check_stack_read() relies on stack accesses being
1470 		 * aligned.
1471 		 */
1472 		strict = true;
1473 		break;
1474 	default:
1475 		break;
1476 	}
1477 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1478 					   strict);
1479 }
1480 
1481 static int update_stack_depth(struct bpf_verifier_env *env,
1482 			      const struct bpf_func_state *func,
1483 			      int off)
1484 {
1485 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1486 
1487 	if (stack >= -off)
1488 		return 0;
1489 
1490 	/* update known max for given subprogram */
1491 	env->subprog_info[func->subprogno].stack_depth = -off;
1492 	return 0;
1493 }
1494 
1495 /* starting from main bpf function walk all instructions of the function
1496  * and recursively walk all callees that given function can call.
1497  * Ignore jump and exit insns.
1498  * Since recursion is prevented by check_cfg() this algorithm
1499  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1500  */
1501 static int check_max_stack_depth(struct bpf_verifier_env *env)
1502 {
1503 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1504 	struct bpf_subprog_info *subprog = env->subprog_info;
1505 	struct bpf_insn *insn = env->prog->insnsi;
1506 	int ret_insn[MAX_CALL_FRAMES];
1507 	int ret_prog[MAX_CALL_FRAMES];
1508 
1509 process_func:
1510 	/* round up to 32-bytes, since this is granularity
1511 	 * of interpreter stack size
1512 	 */
1513 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1514 	if (depth > MAX_BPF_STACK) {
1515 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1516 			frame + 1, depth);
1517 		return -EACCES;
1518 	}
1519 continue_func:
1520 	subprog_end = subprog[idx + 1].start;
1521 	for (; i < subprog_end; i++) {
1522 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1523 			continue;
1524 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1525 			continue;
1526 		/* remember insn and function to return to */
1527 		ret_insn[frame] = i + 1;
1528 		ret_prog[frame] = idx;
1529 
1530 		/* find the callee */
1531 		i = i + insn[i].imm + 1;
1532 		idx = find_subprog(env, i);
1533 		if (idx < 0) {
1534 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1535 				  i);
1536 			return -EFAULT;
1537 		}
1538 		frame++;
1539 		if (frame >= MAX_CALL_FRAMES) {
1540 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1541 			return -EFAULT;
1542 		}
1543 		goto process_func;
1544 	}
1545 	/* end of for() loop means the last insn of the 'subprog'
1546 	 * was reached. Doesn't matter whether it was JA or EXIT
1547 	 */
1548 	if (frame == 0)
1549 		return 0;
1550 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1551 	frame--;
1552 	i = ret_insn[frame];
1553 	idx = ret_prog[frame];
1554 	goto continue_func;
1555 }
1556 
1557 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1558 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1559 				  const struct bpf_insn *insn, int idx)
1560 {
1561 	int start = idx + insn->imm + 1, subprog;
1562 
1563 	subprog = find_subprog(env, start);
1564 	if (subprog < 0) {
1565 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1566 			  start);
1567 		return -EFAULT;
1568 	}
1569 	return env->subprog_info[subprog].stack_depth;
1570 }
1571 #endif
1572 
1573 /* truncate register to smaller size (in bytes)
1574  * must be called with size < BPF_REG_SIZE
1575  */
1576 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1577 {
1578 	u64 mask;
1579 
1580 	/* clear high bits in bit representation */
1581 	reg->var_off = tnum_cast(reg->var_off, size);
1582 
1583 	/* fix arithmetic bounds */
1584 	mask = ((u64)1 << (size * 8)) - 1;
1585 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1586 		reg->umin_value &= mask;
1587 		reg->umax_value &= mask;
1588 	} else {
1589 		reg->umin_value = 0;
1590 		reg->umax_value = mask;
1591 	}
1592 	reg->smin_value = reg->umin_value;
1593 	reg->smax_value = reg->umax_value;
1594 }
1595 
1596 /* check whether memory at (regno + off) is accessible for t = (read | write)
1597  * if t==write, value_regno is a register which value is stored into memory
1598  * if t==read, value_regno is a register which will receive the value from memory
1599  * if t==write && value_regno==-1, some unknown value is stored into memory
1600  * if t==read && value_regno==-1, don't care what we read from memory
1601  */
1602 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1603 			    int off, int bpf_size, enum bpf_access_type t,
1604 			    int value_regno, bool strict_alignment_once)
1605 {
1606 	struct bpf_reg_state *regs = cur_regs(env);
1607 	struct bpf_reg_state *reg = regs + regno;
1608 	struct bpf_func_state *state;
1609 	int size, err = 0;
1610 
1611 	size = bpf_size_to_bytes(bpf_size);
1612 	if (size < 0)
1613 		return size;
1614 
1615 	/* alignment checks will add in reg->off themselves */
1616 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1617 	if (err)
1618 		return err;
1619 
1620 	/* for access checks, reg->off is just part of off */
1621 	off += reg->off;
1622 
1623 	if (reg->type == PTR_TO_MAP_VALUE) {
1624 		if (t == BPF_WRITE && value_regno >= 0 &&
1625 		    is_pointer_value(env, value_regno)) {
1626 			verbose(env, "R%d leaks addr into map\n", value_regno);
1627 			return -EACCES;
1628 		}
1629 
1630 		err = check_map_access(env, regno, off, size, false);
1631 		if (!err && t == BPF_READ && value_regno >= 0)
1632 			mark_reg_unknown(env, regs, value_regno);
1633 
1634 	} else if (reg->type == PTR_TO_CTX) {
1635 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1636 
1637 		if (t == BPF_WRITE && value_regno >= 0 &&
1638 		    is_pointer_value(env, value_regno)) {
1639 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1640 			return -EACCES;
1641 		}
1642 		/* ctx accesses must be at a fixed offset, so that we can
1643 		 * determine what type of data were returned.
1644 		 */
1645 		if (reg->off) {
1646 			verbose(env,
1647 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1648 				regno, reg->off, off - reg->off);
1649 			return -EACCES;
1650 		}
1651 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1652 			char tn_buf[48];
1653 
1654 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1655 			verbose(env,
1656 				"variable ctx access var_off=%s off=%d size=%d",
1657 				tn_buf, off, size);
1658 			return -EACCES;
1659 		}
1660 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1661 		if (!err && t == BPF_READ && value_regno >= 0) {
1662 			/* ctx access returns either a scalar, or a
1663 			 * PTR_TO_PACKET[_META,_END]. In the latter
1664 			 * case, we know the offset is zero.
1665 			 */
1666 			if (reg_type == SCALAR_VALUE)
1667 				mark_reg_unknown(env, regs, value_regno);
1668 			else
1669 				mark_reg_known_zero(env, regs,
1670 						    value_regno);
1671 			regs[value_regno].id = 0;
1672 			regs[value_regno].off = 0;
1673 			regs[value_regno].range = 0;
1674 			regs[value_regno].type = reg_type;
1675 		}
1676 
1677 	} else if (reg->type == PTR_TO_STACK) {
1678 		/* stack accesses must be at a fixed offset, so that we can
1679 		 * determine what type of data were returned.
1680 		 * See check_stack_read().
1681 		 */
1682 		if (!tnum_is_const(reg->var_off)) {
1683 			char tn_buf[48];
1684 
1685 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1686 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1687 				tn_buf, off, size);
1688 			return -EACCES;
1689 		}
1690 		off += reg->var_off.value;
1691 		if (off >= 0 || off < -MAX_BPF_STACK) {
1692 			verbose(env, "invalid stack off=%d size=%d\n", off,
1693 				size);
1694 			return -EACCES;
1695 		}
1696 
1697 		state = func(env, reg);
1698 		err = update_stack_depth(env, state, off);
1699 		if (err)
1700 			return err;
1701 
1702 		if (t == BPF_WRITE)
1703 			err = check_stack_write(env, state, off, size,
1704 						value_regno);
1705 		else
1706 			err = check_stack_read(env, state, off, size,
1707 					       value_regno);
1708 	} else if (reg_is_pkt_pointer(reg)) {
1709 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1710 			verbose(env, "cannot write into packet\n");
1711 			return -EACCES;
1712 		}
1713 		if (t == BPF_WRITE && value_regno >= 0 &&
1714 		    is_pointer_value(env, value_regno)) {
1715 			verbose(env, "R%d leaks addr into packet\n",
1716 				value_regno);
1717 			return -EACCES;
1718 		}
1719 		err = check_packet_access(env, regno, off, size, false);
1720 		if (!err && t == BPF_READ && value_regno >= 0)
1721 			mark_reg_unknown(env, regs, value_regno);
1722 	} else {
1723 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1724 			reg_type_str[reg->type]);
1725 		return -EACCES;
1726 	}
1727 
1728 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1729 	    regs[value_regno].type == SCALAR_VALUE) {
1730 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1731 		coerce_reg_to_size(&regs[value_regno], size);
1732 	}
1733 	return err;
1734 }
1735 
1736 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1737 {
1738 	int err;
1739 
1740 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1741 	    insn->imm != 0) {
1742 		verbose(env, "BPF_XADD uses reserved fields\n");
1743 		return -EINVAL;
1744 	}
1745 
1746 	/* check src1 operand */
1747 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1748 	if (err)
1749 		return err;
1750 
1751 	/* check src2 operand */
1752 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1753 	if (err)
1754 		return err;
1755 
1756 	if (is_pointer_value(env, insn->src_reg)) {
1757 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1758 		return -EACCES;
1759 	}
1760 
1761 	if (is_ctx_reg(env, insn->dst_reg) ||
1762 	    is_pkt_reg(env, insn->dst_reg)) {
1763 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1764 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1765 			"context" : "packet");
1766 		return -EACCES;
1767 	}
1768 
1769 	/* check whether atomic_add can read the memory */
1770 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1771 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1772 	if (err)
1773 		return err;
1774 
1775 	/* check whether atomic_add can write into the same memory */
1776 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1777 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1778 }
1779 
1780 /* when register 'regno' is passed into function that will read 'access_size'
1781  * bytes from that pointer, make sure that it's within stack boundary
1782  * and all elements of stack are initialized.
1783  * Unlike most pointer bounds-checking functions, this one doesn't take an
1784  * 'off' argument, so it has to add in reg->off itself.
1785  */
1786 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1787 				int access_size, bool zero_size_allowed,
1788 				struct bpf_call_arg_meta *meta)
1789 {
1790 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1791 	struct bpf_func_state *state = func(env, reg);
1792 	int off, i, slot, spi;
1793 
1794 	if (reg->type != PTR_TO_STACK) {
1795 		/* Allow zero-byte read from NULL, regardless of pointer type */
1796 		if (zero_size_allowed && access_size == 0 &&
1797 		    register_is_null(reg))
1798 			return 0;
1799 
1800 		verbose(env, "R%d type=%s expected=%s\n", regno,
1801 			reg_type_str[reg->type],
1802 			reg_type_str[PTR_TO_STACK]);
1803 		return -EACCES;
1804 	}
1805 
1806 	/* Only allow fixed-offset stack reads */
1807 	if (!tnum_is_const(reg->var_off)) {
1808 		char tn_buf[48];
1809 
1810 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1811 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1812 			regno, tn_buf);
1813 		return -EACCES;
1814 	}
1815 	off = reg->off + reg->var_off.value;
1816 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1817 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1818 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1819 			regno, off, access_size);
1820 		return -EACCES;
1821 	}
1822 
1823 	if (meta && meta->raw_mode) {
1824 		meta->access_size = access_size;
1825 		meta->regno = regno;
1826 		return 0;
1827 	}
1828 
1829 	for (i = 0; i < access_size; i++) {
1830 		u8 *stype;
1831 
1832 		slot = -(off + i) - 1;
1833 		spi = slot / BPF_REG_SIZE;
1834 		if (state->allocated_stack <= slot)
1835 			goto err;
1836 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1837 		if (*stype == STACK_MISC)
1838 			goto mark;
1839 		if (*stype == STACK_ZERO) {
1840 			/* helper can write anything into the stack */
1841 			*stype = STACK_MISC;
1842 			goto mark;
1843 		}
1844 err:
1845 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1846 			off, i, access_size);
1847 		return -EACCES;
1848 mark:
1849 		/* reading any byte out of 8-byte 'spill_slot' will cause
1850 		 * the whole slot to be marked as 'read'
1851 		 */
1852 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1853 				     spi, state->frameno);
1854 	}
1855 	return update_stack_depth(env, state, off);
1856 }
1857 
1858 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1859 				   int access_size, bool zero_size_allowed,
1860 				   struct bpf_call_arg_meta *meta)
1861 {
1862 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1863 
1864 	switch (reg->type) {
1865 	case PTR_TO_PACKET:
1866 	case PTR_TO_PACKET_META:
1867 		return check_packet_access(env, regno, reg->off, access_size,
1868 					   zero_size_allowed);
1869 	case PTR_TO_MAP_VALUE:
1870 		return check_map_access(env, regno, reg->off, access_size,
1871 					zero_size_allowed);
1872 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1873 		return check_stack_boundary(env, regno, access_size,
1874 					    zero_size_allowed, meta);
1875 	}
1876 }
1877 
1878 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1879 {
1880 	return type == ARG_PTR_TO_MEM ||
1881 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1882 	       type == ARG_PTR_TO_UNINIT_MEM;
1883 }
1884 
1885 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1886 {
1887 	return type == ARG_CONST_SIZE ||
1888 	       type == ARG_CONST_SIZE_OR_ZERO;
1889 }
1890 
1891 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1892 			  enum bpf_arg_type arg_type,
1893 			  struct bpf_call_arg_meta *meta)
1894 {
1895 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1896 	enum bpf_reg_type expected_type, type = reg->type;
1897 	int err = 0;
1898 
1899 	if (arg_type == ARG_DONTCARE)
1900 		return 0;
1901 
1902 	err = check_reg_arg(env, regno, SRC_OP);
1903 	if (err)
1904 		return err;
1905 
1906 	if (arg_type == ARG_ANYTHING) {
1907 		if (is_pointer_value(env, regno)) {
1908 			verbose(env, "R%d leaks addr into helper function\n",
1909 				regno);
1910 			return -EACCES;
1911 		}
1912 		return 0;
1913 	}
1914 
1915 	if (type_is_pkt_pointer(type) &&
1916 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1917 		verbose(env, "helper access to the packet is not allowed\n");
1918 		return -EACCES;
1919 	}
1920 
1921 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1922 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1923 		expected_type = PTR_TO_STACK;
1924 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1925 		    type != expected_type)
1926 			goto err_type;
1927 	} else if (arg_type == ARG_CONST_SIZE ||
1928 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1929 		expected_type = SCALAR_VALUE;
1930 		if (type != expected_type)
1931 			goto err_type;
1932 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1933 		expected_type = CONST_PTR_TO_MAP;
1934 		if (type != expected_type)
1935 			goto err_type;
1936 	} else if (arg_type == ARG_PTR_TO_CTX) {
1937 		expected_type = PTR_TO_CTX;
1938 		if (type != expected_type)
1939 			goto err_type;
1940 	} else if (arg_type_is_mem_ptr(arg_type)) {
1941 		expected_type = PTR_TO_STACK;
1942 		/* One exception here. In case function allows for NULL to be
1943 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1944 		 * happens during stack boundary checking.
1945 		 */
1946 		if (register_is_null(reg) &&
1947 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1948 			/* final test in check_stack_boundary() */;
1949 		else if (!type_is_pkt_pointer(type) &&
1950 			 type != PTR_TO_MAP_VALUE &&
1951 			 type != expected_type)
1952 			goto err_type;
1953 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1954 	} else {
1955 		verbose(env, "unsupported arg_type %d\n", arg_type);
1956 		return -EFAULT;
1957 	}
1958 
1959 	if (arg_type == ARG_CONST_MAP_PTR) {
1960 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1961 		meta->map_ptr = reg->map_ptr;
1962 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1963 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1964 		 * check that [key, key + map->key_size) are within
1965 		 * stack limits and initialized
1966 		 */
1967 		if (!meta->map_ptr) {
1968 			/* in function declaration map_ptr must come before
1969 			 * map_key, so that it's verified and known before
1970 			 * we have to check map_key here. Otherwise it means
1971 			 * that kernel subsystem misconfigured verifier
1972 			 */
1973 			verbose(env, "invalid map_ptr to access map->key\n");
1974 			return -EACCES;
1975 		}
1976 		err = check_helper_mem_access(env, regno,
1977 					      meta->map_ptr->key_size, false,
1978 					      NULL);
1979 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1980 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1981 		 * check [value, value + map->value_size) validity
1982 		 */
1983 		if (!meta->map_ptr) {
1984 			/* kernel subsystem misconfigured verifier */
1985 			verbose(env, "invalid map_ptr to access map->value\n");
1986 			return -EACCES;
1987 		}
1988 		err = check_helper_mem_access(env, regno,
1989 					      meta->map_ptr->value_size, false,
1990 					      NULL);
1991 	} else if (arg_type_is_mem_size(arg_type)) {
1992 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1993 
1994 		/* remember the mem_size which may be used later
1995 		 * to refine return values.
1996 		 */
1997 		meta->msize_smax_value = reg->smax_value;
1998 		meta->msize_umax_value = reg->umax_value;
1999 
2000 		/* The register is SCALAR_VALUE; the access check
2001 		 * happens using its boundaries.
2002 		 */
2003 		if (!tnum_is_const(reg->var_off))
2004 			/* For unprivileged variable accesses, disable raw
2005 			 * mode so that the program is required to
2006 			 * initialize all the memory that the helper could
2007 			 * just partially fill up.
2008 			 */
2009 			meta = NULL;
2010 
2011 		if (reg->smin_value < 0) {
2012 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2013 				regno);
2014 			return -EACCES;
2015 		}
2016 
2017 		if (reg->umin_value == 0) {
2018 			err = check_helper_mem_access(env, regno - 1, 0,
2019 						      zero_size_allowed,
2020 						      meta);
2021 			if (err)
2022 				return err;
2023 		}
2024 
2025 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2026 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2027 				regno);
2028 			return -EACCES;
2029 		}
2030 		err = check_helper_mem_access(env, regno - 1,
2031 					      reg->umax_value,
2032 					      zero_size_allowed, meta);
2033 	}
2034 
2035 	return err;
2036 err_type:
2037 	verbose(env, "R%d type=%s expected=%s\n", regno,
2038 		reg_type_str[type], reg_type_str[expected_type]);
2039 	return -EACCES;
2040 }
2041 
2042 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2043 					struct bpf_map *map, int func_id)
2044 {
2045 	if (!map)
2046 		return 0;
2047 
2048 	/* We need a two way check, first is from map perspective ... */
2049 	switch (map->map_type) {
2050 	case BPF_MAP_TYPE_PROG_ARRAY:
2051 		if (func_id != BPF_FUNC_tail_call)
2052 			goto error;
2053 		break;
2054 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2055 		if (func_id != BPF_FUNC_perf_event_read &&
2056 		    func_id != BPF_FUNC_perf_event_output &&
2057 		    func_id != BPF_FUNC_perf_event_read_value)
2058 			goto error;
2059 		break;
2060 	case BPF_MAP_TYPE_STACK_TRACE:
2061 		if (func_id != BPF_FUNC_get_stackid)
2062 			goto error;
2063 		break;
2064 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2065 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2066 		    func_id != BPF_FUNC_current_task_under_cgroup)
2067 			goto error;
2068 		break;
2069 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2070 	 * allow to be modified from bpf side. So do not allow lookup elements
2071 	 * for now.
2072 	 */
2073 	case BPF_MAP_TYPE_DEVMAP:
2074 		if (func_id != BPF_FUNC_redirect_map)
2075 			goto error;
2076 		break;
2077 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2078 	 * appear.
2079 	 */
2080 	case BPF_MAP_TYPE_CPUMAP:
2081 	case BPF_MAP_TYPE_XSKMAP:
2082 		if (func_id != BPF_FUNC_redirect_map)
2083 			goto error;
2084 		break;
2085 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2086 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2087 		if (func_id != BPF_FUNC_map_lookup_elem)
2088 			goto error;
2089 		break;
2090 	case BPF_MAP_TYPE_SOCKMAP:
2091 		if (func_id != BPF_FUNC_sk_redirect_map &&
2092 		    func_id != BPF_FUNC_sock_map_update &&
2093 		    func_id != BPF_FUNC_map_delete_elem &&
2094 		    func_id != BPF_FUNC_msg_redirect_map)
2095 			goto error;
2096 		break;
2097 	case BPF_MAP_TYPE_SOCKHASH:
2098 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2099 		    func_id != BPF_FUNC_sock_hash_update &&
2100 		    func_id != BPF_FUNC_map_delete_elem &&
2101 		    func_id != BPF_FUNC_msg_redirect_hash)
2102 			goto error;
2103 		break;
2104 	default:
2105 		break;
2106 	}
2107 
2108 	/* ... and second from the function itself. */
2109 	switch (func_id) {
2110 	case BPF_FUNC_tail_call:
2111 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2112 			goto error;
2113 		if (env->subprog_cnt > 1) {
2114 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2115 			return -EINVAL;
2116 		}
2117 		break;
2118 	case BPF_FUNC_perf_event_read:
2119 	case BPF_FUNC_perf_event_output:
2120 	case BPF_FUNC_perf_event_read_value:
2121 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2122 			goto error;
2123 		break;
2124 	case BPF_FUNC_get_stackid:
2125 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2126 			goto error;
2127 		break;
2128 	case BPF_FUNC_current_task_under_cgroup:
2129 	case BPF_FUNC_skb_under_cgroup:
2130 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2131 			goto error;
2132 		break;
2133 	case BPF_FUNC_redirect_map:
2134 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2135 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2136 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2137 			goto error;
2138 		break;
2139 	case BPF_FUNC_sk_redirect_map:
2140 	case BPF_FUNC_msg_redirect_map:
2141 	case BPF_FUNC_sock_map_update:
2142 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2143 			goto error;
2144 		break;
2145 	case BPF_FUNC_sk_redirect_hash:
2146 	case BPF_FUNC_msg_redirect_hash:
2147 	case BPF_FUNC_sock_hash_update:
2148 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2149 			goto error;
2150 		break;
2151 	default:
2152 		break;
2153 	}
2154 
2155 	return 0;
2156 error:
2157 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2158 		map->map_type, func_id_name(func_id), func_id);
2159 	return -EINVAL;
2160 }
2161 
2162 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2163 {
2164 	int count = 0;
2165 
2166 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2167 		count++;
2168 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2169 		count++;
2170 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2171 		count++;
2172 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2173 		count++;
2174 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2175 		count++;
2176 
2177 	/* We only support one arg being in raw mode at the moment,
2178 	 * which is sufficient for the helper functions we have
2179 	 * right now.
2180 	 */
2181 	return count <= 1;
2182 }
2183 
2184 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2185 				    enum bpf_arg_type arg_next)
2186 {
2187 	return (arg_type_is_mem_ptr(arg_curr) &&
2188 	        !arg_type_is_mem_size(arg_next)) ||
2189 	       (!arg_type_is_mem_ptr(arg_curr) &&
2190 		arg_type_is_mem_size(arg_next));
2191 }
2192 
2193 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2194 {
2195 	/* bpf_xxx(..., buf, len) call will access 'len'
2196 	 * bytes from memory 'buf'. Both arg types need
2197 	 * to be paired, so make sure there's no buggy
2198 	 * helper function specification.
2199 	 */
2200 	if (arg_type_is_mem_size(fn->arg1_type) ||
2201 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2202 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2203 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2204 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2205 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2206 		return false;
2207 
2208 	return true;
2209 }
2210 
2211 static int check_func_proto(const struct bpf_func_proto *fn)
2212 {
2213 	return check_raw_mode_ok(fn) &&
2214 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2215 }
2216 
2217 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2218  * are now invalid, so turn them into unknown SCALAR_VALUE.
2219  */
2220 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2221 				     struct bpf_func_state *state)
2222 {
2223 	struct bpf_reg_state *regs = state->regs, *reg;
2224 	int i;
2225 
2226 	for (i = 0; i < MAX_BPF_REG; i++)
2227 		if (reg_is_pkt_pointer_any(&regs[i]))
2228 			mark_reg_unknown(env, regs, i);
2229 
2230 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2231 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2232 			continue;
2233 		reg = &state->stack[i].spilled_ptr;
2234 		if (reg_is_pkt_pointer_any(reg))
2235 			__mark_reg_unknown(reg);
2236 	}
2237 }
2238 
2239 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2240 {
2241 	struct bpf_verifier_state *vstate = env->cur_state;
2242 	int i;
2243 
2244 	for (i = 0; i <= vstate->curframe; i++)
2245 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2246 }
2247 
2248 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2249 			   int *insn_idx)
2250 {
2251 	struct bpf_verifier_state *state = env->cur_state;
2252 	struct bpf_func_state *caller, *callee;
2253 	int i, subprog, target_insn;
2254 
2255 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2256 		verbose(env, "the call stack of %d frames is too deep\n",
2257 			state->curframe + 2);
2258 		return -E2BIG;
2259 	}
2260 
2261 	target_insn = *insn_idx + insn->imm;
2262 	subprog = find_subprog(env, target_insn + 1);
2263 	if (subprog < 0) {
2264 		verbose(env, "verifier bug. No program starts at insn %d\n",
2265 			target_insn + 1);
2266 		return -EFAULT;
2267 	}
2268 
2269 	caller = state->frame[state->curframe];
2270 	if (state->frame[state->curframe + 1]) {
2271 		verbose(env, "verifier bug. Frame %d already allocated\n",
2272 			state->curframe + 1);
2273 		return -EFAULT;
2274 	}
2275 
2276 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2277 	if (!callee)
2278 		return -ENOMEM;
2279 	state->frame[state->curframe + 1] = callee;
2280 
2281 	/* callee cannot access r0, r6 - r9 for reading and has to write
2282 	 * into its own stack before reading from it.
2283 	 * callee can read/write into caller's stack
2284 	 */
2285 	init_func_state(env, callee,
2286 			/* remember the callsite, it will be used by bpf_exit */
2287 			*insn_idx /* callsite */,
2288 			state->curframe + 1 /* frameno within this callchain */,
2289 			subprog /* subprog number within this prog */);
2290 
2291 	/* copy r1 - r5 args that callee can access */
2292 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2293 		callee->regs[i] = caller->regs[i];
2294 
2295 	/* after the call regsiters r0 - r5 were scratched */
2296 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2297 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2298 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2299 	}
2300 
2301 	/* only increment it after check_reg_arg() finished */
2302 	state->curframe++;
2303 
2304 	/* and go analyze first insn of the callee */
2305 	*insn_idx = target_insn;
2306 
2307 	if (env->log.level) {
2308 		verbose(env, "caller:\n");
2309 		print_verifier_state(env, caller);
2310 		verbose(env, "callee:\n");
2311 		print_verifier_state(env, callee);
2312 	}
2313 	return 0;
2314 }
2315 
2316 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2317 {
2318 	struct bpf_verifier_state *state = env->cur_state;
2319 	struct bpf_func_state *caller, *callee;
2320 	struct bpf_reg_state *r0;
2321 
2322 	callee = state->frame[state->curframe];
2323 	r0 = &callee->regs[BPF_REG_0];
2324 	if (r0->type == PTR_TO_STACK) {
2325 		/* technically it's ok to return caller's stack pointer
2326 		 * (or caller's caller's pointer) back to the caller,
2327 		 * since these pointers are valid. Only current stack
2328 		 * pointer will be invalid as soon as function exits,
2329 		 * but let's be conservative
2330 		 */
2331 		verbose(env, "cannot return stack pointer to the caller\n");
2332 		return -EINVAL;
2333 	}
2334 
2335 	state->curframe--;
2336 	caller = state->frame[state->curframe];
2337 	/* return to the caller whatever r0 had in the callee */
2338 	caller->regs[BPF_REG_0] = *r0;
2339 
2340 	*insn_idx = callee->callsite + 1;
2341 	if (env->log.level) {
2342 		verbose(env, "returning from callee:\n");
2343 		print_verifier_state(env, callee);
2344 		verbose(env, "to caller at %d:\n", *insn_idx);
2345 		print_verifier_state(env, caller);
2346 	}
2347 	/* clear everything in the callee */
2348 	free_func_state(callee);
2349 	state->frame[state->curframe + 1] = NULL;
2350 	return 0;
2351 }
2352 
2353 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2354 				   int func_id,
2355 				   struct bpf_call_arg_meta *meta)
2356 {
2357 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2358 
2359 	if (ret_type != RET_INTEGER ||
2360 	    (func_id != BPF_FUNC_get_stack &&
2361 	     func_id != BPF_FUNC_probe_read_str))
2362 		return;
2363 
2364 	ret_reg->smax_value = meta->msize_smax_value;
2365 	ret_reg->umax_value = meta->msize_umax_value;
2366 	__reg_deduce_bounds(ret_reg);
2367 	__reg_bound_offset(ret_reg);
2368 }
2369 
2370 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2371 {
2372 	const struct bpf_func_proto *fn = NULL;
2373 	struct bpf_reg_state *regs;
2374 	struct bpf_call_arg_meta meta;
2375 	bool changes_data;
2376 	int i, err;
2377 
2378 	/* find function prototype */
2379 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2380 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2381 			func_id);
2382 		return -EINVAL;
2383 	}
2384 
2385 	if (env->ops->get_func_proto)
2386 		fn = env->ops->get_func_proto(func_id, env->prog);
2387 	if (!fn) {
2388 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2389 			func_id);
2390 		return -EINVAL;
2391 	}
2392 
2393 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2394 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2395 		verbose(env, "cannot call GPL only function from proprietary program\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2400 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2401 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2402 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2403 			func_id_name(func_id), func_id);
2404 		return -EINVAL;
2405 	}
2406 
2407 	memset(&meta, 0, sizeof(meta));
2408 	meta.pkt_access = fn->pkt_access;
2409 
2410 	err = check_func_proto(fn);
2411 	if (err) {
2412 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2413 			func_id_name(func_id), func_id);
2414 		return err;
2415 	}
2416 
2417 	/* check args */
2418 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2419 	if (err)
2420 		return err;
2421 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2422 	if (err)
2423 		return err;
2424 	if (func_id == BPF_FUNC_tail_call) {
2425 		if (meta.map_ptr == NULL) {
2426 			verbose(env, "verifier bug\n");
2427 			return -EINVAL;
2428 		}
2429 		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2430 	}
2431 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2432 	if (err)
2433 		return err;
2434 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2435 	if (err)
2436 		return err;
2437 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2438 	if (err)
2439 		return err;
2440 
2441 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2442 	 * is inferred from register state.
2443 	 */
2444 	for (i = 0; i < meta.access_size; i++) {
2445 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2446 				       BPF_WRITE, -1, false);
2447 		if (err)
2448 			return err;
2449 	}
2450 
2451 	regs = cur_regs(env);
2452 	/* reset caller saved regs */
2453 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2454 		mark_reg_not_init(env, regs, caller_saved[i]);
2455 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2456 	}
2457 
2458 	/* update return register (already marked as written above) */
2459 	if (fn->ret_type == RET_INTEGER) {
2460 		/* sets type to SCALAR_VALUE */
2461 		mark_reg_unknown(env, regs, BPF_REG_0);
2462 	} else if (fn->ret_type == RET_VOID) {
2463 		regs[BPF_REG_0].type = NOT_INIT;
2464 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2465 		struct bpf_insn_aux_data *insn_aux;
2466 
2467 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2468 		/* There is no offset yet applied, variable or fixed */
2469 		mark_reg_known_zero(env, regs, BPF_REG_0);
2470 		regs[BPF_REG_0].off = 0;
2471 		/* remember map_ptr, so that check_map_access()
2472 		 * can check 'value_size' boundary of memory access
2473 		 * to map element returned from bpf_map_lookup_elem()
2474 		 */
2475 		if (meta.map_ptr == NULL) {
2476 			verbose(env,
2477 				"kernel subsystem misconfigured verifier\n");
2478 			return -EINVAL;
2479 		}
2480 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2481 		regs[BPF_REG_0].id = ++env->id_gen;
2482 		insn_aux = &env->insn_aux_data[insn_idx];
2483 		if (!insn_aux->map_ptr)
2484 			insn_aux->map_ptr = meta.map_ptr;
2485 		else if (insn_aux->map_ptr != meta.map_ptr)
2486 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2487 	} else {
2488 		verbose(env, "unknown return type %d of func %s#%d\n",
2489 			fn->ret_type, func_id_name(func_id), func_id);
2490 		return -EINVAL;
2491 	}
2492 
2493 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2494 
2495 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2496 	if (err)
2497 		return err;
2498 
2499 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2500 		const char *err_str;
2501 
2502 #ifdef CONFIG_PERF_EVENTS
2503 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2504 		err_str = "cannot get callchain buffer for func %s#%d\n";
2505 #else
2506 		err = -ENOTSUPP;
2507 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2508 #endif
2509 		if (err) {
2510 			verbose(env, err_str, func_id_name(func_id), func_id);
2511 			return err;
2512 		}
2513 
2514 		env->prog->has_callchain_buf = true;
2515 	}
2516 
2517 	if (changes_data)
2518 		clear_all_pkt_pointers(env);
2519 	return 0;
2520 }
2521 
2522 static bool signed_add_overflows(s64 a, s64 b)
2523 {
2524 	/* Do the add in u64, where overflow is well-defined */
2525 	s64 res = (s64)((u64)a + (u64)b);
2526 
2527 	if (b < 0)
2528 		return res > a;
2529 	return res < a;
2530 }
2531 
2532 static bool signed_sub_overflows(s64 a, s64 b)
2533 {
2534 	/* Do the sub in u64, where overflow is well-defined */
2535 	s64 res = (s64)((u64)a - (u64)b);
2536 
2537 	if (b < 0)
2538 		return res < a;
2539 	return res > a;
2540 }
2541 
2542 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2543 				  const struct bpf_reg_state *reg,
2544 				  enum bpf_reg_type type)
2545 {
2546 	bool known = tnum_is_const(reg->var_off);
2547 	s64 val = reg->var_off.value;
2548 	s64 smin = reg->smin_value;
2549 
2550 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2551 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2552 			reg_type_str[type], val);
2553 		return false;
2554 	}
2555 
2556 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2557 		verbose(env, "%s pointer offset %d is not allowed\n",
2558 			reg_type_str[type], reg->off);
2559 		return false;
2560 	}
2561 
2562 	if (smin == S64_MIN) {
2563 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2564 			reg_type_str[type]);
2565 		return false;
2566 	}
2567 
2568 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2569 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2570 			smin, reg_type_str[type]);
2571 		return false;
2572 	}
2573 
2574 	return true;
2575 }
2576 
2577 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2578  * Caller should also handle BPF_MOV case separately.
2579  * If we return -EACCES, caller may want to try again treating pointer as a
2580  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2581  */
2582 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2583 				   struct bpf_insn *insn,
2584 				   const struct bpf_reg_state *ptr_reg,
2585 				   const struct bpf_reg_state *off_reg)
2586 {
2587 	struct bpf_verifier_state *vstate = env->cur_state;
2588 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2589 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2590 	bool known = tnum_is_const(off_reg->var_off);
2591 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2592 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2593 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2594 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2595 	u8 opcode = BPF_OP(insn->code);
2596 	u32 dst = insn->dst_reg;
2597 
2598 	dst_reg = &regs[dst];
2599 
2600 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2601 	    smin_val > smax_val || umin_val > umax_val) {
2602 		/* Taint dst register if offset had invalid bounds derived from
2603 		 * e.g. dead branches.
2604 		 */
2605 		__mark_reg_unknown(dst_reg);
2606 		return 0;
2607 	}
2608 
2609 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2610 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2611 		verbose(env,
2612 			"R%d 32-bit pointer arithmetic prohibited\n",
2613 			dst);
2614 		return -EACCES;
2615 	}
2616 
2617 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2618 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2619 			dst);
2620 		return -EACCES;
2621 	}
2622 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2623 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2624 			dst);
2625 		return -EACCES;
2626 	}
2627 	if (ptr_reg->type == PTR_TO_PACKET_END) {
2628 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2629 			dst);
2630 		return -EACCES;
2631 	}
2632 
2633 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2634 	 * The id may be overwritten later if we create a new variable offset.
2635 	 */
2636 	dst_reg->type = ptr_reg->type;
2637 	dst_reg->id = ptr_reg->id;
2638 
2639 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2640 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2641 		return -EINVAL;
2642 
2643 	switch (opcode) {
2644 	case BPF_ADD:
2645 		/* We can take a fixed offset as long as it doesn't overflow
2646 		 * the s32 'off' field
2647 		 */
2648 		if (known && (ptr_reg->off + smin_val ==
2649 			      (s64)(s32)(ptr_reg->off + smin_val))) {
2650 			/* pointer += K.  Accumulate it into fixed offset */
2651 			dst_reg->smin_value = smin_ptr;
2652 			dst_reg->smax_value = smax_ptr;
2653 			dst_reg->umin_value = umin_ptr;
2654 			dst_reg->umax_value = umax_ptr;
2655 			dst_reg->var_off = ptr_reg->var_off;
2656 			dst_reg->off = ptr_reg->off + smin_val;
2657 			dst_reg->range = ptr_reg->range;
2658 			break;
2659 		}
2660 		/* A new variable offset is created.  Note that off_reg->off
2661 		 * == 0, since it's a scalar.
2662 		 * dst_reg gets the pointer type and since some positive
2663 		 * integer value was added to the pointer, give it a new 'id'
2664 		 * if it's a PTR_TO_PACKET.
2665 		 * this creates a new 'base' pointer, off_reg (variable) gets
2666 		 * added into the variable offset, and we copy the fixed offset
2667 		 * from ptr_reg.
2668 		 */
2669 		if (signed_add_overflows(smin_ptr, smin_val) ||
2670 		    signed_add_overflows(smax_ptr, smax_val)) {
2671 			dst_reg->smin_value = S64_MIN;
2672 			dst_reg->smax_value = S64_MAX;
2673 		} else {
2674 			dst_reg->smin_value = smin_ptr + smin_val;
2675 			dst_reg->smax_value = smax_ptr + smax_val;
2676 		}
2677 		if (umin_ptr + umin_val < umin_ptr ||
2678 		    umax_ptr + umax_val < umax_ptr) {
2679 			dst_reg->umin_value = 0;
2680 			dst_reg->umax_value = U64_MAX;
2681 		} else {
2682 			dst_reg->umin_value = umin_ptr + umin_val;
2683 			dst_reg->umax_value = umax_ptr + umax_val;
2684 		}
2685 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2686 		dst_reg->off = ptr_reg->off;
2687 		if (reg_is_pkt_pointer(ptr_reg)) {
2688 			dst_reg->id = ++env->id_gen;
2689 			/* something was added to pkt_ptr, set range to zero */
2690 			dst_reg->range = 0;
2691 		}
2692 		break;
2693 	case BPF_SUB:
2694 		if (dst_reg == off_reg) {
2695 			/* scalar -= pointer.  Creates an unknown scalar */
2696 			verbose(env, "R%d tried to subtract pointer from scalar\n",
2697 				dst);
2698 			return -EACCES;
2699 		}
2700 		/* We don't allow subtraction from FP, because (according to
2701 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2702 		 * be able to deal with it.
2703 		 */
2704 		if (ptr_reg->type == PTR_TO_STACK) {
2705 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2706 				dst);
2707 			return -EACCES;
2708 		}
2709 		if (known && (ptr_reg->off - smin_val ==
2710 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2711 			/* pointer -= K.  Subtract it from fixed offset */
2712 			dst_reg->smin_value = smin_ptr;
2713 			dst_reg->smax_value = smax_ptr;
2714 			dst_reg->umin_value = umin_ptr;
2715 			dst_reg->umax_value = umax_ptr;
2716 			dst_reg->var_off = ptr_reg->var_off;
2717 			dst_reg->id = ptr_reg->id;
2718 			dst_reg->off = ptr_reg->off - smin_val;
2719 			dst_reg->range = ptr_reg->range;
2720 			break;
2721 		}
2722 		/* A new variable offset is created.  If the subtrahend is known
2723 		 * nonnegative, then any reg->range we had before is still good.
2724 		 */
2725 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2726 		    signed_sub_overflows(smax_ptr, smin_val)) {
2727 			/* Overflow possible, we know nothing */
2728 			dst_reg->smin_value = S64_MIN;
2729 			dst_reg->smax_value = S64_MAX;
2730 		} else {
2731 			dst_reg->smin_value = smin_ptr - smax_val;
2732 			dst_reg->smax_value = smax_ptr - smin_val;
2733 		}
2734 		if (umin_ptr < umax_val) {
2735 			/* Overflow possible, we know nothing */
2736 			dst_reg->umin_value = 0;
2737 			dst_reg->umax_value = U64_MAX;
2738 		} else {
2739 			/* Cannot overflow (as long as bounds are consistent) */
2740 			dst_reg->umin_value = umin_ptr - umax_val;
2741 			dst_reg->umax_value = umax_ptr - umin_val;
2742 		}
2743 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2744 		dst_reg->off = ptr_reg->off;
2745 		if (reg_is_pkt_pointer(ptr_reg)) {
2746 			dst_reg->id = ++env->id_gen;
2747 			/* something was added to pkt_ptr, set range to zero */
2748 			if (smin_val < 0)
2749 				dst_reg->range = 0;
2750 		}
2751 		break;
2752 	case BPF_AND:
2753 	case BPF_OR:
2754 	case BPF_XOR:
2755 		/* bitwise ops on pointers are troublesome, prohibit. */
2756 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2757 			dst, bpf_alu_string[opcode >> 4]);
2758 		return -EACCES;
2759 	default:
2760 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2761 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2762 			dst, bpf_alu_string[opcode >> 4]);
2763 		return -EACCES;
2764 	}
2765 
2766 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2767 		return -EINVAL;
2768 
2769 	__update_reg_bounds(dst_reg);
2770 	__reg_deduce_bounds(dst_reg);
2771 	__reg_bound_offset(dst_reg);
2772 	return 0;
2773 }
2774 
2775 /* WARNING: This function does calculations on 64-bit values, but the actual
2776  * execution may occur on 32-bit values. Therefore, things like bitshifts
2777  * need extra checks in the 32-bit case.
2778  */
2779 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2780 				      struct bpf_insn *insn,
2781 				      struct bpf_reg_state *dst_reg,
2782 				      struct bpf_reg_state src_reg)
2783 {
2784 	struct bpf_reg_state *regs = cur_regs(env);
2785 	u8 opcode = BPF_OP(insn->code);
2786 	bool src_known, dst_known;
2787 	s64 smin_val, smax_val;
2788 	u64 umin_val, umax_val;
2789 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2790 
2791 	smin_val = src_reg.smin_value;
2792 	smax_val = src_reg.smax_value;
2793 	umin_val = src_reg.umin_value;
2794 	umax_val = src_reg.umax_value;
2795 	src_known = tnum_is_const(src_reg.var_off);
2796 	dst_known = tnum_is_const(dst_reg->var_off);
2797 
2798 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2799 	    smin_val > smax_val || umin_val > umax_val) {
2800 		/* Taint dst register if offset had invalid bounds derived from
2801 		 * e.g. dead branches.
2802 		 */
2803 		__mark_reg_unknown(dst_reg);
2804 		return 0;
2805 	}
2806 
2807 	if (!src_known &&
2808 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2809 		__mark_reg_unknown(dst_reg);
2810 		return 0;
2811 	}
2812 
2813 	switch (opcode) {
2814 	case BPF_ADD:
2815 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2816 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2817 			dst_reg->smin_value = S64_MIN;
2818 			dst_reg->smax_value = S64_MAX;
2819 		} else {
2820 			dst_reg->smin_value += smin_val;
2821 			dst_reg->smax_value += smax_val;
2822 		}
2823 		if (dst_reg->umin_value + umin_val < umin_val ||
2824 		    dst_reg->umax_value + umax_val < umax_val) {
2825 			dst_reg->umin_value = 0;
2826 			dst_reg->umax_value = U64_MAX;
2827 		} else {
2828 			dst_reg->umin_value += umin_val;
2829 			dst_reg->umax_value += umax_val;
2830 		}
2831 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2832 		break;
2833 	case BPF_SUB:
2834 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2835 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2836 			/* Overflow possible, we know nothing */
2837 			dst_reg->smin_value = S64_MIN;
2838 			dst_reg->smax_value = S64_MAX;
2839 		} else {
2840 			dst_reg->smin_value -= smax_val;
2841 			dst_reg->smax_value -= smin_val;
2842 		}
2843 		if (dst_reg->umin_value < umax_val) {
2844 			/* Overflow possible, we know nothing */
2845 			dst_reg->umin_value = 0;
2846 			dst_reg->umax_value = U64_MAX;
2847 		} else {
2848 			/* Cannot overflow (as long as bounds are consistent) */
2849 			dst_reg->umin_value -= umax_val;
2850 			dst_reg->umax_value -= umin_val;
2851 		}
2852 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2853 		break;
2854 	case BPF_MUL:
2855 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2856 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2857 			/* Ain't nobody got time to multiply that sign */
2858 			__mark_reg_unbounded(dst_reg);
2859 			__update_reg_bounds(dst_reg);
2860 			break;
2861 		}
2862 		/* Both values are positive, so we can work with unsigned and
2863 		 * copy the result to signed (unless it exceeds S64_MAX).
2864 		 */
2865 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2866 			/* Potential overflow, we know nothing */
2867 			__mark_reg_unbounded(dst_reg);
2868 			/* (except what we can learn from the var_off) */
2869 			__update_reg_bounds(dst_reg);
2870 			break;
2871 		}
2872 		dst_reg->umin_value *= umin_val;
2873 		dst_reg->umax_value *= umax_val;
2874 		if (dst_reg->umax_value > S64_MAX) {
2875 			/* Overflow possible, we know nothing */
2876 			dst_reg->smin_value = S64_MIN;
2877 			dst_reg->smax_value = S64_MAX;
2878 		} else {
2879 			dst_reg->smin_value = dst_reg->umin_value;
2880 			dst_reg->smax_value = dst_reg->umax_value;
2881 		}
2882 		break;
2883 	case BPF_AND:
2884 		if (src_known && dst_known) {
2885 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2886 						  src_reg.var_off.value);
2887 			break;
2888 		}
2889 		/* We get our minimum from the var_off, since that's inherently
2890 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2891 		 */
2892 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2893 		dst_reg->umin_value = dst_reg->var_off.value;
2894 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2895 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2896 			/* Lose signed bounds when ANDing negative numbers,
2897 			 * ain't nobody got time for that.
2898 			 */
2899 			dst_reg->smin_value = S64_MIN;
2900 			dst_reg->smax_value = S64_MAX;
2901 		} else {
2902 			/* ANDing two positives gives a positive, so safe to
2903 			 * cast result into s64.
2904 			 */
2905 			dst_reg->smin_value = dst_reg->umin_value;
2906 			dst_reg->smax_value = dst_reg->umax_value;
2907 		}
2908 		/* We may learn something more from the var_off */
2909 		__update_reg_bounds(dst_reg);
2910 		break;
2911 	case BPF_OR:
2912 		if (src_known && dst_known) {
2913 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2914 						  src_reg.var_off.value);
2915 			break;
2916 		}
2917 		/* We get our maximum from the var_off, and our minimum is the
2918 		 * maximum of the operands' minima
2919 		 */
2920 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2921 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2922 		dst_reg->umax_value = dst_reg->var_off.value |
2923 				      dst_reg->var_off.mask;
2924 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2925 			/* Lose signed bounds when ORing negative numbers,
2926 			 * ain't nobody got time for that.
2927 			 */
2928 			dst_reg->smin_value = S64_MIN;
2929 			dst_reg->smax_value = S64_MAX;
2930 		} else {
2931 			/* ORing two positives gives a positive, so safe to
2932 			 * cast result into s64.
2933 			 */
2934 			dst_reg->smin_value = dst_reg->umin_value;
2935 			dst_reg->smax_value = dst_reg->umax_value;
2936 		}
2937 		/* We may learn something more from the var_off */
2938 		__update_reg_bounds(dst_reg);
2939 		break;
2940 	case BPF_LSH:
2941 		if (umax_val >= insn_bitness) {
2942 			/* Shifts greater than 31 or 63 are undefined.
2943 			 * This includes shifts by a negative number.
2944 			 */
2945 			mark_reg_unknown(env, regs, insn->dst_reg);
2946 			break;
2947 		}
2948 		/* We lose all sign bit information (except what we can pick
2949 		 * up from var_off)
2950 		 */
2951 		dst_reg->smin_value = S64_MIN;
2952 		dst_reg->smax_value = S64_MAX;
2953 		/* If we might shift our top bit out, then we know nothing */
2954 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2955 			dst_reg->umin_value = 0;
2956 			dst_reg->umax_value = U64_MAX;
2957 		} else {
2958 			dst_reg->umin_value <<= umin_val;
2959 			dst_reg->umax_value <<= umax_val;
2960 		}
2961 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2962 		/* We may learn something more from the var_off */
2963 		__update_reg_bounds(dst_reg);
2964 		break;
2965 	case BPF_RSH:
2966 		if (umax_val >= insn_bitness) {
2967 			/* Shifts greater than 31 or 63 are undefined.
2968 			 * This includes shifts by a negative number.
2969 			 */
2970 			mark_reg_unknown(env, regs, insn->dst_reg);
2971 			break;
2972 		}
2973 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
2974 		 * be negative, then either:
2975 		 * 1) src_reg might be zero, so the sign bit of the result is
2976 		 *    unknown, so we lose our signed bounds
2977 		 * 2) it's known negative, thus the unsigned bounds capture the
2978 		 *    signed bounds
2979 		 * 3) the signed bounds cross zero, so they tell us nothing
2980 		 *    about the result
2981 		 * If the value in dst_reg is known nonnegative, then again the
2982 		 * unsigned bounts capture the signed bounds.
2983 		 * Thus, in all cases it suffices to blow away our signed bounds
2984 		 * and rely on inferring new ones from the unsigned bounds and
2985 		 * var_off of the result.
2986 		 */
2987 		dst_reg->smin_value = S64_MIN;
2988 		dst_reg->smax_value = S64_MAX;
2989 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2990 		dst_reg->umin_value >>= umax_val;
2991 		dst_reg->umax_value >>= umin_val;
2992 		/* We may learn something more from the var_off */
2993 		__update_reg_bounds(dst_reg);
2994 		break;
2995 	case BPF_ARSH:
2996 		if (umax_val >= insn_bitness) {
2997 			/* Shifts greater than 31 or 63 are undefined.
2998 			 * This includes shifts by a negative number.
2999 			 */
3000 			mark_reg_unknown(env, regs, insn->dst_reg);
3001 			break;
3002 		}
3003 
3004 		/* Upon reaching here, src_known is true and
3005 		 * umax_val is equal to umin_val.
3006 		 */
3007 		dst_reg->smin_value >>= umin_val;
3008 		dst_reg->smax_value >>= umin_val;
3009 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3010 
3011 		/* blow away the dst_reg umin_value/umax_value and rely on
3012 		 * dst_reg var_off to refine the result.
3013 		 */
3014 		dst_reg->umin_value = 0;
3015 		dst_reg->umax_value = U64_MAX;
3016 		__update_reg_bounds(dst_reg);
3017 		break;
3018 	default:
3019 		mark_reg_unknown(env, regs, insn->dst_reg);
3020 		break;
3021 	}
3022 
3023 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3024 		/* 32-bit ALU ops are (32,32)->32 */
3025 		coerce_reg_to_size(dst_reg, 4);
3026 		coerce_reg_to_size(&src_reg, 4);
3027 	}
3028 
3029 	__reg_deduce_bounds(dst_reg);
3030 	__reg_bound_offset(dst_reg);
3031 	return 0;
3032 }
3033 
3034 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3035  * and var_off.
3036  */
3037 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3038 				   struct bpf_insn *insn)
3039 {
3040 	struct bpf_verifier_state *vstate = env->cur_state;
3041 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3042 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3043 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3044 	u8 opcode = BPF_OP(insn->code);
3045 
3046 	dst_reg = &regs[insn->dst_reg];
3047 	src_reg = NULL;
3048 	if (dst_reg->type != SCALAR_VALUE)
3049 		ptr_reg = dst_reg;
3050 	if (BPF_SRC(insn->code) == BPF_X) {
3051 		src_reg = &regs[insn->src_reg];
3052 		if (src_reg->type != SCALAR_VALUE) {
3053 			if (dst_reg->type != SCALAR_VALUE) {
3054 				/* Combining two pointers by any ALU op yields
3055 				 * an arbitrary scalar. Disallow all math except
3056 				 * pointer subtraction
3057 				 */
3058 				if (opcode == BPF_SUB){
3059 					mark_reg_unknown(env, regs, insn->dst_reg);
3060 					return 0;
3061 				}
3062 				verbose(env, "R%d pointer %s pointer prohibited\n",
3063 					insn->dst_reg,
3064 					bpf_alu_string[opcode >> 4]);
3065 				return -EACCES;
3066 			} else {
3067 				/* scalar += pointer
3068 				 * This is legal, but we have to reverse our
3069 				 * src/dest handling in computing the range
3070 				 */
3071 				return adjust_ptr_min_max_vals(env, insn,
3072 							       src_reg, dst_reg);
3073 			}
3074 		} else if (ptr_reg) {
3075 			/* pointer += scalar */
3076 			return adjust_ptr_min_max_vals(env, insn,
3077 						       dst_reg, src_reg);
3078 		}
3079 	} else {
3080 		/* Pretend the src is a reg with a known value, since we only
3081 		 * need to be able to read from this state.
3082 		 */
3083 		off_reg.type = SCALAR_VALUE;
3084 		__mark_reg_known(&off_reg, insn->imm);
3085 		src_reg = &off_reg;
3086 		if (ptr_reg) /* pointer += K */
3087 			return adjust_ptr_min_max_vals(env, insn,
3088 						       ptr_reg, src_reg);
3089 	}
3090 
3091 	/* Got here implies adding two SCALAR_VALUEs */
3092 	if (WARN_ON_ONCE(ptr_reg)) {
3093 		print_verifier_state(env, state);
3094 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3095 		return -EINVAL;
3096 	}
3097 	if (WARN_ON(!src_reg)) {
3098 		print_verifier_state(env, state);
3099 		verbose(env, "verifier internal error: no src_reg\n");
3100 		return -EINVAL;
3101 	}
3102 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3103 }
3104 
3105 /* check validity of 32-bit and 64-bit arithmetic operations */
3106 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3107 {
3108 	struct bpf_reg_state *regs = cur_regs(env);
3109 	u8 opcode = BPF_OP(insn->code);
3110 	int err;
3111 
3112 	if (opcode == BPF_END || opcode == BPF_NEG) {
3113 		if (opcode == BPF_NEG) {
3114 			if (BPF_SRC(insn->code) != 0 ||
3115 			    insn->src_reg != BPF_REG_0 ||
3116 			    insn->off != 0 || insn->imm != 0) {
3117 				verbose(env, "BPF_NEG uses reserved fields\n");
3118 				return -EINVAL;
3119 			}
3120 		} else {
3121 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3122 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3123 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3124 				verbose(env, "BPF_END uses reserved fields\n");
3125 				return -EINVAL;
3126 			}
3127 		}
3128 
3129 		/* check src operand */
3130 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3131 		if (err)
3132 			return err;
3133 
3134 		if (is_pointer_value(env, insn->dst_reg)) {
3135 			verbose(env, "R%d pointer arithmetic prohibited\n",
3136 				insn->dst_reg);
3137 			return -EACCES;
3138 		}
3139 
3140 		/* check dest operand */
3141 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3142 		if (err)
3143 			return err;
3144 
3145 	} else if (opcode == BPF_MOV) {
3146 
3147 		if (BPF_SRC(insn->code) == BPF_X) {
3148 			if (insn->imm != 0 || insn->off != 0) {
3149 				verbose(env, "BPF_MOV uses reserved fields\n");
3150 				return -EINVAL;
3151 			}
3152 
3153 			/* check src operand */
3154 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3155 			if (err)
3156 				return err;
3157 		} else {
3158 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3159 				verbose(env, "BPF_MOV uses reserved fields\n");
3160 				return -EINVAL;
3161 			}
3162 		}
3163 
3164 		/* check dest operand */
3165 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3166 		if (err)
3167 			return err;
3168 
3169 		if (BPF_SRC(insn->code) == BPF_X) {
3170 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3171 				/* case: R1 = R2
3172 				 * copy register state to dest reg
3173 				 */
3174 				regs[insn->dst_reg] = regs[insn->src_reg];
3175 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3176 			} else {
3177 				/* R1 = (u32) R2 */
3178 				if (is_pointer_value(env, insn->src_reg)) {
3179 					verbose(env,
3180 						"R%d partial copy of pointer\n",
3181 						insn->src_reg);
3182 					return -EACCES;
3183 				}
3184 				mark_reg_unknown(env, regs, insn->dst_reg);
3185 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3186 			}
3187 		} else {
3188 			/* case: R = imm
3189 			 * remember the value we stored into this reg
3190 			 */
3191 			regs[insn->dst_reg].type = SCALAR_VALUE;
3192 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3193 				__mark_reg_known(regs + insn->dst_reg,
3194 						 insn->imm);
3195 			} else {
3196 				__mark_reg_known(regs + insn->dst_reg,
3197 						 (u32)insn->imm);
3198 			}
3199 		}
3200 
3201 	} else if (opcode > BPF_END) {
3202 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3203 		return -EINVAL;
3204 
3205 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3206 
3207 		if (BPF_SRC(insn->code) == BPF_X) {
3208 			if (insn->imm != 0 || insn->off != 0) {
3209 				verbose(env, "BPF_ALU uses reserved fields\n");
3210 				return -EINVAL;
3211 			}
3212 			/* check src1 operand */
3213 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3214 			if (err)
3215 				return err;
3216 		} else {
3217 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3218 				verbose(env, "BPF_ALU uses reserved fields\n");
3219 				return -EINVAL;
3220 			}
3221 		}
3222 
3223 		/* check src2 operand */
3224 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3225 		if (err)
3226 			return err;
3227 
3228 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3229 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3230 			verbose(env, "div by zero\n");
3231 			return -EINVAL;
3232 		}
3233 
3234 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3235 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3236 			return -EINVAL;
3237 		}
3238 
3239 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3240 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3241 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3242 
3243 			if (insn->imm < 0 || insn->imm >= size) {
3244 				verbose(env, "invalid shift %d\n", insn->imm);
3245 				return -EINVAL;
3246 			}
3247 		}
3248 
3249 		/* check dest operand */
3250 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3251 		if (err)
3252 			return err;
3253 
3254 		return adjust_reg_min_max_vals(env, insn);
3255 	}
3256 
3257 	return 0;
3258 }
3259 
3260 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3261 				   struct bpf_reg_state *dst_reg,
3262 				   enum bpf_reg_type type,
3263 				   bool range_right_open)
3264 {
3265 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3266 	struct bpf_reg_state *regs = state->regs, *reg;
3267 	u16 new_range;
3268 	int i, j;
3269 
3270 	if (dst_reg->off < 0 ||
3271 	    (dst_reg->off == 0 && range_right_open))
3272 		/* This doesn't give us any range */
3273 		return;
3274 
3275 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3276 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3277 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3278 		 * than pkt_end, but that's because it's also less than pkt.
3279 		 */
3280 		return;
3281 
3282 	new_range = dst_reg->off;
3283 	if (range_right_open)
3284 		new_range--;
3285 
3286 	/* Examples for register markings:
3287 	 *
3288 	 * pkt_data in dst register:
3289 	 *
3290 	 *   r2 = r3;
3291 	 *   r2 += 8;
3292 	 *   if (r2 > pkt_end) goto <handle exception>
3293 	 *   <access okay>
3294 	 *
3295 	 *   r2 = r3;
3296 	 *   r2 += 8;
3297 	 *   if (r2 < pkt_end) goto <access okay>
3298 	 *   <handle exception>
3299 	 *
3300 	 *   Where:
3301 	 *     r2 == dst_reg, pkt_end == src_reg
3302 	 *     r2=pkt(id=n,off=8,r=0)
3303 	 *     r3=pkt(id=n,off=0,r=0)
3304 	 *
3305 	 * pkt_data in src register:
3306 	 *
3307 	 *   r2 = r3;
3308 	 *   r2 += 8;
3309 	 *   if (pkt_end >= r2) goto <access okay>
3310 	 *   <handle exception>
3311 	 *
3312 	 *   r2 = r3;
3313 	 *   r2 += 8;
3314 	 *   if (pkt_end <= r2) goto <handle exception>
3315 	 *   <access okay>
3316 	 *
3317 	 *   Where:
3318 	 *     pkt_end == dst_reg, r2 == src_reg
3319 	 *     r2=pkt(id=n,off=8,r=0)
3320 	 *     r3=pkt(id=n,off=0,r=0)
3321 	 *
3322 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3323 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3324 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3325 	 * the check.
3326 	 */
3327 
3328 	/* If our ids match, then we must have the same max_value.  And we
3329 	 * don't care about the other reg's fixed offset, since if it's too big
3330 	 * the range won't allow anything.
3331 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3332 	 */
3333 	for (i = 0; i < MAX_BPF_REG; i++)
3334 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3335 			/* keep the maximum range already checked */
3336 			regs[i].range = max(regs[i].range, new_range);
3337 
3338 	for (j = 0; j <= vstate->curframe; j++) {
3339 		state = vstate->frame[j];
3340 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3341 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3342 				continue;
3343 			reg = &state->stack[i].spilled_ptr;
3344 			if (reg->type == type && reg->id == dst_reg->id)
3345 				reg->range = max(reg->range, new_range);
3346 		}
3347 	}
3348 }
3349 
3350 /* Adjusts the register min/max values in the case that the dst_reg is the
3351  * variable register that we are working on, and src_reg is a constant or we're
3352  * simply doing a BPF_K check.
3353  * In JEQ/JNE cases we also adjust the var_off values.
3354  */
3355 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3356 			    struct bpf_reg_state *false_reg, u64 val,
3357 			    u8 opcode)
3358 {
3359 	/* If the dst_reg is a pointer, we can't learn anything about its
3360 	 * variable offset from the compare (unless src_reg were a pointer into
3361 	 * the same object, but we don't bother with that.
3362 	 * Since false_reg and true_reg have the same type by construction, we
3363 	 * only need to check one of them for pointerness.
3364 	 */
3365 	if (__is_pointer_value(false, false_reg))
3366 		return;
3367 
3368 	switch (opcode) {
3369 	case BPF_JEQ:
3370 		/* If this is false then we know nothing Jon Snow, but if it is
3371 		 * true then we know for sure.
3372 		 */
3373 		__mark_reg_known(true_reg, val);
3374 		break;
3375 	case BPF_JNE:
3376 		/* If this is true we know nothing Jon Snow, but if it is false
3377 		 * we know the value for sure;
3378 		 */
3379 		__mark_reg_known(false_reg, val);
3380 		break;
3381 	case BPF_JGT:
3382 		false_reg->umax_value = min(false_reg->umax_value, val);
3383 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3384 		break;
3385 	case BPF_JSGT:
3386 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3387 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3388 		break;
3389 	case BPF_JLT:
3390 		false_reg->umin_value = max(false_reg->umin_value, val);
3391 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3392 		break;
3393 	case BPF_JSLT:
3394 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3395 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3396 		break;
3397 	case BPF_JGE:
3398 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3399 		true_reg->umin_value = max(true_reg->umin_value, val);
3400 		break;
3401 	case BPF_JSGE:
3402 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3403 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3404 		break;
3405 	case BPF_JLE:
3406 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3407 		true_reg->umax_value = min(true_reg->umax_value, val);
3408 		break;
3409 	case BPF_JSLE:
3410 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3411 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3412 		break;
3413 	default:
3414 		break;
3415 	}
3416 
3417 	__reg_deduce_bounds(false_reg);
3418 	__reg_deduce_bounds(true_reg);
3419 	/* We might have learned some bits from the bounds. */
3420 	__reg_bound_offset(false_reg);
3421 	__reg_bound_offset(true_reg);
3422 	/* Intersecting with the old var_off might have improved our bounds
3423 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3424 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3425 	 */
3426 	__update_reg_bounds(false_reg);
3427 	__update_reg_bounds(true_reg);
3428 }
3429 
3430 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3431  * the variable reg.
3432  */
3433 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3434 				struct bpf_reg_state *false_reg, u64 val,
3435 				u8 opcode)
3436 {
3437 	if (__is_pointer_value(false, false_reg))
3438 		return;
3439 
3440 	switch (opcode) {
3441 	case BPF_JEQ:
3442 		/* If this is false then we know nothing Jon Snow, but if it is
3443 		 * true then we know for sure.
3444 		 */
3445 		__mark_reg_known(true_reg, val);
3446 		break;
3447 	case BPF_JNE:
3448 		/* If this is true we know nothing Jon Snow, but if it is false
3449 		 * we know the value for sure;
3450 		 */
3451 		__mark_reg_known(false_reg, val);
3452 		break;
3453 	case BPF_JGT:
3454 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3455 		false_reg->umin_value = max(false_reg->umin_value, val);
3456 		break;
3457 	case BPF_JSGT:
3458 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3459 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3460 		break;
3461 	case BPF_JLT:
3462 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3463 		false_reg->umax_value = min(false_reg->umax_value, val);
3464 		break;
3465 	case BPF_JSLT:
3466 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3467 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3468 		break;
3469 	case BPF_JGE:
3470 		true_reg->umax_value = min(true_reg->umax_value, val);
3471 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3472 		break;
3473 	case BPF_JSGE:
3474 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3475 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3476 		break;
3477 	case BPF_JLE:
3478 		true_reg->umin_value = max(true_reg->umin_value, val);
3479 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3480 		break;
3481 	case BPF_JSLE:
3482 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3483 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3484 		break;
3485 	default:
3486 		break;
3487 	}
3488 
3489 	__reg_deduce_bounds(false_reg);
3490 	__reg_deduce_bounds(true_reg);
3491 	/* We might have learned some bits from the bounds. */
3492 	__reg_bound_offset(false_reg);
3493 	__reg_bound_offset(true_reg);
3494 	/* Intersecting with the old var_off might have improved our bounds
3495 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3496 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3497 	 */
3498 	__update_reg_bounds(false_reg);
3499 	__update_reg_bounds(true_reg);
3500 }
3501 
3502 /* Regs are known to be equal, so intersect their min/max/var_off */
3503 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3504 				  struct bpf_reg_state *dst_reg)
3505 {
3506 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3507 							dst_reg->umin_value);
3508 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3509 							dst_reg->umax_value);
3510 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3511 							dst_reg->smin_value);
3512 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3513 							dst_reg->smax_value);
3514 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3515 							     dst_reg->var_off);
3516 	/* We might have learned new bounds from the var_off. */
3517 	__update_reg_bounds(src_reg);
3518 	__update_reg_bounds(dst_reg);
3519 	/* We might have learned something about the sign bit. */
3520 	__reg_deduce_bounds(src_reg);
3521 	__reg_deduce_bounds(dst_reg);
3522 	/* We might have learned some bits from the bounds. */
3523 	__reg_bound_offset(src_reg);
3524 	__reg_bound_offset(dst_reg);
3525 	/* Intersecting with the old var_off might have improved our bounds
3526 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3527 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3528 	 */
3529 	__update_reg_bounds(src_reg);
3530 	__update_reg_bounds(dst_reg);
3531 }
3532 
3533 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3534 				struct bpf_reg_state *true_dst,
3535 				struct bpf_reg_state *false_src,
3536 				struct bpf_reg_state *false_dst,
3537 				u8 opcode)
3538 {
3539 	switch (opcode) {
3540 	case BPF_JEQ:
3541 		__reg_combine_min_max(true_src, true_dst);
3542 		break;
3543 	case BPF_JNE:
3544 		__reg_combine_min_max(false_src, false_dst);
3545 		break;
3546 	}
3547 }
3548 
3549 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3550 			 bool is_null)
3551 {
3552 	struct bpf_reg_state *reg = &regs[regno];
3553 
3554 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3555 		/* Old offset (both fixed and variable parts) should
3556 		 * have been known-zero, because we don't allow pointer
3557 		 * arithmetic on pointers that might be NULL.
3558 		 */
3559 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3560 				 !tnum_equals_const(reg->var_off, 0) ||
3561 				 reg->off)) {
3562 			__mark_reg_known_zero(reg);
3563 			reg->off = 0;
3564 		}
3565 		if (is_null) {
3566 			reg->type = SCALAR_VALUE;
3567 		} else if (reg->map_ptr->inner_map_meta) {
3568 			reg->type = CONST_PTR_TO_MAP;
3569 			reg->map_ptr = reg->map_ptr->inner_map_meta;
3570 		} else {
3571 			reg->type = PTR_TO_MAP_VALUE;
3572 		}
3573 		/* We don't need id from this point onwards anymore, thus we
3574 		 * should better reset it, so that state pruning has chances
3575 		 * to take effect.
3576 		 */
3577 		reg->id = 0;
3578 	}
3579 }
3580 
3581 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3582  * be folded together at some point.
3583  */
3584 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3585 			  bool is_null)
3586 {
3587 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3588 	struct bpf_reg_state *regs = state->regs;
3589 	u32 id = regs[regno].id;
3590 	int i, j;
3591 
3592 	for (i = 0; i < MAX_BPF_REG; i++)
3593 		mark_map_reg(regs, i, id, is_null);
3594 
3595 	for (j = 0; j <= vstate->curframe; j++) {
3596 		state = vstate->frame[j];
3597 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3598 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3599 				continue;
3600 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3601 		}
3602 	}
3603 }
3604 
3605 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3606 				   struct bpf_reg_state *dst_reg,
3607 				   struct bpf_reg_state *src_reg,
3608 				   struct bpf_verifier_state *this_branch,
3609 				   struct bpf_verifier_state *other_branch)
3610 {
3611 	if (BPF_SRC(insn->code) != BPF_X)
3612 		return false;
3613 
3614 	switch (BPF_OP(insn->code)) {
3615 	case BPF_JGT:
3616 		if ((dst_reg->type == PTR_TO_PACKET &&
3617 		     src_reg->type == PTR_TO_PACKET_END) ||
3618 		    (dst_reg->type == PTR_TO_PACKET_META &&
3619 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3620 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3621 			find_good_pkt_pointers(this_branch, dst_reg,
3622 					       dst_reg->type, false);
3623 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3624 			    src_reg->type == PTR_TO_PACKET) ||
3625 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3626 			    src_reg->type == PTR_TO_PACKET_META)) {
3627 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
3628 			find_good_pkt_pointers(other_branch, src_reg,
3629 					       src_reg->type, true);
3630 		} else {
3631 			return false;
3632 		}
3633 		break;
3634 	case BPF_JLT:
3635 		if ((dst_reg->type == PTR_TO_PACKET &&
3636 		     src_reg->type == PTR_TO_PACKET_END) ||
3637 		    (dst_reg->type == PTR_TO_PACKET_META &&
3638 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3639 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3640 			find_good_pkt_pointers(other_branch, dst_reg,
3641 					       dst_reg->type, true);
3642 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3643 			    src_reg->type == PTR_TO_PACKET) ||
3644 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3645 			    src_reg->type == PTR_TO_PACKET_META)) {
3646 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
3647 			find_good_pkt_pointers(this_branch, src_reg,
3648 					       src_reg->type, false);
3649 		} else {
3650 			return false;
3651 		}
3652 		break;
3653 	case BPF_JGE:
3654 		if ((dst_reg->type == PTR_TO_PACKET &&
3655 		     src_reg->type == PTR_TO_PACKET_END) ||
3656 		    (dst_reg->type == PTR_TO_PACKET_META &&
3657 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3658 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3659 			find_good_pkt_pointers(this_branch, dst_reg,
3660 					       dst_reg->type, true);
3661 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3662 			    src_reg->type == PTR_TO_PACKET) ||
3663 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3664 			    src_reg->type == PTR_TO_PACKET_META)) {
3665 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3666 			find_good_pkt_pointers(other_branch, src_reg,
3667 					       src_reg->type, false);
3668 		} else {
3669 			return false;
3670 		}
3671 		break;
3672 	case BPF_JLE:
3673 		if ((dst_reg->type == PTR_TO_PACKET &&
3674 		     src_reg->type == PTR_TO_PACKET_END) ||
3675 		    (dst_reg->type == PTR_TO_PACKET_META &&
3676 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3677 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3678 			find_good_pkt_pointers(other_branch, dst_reg,
3679 					       dst_reg->type, false);
3680 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3681 			    src_reg->type == PTR_TO_PACKET) ||
3682 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3683 			    src_reg->type == PTR_TO_PACKET_META)) {
3684 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3685 			find_good_pkt_pointers(this_branch, src_reg,
3686 					       src_reg->type, true);
3687 		} else {
3688 			return false;
3689 		}
3690 		break;
3691 	default:
3692 		return false;
3693 	}
3694 
3695 	return true;
3696 }
3697 
3698 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3699 			     struct bpf_insn *insn, int *insn_idx)
3700 {
3701 	struct bpf_verifier_state *this_branch = env->cur_state;
3702 	struct bpf_verifier_state *other_branch;
3703 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3704 	struct bpf_reg_state *dst_reg, *other_branch_regs;
3705 	u8 opcode = BPF_OP(insn->code);
3706 	int err;
3707 
3708 	if (opcode > BPF_JSLE) {
3709 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3710 		return -EINVAL;
3711 	}
3712 
3713 	if (BPF_SRC(insn->code) == BPF_X) {
3714 		if (insn->imm != 0) {
3715 			verbose(env, "BPF_JMP uses reserved fields\n");
3716 			return -EINVAL;
3717 		}
3718 
3719 		/* check src1 operand */
3720 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3721 		if (err)
3722 			return err;
3723 
3724 		if (is_pointer_value(env, insn->src_reg)) {
3725 			verbose(env, "R%d pointer comparison prohibited\n",
3726 				insn->src_reg);
3727 			return -EACCES;
3728 		}
3729 	} else {
3730 		if (insn->src_reg != BPF_REG_0) {
3731 			verbose(env, "BPF_JMP uses reserved fields\n");
3732 			return -EINVAL;
3733 		}
3734 	}
3735 
3736 	/* check src2 operand */
3737 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3738 	if (err)
3739 		return err;
3740 
3741 	dst_reg = &regs[insn->dst_reg];
3742 
3743 	/* detect if R == 0 where R was initialized to zero earlier */
3744 	if (BPF_SRC(insn->code) == BPF_K &&
3745 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3746 	    dst_reg->type == SCALAR_VALUE &&
3747 	    tnum_is_const(dst_reg->var_off)) {
3748 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3749 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3750 			/* if (imm == imm) goto pc+off;
3751 			 * only follow the goto, ignore fall-through
3752 			 */
3753 			*insn_idx += insn->off;
3754 			return 0;
3755 		} else {
3756 			/* if (imm != imm) goto pc+off;
3757 			 * only follow fall-through branch, since
3758 			 * that's where the program will go
3759 			 */
3760 			return 0;
3761 		}
3762 	}
3763 
3764 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3765 	if (!other_branch)
3766 		return -EFAULT;
3767 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3768 
3769 	/* detect if we are comparing against a constant value so we can adjust
3770 	 * our min/max values for our dst register.
3771 	 * this is only legit if both are scalars (or pointers to the same
3772 	 * object, I suppose, but we don't support that right now), because
3773 	 * otherwise the different base pointers mean the offsets aren't
3774 	 * comparable.
3775 	 */
3776 	if (BPF_SRC(insn->code) == BPF_X) {
3777 		if (dst_reg->type == SCALAR_VALUE &&
3778 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3779 			if (tnum_is_const(regs[insn->src_reg].var_off))
3780 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3781 						dst_reg, regs[insn->src_reg].var_off.value,
3782 						opcode);
3783 			else if (tnum_is_const(dst_reg->var_off))
3784 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3785 						    &regs[insn->src_reg],
3786 						    dst_reg->var_off.value, opcode);
3787 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3788 				/* Comparing for equality, we can combine knowledge */
3789 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
3790 						    &other_branch_regs[insn->dst_reg],
3791 						    &regs[insn->src_reg],
3792 						    &regs[insn->dst_reg], opcode);
3793 		}
3794 	} else if (dst_reg->type == SCALAR_VALUE) {
3795 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3796 					dst_reg, insn->imm, opcode);
3797 	}
3798 
3799 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3800 	if (BPF_SRC(insn->code) == BPF_K &&
3801 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3802 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3803 		/* Mark all identical map registers in each branch as either
3804 		 * safe or unknown depending R == 0 or R != 0 conditional.
3805 		 */
3806 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3807 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3808 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3809 					   this_branch, other_branch) &&
3810 		   is_pointer_value(env, insn->dst_reg)) {
3811 		verbose(env, "R%d pointer comparison prohibited\n",
3812 			insn->dst_reg);
3813 		return -EACCES;
3814 	}
3815 	if (env->log.level)
3816 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3817 	return 0;
3818 }
3819 
3820 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3821 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3822 {
3823 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3824 
3825 	return (struct bpf_map *) (unsigned long) imm64;
3826 }
3827 
3828 /* verify BPF_LD_IMM64 instruction */
3829 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3830 {
3831 	struct bpf_reg_state *regs = cur_regs(env);
3832 	int err;
3833 
3834 	if (BPF_SIZE(insn->code) != BPF_DW) {
3835 		verbose(env, "invalid BPF_LD_IMM insn\n");
3836 		return -EINVAL;
3837 	}
3838 	if (insn->off != 0) {
3839 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3840 		return -EINVAL;
3841 	}
3842 
3843 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3844 	if (err)
3845 		return err;
3846 
3847 	if (insn->src_reg == 0) {
3848 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3849 
3850 		regs[insn->dst_reg].type = SCALAR_VALUE;
3851 		__mark_reg_known(&regs[insn->dst_reg], imm);
3852 		return 0;
3853 	}
3854 
3855 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3856 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3857 
3858 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3859 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3860 	return 0;
3861 }
3862 
3863 static bool may_access_skb(enum bpf_prog_type type)
3864 {
3865 	switch (type) {
3866 	case BPF_PROG_TYPE_SOCKET_FILTER:
3867 	case BPF_PROG_TYPE_SCHED_CLS:
3868 	case BPF_PROG_TYPE_SCHED_ACT:
3869 		return true;
3870 	default:
3871 		return false;
3872 	}
3873 }
3874 
3875 /* verify safety of LD_ABS|LD_IND instructions:
3876  * - they can only appear in the programs where ctx == skb
3877  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3878  *   preserve R6-R9, and store return value into R0
3879  *
3880  * Implicit input:
3881  *   ctx == skb == R6 == CTX
3882  *
3883  * Explicit input:
3884  *   SRC == any register
3885  *   IMM == 32-bit immediate
3886  *
3887  * Output:
3888  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3889  */
3890 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3891 {
3892 	struct bpf_reg_state *regs = cur_regs(env);
3893 	u8 mode = BPF_MODE(insn->code);
3894 	int i, err;
3895 
3896 	if (!may_access_skb(env->prog->type)) {
3897 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3898 		return -EINVAL;
3899 	}
3900 
3901 	if (!env->ops->gen_ld_abs) {
3902 		verbose(env, "bpf verifier is misconfigured\n");
3903 		return -EINVAL;
3904 	}
3905 
3906 	if (env->subprog_cnt > 1) {
3907 		/* when program has LD_ABS insn JITs and interpreter assume
3908 		 * that r1 == ctx == skb which is not the case for callees
3909 		 * that can have arbitrary arguments. It's problematic
3910 		 * for main prog as well since JITs would need to analyze
3911 		 * all functions in order to make proper register save/restore
3912 		 * decisions in the main prog. Hence disallow LD_ABS with calls
3913 		 */
3914 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3915 		return -EINVAL;
3916 	}
3917 
3918 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3919 	    BPF_SIZE(insn->code) == BPF_DW ||
3920 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3921 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3922 		return -EINVAL;
3923 	}
3924 
3925 	/* check whether implicit source operand (register R6) is readable */
3926 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3927 	if (err)
3928 		return err;
3929 
3930 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3931 		verbose(env,
3932 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3933 		return -EINVAL;
3934 	}
3935 
3936 	if (mode == BPF_IND) {
3937 		/* check explicit source operand */
3938 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3939 		if (err)
3940 			return err;
3941 	}
3942 
3943 	/* reset caller saved regs to unreadable */
3944 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3945 		mark_reg_not_init(env, regs, caller_saved[i]);
3946 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3947 	}
3948 
3949 	/* mark destination R0 register as readable, since it contains
3950 	 * the value fetched from the packet.
3951 	 * Already marked as written above.
3952 	 */
3953 	mark_reg_unknown(env, regs, BPF_REG_0);
3954 	return 0;
3955 }
3956 
3957 static int check_return_code(struct bpf_verifier_env *env)
3958 {
3959 	struct bpf_reg_state *reg;
3960 	struct tnum range = tnum_range(0, 1);
3961 
3962 	switch (env->prog->type) {
3963 	case BPF_PROG_TYPE_CGROUP_SKB:
3964 	case BPF_PROG_TYPE_CGROUP_SOCK:
3965 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3966 	case BPF_PROG_TYPE_SOCK_OPS:
3967 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3968 		break;
3969 	default:
3970 		return 0;
3971 	}
3972 
3973 	reg = cur_regs(env) + BPF_REG_0;
3974 	if (reg->type != SCALAR_VALUE) {
3975 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3976 			reg_type_str[reg->type]);
3977 		return -EINVAL;
3978 	}
3979 
3980 	if (!tnum_in(range, reg->var_off)) {
3981 		verbose(env, "At program exit the register R0 ");
3982 		if (!tnum_is_unknown(reg->var_off)) {
3983 			char tn_buf[48];
3984 
3985 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3986 			verbose(env, "has value %s", tn_buf);
3987 		} else {
3988 			verbose(env, "has unknown scalar value");
3989 		}
3990 		verbose(env, " should have been 0 or 1\n");
3991 		return -EINVAL;
3992 	}
3993 	return 0;
3994 }
3995 
3996 /* non-recursive DFS pseudo code
3997  * 1  procedure DFS-iterative(G,v):
3998  * 2      label v as discovered
3999  * 3      let S be a stack
4000  * 4      S.push(v)
4001  * 5      while S is not empty
4002  * 6            t <- S.pop()
4003  * 7            if t is what we're looking for:
4004  * 8                return t
4005  * 9            for all edges e in G.adjacentEdges(t) do
4006  * 10               if edge e is already labelled
4007  * 11                   continue with the next edge
4008  * 12               w <- G.adjacentVertex(t,e)
4009  * 13               if vertex w is not discovered and not explored
4010  * 14                   label e as tree-edge
4011  * 15                   label w as discovered
4012  * 16                   S.push(w)
4013  * 17                   continue at 5
4014  * 18               else if vertex w is discovered
4015  * 19                   label e as back-edge
4016  * 20               else
4017  * 21                   // vertex w is explored
4018  * 22                   label e as forward- or cross-edge
4019  * 23           label t as explored
4020  * 24           S.pop()
4021  *
4022  * convention:
4023  * 0x10 - discovered
4024  * 0x11 - discovered and fall-through edge labelled
4025  * 0x12 - discovered and fall-through and branch edges labelled
4026  * 0x20 - explored
4027  */
4028 
4029 enum {
4030 	DISCOVERED = 0x10,
4031 	EXPLORED = 0x20,
4032 	FALLTHROUGH = 1,
4033 	BRANCH = 2,
4034 };
4035 
4036 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4037 
4038 static int *insn_stack;	/* stack of insns to process */
4039 static int cur_stack;	/* current stack index */
4040 static int *insn_state;
4041 
4042 /* t, w, e - match pseudo-code above:
4043  * t - index of current instruction
4044  * w - next instruction
4045  * e - edge
4046  */
4047 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4048 {
4049 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4050 		return 0;
4051 
4052 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4053 		return 0;
4054 
4055 	if (w < 0 || w >= env->prog->len) {
4056 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4057 		return -EINVAL;
4058 	}
4059 
4060 	if (e == BRANCH)
4061 		/* mark branch target for state pruning */
4062 		env->explored_states[w] = STATE_LIST_MARK;
4063 
4064 	if (insn_state[w] == 0) {
4065 		/* tree-edge */
4066 		insn_state[t] = DISCOVERED | e;
4067 		insn_state[w] = DISCOVERED;
4068 		if (cur_stack >= env->prog->len)
4069 			return -E2BIG;
4070 		insn_stack[cur_stack++] = w;
4071 		return 1;
4072 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4073 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4074 		return -EINVAL;
4075 	} else if (insn_state[w] == EXPLORED) {
4076 		/* forward- or cross-edge */
4077 		insn_state[t] = DISCOVERED | e;
4078 	} else {
4079 		verbose(env, "insn state internal bug\n");
4080 		return -EFAULT;
4081 	}
4082 	return 0;
4083 }
4084 
4085 /* non-recursive depth-first-search to detect loops in BPF program
4086  * loop == back-edge in directed graph
4087  */
4088 static int check_cfg(struct bpf_verifier_env *env)
4089 {
4090 	struct bpf_insn *insns = env->prog->insnsi;
4091 	int insn_cnt = env->prog->len;
4092 	int ret = 0;
4093 	int i, t;
4094 
4095 	ret = check_subprogs(env);
4096 	if (ret < 0)
4097 		return ret;
4098 
4099 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4100 	if (!insn_state)
4101 		return -ENOMEM;
4102 
4103 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4104 	if (!insn_stack) {
4105 		kfree(insn_state);
4106 		return -ENOMEM;
4107 	}
4108 
4109 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4110 	insn_stack[0] = 0; /* 0 is the first instruction */
4111 	cur_stack = 1;
4112 
4113 peek_stack:
4114 	if (cur_stack == 0)
4115 		goto check_state;
4116 	t = insn_stack[cur_stack - 1];
4117 
4118 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4119 		u8 opcode = BPF_OP(insns[t].code);
4120 
4121 		if (opcode == BPF_EXIT) {
4122 			goto mark_explored;
4123 		} else if (opcode == BPF_CALL) {
4124 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4125 			if (ret == 1)
4126 				goto peek_stack;
4127 			else if (ret < 0)
4128 				goto err_free;
4129 			if (t + 1 < insn_cnt)
4130 				env->explored_states[t + 1] = STATE_LIST_MARK;
4131 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4132 				env->explored_states[t] = STATE_LIST_MARK;
4133 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4134 				if (ret == 1)
4135 					goto peek_stack;
4136 				else if (ret < 0)
4137 					goto err_free;
4138 			}
4139 		} else if (opcode == BPF_JA) {
4140 			if (BPF_SRC(insns[t].code) != BPF_K) {
4141 				ret = -EINVAL;
4142 				goto err_free;
4143 			}
4144 			/* unconditional jump with single edge */
4145 			ret = push_insn(t, t + insns[t].off + 1,
4146 					FALLTHROUGH, env);
4147 			if (ret == 1)
4148 				goto peek_stack;
4149 			else if (ret < 0)
4150 				goto err_free;
4151 			/* tell verifier to check for equivalent states
4152 			 * after every call and jump
4153 			 */
4154 			if (t + 1 < insn_cnt)
4155 				env->explored_states[t + 1] = STATE_LIST_MARK;
4156 		} else {
4157 			/* conditional jump with two edges */
4158 			env->explored_states[t] = STATE_LIST_MARK;
4159 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4160 			if (ret == 1)
4161 				goto peek_stack;
4162 			else if (ret < 0)
4163 				goto err_free;
4164 
4165 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4166 			if (ret == 1)
4167 				goto peek_stack;
4168 			else if (ret < 0)
4169 				goto err_free;
4170 		}
4171 	} else {
4172 		/* all other non-branch instructions with single
4173 		 * fall-through edge
4174 		 */
4175 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4176 		if (ret == 1)
4177 			goto peek_stack;
4178 		else if (ret < 0)
4179 			goto err_free;
4180 	}
4181 
4182 mark_explored:
4183 	insn_state[t] = EXPLORED;
4184 	if (cur_stack-- <= 0) {
4185 		verbose(env, "pop stack internal bug\n");
4186 		ret = -EFAULT;
4187 		goto err_free;
4188 	}
4189 	goto peek_stack;
4190 
4191 check_state:
4192 	for (i = 0; i < insn_cnt; i++) {
4193 		if (insn_state[i] != EXPLORED) {
4194 			verbose(env, "unreachable insn %d\n", i);
4195 			ret = -EINVAL;
4196 			goto err_free;
4197 		}
4198 	}
4199 	ret = 0; /* cfg looks good */
4200 
4201 err_free:
4202 	kfree(insn_state);
4203 	kfree(insn_stack);
4204 	return ret;
4205 }
4206 
4207 /* check %cur's range satisfies %old's */
4208 static bool range_within(struct bpf_reg_state *old,
4209 			 struct bpf_reg_state *cur)
4210 {
4211 	return old->umin_value <= cur->umin_value &&
4212 	       old->umax_value >= cur->umax_value &&
4213 	       old->smin_value <= cur->smin_value &&
4214 	       old->smax_value >= cur->smax_value;
4215 }
4216 
4217 /* Maximum number of register states that can exist at once */
4218 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4219 struct idpair {
4220 	u32 old;
4221 	u32 cur;
4222 };
4223 
4224 /* If in the old state two registers had the same id, then they need to have
4225  * the same id in the new state as well.  But that id could be different from
4226  * the old state, so we need to track the mapping from old to new ids.
4227  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4228  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4229  * regs with a different old id could still have new id 9, we don't care about
4230  * that.
4231  * So we look through our idmap to see if this old id has been seen before.  If
4232  * so, we require the new id to match; otherwise, we add the id pair to the map.
4233  */
4234 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4235 {
4236 	unsigned int i;
4237 
4238 	for (i = 0; i < ID_MAP_SIZE; i++) {
4239 		if (!idmap[i].old) {
4240 			/* Reached an empty slot; haven't seen this id before */
4241 			idmap[i].old = old_id;
4242 			idmap[i].cur = cur_id;
4243 			return true;
4244 		}
4245 		if (idmap[i].old == old_id)
4246 			return idmap[i].cur == cur_id;
4247 	}
4248 	/* We ran out of idmap slots, which should be impossible */
4249 	WARN_ON_ONCE(1);
4250 	return false;
4251 }
4252 
4253 /* Returns true if (rold safe implies rcur safe) */
4254 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4255 		    struct idpair *idmap)
4256 {
4257 	bool equal;
4258 
4259 	if (!(rold->live & REG_LIVE_READ))
4260 		/* explored state didn't use this */
4261 		return true;
4262 
4263 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4264 
4265 	if (rold->type == PTR_TO_STACK)
4266 		/* two stack pointers are equal only if they're pointing to
4267 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4268 		 */
4269 		return equal && rold->frameno == rcur->frameno;
4270 
4271 	if (equal)
4272 		return true;
4273 
4274 	if (rold->type == NOT_INIT)
4275 		/* explored state can't have used this */
4276 		return true;
4277 	if (rcur->type == NOT_INIT)
4278 		return false;
4279 	switch (rold->type) {
4280 	case SCALAR_VALUE:
4281 		if (rcur->type == SCALAR_VALUE) {
4282 			/* new val must satisfy old val knowledge */
4283 			return range_within(rold, rcur) &&
4284 			       tnum_in(rold->var_off, rcur->var_off);
4285 		} else {
4286 			/* We're trying to use a pointer in place of a scalar.
4287 			 * Even if the scalar was unbounded, this could lead to
4288 			 * pointer leaks because scalars are allowed to leak
4289 			 * while pointers are not. We could make this safe in
4290 			 * special cases if root is calling us, but it's
4291 			 * probably not worth the hassle.
4292 			 */
4293 			return false;
4294 		}
4295 	case PTR_TO_MAP_VALUE:
4296 		/* If the new min/max/var_off satisfy the old ones and
4297 		 * everything else matches, we are OK.
4298 		 * We don't care about the 'id' value, because nothing
4299 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4300 		 */
4301 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4302 		       range_within(rold, rcur) &&
4303 		       tnum_in(rold->var_off, rcur->var_off);
4304 	case PTR_TO_MAP_VALUE_OR_NULL:
4305 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4306 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4307 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4308 		 * checked, doing so could have affected others with the same
4309 		 * id, and we can't check for that because we lost the id when
4310 		 * we converted to a PTR_TO_MAP_VALUE.
4311 		 */
4312 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4313 			return false;
4314 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4315 			return false;
4316 		/* Check our ids match any regs they're supposed to */
4317 		return check_ids(rold->id, rcur->id, idmap);
4318 	case PTR_TO_PACKET_META:
4319 	case PTR_TO_PACKET:
4320 		if (rcur->type != rold->type)
4321 			return false;
4322 		/* We must have at least as much range as the old ptr
4323 		 * did, so that any accesses which were safe before are
4324 		 * still safe.  This is true even if old range < old off,
4325 		 * since someone could have accessed through (ptr - k), or
4326 		 * even done ptr -= k in a register, to get a safe access.
4327 		 */
4328 		if (rold->range > rcur->range)
4329 			return false;
4330 		/* If the offsets don't match, we can't trust our alignment;
4331 		 * nor can we be sure that we won't fall out of range.
4332 		 */
4333 		if (rold->off != rcur->off)
4334 			return false;
4335 		/* id relations must be preserved */
4336 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4337 			return false;
4338 		/* new val must satisfy old val knowledge */
4339 		return range_within(rold, rcur) &&
4340 		       tnum_in(rold->var_off, rcur->var_off);
4341 	case PTR_TO_CTX:
4342 	case CONST_PTR_TO_MAP:
4343 	case PTR_TO_PACKET_END:
4344 		/* Only valid matches are exact, which memcmp() above
4345 		 * would have accepted
4346 		 */
4347 	default:
4348 		/* Don't know what's going on, just say it's not safe */
4349 		return false;
4350 	}
4351 
4352 	/* Shouldn't get here; if we do, say it's not safe */
4353 	WARN_ON_ONCE(1);
4354 	return false;
4355 }
4356 
4357 static bool stacksafe(struct bpf_func_state *old,
4358 		      struct bpf_func_state *cur,
4359 		      struct idpair *idmap)
4360 {
4361 	int i, spi;
4362 
4363 	/* if explored stack has more populated slots than current stack
4364 	 * such stacks are not equivalent
4365 	 */
4366 	if (old->allocated_stack > cur->allocated_stack)
4367 		return false;
4368 
4369 	/* walk slots of the explored stack and ignore any additional
4370 	 * slots in the current stack, since explored(safe) state
4371 	 * didn't use them
4372 	 */
4373 	for (i = 0; i < old->allocated_stack; i++) {
4374 		spi = i / BPF_REG_SIZE;
4375 
4376 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4377 			/* explored state didn't use this */
4378 			continue;
4379 
4380 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4381 			continue;
4382 		/* if old state was safe with misc data in the stack
4383 		 * it will be safe with zero-initialized stack.
4384 		 * The opposite is not true
4385 		 */
4386 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4387 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4388 			continue;
4389 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4390 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4391 			/* Ex: old explored (safe) state has STACK_SPILL in
4392 			 * this stack slot, but current has has STACK_MISC ->
4393 			 * this verifier states are not equivalent,
4394 			 * return false to continue verification of this path
4395 			 */
4396 			return false;
4397 		if (i % BPF_REG_SIZE)
4398 			continue;
4399 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4400 			continue;
4401 		if (!regsafe(&old->stack[spi].spilled_ptr,
4402 			     &cur->stack[spi].spilled_ptr,
4403 			     idmap))
4404 			/* when explored and current stack slot are both storing
4405 			 * spilled registers, check that stored pointers types
4406 			 * are the same as well.
4407 			 * Ex: explored safe path could have stored
4408 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4409 			 * but current path has stored:
4410 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4411 			 * such verifier states are not equivalent.
4412 			 * return false to continue verification of this path
4413 			 */
4414 			return false;
4415 	}
4416 	return true;
4417 }
4418 
4419 /* compare two verifier states
4420  *
4421  * all states stored in state_list are known to be valid, since
4422  * verifier reached 'bpf_exit' instruction through them
4423  *
4424  * this function is called when verifier exploring different branches of
4425  * execution popped from the state stack. If it sees an old state that has
4426  * more strict register state and more strict stack state then this execution
4427  * branch doesn't need to be explored further, since verifier already
4428  * concluded that more strict state leads to valid finish.
4429  *
4430  * Therefore two states are equivalent if register state is more conservative
4431  * and explored stack state is more conservative than the current one.
4432  * Example:
4433  *       explored                   current
4434  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4435  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4436  *
4437  * In other words if current stack state (one being explored) has more
4438  * valid slots than old one that already passed validation, it means
4439  * the verifier can stop exploring and conclude that current state is valid too
4440  *
4441  * Similarly with registers. If explored state has register type as invalid
4442  * whereas register type in current state is meaningful, it means that
4443  * the current state will reach 'bpf_exit' instruction safely
4444  */
4445 static bool func_states_equal(struct bpf_func_state *old,
4446 			      struct bpf_func_state *cur)
4447 {
4448 	struct idpair *idmap;
4449 	bool ret = false;
4450 	int i;
4451 
4452 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4453 	/* If we failed to allocate the idmap, just say it's not safe */
4454 	if (!idmap)
4455 		return false;
4456 
4457 	for (i = 0; i < MAX_BPF_REG; i++) {
4458 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4459 			goto out_free;
4460 	}
4461 
4462 	if (!stacksafe(old, cur, idmap))
4463 		goto out_free;
4464 	ret = true;
4465 out_free:
4466 	kfree(idmap);
4467 	return ret;
4468 }
4469 
4470 static bool states_equal(struct bpf_verifier_env *env,
4471 			 struct bpf_verifier_state *old,
4472 			 struct bpf_verifier_state *cur)
4473 {
4474 	int i;
4475 
4476 	if (old->curframe != cur->curframe)
4477 		return false;
4478 
4479 	/* for states to be equal callsites have to be the same
4480 	 * and all frame states need to be equivalent
4481 	 */
4482 	for (i = 0; i <= old->curframe; i++) {
4483 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4484 			return false;
4485 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4486 			return false;
4487 	}
4488 	return true;
4489 }
4490 
4491 /* A write screens off any subsequent reads; but write marks come from the
4492  * straight-line code between a state and its parent.  When we arrive at an
4493  * equivalent state (jump target or such) we didn't arrive by the straight-line
4494  * code, so read marks in the state must propagate to the parent regardless
4495  * of the state's write marks. That's what 'parent == state->parent' comparison
4496  * in mark_reg_read() and mark_stack_slot_read() is for.
4497  */
4498 static int propagate_liveness(struct bpf_verifier_env *env,
4499 			      const struct bpf_verifier_state *vstate,
4500 			      struct bpf_verifier_state *vparent)
4501 {
4502 	int i, frame, err = 0;
4503 	struct bpf_func_state *state, *parent;
4504 
4505 	if (vparent->curframe != vstate->curframe) {
4506 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4507 		     vparent->curframe, vstate->curframe);
4508 		return -EFAULT;
4509 	}
4510 	/* Propagate read liveness of registers... */
4511 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4512 	/* We don't need to worry about FP liveness because it's read-only */
4513 	for (i = 0; i < BPF_REG_FP; i++) {
4514 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4515 			continue;
4516 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4517 			err = mark_reg_read(env, vstate, vparent, i);
4518 			if (err)
4519 				return err;
4520 		}
4521 	}
4522 
4523 	/* ... and stack slots */
4524 	for (frame = 0; frame <= vstate->curframe; frame++) {
4525 		state = vstate->frame[frame];
4526 		parent = vparent->frame[frame];
4527 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4528 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4529 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4530 				continue;
4531 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4532 				mark_stack_slot_read(env, vstate, vparent, i, frame);
4533 		}
4534 	}
4535 	return err;
4536 }
4537 
4538 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4539 {
4540 	struct bpf_verifier_state_list *new_sl;
4541 	struct bpf_verifier_state_list *sl;
4542 	struct bpf_verifier_state *cur = env->cur_state;
4543 	int i, j, err;
4544 
4545 	sl = env->explored_states[insn_idx];
4546 	if (!sl)
4547 		/* this 'insn_idx' instruction wasn't marked, so we will not
4548 		 * be doing state search here
4549 		 */
4550 		return 0;
4551 
4552 	while (sl != STATE_LIST_MARK) {
4553 		if (states_equal(env, &sl->state, cur)) {
4554 			/* reached equivalent register/stack state,
4555 			 * prune the search.
4556 			 * Registers read by the continuation are read by us.
4557 			 * If we have any write marks in env->cur_state, they
4558 			 * will prevent corresponding reads in the continuation
4559 			 * from reaching our parent (an explored_state).  Our
4560 			 * own state will get the read marks recorded, but
4561 			 * they'll be immediately forgotten as we're pruning
4562 			 * this state and will pop a new one.
4563 			 */
4564 			err = propagate_liveness(env, &sl->state, cur);
4565 			if (err)
4566 				return err;
4567 			return 1;
4568 		}
4569 		sl = sl->next;
4570 	}
4571 
4572 	/* there were no equivalent states, remember current one.
4573 	 * technically the current state is not proven to be safe yet,
4574 	 * but it will either reach outer most bpf_exit (which means it's safe)
4575 	 * or it will be rejected. Since there are no loops, we won't be
4576 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4577 	 * again on the way to bpf_exit
4578 	 */
4579 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4580 	if (!new_sl)
4581 		return -ENOMEM;
4582 
4583 	/* add new state to the head of linked list */
4584 	err = copy_verifier_state(&new_sl->state, cur);
4585 	if (err) {
4586 		free_verifier_state(&new_sl->state, false);
4587 		kfree(new_sl);
4588 		return err;
4589 	}
4590 	new_sl->next = env->explored_states[insn_idx];
4591 	env->explored_states[insn_idx] = new_sl;
4592 	/* connect new state to parentage chain */
4593 	cur->parent = &new_sl->state;
4594 	/* clear write marks in current state: the writes we did are not writes
4595 	 * our child did, so they don't screen off its reads from us.
4596 	 * (There are no read marks in current state, because reads always mark
4597 	 * their parent and current state never has children yet.  Only
4598 	 * explored_states can get read marks.)
4599 	 */
4600 	for (i = 0; i < BPF_REG_FP; i++)
4601 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4602 
4603 	/* all stack frames are accessible from callee, clear them all */
4604 	for (j = 0; j <= cur->curframe; j++) {
4605 		struct bpf_func_state *frame = cur->frame[j];
4606 
4607 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4608 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4609 	}
4610 	return 0;
4611 }
4612 
4613 static int do_check(struct bpf_verifier_env *env)
4614 {
4615 	struct bpf_verifier_state *state;
4616 	struct bpf_insn *insns = env->prog->insnsi;
4617 	struct bpf_reg_state *regs;
4618 	int insn_cnt = env->prog->len, i;
4619 	int insn_idx, prev_insn_idx = 0;
4620 	int insn_processed = 0;
4621 	bool do_print_state = false;
4622 
4623 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4624 	if (!state)
4625 		return -ENOMEM;
4626 	state->curframe = 0;
4627 	state->parent = NULL;
4628 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4629 	if (!state->frame[0]) {
4630 		kfree(state);
4631 		return -ENOMEM;
4632 	}
4633 	env->cur_state = state;
4634 	init_func_state(env, state->frame[0],
4635 			BPF_MAIN_FUNC /* callsite */,
4636 			0 /* frameno */,
4637 			0 /* subprogno, zero == main subprog */);
4638 	insn_idx = 0;
4639 	for (;;) {
4640 		struct bpf_insn *insn;
4641 		u8 class;
4642 		int err;
4643 
4644 		if (insn_idx >= insn_cnt) {
4645 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4646 				insn_idx, insn_cnt);
4647 			return -EFAULT;
4648 		}
4649 
4650 		insn = &insns[insn_idx];
4651 		class = BPF_CLASS(insn->code);
4652 
4653 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4654 			verbose(env,
4655 				"BPF program is too large. Processed %d insn\n",
4656 				insn_processed);
4657 			return -E2BIG;
4658 		}
4659 
4660 		err = is_state_visited(env, insn_idx);
4661 		if (err < 0)
4662 			return err;
4663 		if (err == 1) {
4664 			/* found equivalent state, can prune the search */
4665 			if (env->log.level) {
4666 				if (do_print_state)
4667 					verbose(env, "\nfrom %d to %d: safe\n",
4668 						prev_insn_idx, insn_idx);
4669 				else
4670 					verbose(env, "%d: safe\n", insn_idx);
4671 			}
4672 			goto process_bpf_exit;
4673 		}
4674 
4675 		if (need_resched())
4676 			cond_resched();
4677 
4678 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
4679 			if (env->log.level > 1)
4680 				verbose(env, "%d:", insn_idx);
4681 			else
4682 				verbose(env, "\nfrom %d to %d:",
4683 					prev_insn_idx, insn_idx);
4684 			print_verifier_state(env, state->frame[state->curframe]);
4685 			do_print_state = false;
4686 		}
4687 
4688 		if (env->log.level) {
4689 			const struct bpf_insn_cbs cbs = {
4690 				.cb_print	= verbose,
4691 				.private_data	= env,
4692 			};
4693 
4694 			verbose(env, "%d: ", insn_idx);
4695 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4696 		}
4697 
4698 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
4699 			err = bpf_prog_offload_verify_insn(env, insn_idx,
4700 							   prev_insn_idx);
4701 			if (err)
4702 				return err;
4703 		}
4704 
4705 		regs = cur_regs(env);
4706 		env->insn_aux_data[insn_idx].seen = true;
4707 		if (class == BPF_ALU || class == BPF_ALU64) {
4708 			err = check_alu_op(env, insn);
4709 			if (err)
4710 				return err;
4711 
4712 		} else if (class == BPF_LDX) {
4713 			enum bpf_reg_type *prev_src_type, src_reg_type;
4714 
4715 			/* check for reserved fields is already done */
4716 
4717 			/* check src operand */
4718 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4719 			if (err)
4720 				return err;
4721 
4722 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4723 			if (err)
4724 				return err;
4725 
4726 			src_reg_type = regs[insn->src_reg].type;
4727 
4728 			/* check that memory (src_reg + off) is readable,
4729 			 * the state of dst_reg will be updated by this func
4730 			 */
4731 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4732 					       BPF_SIZE(insn->code), BPF_READ,
4733 					       insn->dst_reg, false);
4734 			if (err)
4735 				return err;
4736 
4737 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4738 
4739 			if (*prev_src_type == NOT_INIT) {
4740 				/* saw a valid insn
4741 				 * dst_reg = *(u32 *)(src_reg + off)
4742 				 * save type to validate intersecting paths
4743 				 */
4744 				*prev_src_type = src_reg_type;
4745 
4746 			} else if (src_reg_type != *prev_src_type &&
4747 				   (src_reg_type == PTR_TO_CTX ||
4748 				    *prev_src_type == PTR_TO_CTX)) {
4749 				/* ABuser program is trying to use the same insn
4750 				 * dst_reg = *(u32*) (src_reg + off)
4751 				 * with different pointer types:
4752 				 * src_reg == ctx in one branch and
4753 				 * src_reg == stack|map in some other branch.
4754 				 * Reject it.
4755 				 */
4756 				verbose(env, "same insn cannot be used with different pointers\n");
4757 				return -EINVAL;
4758 			}
4759 
4760 		} else if (class == BPF_STX) {
4761 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4762 
4763 			if (BPF_MODE(insn->code) == BPF_XADD) {
4764 				err = check_xadd(env, insn_idx, insn);
4765 				if (err)
4766 					return err;
4767 				insn_idx++;
4768 				continue;
4769 			}
4770 
4771 			/* check src1 operand */
4772 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4773 			if (err)
4774 				return err;
4775 			/* check src2 operand */
4776 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4777 			if (err)
4778 				return err;
4779 
4780 			dst_reg_type = regs[insn->dst_reg].type;
4781 
4782 			/* check that memory (dst_reg + off) is writeable */
4783 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4784 					       BPF_SIZE(insn->code), BPF_WRITE,
4785 					       insn->src_reg, false);
4786 			if (err)
4787 				return err;
4788 
4789 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4790 
4791 			if (*prev_dst_type == NOT_INIT) {
4792 				*prev_dst_type = dst_reg_type;
4793 			} else if (dst_reg_type != *prev_dst_type &&
4794 				   (dst_reg_type == PTR_TO_CTX ||
4795 				    *prev_dst_type == PTR_TO_CTX)) {
4796 				verbose(env, "same insn cannot be used with different pointers\n");
4797 				return -EINVAL;
4798 			}
4799 
4800 		} else if (class == BPF_ST) {
4801 			if (BPF_MODE(insn->code) != BPF_MEM ||
4802 			    insn->src_reg != BPF_REG_0) {
4803 				verbose(env, "BPF_ST uses reserved fields\n");
4804 				return -EINVAL;
4805 			}
4806 			/* check src operand */
4807 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4808 			if (err)
4809 				return err;
4810 
4811 			if (is_ctx_reg(env, insn->dst_reg)) {
4812 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4813 					insn->dst_reg);
4814 				return -EACCES;
4815 			}
4816 
4817 			/* check that memory (dst_reg + off) is writeable */
4818 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4819 					       BPF_SIZE(insn->code), BPF_WRITE,
4820 					       -1, false);
4821 			if (err)
4822 				return err;
4823 
4824 		} else if (class == BPF_JMP) {
4825 			u8 opcode = BPF_OP(insn->code);
4826 
4827 			if (opcode == BPF_CALL) {
4828 				if (BPF_SRC(insn->code) != BPF_K ||
4829 				    insn->off != 0 ||
4830 				    (insn->src_reg != BPF_REG_0 &&
4831 				     insn->src_reg != BPF_PSEUDO_CALL) ||
4832 				    insn->dst_reg != BPF_REG_0) {
4833 					verbose(env, "BPF_CALL uses reserved fields\n");
4834 					return -EINVAL;
4835 				}
4836 
4837 				if (insn->src_reg == BPF_PSEUDO_CALL)
4838 					err = check_func_call(env, insn, &insn_idx);
4839 				else
4840 					err = check_helper_call(env, insn->imm, insn_idx);
4841 				if (err)
4842 					return err;
4843 
4844 			} else if (opcode == BPF_JA) {
4845 				if (BPF_SRC(insn->code) != BPF_K ||
4846 				    insn->imm != 0 ||
4847 				    insn->src_reg != BPF_REG_0 ||
4848 				    insn->dst_reg != BPF_REG_0) {
4849 					verbose(env, "BPF_JA uses reserved fields\n");
4850 					return -EINVAL;
4851 				}
4852 
4853 				insn_idx += insn->off + 1;
4854 				continue;
4855 
4856 			} else if (opcode == BPF_EXIT) {
4857 				if (BPF_SRC(insn->code) != BPF_K ||
4858 				    insn->imm != 0 ||
4859 				    insn->src_reg != BPF_REG_0 ||
4860 				    insn->dst_reg != BPF_REG_0) {
4861 					verbose(env, "BPF_EXIT uses reserved fields\n");
4862 					return -EINVAL;
4863 				}
4864 
4865 				if (state->curframe) {
4866 					/* exit from nested function */
4867 					prev_insn_idx = insn_idx;
4868 					err = prepare_func_exit(env, &insn_idx);
4869 					if (err)
4870 						return err;
4871 					do_print_state = true;
4872 					continue;
4873 				}
4874 
4875 				/* eBPF calling convetion is such that R0 is used
4876 				 * to return the value from eBPF program.
4877 				 * Make sure that it's readable at this time
4878 				 * of bpf_exit, which means that program wrote
4879 				 * something into it earlier
4880 				 */
4881 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4882 				if (err)
4883 					return err;
4884 
4885 				if (is_pointer_value(env, BPF_REG_0)) {
4886 					verbose(env, "R0 leaks addr as return value\n");
4887 					return -EACCES;
4888 				}
4889 
4890 				err = check_return_code(env);
4891 				if (err)
4892 					return err;
4893 process_bpf_exit:
4894 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4895 				if (err < 0) {
4896 					if (err != -ENOENT)
4897 						return err;
4898 					break;
4899 				} else {
4900 					do_print_state = true;
4901 					continue;
4902 				}
4903 			} else {
4904 				err = check_cond_jmp_op(env, insn, &insn_idx);
4905 				if (err)
4906 					return err;
4907 			}
4908 		} else if (class == BPF_LD) {
4909 			u8 mode = BPF_MODE(insn->code);
4910 
4911 			if (mode == BPF_ABS || mode == BPF_IND) {
4912 				err = check_ld_abs(env, insn);
4913 				if (err)
4914 					return err;
4915 
4916 			} else if (mode == BPF_IMM) {
4917 				err = check_ld_imm(env, insn);
4918 				if (err)
4919 					return err;
4920 
4921 				insn_idx++;
4922 				env->insn_aux_data[insn_idx].seen = true;
4923 			} else {
4924 				verbose(env, "invalid BPF_LD mode\n");
4925 				return -EINVAL;
4926 			}
4927 		} else {
4928 			verbose(env, "unknown insn class %d\n", class);
4929 			return -EINVAL;
4930 		}
4931 
4932 		insn_idx++;
4933 	}
4934 
4935 	verbose(env, "processed %d insns (limit %d), stack depth ",
4936 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4937 	for (i = 0; i < env->subprog_cnt; i++) {
4938 		u32 depth = env->subprog_info[i].stack_depth;
4939 
4940 		verbose(env, "%d", depth);
4941 		if (i + 1 < env->subprog_cnt)
4942 			verbose(env, "+");
4943 	}
4944 	verbose(env, "\n");
4945 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
4946 	return 0;
4947 }
4948 
4949 static int check_map_prealloc(struct bpf_map *map)
4950 {
4951 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4952 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4953 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4954 		!(map->map_flags & BPF_F_NO_PREALLOC);
4955 }
4956 
4957 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4958 					struct bpf_map *map,
4959 					struct bpf_prog *prog)
4960 
4961 {
4962 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4963 	 * preallocated hash maps, since doing memory allocation
4964 	 * in overflow_handler can crash depending on where nmi got
4965 	 * triggered.
4966 	 */
4967 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4968 		if (!check_map_prealloc(map)) {
4969 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4970 			return -EINVAL;
4971 		}
4972 		if (map->inner_map_meta &&
4973 		    !check_map_prealloc(map->inner_map_meta)) {
4974 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4975 			return -EINVAL;
4976 		}
4977 	}
4978 
4979 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4980 	    !bpf_offload_dev_match(prog, map)) {
4981 		verbose(env, "offload device mismatch between prog and map\n");
4982 		return -EINVAL;
4983 	}
4984 
4985 	return 0;
4986 }
4987 
4988 /* look for pseudo eBPF instructions that access map FDs and
4989  * replace them with actual map pointers
4990  */
4991 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4992 {
4993 	struct bpf_insn *insn = env->prog->insnsi;
4994 	int insn_cnt = env->prog->len;
4995 	int i, j, err;
4996 
4997 	err = bpf_prog_calc_tag(env->prog);
4998 	if (err)
4999 		return err;
5000 
5001 	for (i = 0; i < insn_cnt; i++, insn++) {
5002 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5003 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5004 			verbose(env, "BPF_LDX uses reserved fields\n");
5005 			return -EINVAL;
5006 		}
5007 
5008 		if (BPF_CLASS(insn->code) == BPF_STX &&
5009 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5010 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5011 			verbose(env, "BPF_STX uses reserved fields\n");
5012 			return -EINVAL;
5013 		}
5014 
5015 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5016 			struct bpf_map *map;
5017 			struct fd f;
5018 
5019 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5020 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5021 			    insn[1].off != 0) {
5022 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5023 				return -EINVAL;
5024 			}
5025 
5026 			if (insn->src_reg == 0)
5027 				/* valid generic load 64-bit imm */
5028 				goto next_insn;
5029 
5030 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5031 				verbose(env,
5032 					"unrecognized bpf_ld_imm64 insn\n");
5033 				return -EINVAL;
5034 			}
5035 
5036 			f = fdget(insn->imm);
5037 			map = __bpf_map_get(f);
5038 			if (IS_ERR(map)) {
5039 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5040 					insn->imm);
5041 				return PTR_ERR(map);
5042 			}
5043 
5044 			err = check_map_prog_compatibility(env, map, env->prog);
5045 			if (err) {
5046 				fdput(f);
5047 				return err;
5048 			}
5049 
5050 			/* store map pointer inside BPF_LD_IMM64 instruction */
5051 			insn[0].imm = (u32) (unsigned long) map;
5052 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5053 
5054 			/* check whether we recorded this map already */
5055 			for (j = 0; j < env->used_map_cnt; j++)
5056 				if (env->used_maps[j] == map) {
5057 					fdput(f);
5058 					goto next_insn;
5059 				}
5060 
5061 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5062 				fdput(f);
5063 				return -E2BIG;
5064 			}
5065 
5066 			/* hold the map. If the program is rejected by verifier,
5067 			 * the map will be released by release_maps() or it
5068 			 * will be used by the valid program until it's unloaded
5069 			 * and all maps are released in free_used_maps()
5070 			 */
5071 			map = bpf_map_inc(map, false);
5072 			if (IS_ERR(map)) {
5073 				fdput(f);
5074 				return PTR_ERR(map);
5075 			}
5076 			env->used_maps[env->used_map_cnt++] = map;
5077 
5078 			fdput(f);
5079 next_insn:
5080 			insn++;
5081 			i++;
5082 			continue;
5083 		}
5084 
5085 		/* Basic sanity check before we invest more work here. */
5086 		if (!bpf_opcode_in_insntable(insn->code)) {
5087 			verbose(env, "unknown opcode %02x\n", insn->code);
5088 			return -EINVAL;
5089 		}
5090 	}
5091 
5092 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5093 	 * 'struct bpf_map *' into a register instead of user map_fd.
5094 	 * These pointers will be used later by verifier to validate map access.
5095 	 */
5096 	return 0;
5097 }
5098 
5099 /* drop refcnt of maps used by the rejected program */
5100 static void release_maps(struct bpf_verifier_env *env)
5101 {
5102 	int i;
5103 
5104 	for (i = 0; i < env->used_map_cnt; i++)
5105 		bpf_map_put(env->used_maps[i]);
5106 }
5107 
5108 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5109 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5110 {
5111 	struct bpf_insn *insn = env->prog->insnsi;
5112 	int insn_cnt = env->prog->len;
5113 	int i;
5114 
5115 	for (i = 0; i < insn_cnt; i++, insn++)
5116 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5117 			insn->src_reg = 0;
5118 }
5119 
5120 /* single env->prog->insni[off] instruction was replaced with the range
5121  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5122  * [0, off) and [off, end) to new locations, so the patched range stays zero
5123  */
5124 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5125 				u32 off, u32 cnt)
5126 {
5127 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5128 	int i;
5129 
5130 	if (cnt == 1)
5131 		return 0;
5132 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5133 	if (!new_data)
5134 		return -ENOMEM;
5135 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5136 	memcpy(new_data + off + cnt - 1, old_data + off,
5137 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5138 	for (i = off; i < off + cnt - 1; i++)
5139 		new_data[i].seen = true;
5140 	env->insn_aux_data = new_data;
5141 	vfree(old_data);
5142 	return 0;
5143 }
5144 
5145 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5146 {
5147 	int i;
5148 
5149 	if (len == 1)
5150 		return;
5151 	/* NOTE: fake 'exit' subprog should be updated as well. */
5152 	for (i = 0; i <= env->subprog_cnt; i++) {
5153 		if (env->subprog_info[i].start < off)
5154 			continue;
5155 		env->subprog_info[i].start += len - 1;
5156 	}
5157 }
5158 
5159 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5160 					    const struct bpf_insn *patch, u32 len)
5161 {
5162 	struct bpf_prog *new_prog;
5163 
5164 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5165 	if (!new_prog)
5166 		return NULL;
5167 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5168 		return NULL;
5169 	adjust_subprog_starts(env, off, len);
5170 	return new_prog;
5171 }
5172 
5173 /* The verifier does more data flow analysis than llvm and will not
5174  * explore branches that are dead at run time. Malicious programs can
5175  * have dead code too. Therefore replace all dead at-run-time code
5176  * with 'ja -1'.
5177  *
5178  * Just nops are not optimal, e.g. if they would sit at the end of the
5179  * program and through another bug we would manage to jump there, then
5180  * we'd execute beyond program memory otherwise. Returning exception
5181  * code also wouldn't work since we can have subprogs where the dead
5182  * code could be located.
5183  */
5184 static void sanitize_dead_code(struct bpf_verifier_env *env)
5185 {
5186 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5187 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5188 	struct bpf_insn *insn = env->prog->insnsi;
5189 	const int insn_cnt = env->prog->len;
5190 	int i;
5191 
5192 	for (i = 0; i < insn_cnt; i++) {
5193 		if (aux_data[i].seen)
5194 			continue;
5195 		memcpy(insn + i, &trap, sizeof(trap));
5196 	}
5197 }
5198 
5199 /* convert load instructions that access fields of 'struct __sk_buff'
5200  * into sequence of instructions that access fields of 'struct sk_buff'
5201  */
5202 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5203 {
5204 	const struct bpf_verifier_ops *ops = env->ops;
5205 	int i, cnt, size, ctx_field_size, delta = 0;
5206 	const int insn_cnt = env->prog->len;
5207 	struct bpf_insn insn_buf[16], *insn;
5208 	struct bpf_prog *new_prog;
5209 	enum bpf_access_type type;
5210 	bool is_narrower_load;
5211 	u32 target_size;
5212 
5213 	if (ops->gen_prologue) {
5214 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5215 					env->prog);
5216 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5217 			verbose(env, "bpf verifier is misconfigured\n");
5218 			return -EINVAL;
5219 		} else if (cnt) {
5220 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5221 			if (!new_prog)
5222 				return -ENOMEM;
5223 
5224 			env->prog = new_prog;
5225 			delta += cnt - 1;
5226 		}
5227 	}
5228 
5229 	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5230 		return 0;
5231 
5232 	insn = env->prog->insnsi + delta;
5233 
5234 	for (i = 0; i < insn_cnt; i++, insn++) {
5235 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5236 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5237 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5238 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5239 			type = BPF_READ;
5240 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5241 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5242 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5243 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5244 			type = BPF_WRITE;
5245 		else
5246 			continue;
5247 
5248 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5249 			continue;
5250 
5251 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5252 		size = BPF_LDST_BYTES(insn);
5253 
5254 		/* If the read access is a narrower load of the field,
5255 		 * convert to a 4/8-byte load, to minimum program type specific
5256 		 * convert_ctx_access changes. If conversion is successful,
5257 		 * we will apply proper mask to the result.
5258 		 */
5259 		is_narrower_load = size < ctx_field_size;
5260 		if (is_narrower_load) {
5261 			u32 off = insn->off;
5262 			u8 size_code;
5263 
5264 			if (type == BPF_WRITE) {
5265 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5266 				return -EINVAL;
5267 			}
5268 
5269 			size_code = BPF_H;
5270 			if (ctx_field_size == 4)
5271 				size_code = BPF_W;
5272 			else if (ctx_field_size == 8)
5273 				size_code = BPF_DW;
5274 
5275 			insn->off = off & ~(ctx_field_size - 1);
5276 			insn->code = BPF_LDX | BPF_MEM | size_code;
5277 		}
5278 
5279 		target_size = 0;
5280 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5281 					      &target_size);
5282 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5283 		    (ctx_field_size && !target_size)) {
5284 			verbose(env, "bpf verifier is misconfigured\n");
5285 			return -EINVAL;
5286 		}
5287 
5288 		if (is_narrower_load && size < target_size) {
5289 			if (ctx_field_size <= 4)
5290 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5291 								(1 << size * 8) - 1);
5292 			else
5293 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5294 								(1 << size * 8) - 1);
5295 		}
5296 
5297 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5298 		if (!new_prog)
5299 			return -ENOMEM;
5300 
5301 		delta += cnt - 1;
5302 
5303 		/* keep walking new program and skip insns we just inserted */
5304 		env->prog = new_prog;
5305 		insn      = new_prog->insnsi + i + delta;
5306 	}
5307 
5308 	return 0;
5309 }
5310 
5311 static int jit_subprogs(struct bpf_verifier_env *env)
5312 {
5313 	struct bpf_prog *prog = env->prog, **func, *tmp;
5314 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5315 	struct bpf_insn *insn;
5316 	void *old_bpf_func;
5317 	int err = -ENOMEM;
5318 
5319 	if (env->subprog_cnt <= 1)
5320 		return 0;
5321 
5322 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5323 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5324 		    insn->src_reg != BPF_PSEUDO_CALL)
5325 			continue;
5326 		subprog = find_subprog(env, i + insn->imm + 1);
5327 		if (subprog < 0) {
5328 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5329 				  i + insn->imm + 1);
5330 			return -EFAULT;
5331 		}
5332 		/* temporarily remember subprog id inside insn instead of
5333 		 * aux_data, since next loop will split up all insns into funcs
5334 		 */
5335 		insn->off = subprog;
5336 		/* remember original imm in case JIT fails and fallback
5337 		 * to interpreter will be needed
5338 		 */
5339 		env->insn_aux_data[i].call_imm = insn->imm;
5340 		/* point imm to __bpf_call_base+1 from JITs point of view */
5341 		insn->imm = 1;
5342 	}
5343 
5344 	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5345 	if (!func)
5346 		return -ENOMEM;
5347 
5348 	for (i = 0; i < env->subprog_cnt; i++) {
5349 		subprog_start = subprog_end;
5350 		subprog_end = env->subprog_info[i + 1].start;
5351 
5352 		len = subprog_end - subprog_start;
5353 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5354 		if (!func[i])
5355 			goto out_free;
5356 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5357 		       len * sizeof(struct bpf_insn));
5358 		func[i]->type = prog->type;
5359 		func[i]->len = len;
5360 		if (bpf_prog_calc_tag(func[i]))
5361 			goto out_free;
5362 		func[i]->is_func = 1;
5363 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5364 		 * Long term would need debug info to populate names
5365 		 */
5366 		func[i]->aux->name[0] = 'F';
5367 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5368 		func[i]->jit_requested = 1;
5369 		func[i] = bpf_int_jit_compile(func[i]);
5370 		if (!func[i]->jited) {
5371 			err = -ENOTSUPP;
5372 			goto out_free;
5373 		}
5374 		cond_resched();
5375 	}
5376 	/* at this point all bpf functions were successfully JITed
5377 	 * now populate all bpf_calls with correct addresses and
5378 	 * run last pass of JIT
5379 	 */
5380 	for (i = 0; i < env->subprog_cnt; i++) {
5381 		insn = func[i]->insnsi;
5382 		for (j = 0; j < func[i]->len; j++, insn++) {
5383 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5384 			    insn->src_reg != BPF_PSEUDO_CALL)
5385 				continue;
5386 			subprog = insn->off;
5387 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5388 				func[subprog]->bpf_func -
5389 				__bpf_call_base;
5390 		}
5391 
5392 		/* we use the aux data to keep a list of the start addresses
5393 		 * of the JITed images for each function in the program
5394 		 *
5395 		 * for some architectures, such as powerpc64, the imm field
5396 		 * might not be large enough to hold the offset of the start
5397 		 * address of the callee's JITed image from __bpf_call_base
5398 		 *
5399 		 * in such cases, we can lookup the start address of a callee
5400 		 * by using its subprog id, available from the off field of
5401 		 * the call instruction, as an index for this list
5402 		 */
5403 		func[i]->aux->func = func;
5404 		func[i]->aux->func_cnt = env->subprog_cnt;
5405 	}
5406 	for (i = 0; i < env->subprog_cnt; i++) {
5407 		old_bpf_func = func[i]->bpf_func;
5408 		tmp = bpf_int_jit_compile(func[i]);
5409 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5410 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5411 			err = -EFAULT;
5412 			goto out_free;
5413 		}
5414 		cond_resched();
5415 	}
5416 
5417 	/* finally lock prog and jit images for all functions and
5418 	 * populate kallsysm
5419 	 */
5420 	for (i = 0; i < env->subprog_cnt; i++) {
5421 		bpf_prog_lock_ro(func[i]);
5422 		bpf_prog_kallsyms_add(func[i]);
5423 	}
5424 
5425 	/* Last step: make now unused interpreter insns from main
5426 	 * prog consistent for later dump requests, so they can
5427 	 * later look the same as if they were interpreted only.
5428 	 */
5429 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5430 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5431 		    insn->src_reg != BPF_PSEUDO_CALL)
5432 			continue;
5433 		insn->off = env->insn_aux_data[i].call_imm;
5434 		subprog = find_subprog(env, i + insn->off + 1);
5435 		insn->imm = subprog;
5436 	}
5437 
5438 	prog->jited = 1;
5439 	prog->bpf_func = func[0]->bpf_func;
5440 	prog->aux->func = func;
5441 	prog->aux->func_cnt = env->subprog_cnt;
5442 	return 0;
5443 out_free:
5444 	for (i = 0; i < env->subprog_cnt; i++)
5445 		if (func[i])
5446 			bpf_jit_free(func[i]);
5447 	kfree(func);
5448 	/* cleanup main prog to be interpreted */
5449 	prog->jit_requested = 0;
5450 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5451 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5452 		    insn->src_reg != BPF_PSEUDO_CALL)
5453 			continue;
5454 		insn->off = 0;
5455 		insn->imm = env->insn_aux_data[i].call_imm;
5456 	}
5457 	return err;
5458 }
5459 
5460 static int fixup_call_args(struct bpf_verifier_env *env)
5461 {
5462 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5463 	struct bpf_prog *prog = env->prog;
5464 	struct bpf_insn *insn = prog->insnsi;
5465 	int i, depth;
5466 #endif
5467 	int err;
5468 
5469 	err = 0;
5470 	if (env->prog->jit_requested) {
5471 		err = jit_subprogs(env);
5472 		if (err == 0)
5473 			return 0;
5474 	}
5475 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5476 	for (i = 0; i < prog->len; i++, insn++) {
5477 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5478 		    insn->src_reg != BPF_PSEUDO_CALL)
5479 			continue;
5480 		depth = get_callee_stack_depth(env, insn, i);
5481 		if (depth < 0)
5482 			return depth;
5483 		bpf_patch_call_args(insn, depth);
5484 	}
5485 	err = 0;
5486 #endif
5487 	return err;
5488 }
5489 
5490 /* fixup insn->imm field of bpf_call instructions
5491  * and inline eligible helpers as explicit sequence of BPF instructions
5492  *
5493  * this function is called after eBPF program passed verification
5494  */
5495 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5496 {
5497 	struct bpf_prog *prog = env->prog;
5498 	struct bpf_insn *insn = prog->insnsi;
5499 	const struct bpf_func_proto *fn;
5500 	const int insn_cnt = prog->len;
5501 	struct bpf_insn insn_buf[16];
5502 	struct bpf_prog *new_prog;
5503 	struct bpf_map *map_ptr;
5504 	int i, cnt, delta = 0;
5505 
5506 	for (i = 0; i < insn_cnt; i++, insn++) {
5507 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5508 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5509 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5510 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5511 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5512 			struct bpf_insn mask_and_div[] = {
5513 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5514 				/* Rx div 0 -> 0 */
5515 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5516 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5517 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5518 				*insn,
5519 			};
5520 			struct bpf_insn mask_and_mod[] = {
5521 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5522 				/* Rx mod 0 -> Rx */
5523 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5524 				*insn,
5525 			};
5526 			struct bpf_insn *patchlet;
5527 
5528 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5529 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5530 				patchlet = mask_and_div + (is64 ? 1 : 0);
5531 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5532 			} else {
5533 				patchlet = mask_and_mod + (is64 ? 1 : 0);
5534 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5535 			}
5536 
5537 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5538 			if (!new_prog)
5539 				return -ENOMEM;
5540 
5541 			delta    += cnt - 1;
5542 			env->prog = prog = new_prog;
5543 			insn      = new_prog->insnsi + i + delta;
5544 			continue;
5545 		}
5546 
5547 		if (BPF_CLASS(insn->code) == BPF_LD &&
5548 		    (BPF_MODE(insn->code) == BPF_ABS ||
5549 		     BPF_MODE(insn->code) == BPF_IND)) {
5550 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
5551 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5552 				verbose(env, "bpf verifier is misconfigured\n");
5553 				return -EINVAL;
5554 			}
5555 
5556 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5557 			if (!new_prog)
5558 				return -ENOMEM;
5559 
5560 			delta    += cnt - 1;
5561 			env->prog = prog = new_prog;
5562 			insn      = new_prog->insnsi + i + delta;
5563 			continue;
5564 		}
5565 
5566 		if (insn->code != (BPF_JMP | BPF_CALL))
5567 			continue;
5568 		if (insn->src_reg == BPF_PSEUDO_CALL)
5569 			continue;
5570 
5571 		if (insn->imm == BPF_FUNC_get_route_realm)
5572 			prog->dst_needed = 1;
5573 		if (insn->imm == BPF_FUNC_get_prandom_u32)
5574 			bpf_user_rnd_init_once();
5575 		if (insn->imm == BPF_FUNC_override_return)
5576 			prog->kprobe_override = 1;
5577 		if (insn->imm == BPF_FUNC_tail_call) {
5578 			/* If we tail call into other programs, we
5579 			 * cannot make any assumptions since they can
5580 			 * be replaced dynamically during runtime in
5581 			 * the program array.
5582 			 */
5583 			prog->cb_access = 1;
5584 			env->prog->aux->stack_depth = MAX_BPF_STACK;
5585 
5586 			/* mark bpf_tail_call as different opcode to avoid
5587 			 * conditional branch in the interpeter for every normal
5588 			 * call and to prevent accidental JITing by JIT compiler
5589 			 * that doesn't support bpf_tail_call yet
5590 			 */
5591 			insn->imm = 0;
5592 			insn->code = BPF_JMP | BPF_TAIL_CALL;
5593 
5594 			/* instead of changing every JIT dealing with tail_call
5595 			 * emit two extra insns:
5596 			 * if (index >= max_entries) goto out;
5597 			 * index &= array->index_mask;
5598 			 * to avoid out-of-bounds cpu speculation
5599 			 */
5600 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5601 			if (map_ptr == BPF_MAP_PTR_POISON) {
5602 				verbose(env, "tail_call abusing map_ptr\n");
5603 				return -EINVAL;
5604 			}
5605 			if (!map_ptr->unpriv_array)
5606 				continue;
5607 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5608 						  map_ptr->max_entries, 2);
5609 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5610 						    container_of(map_ptr,
5611 								 struct bpf_array,
5612 								 map)->index_mask);
5613 			insn_buf[2] = *insn;
5614 			cnt = 3;
5615 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5616 			if (!new_prog)
5617 				return -ENOMEM;
5618 
5619 			delta    += cnt - 1;
5620 			env->prog = prog = new_prog;
5621 			insn      = new_prog->insnsi + i + delta;
5622 			continue;
5623 		}
5624 
5625 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5626 		 * handlers are currently limited to 64 bit only.
5627 		 */
5628 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5629 		    insn->imm == BPF_FUNC_map_lookup_elem) {
5630 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5631 			if (map_ptr == BPF_MAP_PTR_POISON ||
5632 			    !map_ptr->ops->map_gen_lookup)
5633 				goto patch_call_imm;
5634 
5635 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5636 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5637 				verbose(env, "bpf verifier is misconfigured\n");
5638 				return -EINVAL;
5639 			}
5640 
5641 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5642 						       cnt);
5643 			if (!new_prog)
5644 				return -ENOMEM;
5645 
5646 			delta += cnt - 1;
5647 
5648 			/* keep walking new program and skip insns we just inserted */
5649 			env->prog = prog = new_prog;
5650 			insn      = new_prog->insnsi + i + delta;
5651 			continue;
5652 		}
5653 
5654 		if (insn->imm == BPF_FUNC_redirect_map) {
5655 			/* Note, we cannot use prog directly as imm as subsequent
5656 			 * rewrites would still change the prog pointer. The only
5657 			 * stable address we can use is aux, which also works with
5658 			 * prog clones during blinding.
5659 			 */
5660 			u64 addr = (unsigned long)prog->aux;
5661 			struct bpf_insn r4_ld[] = {
5662 				BPF_LD_IMM64(BPF_REG_4, addr),
5663 				*insn,
5664 			};
5665 			cnt = ARRAY_SIZE(r4_ld);
5666 
5667 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5668 			if (!new_prog)
5669 				return -ENOMEM;
5670 
5671 			delta    += cnt - 1;
5672 			env->prog = prog = new_prog;
5673 			insn      = new_prog->insnsi + i + delta;
5674 		}
5675 patch_call_imm:
5676 		fn = env->ops->get_func_proto(insn->imm, env->prog);
5677 		/* all functions that have prototype and verifier allowed
5678 		 * programs to call them, must be real in-kernel functions
5679 		 */
5680 		if (!fn->func) {
5681 			verbose(env,
5682 				"kernel subsystem misconfigured func %s#%d\n",
5683 				func_id_name(insn->imm), insn->imm);
5684 			return -EFAULT;
5685 		}
5686 		insn->imm = fn->func - __bpf_call_base;
5687 	}
5688 
5689 	return 0;
5690 }
5691 
5692 static void free_states(struct bpf_verifier_env *env)
5693 {
5694 	struct bpf_verifier_state_list *sl, *sln;
5695 	int i;
5696 
5697 	if (!env->explored_states)
5698 		return;
5699 
5700 	for (i = 0; i < env->prog->len; i++) {
5701 		sl = env->explored_states[i];
5702 
5703 		if (sl)
5704 			while (sl != STATE_LIST_MARK) {
5705 				sln = sl->next;
5706 				free_verifier_state(&sl->state, false);
5707 				kfree(sl);
5708 				sl = sln;
5709 			}
5710 	}
5711 
5712 	kfree(env->explored_states);
5713 }
5714 
5715 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5716 {
5717 	struct bpf_verifier_env *env;
5718 	struct bpf_verifier_log *log;
5719 	int ret = -EINVAL;
5720 
5721 	/* no program is valid */
5722 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5723 		return -EINVAL;
5724 
5725 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5726 	 * allocate/free it every time bpf_check() is called
5727 	 */
5728 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5729 	if (!env)
5730 		return -ENOMEM;
5731 	log = &env->log;
5732 
5733 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5734 				     (*prog)->len);
5735 	ret = -ENOMEM;
5736 	if (!env->insn_aux_data)
5737 		goto err_free_env;
5738 	env->prog = *prog;
5739 	env->ops = bpf_verifier_ops[env->prog->type];
5740 
5741 	/* grab the mutex to protect few globals used by verifier */
5742 	mutex_lock(&bpf_verifier_lock);
5743 
5744 	if (attr->log_level || attr->log_buf || attr->log_size) {
5745 		/* user requested verbose verifier output
5746 		 * and supplied buffer to store the verification trace
5747 		 */
5748 		log->level = attr->log_level;
5749 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5750 		log->len_total = attr->log_size;
5751 
5752 		ret = -EINVAL;
5753 		/* log attributes have to be sane */
5754 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5755 		    !log->level || !log->ubuf)
5756 			goto err_unlock;
5757 	}
5758 
5759 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5760 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5761 		env->strict_alignment = true;
5762 
5763 	ret = replace_map_fd_with_map_ptr(env);
5764 	if (ret < 0)
5765 		goto skip_full_check;
5766 
5767 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5768 		ret = bpf_prog_offload_verifier_prep(env);
5769 		if (ret)
5770 			goto skip_full_check;
5771 	}
5772 
5773 	env->explored_states = kcalloc(env->prog->len,
5774 				       sizeof(struct bpf_verifier_state_list *),
5775 				       GFP_USER);
5776 	ret = -ENOMEM;
5777 	if (!env->explored_states)
5778 		goto skip_full_check;
5779 
5780 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5781 
5782 	ret = check_cfg(env);
5783 	if (ret < 0)
5784 		goto skip_full_check;
5785 
5786 	ret = do_check(env);
5787 	if (env->cur_state) {
5788 		free_verifier_state(env->cur_state, true);
5789 		env->cur_state = NULL;
5790 	}
5791 
5792 skip_full_check:
5793 	while (!pop_stack(env, NULL, NULL));
5794 	free_states(env);
5795 
5796 	if (ret == 0)
5797 		sanitize_dead_code(env);
5798 
5799 	if (ret == 0)
5800 		ret = check_max_stack_depth(env);
5801 
5802 	if (ret == 0)
5803 		/* program is valid, convert *(u32*)(ctx + off) accesses */
5804 		ret = convert_ctx_accesses(env);
5805 
5806 	if (ret == 0)
5807 		ret = fixup_bpf_calls(env);
5808 
5809 	if (ret == 0)
5810 		ret = fixup_call_args(env);
5811 
5812 	if (log->level && bpf_verifier_log_full(log))
5813 		ret = -ENOSPC;
5814 	if (log->level && !log->ubuf) {
5815 		ret = -EFAULT;
5816 		goto err_release_maps;
5817 	}
5818 
5819 	if (ret == 0 && env->used_map_cnt) {
5820 		/* if program passed verifier, update used_maps in bpf_prog_info */
5821 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5822 							  sizeof(env->used_maps[0]),
5823 							  GFP_KERNEL);
5824 
5825 		if (!env->prog->aux->used_maps) {
5826 			ret = -ENOMEM;
5827 			goto err_release_maps;
5828 		}
5829 
5830 		memcpy(env->prog->aux->used_maps, env->used_maps,
5831 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5832 		env->prog->aux->used_map_cnt = env->used_map_cnt;
5833 
5834 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
5835 		 * bpf_ld_imm64 instructions
5836 		 */
5837 		convert_pseudo_ld_imm64(env);
5838 	}
5839 
5840 err_release_maps:
5841 	if (!env->prog->aux->used_maps)
5842 		/* if we didn't copy map pointers into bpf_prog_info, release
5843 		 * them now. Otherwise free_used_maps() will release them.
5844 		 */
5845 		release_maps(env);
5846 	*prog = env->prog;
5847 err_unlock:
5848 	mutex_unlock(&bpf_verifier_lock);
5849 	vfree(env->insn_aux_data);
5850 err_free_env:
5851 	kfree(env);
5852 	return ret;
5853 }
5854