1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 191 { 192 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 193 } 194 195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 196 { 197 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 198 } 199 200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 201 const struct bpf_map *map, bool unpriv) 202 { 203 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 204 unpriv |= bpf_map_ptr_unpriv(aux); 205 aux->map_ptr_state = (unsigned long)map | 206 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 207 } 208 209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_key_state & BPF_MAP_KEY_POISON; 212 } 213 214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 215 { 216 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 217 } 218 219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 220 { 221 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 222 } 223 224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 225 { 226 bool poisoned = bpf_map_key_poisoned(aux); 227 228 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 229 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 230 } 231 232 static bool bpf_pseudo_call(const struct bpf_insn *insn) 233 { 234 return insn->code == (BPF_JMP | BPF_CALL) && 235 insn->src_reg == BPF_PSEUDO_CALL; 236 } 237 238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 239 { 240 return insn->code == (BPF_JMP | BPF_CALL) && 241 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 242 } 243 244 struct bpf_call_arg_meta { 245 struct bpf_map *map_ptr; 246 bool raw_mode; 247 bool pkt_access; 248 int regno; 249 int access_size; 250 int mem_size; 251 u64 msize_max_value; 252 int ref_obj_id; 253 int map_uid; 254 int func_id; 255 struct btf *btf; 256 u32 btf_id; 257 struct btf *ret_btf; 258 u32 ret_btf_id; 259 u32 subprogno; 260 }; 261 262 struct btf *btf_vmlinux; 263 264 static DEFINE_MUTEX(bpf_verifier_lock); 265 266 static const struct bpf_line_info * 267 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 268 { 269 const struct bpf_line_info *linfo; 270 const struct bpf_prog *prog; 271 u32 i, nr_linfo; 272 273 prog = env->prog; 274 nr_linfo = prog->aux->nr_linfo; 275 276 if (!nr_linfo || insn_off >= prog->len) 277 return NULL; 278 279 linfo = prog->aux->linfo; 280 for (i = 1; i < nr_linfo; i++) 281 if (insn_off < linfo[i].insn_off) 282 break; 283 284 return &linfo[i - 1]; 285 } 286 287 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 288 va_list args) 289 { 290 unsigned int n; 291 292 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 293 294 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 295 "verifier log line truncated - local buffer too short\n"); 296 297 if (log->level == BPF_LOG_KERNEL) { 298 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 299 300 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 301 return; 302 } 303 304 n = min(log->len_total - log->len_used - 1, n); 305 log->kbuf[n] = '\0'; 306 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 307 log->len_used += n; 308 else 309 log->ubuf = NULL; 310 } 311 312 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 313 { 314 char zero = 0; 315 316 if (!bpf_verifier_log_needed(log)) 317 return; 318 319 log->len_used = new_pos; 320 if (put_user(zero, log->ubuf + new_pos)) 321 log->ubuf = NULL; 322 } 323 324 /* log_level controls verbosity level of eBPF verifier. 325 * bpf_verifier_log_write() is used to dump the verification trace to the log, 326 * so the user can figure out what's wrong with the program 327 */ 328 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 329 const char *fmt, ...) 330 { 331 va_list args; 332 333 if (!bpf_verifier_log_needed(&env->log)) 334 return; 335 336 va_start(args, fmt); 337 bpf_verifier_vlog(&env->log, fmt, args); 338 va_end(args); 339 } 340 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 341 342 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 343 { 344 struct bpf_verifier_env *env = private_data; 345 va_list args; 346 347 if (!bpf_verifier_log_needed(&env->log)) 348 return; 349 350 va_start(args, fmt); 351 bpf_verifier_vlog(&env->log, fmt, args); 352 va_end(args); 353 } 354 355 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 356 const char *fmt, ...) 357 { 358 va_list args; 359 360 if (!bpf_verifier_log_needed(log)) 361 return; 362 363 va_start(args, fmt); 364 bpf_verifier_vlog(log, fmt, args); 365 va_end(args); 366 } 367 368 static const char *ltrim(const char *s) 369 { 370 while (isspace(*s)) 371 s++; 372 373 return s; 374 } 375 376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 377 u32 insn_off, 378 const char *prefix_fmt, ...) 379 { 380 const struct bpf_line_info *linfo; 381 382 if (!bpf_verifier_log_needed(&env->log)) 383 return; 384 385 linfo = find_linfo(env, insn_off); 386 if (!linfo || linfo == env->prev_linfo) 387 return; 388 389 if (prefix_fmt) { 390 va_list args; 391 392 va_start(args, prefix_fmt); 393 bpf_verifier_vlog(&env->log, prefix_fmt, args); 394 va_end(args); 395 } 396 397 verbose(env, "%s\n", 398 ltrim(btf_name_by_offset(env->prog->aux->btf, 399 linfo->line_off))); 400 401 env->prev_linfo = linfo; 402 } 403 404 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 405 struct bpf_reg_state *reg, 406 struct tnum *range, const char *ctx, 407 const char *reg_name) 408 { 409 char tn_buf[48]; 410 411 verbose(env, "At %s the register %s ", ctx, reg_name); 412 if (!tnum_is_unknown(reg->var_off)) { 413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 414 verbose(env, "has value %s", tn_buf); 415 } else { 416 verbose(env, "has unknown scalar value"); 417 } 418 tnum_strn(tn_buf, sizeof(tn_buf), *range); 419 verbose(env, " should have been in %s\n", tn_buf); 420 } 421 422 static bool type_is_pkt_pointer(enum bpf_reg_type type) 423 { 424 return type == PTR_TO_PACKET || 425 type == PTR_TO_PACKET_META; 426 } 427 428 static bool type_is_sk_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_SOCKET || 431 type == PTR_TO_SOCK_COMMON || 432 type == PTR_TO_TCP_SOCK || 433 type == PTR_TO_XDP_SOCK; 434 } 435 436 static bool reg_type_not_null(enum bpf_reg_type type) 437 { 438 return type == PTR_TO_SOCKET || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_MAP_VALUE || 441 type == PTR_TO_MAP_KEY || 442 type == PTR_TO_SOCK_COMMON; 443 } 444 445 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 446 { 447 return reg->type == PTR_TO_MAP_VALUE && 448 map_value_has_spin_lock(reg->map_ptr); 449 } 450 451 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 452 { 453 return base_type(type) == PTR_TO_SOCKET || 454 base_type(type) == PTR_TO_TCP_SOCK || 455 base_type(type) == PTR_TO_MEM || 456 base_type(type) == PTR_TO_BTF_ID; 457 } 458 459 static bool type_is_rdonly_mem(u32 type) 460 { 461 return type & MEM_RDONLY; 462 } 463 464 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 465 { 466 return type == ARG_PTR_TO_SOCK_COMMON; 467 } 468 469 static bool type_may_be_null(u32 type) 470 { 471 return type & PTR_MAYBE_NULL; 472 } 473 474 /* Determine whether the function releases some resources allocated by another 475 * function call. The first reference type argument will be assumed to be 476 * released by release_reference(). 477 */ 478 static bool is_release_function(enum bpf_func_id func_id) 479 { 480 return func_id == BPF_FUNC_sk_release || 481 func_id == BPF_FUNC_ringbuf_submit || 482 func_id == BPF_FUNC_ringbuf_discard; 483 } 484 485 static bool may_be_acquire_function(enum bpf_func_id func_id) 486 { 487 return func_id == BPF_FUNC_sk_lookup_tcp || 488 func_id == BPF_FUNC_sk_lookup_udp || 489 func_id == BPF_FUNC_skc_lookup_tcp || 490 func_id == BPF_FUNC_map_lookup_elem || 491 func_id == BPF_FUNC_ringbuf_reserve; 492 } 493 494 static bool is_acquire_function(enum bpf_func_id func_id, 495 const struct bpf_map *map) 496 { 497 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 498 499 if (func_id == BPF_FUNC_sk_lookup_tcp || 500 func_id == BPF_FUNC_sk_lookup_udp || 501 func_id == BPF_FUNC_skc_lookup_tcp || 502 func_id == BPF_FUNC_ringbuf_reserve) 503 return true; 504 505 if (func_id == BPF_FUNC_map_lookup_elem && 506 (map_type == BPF_MAP_TYPE_SOCKMAP || 507 map_type == BPF_MAP_TYPE_SOCKHASH)) 508 return true; 509 510 return false; 511 } 512 513 static bool is_ptr_cast_function(enum bpf_func_id func_id) 514 { 515 return func_id == BPF_FUNC_tcp_sock || 516 func_id == BPF_FUNC_sk_fullsock || 517 func_id == BPF_FUNC_skc_to_tcp_sock || 518 func_id == BPF_FUNC_skc_to_tcp6_sock || 519 func_id == BPF_FUNC_skc_to_udp6_sock || 520 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 521 func_id == BPF_FUNC_skc_to_tcp_request_sock; 522 } 523 524 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 525 { 526 return BPF_CLASS(insn->code) == BPF_STX && 527 BPF_MODE(insn->code) == BPF_ATOMIC && 528 insn->imm == BPF_CMPXCHG; 529 } 530 531 /* string representation of 'enum bpf_reg_type' 532 * 533 * Note that reg_type_str() can not appear more than once in a single verbose() 534 * statement. 535 */ 536 static const char *reg_type_str(struct bpf_verifier_env *env, 537 enum bpf_reg_type type) 538 { 539 char postfix[16] = {0}, prefix[32] = {0}; 540 static const char * const str[] = { 541 [NOT_INIT] = "?", 542 [SCALAR_VALUE] = "scalar", 543 [PTR_TO_CTX] = "ctx", 544 [CONST_PTR_TO_MAP] = "map_ptr", 545 [PTR_TO_MAP_VALUE] = "map_value", 546 [PTR_TO_STACK] = "fp", 547 [PTR_TO_PACKET] = "pkt", 548 [PTR_TO_PACKET_META] = "pkt_meta", 549 [PTR_TO_PACKET_END] = "pkt_end", 550 [PTR_TO_FLOW_KEYS] = "flow_keys", 551 [PTR_TO_SOCKET] = "sock", 552 [PTR_TO_SOCK_COMMON] = "sock_common", 553 [PTR_TO_TCP_SOCK] = "tcp_sock", 554 [PTR_TO_TP_BUFFER] = "tp_buffer", 555 [PTR_TO_XDP_SOCK] = "xdp_sock", 556 [PTR_TO_BTF_ID] = "ptr_", 557 [PTR_TO_MEM] = "mem", 558 [PTR_TO_BUF] = "buf", 559 [PTR_TO_FUNC] = "func", 560 [PTR_TO_MAP_KEY] = "map_key", 561 }; 562 563 if (type & PTR_MAYBE_NULL) { 564 if (base_type(type) == PTR_TO_BTF_ID) 565 strncpy(postfix, "or_null_", 16); 566 else 567 strncpy(postfix, "_or_null", 16); 568 } 569 570 if (type & MEM_RDONLY) 571 strncpy(prefix, "rdonly_", 32); 572 if (type & MEM_ALLOC) 573 strncpy(prefix, "alloc_", 32); 574 if (type & MEM_USER) 575 strncpy(prefix, "user_", 32); 576 if (type & MEM_PERCPU) 577 strncpy(prefix, "percpu_", 32); 578 579 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 580 prefix, str[base_type(type)], postfix); 581 return env->type_str_buf; 582 } 583 584 static char slot_type_char[] = { 585 [STACK_INVALID] = '?', 586 [STACK_SPILL] = 'r', 587 [STACK_MISC] = 'm', 588 [STACK_ZERO] = '0', 589 }; 590 591 static void print_liveness(struct bpf_verifier_env *env, 592 enum bpf_reg_liveness live) 593 { 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 595 verbose(env, "_"); 596 if (live & REG_LIVE_READ) 597 verbose(env, "r"); 598 if (live & REG_LIVE_WRITTEN) 599 verbose(env, "w"); 600 if (live & REG_LIVE_DONE) 601 verbose(env, "D"); 602 } 603 604 static struct bpf_func_state *func(struct bpf_verifier_env *env, 605 const struct bpf_reg_state *reg) 606 { 607 struct bpf_verifier_state *cur = env->cur_state; 608 609 return cur->frame[reg->frameno]; 610 } 611 612 static const char *kernel_type_name(const struct btf* btf, u32 id) 613 { 614 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 615 } 616 617 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 618 { 619 env->scratched_regs |= 1U << regno; 620 } 621 622 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 623 { 624 env->scratched_stack_slots |= 1ULL << spi; 625 } 626 627 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 628 { 629 return (env->scratched_regs >> regno) & 1; 630 } 631 632 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 633 { 634 return (env->scratched_stack_slots >> regno) & 1; 635 } 636 637 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 638 { 639 return env->scratched_regs || env->scratched_stack_slots; 640 } 641 642 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 643 { 644 env->scratched_regs = 0U; 645 env->scratched_stack_slots = 0ULL; 646 } 647 648 /* Used for printing the entire verifier state. */ 649 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 650 { 651 env->scratched_regs = ~0U; 652 env->scratched_stack_slots = ~0ULL; 653 } 654 655 /* The reg state of a pointer or a bounded scalar was saved when 656 * it was spilled to the stack. 657 */ 658 static bool is_spilled_reg(const struct bpf_stack_state *stack) 659 { 660 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 661 } 662 663 static void scrub_spilled_slot(u8 *stype) 664 { 665 if (*stype != STACK_INVALID) 666 *stype = STACK_MISC; 667 } 668 669 static void print_verifier_state(struct bpf_verifier_env *env, 670 const struct bpf_func_state *state, 671 bool print_all) 672 { 673 const struct bpf_reg_state *reg; 674 enum bpf_reg_type t; 675 int i; 676 677 if (state->frameno) 678 verbose(env, " frame%d:", state->frameno); 679 for (i = 0; i < MAX_BPF_REG; i++) { 680 reg = &state->regs[i]; 681 t = reg->type; 682 if (t == NOT_INIT) 683 continue; 684 if (!print_all && !reg_scratched(env, i)) 685 continue; 686 verbose(env, " R%d", i); 687 print_liveness(env, reg->live); 688 verbose(env, "="); 689 if (t == SCALAR_VALUE && reg->precise) 690 verbose(env, "P"); 691 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 692 tnum_is_const(reg->var_off)) { 693 /* reg->off should be 0 for SCALAR_VALUE */ 694 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 695 verbose(env, "%lld", reg->var_off.value + reg->off); 696 } else { 697 const char *sep = ""; 698 699 verbose(env, "%s", reg_type_str(env, t)); 700 if (base_type(t) == PTR_TO_BTF_ID) 701 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 702 verbose(env, "("); 703 /* 704 * _a stands for append, was shortened to avoid multiline statements below. 705 * This macro is used to output a comma separated list of attributes. 706 */ 707 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 708 709 if (reg->id) 710 verbose_a("id=%d", reg->id); 711 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 712 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 713 if (t != SCALAR_VALUE) 714 verbose_a("off=%d", reg->off); 715 if (type_is_pkt_pointer(t)) 716 verbose_a("r=%d", reg->range); 717 else if (base_type(t) == CONST_PTR_TO_MAP || 718 base_type(t) == PTR_TO_MAP_KEY || 719 base_type(t) == PTR_TO_MAP_VALUE) 720 verbose_a("ks=%d,vs=%d", 721 reg->map_ptr->key_size, 722 reg->map_ptr->value_size); 723 if (tnum_is_const(reg->var_off)) { 724 /* Typically an immediate SCALAR_VALUE, but 725 * could be a pointer whose offset is too big 726 * for reg->off 727 */ 728 verbose_a("imm=%llx", reg->var_off.value); 729 } else { 730 if (reg->smin_value != reg->umin_value && 731 reg->smin_value != S64_MIN) 732 verbose_a("smin=%lld", (long long)reg->smin_value); 733 if (reg->smax_value != reg->umax_value && 734 reg->smax_value != S64_MAX) 735 verbose_a("smax=%lld", (long long)reg->smax_value); 736 if (reg->umin_value != 0) 737 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 738 if (reg->umax_value != U64_MAX) 739 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 740 if (!tnum_is_unknown(reg->var_off)) { 741 char tn_buf[48]; 742 743 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 744 verbose_a("var_off=%s", tn_buf); 745 } 746 if (reg->s32_min_value != reg->smin_value && 747 reg->s32_min_value != S32_MIN) 748 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 749 if (reg->s32_max_value != reg->smax_value && 750 reg->s32_max_value != S32_MAX) 751 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 752 if (reg->u32_min_value != reg->umin_value && 753 reg->u32_min_value != U32_MIN) 754 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 755 if (reg->u32_max_value != reg->umax_value && 756 reg->u32_max_value != U32_MAX) 757 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 758 } 759 #undef verbose_a 760 761 verbose(env, ")"); 762 } 763 } 764 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 765 char types_buf[BPF_REG_SIZE + 1]; 766 bool valid = false; 767 int j; 768 769 for (j = 0; j < BPF_REG_SIZE; j++) { 770 if (state->stack[i].slot_type[j] != STACK_INVALID) 771 valid = true; 772 types_buf[j] = slot_type_char[ 773 state->stack[i].slot_type[j]]; 774 } 775 types_buf[BPF_REG_SIZE] = 0; 776 if (!valid) 777 continue; 778 if (!print_all && !stack_slot_scratched(env, i)) 779 continue; 780 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 781 print_liveness(env, state->stack[i].spilled_ptr.live); 782 if (is_spilled_reg(&state->stack[i])) { 783 reg = &state->stack[i].spilled_ptr; 784 t = reg->type; 785 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 786 if (t == SCALAR_VALUE && reg->precise) 787 verbose(env, "P"); 788 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 789 verbose(env, "%lld", reg->var_off.value + reg->off); 790 } else { 791 verbose(env, "=%s", types_buf); 792 } 793 } 794 if (state->acquired_refs && state->refs[0].id) { 795 verbose(env, " refs=%d", state->refs[0].id); 796 for (i = 1; i < state->acquired_refs; i++) 797 if (state->refs[i].id) 798 verbose(env, ",%d", state->refs[i].id); 799 } 800 if (state->in_callback_fn) 801 verbose(env, " cb"); 802 if (state->in_async_callback_fn) 803 verbose(env, " async_cb"); 804 verbose(env, "\n"); 805 mark_verifier_state_clean(env); 806 } 807 808 static inline u32 vlog_alignment(u32 pos) 809 { 810 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 811 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 812 } 813 814 static void print_insn_state(struct bpf_verifier_env *env, 815 const struct bpf_func_state *state) 816 { 817 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 818 /* remove new line character */ 819 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 820 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 821 } else { 822 verbose(env, "%d:", env->insn_idx); 823 } 824 print_verifier_state(env, state, false); 825 } 826 827 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 828 * small to hold src. This is different from krealloc since we don't want to preserve 829 * the contents of dst. 830 * 831 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 832 * not be allocated. 833 */ 834 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 835 { 836 size_t bytes; 837 838 if (ZERO_OR_NULL_PTR(src)) 839 goto out; 840 841 if (unlikely(check_mul_overflow(n, size, &bytes))) 842 return NULL; 843 844 if (ksize(dst) < bytes) { 845 kfree(dst); 846 dst = kmalloc_track_caller(bytes, flags); 847 if (!dst) 848 return NULL; 849 } 850 851 memcpy(dst, src, bytes); 852 out: 853 return dst ? dst : ZERO_SIZE_PTR; 854 } 855 856 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 857 * small to hold new_n items. new items are zeroed out if the array grows. 858 * 859 * Contrary to krealloc_array, does not free arr if new_n is zero. 860 */ 861 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 862 { 863 if (!new_n || old_n == new_n) 864 goto out; 865 866 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 867 if (!arr) 868 return NULL; 869 870 if (new_n > old_n) 871 memset(arr + old_n * size, 0, (new_n - old_n) * size); 872 873 out: 874 return arr ? arr : ZERO_SIZE_PTR; 875 } 876 877 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 878 { 879 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 880 sizeof(struct bpf_reference_state), GFP_KERNEL); 881 if (!dst->refs) 882 return -ENOMEM; 883 884 dst->acquired_refs = src->acquired_refs; 885 return 0; 886 } 887 888 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 889 { 890 size_t n = src->allocated_stack / BPF_REG_SIZE; 891 892 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 893 GFP_KERNEL); 894 if (!dst->stack) 895 return -ENOMEM; 896 897 dst->allocated_stack = src->allocated_stack; 898 return 0; 899 } 900 901 static int resize_reference_state(struct bpf_func_state *state, size_t n) 902 { 903 state->refs = realloc_array(state->refs, state->acquired_refs, n, 904 sizeof(struct bpf_reference_state)); 905 if (!state->refs) 906 return -ENOMEM; 907 908 state->acquired_refs = n; 909 return 0; 910 } 911 912 static int grow_stack_state(struct bpf_func_state *state, int size) 913 { 914 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 915 916 if (old_n >= n) 917 return 0; 918 919 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 920 if (!state->stack) 921 return -ENOMEM; 922 923 state->allocated_stack = size; 924 return 0; 925 } 926 927 /* Acquire a pointer id from the env and update the state->refs to include 928 * this new pointer reference. 929 * On success, returns a valid pointer id to associate with the register 930 * On failure, returns a negative errno. 931 */ 932 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 933 { 934 struct bpf_func_state *state = cur_func(env); 935 int new_ofs = state->acquired_refs; 936 int id, err; 937 938 err = resize_reference_state(state, state->acquired_refs + 1); 939 if (err) 940 return err; 941 id = ++env->id_gen; 942 state->refs[new_ofs].id = id; 943 state->refs[new_ofs].insn_idx = insn_idx; 944 945 return id; 946 } 947 948 /* release function corresponding to acquire_reference_state(). Idempotent. */ 949 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 950 { 951 int i, last_idx; 952 953 last_idx = state->acquired_refs - 1; 954 for (i = 0; i < state->acquired_refs; i++) { 955 if (state->refs[i].id == ptr_id) { 956 if (last_idx && i != last_idx) 957 memcpy(&state->refs[i], &state->refs[last_idx], 958 sizeof(*state->refs)); 959 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 960 state->acquired_refs--; 961 return 0; 962 } 963 } 964 return -EINVAL; 965 } 966 967 static void free_func_state(struct bpf_func_state *state) 968 { 969 if (!state) 970 return; 971 kfree(state->refs); 972 kfree(state->stack); 973 kfree(state); 974 } 975 976 static void clear_jmp_history(struct bpf_verifier_state *state) 977 { 978 kfree(state->jmp_history); 979 state->jmp_history = NULL; 980 state->jmp_history_cnt = 0; 981 } 982 983 static void free_verifier_state(struct bpf_verifier_state *state, 984 bool free_self) 985 { 986 int i; 987 988 for (i = 0; i <= state->curframe; i++) { 989 free_func_state(state->frame[i]); 990 state->frame[i] = NULL; 991 } 992 clear_jmp_history(state); 993 if (free_self) 994 kfree(state); 995 } 996 997 /* copy verifier state from src to dst growing dst stack space 998 * when necessary to accommodate larger src stack 999 */ 1000 static int copy_func_state(struct bpf_func_state *dst, 1001 const struct bpf_func_state *src) 1002 { 1003 int err; 1004 1005 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1006 err = copy_reference_state(dst, src); 1007 if (err) 1008 return err; 1009 return copy_stack_state(dst, src); 1010 } 1011 1012 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1013 const struct bpf_verifier_state *src) 1014 { 1015 struct bpf_func_state *dst; 1016 int i, err; 1017 1018 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1019 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1020 GFP_USER); 1021 if (!dst_state->jmp_history) 1022 return -ENOMEM; 1023 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1024 1025 /* if dst has more stack frames then src frame, free them */ 1026 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1027 free_func_state(dst_state->frame[i]); 1028 dst_state->frame[i] = NULL; 1029 } 1030 dst_state->speculative = src->speculative; 1031 dst_state->curframe = src->curframe; 1032 dst_state->active_spin_lock = src->active_spin_lock; 1033 dst_state->branches = src->branches; 1034 dst_state->parent = src->parent; 1035 dst_state->first_insn_idx = src->first_insn_idx; 1036 dst_state->last_insn_idx = src->last_insn_idx; 1037 for (i = 0; i <= src->curframe; i++) { 1038 dst = dst_state->frame[i]; 1039 if (!dst) { 1040 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1041 if (!dst) 1042 return -ENOMEM; 1043 dst_state->frame[i] = dst; 1044 } 1045 err = copy_func_state(dst, src->frame[i]); 1046 if (err) 1047 return err; 1048 } 1049 return 0; 1050 } 1051 1052 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1053 { 1054 while (st) { 1055 u32 br = --st->branches; 1056 1057 /* WARN_ON(br > 1) technically makes sense here, 1058 * but see comment in push_stack(), hence: 1059 */ 1060 WARN_ONCE((int)br < 0, 1061 "BUG update_branch_counts:branches_to_explore=%d\n", 1062 br); 1063 if (br) 1064 break; 1065 st = st->parent; 1066 } 1067 } 1068 1069 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1070 int *insn_idx, bool pop_log) 1071 { 1072 struct bpf_verifier_state *cur = env->cur_state; 1073 struct bpf_verifier_stack_elem *elem, *head = env->head; 1074 int err; 1075 1076 if (env->head == NULL) 1077 return -ENOENT; 1078 1079 if (cur) { 1080 err = copy_verifier_state(cur, &head->st); 1081 if (err) 1082 return err; 1083 } 1084 if (pop_log) 1085 bpf_vlog_reset(&env->log, head->log_pos); 1086 if (insn_idx) 1087 *insn_idx = head->insn_idx; 1088 if (prev_insn_idx) 1089 *prev_insn_idx = head->prev_insn_idx; 1090 elem = head->next; 1091 free_verifier_state(&head->st, false); 1092 kfree(head); 1093 env->head = elem; 1094 env->stack_size--; 1095 return 0; 1096 } 1097 1098 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1099 int insn_idx, int prev_insn_idx, 1100 bool speculative) 1101 { 1102 struct bpf_verifier_state *cur = env->cur_state; 1103 struct bpf_verifier_stack_elem *elem; 1104 int err; 1105 1106 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1107 if (!elem) 1108 goto err; 1109 1110 elem->insn_idx = insn_idx; 1111 elem->prev_insn_idx = prev_insn_idx; 1112 elem->next = env->head; 1113 elem->log_pos = env->log.len_used; 1114 env->head = elem; 1115 env->stack_size++; 1116 err = copy_verifier_state(&elem->st, cur); 1117 if (err) 1118 goto err; 1119 elem->st.speculative |= speculative; 1120 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1121 verbose(env, "The sequence of %d jumps is too complex.\n", 1122 env->stack_size); 1123 goto err; 1124 } 1125 if (elem->st.parent) { 1126 ++elem->st.parent->branches; 1127 /* WARN_ON(branches > 2) technically makes sense here, 1128 * but 1129 * 1. speculative states will bump 'branches' for non-branch 1130 * instructions 1131 * 2. is_state_visited() heuristics may decide not to create 1132 * a new state for a sequence of branches and all such current 1133 * and cloned states will be pointing to a single parent state 1134 * which might have large 'branches' count. 1135 */ 1136 } 1137 return &elem->st; 1138 err: 1139 free_verifier_state(env->cur_state, true); 1140 env->cur_state = NULL; 1141 /* pop all elements and return */ 1142 while (!pop_stack(env, NULL, NULL, false)); 1143 return NULL; 1144 } 1145 1146 #define CALLER_SAVED_REGS 6 1147 static const int caller_saved[CALLER_SAVED_REGS] = { 1148 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1149 }; 1150 1151 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1152 struct bpf_reg_state *reg); 1153 1154 /* This helper doesn't clear reg->id */ 1155 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1156 { 1157 reg->var_off = tnum_const(imm); 1158 reg->smin_value = (s64)imm; 1159 reg->smax_value = (s64)imm; 1160 reg->umin_value = imm; 1161 reg->umax_value = imm; 1162 1163 reg->s32_min_value = (s32)imm; 1164 reg->s32_max_value = (s32)imm; 1165 reg->u32_min_value = (u32)imm; 1166 reg->u32_max_value = (u32)imm; 1167 } 1168 1169 /* Mark the unknown part of a register (variable offset or scalar value) as 1170 * known to have the value @imm. 1171 */ 1172 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1173 { 1174 /* Clear id, off, and union(map_ptr, range) */ 1175 memset(((u8 *)reg) + sizeof(reg->type), 0, 1176 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1177 ___mark_reg_known(reg, imm); 1178 } 1179 1180 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1181 { 1182 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1183 reg->s32_min_value = (s32)imm; 1184 reg->s32_max_value = (s32)imm; 1185 reg->u32_min_value = (u32)imm; 1186 reg->u32_max_value = (u32)imm; 1187 } 1188 1189 /* Mark the 'variable offset' part of a register as zero. This should be 1190 * used only on registers holding a pointer type. 1191 */ 1192 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1193 { 1194 __mark_reg_known(reg, 0); 1195 } 1196 1197 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1198 { 1199 __mark_reg_known(reg, 0); 1200 reg->type = SCALAR_VALUE; 1201 } 1202 1203 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1204 struct bpf_reg_state *regs, u32 regno) 1205 { 1206 if (WARN_ON(regno >= MAX_BPF_REG)) { 1207 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1208 /* Something bad happened, let's kill all regs */ 1209 for (regno = 0; regno < MAX_BPF_REG; regno++) 1210 __mark_reg_not_init(env, regs + regno); 1211 return; 1212 } 1213 __mark_reg_known_zero(regs + regno); 1214 } 1215 1216 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1217 { 1218 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1219 const struct bpf_map *map = reg->map_ptr; 1220 1221 if (map->inner_map_meta) { 1222 reg->type = CONST_PTR_TO_MAP; 1223 reg->map_ptr = map->inner_map_meta; 1224 /* transfer reg's id which is unique for every map_lookup_elem 1225 * as UID of the inner map. 1226 */ 1227 if (map_value_has_timer(map->inner_map_meta)) 1228 reg->map_uid = reg->id; 1229 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1230 reg->type = PTR_TO_XDP_SOCK; 1231 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1232 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1233 reg->type = PTR_TO_SOCKET; 1234 } else { 1235 reg->type = PTR_TO_MAP_VALUE; 1236 } 1237 return; 1238 } 1239 1240 reg->type &= ~PTR_MAYBE_NULL; 1241 } 1242 1243 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1244 { 1245 return type_is_pkt_pointer(reg->type); 1246 } 1247 1248 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1249 { 1250 return reg_is_pkt_pointer(reg) || 1251 reg->type == PTR_TO_PACKET_END; 1252 } 1253 1254 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1255 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1256 enum bpf_reg_type which) 1257 { 1258 /* The register can already have a range from prior markings. 1259 * This is fine as long as it hasn't been advanced from its 1260 * origin. 1261 */ 1262 return reg->type == which && 1263 reg->id == 0 && 1264 reg->off == 0 && 1265 tnum_equals_const(reg->var_off, 0); 1266 } 1267 1268 /* Reset the min/max bounds of a register */ 1269 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1270 { 1271 reg->smin_value = S64_MIN; 1272 reg->smax_value = S64_MAX; 1273 reg->umin_value = 0; 1274 reg->umax_value = U64_MAX; 1275 1276 reg->s32_min_value = S32_MIN; 1277 reg->s32_max_value = S32_MAX; 1278 reg->u32_min_value = 0; 1279 reg->u32_max_value = U32_MAX; 1280 } 1281 1282 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1283 { 1284 reg->smin_value = S64_MIN; 1285 reg->smax_value = S64_MAX; 1286 reg->umin_value = 0; 1287 reg->umax_value = U64_MAX; 1288 } 1289 1290 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1291 { 1292 reg->s32_min_value = S32_MIN; 1293 reg->s32_max_value = S32_MAX; 1294 reg->u32_min_value = 0; 1295 reg->u32_max_value = U32_MAX; 1296 } 1297 1298 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1299 { 1300 struct tnum var32_off = tnum_subreg(reg->var_off); 1301 1302 /* min signed is max(sign bit) | min(other bits) */ 1303 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1304 var32_off.value | (var32_off.mask & S32_MIN)); 1305 /* max signed is min(sign bit) | max(other bits) */ 1306 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1307 var32_off.value | (var32_off.mask & S32_MAX)); 1308 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1309 reg->u32_max_value = min(reg->u32_max_value, 1310 (u32)(var32_off.value | var32_off.mask)); 1311 } 1312 1313 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1314 { 1315 /* min signed is max(sign bit) | min(other bits) */ 1316 reg->smin_value = max_t(s64, reg->smin_value, 1317 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1318 /* max signed is min(sign bit) | max(other bits) */ 1319 reg->smax_value = min_t(s64, reg->smax_value, 1320 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1321 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1322 reg->umax_value = min(reg->umax_value, 1323 reg->var_off.value | reg->var_off.mask); 1324 } 1325 1326 static void __update_reg_bounds(struct bpf_reg_state *reg) 1327 { 1328 __update_reg32_bounds(reg); 1329 __update_reg64_bounds(reg); 1330 } 1331 1332 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1333 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1334 { 1335 /* Learn sign from signed bounds. 1336 * If we cannot cross the sign boundary, then signed and unsigned bounds 1337 * are the same, so combine. This works even in the negative case, e.g. 1338 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1339 */ 1340 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1341 reg->s32_min_value = reg->u32_min_value = 1342 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1343 reg->s32_max_value = reg->u32_max_value = 1344 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1345 return; 1346 } 1347 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1348 * boundary, so we must be careful. 1349 */ 1350 if ((s32)reg->u32_max_value >= 0) { 1351 /* Positive. We can't learn anything from the smin, but smax 1352 * is positive, hence safe. 1353 */ 1354 reg->s32_min_value = reg->u32_min_value; 1355 reg->s32_max_value = reg->u32_max_value = 1356 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1357 } else if ((s32)reg->u32_min_value < 0) { 1358 /* Negative. We can't learn anything from the smax, but smin 1359 * is negative, hence safe. 1360 */ 1361 reg->s32_min_value = reg->u32_min_value = 1362 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1363 reg->s32_max_value = reg->u32_max_value; 1364 } 1365 } 1366 1367 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1368 { 1369 /* Learn sign from signed bounds. 1370 * If we cannot cross the sign boundary, then signed and unsigned bounds 1371 * are the same, so combine. This works even in the negative case, e.g. 1372 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1373 */ 1374 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1375 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1376 reg->umin_value); 1377 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1378 reg->umax_value); 1379 return; 1380 } 1381 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1382 * boundary, so we must be careful. 1383 */ 1384 if ((s64)reg->umax_value >= 0) { 1385 /* Positive. We can't learn anything from the smin, but smax 1386 * is positive, hence safe. 1387 */ 1388 reg->smin_value = reg->umin_value; 1389 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1390 reg->umax_value); 1391 } else if ((s64)reg->umin_value < 0) { 1392 /* Negative. We can't learn anything from the smax, but smin 1393 * is negative, hence safe. 1394 */ 1395 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1396 reg->umin_value); 1397 reg->smax_value = reg->umax_value; 1398 } 1399 } 1400 1401 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1402 { 1403 __reg32_deduce_bounds(reg); 1404 __reg64_deduce_bounds(reg); 1405 } 1406 1407 /* Attempts to improve var_off based on unsigned min/max information */ 1408 static void __reg_bound_offset(struct bpf_reg_state *reg) 1409 { 1410 struct tnum var64_off = tnum_intersect(reg->var_off, 1411 tnum_range(reg->umin_value, 1412 reg->umax_value)); 1413 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1414 tnum_range(reg->u32_min_value, 1415 reg->u32_max_value)); 1416 1417 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1418 } 1419 1420 static bool __reg32_bound_s64(s32 a) 1421 { 1422 return a >= 0 && a <= S32_MAX; 1423 } 1424 1425 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1426 { 1427 reg->umin_value = reg->u32_min_value; 1428 reg->umax_value = reg->u32_max_value; 1429 1430 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1431 * be positive otherwise set to worse case bounds and refine later 1432 * from tnum. 1433 */ 1434 if (__reg32_bound_s64(reg->s32_min_value) && 1435 __reg32_bound_s64(reg->s32_max_value)) { 1436 reg->smin_value = reg->s32_min_value; 1437 reg->smax_value = reg->s32_max_value; 1438 } else { 1439 reg->smin_value = 0; 1440 reg->smax_value = U32_MAX; 1441 } 1442 } 1443 1444 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1445 { 1446 /* special case when 64-bit register has upper 32-bit register 1447 * zeroed. Typically happens after zext or <<32, >>32 sequence 1448 * allowing us to use 32-bit bounds directly, 1449 */ 1450 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1451 __reg_assign_32_into_64(reg); 1452 } else { 1453 /* Otherwise the best we can do is push lower 32bit known and 1454 * unknown bits into register (var_off set from jmp logic) 1455 * then learn as much as possible from the 64-bit tnum 1456 * known and unknown bits. The previous smin/smax bounds are 1457 * invalid here because of jmp32 compare so mark them unknown 1458 * so they do not impact tnum bounds calculation. 1459 */ 1460 __mark_reg64_unbounded(reg); 1461 __update_reg_bounds(reg); 1462 } 1463 1464 /* Intersecting with the old var_off might have improved our bounds 1465 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1466 * then new var_off is (0; 0x7f...fc) which improves our umax. 1467 */ 1468 __reg_deduce_bounds(reg); 1469 __reg_bound_offset(reg); 1470 __update_reg_bounds(reg); 1471 } 1472 1473 static bool __reg64_bound_s32(s64 a) 1474 { 1475 return a >= S32_MIN && a <= S32_MAX; 1476 } 1477 1478 static bool __reg64_bound_u32(u64 a) 1479 { 1480 return a >= U32_MIN && a <= U32_MAX; 1481 } 1482 1483 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1484 { 1485 __mark_reg32_unbounded(reg); 1486 1487 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1488 reg->s32_min_value = (s32)reg->smin_value; 1489 reg->s32_max_value = (s32)reg->smax_value; 1490 } 1491 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1492 reg->u32_min_value = (u32)reg->umin_value; 1493 reg->u32_max_value = (u32)reg->umax_value; 1494 } 1495 1496 /* Intersecting with the old var_off might have improved our bounds 1497 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1498 * then new var_off is (0; 0x7f...fc) which improves our umax. 1499 */ 1500 __reg_deduce_bounds(reg); 1501 __reg_bound_offset(reg); 1502 __update_reg_bounds(reg); 1503 } 1504 1505 /* Mark a register as having a completely unknown (scalar) value. */ 1506 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1507 struct bpf_reg_state *reg) 1508 { 1509 /* 1510 * Clear type, id, off, and union(map_ptr, range) and 1511 * padding between 'type' and union 1512 */ 1513 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1514 reg->type = SCALAR_VALUE; 1515 reg->var_off = tnum_unknown; 1516 reg->frameno = 0; 1517 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1518 __mark_reg_unbounded(reg); 1519 } 1520 1521 static void mark_reg_unknown(struct bpf_verifier_env *env, 1522 struct bpf_reg_state *regs, u32 regno) 1523 { 1524 if (WARN_ON(regno >= MAX_BPF_REG)) { 1525 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1526 /* Something bad happened, let's kill all regs except FP */ 1527 for (regno = 0; regno < BPF_REG_FP; regno++) 1528 __mark_reg_not_init(env, regs + regno); 1529 return; 1530 } 1531 __mark_reg_unknown(env, regs + regno); 1532 } 1533 1534 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1535 struct bpf_reg_state *reg) 1536 { 1537 __mark_reg_unknown(env, reg); 1538 reg->type = NOT_INIT; 1539 } 1540 1541 static void mark_reg_not_init(struct bpf_verifier_env *env, 1542 struct bpf_reg_state *regs, u32 regno) 1543 { 1544 if (WARN_ON(regno >= MAX_BPF_REG)) { 1545 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1546 /* Something bad happened, let's kill all regs except FP */ 1547 for (regno = 0; regno < BPF_REG_FP; regno++) 1548 __mark_reg_not_init(env, regs + regno); 1549 return; 1550 } 1551 __mark_reg_not_init(env, regs + regno); 1552 } 1553 1554 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1555 struct bpf_reg_state *regs, u32 regno, 1556 enum bpf_reg_type reg_type, 1557 struct btf *btf, u32 btf_id, 1558 enum bpf_type_flag flag) 1559 { 1560 if (reg_type == SCALAR_VALUE) { 1561 mark_reg_unknown(env, regs, regno); 1562 return; 1563 } 1564 mark_reg_known_zero(env, regs, regno); 1565 regs[regno].type = PTR_TO_BTF_ID | flag; 1566 regs[regno].btf = btf; 1567 regs[regno].btf_id = btf_id; 1568 } 1569 1570 #define DEF_NOT_SUBREG (0) 1571 static void init_reg_state(struct bpf_verifier_env *env, 1572 struct bpf_func_state *state) 1573 { 1574 struct bpf_reg_state *regs = state->regs; 1575 int i; 1576 1577 for (i = 0; i < MAX_BPF_REG; i++) { 1578 mark_reg_not_init(env, regs, i); 1579 regs[i].live = REG_LIVE_NONE; 1580 regs[i].parent = NULL; 1581 regs[i].subreg_def = DEF_NOT_SUBREG; 1582 } 1583 1584 /* frame pointer */ 1585 regs[BPF_REG_FP].type = PTR_TO_STACK; 1586 mark_reg_known_zero(env, regs, BPF_REG_FP); 1587 regs[BPF_REG_FP].frameno = state->frameno; 1588 } 1589 1590 #define BPF_MAIN_FUNC (-1) 1591 static void init_func_state(struct bpf_verifier_env *env, 1592 struct bpf_func_state *state, 1593 int callsite, int frameno, int subprogno) 1594 { 1595 state->callsite = callsite; 1596 state->frameno = frameno; 1597 state->subprogno = subprogno; 1598 init_reg_state(env, state); 1599 mark_verifier_state_scratched(env); 1600 } 1601 1602 /* Similar to push_stack(), but for async callbacks */ 1603 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1604 int insn_idx, int prev_insn_idx, 1605 int subprog) 1606 { 1607 struct bpf_verifier_stack_elem *elem; 1608 struct bpf_func_state *frame; 1609 1610 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1611 if (!elem) 1612 goto err; 1613 1614 elem->insn_idx = insn_idx; 1615 elem->prev_insn_idx = prev_insn_idx; 1616 elem->next = env->head; 1617 elem->log_pos = env->log.len_used; 1618 env->head = elem; 1619 env->stack_size++; 1620 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1621 verbose(env, 1622 "The sequence of %d jumps is too complex for async cb.\n", 1623 env->stack_size); 1624 goto err; 1625 } 1626 /* Unlike push_stack() do not copy_verifier_state(). 1627 * The caller state doesn't matter. 1628 * This is async callback. It starts in a fresh stack. 1629 * Initialize it similar to do_check_common(). 1630 */ 1631 elem->st.branches = 1; 1632 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1633 if (!frame) 1634 goto err; 1635 init_func_state(env, frame, 1636 BPF_MAIN_FUNC /* callsite */, 1637 0 /* frameno within this callchain */, 1638 subprog /* subprog number within this prog */); 1639 elem->st.frame[0] = frame; 1640 return &elem->st; 1641 err: 1642 free_verifier_state(env->cur_state, true); 1643 env->cur_state = NULL; 1644 /* pop all elements and return */ 1645 while (!pop_stack(env, NULL, NULL, false)); 1646 return NULL; 1647 } 1648 1649 1650 enum reg_arg_type { 1651 SRC_OP, /* register is used as source operand */ 1652 DST_OP, /* register is used as destination operand */ 1653 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1654 }; 1655 1656 static int cmp_subprogs(const void *a, const void *b) 1657 { 1658 return ((struct bpf_subprog_info *)a)->start - 1659 ((struct bpf_subprog_info *)b)->start; 1660 } 1661 1662 static int find_subprog(struct bpf_verifier_env *env, int off) 1663 { 1664 struct bpf_subprog_info *p; 1665 1666 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1667 sizeof(env->subprog_info[0]), cmp_subprogs); 1668 if (!p) 1669 return -ENOENT; 1670 return p - env->subprog_info; 1671 1672 } 1673 1674 static int add_subprog(struct bpf_verifier_env *env, int off) 1675 { 1676 int insn_cnt = env->prog->len; 1677 int ret; 1678 1679 if (off >= insn_cnt || off < 0) { 1680 verbose(env, "call to invalid destination\n"); 1681 return -EINVAL; 1682 } 1683 ret = find_subprog(env, off); 1684 if (ret >= 0) 1685 return ret; 1686 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1687 verbose(env, "too many subprograms\n"); 1688 return -E2BIG; 1689 } 1690 /* determine subprog starts. The end is one before the next starts */ 1691 env->subprog_info[env->subprog_cnt++].start = off; 1692 sort(env->subprog_info, env->subprog_cnt, 1693 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1694 return env->subprog_cnt - 1; 1695 } 1696 1697 #define MAX_KFUNC_DESCS 256 1698 #define MAX_KFUNC_BTFS 256 1699 1700 struct bpf_kfunc_desc { 1701 struct btf_func_model func_model; 1702 u32 func_id; 1703 s32 imm; 1704 u16 offset; 1705 }; 1706 1707 struct bpf_kfunc_btf { 1708 struct btf *btf; 1709 struct module *module; 1710 u16 offset; 1711 }; 1712 1713 struct bpf_kfunc_desc_tab { 1714 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1715 u32 nr_descs; 1716 }; 1717 1718 struct bpf_kfunc_btf_tab { 1719 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1720 u32 nr_descs; 1721 }; 1722 1723 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1724 { 1725 const struct bpf_kfunc_desc *d0 = a; 1726 const struct bpf_kfunc_desc *d1 = b; 1727 1728 /* func_id is not greater than BTF_MAX_TYPE */ 1729 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1730 } 1731 1732 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1733 { 1734 const struct bpf_kfunc_btf *d0 = a; 1735 const struct bpf_kfunc_btf *d1 = b; 1736 1737 return d0->offset - d1->offset; 1738 } 1739 1740 static const struct bpf_kfunc_desc * 1741 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1742 { 1743 struct bpf_kfunc_desc desc = { 1744 .func_id = func_id, 1745 .offset = offset, 1746 }; 1747 struct bpf_kfunc_desc_tab *tab; 1748 1749 tab = prog->aux->kfunc_tab; 1750 return bsearch(&desc, tab->descs, tab->nr_descs, 1751 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1752 } 1753 1754 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1755 s16 offset) 1756 { 1757 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1758 struct bpf_kfunc_btf_tab *tab; 1759 struct bpf_kfunc_btf *b; 1760 struct module *mod; 1761 struct btf *btf; 1762 int btf_fd; 1763 1764 tab = env->prog->aux->kfunc_btf_tab; 1765 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1766 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1767 if (!b) { 1768 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1769 verbose(env, "too many different module BTFs\n"); 1770 return ERR_PTR(-E2BIG); 1771 } 1772 1773 if (bpfptr_is_null(env->fd_array)) { 1774 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1775 return ERR_PTR(-EPROTO); 1776 } 1777 1778 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1779 offset * sizeof(btf_fd), 1780 sizeof(btf_fd))) 1781 return ERR_PTR(-EFAULT); 1782 1783 btf = btf_get_by_fd(btf_fd); 1784 if (IS_ERR(btf)) { 1785 verbose(env, "invalid module BTF fd specified\n"); 1786 return btf; 1787 } 1788 1789 if (!btf_is_module(btf)) { 1790 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1791 btf_put(btf); 1792 return ERR_PTR(-EINVAL); 1793 } 1794 1795 mod = btf_try_get_module(btf); 1796 if (!mod) { 1797 btf_put(btf); 1798 return ERR_PTR(-ENXIO); 1799 } 1800 1801 b = &tab->descs[tab->nr_descs++]; 1802 b->btf = btf; 1803 b->module = mod; 1804 b->offset = offset; 1805 1806 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1807 kfunc_btf_cmp_by_off, NULL); 1808 } 1809 return b->btf; 1810 } 1811 1812 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1813 { 1814 if (!tab) 1815 return; 1816 1817 while (tab->nr_descs--) { 1818 module_put(tab->descs[tab->nr_descs].module); 1819 btf_put(tab->descs[tab->nr_descs].btf); 1820 } 1821 kfree(tab); 1822 } 1823 1824 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1825 u32 func_id, s16 offset) 1826 { 1827 if (offset) { 1828 if (offset < 0) { 1829 /* In the future, this can be allowed to increase limit 1830 * of fd index into fd_array, interpreted as u16. 1831 */ 1832 verbose(env, "negative offset disallowed for kernel module function call\n"); 1833 return ERR_PTR(-EINVAL); 1834 } 1835 1836 return __find_kfunc_desc_btf(env, offset); 1837 } 1838 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1839 } 1840 1841 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1842 { 1843 const struct btf_type *func, *func_proto; 1844 struct bpf_kfunc_btf_tab *btf_tab; 1845 struct bpf_kfunc_desc_tab *tab; 1846 struct bpf_prog_aux *prog_aux; 1847 struct bpf_kfunc_desc *desc; 1848 const char *func_name; 1849 struct btf *desc_btf; 1850 unsigned long call_imm; 1851 unsigned long addr; 1852 int err; 1853 1854 prog_aux = env->prog->aux; 1855 tab = prog_aux->kfunc_tab; 1856 btf_tab = prog_aux->kfunc_btf_tab; 1857 if (!tab) { 1858 if (!btf_vmlinux) { 1859 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1860 return -ENOTSUPP; 1861 } 1862 1863 if (!env->prog->jit_requested) { 1864 verbose(env, "JIT is required for calling kernel function\n"); 1865 return -ENOTSUPP; 1866 } 1867 1868 if (!bpf_jit_supports_kfunc_call()) { 1869 verbose(env, "JIT does not support calling kernel function\n"); 1870 return -ENOTSUPP; 1871 } 1872 1873 if (!env->prog->gpl_compatible) { 1874 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1875 return -EINVAL; 1876 } 1877 1878 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1879 if (!tab) 1880 return -ENOMEM; 1881 prog_aux->kfunc_tab = tab; 1882 } 1883 1884 /* func_id == 0 is always invalid, but instead of returning an error, be 1885 * conservative and wait until the code elimination pass before returning 1886 * error, so that invalid calls that get pruned out can be in BPF programs 1887 * loaded from userspace. It is also required that offset be untouched 1888 * for such calls. 1889 */ 1890 if (!func_id && !offset) 1891 return 0; 1892 1893 if (!btf_tab && offset) { 1894 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1895 if (!btf_tab) 1896 return -ENOMEM; 1897 prog_aux->kfunc_btf_tab = btf_tab; 1898 } 1899 1900 desc_btf = find_kfunc_desc_btf(env, func_id, offset); 1901 if (IS_ERR(desc_btf)) { 1902 verbose(env, "failed to find BTF for kernel function\n"); 1903 return PTR_ERR(desc_btf); 1904 } 1905 1906 if (find_kfunc_desc(env->prog, func_id, offset)) 1907 return 0; 1908 1909 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1910 verbose(env, "too many different kernel function calls\n"); 1911 return -E2BIG; 1912 } 1913 1914 func = btf_type_by_id(desc_btf, func_id); 1915 if (!func || !btf_type_is_func(func)) { 1916 verbose(env, "kernel btf_id %u is not a function\n", 1917 func_id); 1918 return -EINVAL; 1919 } 1920 func_proto = btf_type_by_id(desc_btf, func->type); 1921 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1922 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1923 func_id); 1924 return -EINVAL; 1925 } 1926 1927 func_name = btf_name_by_offset(desc_btf, func->name_off); 1928 addr = kallsyms_lookup_name(func_name); 1929 if (!addr) { 1930 verbose(env, "cannot find address for kernel function %s\n", 1931 func_name); 1932 return -EINVAL; 1933 } 1934 1935 call_imm = BPF_CALL_IMM(addr); 1936 /* Check whether or not the relative offset overflows desc->imm */ 1937 if ((unsigned long)(s32)call_imm != call_imm) { 1938 verbose(env, "address of kernel function %s is out of range\n", 1939 func_name); 1940 return -EINVAL; 1941 } 1942 1943 desc = &tab->descs[tab->nr_descs++]; 1944 desc->func_id = func_id; 1945 desc->imm = call_imm; 1946 desc->offset = offset; 1947 err = btf_distill_func_proto(&env->log, desc_btf, 1948 func_proto, func_name, 1949 &desc->func_model); 1950 if (!err) 1951 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1952 kfunc_desc_cmp_by_id_off, NULL); 1953 return err; 1954 } 1955 1956 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1957 { 1958 const struct bpf_kfunc_desc *d0 = a; 1959 const struct bpf_kfunc_desc *d1 = b; 1960 1961 if (d0->imm > d1->imm) 1962 return 1; 1963 else if (d0->imm < d1->imm) 1964 return -1; 1965 return 0; 1966 } 1967 1968 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1969 { 1970 struct bpf_kfunc_desc_tab *tab; 1971 1972 tab = prog->aux->kfunc_tab; 1973 if (!tab) 1974 return; 1975 1976 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1977 kfunc_desc_cmp_by_imm, NULL); 1978 } 1979 1980 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1981 { 1982 return !!prog->aux->kfunc_tab; 1983 } 1984 1985 const struct btf_func_model * 1986 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1987 const struct bpf_insn *insn) 1988 { 1989 const struct bpf_kfunc_desc desc = { 1990 .imm = insn->imm, 1991 }; 1992 const struct bpf_kfunc_desc *res; 1993 struct bpf_kfunc_desc_tab *tab; 1994 1995 tab = prog->aux->kfunc_tab; 1996 res = bsearch(&desc, tab->descs, tab->nr_descs, 1997 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1998 1999 return res ? &res->func_model : NULL; 2000 } 2001 2002 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2003 { 2004 struct bpf_subprog_info *subprog = env->subprog_info; 2005 struct bpf_insn *insn = env->prog->insnsi; 2006 int i, ret, insn_cnt = env->prog->len; 2007 2008 /* Add entry function. */ 2009 ret = add_subprog(env, 0); 2010 if (ret) 2011 return ret; 2012 2013 for (i = 0; i < insn_cnt; i++, insn++) { 2014 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2015 !bpf_pseudo_kfunc_call(insn)) 2016 continue; 2017 2018 if (!env->bpf_capable) { 2019 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2020 return -EPERM; 2021 } 2022 2023 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2024 ret = add_subprog(env, i + insn->imm + 1); 2025 else 2026 ret = add_kfunc_call(env, insn->imm, insn->off); 2027 2028 if (ret < 0) 2029 return ret; 2030 } 2031 2032 /* Add a fake 'exit' subprog which could simplify subprog iteration 2033 * logic. 'subprog_cnt' should not be increased. 2034 */ 2035 subprog[env->subprog_cnt].start = insn_cnt; 2036 2037 if (env->log.level & BPF_LOG_LEVEL2) 2038 for (i = 0; i < env->subprog_cnt; i++) 2039 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2040 2041 return 0; 2042 } 2043 2044 static int check_subprogs(struct bpf_verifier_env *env) 2045 { 2046 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2047 struct bpf_subprog_info *subprog = env->subprog_info; 2048 struct bpf_insn *insn = env->prog->insnsi; 2049 int insn_cnt = env->prog->len; 2050 2051 /* now check that all jumps are within the same subprog */ 2052 subprog_start = subprog[cur_subprog].start; 2053 subprog_end = subprog[cur_subprog + 1].start; 2054 for (i = 0; i < insn_cnt; i++) { 2055 u8 code = insn[i].code; 2056 2057 if (code == (BPF_JMP | BPF_CALL) && 2058 insn[i].imm == BPF_FUNC_tail_call && 2059 insn[i].src_reg != BPF_PSEUDO_CALL) 2060 subprog[cur_subprog].has_tail_call = true; 2061 if (BPF_CLASS(code) == BPF_LD && 2062 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2063 subprog[cur_subprog].has_ld_abs = true; 2064 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2065 goto next; 2066 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2067 goto next; 2068 off = i + insn[i].off + 1; 2069 if (off < subprog_start || off >= subprog_end) { 2070 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2071 return -EINVAL; 2072 } 2073 next: 2074 if (i == subprog_end - 1) { 2075 /* to avoid fall-through from one subprog into another 2076 * the last insn of the subprog should be either exit 2077 * or unconditional jump back 2078 */ 2079 if (code != (BPF_JMP | BPF_EXIT) && 2080 code != (BPF_JMP | BPF_JA)) { 2081 verbose(env, "last insn is not an exit or jmp\n"); 2082 return -EINVAL; 2083 } 2084 subprog_start = subprog_end; 2085 cur_subprog++; 2086 if (cur_subprog < env->subprog_cnt) 2087 subprog_end = subprog[cur_subprog + 1].start; 2088 } 2089 } 2090 return 0; 2091 } 2092 2093 /* Parentage chain of this register (or stack slot) should take care of all 2094 * issues like callee-saved registers, stack slot allocation time, etc. 2095 */ 2096 static int mark_reg_read(struct bpf_verifier_env *env, 2097 const struct bpf_reg_state *state, 2098 struct bpf_reg_state *parent, u8 flag) 2099 { 2100 bool writes = parent == state->parent; /* Observe write marks */ 2101 int cnt = 0; 2102 2103 while (parent) { 2104 /* if read wasn't screened by an earlier write ... */ 2105 if (writes && state->live & REG_LIVE_WRITTEN) 2106 break; 2107 if (parent->live & REG_LIVE_DONE) { 2108 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2109 reg_type_str(env, parent->type), 2110 parent->var_off.value, parent->off); 2111 return -EFAULT; 2112 } 2113 /* The first condition is more likely to be true than the 2114 * second, checked it first. 2115 */ 2116 if ((parent->live & REG_LIVE_READ) == flag || 2117 parent->live & REG_LIVE_READ64) 2118 /* The parentage chain never changes and 2119 * this parent was already marked as LIVE_READ. 2120 * There is no need to keep walking the chain again and 2121 * keep re-marking all parents as LIVE_READ. 2122 * This case happens when the same register is read 2123 * multiple times without writes into it in-between. 2124 * Also, if parent has the stronger REG_LIVE_READ64 set, 2125 * then no need to set the weak REG_LIVE_READ32. 2126 */ 2127 break; 2128 /* ... then we depend on parent's value */ 2129 parent->live |= flag; 2130 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2131 if (flag == REG_LIVE_READ64) 2132 parent->live &= ~REG_LIVE_READ32; 2133 state = parent; 2134 parent = state->parent; 2135 writes = true; 2136 cnt++; 2137 } 2138 2139 if (env->longest_mark_read_walk < cnt) 2140 env->longest_mark_read_walk = cnt; 2141 return 0; 2142 } 2143 2144 /* This function is supposed to be used by the following 32-bit optimization 2145 * code only. It returns TRUE if the source or destination register operates 2146 * on 64-bit, otherwise return FALSE. 2147 */ 2148 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2149 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2150 { 2151 u8 code, class, op; 2152 2153 code = insn->code; 2154 class = BPF_CLASS(code); 2155 op = BPF_OP(code); 2156 if (class == BPF_JMP) { 2157 /* BPF_EXIT for "main" will reach here. Return TRUE 2158 * conservatively. 2159 */ 2160 if (op == BPF_EXIT) 2161 return true; 2162 if (op == BPF_CALL) { 2163 /* BPF to BPF call will reach here because of marking 2164 * caller saved clobber with DST_OP_NO_MARK for which we 2165 * don't care the register def because they are anyway 2166 * marked as NOT_INIT already. 2167 */ 2168 if (insn->src_reg == BPF_PSEUDO_CALL) 2169 return false; 2170 /* Helper call will reach here because of arg type 2171 * check, conservatively return TRUE. 2172 */ 2173 if (t == SRC_OP) 2174 return true; 2175 2176 return false; 2177 } 2178 } 2179 2180 if (class == BPF_ALU64 || class == BPF_JMP || 2181 /* BPF_END always use BPF_ALU class. */ 2182 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2183 return true; 2184 2185 if (class == BPF_ALU || class == BPF_JMP32) 2186 return false; 2187 2188 if (class == BPF_LDX) { 2189 if (t != SRC_OP) 2190 return BPF_SIZE(code) == BPF_DW; 2191 /* LDX source must be ptr. */ 2192 return true; 2193 } 2194 2195 if (class == BPF_STX) { 2196 /* BPF_STX (including atomic variants) has multiple source 2197 * operands, one of which is a ptr. Check whether the caller is 2198 * asking about it. 2199 */ 2200 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2201 return true; 2202 return BPF_SIZE(code) == BPF_DW; 2203 } 2204 2205 if (class == BPF_LD) { 2206 u8 mode = BPF_MODE(code); 2207 2208 /* LD_IMM64 */ 2209 if (mode == BPF_IMM) 2210 return true; 2211 2212 /* Both LD_IND and LD_ABS return 32-bit data. */ 2213 if (t != SRC_OP) 2214 return false; 2215 2216 /* Implicit ctx ptr. */ 2217 if (regno == BPF_REG_6) 2218 return true; 2219 2220 /* Explicit source could be any width. */ 2221 return true; 2222 } 2223 2224 if (class == BPF_ST) 2225 /* The only source register for BPF_ST is a ptr. */ 2226 return true; 2227 2228 /* Conservatively return true at default. */ 2229 return true; 2230 } 2231 2232 /* Return the regno defined by the insn, or -1. */ 2233 static int insn_def_regno(const struct bpf_insn *insn) 2234 { 2235 switch (BPF_CLASS(insn->code)) { 2236 case BPF_JMP: 2237 case BPF_JMP32: 2238 case BPF_ST: 2239 return -1; 2240 case BPF_STX: 2241 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2242 (insn->imm & BPF_FETCH)) { 2243 if (insn->imm == BPF_CMPXCHG) 2244 return BPF_REG_0; 2245 else 2246 return insn->src_reg; 2247 } else { 2248 return -1; 2249 } 2250 default: 2251 return insn->dst_reg; 2252 } 2253 } 2254 2255 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2256 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2257 { 2258 int dst_reg = insn_def_regno(insn); 2259 2260 if (dst_reg == -1) 2261 return false; 2262 2263 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2264 } 2265 2266 static void mark_insn_zext(struct bpf_verifier_env *env, 2267 struct bpf_reg_state *reg) 2268 { 2269 s32 def_idx = reg->subreg_def; 2270 2271 if (def_idx == DEF_NOT_SUBREG) 2272 return; 2273 2274 env->insn_aux_data[def_idx - 1].zext_dst = true; 2275 /* The dst will be zero extended, so won't be sub-register anymore. */ 2276 reg->subreg_def = DEF_NOT_SUBREG; 2277 } 2278 2279 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2280 enum reg_arg_type t) 2281 { 2282 struct bpf_verifier_state *vstate = env->cur_state; 2283 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2284 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2285 struct bpf_reg_state *reg, *regs = state->regs; 2286 bool rw64; 2287 2288 if (regno >= MAX_BPF_REG) { 2289 verbose(env, "R%d is invalid\n", regno); 2290 return -EINVAL; 2291 } 2292 2293 mark_reg_scratched(env, regno); 2294 2295 reg = ®s[regno]; 2296 rw64 = is_reg64(env, insn, regno, reg, t); 2297 if (t == SRC_OP) { 2298 /* check whether register used as source operand can be read */ 2299 if (reg->type == NOT_INIT) { 2300 verbose(env, "R%d !read_ok\n", regno); 2301 return -EACCES; 2302 } 2303 /* We don't need to worry about FP liveness because it's read-only */ 2304 if (regno == BPF_REG_FP) 2305 return 0; 2306 2307 if (rw64) 2308 mark_insn_zext(env, reg); 2309 2310 return mark_reg_read(env, reg, reg->parent, 2311 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2312 } else { 2313 /* check whether register used as dest operand can be written to */ 2314 if (regno == BPF_REG_FP) { 2315 verbose(env, "frame pointer is read only\n"); 2316 return -EACCES; 2317 } 2318 reg->live |= REG_LIVE_WRITTEN; 2319 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2320 if (t == DST_OP) 2321 mark_reg_unknown(env, regs, regno); 2322 } 2323 return 0; 2324 } 2325 2326 /* for any branch, call, exit record the history of jmps in the given state */ 2327 static int push_jmp_history(struct bpf_verifier_env *env, 2328 struct bpf_verifier_state *cur) 2329 { 2330 u32 cnt = cur->jmp_history_cnt; 2331 struct bpf_idx_pair *p; 2332 2333 cnt++; 2334 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2335 if (!p) 2336 return -ENOMEM; 2337 p[cnt - 1].idx = env->insn_idx; 2338 p[cnt - 1].prev_idx = env->prev_insn_idx; 2339 cur->jmp_history = p; 2340 cur->jmp_history_cnt = cnt; 2341 return 0; 2342 } 2343 2344 /* Backtrack one insn at a time. If idx is not at the top of recorded 2345 * history then previous instruction came from straight line execution. 2346 */ 2347 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2348 u32 *history) 2349 { 2350 u32 cnt = *history; 2351 2352 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2353 i = st->jmp_history[cnt - 1].prev_idx; 2354 (*history)--; 2355 } else { 2356 i--; 2357 } 2358 return i; 2359 } 2360 2361 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2362 { 2363 const struct btf_type *func; 2364 struct btf *desc_btf; 2365 2366 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2367 return NULL; 2368 2369 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off); 2370 if (IS_ERR(desc_btf)) 2371 return "<error>"; 2372 2373 func = btf_type_by_id(desc_btf, insn->imm); 2374 return btf_name_by_offset(desc_btf, func->name_off); 2375 } 2376 2377 /* For given verifier state backtrack_insn() is called from the last insn to 2378 * the first insn. Its purpose is to compute a bitmask of registers and 2379 * stack slots that needs precision in the parent verifier state. 2380 */ 2381 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2382 u32 *reg_mask, u64 *stack_mask) 2383 { 2384 const struct bpf_insn_cbs cbs = { 2385 .cb_call = disasm_kfunc_name, 2386 .cb_print = verbose, 2387 .private_data = env, 2388 }; 2389 struct bpf_insn *insn = env->prog->insnsi + idx; 2390 u8 class = BPF_CLASS(insn->code); 2391 u8 opcode = BPF_OP(insn->code); 2392 u8 mode = BPF_MODE(insn->code); 2393 u32 dreg = 1u << insn->dst_reg; 2394 u32 sreg = 1u << insn->src_reg; 2395 u32 spi; 2396 2397 if (insn->code == 0) 2398 return 0; 2399 if (env->log.level & BPF_LOG_LEVEL2) { 2400 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2401 verbose(env, "%d: ", idx); 2402 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2403 } 2404 2405 if (class == BPF_ALU || class == BPF_ALU64) { 2406 if (!(*reg_mask & dreg)) 2407 return 0; 2408 if (opcode == BPF_MOV) { 2409 if (BPF_SRC(insn->code) == BPF_X) { 2410 /* dreg = sreg 2411 * dreg needs precision after this insn 2412 * sreg needs precision before this insn 2413 */ 2414 *reg_mask &= ~dreg; 2415 *reg_mask |= sreg; 2416 } else { 2417 /* dreg = K 2418 * dreg needs precision after this insn. 2419 * Corresponding register is already marked 2420 * as precise=true in this verifier state. 2421 * No further markings in parent are necessary 2422 */ 2423 *reg_mask &= ~dreg; 2424 } 2425 } else { 2426 if (BPF_SRC(insn->code) == BPF_X) { 2427 /* dreg += sreg 2428 * both dreg and sreg need precision 2429 * before this insn 2430 */ 2431 *reg_mask |= sreg; 2432 } /* else dreg += K 2433 * dreg still needs precision before this insn 2434 */ 2435 } 2436 } else if (class == BPF_LDX) { 2437 if (!(*reg_mask & dreg)) 2438 return 0; 2439 *reg_mask &= ~dreg; 2440 2441 /* scalars can only be spilled into stack w/o losing precision. 2442 * Load from any other memory can be zero extended. 2443 * The desire to keep that precision is already indicated 2444 * by 'precise' mark in corresponding register of this state. 2445 * No further tracking necessary. 2446 */ 2447 if (insn->src_reg != BPF_REG_FP) 2448 return 0; 2449 2450 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2451 * that [fp - off] slot contains scalar that needs to be 2452 * tracked with precision 2453 */ 2454 spi = (-insn->off - 1) / BPF_REG_SIZE; 2455 if (spi >= 64) { 2456 verbose(env, "BUG spi %d\n", spi); 2457 WARN_ONCE(1, "verifier backtracking bug"); 2458 return -EFAULT; 2459 } 2460 *stack_mask |= 1ull << spi; 2461 } else if (class == BPF_STX || class == BPF_ST) { 2462 if (*reg_mask & dreg) 2463 /* stx & st shouldn't be using _scalar_ dst_reg 2464 * to access memory. It means backtracking 2465 * encountered a case of pointer subtraction. 2466 */ 2467 return -ENOTSUPP; 2468 /* scalars can only be spilled into stack */ 2469 if (insn->dst_reg != BPF_REG_FP) 2470 return 0; 2471 spi = (-insn->off - 1) / BPF_REG_SIZE; 2472 if (spi >= 64) { 2473 verbose(env, "BUG spi %d\n", spi); 2474 WARN_ONCE(1, "verifier backtracking bug"); 2475 return -EFAULT; 2476 } 2477 if (!(*stack_mask & (1ull << spi))) 2478 return 0; 2479 *stack_mask &= ~(1ull << spi); 2480 if (class == BPF_STX) 2481 *reg_mask |= sreg; 2482 } else if (class == BPF_JMP || class == BPF_JMP32) { 2483 if (opcode == BPF_CALL) { 2484 if (insn->src_reg == BPF_PSEUDO_CALL) 2485 return -ENOTSUPP; 2486 /* regular helper call sets R0 */ 2487 *reg_mask &= ~1; 2488 if (*reg_mask & 0x3f) { 2489 /* if backtracing was looking for registers R1-R5 2490 * they should have been found already. 2491 */ 2492 verbose(env, "BUG regs %x\n", *reg_mask); 2493 WARN_ONCE(1, "verifier backtracking bug"); 2494 return -EFAULT; 2495 } 2496 } else if (opcode == BPF_EXIT) { 2497 return -ENOTSUPP; 2498 } 2499 } else if (class == BPF_LD) { 2500 if (!(*reg_mask & dreg)) 2501 return 0; 2502 *reg_mask &= ~dreg; 2503 /* It's ld_imm64 or ld_abs or ld_ind. 2504 * For ld_imm64 no further tracking of precision 2505 * into parent is necessary 2506 */ 2507 if (mode == BPF_IND || mode == BPF_ABS) 2508 /* to be analyzed */ 2509 return -ENOTSUPP; 2510 } 2511 return 0; 2512 } 2513 2514 /* the scalar precision tracking algorithm: 2515 * . at the start all registers have precise=false. 2516 * . scalar ranges are tracked as normal through alu and jmp insns. 2517 * . once precise value of the scalar register is used in: 2518 * . ptr + scalar alu 2519 * . if (scalar cond K|scalar) 2520 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2521 * backtrack through the verifier states and mark all registers and 2522 * stack slots with spilled constants that these scalar regisers 2523 * should be precise. 2524 * . during state pruning two registers (or spilled stack slots) 2525 * are equivalent if both are not precise. 2526 * 2527 * Note the verifier cannot simply walk register parentage chain, 2528 * since many different registers and stack slots could have been 2529 * used to compute single precise scalar. 2530 * 2531 * The approach of starting with precise=true for all registers and then 2532 * backtrack to mark a register as not precise when the verifier detects 2533 * that program doesn't care about specific value (e.g., when helper 2534 * takes register as ARG_ANYTHING parameter) is not safe. 2535 * 2536 * It's ok to walk single parentage chain of the verifier states. 2537 * It's possible that this backtracking will go all the way till 1st insn. 2538 * All other branches will be explored for needing precision later. 2539 * 2540 * The backtracking needs to deal with cases like: 2541 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2542 * r9 -= r8 2543 * r5 = r9 2544 * if r5 > 0x79f goto pc+7 2545 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2546 * r5 += 1 2547 * ... 2548 * call bpf_perf_event_output#25 2549 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2550 * 2551 * and this case: 2552 * r6 = 1 2553 * call foo // uses callee's r6 inside to compute r0 2554 * r0 += r6 2555 * if r0 == 0 goto 2556 * 2557 * to track above reg_mask/stack_mask needs to be independent for each frame. 2558 * 2559 * Also if parent's curframe > frame where backtracking started, 2560 * the verifier need to mark registers in both frames, otherwise callees 2561 * may incorrectly prune callers. This is similar to 2562 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2563 * 2564 * For now backtracking falls back into conservative marking. 2565 */ 2566 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2567 struct bpf_verifier_state *st) 2568 { 2569 struct bpf_func_state *func; 2570 struct bpf_reg_state *reg; 2571 int i, j; 2572 2573 /* big hammer: mark all scalars precise in this path. 2574 * pop_stack may still get !precise scalars. 2575 */ 2576 for (; st; st = st->parent) 2577 for (i = 0; i <= st->curframe; i++) { 2578 func = st->frame[i]; 2579 for (j = 0; j < BPF_REG_FP; j++) { 2580 reg = &func->regs[j]; 2581 if (reg->type != SCALAR_VALUE) 2582 continue; 2583 reg->precise = true; 2584 } 2585 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2586 if (!is_spilled_reg(&func->stack[j])) 2587 continue; 2588 reg = &func->stack[j].spilled_ptr; 2589 if (reg->type != SCALAR_VALUE) 2590 continue; 2591 reg->precise = true; 2592 } 2593 } 2594 } 2595 2596 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2597 int spi) 2598 { 2599 struct bpf_verifier_state *st = env->cur_state; 2600 int first_idx = st->first_insn_idx; 2601 int last_idx = env->insn_idx; 2602 struct bpf_func_state *func; 2603 struct bpf_reg_state *reg; 2604 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2605 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2606 bool skip_first = true; 2607 bool new_marks = false; 2608 int i, err; 2609 2610 if (!env->bpf_capable) 2611 return 0; 2612 2613 func = st->frame[st->curframe]; 2614 if (regno >= 0) { 2615 reg = &func->regs[regno]; 2616 if (reg->type != SCALAR_VALUE) { 2617 WARN_ONCE(1, "backtracing misuse"); 2618 return -EFAULT; 2619 } 2620 if (!reg->precise) 2621 new_marks = true; 2622 else 2623 reg_mask = 0; 2624 reg->precise = true; 2625 } 2626 2627 while (spi >= 0) { 2628 if (!is_spilled_reg(&func->stack[spi])) { 2629 stack_mask = 0; 2630 break; 2631 } 2632 reg = &func->stack[spi].spilled_ptr; 2633 if (reg->type != SCALAR_VALUE) { 2634 stack_mask = 0; 2635 break; 2636 } 2637 if (!reg->precise) 2638 new_marks = true; 2639 else 2640 stack_mask = 0; 2641 reg->precise = true; 2642 break; 2643 } 2644 2645 if (!new_marks) 2646 return 0; 2647 if (!reg_mask && !stack_mask) 2648 return 0; 2649 for (;;) { 2650 DECLARE_BITMAP(mask, 64); 2651 u32 history = st->jmp_history_cnt; 2652 2653 if (env->log.level & BPF_LOG_LEVEL2) 2654 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2655 for (i = last_idx;;) { 2656 if (skip_first) { 2657 err = 0; 2658 skip_first = false; 2659 } else { 2660 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2661 } 2662 if (err == -ENOTSUPP) { 2663 mark_all_scalars_precise(env, st); 2664 return 0; 2665 } else if (err) { 2666 return err; 2667 } 2668 if (!reg_mask && !stack_mask) 2669 /* Found assignment(s) into tracked register in this state. 2670 * Since this state is already marked, just return. 2671 * Nothing to be tracked further in the parent state. 2672 */ 2673 return 0; 2674 if (i == first_idx) 2675 break; 2676 i = get_prev_insn_idx(st, i, &history); 2677 if (i >= env->prog->len) { 2678 /* This can happen if backtracking reached insn 0 2679 * and there are still reg_mask or stack_mask 2680 * to backtrack. 2681 * It means the backtracking missed the spot where 2682 * particular register was initialized with a constant. 2683 */ 2684 verbose(env, "BUG backtracking idx %d\n", i); 2685 WARN_ONCE(1, "verifier backtracking bug"); 2686 return -EFAULT; 2687 } 2688 } 2689 st = st->parent; 2690 if (!st) 2691 break; 2692 2693 new_marks = false; 2694 func = st->frame[st->curframe]; 2695 bitmap_from_u64(mask, reg_mask); 2696 for_each_set_bit(i, mask, 32) { 2697 reg = &func->regs[i]; 2698 if (reg->type != SCALAR_VALUE) { 2699 reg_mask &= ~(1u << i); 2700 continue; 2701 } 2702 if (!reg->precise) 2703 new_marks = true; 2704 reg->precise = true; 2705 } 2706 2707 bitmap_from_u64(mask, stack_mask); 2708 for_each_set_bit(i, mask, 64) { 2709 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2710 /* the sequence of instructions: 2711 * 2: (bf) r3 = r10 2712 * 3: (7b) *(u64 *)(r3 -8) = r0 2713 * 4: (79) r4 = *(u64 *)(r10 -8) 2714 * doesn't contain jmps. It's backtracked 2715 * as a single block. 2716 * During backtracking insn 3 is not recognized as 2717 * stack access, so at the end of backtracking 2718 * stack slot fp-8 is still marked in stack_mask. 2719 * However the parent state may not have accessed 2720 * fp-8 and it's "unallocated" stack space. 2721 * In such case fallback to conservative. 2722 */ 2723 mark_all_scalars_precise(env, st); 2724 return 0; 2725 } 2726 2727 if (!is_spilled_reg(&func->stack[i])) { 2728 stack_mask &= ~(1ull << i); 2729 continue; 2730 } 2731 reg = &func->stack[i].spilled_ptr; 2732 if (reg->type != SCALAR_VALUE) { 2733 stack_mask &= ~(1ull << i); 2734 continue; 2735 } 2736 if (!reg->precise) 2737 new_marks = true; 2738 reg->precise = true; 2739 } 2740 if (env->log.level & BPF_LOG_LEVEL2) { 2741 verbose(env, "parent %s regs=%x stack=%llx marks:", 2742 new_marks ? "didn't have" : "already had", 2743 reg_mask, stack_mask); 2744 print_verifier_state(env, func, true); 2745 } 2746 2747 if (!reg_mask && !stack_mask) 2748 break; 2749 if (!new_marks) 2750 break; 2751 2752 last_idx = st->last_insn_idx; 2753 first_idx = st->first_insn_idx; 2754 } 2755 return 0; 2756 } 2757 2758 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2759 { 2760 return __mark_chain_precision(env, regno, -1); 2761 } 2762 2763 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2764 { 2765 return __mark_chain_precision(env, -1, spi); 2766 } 2767 2768 static bool is_spillable_regtype(enum bpf_reg_type type) 2769 { 2770 switch (base_type(type)) { 2771 case PTR_TO_MAP_VALUE: 2772 case PTR_TO_STACK: 2773 case PTR_TO_CTX: 2774 case PTR_TO_PACKET: 2775 case PTR_TO_PACKET_META: 2776 case PTR_TO_PACKET_END: 2777 case PTR_TO_FLOW_KEYS: 2778 case CONST_PTR_TO_MAP: 2779 case PTR_TO_SOCKET: 2780 case PTR_TO_SOCK_COMMON: 2781 case PTR_TO_TCP_SOCK: 2782 case PTR_TO_XDP_SOCK: 2783 case PTR_TO_BTF_ID: 2784 case PTR_TO_BUF: 2785 case PTR_TO_MEM: 2786 case PTR_TO_FUNC: 2787 case PTR_TO_MAP_KEY: 2788 return true; 2789 default: 2790 return false; 2791 } 2792 } 2793 2794 /* Does this register contain a constant zero? */ 2795 static bool register_is_null(struct bpf_reg_state *reg) 2796 { 2797 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2798 } 2799 2800 static bool register_is_const(struct bpf_reg_state *reg) 2801 { 2802 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2803 } 2804 2805 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2806 { 2807 return tnum_is_unknown(reg->var_off) && 2808 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2809 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2810 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2811 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2812 } 2813 2814 static bool register_is_bounded(struct bpf_reg_state *reg) 2815 { 2816 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2817 } 2818 2819 static bool __is_pointer_value(bool allow_ptr_leaks, 2820 const struct bpf_reg_state *reg) 2821 { 2822 if (allow_ptr_leaks) 2823 return false; 2824 2825 return reg->type != SCALAR_VALUE; 2826 } 2827 2828 static void save_register_state(struct bpf_func_state *state, 2829 int spi, struct bpf_reg_state *reg, 2830 int size) 2831 { 2832 int i; 2833 2834 state->stack[spi].spilled_ptr = *reg; 2835 if (size == BPF_REG_SIZE) 2836 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2837 2838 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2839 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2840 2841 /* size < 8 bytes spill */ 2842 for (; i; i--) 2843 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2844 } 2845 2846 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2847 * stack boundary and alignment are checked in check_mem_access() 2848 */ 2849 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2850 /* stack frame we're writing to */ 2851 struct bpf_func_state *state, 2852 int off, int size, int value_regno, 2853 int insn_idx) 2854 { 2855 struct bpf_func_state *cur; /* state of the current function */ 2856 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2857 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2858 struct bpf_reg_state *reg = NULL; 2859 2860 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2861 if (err) 2862 return err; 2863 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2864 * so it's aligned access and [off, off + size) are within stack limits 2865 */ 2866 if (!env->allow_ptr_leaks && 2867 state->stack[spi].slot_type[0] == STACK_SPILL && 2868 size != BPF_REG_SIZE) { 2869 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2870 return -EACCES; 2871 } 2872 2873 cur = env->cur_state->frame[env->cur_state->curframe]; 2874 if (value_regno >= 0) 2875 reg = &cur->regs[value_regno]; 2876 if (!env->bypass_spec_v4) { 2877 bool sanitize = reg && is_spillable_regtype(reg->type); 2878 2879 for (i = 0; i < size; i++) { 2880 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2881 sanitize = true; 2882 break; 2883 } 2884 } 2885 2886 if (sanitize) 2887 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2888 } 2889 2890 mark_stack_slot_scratched(env, spi); 2891 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2892 !register_is_null(reg) && env->bpf_capable) { 2893 if (dst_reg != BPF_REG_FP) { 2894 /* The backtracking logic can only recognize explicit 2895 * stack slot address like [fp - 8]. Other spill of 2896 * scalar via different register has to be conservative. 2897 * Backtrack from here and mark all registers as precise 2898 * that contributed into 'reg' being a constant. 2899 */ 2900 err = mark_chain_precision(env, value_regno); 2901 if (err) 2902 return err; 2903 } 2904 save_register_state(state, spi, reg, size); 2905 } else if (reg && is_spillable_regtype(reg->type)) { 2906 /* register containing pointer is being spilled into stack */ 2907 if (size != BPF_REG_SIZE) { 2908 verbose_linfo(env, insn_idx, "; "); 2909 verbose(env, "invalid size of register spill\n"); 2910 return -EACCES; 2911 } 2912 if (state != cur && reg->type == PTR_TO_STACK) { 2913 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2914 return -EINVAL; 2915 } 2916 save_register_state(state, spi, reg, size); 2917 } else { 2918 u8 type = STACK_MISC; 2919 2920 /* regular write of data into stack destroys any spilled ptr */ 2921 state->stack[spi].spilled_ptr.type = NOT_INIT; 2922 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2923 if (is_spilled_reg(&state->stack[spi])) 2924 for (i = 0; i < BPF_REG_SIZE; i++) 2925 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2926 2927 /* only mark the slot as written if all 8 bytes were written 2928 * otherwise read propagation may incorrectly stop too soon 2929 * when stack slots are partially written. 2930 * This heuristic means that read propagation will be 2931 * conservative, since it will add reg_live_read marks 2932 * to stack slots all the way to first state when programs 2933 * writes+reads less than 8 bytes 2934 */ 2935 if (size == BPF_REG_SIZE) 2936 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2937 2938 /* when we zero initialize stack slots mark them as such */ 2939 if (reg && register_is_null(reg)) { 2940 /* backtracking doesn't work for STACK_ZERO yet. */ 2941 err = mark_chain_precision(env, value_regno); 2942 if (err) 2943 return err; 2944 type = STACK_ZERO; 2945 } 2946 2947 /* Mark slots affected by this stack write. */ 2948 for (i = 0; i < size; i++) 2949 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2950 type; 2951 } 2952 return 0; 2953 } 2954 2955 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2956 * known to contain a variable offset. 2957 * This function checks whether the write is permitted and conservatively 2958 * tracks the effects of the write, considering that each stack slot in the 2959 * dynamic range is potentially written to. 2960 * 2961 * 'off' includes 'regno->off'. 2962 * 'value_regno' can be -1, meaning that an unknown value is being written to 2963 * the stack. 2964 * 2965 * Spilled pointers in range are not marked as written because we don't know 2966 * what's going to be actually written. This means that read propagation for 2967 * future reads cannot be terminated by this write. 2968 * 2969 * For privileged programs, uninitialized stack slots are considered 2970 * initialized by this write (even though we don't know exactly what offsets 2971 * are going to be written to). The idea is that we don't want the verifier to 2972 * reject future reads that access slots written to through variable offsets. 2973 */ 2974 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2975 /* func where register points to */ 2976 struct bpf_func_state *state, 2977 int ptr_regno, int off, int size, 2978 int value_regno, int insn_idx) 2979 { 2980 struct bpf_func_state *cur; /* state of the current function */ 2981 int min_off, max_off; 2982 int i, err; 2983 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2984 bool writing_zero = false; 2985 /* set if the fact that we're writing a zero is used to let any 2986 * stack slots remain STACK_ZERO 2987 */ 2988 bool zero_used = false; 2989 2990 cur = env->cur_state->frame[env->cur_state->curframe]; 2991 ptr_reg = &cur->regs[ptr_regno]; 2992 min_off = ptr_reg->smin_value + off; 2993 max_off = ptr_reg->smax_value + off + size; 2994 if (value_regno >= 0) 2995 value_reg = &cur->regs[value_regno]; 2996 if (value_reg && register_is_null(value_reg)) 2997 writing_zero = true; 2998 2999 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3000 if (err) 3001 return err; 3002 3003 3004 /* Variable offset writes destroy any spilled pointers in range. */ 3005 for (i = min_off; i < max_off; i++) { 3006 u8 new_type, *stype; 3007 int slot, spi; 3008 3009 slot = -i - 1; 3010 spi = slot / BPF_REG_SIZE; 3011 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3012 mark_stack_slot_scratched(env, spi); 3013 3014 if (!env->allow_ptr_leaks 3015 && *stype != NOT_INIT 3016 && *stype != SCALAR_VALUE) { 3017 /* Reject the write if there's are spilled pointers in 3018 * range. If we didn't reject here, the ptr status 3019 * would be erased below (even though not all slots are 3020 * actually overwritten), possibly opening the door to 3021 * leaks. 3022 */ 3023 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3024 insn_idx, i); 3025 return -EINVAL; 3026 } 3027 3028 /* Erase all spilled pointers. */ 3029 state->stack[spi].spilled_ptr.type = NOT_INIT; 3030 3031 /* Update the slot type. */ 3032 new_type = STACK_MISC; 3033 if (writing_zero && *stype == STACK_ZERO) { 3034 new_type = STACK_ZERO; 3035 zero_used = true; 3036 } 3037 /* If the slot is STACK_INVALID, we check whether it's OK to 3038 * pretend that it will be initialized by this write. The slot 3039 * might not actually be written to, and so if we mark it as 3040 * initialized future reads might leak uninitialized memory. 3041 * For privileged programs, we will accept such reads to slots 3042 * that may or may not be written because, if we're reject 3043 * them, the error would be too confusing. 3044 */ 3045 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3046 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3047 insn_idx, i); 3048 return -EINVAL; 3049 } 3050 *stype = new_type; 3051 } 3052 if (zero_used) { 3053 /* backtracking doesn't work for STACK_ZERO yet. */ 3054 err = mark_chain_precision(env, value_regno); 3055 if (err) 3056 return err; 3057 } 3058 return 0; 3059 } 3060 3061 /* When register 'dst_regno' is assigned some values from stack[min_off, 3062 * max_off), we set the register's type according to the types of the 3063 * respective stack slots. If all the stack values are known to be zeros, then 3064 * so is the destination reg. Otherwise, the register is considered to be 3065 * SCALAR. This function does not deal with register filling; the caller must 3066 * ensure that all spilled registers in the stack range have been marked as 3067 * read. 3068 */ 3069 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3070 /* func where src register points to */ 3071 struct bpf_func_state *ptr_state, 3072 int min_off, int max_off, int dst_regno) 3073 { 3074 struct bpf_verifier_state *vstate = env->cur_state; 3075 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3076 int i, slot, spi; 3077 u8 *stype; 3078 int zeros = 0; 3079 3080 for (i = min_off; i < max_off; i++) { 3081 slot = -i - 1; 3082 spi = slot / BPF_REG_SIZE; 3083 stype = ptr_state->stack[spi].slot_type; 3084 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3085 break; 3086 zeros++; 3087 } 3088 if (zeros == max_off - min_off) { 3089 /* any access_size read into register is zero extended, 3090 * so the whole register == const_zero 3091 */ 3092 __mark_reg_const_zero(&state->regs[dst_regno]); 3093 /* backtracking doesn't support STACK_ZERO yet, 3094 * so mark it precise here, so that later 3095 * backtracking can stop here. 3096 * Backtracking may not need this if this register 3097 * doesn't participate in pointer adjustment. 3098 * Forward propagation of precise flag is not 3099 * necessary either. This mark is only to stop 3100 * backtracking. Any register that contributed 3101 * to const 0 was marked precise before spill. 3102 */ 3103 state->regs[dst_regno].precise = true; 3104 } else { 3105 /* have read misc data from the stack */ 3106 mark_reg_unknown(env, state->regs, dst_regno); 3107 } 3108 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3109 } 3110 3111 /* Read the stack at 'off' and put the results into the register indicated by 3112 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3113 * spilled reg. 3114 * 3115 * 'dst_regno' can be -1, meaning that the read value is not going to a 3116 * register. 3117 * 3118 * The access is assumed to be within the current stack bounds. 3119 */ 3120 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3121 /* func where src register points to */ 3122 struct bpf_func_state *reg_state, 3123 int off, int size, int dst_regno) 3124 { 3125 struct bpf_verifier_state *vstate = env->cur_state; 3126 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3127 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3128 struct bpf_reg_state *reg; 3129 u8 *stype, type; 3130 3131 stype = reg_state->stack[spi].slot_type; 3132 reg = ®_state->stack[spi].spilled_ptr; 3133 3134 if (is_spilled_reg(®_state->stack[spi])) { 3135 u8 spill_size = 1; 3136 3137 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3138 spill_size++; 3139 3140 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3141 if (reg->type != SCALAR_VALUE) { 3142 verbose_linfo(env, env->insn_idx, "; "); 3143 verbose(env, "invalid size of register fill\n"); 3144 return -EACCES; 3145 } 3146 3147 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3148 if (dst_regno < 0) 3149 return 0; 3150 3151 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3152 /* The earlier check_reg_arg() has decided the 3153 * subreg_def for this insn. Save it first. 3154 */ 3155 s32 subreg_def = state->regs[dst_regno].subreg_def; 3156 3157 state->regs[dst_regno] = *reg; 3158 state->regs[dst_regno].subreg_def = subreg_def; 3159 } else { 3160 for (i = 0; i < size; i++) { 3161 type = stype[(slot - i) % BPF_REG_SIZE]; 3162 if (type == STACK_SPILL) 3163 continue; 3164 if (type == STACK_MISC) 3165 continue; 3166 verbose(env, "invalid read from stack off %d+%d size %d\n", 3167 off, i, size); 3168 return -EACCES; 3169 } 3170 mark_reg_unknown(env, state->regs, dst_regno); 3171 } 3172 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3173 return 0; 3174 } 3175 3176 if (dst_regno >= 0) { 3177 /* restore register state from stack */ 3178 state->regs[dst_regno] = *reg; 3179 /* mark reg as written since spilled pointer state likely 3180 * has its liveness marks cleared by is_state_visited() 3181 * which resets stack/reg liveness for state transitions 3182 */ 3183 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3184 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3185 /* If dst_regno==-1, the caller is asking us whether 3186 * it is acceptable to use this value as a SCALAR_VALUE 3187 * (e.g. for XADD). 3188 * We must not allow unprivileged callers to do that 3189 * with spilled pointers. 3190 */ 3191 verbose(env, "leaking pointer from stack off %d\n", 3192 off); 3193 return -EACCES; 3194 } 3195 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3196 } else { 3197 for (i = 0; i < size; i++) { 3198 type = stype[(slot - i) % BPF_REG_SIZE]; 3199 if (type == STACK_MISC) 3200 continue; 3201 if (type == STACK_ZERO) 3202 continue; 3203 verbose(env, "invalid read from stack off %d+%d size %d\n", 3204 off, i, size); 3205 return -EACCES; 3206 } 3207 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3208 if (dst_regno >= 0) 3209 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3210 } 3211 return 0; 3212 } 3213 3214 enum stack_access_src { 3215 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3216 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3217 }; 3218 3219 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3220 int regno, int off, int access_size, 3221 bool zero_size_allowed, 3222 enum stack_access_src type, 3223 struct bpf_call_arg_meta *meta); 3224 3225 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3226 { 3227 return cur_regs(env) + regno; 3228 } 3229 3230 /* Read the stack at 'ptr_regno + off' and put the result into the register 3231 * 'dst_regno'. 3232 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3233 * but not its variable offset. 3234 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3235 * 3236 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3237 * filling registers (i.e. reads of spilled register cannot be detected when 3238 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3239 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3240 * offset; for a fixed offset check_stack_read_fixed_off should be used 3241 * instead. 3242 */ 3243 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3244 int ptr_regno, int off, int size, int dst_regno) 3245 { 3246 /* The state of the source register. */ 3247 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3248 struct bpf_func_state *ptr_state = func(env, reg); 3249 int err; 3250 int min_off, max_off; 3251 3252 /* Note that we pass a NULL meta, so raw access will not be permitted. 3253 */ 3254 err = check_stack_range_initialized(env, ptr_regno, off, size, 3255 false, ACCESS_DIRECT, NULL); 3256 if (err) 3257 return err; 3258 3259 min_off = reg->smin_value + off; 3260 max_off = reg->smax_value + off; 3261 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3262 return 0; 3263 } 3264 3265 /* check_stack_read dispatches to check_stack_read_fixed_off or 3266 * check_stack_read_var_off. 3267 * 3268 * The caller must ensure that the offset falls within the allocated stack 3269 * bounds. 3270 * 3271 * 'dst_regno' is a register which will receive the value from the stack. It 3272 * can be -1, meaning that the read value is not going to a register. 3273 */ 3274 static int check_stack_read(struct bpf_verifier_env *env, 3275 int ptr_regno, int off, int size, 3276 int dst_regno) 3277 { 3278 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3279 struct bpf_func_state *state = func(env, reg); 3280 int err; 3281 /* Some accesses are only permitted with a static offset. */ 3282 bool var_off = !tnum_is_const(reg->var_off); 3283 3284 /* The offset is required to be static when reads don't go to a 3285 * register, in order to not leak pointers (see 3286 * check_stack_read_fixed_off). 3287 */ 3288 if (dst_regno < 0 && var_off) { 3289 char tn_buf[48]; 3290 3291 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3292 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3293 tn_buf, off, size); 3294 return -EACCES; 3295 } 3296 /* Variable offset is prohibited for unprivileged mode for simplicity 3297 * since it requires corresponding support in Spectre masking for stack 3298 * ALU. See also retrieve_ptr_limit(). 3299 */ 3300 if (!env->bypass_spec_v1 && var_off) { 3301 char tn_buf[48]; 3302 3303 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3304 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3305 ptr_regno, tn_buf); 3306 return -EACCES; 3307 } 3308 3309 if (!var_off) { 3310 off += reg->var_off.value; 3311 err = check_stack_read_fixed_off(env, state, off, size, 3312 dst_regno); 3313 } else { 3314 /* Variable offset stack reads need more conservative handling 3315 * than fixed offset ones. Note that dst_regno >= 0 on this 3316 * branch. 3317 */ 3318 err = check_stack_read_var_off(env, ptr_regno, off, size, 3319 dst_regno); 3320 } 3321 return err; 3322 } 3323 3324 3325 /* check_stack_write dispatches to check_stack_write_fixed_off or 3326 * check_stack_write_var_off. 3327 * 3328 * 'ptr_regno' is the register used as a pointer into the stack. 3329 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3330 * 'value_regno' is the register whose value we're writing to the stack. It can 3331 * be -1, meaning that we're not writing from a register. 3332 * 3333 * The caller must ensure that the offset falls within the maximum stack size. 3334 */ 3335 static int check_stack_write(struct bpf_verifier_env *env, 3336 int ptr_regno, int off, int size, 3337 int value_regno, int insn_idx) 3338 { 3339 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3340 struct bpf_func_state *state = func(env, reg); 3341 int err; 3342 3343 if (tnum_is_const(reg->var_off)) { 3344 off += reg->var_off.value; 3345 err = check_stack_write_fixed_off(env, state, off, size, 3346 value_regno, insn_idx); 3347 } else { 3348 /* Variable offset stack reads need more conservative handling 3349 * than fixed offset ones. 3350 */ 3351 err = check_stack_write_var_off(env, state, 3352 ptr_regno, off, size, 3353 value_regno, insn_idx); 3354 } 3355 return err; 3356 } 3357 3358 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3359 int off, int size, enum bpf_access_type type) 3360 { 3361 struct bpf_reg_state *regs = cur_regs(env); 3362 struct bpf_map *map = regs[regno].map_ptr; 3363 u32 cap = bpf_map_flags_to_cap(map); 3364 3365 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3366 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3367 map->value_size, off, size); 3368 return -EACCES; 3369 } 3370 3371 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3372 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3373 map->value_size, off, size); 3374 return -EACCES; 3375 } 3376 3377 return 0; 3378 } 3379 3380 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3381 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3382 int off, int size, u32 mem_size, 3383 bool zero_size_allowed) 3384 { 3385 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3386 struct bpf_reg_state *reg; 3387 3388 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3389 return 0; 3390 3391 reg = &cur_regs(env)[regno]; 3392 switch (reg->type) { 3393 case PTR_TO_MAP_KEY: 3394 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3395 mem_size, off, size); 3396 break; 3397 case PTR_TO_MAP_VALUE: 3398 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3399 mem_size, off, size); 3400 break; 3401 case PTR_TO_PACKET: 3402 case PTR_TO_PACKET_META: 3403 case PTR_TO_PACKET_END: 3404 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3405 off, size, regno, reg->id, off, mem_size); 3406 break; 3407 case PTR_TO_MEM: 3408 default: 3409 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3410 mem_size, off, size); 3411 } 3412 3413 return -EACCES; 3414 } 3415 3416 /* check read/write into a memory region with possible variable offset */ 3417 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3418 int off, int size, u32 mem_size, 3419 bool zero_size_allowed) 3420 { 3421 struct bpf_verifier_state *vstate = env->cur_state; 3422 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3423 struct bpf_reg_state *reg = &state->regs[regno]; 3424 int err; 3425 3426 /* We may have adjusted the register pointing to memory region, so we 3427 * need to try adding each of min_value and max_value to off 3428 * to make sure our theoretical access will be safe. 3429 * 3430 * The minimum value is only important with signed 3431 * comparisons where we can't assume the floor of a 3432 * value is 0. If we are using signed variables for our 3433 * index'es we need to make sure that whatever we use 3434 * will have a set floor within our range. 3435 */ 3436 if (reg->smin_value < 0 && 3437 (reg->smin_value == S64_MIN || 3438 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3439 reg->smin_value + off < 0)) { 3440 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3441 regno); 3442 return -EACCES; 3443 } 3444 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3445 mem_size, zero_size_allowed); 3446 if (err) { 3447 verbose(env, "R%d min value is outside of the allowed memory range\n", 3448 regno); 3449 return err; 3450 } 3451 3452 /* If we haven't set a max value then we need to bail since we can't be 3453 * sure we won't do bad things. 3454 * If reg->umax_value + off could overflow, treat that as unbounded too. 3455 */ 3456 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3457 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3458 regno); 3459 return -EACCES; 3460 } 3461 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3462 mem_size, zero_size_allowed); 3463 if (err) { 3464 verbose(env, "R%d max value is outside of the allowed memory range\n", 3465 regno); 3466 return err; 3467 } 3468 3469 return 0; 3470 } 3471 3472 /* check read/write into a map element with possible variable offset */ 3473 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3474 int off, int size, bool zero_size_allowed) 3475 { 3476 struct bpf_verifier_state *vstate = env->cur_state; 3477 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3478 struct bpf_reg_state *reg = &state->regs[regno]; 3479 struct bpf_map *map = reg->map_ptr; 3480 int err; 3481 3482 err = check_mem_region_access(env, regno, off, size, map->value_size, 3483 zero_size_allowed); 3484 if (err) 3485 return err; 3486 3487 if (map_value_has_spin_lock(map)) { 3488 u32 lock = map->spin_lock_off; 3489 3490 /* if any part of struct bpf_spin_lock can be touched by 3491 * load/store reject this program. 3492 * To check that [x1, x2) overlaps with [y1, y2) 3493 * it is sufficient to check x1 < y2 && y1 < x2. 3494 */ 3495 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3496 lock < reg->umax_value + off + size) { 3497 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3498 return -EACCES; 3499 } 3500 } 3501 if (map_value_has_timer(map)) { 3502 u32 t = map->timer_off; 3503 3504 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3505 t < reg->umax_value + off + size) { 3506 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3507 return -EACCES; 3508 } 3509 } 3510 return err; 3511 } 3512 3513 #define MAX_PACKET_OFF 0xffff 3514 3515 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3516 const struct bpf_call_arg_meta *meta, 3517 enum bpf_access_type t) 3518 { 3519 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3520 3521 switch (prog_type) { 3522 /* Program types only with direct read access go here! */ 3523 case BPF_PROG_TYPE_LWT_IN: 3524 case BPF_PROG_TYPE_LWT_OUT: 3525 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3526 case BPF_PROG_TYPE_SK_REUSEPORT: 3527 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3528 case BPF_PROG_TYPE_CGROUP_SKB: 3529 if (t == BPF_WRITE) 3530 return false; 3531 fallthrough; 3532 3533 /* Program types with direct read + write access go here! */ 3534 case BPF_PROG_TYPE_SCHED_CLS: 3535 case BPF_PROG_TYPE_SCHED_ACT: 3536 case BPF_PROG_TYPE_XDP: 3537 case BPF_PROG_TYPE_LWT_XMIT: 3538 case BPF_PROG_TYPE_SK_SKB: 3539 case BPF_PROG_TYPE_SK_MSG: 3540 if (meta) 3541 return meta->pkt_access; 3542 3543 env->seen_direct_write = true; 3544 return true; 3545 3546 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3547 if (t == BPF_WRITE) 3548 env->seen_direct_write = true; 3549 3550 return true; 3551 3552 default: 3553 return false; 3554 } 3555 } 3556 3557 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3558 int size, bool zero_size_allowed) 3559 { 3560 struct bpf_reg_state *regs = cur_regs(env); 3561 struct bpf_reg_state *reg = ®s[regno]; 3562 int err; 3563 3564 /* We may have added a variable offset to the packet pointer; but any 3565 * reg->range we have comes after that. We are only checking the fixed 3566 * offset. 3567 */ 3568 3569 /* We don't allow negative numbers, because we aren't tracking enough 3570 * detail to prove they're safe. 3571 */ 3572 if (reg->smin_value < 0) { 3573 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3574 regno); 3575 return -EACCES; 3576 } 3577 3578 err = reg->range < 0 ? -EINVAL : 3579 __check_mem_access(env, regno, off, size, reg->range, 3580 zero_size_allowed); 3581 if (err) { 3582 verbose(env, "R%d offset is outside of the packet\n", regno); 3583 return err; 3584 } 3585 3586 /* __check_mem_access has made sure "off + size - 1" is within u16. 3587 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3588 * otherwise find_good_pkt_pointers would have refused to set range info 3589 * that __check_mem_access would have rejected this pkt access. 3590 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3591 */ 3592 env->prog->aux->max_pkt_offset = 3593 max_t(u32, env->prog->aux->max_pkt_offset, 3594 off + reg->umax_value + size - 1); 3595 3596 return err; 3597 } 3598 3599 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3600 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3601 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3602 struct btf **btf, u32 *btf_id) 3603 { 3604 struct bpf_insn_access_aux info = { 3605 .reg_type = *reg_type, 3606 .log = &env->log, 3607 }; 3608 3609 if (env->ops->is_valid_access && 3610 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3611 /* A non zero info.ctx_field_size indicates that this field is a 3612 * candidate for later verifier transformation to load the whole 3613 * field and then apply a mask when accessed with a narrower 3614 * access than actual ctx access size. A zero info.ctx_field_size 3615 * will only allow for whole field access and rejects any other 3616 * type of narrower access. 3617 */ 3618 *reg_type = info.reg_type; 3619 3620 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3621 *btf = info.btf; 3622 *btf_id = info.btf_id; 3623 } else { 3624 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3625 } 3626 /* remember the offset of last byte accessed in ctx */ 3627 if (env->prog->aux->max_ctx_offset < off + size) 3628 env->prog->aux->max_ctx_offset = off + size; 3629 return 0; 3630 } 3631 3632 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3633 return -EACCES; 3634 } 3635 3636 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3637 int size) 3638 { 3639 if (size < 0 || off < 0 || 3640 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3641 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3642 off, size); 3643 return -EACCES; 3644 } 3645 return 0; 3646 } 3647 3648 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3649 u32 regno, int off, int size, 3650 enum bpf_access_type t) 3651 { 3652 struct bpf_reg_state *regs = cur_regs(env); 3653 struct bpf_reg_state *reg = ®s[regno]; 3654 struct bpf_insn_access_aux info = {}; 3655 bool valid; 3656 3657 if (reg->smin_value < 0) { 3658 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3659 regno); 3660 return -EACCES; 3661 } 3662 3663 switch (reg->type) { 3664 case PTR_TO_SOCK_COMMON: 3665 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3666 break; 3667 case PTR_TO_SOCKET: 3668 valid = bpf_sock_is_valid_access(off, size, t, &info); 3669 break; 3670 case PTR_TO_TCP_SOCK: 3671 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3672 break; 3673 case PTR_TO_XDP_SOCK: 3674 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3675 break; 3676 default: 3677 valid = false; 3678 } 3679 3680 3681 if (valid) { 3682 env->insn_aux_data[insn_idx].ctx_field_size = 3683 info.ctx_field_size; 3684 return 0; 3685 } 3686 3687 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3688 regno, reg_type_str(env, reg->type), off, size); 3689 3690 return -EACCES; 3691 } 3692 3693 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3694 { 3695 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3696 } 3697 3698 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3699 { 3700 const struct bpf_reg_state *reg = reg_state(env, regno); 3701 3702 return reg->type == PTR_TO_CTX; 3703 } 3704 3705 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3706 { 3707 const struct bpf_reg_state *reg = reg_state(env, regno); 3708 3709 return type_is_sk_pointer(reg->type); 3710 } 3711 3712 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3713 { 3714 const struct bpf_reg_state *reg = reg_state(env, regno); 3715 3716 return type_is_pkt_pointer(reg->type); 3717 } 3718 3719 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3720 { 3721 const struct bpf_reg_state *reg = reg_state(env, regno); 3722 3723 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3724 return reg->type == PTR_TO_FLOW_KEYS; 3725 } 3726 3727 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3728 const struct bpf_reg_state *reg, 3729 int off, int size, bool strict) 3730 { 3731 struct tnum reg_off; 3732 int ip_align; 3733 3734 /* Byte size accesses are always allowed. */ 3735 if (!strict || size == 1) 3736 return 0; 3737 3738 /* For platforms that do not have a Kconfig enabling 3739 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3740 * NET_IP_ALIGN is universally set to '2'. And on platforms 3741 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3742 * to this code only in strict mode where we want to emulate 3743 * the NET_IP_ALIGN==2 checking. Therefore use an 3744 * unconditional IP align value of '2'. 3745 */ 3746 ip_align = 2; 3747 3748 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3749 if (!tnum_is_aligned(reg_off, size)) { 3750 char tn_buf[48]; 3751 3752 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3753 verbose(env, 3754 "misaligned packet access off %d+%s+%d+%d size %d\n", 3755 ip_align, tn_buf, reg->off, off, size); 3756 return -EACCES; 3757 } 3758 3759 return 0; 3760 } 3761 3762 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3763 const struct bpf_reg_state *reg, 3764 const char *pointer_desc, 3765 int off, int size, bool strict) 3766 { 3767 struct tnum reg_off; 3768 3769 /* Byte size accesses are always allowed. */ 3770 if (!strict || size == 1) 3771 return 0; 3772 3773 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3774 if (!tnum_is_aligned(reg_off, size)) { 3775 char tn_buf[48]; 3776 3777 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3778 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3779 pointer_desc, tn_buf, reg->off, off, size); 3780 return -EACCES; 3781 } 3782 3783 return 0; 3784 } 3785 3786 static int check_ptr_alignment(struct bpf_verifier_env *env, 3787 const struct bpf_reg_state *reg, int off, 3788 int size, bool strict_alignment_once) 3789 { 3790 bool strict = env->strict_alignment || strict_alignment_once; 3791 const char *pointer_desc = ""; 3792 3793 switch (reg->type) { 3794 case PTR_TO_PACKET: 3795 case PTR_TO_PACKET_META: 3796 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3797 * right in front, treat it the very same way. 3798 */ 3799 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3800 case PTR_TO_FLOW_KEYS: 3801 pointer_desc = "flow keys "; 3802 break; 3803 case PTR_TO_MAP_KEY: 3804 pointer_desc = "key "; 3805 break; 3806 case PTR_TO_MAP_VALUE: 3807 pointer_desc = "value "; 3808 break; 3809 case PTR_TO_CTX: 3810 pointer_desc = "context "; 3811 break; 3812 case PTR_TO_STACK: 3813 pointer_desc = "stack "; 3814 /* The stack spill tracking logic in check_stack_write_fixed_off() 3815 * and check_stack_read_fixed_off() relies on stack accesses being 3816 * aligned. 3817 */ 3818 strict = true; 3819 break; 3820 case PTR_TO_SOCKET: 3821 pointer_desc = "sock "; 3822 break; 3823 case PTR_TO_SOCK_COMMON: 3824 pointer_desc = "sock_common "; 3825 break; 3826 case PTR_TO_TCP_SOCK: 3827 pointer_desc = "tcp_sock "; 3828 break; 3829 case PTR_TO_XDP_SOCK: 3830 pointer_desc = "xdp_sock "; 3831 break; 3832 default: 3833 break; 3834 } 3835 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3836 strict); 3837 } 3838 3839 static int update_stack_depth(struct bpf_verifier_env *env, 3840 const struct bpf_func_state *func, 3841 int off) 3842 { 3843 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3844 3845 if (stack >= -off) 3846 return 0; 3847 3848 /* update known max for given subprogram */ 3849 env->subprog_info[func->subprogno].stack_depth = -off; 3850 return 0; 3851 } 3852 3853 /* starting from main bpf function walk all instructions of the function 3854 * and recursively walk all callees that given function can call. 3855 * Ignore jump and exit insns. 3856 * Since recursion is prevented by check_cfg() this algorithm 3857 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3858 */ 3859 static int check_max_stack_depth(struct bpf_verifier_env *env) 3860 { 3861 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3862 struct bpf_subprog_info *subprog = env->subprog_info; 3863 struct bpf_insn *insn = env->prog->insnsi; 3864 bool tail_call_reachable = false; 3865 int ret_insn[MAX_CALL_FRAMES]; 3866 int ret_prog[MAX_CALL_FRAMES]; 3867 int j; 3868 3869 process_func: 3870 /* protect against potential stack overflow that might happen when 3871 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3872 * depth for such case down to 256 so that the worst case scenario 3873 * would result in 8k stack size (32 which is tailcall limit * 256 = 3874 * 8k). 3875 * 3876 * To get the idea what might happen, see an example: 3877 * func1 -> sub rsp, 128 3878 * subfunc1 -> sub rsp, 256 3879 * tailcall1 -> add rsp, 256 3880 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3881 * subfunc2 -> sub rsp, 64 3882 * subfunc22 -> sub rsp, 128 3883 * tailcall2 -> add rsp, 128 3884 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3885 * 3886 * tailcall will unwind the current stack frame but it will not get rid 3887 * of caller's stack as shown on the example above. 3888 */ 3889 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3890 verbose(env, 3891 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3892 depth); 3893 return -EACCES; 3894 } 3895 /* round up to 32-bytes, since this is granularity 3896 * of interpreter stack size 3897 */ 3898 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3899 if (depth > MAX_BPF_STACK) { 3900 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3901 frame + 1, depth); 3902 return -EACCES; 3903 } 3904 continue_func: 3905 subprog_end = subprog[idx + 1].start; 3906 for (; i < subprog_end; i++) { 3907 int next_insn; 3908 3909 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3910 continue; 3911 /* remember insn and function to return to */ 3912 ret_insn[frame] = i + 1; 3913 ret_prog[frame] = idx; 3914 3915 /* find the callee */ 3916 next_insn = i + insn[i].imm + 1; 3917 idx = find_subprog(env, next_insn); 3918 if (idx < 0) { 3919 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3920 next_insn); 3921 return -EFAULT; 3922 } 3923 if (subprog[idx].is_async_cb) { 3924 if (subprog[idx].has_tail_call) { 3925 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3926 return -EFAULT; 3927 } 3928 /* async callbacks don't increase bpf prog stack size */ 3929 continue; 3930 } 3931 i = next_insn; 3932 3933 if (subprog[idx].has_tail_call) 3934 tail_call_reachable = true; 3935 3936 frame++; 3937 if (frame >= MAX_CALL_FRAMES) { 3938 verbose(env, "the call stack of %d frames is too deep !\n", 3939 frame); 3940 return -E2BIG; 3941 } 3942 goto process_func; 3943 } 3944 /* if tail call got detected across bpf2bpf calls then mark each of the 3945 * currently present subprog frames as tail call reachable subprogs; 3946 * this info will be utilized by JIT so that we will be preserving the 3947 * tail call counter throughout bpf2bpf calls combined with tailcalls 3948 */ 3949 if (tail_call_reachable) 3950 for (j = 0; j < frame; j++) 3951 subprog[ret_prog[j]].tail_call_reachable = true; 3952 if (subprog[0].tail_call_reachable) 3953 env->prog->aux->tail_call_reachable = true; 3954 3955 /* end of for() loop means the last insn of the 'subprog' 3956 * was reached. Doesn't matter whether it was JA or EXIT 3957 */ 3958 if (frame == 0) 3959 return 0; 3960 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3961 frame--; 3962 i = ret_insn[frame]; 3963 idx = ret_prog[frame]; 3964 goto continue_func; 3965 } 3966 3967 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3968 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3969 const struct bpf_insn *insn, int idx) 3970 { 3971 int start = idx + insn->imm + 1, subprog; 3972 3973 subprog = find_subprog(env, start); 3974 if (subprog < 0) { 3975 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3976 start); 3977 return -EFAULT; 3978 } 3979 return env->subprog_info[subprog].stack_depth; 3980 } 3981 #endif 3982 3983 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3984 const struct bpf_reg_state *reg, int regno, 3985 bool fixed_off_ok) 3986 { 3987 /* Access to this pointer-typed register or passing it to a helper 3988 * is only allowed in its original, unmodified form. 3989 */ 3990 3991 if (reg->off < 0) { 3992 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3993 reg_type_str(env, reg->type), regno, reg->off); 3994 return -EACCES; 3995 } 3996 3997 if (!fixed_off_ok && reg->off) { 3998 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3999 reg_type_str(env, reg->type), regno, reg->off); 4000 return -EACCES; 4001 } 4002 4003 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4004 char tn_buf[48]; 4005 4006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4007 verbose(env, "variable %s access var_off=%s disallowed\n", 4008 reg_type_str(env, reg->type), tn_buf); 4009 return -EACCES; 4010 } 4011 4012 return 0; 4013 } 4014 4015 int check_ptr_off_reg(struct bpf_verifier_env *env, 4016 const struct bpf_reg_state *reg, int regno) 4017 { 4018 return __check_ptr_off_reg(env, reg, regno, false); 4019 } 4020 4021 static int __check_buffer_access(struct bpf_verifier_env *env, 4022 const char *buf_info, 4023 const struct bpf_reg_state *reg, 4024 int regno, int off, int size) 4025 { 4026 if (off < 0) { 4027 verbose(env, 4028 "R%d invalid %s buffer access: off=%d, size=%d\n", 4029 regno, buf_info, off, size); 4030 return -EACCES; 4031 } 4032 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4033 char tn_buf[48]; 4034 4035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4036 verbose(env, 4037 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4038 regno, off, tn_buf); 4039 return -EACCES; 4040 } 4041 4042 return 0; 4043 } 4044 4045 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4046 const struct bpf_reg_state *reg, 4047 int regno, int off, int size) 4048 { 4049 int err; 4050 4051 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4052 if (err) 4053 return err; 4054 4055 if (off + size > env->prog->aux->max_tp_access) 4056 env->prog->aux->max_tp_access = off + size; 4057 4058 return 0; 4059 } 4060 4061 static int check_buffer_access(struct bpf_verifier_env *env, 4062 const struct bpf_reg_state *reg, 4063 int regno, int off, int size, 4064 bool zero_size_allowed, 4065 u32 *max_access) 4066 { 4067 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4068 int err; 4069 4070 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4071 if (err) 4072 return err; 4073 4074 if (off + size > *max_access) 4075 *max_access = off + size; 4076 4077 return 0; 4078 } 4079 4080 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4081 static void zext_32_to_64(struct bpf_reg_state *reg) 4082 { 4083 reg->var_off = tnum_subreg(reg->var_off); 4084 __reg_assign_32_into_64(reg); 4085 } 4086 4087 /* truncate register to smaller size (in bytes) 4088 * must be called with size < BPF_REG_SIZE 4089 */ 4090 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4091 { 4092 u64 mask; 4093 4094 /* clear high bits in bit representation */ 4095 reg->var_off = tnum_cast(reg->var_off, size); 4096 4097 /* fix arithmetic bounds */ 4098 mask = ((u64)1 << (size * 8)) - 1; 4099 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4100 reg->umin_value &= mask; 4101 reg->umax_value &= mask; 4102 } else { 4103 reg->umin_value = 0; 4104 reg->umax_value = mask; 4105 } 4106 reg->smin_value = reg->umin_value; 4107 reg->smax_value = reg->umax_value; 4108 4109 /* If size is smaller than 32bit register the 32bit register 4110 * values are also truncated so we push 64-bit bounds into 4111 * 32-bit bounds. Above were truncated < 32-bits already. 4112 */ 4113 if (size >= 4) 4114 return; 4115 __reg_combine_64_into_32(reg); 4116 } 4117 4118 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4119 { 4120 /* A map is considered read-only if the following condition are true: 4121 * 4122 * 1) BPF program side cannot change any of the map content. The 4123 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4124 * and was set at map creation time. 4125 * 2) The map value(s) have been initialized from user space by a 4126 * loader and then "frozen", such that no new map update/delete 4127 * operations from syscall side are possible for the rest of 4128 * the map's lifetime from that point onwards. 4129 * 3) Any parallel/pending map update/delete operations from syscall 4130 * side have been completed. Only after that point, it's safe to 4131 * assume that map value(s) are immutable. 4132 */ 4133 return (map->map_flags & BPF_F_RDONLY_PROG) && 4134 READ_ONCE(map->frozen) && 4135 !bpf_map_write_active(map); 4136 } 4137 4138 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4139 { 4140 void *ptr; 4141 u64 addr; 4142 int err; 4143 4144 err = map->ops->map_direct_value_addr(map, &addr, off); 4145 if (err) 4146 return err; 4147 ptr = (void *)(long)addr + off; 4148 4149 switch (size) { 4150 case sizeof(u8): 4151 *val = (u64)*(u8 *)ptr; 4152 break; 4153 case sizeof(u16): 4154 *val = (u64)*(u16 *)ptr; 4155 break; 4156 case sizeof(u32): 4157 *val = (u64)*(u32 *)ptr; 4158 break; 4159 case sizeof(u64): 4160 *val = *(u64 *)ptr; 4161 break; 4162 default: 4163 return -EINVAL; 4164 } 4165 return 0; 4166 } 4167 4168 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4169 struct bpf_reg_state *regs, 4170 int regno, int off, int size, 4171 enum bpf_access_type atype, 4172 int value_regno) 4173 { 4174 struct bpf_reg_state *reg = regs + regno; 4175 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4176 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4177 enum bpf_type_flag flag = 0; 4178 u32 btf_id; 4179 int ret; 4180 4181 if (off < 0) { 4182 verbose(env, 4183 "R%d is ptr_%s invalid negative access: off=%d\n", 4184 regno, tname, off); 4185 return -EACCES; 4186 } 4187 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4188 char tn_buf[48]; 4189 4190 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4191 verbose(env, 4192 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4193 regno, tname, off, tn_buf); 4194 return -EACCES; 4195 } 4196 4197 if (reg->type & MEM_USER) { 4198 verbose(env, 4199 "R%d is ptr_%s access user memory: off=%d\n", 4200 regno, tname, off); 4201 return -EACCES; 4202 } 4203 4204 if (reg->type & MEM_PERCPU) { 4205 verbose(env, 4206 "R%d is ptr_%s access percpu memory: off=%d\n", 4207 regno, tname, off); 4208 return -EACCES; 4209 } 4210 4211 if (env->ops->btf_struct_access) { 4212 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4213 off, size, atype, &btf_id, &flag); 4214 } else { 4215 if (atype != BPF_READ) { 4216 verbose(env, "only read is supported\n"); 4217 return -EACCES; 4218 } 4219 4220 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4221 atype, &btf_id, &flag); 4222 } 4223 4224 if (ret < 0) 4225 return ret; 4226 4227 if (atype == BPF_READ && value_regno >= 0) 4228 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4229 4230 return 0; 4231 } 4232 4233 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4234 struct bpf_reg_state *regs, 4235 int regno, int off, int size, 4236 enum bpf_access_type atype, 4237 int value_regno) 4238 { 4239 struct bpf_reg_state *reg = regs + regno; 4240 struct bpf_map *map = reg->map_ptr; 4241 enum bpf_type_flag flag = 0; 4242 const struct btf_type *t; 4243 const char *tname; 4244 u32 btf_id; 4245 int ret; 4246 4247 if (!btf_vmlinux) { 4248 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4249 return -ENOTSUPP; 4250 } 4251 4252 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4253 verbose(env, "map_ptr access not supported for map type %d\n", 4254 map->map_type); 4255 return -ENOTSUPP; 4256 } 4257 4258 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4259 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4260 4261 if (!env->allow_ptr_to_map_access) { 4262 verbose(env, 4263 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4264 tname); 4265 return -EPERM; 4266 } 4267 4268 if (off < 0) { 4269 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4270 regno, tname, off); 4271 return -EACCES; 4272 } 4273 4274 if (atype != BPF_READ) { 4275 verbose(env, "only read from %s is supported\n", tname); 4276 return -EACCES; 4277 } 4278 4279 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4280 if (ret < 0) 4281 return ret; 4282 4283 if (value_regno >= 0) 4284 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4285 4286 return 0; 4287 } 4288 4289 /* Check that the stack access at the given offset is within bounds. The 4290 * maximum valid offset is -1. 4291 * 4292 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4293 * -state->allocated_stack for reads. 4294 */ 4295 static int check_stack_slot_within_bounds(int off, 4296 struct bpf_func_state *state, 4297 enum bpf_access_type t) 4298 { 4299 int min_valid_off; 4300 4301 if (t == BPF_WRITE) 4302 min_valid_off = -MAX_BPF_STACK; 4303 else 4304 min_valid_off = -state->allocated_stack; 4305 4306 if (off < min_valid_off || off > -1) 4307 return -EACCES; 4308 return 0; 4309 } 4310 4311 /* Check that the stack access at 'regno + off' falls within the maximum stack 4312 * bounds. 4313 * 4314 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4315 */ 4316 static int check_stack_access_within_bounds( 4317 struct bpf_verifier_env *env, 4318 int regno, int off, int access_size, 4319 enum stack_access_src src, enum bpf_access_type type) 4320 { 4321 struct bpf_reg_state *regs = cur_regs(env); 4322 struct bpf_reg_state *reg = regs + regno; 4323 struct bpf_func_state *state = func(env, reg); 4324 int min_off, max_off; 4325 int err; 4326 char *err_extra; 4327 4328 if (src == ACCESS_HELPER) 4329 /* We don't know if helpers are reading or writing (or both). */ 4330 err_extra = " indirect access to"; 4331 else if (type == BPF_READ) 4332 err_extra = " read from"; 4333 else 4334 err_extra = " write to"; 4335 4336 if (tnum_is_const(reg->var_off)) { 4337 min_off = reg->var_off.value + off; 4338 if (access_size > 0) 4339 max_off = min_off + access_size - 1; 4340 else 4341 max_off = min_off; 4342 } else { 4343 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4344 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4345 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4346 err_extra, regno); 4347 return -EACCES; 4348 } 4349 min_off = reg->smin_value + off; 4350 if (access_size > 0) 4351 max_off = reg->smax_value + off + access_size - 1; 4352 else 4353 max_off = min_off; 4354 } 4355 4356 err = check_stack_slot_within_bounds(min_off, state, type); 4357 if (!err) 4358 err = check_stack_slot_within_bounds(max_off, state, type); 4359 4360 if (err) { 4361 if (tnum_is_const(reg->var_off)) { 4362 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4363 err_extra, regno, off, access_size); 4364 } else { 4365 char tn_buf[48]; 4366 4367 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4368 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4369 err_extra, regno, tn_buf, access_size); 4370 } 4371 } 4372 return err; 4373 } 4374 4375 /* check whether memory at (regno + off) is accessible for t = (read | write) 4376 * if t==write, value_regno is a register which value is stored into memory 4377 * if t==read, value_regno is a register which will receive the value from memory 4378 * if t==write && value_regno==-1, some unknown value is stored into memory 4379 * if t==read && value_regno==-1, don't care what we read from memory 4380 */ 4381 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4382 int off, int bpf_size, enum bpf_access_type t, 4383 int value_regno, bool strict_alignment_once) 4384 { 4385 struct bpf_reg_state *regs = cur_regs(env); 4386 struct bpf_reg_state *reg = regs + regno; 4387 struct bpf_func_state *state; 4388 int size, err = 0; 4389 4390 size = bpf_size_to_bytes(bpf_size); 4391 if (size < 0) 4392 return size; 4393 4394 /* alignment checks will add in reg->off themselves */ 4395 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4396 if (err) 4397 return err; 4398 4399 /* for access checks, reg->off is just part of off */ 4400 off += reg->off; 4401 4402 if (reg->type == PTR_TO_MAP_KEY) { 4403 if (t == BPF_WRITE) { 4404 verbose(env, "write to change key R%d not allowed\n", regno); 4405 return -EACCES; 4406 } 4407 4408 err = check_mem_region_access(env, regno, off, size, 4409 reg->map_ptr->key_size, false); 4410 if (err) 4411 return err; 4412 if (value_regno >= 0) 4413 mark_reg_unknown(env, regs, value_regno); 4414 } else if (reg->type == PTR_TO_MAP_VALUE) { 4415 if (t == BPF_WRITE && value_regno >= 0 && 4416 is_pointer_value(env, value_regno)) { 4417 verbose(env, "R%d leaks addr into map\n", value_regno); 4418 return -EACCES; 4419 } 4420 err = check_map_access_type(env, regno, off, size, t); 4421 if (err) 4422 return err; 4423 err = check_map_access(env, regno, off, size, false); 4424 if (!err && t == BPF_READ && value_regno >= 0) { 4425 struct bpf_map *map = reg->map_ptr; 4426 4427 /* if map is read-only, track its contents as scalars */ 4428 if (tnum_is_const(reg->var_off) && 4429 bpf_map_is_rdonly(map) && 4430 map->ops->map_direct_value_addr) { 4431 int map_off = off + reg->var_off.value; 4432 u64 val = 0; 4433 4434 err = bpf_map_direct_read(map, map_off, size, 4435 &val); 4436 if (err) 4437 return err; 4438 4439 regs[value_regno].type = SCALAR_VALUE; 4440 __mark_reg_known(®s[value_regno], val); 4441 } else { 4442 mark_reg_unknown(env, regs, value_regno); 4443 } 4444 } 4445 } else if (base_type(reg->type) == PTR_TO_MEM) { 4446 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4447 4448 if (type_may_be_null(reg->type)) { 4449 verbose(env, "R%d invalid mem access '%s'\n", regno, 4450 reg_type_str(env, reg->type)); 4451 return -EACCES; 4452 } 4453 4454 if (t == BPF_WRITE && rdonly_mem) { 4455 verbose(env, "R%d cannot write into %s\n", 4456 regno, reg_type_str(env, reg->type)); 4457 return -EACCES; 4458 } 4459 4460 if (t == BPF_WRITE && value_regno >= 0 && 4461 is_pointer_value(env, value_regno)) { 4462 verbose(env, "R%d leaks addr into mem\n", value_regno); 4463 return -EACCES; 4464 } 4465 4466 err = check_mem_region_access(env, regno, off, size, 4467 reg->mem_size, false); 4468 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4469 mark_reg_unknown(env, regs, value_regno); 4470 } else if (reg->type == PTR_TO_CTX) { 4471 enum bpf_reg_type reg_type = SCALAR_VALUE; 4472 struct btf *btf = NULL; 4473 u32 btf_id = 0; 4474 4475 if (t == BPF_WRITE && value_regno >= 0 && 4476 is_pointer_value(env, value_regno)) { 4477 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4478 return -EACCES; 4479 } 4480 4481 err = check_ptr_off_reg(env, reg, regno); 4482 if (err < 0) 4483 return err; 4484 4485 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4486 &btf_id); 4487 if (err) 4488 verbose_linfo(env, insn_idx, "; "); 4489 if (!err && t == BPF_READ && value_regno >= 0) { 4490 /* ctx access returns either a scalar, or a 4491 * PTR_TO_PACKET[_META,_END]. In the latter 4492 * case, we know the offset is zero. 4493 */ 4494 if (reg_type == SCALAR_VALUE) { 4495 mark_reg_unknown(env, regs, value_regno); 4496 } else { 4497 mark_reg_known_zero(env, regs, 4498 value_regno); 4499 if (type_may_be_null(reg_type)) 4500 regs[value_regno].id = ++env->id_gen; 4501 /* A load of ctx field could have different 4502 * actual load size with the one encoded in the 4503 * insn. When the dst is PTR, it is for sure not 4504 * a sub-register. 4505 */ 4506 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4507 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4508 regs[value_regno].btf = btf; 4509 regs[value_regno].btf_id = btf_id; 4510 } 4511 } 4512 regs[value_regno].type = reg_type; 4513 } 4514 4515 } else if (reg->type == PTR_TO_STACK) { 4516 /* Basic bounds checks. */ 4517 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4518 if (err) 4519 return err; 4520 4521 state = func(env, reg); 4522 err = update_stack_depth(env, state, off); 4523 if (err) 4524 return err; 4525 4526 if (t == BPF_READ) 4527 err = check_stack_read(env, regno, off, size, 4528 value_regno); 4529 else 4530 err = check_stack_write(env, regno, off, size, 4531 value_regno, insn_idx); 4532 } else if (reg_is_pkt_pointer(reg)) { 4533 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4534 verbose(env, "cannot write into packet\n"); 4535 return -EACCES; 4536 } 4537 if (t == BPF_WRITE && value_regno >= 0 && 4538 is_pointer_value(env, value_regno)) { 4539 verbose(env, "R%d leaks addr into packet\n", 4540 value_regno); 4541 return -EACCES; 4542 } 4543 err = check_packet_access(env, regno, off, size, false); 4544 if (!err && t == BPF_READ && value_regno >= 0) 4545 mark_reg_unknown(env, regs, value_regno); 4546 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4547 if (t == BPF_WRITE && value_regno >= 0 && 4548 is_pointer_value(env, value_regno)) { 4549 verbose(env, "R%d leaks addr into flow keys\n", 4550 value_regno); 4551 return -EACCES; 4552 } 4553 4554 err = check_flow_keys_access(env, off, size); 4555 if (!err && t == BPF_READ && value_regno >= 0) 4556 mark_reg_unknown(env, regs, value_regno); 4557 } else if (type_is_sk_pointer(reg->type)) { 4558 if (t == BPF_WRITE) { 4559 verbose(env, "R%d cannot write into %s\n", 4560 regno, reg_type_str(env, reg->type)); 4561 return -EACCES; 4562 } 4563 err = check_sock_access(env, insn_idx, regno, off, size, t); 4564 if (!err && value_regno >= 0) 4565 mark_reg_unknown(env, regs, value_regno); 4566 } else if (reg->type == PTR_TO_TP_BUFFER) { 4567 err = check_tp_buffer_access(env, reg, regno, off, size); 4568 if (!err && t == BPF_READ && value_regno >= 0) 4569 mark_reg_unknown(env, regs, value_regno); 4570 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4571 !type_may_be_null(reg->type)) { 4572 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4573 value_regno); 4574 } else if (reg->type == CONST_PTR_TO_MAP) { 4575 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4576 value_regno); 4577 } else if (base_type(reg->type) == PTR_TO_BUF) { 4578 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4579 u32 *max_access; 4580 4581 if (rdonly_mem) { 4582 if (t == BPF_WRITE) { 4583 verbose(env, "R%d cannot write into %s\n", 4584 regno, reg_type_str(env, reg->type)); 4585 return -EACCES; 4586 } 4587 max_access = &env->prog->aux->max_rdonly_access; 4588 } else { 4589 max_access = &env->prog->aux->max_rdwr_access; 4590 } 4591 4592 err = check_buffer_access(env, reg, regno, off, size, false, 4593 max_access); 4594 4595 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4596 mark_reg_unknown(env, regs, value_regno); 4597 } else { 4598 verbose(env, "R%d invalid mem access '%s'\n", regno, 4599 reg_type_str(env, reg->type)); 4600 return -EACCES; 4601 } 4602 4603 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4604 regs[value_regno].type == SCALAR_VALUE) { 4605 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4606 coerce_reg_to_size(®s[value_regno], size); 4607 } 4608 return err; 4609 } 4610 4611 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4612 { 4613 int load_reg; 4614 int err; 4615 4616 switch (insn->imm) { 4617 case BPF_ADD: 4618 case BPF_ADD | BPF_FETCH: 4619 case BPF_AND: 4620 case BPF_AND | BPF_FETCH: 4621 case BPF_OR: 4622 case BPF_OR | BPF_FETCH: 4623 case BPF_XOR: 4624 case BPF_XOR | BPF_FETCH: 4625 case BPF_XCHG: 4626 case BPF_CMPXCHG: 4627 break; 4628 default: 4629 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4630 return -EINVAL; 4631 } 4632 4633 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4634 verbose(env, "invalid atomic operand size\n"); 4635 return -EINVAL; 4636 } 4637 4638 /* check src1 operand */ 4639 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4640 if (err) 4641 return err; 4642 4643 /* check src2 operand */ 4644 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4645 if (err) 4646 return err; 4647 4648 if (insn->imm == BPF_CMPXCHG) { 4649 /* Check comparison of R0 with memory location */ 4650 const u32 aux_reg = BPF_REG_0; 4651 4652 err = check_reg_arg(env, aux_reg, SRC_OP); 4653 if (err) 4654 return err; 4655 4656 if (is_pointer_value(env, aux_reg)) { 4657 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4658 return -EACCES; 4659 } 4660 } 4661 4662 if (is_pointer_value(env, insn->src_reg)) { 4663 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4664 return -EACCES; 4665 } 4666 4667 if (is_ctx_reg(env, insn->dst_reg) || 4668 is_pkt_reg(env, insn->dst_reg) || 4669 is_flow_key_reg(env, insn->dst_reg) || 4670 is_sk_reg(env, insn->dst_reg)) { 4671 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4672 insn->dst_reg, 4673 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4674 return -EACCES; 4675 } 4676 4677 if (insn->imm & BPF_FETCH) { 4678 if (insn->imm == BPF_CMPXCHG) 4679 load_reg = BPF_REG_0; 4680 else 4681 load_reg = insn->src_reg; 4682 4683 /* check and record load of old value */ 4684 err = check_reg_arg(env, load_reg, DST_OP); 4685 if (err) 4686 return err; 4687 } else { 4688 /* This instruction accesses a memory location but doesn't 4689 * actually load it into a register. 4690 */ 4691 load_reg = -1; 4692 } 4693 4694 /* Check whether we can read the memory, with second call for fetch 4695 * case to simulate the register fill. 4696 */ 4697 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4698 BPF_SIZE(insn->code), BPF_READ, -1, true); 4699 if (!err && load_reg >= 0) 4700 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4701 BPF_SIZE(insn->code), BPF_READ, load_reg, 4702 true); 4703 if (err) 4704 return err; 4705 4706 /* Check whether we can write into the same memory. */ 4707 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4708 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4709 if (err) 4710 return err; 4711 4712 return 0; 4713 } 4714 4715 /* When register 'regno' is used to read the stack (either directly or through 4716 * a helper function) make sure that it's within stack boundary and, depending 4717 * on the access type, that all elements of the stack are initialized. 4718 * 4719 * 'off' includes 'regno->off', but not its dynamic part (if any). 4720 * 4721 * All registers that have been spilled on the stack in the slots within the 4722 * read offsets are marked as read. 4723 */ 4724 static int check_stack_range_initialized( 4725 struct bpf_verifier_env *env, int regno, int off, 4726 int access_size, bool zero_size_allowed, 4727 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4728 { 4729 struct bpf_reg_state *reg = reg_state(env, regno); 4730 struct bpf_func_state *state = func(env, reg); 4731 int err, min_off, max_off, i, j, slot, spi; 4732 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4733 enum bpf_access_type bounds_check_type; 4734 /* Some accesses can write anything into the stack, others are 4735 * read-only. 4736 */ 4737 bool clobber = false; 4738 4739 if (access_size == 0 && !zero_size_allowed) { 4740 verbose(env, "invalid zero-sized read\n"); 4741 return -EACCES; 4742 } 4743 4744 if (type == ACCESS_HELPER) { 4745 /* The bounds checks for writes are more permissive than for 4746 * reads. However, if raw_mode is not set, we'll do extra 4747 * checks below. 4748 */ 4749 bounds_check_type = BPF_WRITE; 4750 clobber = true; 4751 } else { 4752 bounds_check_type = BPF_READ; 4753 } 4754 err = check_stack_access_within_bounds(env, regno, off, access_size, 4755 type, bounds_check_type); 4756 if (err) 4757 return err; 4758 4759 4760 if (tnum_is_const(reg->var_off)) { 4761 min_off = max_off = reg->var_off.value + off; 4762 } else { 4763 /* Variable offset is prohibited for unprivileged mode for 4764 * simplicity since it requires corresponding support in 4765 * Spectre masking for stack ALU. 4766 * See also retrieve_ptr_limit(). 4767 */ 4768 if (!env->bypass_spec_v1) { 4769 char tn_buf[48]; 4770 4771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4772 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4773 regno, err_extra, tn_buf); 4774 return -EACCES; 4775 } 4776 /* Only initialized buffer on stack is allowed to be accessed 4777 * with variable offset. With uninitialized buffer it's hard to 4778 * guarantee that whole memory is marked as initialized on 4779 * helper return since specific bounds are unknown what may 4780 * cause uninitialized stack leaking. 4781 */ 4782 if (meta && meta->raw_mode) 4783 meta = NULL; 4784 4785 min_off = reg->smin_value + off; 4786 max_off = reg->smax_value + off; 4787 } 4788 4789 if (meta && meta->raw_mode) { 4790 meta->access_size = access_size; 4791 meta->regno = regno; 4792 return 0; 4793 } 4794 4795 for (i = min_off; i < max_off + access_size; i++) { 4796 u8 *stype; 4797 4798 slot = -i - 1; 4799 spi = slot / BPF_REG_SIZE; 4800 if (state->allocated_stack <= slot) 4801 goto err; 4802 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4803 if (*stype == STACK_MISC) 4804 goto mark; 4805 if (*stype == STACK_ZERO) { 4806 if (clobber) { 4807 /* helper can write anything into the stack */ 4808 *stype = STACK_MISC; 4809 } 4810 goto mark; 4811 } 4812 4813 if (is_spilled_reg(&state->stack[spi]) && 4814 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 4815 goto mark; 4816 4817 if (is_spilled_reg(&state->stack[spi]) && 4818 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4819 env->allow_ptr_leaks)) { 4820 if (clobber) { 4821 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4822 for (j = 0; j < BPF_REG_SIZE; j++) 4823 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4824 } 4825 goto mark; 4826 } 4827 4828 err: 4829 if (tnum_is_const(reg->var_off)) { 4830 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4831 err_extra, regno, min_off, i - min_off, access_size); 4832 } else { 4833 char tn_buf[48]; 4834 4835 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4836 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4837 err_extra, regno, tn_buf, i - min_off, access_size); 4838 } 4839 return -EACCES; 4840 mark: 4841 /* reading any byte out of 8-byte 'spill_slot' will cause 4842 * the whole slot to be marked as 'read' 4843 */ 4844 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4845 state->stack[spi].spilled_ptr.parent, 4846 REG_LIVE_READ64); 4847 } 4848 return update_stack_depth(env, state, min_off); 4849 } 4850 4851 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4852 int access_size, bool zero_size_allowed, 4853 struct bpf_call_arg_meta *meta) 4854 { 4855 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4856 u32 *max_access; 4857 4858 switch (base_type(reg->type)) { 4859 case PTR_TO_PACKET: 4860 case PTR_TO_PACKET_META: 4861 return check_packet_access(env, regno, reg->off, access_size, 4862 zero_size_allowed); 4863 case PTR_TO_MAP_KEY: 4864 return check_mem_region_access(env, regno, reg->off, access_size, 4865 reg->map_ptr->key_size, false); 4866 case PTR_TO_MAP_VALUE: 4867 if (check_map_access_type(env, regno, reg->off, access_size, 4868 meta && meta->raw_mode ? BPF_WRITE : 4869 BPF_READ)) 4870 return -EACCES; 4871 return check_map_access(env, regno, reg->off, access_size, 4872 zero_size_allowed); 4873 case PTR_TO_MEM: 4874 return check_mem_region_access(env, regno, reg->off, 4875 access_size, reg->mem_size, 4876 zero_size_allowed); 4877 case PTR_TO_BUF: 4878 if (type_is_rdonly_mem(reg->type)) { 4879 if (meta && meta->raw_mode) 4880 return -EACCES; 4881 4882 max_access = &env->prog->aux->max_rdonly_access; 4883 } else { 4884 max_access = &env->prog->aux->max_rdwr_access; 4885 } 4886 return check_buffer_access(env, reg, regno, reg->off, 4887 access_size, zero_size_allowed, 4888 max_access); 4889 case PTR_TO_STACK: 4890 return check_stack_range_initialized( 4891 env, 4892 regno, reg->off, access_size, 4893 zero_size_allowed, ACCESS_HELPER, meta); 4894 default: /* scalar_value or invalid ptr */ 4895 /* Allow zero-byte read from NULL, regardless of pointer type */ 4896 if (zero_size_allowed && access_size == 0 && 4897 register_is_null(reg)) 4898 return 0; 4899 4900 verbose(env, "R%d type=%s ", regno, 4901 reg_type_str(env, reg->type)); 4902 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 4903 return -EACCES; 4904 } 4905 } 4906 4907 static int check_mem_size_reg(struct bpf_verifier_env *env, 4908 struct bpf_reg_state *reg, u32 regno, 4909 bool zero_size_allowed, 4910 struct bpf_call_arg_meta *meta) 4911 { 4912 int err; 4913 4914 /* This is used to refine r0 return value bounds for helpers 4915 * that enforce this value as an upper bound on return values. 4916 * See do_refine_retval_range() for helpers that can refine 4917 * the return value. C type of helper is u32 so we pull register 4918 * bound from umax_value however, if negative verifier errors 4919 * out. Only upper bounds can be learned because retval is an 4920 * int type and negative retvals are allowed. 4921 */ 4922 if (meta) 4923 meta->msize_max_value = reg->umax_value; 4924 4925 /* The register is SCALAR_VALUE; the access check 4926 * happens using its boundaries. 4927 */ 4928 if (!tnum_is_const(reg->var_off)) 4929 /* For unprivileged variable accesses, disable raw 4930 * mode so that the program is required to 4931 * initialize all the memory that the helper could 4932 * just partially fill up. 4933 */ 4934 meta = NULL; 4935 4936 if (reg->smin_value < 0) { 4937 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4938 regno); 4939 return -EACCES; 4940 } 4941 4942 if (reg->umin_value == 0) { 4943 err = check_helper_mem_access(env, regno - 1, 0, 4944 zero_size_allowed, 4945 meta); 4946 if (err) 4947 return err; 4948 } 4949 4950 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4951 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4952 regno); 4953 return -EACCES; 4954 } 4955 err = check_helper_mem_access(env, regno - 1, 4956 reg->umax_value, 4957 zero_size_allowed, meta); 4958 if (!err) 4959 err = mark_chain_precision(env, regno); 4960 return err; 4961 } 4962 4963 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4964 u32 regno, u32 mem_size) 4965 { 4966 if (register_is_null(reg)) 4967 return 0; 4968 4969 if (type_may_be_null(reg->type)) { 4970 /* Assuming that the register contains a value check if the memory 4971 * access is safe. Temporarily save and restore the register's state as 4972 * the conversion shouldn't be visible to a caller. 4973 */ 4974 const struct bpf_reg_state saved_reg = *reg; 4975 int rv; 4976 4977 mark_ptr_not_null_reg(reg); 4978 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4979 *reg = saved_reg; 4980 return rv; 4981 } 4982 4983 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4984 } 4985 4986 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4987 u32 regno) 4988 { 4989 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 4990 bool may_be_null = type_may_be_null(mem_reg->type); 4991 struct bpf_reg_state saved_reg; 4992 int err; 4993 4994 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 4995 4996 if (may_be_null) { 4997 saved_reg = *mem_reg; 4998 mark_ptr_not_null_reg(mem_reg); 4999 } 5000 5001 err = check_mem_size_reg(env, reg, regno, true, NULL); 5002 5003 if (may_be_null) 5004 *mem_reg = saved_reg; 5005 return err; 5006 } 5007 5008 /* Implementation details: 5009 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5010 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5011 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5012 * value_or_null->value transition, since the verifier only cares about 5013 * the range of access to valid map value pointer and doesn't care about actual 5014 * address of the map element. 5015 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5016 * reg->id > 0 after value_or_null->value transition. By doing so 5017 * two bpf_map_lookups will be considered two different pointers that 5018 * point to different bpf_spin_locks. 5019 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5020 * dead-locks. 5021 * Since only one bpf_spin_lock is allowed the checks are simpler than 5022 * reg_is_refcounted() logic. The verifier needs to remember only 5023 * one spin_lock instead of array of acquired_refs. 5024 * cur_state->active_spin_lock remembers which map value element got locked 5025 * and clears it after bpf_spin_unlock. 5026 */ 5027 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5028 bool is_lock) 5029 { 5030 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5031 struct bpf_verifier_state *cur = env->cur_state; 5032 bool is_const = tnum_is_const(reg->var_off); 5033 struct bpf_map *map = reg->map_ptr; 5034 u64 val = reg->var_off.value; 5035 5036 if (!is_const) { 5037 verbose(env, 5038 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5039 regno); 5040 return -EINVAL; 5041 } 5042 if (!map->btf) { 5043 verbose(env, 5044 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5045 map->name); 5046 return -EINVAL; 5047 } 5048 if (!map_value_has_spin_lock(map)) { 5049 if (map->spin_lock_off == -E2BIG) 5050 verbose(env, 5051 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5052 map->name); 5053 else if (map->spin_lock_off == -ENOENT) 5054 verbose(env, 5055 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5056 map->name); 5057 else 5058 verbose(env, 5059 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5060 map->name); 5061 return -EINVAL; 5062 } 5063 if (map->spin_lock_off != val + reg->off) { 5064 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5065 val + reg->off); 5066 return -EINVAL; 5067 } 5068 if (is_lock) { 5069 if (cur->active_spin_lock) { 5070 verbose(env, 5071 "Locking two bpf_spin_locks are not allowed\n"); 5072 return -EINVAL; 5073 } 5074 cur->active_spin_lock = reg->id; 5075 } else { 5076 if (!cur->active_spin_lock) { 5077 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5078 return -EINVAL; 5079 } 5080 if (cur->active_spin_lock != reg->id) { 5081 verbose(env, "bpf_spin_unlock of different lock\n"); 5082 return -EINVAL; 5083 } 5084 cur->active_spin_lock = 0; 5085 } 5086 return 0; 5087 } 5088 5089 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5090 struct bpf_call_arg_meta *meta) 5091 { 5092 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5093 bool is_const = tnum_is_const(reg->var_off); 5094 struct bpf_map *map = reg->map_ptr; 5095 u64 val = reg->var_off.value; 5096 5097 if (!is_const) { 5098 verbose(env, 5099 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5100 regno); 5101 return -EINVAL; 5102 } 5103 if (!map->btf) { 5104 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5105 map->name); 5106 return -EINVAL; 5107 } 5108 if (!map_value_has_timer(map)) { 5109 if (map->timer_off == -E2BIG) 5110 verbose(env, 5111 "map '%s' has more than one 'struct bpf_timer'\n", 5112 map->name); 5113 else if (map->timer_off == -ENOENT) 5114 verbose(env, 5115 "map '%s' doesn't have 'struct bpf_timer'\n", 5116 map->name); 5117 else 5118 verbose(env, 5119 "map '%s' is not a struct type or bpf_timer is mangled\n", 5120 map->name); 5121 return -EINVAL; 5122 } 5123 if (map->timer_off != val + reg->off) { 5124 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5125 val + reg->off, map->timer_off); 5126 return -EINVAL; 5127 } 5128 if (meta->map_ptr) { 5129 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5130 return -EFAULT; 5131 } 5132 meta->map_uid = reg->map_uid; 5133 meta->map_ptr = map; 5134 return 0; 5135 } 5136 5137 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 5138 { 5139 return base_type(type) == ARG_PTR_TO_MEM || 5140 base_type(type) == ARG_PTR_TO_UNINIT_MEM; 5141 } 5142 5143 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5144 { 5145 return type == ARG_CONST_SIZE || 5146 type == ARG_CONST_SIZE_OR_ZERO; 5147 } 5148 5149 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5150 { 5151 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5152 } 5153 5154 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5155 { 5156 return type == ARG_PTR_TO_INT || 5157 type == ARG_PTR_TO_LONG; 5158 } 5159 5160 static int int_ptr_type_to_size(enum bpf_arg_type type) 5161 { 5162 if (type == ARG_PTR_TO_INT) 5163 return sizeof(u32); 5164 else if (type == ARG_PTR_TO_LONG) 5165 return sizeof(u64); 5166 5167 return -EINVAL; 5168 } 5169 5170 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5171 const struct bpf_call_arg_meta *meta, 5172 enum bpf_arg_type *arg_type) 5173 { 5174 if (!meta->map_ptr) { 5175 /* kernel subsystem misconfigured verifier */ 5176 verbose(env, "invalid map_ptr to access map->type\n"); 5177 return -EACCES; 5178 } 5179 5180 switch (meta->map_ptr->map_type) { 5181 case BPF_MAP_TYPE_SOCKMAP: 5182 case BPF_MAP_TYPE_SOCKHASH: 5183 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5184 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5185 } else { 5186 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5187 return -EINVAL; 5188 } 5189 break; 5190 case BPF_MAP_TYPE_BLOOM_FILTER: 5191 if (meta->func_id == BPF_FUNC_map_peek_elem) 5192 *arg_type = ARG_PTR_TO_MAP_VALUE; 5193 break; 5194 default: 5195 break; 5196 } 5197 return 0; 5198 } 5199 5200 struct bpf_reg_types { 5201 const enum bpf_reg_type types[10]; 5202 u32 *btf_id; 5203 }; 5204 5205 static const struct bpf_reg_types map_key_value_types = { 5206 .types = { 5207 PTR_TO_STACK, 5208 PTR_TO_PACKET, 5209 PTR_TO_PACKET_META, 5210 PTR_TO_MAP_KEY, 5211 PTR_TO_MAP_VALUE, 5212 }, 5213 }; 5214 5215 static const struct bpf_reg_types sock_types = { 5216 .types = { 5217 PTR_TO_SOCK_COMMON, 5218 PTR_TO_SOCKET, 5219 PTR_TO_TCP_SOCK, 5220 PTR_TO_XDP_SOCK, 5221 }, 5222 }; 5223 5224 #ifdef CONFIG_NET 5225 static const struct bpf_reg_types btf_id_sock_common_types = { 5226 .types = { 5227 PTR_TO_SOCK_COMMON, 5228 PTR_TO_SOCKET, 5229 PTR_TO_TCP_SOCK, 5230 PTR_TO_XDP_SOCK, 5231 PTR_TO_BTF_ID, 5232 }, 5233 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5234 }; 5235 #endif 5236 5237 static const struct bpf_reg_types mem_types = { 5238 .types = { 5239 PTR_TO_STACK, 5240 PTR_TO_PACKET, 5241 PTR_TO_PACKET_META, 5242 PTR_TO_MAP_KEY, 5243 PTR_TO_MAP_VALUE, 5244 PTR_TO_MEM, 5245 PTR_TO_MEM | MEM_ALLOC, 5246 PTR_TO_BUF, 5247 }, 5248 }; 5249 5250 static const struct bpf_reg_types int_ptr_types = { 5251 .types = { 5252 PTR_TO_STACK, 5253 PTR_TO_PACKET, 5254 PTR_TO_PACKET_META, 5255 PTR_TO_MAP_KEY, 5256 PTR_TO_MAP_VALUE, 5257 }, 5258 }; 5259 5260 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5261 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5262 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5263 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5264 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5265 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5266 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5267 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5268 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5269 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5270 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5271 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5272 5273 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5274 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5275 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5276 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5277 [ARG_CONST_SIZE] = &scalar_types, 5278 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5279 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5280 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5281 [ARG_PTR_TO_CTX] = &context_types, 5282 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5283 #ifdef CONFIG_NET 5284 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5285 #endif 5286 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5287 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5288 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5289 [ARG_PTR_TO_MEM] = &mem_types, 5290 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5291 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5292 [ARG_PTR_TO_INT] = &int_ptr_types, 5293 [ARG_PTR_TO_LONG] = &int_ptr_types, 5294 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5295 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5296 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5297 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5298 [ARG_PTR_TO_TIMER] = &timer_types, 5299 }; 5300 5301 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5302 enum bpf_arg_type arg_type, 5303 const u32 *arg_btf_id) 5304 { 5305 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5306 enum bpf_reg_type expected, type = reg->type; 5307 const struct bpf_reg_types *compatible; 5308 int i, j; 5309 5310 compatible = compatible_reg_types[base_type(arg_type)]; 5311 if (!compatible) { 5312 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5313 return -EFAULT; 5314 } 5315 5316 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5317 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5318 * 5319 * Same for MAYBE_NULL: 5320 * 5321 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5322 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5323 * 5324 * Therefore we fold these flags depending on the arg_type before comparison. 5325 */ 5326 if (arg_type & MEM_RDONLY) 5327 type &= ~MEM_RDONLY; 5328 if (arg_type & PTR_MAYBE_NULL) 5329 type &= ~PTR_MAYBE_NULL; 5330 5331 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5332 expected = compatible->types[i]; 5333 if (expected == NOT_INIT) 5334 break; 5335 5336 if (type == expected) 5337 goto found; 5338 } 5339 5340 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5341 for (j = 0; j + 1 < i; j++) 5342 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5343 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5344 return -EACCES; 5345 5346 found: 5347 if (reg->type == PTR_TO_BTF_ID) { 5348 if (!arg_btf_id) { 5349 if (!compatible->btf_id) { 5350 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5351 return -EFAULT; 5352 } 5353 arg_btf_id = compatible->btf_id; 5354 } 5355 5356 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5357 btf_vmlinux, *arg_btf_id)) { 5358 verbose(env, "R%d is of type %s but %s is expected\n", 5359 regno, kernel_type_name(reg->btf, reg->btf_id), 5360 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5361 return -EACCES; 5362 } 5363 } 5364 5365 return 0; 5366 } 5367 5368 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5369 const struct bpf_reg_state *reg, int regno, 5370 enum bpf_arg_type arg_type, 5371 bool is_release_func) 5372 { 5373 bool fixed_off_ok = false, release_reg; 5374 enum bpf_reg_type type = reg->type; 5375 5376 switch ((u32)type) { 5377 case SCALAR_VALUE: 5378 /* Pointer types where reg offset is explicitly allowed: */ 5379 case PTR_TO_PACKET: 5380 case PTR_TO_PACKET_META: 5381 case PTR_TO_MAP_KEY: 5382 case PTR_TO_MAP_VALUE: 5383 case PTR_TO_MEM: 5384 case PTR_TO_MEM | MEM_RDONLY: 5385 case PTR_TO_MEM | MEM_ALLOC: 5386 case PTR_TO_BUF: 5387 case PTR_TO_BUF | MEM_RDONLY: 5388 case PTR_TO_STACK: 5389 /* Some of the argument types nevertheless require a 5390 * zero register offset. 5391 */ 5392 if (arg_type != ARG_PTR_TO_ALLOC_MEM) 5393 return 0; 5394 break; 5395 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5396 * fixed offset. 5397 */ 5398 case PTR_TO_BTF_ID: 5399 /* When referenced PTR_TO_BTF_ID is passed to release function, 5400 * it's fixed offset must be 0. We rely on the property that 5401 * only one referenced register can be passed to BPF helpers and 5402 * kfuncs. In the other cases, fixed offset can be non-zero. 5403 */ 5404 release_reg = is_release_func && reg->ref_obj_id; 5405 if (release_reg && reg->off) { 5406 verbose(env, "R%d must have zero offset when passed to release func\n", 5407 regno); 5408 return -EINVAL; 5409 } 5410 /* For release_reg == true, fixed_off_ok must be false, but we 5411 * already checked and rejected reg->off != 0 above, so set to 5412 * true to allow fixed offset for all other cases. 5413 */ 5414 fixed_off_ok = true; 5415 break; 5416 default: 5417 break; 5418 } 5419 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5420 } 5421 5422 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5423 struct bpf_call_arg_meta *meta, 5424 const struct bpf_func_proto *fn) 5425 { 5426 u32 regno = BPF_REG_1 + arg; 5427 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5428 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5429 enum bpf_reg_type type = reg->type; 5430 int err = 0; 5431 5432 if (arg_type == ARG_DONTCARE) 5433 return 0; 5434 5435 err = check_reg_arg(env, regno, SRC_OP); 5436 if (err) 5437 return err; 5438 5439 if (arg_type == ARG_ANYTHING) { 5440 if (is_pointer_value(env, regno)) { 5441 verbose(env, "R%d leaks addr into helper function\n", 5442 regno); 5443 return -EACCES; 5444 } 5445 return 0; 5446 } 5447 5448 if (type_is_pkt_pointer(type) && 5449 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5450 verbose(env, "helper access to the packet is not allowed\n"); 5451 return -EACCES; 5452 } 5453 5454 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5455 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5456 err = resolve_map_arg_type(env, meta, &arg_type); 5457 if (err) 5458 return err; 5459 } 5460 5461 if (register_is_null(reg) && type_may_be_null(arg_type)) 5462 /* A NULL register has a SCALAR_VALUE type, so skip 5463 * type checking. 5464 */ 5465 goto skip_type_check; 5466 5467 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5468 if (err) 5469 return err; 5470 5471 err = check_func_arg_reg_off(env, reg, regno, arg_type, is_release_function(meta->func_id)); 5472 if (err) 5473 return err; 5474 5475 skip_type_check: 5476 /* check_func_arg_reg_off relies on only one referenced register being 5477 * allowed for BPF helpers. 5478 */ 5479 if (reg->ref_obj_id) { 5480 if (meta->ref_obj_id) { 5481 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5482 regno, reg->ref_obj_id, 5483 meta->ref_obj_id); 5484 return -EFAULT; 5485 } 5486 meta->ref_obj_id = reg->ref_obj_id; 5487 } 5488 5489 if (arg_type == ARG_CONST_MAP_PTR) { 5490 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5491 if (meta->map_ptr) { 5492 /* Use map_uid (which is unique id of inner map) to reject: 5493 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5494 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5495 * if (inner_map1 && inner_map2) { 5496 * timer = bpf_map_lookup_elem(inner_map1); 5497 * if (timer) 5498 * // mismatch would have been allowed 5499 * bpf_timer_init(timer, inner_map2); 5500 * } 5501 * 5502 * Comparing map_ptr is enough to distinguish normal and outer maps. 5503 */ 5504 if (meta->map_ptr != reg->map_ptr || 5505 meta->map_uid != reg->map_uid) { 5506 verbose(env, 5507 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5508 meta->map_uid, reg->map_uid); 5509 return -EINVAL; 5510 } 5511 } 5512 meta->map_ptr = reg->map_ptr; 5513 meta->map_uid = reg->map_uid; 5514 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5515 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5516 * check that [key, key + map->key_size) are within 5517 * stack limits and initialized 5518 */ 5519 if (!meta->map_ptr) { 5520 /* in function declaration map_ptr must come before 5521 * map_key, so that it's verified and known before 5522 * we have to check map_key here. Otherwise it means 5523 * that kernel subsystem misconfigured verifier 5524 */ 5525 verbose(env, "invalid map_ptr to access map->key\n"); 5526 return -EACCES; 5527 } 5528 err = check_helper_mem_access(env, regno, 5529 meta->map_ptr->key_size, false, 5530 NULL); 5531 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5532 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5533 if (type_may_be_null(arg_type) && register_is_null(reg)) 5534 return 0; 5535 5536 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5537 * check [value, value + map->value_size) validity 5538 */ 5539 if (!meta->map_ptr) { 5540 /* kernel subsystem misconfigured verifier */ 5541 verbose(env, "invalid map_ptr to access map->value\n"); 5542 return -EACCES; 5543 } 5544 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5545 err = check_helper_mem_access(env, regno, 5546 meta->map_ptr->value_size, false, 5547 meta); 5548 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5549 if (!reg->btf_id) { 5550 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5551 return -EACCES; 5552 } 5553 meta->ret_btf = reg->btf; 5554 meta->ret_btf_id = reg->btf_id; 5555 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5556 if (meta->func_id == BPF_FUNC_spin_lock) { 5557 if (process_spin_lock(env, regno, true)) 5558 return -EACCES; 5559 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5560 if (process_spin_lock(env, regno, false)) 5561 return -EACCES; 5562 } else { 5563 verbose(env, "verifier internal error\n"); 5564 return -EFAULT; 5565 } 5566 } else if (arg_type == ARG_PTR_TO_TIMER) { 5567 if (process_timer_func(env, regno, meta)) 5568 return -EACCES; 5569 } else if (arg_type == ARG_PTR_TO_FUNC) { 5570 meta->subprogno = reg->subprogno; 5571 } else if (arg_type_is_mem_ptr(arg_type)) { 5572 /* The access to this pointer is only checked when we hit the 5573 * next is_mem_size argument below. 5574 */ 5575 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5576 } else if (arg_type_is_mem_size(arg_type)) { 5577 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5578 5579 err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta); 5580 } else if (arg_type_is_alloc_size(arg_type)) { 5581 if (!tnum_is_const(reg->var_off)) { 5582 verbose(env, "R%d is not a known constant'\n", 5583 regno); 5584 return -EACCES; 5585 } 5586 meta->mem_size = reg->var_off.value; 5587 } else if (arg_type_is_int_ptr(arg_type)) { 5588 int size = int_ptr_type_to_size(arg_type); 5589 5590 err = check_helper_mem_access(env, regno, size, false, meta); 5591 if (err) 5592 return err; 5593 err = check_ptr_alignment(env, reg, 0, size, true); 5594 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5595 struct bpf_map *map = reg->map_ptr; 5596 int map_off; 5597 u64 map_addr; 5598 char *str_ptr; 5599 5600 if (!bpf_map_is_rdonly(map)) { 5601 verbose(env, "R%d does not point to a readonly map'\n", regno); 5602 return -EACCES; 5603 } 5604 5605 if (!tnum_is_const(reg->var_off)) { 5606 verbose(env, "R%d is not a constant address'\n", regno); 5607 return -EACCES; 5608 } 5609 5610 if (!map->ops->map_direct_value_addr) { 5611 verbose(env, "no direct value access support for this map type\n"); 5612 return -EACCES; 5613 } 5614 5615 err = check_map_access(env, regno, reg->off, 5616 map->value_size - reg->off, false); 5617 if (err) 5618 return err; 5619 5620 map_off = reg->off + reg->var_off.value; 5621 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5622 if (err) { 5623 verbose(env, "direct value access on string failed\n"); 5624 return err; 5625 } 5626 5627 str_ptr = (char *)(long)(map_addr); 5628 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5629 verbose(env, "string is not zero-terminated\n"); 5630 return -EINVAL; 5631 } 5632 } 5633 5634 return err; 5635 } 5636 5637 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5638 { 5639 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5640 enum bpf_prog_type type = resolve_prog_type(env->prog); 5641 5642 if (func_id != BPF_FUNC_map_update_elem) 5643 return false; 5644 5645 /* It's not possible to get access to a locked struct sock in these 5646 * contexts, so updating is safe. 5647 */ 5648 switch (type) { 5649 case BPF_PROG_TYPE_TRACING: 5650 if (eatype == BPF_TRACE_ITER) 5651 return true; 5652 break; 5653 case BPF_PROG_TYPE_SOCKET_FILTER: 5654 case BPF_PROG_TYPE_SCHED_CLS: 5655 case BPF_PROG_TYPE_SCHED_ACT: 5656 case BPF_PROG_TYPE_XDP: 5657 case BPF_PROG_TYPE_SK_REUSEPORT: 5658 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5659 case BPF_PROG_TYPE_SK_LOOKUP: 5660 return true; 5661 default: 5662 break; 5663 } 5664 5665 verbose(env, "cannot update sockmap in this context\n"); 5666 return false; 5667 } 5668 5669 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5670 { 5671 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5672 } 5673 5674 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5675 struct bpf_map *map, int func_id) 5676 { 5677 if (!map) 5678 return 0; 5679 5680 /* We need a two way check, first is from map perspective ... */ 5681 switch (map->map_type) { 5682 case BPF_MAP_TYPE_PROG_ARRAY: 5683 if (func_id != BPF_FUNC_tail_call) 5684 goto error; 5685 break; 5686 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5687 if (func_id != BPF_FUNC_perf_event_read && 5688 func_id != BPF_FUNC_perf_event_output && 5689 func_id != BPF_FUNC_skb_output && 5690 func_id != BPF_FUNC_perf_event_read_value && 5691 func_id != BPF_FUNC_xdp_output) 5692 goto error; 5693 break; 5694 case BPF_MAP_TYPE_RINGBUF: 5695 if (func_id != BPF_FUNC_ringbuf_output && 5696 func_id != BPF_FUNC_ringbuf_reserve && 5697 func_id != BPF_FUNC_ringbuf_query) 5698 goto error; 5699 break; 5700 case BPF_MAP_TYPE_STACK_TRACE: 5701 if (func_id != BPF_FUNC_get_stackid) 5702 goto error; 5703 break; 5704 case BPF_MAP_TYPE_CGROUP_ARRAY: 5705 if (func_id != BPF_FUNC_skb_under_cgroup && 5706 func_id != BPF_FUNC_current_task_under_cgroup) 5707 goto error; 5708 break; 5709 case BPF_MAP_TYPE_CGROUP_STORAGE: 5710 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5711 if (func_id != BPF_FUNC_get_local_storage) 5712 goto error; 5713 break; 5714 case BPF_MAP_TYPE_DEVMAP: 5715 case BPF_MAP_TYPE_DEVMAP_HASH: 5716 if (func_id != BPF_FUNC_redirect_map && 5717 func_id != BPF_FUNC_map_lookup_elem) 5718 goto error; 5719 break; 5720 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5721 * appear. 5722 */ 5723 case BPF_MAP_TYPE_CPUMAP: 5724 if (func_id != BPF_FUNC_redirect_map) 5725 goto error; 5726 break; 5727 case BPF_MAP_TYPE_XSKMAP: 5728 if (func_id != BPF_FUNC_redirect_map && 5729 func_id != BPF_FUNC_map_lookup_elem) 5730 goto error; 5731 break; 5732 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5733 case BPF_MAP_TYPE_HASH_OF_MAPS: 5734 if (func_id != BPF_FUNC_map_lookup_elem) 5735 goto error; 5736 break; 5737 case BPF_MAP_TYPE_SOCKMAP: 5738 if (func_id != BPF_FUNC_sk_redirect_map && 5739 func_id != BPF_FUNC_sock_map_update && 5740 func_id != BPF_FUNC_map_delete_elem && 5741 func_id != BPF_FUNC_msg_redirect_map && 5742 func_id != BPF_FUNC_sk_select_reuseport && 5743 func_id != BPF_FUNC_map_lookup_elem && 5744 !may_update_sockmap(env, func_id)) 5745 goto error; 5746 break; 5747 case BPF_MAP_TYPE_SOCKHASH: 5748 if (func_id != BPF_FUNC_sk_redirect_hash && 5749 func_id != BPF_FUNC_sock_hash_update && 5750 func_id != BPF_FUNC_map_delete_elem && 5751 func_id != BPF_FUNC_msg_redirect_hash && 5752 func_id != BPF_FUNC_sk_select_reuseport && 5753 func_id != BPF_FUNC_map_lookup_elem && 5754 !may_update_sockmap(env, func_id)) 5755 goto error; 5756 break; 5757 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5758 if (func_id != BPF_FUNC_sk_select_reuseport) 5759 goto error; 5760 break; 5761 case BPF_MAP_TYPE_QUEUE: 5762 case BPF_MAP_TYPE_STACK: 5763 if (func_id != BPF_FUNC_map_peek_elem && 5764 func_id != BPF_FUNC_map_pop_elem && 5765 func_id != BPF_FUNC_map_push_elem) 5766 goto error; 5767 break; 5768 case BPF_MAP_TYPE_SK_STORAGE: 5769 if (func_id != BPF_FUNC_sk_storage_get && 5770 func_id != BPF_FUNC_sk_storage_delete) 5771 goto error; 5772 break; 5773 case BPF_MAP_TYPE_INODE_STORAGE: 5774 if (func_id != BPF_FUNC_inode_storage_get && 5775 func_id != BPF_FUNC_inode_storage_delete) 5776 goto error; 5777 break; 5778 case BPF_MAP_TYPE_TASK_STORAGE: 5779 if (func_id != BPF_FUNC_task_storage_get && 5780 func_id != BPF_FUNC_task_storage_delete) 5781 goto error; 5782 break; 5783 case BPF_MAP_TYPE_BLOOM_FILTER: 5784 if (func_id != BPF_FUNC_map_peek_elem && 5785 func_id != BPF_FUNC_map_push_elem) 5786 goto error; 5787 break; 5788 default: 5789 break; 5790 } 5791 5792 /* ... and second from the function itself. */ 5793 switch (func_id) { 5794 case BPF_FUNC_tail_call: 5795 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5796 goto error; 5797 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5798 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5799 return -EINVAL; 5800 } 5801 break; 5802 case BPF_FUNC_perf_event_read: 5803 case BPF_FUNC_perf_event_output: 5804 case BPF_FUNC_perf_event_read_value: 5805 case BPF_FUNC_skb_output: 5806 case BPF_FUNC_xdp_output: 5807 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5808 goto error; 5809 break; 5810 case BPF_FUNC_ringbuf_output: 5811 case BPF_FUNC_ringbuf_reserve: 5812 case BPF_FUNC_ringbuf_query: 5813 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5814 goto error; 5815 break; 5816 case BPF_FUNC_get_stackid: 5817 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5818 goto error; 5819 break; 5820 case BPF_FUNC_current_task_under_cgroup: 5821 case BPF_FUNC_skb_under_cgroup: 5822 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5823 goto error; 5824 break; 5825 case BPF_FUNC_redirect_map: 5826 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5827 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5828 map->map_type != BPF_MAP_TYPE_CPUMAP && 5829 map->map_type != BPF_MAP_TYPE_XSKMAP) 5830 goto error; 5831 break; 5832 case BPF_FUNC_sk_redirect_map: 5833 case BPF_FUNC_msg_redirect_map: 5834 case BPF_FUNC_sock_map_update: 5835 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5836 goto error; 5837 break; 5838 case BPF_FUNC_sk_redirect_hash: 5839 case BPF_FUNC_msg_redirect_hash: 5840 case BPF_FUNC_sock_hash_update: 5841 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5842 goto error; 5843 break; 5844 case BPF_FUNC_get_local_storage: 5845 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5846 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5847 goto error; 5848 break; 5849 case BPF_FUNC_sk_select_reuseport: 5850 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5851 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5852 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5853 goto error; 5854 break; 5855 case BPF_FUNC_map_pop_elem: 5856 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5857 map->map_type != BPF_MAP_TYPE_STACK) 5858 goto error; 5859 break; 5860 case BPF_FUNC_map_peek_elem: 5861 case BPF_FUNC_map_push_elem: 5862 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5863 map->map_type != BPF_MAP_TYPE_STACK && 5864 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5865 goto error; 5866 break; 5867 case BPF_FUNC_sk_storage_get: 5868 case BPF_FUNC_sk_storage_delete: 5869 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5870 goto error; 5871 break; 5872 case BPF_FUNC_inode_storage_get: 5873 case BPF_FUNC_inode_storage_delete: 5874 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5875 goto error; 5876 break; 5877 case BPF_FUNC_task_storage_get: 5878 case BPF_FUNC_task_storage_delete: 5879 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5880 goto error; 5881 break; 5882 default: 5883 break; 5884 } 5885 5886 return 0; 5887 error: 5888 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5889 map->map_type, func_id_name(func_id), func_id); 5890 return -EINVAL; 5891 } 5892 5893 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5894 { 5895 int count = 0; 5896 5897 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5898 count++; 5899 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5900 count++; 5901 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5902 count++; 5903 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5904 count++; 5905 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5906 count++; 5907 5908 /* We only support one arg being in raw mode at the moment, 5909 * which is sufficient for the helper functions we have 5910 * right now. 5911 */ 5912 return count <= 1; 5913 } 5914 5915 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5916 enum bpf_arg_type arg_next) 5917 { 5918 return (arg_type_is_mem_ptr(arg_curr) && 5919 !arg_type_is_mem_size(arg_next)) || 5920 (!arg_type_is_mem_ptr(arg_curr) && 5921 arg_type_is_mem_size(arg_next)); 5922 } 5923 5924 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5925 { 5926 /* bpf_xxx(..., buf, len) call will access 'len' 5927 * bytes from memory 'buf'. Both arg types need 5928 * to be paired, so make sure there's no buggy 5929 * helper function specification. 5930 */ 5931 if (arg_type_is_mem_size(fn->arg1_type) || 5932 arg_type_is_mem_ptr(fn->arg5_type) || 5933 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5934 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5935 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5936 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5937 return false; 5938 5939 return true; 5940 } 5941 5942 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5943 { 5944 int count = 0; 5945 5946 if (arg_type_may_be_refcounted(fn->arg1_type)) 5947 count++; 5948 if (arg_type_may_be_refcounted(fn->arg2_type)) 5949 count++; 5950 if (arg_type_may_be_refcounted(fn->arg3_type)) 5951 count++; 5952 if (arg_type_may_be_refcounted(fn->arg4_type)) 5953 count++; 5954 if (arg_type_may_be_refcounted(fn->arg5_type)) 5955 count++; 5956 5957 /* A reference acquiring function cannot acquire 5958 * another refcounted ptr. 5959 */ 5960 if (may_be_acquire_function(func_id) && count) 5961 return false; 5962 5963 /* We only support one arg being unreferenced at the moment, 5964 * which is sufficient for the helper functions we have right now. 5965 */ 5966 return count <= 1; 5967 } 5968 5969 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5970 { 5971 int i; 5972 5973 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5974 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5975 return false; 5976 5977 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5978 return false; 5979 } 5980 5981 return true; 5982 } 5983 5984 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5985 { 5986 return check_raw_mode_ok(fn) && 5987 check_arg_pair_ok(fn) && 5988 check_btf_id_ok(fn) && 5989 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5990 } 5991 5992 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5993 * are now invalid, so turn them into unknown SCALAR_VALUE. 5994 */ 5995 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5996 struct bpf_func_state *state) 5997 { 5998 struct bpf_reg_state *regs = state->regs, *reg; 5999 int i; 6000 6001 for (i = 0; i < MAX_BPF_REG; i++) 6002 if (reg_is_pkt_pointer_any(®s[i])) 6003 mark_reg_unknown(env, regs, i); 6004 6005 bpf_for_each_spilled_reg(i, state, reg) { 6006 if (!reg) 6007 continue; 6008 if (reg_is_pkt_pointer_any(reg)) 6009 __mark_reg_unknown(env, reg); 6010 } 6011 } 6012 6013 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6014 { 6015 struct bpf_verifier_state *vstate = env->cur_state; 6016 int i; 6017 6018 for (i = 0; i <= vstate->curframe; i++) 6019 __clear_all_pkt_pointers(env, vstate->frame[i]); 6020 } 6021 6022 enum { 6023 AT_PKT_END = -1, 6024 BEYOND_PKT_END = -2, 6025 }; 6026 6027 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6028 { 6029 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6030 struct bpf_reg_state *reg = &state->regs[regn]; 6031 6032 if (reg->type != PTR_TO_PACKET) 6033 /* PTR_TO_PACKET_META is not supported yet */ 6034 return; 6035 6036 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6037 * How far beyond pkt_end it goes is unknown. 6038 * if (!range_open) it's the case of pkt >= pkt_end 6039 * if (range_open) it's the case of pkt > pkt_end 6040 * hence this pointer is at least 1 byte bigger than pkt_end 6041 */ 6042 if (range_open) 6043 reg->range = BEYOND_PKT_END; 6044 else 6045 reg->range = AT_PKT_END; 6046 } 6047 6048 static void release_reg_references(struct bpf_verifier_env *env, 6049 struct bpf_func_state *state, 6050 int ref_obj_id) 6051 { 6052 struct bpf_reg_state *regs = state->regs, *reg; 6053 int i; 6054 6055 for (i = 0; i < MAX_BPF_REG; i++) 6056 if (regs[i].ref_obj_id == ref_obj_id) 6057 mark_reg_unknown(env, regs, i); 6058 6059 bpf_for_each_spilled_reg(i, state, reg) { 6060 if (!reg) 6061 continue; 6062 if (reg->ref_obj_id == ref_obj_id) 6063 __mark_reg_unknown(env, reg); 6064 } 6065 } 6066 6067 /* The pointer with the specified id has released its reference to kernel 6068 * resources. Identify all copies of the same pointer and clear the reference. 6069 */ 6070 static int release_reference(struct bpf_verifier_env *env, 6071 int ref_obj_id) 6072 { 6073 struct bpf_verifier_state *vstate = env->cur_state; 6074 int err; 6075 int i; 6076 6077 err = release_reference_state(cur_func(env), ref_obj_id); 6078 if (err) 6079 return err; 6080 6081 for (i = 0; i <= vstate->curframe; i++) 6082 release_reg_references(env, vstate->frame[i], ref_obj_id); 6083 6084 return 0; 6085 } 6086 6087 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6088 struct bpf_reg_state *regs) 6089 { 6090 int i; 6091 6092 /* after the call registers r0 - r5 were scratched */ 6093 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6094 mark_reg_not_init(env, regs, caller_saved[i]); 6095 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6096 } 6097 } 6098 6099 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6100 struct bpf_func_state *caller, 6101 struct bpf_func_state *callee, 6102 int insn_idx); 6103 6104 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6105 int *insn_idx, int subprog, 6106 set_callee_state_fn set_callee_state_cb) 6107 { 6108 struct bpf_verifier_state *state = env->cur_state; 6109 struct bpf_func_info_aux *func_info_aux; 6110 struct bpf_func_state *caller, *callee; 6111 int err; 6112 bool is_global = false; 6113 6114 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6115 verbose(env, "the call stack of %d frames is too deep\n", 6116 state->curframe + 2); 6117 return -E2BIG; 6118 } 6119 6120 caller = state->frame[state->curframe]; 6121 if (state->frame[state->curframe + 1]) { 6122 verbose(env, "verifier bug. Frame %d already allocated\n", 6123 state->curframe + 1); 6124 return -EFAULT; 6125 } 6126 6127 func_info_aux = env->prog->aux->func_info_aux; 6128 if (func_info_aux) 6129 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6130 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6131 if (err == -EFAULT) 6132 return err; 6133 if (is_global) { 6134 if (err) { 6135 verbose(env, "Caller passes invalid args into func#%d\n", 6136 subprog); 6137 return err; 6138 } else { 6139 if (env->log.level & BPF_LOG_LEVEL) 6140 verbose(env, 6141 "Func#%d is global and valid. Skipping.\n", 6142 subprog); 6143 clear_caller_saved_regs(env, caller->regs); 6144 6145 /* All global functions return a 64-bit SCALAR_VALUE */ 6146 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6147 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6148 6149 /* continue with next insn after call */ 6150 return 0; 6151 } 6152 } 6153 6154 if (insn->code == (BPF_JMP | BPF_CALL) && 6155 insn->src_reg == 0 && 6156 insn->imm == BPF_FUNC_timer_set_callback) { 6157 struct bpf_verifier_state *async_cb; 6158 6159 /* there is no real recursion here. timer callbacks are async */ 6160 env->subprog_info[subprog].is_async_cb = true; 6161 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6162 *insn_idx, subprog); 6163 if (!async_cb) 6164 return -EFAULT; 6165 callee = async_cb->frame[0]; 6166 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6167 6168 /* Convert bpf_timer_set_callback() args into timer callback args */ 6169 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6170 if (err) 6171 return err; 6172 6173 clear_caller_saved_regs(env, caller->regs); 6174 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6175 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6176 /* continue with next insn after call */ 6177 return 0; 6178 } 6179 6180 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6181 if (!callee) 6182 return -ENOMEM; 6183 state->frame[state->curframe + 1] = callee; 6184 6185 /* callee cannot access r0, r6 - r9 for reading and has to write 6186 * into its own stack before reading from it. 6187 * callee can read/write into caller's stack 6188 */ 6189 init_func_state(env, callee, 6190 /* remember the callsite, it will be used by bpf_exit */ 6191 *insn_idx /* callsite */, 6192 state->curframe + 1 /* frameno within this callchain */, 6193 subprog /* subprog number within this prog */); 6194 6195 /* Transfer references to the callee */ 6196 err = copy_reference_state(callee, caller); 6197 if (err) 6198 return err; 6199 6200 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6201 if (err) 6202 return err; 6203 6204 clear_caller_saved_regs(env, caller->regs); 6205 6206 /* only increment it after check_reg_arg() finished */ 6207 state->curframe++; 6208 6209 /* and go analyze first insn of the callee */ 6210 *insn_idx = env->subprog_info[subprog].start - 1; 6211 6212 if (env->log.level & BPF_LOG_LEVEL) { 6213 verbose(env, "caller:\n"); 6214 print_verifier_state(env, caller, true); 6215 verbose(env, "callee:\n"); 6216 print_verifier_state(env, callee, true); 6217 } 6218 return 0; 6219 } 6220 6221 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6222 struct bpf_func_state *caller, 6223 struct bpf_func_state *callee) 6224 { 6225 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6226 * void *callback_ctx, u64 flags); 6227 * callback_fn(struct bpf_map *map, void *key, void *value, 6228 * void *callback_ctx); 6229 */ 6230 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6231 6232 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6233 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6234 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6235 6236 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6237 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6238 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6239 6240 /* pointer to stack or null */ 6241 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6242 6243 /* unused */ 6244 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6245 return 0; 6246 } 6247 6248 static int set_callee_state(struct bpf_verifier_env *env, 6249 struct bpf_func_state *caller, 6250 struct bpf_func_state *callee, int insn_idx) 6251 { 6252 int i; 6253 6254 /* copy r1 - r5 args that callee can access. The copy includes parent 6255 * pointers, which connects us up to the liveness chain 6256 */ 6257 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6258 callee->regs[i] = caller->regs[i]; 6259 return 0; 6260 } 6261 6262 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6263 int *insn_idx) 6264 { 6265 int subprog, target_insn; 6266 6267 target_insn = *insn_idx + insn->imm + 1; 6268 subprog = find_subprog(env, target_insn); 6269 if (subprog < 0) { 6270 verbose(env, "verifier bug. No program starts at insn %d\n", 6271 target_insn); 6272 return -EFAULT; 6273 } 6274 6275 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6276 } 6277 6278 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6279 struct bpf_func_state *caller, 6280 struct bpf_func_state *callee, 6281 int insn_idx) 6282 { 6283 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6284 struct bpf_map *map; 6285 int err; 6286 6287 if (bpf_map_ptr_poisoned(insn_aux)) { 6288 verbose(env, "tail_call abusing map_ptr\n"); 6289 return -EINVAL; 6290 } 6291 6292 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6293 if (!map->ops->map_set_for_each_callback_args || 6294 !map->ops->map_for_each_callback) { 6295 verbose(env, "callback function not allowed for map\n"); 6296 return -ENOTSUPP; 6297 } 6298 6299 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6300 if (err) 6301 return err; 6302 6303 callee->in_callback_fn = true; 6304 return 0; 6305 } 6306 6307 static int set_loop_callback_state(struct bpf_verifier_env *env, 6308 struct bpf_func_state *caller, 6309 struct bpf_func_state *callee, 6310 int insn_idx) 6311 { 6312 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6313 * u64 flags); 6314 * callback_fn(u32 index, void *callback_ctx); 6315 */ 6316 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6317 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6318 6319 /* unused */ 6320 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6321 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6322 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6323 6324 callee->in_callback_fn = true; 6325 return 0; 6326 } 6327 6328 static int set_timer_callback_state(struct bpf_verifier_env *env, 6329 struct bpf_func_state *caller, 6330 struct bpf_func_state *callee, 6331 int insn_idx) 6332 { 6333 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6334 6335 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6336 * callback_fn(struct bpf_map *map, void *key, void *value); 6337 */ 6338 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6339 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6340 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6341 6342 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6343 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6344 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6345 6346 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6347 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6348 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6349 6350 /* unused */ 6351 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6352 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6353 callee->in_async_callback_fn = true; 6354 return 0; 6355 } 6356 6357 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6358 struct bpf_func_state *caller, 6359 struct bpf_func_state *callee, 6360 int insn_idx) 6361 { 6362 /* bpf_find_vma(struct task_struct *task, u64 addr, 6363 * void *callback_fn, void *callback_ctx, u64 flags) 6364 * (callback_fn)(struct task_struct *task, 6365 * struct vm_area_struct *vma, void *callback_ctx); 6366 */ 6367 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6368 6369 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6370 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6371 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6372 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6373 6374 /* pointer to stack or null */ 6375 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6376 6377 /* unused */ 6378 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6379 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6380 callee->in_callback_fn = true; 6381 return 0; 6382 } 6383 6384 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6385 { 6386 struct bpf_verifier_state *state = env->cur_state; 6387 struct bpf_func_state *caller, *callee; 6388 struct bpf_reg_state *r0; 6389 int err; 6390 6391 callee = state->frame[state->curframe]; 6392 r0 = &callee->regs[BPF_REG_0]; 6393 if (r0->type == PTR_TO_STACK) { 6394 /* technically it's ok to return caller's stack pointer 6395 * (or caller's caller's pointer) back to the caller, 6396 * since these pointers are valid. Only current stack 6397 * pointer will be invalid as soon as function exits, 6398 * but let's be conservative 6399 */ 6400 verbose(env, "cannot return stack pointer to the caller\n"); 6401 return -EINVAL; 6402 } 6403 6404 state->curframe--; 6405 caller = state->frame[state->curframe]; 6406 if (callee->in_callback_fn) { 6407 /* enforce R0 return value range [0, 1]. */ 6408 struct tnum range = tnum_range(0, 1); 6409 6410 if (r0->type != SCALAR_VALUE) { 6411 verbose(env, "R0 not a scalar value\n"); 6412 return -EACCES; 6413 } 6414 if (!tnum_in(range, r0->var_off)) { 6415 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6416 return -EINVAL; 6417 } 6418 } else { 6419 /* return to the caller whatever r0 had in the callee */ 6420 caller->regs[BPF_REG_0] = *r0; 6421 } 6422 6423 /* Transfer references to the caller */ 6424 err = copy_reference_state(caller, callee); 6425 if (err) 6426 return err; 6427 6428 *insn_idx = callee->callsite + 1; 6429 if (env->log.level & BPF_LOG_LEVEL) { 6430 verbose(env, "returning from callee:\n"); 6431 print_verifier_state(env, callee, true); 6432 verbose(env, "to caller at %d:\n", *insn_idx); 6433 print_verifier_state(env, caller, true); 6434 } 6435 /* clear everything in the callee */ 6436 free_func_state(callee); 6437 state->frame[state->curframe + 1] = NULL; 6438 return 0; 6439 } 6440 6441 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6442 int func_id, 6443 struct bpf_call_arg_meta *meta) 6444 { 6445 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6446 6447 if (ret_type != RET_INTEGER || 6448 (func_id != BPF_FUNC_get_stack && 6449 func_id != BPF_FUNC_get_task_stack && 6450 func_id != BPF_FUNC_probe_read_str && 6451 func_id != BPF_FUNC_probe_read_kernel_str && 6452 func_id != BPF_FUNC_probe_read_user_str)) 6453 return; 6454 6455 ret_reg->smax_value = meta->msize_max_value; 6456 ret_reg->s32_max_value = meta->msize_max_value; 6457 ret_reg->smin_value = -MAX_ERRNO; 6458 ret_reg->s32_min_value = -MAX_ERRNO; 6459 __reg_deduce_bounds(ret_reg); 6460 __reg_bound_offset(ret_reg); 6461 __update_reg_bounds(ret_reg); 6462 } 6463 6464 static int 6465 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6466 int func_id, int insn_idx) 6467 { 6468 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6469 struct bpf_map *map = meta->map_ptr; 6470 6471 if (func_id != BPF_FUNC_tail_call && 6472 func_id != BPF_FUNC_map_lookup_elem && 6473 func_id != BPF_FUNC_map_update_elem && 6474 func_id != BPF_FUNC_map_delete_elem && 6475 func_id != BPF_FUNC_map_push_elem && 6476 func_id != BPF_FUNC_map_pop_elem && 6477 func_id != BPF_FUNC_map_peek_elem && 6478 func_id != BPF_FUNC_for_each_map_elem && 6479 func_id != BPF_FUNC_redirect_map) 6480 return 0; 6481 6482 if (map == NULL) { 6483 verbose(env, "kernel subsystem misconfigured verifier\n"); 6484 return -EINVAL; 6485 } 6486 6487 /* In case of read-only, some additional restrictions 6488 * need to be applied in order to prevent altering the 6489 * state of the map from program side. 6490 */ 6491 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6492 (func_id == BPF_FUNC_map_delete_elem || 6493 func_id == BPF_FUNC_map_update_elem || 6494 func_id == BPF_FUNC_map_push_elem || 6495 func_id == BPF_FUNC_map_pop_elem)) { 6496 verbose(env, "write into map forbidden\n"); 6497 return -EACCES; 6498 } 6499 6500 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6501 bpf_map_ptr_store(aux, meta->map_ptr, 6502 !meta->map_ptr->bypass_spec_v1); 6503 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6504 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6505 !meta->map_ptr->bypass_spec_v1); 6506 return 0; 6507 } 6508 6509 static int 6510 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6511 int func_id, int insn_idx) 6512 { 6513 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6514 struct bpf_reg_state *regs = cur_regs(env), *reg; 6515 struct bpf_map *map = meta->map_ptr; 6516 struct tnum range; 6517 u64 val; 6518 int err; 6519 6520 if (func_id != BPF_FUNC_tail_call) 6521 return 0; 6522 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6523 verbose(env, "kernel subsystem misconfigured verifier\n"); 6524 return -EINVAL; 6525 } 6526 6527 range = tnum_range(0, map->max_entries - 1); 6528 reg = ®s[BPF_REG_3]; 6529 6530 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6531 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6532 return 0; 6533 } 6534 6535 err = mark_chain_precision(env, BPF_REG_3); 6536 if (err) 6537 return err; 6538 6539 val = reg->var_off.value; 6540 if (bpf_map_key_unseen(aux)) 6541 bpf_map_key_store(aux, val); 6542 else if (!bpf_map_key_poisoned(aux) && 6543 bpf_map_key_immediate(aux) != val) 6544 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6545 return 0; 6546 } 6547 6548 static int check_reference_leak(struct bpf_verifier_env *env) 6549 { 6550 struct bpf_func_state *state = cur_func(env); 6551 int i; 6552 6553 for (i = 0; i < state->acquired_refs; i++) { 6554 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6555 state->refs[i].id, state->refs[i].insn_idx); 6556 } 6557 return state->acquired_refs ? -EINVAL : 0; 6558 } 6559 6560 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6561 struct bpf_reg_state *regs) 6562 { 6563 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6564 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6565 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6566 int err, fmt_map_off, num_args; 6567 u64 fmt_addr; 6568 char *fmt; 6569 6570 /* data must be an array of u64 */ 6571 if (data_len_reg->var_off.value % 8) 6572 return -EINVAL; 6573 num_args = data_len_reg->var_off.value / 8; 6574 6575 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6576 * and map_direct_value_addr is set. 6577 */ 6578 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6579 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6580 fmt_map_off); 6581 if (err) { 6582 verbose(env, "verifier bug\n"); 6583 return -EFAULT; 6584 } 6585 fmt = (char *)(long)fmt_addr + fmt_map_off; 6586 6587 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6588 * can focus on validating the format specifiers. 6589 */ 6590 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6591 if (err < 0) 6592 verbose(env, "Invalid format string\n"); 6593 6594 return err; 6595 } 6596 6597 static int check_get_func_ip(struct bpf_verifier_env *env) 6598 { 6599 enum bpf_prog_type type = resolve_prog_type(env->prog); 6600 int func_id = BPF_FUNC_get_func_ip; 6601 6602 if (type == BPF_PROG_TYPE_TRACING) { 6603 if (!bpf_prog_has_trampoline(env->prog)) { 6604 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6605 func_id_name(func_id), func_id); 6606 return -ENOTSUPP; 6607 } 6608 return 0; 6609 } else if (type == BPF_PROG_TYPE_KPROBE) { 6610 return 0; 6611 } 6612 6613 verbose(env, "func %s#%d not supported for program type %d\n", 6614 func_id_name(func_id), func_id, type); 6615 return -ENOTSUPP; 6616 } 6617 6618 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6619 int *insn_idx_p) 6620 { 6621 const struct bpf_func_proto *fn = NULL; 6622 enum bpf_return_type ret_type; 6623 enum bpf_type_flag ret_flag; 6624 struct bpf_reg_state *regs; 6625 struct bpf_call_arg_meta meta; 6626 int insn_idx = *insn_idx_p; 6627 bool changes_data; 6628 int i, err, func_id; 6629 6630 /* find function prototype */ 6631 func_id = insn->imm; 6632 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6633 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6634 func_id); 6635 return -EINVAL; 6636 } 6637 6638 if (env->ops->get_func_proto) 6639 fn = env->ops->get_func_proto(func_id, env->prog); 6640 if (!fn) { 6641 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6642 func_id); 6643 return -EINVAL; 6644 } 6645 6646 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6647 if (!env->prog->gpl_compatible && fn->gpl_only) { 6648 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6649 return -EINVAL; 6650 } 6651 6652 if (fn->allowed && !fn->allowed(env->prog)) { 6653 verbose(env, "helper call is not allowed in probe\n"); 6654 return -EINVAL; 6655 } 6656 6657 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6658 changes_data = bpf_helper_changes_pkt_data(fn->func); 6659 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6660 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6661 func_id_name(func_id), func_id); 6662 return -EINVAL; 6663 } 6664 6665 memset(&meta, 0, sizeof(meta)); 6666 meta.pkt_access = fn->pkt_access; 6667 6668 err = check_func_proto(fn, func_id); 6669 if (err) { 6670 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6671 func_id_name(func_id), func_id); 6672 return err; 6673 } 6674 6675 meta.func_id = func_id; 6676 /* check args */ 6677 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6678 err = check_func_arg(env, i, &meta, fn); 6679 if (err) 6680 return err; 6681 } 6682 6683 err = record_func_map(env, &meta, func_id, insn_idx); 6684 if (err) 6685 return err; 6686 6687 err = record_func_key(env, &meta, func_id, insn_idx); 6688 if (err) 6689 return err; 6690 6691 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6692 * is inferred from register state. 6693 */ 6694 for (i = 0; i < meta.access_size; i++) { 6695 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6696 BPF_WRITE, -1, false); 6697 if (err) 6698 return err; 6699 } 6700 6701 if (is_release_function(func_id)) { 6702 err = release_reference(env, meta.ref_obj_id); 6703 if (err) { 6704 verbose(env, "func %s#%d reference has not been acquired before\n", 6705 func_id_name(func_id), func_id); 6706 return err; 6707 } 6708 } 6709 6710 regs = cur_regs(env); 6711 6712 switch (func_id) { 6713 case BPF_FUNC_tail_call: 6714 err = check_reference_leak(env); 6715 if (err) { 6716 verbose(env, "tail_call would lead to reference leak\n"); 6717 return err; 6718 } 6719 break; 6720 case BPF_FUNC_get_local_storage: 6721 /* check that flags argument in get_local_storage(map, flags) is 0, 6722 * this is required because get_local_storage() can't return an error. 6723 */ 6724 if (!register_is_null(®s[BPF_REG_2])) { 6725 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6726 return -EINVAL; 6727 } 6728 break; 6729 case BPF_FUNC_for_each_map_elem: 6730 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6731 set_map_elem_callback_state); 6732 break; 6733 case BPF_FUNC_timer_set_callback: 6734 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6735 set_timer_callback_state); 6736 break; 6737 case BPF_FUNC_find_vma: 6738 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6739 set_find_vma_callback_state); 6740 break; 6741 case BPF_FUNC_snprintf: 6742 err = check_bpf_snprintf_call(env, regs); 6743 break; 6744 case BPF_FUNC_loop: 6745 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6746 set_loop_callback_state); 6747 break; 6748 } 6749 6750 if (err) 6751 return err; 6752 6753 /* reset caller saved regs */ 6754 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6755 mark_reg_not_init(env, regs, caller_saved[i]); 6756 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6757 } 6758 6759 /* helper call returns 64-bit value. */ 6760 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6761 6762 /* update return register (already marked as written above) */ 6763 ret_type = fn->ret_type; 6764 ret_flag = type_flag(fn->ret_type); 6765 if (ret_type == RET_INTEGER) { 6766 /* sets type to SCALAR_VALUE */ 6767 mark_reg_unknown(env, regs, BPF_REG_0); 6768 } else if (ret_type == RET_VOID) { 6769 regs[BPF_REG_0].type = NOT_INIT; 6770 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 6771 /* There is no offset yet applied, variable or fixed */ 6772 mark_reg_known_zero(env, regs, BPF_REG_0); 6773 /* remember map_ptr, so that check_map_access() 6774 * can check 'value_size' boundary of memory access 6775 * to map element returned from bpf_map_lookup_elem() 6776 */ 6777 if (meta.map_ptr == NULL) { 6778 verbose(env, 6779 "kernel subsystem misconfigured verifier\n"); 6780 return -EINVAL; 6781 } 6782 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6783 regs[BPF_REG_0].map_uid = meta.map_uid; 6784 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 6785 if (!type_may_be_null(ret_type) && 6786 map_value_has_spin_lock(meta.map_ptr)) { 6787 regs[BPF_REG_0].id = ++env->id_gen; 6788 } 6789 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 6790 mark_reg_known_zero(env, regs, BPF_REG_0); 6791 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 6792 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 6793 mark_reg_known_zero(env, regs, BPF_REG_0); 6794 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 6795 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 6796 mark_reg_known_zero(env, regs, BPF_REG_0); 6797 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 6798 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 6799 mark_reg_known_zero(env, regs, BPF_REG_0); 6800 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6801 regs[BPF_REG_0].mem_size = meta.mem_size; 6802 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 6803 const struct btf_type *t; 6804 6805 mark_reg_known_zero(env, regs, BPF_REG_0); 6806 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6807 if (!btf_type_is_struct(t)) { 6808 u32 tsize; 6809 const struct btf_type *ret; 6810 const char *tname; 6811 6812 /* resolve the type size of ksym. */ 6813 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6814 if (IS_ERR(ret)) { 6815 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6816 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6817 tname, PTR_ERR(ret)); 6818 return -EINVAL; 6819 } 6820 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6821 regs[BPF_REG_0].mem_size = tsize; 6822 } else { 6823 /* MEM_RDONLY may be carried from ret_flag, but it 6824 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 6825 * it will confuse the check of PTR_TO_BTF_ID in 6826 * check_mem_access(). 6827 */ 6828 ret_flag &= ~MEM_RDONLY; 6829 6830 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6831 regs[BPF_REG_0].btf = meta.ret_btf; 6832 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6833 } 6834 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 6835 int ret_btf_id; 6836 6837 mark_reg_known_zero(env, regs, BPF_REG_0); 6838 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6839 ret_btf_id = *fn->ret_btf_id; 6840 if (ret_btf_id == 0) { 6841 verbose(env, "invalid return type %u of func %s#%d\n", 6842 base_type(ret_type), func_id_name(func_id), 6843 func_id); 6844 return -EINVAL; 6845 } 6846 /* current BPF helper definitions are only coming from 6847 * built-in code with type IDs from vmlinux BTF 6848 */ 6849 regs[BPF_REG_0].btf = btf_vmlinux; 6850 regs[BPF_REG_0].btf_id = ret_btf_id; 6851 } else { 6852 verbose(env, "unknown return type %u of func %s#%d\n", 6853 base_type(ret_type), func_id_name(func_id), func_id); 6854 return -EINVAL; 6855 } 6856 6857 if (type_may_be_null(regs[BPF_REG_0].type)) 6858 regs[BPF_REG_0].id = ++env->id_gen; 6859 6860 if (is_ptr_cast_function(func_id)) { 6861 /* For release_reference() */ 6862 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6863 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6864 int id = acquire_reference_state(env, insn_idx); 6865 6866 if (id < 0) 6867 return id; 6868 /* For mark_ptr_or_null_reg() */ 6869 regs[BPF_REG_0].id = id; 6870 /* For release_reference() */ 6871 regs[BPF_REG_0].ref_obj_id = id; 6872 } 6873 6874 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6875 6876 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6877 if (err) 6878 return err; 6879 6880 if ((func_id == BPF_FUNC_get_stack || 6881 func_id == BPF_FUNC_get_task_stack) && 6882 !env->prog->has_callchain_buf) { 6883 const char *err_str; 6884 6885 #ifdef CONFIG_PERF_EVENTS 6886 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6887 err_str = "cannot get callchain buffer for func %s#%d\n"; 6888 #else 6889 err = -ENOTSUPP; 6890 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6891 #endif 6892 if (err) { 6893 verbose(env, err_str, func_id_name(func_id), func_id); 6894 return err; 6895 } 6896 6897 env->prog->has_callchain_buf = true; 6898 } 6899 6900 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6901 env->prog->call_get_stack = true; 6902 6903 if (func_id == BPF_FUNC_get_func_ip) { 6904 if (check_get_func_ip(env)) 6905 return -ENOTSUPP; 6906 env->prog->call_get_func_ip = true; 6907 } 6908 6909 if (changes_data) 6910 clear_all_pkt_pointers(env); 6911 return 0; 6912 } 6913 6914 /* mark_btf_func_reg_size() is used when the reg size is determined by 6915 * the BTF func_proto's return value size and argument. 6916 */ 6917 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6918 size_t reg_size) 6919 { 6920 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6921 6922 if (regno == BPF_REG_0) { 6923 /* Function return value */ 6924 reg->live |= REG_LIVE_WRITTEN; 6925 reg->subreg_def = reg_size == sizeof(u64) ? 6926 DEF_NOT_SUBREG : env->insn_idx + 1; 6927 } else { 6928 /* Function argument */ 6929 if (reg_size == sizeof(u64)) { 6930 mark_insn_zext(env, reg); 6931 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6932 } else { 6933 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6934 } 6935 } 6936 } 6937 6938 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6939 int *insn_idx_p) 6940 { 6941 const struct btf_type *t, *func, *func_proto, *ptr_type; 6942 struct bpf_reg_state *regs = cur_regs(env); 6943 const char *func_name, *ptr_type_name; 6944 u32 i, nargs, func_id, ptr_type_id; 6945 int err, insn_idx = *insn_idx_p; 6946 const struct btf_param *args; 6947 struct btf *desc_btf; 6948 bool acq; 6949 6950 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6951 if (!insn->imm) 6952 return 0; 6953 6954 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off); 6955 if (IS_ERR(desc_btf)) 6956 return PTR_ERR(desc_btf); 6957 6958 func_id = insn->imm; 6959 func = btf_type_by_id(desc_btf, func_id); 6960 func_name = btf_name_by_offset(desc_btf, func->name_off); 6961 func_proto = btf_type_by_id(desc_btf, func->type); 6962 6963 if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 6964 BTF_KFUNC_TYPE_CHECK, func_id)) { 6965 verbose(env, "calling kernel function %s is not allowed\n", 6966 func_name); 6967 return -EACCES; 6968 } 6969 6970 acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 6971 BTF_KFUNC_TYPE_ACQUIRE, func_id); 6972 6973 /* Check the arguments */ 6974 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6975 if (err < 0) 6976 return err; 6977 /* In case of release function, we get register number of refcounted 6978 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 6979 */ 6980 if (err) { 6981 err = release_reference(env, regs[err].ref_obj_id); 6982 if (err) { 6983 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 6984 func_name, func_id); 6985 return err; 6986 } 6987 } 6988 6989 for (i = 0; i < CALLER_SAVED_REGS; i++) 6990 mark_reg_not_init(env, regs, caller_saved[i]); 6991 6992 /* Check return type */ 6993 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6994 6995 if (acq && !btf_type_is_ptr(t)) { 6996 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 6997 return -EINVAL; 6998 } 6999 7000 if (btf_type_is_scalar(t)) { 7001 mark_reg_unknown(env, regs, BPF_REG_0); 7002 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7003 } else if (btf_type_is_ptr(t)) { 7004 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7005 &ptr_type_id); 7006 if (!btf_type_is_struct(ptr_type)) { 7007 ptr_type_name = btf_name_by_offset(desc_btf, 7008 ptr_type->name_off); 7009 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7010 func_name, btf_type_str(ptr_type), 7011 ptr_type_name); 7012 return -EINVAL; 7013 } 7014 mark_reg_known_zero(env, regs, BPF_REG_0); 7015 regs[BPF_REG_0].btf = desc_btf; 7016 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7017 regs[BPF_REG_0].btf_id = ptr_type_id; 7018 if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7019 BTF_KFUNC_TYPE_RET_NULL, func_id)) { 7020 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7021 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7022 regs[BPF_REG_0].id = ++env->id_gen; 7023 } 7024 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7025 if (acq) { 7026 int id = acquire_reference_state(env, insn_idx); 7027 7028 if (id < 0) 7029 return id; 7030 regs[BPF_REG_0].id = id; 7031 regs[BPF_REG_0].ref_obj_id = id; 7032 } 7033 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7034 7035 nargs = btf_type_vlen(func_proto); 7036 args = (const struct btf_param *)(func_proto + 1); 7037 for (i = 0; i < nargs; i++) { 7038 u32 regno = i + 1; 7039 7040 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7041 if (btf_type_is_ptr(t)) 7042 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7043 else 7044 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7045 mark_btf_func_reg_size(env, regno, t->size); 7046 } 7047 7048 return 0; 7049 } 7050 7051 static bool signed_add_overflows(s64 a, s64 b) 7052 { 7053 /* Do the add in u64, where overflow is well-defined */ 7054 s64 res = (s64)((u64)a + (u64)b); 7055 7056 if (b < 0) 7057 return res > a; 7058 return res < a; 7059 } 7060 7061 static bool signed_add32_overflows(s32 a, s32 b) 7062 { 7063 /* Do the add in u32, where overflow is well-defined */ 7064 s32 res = (s32)((u32)a + (u32)b); 7065 7066 if (b < 0) 7067 return res > a; 7068 return res < a; 7069 } 7070 7071 static bool signed_sub_overflows(s64 a, s64 b) 7072 { 7073 /* Do the sub in u64, where overflow is well-defined */ 7074 s64 res = (s64)((u64)a - (u64)b); 7075 7076 if (b < 0) 7077 return res < a; 7078 return res > a; 7079 } 7080 7081 static bool signed_sub32_overflows(s32 a, s32 b) 7082 { 7083 /* Do the sub in u32, where overflow is well-defined */ 7084 s32 res = (s32)((u32)a - (u32)b); 7085 7086 if (b < 0) 7087 return res < a; 7088 return res > a; 7089 } 7090 7091 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7092 const struct bpf_reg_state *reg, 7093 enum bpf_reg_type type) 7094 { 7095 bool known = tnum_is_const(reg->var_off); 7096 s64 val = reg->var_off.value; 7097 s64 smin = reg->smin_value; 7098 7099 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7100 verbose(env, "math between %s pointer and %lld is not allowed\n", 7101 reg_type_str(env, type), val); 7102 return false; 7103 } 7104 7105 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7106 verbose(env, "%s pointer offset %d is not allowed\n", 7107 reg_type_str(env, type), reg->off); 7108 return false; 7109 } 7110 7111 if (smin == S64_MIN) { 7112 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7113 reg_type_str(env, type)); 7114 return false; 7115 } 7116 7117 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7118 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7119 smin, reg_type_str(env, type)); 7120 return false; 7121 } 7122 7123 return true; 7124 } 7125 7126 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7127 { 7128 return &env->insn_aux_data[env->insn_idx]; 7129 } 7130 7131 enum { 7132 REASON_BOUNDS = -1, 7133 REASON_TYPE = -2, 7134 REASON_PATHS = -3, 7135 REASON_LIMIT = -4, 7136 REASON_STACK = -5, 7137 }; 7138 7139 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7140 u32 *alu_limit, bool mask_to_left) 7141 { 7142 u32 max = 0, ptr_limit = 0; 7143 7144 switch (ptr_reg->type) { 7145 case PTR_TO_STACK: 7146 /* Offset 0 is out-of-bounds, but acceptable start for the 7147 * left direction, see BPF_REG_FP. Also, unknown scalar 7148 * offset where we would need to deal with min/max bounds is 7149 * currently prohibited for unprivileged. 7150 */ 7151 max = MAX_BPF_STACK + mask_to_left; 7152 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7153 break; 7154 case PTR_TO_MAP_VALUE: 7155 max = ptr_reg->map_ptr->value_size; 7156 ptr_limit = (mask_to_left ? 7157 ptr_reg->smin_value : 7158 ptr_reg->umax_value) + ptr_reg->off; 7159 break; 7160 default: 7161 return REASON_TYPE; 7162 } 7163 7164 if (ptr_limit >= max) 7165 return REASON_LIMIT; 7166 *alu_limit = ptr_limit; 7167 return 0; 7168 } 7169 7170 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7171 const struct bpf_insn *insn) 7172 { 7173 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7174 } 7175 7176 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7177 u32 alu_state, u32 alu_limit) 7178 { 7179 /* If we arrived here from different branches with different 7180 * state or limits to sanitize, then this won't work. 7181 */ 7182 if (aux->alu_state && 7183 (aux->alu_state != alu_state || 7184 aux->alu_limit != alu_limit)) 7185 return REASON_PATHS; 7186 7187 /* Corresponding fixup done in do_misc_fixups(). */ 7188 aux->alu_state = alu_state; 7189 aux->alu_limit = alu_limit; 7190 return 0; 7191 } 7192 7193 static int sanitize_val_alu(struct bpf_verifier_env *env, 7194 struct bpf_insn *insn) 7195 { 7196 struct bpf_insn_aux_data *aux = cur_aux(env); 7197 7198 if (can_skip_alu_sanitation(env, insn)) 7199 return 0; 7200 7201 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7202 } 7203 7204 static bool sanitize_needed(u8 opcode) 7205 { 7206 return opcode == BPF_ADD || opcode == BPF_SUB; 7207 } 7208 7209 struct bpf_sanitize_info { 7210 struct bpf_insn_aux_data aux; 7211 bool mask_to_left; 7212 }; 7213 7214 static struct bpf_verifier_state * 7215 sanitize_speculative_path(struct bpf_verifier_env *env, 7216 const struct bpf_insn *insn, 7217 u32 next_idx, u32 curr_idx) 7218 { 7219 struct bpf_verifier_state *branch; 7220 struct bpf_reg_state *regs; 7221 7222 branch = push_stack(env, next_idx, curr_idx, true); 7223 if (branch && insn) { 7224 regs = branch->frame[branch->curframe]->regs; 7225 if (BPF_SRC(insn->code) == BPF_K) { 7226 mark_reg_unknown(env, regs, insn->dst_reg); 7227 } else if (BPF_SRC(insn->code) == BPF_X) { 7228 mark_reg_unknown(env, regs, insn->dst_reg); 7229 mark_reg_unknown(env, regs, insn->src_reg); 7230 } 7231 } 7232 return branch; 7233 } 7234 7235 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7236 struct bpf_insn *insn, 7237 const struct bpf_reg_state *ptr_reg, 7238 const struct bpf_reg_state *off_reg, 7239 struct bpf_reg_state *dst_reg, 7240 struct bpf_sanitize_info *info, 7241 const bool commit_window) 7242 { 7243 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7244 struct bpf_verifier_state *vstate = env->cur_state; 7245 bool off_is_imm = tnum_is_const(off_reg->var_off); 7246 bool off_is_neg = off_reg->smin_value < 0; 7247 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7248 u8 opcode = BPF_OP(insn->code); 7249 u32 alu_state, alu_limit; 7250 struct bpf_reg_state tmp; 7251 bool ret; 7252 int err; 7253 7254 if (can_skip_alu_sanitation(env, insn)) 7255 return 0; 7256 7257 /* We already marked aux for masking from non-speculative 7258 * paths, thus we got here in the first place. We only care 7259 * to explore bad access from here. 7260 */ 7261 if (vstate->speculative) 7262 goto do_sim; 7263 7264 if (!commit_window) { 7265 if (!tnum_is_const(off_reg->var_off) && 7266 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7267 return REASON_BOUNDS; 7268 7269 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7270 (opcode == BPF_SUB && !off_is_neg); 7271 } 7272 7273 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7274 if (err < 0) 7275 return err; 7276 7277 if (commit_window) { 7278 /* In commit phase we narrow the masking window based on 7279 * the observed pointer move after the simulated operation. 7280 */ 7281 alu_state = info->aux.alu_state; 7282 alu_limit = abs(info->aux.alu_limit - alu_limit); 7283 } else { 7284 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7285 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7286 alu_state |= ptr_is_dst_reg ? 7287 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7288 7289 /* Limit pruning on unknown scalars to enable deep search for 7290 * potential masking differences from other program paths. 7291 */ 7292 if (!off_is_imm) 7293 env->explore_alu_limits = true; 7294 } 7295 7296 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7297 if (err < 0) 7298 return err; 7299 do_sim: 7300 /* If we're in commit phase, we're done here given we already 7301 * pushed the truncated dst_reg into the speculative verification 7302 * stack. 7303 * 7304 * Also, when register is a known constant, we rewrite register-based 7305 * operation to immediate-based, and thus do not need masking (and as 7306 * a consequence, do not need to simulate the zero-truncation either). 7307 */ 7308 if (commit_window || off_is_imm) 7309 return 0; 7310 7311 /* Simulate and find potential out-of-bounds access under 7312 * speculative execution from truncation as a result of 7313 * masking when off was not within expected range. If off 7314 * sits in dst, then we temporarily need to move ptr there 7315 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7316 * for cases where we use K-based arithmetic in one direction 7317 * and truncated reg-based in the other in order to explore 7318 * bad access. 7319 */ 7320 if (!ptr_is_dst_reg) { 7321 tmp = *dst_reg; 7322 *dst_reg = *ptr_reg; 7323 } 7324 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7325 env->insn_idx); 7326 if (!ptr_is_dst_reg && ret) 7327 *dst_reg = tmp; 7328 return !ret ? REASON_STACK : 0; 7329 } 7330 7331 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7332 { 7333 struct bpf_verifier_state *vstate = env->cur_state; 7334 7335 /* If we simulate paths under speculation, we don't update the 7336 * insn as 'seen' such that when we verify unreachable paths in 7337 * the non-speculative domain, sanitize_dead_code() can still 7338 * rewrite/sanitize them. 7339 */ 7340 if (!vstate->speculative) 7341 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7342 } 7343 7344 static int sanitize_err(struct bpf_verifier_env *env, 7345 const struct bpf_insn *insn, int reason, 7346 const struct bpf_reg_state *off_reg, 7347 const struct bpf_reg_state *dst_reg) 7348 { 7349 static const char *err = "pointer arithmetic with it prohibited for !root"; 7350 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7351 u32 dst = insn->dst_reg, src = insn->src_reg; 7352 7353 switch (reason) { 7354 case REASON_BOUNDS: 7355 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7356 off_reg == dst_reg ? dst : src, err); 7357 break; 7358 case REASON_TYPE: 7359 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7360 off_reg == dst_reg ? src : dst, err); 7361 break; 7362 case REASON_PATHS: 7363 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7364 dst, op, err); 7365 break; 7366 case REASON_LIMIT: 7367 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7368 dst, op, err); 7369 break; 7370 case REASON_STACK: 7371 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7372 dst, err); 7373 break; 7374 default: 7375 verbose(env, "verifier internal error: unknown reason (%d)\n", 7376 reason); 7377 break; 7378 } 7379 7380 return -EACCES; 7381 } 7382 7383 /* check that stack access falls within stack limits and that 'reg' doesn't 7384 * have a variable offset. 7385 * 7386 * Variable offset is prohibited for unprivileged mode for simplicity since it 7387 * requires corresponding support in Spectre masking for stack ALU. See also 7388 * retrieve_ptr_limit(). 7389 * 7390 * 7391 * 'off' includes 'reg->off'. 7392 */ 7393 static int check_stack_access_for_ptr_arithmetic( 7394 struct bpf_verifier_env *env, 7395 int regno, 7396 const struct bpf_reg_state *reg, 7397 int off) 7398 { 7399 if (!tnum_is_const(reg->var_off)) { 7400 char tn_buf[48]; 7401 7402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7403 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7404 regno, tn_buf, off); 7405 return -EACCES; 7406 } 7407 7408 if (off >= 0 || off < -MAX_BPF_STACK) { 7409 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7410 "prohibited for !root; off=%d\n", regno, off); 7411 return -EACCES; 7412 } 7413 7414 return 0; 7415 } 7416 7417 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7418 const struct bpf_insn *insn, 7419 const struct bpf_reg_state *dst_reg) 7420 { 7421 u32 dst = insn->dst_reg; 7422 7423 /* For unprivileged we require that resulting offset must be in bounds 7424 * in order to be able to sanitize access later on. 7425 */ 7426 if (env->bypass_spec_v1) 7427 return 0; 7428 7429 switch (dst_reg->type) { 7430 case PTR_TO_STACK: 7431 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7432 dst_reg->off + dst_reg->var_off.value)) 7433 return -EACCES; 7434 break; 7435 case PTR_TO_MAP_VALUE: 7436 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7437 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7438 "prohibited for !root\n", dst); 7439 return -EACCES; 7440 } 7441 break; 7442 default: 7443 break; 7444 } 7445 7446 return 0; 7447 } 7448 7449 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7450 * Caller should also handle BPF_MOV case separately. 7451 * If we return -EACCES, caller may want to try again treating pointer as a 7452 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7453 */ 7454 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7455 struct bpf_insn *insn, 7456 const struct bpf_reg_state *ptr_reg, 7457 const struct bpf_reg_state *off_reg) 7458 { 7459 struct bpf_verifier_state *vstate = env->cur_state; 7460 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7461 struct bpf_reg_state *regs = state->regs, *dst_reg; 7462 bool known = tnum_is_const(off_reg->var_off); 7463 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7464 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7465 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7466 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7467 struct bpf_sanitize_info info = {}; 7468 u8 opcode = BPF_OP(insn->code); 7469 u32 dst = insn->dst_reg; 7470 int ret; 7471 7472 dst_reg = ®s[dst]; 7473 7474 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7475 smin_val > smax_val || umin_val > umax_val) { 7476 /* Taint dst register if offset had invalid bounds derived from 7477 * e.g. dead branches. 7478 */ 7479 __mark_reg_unknown(env, dst_reg); 7480 return 0; 7481 } 7482 7483 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7484 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7485 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7486 __mark_reg_unknown(env, dst_reg); 7487 return 0; 7488 } 7489 7490 verbose(env, 7491 "R%d 32-bit pointer arithmetic prohibited\n", 7492 dst); 7493 return -EACCES; 7494 } 7495 7496 if (ptr_reg->type & PTR_MAYBE_NULL) { 7497 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7498 dst, reg_type_str(env, ptr_reg->type)); 7499 return -EACCES; 7500 } 7501 7502 switch (base_type(ptr_reg->type)) { 7503 case CONST_PTR_TO_MAP: 7504 /* smin_val represents the known value */ 7505 if (known && smin_val == 0 && opcode == BPF_ADD) 7506 break; 7507 fallthrough; 7508 case PTR_TO_PACKET_END: 7509 case PTR_TO_SOCKET: 7510 case PTR_TO_SOCK_COMMON: 7511 case PTR_TO_TCP_SOCK: 7512 case PTR_TO_XDP_SOCK: 7513 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7514 dst, reg_type_str(env, ptr_reg->type)); 7515 return -EACCES; 7516 default: 7517 break; 7518 } 7519 7520 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7521 * The id may be overwritten later if we create a new variable offset. 7522 */ 7523 dst_reg->type = ptr_reg->type; 7524 dst_reg->id = ptr_reg->id; 7525 7526 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7527 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7528 return -EINVAL; 7529 7530 /* pointer types do not carry 32-bit bounds at the moment. */ 7531 __mark_reg32_unbounded(dst_reg); 7532 7533 if (sanitize_needed(opcode)) { 7534 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7535 &info, false); 7536 if (ret < 0) 7537 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7538 } 7539 7540 switch (opcode) { 7541 case BPF_ADD: 7542 /* We can take a fixed offset as long as it doesn't overflow 7543 * the s32 'off' field 7544 */ 7545 if (known && (ptr_reg->off + smin_val == 7546 (s64)(s32)(ptr_reg->off + smin_val))) { 7547 /* pointer += K. Accumulate it into fixed offset */ 7548 dst_reg->smin_value = smin_ptr; 7549 dst_reg->smax_value = smax_ptr; 7550 dst_reg->umin_value = umin_ptr; 7551 dst_reg->umax_value = umax_ptr; 7552 dst_reg->var_off = ptr_reg->var_off; 7553 dst_reg->off = ptr_reg->off + smin_val; 7554 dst_reg->raw = ptr_reg->raw; 7555 break; 7556 } 7557 /* A new variable offset is created. Note that off_reg->off 7558 * == 0, since it's a scalar. 7559 * dst_reg gets the pointer type and since some positive 7560 * integer value was added to the pointer, give it a new 'id' 7561 * if it's a PTR_TO_PACKET. 7562 * this creates a new 'base' pointer, off_reg (variable) gets 7563 * added into the variable offset, and we copy the fixed offset 7564 * from ptr_reg. 7565 */ 7566 if (signed_add_overflows(smin_ptr, smin_val) || 7567 signed_add_overflows(smax_ptr, smax_val)) { 7568 dst_reg->smin_value = S64_MIN; 7569 dst_reg->smax_value = S64_MAX; 7570 } else { 7571 dst_reg->smin_value = smin_ptr + smin_val; 7572 dst_reg->smax_value = smax_ptr + smax_val; 7573 } 7574 if (umin_ptr + umin_val < umin_ptr || 7575 umax_ptr + umax_val < umax_ptr) { 7576 dst_reg->umin_value = 0; 7577 dst_reg->umax_value = U64_MAX; 7578 } else { 7579 dst_reg->umin_value = umin_ptr + umin_val; 7580 dst_reg->umax_value = umax_ptr + umax_val; 7581 } 7582 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7583 dst_reg->off = ptr_reg->off; 7584 dst_reg->raw = ptr_reg->raw; 7585 if (reg_is_pkt_pointer(ptr_reg)) { 7586 dst_reg->id = ++env->id_gen; 7587 /* something was added to pkt_ptr, set range to zero */ 7588 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7589 } 7590 break; 7591 case BPF_SUB: 7592 if (dst_reg == off_reg) { 7593 /* scalar -= pointer. Creates an unknown scalar */ 7594 verbose(env, "R%d tried to subtract pointer from scalar\n", 7595 dst); 7596 return -EACCES; 7597 } 7598 /* We don't allow subtraction from FP, because (according to 7599 * test_verifier.c test "invalid fp arithmetic", JITs might not 7600 * be able to deal with it. 7601 */ 7602 if (ptr_reg->type == PTR_TO_STACK) { 7603 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7604 dst); 7605 return -EACCES; 7606 } 7607 if (known && (ptr_reg->off - smin_val == 7608 (s64)(s32)(ptr_reg->off - smin_val))) { 7609 /* pointer -= K. Subtract it from fixed offset */ 7610 dst_reg->smin_value = smin_ptr; 7611 dst_reg->smax_value = smax_ptr; 7612 dst_reg->umin_value = umin_ptr; 7613 dst_reg->umax_value = umax_ptr; 7614 dst_reg->var_off = ptr_reg->var_off; 7615 dst_reg->id = ptr_reg->id; 7616 dst_reg->off = ptr_reg->off - smin_val; 7617 dst_reg->raw = ptr_reg->raw; 7618 break; 7619 } 7620 /* A new variable offset is created. If the subtrahend is known 7621 * nonnegative, then any reg->range we had before is still good. 7622 */ 7623 if (signed_sub_overflows(smin_ptr, smax_val) || 7624 signed_sub_overflows(smax_ptr, smin_val)) { 7625 /* Overflow possible, we know nothing */ 7626 dst_reg->smin_value = S64_MIN; 7627 dst_reg->smax_value = S64_MAX; 7628 } else { 7629 dst_reg->smin_value = smin_ptr - smax_val; 7630 dst_reg->smax_value = smax_ptr - smin_val; 7631 } 7632 if (umin_ptr < umax_val) { 7633 /* Overflow possible, we know nothing */ 7634 dst_reg->umin_value = 0; 7635 dst_reg->umax_value = U64_MAX; 7636 } else { 7637 /* Cannot overflow (as long as bounds are consistent) */ 7638 dst_reg->umin_value = umin_ptr - umax_val; 7639 dst_reg->umax_value = umax_ptr - umin_val; 7640 } 7641 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7642 dst_reg->off = ptr_reg->off; 7643 dst_reg->raw = ptr_reg->raw; 7644 if (reg_is_pkt_pointer(ptr_reg)) { 7645 dst_reg->id = ++env->id_gen; 7646 /* something was added to pkt_ptr, set range to zero */ 7647 if (smin_val < 0) 7648 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7649 } 7650 break; 7651 case BPF_AND: 7652 case BPF_OR: 7653 case BPF_XOR: 7654 /* bitwise ops on pointers are troublesome, prohibit. */ 7655 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7656 dst, bpf_alu_string[opcode >> 4]); 7657 return -EACCES; 7658 default: 7659 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7660 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7661 dst, bpf_alu_string[opcode >> 4]); 7662 return -EACCES; 7663 } 7664 7665 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7666 return -EINVAL; 7667 7668 __update_reg_bounds(dst_reg); 7669 __reg_deduce_bounds(dst_reg); 7670 __reg_bound_offset(dst_reg); 7671 7672 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7673 return -EACCES; 7674 if (sanitize_needed(opcode)) { 7675 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7676 &info, true); 7677 if (ret < 0) 7678 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7679 } 7680 7681 return 0; 7682 } 7683 7684 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7685 struct bpf_reg_state *src_reg) 7686 { 7687 s32 smin_val = src_reg->s32_min_value; 7688 s32 smax_val = src_reg->s32_max_value; 7689 u32 umin_val = src_reg->u32_min_value; 7690 u32 umax_val = src_reg->u32_max_value; 7691 7692 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7693 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7694 dst_reg->s32_min_value = S32_MIN; 7695 dst_reg->s32_max_value = S32_MAX; 7696 } else { 7697 dst_reg->s32_min_value += smin_val; 7698 dst_reg->s32_max_value += smax_val; 7699 } 7700 if (dst_reg->u32_min_value + umin_val < umin_val || 7701 dst_reg->u32_max_value + umax_val < umax_val) { 7702 dst_reg->u32_min_value = 0; 7703 dst_reg->u32_max_value = U32_MAX; 7704 } else { 7705 dst_reg->u32_min_value += umin_val; 7706 dst_reg->u32_max_value += umax_val; 7707 } 7708 } 7709 7710 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7711 struct bpf_reg_state *src_reg) 7712 { 7713 s64 smin_val = src_reg->smin_value; 7714 s64 smax_val = src_reg->smax_value; 7715 u64 umin_val = src_reg->umin_value; 7716 u64 umax_val = src_reg->umax_value; 7717 7718 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7719 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7720 dst_reg->smin_value = S64_MIN; 7721 dst_reg->smax_value = S64_MAX; 7722 } else { 7723 dst_reg->smin_value += smin_val; 7724 dst_reg->smax_value += smax_val; 7725 } 7726 if (dst_reg->umin_value + umin_val < umin_val || 7727 dst_reg->umax_value + umax_val < umax_val) { 7728 dst_reg->umin_value = 0; 7729 dst_reg->umax_value = U64_MAX; 7730 } else { 7731 dst_reg->umin_value += umin_val; 7732 dst_reg->umax_value += umax_val; 7733 } 7734 } 7735 7736 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7737 struct bpf_reg_state *src_reg) 7738 { 7739 s32 smin_val = src_reg->s32_min_value; 7740 s32 smax_val = src_reg->s32_max_value; 7741 u32 umin_val = src_reg->u32_min_value; 7742 u32 umax_val = src_reg->u32_max_value; 7743 7744 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7745 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7746 /* Overflow possible, we know nothing */ 7747 dst_reg->s32_min_value = S32_MIN; 7748 dst_reg->s32_max_value = S32_MAX; 7749 } else { 7750 dst_reg->s32_min_value -= smax_val; 7751 dst_reg->s32_max_value -= smin_val; 7752 } 7753 if (dst_reg->u32_min_value < umax_val) { 7754 /* Overflow possible, we know nothing */ 7755 dst_reg->u32_min_value = 0; 7756 dst_reg->u32_max_value = U32_MAX; 7757 } else { 7758 /* Cannot overflow (as long as bounds are consistent) */ 7759 dst_reg->u32_min_value -= umax_val; 7760 dst_reg->u32_max_value -= umin_val; 7761 } 7762 } 7763 7764 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7765 struct bpf_reg_state *src_reg) 7766 { 7767 s64 smin_val = src_reg->smin_value; 7768 s64 smax_val = src_reg->smax_value; 7769 u64 umin_val = src_reg->umin_value; 7770 u64 umax_val = src_reg->umax_value; 7771 7772 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7773 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7774 /* Overflow possible, we know nothing */ 7775 dst_reg->smin_value = S64_MIN; 7776 dst_reg->smax_value = S64_MAX; 7777 } else { 7778 dst_reg->smin_value -= smax_val; 7779 dst_reg->smax_value -= smin_val; 7780 } 7781 if (dst_reg->umin_value < umax_val) { 7782 /* Overflow possible, we know nothing */ 7783 dst_reg->umin_value = 0; 7784 dst_reg->umax_value = U64_MAX; 7785 } else { 7786 /* Cannot overflow (as long as bounds are consistent) */ 7787 dst_reg->umin_value -= umax_val; 7788 dst_reg->umax_value -= umin_val; 7789 } 7790 } 7791 7792 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7793 struct bpf_reg_state *src_reg) 7794 { 7795 s32 smin_val = src_reg->s32_min_value; 7796 u32 umin_val = src_reg->u32_min_value; 7797 u32 umax_val = src_reg->u32_max_value; 7798 7799 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7800 /* Ain't nobody got time to multiply that sign */ 7801 __mark_reg32_unbounded(dst_reg); 7802 return; 7803 } 7804 /* Both values are positive, so we can work with unsigned and 7805 * copy the result to signed (unless it exceeds S32_MAX). 7806 */ 7807 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7808 /* Potential overflow, we know nothing */ 7809 __mark_reg32_unbounded(dst_reg); 7810 return; 7811 } 7812 dst_reg->u32_min_value *= umin_val; 7813 dst_reg->u32_max_value *= umax_val; 7814 if (dst_reg->u32_max_value > S32_MAX) { 7815 /* Overflow possible, we know nothing */ 7816 dst_reg->s32_min_value = S32_MIN; 7817 dst_reg->s32_max_value = S32_MAX; 7818 } else { 7819 dst_reg->s32_min_value = dst_reg->u32_min_value; 7820 dst_reg->s32_max_value = dst_reg->u32_max_value; 7821 } 7822 } 7823 7824 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7825 struct bpf_reg_state *src_reg) 7826 { 7827 s64 smin_val = src_reg->smin_value; 7828 u64 umin_val = src_reg->umin_value; 7829 u64 umax_val = src_reg->umax_value; 7830 7831 if (smin_val < 0 || dst_reg->smin_value < 0) { 7832 /* Ain't nobody got time to multiply that sign */ 7833 __mark_reg64_unbounded(dst_reg); 7834 return; 7835 } 7836 /* Both values are positive, so we can work with unsigned and 7837 * copy the result to signed (unless it exceeds S64_MAX). 7838 */ 7839 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7840 /* Potential overflow, we know nothing */ 7841 __mark_reg64_unbounded(dst_reg); 7842 return; 7843 } 7844 dst_reg->umin_value *= umin_val; 7845 dst_reg->umax_value *= umax_val; 7846 if (dst_reg->umax_value > S64_MAX) { 7847 /* Overflow possible, we know nothing */ 7848 dst_reg->smin_value = S64_MIN; 7849 dst_reg->smax_value = S64_MAX; 7850 } else { 7851 dst_reg->smin_value = dst_reg->umin_value; 7852 dst_reg->smax_value = dst_reg->umax_value; 7853 } 7854 } 7855 7856 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7857 struct bpf_reg_state *src_reg) 7858 { 7859 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7860 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7861 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7862 s32 smin_val = src_reg->s32_min_value; 7863 u32 umax_val = src_reg->u32_max_value; 7864 7865 if (src_known && dst_known) { 7866 __mark_reg32_known(dst_reg, var32_off.value); 7867 return; 7868 } 7869 7870 /* We get our minimum from the var_off, since that's inherently 7871 * bitwise. Our maximum is the minimum of the operands' maxima. 7872 */ 7873 dst_reg->u32_min_value = var32_off.value; 7874 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7875 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7876 /* Lose signed bounds when ANDing negative numbers, 7877 * ain't nobody got time for that. 7878 */ 7879 dst_reg->s32_min_value = S32_MIN; 7880 dst_reg->s32_max_value = S32_MAX; 7881 } else { 7882 /* ANDing two positives gives a positive, so safe to 7883 * cast result into s64. 7884 */ 7885 dst_reg->s32_min_value = dst_reg->u32_min_value; 7886 dst_reg->s32_max_value = dst_reg->u32_max_value; 7887 } 7888 } 7889 7890 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7891 struct bpf_reg_state *src_reg) 7892 { 7893 bool src_known = tnum_is_const(src_reg->var_off); 7894 bool dst_known = tnum_is_const(dst_reg->var_off); 7895 s64 smin_val = src_reg->smin_value; 7896 u64 umax_val = src_reg->umax_value; 7897 7898 if (src_known && dst_known) { 7899 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7900 return; 7901 } 7902 7903 /* We get our minimum from the var_off, since that's inherently 7904 * bitwise. Our maximum is the minimum of the operands' maxima. 7905 */ 7906 dst_reg->umin_value = dst_reg->var_off.value; 7907 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7908 if (dst_reg->smin_value < 0 || smin_val < 0) { 7909 /* Lose signed bounds when ANDing negative numbers, 7910 * ain't nobody got time for that. 7911 */ 7912 dst_reg->smin_value = S64_MIN; 7913 dst_reg->smax_value = S64_MAX; 7914 } else { 7915 /* ANDing two positives gives a positive, so safe to 7916 * cast result into s64. 7917 */ 7918 dst_reg->smin_value = dst_reg->umin_value; 7919 dst_reg->smax_value = dst_reg->umax_value; 7920 } 7921 /* We may learn something more from the var_off */ 7922 __update_reg_bounds(dst_reg); 7923 } 7924 7925 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7926 struct bpf_reg_state *src_reg) 7927 { 7928 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7929 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7930 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7931 s32 smin_val = src_reg->s32_min_value; 7932 u32 umin_val = src_reg->u32_min_value; 7933 7934 if (src_known && dst_known) { 7935 __mark_reg32_known(dst_reg, var32_off.value); 7936 return; 7937 } 7938 7939 /* We get our maximum from the var_off, and our minimum is the 7940 * maximum of the operands' minima 7941 */ 7942 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7943 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7944 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7945 /* Lose signed bounds when ORing negative numbers, 7946 * ain't nobody got time for that. 7947 */ 7948 dst_reg->s32_min_value = S32_MIN; 7949 dst_reg->s32_max_value = S32_MAX; 7950 } else { 7951 /* ORing two positives gives a positive, so safe to 7952 * cast result into s64. 7953 */ 7954 dst_reg->s32_min_value = dst_reg->u32_min_value; 7955 dst_reg->s32_max_value = dst_reg->u32_max_value; 7956 } 7957 } 7958 7959 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7960 struct bpf_reg_state *src_reg) 7961 { 7962 bool src_known = tnum_is_const(src_reg->var_off); 7963 bool dst_known = tnum_is_const(dst_reg->var_off); 7964 s64 smin_val = src_reg->smin_value; 7965 u64 umin_val = src_reg->umin_value; 7966 7967 if (src_known && dst_known) { 7968 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7969 return; 7970 } 7971 7972 /* We get our maximum from the var_off, and our minimum is the 7973 * maximum of the operands' minima 7974 */ 7975 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7976 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7977 if (dst_reg->smin_value < 0 || smin_val < 0) { 7978 /* Lose signed bounds when ORing negative numbers, 7979 * ain't nobody got time for that. 7980 */ 7981 dst_reg->smin_value = S64_MIN; 7982 dst_reg->smax_value = S64_MAX; 7983 } else { 7984 /* ORing two positives gives a positive, so safe to 7985 * cast result into s64. 7986 */ 7987 dst_reg->smin_value = dst_reg->umin_value; 7988 dst_reg->smax_value = dst_reg->umax_value; 7989 } 7990 /* We may learn something more from the var_off */ 7991 __update_reg_bounds(dst_reg); 7992 } 7993 7994 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7995 struct bpf_reg_state *src_reg) 7996 { 7997 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7998 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7999 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8000 s32 smin_val = src_reg->s32_min_value; 8001 8002 if (src_known && dst_known) { 8003 __mark_reg32_known(dst_reg, var32_off.value); 8004 return; 8005 } 8006 8007 /* We get both minimum and maximum from the var32_off. */ 8008 dst_reg->u32_min_value = var32_off.value; 8009 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8010 8011 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8012 /* XORing two positive sign numbers gives a positive, 8013 * so safe to cast u32 result into s32. 8014 */ 8015 dst_reg->s32_min_value = dst_reg->u32_min_value; 8016 dst_reg->s32_max_value = dst_reg->u32_max_value; 8017 } else { 8018 dst_reg->s32_min_value = S32_MIN; 8019 dst_reg->s32_max_value = S32_MAX; 8020 } 8021 } 8022 8023 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8024 struct bpf_reg_state *src_reg) 8025 { 8026 bool src_known = tnum_is_const(src_reg->var_off); 8027 bool dst_known = tnum_is_const(dst_reg->var_off); 8028 s64 smin_val = src_reg->smin_value; 8029 8030 if (src_known && dst_known) { 8031 /* dst_reg->var_off.value has been updated earlier */ 8032 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8033 return; 8034 } 8035 8036 /* We get both minimum and maximum from the var_off. */ 8037 dst_reg->umin_value = dst_reg->var_off.value; 8038 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8039 8040 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8041 /* XORing two positive sign numbers gives a positive, 8042 * so safe to cast u64 result into s64. 8043 */ 8044 dst_reg->smin_value = dst_reg->umin_value; 8045 dst_reg->smax_value = dst_reg->umax_value; 8046 } else { 8047 dst_reg->smin_value = S64_MIN; 8048 dst_reg->smax_value = S64_MAX; 8049 } 8050 8051 __update_reg_bounds(dst_reg); 8052 } 8053 8054 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8055 u64 umin_val, u64 umax_val) 8056 { 8057 /* We lose all sign bit information (except what we can pick 8058 * up from var_off) 8059 */ 8060 dst_reg->s32_min_value = S32_MIN; 8061 dst_reg->s32_max_value = S32_MAX; 8062 /* If we might shift our top bit out, then we know nothing */ 8063 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8064 dst_reg->u32_min_value = 0; 8065 dst_reg->u32_max_value = U32_MAX; 8066 } else { 8067 dst_reg->u32_min_value <<= umin_val; 8068 dst_reg->u32_max_value <<= umax_val; 8069 } 8070 } 8071 8072 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8073 struct bpf_reg_state *src_reg) 8074 { 8075 u32 umax_val = src_reg->u32_max_value; 8076 u32 umin_val = src_reg->u32_min_value; 8077 /* u32 alu operation will zext upper bits */ 8078 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8079 8080 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8081 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8082 /* Not required but being careful mark reg64 bounds as unknown so 8083 * that we are forced to pick them up from tnum and zext later and 8084 * if some path skips this step we are still safe. 8085 */ 8086 __mark_reg64_unbounded(dst_reg); 8087 __update_reg32_bounds(dst_reg); 8088 } 8089 8090 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8091 u64 umin_val, u64 umax_val) 8092 { 8093 /* Special case <<32 because it is a common compiler pattern to sign 8094 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8095 * positive we know this shift will also be positive so we can track 8096 * bounds correctly. Otherwise we lose all sign bit information except 8097 * what we can pick up from var_off. Perhaps we can generalize this 8098 * later to shifts of any length. 8099 */ 8100 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8101 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8102 else 8103 dst_reg->smax_value = S64_MAX; 8104 8105 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8106 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8107 else 8108 dst_reg->smin_value = S64_MIN; 8109 8110 /* If we might shift our top bit out, then we know nothing */ 8111 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8112 dst_reg->umin_value = 0; 8113 dst_reg->umax_value = U64_MAX; 8114 } else { 8115 dst_reg->umin_value <<= umin_val; 8116 dst_reg->umax_value <<= umax_val; 8117 } 8118 } 8119 8120 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8121 struct bpf_reg_state *src_reg) 8122 { 8123 u64 umax_val = src_reg->umax_value; 8124 u64 umin_val = src_reg->umin_value; 8125 8126 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8127 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8128 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8129 8130 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8131 /* We may learn something more from the var_off */ 8132 __update_reg_bounds(dst_reg); 8133 } 8134 8135 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8136 struct bpf_reg_state *src_reg) 8137 { 8138 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8139 u32 umax_val = src_reg->u32_max_value; 8140 u32 umin_val = src_reg->u32_min_value; 8141 8142 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8143 * be negative, then either: 8144 * 1) src_reg might be zero, so the sign bit of the result is 8145 * unknown, so we lose our signed bounds 8146 * 2) it's known negative, thus the unsigned bounds capture the 8147 * signed bounds 8148 * 3) the signed bounds cross zero, so they tell us nothing 8149 * about the result 8150 * If the value in dst_reg is known nonnegative, then again the 8151 * unsigned bounds capture the signed bounds. 8152 * Thus, in all cases it suffices to blow away our signed bounds 8153 * and rely on inferring new ones from the unsigned bounds and 8154 * var_off of the result. 8155 */ 8156 dst_reg->s32_min_value = S32_MIN; 8157 dst_reg->s32_max_value = S32_MAX; 8158 8159 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8160 dst_reg->u32_min_value >>= umax_val; 8161 dst_reg->u32_max_value >>= umin_val; 8162 8163 __mark_reg64_unbounded(dst_reg); 8164 __update_reg32_bounds(dst_reg); 8165 } 8166 8167 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8168 struct bpf_reg_state *src_reg) 8169 { 8170 u64 umax_val = src_reg->umax_value; 8171 u64 umin_val = src_reg->umin_value; 8172 8173 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8174 * be negative, then either: 8175 * 1) src_reg might be zero, so the sign bit of the result is 8176 * unknown, so we lose our signed bounds 8177 * 2) it's known negative, thus the unsigned bounds capture the 8178 * signed bounds 8179 * 3) the signed bounds cross zero, so they tell us nothing 8180 * about the result 8181 * If the value in dst_reg is known nonnegative, then again the 8182 * unsigned bounds capture the signed bounds. 8183 * Thus, in all cases it suffices to blow away our signed bounds 8184 * and rely on inferring new ones from the unsigned bounds and 8185 * var_off of the result. 8186 */ 8187 dst_reg->smin_value = S64_MIN; 8188 dst_reg->smax_value = S64_MAX; 8189 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8190 dst_reg->umin_value >>= umax_val; 8191 dst_reg->umax_value >>= umin_val; 8192 8193 /* Its not easy to operate on alu32 bounds here because it depends 8194 * on bits being shifted in. Take easy way out and mark unbounded 8195 * so we can recalculate later from tnum. 8196 */ 8197 __mark_reg32_unbounded(dst_reg); 8198 __update_reg_bounds(dst_reg); 8199 } 8200 8201 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8202 struct bpf_reg_state *src_reg) 8203 { 8204 u64 umin_val = src_reg->u32_min_value; 8205 8206 /* Upon reaching here, src_known is true and 8207 * umax_val is equal to umin_val. 8208 */ 8209 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8210 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8211 8212 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8213 8214 /* blow away the dst_reg umin_value/umax_value and rely on 8215 * dst_reg var_off to refine the result. 8216 */ 8217 dst_reg->u32_min_value = 0; 8218 dst_reg->u32_max_value = U32_MAX; 8219 8220 __mark_reg64_unbounded(dst_reg); 8221 __update_reg32_bounds(dst_reg); 8222 } 8223 8224 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8225 struct bpf_reg_state *src_reg) 8226 { 8227 u64 umin_val = src_reg->umin_value; 8228 8229 /* Upon reaching here, src_known is true and umax_val is equal 8230 * to umin_val. 8231 */ 8232 dst_reg->smin_value >>= umin_val; 8233 dst_reg->smax_value >>= umin_val; 8234 8235 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8236 8237 /* blow away the dst_reg umin_value/umax_value and rely on 8238 * dst_reg var_off to refine the result. 8239 */ 8240 dst_reg->umin_value = 0; 8241 dst_reg->umax_value = U64_MAX; 8242 8243 /* Its not easy to operate on alu32 bounds here because it depends 8244 * on bits being shifted in from upper 32-bits. Take easy way out 8245 * and mark unbounded so we can recalculate later from tnum. 8246 */ 8247 __mark_reg32_unbounded(dst_reg); 8248 __update_reg_bounds(dst_reg); 8249 } 8250 8251 /* WARNING: This function does calculations on 64-bit values, but the actual 8252 * execution may occur on 32-bit values. Therefore, things like bitshifts 8253 * need extra checks in the 32-bit case. 8254 */ 8255 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8256 struct bpf_insn *insn, 8257 struct bpf_reg_state *dst_reg, 8258 struct bpf_reg_state src_reg) 8259 { 8260 struct bpf_reg_state *regs = cur_regs(env); 8261 u8 opcode = BPF_OP(insn->code); 8262 bool src_known; 8263 s64 smin_val, smax_val; 8264 u64 umin_val, umax_val; 8265 s32 s32_min_val, s32_max_val; 8266 u32 u32_min_val, u32_max_val; 8267 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8268 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8269 int ret; 8270 8271 smin_val = src_reg.smin_value; 8272 smax_val = src_reg.smax_value; 8273 umin_val = src_reg.umin_value; 8274 umax_val = src_reg.umax_value; 8275 8276 s32_min_val = src_reg.s32_min_value; 8277 s32_max_val = src_reg.s32_max_value; 8278 u32_min_val = src_reg.u32_min_value; 8279 u32_max_val = src_reg.u32_max_value; 8280 8281 if (alu32) { 8282 src_known = tnum_subreg_is_const(src_reg.var_off); 8283 if ((src_known && 8284 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8285 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8286 /* Taint dst register if offset had invalid bounds 8287 * derived from e.g. dead branches. 8288 */ 8289 __mark_reg_unknown(env, dst_reg); 8290 return 0; 8291 } 8292 } else { 8293 src_known = tnum_is_const(src_reg.var_off); 8294 if ((src_known && 8295 (smin_val != smax_val || umin_val != umax_val)) || 8296 smin_val > smax_val || umin_val > umax_val) { 8297 /* Taint dst register if offset had invalid bounds 8298 * derived from e.g. dead branches. 8299 */ 8300 __mark_reg_unknown(env, dst_reg); 8301 return 0; 8302 } 8303 } 8304 8305 if (!src_known && 8306 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8307 __mark_reg_unknown(env, dst_reg); 8308 return 0; 8309 } 8310 8311 if (sanitize_needed(opcode)) { 8312 ret = sanitize_val_alu(env, insn); 8313 if (ret < 0) 8314 return sanitize_err(env, insn, ret, NULL, NULL); 8315 } 8316 8317 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8318 * There are two classes of instructions: The first class we track both 8319 * alu32 and alu64 sign/unsigned bounds independently this provides the 8320 * greatest amount of precision when alu operations are mixed with jmp32 8321 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8322 * and BPF_OR. This is possible because these ops have fairly easy to 8323 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8324 * See alu32 verifier tests for examples. The second class of 8325 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8326 * with regards to tracking sign/unsigned bounds because the bits may 8327 * cross subreg boundaries in the alu64 case. When this happens we mark 8328 * the reg unbounded in the subreg bound space and use the resulting 8329 * tnum to calculate an approximation of the sign/unsigned bounds. 8330 */ 8331 switch (opcode) { 8332 case BPF_ADD: 8333 scalar32_min_max_add(dst_reg, &src_reg); 8334 scalar_min_max_add(dst_reg, &src_reg); 8335 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8336 break; 8337 case BPF_SUB: 8338 scalar32_min_max_sub(dst_reg, &src_reg); 8339 scalar_min_max_sub(dst_reg, &src_reg); 8340 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8341 break; 8342 case BPF_MUL: 8343 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8344 scalar32_min_max_mul(dst_reg, &src_reg); 8345 scalar_min_max_mul(dst_reg, &src_reg); 8346 break; 8347 case BPF_AND: 8348 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8349 scalar32_min_max_and(dst_reg, &src_reg); 8350 scalar_min_max_and(dst_reg, &src_reg); 8351 break; 8352 case BPF_OR: 8353 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8354 scalar32_min_max_or(dst_reg, &src_reg); 8355 scalar_min_max_or(dst_reg, &src_reg); 8356 break; 8357 case BPF_XOR: 8358 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8359 scalar32_min_max_xor(dst_reg, &src_reg); 8360 scalar_min_max_xor(dst_reg, &src_reg); 8361 break; 8362 case BPF_LSH: 8363 if (umax_val >= insn_bitness) { 8364 /* Shifts greater than 31 or 63 are undefined. 8365 * This includes shifts by a negative number. 8366 */ 8367 mark_reg_unknown(env, regs, insn->dst_reg); 8368 break; 8369 } 8370 if (alu32) 8371 scalar32_min_max_lsh(dst_reg, &src_reg); 8372 else 8373 scalar_min_max_lsh(dst_reg, &src_reg); 8374 break; 8375 case BPF_RSH: 8376 if (umax_val >= insn_bitness) { 8377 /* Shifts greater than 31 or 63 are undefined. 8378 * This includes shifts by a negative number. 8379 */ 8380 mark_reg_unknown(env, regs, insn->dst_reg); 8381 break; 8382 } 8383 if (alu32) 8384 scalar32_min_max_rsh(dst_reg, &src_reg); 8385 else 8386 scalar_min_max_rsh(dst_reg, &src_reg); 8387 break; 8388 case BPF_ARSH: 8389 if (umax_val >= insn_bitness) { 8390 /* Shifts greater than 31 or 63 are undefined. 8391 * This includes shifts by a negative number. 8392 */ 8393 mark_reg_unknown(env, regs, insn->dst_reg); 8394 break; 8395 } 8396 if (alu32) 8397 scalar32_min_max_arsh(dst_reg, &src_reg); 8398 else 8399 scalar_min_max_arsh(dst_reg, &src_reg); 8400 break; 8401 default: 8402 mark_reg_unknown(env, regs, insn->dst_reg); 8403 break; 8404 } 8405 8406 /* ALU32 ops are zero extended into 64bit register */ 8407 if (alu32) 8408 zext_32_to_64(dst_reg); 8409 8410 __update_reg_bounds(dst_reg); 8411 __reg_deduce_bounds(dst_reg); 8412 __reg_bound_offset(dst_reg); 8413 return 0; 8414 } 8415 8416 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8417 * and var_off. 8418 */ 8419 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8420 struct bpf_insn *insn) 8421 { 8422 struct bpf_verifier_state *vstate = env->cur_state; 8423 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8424 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8425 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8426 u8 opcode = BPF_OP(insn->code); 8427 int err; 8428 8429 dst_reg = ®s[insn->dst_reg]; 8430 src_reg = NULL; 8431 if (dst_reg->type != SCALAR_VALUE) 8432 ptr_reg = dst_reg; 8433 else 8434 /* Make sure ID is cleared otherwise dst_reg min/max could be 8435 * incorrectly propagated into other registers by find_equal_scalars() 8436 */ 8437 dst_reg->id = 0; 8438 if (BPF_SRC(insn->code) == BPF_X) { 8439 src_reg = ®s[insn->src_reg]; 8440 if (src_reg->type != SCALAR_VALUE) { 8441 if (dst_reg->type != SCALAR_VALUE) { 8442 /* Combining two pointers by any ALU op yields 8443 * an arbitrary scalar. Disallow all math except 8444 * pointer subtraction 8445 */ 8446 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8447 mark_reg_unknown(env, regs, insn->dst_reg); 8448 return 0; 8449 } 8450 verbose(env, "R%d pointer %s pointer prohibited\n", 8451 insn->dst_reg, 8452 bpf_alu_string[opcode >> 4]); 8453 return -EACCES; 8454 } else { 8455 /* scalar += pointer 8456 * This is legal, but we have to reverse our 8457 * src/dest handling in computing the range 8458 */ 8459 err = mark_chain_precision(env, insn->dst_reg); 8460 if (err) 8461 return err; 8462 return adjust_ptr_min_max_vals(env, insn, 8463 src_reg, dst_reg); 8464 } 8465 } else if (ptr_reg) { 8466 /* pointer += scalar */ 8467 err = mark_chain_precision(env, insn->src_reg); 8468 if (err) 8469 return err; 8470 return adjust_ptr_min_max_vals(env, insn, 8471 dst_reg, src_reg); 8472 } 8473 } else { 8474 /* Pretend the src is a reg with a known value, since we only 8475 * need to be able to read from this state. 8476 */ 8477 off_reg.type = SCALAR_VALUE; 8478 __mark_reg_known(&off_reg, insn->imm); 8479 src_reg = &off_reg; 8480 if (ptr_reg) /* pointer += K */ 8481 return adjust_ptr_min_max_vals(env, insn, 8482 ptr_reg, src_reg); 8483 } 8484 8485 /* Got here implies adding two SCALAR_VALUEs */ 8486 if (WARN_ON_ONCE(ptr_reg)) { 8487 print_verifier_state(env, state, true); 8488 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8489 return -EINVAL; 8490 } 8491 if (WARN_ON(!src_reg)) { 8492 print_verifier_state(env, state, true); 8493 verbose(env, "verifier internal error: no src_reg\n"); 8494 return -EINVAL; 8495 } 8496 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8497 } 8498 8499 /* check validity of 32-bit and 64-bit arithmetic operations */ 8500 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8501 { 8502 struct bpf_reg_state *regs = cur_regs(env); 8503 u8 opcode = BPF_OP(insn->code); 8504 int err; 8505 8506 if (opcode == BPF_END || opcode == BPF_NEG) { 8507 if (opcode == BPF_NEG) { 8508 if (BPF_SRC(insn->code) != 0 || 8509 insn->src_reg != BPF_REG_0 || 8510 insn->off != 0 || insn->imm != 0) { 8511 verbose(env, "BPF_NEG uses reserved fields\n"); 8512 return -EINVAL; 8513 } 8514 } else { 8515 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8516 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8517 BPF_CLASS(insn->code) == BPF_ALU64) { 8518 verbose(env, "BPF_END uses reserved fields\n"); 8519 return -EINVAL; 8520 } 8521 } 8522 8523 /* check src operand */ 8524 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8525 if (err) 8526 return err; 8527 8528 if (is_pointer_value(env, insn->dst_reg)) { 8529 verbose(env, "R%d pointer arithmetic prohibited\n", 8530 insn->dst_reg); 8531 return -EACCES; 8532 } 8533 8534 /* check dest operand */ 8535 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8536 if (err) 8537 return err; 8538 8539 } else if (opcode == BPF_MOV) { 8540 8541 if (BPF_SRC(insn->code) == BPF_X) { 8542 if (insn->imm != 0 || insn->off != 0) { 8543 verbose(env, "BPF_MOV uses reserved fields\n"); 8544 return -EINVAL; 8545 } 8546 8547 /* check src operand */ 8548 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8549 if (err) 8550 return err; 8551 } else { 8552 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8553 verbose(env, "BPF_MOV uses reserved fields\n"); 8554 return -EINVAL; 8555 } 8556 } 8557 8558 /* check dest operand, mark as required later */ 8559 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8560 if (err) 8561 return err; 8562 8563 if (BPF_SRC(insn->code) == BPF_X) { 8564 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8565 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8566 8567 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8568 /* case: R1 = R2 8569 * copy register state to dest reg 8570 */ 8571 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8572 /* Assign src and dst registers the same ID 8573 * that will be used by find_equal_scalars() 8574 * to propagate min/max range. 8575 */ 8576 src_reg->id = ++env->id_gen; 8577 *dst_reg = *src_reg; 8578 dst_reg->live |= REG_LIVE_WRITTEN; 8579 dst_reg->subreg_def = DEF_NOT_SUBREG; 8580 } else { 8581 /* R1 = (u32) R2 */ 8582 if (is_pointer_value(env, insn->src_reg)) { 8583 verbose(env, 8584 "R%d partial copy of pointer\n", 8585 insn->src_reg); 8586 return -EACCES; 8587 } else if (src_reg->type == SCALAR_VALUE) { 8588 *dst_reg = *src_reg; 8589 /* Make sure ID is cleared otherwise 8590 * dst_reg min/max could be incorrectly 8591 * propagated into src_reg by find_equal_scalars() 8592 */ 8593 dst_reg->id = 0; 8594 dst_reg->live |= REG_LIVE_WRITTEN; 8595 dst_reg->subreg_def = env->insn_idx + 1; 8596 } else { 8597 mark_reg_unknown(env, regs, 8598 insn->dst_reg); 8599 } 8600 zext_32_to_64(dst_reg); 8601 8602 __update_reg_bounds(dst_reg); 8603 __reg_deduce_bounds(dst_reg); 8604 __reg_bound_offset(dst_reg); 8605 } 8606 } else { 8607 /* case: R = imm 8608 * remember the value we stored into this reg 8609 */ 8610 /* clear any state __mark_reg_known doesn't set */ 8611 mark_reg_unknown(env, regs, insn->dst_reg); 8612 regs[insn->dst_reg].type = SCALAR_VALUE; 8613 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8614 __mark_reg_known(regs + insn->dst_reg, 8615 insn->imm); 8616 } else { 8617 __mark_reg_known(regs + insn->dst_reg, 8618 (u32)insn->imm); 8619 } 8620 } 8621 8622 } else if (opcode > BPF_END) { 8623 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8624 return -EINVAL; 8625 8626 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8627 8628 if (BPF_SRC(insn->code) == BPF_X) { 8629 if (insn->imm != 0 || insn->off != 0) { 8630 verbose(env, "BPF_ALU uses reserved fields\n"); 8631 return -EINVAL; 8632 } 8633 /* check src1 operand */ 8634 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8635 if (err) 8636 return err; 8637 } else { 8638 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8639 verbose(env, "BPF_ALU uses reserved fields\n"); 8640 return -EINVAL; 8641 } 8642 } 8643 8644 /* check src2 operand */ 8645 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8646 if (err) 8647 return err; 8648 8649 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8650 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8651 verbose(env, "div by zero\n"); 8652 return -EINVAL; 8653 } 8654 8655 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8656 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8657 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8658 8659 if (insn->imm < 0 || insn->imm >= size) { 8660 verbose(env, "invalid shift %d\n", insn->imm); 8661 return -EINVAL; 8662 } 8663 } 8664 8665 /* check dest operand */ 8666 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8667 if (err) 8668 return err; 8669 8670 return adjust_reg_min_max_vals(env, insn); 8671 } 8672 8673 return 0; 8674 } 8675 8676 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8677 struct bpf_reg_state *dst_reg, 8678 enum bpf_reg_type type, int new_range) 8679 { 8680 struct bpf_reg_state *reg; 8681 int i; 8682 8683 for (i = 0; i < MAX_BPF_REG; i++) { 8684 reg = &state->regs[i]; 8685 if (reg->type == type && reg->id == dst_reg->id) 8686 /* keep the maximum range already checked */ 8687 reg->range = max(reg->range, new_range); 8688 } 8689 8690 bpf_for_each_spilled_reg(i, state, reg) { 8691 if (!reg) 8692 continue; 8693 if (reg->type == type && reg->id == dst_reg->id) 8694 reg->range = max(reg->range, new_range); 8695 } 8696 } 8697 8698 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8699 struct bpf_reg_state *dst_reg, 8700 enum bpf_reg_type type, 8701 bool range_right_open) 8702 { 8703 int new_range, i; 8704 8705 if (dst_reg->off < 0 || 8706 (dst_reg->off == 0 && range_right_open)) 8707 /* This doesn't give us any range */ 8708 return; 8709 8710 if (dst_reg->umax_value > MAX_PACKET_OFF || 8711 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8712 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8713 * than pkt_end, but that's because it's also less than pkt. 8714 */ 8715 return; 8716 8717 new_range = dst_reg->off; 8718 if (range_right_open) 8719 new_range++; 8720 8721 /* Examples for register markings: 8722 * 8723 * pkt_data in dst register: 8724 * 8725 * r2 = r3; 8726 * r2 += 8; 8727 * if (r2 > pkt_end) goto <handle exception> 8728 * <access okay> 8729 * 8730 * r2 = r3; 8731 * r2 += 8; 8732 * if (r2 < pkt_end) goto <access okay> 8733 * <handle exception> 8734 * 8735 * Where: 8736 * r2 == dst_reg, pkt_end == src_reg 8737 * r2=pkt(id=n,off=8,r=0) 8738 * r3=pkt(id=n,off=0,r=0) 8739 * 8740 * pkt_data in src register: 8741 * 8742 * r2 = r3; 8743 * r2 += 8; 8744 * if (pkt_end >= r2) goto <access okay> 8745 * <handle exception> 8746 * 8747 * r2 = r3; 8748 * r2 += 8; 8749 * if (pkt_end <= r2) goto <handle exception> 8750 * <access okay> 8751 * 8752 * Where: 8753 * pkt_end == dst_reg, r2 == src_reg 8754 * r2=pkt(id=n,off=8,r=0) 8755 * r3=pkt(id=n,off=0,r=0) 8756 * 8757 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8758 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8759 * and [r3, r3 + 8-1) respectively is safe to access depending on 8760 * the check. 8761 */ 8762 8763 /* If our ids match, then we must have the same max_value. And we 8764 * don't care about the other reg's fixed offset, since if it's too big 8765 * the range won't allow anything. 8766 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8767 */ 8768 for (i = 0; i <= vstate->curframe; i++) 8769 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8770 new_range); 8771 } 8772 8773 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8774 { 8775 struct tnum subreg = tnum_subreg(reg->var_off); 8776 s32 sval = (s32)val; 8777 8778 switch (opcode) { 8779 case BPF_JEQ: 8780 if (tnum_is_const(subreg)) 8781 return !!tnum_equals_const(subreg, val); 8782 break; 8783 case BPF_JNE: 8784 if (tnum_is_const(subreg)) 8785 return !tnum_equals_const(subreg, val); 8786 break; 8787 case BPF_JSET: 8788 if ((~subreg.mask & subreg.value) & val) 8789 return 1; 8790 if (!((subreg.mask | subreg.value) & val)) 8791 return 0; 8792 break; 8793 case BPF_JGT: 8794 if (reg->u32_min_value > val) 8795 return 1; 8796 else if (reg->u32_max_value <= val) 8797 return 0; 8798 break; 8799 case BPF_JSGT: 8800 if (reg->s32_min_value > sval) 8801 return 1; 8802 else if (reg->s32_max_value <= sval) 8803 return 0; 8804 break; 8805 case BPF_JLT: 8806 if (reg->u32_max_value < val) 8807 return 1; 8808 else if (reg->u32_min_value >= val) 8809 return 0; 8810 break; 8811 case BPF_JSLT: 8812 if (reg->s32_max_value < sval) 8813 return 1; 8814 else if (reg->s32_min_value >= sval) 8815 return 0; 8816 break; 8817 case BPF_JGE: 8818 if (reg->u32_min_value >= val) 8819 return 1; 8820 else if (reg->u32_max_value < val) 8821 return 0; 8822 break; 8823 case BPF_JSGE: 8824 if (reg->s32_min_value >= sval) 8825 return 1; 8826 else if (reg->s32_max_value < sval) 8827 return 0; 8828 break; 8829 case BPF_JLE: 8830 if (reg->u32_max_value <= val) 8831 return 1; 8832 else if (reg->u32_min_value > val) 8833 return 0; 8834 break; 8835 case BPF_JSLE: 8836 if (reg->s32_max_value <= sval) 8837 return 1; 8838 else if (reg->s32_min_value > sval) 8839 return 0; 8840 break; 8841 } 8842 8843 return -1; 8844 } 8845 8846 8847 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8848 { 8849 s64 sval = (s64)val; 8850 8851 switch (opcode) { 8852 case BPF_JEQ: 8853 if (tnum_is_const(reg->var_off)) 8854 return !!tnum_equals_const(reg->var_off, val); 8855 break; 8856 case BPF_JNE: 8857 if (tnum_is_const(reg->var_off)) 8858 return !tnum_equals_const(reg->var_off, val); 8859 break; 8860 case BPF_JSET: 8861 if ((~reg->var_off.mask & reg->var_off.value) & val) 8862 return 1; 8863 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8864 return 0; 8865 break; 8866 case BPF_JGT: 8867 if (reg->umin_value > val) 8868 return 1; 8869 else if (reg->umax_value <= val) 8870 return 0; 8871 break; 8872 case BPF_JSGT: 8873 if (reg->smin_value > sval) 8874 return 1; 8875 else if (reg->smax_value <= sval) 8876 return 0; 8877 break; 8878 case BPF_JLT: 8879 if (reg->umax_value < val) 8880 return 1; 8881 else if (reg->umin_value >= val) 8882 return 0; 8883 break; 8884 case BPF_JSLT: 8885 if (reg->smax_value < sval) 8886 return 1; 8887 else if (reg->smin_value >= sval) 8888 return 0; 8889 break; 8890 case BPF_JGE: 8891 if (reg->umin_value >= val) 8892 return 1; 8893 else if (reg->umax_value < val) 8894 return 0; 8895 break; 8896 case BPF_JSGE: 8897 if (reg->smin_value >= sval) 8898 return 1; 8899 else if (reg->smax_value < sval) 8900 return 0; 8901 break; 8902 case BPF_JLE: 8903 if (reg->umax_value <= val) 8904 return 1; 8905 else if (reg->umin_value > val) 8906 return 0; 8907 break; 8908 case BPF_JSLE: 8909 if (reg->smax_value <= sval) 8910 return 1; 8911 else if (reg->smin_value > sval) 8912 return 0; 8913 break; 8914 } 8915 8916 return -1; 8917 } 8918 8919 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8920 * and return: 8921 * 1 - branch will be taken and "goto target" will be executed 8922 * 0 - branch will not be taken and fall-through to next insn 8923 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8924 * range [0,10] 8925 */ 8926 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8927 bool is_jmp32) 8928 { 8929 if (__is_pointer_value(false, reg)) { 8930 if (!reg_type_not_null(reg->type)) 8931 return -1; 8932 8933 /* If pointer is valid tests against zero will fail so we can 8934 * use this to direct branch taken. 8935 */ 8936 if (val != 0) 8937 return -1; 8938 8939 switch (opcode) { 8940 case BPF_JEQ: 8941 return 0; 8942 case BPF_JNE: 8943 return 1; 8944 default: 8945 return -1; 8946 } 8947 } 8948 8949 if (is_jmp32) 8950 return is_branch32_taken(reg, val, opcode); 8951 return is_branch64_taken(reg, val, opcode); 8952 } 8953 8954 static int flip_opcode(u32 opcode) 8955 { 8956 /* How can we transform "a <op> b" into "b <op> a"? */ 8957 static const u8 opcode_flip[16] = { 8958 /* these stay the same */ 8959 [BPF_JEQ >> 4] = BPF_JEQ, 8960 [BPF_JNE >> 4] = BPF_JNE, 8961 [BPF_JSET >> 4] = BPF_JSET, 8962 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8963 [BPF_JGE >> 4] = BPF_JLE, 8964 [BPF_JGT >> 4] = BPF_JLT, 8965 [BPF_JLE >> 4] = BPF_JGE, 8966 [BPF_JLT >> 4] = BPF_JGT, 8967 [BPF_JSGE >> 4] = BPF_JSLE, 8968 [BPF_JSGT >> 4] = BPF_JSLT, 8969 [BPF_JSLE >> 4] = BPF_JSGE, 8970 [BPF_JSLT >> 4] = BPF_JSGT 8971 }; 8972 return opcode_flip[opcode >> 4]; 8973 } 8974 8975 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8976 struct bpf_reg_state *src_reg, 8977 u8 opcode) 8978 { 8979 struct bpf_reg_state *pkt; 8980 8981 if (src_reg->type == PTR_TO_PACKET_END) { 8982 pkt = dst_reg; 8983 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8984 pkt = src_reg; 8985 opcode = flip_opcode(opcode); 8986 } else { 8987 return -1; 8988 } 8989 8990 if (pkt->range >= 0) 8991 return -1; 8992 8993 switch (opcode) { 8994 case BPF_JLE: 8995 /* pkt <= pkt_end */ 8996 fallthrough; 8997 case BPF_JGT: 8998 /* pkt > pkt_end */ 8999 if (pkt->range == BEYOND_PKT_END) 9000 /* pkt has at last one extra byte beyond pkt_end */ 9001 return opcode == BPF_JGT; 9002 break; 9003 case BPF_JLT: 9004 /* pkt < pkt_end */ 9005 fallthrough; 9006 case BPF_JGE: 9007 /* pkt >= pkt_end */ 9008 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9009 return opcode == BPF_JGE; 9010 break; 9011 } 9012 return -1; 9013 } 9014 9015 /* Adjusts the register min/max values in the case that the dst_reg is the 9016 * variable register that we are working on, and src_reg is a constant or we're 9017 * simply doing a BPF_K check. 9018 * In JEQ/JNE cases we also adjust the var_off values. 9019 */ 9020 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9021 struct bpf_reg_state *false_reg, 9022 u64 val, u32 val32, 9023 u8 opcode, bool is_jmp32) 9024 { 9025 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9026 struct tnum false_64off = false_reg->var_off; 9027 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9028 struct tnum true_64off = true_reg->var_off; 9029 s64 sval = (s64)val; 9030 s32 sval32 = (s32)val32; 9031 9032 /* If the dst_reg is a pointer, we can't learn anything about its 9033 * variable offset from the compare (unless src_reg were a pointer into 9034 * the same object, but we don't bother with that. 9035 * Since false_reg and true_reg have the same type by construction, we 9036 * only need to check one of them for pointerness. 9037 */ 9038 if (__is_pointer_value(false, false_reg)) 9039 return; 9040 9041 switch (opcode) { 9042 case BPF_JEQ: 9043 case BPF_JNE: 9044 { 9045 struct bpf_reg_state *reg = 9046 opcode == BPF_JEQ ? true_reg : false_reg; 9047 9048 /* JEQ/JNE comparison doesn't change the register equivalence. 9049 * r1 = r2; 9050 * if (r1 == 42) goto label; 9051 * ... 9052 * label: // here both r1 and r2 are known to be 42. 9053 * 9054 * Hence when marking register as known preserve it's ID. 9055 */ 9056 if (is_jmp32) 9057 __mark_reg32_known(reg, val32); 9058 else 9059 ___mark_reg_known(reg, val); 9060 break; 9061 } 9062 case BPF_JSET: 9063 if (is_jmp32) { 9064 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9065 if (is_power_of_2(val32)) 9066 true_32off = tnum_or(true_32off, 9067 tnum_const(val32)); 9068 } else { 9069 false_64off = tnum_and(false_64off, tnum_const(~val)); 9070 if (is_power_of_2(val)) 9071 true_64off = tnum_or(true_64off, 9072 tnum_const(val)); 9073 } 9074 break; 9075 case BPF_JGE: 9076 case BPF_JGT: 9077 { 9078 if (is_jmp32) { 9079 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9080 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9081 9082 false_reg->u32_max_value = min(false_reg->u32_max_value, 9083 false_umax); 9084 true_reg->u32_min_value = max(true_reg->u32_min_value, 9085 true_umin); 9086 } else { 9087 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9088 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9089 9090 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9091 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9092 } 9093 break; 9094 } 9095 case BPF_JSGE: 9096 case BPF_JSGT: 9097 { 9098 if (is_jmp32) { 9099 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9100 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9101 9102 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9103 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9104 } else { 9105 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9106 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9107 9108 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9109 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9110 } 9111 break; 9112 } 9113 case BPF_JLE: 9114 case BPF_JLT: 9115 { 9116 if (is_jmp32) { 9117 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9118 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9119 9120 false_reg->u32_min_value = max(false_reg->u32_min_value, 9121 false_umin); 9122 true_reg->u32_max_value = min(true_reg->u32_max_value, 9123 true_umax); 9124 } else { 9125 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9126 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9127 9128 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9129 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9130 } 9131 break; 9132 } 9133 case BPF_JSLE: 9134 case BPF_JSLT: 9135 { 9136 if (is_jmp32) { 9137 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9138 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9139 9140 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9141 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9142 } else { 9143 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9144 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9145 9146 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9147 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9148 } 9149 break; 9150 } 9151 default: 9152 return; 9153 } 9154 9155 if (is_jmp32) { 9156 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9157 tnum_subreg(false_32off)); 9158 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9159 tnum_subreg(true_32off)); 9160 __reg_combine_32_into_64(false_reg); 9161 __reg_combine_32_into_64(true_reg); 9162 } else { 9163 false_reg->var_off = false_64off; 9164 true_reg->var_off = true_64off; 9165 __reg_combine_64_into_32(false_reg); 9166 __reg_combine_64_into_32(true_reg); 9167 } 9168 } 9169 9170 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9171 * the variable reg. 9172 */ 9173 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9174 struct bpf_reg_state *false_reg, 9175 u64 val, u32 val32, 9176 u8 opcode, bool is_jmp32) 9177 { 9178 opcode = flip_opcode(opcode); 9179 /* This uses zero as "not present in table"; luckily the zero opcode, 9180 * BPF_JA, can't get here. 9181 */ 9182 if (opcode) 9183 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9184 } 9185 9186 /* Regs are known to be equal, so intersect their min/max/var_off */ 9187 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9188 struct bpf_reg_state *dst_reg) 9189 { 9190 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9191 dst_reg->umin_value); 9192 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9193 dst_reg->umax_value); 9194 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9195 dst_reg->smin_value); 9196 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9197 dst_reg->smax_value); 9198 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9199 dst_reg->var_off); 9200 /* We might have learned new bounds from the var_off. */ 9201 __update_reg_bounds(src_reg); 9202 __update_reg_bounds(dst_reg); 9203 /* We might have learned something about the sign bit. */ 9204 __reg_deduce_bounds(src_reg); 9205 __reg_deduce_bounds(dst_reg); 9206 /* We might have learned some bits from the bounds. */ 9207 __reg_bound_offset(src_reg); 9208 __reg_bound_offset(dst_reg); 9209 /* Intersecting with the old var_off might have improved our bounds 9210 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 9211 * then new var_off is (0; 0x7f...fc) which improves our umax. 9212 */ 9213 __update_reg_bounds(src_reg); 9214 __update_reg_bounds(dst_reg); 9215 } 9216 9217 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9218 struct bpf_reg_state *true_dst, 9219 struct bpf_reg_state *false_src, 9220 struct bpf_reg_state *false_dst, 9221 u8 opcode) 9222 { 9223 switch (opcode) { 9224 case BPF_JEQ: 9225 __reg_combine_min_max(true_src, true_dst); 9226 break; 9227 case BPF_JNE: 9228 __reg_combine_min_max(false_src, false_dst); 9229 break; 9230 } 9231 } 9232 9233 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9234 struct bpf_reg_state *reg, u32 id, 9235 bool is_null) 9236 { 9237 if (type_may_be_null(reg->type) && reg->id == id && 9238 !WARN_ON_ONCE(!reg->id)) { 9239 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9240 !tnum_equals_const(reg->var_off, 0) || 9241 reg->off)) { 9242 /* Old offset (both fixed and variable parts) should 9243 * have been known-zero, because we don't allow pointer 9244 * arithmetic on pointers that might be NULL. If we 9245 * see this happening, don't convert the register. 9246 */ 9247 return; 9248 } 9249 if (is_null) { 9250 reg->type = SCALAR_VALUE; 9251 /* We don't need id and ref_obj_id from this point 9252 * onwards anymore, thus we should better reset it, 9253 * so that state pruning has chances to take effect. 9254 */ 9255 reg->id = 0; 9256 reg->ref_obj_id = 0; 9257 9258 return; 9259 } 9260 9261 mark_ptr_not_null_reg(reg); 9262 9263 if (!reg_may_point_to_spin_lock(reg)) { 9264 /* For not-NULL ptr, reg->ref_obj_id will be reset 9265 * in release_reg_references(). 9266 * 9267 * reg->id is still used by spin_lock ptr. Other 9268 * than spin_lock ptr type, reg->id can be reset. 9269 */ 9270 reg->id = 0; 9271 } 9272 } 9273 } 9274 9275 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9276 bool is_null) 9277 { 9278 struct bpf_reg_state *reg; 9279 int i; 9280 9281 for (i = 0; i < MAX_BPF_REG; i++) 9282 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9283 9284 bpf_for_each_spilled_reg(i, state, reg) { 9285 if (!reg) 9286 continue; 9287 mark_ptr_or_null_reg(state, reg, id, is_null); 9288 } 9289 } 9290 9291 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9292 * be folded together at some point. 9293 */ 9294 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9295 bool is_null) 9296 { 9297 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9298 struct bpf_reg_state *regs = state->regs; 9299 u32 ref_obj_id = regs[regno].ref_obj_id; 9300 u32 id = regs[regno].id; 9301 int i; 9302 9303 if (ref_obj_id && ref_obj_id == id && is_null) 9304 /* regs[regno] is in the " == NULL" branch. 9305 * No one could have freed the reference state before 9306 * doing the NULL check. 9307 */ 9308 WARN_ON_ONCE(release_reference_state(state, id)); 9309 9310 for (i = 0; i <= vstate->curframe; i++) 9311 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9312 } 9313 9314 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9315 struct bpf_reg_state *dst_reg, 9316 struct bpf_reg_state *src_reg, 9317 struct bpf_verifier_state *this_branch, 9318 struct bpf_verifier_state *other_branch) 9319 { 9320 if (BPF_SRC(insn->code) != BPF_X) 9321 return false; 9322 9323 /* Pointers are always 64-bit. */ 9324 if (BPF_CLASS(insn->code) == BPF_JMP32) 9325 return false; 9326 9327 switch (BPF_OP(insn->code)) { 9328 case BPF_JGT: 9329 if ((dst_reg->type == PTR_TO_PACKET && 9330 src_reg->type == PTR_TO_PACKET_END) || 9331 (dst_reg->type == PTR_TO_PACKET_META && 9332 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9333 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9334 find_good_pkt_pointers(this_branch, dst_reg, 9335 dst_reg->type, false); 9336 mark_pkt_end(other_branch, insn->dst_reg, true); 9337 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9338 src_reg->type == PTR_TO_PACKET) || 9339 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9340 src_reg->type == PTR_TO_PACKET_META)) { 9341 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9342 find_good_pkt_pointers(other_branch, src_reg, 9343 src_reg->type, true); 9344 mark_pkt_end(this_branch, insn->src_reg, false); 9345 } else { 9346 return false; 9347 } 9348 break; 9349 case BPF_JLT: 9350 if ((dst_reg->type == PTR_TO_PACKET && 9351 src_reg->type == PTR_TO_PACKET_END) || 9352 (dst_reg->type == PTR_TO_PACKET_META && 9353 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9354 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9355 find_good_pkt_pointers(other_branch, dst_reg, 9356 dst_reg->type, true); 9357 mark_pkt_end(this_branch, insn->dst_reg, false); 9358 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9359 src_reg->type == PTR_TO_PACKET) || 9360 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9361 src_reg->type == PTR_TO_PACKET_META)) { 9362 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9363 find_good_pkt_pointers(this_branch, src_reg, 9364 src_reg->type, false); 9365 mark_pkt_end(other_branch, insn->src_reg, true); 9366 } else { 9367 return false; 9368 } 9369 break; 9370 case BPF_JGE: 9371 if ((dst_reg->type == PTR_TO_PACKET && 9372 src_reg->type == PTR_TO_PACKET_END) || 9373 (dst_reg->type == PTR_TO_PACKET_META && 9374 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9375 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9376 find_good_pkt_pointers(this_branch, dst_reg, 9377 dst_reg->type, true); 9378 mark_pkt_end(other_branch, insn->dst_reg, false); 9379 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9380 src_reg->type == PTR_TO_PACKET) || 9381 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9382 src_reg->type == PTR_TO_PACKET_META)) { 9383 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9384 find_good_pkt_pointers(other_branch, src_reg, 9385 src_reg->type, false); 9386 mark_pkt_end(this_branch, insn->src_reg, true); 9387 } else { 9388 return false; 9389 } 9390 break; 9391 case BPF_JLE: 9392 if ((dst_reg->type == PTR_TO_PACKET && 9393 src_reg->type == PTR_TO_PACKET_END) || 9394 (dst_reg->type == PTR_TO_PACKET_META && 9395 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9396 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9397 find_good_pkt_pointers(other_branch, dst_reg, 9398 dst_reg->type, false); 9399 mark_pkt_end(this_branch, insn->dst_reg, true); 9400 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9401 src_reg->type == PTR_TO_PACKET) || 9402 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9403 src_reg->type == PTR_TO_PACKET_META)) { 9404 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9405 find_good_pkt_pointers(this_branch, src_reg, 9406 src_reg->type, true); 9407 mark_pkt_end(other_branch, insn->src_reg, false); 9408 } else { 9409 return false; 9410 } 9411 break; 9412 default: 9413 return false; 9414 } 9415 9416 return true; 9417 } 9418 9419 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9420 struct bpf_reg_state *known_reg) 9421 { 9422 struct bpf_func_state *state; 9423 struct bpf_reg_state *reg; 9424 int i, j; 9425 9426 for (i = 0; i <= vstate->curframe; i++) { 9427 state = vstate->frame[i]; 9428 for (j = 0; j < MAX_BPF_REG; j++) { 9429 reg = &state->regs[j]; 9430 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9431 *reg = *known_reg; 9432 } 9433 9434 bpf_for_each_spilled_reg(j, state, reg) { 9435 if (!reg) 9436 continue; 9437 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9438 *reg = *known_reg; 9439 } 9440 } 9441 } 9442 9443 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9444 struct bpf_insn *insn, int *insn_idx) 9445 { 9446 struct bpf_verifier_state *this_branch = env->cur_state; 9447 struct bpf_verifier_state *other_branch; 9448 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9449 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9450 u8 opcode = BPF_OP(insn->code); 9451 bool is_jmp32; 9452 int pred = -1; 9453 int err; 9454 9455 /* Only conditional jumps are expected to reach here. */ 9456 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9457 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9458 return -EINVAL; 9459 } 9460 9461 if (BPF_SRC(insn->code) == BPF_X) { 9462 if (insn->imm != 0) { 9463 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9464 return -EINVAL; 9465 } 9466 9467 /* check src1 operand */ 9468 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9469 if (err) 9470 return err; 9471 9472 if (is_pointer_value(env, insn->src_reg)) { 9473 verbose(env, "R%d pointer comparison prohibited\n", 9474 insn->src_reg); 9475 return -EACCES; 9476 } 9477 src_reg = ®s[insn->src_reg]; 9478 } else { 9479 if (insn->src_reg != BPF_REG_0) { 9480 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9481 return -EINVAL; 9482 } 9483 } 9484 9485 /* check src2 operand */ 9486 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9487 if (err) 9488 return err; 9489 9490 dst_reg = ®s[insn->dst_reg]; 9491 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9492 9493 if (BPF_SRC(insn->code) == BPF_K) { 9494 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9495 } else if (src_reg->type == SCALAR_VALUE && 9496 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9497 pred = is_branch_taken(dst_reg, 9498 tnum_subreg(src_reg->var_off).value, 9499 opcode, 9500 is_jmp32); 9501 } else if (src_reg->type == SCALAR_VALUE && 9502 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9503 pred = is_branch_taken(dst_reg, 9504 src_reg->var_off.value, 9505 opcode, 9506 is_jmp32); 9507 } else if (reg_is_pkt_pointer_any(dst_reg) && 9508 reg_is_pkt_pointer_any(src_reg) && 9509 !is_jmp32) { 9510 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9511 } 9512 9513 if (pred >= 0) { 9514 /* If we get here with a dst_reg pointer type it is because 9515 * above is_branch_taken() special cased the 0 comparison. 9516 */ 9517 if (!__is_pointer_value(false, dst_reg)) 9518 err = mark_chain_precision(env, insn->dst_reg); 9519 if (BPF_SRC(insn->code) == BPF_X && !err && 9520 !__is_pointer_value(false, src_reg)) 9521 err = mark_chain_precision(env, insn->src_reg); 9522 if (err) 9523 return err; 9524 } 9525 9526 if (pred == 1) { 9527 /* Only follow the goto, ignore fall-through. If needed, push 9528 * the fall-through branch for simulation under speculative 9529 * execution. 9530 */ 9531 if (!env->bypass_spec_v1 && 9532 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9533 *insn_idx)) 9534 return -EFAULT; 9535 *insn_idx += insn->off; 9536 return 0; 9537 } else if (pred == 0) { 9538 /* Only follow the fall-through branch, since that's where the 9539 * program will go. If needed, push the goto branch for 9540 * simulation under speculative execution. 9541 */ 9542 if (!env->bypass_spec_v1 && 9543 !sanitize_speculative_path(env, insn, 9544 *insn_idx + insn->off + 1, 9545 *insn_idx)) 9546 return -EFAULT; 9547 return 0; 9548 } 9549 9550 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9551 false); 9552 if (!other_branch) 9553 return -EFAULT; 9554 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9555 9556 /* detect if we are comparing against a constant value so we can adjust 9557 * our min/max values for our dst register. 9558 * this is only legit if both are scalars (or pointers to the same 9559 * object, I suppose, but we don't support that right now), because 9560 * otherwise the different base pointers mean the offsets aren't 9561 * comparable. 9562 */ 9563 if (BPF_SRC(insn->code) == BPF_X) { 9564 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9565 9566 if (dst_reg->type == SCALAR_VALUE && 9567 src_reg->type == SCALAR_VALUE) { 9568 if (tnum_is_const(src_reg->var_off) || 9569 (is_jmp32 && 9570 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9571 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9572 dst_reg, 9573 src_reg->var_off.value, 9574 tnum_subreg(src_reg->var_off).value, 9575 opcode, is_jmp32); 9576 else if (tnum_is_const(dst_reg->var_off) || 9577 (is_jmp32 && 9578 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9579 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9580 src_reg, 9581 dst_reg->var_off.value, 9582 tnum_subreg(dst_reg->var_off).value, 9583 opcode, is_jmp32); 9584 else if (!is_jmp32 && 9585 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9586 /* Comparing for equality, we can combine knowledge */ 9587 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9588 &other_branch_regs[insn->dst_reg], 9589 src_reg, dst_reg, opcode); 9590 if (src_reg->id && 9591 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9592 find_equal_scalars(this_branch, src_reg); 9593 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9594 } 9595 9596 } 9597 } else if (dst_reg->type == SCALAR_VALUE) { 9598 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9599 dst_reg, insn->imm, (u32)insn->imm, 9600 opcode, is_jmp32); 9601 } 9602 9603 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9604 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9605 find_equal_scalars(this_branch, dst_reg); 9606 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9607 } 9608 9609 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9610 * NOTE: these optimizations below are related with pointer comparison 9611 * which will never be JMP32. 9612 */ 9613 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9614 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9615 type_may_be_null(dst_reg->type)) { 9616 /* Mark all identical registers in each branch as either 9617 * safe or unknown depending R == 0 or R != 0 conditional. 9618 */ 9619 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9620 opcode == BPF_JNE); 9621 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9622 opcode == BPF_JEQ); 9623 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9624 this_branch, other_branch) && 9625 is_pointer_value(env, insn->dst_reg)) { 9626 verbose(env, "R%d pointer comparison prohibited\n", 9627 insn->dst_reg); 9628 return -EACCES; 9629 } 9630 if (env->log.level & BPF_LOG_LEVEL) 9631 print_insn_state(env, this_branch->frame[this_branch->curframe]); 9632 return 0; 9633 } 9634 9635 /* verify BPF_LD_IMM64 instruction */ 9636 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9637 { 9638 struct bpf_insn_aux_data *aux = cur_aux(env); 9639 struct bpf_reg_state *regs = cur_regs(env); 9640 struct bpf_reg_state *dst_reg; 9641 struct bpf_map *map; 9642 int err; 9643 9644 if (BPF_SIZE(insn->code) != BPF_DW) { 9645 verbose(env, "invalid BPF_LD_IMM insn\n"); 9646 return -EINVAL; 9647 } 9648 if (insn->off != 0) { 9649 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9650 return -EINVAL; 9651 } 9652 9653 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9654 if (err) 9655 return err; 9656 9657 dst_reg = ®s[insn->dst_reg]; 9658 if (insn->src_reg == 0) { 9659 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9660 9661 dst_reg->type = SCALAR_VALUE; 9662 __mark_reg_known(®s[insn->dst_reg], imm); 9663 return 0; 9664 } 9665 9666 /* All special src_reg cases are listed below. From this point onwards 9667 * we either succeed and assign a corresponding dst_reg->type after 9668 * zeroing the offset, or fail and reject the program. 9669 */ 9670 mark_reg_known_zero(env, regs, insn->dst_reg); 9671 9672 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9673 dst_reg->type = aux->btf_var.reg_type; 9674 switch (base_type(dst_reg->type)) { 9675 case PTR_TO_MEM: 9676 dst_reg->mem_size = aux->btf_var.mem_size; 9677 break; 9678 case PTR_TO_BTF_ID: 9679 dst_reg->btf = aux->btf_var.btf; 9680 dst_reg->btf_id = aux->btf_var.btf_id; 9681 break; 9682 default: 9683 verbose(env, "bpf verifier is misconfigured\n"); 9684 return -EFAULT; 9685 } 9686 return 0; 9687 } 9688 9689 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9690 struct bpf_prog_aux *aux = env->prog->aux; 9691 u32 subprogno = find_subprog(env, 9692 env->insn_idx + insn->imm + 1); 9693 9694 if (!aux->func_info) { 9695 verbose(env, "missing btf func_info\n"); 9696 return -EINVAL; 9697 } 9698 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9699 verbose(env, "callback function not static\n"); 9700 return -EINVAL; 9701 } 9702 9703 dst_reg->type = PTR_TO_FUNC; 9704 dst_reg->subprogno = subprogno; 9705 return 0; 9706 } 9707 9708 map = env->used_maps[aux->map_index]; 9709 dst_reg->map_ptr = map; 9710 9711 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9712 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9713 dst_reg->type = PTR_TO_MAP_VALUE; 9714 dst_reg->off = aux->map_off; 9715 if (map_value_has_spin_lock(map)) 9716 dst_reg->id = ++env->id_gen; 9717 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9718 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9719 dst_reg->type = CONST_PTR_TO_MAP; 9720 } else { 9721 verbose(env, "bpf verifier is misconfigured\n"); 9722 return -EINVAL; 9723 } 9724 9725 return 0; 9726 } 9727 9728 static bool may_access_skb(enum bpf_prog_type type) 9729 { 9730 switch (type) { 9731 case BPF_PROG_TYPE_SOCKET_FILTER: 9732 case BPF_PROG_TYPE_SCHED_CLS: 9733 case BPF_PROG_TYPE_SCHED_ACT: 9734 return true; 9735 default: 9736 return false; 9737 } 9738 } 9739 9740 /* verify safety of LD_ABS|LD_IND instructions: 9741 * - they can only appear in the programs where ctx == skb 9742 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9743 * preserve R6-R9, and store return value into R0 9744 * 9745 * Implicit input: 9746 * ctx == skb == R6 == CTX 9747 * 9748 * Explicit input: 9749 * SRC == any register 9750 * IMM == 32-bit immediate 9751 * 9752 * Output: 9753 * R0 - 8/16/32-bit skb data converted to cpu endianness 9754 */ 9755 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9756 { 9757 struct bpf_reg_state *regs = cur_regs(env); 9758 static const int ctx_reg = BPF_REG_6; 9759 u8 mode = BPF_MODE(insn->code); 9760 int i, err; 9761 9762 if (!may_access_skb(resolve_prog_type(env->prog))) { 9763 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9764 return -EINVAL; 9765 } 9766 9767 if (!env->ops->gen_ld_abs) { 9768 verbose(env, "bpf verifier is misconfigured\n"); 9769 return -EINVAL; 9770 } 9771 9772 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9773 BPF_SIZE(insn->code) == BPF_DW || 9774 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9775 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9776 return -EINVAL; 9777 } 9778 9779 /* check whether implicit source operand (register R6) is readable */ 9780 err = check_reg_arg(env, ctx_reg, SRC_OP); 9781 if (err) 9782 return err; 9783 9784 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9785 * gen_ld_abs() may terminate the program at runtime, leading to 9786 * reference leak. 9787 */ 9788 err = check_reference_leak(env); 9789 if (err) { 9790 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9791 return err; 9792 } 9793 9794 if (env->cur_state->active_spin_lock) { 9795 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9796 return -EINVAL; 9797 } 9798 9799 if (regs[ctx_reg].type != PTR_TO_CTX) { 9800 verbose(env, 9801 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9802 return -EINVAL; 9803 } 9804 9805 if (mode == BPF_IND) { 9806 /* check explicit source operand */ 9807 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9808 if (err) 9809 return err; 9810 } 9811 9812 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 9813 if (err < 0) 9814 return err; 9815 9816 /* reset caller saved regs to unreadable */ 9817 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9818 mark_reg_not_init(env, regs, caller_saved[i]); 9819 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9820 } 9821 9822 /* mark destination R0 register as readable, since it contains 9823 * the value fetched from the packet. 9824 * Already marked as written above. 9825 */ 9826 mark_reg_unknown(env, regs, BPF_REG_0); 9827 /* ld_abs load up to 32-bit skb data. */ 9828 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9829 return 0; 9830 } 9831 9832 static int check_return_code(struct bpf_verifier_env *env) 9833 { 9834 struct tnum enforce_attach_type_range = tnum_unknown; 9835 const struct bpf_prog *prog = env->prog; 9836 struct bpf_reg_state *reg; 9837 struct tnum range = tnum_range(0, 1); 9838 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9839 int err; 9840 struct bpf_func_state *frame = env->cur_state->frame[0]; 9841 const bool is_subprog = frame->subprogno; 9842 9843 /* LSM and struct_ops func-ptr's return type could be "void" */ 9844 if (!is_subprog && 9845 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9846 prog_type == BPF_PROG_TYPE_LSM) && 9847 !prog->aux->attach_func_proto->type) 9848 return 0; 9849 9850 /* eBPF calling convention is such that R0 is used 9851 * to return the value from eBPF program. 9852 * Make sure that it's readable at this time 9853 * of bpf_exit, which means that program wrote 9854 * something into it earlier 9855 */ 9856 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9857 if (err) 9858 return err; 9859 9860 if (is_pointer_value(env, BPF_REG_0)) { 9861 verbose(env, "R0 leaks addr as return value\n"); 9862 return -EACCES; 9863 } 9864 9865 reg = cur_regs(env) + BPF_REG_0; 9866 9867 if (frame->in_async_callback_fn) { 9868 /* enforce return zero from async callbacks like timer */ 9869 if (reg->type != SCALAR_VALUE) { 9870 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9871 reg_type_str(env, reg->type)); 9872 return -EINVAL; 9873 } 9874 9875 if (!tnum_in(tnum_const(0), reg->var_off)) { 9876 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9877 return -EINVAL; 9878 } 9879 return 0; 9880 } 9881 9882 if (is_subprog) { 9883 if (reg->type != SCALAR_VALUE) { 9884 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9885 reg_type_str(env, reg->type)); 9886 return -EINVAL; 9887 } 9888 return 0; 9889 } 9890 9891 switch (prog_type) { 9892 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9893 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9894 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9895 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9896 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9897 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9898 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9899 range = tnum_range(1, 1); 9900 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9901 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9902 range = tnum_range(0, 3); 9903 break; 9904 case BPF_PROG_TYPE_CGROUP_SKB: 9905 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9906 range = tnum_range(0, 3); 9907 enforce_attach_type_range = tnum_range(2, 3); 9908 } 9909 break; 9910 case BPF_PROG_TYPE_CGROUP_SOCK: 9911 case BPF_PROG_TYPE_SOCK_OPS: 9912 case BPF_PROG_TYPE_CGROUP_DEVICE: 9913 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9914 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9915 break; 9916 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9917 if (!env->prog->aux->attach_btf_id) 9918 return 0; 9919 range = tnum_const(0); 9920 break; 9921 case BPF_PROG_TYPE_TRACING: 9922 switch (env->prog->expected_attach_type) { 9923 case BPF_TRACE_FENTRY: 9924 case BPF_TRACE_FEXIT: 9925 range = tnum_const(0); 9926 break; 9927 case BPF_TRACE_RAW_TP: 9928 case BPF_MODIFY_RETURN: 9929 return 0; 9930 case BPF_TRACE_ITER: 9931 break; 9932 default: 9933 return -ENOTSUPP; 9934 } 9935 break; 9936 case BPF_PROG_TYPE_SK_LOOKUP: 9937 range = tnum_range(SK_DROP, SK_PASS); 9938 break; 9939 case BPF_PROG_TYPE_EXT: 9940 /* freplace program can return anything as its return value 9941 * depends on the to-be-replaced kernel func or bpf program. 9942 */ 9943 default: 9944 return 0; 9945 } 9946 9947 if (reg->type != SCALAR_VALUE) { 9948 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9949 reg_type_str(env, reg->type)); 9950 return -EINVAL; 9951 } 9952 9953 if (!tnum_in(range, reg->var_off)) { 9954 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9955 return -EINVAL; 9956 } 9957 9958 if (!tnum_is_unknown(enforce_attach_type_range) && 9959 tnum_in(enforce_attach_type_range, reg->var_off)) 9960 env->prog->enforce_expected_attach_type = 1; 9961 return 0; 9962 } 9963 9964 /* non-recursive DFS pseudo code 9965 * 1 procedure DFS-iterative(G,v): 9966 * 2 label v as discovered 9967 * 3 let S be a stack 9968 * 4 S.push(v) 9969 * 5 while S is not empty 9970 * 6 t <- S.pop() 9971 * 7 if t is what we're looking for: 9972 * 8 return t 9973 * 9 for all edges e in G.adjacentEdges(t) do 9974 * 10 if edge e is already labelled 9975 * 11 continue with the next edge 9976 * 12 w <- G.adjacentVertex(t,e) 9977 * 13 if vertex w is not discovered and not explored 9978 * 14 label e as tree-edge 9979 * 15 label w as discovered 9980 * 16 S.push(w) 9981 * 17 continue at 5 9982 * 18 else if vertex w is discovered 9983 * 19 label e as back-edge 9984 * 20 else 9985 * 21 // vertex w is explored 9986 * 22 label e as forward- or cross-edge 9987 * 23 label t as explored 9988 * 24 S.pop() 9989 * 9990 * convention: 9991 * 0x10 - discovered 9992 * 0x11 - discovered and fall-through edge labelled 9993 * 0x12 - discovered and fall-through and branch edges labelled 9994 * 0x20 - explored 9995 */ 9996 9997 enum { 9998 DISCOVERED = 0x10, 9999 EXPLORED = 0x20, 10000 FALLTHROUGH = 1, 10001 BRANCH = 2, 10002 }; 10003 10004 static u32 state_htab_size(struct bpf_verifier_env *env) 10005 { 10006 return env->prog->len; 10007 } 10008 10009 static struct bpf_verifier_state_list **explored_state( 10010 struct bpf_verifier_env *env, 10011 int idx) 10012 { 10013 struct bpf_verifier_state *cur = env->cur_state; 10014 struct bpf_func_state *state = cur->frame[cur->curframe]; 10015 10016 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10017 } 10018 10019 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10020 { 10021 env->insn_aux_data[idx].prune_point = true; 10022 } 10023 10024 enum { 10025 DONE_EXPLORING = 0, 10026 KEEP_EXPLORING = 1, 10027 }; 10028 10029 /* t, w, e - match pseudo-code above: 10030 * t - index of current instruction 10031 * w - next instruction 10032 * e - edge 10033 */ 10034 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10035 bool loop_ok) 10036 { 10037 int *insn_stack = env->cfg.insn_stack; 10038 int *insn_state = env->cfg.insn_state; 10039 10040 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10041 return DONE_EXPLORING; 10042 10043 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10044 return DONE_EXPLORING; 10045 10046 if (w < 0 || w >= env->prog->len) { 10047 verbose_linfo(env, t, "%d: ", t); 10048 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10049 return -EINVAL; 10050 } 10051 10052 if (e == BRANCH) 10053 /* mark branch target for state pruning */ 10054 init_explored_state(env, w); 10055 10056 if (insn_state[w] == 0) { 10057 /* tree-edge */ 10058 insn_state[t] = DISCOVERED | e; 10059 insn_state[w] = DISCOVERED; 10060 if (env->cfg.cur_stack >= env->prog->len) 10061 return -E2BIG; 10062 insn_stack[env->cfg.cur_stack++] = w; 10063 return KEEP_EXPLORING; 10064 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10065 if (loop_ok && env->bpf_capable) 10066 return DONE_EXPLORING; 10067 verbose_linfo(env, t, "%d: ", t); 10068 verbose_linfo(env, w, "%d: ", w); 10069 verbose(env, "back-edge from insn %d to %d\n", t, w); 10070 return -EINVAL; 10071 } else if (insn_state[w] == EXPLORED) { 10072 /* forward- or cross-edge */ 10073 insn_state[t] = DISCOVERED | e; 10074 } else { 10075 verbose(env, "insn state internal bug\n"); 10076 return -EFAULT; 10077 } 10078 return DONE_EXPLORING; 10079 } 10080 10081 static int visit_func_call_insn(int t, int insn_cnt, 10082 struct bpf_insn *insns, 10083 struct bpf_verifier_env *env, 10084 bool visit_callee) 10085 { 10086 int ret; 10087 10088 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10089 if (ret) 10090 return ret; 10091 10092 if (t + 1 < insn_cnt) 10093 init_explored_state(env, t + 1); 10094 if (visit_callee) { 10095 init_explored_state(env, t); 10096 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10097 /* It's ok to allow recursion from CFG point of 10098 * view. __check_func_call() will do the actual 10099 * check. 10100 */ 10101 bpf_pseudo_func(insns + t)); 10102 } 10103 return ret; 10104 } 10105 10106 /* Visits the instruction at index t and returns one of the following: 10107 * < 0 - an error occurred 10108 * DONE_EXPLORING - the instruction was fully explored 10109 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10110 */ 10111 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10112 { 10113 struct bpf_insn *insns = env->prog->insnsi; 10114 int ret; 10115 10116 if (bpf_pseudo_func(insns + t)) 10117 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10118 10119 /* All non-branch instructions have a single fall-through edge. */ 10120 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10121 BPF_CLASS(insns[t].code) != BPF_JMP32) 10122 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10123 10124 switch (BPF_OP(insns[t].code)) { 10125 case BPF_EXIT: 10126 return DONE_EXPLORING; 10127 10128 case BPF_CALL: 10129 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10130 /* Mark this call insn to trigger is_state_visited() check 10131 * before call itself is processed by __check_func_call(). 10132 * Otherwise new async state will be pushed for further 10133 * exploration. 10134 */ 10135 init_explored_state(env, t); 10136 return visit_func_call_insn(t, insn_cnt, insns, env, 10137 insns[t].src_reg == BPF_PSEUDO_CALL); 10138 10139 case BPF_JA: 10140 if (BPF_SRC(insns[t].code) != BPF_K) 10141 return -EINVAL; 10142 10143 /* unconditional jump with single edge */ 10144 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10145 true); 10146 if (ret) 10147 return ret; 10148 10149 /* unconditional jmp is not a good pruning point, 10150 * but it's marked, since backtracking needs 10151 * to record jmp history in is_state_visited(). 10152 */ 10153 init_explored_state(env, t + insns[t].off + 1); 10154 /* tell verifier to check for equivalent states 10155 * after every call and jump 10156 */ 10157 if (t + 1 < insn_cnt) 10158 init_explored_state(env, t + 1); 10159 10160 return ret; 10161 10162 default: 10163 /* conditional jump with two edges */ 10164 init_explored_state(env, t); 10165 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10166 if (ret) 10167 return ret; 10168 10169 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10170 } 10171 } 10172 10173 /* non-recursive depth-first-search to detect loops in BPF program 10174 * loop == back-edge in directed graph 10175 */ 10176 static int check_cfg(struct bpf_verifier_env *env) 10177 { 10178 int insn_cnt = env->prog->len; 10179 int *insn_stack, *insn_state; 10180 int ret = 0; 10181 int i; 10182 10183 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10184 if (!insn_state) 10185 return -ENOMEM; 10186 10187 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10188 if (!insn_stack) { 10189 kvfree(insn_state); 10190 return -ENOMEM; 10191 } 10192 10193 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10194 insn_stack[0] = 0; /* 0 is the first instruction */ 10195 env->cfg.cur_stack = 1; 10196 10197 while (env->cfg.cur_stack > 0) { 10198 int t = insn_stack[env->cfg.cur_stack - 1]; 10199 10200 ret = visit_insn(t, insn_cnt, env); 10201 switch (ret) { 10202 case DONE_EXPLORING: 10203 insn_state[t] = EXPLORED; 10204 env->cfg.cur_stack--; 10205 break; 10206 case KEEP_EXPLORING: 10207 break; 10208 default: 10209 if (ret > 0) { 10210 verbose(env, "visit_insn internal bug\n"); 10211 ret = -EFAULT; 10212 } 10213 goto err_free; 10214 } 10215 } 10216 10217 if (env->cfg.cur_stack < 0) { 10218 verbose(env, "pop stack internal bug\n"); 10219 ret = -EFAULT; 10220 goto err_free; 10221 } 10222 10223 for (i = 0; i < insn_cnt; i++) { 10224 if (insn_state[i] != EXPLORED) { 10225 verbose(env, "unreachable insn %d\n", i); 10226 ret = -EINVAL; 10227 goto err_free; 10228 } 10229 } 10230 ret = 0; /* cfg looks good */ 10231 10232 err_free: 10233 kvfree(insn_state); 10234 kvfree(insn_stack); 10235 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10236 return ret; 10237 } 10238 10239 static int check_abnormal_return(struct bpf_verifier_env *env) 10240 { 10241 int i; 10242 10243 for (i = 1; i < env->subprog_cnt; i++) { 10244 if (env->subprog_info[i].has_ld_abs) { 10245 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10246 return -EINVAL; 10247 } 10248 if (env->subprog_info[i].has_tail_call) { 10249 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10250 return -EINVAL; 10251 } 10252 } 10253 return 0; 10254 } 10255 10256 /* The minimum supported BTF func info size */ 10257 #define MIN_BPF_FUNCINFO_SIZE 8 10258 #define MAX_FUNCINFO_REC_SIZE 252 10259 10260 static int check_btf_func(struct bpf_verifier_env *env, 10261 const union bpf_attr *attr, 10262 bpfptr_t uattr) 10263 { 10264 const struct btf_type *type, *func_proto, *ret_type; 10265 u32 i, nfuncs, urec_size, min_size; 10266 u32 krec_size = sizeof(struct bpf_func_info); 10267 struct bpf_func_info *krecord; 10268 struct bpf_func_info_aux *info_aux = NULL; 10269 struct bpf_prog *prog; 10270 const struct btf *btf; 10271 bpfptr_t urecord; 10272 u32 prev_offset = 0; 10273 bool scalar_return; 10274 int ret = -ENOMEM; 10275 10276 nfuncs = attr->func_info_cnt; 10277 if (!nfuncs) { 10278 if (check_abnormal_return(env)) 10279 return -EINVAL; 10280 return 0; 10281 } 10282 10283 if (nfuncs != env->subprog_cnt) { 10284 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10285 return -EINVAL; 10286 } 10287 10288 urec_size = attr->func_info_rec_size; 10289 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10290 urec_size > MAX_FUNCINFO_REC_SIZE || 10291 urec_size % sizeof(u32)) { 10292 verbose(env, "invalid func info rec size %u\n", urec_size); 10293 return -EINVAL; 10294 } 10295 10296 prog = env->prog; 10297 btf = prog->aux->btf; 10298 10299 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10300 min_size = min_t(u32, krec_size, urec_size); 10301 10302 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10303 if (!krecord) 10304 return -ENOMEM; 10305 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10306 if (!info_aux) 10307 goto err_free; 10308 10309 for (i = 0; i < nfuncs; i++) { 10310 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10311 if (ret) { 10312 if (ret == -E2BIG) { 10313 verbose(env, "nonzero tailing record in func info"); 10314 /* set the size kernel expects so loader can zero 10315 * out the rest of the record. 10316 */ 10317 if (copy_to_bpfptr_offset(uattr, 10318 offsetof(union bpf_attr, func_info_rec_size), 10319 &min_size, sizeof(min_size))) 10320 ret = -EFAULT; 10321 } 10322 goto err_free; 10323 } 10324 10325 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10326 ret = -EFAULT; 10327 goto err_free; 10328 } 10329 10330 /* check insn_off */ 10331 ret = -EINVAL; 10332 if (i == 0) { 10333 if (krecord[i].insn_off) { 10334 verbose(env, 10335 "nonzero insn_off %u for the first func info record", 10336 krecord[i].insn_off); 10337 goto err_free; 10338 } 10339 } else if (krecord[i].insn_off <= prev_offset) { 10340 verbose(env, 10341 "same or smaller insn offset (%u) than previous func info record (%u)", 10342 krecord[i].insn_off, prev_offset); 10343 goto err_free; 10344 } 10345 10346 if (env->subprog_info[i].start != krecord[i].insn_off) { 10347 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10348 goto err_free; 10349 } 10350 10351 /* check type_id */ 10352 type = btf_type_by_id(btf, krecord[i].type_id); 10353 if (!type || !btf_type_is_func(type)) { 10354 verbose(env, "invalid type id %d in func info", 10355 krecord[i].type_id); 10356 goto err_free; 10357 } 10358 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10359 10360 func_proto = btf_type_by_id(btf, type->type); 10361 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10362 /* btf_func_check() already verified it during BTF load */ 10363 goto err_free; 10364 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10365 scalar_return = 10366 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10367 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10368 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10369 goto err_free; 10370 } 10371 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10372 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10373 goto err_free; 10374 } 10375 10376 prev_offset = krecord[i].insn_off; 10377 bpfptr_add(&urecord, urec_size); 10378 } 10379 10380 prog->aux->func_info = krecord; 10381 prog->aux->func_info_cnt = nfuncs; 10382 prog->aux->func_info_aux = info_aux; 10383 return 0; 10384 10385 err_free: 10386 kvfree(krecord); 10387 kfree(info_aux); 10388 return ret; 10389 } 10390 10391 static void adjust_btf_func(struct bpf_verifier_env *env) 10392 { 10393 struct bpf_prog_aux *aux = env->prog->aux; 10394 int i; 10395 10396 if (!aux->func_info) 10397 return; 10398 10399 for (i = 0; i < env->subprog_cnt; i++) 10400 aux->func_info[i].insn_off = env->subprog_info[i].start; 10401 } 10402 10403 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 10404 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10405 10406 static int check_btf_line(struct bpf_verifier_env *env, 10407 const union bpf_attr *attr, 10408 bpfptr_t uattr) 10409 { 10410 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10411 struct bpf_subprog_info *sub; 10412 struct bpf_line_info *linfo; 10413 struct bpf_prog *prog; 10414 const struct btf *btf; 10415 bpfptr_t ulinfo; 10416 int err; 10417 10418 nr_linfo = attr->line_info_cnt; 10419 if (!nr_linfo) 10420 return 0; 10421 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10422 return -EINVAL; 10423 10424 rec_size = attr->line_info_rec_size; 10425 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10426 rec_size > MAX_LINEINFO_REC_SIZE || 10427 rec_size & (sizeof(u32) - 1)) 10428 return -EINVAL; 10429 10430 /* Need to zero it in case the userspace may 10431 * pass in a smaller bpf_line_info object. 10432 */ 10433 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10434 GFP_KERNEL | __GFP_NOWARN); 10435 if (!linfo) 10436 return -ENOMEM; 10437 10438 prog = env->prog; 10439 btf = prog->aux->btf; 10440 10441 s = 0; 10442 sub = env->subprog_info; 10443 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10444 expected_size = sizeof(struct bpf_line_info); 10445 ncopy = min_t(u32, expected_size, rec_size); 10446 for (i = 0; i < nr_linfo; i++) { 10447 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10448 if (err) { 10449 if (err == -E2BIG) { 10450 verbose(env, "nonzero tailing record in line_info"); 10451 if (copy_to_bpfptr_offset(uattr, 10452 offsetof(union bpf_attr, line_info_rec_size), 10453 &expected_size, sizeof(expected_size))) 10454 err = -EFAULT; 10455 } 10456 goto err_free; 10457 } 10458 10459 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10460 err = -EFAULT; 10461 goto err_free; 10462 } 10463 10464 /* 10465 * Check insn_off to ensure 10466 * 1) strictly increasing AND 10467 * 2) bounded by prog->len 10468 * 10469 * The linfo[0].insn_off == 0 check logically falls into 10470 * the later "missing bpf_line_info for func..." case 10471 * because the first linfo[0].insn_off must be the 10472 * first sub also and the first sub must have 10473 * subprog_info[0].start == 0. 10474 */ 10475 if ((i && linfo[i].insn_off <= prev_offset) || 10476 linfo[i].insn_off >= prog->len) { 10477 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10478 i, linfo[i].insn_off, prev_offset, 10479 prog->len); 10480 err = -EINVAL; 10481 goto err_free; 10482 } 10483 10484 if (!prog->insnsi[linfo[i].insn_off].code) { 10485 verbose(env, 10486 "Invalid insn code at line_info[%u].insn_off\n", 10487 i); 10488 err = -EINVAL; 10489 goto err_free; 10490 } 10491 10492 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10493 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10494 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10495 err = -EINVAL; 10496 goto err_free; 10497 } 10498 10499 if (s != env->subprog_cnt) { 10500 if (linfo[i].insn_off == sub[s].start) { 10501 sub[s].linfo_idx = i; 10502 s++; 10503 } else if (sub[s].start < linfo[i].insn_off) { 10504 verbose(env, "missing bpf_line_info for func#%u\n", s); 10505 err = -EINVAL; 10506 goto err_free; 10507 } 10508 } 10509 10510 prev_offset = linfo[i].insn_off; 10511 bpfptr_add(&ulinfo, rec_size); 10512 } 10513 10514 if (s != env->subprog_cnt) { 10515 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10516 env->subprog_cnt - s, s); 10517 err = -EINVAL; 10518 goto err_free; 10519 } 10520 10521 prog->aux->linfo = linfo; 10522 prog->aux->nr_linfo = nr_linfo; 10523 10524 return 0; 10525 10526 err_free: 10527 kvfree(linfo); 10528 return err; 10529 } 10530 10531 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 10532 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 10533 10534 static int check_core_relo(struct bpf_verifier_env *env, 10535 const union bpf_attr *attr, 10536 bpfptr_t uattr) 10537 { 10538 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 10539 struct bpf_core_relo core_relo = {}; 10540 struct bpf_prog *prog = env->prog; 10541 const struct btf *btf = prog->aux->btf; 10542 struct bpf_core_ctx ctx = { 10543 .log = &env->log, 10544 .btf = btf, 10545 }; 10546 bpfptr_t u_core_relo; 10547 int err; 10548 10549 nr_core_relo = attr->core_relo_cnt; 10550 if (!nr_core_relo) 10551 return 0; 10552 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 10553 return -EINVAL; 10554 10555 rec_size = attr->core_relo_rec_size; 10556 if (rec_size < MIN_CORE_RELO_SIZE || 10557 rec_size > MAX_CORE_RELO_SIZE || 10558 rec_size % sizeof(u32)) 10559 return -EINVAL; 10560 10561 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 10562 expected_size = sizeof(struct bpf_core_relo); 10563 ncopy = min_t(u32, expected_size, rec_size); 10564 10565 /* Unlike func_info and line_info, copy and apply each CO-RE 10566 * relocation record one at a time. 10567 */ 10568 for (i = 0; i < nr_core_relo; i++) { 10569 /* future proofing when sizeof(bpf_core_relo) changes */ 10570 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 10571 if (err) { 10572 if (err == -E2BIG) { 10573 verbose(env, "nonzero tailing record in core_relo"); 10574 if (copy_to_bpfptr_offset(uattr, 10575 offsetof(union bpf_attr, core_relo_rec_size), 10576 &expected_size, sizeof(expected_size))) 10577 err = -EFAULT; 10578 } 10579 break; 10580 } 10581 10582 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 10583 err = -EFAULT; 10584 break; 10585 } 10586 10587 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 10588 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 10589 i, core_relo.insn_off, prog->len); 10590 err = -EINVAL; 10591 break; 10592 } 10593 10594 err = bpf_core_apply(&ctx, &core_relo, i, 10595 &prog->insnsi[core_relo.insn_off / 8]); 10596 if (err) 10597 break; 10598 bpfptr_add(&u_core_relo, rec_size); 10599 } 10600 return err; 10601 } 10602 10603 static int check_btf_info(struct bpf_verifier_env *env, 10604 const union bpf_attr *attr, 10605 bpfptr_t uattr) 10606 { 10607 struct btf *btf; 10608 int err; 10609 10610 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10611 if (check_abnormal_return(env)) 10612 return -EINVAL; 10613 return 0; 10614 } 10615 10616 btf = btf_get_by_fd(attr->prog_btf_fd); 10617 if (IS_ERR(btf)) 10618 return PTR_ERR(btf); 10619 if (btf_is_kernel(btf)) { 10620 btf_put(btf); 10621 return -EACCES; 10622 } 10623 env->prog->aux->btf = btf; 10624 10625 err = check_btf_func(env, attr, uattr); 10626 if (err) 10627 return err; 10628 10629 err = check_btf_line(env, attr, uattr); 10630 if (err) 10631 return err; 10632 10633 err = check_core_relo(env, attr, uattr); 10634 if (err) 10635 return err; 10636 10637 return 0; 10638 } 10639 10640 /* check %cur's range satisfies %old's */ 10641 static bool range_within(struct bpf_reg_state *old, 10642 struct bpf_reg_state *cur) 10643 { 10644 return old->umin_value <= cur->umin_value && 10645 old->umax_value >= cur->umax_value && 10646 old->smin_value <= cur->smin_value && 10647 old->smax_value >= cur->smax_value && 10648 old->u32_min_value <= cur->u32_min_value && 10649 old->u32_max_value >= cur->u32_max_value && 10650 old->s32_min_value <= cur->s32_min_value && 10651 old->s32_max_value >= cur->s32_max_value; 10652 } 10653 10654 /* If in the old state two registers had the same id, then they need to have 10655 * the same id in the new state as well. But that id could be different from 10656 * the old state, so we need to track the mapping from old to new ids. 10657 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10658 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10659 * regs with a different old id could still have new id 9, we don't care about 10660 * that. 10661 * So we look through our idmap to see if this old id has been seen before. If 10662 * so, we require the new id to match; otherwise, we add the id pair to the map. 10663 */ 10664 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10665 { 10666 unsigned int i; 10667 10668 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10669 if (!idmap[i].old) { 10670 /* Reached an empty slot; haven't seen this id before */ 10671 idmap[i].old = old_id; 10672 idmap[i].cur = cur_id; 10673 return true; 10674 } 10675 if (idmap[i].old == old_id) 10676 return idmap[i].cur == cur_id; 10677 } 10678 /* We ran out of idmap slots, which should be impossible */ 10679 WARN_ON_ONCE(1); 10680 return false; 10681 } 10682 10683 static void clean_func_state(struct bpf_verifier_env *env, 10684 struct bpf_func_state *st) 10685 { 10686 enum bpf_reg_liveness live; 10687 int i, j; 10688 10689 for (i = 0; i < BPF_REG_FP; i++) { 10690 live = st->regs[i].live; 10691 /* liveness must not touch this register anymore */ 10692 st->regs[i].live |= REG_LIVE_DONE; 10693 if (!(live & REG_LIVE_READ)) 10694 /* since the register is unused, clear its state 10695 * to make further comparison simpler 10696 */ 10697 __mark_reg_not_init(env, &st->regs[i]); 10698 } 10699 10700 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10701 live = st->stack[i].spilled_ptr.live; 10702 /* liveness must not touch this stack slot anymore */ 10703 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10704 if (!(live & REG_LIVE_READ)) { 10705 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10706 for (j = 0; j < BPF_REG_SIZE; j++) 10707 st->stack[i].slot_type[j] = STACK_INVALID; 10708 } 10709 } 10710 } 10711 10712 static void clean_verifier_state(struct bpf_verifier_env *env, 10713 struct bpf_verifier_state *st) 10714 { 10715 int i; 10716 10717 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10718 /* all regs in this state in all frames were already marked */ 10719 return; 10720 10721 for (i = 0; i <= st->curframe; i++) 10722 clean_func_state(env, st->frame[i]); 10723 } 10724 10725 /* the parentage chains form a tree. 10726 * the verifier states are added to state lists at given insn and 10727 * pushed into state stack for future exploration. 10728 * when the verifier reaches bpf_exit insn some of the verifer states 10729 * stored in the state lists have their final liveness state already, 10730 * but a lot of states will get revised from liveness point of view when 10731 * the verifier explores other branches. 10732 * Example: 10733 * 1: r0 = 1 10734 * 2: if r1 == 100 goto pc+1 10735 * 3: r0 = 2 10736 * 4: exit 10737 * when the verifier reaches exit insn the register r0 in the state list of 10738 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10739 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10740 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10741 * 10742 * Since the verifier pushes the branch states as it sees them while exploring 10743 * the program the condition of walking the branch instruction for the second 10744 * time means that all states below this branch were already explored and 10745 * their final liveness marks are already propagated. 10746 * Hence when the verifier completes the search of state list in is_state_visited() 10747 * we can call this clean_live_states() function to mark all liveness states 10748 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10749 * will not be used. 10750 * This function also clears the registers and stack for states that !READ 10751 * to simplify state merging. 10752 * 10753 * Important note here that walking the same branch instruction in the callee 10754 * doesn't meant that the states are DONE. The verifier has to compare 10755 * the callsites 10756 */ 10757 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10758 struct bpf_verifier_state *cur) 10759 { 10760 struct bpf_verifier_state_list *sl; 10761 int i; 10762 10763 sl = *explored_state(env, insn); 10764 while (sl) { 10765 if (sl->state.branches) 10766 goto next; 10767 if (sl->state.insn_idx != insn || 10768 sl->state.curframe != cur->curframe) 10769 goto next; 10770 for (i = 0; i <= cur->curframe; i++) 10771 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10772 goto next; 10773 clean_verifier_state(env, &sl->state); 10774 next: 10775 sl = sl->next; 10776 } 10777 } 10778 10779 /* Returns true if (rold safe implies rcur safe) */ 10780 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10781 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10782 { 10783 bool equal; 10784 10785 if (!(rold->live & REG_LIVE_READ)) 10786 /* explored state didn't use this */ 10787 return true; 10788 10789 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10790 10791 if (rold->type == PTR_TO_STACK) 10792 /* two stack pointers are equal only if they're pointing to 10793 * the same stack frame, since fp-8 in foo != fp-8 in bar 10794 */ 10795 return equal && rold->frameno == rcur->frameno; 10796 10797 if (equal) 10798 return true; 10799 10800 if (rold->type == NOT_INIT) 10801 /* explored state can't have used this */ 10802 return true; 10803 if (rcur->type == NOT_INIT) 10804 return false; 10805 switch (base_type(rold->type)) { 10806 case SCALAR_VALUE: 10807 if (env->explore_alu_limits) 10808 return false; 10809 if (rcur->type == SCALAR_VALUE) { 10810 if (!rold->precise && !rcur->precise) 10811 return true; 10812 /* new val must satisfy old val knowledge */ 10813 return range_within(rold, rcur) && 10814 tnum_in(rold->var_off, rcur->var_off); 10815 } else { 10816 /* We're trying to use a pointer in place of a scalar. 10817 * Even if the scalar was unbounded, this could lead to 10818 * pointer leaks because scalars are allowed to leak 10819 * while pointers are not. We could make this safe in 10820 * special cases if root is calling us, but it's 10821 * probably not worth the hassle. 10822 */ 10823 return false; 10824 } 10825 case PTR_TO_MAP_KEY: 10826 case PTR_TO_MAP_VALUE: 10827 /* a PTR_TO_MAP_VALUE could be safe to use as a 10828 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10829 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10830 * checked, doing so could have affected others with the same 10831 * id, and we can't check for that because we lost the id when 10832 * we converted to a PTR_TO_MAP_VALUE. 10833 */ 10834 if (type_may_be_null(rold->type)) { 10835 if (!type_may_be_null(rcur->type)) 10836 return false; 10837 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10838 return false; 10839 /* Check our ids match any regs they're supposed to */ 10840 return check_ids(rold->id, rcur->id, idmap); 10841 } 10842 10843 /* If the new min/max/var_off satisfy the old ones and 10844 * everything else matches, we are OK. 10845 * 'id' is not compared, since it's only used for maps with 10846 * bpf_spin_lock inside map element and in such cases if 10847 * the rest of the prog is valid for one map element then 10848 * it's valid for all map elements regardless of the key 10849 * used in bpf_map_lookup() 10850 */ 10851 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10852 range_within(rold, rcur) && 10853 tnum_in(rold->var_off, rcur->var_off); 10854 case PTR_TO_PACKET_META: 10855 case PTR_TO_PACKET: 10856 if (rcur->type != rold->type) 10857 return false; 10858 /* We must have at least as much range as the old ptr 10859 * did, so that any accesses which were safe before are 10860 * still safe. This is true even if old range < old off, 10861 * since someone could have accessed through (ptr - k), or 10862 * even done ptr -= k in a register, to get a safe access. 10863 */ 10864 if (rold->range > rcur->range) 10865 return false; 10866 /* If the offsets don't match, we can't trust our alignment; 10867 * nor can we be sure that we won't fall out of range. 10868 */ 10869 if (rold->off != rcur->off) 10870 return false; 10871 /* id relations must be preserved */ 10872 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10873 return false; 10874 /* new val must satisfy old val knowledge */ 10875 return range_within(rold, rcur) && 10876 tnum_in(rold->var_off, rcur->var_off); 10877 case PTR_TO_CTX: 10878 case CONST_PTR_TO_MAP: 10879 case PTR_TO_PACKET_END: 10880 case PTR_TO_FLOW_KEYS: 10881 case PTR_TO_SOCKET: 10882 case PTR_TO_SOCK_COMMON: 10883 case PTR_TO_TCP_SOCK: 10884 case PTR_TO_XDP_SOCK: 10885 /* Only valid matches are exact, which memcmp() above 10886 * would have accepted 10887 */ 10888 default: 10889 /* Don't know what's going on, just say it's not safe */ 10890 return false; 10891 } 10892 10893 /* Shouldn't get here; if we do, say it's not safe */ 10894 WARN_ON_ONCE(1); 10895 return false; 10896 } 10897 10898 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10899 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10900 { 10901 int i, spi; 10902 10903 /* walk slots of the explored stack and ignore any additional 10904 * slots in the current stack, since explored(safe) state 10905 * didn't use them 10906 */ 10907 for (i = 0; i < old->allocated_stack; i++) { 10908 spi = i / BPF_REG_SIZE; 10909 10910 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10911 i += BPF_REG_SIZE - 1; 10912 /* explored state didn't use this */ 10913 continue; 10914 } 10915 10916 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10917 continue; 10918 10919 /* explored stack has more populated slots than current stack 10920 * and these slots were used 10921 */ 10922 if (i >= cur->allocated_stack) 10923 return false; 10924 10925 /* if old state was safe with misc data in the stack 10926 * it will be safe with zero-initialized stack. 10927 * The opposite is not true 10928 */ 10929 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10930 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10931 continue; 10932 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10933 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10934 /* Ex: old explored (safe) state has STACK_SPILL in 10935 * this stack slot, but current has STACK_MISC -> 10936 * this verifier states are not equivalent, 10937 * return false to continue verification of this path 10938 */ 10939 return false; 10940 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10941 continue; 10942 if (!is_spilled_reg(&old->stack[spi])) 10943 continue; 10944 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10945 &cur->stack[spi].spilled_ptr, idmap)) 10946 /* when explored and current stack slot are both storing 10947 * spilled registers, check that stored pointers types 10948 * are the same as well. 10949 * Ex: explored safe path could have stored 10950 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10951 * but current path has stored: 10952 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10953 * such verifier states are not equivalent. 10954 * return false to continue verification of this path 10955 */ 10956 return false; 10957 } 10958 return true; 10959 } 10960 10961 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10962 { 10963 if (old->acquired_refs != cur->acquired_refs) 10964 return false; 10965 return !memcmp(old->refs, cur->refs, 10966 sizeof(*old->refs) * old->acquired_refs); 10967 } 10968 10969 /* compare two verifier states 10970 * 10971 * all states stored in state_list are known to be valid, since 10972 * verifier reached 'bpf_exit' instruction through them 10973 * 10974 * this function is called when verifier exploring different branches of 10975 * execution popped from the state stack. If it sees an old state that has 10976 * more strict register state and more strict stack state then this execution 10977 * branch doesn't need to be explored further, since verifier already 10978 * concluded that more strict state leads to valid finish. 10979 * 10980 * Therefore two states are equivalent if register state is more conservative 10981 * and explored stack state is more conservative than the current one. 10982 * Example: 10983 * explored current 10984 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10985 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10986 * 10987 * In other words if current stack state (one being explored) has more 10988 * valid slots than old one that already passed validation, it means 10989 * the verifier can stop exploring and conclude that current state is valid too 10990 * 10991 * Similarly with registers. If explored state has register type as invalid 10992 * whereas register type in current state is meaningful, it means that 10993 * the current state will reach 'bpf_exit' instruction safely 10994 */ 10995 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10996 struct bpf_func_state *cur) 10997 { 10998 int i; 10999 11000 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11001 for (i = 0; i < MAX_BPF_REG; i++) 11002 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11003 env->idmap_scratch)) 11004 return false; 11005 11006 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11007 return false; 11008 11009 if (!refsafe(old, cur)) 11010 return false; 11011 11012 return true; 11013 } 11014 11015 static bool states_equal(struct bpf_verifier_env *env, 11016 struct bpf_verifier_state *old, 11017 struct bpf_verifier_state *cur) 11018 { 11019 int i; 11020 11021 if (old->curframe != cur->curframe) 11022 return false; 11023 11024 /* Verification state from speculative execution simulation 11025 * must never prune a non-speculative execution one. 11026 */ 11027 if (old->speculative && !cur->speculative) 11028 return false; 11029 11030 if (old->active_spin_lock != cur->active_spin_lock) 11031 return false; 11032 11033 /* for states to be equal callsites have to be the same 11034 * and all frame states need to be equivalent 11035 */ 11036 for (i = 0; i <= old->curframe; i++) { 11037 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11038 return false; 11039 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11040 return false; 11041 } 11042 return true; 11043 } 11044 11045 /* Return 0 if no propagation happened. Return negative error code if error 11046 * happened. Otherwise, return the propagated bit. 11047 */ 11048 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11049 struct bpf_reg_state *reg, 11050 struct bpf_reg_state *parent_reg) 11051 { 11052 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11053 u8 flag = reg->live & REG_LIVE_READ; 11054 int err; 11055 11056 /* When comes here, read flags of PARENT_REG or REG could be any of 11057 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11058 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11059 */ 11060 if (parent_flag == REG_LIVE_READ64 || 11061 /* Or if there is no read flag from REG. */ 11062 !flag || 11063 /* Or if the read flag from REG is the same as PARENT_REG. */ 11064 parent_flag == flag) 11065 return 0; 11066 11067 err = mark_reg_read(env, reg, parent_reg, flag); 11068 if (err) 11069 return err; 11070 11071 return flag; 11072 } 11073 11074 /* A write screens off any subsequent reads; but write marks come from the 11075 * straight-line code between a state and its parent. When we arrive at an 11076 * equivalent state (jump target or such) we didn't arrive by the straight-line 11077 * code, so read marks in the state must propagate to the parent regardless 11078 * of the state's write marks. That's what 'parent == state->parent' comparison 11079 * in mark_reg_read() is for. 11080 */ 11081 static int propagate_liveness(struct bpf_verifier_env *env, 11082 const struct bpf_verifier_state *vstate, 11083 struct bpf_verifier_state *vparent) 11084 { 11085 struct bpf_reg_state *state_reg, *parent_reg; 11086 struct bpf_func_state *state, *parent; 11087 int i, frame, err = 0; 11088 11089 if (vparent->curframe != vstate->curframe) { 11090 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11091 vparent->curframe, vstate->curframe); 11092 return -EFAULT; 11093 } 11094 /* Propagate read liveness of registers... */ 11095 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11096 for (frame = 0; frame <= vstate->curframe; frame++) { 11097 parent = vparent->frame[frame]; 11098 state = vstate->frame[frame]; 11099 parent_reg = parent->regs; 11100 state_reg = state->regs; 11101 /* We don't need to worry about FP liveness, it's read-only */ 11102 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11103 err = propagate_liveness_reg(env, &state_reg[i], 11104 &parent_reg[i]); 11105 if (err < 0) 11106 return err; 11107 if (err == REG_LIVE_READ64) 11108 mark_insn_zext(env, &parent_reg[i]); 11109 } 11110 11111 /* Propagate stack slots. */ 11112 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11113 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11114 parent_reg = &parent->stack[i].spilled_ptr; 11115 state_reg = &state->stack[i].spilled_ptr; 11116 err = propagate_liveness_reg(env, state_reg, 11117 parent_reg); 11118 if (err < 0) 11119 return err; 11120 } 11121 } 11122 return 0; 11123 } 11124 11125 /* find precise scalars in the previous equivalent state and 11126 * propagate them into the current state 11127 */ 11128 static int propagate_precision(struct bpf_verifier_env *env, 11129 const struct bpf_verifier_state *old) 11130 { 11131 struct bpf_reg_state *state_reg; 11132 struct bpf_func_state *state; 11133 int i, err = 0; 11134 11135 state = old->frame[old->curframe]; 11136 state_reg = state->regs; 11137 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11138 if (state_reg->type != SCALAR_VALUE || 11139 !state_reg->precise) 11140 continue; 11141 if (env->log.level & BPF_LOG_LEVEL2) 11142 verbose(env, "propagating r%d\n", i); 11143 err = mark_chain_precision(env, i); 11144 if (err < 0) 11145 return err; 11146 } 11147 11148 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11149 if (!is_spilled_reg(&state->stack[i])) 11150 continue; 11151 state_reg = &state->stack[i].spilled_ptr; 11152 if (state_reg->type != SCALAR_VALUE || 11153 !state_reg->precise) 11154 continue; 11155 if (env->log.level & BPF_LOG_LEVEL2) 11156 verbose(env, "propagating fp%d\n", 11157 (-i - 1) * BPF_REG_SIZE); 11158 err = mark_chain_precision_stack(env, i); 11159 if (err < 0) 11160 return err; 11161 } 11162 return 0; 11163 } 11164 11165 static bool states_maybe_looping(struct bpf_verifier_state *old, 11166 struct bpf_verifier_state *cur) 11167 { 11168 struct bpf_func_state *fold, *fcur; 11169 int i, fr = cur->curframe; 11170 11171 if (old->curframe != fr) 11172 return false; 11173 11174 fold = old->frame[fr]; 11175 fcur = cur->frame[fr]; 11176 for (i = 0; i < MAX_BPF_REG; i++) 11177 if (memcmp(&fold->regs[i], &fcur->regs[i], 11178 offsetof(struct bpf_reg_state, parent))) 11179 return false; 11180 return true; 11181 } 11182 11183 11184 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11185 { 11186 struct bpf_verifier_state_list *new_sl; 11187 struct bpf_verifier_state_list *sl, **pprev; 11188 struct bpf_verifier_state *cur = env->cur_state, *new; 11189 int i, j, err, states_cnt = 0; 11190 bool add_new_state = env->test_state_freq ? true : false; 11191 11192 cur->last_insn_idx = env->prev_insn_idx; 11193 if (!env->insn_aux_data[insn_idx].prune_point) 11194 /* this 'insn_idx' instruction wasn't marked, so we will not 11195 * be doing state search here 11196 */ 11197 return 0; 11198 11199 /* bpf progs typically have pruning point every 4 instructions 11200 * http://vger.kernel.org/bpfconf2019.html#session-1 11201 * Do not add new state for future pruning if the verifier hasn't seen 11202 * at least 2 jumps and at least 8 instructions. 11203 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11204 * In tests that amounts to up to 50% reduction into total verifier 11205 * memory consumption and 20% verifier time speedup. 11206 */ 11207 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11208 env->insn_processed - env->prev_insn_processed >= 8) 11209 add_new_state = true; 11210 11211 pprev = explored_state(env, insn_idx); 11212 sl = *pprev; 11213 11214 clean_live_states(env, insn_idx, cur); 11215 11216 while (sl) { 11217 states_cnt++; 11218 if (sl->state.insn_idx != insn_idx) 11219 goto next; 11220 11221 if (sl->state.branches) { 11222 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11223 11224 if (frame->in_async_callback_fn && 11225 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11226 /* Different async_entry_cnt means that the verifier is 11227 * processing another entry into async callback. 11228 * Seeing the same state is not an indication of infinite 11229 * loop or infinite recursion. 11230 * But finding the same state doesn't mean that it's safe 11231 * to stop processing the current state. The previous state 11232 * hasn't yet reached bpf_exit, since state.branches > 0. 11233 * Checking in_async_callback_fn alone is not enough either. 11234 * Since the verifier still needs to catch infinite loops 11235 * inside async callbacks. 11236 */ 11237 } else if (states_maybe_looping(&sl->state, cur) && 11238 states_equal(env, &sl->state, cur)) { 11239 verbose_linfo(env, insn_idx, "; "); 11240 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11241 return -EINVAL; 11242 } 11243 /* if the verifier is processing a loop, avoid adding new state 11244 * too often, since different loop iterations have distinct 11245 * states and may not help future pruning. 11246 * This threshold shouldn't be too low to make sure that 11247 * a loop with large bound will be rejected quickly. 11248 * The most abusive loop will be: 11249 * r1 += 1 11250 * if r1 < 1000000 goto pc-2 11251 * 1M insn_procssed limit / 100 == 10k peak states. 11252 * This threshold shouldn't be too high either, since states 11253 * at the end of the loop are likely to be useful in pruning. 11254 */ 11255 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11256 env->insn_processed - env->prev_insn_processed < 100) 11257 add_new_state = false; 11258 goto miss; 11259 } 11260 if (states_equal(env, &sl->state, cur)) { 11261 sl->hit_cnt++; 11262 /* reached equivalent register/stack state, 11263 * prune the search. 11264 * Registers read by the continuation are read by us. 11265 * If we have any write marks in env->cur_state, they 11266 * will prevent corresponding reads in the continuation 11267 * from reaching our parent (an explored_state). Our 11268 * own state will get the read marks recorded, but 11269 * they'll be immediately forgotten as we're pruning 11270 * this state and will pop a new one. 11271 */ 11272 err = propagate_liveness(env, &sl->state, cur); 11273 11274 /* if previous state reached the exit with precision and 11275 * current state is equivalent to it (except precsion marks) 11276 * the precision needs to be propagated back in 11277 * the current state. 11278 */ 11279 err = err ? : push_jmp_history(env, cur); 11280 err = err ? : propagate_precision(env, &sl->state); 11281 if (err) 11282 return err; 11283 return 1; 11284 } 11285 miss: 11286 /* when new state is not going to be added do not increase miss count. 11287 * Otherwise several loop iterations will remove the state 11288 * recorded earlier. The goal of these heuristics is to have 11289 * states from some iterations of the loop (some in the beginning 11290 * and some at the end) to help pruning. 11291 */ 11292 if (add_new_state) 11293 sl->miss_cnt++; 11294 /* heuristic to determine whether this state is beneficial 11295 * to keep checking from state equivalence point of view. 11296 * Higher numbers increase max_states_per_insn and verification time, 11297 * but do not meaningfully decrease insn_processed. 11298 */ 11299 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11300 /* the state is unlikely to be useful. Remove it to 11301 * speed up verification 11302 */ 11303 *pprev = sl->next; 11304 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11305 u32 br = sl->state.branches; 11306 11307 WARN_ONCE(br, 11308 "BUG live_done but branches_to_explore %d\n", 11309 br); 11310 free_verifier_state(&sl->state, false); 11311 kfree(sl); 11312 env->peak_states--; 11313 } else { 11314 /* cannot free this state, since parentage chain may 11315 * walk it later. Add it for free_list instead to 11316 * be freed at the end of verification 11317 */ 11318 sl->next = env->free_list; 11319 env->free_list = sl; 11320 } 11321 sl = *pprev; 11322 continue; 11323 } 11324 next: 11325 pprev = &sl->next; 11326 sl = *pprev; 11327 } 11328 11329 if (env->max_states_per_insn < states_cnt) 11330 env->max_states_per_insn = states_cnt; 11331 11332 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11333 return push_jmp_history(env, cur); 11334 11335 if (!add_new_state) 11336 return push_jmp_history(env, cur); 11337 11338 /* There were no equivalent states, remember the current one. 11339 * Technically the current state is not proven to be safe yet, 11340 * but it will either reach outer most bpf_exit (which means it's safe) 11341 * or it will be rejected. When there are no loops the verifier won't be 11342 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11343 * again on the way to bpf_exit. 11344 * When looping the sl->state.branches will be > 0 and this state 11345 * will not be considered for equivalence until branches == 0. 11346 */ 11347 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11348 if (!new_sl) 11349 return -ENOMEM; 11350 env->total_states++; 11351 env->peak_states++; 11352 env->prev_jmps_processed = env->jmps_processed; 11353 env->prev_insn_processed = env->insn_processed; 11354 11355 /* add new state to the head of linked list */ 11356 new = &new_sl->state; 11357 err = copy_verifier_state(new, cur); 11358 if (err) { 11359 free_verifier_state(new, false); 11360 kfree(new_sl); 11361 return err; 11362 } 11363 new->insn_idx = insn_idx; 11364 WARN_ONCE(new->branches != 1, 11365 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11366 11367 cur->parent = new; 11368 cur->first_insn_idx = insn_idx; 11369 clear_jmp_history(cur); 11370 new_sl->next = *explored_state(env, insn_idx); 11371 *explored_state(env, insn_idx) = new_sl; 11372 /* connect new state to parentage chain. Current frame needs all 11373 * registers connected. Only r6 - r9 of the callers are alive (pushed 11374 * to the stack implicitly by JITs) so in callers' frames connect just 11375 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11376 * the state of the call instruction (with WRITTEN set), and r0 comes 11377 * from callee with its full parentage chain, anyway. 11378 */ 11379 /* clear write marks in current state: the writes we did are not writes 11380 * our child did, so they don't screen off its reads from us. 11381 * (There are no read marks in current state, because reads always mark 11382 * their parent and current state never has children yet. Only 11383 * explored_states can get read marks.) 11384 */ 11385 for (j = 0; j <= cur->curframe; j++) { 11386 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11387 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11388 for (i = 0; i < BPF_REG_FP; i++) 11389 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11390 } 11391 11392 /* all stack frames are accessible from callee, clear them all */ 11393 for (j = 0; j <= cur->curframe; j++) { 11394 struct bpf_func_state *frame = cur->frame[j]; 11395 struct bpf_func_state *newframe = new->frame[j]; 11396 11397 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11398 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11399 frame->stack[i].spilled_ptr.parent = 11400 &newframe->stack[i].spilled_ptr; 11401 } 11402 } 11403 return 0; 11404 } 11405 11406 /* Return true if it's OK to have the same insn return a different type. */ 11407 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11408 { 11409 switch (base_type(type)) { 11410 case PTR_TO_CTX: 11411 case PTR_TO_SOCKET: 11412 case PTR_TO_SOCK_COMMON: 11413 case PTR_TO_TCP_SOCK: 11414 case PTR_TO_XDP_SOCK: 11415 case PTR_TO_BTF_ID: 11416 return false; 11417 default: 11418 return true; 11419 } 11420 } 11421 11422 /* If an instruction was previously used with particular pointer types, then we 11423 * need to be careful to avoid cases such as the below, where it may be ok 11424 * for one branch accessing the pointer, but not ok for the other branch: 11425 * 11426 * R1 = sock_ptr 11427 * goto X; 11428 * ... 11429 * R1 = some_other_valid_ptr; 11430 * goto X; 11431 * ... 11432 * R2 = *(u32 *)(R1 + 0); 11433 */ 11434 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11435 { 11436 return src != prev && (!reg_type_mismatch_ok(src) || 11437 !reg_type_mismatch_ok(prev)); 11438 } 11439 11440 static int do_check(struct bpf_verifier_env *env) 11441 { 11442 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11443 struct bpf_verifier_state *state = env->cur_state; 11444 struct bpf_insn *insns = env->prog->insnsi; 11445 struct bpf_reg_state *regs; 11446 int insn_cnt = env->prog->len; 11447 bool do_print_state = false; 11448 int prev_insn_idx = -1; 11449 11450 for (;;) { 11451 struct bpf_insn *insn; 11452 u8 class; 11453 int err; 11454 11455 env->prev_insn_idx = prev_insn_idx; 11456 if (env->insn_idx >= insn_cnt) { 11457 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11458 env->insn_idx, insn_cnt); 11459 return -EFAULT; 11460 } 11461 11462 insn = &insns[env->insn_idx]; 11463 class = BPF_CLASS(insn->code); 11464 11465 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11466 verbose(env, 11467 "BPF program is too large. Processed %d insn\n", 11468 env->insn_processed); 11469 return -E2BIG; 11470 } 11471 11472 err = is_state_visited(env, env->insn_idx); 11473 if (err < 0) 11474 return err; 11475 if (err == 1) { 11476 /* found equivalent state, can prune the search */ 11477 if (env->log.level & BPF_LOG_LEVEL) { 11478 if (do_print_state) 11479 verbose(env, "\nfrom %d to %d%s: safe\n", 11480 env->prev_insn_idx, env->insn_idx, 11481 env->cur_state->speculative ? 11482 " (speculative execution)" : ""); 11483 else 11484 verbose(env, "%d: safe\n", env->insn_idx); 11485 } 11486 goto process_bpf_exit; 11487 } 11488 11489 if (signal_pending(current)) 11490 return -EAGAIN; 11491 11492 if (need_resched()) 11493 cond_resched(); 11494 11495 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 11496 verbose(env, "\nfrom %d to %d%s:", 11497 env->prev_insn_idx, env->insn_idx, 11498 env->cur_state->speculative ? 11499 " (speculative execution)" : ""); 11500 print_verifier_state(env, state->frame[state->curframe], true); 11501 do_print_state = false; 11502 } 11503 11504 if (env->log.level & BPF_LOG_LEVEL) { 11505 const struct bpf_insn_cbs cbs = { 11506 .cb_call = disasm_kfunc_name, 11507 .cb_print = verbose, 11508 .private_data = env, 11509 }; 11510 11511 if (verifier_state_scratched(env)) 11512 print_insn_state(env, state->frame[state->curframe]); 11513 11514 verbose_linfo(env, env->insn_idx, "; "); 11515 env->prev_log_len = env->log.len_used; 11516 verbose(env, "%d: ", env->insn_idx); 11517 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11518 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 11519 env->prev_log_len = env->log.len_used; 11520 } 11521 11522 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11523 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11524 env->prev_insn_idx); 11525 if (err) 11526 return err; 11527 } 11528 11529 regs = cur_regs(env); 11530 sanitize_mark_insn_seen(env); 11531 prev_insn_idx = env->insn_idx; 11532 11533 if (class == BPF_ALU || class == BPF_ALU64) { 11534 err = check_alu_op(env, insn); 11535 if (err) 11536 return err; 11537 11538 } else if (class == BPF_LDX) { 11539 enum bpf_reg_type *prev_src_type, src_reg_type; 11540 11541 /* check for reserved fields is already done */ 11542 11543 /* check src operand */ 11544 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11545 if (err) 11546 return err; 11547 11548 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11549 if (err) 11550 return err; 11551 11552 src_reg_type = regs[insn->src_reg].type; 11553 11554 /* check that memory (src_reg + off) is readable, 11555 * the state of dst_reg will be updated by this func 11556 */ 11557 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11558 insn->off, BPF_SIZE(insn->code), 11559 BPF_READ, insn->dst_reg, false); 11560 if (err) 11561 return err; 11562 11563 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11564 11565 if (*prev_src_type == NOT_INIT) { 11566 /* saw a valid insn 11567 * dst_reg = *(u32 *)(src_reg + off) 11568 * save type to validate intersecting paths 11569 */ 11570 *prev_src_type = src_reg_type; 11571 11572 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11573 /* ABuser program is trying to use the same insn 11574 * dst_reg = *(u32*) (src_reg + off) 11575 * with different pointer types: 11576 * src_reg == ctx in one branch and 11577 * src_reg == stack|map in some other branch. 11578 * Reject it. 11579 */ 11580 verbose(env, "same insn cannot be used with different pointers\n"); 11581 return -EINVAL; 11582 } 11583 11584 } else if (class == BPF_STX) { 11585 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11586 11587 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11588 err = check_atomic(env, env->insn_idx, insn); 11589 if (err) 11590 return err; 11591 env->insn_idx++; 11592 continue; 11593 } 11594 11595 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11596 verbose(env, "BPF_STX uses reserved fields\n"); 11597 return -EINVAL; 11598 } 11599 11600 /* check src1 operand */ 11601 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11602 if (err) 11603 return err; 11604 /* check src2 operand */ 11605 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11606 if (err) 11607 return err; 11608 11609 dst_reg_type = regs[insn->dst_reg].type; 11610 11611 /* check that memory (dst_reg + off) is writeable */ 11612 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11613 insn->off, BPF_SIZE(insn->code), 11614 BPF_WRITE, insn->src_reg, false); 11615 if (err) 11616 return err; 11617 11618 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11619 11620 if (*prev_dst_type == NOT_INIT) { 11621 *prev_dst_type = dst_reg_type; 11622 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11623 verbose(env, "same insn cannot be used with different pointers\n"); 11624 return -EINVAL; 11625 } 11626 11627 } else if (class == BPF_ST) { 11628 if (BPF_MODE(insn->code) != BPF_MEM || 11629 insn->src_reg != BPF_REG_0) { 11630 verbose(env, "BPF_ST uses reserved fields\n"); 11631 return -EINVAL; 11632 } 11633 /* check src operand */ 11634 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11635 if (err) 11636 return err; 11637 11638 if (is_ctx_reg(env, insn->dst_reg)) { 11639 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11640 insn->dst_reg, 11641 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 11642 return -EACCES; 11643 } 11644 11645 /* check that memory (dst_reg + off) is writeable */ 11646 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11647 insn->off, BPF_SIZE(insn->code), 11648 BPF_WRITE, -1, false); 11649 if (err) 11650 return err; 11651 11652 } else if (class == BPF_JMP || class == BPF_JMP32) { 11653 u8 opcode = BPF_OP(insn->code); 11654 11655 env->jmps_processed++; 11656 if (opcode == BPF_CALL) { 11657 if (BPF_SRC(insn->code) != BPF_K || 11658 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11659 && insn->off != 0) || 11660 (insn->src_reg != BPF_REG_0 && 11661 insn->src_reg != BPF_PSEUDO_CALL && 11662 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11663 insn->dst_reg != BPF_REG_0 || 11664 class == BPF_JMP32) { 11665 verbose(env, "BPF_CALL uses reserved fields\n"); 11666 return -EINVAL; 11667 } 11668 11669 if (env->cur_state->active_spin_lock && 11670 (insn->src_reg == BPF_PSEUDO_CALL || 11671 insn->imm != BPF_FUNC_spin_unlock)) { 11672 verbose(env, "function calls are not allowed while holding a lock\n"); 11673 return -EINVAL; 11674 } 11675 if (insn->src_reg == BPF_PSEUDO_CALL) 11676 err = check_func_call(env, insn, &env->insn_idx); 11677 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11678 err = check_kfunc_call(env, insn, &env->insn_idx); 11679 else 11680 err = check_helper_call(env, insn, &env->insn_idx); 11681 if (err) 11682 return err; 11683 } else if (opcode == BPF_JA) { 11684 if (BPF_SRC(insn->code) != BPF_K || 11685 insn->imm != 0 || 11686 insn->src_reg != BPF_REG_0 || 11687 insn->dst_reg != BPF_REG_0 || 11688 class == BPF_JMP32) { 11689 verbose(env, "BPF_JA uses reserved fields\n"); 11690 return -EINVAL; 11691 } 11692 11693 env->insn_idx += insn->off + 1; 11694 continue; 11695 11696 } else if (opcode == BPF_EXIT) { 11697 if (BPF_SRC(insn->code) != BPF_K || 11698 insn->imm != 0 || 11699 insn->src_reg != BPF_REG_0 || 11700 insn->dst_reg != BPF_REG_0 || 11701 class == BPF_JMP32) { 11702 verbose(env, "BPF_EXIT uses reserved fields\n"); 11703 return -EINVAL; 11704 } 11705 11706 if (env->cur_state->active_spin_lock) { 11707 verbose(env, "bpf_spin_unlock is missing\n"); 11708 return -EINVAL; 11709 } 11710 11711 if (state->curframe) { 11712 /* exit from nested function */ 11713 err = prepare_func_exit(env, &env->insn_idx); 11714 if (err) 11715 return err; 11716 do_print_state = true; 11717 continue; 11718 } 11719 11720 err = check_reference_leak(env); 11721 if (err) 11722 return err; 11723 11724 err = check_return_code(env); 11725 if (err) 11726 return err; 11727 process_bpf_exit: 11728 mark_verifier_state_scratched(env); 11729 update_branch_counts(env, env->cur_state); 11730 err = pop_stack(env, &prev_insn_idx, 11731 &env->insn_idx, pop_log); 11732 if (err < 0) { 11733 if (err != -ENOENT) 11734 return err; 11735 break; 11736 } else { 11737 do_print_state = true; 11738 continue; 11739 } 11740 } else { 11741 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11742 if (err) 11743 return err; 11744 } 11745 } else if (class == BPF_LD) { 11746 u8 mode = BPF_MODE(insn->code); 11747 11748 if (mode == BPF_ABS || mode == BPF_IND) { 11749 err = check_ld_abs(env, insn); 11750 if (err) 11751 return err; 11752 11753 } else if (mode == BPF_IMM) { 11754 err = check_ld_imm(env, insn); 11755 if (err) 11756 return err; 11757 11758 env->insn_idx++; 11759 sanitize_mark_insn_seen(env); 11760 } else { 11761 verbose(env, "invalid BPF_LD mode\n"); 11762 return -EINVAL; 11763 } 11764 } else { 11765 verbose(env, "unknown insn class %d\n", class); 11766 return -EINVAL; 11767 } 11768 11769 env->insn_idx++; 11770 } 11771 11772 return 0; 11773 } 11774 11775 static int find_btf_percpu_datasec(struct btf *btf) 11776 { 11777 const struct btf_type *t; 11778 const char *tname; 11779 int i, n; 11780 11781 /* 11782 * Both vmlinux and module each have their own ".data..percpu" 11783 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11784 * types to look at only module's own BTF types. 11785 */ 11786 n = btf_nr_types(btf); 11787 if (btf_is_module(btf)) 11788 i = btf_nr_types(btf_vmlinux); 11789 else 11790 i = 1; 11791 11792 for(; i < n; i++) { 11793 t = btf_type_by_id(btf, i); 11794 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11795 continue; 11796 11797 tname = btf_name_by_offset(btf, t->name_off); 11798 if (!strcmp(tname, ".data..percpu")) 11799 return i; 11800 } 11801 11802 return -ENOENT; 11803 } 11804 11805 /* replace pseudo btf_id with kernel symbol address */ 11806 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11807 struct bpf_insn *insn, 11808 struct bpf_insn_aux_data *aux) 11809 { 11810 const struct btf_var_secinfo *vsi; 11811 const struct btf_type *datasec; 11812 struct btf_mod_pair *btf_mod; 11813 const struct btf_type *t; 11814 const char *sym_name; 11815 bool percpu = false; 11816 u32 type, id = insn->imm; 11817 struct btf *btf; 11818 s32 datasec_id; 11819 u64 addr; 11820 int i, btf_fd, err; 11821 11822 btf_fd = insn[1].imm; 11823 if (btf_fd) { 11824 btf = btf_get_by_fd(btf_fd); 11825 if (IS_ERR(btf)) { 11826 verbose(env, "invalid module BTF object FD specified.\n"); 11827 return -EINVAL; 11828 } 11829 } else { 11830 if (!btf_vmlinux) { 11831 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11832 return -EINVAL; 11833 } 11834 btf = btf_vmlinux; 11835 btf_get(btf); 11836 } 11837 11838 t = btf_type_by_id(btf, id); 11839 if (!t) { 11840 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11841 err = -ENOENT; 11842 goto err_put; 11843 } 11844 11845 if (!btf_type_is_var(t)) { 11846 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11847 err = -EINVAL; 11848 goto err_put; 11849 } 11850 11851 sym_name = btf_name_by_offset(btf, t->name_off); 11852 addr = kallsyms_lookup_name(sym_name); 11853 if (!addr) { 11854 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11855 sym_name); 11856 err = -ENOENT; 11857 goto err_put; 11858 } 11859 11860 datasec_id = find_btf_percpu_datasec(btf); 11861 if (datasec_id > 0) { 11862 datasec = btf_type_by_id(btf, datasec_id); 11863 for_each_vsi(i, datasec, vsi) { 11864 if (vsi->type == id) { 11865 percpu = true; 11866 break; 11867 } 11868 } 11869 } 11870 11871 insn[0].imm = (u32)addr; 11872 insn[1].imm = addr >> 32; 11873 11874 type = t->type; 11875 t = btf_type_skip_modifiers(btf, type, NULL); 11876 if (percpu) { 11877 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 11878 aux->btf_var.btf = btf; 11879 aux->btf_var.btf_id = type; 11880 } else if (!btf_type_is_struct(t)) { 11881 const struct btf_type *ret; 11882 const char *tname; 11883 u32 tsize; 11884 11885 /* resolve the type size of ksym. */ 11886 ret = btf_resolve_size(btf, t, &tsize); 11887 if (IS_ERR(ret)) { 11888 tname = btf_name_by_offset(btf, t->name_off); 11889 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11890 tname, PTR_ERR(ret)); 11891 err = -EINVAL; 11892 goto err_put; 11893 } 11894 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 11895 aux->btf_var.mem_size = tsize; 11896 } else { 11897 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11898 aux->btf_var.btf = btf; 11899 aux->btf_var.btf_id = type; 11900 } 11901 11902 /* check whether we recorded this BTF (and maybe module) already */ 11903 for (i = 0; i < env->used_btf_cnt; i++) { 11904 if (env->used_btfs[i].btf == btf) { 11905 btf_put(btf); 11906 return 0; 11907 } 11908 } 11909 11910 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11911 err = -E2BIG; 11912 goto err_put; 11913 } 11914 11915 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11916 btf_mod->btf = btf; 11917 btf_mod->module = NULL; 11918 11919 /* if we reference variables from kernel module, bump its refcount */ 11920 if (btf_is_module(btf)) { 11921 btf_mod->module = btf_try_get_module(btf); 11922 if (!btf_mod->module) { 11923 err = -ENXIO; 11924 goto err_put; 11925 } 11926 } 11927 11928 env->used_btf_cnt++; 11929 11930 return 0; 11931 err_put: 11932 btf_put(btf); 11933 return err; 11934 } 11935 11936 static int check_map_prealloc(struct bpf_map *map) 11937 { 11938 return (map->map_type != BPF_MAP_TYPE_HASH && 11939 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11940 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11941 !(map->map_flags & BPF_F_NO_PREALLOC); 11942 } 11943 11944 static bool is_tracing_prog_type(enum bpf_prog_type type) 11945 { 11946 switch (type) { 11947 case BPF_PROG_TYPE_KPROBE: 11948 case BPF_PROG_TYPE_TRACEPOINT: 11949 case BPF_PROG_TYPE_PERF_EVENT: 11950 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11951 return true; 11952 default: 11953 return false; 11954 } 11955 } 11956 11957 static bool is_preallocated_map(struct bpf_map *map) 11958 { 11959 if (!check_map_prealloc(map)) 11960 return false; 11961 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11962 return false; 11963 return true; 11964 } 11965 11966 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11967 struct bpf_map *map, 11968 struct bpf_prog *prog) 11969 11970 { 11971 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11972 /* 11973 * Validate that trace type programs use preallocated hash maps. 11974 * 11975 * For programs attached to PERF events this is mandatory as the 11976 * perf NMI can hit any arbitrary code sequence. 11977 * 11978 * All other trace types using preallocated hash maps are unsafe as 11979 * well because tracepoint or kprobes can be inside locked regions 11980 * of the memory allocator or at a place where a recursion into the 11981 * memory allocator would see inconsistent state. 11982 * 11983 * On RT enabled kernels run-time allocation of all trace type 11984 * programs is strictly prohibited due to lock type constraints. On 11985 * !RT kernels it is allowed for backwards compatibility reasons for 11986 * now, but warnings are emitted so developers are made aware of 11987 * the unsafety and can fix their programs before this is enforced. 11988 */ 11989 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11990 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11991 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11992 return -EINVAL; 11993 } 11994 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11995 verbose(env, "trace type programs can only use preallocated hash map\n"); 11996 return -EINVAL; 11997 } 11998 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11999 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 12000 } 12001 12002 if (map_value_has_spin_lock(map)) { 12003 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12004 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12005 return -EINVAL; 12006 } 12007 12008 if (is_tracing_prog_type(prog_type)) { 12009 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12010 return -EINVAL; 12011 } 12012 12013 if (prog->aux->sleepable) { 12014 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12015 return -EINVAL; 12016 } 12017 } 12018 12019 if (map_value_has_timer(map)) { 12020 if (is_tracing_prog_type(prog_type)) { 12021 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12022 return -EINVAL; 12023 } 12024 } 12025 12026 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12027 !bpf_offload_prog_map_match(prog, map)) { 12028 verbose(env, "offload device mismatch between prog and map\n"); 12029 return -EINVAL; 12030 } 12031 12032 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12033 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12034 return -EINVAL; 12035 } 12036 12037 if (prog->aux->sleepable) 12038 switch (map->map_type) { 12039 case BPF_MAP_TYPE_HASH: 12040 case BPF_MAP_TYPE_LRU_HASH: 12041 case BPF_MAP_TYPE_ARRAY: 12042 case BPF_MAP_TYPE_PERCPU_HASH: 12043 case BPF_MAP_TYPE_PERCPU_ARRAY: 12044 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12045 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12046 case BPF_MAP_TYPE_HASH_OF_MAPS: 12047 if (!is_preallocated_map(map)) { 12048 verbose(env, 12049 "Sleepable programs can only use preallocated maps\n"); 12050 return -EINVAL; 12051 } 12052 break; 12053 case BPF_MAP_TYPE_RINGBUF: 12054 case BPF_MAP_TYPE_INODE_STORAGE: 12055 case BPF_MAP_TYPE_SK_STORAGE: 12056 case BPF_MAP_TYPE_TASK_STORAGE: 12057 break; 12058 default: 12059 verbose(env, 12060 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12061 return -EINVAL; 12062 } 12063 12064 return 0; 12065 } 12066 12067 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12068 { 12069 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12070 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12071 } 12072 12073 /* find and rewrite pseudo imm in ld_imm64 instructions: 12074 * 12075 * 1. if it accesses map FD, replace it with actual map pointer. 12076 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12077 * 12078 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12079 */ 12080 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12081 { 12082 struct bpf_insn *insn = env->prog->insnsi; 12083 int insn_cnt = env->prog->len; 12084 int i, j, err; 12085 12086 err = bpf_prog_calc_tag(env->prog); 12087 if (err) 12088 return err; 12089 12090 for (i = 0; i < insn_cnt; i++, insn++) { 12091 if (BPF_CLASS(insn->code) == BPF_LDX && 12092 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12093 verbose(env, "BPF_LDX uses reserved fields\n"); 12094 return -EINVAL; 12095 } 12096 12097 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12098 struct bpf_insn_aux_data *aux; 12099 struct bpf_map *map; 12100 struct fd f; 12101 u64 addr; 12102 u32 fd; 12103 12104 if (i == insn_cnt - 1 || insn[1].code != 0 || 12105 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12106 insn[1].off != 0) { 12107 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12108 return -EINVAL; 12109 } 12110 12111 if (insn[0].src_reg == 0) 12112 /* valid generic load 64-bit imm */ 12113 goto next_insn; 12114 12115 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12116 aux = &env->insn_aux_data[i]; 12117 err = check_pseudo_btf_id(env, insn, aux); 12118 if (err) 12119 return err; 12120 goto next_insn; 12121 } 12122 12123 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12124 aux = &env->insn_aux_data[i]; 12125 aux->ptr_type = PTR_TO_FUNC; 12126 goto next_insn; 12127 } 12128 12129 /* In final convert_pseudo_ld_imm64() step, this is 12130 * converted into regular 64-bit imm load insn. 12131 */ 12132 switch (insn[0].src_reg) { 12133 case BPF_PSEUDO_MAP_VALUE: 12134 case BPF_PSEUDO_MAP_IDX_VALUE: 12135 break; 12136 case BPF_PSEUDO_MAP_FD: 12137 case BPF_PSEUDO_MAP_IDX: 12138 if (insn[1].imm == 0) 12139 break; 12140 fallthrough; 12141 default: 12142 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12143 return -EINVAL; 12144 } 12145 12146 switch (insn[0].src_reg) { 12147 case BPF_PSEUDO_MAP_IDX_VALUE: 12148 case BPF_PSEUDO_MAP_IDX: 12149 if (bpfptr_is_null(env->fd_array)) { 12150 verbose(env, "fd_idx without fd_array is invalid\n"); 12151 return -EPROTO; 12152 } 12153 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12154 insn[0].imm * sizeof(fd), 12155 sizeof(fd))) 12156 return -EFAULT; 12157 break; 12158 default: 12159 fd = insn[0].imm; 12160 break; 12161 } 12162 12163 f = fdget(fd); 12164 map = __bpf_map_get(f); 12165 if (IS_ERR(map)) { 12166 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12167 insn[0].imm); 12168 return PTR_ERR(map); 12169 } 12170 12171 err = check_map_prog_compatibility(env, map, env->prog); 12172 if (err) { 12173 fdput(f); 12174 return err; 12175 } 12176 12177 aux = &env->insn_aux_data[i]; 12178 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12179 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12180 addr = (unsigned long)map; 12181 } else { 12182 u32 off = insn[1].imm; 12183 12184 if (off >= BPF_MAX_VAR_OFF) { 12185 verbose(env, "direct value offset of %u is not allowed\n", off); 12186 fdput(f); 12187 return -EINVAL; 12188 } 12189 12190 if (!map->ops->map_direct_value_addr) { 12191 verbose(env, "no direct value access support for this map type\n"); 12192 fdput(f); 12193 return -EINVAL; 12194 } 12195 12196 err = map->ops->map_direct_value_addr(map, &addr, off); 12197 if (err) { 12198 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12199 map->value_size, off); 12200 fdput(f); 12201 return err; 12202 } 12203 12204 aux->map_off = off; 12205 addr += off; 12206 } 12207 12208 insn[0].imm = (u32)addr; 12209 insn[1].imm = addr >> 32; 12210 12211 /* check whether we recorded this map already */ 12212 for (j = 0; j < env->used_map_cnt; j++) { 12213 if (env->used_maps[j] == map) { 12214 aux->map_index = j; 12215 fdput(f); 12216 goto next_insn; 12217 } 12218 } 12219 12220 if (env->used_map_cnt >= MAX_USED_MAPS) { 12221 fdput(f); 12222 return -E2BIG; 12223 } 12224 12225 /* hold the map. If the program is rejected by verifier, 12226 * the map will be released by release_maps() or it 12227 * will be used by the valid program until it's unloaded 12228 * and all maps are released in free_used_maps() 12229 */ 12230 bpf_map_inc(map); 12231 12232 aux->map_index = env->used_map_cnt; 12233 env->used_maps[env->used_map_cnt++] = map; 12234 12235 if (bpf_map_is_cgroup_storage(map) && 12236 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12237 verbose(env, "only one cgroup storage of each type is allowed\n"); 12238 fdput(f); 12239 return -EBUSY; 12240 } 12241 12242 fdput(f); 12243 next_insn: 12244 insn++; 12245 i++; 12246 continue; 12247 } 12248 12249 /* Basic sanity check before we invest more work here. */ 12250 if (!bpf_opcode_in_insntable(insn->code)) { 12251 verbose(env, "unknown opcode %02x\n", insn->code); 12252 return -EINVAL; 12253 } 12254 } 12255 12256 /* now all pseudo BPF_LD_IMM64 instructions load valid 12257 * 'struct bpf_map *' into a register instead of user map_fd. 12258 * These pointers will be used later by verifier to validate map access. 12259 */ 12260 return 0; 12261 } 12262 12263 /* drop refcnt of maps used by the rejected program */ 12264 static void release_maps(struct bpf_verifier_env *env) 12265 { 12266 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12267 env->used_map_cnt); 12268 } 12269 12270 /* drop refcnt of maps used by the rejected program */ 12271 static void release_btfs(struct bpf_verifier_env *env) 12272 { 12273 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12274 env->used_btf_cnt); 12275 } 12276 12277 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12278 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12279 { 12280 struct bpf_insn *insn = env->prog->insnsi; 12281 int insn_cnt = env->prog->len; 12282 int i; 12283 12284 for (i = 0; i < insn_cnt; i++, insn++) { 12285 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12286 continue; 12287 if (insn->src_reg == BPF_PSEUDO_FUNC) 12288 continue; 12289 insn->src_reg = 0; 12290 } 12291 } 12292 12293 /* single env->prog->insni[off] instruction was replaced with the range 12294 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12295 * [0, off) and [off, end) to new locations, so the patched range stays zero 12296 */ 12297 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12298 struct bpf_insn_aux_data *new_data, 12299 struct bpf_prog *new_prog, u32 off, u32 cnt) 12300 { 12301 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12302 struct bpf_insn *insn = new_prog->insnsi; 12303 u32 old_seen = old_data[off].seen; 12304 u32 prog_len; 12305 int i; 12306 12307 /* aux info at OFF always needs adjustment, no matter fast path 12308 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12309 * original insn at old prog. 12310 */ 12311 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12312 12313 if (cnt == 1) 12314 return; 12315 prog_len = new_prog->len; 12316 12317 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12318 memcpy(new_data + off + cnt - 1, old_data + off, 12319 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12320 for (i = off; i < off + cnt - 1; i++) { 12321 /* Expand insni[off]'s seen count to the patched range. */ 12322 new_data[i].seen = old_seen; 12323 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12324 } 12325 env->insn_aux_data = new_data; 12326 vfree(old_data); 12327 } 12328 12329 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12330 { 12331 int i; 12332 12333 if (len == 1) 12334 return; 12335 /* NOTE: fake 'exit' subprog should be updated as well. */ 12336 for (i = 0; i <= env->subprog_cnt; i++) { 12337 if (env->subprog_info[i].start <= off) 12338 continue; 12339 env->subprog_info[i].start += len - 1; 12340 } 12341 } 12342 12343 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12344 { 12345 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12346 int i, sz = prog->aux->size_poke_tab; 12347 struct bpf_jit_poke_descriptor *desc; 12348 12349 for (i = 0; i < sz; i++) { 12350 desc = &tab[i]; 12351 if (desc->insn_idx <= off) 12352 continue; 12353 desc->insn_idx += len - 1; 12354 } 12355 } 12356 12357 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12358 const struct bpf_insn *patch, u32 len) 12359 { 12360 struct bpf_prog *new_prog; 12361 struct bpf_insn_aux_data *new_data = NULL; 12362 12363 if (len > 1) { 12364 new_data = vzalloc(array_size(env->prog->len + len - 1, 12365 sizeof(struct bpf_insn_aux_data))); 12366 if (!new_data) 12367 return NULL; 12368 } 12369 12370 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12371 if (IS_ERR(new_prog)) { 12372 if (PTR_ERR(new_prog) == -ERANGE) 12373 verbose(env, 12374 "insn %d cannot be patched due to 16-bit range\n", 12375 env->insn_aux_data[off].orig_idx); 12376 vfree(new_data); 12377 return NULL; 12378 } 12379 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12380 adjust_subprog_starts(env, off, len); 12381 adjust_poke_descs(new_prog, off, len); 12382 return new_prog; 12383 } 12384 12385 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12386 u32 off, u32 cnt) 12387 { 12388 int i, j; 12389 12390 /* find first prog starting at or after off (first to remove) */ 12391 for (i = 0; i < env->subprog_cnt; i++) 12392 if (env->subprog_info[i].start >= off) 12393 break; 12394 /* find first prog starting at or after off + cnt (first to stay) */ 12395 for (j = i; j < env->subprog_cnt; j++) 12396 if (env->subprog_info[j].start >= off + cnt) 12397 break; 12398 /* if j doesn't start exactly at off + cnt, we are just removing 12399 * the front of previous prog 12400 */ 12401 if (env->subprog_info[j].start != off + cnt) 12402 j--; 12403 12404 if (j > i) { 12405 struct bpf_prog_aux *aux = env->prog->aux; 12406 int move; 12407 12408 /* move fake 'exit' subprog as well */ 12409 move = env->subprog_cnt + 1 - j; 12410 12411 memmove(env->subprog_info + i, 12412 env->subprog_info + j, 12413 sizeof(*env->subprog_info) * move); 12414 env->subprog_cnt -= j - i; 12415 12416 /* remove func_info */ 12417 if (aux->func_info) { 12418 move = aux->func_info_cnt - j; 12419 12420 memmove(aux->func_info + i, 12421 aux->func_info + j, 12422 sizeof(*aux->func_info) * move); 12423 aux->func_info_cnt -= j - i; 12424 /* func_info->insn_off is set after all code rewrites, 12425 * in adjust_btf_func() - no need to adjust 12426 */ 12427 } 12428 } else { 12429 /* convert i from "first prog to remove" to "first to adjust" */ 12430 if (env->subprog_info[i].start == off) 12431 i++; 12432 } 12433 12434 /* update fake 'exit' subprog as well */ 12435 for (; i <= env->subprog_cnt; i++) 12436 env->subprog_info[i].start -= cnt; 12437 12438 return 0; 12439 } 12440 12441 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12442 u32 cnt) 12443 { 12444 struct bpf_prog *prog = env->prog; 12445 u32 i, l_off, l_cnt, nr_linfo; 12446 struct bpf_line_info *linfo; 12447 12448 nr_linfo = prog->aux->nr_linfo; 12449 if (!nr_linfo) 12450 return 0; 12451 12452 linfo = prog->aux->linfo; 12453 12454 /* find first line info to remove, count lines to be removed */ 12455 for (i = 0; i < nr_linfo; i++) 12456 if (linfo[i].insn_off >= off) 12457 break; 12458 12459 l_off = i; 12460 l_cnt = 0; 12461 for (; i < nr_linfo; i++) 12462 if (linfo[i].insn_off < off + cnt) 12463 l_cnt++; 12464 else 12465 break; 12466 12467 /* First live insn doesn't match first live linfo, it needs to "inherit" 12468 * last removed linfo. prog is already modified, so prog->len == off 12469 * means no live instructions after (tail of the program was removed). 12470 */ 12471 if (prog->len != off && l_cnt && 12472 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12473 l_cnt--; 12474 linfo[--i].insn_off = off + cnt; 12475 } 12476 12477 /* remove the line info which refer to the removed instructions */ 12478 if (l_cnt) { 12479 memmove(linfo + l_off, linfo + i, 12480 sizeof(*linfo) * (nr_linfo - i)); 12481 12482 prog->aux->nr_linfo -= l_cnt; 12483 nr_linfo = prog->aux->nr_linfo; 12484 } 12485 12486 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12487 for (i = l_off; i < nr_linfo; i++) 12488 linfo[i].insn_off -= cnt; 12489 12490 /* fix up all subprogs (incl. 'exit') which start >= off */ 12491 for (i = 0; i <= env->subprog_cnt; i++) 12492 if (env->subprog_info[i].linfo_idx > l_off) { 12493 /* program may have started in the removed region but 12494 * may not be fully removed 12495 */ 12496 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12497 env->subprog_info[i].linfo_idx -= l_cnt; 12498 else 12499 env->subprog_info[i].linfo_idx = l_off; 12500 } 12501 12502 return 0; 12503 } 12504 12505 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12506 { 12507 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12508 unsigned int orig_prog_len = env->prog->len; 12509 int err; 12510 12511 if (bpf_prog_is_dev_bound(env->prog->aux)) 12512 bpf_prog_offload_remove_insns(env, off, cnt); 12513 12514 err = bpf_remove_insns(env->prog, off, cnt); 12515 if (err) 12516 return err; 12517 12518 err = adjust_subprog_starts_after_remove(env, off, cnt); 12519 if (err) 12520 return err; 12521 12522 err = bpf_adj_linfo_after_remove(env, off, cnt); 12523 if (err) 12524 return err; 12525 12526 memmove(aux_data + off, aux_data + off + cnt, 12527 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12528 12529 return 0; 12530 } 12531 12532 /* The verifier does more data flow analysis than llvm and will not 12533 * explore branches that are dead at run time. Malicious programs can 12534 * have dead code too. Therefore replace all dead at-run-time code 12535 * with 'ja -1'. 12536 * 12537 * Just nops are not optimal, e.g. if they would sit at the end of the 12538 * program and through another bug we would manage to jump there, then 12539 * we'd execute beyond program memory otherwise. Returning exception 12540 * code also wouldn't work since we can have subprogs where the dead 12541 * code could be located. 12542 */ 12543 static void sanitize_dead_code(struct bpf_verifier_env *env) 12544 { 12545 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12546 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12547 struct bpf_insn *insn = env->prog->insnsi; 12548 const int insn_cnt = env->prog->len; 12549 int i; 12550 12551 for (i = 0; i < insn_cnt; i++) { 12552 if (aux_data[i].seen) 12553 continue; 12554 memcpy(insn + i, &trap, sizeof(trap)); 12555 aux_data[i].zext_dst = false; 12556 } 12557 } 12558 12559 static bool insn_is_cond_jump(u8 code) 12560 { 12561 u8 op; 12562 12563 if (BPF_CLASS(code) == BPF_JMP32) 12564 return true; 12565 12566 if (BPF_CLASS(code) != BPF_JMP) 12567 return false; 12568 12569 op = BPF_OP(code); 12570 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12571 } 12572 12573 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12574 { 12575 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12576 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12577 struct bpf_insn *insn = env->prog->insnsi; 12578 const int insn_cnt = env->prog->len; 12579 int i; 12580 12581 for (i = 0; i < insn_cnt; i++, insn++) { 12582 if (!insn_is_cond_jump(insn->code)) 12583 continue; 12584 12585 if (!aux_data[i + 1].seen) 12586 ja.off = insn->off; 12587 else if (!aux_data[i + 1 + insn->off].seen) 12588 ja.off = 0; 12589 else 12590 continue; 12591 12592 if (bpf_prog_is_dev_bound(env->prog->aux)) 12593 bpf_prog_offload_replace_insn(env, i, &ja); 12594 12595 memcpy(insn, &ja, sizeof(ja)); 12596 } 12597 } 12598 12599 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12600 { 12601 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12602 int insn_cnt = env->prog->len; 12603 int i, err; 12604 12605 for (i = 0; i < insn_cnt; i++) { 12606 int j; 12607 12608 j = 0; 12609 while (i + j < insn_cnt && !aux_data[i + j].seen) 12610 j++; 12611 if (!j) 12612 continue; 12613 12614 err = verifier_remove_insns(env, i, j); 12615 if (err) 12616 return err; 12617 insn_cnt = env->prog->len; 12618 } 12619 12620 return 0; 12621 } 12622 12623 static int opt_remove_nops(struct bpf_verifier_env *env) 12624 { 12625 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12626 struct bpf_insn *insn = env->prog->insnsi; 12627 int insn_cnt = env->prog->len; 12628 int i, err; 12629 12630 for (i = 0; i < insn_cnt; i++) { 12631 if (memcmp(&insn[i], &ja, sizeof(ja))) 12632 continue; 12633 12634 err = verifier_remove_insns(env, i, 1); 12635 if (err) 12636 return err; 12637 insn_cnt--; 12638 i--; 12639 } 12640 12641 return 0; 12642 } 12643 12644 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12645 const union bpf_attr *attr) 12646 { 12647 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12648 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12649 int i, patch_len, delta = 0, len = env->prog->len; 12650 struct bpf_insn *insns = env->prog->insnsi; 12651 struct bpf_prog *new_prog; 12652 bool rnd_hi32; 12653 12654 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12655 zext_patch[1] = BPF_ZEXT_REG(0); 12656 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12657 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12658 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12659 for (i = 0; i < len; i++) { 12660 int adj_idx = i + delta; 12661 struct bpf_insn insn; 12662 int load_reg; 12663 12664 insn = insns[adj_idx]; 12665 load_reg = insn_def_regno(&insn); 12666 if (!aux[adj_idx].zext_dst) { 12667 u8 code, class; 12668 u32 imm_rnd; 12669 12670 if (!rnd_hi32) 12671 continue; 12672 12673 code = insn.code; 12674 class = BPF_CLASS(code); 12675 if (load_reg == -1) 12676 continue; 12677 12678 /* NOTE: arg "reg" (the fourth one) is only used for 12679 * BPF_STX + SRC_OP, so it is safe to pass NULL 12680 * here. 12681 */ 12682 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12683 if (class == BPF_LD && 12684 BPF_MODE(code) == BPF_IMM) 12685 i++; 12686 continue; 12687 } 12688 12689 /* ctx load could be transformed into wider load. */ 12690 if (class == BPF_LDX && 12691 aux[adj_idx].ptr_type == PTR_TO_CTX) 12692 continue; 12693 12694 imm_rnd = get_random_int(); 12695 rnd_hi32_patch[0] = insn; 12696 rnd_hi32_patch[1].imm = imm_rnd; 12697 rnd_hi32_patch[3].dst_reg = load_reg; 12698 patch = rnd_hi32_patch; 12699 patch_len = 4; 12700 goto apply_patch_buffer; 12701 } 12702 12703 /* Add in an zero-extend instruction if a) the JIT has requested 12704 * it or b) it's a CMPXCHG. 12705 * 12706 * The latter is because: BPF_CMPXCHG always loads a value into 12707 * R0, therefore always zero-extends. However some archs' 12708 * equivalent instruction only does this load when the 12709 * comparison is successful. This detail of CMPXCHG is 12710 * orthogonal to the general zero-extension behaviour of the 12711 * CPU, so it's treated independently of bpf_jit_needs_zext. 12712 */ 12713 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12714 continue; 12715 12716 if (WARN_ON(load_reg == -1)) { 12717 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12718 return -EFAULT; 12719 } 12720 12721 zext_patch[0] = insn; 12722 zext_patch[1].dst_reg = load_reg; 12723 zext_patch[1].src_reg = load_reg; 12724 patch = zext_patch; 12725 patch_len = 2; 12726 apply_patch_buffer: 12727 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12728 if (!new_prog) 12729 return -ENOMEM; 12730 env->prog = new_prog; 12731 insns = new_prog->insnsi; 12732 aux = env->insn_aux_data; 12733 delta += patch_len - 1; 12734 } 12735 12736 return 0; 12737 } 12738 12739 /* convert load instructions that access fields of a context type into a 12740 * sequence of instructions that access fields of the underlying structure: 12741 * struct __sk_buff -> struct sk_buff 12742 * struct bpf_sock_ops -> struct sock 12743 */ 12744 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12745 { 12746 const struct bpf_verifier_ops *ops = env->ops; 12747 int i, cnt, size, ctx_field_size, delta = 0; 12748 const int insn_cnt = env->prog->len; 12749 struct bpf_insn insn_buf[16], *insn; 12750 u32 target_size, size_default, off; 12751 struct bpf_prog *new_prog; 12752 enum bpf_access_type type; 12753 bool is_narrower_load; 12754 12755 if (ops->gen_prologue || env->seen_direct_write) { 12756 if (!ops->gen_prologue) { 12757 verbose(env, "bpf verifier is misconfigured\n"); 12758 return -EINVAL; 12759 } 12760 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12761 env->prog); 12762 if (cnt >= ARRAY_SIZE(insn_buf)) { 12763 verbose(env, "bpf verifier is misconfigured\n"); 12764 return -EINVAL; 12765 } else if (cnt) { 12766 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12767 if (!new_prog) 12768 return -ENOMEM; 12769 12770 env->prog = new_prog; 12771 delta += cnt - 1; 12772 } 12773 } 12774 12775 if (bpf_prog_is_dev_bound(env->prog->aux)) 12776 return 0; 12777 12778 insn = env->prog->insnsi + delta; 12779 12780 for (i = 0; i < insn_cnt; i++, insn++) { 12781 bpf_convert_ctx_access_t convert_ctx_access; 12782 bool ctx_access; 12783 12784 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12785 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12786 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12787 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12788 type = BPF_READ; 12789 ctx_access = true; 12790 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12791 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12792 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12793 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12794 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12795 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12796 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12797 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12798 type = BPF_WRITE; 12799 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12800 } else { 12801 continue; 12802 } 12803 12804 if (type == BPF_WRITE && 12805 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12806 struct bpf_insn patch[] = { 12807 *insn, 12808 BPF_ST_NOSPEC(), 12809 }; 12810 12811 cnt = ARRAY_SIZE(patch); 12812 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12813 if (!new_prog) 12814 return -ENOMEM; 12815 12816 delta += cnt - 1; 12817 env->prog = new_prog; 12818 insn = new_prog->insnsi + i + delta; 12819 continue; 12820 } 12821 12822 if (!ctx_access) 12823 continue; 12824 12825 switch (env->insn_aux_data[i + delta].ptr_type) { 12826 case PTR_TO_CTX: 12827 if (!ops->convert_ctx_access) 12828 continue; 12829 convert_ctx_access = ops->convert_ctx_access; 12830 break; 12831 case PTR_TO_SOCKET: 12832 case PTR_TO_SOCK_COMMON: 12833 convert_ctx_access = bpf_sock_convert_ctx_access; 12834 break; 12835 case PTR_TO_TCP_SOCK: 12836 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12837 break; 12838 case PTR_TO_XDP_SOCK: 12839 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12840 break; 12841 case PTR_TO_BTF_ID: 12842 if (type == BPF_READ) { 12843 insn->code = BPF_LDX | BPF_PROBE_MEM | 12844 BPF_SIZE((insn)->code); 12845 env->prog->aux->num_exentries++; 12846 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12847 verbose(env, "Writes through BTF pointers are not allowed\n"); 12848 return -EINVAL; 12849 } 12850 continue; 12851 default: 12852 continue; 12853 } 12854 12855 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12856 size = BPF_LDST_BYTES(insn); 12857 12858 /* If the read access is a narrower load of the field, 12859 * convert to a 4/8-byte load, to minimum program type specific 12860 * convert_ctx_access changes. If conversion is successful, 12861 * we will apply proper mask to the result. 12862 */ 12863 is_narrower_load = size < ctx_field_size; 12864 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12865 off = insn->off; 12866 if (is_narrower_load) { 12867 u8 size_code; 12868 12869 if (type == BPF_WRITE) { 12870 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12871 return -EINVAL; 12872 } 12873 12874 size_code = BPF_H; 12875 if (ctx_field_size == 4) 12876 size_code = BPF_W; 12877 else if (ctx_field_size == 8) 12878 size_code = BPF_DW; 12879 12880 insn->off = off & ~(size_default - 1); 12881 insn->code = BPF_LDX | BPF_MEM | size_code; 12882 } 12883 12884 target_size = 0; 12885 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12886 &target_size); 12887 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12888 (ctx_field_size && !target_size)) { 12889 verbose(env, "bpf verifier is misconfigured\n"); 12890 return -EINVAL; 12891 } 12892 12893 if (is_narrower_load && size < target_size) { 12894 u8 shift = bpf_ctx_narrow_access_offset( 12895 off, size, size_default) * 8; 12896 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12897 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12898 return -EINVAL; 12899 } 12900 if (ctx_field_size <= 4) { 12901 if (shift) 12902 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12903 insn->dst_reg, 12904 shift); 12905 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12906 (1 << size * 8) - 1); 12907 } else { 12908 if (shift) 12909 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12910 insn->dst_reg, 12911 shift); 12912 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12913 (1ULL << size * 8) - 1); 12914 } 12915 } 12916 12917 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12918 if (!new_prog) 12919 return -ENOMEM; 12920 12921 delta += cnt - 1; 12922 12923 /* keep walking new program and skip insns we just inserted */ 12924 env->prog = new_prog; 12925 insn = new_prog->insnsi + i + delta; 12926 } 12927 12928 return 0; 12929 } 12930 12931 static int jit_subprogs(struct bpf_verifier_env *env) 12932 { 12933 struct bpf_prog *prog = env->prog, **func, *tmp; 12934 int i, j, subprog_start, subprog_end = 0, len, subprog; 12935 struct bpf_map *map_ptr; 12936 struct bpf_insn *insn; 12937 void *old_bpf_func; 12938 int err, num_exentries; 12939 12940 if (env->subprog_cnt <= 1) 12941 return 0; 12942 12943 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12944 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 12945 continue; 12946 12947 /* Upon error here we cannot fall back to interpreter but 12948 * need a hard reject of the program. Thus -EFAULT is 12949 * propagated in any case. 12950 */ 12951 subprog = find_subprog(env, i + insn->imm + 1); 12952 if (subprog < 0) { 12953 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12954 i + insn->imm + 1); 12955 return -EFAULT; 12956 } 12957 /* temporarily remember subprog id inside insn instead of 12958 * aux_data, since next loop will split up all insns into funcs 12959 */ 12960 insn->off = subprog; 12961 /* remember original imm in case JIT fails and fallback 12962 * to interpreter will be needed 12963 */ 12964 env->insn_aux_data[i].call_imm = insn->imm; 12965 /* point imm to __bpf_call_base+1 from JITs point of view */ 12966 insn->imm = 1; 12967 if (bpf_pseudo_func(insn)) 12968 /* jit (e.g. x86_64) may emit fewer instructions 12969 * if it learns a u32 imm is the same as a u64 imm. 12970 * Force a non zero here. 12971 */ 12972 insn[1].imm = 1; 12973 } 12974 12975 err = bpf_prog_alloc_jited_linfo(prog); 12976 if (err) 12977 goto out_undo_insn; 12978 12979 err = -ENOMEM; 12980 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12981 if (!func) 12982 goto out_undo_insn; 12983 12984 for (i = 0; i < env->subprog_cnt; i++) { 12985 subprog_start = subprog_end; 12986 subprog_end = env->subprog_info[i + 1].start; 12987 12988 len = subprog_end - subprog_start; 12989 /* bpf_prog_run() doesn't call subprogs directly, 12990 * hence main prog stats include the runtime of subprogs. 12991 * subprogs don't have IDs and not reachable via prog_get_next_id 12992 * func[i]->stats will never be accessed and stays NULL 12993 */ 12994 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12995 if (!func[i]) 12996 goto out_free; 12997 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12998 len * sizeof(struct bpf_insn)); 12999 func[i]->type = prog->type; 13000 func[i]->len = len; 13001 if (bpf_prog_calc_tag(func[i])) 13002 goto out_free; 13003 func[i]->is_func = 1; 13004 func[i]->aux->func_idx = i; 13005 /* Below members will be freed only at prog->aux */ 13006 func[i]->aux->btf = prog->aux->btf; 13007 func[i]->aux->func_info = prog->aux->func_info; 13008 func[i]->aux->poke_tab = prog->aux->poke_tab; 13009 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13010 13011 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13012 struct bpf_jit_poke_descriptor *poke; 13013 13014 poke = &prog->aux->poke_tab[j]; 13015 if (poke->insn_idx < subprog_end && 13016 poke->insn_idx >= subprog_start) 13017 poke->aux = func[i]->aux; 13018 } 13019 13020 /* Use bpf_prog_F_tag to indicate functions in stack traces. 13021 * Long term would need debug info to populate names 13022 */ 13023 func[i]->aux->name[0] = 'F'; 13024 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13025 func[i]->jit_requested = 1; 13026 func[i]->blinding_requested = prog->blinding_requested; 13027 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13028 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13029 func[i]->aux->linfo = prog->aux->linfo; 13030 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13031 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13032 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13033 num_exentries = 0; 13034 insn = func[i]->insnsi; 13035 for (j = 0; j < func[i]->len; j++, insn++) { 13036 if (BPF_CLASS(insn->code) == BPF_LDX && 13037 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13038 num_exentries++; 13039 } 13040 func[i]->aux->num_exentries = num_exentries; 13041 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13042 func[i] = bpf_int_jit_compile(func[i]); 13043 if (!func[i]->jited) { 13044 err = -ENOTSUPP; 13045 goto out_free; 13046 } 13047 cond_resched(); 13048 } 13049 13050 /* at this point all bpf functions were successfully JITed 13051 * now populate all bpf_calls with correct addresses and 13052 * run last pass of JIT 13053 */ 13054 for (i = 0; i < env->subprog_cnt; i++) { 13055 insn = func[i]->insnsi; 13056 for (j = 0; j < func[i]->len; j++, insn++) { 13057 if (bpf_pseudo_func(insn)) { 13058 subprog = insn->off; 13059 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13060 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13061 continue; 13062 } 13063 if (!bpf_pseudo_call(insn)) 13064 continue; 13065 subprog = insn->off; 13066 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13067 } 13068 13069 /* we use the aux data to keep a list of the start addresses 13070 * of the JITed images for each function in the program 13071 * 13072 * for some architectures, such as powerpc64, the imm field 13073 * might not be large enough to hold the offset of the start 13074 * address of the callee's JITed image from __bpf_call_base 13075 * 13076 * in such cases, we can lookup the start address of a callee 13077 * by using its subprog id, available from the off field of 13078 * the call instruction, as an index for this list 13079 */ 13080 func[i]->aux->func = func; 13081 func[i]->aux->func_cnt = env->subprog_cnt; 13082 } 13083 for (i = 0; i < env->subprog_cnt; i++) { 13084 old_bpf_func = func[i]->bpf_func; 13085 tmp = bpf_int_jit_compile(func[i]); 13086 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13087 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13088 err = -ENOTSUPP; 13089 goto out_free; 13090 } 13091 cond_resched(); 13092 } 13093 13094 /* finally lock prog and jit images for all functions and 13095 * populate kallsysm 13096 */ 13097 for (i = 0; i < env->subprog_cnt; i++) { 13098 bpf_prog_lock_ro(func[i]); 13099 bpf_prog_kallsyms_add(func[i]); 13100 } 13101 13102 /* Last step: make now unused interpreter insns from main 13103 * prog consistent for later dump requests, so they can 13104 * later look the same as if they were interpreted only. 13105 */ 13106 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13107 if (bpf_pseudo_func(insn)) { 13108 insn[0].imm = env->insn_aux_data[i].call_imm; 13109 insn[1].imm = insn->off; 13110 insn->off = 0; 13111 continue; 13112 } 13113 if (!bpf_pseudo_call(insn)) 13114 continue; 13115 insn->off = env->insn_aux_data[i].call_imm; 13116 subprog = find_subprog(env, i + insn->off + 1); 13117 insn->imm = subprog; 13118 } 13119 13120 prog->jited = 1; 13121 prog->bpf_func = func[0]->bpf_func; 13122 prog->jited_len = func[0]->jited_len; 13123 prog->aux->func = func; 13124 prog->aux->func_cnt = env->subprog_cnt; 13125 bpf_prog_jit_attempt_done(prog); 13126 return 0; 13127 out_free: 13128 /* We failed JIT'ing, so at this point we need to unregister poke 13129 * descriptors from subprogs, so that kernel is not attempting to 13130 * patch it anymore as we're freeing the subprog JIT memory. 13131 */ 13132 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13133 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13134 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13135 } 13136 /* At this point we're guaranteed that poke descriptors are not 13137 * live anymore. We can just unlink its descriptor table as it's 13138 * released with the main prog. 13139 */ 13140 for (i = 0; i < env->subprog_cnt; i++) { 13141 if (!func[i]) 13142 continue; 13143 func[i]->aux->poke_tab = NULL; 13144 bpf_jit_free(func[i]); 13145 } 13146 kfree(func); 13147 out_undo_insn: 13148 /* cleanup main prog to be interpreted */ 13149 prog->jit_requested = 0; 13150 prog->blinding_requested = 0; 13151 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13152 if (!bpf_pseudo_call(insn)) 13153 continue; 13154 insn->off = 0; 13155 insn->imm = env->insn_aux_data[i].call_imm; 13156 } 13157 bpf_prog_jit_attempt_done(prog); 13158 return err; 13159 } 13160 13161 static int fixup_call_args(struct bpf_verifier_env *env) 13162 { 13163 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13164 struct bpf_prog *prog = env->prog; 13165 struct bpf_insn *insn = prog->insnsi; 13166 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13167 int i, depth; 13168 #endif 13169 int err = 0; 13170 13171 if (env->prog->jit_requested && 13172 !bpf_prog_is_dev_bound(env->prog->aux)) { 13173 err = jit_subprogs(env); 13174 if (err == 0) 13175 return 0; 13176 if (err == -EFAULT) 13177 return err; 13178 } 13179 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13180 if (has_kfunc_call) { 13181 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13182 return -EINVAL; 13183 } 13184 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13185 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13186 * have to be rejected, since interpreter doesn't support them yet. 13187 */ 13188 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13189 return -EINVAL; 13190 } 13191 for (i = 0; i < prog->len; i++, insn++) { 13192 if (bpf_pseudo_func(insn)) { 13193 /* When JIT fails the progs with callback calls 13194 * have to be rejected, since interpreter doesn't support them yet. 13195 */ 13196 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13197 return -EINVAL; 13198 } 13199 13200 if (!bpf_pseudo_call(insn)) 13201 continue; 13202 depth = get_callee_stack_depth(env, insn, i); 13203 if (depth < 0) 13204 return depth; 13205 bpf_patch_call_args(insn, depth); 13206 } 13207 err = 0; 13208 #endif 13209 return err; 13210 } 13211 13212 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13213 struct bpf_insn *insn) 13214 { 13215 const struct bpf_kfunc_desc *desc; 13216 13217 if (!insn->imm) { 13218 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13219 return -EINVAL; 13220 } 13221 13222 /* insn->imm has the btf func_id. Replace it with 13223 * an address (relative to __bpf_base_call). 13224 */ 13225 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13226 if (!desc) { 13227 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13228 insn->imm); 13229 return -EFAULT; 13230 } 13231 13232 insn->imm = desc->imm; 13233 13234 return 0; 13235 } 13236 13237 /* Do various post-verification rewrites in a single program pass. 13238 * These rewrites simplify JIT and interpreter implementations. 13239 */ 13240 static int do_misc_fixups(struct bpf_verifier_env *env) 13241 { 13242 struct bpf_prog *prog = env->prog; 13243 enum bpf_attach_type eatype = prog->expected_attach_type; 13244 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13245 struct bpf_insn *insn = prog->insnsi; 13246 const struct bpf_func_proto *fn; 13247 const int insn_cnt = prog->len; 13248 const struct bpf_map_ops *ops; 13249 struct bpf_insn_aux_data *aux; 13250 struct bpf_insn insn_buf[16]; 13251 struct bpf_prog *new_prog; 13252 struct bpf_map *map_ptr; 13253 int i, ret, cnt, delta = 0; 13254 13255 for (i = 0; i < insn_cnt; i++, insn++) { 13256 /* Make divide-by-zero exceptions impossible. */ 13257 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13258 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13259 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13260 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13261 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13262 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13263 struct bpf_insn *patchlet; 13264 struct bpf_insn chk_and_div[] = { 13265 /* [R,W]x div 0 -> 0 */ 13266 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13267 BPF_JNE | BPF_K, insn->src_reg, 13268 0, 2, 0), 13269 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13270 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13271 *insn, 13272 }; 13273 struct bpf_insn chk_and_mod[] = { 13274 /* [R,W]x mod 0 -> [R,W]x */ 13275 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13276 BPF_JEQ | BPF_K, insn->src_reg, 13277 0, 1 + (is64 ? 0 : 1), 0), 13278 *insn, 13279 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13280 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13281 }; 13282 13283 patchlet = isdiv ? chk_and_div : chk_and_mod; 13284 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13285 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13286 13287 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13288 if (!new_prog) 13289 return -ENOMEM; 13290 13291 delta += cnt - 1; 13292 env->prog = prog = new_prog; 13293 insn = new_prog->insnsi + i + delta; 13294 continue; 13295 } 13296 13297 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13298 if (BPF_CLASS(insn->code) == BPF_LD && 13299 (BPF_MODE(insn->code) == BPF_ABS || 13300 BPF_MODE(insn->code) == BPF_IND)) { 13301 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13302 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13303 verbose(env, "bpf verifier is misconfigured\n"); 13304 return -EINVAL; 13305 } 13306 13307 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13308 if (!new_prog) 13309 return -ENOMEM; 13310 13311 delta += cnt - 1; 13312 env->prog = prog = new_prog; 13313 insn = new_prog->insnsi + i + delta; 13314 continue; 13315 } 13316 13317 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13318 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13319 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13320 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13321 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13322 struct bpf_insn *patch = &insn_buf[0]; 13323 bool issrc, isneg, isimm; 13324 u32 off_reg; 13325 13326 aux = &env->insn_aux_data[i + delta]; 13327 if (!aux->alu_state || 13328 aux->alu_state == BPF_ALU_NON_POINTER) 13329 continue; 13330 13331 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13332 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13333 BPF_ALU_SANITIZE_SRC; 13334 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13335 13336 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13337 if (isimm) { 13338 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13339 } else { 13340 if (isneg) 13341 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13342 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13343 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13344 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13345 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13346 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13347 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13348 } 13349 if (!issrc) 13350 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13351 insn->src_reg = BPF_REG_AX; 13352 if (isneg) 13353 insn->code = insn->code == code_add ? 13354 code_sub : code_add; 13355 *patch++ = *insn; 13356 if (issrc && isneg && !isimm) 13357 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13358 cnt = patch - insn_buf; 13359 13360 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13361 if (!new_prog) 13362 return -ENOMEM; 13363 13364 delta += cnt - 1; 13365 env->prog = prog = new_prog; 13366 insn = new_prog->insnsi + i + delta; 13367 continue; 13368 } 13369 13370 if (insn->code != (BPF_JMP | BPF_CALL)) 13371 continue; 13372 if (insn->src_reg == BPF_PSEUDO_CALL) 13373 continue; 13374 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13375 ret = fixup_kfunc_call(env, insn); 13376 if (ret) 13377 return ret; 13378 continue; 13379 } 13380 13381 if (insn->imm == BPF_FUNC_get_route_realm) 13382 prog->dst_needed = 1; 13383 if (insn->imm == BPF_FUNC_get_prandom_u32) 13384 bpf_user_rnd_init_once(); 13385 if (insn->imm == BPF_FUNC_override_return) 13386 prog->kprobe_override = 1; 13387 if (insn->imm == BPF_FUNC_tail_call) { 13388 /* If we tail call into other programs, we 13389 * cannot make any assumptions since they can 13390 * be replaced dynamically during runtime in 13391 * the program array. 13392 */ 13393 prog->cb_access = 1; 13394 if (!allow_tail_call_in_subprogs(env)) 13395 prog->aux->stack_depth = MAX_BPF_STACK; 13396 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13397 13398 /* mark bpf_tail_call as different opcode to avoid 13399 * conditional branch in the interpreter for every normal 13400 * call and to prevent accidental JITing by JIT compiler 13401 * that doesn't support bpf_tail_call yet 13402 */ 13403 insn->imm = 0; 13404 insn->code = BPF_JMP | BPF_TAIL_CALL; 13405 13406 aux = &env->insn_aux_data[i + delta]; 13407 if (env->bpf_capable && !prog->blinding_requested && 13408 prog->jit_requested && 13409 !bpf_map_key_poisoned(aux) && 13410 !bpf_map_ptr_poisoned(aux) && 13411 !bpf_map_ptr_unpriv(aux)) { 13412 struct bpf_jit_poke_descriptor desc = { 13413 .reason = BPF_POKE_REASON_TAIL_CALL, 13414 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13415 .tail_call.key = bpf_map_key_immediate(aux), 13416 .insn_idx = i + delta, 13417 }; 13418 13419 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13420 if (ret < 0) { 13421 verbose(env, "adding tail call poke descriptor failed\n"); 13422 return ret; 13423 } 13424 13425 insn->imm = ret + 1; 13426 continue; 13427 } 13428 13429 if (!bpf_map_ptr_unpriv(aux)) 13430 continue; 13431 13432 /* instead of changing every JIT dealing with tail_call 13433 * emit two extra insns: 13434 * if (index >= max_entries) goto out; 13435 * index &= array->index_mask; 13436 * to avoid out-of-bounds cpu speculation 13437 */ 13438 if (bpf_map_ptr_poisoned(aux)) { 13439 verbose(env, "tail_call abusing map_ptr\n"); 13440 return -EINVAL; 13441 } 13442 13443 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13444 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13445 map_ptr->max_entries, 2); 13446 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13447 container_of(map_ptr, 13448 struct bpf_array, 13449 map)->index_mask); 13450 insn_buf[2] = *insn; 13451 cnt = 3; 13452 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13453 if (!new_prog) 13454 return -ENOMEM; 13455 13456 delta += cnt - 1; 13457 env->prog = prog = new_prog; 13458 insn = new_prog->insnsi + i + delta; 13459 continue; 13460 } 13461 13462 if (insn->imm == BPF_FUNC_timer_set_callback) { 13463 /* The verifier will process callback_fn as many times as necessary 13464 * with different maps and the register states prepared by 13465 * set_timer_callback_state will be accurate. 13466 * 13467 * The following use case is valid: 13468 * map1 is shared by prog1, prog2, prog3. 13469 * prog1 calls bpf_timer_init for some map1 elements 13470 * prog2 calls bpf_timer_set_callback for some map1 elements. 13471 * Those that were not bpf_timer_init-ed will return -EINVAL. 13472 * prog3 calls bpf_timer_start for some map1 elements. 13473 * Those that were not both bpf_timer_init-ed and 13474 * bpf_timer_set_callback-ed will return -EINVAL. 13475 */ 13476 struct bpf_insn ld_addrs[2] = { 13477 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13478 }; 13479 13480 insn_buf[0] = ld_addrs[0]; 13481 insn_buf[1] = ld_addrs[1]; 13482 insn_buf[2] = *insn; 13483 cnt = 3; 13484 13485 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13486 if (!new_prog) 13487 return -ENOMEM; 13488 13489 delta += cnt - 1; 13490 env->prog = prog = new_prog; 13491 insn = new_prog->insnsi + i + delta; 13492 goto patch_call_imm; 13493 } 13494 13495 if (insn->imm == BPF_FUNC_task_storage_get || 13496 insn->imm == BPF_FUNC_sk_storage_get || 13497 insn->imm == BPF_FUNC_inode_storage_get) { 13498 if (env->prog->aux->sleepable) 13499 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 13500 else 13501 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 13502 insn_buf[1] = *insn; 13503 cnt = 2; 13504 13505 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13506 if (!new_prog) 13507 return -ENOMEM; 13508 13509 delta += cnt - 1; 13510 env->prog = prog = new_prog; 13511 insn = new_prog->insnsi + i + delta; 13512 goto patch_call_imm; 13513 } 13514 13515 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13516 * and other inlining handlers are currently limited to 64 bit 13517 * only. 13518 */ 13519 if (prog->jit_requested && BITS_PER_LONG == 64 && 13520 (insn->imm == BPF_FUNC_map_lookup_elem || 13521 insn->imm == BPF_FUNC_map_update_elem || 13522 insn->imm == BPF_FUNC_map_delete_elem || 13523 insn->imm == BPF_FUNC_map_push_elem || 13524 insn->imm == BPF_FUNC_map_pop_elem || 13525 insn->imm == BPF_FUNC_map_peek_elem || 13526 insn->imm == BPF_FUNC_redirect_map || 13527 insn->imm == BPF_FUNC_for_each_map_elem)) { 13528 aux = &env->insn_aux_data[i + delta]; 13529 if (bpf_map_ptr_poisoned(aux)) 13530 goto patch_call_imm; 13531 13532 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13533 ops = map_ptr->ops; 13534 if (insn->imm == BPF_FUNC_map_lookup_elem && 13535 ops->map_gen_lookup) { 13536 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13537 if (cnt == -EOPNOTSUPP) 13538 goto patch_map_ops_generic; 13539 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13540 verbose(env, "bpf verifier is misconfigured\n"); 13541 return -EINVAL; 13542 } 13543 13544 new_prog = bpf_patch_insn_data(env, i + delta, 13545 insn_buf, cnt); 13546 if (!new_prog) 13547 return -ENOMEM; 13548 13549 delta += cnt - 1; 13550 env->prog = prog = new_prog; 13551 insn = new_prog->insnsi + i + delta; 13552 continue; 13553 } 13554 13555 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13556 (void *(*)(struct bpf_map *map, void *key))NULL)); 13557 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13558 (int (*)(struct bpf_map *map, void *key))NULL)); 13559 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13560 (int (*)(struct bpf_map *map, void *key, void *value, 13561 u64 flags))NULL)); 13562 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13563 (int (*)(struct bpf_map *map, void *value, 13564 u64 flags))NULL)); 13565 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13566 (int (*)(struct bpf_map *map, void *value))NULL)); 13567 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13568 (int (*)(struct bpf_map *map, void *value))NULL)); 13569 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13570 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13571 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13572 (int (*)(struct bpf_map *map, 13573 bpf_callback_t callback_fn, 13574 void *callback_ctx, 13575 u64 flags))NULL)); 13576 13577 patch_map_ops_generic: 13578 switch (insn->imm) { 13579 case BPF_FUNC_map_lookup_elem: 13580 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13581 continue; 13582 case BPF_FUNC_map_update_elem: 13583 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13584 continue; 13585 case BPF_FUNC_map_delete_elem: 13586 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13587 continue; 13588 case BPF_FUNC_map_push_elem: 13589 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13590 continue; 13591 case BPF_FUNC_map_pop_elem: 13592 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13593 continue; 13594 case BPF_FUNC_map_peek_elem: 13595 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13596 continue; 13597 case BPF_FUNC_redirect_map: 13598 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13599 continue; 13600 case BPF_FUNC_for_each_map_elem: 13601 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13602 continue; 13603 } 13604 13605 goto patch_call_imm; 13606 } 13607 13608 /* Implement bpf_jiffies64 inline. */ 13609 if (prog->jit_requested && BITS_PER_LONG == 64 && 13610 insn->imm == BPF_FUNC_jiffies64) { 13611 struct bpf_insn ld_jiffies_addr[2] = { 13612 BPF_LD_IMM64(BPF_REG_0, 13613 (unsigned long)&jiffies), 13614 }; 13615 13616 insn_buf[0] = ld_jiffies_addr[0]; 13617 insn_buf[1] = ld_jiffies_addr[1]; 13618 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13619 BPF_REG_0, 0); 13620 cnt = 3; 13621 13622 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13623 cnt); 13624 if (!new_prog) 13625 return -ENOMEM; 13626 13627 delta += cnt - 1; 13628 env->prog = prog = new_prog; 13629 insn = new_prog->insnsi + i + delta; 13630 continue; 13631 } 13632 13633 /* Implement bpf_get_func_arg inline. */ 13634 if (prog_type == BPF_PROG_TYPE_TRACING && 13635 insn->imm == BPF_FUNC_get_func_arg) { 13636 /* Load nr_args from ctx - 8 */ 13637 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13638 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 13639 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 13640 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 13641 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 13642 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13643 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 13644 insn_buf[7] = BPF_JMP_A(1); 13645 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 13646 cnt = 9; 13647 13648 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13649 if (!new_prog) 13650 return -ENOMEM; 13651 13652 delta += cnt - 1; 13653 env->prog = prog = new_prog; 13654 insn = new_prog->insnsi + i + delta; 13655 continue; 13656 } 13657 13658 /* Implement bpf_get_func_ret inline. */ 13659 if (prog_type == BPF_PROG_TYPE_TRACING && 13660 insn->imm == BPF_FUNC_get_func_ret) { 13661 if (eatype == BPF_TRACE_FEXIT || 13662 eatype == BPF_MODIFY_RETURN) { 13663 /* Load nr_args from ctx - 8 */ 13664 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13665 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 13666 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 13667 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13668 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 13669 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 13670 cnt = 6; 13671 } else { 13672 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 13673 cnt = 1; 13674 } 13675 13676 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13677 if (!new_prog) 13678 return -ENOMEM; 13679 13680 delta += cnt - 1; 13681 env->prog = prog = new_prog; 13682 insn = new_prog->insnsi + i + delta; 13683 continue; 13684 } 13685 13686 /* Implement get_func_arg_cnt inline. */ 13687 if (prog_type == BPF_PROG_TYPE_TRACING && 13688 insn->imm == BPF_FUNC_get_func_arg_cnt) { 13689 /* Load nr_args from ctx - 8 */ 13690 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13691 13692 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13693 if (!new_prog) 13694 return -ENOMEM; 13695 13696 env->prog = prog = new_prog; 13697 insn = new_prog->insnsi + i + delta; 13698 continue; 13699 } 13700 13701 /* Implement bpf_get_func_ip inline. */ 13702 if (prog_type == BPF_PROG_TYPE_TRACING && 13703 insn->imm == BPF_FUNC_get_func_ip) { 13704 /* Load IP address from ctx - 16 */ 13705 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 13706 13707 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13708 if (!new_prog) 13709 return -ENOMEM; 13710 13711 env->prog = prog = new_prog; 13712 insn = new_prog->insnsi + i + delta; 13713 continue; 13714 } 13715 13716 patch_call_imm: 13717 fn = env->ops->get_func_proto(insn->imm, env->prog); 13718 /* all functions that have prototype and verifier allowed 13719 * programs to call them, must be real in-kernel functions 13720 */ 13721 if (!fn->func) { 13722 verbose(env, 13723 "kernel subsystem misconfigured func %s#%d\n", 13724 func_id_name(insn->imm), insn->imm); 13725 return -EFAULT; 13726 } 13727 insn->imm = fn->func - __bpf_call_base; 13728 } 13729 13730 /* Since poke tab is now finalized, publish aux to tracker. */ 13731 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13732 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13733 if (!map_ptr->ops->map_poke_track || 13734 !map_ptr->ops->map_poke_untrack || 13735 !map_ptr->ops->map_poke_run) { 13736 verbose(env, "bpf verifier is misconfigured\n"); 13737 return -EINVAL; 13738 } 13739 13740 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13741 if (ret < 0) { 13742 verbose(env, "tracking tail call prog failed\n"); 13743 return ret; 13744 } 13745 } 13746 13747 sort_kfunc_descs_by_imm(env->prog); 13748 13749 return 0; 13750 } 13751 13752 static void free_states(struct bpf_verifier_env *env) 13753 { 13754 struct bpf_verifier_state_list *sl, *sln; 13755 int i; 13756 13757 sl = env->free_list; 13758 while (sl) { 13759 sln = sl->next; 13760 free_verifier_state(&sl->state, false); 13761 kfree(sl); 13762 sl = sln; 13763 } 13764 env->free_list = NULL; 13765 13766 if (!env->explored_states) 13767 return; 13768 13769 for (i = 0; i < state_htab_size(env); i++) { 13770 sl = env->explored_states[i]; 13771 13772 while (sl) { 13773 sln = sl->next; 13774 free_verifier_state(&sl->state, false); 13775 kfree(sl); 13776 sl = sln; 13777 } 13778 env->explored_states[i] = NULL; 13779 } 13780 } 13781 13782 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13783 { 13784 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13785 struct bpf_verifier_state *state; 13786 struct bpf_reg_state *regs; 13787 int ret, i; 13788 13789 env->prev_linfo = NULL; 13790 env->pass_cnt++; 13791 13792 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13793 if (!state) 13794 return -ENOMEM; 13795 state->curframe = 0; 13796 state->speculative = false; 13797 state->branches = 1; 13798 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13799 if (!state->frame[0]) { 13800 kfree(state); 13801 return -ENOMEM; 13802 } 13803 env->cur_state = state; 13804 init_func_state(env, state->frame[0], 13805 BPF_MAIN_FUNC /* callsite */, 13806 0 /* frameno */, 13807 subprog); 13808 13809 regs = state->frame[state->curframe]->regs; 13810 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13811 ret = btf_prepare_func_args(env, subprog, regs); 13812 if (ret) 13813 goto out; 13814 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13815 if (regs[i].type == PTR_TO_CTX) 13816 mark_reg_known_zero(env, regs, i); 13817 else if (regs[i].type == SCALAR_VALUE) 13818 mark_reg_unknown(env, regs, i); 13819 else if (base_type(regs[i].type) == PTR_TO_MEM) { 13820 const u32 mem_size = regs[i].mem_size; 13821 13822 mark_reg_known_zero(env, regs, i); 13823 regs[i].mem_size = mem_size; 13824 regs[i].id = ++env->id_gen; 13825 } 13826 } 13827 } else { 13828 /* 1st arg to a function */ 13829 regs[BPF_REG_1].type = PTR_TO_CTX; 13830 mark_reg_known_zero(env, regs, BPF_REG_1); 13831 ret = btf_check_subprog_arg_match(env, subprog, regs); 13832 if (ret == -EFAULT) 13833 /* unlikely verifier bug. abort. 13834 * ret == 0 and ret < 0 are sadly acceptable for 13835 * main() function due to backward compatibility. 13836 * Like socket filter program may be written as: 13837 * int bpf_prog(struct pt_regs *ctx) 13838 * and never dereference that ctx in the program. 13839 * 'struct pt_regs' is a type mismatch for socket 13840 * filter that should be using 'struct __sk_buff'. 13841 */ 13842 goto out; 13843 } 13844 13845 ret = do_check(env); 13846 out: 13847 /* check for NULL is necessary, since cur_state can be freed inside 13848 * do_check() under memory pressure. 13849 */ 13850 if (env->cur_state) { 13851 free_verifier_state(env->cur_state, true); 13852 env->cur_state = NULL; 13853 } 13854 while (!pop_stack(env, NULL, NULL, false)); 13855 if (!ret && pop_log) 13856 bpf_vlog_reset(&env->log, 0); 13857 free_states(env); 13858 return ret; 13859 } 13860 13861 /* Verify all global functions in a BPF program one by one based on their BTF. 13862 * All global functions must pass verification. Otherwise the whole program is rejected. 13863 * Consider: 13864 * int bar(int); 13865 * int foo(int f) 13866 * { 13867 * return bar(f); 13868 * } 13869 * int bar(int b) 13870 * { 13871 * ... 13872 * } 13873 * foo() will be verified first for R1=any_scalar_value. During verification it 13874 * will be assumed that bar() already verified successfully and call to bar() 13875 * from foo() will be checked for type match only. Later bar() will be verified 13876 * independently to check that it's safe for R1=any_scalar_value. 13877 */ 13878 static int do_check_subprogs(struct bpf_verifier_env *env) 13879 { 13880 struct bpf_prog_aux *aux = env->prog->aux; 13881 int i, ret; 13882 13883 if (!aux->func_info) 13884 return 0; 13885 13886 for (i = 1; i < env->subprog_cnt; i++) { 13887 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13888 continue; 13889 env->insn_idx = env->subprog_info[i].start; 13890 WARN_ON_ONCE(env->insn_idx == 0); 13891 ret = do_check_common(env, i); 13892 if (ret) { 13893 return ret; 13894 } else if (env->log.level & BPF_LOG_LEVEL) { 13895 verbose(env, 13896 "Func#%d is safe for any args that match its prototype\n", 13897 i); 13898 } 13899 } 13900 return 0; 13901 } 13902 13903 static int do_check_main(struct bpf_verifier_env *env) 13904 { 13905 int ret; 13906 13907 env->insn_idx = 0; 13908 ret = do_check_common(env, 0); 13909 if (!ret) 13910 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13911 return ret; 13912 } 13913 13914 13915 static void print_verification_stats(struct bpf_verifier_env *env) 13916 { 13917 int i; 13918 13919 if (env->log.level & BPF_LOG_STATS) { 13920 verbose(env, "verification time %lld usec\n", 13921 div_u64(env->verification_time, 1000)); 13922 verbose(env, "stack depth "); 13923 for (i = 0; i < env->subprog_cnt; i++) { 13924 u32 depth = env->subprog_info[i].stack_depth; 13925 13926 verbose(env, "%d", depth); 13927 if (i + 1 < env->subprog_cnt) 13928 verbose(env, "+"); 13929 } 13930 verbose(env, "\n"); 13931 } 13932 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13933 "total_states %d peak_states %d mark_read %d\n", 13934 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13935 env->max_states_per_insn, env->total_states, 13936 env->peak_states, env->longest_mark_read_walk); 13937 } 13938 13939 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13940 { 13941 const struct btf_type *t, *func_proto; 13942 const struct bpf_struct_ops *st_ops; 13943 const struct btf_member *member; 13944 struct bpf_prog *prog = env->prog; 13945 u32 btf_id, member_idx; 13946 const char *mname; 13947 13948 if (!prog->gpl_compatible) { 13949 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13950 return -EINVAL; 13951 } 13952 13953 btf_id = prog->aux->attach_btf_id; 13954 st_ops = bpf_struct_ops_find(btf_id); 13955 if (!st_ops) { 13956 verbose(env, "attach_btf_id %u is not a supported struct\n", 13957 btf_id); 13958 return -ENOTSUPP; 13959 } 13960 13961 t = st_ops->type; 13962 member_idx = prog->expected_attach_type; 13963 if (member_idx >= btf_type_vlen(t)) { 13964 verbose(env, "attach to invalid member idx %u of struct %s\n", 13965 member_idx, st_ops->name); 13966 return -EINVAL; 13967 } 13968 13969 member = &btf_type_member(t)[member_idx]; 13970 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13971 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13972 NULL); 13973 if (!func_proto) { 13974 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13975 mname, member_idx, st_ops->name); 13976 return -EINVAL; 13977 } 13978 13979 if (st_ops->check_member) { 13980 int err = st_ops->check_member(t, member); 13981 13982 if (err) { 13983 verbose(env, "attach to unsupported member %s of struct %s\n", 13984 mname, st_ops->name); 13985 return err; 13986 } 13987 } 13988 13989 prog->aux->attach_func_proto = func_proto; 13990 prog->aux->attach_func_name = mname; 13991 env->ops = st_ops->verifier_ops; 13992 13993 return 0; 13994 } 13995 #define SECURITY_PREFIX "security_" 13996 13997 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13998 { 13999 if (within_error_injection_list(addr) || 14000 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14001 return 0; 14002 14003 return -EINVAL; 14004 } 14005 14006 /* list of non-sleepable functions that are otherwise on 14007 * ALLOW_ERROR_INJECTION list 14008 */ 14009 BTF_SET_START(btf_non_sleepable_error_inject) 14010 /* Three functions below can be called from sleepable and non-sleepable context. 14011 * Assume non-sleepable from bpf safety point of view. 14012 */ 14013 BTF_ID(func, __filemap_add_folio) 14014 BTF_ID(func, should_fail_alloc_page) 14015 BTF_ID(func, should_failslab) 14016 BTF_SET_END(btf_non_sleepable_error_inject) 14017 14018 static int check_non_sleepable_error_inject(u32 btf_id) 14019 { 14020 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14021 } 14022 14023 int bpf_check_attach_target(struct bpf_verifier_log *log, 14024 const struct bpf_prog *prog, 14025 const struct bpf_prog *tgt_prog, 14026 u32 btf_id, 14027 struct bpf_attach_target_info *tgt_info) 14028 { 14029 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14030 const char prefix[] = "btf_trace_"; 14031 int ret = 0, subprog = -1, i; 14032 const struct btf_type *t; 14033 bool conservative = true; 14034 const char *tname; 14035 struct btf *btf; 14036 long addr = 0; 14037 14038 if (!btf_id) { 14039 bpf_log(log, "Tracing programs must provide btf_id\n"); 14040 return -EINVAL; 14041 } 14042 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14043 if (!btf) { 14044 bpf_log(log, 14045 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14046 return -EINVAL; 14047 } 14048 t = btf_type_by_id(btf, btf_id); 14049 if (!t) { 14050 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14051 return -EINVAL; 14052 } 14053 tname = btf_name_by_offset(btf, t->name_off); 14054 if (!tname) { 14055 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14056 return -EINVAL; 14057 } 14058 if (tgt_prog) { 14059 struct bpf_prog_aux *aux = tgt_prog->aux; 14060 14061 for (i = 0; i < aux->func_info_cnt; i++) 14062 if (aux->func_info[i].type_id == btf_id) { 14063 subprog = i; 14064 break; 14065 } 14066 if (subprog == -1) { 14067 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14068 return -EINVAL; 14069 } 14070 conservative = aux->func_info_aux[subprog].unreliable; 14071 if (prog_extension) { 14072 if (conservative) { 14073 bpf_log(log, 14074 "Cannot replace static functions\n"); 14075 return -EINVAL; 14076 } 14077 if (!prog->jit_requested) { 14078 bpf_log(log, 14079 "Extension programs should be JITed\n"); 14080 return -EINVAL; 14081 } 14082 } 14083 if (!tgt_prog->jited) { 14084 bpf_log(log, "Can attach to only JITed progs\n"); 14085 return -EINVAL; 14086 } 14087 if (tgt_prog->type == prog->type) { 14088 /* Cannot fentry/fexit another fentry/fexit program. 14089 * Cannot attach program extension to another extension. 14090 * It's ok to attach fentry/fexit to extension program. 14091 */ 14092 bpf_log(log, "Cannot recursively attach\n"); 14093 return -EINVAL; 14094 } 14095 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14096 prog_extension && 14097 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14098 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14099 /* Program extensions can extend all program types 14100 * except fentry/fexit. The reason is the following. 14101 * The fentry/fexit programs are used for performance 14102 * analysis, stats and can be attached to any program 14103 * type except themselves. When extension program is 14104 * replacing XDP function it is necessary to allow 14105 * performance analysis of all functions. Both original 14106 * XDP program and its program extension. Hence 14107 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14108 * allowed. If extending of fentry/fexit was allowed it 14109 * would be possible to create long call chain 14110 * fentry->extension->fentry->extension beyond 14111 * reasonable stack size. Hence extending fentry is not 14112 * allowed. 14113 */ 14114 bpf_log(log, "Cannot extend fentry/fexit\n"); 14115 return -EINVAL; 14116 } 14117 } else { 14118 if (prog_extension) { 14119 bpf_log(log, "Cannot replace kernel functions\n"); 14120 return -EINVAL; 14121 } 14122 } 14123 14124 switch (prog->expected_attach_type) { 14125 case BPF_TRACE_RAW_TP: 14126 if (tgt_prog) { 14127 bpf_log(log, 14128 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14129 return -EINVAL; 14130 } 14131 if (!btf_type_is_typedef(t)) { 14132 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14133 btf_id); 14134 return -EINVAL; 14135 } 14136 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14137 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14138 btf_id, tname); 14139 return -EINVAL; 14140 } 14141 tname += sizeof(prefix) - 1; 14142 t = btf_type_by_id(btf, t->type); 14143 if (!btf_type_is_ptr(t)) 14144 /* should never happen in valid vmlinux build */ 14145 return -EINVAL; 14146 t = btf_type_by_id(btf, t->type); 14147 if (!btf_type_is_func_proto(t)) 14148 /* should never happen in valid vmlinux build */ 14149 return -EINVAL; 14150 14151 break; 14152 case BPF_TRACE_ITER: 14153 if (!btf_type_is_func(t)) { 14154 bpf_log(log, "attach_btf_id %u is not a function\n", 14155 btf_id); 14156 return -EINVAL; 14157 } 14158 t = btf_type_by_id(btf, t->type); 14159 if (!btf_type_is_func_proto(t)) 14160 return -EINVAL; 14161 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14162 if (ret) 14163 return ret; 14164 break; 14165 default: 14166 if (!prog_extension) 14167 return -EINVAL; 14168 fallthrough; 14169 case BPF_MODIFY_RETURN: 14170 case BPF_LSM_MAC: 14171 case BPF_TRACE_FENTRY: 14172 case BPF_TRACE_FEXIT: 14173 if (!btf_type_is_func(t)) { 14174 bpf_log(log, "attach_btf_id %u is not a function\n", 14175 btf_id); 14176 return -EINVAL; 14177 } 14178 if (prog_extension && 14179 btf_check_type_match(log, prog, btf, t)) 14180 return -EINVAL; 14181 t = btf_type_by_id(btf, t->type); 14182 if (!btf_type_is_func_proto(t)) 14183 return -EINVAL; 14184 14185 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14186 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14187 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14188 return -EINVAL; 14189 14190 if (tgt_prog && conservative) 14191 t = NULL; 14192 14193 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14194 if (ret < 0) 14195 return ret; 14196 14197 if (tgt_prog) { 14198 if (subprog == 0) 14199 addr = (long) tgt_prog->bpf_func; 14200 else 14201 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14202 } else { 14203 addr = kallsyms_lookup_name(tname); 14204 if (!addr) { 14205 bpf_log(log, 14206 "The address of function %s cannot be found\n", 14207 tname); 14208 return -ENOENT; 14209 } 14210 } 14211 14212 if (prog->aux->sleepable) { 14213 ret = -EINVAL; 14214 switch (prog->type) { 14215 case BPF_PROG_TYPE_TRACING: 14216 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14217 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14218 */ 14219 if (!check_non_sleepable_error_inject(btf_id) && 14220 within_error_injection_list(addr)) 14221 ret = 0; 14222 break; 14223 case BPF_PROG_TYPE_LSM: 14224 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14225 * Only some of them are sleepable. 14226 */ 14227 if (bpf_lsm_is_sleepable_hook(btf_id)) 14228 ret = 0; 14229 break; 14230 default: 14231 break; 14232 } 14233 if (ret) { 14234 bpf_log(log, "%s is not sleepable\n", tname); 14235 return ret; 14236 } 14237 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14238 if (tgt_prog) { 14239 bpf_log(log, "can't modify return codes of BPF programs\n"); 14240 return -EINVAL; 14241 } 14242 ret = check_attach_modify_return(addr, tname); 14243 if (ret) { 14244 bpf_log(log, "%s() is not modifiable\n", tname); 14245 return ret; 14246 } 14247 } 14248 14249 break; 14250 } 14251 tgt_info->tgt_addr = addr; 14252 tgt_info->tgt_name = tname; 14253 tgt_info->tgt_type = t; 14254 return 0; 14255 } 14256 14257 BTF_SET_START(btf_id_deny) 14258 BTF_ID_UNUSED 14259 #ifdef CONFIG_SMP 14260 BTF_ID(func, migrate_disable) 14261 BTF_ID(func, migrate_enable) 14262 #endif 14263 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 14264 BTF_ID(func, rcu_read_unlock_strict) 14265 #endif 14266 BTF_SET_END(btf_id_deny) 14267 14268 static int check_attach_btf_id(struct bpf_verifier_env *env) 14269 { 14270 struct bpf_prog *prog = env->prog; 14271 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 14272 struct bpf_attach_target_info tgt_info = {}; 14273 u32 btf_id = prog->aux->attach_btf_id; 14274 struct bpf_trampoline *tr; 14275 int ret; 14276 u64 key; 14277 14278 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 14279 if (prog->aux->sleepable) 14280 /* attach_btf_id checked to be zero already */ 14281 return 0; 14282 verbose(env, "Syscall programs can only be sleepable\n"); 14283 return -EINVAL; 14284 } 14285 14286 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 14287 prog->type != BPF_PROG_TYPE_LSM) { 14288 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 14289 return -EINVAL; 14290 } 14291 14292 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 14293 return check_struct_ops_btf_id(env); 14294 14295 if (prog->type != BPF_PROG_TYPE_TRACING && 14296 prog->type != BPF_PROG_TYPE_LSM && 14297 prog->type != BPF_PROG_TYPE_EXT) 14298 return 0; 14299 14300 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 14301 if (ret) 14302 return ret; 14303 14304 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 14305 /* to make freplace equivalent to their targets, they need to 14306 * inherit env->ops and expected_attach_type for the rest of the 14307 * verification 14308 */ 14309 env->ops = bpf_verifier_ops[tgt_prog->type]; 14310 prog->expected_attach_type = tgt_prog->expected_attach_type; 14311 } 14312 14313 /* store info about the attachment target that will be used later */ 14314 prog->aux->attach_func_proto = tgt_info.tgt_type; 14315 prog->aux->attach_func_name = tgt_info.tgt_name; 14316 14317 if (tgt_prog) { 14318 prog->aux->saved_dst_prog_type = tgt_prog->type; 14319 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 14320 } 14321 14322 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 14323 prog->aux->attach_btf_trace = true; 14324 return 0; 14325 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 14326 if (!bpf_iter_prog_supported(prog)) 14327 return -EINVAL; 14328 return 0; 14329 } 14330 14331 if (prog->type == BPF_PROG_TYPE_LSM) { 14332 ret = bpf_lsm_verify_prog(&env->log, prog); 14333 if (ret < 0) 14334 return ret; 14335 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14336 btf_id_set_contains(&btf_id_deny, btf_id)) { 14337 return -EINVAL; 14338 } 14339 14340 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14341 tr = bpf_trampoline_get(key, &tgt_info); 14342 if (!tr) 14343 return -ENOMEM; 14344 14345 prog->aux->dst_trampoline = tr; 14346 return 0; 14347 } 14348 14349 struct btf *bpf_get_btf_vmlinux(void) 14350 { 14351 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14352 mutex_lock(&bpf_verifier_lock); 14353 if (!btf_vmlinux) 14354 btf_vmlinux = btf_parse_vmlinux(); 14355 mutex_unlock(&bpf_verifier_lock); 14356 } 14357 return btf_vmlinux; 14358 } 14359 14360 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14361 { 14362 u64 start_time = ktime_get_ns(); 14363 struct bpf_verifier_env *env; 14364 struct bpf_verifier_log *log; 14365 int i, len, ret = -EINVAL; 14366 bool is_priv; 14367 14368 /* no program is valid */ 14369 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14370 return -EINVAL; 14371 14372 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14373 * allocate/free it every time bpf_check() is called 14374 */ 14375 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14376 if (!env) 14377 return -ENOMEM; 14378 log = &env->log; 14379 14380 len = (*prog)->len; 14381 env->insn_aux_data = 14382 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14383 ret = -ENOMEM; 14384 if (!env->insn_aux_data) 14385 goto err_free_env; 14386 for (i = 0; i < len; i++) 14387 env->insn_aux_data[i].orig_idx = i; 14388 env->prog = *prog; 14389 env->ops = bpf_verifier_ops[env->prog->type]; 14390 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14391 is_priv = bpf_capable(); 14392 14393 bpf_get_btf_vmlinux(); 14394 14395 /* grab the mutex to protect few globals used by verifier */ 14396 if (!is_priv) 14397 mutex_lock(&bpf_verifier_lock); 14398 14399 if (attr->log_level || attr->log_buf || attr->log_size) { 14400 /* user requested verbose verifier output 14401 * and supplied buffer to store the verification trace 14402 */ 14403 log->level = attr->log_level; 14404 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14405 log->len_total = attr->log_size; 14406 14407 /* log attributes have to be sane */ 14408 if (!bpf_verifier_log_attr_valid(log)) { 14409 ret = -EINVAL; 14410 goto err_unlock; 14411 } 14412 } 14413 14414 mark_verifier_state_clean(env); 14415 14416 if (IS_ERR(btf_vmlinux)) { 14417 /* Either gcc or pahole or kernel are broken. */ 14418 verbose(env, "in-kernel BTF is malformed\n"); 14419 ret = PTR_ERR(btf_vmlinux); 14420 goto skip_full_check; 14421 } 14422 14423 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14424 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14425 env->strict_alignment = true; 14426 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14427 env->strict_alignment = false; 14428 14429 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14430 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14431 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14432 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14433 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14434 env->bpf_capable = bpf_capable(); 14435 14436 if (is_priv) 14437 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14438 14439 env->explored_states = kvcalloc(state_htab_size(env), 14440 sizeof(struct bpf_verifier_state_list *), 14441 GFP_USER); 14442 ret = -ENOMEM; 14443 if (!env->explored_states) 14444 goto skip_full_check; 14445 14446 ret = add_subprog_and_kfunc(env); 14447 if (ret < 0) 14448 goto skip_full_check; 14449 14450 ret = check_subprogs(env); 14451 if (ret < 0) 14452 goto skip_full_check; 14453 14454 ret = check_btf_info(env, attr, uattr); 14455 if (ret < 0) 14456 goto skip_full_check; 14457 14458 ret = check_attach_btf_id(env); 14459 if (ret) 14460 goto skip_full_check; 14461 14462 ret = resolve_pseudo_ldimm64(env); 14463 if (ret < 0) 14464 goto skip_full_check; 14465 14466 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14467 ret = bpf_prog_offload_verifier_prep(env->prog); 14468 if (ret) 14469 goto skip_full_check; 14470 } 14471 14472 ret = check_cfg(env); 14473 if (ret < 0) 14474 goto skip_full_check; 14475 14476 ret = do_check_subprogs(env); 14477 ret = ret ?: do_check_main(env); 14478 14479 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14480 ret = bpf_prog_offload_finalize(env); 14481 14482 skip_full_check: 14483 kvfree(env->explored_states); 14484 14485 if (ret == 0) 14486 ret = check_max_stack_depth(env); 14487 14488 /* instruction rewrites happen after this point */ 14489 if (is_priv) { 14490 if (ret == 0) 14491 opt_hard_wire_dead_code_branches(env); 14492 if (ret == 0) 14493 ret = opt_remove_dead_code(env); 14494 if (ret == 0) 14495 ret = opt_remove_nops(env); 14496 } else { 14497 if (ret == 0) 14498 sanitize_dead_code(env); 14499 } 14500 14501 if (ret == 0) 14502 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14503 ret = convert_ctx_accesses(env); 14504 14505 if (ret == 0) 14506 ret = do_misc_fixups(env); 14507 14508 /* do 32-bit optimization after insn patching has done so those patched 14509 * insns could be handled correctly. 14510 */ 14511 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14512 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14513 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14514 : false; 14515 } 14516 14517 if (ret == 0) 14518 ret = fixup_call_args(env); 14519 14520 env->verification_time = ktime_get_ns() - start_time; 14521 print_verification_stats(env); 14522 env->prog->aux->verified_insns = env->insn_processed; 14523 14524 if (log->level && bpf_verifier_log_full(log)) 14525 ret = -ENOSPC; 14526 if (log->level && !log->ubuf) { 14527 ret = -EFAULT; 14528 goto err_release_maps; 14529 } 14530 14531 if (ret) 14532 goto err_release_maps; 14533 14534 if (env->used_map_cnt) { 14535 /* if program passed verifier, update used_maps in bpf_prog_info */ 14536 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14537 sizeof(env->used_maps[0]), 14538 GFP_KERNEL); 14539 14540 if (!env->prog->aux->used_maps) { 14541 ret = -ENOMEM; 14542 goto err_release_maps; 14543 } 14544 14545 memcpy(env->prog->aux->used_maps, env->used_maps, 14546 sizeof(env->used_maps[0]) * env->used_map_cnt); 14547 env->prog->aux->used_map_cnt = env->used_map_cnt; 14548 } 14549 if (env->used_btf_cnt) { 14550 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14551 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14552 sizeof(env->used_btfs[0]), 14553 GFP_KERNEL); 14554 if (!env->prog->aux->used_btfs) { 14555 ret = -ENOMEM; 14556 goto err_release_maps; 14557 } 14558 14559 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14560 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14561 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14562 } 14563 if (env->used_map_cnt || env->used_btf_cnt) { 14564 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14565 * bpf_ld_imm64 instructions 14566 */ 14567 convert_pseudo_ld_imm64(env); 14568 } 14569 14570 adjust_btf_func(env); 14571 14572 err_release_maps: 14573 if (!env->prog->aux->used_maps) 14574 /* if we didn't copy map pointers into bpf_prog_info, release 14575 * them now. Otherwise free_used_maps() will release them. 14576 */ 14577 release_maps(env); 14578 if (!env->prog->aux->used_btfs) 14579 release_btfs(env); 14580 14581 /* extension progs temporarily inherit the attach_type of their targets 14582 for verification purposes, so set it back to zero before returning 14583 */ 14584 if (env->prog->type == BPF_PROG_TYPE_EXT) 14585 env->prog->expected_attach_type = 0; 14586 14587 *prog = env->prog; 14588 err_unlock: 14589 if (!is_priv) 14590 mutex_unlock(&bpf_verifier_lock); 14591 vfree(env->insn_aux_data); 14592 err_free_env: 14593 kfree(env); 14594 return ret; 14595 } 14596