1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 #define BPF_PRIV_STACK_MIN_SIZE 64 198 199 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 200 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 204 static int ref_set_non_owning(struct bpf_verifier_env *env, 205 struct bpf_reg_state *reg); 206 static void specialize_kfunc(struct bpf_verifier_env *env, 207 u32 func_id, u16 offset, unsigned long *addr); 208 static bool is_trusted_reg(const struct bpf_reg_state *reg); 209 210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 211 { 212 return aux->map_ptr_state.poison; 213 } 214 215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 216 { 217 return aux->map_ptr_state.unpriv; 218 } 219 220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 221 struct bpf_map *map, 222 bool unpriv, bool poison) 223 { 224 unpriv |= bpf_map_ptr_unpriv(aux); 225 aux->map_ptr_state.unpriv = unpriv; 226 aux->map_ptr_state.poison = poison; 227 aux->map_ptr_state.map_ptr = map; 228 } 229 230 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & BPF_MAP_KEY_POISON; 233 } 234 235 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 236 { 237 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 238 } 239 240 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 241 { 242 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 243 } 244 245 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 246 { 247 bool poisoned = bpf_map_key_poisoned(aux); 248 249 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 250 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 251 } 252 253 static bool bpf_helper_call(const struct bpf_insn *insn) 254 { 255 return insn->code == (BPF_JMP | BPF_CALL) && 256 insn->src_reg == 0; 257 } 258 259 static bool bpf_pseudo_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == BPF_PSEUDO_CALL; 263 } 264 265 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 269 } 270 271 struct bpf_call_arg_meta { 272 struct bpf_map *map_ptr; 273 bool raw_mode; 274 bool pkt_access; 275 u8 release_regno; 276 int regno; 277 int access_size; 278 int mem_size; 279 u64 msize_max_value; 280 int ref_obj_id; 281 int dynptr_id; 282 int map_uid; 283 int func_id; 284 struct btf *btf; 285 u32 btf_id; 286 struct btf *ret_btf; 287 u32 ret_btf_id; 288 u32 subprogno; 289 struct btf_field *kptr_field; 290 s64 const_map_key; 291 }; 292 293 struct bpf_kfunc_call_arg_meta { 294 /* In parameters */ 295 struct btf *btf; 296 u32 func_id; 297 u32 kfunc_flags; 298 const struct btf_type *func_proto; 299 const char *func_name; 300 /* Out parameters */ 301 u32 ref_obj_id; 302 u8 release_regno; 303 bool r0_rdonly; 304 u32 ret_btf_id; 305 u64 r0_size; 306 u32 subprogno; 307 struct { 308 u64 value; 309 bool found; 310 } arg_constant; 311 312 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 313 * generally to pass info about user-defined local kptr types to later 314 * verification logic 315 * bpf_obj_drop/bpf_percpu_obj_drop 316 * Record the local kptr type to be drop'd 317 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 318 * Record the local kptr type to be refcount_incr'd and use 319 * arg_owning_ref to determine whether refcount_acquire should be 320 * fallible 321 */ 322 struct btf *arg_btf; 323 u32 arg_btf_id; 324 bool arg_owning_ref; 325 326 struct { 327 struct btf_field *field; 328 } arg_list_head; 329 struct { 330 struct btf_field *field; 331 } arg_rbtree_root; 332 struct { 333 enum bpf_dynptr_type type; 334 u32 id; 335 u32 ref_obj_id; 336 } initialized_dynptr; 337 struct { 338 u8 spi; 339 u8 frameno; 340 } iter; 341 struct { 342 struct bpf_map *ptr; 343 int uid; 344 } map; 345 u64 mem_size; 346 }; 347 348 struct btf *btf_vmlinux; 349 350 static const char *btf_type_name(const struct btf *btf, u32 id) 351 { 352 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 353 } 354 355 static DEFINE_MUTEX(bpf_verifier_lock); 356 static DEFINE_MUTEX(bpf_percpu_ma_lock); 357 358 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 359 { 360 struct bpf_verifier_env *env = private_data; 361 va_list args; 362 363 if (!bpf_verifier_log_needed(&env->log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(&env->log, fmt, args); 368 va_end(args); 369 } 370 371 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 372 struct bpf_reg_state *reg, 373 struct bpf_retval_range range, const char *ctx, 374 const char *reg_name) 375 { 376 bool unknown = true; 377 378 verbose(env, "%s the register %s has", ctx, reg_name); 379 if (reg->smin_value > S64_MIN) { 380 verbose(env, " smin=%lld", reg->smin_value); 381 unknown = false; 382 } 383 if (reg->smax_value < S64_MAX) { 384 verbose(env, " smax=%lld", reg->smax_value); 385 unknown = false; 386 } 387 if (unknown) 388 verbose(env, " unknown scalar value"); 389 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 390 } 391 392 static bool reg_not_null(const struct bpf_reg_state *reg) 393 { 394 enum bpf_reg_type type; 395 396 type = reg->type; 397 if (type_may_be_null(type)) 398 return false; 399 400 type = base_type(type); 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_TCP_SOCK || 403 type == PTR_TO_MAP_VALUE || 404 type == PTR_TO_MAP_KEY || 405 type == PTR_TO_SOCK_COMMON || 406 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 407 type == PTR_TO_MEM; 408 } 409 410 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 411 { 412 struct btf_record *rec = NULL; 413 struct btf_struct_meta *meta; 414 415 if (reg->type == PTR_TO_MAP_VALUE) { 416 rec = reg->map_ptr->record; 417 } else if (type_is_ptr_alloc_obj(reg->type)) { 418 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 419 if (meta) 420 rec = meta->record; 421 } 422 return rec; 423 } 424 425 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 426 { 427 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 428 429 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 430 } 431 432 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 433 { 434 struct bpf_func_info *info; 435 436 if (!env->prog->aux->func_info) 437 return ""; 438 439 info = &env->prog->aux->func_info[subprog]; 440 return btf_type_name(env->prog->aux->btf, info->type_id); 441 } 442 443 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 444 { 445 struct bpf_subprog_info *info = subprog_info(env, subprog); 446 447 info->is_cb = true; 448 info->is_async_cb = true; 449 info->is_exception_cb = true; 450 } 451 452 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 453 { 454 return subprog_info(env, subprog)->is_exception_cb; 455 } 456 457 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 458 { 459 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 460 } 461 462 static bool type_is_rdonly_mem(u32 type) 463 { 464 return type & MEM_RDONLY; 465 } 466 467 static bool is_acquire_function(enum bpf_func_id func_id, 468 const struct bpf_map *map) 469 { 470 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 471 472 if (func_id == BPF_FUNC_sk_lookup_tcp || 473 func_id == BPF_FUNC_sk_lookup_udp || 474 func_id == BPF_FUNC_skc_lookup_tcp || 475 func_id == BPF_FUNC_ringbuf_reserve || 476 func_id == BPF_FUNC_kptr_xchg) 477 return true; 478 479 if (func_id == BPF_FUNC_map_lookup_elem && 480 (map_type == BPF_MAP_TYPE_SOCKMAP || 481 map_type == BPF_MAP_TYPE_SOCKHASH)) 482 return true; 483 484 return false; 485 } 486 487 static bool is_ptr_cast_function(enum bpf_func_id func_id) 488 { 489 return func_id == BPF_FUNC_tcp_sock || 490 func_id == BPF_FUNC_sk_fullsock || 491 func_id == BPF_FUNC_skc_to_tcp_sock || 492 func_id == BPF_FUNC_skc_to_tcp6_sock || 493 func_id == BPF_FUNC_skc_to_udp6_sock || 494 func_id == BPF_FUNC_skc_to_mptcp_sock || 495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 496 func_id == BPF_FUNC_skc_to_tcp_request_sock; 497 } 498 499 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 500 { 501 return func_id == BPF_FUNC_dynptr_data; 502 } 503 504 static bool is_sync_callback_calling_kfunc(u32 btf_id); 505 static bool is_async_callback_calling_kfunc(u32 btf_id); 506 static bool is_callback_calling_kfunc(u32 btf_id); 507 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 508 509 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 510 511 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 512 { 513 return func_id == BPF_FUNC_for_each_map_elem || 514 func_id == BPF_FUNC_find_vma || 515 func_id == BPF_FUNC_loop || 516 func_id == BPF_FUNC_user_ringbuf_drain; 517 } 518 519 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_timer_set_callback; 522 } 523 524 static bool is_callback_calling_function(enum bpf_func_id func_id) 525 { 526 return is_sync_callback_calling_function(func_id) || 527 is_async_callback_calling_function(func_id); 528 } 529 530 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 531 { 532 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 533 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 534 } 535 536 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 537 { 538 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 539 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 540 } 541 542 static bool is_may_goto_insn(struct bpf_insn *insn) 543 { 544 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 545 } 546 547 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 548 { 549 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 550 } 551 552 static bool is_storage_get_function(enum bpf_func_id func_id) 553 { 554 return func_id == BPF_FUNC_sk_storage_get || 555 func_id == BPF_FUNC_inode_storage_get || 556 func_id == BPF_FUNC_task_storage_get || 557 func_id == BPF_FUNC_cgrp_storage_get; 558 } 559 560 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 561 const struct bpf_map *map) 562 { 563 int ref_obj_uses = 0; 564 565 if (is_ptr_cast_function(func_id)) 566 ref_obj_uses++; 567 if (is_acquire_function(func_id, map)) 568 ref_obj_uses++; 569 if (is_dynptr_ref_function(func_id)) 570 ref_obj_uses++; 571 572 return ref_obj_uses > 1; 573 } 574 575 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 576 { 577 return BPF_CLASS(insn->code) == BPF_STX && 578 BPF_MODE(insn->code) == BPF_ATOMIC && 579 insn->imm == BPF_CMPXCHG; 580 } 581 582 static int __get_spi(s32 off) 583 { 584 return (-off - 1) / BPF_REG_SIZE; 585 } 586 587 static struct bpf_func_state *func(struct bpf_verifier_env *env, 588 const struct bpf_reg_state *reg) 589 { 590 struct bpf_verifier_state *cur = env->cur_state; 591 592 return cur->frame[reg->frameno]; 593 } 594 595 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 596 { 597 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 598 599 /* We need to check that slots between [spi - nr_slots + 1, spi] are 600 * within [0, allocated_stack). 601 * 602 * Please note that the spi grows downwards. For example, a dynptr 603 * takes the size of two stack slots; the first slot will be at 604 * spi and the second slot will be at spi - 1. 605 */ 606 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 607 } 608 609 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 610 const char *obj_kind, int nr_slots) 611 { 612 int off, spi; 613 614 if (!tnum_is_const(reg->var_off)) { 615 verbose(env, "%s has to be at a constant offset\n", obj_kind); 616 return -EINVAL; 617 } 618 619 off = reg->off + reg->var_off.value; 620 if (off % BPF_REG_SIZE) { 621 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 622 return -EINVAL; 623 } 624 625 spi = __get_spi(off); 626 if (spi + 1 < nr_slots) { 627 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 628 return -EINVAL; 629 } 630 631 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 632 return -ERANGE; 633 return spi; 634 } 635 636 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 637 { 638 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 639 } 640 641 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 642 { 643 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 644 } 645 646 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 647 { 648 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 649 } 650 651 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 652 { 653 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 654 case DYNPTR_TYPE_LOCAL: 655 return BPF_DYNPTR_TYPE_LOCAL; 656 case DYNPTR_TYPE_RINGBUF: 657 return BPF_DYNPTR_TYPE_RINGBUF; 658 case DYNPTR_TYPE_SKB: 659 return BPF_DYNPTR_TYPE_SKB; 660 case DYNPTR_TYPE_XDP: 661 return BPF_DYNPTR_TYPE_XDP; 662 default: 663 return BPF_DYNPTR_TYPE_INVALID; 664 } 665 } 666 667 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 668 { 669 switch (type) { 670 case BPF_DYNPTR_TYPE_LOCAL: 671 return DYNPTR_TYPE_LOCAL; 672 case BPF_DYNPTR_TYPE_RINGBUF: 673 return DYNPTR_TYPE_RINGBUF; 674 case BPF_DYNPTR_TYPE_SKB: 675 return DYNPTR_TYPE_SKB; 676 case BPF_DYNPTR_TYPE_XDP: 677 return DYNPTR_TYPE_XDP; 678 default: 679 return 0; 680 } 681 } 682 683 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 684 { 685 return type == BPF_DYNPTR_TYPE_RINGBUF; 686 } 687 688 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 689 enum bpf_dynptr_type type, 690 bool first_slot, int dynptr_id); 691 692 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 693 struct bpf_reg_state *reg); 694 695 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 696 struct bpf_reg_state *sreg1, 697 struct bpf_reg_state *sreg2, 698 enum bpf_dynptr_type type) 699 { 700 int id = ++env->id_gen; 701 702 __mark_dynptr_reg(sreg1, type, true, id); 703 __mark_dynptr_reg(sreg2, type, false, id); 704 } 705 706 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 707 struct bpf_reg_state *reg, 708 enum bpf_dynptr_type type) 709 { 710 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 711 } 712 713 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 714 struct bpf_func_state *state, int spi); 715 716 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 717 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 718 { 719 struct bpf_func_state *state = func(env, reg); 720 enum bpf_dynptr_type type; 721 int spi, i, err; 722 723 spi = dynptr_get_spi(env, reg); 724 if (spi < 0) 725 return spi; 726 727 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 728 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 729 * to ensure that for the following example: 730 * [d1][d1][d2][d2] 731 * spi 3 2 1 0 732 * So marking spi = 2 should lead to destruction of both d1 and d2. In 733 * case they do belong to same dynptr, second call won't see slot_type 734 * as STACK_DYNPTR and will simply skip destruction. 735 */ 736 err = destroy_if_dynptr_stack_slot(env, state, spi); 737 if (err) 738 return err; 739 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 740 if (err) 741 return err; 742 743 for (i = 0; i < BPF_REG_SIZE; i++) { 744 state->stack[spi].slot_type[i] = STACK_DYNPTR; 745 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 746 } 747 748 type = arg_to_dynptr_type(arg_type); 749 if (type == BPF_DYNPTR_TYPE_INVALID) 750 return -EINVAL; 751 752 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 753 &state->stack[spi - 1].spilled_ptr, type); 754 755 if (dynptr_type_refcounted(type)) { 756 /* The id is used to track proper releasing */ 757 int id; 758 759 if (clone_ref_obj_id) 760 id = clone_ref_obj_id; 761 else 762 id = acquire_reference(env, insn_idx); 763 764 if (id < 0) 765 return id; 766 767 state->stack[spi].spilled_ptr.ref_obj_id = id; 768 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 769 } 770 771 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 772 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 773 774 return 0; 775 } 776 777 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 778 { 779 int i; 780 781 for (i = 0; i < BPF_REG_SIZE; i++) { 782 state->stack[spi].slot_type[i] = STACK_INVALID; 783 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 784 } 785 786 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 787 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 788 789 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 790 * 791 * While we don't allow reading STACK_INVALID, it is still possible to 792 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 793 * helpers or insns can do partial read of that part without failing, 794 * but check_stack_range_initialized, check_stack_read_var_off, and 795 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 796 * the slot conservatively. Hence we need to prevent those liveness 797 * marking walks. 798 * 799 * This was not a problem before because STACK_INVALID is only set by 800 * default (where the default reg state has its reg->parent as NULL), or 801 * in clean_live_states after REG_LIVE_DONE (at which point 802 * mark_reg_read won't walk reg->parent chain), but not randomly during 803 * verifier state exploration (like we did above). Hence, for our case 804 * parentage chain will still be live (i.e. reg->parent may be 805 * non-NULL), while earlier reg->parent was NULL, so we need 806 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 807 * done later on reads or by mark_dynptr_read as well to unnecessary 808 * mark registers in verifier state. 809 */ 810 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 811 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 812 } 813 814 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 815 { 816 struct bpf_func_state *state = func(env, reg); 817 int spi, ref_obj_id, i; 818 819 spi = dynptr_get_spi(env, reg); 820 if (spi < 0) 821 return spi; 822 823 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 824 invalidate_dynptr(env, state, spi); 825 return 0; 826 } 827 828 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 829 830 /* If the dynptr has a ref_obj_id, then we need to invalidate 831 * two things: 832 * 833 * 1) Any dynptrs with a matching ref_obj_id (clones) 834 * 2) Any slices derived from this dynptr. 835 */ 836 837 /* Invalidate any slices associated with this dynptr */ 838 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 839 840 /* Invalidate any dynptr clones */ 841 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 842 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 843 continue; 844 845 /* it should always be the case that if the ref obj id 846 * matches then the stack slot also belongs to a 847 * dynptr 848 */ 849 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 850 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 851 return -EFAULT; 852 } 853 if (state->stack[i].spilled_ptr.dynptr.first_slot) 854 invalidate_dynptr(env, state, i); 855 } 856 857 return 0; 858 } 859 860 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 861 struct bpf_reg_state *reg); 862 863 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 864 { 865 if (!env->allow_ptr_leaks) 866 __mark_reg_not_init(env, reg); 867 else 868 __mark_reg_unknown(env, reg); 869 } 870 871 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 872 struct bpf_func_state *state, int spi) 873 { 874 struct bpf_func_state *fstate; 875 struct bpf_reg_state *dreg; 876 int i, dynptr_id; 877 878 /* We always ensure that STACK_DYNPTR is never set partially, 879 * hence just checking for slot_type[0] is enough. This is 880 * different for STACK_SPILL, where it may be only set for 881 * 1 byte, so code has to use is_spilled_reg. 882 */ 883 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 884 return 0; 885 886 /* Reposition spi to first slot */ 887 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 888 spi = spi + 1; 889 890 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 891 verbose(env, "cannot overwrite referenced dynptr\n"); 892 return -EINVAL; 893 } 894 895 mark_stack_slot_scratched(env, spi); 896 mark_stack_slot_scratched(env, spi - 1); 897 898 /* Writing partially to one dynptr stack slot destroys both. */ 899 for (i = 0; i < BPF_REG_SIZE; i++) { 900 state->stack[spi].slot_type[i] = STACK_INVALID; 901 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 902 } 903 904 dynptr_id = state->stack[spi].spilled_ptr.id; 905 /* Invalidate any slices associated with this dynptr */ 906 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 907 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 908 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 909 continue; 910 if (dreg->dynptr_id == dynptr_id) 911 mark_reg_invalid(env, dreg); 912 })); 913 914 /* Do not release reference state, we are destroying dynptr on stack, 915 * not using some helper to release it. Just reset register. 916 */ 917 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 918 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 919 920 /* Same reason as unmark_stack_slots_dynptr above */ 921 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 922 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 923 924 return 0; 925 } 926 927 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 928 { 929 int spi; 930 931 if (reg->type == CONST_PTR_TO_DYNPTR) 932 return false; 933 934 spi = dynptr_get_spi(env, reg); 935 936 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 937 * error because this just means the stack state hasn't been updated yet. 938 * We will do check_mem_access to check and update stack bounds later. 939 */ 940 if (spi < 0 && spi != -ERANGE) 941 return false; 942 943 /* We don't need to check if the stack slots are marked by previous 944 * dynptr initializations because we allow overwriting existing unreferenced 945 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 946 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 947 * touching are completely destructed before we reinitialize them for a new 948 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 949 * instead of delaying it until the end where the user will get "Unreleased 950 * reference" error. 951 */ 952 return true; 953 } 954 955 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 956 { 957 struct bpf_func_state *state = func(env, reg); 958 int i, spi; 959 960 /* This already represents first slot of initialized bpf_dynptr. 961 * 962 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 963 * check_func_arg_reg_off's logic, so we don't need to check its 964 * offset and alignment. 965 */ 966 if (reg->type == CONST_PTR_TO_DYNPTR) 967 return true; 968 969 spi = dynptr_get_spi(env, reg); 970 if (spi < 0) 971 return false; 972 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 973 return false; 974 975 for (i = 0; i < BPF_REG_SIZE; i++) { 976 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 977 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 978 return false; 979 } 980 981 return true; 982 } 983 984 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 985 enum bpf_arg_type arg_type) 986 { 987 struct bpf_func_state *state = func(env, reg); 988 enum bpf_dynptr_type dynptr_type; 989 int spi; 990 991 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 992 if (arg_type == ARG_PTR_TO_DYNPTR) 993 return true; 994 995 dynptr_type = arg_to_dynptr_type(arg_type); 996 if (reg->type == CONST_PTR_TO_DYNPTR) { 997 return reg->dynptr.type == dynptr_type; 998 } else { 999 spi = dynptr_get_spi(env, reg); 1000 if (spi < 0) 1001 return false; 1002 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1003 } 1004 } 1005 1006 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1007 1008 static bool in_rcu_cs(struct bpf_verifier_env *env); 1009 1010 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1011 1012 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1013 struct bpf_kfunc_call_arg_meta *meta, 1014 struct bpf_reg_state *reg, int insn_idx, 1015 struct btf *btf, u32 btf_id, int nr_slots) 1016 { 1017 struct bpf_func_state *state = func(env, reg); 1018 int spi, i, j, id; 1019 1020 spi = iter_get_spi(env, reg, nr_slots); 1021 if (spi < 0) 1022 return spi; 1023 1024 id = acquire_reference(env, insn_idx); 1025 if (id < 0) 1026 return id; 1027 1028 for (i = 0; i < nr_slots; i++) { 1029 struct bpf_stack_state *slot = &state->stack[spi - i]; 1030 struct bpf_reg_state *st = &slot->spilled_ptr; 1031 1032 __mark_reg_known_zero(st); 1033 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1034 if (is_kfunc_rcu_protected(meta)) { 1035 if (in_rcu_cs(env)) 1036 st->type |= MEM_RCU; 1037 else 1038 st->type |= PTR_UNTRUSTED; 1039 } 1040 st->live |= REG_LIVE_WRITTEN; 1041 st->ref_obj_id = i == 0 ? id : 0; 1042 st->iter.btf = btf; 1043 st->iter.btf_id = btf_id; 1044 st->iter.state = BPF_ITER_STATE_ACTIVE; 1045 st->iter.depth = 0; 1046 1047 for (j = 0; j < BPF_REG_SIZE; j++) 1048 slot->slot_type[j] = STACK_ITER; 1049 1050 mark_stack_slot_scratched(env, spi - i); 1051 } 1052 1053 return 0; 1054 } 1055 1056 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1057 struct bpf_reg_state *reg, int nr_slots) 1058 { 1059 struct bpf_func_state *state = func(env, reg); 1060 int spi, i, j; 1061 1062 spi = iter_get_spi(env, reg, nr_slots); 1063 if (spi < 0) 1064 return spi; 1065 1066 for (i = 0; i < nr_slots; i++) { 1067 struct bpf_stack_state *slot = &state->stack[spi - i]; 1068 struct bpf_reg_state *st = &slot->spilled_ptr; 1069 1070 if (i == 0) 1071 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1072 1073 __mark_reg_not_init(env, st); 1074 1075 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1076 st->live |= REG_LIVE_WRITTEN; 1077 1078 for (j = 0; j < BPF_REG_SIZE; j++) 1079 slot->slot_type[j] = STACK_INVALID; 1080 1081 mark_stack_slot_scratched(env, spi - i); 1082 } 1083 1084 return 0; 1085 } 1086 1087 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1088 struct bpf_reg_state *reg, int nr_slots) 1089 { 1090 struct bpf_func_state *state = func(env, reg); 1091 int spi, i, j; 1092 1093 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1094 * will do check_mem_access to check and update stack bounds later, so 1095 * return true for that case. 1096 */ 1097 spi = iter_get_spi(env, reg, nr_slots); 1098 if (spi == -ERANGE) 1099 return true; 1100 if (spi < 0) 1101 return false; 1102 1103 for (i = 0; i < nr_slots; i++) { 1104 struct bpf_stack_state *slot = &state->stack[spi - i]; 1105 1106 for (j = 0; j < BPF_REG_SIZE; j++) 1107 if (slot->slot_type[j] == STACK_ITER) 1108 return false; 1109 } 1110 1111 return true; 1112 } 1113 1114 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1115 struct btf *btf, u32 btf_id, int nr_slots) 1116 { 1117 struct bpf_func_state *state = func(env, reg); 1118 int spi, i, j; 1119 1120 spi = iter_get_spi(env, reg, nr_slots); 1121 if (spi < 0) 1122 return -EINVAL; 1123 1124 for (i = 0; i < nr_slots; i++) { 1125 struct bpf_stack_state *slot = &state->stack[spi - i]; 1126 struct bpf_reg_state *st = &slot->spilled_ptr; 1127 1128 if (st->type & PTR_UNTRUSTED) 1129 return -EPROTO; 1130 /* only main (first) slot has ref_obj_id set */ 1131 if (i == 0 && !st->ref_obj_id) 1132 return -EINVAL; 1133 if (i != 0 && st->ref_obj_id) 1134 return -EINVAL; 1135 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1136 return -EINVAL; 1137 1138 for (j = 0; j < BPF_REG_SIZE; j++) 1139 if (slot->slot_type[j] != STACK_ITER) 1140 return -EINVAL; 1141 } 1142 1143 return 0; 1144 } 1145 1146 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1147 static int release_irq_state(struct bpf_verifier_state *state, int id); 1148 1149 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1150 struct bpf_kfunc_call_arg_meta *meta, 1151 struct bpf_reg_state *reg, int insn_idx) 1152 { 1153 struct bpf_func_state *state = func(env, reg); 1154 struct bpf_stack_state *slot; 1155 struct bpf_reg_state *st; 1156 int spi, i, id; 1157 1158 spi = irq_flag_get_spi(env, reg); 1159 if (spi < 0) 1160 return spi; 1161 1162 id = acquire_irq_state(env, insn_idx); 1163 if (id < 0) 1164 return id; 1165 1166 slot = &state->stack[spi]; 1167 st = &slot->spilled_ptr; 1168 1169 __mark_reg_known_zero(st); 1170 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1171 st->live |= REG_LIVE_WRITTEN; 1172 st->ref_obj_id = id; 1173 1174 for (i = 0; i < BPF_REG_SIZE; i++) 1175 slot->slot_type[i] = STACK_IRQ_FLAG; 1176 1177 mark_stack_slot_scratched(env, spi); 1178 return 0; 1179 } 1180 1181 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1182 { 1183 struct bpf_func_state *state = func(env, reg); 1184 struct bpf_stack_state *slot; 1185 struct bpf_reg_state *st; 1186 int spi, i, err; 1187 1188 spi = irq_flag_get_spi(env, reg); 1189 if (spi < 0) 1190 return spi; 1191 1192 slot = &state->stack[spi]; 1193 st = &slot->spilled_ptr; 1194 1195 err = release_irq_state(env->cur_state, st->ref_obj_id); 1196 WARN_ON_ONCE(err && err != -EACCES); 1197 if (err) { 1198 int insn_idx = 0; 1199 1200 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1201 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1202 insn_idx = env->cur_state->refs[i].insn_idx; 1203 break; 1204 } 1205 } 1206 1207 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1208 env->cur_state->active_irq_id, insn_idx); 1209 return err; 1210 } 1211 1212 __mark_reg_not_init(env, st); 1213 1214 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1215 st->live |= REG_LIVE_WRITTEN; 1216 1217 for (i = 0; i < BPF_REG_SIZE; i++) 1218 slot->slot_type[i] = STACK_INVALID; 1219 1220 mark_stack_slot_scratched(env, spi); 1221 return 0; 1222 } 1223 1224 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 struct bpf_stack_state *slot; 1228 int spi, i; 1229 1230 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1231 * will do check_mem_access to check and update stack bounds later, so 1232 * return true for that case. 1233 */ 1234 spi = irq_flag_get_spi(env, reg); 1235 if (spi == -ERANGE) 1236 return true; 1237 if (spi < 0) 1238 return false; 1239 1240 slot = &state->stack[spi]; 1241 1242 for (i = 0; i < BPF_REG_SIZE; i++) 1243 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1244 return false; 1245 return true; 1246 } 1247 1248 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1249 { 1250 struct bpf_func_state *state = func(env, reg); 1251 struct bpf_stack_state *slot; 1252 struct bpf_reg_state *st; 1253 int spi, i; 1254 1255 spi = irq_flag_get_spi(env, reg); 1256 if (spi < 0) 1257 return -EINVAL; 1258 1259 slot = &state->stack[spi]; 1260 st = &slot->spilled_ptr; 1261 1262 if (!st->ref_obj_id) 1263 return -EINVAL; 1264 1265 for (i = 0; i < BPF_REG_SIZE; i++) 1266 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1267 return -EINVAL; 1268 return 0; 1269 } 1270 1271 /* Check if given stack slot is "special": 1272 * - spilled register state (STACK_SPILL); 1273 * - dynptr state (STACK_DYNPTR); 1274 * - iter state (STACK_ITER). 1275 * - irq flag state (STACK_IRQ_FLAG) 1276 */ 1277 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1278 { 1279 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1280 1281 switch (type) { 1282 case STACK_SPILL: 1283 case STACK_DYNPTR: 1284 case STACK_ITER: 1285 case STACK_IRQ_FLAG: 1286 return true; 1287 case STACK_INVALID: 1288 case STACK_MISC: 1289 case STACK_ZERO: 1290 return false; 1291 default: 1292 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1293 return true; 1294 } 1295 } 1296 1297 /* The reg state of a pointer or a bounded scalar was saved when 1298 * it was spilled to the stack. 1299 */ 1300 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1301 { 1302 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1303 } 1304 1305 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1306 { 1307 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1308 stack->spilled_ptr.type == SCALAR_VALUE; 1309 } 1310 1311 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1312 { 1313 return stack->slot_type[0] == STACK_SPILL && 1314 stack->spilled_ptr.type == SCALAR_VALUE; 1315 } 1316 1317 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1318 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1319 * more precise STACK_ZERO. 1320 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1321 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1322 * unnecessary as both are considered equivalent when loading data and pruning, 1323 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1324 * slots. 1325 */ 1326 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1327 { 1328 if (*stype == STACK_ZERO) 1329 return; 1330 if (*stype == STACK_INVALID) 1331 return; 1332 *stype = STACK_MISC; 1333 } 1334 1335 static void scrub_spilled_slot(u8 *stype) 1336 { 1337 if (*stype != STACK_INVALID) 1338 *stype = STACK_MISC; 1339 } 1340 1341 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1342 * small to hold src. This is different from krealloc since we don't want to preserve 1343 * the contents of dst. 1344 * 1345 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1346 * not be allocated. 1347 */ 1348 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1349 { 1350 size_t alloc_bytes; 1351 void *orig = dst; 1352 size_t bytes; 1353 1354 if (ZERO_OR_NULL_PTR(src)) 1355 goto out; 1356 1357 if (unlikely(check_mul_overflow(n, size, &bytes))) 1358 return NULL; 1359 1360 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1361 dst = krealloc(orig, alloc_bytes, flags); 1362 if (!dst) { 1363 kfree(orig); 1364 return NULL; 1365 } 1366 1367 memcpy(dst, src, bytes); 1368 out: 1369 return dst ? dst : ZERO_SIZE_PTR; 1370 } 1371 1372 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1373 * small to hold new_n items. new items are zeroed out if the array grows. 1374 * 1375 * Contrary to krealloc_array, does not free arr if new_n is zero. 1376 */ 1377 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1378 { 1379 size_t alloc_size; 1380 void *new_arr; 1381 1382 if (!new_n || old_n == new_n) 1383 goto out; 1384 1385 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1386 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1387 if (!new_arr) { 1388 kfree(arr); 1389 return NULL; 1390 } 1391 arr = new_arr; 1392 1393 if (new_n > old_n) 1394 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1395 1396 out: 1397 return arr ? arr : ZERO_SIZE_PTR; 1398 } 1399 1400 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1401 { 1402 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1403 sizeof(struct bpf_reference_state), GFP_KERNEL); 1404 if (!dst->refs) 1405 return -ENOMEM; 1406 1407 dst->acquired_refs = src->acquired_refs; 1408 dst->active_locks = src->active_locks; 1409 dst->active_preempt_locks = src->active_preempt_locks; 1410 dst->active_rcu_lock = src->active_rcu_lock; 1411 dst->active_irq_id = src->active_irq_id; 1412 return 0; 1413 } 1414 1415 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1416 { 1417 size_t n = src->allocated_stack / BPF_REG_SIZE; 1418 1419 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1420 GFP_KERNEL); 1421 if (!dst->stack) 1422 return -ENOMEM; 1423 1424 dst->allocated_stack = src->allocated_stack; 1425 return 0; 1426 } 1427 1428 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1429 { 1430 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1431 sizeof(struct bpf_reference_state)); 1432 if (!state->refs) 1433 return -ENOMEM; 1434 1435 state->acquired_refs = n; 1436 return 0; 1437 } 1438 1439 /* Possibly update state->allocated_stack to be at least size bytes. Also 1440 * possibly update the function's high-water mark in its bpf_subprog_info. 1441 */ 1442 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1443 { 1444 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1445 1446 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1447 size = round_up(size, BPF_REG_SIZE); 1448 n = size / BPF_REG_SIZE; 1449 1450 if (old_n >= n) 1451 return 0; 1452 1453 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1454 if (!state->stack) 1455 return -ENOMEM; 1456 1457 state->allocated_stack = size; 1458 1459 /* update known max for given subprogram */ 1460 if (env->subprog_info[state->subprogno].stack_depth < size) 1461 env->subprog_info[state->subprogno].stack_depth = size; 1462 1463 return 0; 1464 } 1465 1466 /* Acquire a pointer id from the env and update the state->refs to include 1467 * this new pointer reference. 1468 * On success, returns a valid pointer id to associate with the register 1469 * On failure, returns a negative errno. 1470 */ 1471 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1472 { 1473 struct bpf_verifier_state *state = env->cur_state; 1474 int new_ofs = state->acquired_refs; 1475 int err; 1476 1477 err = resize_reference_state(state, state->acquired_refs + 1); 1478 if (err) 1479 return NULL; 1480 state->refs[new_ofs].insn_idx = insn_idx; 1481 1482 return &state->refs[new_ofs]; 1483 } 1484 1485 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1486 { 1487 struct bpf_reference_state *s; 1488 1489 s = acquire_reference_state(env, insn_idx); 1490 if (!s) 1491 return -ENOMEM; 1492 s->type = REF_TYPE_PTR; 1493 s->id = ++env->id_gen; 1494 return s->id; 1495 } 1496 1497 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1498 int id, void *ptr) 1499 { 1500 struct bpf_verifier_state *state = env->cur_state; 1501 struct bpf_reference_state *s; 1502 1503 s = acquire_reference_state(env, insn_idx); 1504 s->type = type; 1505 s->id = id; 1506 s->ptr = ptr; 1507 1508 state->active_locks++; 1509 return 0; 1510 } 1511 1512 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1513 { 1514 struct bpf_verifier_state *state = env->cur_state; 1515 struct bpf_reference_state *s; 1516 1517 s = acquire_reference_state(env, insn_idx); 1518 if (!s) 1519 return -ENOMEM; 1520 s->type = REF_TYPE_IRQ; 1521 s->id = ++env->id_gen; 1522 1523 state->active_irq_id = s->id; 1524 return s->id; 1525 } 1526 1527 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1528 { 1529 int last_idx; 1530 size_t rem; 1531 1532 /* IRQ state requires the relative ordering of elements remaining the 1533 * same, since it relies on the refs array to behave as a stack, so that 1534 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1535 * the array instead of swapping the final element into the deleted idx. 1536 */ 1537 last_idx = state->acquired_refs - 1; 1538 rem = state->acquired_refs - idx - 1; 1539 if (last_idx && idx != last_idx) 1540 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1541 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1542 state->acquired_refs--; 1543 return; 1544 } 1545 1546 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1547 { 1548 int i; 1549 1550 for (i = 0; i < state->acquired_refs; i++) { 1551 if (state->refs[i].type != type) 1552 continue; 1553 if (state->refs[i].id == id && state->refs[i].ptr == ptr) { 1554 release_reference_state(state, i); 1555 state->active_locks--; 1556 return 0; 1557 } 1558 } 1559 return -EINVAL; 1560 } 1561 1562 static int release_irq_state(struct bpf_verifier_state *state, int id) 1563 { 1564 u32 prev_id = 0; 1565 int i; 1566 1567 if (id != state->active_irq_id) 1568 return -EACCES; 1569 1570 for (i = 0; i < state->acquired_refs; i++) { 1571 if (state->refs[i].type != REF_TYPE_IRQ) 1572 continue; 1573 if (state->refs[i].id == id) { 1574 release_reference_state(state, i); 1575 state->active_irq_id = prev_id; 1576 return 0; 1577 } else { 1578 prev_id = state->refs[i].id; 1579 } 1580 } 1581 return -EINVAL; 1582 } 1583 1584 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1585 int id, void *ptr) 1586 { 1587 int i; 1588 1589 for (i = 0; i < state->acquired_refs; i++) { 1590 struct bpf_reference_state *s = &state->refs[i]; 1591 1592 if (s->type != type) 1593 continue; 1594 1595 if (s->id == id && s->ptr == ptr) 1596 return s; 1597 } 1598 return NULL; 1599 } 1600 1601 static void free_func_state(struct bpf_func_state *state) 1602 { 1603 if (!state) 1604 return; 1605 kfree(state->stack); 1606 kfree(state); 1607 } 1608 1609 static void free_verifier_state(struct bpf_verifier_state *state, 1610 bool free_self) 1611 { 1612 int i; 1613 1614 for (i = 0; i <= state->curframe; i++) { 1615 free_func_state(state->frame[i]); 1616 state->frame[i] = NULL; 1617 } 1618 kfree(state->refs); 1619 if (free_self) 1620 kfree(state); 1621 } 1622 1623 /* copy verifier state from src to dst growing dst stack space 1624 * when necessary to accommodate larger src stack 1625 */ 1626 static int copy_func_state(struct bpf_func_state *dst, 1627 const struct bpf_func_state *src) 1628 { 1629 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1630 return copy_stack_state(dst, src); 1631 } 1632 1633 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1634 const struct bpf_verifier_state *src) 1635 { 1636 struct bpf_func_state *dst; 1637 int i, err; 1638 1639 /* if dst has more stack frames then src frame, free them, this is also 1640 * necessary in case of exceptional exits using bpf_throw. 1641 */ 1642 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1643 free_func_state(dst_state->frame[i]); 1644 dst_state->frame[i] = NULL; 1645 } 1646 err = copy_reference_state(dst_state, src); 1647 if (err) 1648 return err; 1649 dst_state->speculative = src->speculative; 1650 dst_state->in_sleepable = src->in_sleepable; 1651 dst_state->curframe = src->curframe; 1652 dst_state->branches = src->branches; 1653 dst_state->parent = src->parent; 1654 dst_state->first_insn_idx = src->first_insn_idx; 1655 dst_state->last_insn_idx = src->last_insn_idx; 1656 dst_state->insn_hist_start = src->insn_hist_start; 1657 dst_state->insn_hist_end = src->insn_hist_end; 1658 dst_state->dfs_depth = src->dfs_depth; 1659 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1660 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1661 dst_state->may_goto_depth = src->may_goto_depth; 1662 for (i = 0; i <= src->curframe; i++) { 1663 dst = dst_state->frame[i]; 1664 if (!dst) { 1665 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1666 if (!dst) 1667 return -ENOMEM; 1668 dst_state->frame[i] = dst; 1669 } 1670 err = copy_func_state(dst, src->frame[i]); 1671 if (err) 1672 return err; 1673 } 1674 return 0; 1675 } 1676 1677 static u32 state_htab_size(struct bpf_verifier_env *env) 1678 { 1679 return env->prog->len; 1680 } 1681 1682 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1683 { 1684 struct bpf_verifier_state *cur = env->cur_state; 1685 struct bpf_func_state *state = cur->frame[cur->curframe]; 1686 1687 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1688 } 1689 1690 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1691 { 1692 int fr; 1693 1694 if (a->curframe != b->curframe) 1695 return false; 1696 1697 for (fr = a->curframe; fr >= 0; fr--) 1698 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1699 return false; 1700 1701 return true; 1702 } 1703 1704 /* Open coded iterators allow back-edges in the state graph in order to 1705 * check unbounded loops that iterators. 1706 * 1707 * In is_state_visited() it is necessary to know if explored states are 1708 * part of some loops in order to decide whether non-exact states 1709 * comparison could be used: 1710 * - non-exact states comparison establishes sub-state relation and uses 1711 * read and precision marks to do so, these marks are propagated from 1712 * children states and thus are not guaranteed to be final in a loop; 1713 * - exact states comparison just checks if current and explored states 1714 * are identical (and thus form a back-edge). 1715 * 1716 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1717 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1718 * algorithm for loop structure detection and gives an overview of 1719 * relevant terminology. It also has helpful illustrations. 1720 * 1721 * [1] https://api.semanticscholar.org/CorpusID:15784067 1722 * 1723 * We use a similar algorithm but because loop nested structure is 1724 * irrelevant for verifier ours is significantly simpler and resembles 1725 * strongly connected components algorithm from Sedgewick's textbook. 1726 * 1727 * Define topmost loop entry as a first node of the loop traversed in a 1728 * depth first search starting from initial state. The goal of the loop 1729 * tracking algorithm is to associate topmost loop entries with states 1730 * derived from these entries. 1731 * 1732 * For each step in the DFS states traversal algorithm needs to identify 1733 * the following situations: 1734 * 1735 * initial initial initial 1736 * | | | 1737 * V V V 1738 * ... ... .---------> hdr 1739 * | | | | 1740 * V V | V 1741 * cur .-> succ | .------... 1742 * | | | | | | 1743 * V | V | V V 1744 * succ '-- cur | ... ... 1745 * | | | 1746 * | V V 1747 * | succ <- cur 1748 * | | 1749 * | V 1750 * | ... 1751 * | | 1752 * '----' 1753 * 1754 * (A) successor state of cur (B) successor state of cur or it's entry 1755 * not yet traversed are in current DFS path, thus cur and succ 1756 * are members of the same outermost loop 1757 * 1758 * initial initial 1759 * | | 1760 * V V 1761 * ... ... 1762 * | | 1763 * V V 1764 * .------... .------... 1765 * | | | | 1766 * V V V V 1767 * .-> hdr ... ... ... 1768 * | | | | | 1769 * | V V V V 1770 * | succ <- cur succ <- cur 1771 * | | | 1772 * | V V 1773 * | ... ... 1774 * | | | 1775 * '----' exit 1776 * 1777 * (C) successor state of cur is a part of some loop but this loop 1778 * does not include cur or successor state is not in a loop at all. 1779 * 1780 * Algorithm could be described as the following python code: 1781 * 1782 * traversed = set() # Set of traversed nodes 1783 * entries = {} # Mapping from node to loop entry 1784 * depths = {} # Depth level assigned to graph node 1785 * path = set() # Current DFS path 1786 * 1787 * # Find outermost loop entry known for n 1788 * def get_loop_entry(n): 1789 * h = entries.get(n, None) 1790 * while h in entries and entries[h] != h: 1791 * h = entries[h] 1792 * return h 1793 * 1794 * # Update n's loop entry if h's outermost entry comes 1795 * # before n's outermost entry in current DFS path. 1796 * def update_loop_entry(n, h): 1797 * n1 = get_loop_entry(n) or n 1798 * h1 = get_loop_entry(h) or h 1799 * if h1 in path and depths[h1] <= depths[n1]: 1800 * entries[n] = h1 1801 * 1802 * def dfs(n, depth): 1803 * traversed.add(n) 1804 * path.add(n) 1805 * depths[n] = depth 1806 * for succ in G.successors(n): 1807 * if succ not in traversed: 1808 * # Case A: explore succ and update cur's loop entry 1809 * # only if succ's entry is in current DFS path. 1810 * dfs(succ, depth + 1) 1811 * h = get_loop_entry(succ) 1812 * update_loop_entry(n, h) 1813 * else: 1814 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1815 * update_loop_entry(n, succ) 1816 * path.remove(n) 1817 * 1818 * To adapt this algorithm for use with verifier: 1819 * - use st->branch == 0 as a signal that DFS of succ had been finished 1820 * and cur's loop entry has to be updated (case A), handle this in 1821 * update_branch_counts(); 1822 * - use st->branch > 0 as a signal that st is in the current DFS path; 1823 * - handle cases B and C in is_state_visited(); 1824 * - update topmost loop entry for intermediate states in get_loop_entry(). 1825 */ 1826 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1827 { 1828 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1829 1830 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1831 topmost = topmost->loop_entry; 1832 /* Update loop entries for intermediate states to avoid this 1833 * traversal in future get_loop_entry() calls. 1834 */ 1835 while (st && st->loop_entry != topmost) { 1836 old = st->loop_entry; 1837 st->loop_entry = topmost; 1838 st = old; 1839 } 1840 return topmost; 1841 } 1842 1843 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1844 { 1845 struct bpf_verifier_state *cur1, *hdr1; 1846 1847 cur1 = get_loop_entry(cur) ?: cur; 1848 hdr1 = get_loop_entry(hdr) ?: hdr; 1849 /* The head1->branches check decides between cases B and C in 1850 * comment for get_loop_entry(). If hdr1->branches == 0 then 1851 * head's topmost loop entry is not in current DFS path, 1852 * hence 'cur' and 'hdr' are not in the same loop and there is 1853 * no need to update cur->loop_entry. 1854 */ 1855 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1856 cur->loop_entry = hdr; 1857 hdr->used_as_loop_entry = true; 1858 } 1859 } 1860 1861 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1862 { 1863 while (st) { 1864 u32 br = --st->branches; 1865 1866 /* br == 0 signals that DFS exploration for 'st' is finished, 1867 * thus it is necessary to update parent's loop entry if it 1868 * turned out that st is a part of some loop. 1869 * This is a part of 'case A' in get_loop_entry() comment. 1870 */ 1871 if (br == 0 && st->parent && st->loop_entry) 1872 update_loop_entry(st->parent, st->loop_entry); 1873 1874 /* WARN_ON(br > 1) technically makes sense here, 1875 * but see comment in push_stack(), hence: 1876 */ 1877 WARN_ONCE((int)br < 0, 1878 "BUG update_branch_counts:branches_to_explore=%d\n", 1879 br); 1880 if (br) 1881 break; 1882 st = st->parent; 1883 } 1884 } 1885 1886 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1887 int *insn_idx, bool pop_log) 1888 { 1889 struct bpf_verifier_state *cur = env->cur_state; 1890 struct bpf_verifier_stack_elem *elem, *head = env->head; 1891 int err; 1892 1893 if (env->head == NULL) 1894 return -ENOENT; 1895 1896 if (cur) { 1897 err = copy_verifier_state(cur, &head->st); 1898 if (err) 1899 return err; 1900 } 1901 if (pop_log) 1902 bpf_vlog_reset(&env->log, head->log_pos); 1903 if (insn_idx) 1904 *insn_idx = head->insn_idx; 1905 if (prev_insn_idx) 1906 *prev_insn_idx = head->prev_insn_idx; 1907 elem = head->next; 1908 free_verifier_state(&head->st, false); 1909 kfree(head); 1910 env->head = elem; 1911 env->stack_size--; 1912 return 0; 1913 } 1914 1915 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1916 int insn_idx, int prev_insn_idx, 1917 bool speculative) 1918 { 1919 struct bpf_verifier_state *cur = env->cur_state; 1920 struct bpf_verifier_stack_elem *elem; 1921 int err; 1922 1923 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1924 if (!elem) 1925 goto err; 1926 1927 elem->insn_idx = insn_idx; 1928 elem->prev_insn_idx = prev_insn_idx; 1929 elem->next = env->head; 1930 elem->log_pos = env->log.end_pos; 1931 env->head = elem; 1932 env->stack_size++; 1933 err = copy_verifier_state(&elem->st, cur); 1934 if (err) 1935 goto err; 1936 elem->st.speculative |= speculative; 1937 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1938 verbose(env, "The sequence of %d jumps is too complex.\n", 1939 env->stack_size); 1940 goto err; 1941 } 1942 if (elem->st.parent) { 1943 ++elem->st.parent->branches; 1944 /* WARN_ON(branches > 2) technically makes sense here, 1945 * but 1946 * 1. speculative states will bump 'branches' for non-branch 1947 * instructions 1948 * 2. is_state_visited() heuristics may decide not to create 1949 * a new state for a sequence of branches and all such current 1950 * and cloned states will be pointing to a single parent state 1951 * which might have large 'branches' count. 1952 */ 1953 } 1954 return &elem->st; 1955 err: 1956 free_verifier_state(env->cur_state, true); 1957 env->cur_state = NULL; 1958 /* pop all elements and return */ 1959 while (!pop_stack(env, NULL, NULL, false)); 1960 return NULL; 1961 } 1962 1963 #define CALLER_SAVED_REGS 6 1964 static const int caller_saved[CALLER_SAVED_REGS] = { 1965 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1966 }; 1967 1968 /* This helper doesn't clear reg->id */ 1969 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1970 { 1971 reg->var_off = tnum_const(imm); 1972 reg->smin_value = (s64)imm; 1973 reg->smax_value = (s64)imm; 1974 reg->umin_value = imm; 1975 reg->umax_value = imm; 1976 1977 reg->s32_min_value = (s32)imm; 1978 reg->s32_max_value = (s32)imm; 1979 reg->u32_min_value = (u32)imm; 1980 reg->u32_max_value = (u32)imm; 1981 } 1982 1983 /* Mark the unknown part of a register (variable offset or scalar value) as 1984 * known to have the value @imm. 1985 */ 1986 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1987 { 1988 /* Clear off and union(map_ptr, range) */ 1989 memset(((u8 *)reg) + sizeof(reg->type), 0, 1990 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1991 reg->id = 0; 1992 reg->ref_obj_id = 0; 1993 ___mark_reg_known(reg, imm); 1994 } 1995 1996 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1997 { 1998 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1999 reg->s32_min_value = (s32)imm; 2000 reg->s32_max_value = (s32)imm; 2001 reg->u32_min_value = (u32)imm; 2002 reg->u32_max_value = (u32)imm; 2003 } 2004 2005 /* Mark the 'variable offset' part of a register as zero. This should be 2006 * used only on registers holding a pointer type. 2007 */ 2008 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2009 { 2010 __mark_reg_known(reg, 0); 2011 } 2012 2013 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2014 { 2015 __mark_reg_known(reg, 0); 2016 reg->type = SCALAR_VALUE; 2017 /* all scalars are assumed imprecise initially (unless unprivileged, 2018 * in which case everything is forced to be precise) 2019 */ 2020 reg->precise = !env->bpf_capable; 2021 } 2022 2023 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2024 struct bpf_reg_state *regs, u32 regno) 2025 { 2026 if (WARN_ON(regno >= MAX_BPF_REG)) { 2027 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2028 /* Something bad happened, let's kill all regs */ 2029 for (regno = 0; regno < MAX_BPF_REG; regno++) 2030 __mark_reg_not_init(env, regs + regno); 2031 return; 2032 } 2033 __mark_reg_known_zero(regs + regno); 2034 } 2035 2036 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2037 bool first_slot, int dynptr_id) 2038 { 2039 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2040 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2041 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2042 */ 2043 __mark_reg_known_zero(reg); 2044 reg->type = CONST_PTR_TO_DYNPTR; 2045 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2046 reg->id = dynptr_id; 2047 reg->dynptr.type = type; 2048 reg->dynptr.first_slot = first_slot; 2049 } 2050 2051 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2052 { 2053 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2054 const struct bpf_map *map = reg->map_ptr; 2055 2056 if (map->inner_map_meta) { 2057 reg->type = CONST_PTR_TO_MAP; 2058 reg->map_ptr = map->inner_map_meta; 2059 /* transfer reg's id which is unique for every map_lookup_elem 2060 * as UID of the inner map. 2061 */ 2062 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2063 reg->map_uid = reg->id; 2064 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 2065 reg->map_uid = reg->id; 2066 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2067 reg->type = PTR_TO_XDP_SOCK; 2068 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2069 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2070 reg->type = PTR_TO_SOCKET; 2071 } else { 2072 reg->type = PTR_TO_MAP_VALUE; 2073 } 2074 return; 2075 } 2076 2077 reg->type &= ~PTR_MAYBE_NULL; 2078 } 2079 2080 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2081 struct btf_field_graph_root *ds_head) 2082 { 2083 __mark_reg_known_zero(®s[regno]); 2084 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2085 regs[regno].btf = ds_head->btf; 2086 regs[regno].btf_id = ds_head->value_btf_id; 2087 regs[regno].off = ds_head->node_offset; 2088 } 2089 2090 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2091 { 2092 return type_is_pkt_pointer(reg->type); 2093 } 2094 2095 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2096 { 2097 return reg_is_pkt_pointer(reg) || 2098 reg->type == PTR_TO_PACKET_END; 2099 } 2100 2101 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2102 { 2103 return base_type(reg->type) == PTR_TO_MEM && 2104 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2105 } 2106 2107 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2108 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2109 enum bpf_reg_type which) 2110 { 2111 /* The register can already have a range from prior markings. 2112 * This is fine as long as it hasn't been advanced from its 2113 * origin. 2114 */ 2115 return reg->type == which && 2116 reg->id == 0 && 2117 reg->off == 0 && 2118 tnum_equals_const(reg->var_off, 0); 2119 } 2120 2121 /* Reset the min/max bounds of a register */ 2122 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2123 { 2124 reg->smin_value = S64_MIN; 2125 reg->smax_value = S64_MAX; 2126 reg->umin_value = 0; 2127 reg->umax_value = U64_MAX; 2128 2129 reg->s32_min_value = S32_MIN; 2130 reg->s32_max_value = S32_MAX; 2131 reg->u32_min_value = 0; 2132 reg->u32_max_value = U32_MAX; 2133 } 2134 2135 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2136 { 2137 reg->smin_value = S64_MIN; 2138 reg->smax_value = S64_MAX; 2139 reg->umin_value = 0; 2140 reg->umax_value = U64_MAX; 2141 } 2142 2143 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2144 { 2145 reg->s32_min_value = S32_MIN; 2146 reg->s32_max_value = S32_MAX; 2147 reg->u32_min_value = 0; 2148 reg->u32_max_value = U32_MAX; 2149 } 2150 2151 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2152 { 2153 struct tnum var32_off = tnum_subreg(reg->var_off); 2154 2155 /* min signed is max(sign bit) | min(other bits) */ 2156 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2157 var32_off.value | (var32_off.mask & S32_MIN)); 2158 /* max signed is min(sign bit) | max(other bits) */ 2159 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2160 var32_off.value | (var32_off.mask & S32_MAX)); 2161 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2162 reg->u32_max_value = min(reg->u32_max_value, 2163 (u32)(var32_off.value | var32_off.mask)); 2164 } 2165 2166 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2167 { 2168 /* min signed is max(sign bit) | min(other bits) */ 2169 reg->smin_value = max_t(s64, reg->smin_value, 2170 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2171 /* max signed is min(sign bit) | max(other bits) */ 2172 reg->smax_value = min_t(s64, reg->smax_value, 2173 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2174 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2175 reg->umax_value = min(reg->umax_value, 2176 reg->var_off.value | reg->var_off.mask); 2177 } 2178 2179 static void __update_reg_bounds(struct bpf_reg_state *reg) 2180 { 2181 __update_reg32_bounds(reg); 2182 __update_reg64_bounds(reg); 2183 } 2184 2185 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2186 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2187 { 2188 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2189 * bits to improve our u32/s32 boundaries. 2190 * 2191 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2192 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2193 * [10, 20] range. But this property holds for any 64-bit range as 2194 * long as upper 32 bits in that entire range of values stay the same. 2195 * 2196 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2197 * in decimal) has the same upper 32 bits throughout all the values in 2198 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2199 * range. 2200 * 2201 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2202 * following the rules outlined below about u64/s64 correspondence 2203 * (which equally applies to u32 vs s32 correspondence). In general it 2204 * depends on actual hexadecimal values of 32-bit range. They can form 2205 * only valid u32, or only valid s32 ranges in some cases. 2206 * 2207 * So we use all these insights to derive bounds for subregisters here. 2208 */ 2209 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2210 /* u64 to u32 casting preserves validity of low 32 bits as 2211 * a range, if upper 32 bits are the same 2212 */ 2213 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2214 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2215 2216 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2217 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2218 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2219 } 2220 } 2221 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2222 /* low 32 bits should form a proper u32 range */ 2223 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2224 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2225 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2226 } 2227 /* low 32 bits should form a proper s32 range */ 2228 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2229 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2230 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2231 } 2232 } 2233 /* Special case where upper bits form a small sequence of two 2234 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2235 * 0x00000000 is also valid), while lower bits form a proper s32 range 2236 * going from negative numbers to positive numbers. E.g., let's say we 2237 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2238 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2239 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2240 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2241 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2242 * upper 32 bits. As a random example, s64 range 2243 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2244 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2245 */ 2246 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2247 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2248 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2249 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2250 } 2251 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2252 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2253 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2254 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2255 } 2256 /* if u32 range forms a valid s32 range (due to matching sign bit), 2257 * try to learn from that 2258 */ 2259 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2260 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2261 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2262 } 2263 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2264 * are the same, so combine. This works even in the negative case, e.g. 2265 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2266 */ 2267 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2268 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2269 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2270 } 2271 } 2272 2273 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2274 { 2275 /* If u64 range forms a valid s64 range (due to matching sign bit), 2276 * try to learn from that. Let's do a bit of ASCII art to see when 2277 * this is happening. Let's take u64 range first: 2278 * 2279 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2280 * |-------------------------------|--------------------------------| 2281 * 2282 * Valid u64 range is formed when umin and umax are anywhere in the 2283 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2284 * straightforward. Let's see how s64 range maps onto the same range 2285 * of values, annotated below the line for comparison: 2286 * 2287 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2288 * |-------------------------------|--------------------------------| 2289 * 0 S64_MAX S64_MIN -1 2290 * 2291 * So s64 values basically start in the middle and they are logically 2292 * contiguous to the right of it, wrapping around from -1 to 0, and 2293 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2294 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2295 * more visually as mapped to sign-agnostic range of hex values. 2296 * 2297 * u64 start u64 end 2298 * _______________________________________________________________ 2299 * / \ 2300 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2301 * |-------------------------------|--------------------------------| 2302 * 0 S64_MAX S64_MIN -1 2303 * / \ 2304 * >------------------------------ -------------------------------> 2305 * s64 continues... s64 end s64 start s64 "midpoint" 2306 * 2307 * What this means is that, in general, we can't always derive 2308 * something new about u64 from any random s64 range, and vice versa. 2309 * 2310 * But we can do that in two particular cases. One is when entire 2311 * u64/s64 range is *entirely* contained within left half of the above 2312 * diagram or when it is *entirely* contained in the right half. I.e.: 2313 * 2314 * |-------------------------------|--------------------------------| 2315 * ^ ^ ^ ^ 2316 * A B C D 2317 * 2318 * [A, B] and [C, D] are contained entirely in their respective halves 2319 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2320 * will be non-negative both as u64 and s64 (and in fact it will be 2321 * identical ranges no matter the signedness). [C, D] treated as s64 2322 * will be a range of negative values, while in u64 it will be 2323 * non-negative range of values larger than 0x8000000000000000. 2324 * 2325 * Now, any other range here can't be represented in both u64 and s64 2326 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2327 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2328 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2329 * for example. Similarly, valid s64 range [D, A] (going from negative 2330 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2331 * ranges as u64. Currently reg_state can't represent two segments per 2332 * numeric domain, so in such situations we can only derive maximal 2333 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2334 * 2335 * So we use these facts to derive umin/umax from smin/smax and vice 2336 * versa only if they stay within the same "half". This is equivalent 2337 * to checking sign bit: lower half will have sign bit as zero, upper 2338 * half have sign bit 1. Below in code we simplify this by just 2339 * casting umin/umax as smin/smax and checking if they form valid 2340 * range, and vice versa. Those are equivalent checks. 2341 */ 2342 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2343 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2344 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2345 } 2346 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2347 * are the same, so combine. This works even in the negative case, e.g. 2348 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2349 */ 2350 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2351 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2352 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2353 } 2354 } 2355 2356 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2357 { 2358 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2359 * values on both sides of 64-bit range in hope to have tighter range. 2360 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2361 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2362 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2363 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2364 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2365 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2366 * We just need to make sure that derived bounds we are intersecting 2367 * with are well-formed ranges in respective s64 or u64 domain, just 2368 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2369 */ 2370 __u64 new_umin, new_umax; 2371 __s64 new_smin, new_smax; 2372 2373 /* u32 -> u64 tightening, it's always well-formed */ 2374 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2375 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2376 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2377 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2378 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2379 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2380 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2381 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2382 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2383 2384 /* if s32 can be treated as valid u32 range, we can use it as well */ 2385 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2386 /* s32 -> u64 tightening */ 2387 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2388 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2389 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2390 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2391 /* s32 -> s64 tightening */ 2392 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2393 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2394 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2395 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2396 } 2397 2398 /* Here we would like to handle a special case after sign extending load, 2399 * when upper bits for a 64-bit range are all 1s or all 0s. 2400 * 2401 * Upper bits are all 1s when register is in a range: 2402 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2403 * Upper bits are all 0s when register is in a range: 2404 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2405 * Together this forms are continuous range: 2406 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2407 * 2408 * Now, suppose that register range is in fact tighter: 2409 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2410 * Also suppose that it's 32-bit range is positive, 2411 * meaning that lower 32-bits of the full 64-bit register 2412 * are in the range: 2413 * [0x0000_0000, 0x7fff_ffff] (W) 2414 * 2415 * If this happens, then any value in a range: 2416 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2417 * is smaller than a lowest bound of the range (R): 2418 * 0xffff_ffff_8000_0000 2419 * which means that upper bits of the full 64-bit register 2420 * can't be all 1s, when lower bits are in range (W). 2421 * 2422 * Note that: 2423 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2424 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2425 * These relations are used in the conditions below. 2426 */ 2427 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2428 reg->smin_value = reg->s32_min_value; 2429 reg->smax_value = reg->s32_max_value; 2430 reg->umin_value = reg->s32_min_value; 2431 reg->umax_value = reg->s32_max_value; 2432 reg->var_off = tnum_intersect(reg->var_off, 2433 tnum_range(reg->smin_value, reg->smax_value)); 2434 } 2435 } 2436 2437 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2438 { 2439 __reg32_deduce_bounds(reg); 2440 __reg64_deduce_bounds(reg); 2441 __reg_deduce_mixed_bounds(reg); 2442 } 2443 2444 /* Attempts to improve var_off based on unsigned min/max information */ 2445 static void __reg_bound_offset(struct bpf_reg_state *reg) 2446 { 2447 struct tnum var64_off = tnum_intersect(reg->var_off, 2448 tnum_range(reg->umin_value, 2449 reg->umax_value)); 2450 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2451 tnum_range(reg->u32_min_value, 2452 reg->u32_max_value)); 2453 2454 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2455 } 2456 2457 static void reg_bounds_sync(struct bpf_reg_state *reg) 2458 { 2459 /* We might have learned new bounds from the var_off. */ 2460 __update_reg_bounds(reg); 2461 /* We might have learned something about the sign bit. */ 2462 __reg_deduce_bounds(reg); 2463 __reg_deduce_bounds(reg); 2464 /* We might have learned some bits from the bounds. */ 2465 __reg_bound_offset(reg); 2466 /* Intersecting with the old var_off might have improved our bounds 2467 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2468 * then new var_off is (0; 0x7f...fc) which improves our umax. 2469 */ 2470 __update_reg_bounds(reg); 2471 } 2472 2473 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2474 struct bpf_reg_state *reg, const char *ctx) 2475 { 2476 const char *msg; 2477 2478 if (reg->umin_value > reg->umax_value || 2479 reg->smin_value > reg->smax_value || 2480 reg->u32_min_value > reg->u32_max_value || 2481 reg->s32_min_value > reg->s32_max_value) { 2482 msg = "range bounds violation"; 2483 goto out; 2484 } 2485 2486 if (tnum_is_const(reg->var_off)) { 2487 u64 uval = reg->var_off.value; 2488 s64 sval = (s64)uval; 2489 2490 if (reg->umin_value != uval || reg->umax_value != uval || 2491 reg->smin_value != sval || reg->smax_value != sval) { 2492 msg = "const tnum out of sync with range bounds"; 2493 goto out; 2494 } 2495 } 2496 2497 if (tnum_subreg_is_const(reg->var_off)) { 2498 u32 uval32 = tnum_subreg(reg->var_off).value; 2499 s32 sval32 = (s32)uval32; 2500 2501 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2502 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2503 msg = "const subreg tnum out of sync with range bounds"; 2504 goto out; 2505 } 2506 } 2507 2508 return 0; 2509 out: 2510 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2511 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2512 ctx, msg, reg->umin_value, reg->umax_value, 2513 reg->smin_value, reg->smax_value, 2514 reg->u32_min_value, reg->u32_max_value, 2515 reg->s32_min_value, reg->s32_max_value, 2516 reg->var_off.value, reg->var_off.mask); 2517 if (env->test_reg_invariants) 2518 return -EFAULT; 2519 __mark_reg_unbounded(reg); 2520 return 0; 2521 } 2522 2523 static bool __reg32_bound_s64(s32 a) 2524 { 2525 return a >= 0 && a <= S32_MAX; 2526 } 2527 2528 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2529 { 2530 reg->umin_value = reg->u32_min_value; 2531 reg->umax_value = reg->u32_max_value; 2532 2533 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2534 * be positive otherwise set to worse case bounds and refine later 2535 * from tnum. 2536 */ 2537 if (__reg32_bound_s64(reg->s32_min_value) && 2538 __reg32_bound_s64(reg->s32_max_value)) { 2539 reg->smin_value = reg->s32_min_value; 2540 reg->smax_value = reg->s32_max_value; 2541 } else { 2542 reg->smin_value = 0; 2543 reg->smax_value = U32_MAX; 2544 } 2545 } 2546 2547 /* Mark a register as having a completely unknown (scalar) value. */ 2548 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2549 { 2550 /* 2551 * Clear type, off, and union(map_ptr, range) and 2552 * padding between 'type' and union 2553 */ 2554 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2555 reg->type = SCALAR_VALUE; 2556 reg->id = 0; 2557 reg->ref_obj_id = 0; 2558 reg->var_off = tnum_unknown; 2559 reg->frameno = 0; 2560 reg->precise = false; 2561 __mark_reg_unbounded(reg); 2562 } 2563 2564 /* Mark a register as having a completely unknown (scalar) value, 2565 * initialize .precise as true when not bpf capable. 2566 */ 2567 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2568 struct bpf_reg_state *reg) 2569 { 2570 __mark_reg_unknown_imprecise(reg); 2571 reg->precise = !env->bpf_capable; 2572 } 2573 2574 static void mark_reg_unknown(struct bpf_verifier_env *env, 2575 struct bpf_reg_state *regs, u32 regno) 2576 { 2577 if (WARN_ON(regno >= MAX_BPF_REG)) { 2578 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2579 /* Something bad happened, let's kill all regs except FP */ 2580 for (regno = 0; regno < BPF_REG_FP; regno++) 2581 __mark_reg_not_init(env, regs + regno); 2582 return; 2583 } 2584 __mark_reg_unknown(env, regs + regno); 2585 } 2586 2587 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2588 struct bpf_reg_state *regs, 2589 u32 regno, 2590 s32 s32_min, 2591 s32 s32_max) 2592 { 2593 struct bpf_reg_state *reg = regs + regno; 2594 2595 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2596 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2597 2598 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2599 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2600 2601 reg_bounds_sync(reg); 2602 2603 return reg_bounds_sanity_check(env, reg, "s32_range"); 2604 } 2605 2606 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2607 struct bpf_reg_state *reg) 2608 { 2609 __mark_reg_unknown(env, reg); 2610 reg->type = NOT_INIT; 2611 } 2612 2613 static void mark_reg_not_init(struct bpf_verifier_env *env, 2614 struct bpf_reg_state *regs, u32 regno) 2615 { 2616 if (WARN_ON(regno >= MAX_BPF_REG)) { 2617 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2618 /* Something bad happened, let's kill all regs except FP */ 2619 for (regno = 0; regno < BPF_REG_FP; regno++) 2620 __mark_reg_not_init(env, regs + regno); 2621 return; 2622 } 2623 __mark_reg_not_init(env, regs + regno); 2624 } 2625 2626 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2627 struct bpf_reg_state *regs, u32 regno, 2628 enum bpf_reg_type reg_type, 2629 struct btf *btf, u32 btf_id, 2630 enum bpf_type_flag flag) 2631 { 2632 if (reg_type == SCALAR_VALUE) { 2633 mark_reg_unknown(env, regs, regno); 2634 return; 2635 } 2636 mark_reg_known_zero(env, regs, regno); 2637 regs[regno].type = PTR_TO_BTF_ID | flag; 2638 regs[regno].btf = btf; 2639 regs[regno].btf_id = btf_id; 2640 if (type_may_be_null(flag)) 2641 regs[regno].id = ++env->id_gen; 2642 } 2643 2644 #define DEF_NOT_SUBREG (0) 2645 static void init_reg_state(struct bpf_verifier_env *env, 2646 struct bpf_func_state *state) 2647 { 2648 struct bpf_reg_state *regs = state->regs; 2649 int i; 2650 2651 for (i = 0; i < MAX_BPF_REG; i++) { 2652 mark_reg_not_init(env, regs, i); 2653 regs[i].live = REG_LIVE_NONE; 2654 regs[i].parent = NULL; 2655 regs[i].subreg_def = DEF_NOT_SUBREG; 2656 } 2657 2658 /* frame pointer */ 2659 regs[BPF_REG_FP].type = PTR_TO_STACK; 2660 mark_reg_known_zero(env, regs, BPF_REG_FP); 2661 regs[BPF_REG_FP].frameno = state->frameno; 2662 } 2663 2664 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2665 { 2666 return (struct bpf_retval_range){ minval, maxval }; 2667 } 2668 2669 #define BPF_MAIN_FUNC (-1) 2670 static void init_func_state(struct bpf_verifier_env *env, 2671 struct bpf_func_state *state, 2672 int callsite, int frameno, int subprogno) 2673 { 2674 state->callsite = callsite; 2675 state->frameno = frameno; 2676 state->subprogno = subprogno; 2677 state->callback_ret_range = retval_range(0, 0); 2678 init_reg_state(env, state); 2679 mark_verifier_state_scratched(env); 2680 } 2681 2682 /* Similar to push_stack(), but for async callbacks */ 2683 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2684 int insn_idx, int prev_insn_idx, 2685 int subprog, bool is_sleepable) 2686 { 2687 struct bpf_verifier_stack_elem *elem; 2688 struct bpf_func_state *frame; 2689 2690 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2691 if (!elem) 2692 goto err; 2693 2694 elem->insn_idx = insn_idx; 2695 elem->prev_insn_idx = prev_insn_idx; 2696 elem->next = env->head; 2697 elem->log_pos = env->log.end_pos; 2698 env->head = elem; 2699 env->stack_size++; 2700 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2701 verbose(env, 2702 "The sequence of %d jumps is too complex for async cb.\n", 2703 env->stack_size); 2704 goto err; 2705 } 2706 /* Unlike push_stack() do not copy_verifier_state(). 2707 * The caller state doesn't matter. 2708 * This is async callback. It starts in a fresh stack. 2709 * Initialize it similar to do_check_common(). 2710 * But we do need to make sure to not clobber insn_hist, so we keep 2711 * chaining insn_hist_start/insn_hist_end indices as for a normal 2712 * child state. 2713 */ 2714 elem->st.branches = 1; 2715 elem->st.in_sleepable = is_sleepable; 2716 elem->st.insn_hist_start = env->cur_state->insn_hist_end; 2717 elem->st.insn_hist_end = elem->st.insn_hist_start; 2718 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2719 if (!frame) 2720 goto err; 2721 init_func_state(env, frame, 2722 BPF_MAIN_FUNC /* callsite */, 2723 0 /* frameno within this callchain */, 2724 subprog /* subprog number within this prog */); 2725 elem->st.frame[0] = frame; 2726 return &elem->st; 2727 err: 2728 free_verifier_state(env->cur_state, true); 2729 env->cur_state = NULL; 2730 /* pop all elements and return */ 2731 while (!pop_stack(env, NULL, NULL, false)); 2732 return NULL; 2733 } 2734 2735 2736 enum reg_arg_type { 2737 SRC_OP, /* register is used as source operand */ 2738 DST_OP, /* register is used as destination operand */ 2739 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2740 }; 2741 2742 static int cmp_subprogs(const void *a, const void *b) 2743 { 2744 return ((struct bpf_subprog_info *)a)->start - 2745 ((struct bpf_subprog_info *)b)->start; 2746 } 2747 2748 /* Find subprogram that contains instruction at 'off' */ 2749 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off) 2750 { 2751 struct bpf_subprog_info *vals = env->subprog_info; 2752 int l, r, m; 2753 2754 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2755 return NULL; 2756 2757 l = 0; 2758 r = env->subprog_cnt - 1; 2759 while (l < r) { 2760 m = l + (r - l + 1) / 2; 2761 if (vals[m].start <= off) 2762 l = m; 2763 else 2764 r = m - 1; 2765 } 2766 return &vals[l]; 2767 } 2768 2769 /* Find subprogram that starts exactly at 'off' */ 2770 static int find_subprog(struct bpf_verifier_env *env, int off) 2771 { 2772 struct bpf_subprog_info *p; 2773 2774 p = find_containing_subprog(env, off); 2775 if (!p || p->start != off) 2776 return -ENOENT; 2777 return p - env->subprog_info; 2778 } 2779 2780 static int add_subprog(struct bpf_verifier_env *env, int off) 2781 { 2782 int insn_cnt = env->prog->len; 2783 int ret; 2784 2785 if (off >= insn_cnt || off < 0) { 2786 verbose(env, "call to invalid destination\n"); 2787 return -EINVAL; 2788 } 2789 ret = find_subprog(env, off); 2790 if (ret >= 0) 2791 return ret; 2792 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2793 verbose(env, "too many subprograms\n"); 2794 return -E2BIG; 2795 } 2796 /* determine subprog starts. The end is one before the next starts */ 2797 env->subprog_info[env->subprog_cnt++].start = off; 2798 sort(env->subprog_info, env->subprog_cnt, 2799 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2800 return env->subprog_cnt - 1; 2801 } 2802 2803 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2804 { 2805 struct bpf_prog_aux *aux = env->prog->aux; 2806 struct btf *btf = aux->btf; 2807 const struct btf_type *t; 2808 u32 main_btf_id, id; 2809 const char *name; 2810 int ret, i; 2811 2812 /* Non-zero func_info_cnt implies valid btf */ 2813 if (!aux->func_info_cnt) 2814 return 0; 2815 main_btf_id = aux->func_info[0].type_id; 2816 2817 t = btf_type_by_id(btf, main_btf_id); 2818 if (!t) { 2819 verbose(env, "invalid btf id for main subprog in func_info\n"); 2820 return -EINVAL; 2821 } 2822 2823 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2824 if (IS_ERR(name)) { 2825 ret = PTR_ERR(name); 2826 /* If there is no tag present, there is no exception callback */ 2827 if (ret == -ENOENT) 2828 ret = 0; 2829 else if (ret == -EEXIST) 2830 verbose(env, "multiple exception callback tags for main subprog\n"); 2831 return ret; 2832 } 2833 2834 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2835 if (ret < 0) { 2836 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2837 return ret; 2838 } 2839 id = ret; 2840 t = btf_type_by_id(btf, id); 2841 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2842 verbose(env, "exception callback '%s' must have global linkage\n", name); 2843 return -EINVAL; 2844 } 2845 ret = 0; 2846 for (i = 0; i < aux->func_info_cnt; i++) { 2847 if (aux->func_info[i].type_id != id) 2848 continue; 2849 ret = aux->func_info[i].insn_off; 2850 /* Further func_info and subprog checks will also happen 2851 * later, so assume this is the right insn_off for now. 2852 */ 2853 if (!ret) { 2854 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2855 ret = -EINVAL; 2856 } 2857 } 2858 if (!ret) { 2859 verbose(env, "exception callback type id not found in func_info\n"); 2860 ret = -EINVAL; 2861 } 2862 return ret; 2863 } 2864 2865 #define MAX_KFUNC_DESCS 256 2866 #define MAX_KFUNC_BTFS 256 2867 2868 struct bpf_kfunc_desc { 2869 struct btf_func_model func_model; 2870 u32 func_id; 2871 s32 imm; 2872 u16 offset; 2873 unsigned long addr; 2874 }; 2875 2876 struct bpf_kfunc_btf { 2877 struct btf *btf; 2878 struct module *module; 2879 u16 offset; 2880 }; 2881 2882 struct bpf_kfunc_desc_tab { 2883 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2884 * verification. JITs do lookups by bpf_insn, where func_id may not be 2885 * available, therefore at the end of verification do_misc_fixups() 2886 * sorts this by imm and offset. 2887 */ 2888 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2889 u32 nr_descs; 2890 }; 2891 2892 struct bpf_kfunc_btf_tab { 2893 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2894 u32 nr_descs; 2895 }; 2896 2897 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2898 { 2899 const struct bpf_kfunc_desc *d0 = a; 2900 const struct bpf_kfunc_desc *d1 = b; 2901 2902 /* func_id is not greater than BTF_MAX_TYPE */ 2903 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2904 } 2905 2906 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2907 { 2908 const struct bpf_kfunc_btf *d0 = a; 2909 const struct bpf_kfunc_btf *d1 = b; 2910 2911 return d0->offset - d1->offset; 2912 } 2913 2914 static const struct bpf_kfunc_desc * 2915 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2916 { 2917 struct bpf_kfunc_desc desc = { 2918 .func_id = func_id, 2919 .offset = offset, 2920 }; 2921 struct bpf_kfunc_desc_tab *tab; 2922 2923 tab = prog->aux->kfunc_tab; 2924 return bsearch(&desc, tab->descs, tab->nr_descs, 2925 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2926 } 2927 2928 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2929 u16 btf_fd_idx, u8 **func_addr) 2930 { 2931 const struct bpf_kfunc_desc *desc; 2932 2933 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2934 if (!desc) 2935 return -EFAULT; 2936 2937 *func_addr = (u8 *)desc->addr; 2938 return 0; 2939 } 2940 2941 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2942 s16 offset) 2943 { 2944 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2945 struct bpf_kfunc_btf_tab *tab; 2946 struct bpf_kfunc_btf *b; 2947 struct module *mod; 2948 struct btf *btf; 2949 int btf_fd; 2950 2951 tab = env->prog->aux->kfunc_btf_tab; 2952 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2953 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2954 if (!b) { 2955 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2956 verbose(env, "too many different module BTFs\n"); 2957 return ERR_PTR(-E2BIG); 2958 } 2959 2960 if (bpfptr_is_null(env->fd_array)) { 2961 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2962 return ERR_PTR(-EPROTO); 2963 } 2964 2965 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2966 offset * sizeof(btf_fd), 2967 sizeof(btf_fd))) 2968 return ERR_PTR(-EFAULT); 2969 2970 btf = btf_get_by_fd(btf_fd); 2971 if (IS_ERR(btf)) { 2972 verbose(env, "invalid module BTF fd specified\n"); 2973 return btf; 2974 } 2975 2976 if (!btf_is_module(btf)) { 2977 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2978 btf_put(btf); 2979 return ERR_PTR(-EINVAL); 2980 } 2981 2982 mod = btf_try_get_module(btf); 2983 if (!mod) { 2984 btf_put(btf); 2985 return ERR_PTR(-ENXIO); 2986 } 2987 2988 b = &tab->descs[tab->nr_descs++]; 2989 b->btf = btf; 2990 b->module = mod; 2991 b->offset = offset; 2992 2993 /* sort() reorders entries by value, so b may no longer point 2994 * to the right entry after this 2995 */ 2996 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2997 kfunc_btf_cmp_by_off, NULL); 2998 } else { 2999 btf = b->btf; 3000 } 3001 3002 return btf; 3003 } 3004 3005 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3006 { 3007 if (!tab) 3008 return; 3009 3010 while (tab->nr_descs--) { 3011 module_put(tab->descs[tab->nr_descs].module); 3012 btf_put(tab->descs[tab->nr_descs].btf); 3013 } 3014 kfree(tab); 3015 } 3016 3017 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3018 { 3019 if (offset) { 3020 if (offset < 0) { 3021 /* In the future, this can be allowed to increase limit 3022 * of fd index into fd_array, interpreted as u16. 3023 */ 3024 verbose(env, "negative offset disallowed for kernel module function call\n"); 3025 return ERR_PTR(-EINVAL); 3026 } 3027 3028 return __find_kfunc_desc_btf(env, offset); 3029 } 3030 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3031 } 3032 3033 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3034 { 3035 const struct btf_type *func, *func_proto; 3036 struct bpf_kfunc_btf_tab *btf_tab; 3037 struct bpf_kfunc_desc_tab *tab; 3038 struct bpf_prog_aux *prog_aux; 3039 struct bpf_kfunc_desc *desc; 3040 const char *func_name; 3041 struct btf *desc_btf; 3042 unsigned long call_imm; 3043 unsigned long addr; 3044 int err; 3045 3046 prog_aux = env->prog->aux; 3047 tab = prog_aux->kfunc_tab; 3048 btf_tab = prog_aux->kfunc_btf_tab; 3049 if (!tab) { 3050 if (!btf_vmlinux) { 3051 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3052 return -ENOTSUPP; 3053 } 3054 3055 if (!env->prog->jit_requested) { 3056 verbose(env, "JIT is required for calling kernel function\n"); 3057 return -ENOTSUPP; 3058 } 3059 3060 if (!bpf_jit_supports_kfunc_call()) { 3061 verbose(env, "JIT does not support calling kernel function\n"); 3062 return -ENOTSUPP; 3063 } 3064 3065 if (!env->prog->gpl_compatible) { 3066 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3067 return -EINVAL; 3068 } 3069 3070 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 3071 if (!tab) 3072 return -ENOMEM; 3073 prog_aux->kfunc_tab = tab; 3074 } 3075 3076 /* func_id == 0 is always invalid, but instead of returning an error, be 3077 * conservative and wait until the code elimination pass before returning 3078 * error, so that invalid calls that get pruned out can be in BPF programs 3079 * loaded from userspace. It is also required that offset be untouched 3080 * for such calls. 3081 */ 3082 if (!func_id && !offset) 3083 return 0; 3084 3085 if (!btf_tab && offset) { 3086 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 3087 if (!btf_tab) 3088 return -ENOMEM; 3089 prog_aux->kfunc_btf_tab = btf_tab; 3090 } 3091 3092 desc_btf = find_kfunc_desc_btf(env, offset); 3093 if (IS_ERR(desc_btf)) { 3094 verbose(env, "failed to find BTF for kernel function\n"); 3095 return PTR_ERR(desc_btf); 3096 } 3097 3098 if (find_kfunc_desc(env->prog, func_id, offset)) 3099 return 0; 3100 3101 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3102 verbose(env, "too many different kernel function calls\n"); 3103 return -E2BIG; 3104 } 3105 3106 func = btf_type_by_id(desc_btf, func_id); 3107 if (!func || !btf_type_is_func(func)) { 3108 verbose(env, "kernel btf_id %u is not a function\n", 3109 func_id); 3110 return -EINVAL; 3111 } 3112 func_proto = btf_type_by_id(desc_btf, func->type); 3113 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3114 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3115 func_id); 3116 return -EINVAL; 3117 } 3118 3119 func_name = btf_name_by_offset(desc_btf, func->name_off); 3120 addr = kallsyms_lookup_name(func_name); 3121 if (!addr) { 3122 verbose(env, "cannot find address for kernel function %s\n", 3123 func_name); 3124 return -EINVAL; 3125 } 3126 specialize_kfunc(env, func_id, offset, &addr); 3127 3128 if (bpf_jit_supports_far_kfunc_call()) { 3129 call_imm = func_id; 3130 } else { 3131 call_imm = BPF_CALL_IMM(addr); 3132 /* Check whether the relative offset overflows desc->imm */ 3133 if ((unsigned long)(s32)call_imm != call_imm) { 3134 verbose(env, "address of kernel function %s is out of range\n", 3135 func_name); 3136 return -EINVAL; 3137 } 3138 } 3139 3140 if (bpf_dev_bound_kfunc_id(func_id)) { 3141 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3142 if (err) 3143 return err; 3144 } 3145 3146 desc = &tab->descs[tab->nr_descs++]; 3147 desc->func_id = func_id; 3148 desc->imm = call_imm; 3149 desc->offset = offset; 3150 desc->addr = addr; 3151 err = btf_distill_func_proto(&env->log, desc_btf, 3152 func_proto, func_name, 3153 &desc->func_model); 3154 if (!err) 3155 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3156 kfunc_desc_cmp_by_id_off, NULL); 3157 return err; 3158 } 3159 3160 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3161 { 3162 const struct bpf_kfunc_desc *d0 = a; 3163 const struct bpf_kfunc_desc *d1 = b; 3164 3165 if (d0->imm != d1->imm) 3166 return d0->imm < d1->imm ? -1 : 1; 3167 if (d0->offset != d1->offset) 3168 return d0->offset < d1->offset ? -1 : 1; 3169 return 0; 3170 } 3171 3172 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3173 { 3174 struct bpf_kfunc_desc_tab *tab; 3175 3176 tab = prog->aux->kfunc_tab; 3177 if (!tab) 3178 return; 3179 3180 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3181 kfunc_desc_cmp_by_imm_off, NULL); 3182 } 3183 3184 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3185 { 3186 return !!prog->aux->kfunc_tab; 3187 } 3188 3189 const struct btf_func_model * 3190 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3191 const struct bpf_insn *insn) 3192 { 3193 const struct bpf_kfunc_desc desc = { 3194 .imm = insn->imm, 3195 .offset = insn->off, 3196 }; 3197 const struct bpf_kfunc_desc *res; 3198 struct bpf_kfunc_desc_tab *tab; 3199 3200 tab = prog->aux->kfunc_tab; 3201 res = bsearch(&desc, tab->descs, tab->nr_descs, 3202 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3203 3204 return res ? &res->func_model : NULL; 3205 } 3206 3207 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3208 { 3209 struct bpf_subprog_info *subprog = env->subprog_info; 3210 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3211 struct bpf_insn *insn = env->prog->insnsi; 3212 3213 /* Add entry function. */ 3214 ret = add_subprog(env, 0); 3215 if (ret) 3216 return ret; 3217 3218 for (i = 0; i < insn_cnt; i++, insn++) { 3219 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3220 !bpf_pseudo_kfunc_call(insn)) 3221 continue; 3222 3223 if (!env->bpf_capable) { 3224 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3225 return -EPERM; 3226 } 3227 3228 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3229 ret = add_subprog(env, i + insn->imm + 1); 3230 else 3231 ret = add_kfunc_call(env, insn->imm, insn->off); 3232 3233 if (ret < 0) 3234 return ret; 3235 } 3236 3237 ret = bpf_find_exception_callback_insn_off(env); 3238 if (ret < 0) 3239 return ret; 3240 ex_cb_insn = ret; 3241 3242 /* If ex_cb_insn > 0, this means that the main program has a subprog 3243 * marked using BTF decl tag to serve as the exception callback. 3244 */ 3245 if (ex_cb_insn) { 3246 ret = add_subprog(env, ex_cb_insn); 3247 if (ret < 0) 3248 return ret; 3249 for (i = 1; i < env->subprog_cnt; i++) { 3250 if (env->subprog_info[i].start != ex_cb_insn) 3251 continue; 3252 env->exception_callback_subprog = i; 3253 mark_subprog_exc_cb(env, i); 3254 break; 3255 } 3256 } 3257 3258 /* Add a fake 'exit' subprog which could simplify subprog iteration 3259 * logic. 'subprog_cnt' should not be increased. 3260 */ 3261 subprog[env->subprog_cnt].start = insn_cnt; 3262 3263 if (env->log.level & BPF_LOG_LEVEL2) 3264 for (i = 0; i < env->subprog_cnt; i++) 3265 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3266 3267 return 0; 3268 } 3269 3270 static int check_subprogs(struct bpf_verifier_env *env) 3271 { 3272 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3273 struct bpf_subprog_info *subprog = env->subprog_info; 3274 struct bpf_insn *insn = env->prog->insnsi; 3275 int insn_cnt = env->prog->len; 3276 3277 /* now check that all jumps are within the same subprog */ 3278 subprog_start = subprog[cur_subprog].start; 3279 subprog_end = subprog[cur_subprog + 1].start; 3280 for (i = 0; i < insn_cnt; i++) { 3281 u8 code = insn[i].code; 3282 3283 if (code == (BPF_JMP | BPF_CALL) && 3284 insn[i].src_reg == 0 && 3285 insn[i].imm == BPF_FUNC_tail_call) { 3286 subprog[cur_subprog].has_tail_call = true; 3287 subprog[cur_subprog].tail_call_reachable = true; 3288 } 3289 if (BPF_CLASS(code) == BPF_LD && 3290 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3291 subprog[cur_subprog].has_ld_abs = true; 3292 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3293 goto next; 3294 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3295 goto next; 3296 if (code == (BPF_JMP32 | BPF_JA)) 3297 off = i + insn[i].imm + 1; 3298 else 3299 off = i + insn[i].off + 1; 3300 if (off < subprog_start || off >= subprog_end) { 3301 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3302 return -EINVAL; 3303 } 3304 next: 3305 if (i == subprog_end - 1) { 3306 /* to avoid fall-through from one subprog into another 3307 * the last insn of the subprog should be either exit 3308 * or unconditional jump back or bpf_throw call 3309 */ 3310 if (code != (BPF_JMP | BPF_EXIT) && 3311 code != (BPF_JMP32 | BPF_JA) && 3312 code != (BPF_JMP | BPF_JA)) { 3313 verbose(env, "last insn is not an exit or jmp\n"); 3314 return -EINVAL; 3315 } 3316 subprog_start = subprog_end; 3317 cur_subprog++; 3318 if (cur_subprog < env->subprog_cnt) 3319 subprog_end = subprog[cur_subprog + 1].start; 3320 } 3321 } 3322 return 0; 3323 } 3324 3325 /* Parentage chain of this register (or stack slot) should take care of all 3326 * issues like callee-saved registers, stack slot allocation time, etc. 3327 */ 3328 static int mark_reg_read(struct bpf_verifier_env *env, 3329 const struct bpf_reg_state *state, 3330 struct bpf_reg_state *parent, u8 flag) 3331 { 3332 bool writes = parent == state->parent; /* Observe write marks */ 3333 int cnt = 0; 3334 3335 while (parent) { 3336 /* if read wasn't screened by an earlier write ... */ 3337 if (writes && state->live & REG_LIVE_WRITTEN) 3338 break; 3339 if (parent->live & REG_LIVE_DONE) { 3340 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3341 reg_type_str(env, parent->type), 3342 parent->var_off.value, parent->off); 3343 return -EFAULT; 3344 } 3345 /* The first condition is more likely to be true than the 3346 * second, checked it first. 3347 */ 3348 if ((parent->live & REG_LIVE_READ) == flag || 3349 parent->live & REG_LIVE_READ64) 3350 /* The parentage chain never changes and 3351 * this parent was already marked as LIVE_READ. 3352 * There is no need to keep walking the chain again and 3353 * keep re-marking all parents as LIVE_READ. 3354 * This case happens when the same register is read 3355 * multiple times without writes into it in-between. 3356 * Also, if parent has the stronger REG_LIVE_READ64 set, 3357 * then no need to set the weak REG_LIVE_READ32. 3358 */ 3359 break; 3360 /* ... then we depend on parent's value */ 3361 parent->live |= flag; 3362 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3363 if (flag == REG_LIVE_READ64) 3364 parent->live &= ~REG_LIVE_READ32; 3365 state = parent; 3366 parent = state->parent; 3367 writes = true; 3368 cnt++; 3369 } 3370 3371 if (env->longest_mark_read_walk < cnt) 3372 env->longest_mark_read_walk = cnt; 3373 return 0; 3374 } 3375 3376 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3377 int spi, int nr_slots) 3378 { 3379 struct bpf_func_state *state = func(env, reg); 3380 int err, i; 3381 3382 for (i = 0; i < nr_slots; i++) { 3383 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3384 3385 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3386 if (err) 3387 return err; 3388 3389 mark_stack_slot_scratched(env, spi - i); 3390 } 3391 return 0; 3392 } 3393 3394 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3395 { 3396 int spi; 3397 3398 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3399 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3400 * check_kfunc_call. 3401 */ 3402 if (reg->type == CONST_PTR_TO_DYNPTR) 3403 return 0; 3404 spi = dynptr_get_spi(env, reg); 3405 if (spi < 0) 3406 return spi; 3407 /* Caller ensures dynptr is valid and initialized, which means spi is in 3408 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3409 * read. 3410 */ 3411 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3412 } 3413 3414 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3415 int spi, int nr_slots) 3416 { 3417 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3418 } 3419 3420 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3421 { 3422 int spi; 3423 3424 spi = irq_flag_get_spi(env, reg); 3425 if (spi < 0) 3426 return spi; 3427 return mark_stack_slot_obj_read(env, reg, spi, 1); 3428 } 3429 3430 /* This function is supposed to be used by the following 32-bit optimization 3431 * code only. It returns TRUE if the source or destination register operates 3432 * on 64-bit, otherwise return FALSE. 3433 */ 3434 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3435 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3436 { 3437 u8 code, class, op; 3438 3439 code = insn->code; 3440 class = BPF_CLASS(code); 3441 op = BPF_OP(code); 3442 if (class == BPF_JMP) { 3443 /* BPF_EXIT for "main" will reach here. Return TRUE 3444 * conservatively. 3445 */ 3446 if (op == BPF_EXIT) 3447 return true; 3448 if (op == BPF_CALL) { 3449 /* BPF to BPF call will reach here because of marking 3450 * caller saved clobber with DST_OP_NO_MARK for which we 3451 * don't care the register def because they are anyway 3452 * marked as NOT_INIT already. 3453 */ 3454 if (insn->src_reg == BPF_PSEUDO_CALL) 3455 return false; 3456 /* Helper call will reach here because of arg type 3457 * check, conservatively return TRUE. 3458 */ 3459 if (t == SRC_OP) 3460 return true; 3461 3462 return false; 3463 } 3464 } 3465 3466 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3467 return false; 3468 3469 if (class == BPF_ALU64 || class == BPF_JMP || 3470 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3471 return true; 3472 3473 if (class == BPF_ALU || class == BPF_JMP32) 3474 return false; 3475 3476 if (class == BPF_LDX) { 3477 if (t != SRC_OP) 3478 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3479 /* LDX source must be ptr. */ 3480 return true; 3481 } 3482 3483 if (class == BPF_STX) { 3484 /* BPF_STX (including atomic variants) has multiple source 3485 * operands, one of which is a ptr. Check whether the caller is 3486 * asking about it. 3487 */ 3488 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3489 return true; 3490 return BPF_SIZE(code) == BPF_DW; 3491 } 3492 3493 if (class == BPF_LD) { 3494 u8 mode = BPF_MODE(code); 3495 3496 /* LD_IMM64 */ 3497 if (mode == BPF_IMM) 3498 return true; 3499 3500 /* Both LD_IND and LD_ABS return 32-bit data. */ 3501 if (t != SRC_OP) 3502 return false; 3503 3504 /* Implicit ctx ptr. */ 3505 if (regno == BPF_REG_6) 3506 return true; 3507 3508 /* Explicit source could be any width. */ 3509 return true; 3510 } 3511 3512 if (class == BPF_ST) 3513 /* The only source register for BPF_ST is a ptr. */ 3514 return true; 3515 3516 /* Conservatively return true at default. */ 3517 return true; 3518 } 3519 3520 /* Return the regno defined by the insn, or -1. */ 3521 static int insn_def_regno(const struct bpf_insn *insn) 3522 { 3523 switch (BPF_CLASS(insn->code)) { 3524 case BPF_JMP: 3525 case BPF_JMP32: 3526 case BPF_ST: 3527 return -1; 3528 case BPF_STX: 3529 if ((BPF_MODE(insn->code) == BPF_ATOMIC || 3530 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && 3531 (insn->imm & BPF_FETCH)) { 3532 if (insn->imm == BPF_CMPXCHG) 3533 return BPF_REG_0; 3534 else 3535 return insn->src_reg; 3536 } else { 3537 return -1; 3538 } 3539 default: 3540 return insn->dst_reg; 3541 } 3542 } 3543 3544 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3545 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3546 { 3547 int dst_reg = insn_def_regno(insn); 3548 3549 if (dst_reg == -1) 3550 return false; 3551 3552 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3553 } 3554 3555 static void mark_insn_zext(struct bpf_verifier_env *env, 3556 struct bpf_reg_state *reg) 3557 { 3558 s32 def_idx = reg->subreg_def; 3559 3560 if (def_idx == DEF_NOT_SUBREG) 3561 return; 3562 3563 env->insn_aux_data[def_idx - 1].zext_dst = true; 3564 /* The dst will be zero extended, so won't be sub-register anymore. */ 3565 reg->subreg_def = DEF_NOT_SUBREG; 3566 } 3567 3568 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3569 enum reg_arg_type t) 3570 { 3571 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3572 struct bpf_reg_state *reg; 3573 bool rw64; 3574 3575 if (regno >= MAX_BPF_REG) { 3576 verbose(env, "R%d is invalid\n", regno); 3577 return -EINVAL; 3578 } 3579 3580 mark_reg_scratched(env, regno); 3581 3582 reg = ®s[regno]; 3583 rw64 = is_reg64(env, insn, regno, reg, t); 3584 if (t == SRC_OP) { 3585 /* check whether register used as source operand can be read */ 3586 if (reg->type == NOT_INIT) { 3587 verbose(env, "R%d !read_ok\n", regno); 3588 return -EACCES; 3589 } 3590 /* We don't need to worry about FP liveness because it's read-only */ 3591 if (regno == BPF_REG_FP) 3592 return 0; 3593 3594 if (rw64) 3595 mark_insn_zext(env, reg); 3596 3597 return mark_reg_read(env, reg, reg->parent, 3598 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3599 } else { 3600 /* check whether register used as dest operand can be written to */ 3601 if (regno == BPF_REG_FP) { 3602 verbose(env, "frame pointer is read only\n"); 3603 return -EACCES; 3604 } 3605 reg->live |= REG_LIVE_WRITTEN; 3606 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3607 if (t == DST_OP) 3608 mark_reg_unknown(env, regs, regno); 3609 } 3610 return 0; 3611 } 3612 3613 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3614 enum reg_arg_type t) 3615 { 3616 struct bpf_verifier_state *vstate = env->cur_state; 3617 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3618 3619 return __check_reg_arg(env, state->regs, regno, t); 3620 } 3621 3622 static int insn_stack_access_flags(int frameno, int spi) 3623 { 3624 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3625 } 3626 3627 static int insn_stack_access_spi(int insn_flags) 3628 { 3629 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3630 } 3631 3632 static int insn_stack_access_frameno(int insn_flags) 3633 { 3634 return insn_flags & INSN_F_FRAMENO_MASK; 3635 } 3636 3637 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3638 { 3639 env->insn_aux_data[idx].jmp_point = true; 3640 } 3641 3642 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3643 { 3644 return env->insn_aux_data[insn_idx].jmp_point; 3645 } 3646 3647 #define LR_FRAMENO_BITS 3 3648 #define LR_SPI_BITS 6 3649 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3650 #define LR_SIZE_BITS 4 3651 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3652 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3653 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3654 #define LR_SPI_OFF LR_FRAMENO_BITS 3655 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3656 #define LINKED_REGS_MAX 6 3657 3658 struct linked_reg { 3659 u8 frameno; 3660 union { 3661 u8 spi; 3662 u8 regno; 3663 }; 3664 bool is_reg; 3665 }; 3666 3667 struct linked_regs { 3668 int cnt; 3669 struct linked_reg entries[LINKED_REGS_MAX]; 3670 }; 3671 3672 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3673 { 3674 if (s->cnt < LINKED_REGS_MAX) 3675 return &s->entries[s->cnt++]; 3676 3677 return NULL; 3678 } 3679 3680 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3681 * number of elements currently in stack. 3682 * Pack one history entry for linked registers as 10 bits in the following format: 3683 * - 3-bits frameno 3684 * - 6-bits spi_or_reg 3685 * - 1-bit is_reg 3686 */ 3687 static u64 linked_regs_pack(struct linked_regs *s) 3688 { 3689 u64 val = 0; 3690 int i; 3691 3692 for (i = 0; i < s->cnt; ++i) { 3693 struct linked_reg *e = &s->entries[i]; 3694 u64 tmp = 0; 3695 3696 tmp |= e->frameno; 3697 tmp |= e->spi << LR_SPI_OFF; 3698 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3699 3700 val <<= LR_ENTRY_BITS; 3701 val |= tmp; 3702 } 3703 val <<= LR_SIZE_BITS; 3704 val |= s->cnt; 3705 return val; 3706 } 3707 3708 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3709 { 3710 int i; 3711 3712 s->cnt = val & LR_SIZE_MASK; 3713 val >>= LR_SIZE_BITS; 3714 3715 for (i = 0; i < s->cnt; ++i) { 3716 struct linked_reg *e = &s->entries[i]; 3717 3718 e->frameno = val & LR_FRAMENO_MASK; 3719 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3720 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3721 val >>= LR_ENTRY_BITS; 3722 } 3723 } 3724 3725 /* for any branch, call, exit record the history of jmps in the given state */ 3726 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3727 int insn_flags, u64 linked_regs) 3728 { 3729 struct bpf_insn_hist_entry *p; 3730 size_t alloc_size; 3731 3732 /* combine instruction flags if we already recorded this instruction */ 3733 if (env->cur_hist_ent) { 3734 /* atomic instructions push insn_flags twice, for READ and 3735 * WRITE sides, but they should agree on stack slot 3736 */ 3737 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3738 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3739 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3740 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3741 env->cur_hist_ent->flags |= insn_flags; 3742 WARN_ONCE(env->cur_hist_ent->linked_regs != 0, 3743 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", 3744 env->insn_idx, env->cur_hist_ent->linked_regs); 3745 env->cur_hist_ent->linked_regs = linked_regs; 3746 return 0; 3747 } 3748 3749 if (cur->insn_hist_end + 1 > env->insn_hist_cap) { 3750 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); 3751 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); 3752 if (!p) 3753 return -ENOMEM; 3754 env->insn_hist = p; 3755 env->insn_hist_cap = alloc_size / sizeof(*p); 3756 } 3757 3758 p = &env->insn_hist[cur->insn_hist_end]; 3759 p->idx = env->insn_idx; 3760 p->prev_idx = env->prev_insn_idx; 3761 p->flags = insn_flags; 3762 p->linked_regs = linked_regs; 3763 3764 cur->insn_hist_end++; 3765 env->cur_hist_ent = p; 3766 3767 return 0; 3768 } 3769 3770 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, 3771 u32 hist_start, u32 hist_end, int insn_idx) 3772 { 3773 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) 3774 return &env->insn_hist[hist_end - 1]; 3775 return NULL; 3776 } 3777 3778 /* Backtrack one insn at a time. If idx is not at the top of recorded 3779 * history then previous instruction came from straight line execution. 3780 * Return -ENOENT if we exhausted all instructions within given state. 3781 * 3782 * It's legal to have a bit of a looping with the same starting and ending 3783 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3784 * instruction index is the same as state's first_idx doesn't mean we are 3785 * done. If there is still some jump history left, we should keep going. We 3786 * need to take into account that we might have a jump history between given 3787 * state's parent and itself, due to checkpointing. In this case, we'll have 3788 * history entry recording a jump from last instruction of parent state and 3789 * first instruction of given state. 3790 */ 3791 static int get_prev_insn_idx(const struct bpf_verifier_env *env, 3792 struct bpf_verifier_state *st, 3793 int insn_idx, u32 hist_start, u32 *hist_endp) 3794 { 3795 u32 hist_end = *hist_endp; 3796 u32 cnt = hist_end - hist_start; 3797 3798 if (insn_idx == st->first_insn_idx) { 3799 if (cnt == 0) 3800 return -ENOENT; 3801 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) 3802 return -ENOENT; 3803 } 3804 3805 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { 3806 (*hist_endp)--; 3807 return env->insn_hist[hist_end - 1].prev_idx; 3808 } else { 3809 return insn_idx - 1; 3810 } 3811 } 3812 3813 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3814 { 3815 const struct btf_type *func; 3816 struct btf *desc_btf; 3817 3818 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3819 return NULL; 3820 3821 desc_btf = find_kfunc_desc_btf(data, insn->off); 3822 if (IS_ERR(desc_btf)) 3823 return "<error>"; 3824 3825 func = btf_type_by_id(desc_btf, insn->imm); 3826 return btf_name_by_offset(desc_btf, func->name_off); 3827 } 3828 3829 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3830 { 3831 bt->frame = frame; 3832 } 3833 3834 static inline void bt_reset(struct backtrack_state *bt) 3835 { 3836 struct bpf_verifier_env *env = bt->env; 3837 3838 memset(bt, 0, sizeof(*bt)); 3839 bt->env = env; 3840 } 3841 3842 static inline u32 bt_empty(struct backtrack_state *bt) 3843 { 3844 u64 mask = 0; 3845 int i; 3846 3847 for (i = 0; i <= bt->frame; i++) 3848 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3849 3850 return mask == 0; 3851 } 3852 3853 static inline int bt_subprog_enter(struct backtrack_state *bt) 3854 { 3855 if (bt->frame == MAX_CALL_FRAMES - 1) { 3856 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3857 WARN_ONCE(1, "verifier backtracking bug"); 3858 return -EFAULT; 3859 } 3860 bt->frame++; 3861 return 0; 3862 } 3863 3864 static inline int bt_subprog_exit(struct backtrack_state *bt) 3865 { 3866 if (bt->frame == 0) { 3867 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3868 WARN_ONCE(1, "verifier backtracking bug"); 3869 return -EFAULT; 3870 } 3871 bt->frame--; 3872 return 0; 3873 } 3874 3875 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3876 { 3877 bt->reg_masks[frame] |= 1 << reg; 3878 } 3879 3880 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3881 { 3882 bt->reg_masks[frame] &= ~(1 << reg); 3883 } 3884 3885 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3886 { 3887 bt_set_frame_reg(bt, bt->frame, reg); 3888 } 3889 3890 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3891 { 3892 bt_clear_frame_reg(bt, bt->frame, reg); 3893 } 3894 3895 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3896 { 3897 bt->stack_masks[frame] |= 1ull << slot; 3898 } 3899 3900 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3901 { 3902 bt->stack_masks[frame] &= ~(1ull << slot); 3903 } 3904 3905 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3906 { 3907 return bt->reg_masks[frame]; 3908 } 3909 3910 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3911 { 3912 return bt->reg_masks[bt->frame]; 3913 } 3914 3915 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3916 { 3917 return bt->stack_masks[frame]; 3918 } 3919 3920 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3921 { 3922 return bt->stack_masks[bt->frame]; 3923 } 3924 3925 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3926 { 3927 return bt->reg_masks[bt->frame] & (1 << reg); 3928 } 3929 3930 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 3931 { 3932 return bt->reg_masks[frame] & (1 << reg); 3933 } 3934 3935 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3936 { 3937 return bt->stack_masks[frame] & (1ull << slot); 3938 } 3939 3940 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3941 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3942 { 3943 DECLARE_BITMAP(mask, 64); 3944 bool first = true; 3945 int i, n; 3946 3947 buf[0] = '\0'; 3948 3949 bitmap_from_u64(mask, reg_mask); 3950 for_each_set_bit(i, mask, 32) { 3951 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3952 first = false; 3953 buf += n; 3954 buf_sz -= n; 3955 if (buf_sz < 0) 3956 break; 3957 } 3958 } 3959 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3960 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3961 { 3962 DECLARE_BITMAP(mask, 64); 3963 bool first = true; 3964 int i, n; 3965 3966 buf[0] = '\0'; 3967 3968 bitmap_from_u64(mask, stack_mask); 3969 for_each_set_bit(i, mask, 64) { 3970 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3971 first = false; 3972 buf += n; 3973 buf_sz -= n; 3974 if (buf_sz < 0) 3975 break; 3976 } 3977 } 3978 3979 /* If any register R in hist->linked_regs is marked as precise in bt, 3980 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 3981 */ 3982 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) 3983 { 3984 struct linked_regs linked_regs; 3985 bool some_precise = false; 3986 int i; 3987 3988 if (!hist || hist->linked_regs == 0) 3989 return; 3990 3991 linked_regs_unpack(hist->linked_regs, &linked_regs); 3992 for (i = 0; i < linked_regs.cnt; ++i) { 3993 struct linked_reg *e = &linked_regs.entries[i]; 3994 3995 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 3996 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 3997 some_precise = true; 3998 break; 3999 } 4000 } 4001 4002 if (!some_precise) 4003 return; 4004 4005 for (i = 0; i < linked_regs.cnt; ++i) { 4006 struct linked_reg *e = &linked_regs.entries[i]; 4007 4008 if (e->is_reg) 4009 bt_set_frame_reg(bt, e->frameno, e->regno); 4010 else 4011 bt_set_frame_slot(bt, e->frameno, e->spi); 4012 } 4013 } 4014 4015 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 4016 4017 /* For given verifier state backtrack_insn() is called from the last insn to 4018 * the first insn. Its purpose is to compute a bitmask of registers and 4019 * stack slots that needs precision in the parent verifier state. 4020 * 4021 * @idx is an index of the instruction we are currently processing; 4022 * @subseq_idx is an index of the subsequent instruction that: 4023 * - *would be* executed next, if jump history is viewed in forward order; 4024 * - *was* processed previously during backtracking. 4025 */ 4026 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4027 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) 4028 { 4029 const struct bpf_insn_cbs cbs = { 4030 .cb_call = disasm_kfunc_name, 4031 .cb_print = verbose, 4032 .private_data = env, 4033 }; 4034 struct bpf_insn *insn = env->prog->insnsi + idx; 4035 u8 class = BPF_CLASS(insn->code); 4036 u8 opcode = BPF_OP(insn->code); 4037 u8 mode = BPF_MODE(insn->code); 4038 u32 dreg = insn->dst_reg; 4039 u32 sreg = insn->src_reg; 4040 u32 spi, i, fr; 4041 4042 if (insn->code == 0) 4043 return 0; 4044 if (env->log.level & BPF_LOG_LEVEL2) { 4045 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4046 verbose(env, "mark_precise: frame%d: regs=%s ", 4047 bt->frame, env->tmp_str_buf); 4048 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4049 verbose(env, "stack=%s before ", env->tmp_str_buf); 4050 verbose(env, "%d: ", idx); 4051 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4052 } 4053 4054 /* If there is a history record that some registers gained range at this insn, 4055 * propagate precision marks to those registers, so that bt_is_reg_set() 4056 * accounts for these registers. 4057 */ 4058 bt_sync_linked_regs(bt, hist); 4059 4060 if (class == BPF_ALU || class == BPF_ALU64) { 4061 if (!bt_is_reg_set(bt, dreg)) 4062 return 0; 4063 if (opcode == BPF_END || opcode == BPF_NEG) { 4064 /* sreg is reserved and unused 4065 * dreg still need precision before this insn 4066 */ 4067 return 0; 4068 } else if (opcode == BPF_MOV) { 4069 if (BPF_SRC(insn->code) == BPF_X) { 4070 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4071 * dreg needs precision after this insn 4072 * sreg needs precision before this insn 4073 */ 4074 bt_clear_reg(bt, dreg); 4075 if (sreg != BPF_REG_FP) 4076 bt_set_reg(bt, sreg); 4077 } else { 4078 /* dreg = K 4079 * dreg needs precision after this insn. 4080 * Corresponding register is already marked 4081 * as precise=true in this verifier state. 4082 * No further markings in parent are necessary 4083 */ 4084 bt_clear_reg(bt, dreg); 4085 } 4086 } else { 4087 if (BPF_SRC(insn->code) == BPF_X) { 4088 /* dreg += sreg 4089 * both dreg and sreg need precision 4090 * before this insn 4091 */ 4092 if (sreg != BPF_REG_FP) 4093 bt_set_reg(bt, sreg); 4094 } /* else dreg += K 4095 * dreg still needs precision before this insn 4096 */ 4097 } 4098 } else if (class == BPF_LDX) { 4099 if (!bt_is_reg_set(bt, dreg)) 4100 return 0; 4101 bt_clear_reg(bt, dreg); 4102 4103 /* scalars can only be spilled into stack w/o losing precision. 4104 * Load from any other memory can be zero extended. 4105 * The desire to keep that precision is already indicated 4106 * by 'precise' mark in corresponding register of this state. 4107 * No further tracking necessary. 4108 */ 4109 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4110 return 0; 4111 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4112 * that [fp - off] slot contains scalar that needs to be 4113 * tracked with precision 4114 */ 4115 spi = insn_stack_access_spi(hist->flags); 4116 fr = insn_stack_access_frameno(hist->flags); 4117 bt_set_frame_slot(bt, fr, spi); 4118 } else if (class == BPF_STX || class == BPF_ST) { 4119 if (bt_is_reg_set(bt, dreg)) 4120 /* stx & st shouldn't be using _scalar_ dst_reg 4121 * to access memory. It means backtracking 4122 * encountered a case of pointer subtraction. 4123 */ 4124 return -ENOTSUPP; 4125 /* scalars can only be spilled into stack */ 4126 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4127 return 0; 4128 spi = insn_stack_access_spi(hist->flags); 4129 fr = insn_stack_access_frameno(hist->flags); 4130 if (!bt_is_frame_slot_set(bt, fr, spi)) 4131 return 0; 4132 bt_clear_frame_slot(bt, fr, spi); 4133 if (class == BPF_STX) 4134 bt_set_reg(bt, sreg); 4135 } else if (class == BPF_JMP || class == BPF_JMP32) { 4136 if (bpf_pseudo_call(insn)) { 4137 int subprog_insn_idx, subprog; 4138 4139 subprog_insn_idx = idx + insn->imm + 1; 4140 subprog = find_subprog(env, subprog_insn_idx); 4141 if (subprog < 0) 4142 return -EFAULT; 4143 4144 if (subprog_is_global(env, subprog)) { 4145 /* check that jump history doesn't have any 4146 * extra instructions from subprog; the next 4147 * instruction after call to global subprog 4148 * should be literally next instruction in 4149 * caller program 4150 */ 4151 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 4152 /* r1-r5 are invalidated after subprog call, 4153 * so for global func call it shouldn't be set 4154 * anymore 4155 */ 4156 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4157 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4158 WARN_ONCE(1, "verifier backtracking bug"); 4159 return -EFAULT; 4160 } 4161 /* global subprog always sets R0 */ 4162 bt_clear_reg(bt, BPF_REG_0); 4163 return 0; 4164 } else { 4165 /* static subprog call instruction, which 4166 * means that we are exiting current subprog, 4167 * so only r1-r5 could be still requested as 4168 * precise, r0 and r6-r10 or any stack slot in 4169 * the current frame should be zero by now 4170 */ 4171 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4172 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4173 WARN_ONCE(1, "verifier backtracking bug"); 4174 return -EFAULT; 4175 } 4176 /* we are now tracking register spills correctly, 4177 * so any instance of leftover slots is a bug 4178 */ 4179 if (bt_stack_mask(bt) != 0) { 4180 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4181 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 4182 return -EFAULT; 4183 } 4184 /* propagate r1-r5 to the caller */ 4185 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4186 if (bt_is_reg_set(bt, i)) { 4187 bt_clear_reg(bt, i); 4188 bt_set_frame_reg(bt, bt->frame - 1, i); 4189 } 4190 } 4191 if (bt_subprog_exit(bt)) 4192 return -EFAULT; 4193 return 0; 4194 } 4195 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4196 /* exit from callback subprog to callback-calling helper or 4197 * kfunc call. Use idx/subseq_idx check to discern it from 4198 * straight line code backtracking. 4199 * Unlike the subprog call handling above, we shouldn't 4200 * propagate precision of r1-r5 (if any requested), as they are 4201 * not actually arguments passed directly to callback subprogs 4202 */ 4203 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4204 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4205 WARN_ONCE(1, "verifier backtracking bug"); 4206 return -EFAULT; 4207 } 4208 if (bt_stack_mask(bt) != 0) { 4209 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4210 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 4211 return -EFAULT; 4212 } 4213 /* clear r1-r5 in callback subprog's mask */ 4214 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4215 bt_clear_reg(bt, i); 4216 if (bt_subprog_exit(bt)) 4217 return -EFAULT; 4218 return 0; 4219 } else if (opcode == BPF_CALL) { 4220 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4221 * catch this error later. Make backtracking conservative 4222 * with ENOTSUPP. 4223 */ 4224 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4225 return -ENOTSUPP; 4226 /* regular helper call sets R0 */ 4227 bt_clear_reg(bt, BPF_REG_0); 4228 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4229 /* if backtracing was looking for registers R1-R5 4230 * they should have been found already. 4231 */ 4232 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4233 WARN_ONCE(1, "verifier backtracking bug"); 4234 return -EFAULT; 4235 } 4236 } else if (opcode == BPF_EXIT) { 4237 bool r0_precise; 4238 4239 /* Backtracking to a nested function call, 'idx' is a part of 4240 * the inner frame 'subseq_idx' is a part of the outer frame. 4241 * In case of a regular function call, instructions giving 4242 * precision to registers R1-R5 should have been found already. 4243 * In case of a callback, it is ok to have R1-R5 marked for 4244 * backtracking, as these registers are set by the function 4245 * invoking callback. 4246 */ 4247 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4248 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4249 bt_clear_reg(bt, i); 4250 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4251 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4252 WARN_ONCE(1, "verifier backtracking bug"); 4253 return -EFAULT; 4254 } 4255 4256 /* BPF_EXIT in subprog or callback always returns 4257 * right after the call instruction, so by checking 4258 * whether the instruction at subseq_idx-1 is subprog 4259 * call or not we can distinguish actual exit from 4260 * *subprog* from exit from *callback*. In the former 4261 * case, we need to propagate r0 precision, if 4262 * necessary. In the former we never do that. 4263 */ 4264 r0_precise = subseq_idx - 1 >= 0 && 4265 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4266 bt_is_reg_set(bt, BPF_REG_0); 4267 4268 bt_clear_reg(bt, BPF_REG_0); 4269 if (bt_subprog_enter(bt)) 4270 return -EFAULT; 4271 4272 if (r0_precise) 4273 bt_set_reg(bt, BPF_REG_0); 4274 /* r6-r9 and stack slots will stay set in caller frame 4275 * bitmasks until we return back from callee(s) 4276 */ 4277 return 0; 4278 } else if (BPF_SRC(insn->code) == BPF_X) { 4279 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4280 return 0; 4281 /* dreg <cond> sreg 4282 * Both dreg and sreg need precision before 4283 * this insn. If only sreg was marked precise 4284 * before it would be equally necessary to 4285 * propagate it to dreg. 4286 */ 4287 bt_set_reg(bt, dreg); 4288 bt_set_reg(bt, sreg); 4289 } else if (BPF_SRC(insn->code) == BPF_K) { 4290 /* dreg <cond> K 4291 * Only dreg still needs precision before 4292 * this insn, so for the K-based conditional 4293 * there is nothing new to be marked. 4294 */ 4295 } 4296 } else if (class == BPF_LD) { 4297 if (!bt_is_reg_set(bt, dreg)) 4298 return 0; 4299 bt_clear_reg(bt, dreg); 4300 /* It's ld_imm64 or ld_abs or ld_ind. 4301 * For ld_imm64 no further tracking of precision 4302 * into parent is necessary 4303 */ 4304 if (mode == BPF_IND || mode == BPF_ABS) 4305 /* to be analyzed */ 4306 return -ENOTSUPP; 4307 } 4308 /* Propagate precision marks to linked registers, to account for 4309 * registers marked as precise in this function. 4310 */ 4311 bt_sync_linked_regs(bt, hist); 4312 return 0; 4313 } 4314 4315 /* the scalar precision tracking algorithm: 4316 * . at the start all registers have precise=false. 4317 * . scalar ranges are tracked as normal through alu and jmp insns. 4318 * . once precise value of the scalar register is used in: 4319 * . ptr + scalar alu 4320 * . if (scalar cond K|scalar) 4321 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4322 * backtrack through the verifier states and mark all registers and 4323 * stack slots with spilled constants that these scalar regisers 4324 * should be precise. 4325 * . during state pruning two registers (or spilled stack slots) 4326 * are equivalent if both are not precise. 4327 * 4328 * Note the verifier cannot simply walk register parentage chain, 4329 * since many different registers and stack slots could have been 4330 * used to compute single precise scalar. 4331 * 4332 * The approach of starting with precise=true for all registers and then 4333 * backtrack to mark a register as not precise when the verifier detects 4334 * that program doesn't care about specific value (e.g., when helper 4335 * takes register as ARG_ANYTHING parameter) is not safe. 4336 * 4337 * It's ok to walk single parentage chain of the verifier states. 4338 * It's possible that this backtracking will go all the way till 1st insn. 4339 * All other branches will be explored for needing precision later. 4340 * 4341 * The backtracking needs to deal with cases like: 4342 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4343 * r9 -= r8 4344 * r5 = r9 4345 * if r5 > 0x79f goto pc+7 4346 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4347 * r5 += 1 4348 * ... 4349 * call bpf_perf_event_output#25 4350 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4351 * 4352 * and this case: 4353 * r6 = 1 4354 * call foo // uses callee's r6 inside to compute r0 4355 * r0 += r6 4356 * if r0 == 0 goto 4357 * 4358 * to track above reg_mask/stack_mask needs to be independent for each frame. 4359 * 4360 * Also if parent's curframe > frame where backtracking started, 4361 * the verifier need to mark registers in both frames, otherwise callees 4362 * may incorrectly prune callers. This is similar to 4363 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4364 * 4365 * For now backtracking falls back into conservative marking. 4366 */ 4367 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4368 struct bpf_verifier_state *st) 4369 { 4370 struct bpf_func_state *func; 4371 struct bpf_reg_state *reg; 4372 int i, j; 4373 4374 if (env->log.level & BPF_LOG_LEVEL2) { 4375 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4376 st->curframe); 4377 } 4378 4379 /* big hammer: mark all scalars precise in this path. 4380 * pop_stack may still get !precise scalars. 4381 * We also skip current state and go straight to first parent state, 4382 * because precision markings in current non-checkpointed state are 4383 * not needed. See why in the comment in __mark_chain_precision below. 4384 */ 4385 for (st = st->parent; st; st = st->parent) { 4386 for (i = 0; i <= st->curframe; i++) { 4387 func = st->frame[i]; 4388 for (j = 0; j < BPF_REG_FP; j++) { 4389 reg = &func->regs[j]; 4390 if (reg->type != SCALAR_VALUE || reg->precise) 4391 continue; 4392 reg->precise = true; 4393 if (env->log.level & BPF_LOG_LEVEL2) { 4394 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4395 i, j); 4396 } 4397 } 4398 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4399 if (!is_spilled_reg(&func->stack[j])) 4400 continue; 4401 reg = &func->stack[j].spilled_ptr; 4402 if (reg->type != SCALAR_VALUE || reg->precise) 4403 continue; 4404 reg->precise = true; 4405 if (env->log.level & BPF_LOG_LEVEL2) { 4406 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4407 i, -(j + 1) * 8); 4408 } 4409 } 4410 } 4411 } 4412 } 4413 4414 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4415 { 4416 struct bpf_func_state *func; 4417 struct bpf_reg_state *reg; 4418 int i, j; 4419 4420 for (i = 0; i <= st->curframe; i++) { 4421 func = st->frame[i]; 4422 for (j = 0; j < BPF_REG_FP; j++) { 4423 reg = &func->regs[j]; 4424 if (reg->type != SCALAR_VALUE) 4425 continue; 4426 reg->precise = false; 4427 } 4428 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4429 if (!is_spilled_reg(&func->stack[j])) 4430 continue; 4431 reg = &func->stack[j].spilled_ptr; 4432 if (reg->type != SCALAR_VALUE) 4433 continue; 4434 reg->precise = false; 4435 } 4436 } 4437 } 4438 4439 /* 4440 * __mark_chain_precision() backtracks BPF program instruction sequence and 4441 * chain of verifier states making sure that register *regno* (if regno >= 0) 4442 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4443 * SCALARS, as well as any other registers and slots that contribute to 4444 * a tracked state of given registers/stack slots, depending on specific BPF 4445 * assembly instructions (see backtrack_insns() for exact instruction handling 4446 * logic). This backtracking relies on recorded insn_hist and is able to 4447 * traverse entire chain of parent states. This process ends only when all the 4448 * necessary registers/slots and their transitive dependencies are marked as 4449 * precise. 4450 * 4451 * One important and subtle aspect is that precise marks *do not matter* in 4452 * the currently verified state (current state). It is important to understand 4453 * why this is the case. 4454 * 4455 * First, note that current state is the state that is not yet "checkpointed", 4456 * i.e., it is not yet put into env->explored_states, and it has no children 4457 * states as well. It's ephemeral, and can end up either a) being discarded if 4458 * compatible explored state is found at some point or BPF_EXIT instruction is 4459 * reached or b) checkpointed and put into env->explored_states, branching out 4460 * into one or more children states. 4461 * 4462 * In the former case, precise markings in current state are completely 4463 * ignored by state comparison code (see regsafe() for details). Only 4464 * checkpointed ("old") state precise markings are important, and if old 4465 * state's register/slot is precise, regsafe() assumes current state's 4466 * register/slot as precise and checks value ranges exactly and precisely. If 4467 * states turn out to be compatible, current state's necessary precise 4468 * markings and any required parent states' precise markings are enforced 4469 * after the fact with propagate_precision() logic, after the fact. But it's 4470 * important to realize that in this case, even after marking current state 4471 * registers/slots as precise, we immediately discard current state. So what 4472 * actually matters is any of the precise markings propagated into current 4473 * state's parent states, which are always checkpointed (due to b) case above). 4474 * As such, for scenario a) it doesn't matter if current state has precise 4475 * markings set or not. 4476 * 4477 * Now, for the scenario b), checkpointing and forking into child(ren) 4478 * state(s). Note that before current state gets to checkpointing step, any 4479 * processed instruction always assumes precise SCALAR register/slot 4480 * knowledge: if precise value or range is useful to prune jump branch, BPF 4481 * verifier takes this opportunity enthusiastically. Similarly, when 4482 * register's value is used to calculate offset or memory address, exact 4483 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4484 * what we mentioned above about state comparison ignoring precise markings 4485 * during state comparison, BPF verifier ignores and also assumes precise 4486 * markings *at will* during instruction verification process. But as verifier 4487 * assumes precision, it also propagates any precision dependencies across 4488 * parent states, which are not yet finalized, so can be further restricted 4489 * based on new knowledge gained from restrictions enforced by their children 4490 * states. This is so that once those parent states are finalized, i.e., when 4491 * they have no more active children state, state comparison logic in 4492 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4493 * required for correctness. 4494 * 4495 * To build a bit more intuition, note also that once a state is checkpointed, 4496 * the path we took to get to that state is not important. This is crucial 4497 * property for state pruning. When state is checkpointed and finalized at 4498 * some instruction index, it can be correctly and safely used to "short 4499 * circuit" any *compatible* state that reaches exactly the same instruction 4500 * index. I.e., if we jumped to that instruction from a completely different 4501 * code path than original finalized state was derived from, it doesn't 4502 * matter, current state can be discarded because from that instruction 4503 * forward having a compatible state will ensure we will safely reach the 4504 * exit. States describe preconditions for further exploration, but completely 4505 * forget the history of how we got here. 4506 * 4507 * This also means that even if we needed precise SCALAR range to get to 4508 * finalized state, but from that point forward *that same* SCALAR register is 4509 * never used in a precise context (i.e., it's precise value is not needed for 4510 * correctness), it's correct and safe to mark such register as "imprecise" 4511 * (i.e., precise marking set to false). This is what we rely on when we do 4512 * not set precise marking in current state. If no child state requires 4513 * precision for any given SCALAR register, it's safe to dictate that it can 4514 * be imprecise. If any child state does require this register to be precise, 4515 * we'll mark it precise later retroactively during precise markings 4516 * propagation from child state to parent states. 4517 * 4518 * Skipping precise marking setting in current state is a mild version of 4519 * relying on the above observation. But we can utilize this property even 4520 * more aggressively by proactively forgetting any precise marking in the 4521 * current state (which we inherited from the parent state), right before we 4522 * checkpoint it and branch off into new child state. This is done by 4523 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4524 * finalized states which help in short circuiting more future states. 4525 */ 4526 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4527 { 4528 struct backtrack_state *bt = &env->bt; 4529 struct bpf_verifier_state *st = env->cur_state; 4530 int first_idx = st->first_insn_idx; 4531 int last_idx = env->insn_idx; 4532 int subseq_idx = -1; 4533 struct bpf_func_state *func; 4534 struct bpf_reg_state *reg; 4535 bool skip_first = true; 4536 int i, fr, err; 4537 4538 if (!env->bpf_capable) 4539 return 0; 4540 4541 /* set frame number from which we are starting to backtrack */ 4542 bt_init(bt, env->cur_state->curframe); 4543 4544 /* Do sanity checks against current state of register and/or stack 4545 * slot, but don't set precise flag in current state, as precision 4546 * tracking in the current state is unnecessary. 4547 */ 4548 func = st->frame[bt->frame]; 4549 if (regno >= 0) { 4550 reg = &func->regs[regno]; 4551 if (reg->type != SCALAR_VALUE) { 4552 WARN_ONCE(1, "backtracing misuse"); 4553 return -EFAULT; 4554 } 4555 bt_set_reg(bt, regno); 4556 } 4557 4558 if (bt_empty(bt)) 4559 return 0; 4560 4561 for (;;) { 4562 DECLARE_BITMAP(mask, 64); 4563 u32 hist_start = st->insn_hist_start; 4564 u32 hist_end = st->insn_hist_end; 4565 struct bpf_insn_hist_entry *hist; 4566 4567 if (env->log.level & BPF_LOG_LEVEL2) { 4568 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4569 bt->frame, last_idx, first_idx, subseq_idx); 4570 } 4571 4572 if (last_idx < 0) { 4573 /* we are at the entry into subprog, which 4574 * is expected for global funcs, but only if 4575 * requested precise registers are R1-R5 4576 * (which are global func's input arguments) 4577 */ 4578 if (st->curframe == 0 && 4579 st->frame[0]->subprogno > 0 && 4580 st->frame[0]->callsite == BPF_MAIN_FUNC && 4581 bt_stack_mask(bt) == 0 && 4582 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4583 bitmap_from_u64(mask, bt_reg_mask(bt)); 4584 for_each_set_bit(i, mask, 32) { 4585 reg = &st->frame[0]->regs[i]; 4586 bt_clear_reg(bt, i); 4587 if (reg->type == SCALAR_VALUE) 4588 reg->precise = true; 4589 } 4590 return 0; 4591 } 4592 4593 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4594 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4595 WARN_ONCE(1, "verifier backtracking bug"); 4596 return -EFAULT; 4597 } 4598 4599 for (i = last_idx;;) { 4600 if (skip_first) { 4601 err = 0; 4602 skip_first = false; 4603 } else { 4604 hist = get_insn_hist_entry(env, hist_start, hist_end, i); 4605 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4606 } 4607 if (err == -ENOTSUPP) { 4608 mark_all_scalars_precise(env, env->cur_state); 4609 bt_reset(bt); 4610 return 0; 4611 } else if (err) { 4612 return err; 4613 } 4614 if (bt_empty(bt)) 4615 /* Found assignment(s) into tracked register in this state. 4616 * Since this state is already marked, just return. 4617 * Nothing to be tracked further in the parent state. 4618 */ 4619 return 0; 4620 subseq_idx = i; 4621 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); 4622 if (i == -ENOENT) 4623 break; 4624 if (i >= env->prog->len) { 4625 /* This can happen if backtracking reached insn 0 4626 * and there are still reg_mask or stack_mask 4627 * to backtrack. 4628 * It means the backtracking missed the spot where 4629 * particular register was initialized with a constant. 4630 */ 4631 verbose(env, "BUG backtracking idx %d\n", i); 4632 WARN_ONCE(1, "verifier backtracking bug"); 4633 return -EFAULT; 4634 } 4635 } 4636 st = st->parent; 4637 if (!st) 4638 break; 4639 4640 for (fr = bt->frame; fr >= 0; fr--) { 4641 func = st->frame[fr]; 4642 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4643 for_each_set_bit(i, mask, 32) { 4644 reg = &func->regs[i]; 4645 if (reg->type != SCALAR_VALUE) { 4646 bt_clear_frame_reg(bt, fr, i); 4647 continue; 4648 } 4649 if (reg->precise) 4650 bt_clear_frame_reg(bt, fr, i); 4651 else 4652 reg->precise = true; 4653 } 4654 4655 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4656 for_each_set_bit(i, mask, 64) { 4657 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4658 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4659 i, func->allocated_stack / BPF_REG_SIZE); 4660 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4661 return -EFAULT; 4662 } 4663 4664 if (!is_spilled_scalar_reg(&func->stack[i])) { 4665 bt_clear_frame_slot(bt, fr, i); 4666 continue; 4667 } 4668 reg = &func->stack[i].spilled_ptr; 4669 if (reg->precise) 4670 bt_clear_frame_slot(bt, fr, i); 4671 else 4672 reg->precise = true; 4673 } 4674 if (env->log.level & BPF_LOG_LEVEL2) { 4675 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4676 bt_frame_reg_mask(bt, fr)); 4677 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4678 fr, env->tmp_str_buf); 4679 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4680 bt_frame_stack_mask(bt, fr)); 4681 verbose(env, "stack=%s: ", env->tmp_str_buf); 4682 print_verifier_state(env, st, fr, true); 4683 } 4684 } 4685 4686 if (bt_empty(bt)) 4687 return 0; 4688 4689 subseq_idx = first_idx; 4690 last_idx = st->last_insn_idx; 4691 first_idx = st->first_insn_idx; 4692 } 4693 4694 /* if we still have requested precise regs or slots, we missed 4695 * something (e.g., stack access through non-r10 register), so 4696 * fallback to marking all precise 4697 */ 4698 if (!bt_empty(bt)) { 4699 mark_all_scalars_precise(env, env->cur_state); 4700 bt_reset(bt); 4701 } 4702 4703 return 0; 4704 } 4705 4706 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4707 { 4708 return __mark_chain_precision(env, regno); 4709 } 4710 4711 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4712 * desired reg and stack masks across all relevant frames 4713 */ 4714 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4715 { 4716 return __mark_chain_precision(env, -1); 4717 } 4718 4719 static bool is_spillable_regtype(enum bpf_reg_type type) 4720 { 4721 switch (base_type(type)) { 4722 case PTR_TO_MAP_VALUE: 4723 case PTR_TO_STACK: 4724 case PTR_TO_CTX: 4725 case PTR_TO_PACKET: 4726 case PTR_TO_PACKET_META: 4727 case PTR_TO_PACKET_END: 4728 case PTR_TO_FLOW_KEYS: 4729 case CONST_PTR_TO_MAP: 4730 case PTR_TO_SOCKET: 4731 case PTR_TO_SOCK_COMMON: 4732 case PTR_TO_TCP_SOCK: 4733 case PTR_TO_XDP_SOCK: 4734 case PTR_TO_BTF_ID: 4735 case PTR_TO_BUF: 4736 case PTR_TO_MEM: 4737 case PTR_TO_FUNC: 4738 case PTR_TO_MAP_KEY: 4739 case PTR_TO_ARENA: 4740 return true; 4741 default: 4742 return false; 4743 } 4744 } 4745 4746 /* Does this register contain a constant zero? */ 4747 static bool register_is_null(struct bpf_reg_state *reg) 4748 { 4749 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4750 } 4751 4752 /* check if register is a constant scalar value */ 4753 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4754 { 4755 return reg->type == SCALAR_VALUE && 4756 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4757 } 4758 4759 /* assuming is_reg_const() is true, return constant value of a register */ 4760 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4761 { 4762 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4763 } 4764 4765 static bool __is_pointer_value(bool allow_ptr_leaks, 4766 const struct bpf_reg_state *reg) 4767 { 4768 if (allow_ptr_leaks) 4769 return false; 4770 4771 return reg->type != SCALAR_VALUE; 4772 } 4773 4774 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4775 struct bpf_reg_state *src_reg) 4776 { 4777 if (src_reg->type != SCALAR_VALUE) 4778 return; 4779 4780 if (src_reg->id & BPF_ADD_CONST) { 4781 /* 4782 * The verifier is processing rX = rY insn and 4783 * rY->id has special linked register already. 4784 * Cleared it, since multiple rX += const are not supported. 4785 */ 4786 src_reg->id = 0; 4787 src_reg->off = 0; 4788 } 4789 4790 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4791 /* Ensure that src_reg has a valid ID that will be copied to 4792 * dst_reg and then will be used by sync_linked_regs() to 4793 * propagate min/max range. 4794 */ 4795 src_reg->id = ++env->id_gen; 4796 } 4797 4798 /* Copy src state preserving dst->parent and dst->live fields */ 4799 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4800 { 4801 struct bpf_reg_state *parent = dst->parent; 4802 enum bpf_reg_liveness live = dst->live; 4803 4804 *dst = *src; 4805 dst->parent = parent; 4806 dst->live = live; 4807 } 4808 4809 static void save_register_state(struct bpf_verifier_env *env, 4810 struct bpf_func_state *state, 4811 int spi, struct bpf_reg_state *reg, 4812 int size) 4813 { 4814 int i; 4815 4816 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4817 if (size == BPF_REG_SIZE) 4818 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4819 4820 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4821 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4822 4823 /* size < 8 bytes spill */ 4824 for (; i; i--) 4825 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4826 } 4827 4828 static bool is_bpf_st_mem(struct bpf_insn *insn) 4829 { 4830 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4831 } 4832 4833 static int get_reg_width(struct bpf_reg_state *reg) 4834 { 4835 return fls64(reg->umax_value); 4836 } 4837 4838 /* See comment for mark_fastcall_pattern_for_call() */ 4839 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4840 struct bpf_func_state *state, int insn_idx, int off) 4841 { 4842 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4843 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4844 int i; 4845 4846 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4847 return; 4848 /* access to the region [max_stack_depth .. fastcall_stack_off) 4849 * from something that is not a part of the fastcall pattern, 4850 * disable fastcall rewrites for current subprogram by setting 4851 * fastcall_stack_off to a value smaller than any possible offset. 4852 */ 4853 subprog->fastcall_stack_off = S16_MIN; 4854 /* reset fastcall aux flags within subprogram, 4855 * happens at most once per subprogram 4856 */ 4857 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4858 aux[i].fastcall_spills_num = 0; 4859 aux[i].fastcall_pattern = 0; 4860 } 4861 } 4862 4863 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4864 * stack boundary and alignment are checked in check_mem_access() 4865 */ 4866 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4867 /* stack frame we're writing to */ 4868 struct bpf_func_state *state, 4869 int off, int size, int value_regno, 4870 int insn_idx) 4871 { 4872 struct bpf_func_state *cur; /* state of the current function */ 4873 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4874 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4875 struct bpf_reg_state *reg = NULL; 4876 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4877 4878 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4879 * so it's aligned access and [off, off + size) are within stack limits 4880 */ 4881 if (!env->allow_ptr_leaks && 4882 is_spilled_reg(&state->stack[spi]) && 4883 !is_spilled_scalar_reg(&state->stack[spi]) && 4884 size != BPF_REG_SIZE) { 4885 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4886 return -EACCES; 4887 } 4888 4889 cur = env->cur_state->frame[env->cur_state->curframe]; 4890 if (value_regno >= 0) 4891 reg = &cur->regs[value_regno]; 4892 if (!env->bypass_spec_v4) { 4893 bool sanitize = reg && is_spillable_regtype(reg->type); 4894 4895 for (i = 0; i < size; i++) { 4896 u8 type = state->stack[spi].slot_type[i]; 4897 4898 if (type != STACK_MISC && type != STACK_ZERO) { 4899 sanitize = true; 4900 break; 4901 } 4902 } 4903 4904 if (sanitize) 4905 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4906 } 4907 4908 err = destroy_if_dynptr_stack_slot(env, state, spi); 4909 if (err) 4910 return err; 4911 4912 check_fastcall_stack_contract(env, state, insn_idx, off); 4913 mark_stack_slot_scratched(env, spi); 4914 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4915 bool reg_value_fits; 4916 4917 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4918 /* Make sure that reg had an ID to build a relation on spill. */ 4919 if (reg_value_fits) 4920 assign_scalar_id_before_mov(env, reg); 4921 save_register_state(env, state, spi, reg, size); 4922 /* Break the relation on a narrowing spill. */ 4923 if (!reg_value_fits) 4924 state->stack[spi].spilled_ptr.id = 0; 4925 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4926 env->bpf_capable) { 4927 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4928 4929 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4930 __mark_reg_known(tmp_reg, insn->imm); 4931 tmp_reg->type = SCALAR_VALUE; 4932 save_register_state(env, state, spi, tmp_reg, size); 4933 } else if (reg && is_spillable_regtype(reg->type)) { 4934 /* register containing pointer is being spilled into stack */ 4935 if (size != BPF_REG_SIZE) { 4936 verbose_linfo(env, insn_idx, "; "); 4937 verbose(env, "invalid size of register spill\n"); 4938 return -EACCES; 4939 } 4940 if (state != cur && reg->type == PTR_TO_STACK) { 4941 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4942 return -EINVAL; 4943 } 4944 save_register_state(env, state, spi, reg, size); 4945 } else { 4946 u8 type = STACK_MISC; 4947 4948 /* regular write of data into stack destroys any spilled ptr */ 4949 state->stack[spi].spilled_ptr.type = NOT_INIT; 4950 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4951 if (is_stack_slot_special(&state->stack[spi])) 4952 for (i = 0; i < BPF_REG_SIZE; i++) 4953 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4954 4955 /* only mark the slot as written if all 8 bytes were written 4956 * otherwise read propagation may incorrectly stop too soon 4957 * when stack slots are partially written. 4958 * This heuristic means that read propagation will be 4959 * conservative, since it will add reg_live_read marks 4960 * to stack slots all the way to first state when programs 4961 * writes+reads less than 8 bytes 4962 */ 4963 if (size == BPF_REG_SIZE) 4964 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4965 4966 /* when we zero initialize stack slots mark them as such */ 4967 if ((reg && register_is_null(reg)) || 4968 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4969 /* STACK_ZERO case happened because register spill 4970 * wasn't properly aligned at the stack slot boundary, 4971 * so it's not a register spill anymore; force 4972 * originating register to be precise to make 4973 * STACK_ZERO correct for subsequent states 4974 */ 4975 err = mark_chain_precision(env, value_regno); 4976 if (err) 4977 return err; 4978 type = STACK_ZERO; 4979 } 4980 4981 /* Mark slots affected by this stack write. */ 4982 for (i = 0; i < size; i++) 4983 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4984 insn_flags = 0; /* not a register spill */ 4985 } 4986 4987 if (insn_flags) 4988 return push_insn_history(env, env->cur_state, insn_flags, 0); 4989 return 0; 4990 } 4991 4992 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4993 * known to contain a variable offset. 4994 * This function checks whether the write is permitted and conservatively 4995 * tracks the effects of the write, considering that each stack slot in the 4996 * dynamic range is potentially written to. 4997 * 4998 * 'off' includes 'regno->off'. 4999 * 'value_regno' can be -1, meaning that an unknown value is being written to 5000 * the stack. 5001 * 5002 * Spilled pointers in range are not marked as written because we don't know 5003 * what's going to be actually written. This means that read propagation for 5004 * future reads cannot be terminated by this write. 5005 * 5006 * For privileged programs, uninitialized stack slots are considered 5007 * initialized by this write (even though we don't know exactly what offsets 5008 * are going to be written to). The idea is that we don't want the verifier to 5009 * reject future reads that access slots written to through variable offsets. 5010 */ 5011 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5012 /* func where register points to */ 5013 struct bpf_func_state *state, 5014 int ptr_regno, int off, int size, 5015 int value_regno, int insn_idx) 5016 { 5017 struct bpf_func_state *cur; /* state of the current function */ 5018 int min_off, max_off; 5019 int i, err; 5020 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5021 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5022 bool writing_zero = false; 5023 /* set if the fact that we're writing a zero is used to let any 5024 * stack slots remain STACK_ZERO 5025 */ 5026 bool zero_used = false; 5027 5028 cur = env->cur_state->frame[env->cur_state->curframe]; 5029 ptr_reg = &cur->regs[ptr_regno]; 5030 min_off = ptr_reg->smin_value + off; 5031 max_off = ptr_reg->smax_value + off + size; 5032 if (value_regno >= 0) 5033 value_reg = &cur->regs[value_regno]; 5034 if ((value_reg && register_is_null(value_reg)) || 5035 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5036 writing_zero = true; 5037 5038 for (i = min_off; i < max_off; i++) { 5039 int spi; 5040 5041 spi = __get_spi(i); 5042 err = destroy_if_dynptr_stack_slot(env, state, spi); 5043 if (err) 5044 return err; 5045 } 5046 5047 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5048 /* Variable offset writes destroy any spilled pointers in range. */ 5049 for (i = min_off; i < max_off; i++) { 5050 u8 new_type, *stype; 5051 int slot, spi; 5052 5053 slot = -i - 1; 5054 spi = slot / BPF_REG_SIZE; 5055 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5056 mark_stack_slot_scratched(env, spi); 5057 5058 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5059 /* Reject the write if range we may write to has not 5060 * been initialized beforehand. If we didn't reject 5061 * here, the ptr status would be erased below (even 5062 * though not all slots are actually overwritten), 5063 * possibly opening the door to leaks. 5064 * 5065 * We do however catch STACK_INVALID case below, and 5066 * only allow reading possibly uninitialized memory 5067 * later for CAP_PERFMON, as the write may not happen to 5068 * that slot. 5069 */ 5070 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5071 insn_idx, i); 5072 return -EINVAL; 5073 } 5074 5075 /* If writing_zero and the spi slot contains a spill of value 0, 5076 * maintain the spill type. 5077 */ 5078 if (writing_zero && *stype == STACK_SPILL && 5079 is_spilled_scalar_reg(&state->stack[spi])) { 5080 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5081 5082 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5083 zero_used = true; 5084 continue; 5085 } 5086 } 5087 5088 /* Erase all other spilled pointers. */ 5089 state->stack[spi].spilled_ptr.type = NOT_INIT; 5090 5091 /* Update the slot type. */ 5092 new_type = STACK_MISC; 5093 if (writing_zero && *stype == STACK_ZERO) { 5094 new_type = STACK_ZERO; 5095 zero_used = true; 5096 } 5097 /* If the slot is STACK_INVALID, we check whether it's OK to 5098 * pretend that it will be initialized by this write. The slot 5099 * might not actually be written to, and so if we mark it as 5100 * initialized future reads might leak uninitialized memory. 5101 * For privileged programs, we will accept such reads to slots 5102 * that may or may not be written because, if we're reject 5103 * them, the error would be too confusing. 5104 */ 5105 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5106 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5107 insn_idx, i); 5108 return -EINVAL; 5109 } 5110 *stype = new_type; 5111 } 5112 if (zero_used) { 5113 /* backtracking doesn't work for STACK_ZERO yet. */ 5114 err = mark_chain_precision(env, value_regno); 5115 if (err) 5116 return err; 5117 } 5118 return 0; 5119 } 5120 5121 /* When register 'dst_regno' is assigned some values from stack[min_off, 5122 * max_off), we set the register's type according to the types of the 5123 * respective stack slots. If all the stack values are known to be zeros, then 5124 * so is the destination reg. Otherwise, the register is considered to be 5125 * SCALAR. This function does not deal with register filling; the caller must 5126 * ensure that all spilled registers in the stack range have been marked as 5127 * read. 5128 */ 5129 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5130 /* func where src register points to */ 5131 struct bpf_func_state *ptr_state, 5132 int min_off, int max_off, int dst_regno) 5133 { 5134 struct bpf_verifier_state *vstate = env->cur_state; 5135 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5136 int i, slot, spi; 5137 u8 *stype; 5138 int zeros = 0; 5139 5140 for (i = min_off; i < max_off; i++) { 5141 slot = -i - 1; 5142 spi = slot / BPF_REG_SIZE; 5143 mark_stack_slot_scratched(env, spi); 5144 stype = ptr_state->stack[spi].slot_type; 5145 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5146 break; 5147 zeros++; 5148 } 5149 if (zeros == max_off - min_off) { 5150 /* Any access_size read into register is zero extended, 5151 * so the whole register == const_zero. 5152 */ 5153 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5154 } else { 5155 /* have read misc data from the stack */ 5156 mark_reg_unknown(env, state->regs, dst_regno); 5157 } 5158 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5159 } 5160 5161 /* Read the stack at 'off' and put the results into the register indicated by 5162 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5163 * spilled reg. 5164 * 5165 * 'dst_regno' can be -1, meaning that the read value is not going to a 5166 * register. 5167 * 5168 * The access is assumed to be within the current stack bounds. 5169 */ 5170 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5171 /* func where src register points to */ 5172 struct bpf_func_state *reg_state, 5173 int off, int size, int dst_regno) 5174 { 5175 struct bpf_verifier_state *vstate = env->cur_state; 5176 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5177 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5178 struct bpf_reg_state *reg; 5179 u8 *stype, type; 5180 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5181 5182 stype = reg_state->stack[spi].slot_type; 5183 reg = ®_state->stack[spi].spilled_ptr; 5184 5185 mark_stack_slot_scratched(env, spi); 5186 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5187 5188 if (is_spilled_reg(®_state->stack[spi])) { 5189 u8 spill_size = 1; 5190 5191 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5192 spill_size++; 5193 5194 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5195 if (reg->type != SCALAR_VALUE) { 5196 verbose_linfo(env, env->insn_idx, "; "); 5197 verbose(env, "invalid size of register fill\n"); 5198 return -EACCES; 5199 } 5200 5201 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5202 if (dst_regno < 0) 5203 return 0; 5204 5205 if (size <= spill_size && 5206 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5207 /* The earlier check_reg_arg() has decided the 5208 * subreg_def for this insn. Save it first. 5209 */ 5210 s32 subreg_def = state->regs[dst_regno].subreg_def; 5211 5212 copy_register_state(&state->regs[dst_regno], reg); 5213 state->regs[dst_regno].subreg_def = subreg_def; 5214 5215 /* Break the relation on a narrowing fill. 5216 * coerce_reg_to_size will adjust the boundaries. 5217 */ 5218 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5219 state->regs[dst_regno].id = 0; 5220 } else { 5221 int spill_cnt = 0, zero_cnt = 0; 5222 5223 for (i = 0; i < size; i++) { 5224 type = stype[(slot - i) % BPF_REG_SIZE]; 5225 if (type == STACK_SPILL) { 5226 spill_cnt++; 5227 continue; 5228 } 5229 if (type == STACK_MISC) 5230 continue; 5231 if (type == STACK_ZERO) { 5232 zero_cnt++; 5233 continue; 5234 } 5235 if (type == STACK_INVALID && env->allow_uninit_stack) 5236 continue; 5237 verbose(env, "invalid read from stack off %d+%d size %d\n", 5238 off, i, size); 5239 return -EACCES; 5240 } 5241 5242 if (spill_cnt == size && 5243 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5244 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5245 /* this IS register fill, so keep insn_flags */ 5246 } else if (zero_cnt == size) { 5247 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5248 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5249 insn_flags = 0; /* not restoring original register state */ 5250 } else { 5251 mark_reg_unknown(env, state->regs, dst_regno); 5252 insn_flags = 0; /* not restoring original register state */ 5253 } 5254 } 5255 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5256 } else if (dst_regno >= 0) { 5257 /* restore register state from stack */ 5258 copy_register_state(&state->regs[dst_regno], reg); 5259 /* mark reg as written since spilled pointer state likely 5260 * has its liveness marks cleared by is_state_visited() 5261 * which resets stack/reg liveness for state transitions 5262 */ 5263 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5264 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5265 /* If dst_regno==-1, the caller is asking us whether 5266 * it is acceptable to use this value as a SCALAR_VALUE 5267 * (e.g. for XADD). 5268 * We must not allow unprivileged callers to do that 5269 * with spilled pointers. 5270 */ 5271 verbose(env, "leaking pointer from stack off %d\n", 5272 off); 5273 return -EACCES; 5274 } 5275 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5276 } else { 5277 for (i = 0; i < size; i++) { 5278 type = stype[(slot - i) % BPF_REG_SIZE]; 5279 if (type == STACK_MISC) 5280 continue; 5281 if (type == STACK_ZERO) 5282 continue; 5283 if (type == STACK_INVALID && env->allow_uninit_stack) 5284 continue; 5285 verbose(env, "invalid read from stack off %d+%d size %d\n", 5286 off, i, size); 5287 return -EACCES; 5288 } 5289 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5290 if (dst_regno >= 0) 5291 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5292 insn_flags = 0; /* we are not restoring spilled register */ 5293 } 5294 if (insn_flags) 5295 return push_insn_history(env, env->cur_state, insn_flags, 0); 5296 return 0; 5297 } 5298 5299 enum bpf_access_src { 5300 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5301 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5302 }; 5303 5304 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5305 int regno, int off, int access_size, 5306 bool zero_size_allowed, 5307 enum bpf_access_type type, 5308 struct bpf_call_arg_meta *meta); 5309 5310 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5311 { 5312 return cur_regs(env) + regno; 5313 } 5314 5315 /* Read the stack at 'ptr_regno + off' and put the result into the register 5316 * 'dst_regno'. 5317 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5318 * but not its variable offset. 5319 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5320 * 5321 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5322 * filling registers (i.e. reads of spilled register cannot be detected when 5323 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5324 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5325 * offset; for a fixed offset check_stack_read_fixed_off should be used 5326 * instead. 5327 */ 5328 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5329 int ptr_regno, int off, int size, int dst_regno) 5330 { 5331 /* The state of the source register. */ 5332 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5333 struct bpf_func_state *ptr_state = func(env, reg); 5334 int err; 5335 int min_off, max_off; 5336 5337 /* Note that we pass a NULL meta, so raw access will not be permitted. 5338 */ 5339 err = check_stack_range_initialized(env, ptr_regno, off, size, 5340 false, BPF_READ, NULL); 5341 if (err) 5342 return err; 5343 5344 min_off = reg->smin_value + off; 5345 max_off = reg->smax_value + off; 5346 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5347 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5348 return 0; 5349 } 5350 5351 /* check_stack_read dispatches to check_stack_read_fixed_off or 5352 * check_stack_read_var_off. 5353 * 5354 * The caller must ensure that the offset falls within the allocated stack 5355 * bounds. 5356 * 5357 * 'dst_regno' is a register which will receive the value from the stack. It 5358 * can be -1, meaning that the read value is not going to a register. 5359 */ 5360 static int check_stack_read(struct bpf_verifier_env *env, 5361 int ptr_regno, int off, int size, 5362 int dst_regno) 5363 { 5364 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5365 struct bpf_func_state *state = func(env, reg); 5366 int err; 5367 /* Some accesses are only permitted with a static offset. */ 5368 bool var_off = !tnum_is_const(reg->var_off); 5369 5370 /* The offset is required to be static when reads don't go to a 5371 * register, in order to not leak pointers (see 5372 * check_stack_read_fixed_off). 5373 */ 5374 if (dst_regno < 0 && var_off) { 5375 char tn_buf[48]; 5376 5377 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5378 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5379 tn_buf, off, size); 5380 return -EACCES; 5381 } 5382 /* Variable offset is prohibited for unprivileged mode for simplicity 5383 * since it requires corresponding support in Spectre masking for stack 5384 * ALU. See also retrieve_ptr_limit(). The check in 5385 * check_stack_access_for_ptr_arithmetic() called by 5386 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5387 * with variable offsets, therefore no check is required here. Further, 5388 * just checking it here would be insufficient as speculative stack 5389 * writes could still lead to unsafe speculative behaviour. 5390 */ 5391 if (!var_off) { 5392 off += reg->var_off.value; 5393 err = check_stack_read_fixed_off(env, state, off, size, 5394 dst_regno); 5395 } else { 5396 /* Variable offset stack reads need more conservative handling 5397 * than fixed offset ones. Note that dst_regno >= 0 on this 5398 * branch. 5399 */ 5400 err = check_stack_read_var_off(env, ptr_regno, off, size, 5401 dst_regno); 5402 } 5403 return err; 5404 } 5405 5406 5407 /* check_stack_write dispatches to check_stack_write_fixed_off or 5408 * check_stack_write_var_off. 5409 * 5410 * 'ptr_regno' is the register used as a pointer into the stack. 5411 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5412 * 'value_regno' is the register whose value we're writing to the stack. It can 5413 * be -1, meaning that we're not writing from a register. 5414 * 5415 * The caller must ensure that the offset falls within the maximum stack size. 5416 */ 5417 static int check_stack_write(struct bpf_verifier_env *env, 5418 int ptr_regno, int off, int size, 5419 int value_regno, int insn_idx) 5420 { 5421 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5422 struct bpf_func_state *state = func(env, reg); 5423 int err; 5424 5425 if (tnum_is_const(reg->var_off)) { 5426 off += reg->var_off.value; 5427 err = check_stack_write_fixed_off(env, state, off, size, 5428 value_regno, insn_idx); 5429 } else { 5430 /* Variable offset stack reads need more conservative handling 5431 * than fixed offset ones. 5432 */ 5433 err = check_stack_write_var_off(env, state, 5434 ptr_regno, off, size, 5435 value_regno, insn_idx); 5436 } 5437 return err; 5438 } 5439 5440 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5441 int off, int size, enum bpf_access_type type) 5442 { 5443 struct bpf_reg_state *regs = cur_regs(env); 5444 struct bpf_map *map = regs[regno].map_ptr; 5445 u32 cap = bpf_map_flags_to_cap(map); 5446 5447 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5448 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5449 map->value_size, off, size); 5450 return -EACCES; 5451 } 5452 5453 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5454 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5455 map->value_size, off, size); 5456 return -EACCES; 5457 } 5458 5459 return 0; 5460 } 5461 5462 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5463 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5464 int off, int size, u32 mem_size, 5465 bool zero_size_allowed) 5466 { 5467 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5468 struct bpf_reg_state *reg; 5469 5470 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5471 return 0; 5472 5473 reg = &cur_regs(env)[regno]; 5474 switch (reg->type) { 5475 case PTR_TO_MAP_KEY: 5476 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5477 mem_size, off, size); 5478 break; 5479 case PTR_TO_MAP_VALUE: 5480 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5481 mem_size, off, size); 5482 break; 5483 case PTR_TO_PACKET: 5484 case PTR_TO_PACKET_META: 5485 case PTR_TO_PACKET_END: 5486 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5487 off, size, regno, reg->id, off, mem_size); 5488 break; 5489 case PTR_TO_MEM: 5490 default: 5491 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5492 mem_size, off, size); 5493 } 5494 5495 return -EACCES; 5496 } 5497 5498 /* check read/write into a memory region with possible variable offset */ 5499 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5500 int off, int size, u32 mem_size, 5501 bool zero_size_allowed) 5502 { 5503 struct bpf_verifier_state *vstate = env->cur_state; 5504 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5505 struct bpf_reg_state *reg = &state->regs[regno]; 5506 int err; 5507 5508 /* We may have adjusted the register pointing to memory region, so we 5509 * need to try adding each of min_value and max_value to off 5510 * to make sure our theoretical access will be safe. 5511 * 5512 * The minimum value is only important with signed 5513 * comparisons where we can't assume the floor of a 5514 * value is 0. If we are using signed variables for our 5515 * index'es we need to make sure that whatever we use 5516 * will have a set floor within our range. 5517 */ 5518 if (reg->smin_value < 0 && 5519 (reg->smin_value == S64_MIN || 5520 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5521 reg->smin_value + off < 0)) { 5522 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5523 regno); 5524 return -EACCES; 5525 } 5526 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5527 mem_size, zero_size_allowed); 5528 if (err) { 5529 verbose(env, "R%d min value is outside of the allowed memory range\n", 5530 regno); 5531 return err; 5532 } 5533 5534 /* If we haven't set a max value then we need to bail since we can't be 5535 * sure we won't do bad things. 5536 * If reg->umax_value + off could overflow, treat that as unbounded too. 5537 */ 5538 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5539 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5540 regno); 5541 return -EACCES; 5542 } 5543 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5544 mem_size, zero_size_allowed); 5545 if (err) { 5546 verbose(env, "R%d max value is outside of the allowed memory range\n", 5547 regno); 5548 return err; 5549 } 5550 5551 return 0; 5552 } 5553 5554 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5555 const struct bpf_reg_state *reg, int regno, 5556 bool fixed_off_ok) 5557 { 5558 /* Access to this pointer-typed register or passing it to a helper 5559 * is only allowed in its original, unmodified form. 5560 */ 5561 5562 if (reg->off < 0) { 5563 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5564 reg_type_str(env, reg->type), regno, reg->off); 5565 return -EACCES; 5566 } 5567 5568 if (!fixed_off_ok && reg->off) { 5569 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5570 reg_type_str(env, reg->type), regno, reg->off); 5571 return -EACCES; 5572 } 5573 5574 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5575 char tn_buf[48]; 5576 5577 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5578 verbose(env, "variable %s access var_off=%s disallowed\n", 5579 reg_type_str(env, reg->type), tn_buf); 5580 return -EACCES; 5581 } 5582 5583 return 0; 5584 } 5585 5586 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5587 const struct bpf_reg_state *reg, int regno) 5588 { 5589 return __check_ptr_off_reg(env, reg, regno, false); 5590 } 5591 5592 static int map_kptr_match_type(struct bpf_verifier_env *env, 5593 struct btf_field *kptr_field, 5594 struct bpf_reg_state *reg, u32 regno) 5595 { 5596 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5597 int perm_flags; 5598 const char *reg_name = ""; 5599 5600 if (btf_is_kernel(reg->btf)) { 5601 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5602 5603 /* Only unreferenced case accepts untrusted pointers */ 5604 if (kptr_field->type == BPF_KPTR_UNREF) 5605 perm_flags |= PTR_UNTRUSTED; 5606 } else { 5607 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5608 if (kptr_field->type == BPF_KPTR_PERCPU) 5609 perm_flags |= MEM_PERCPU; 5610 } 5611 5612 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5613 goto bad_type; 5614 5615 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5616 reg_name = btf_type_name(reg->btf, reg->btf_id); 5617 5618 /* For ref_ptr case, release function check should ensure we get one 5619 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5620 * normal store of unreferenced kptr, we must ensure var_off is zero. 5621 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5622 * reg->off and reg->ref_obj_id are not needed here. 5623 */ 5624 if (__check_ptr_off_reg(env, reg, regno, true)) 5625 return -EACCES; 5626 5627 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5628 * we also need to take into account the reg->off. 5629 * 5630 * We want to support cases like: 5631 * 5632 * struct foo { 5633 * struct bar br; 5634 * struct baz bz; 5635 * }; 5636 * 5637 * struct foo *v; 5638 * v = func(); // PTR_TO_BTF_ID 5639 * val->foo = v; // reg->off is zero, btf and btf_id match type 5640 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5641 * // first member type of struct after comparison fails 5642 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5643 * // to match type 5644 * 5645 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5646 * is zero. We must also ensure that btf_struct_ids_match does not walk 5647 * the struct to match type against first member of struct, i.e. reject 5648 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5649 * strict mode to true for type match. 5650 */ 5651 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5652 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5653 kptr_field->type != BPF_KPTR_UNREF)) 5654 goto bad_type; 5655 return 0; 5656 bad_type: 5657 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5658 reg_type_str(env, reg->type), reg_name); 5659 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5660 if (kptr_field->type == BPF_KPTR_UNREF) 5661 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5662 targ_name); 5663 else 5664 verbose(env, "\n"); 5665 return -EINVAL; 5666 } 5667 5668 static bool in_sleepable(struct bpf_verifier_env *env) 5669 { 5670 return env->prog->sleepable || 5671 (env->cur_state && env->cur_state->in_sleepable); 5672 } 5673 5674 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5675 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5676 */ 5677 static bool in_rcu_cs(struct bpf_verifier_env *env) 5678 { 5679 return env->cur_state->active_rcu_lock || 5680 env->cur_state->active_locks || 5681 !in_sleepable(env); 5682 } 5683 5684 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5685 BTF_SET_START(rcu_protected_types) 5686 #ifdef CONFIG_NET 5687 BTF_ID(struct, prog_test_ref_kfunc) 5688 #endif 5689 #ifdef CONFIG_CGROUPS 5690 BTF_ID(struct, cgroup) 5691 #endif 5692 #ifdef CONFIG_BPF_JIT 5693 BTF_ID(struct, bpf_cpumask) 5694 #endif 5695 BTF_ID(struct, task_struct) 5696 #ifdef CONFIG_CRYPTO 5697 BTF_ID(struct, bpf_crypto_ctx) 5698 #endif 5699 BTF_SET_END(rcu_protected_types) 5700 5701 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5702 { 5703 if (!btf_is_kernel(btf)) 5704 return true; 5705 return btf_id_set_contains(&rcu_protected_types, btf_id); 5706 } 5707 5708 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5709 { 5710 struct btf_struct_meta *meta; 5711 5712 if (btf_is_kernel(kptr_field->kptr.btf)) 5713 return NULL; 5714 5715 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5716 kptr_field->kptr.btf_id); 5717 5718 return meta ? meta->record : NULL; 5719 } 5720 5721 static bool rcu_safe_kptr(const struct btf_field *field) 5722 { 5723 const struct btf_field_kptr *kptr = &field->kptr; 5724 5725 return field->type == BPF_KPTR_PERCPU || 5726 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5727 } 5728 5729 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5730 { 5731 struct btf_record *rec; 5732 u32 ret; 5733 5734 ret = PTR_MAYBE_NULL; 5735 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5736 ret |= MEM_RCU; 5737 if (kptr_field->type == BPF_KPTR_PERCPU) 5738 ret |= MEM_PERCPU; 5739 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5740 ret |= MEM_ALLOC; 5741 5742 rec = kptr_pointee_btf_record(kptr_field); 5743 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5744 ret |= NON_OWN_REF; 5745 } else { 5746 ret |= PTR_UNTRUSTED; 5747 } 5748 5749 return ret; 5750 } 5751 5752 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5753 struct btf_field *field) 5754 { 5755 struct bpf_reg_state *reg; 5756 const struct btf_type *t; 5757 5758 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5759 mark_reg_known_zero(env, cur_regs(env), regno); 5760 reg = reg_state(env, regno); 5761 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5762 reg->mem_size = t->size; 5763 reg->id = ++env->id_gen; 5764 5765 return 0; 5766 } 5767 5768 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5769 int value_regno, int insn_idx, 5770 struct btf_field *kptr_field) 5771 { 5772 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5773 int class = BPF_CLASS(insn->code); 5774 struct bpf_reg_state *val_reg; 5775 5776 /* Things we already checked for in check_map_access and caller: 5777 * - Reject cases where variable offset may touch kptr 5778 * - size of access (must be BPF_DW) 5779 * - tnum_is_const(reg->var_off) 5780 * - kptr_field->offset == off + reg->var_off.value 5781 */ 5782 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5783 if (BPF_MODE(insn->code) != BPF_MEM) { 5784 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5785 return -EACCES; 5786 } 5787 5788 /* We only allow loading referenced kptr, since it will be marked as 5789 * untrusted, similar to unreferenced kptr. 5790 */ 5791 if (class != BPF_LDX && 5792 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5793 verbose(env, "store to referenced kptr disallowed\n"); 5794 return -EACCES; 5795 } 5796 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5797 verbose(env, "store to uptr disallowed\n"); 5798 return -EACCES; 5799 } 5800 5801 if (class == BPF_LDX) { 5802 if (kptr_field->type == BPF_UPTR) 5803 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5804 5805 /* We can simply mark the value_regno receiving the pointer 5806 * value from map as PTR_TO_BTF_ID, with the correct type. 5807 */ 5808 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5809 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5810 } else if (class == BPF_STX) { 5811 val_reg = reg_state(env, value_regno); 5812 if (!register_is_null(val_reg) && 5813 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5814 return -EACCES; 5815 } else if (class == BPF_ST) { 5816 if (insn->imm) { 5817 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5818 kptr_field->offset); 5819 return -EACCES; 5820 } 5821 } else { 5822 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5823 return -EACCES; 5824 } 5825 return 0; 5826 } 5827 5828 /* check read/write into a map element with possible variable offset */ 5829 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5830 int off, int size, bool zero_size_allowed, 5831 enum bpf_access_src src) 5832 { 5833 struct bpf_verifier_state *vstate = env->cur_state; 5834 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5835 struct bpf_reg_state *reg = &state->regs[regno]; 5836 struct bpf_map *map = reg->map_ptr; 5837 struct btf_record *rec; 5838 int err, i; 5839 5840 err = check_mem_region_access(env, regno, off, size, map->value_size, 5841 zero_size_allowed); 5842 if (err) 5843 return err; 5844 5845 if (IS_ERR_OR_NULL(map->record)) 5846 return 0; 5847 rec = map->record; 5848 for (i = 0; i < rec->cnt; i++) { 5849 struct btf_field *field = &rec->fields[i]; 5850 u32 p = field->offset; 5851 5852 /* If any part of a field can be touched by load/store, reject 5853 * this program. To check that [x1, x2) overlaps with [y1, y2), 5854 * it is sufficient to check x1 < y2 && y1 < x2. 5855 */ 5856 if (reg->smin_value + off < p + field->size && 5857 p < reg->umax_value + off + size) { 5858 switch (field->type) { 5859 case BPF_KPTR_UNREF: 5860 case BPF_KPTR_REF: 5861 case BPF_KPTR_PERCPU: 5862 case BPF_UPTR: 5863 if (src != ACCESS_DIRECT) { 5864 verbose(env, "%s cannot be accessed indirectly by helper\n", 5865 btf_field_type_name(field->type)); 5866 return -EACCES; 5867 } 5868 if (!tnum_is_const(reg->var_off)) { 5869 verbose(env, "%s access cannot have variable offset\n", 5870 btf_field_type_name(field->type)); 5871 return -EACCES; 5872 } 5873 if (p != off + reg->var_off.value) { 5874 verbose(env, "%s access misaligned expected=%u off=%llu\n", 5875 btf_field_type_name(field->type), 5876 p, off + reg->var_off.value); 5877 return -EACCES; 5878 } 5879 if (size != bpf_size_to_bytes(BPF_DW)) { 5880 verbose(env, "%s access size must be BPF_DW\n", 5881 btf_field_type_name(field->type)); 5882 return -EACCES; 5883 } 5884 break; 5885 default: 5886 verbose(env, "%s cannot be accessed directly by load/store\n", 5887 btf_field_type_name(field->type)); 5888 return -EACCES; 5889 } 5890 } 5891 } 5892 return 0; 5893 } 5894 5895 #define MAX_PACKET_OFF 0xffff 5896 5897 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5898 const struct bpf_call_arg_meta *meta, 5899 enum bpf_access_type t) 5900 { 5901 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5902 5903 switch (prog_type) { 5904 /* Program types only with direct read access go here! */ 5905 case BPF_PROG_TYPE_LWT_IN: 5906 case BPF_PROG_TYPE_LWT_OUT: 5907 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5908 case BPF_PROG_TYPE_SK_REUSEPORT: 5909 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5910 case BPF_PROG_TYPE_CGROUP_SKB: 5911 if (t == BPF_WRITE) 5912 return false; 5913 fallthrough; 5914 5915 /* Program types with direct read + write access go here! */ 5916 case BPF_PROG_TYPE_SCHED_CLS: 5917 case BPF_PROG_TYPE_SCHED_ACT: 5918 case BPF_PROG_TYPE_XDP: 5919 case BPF_PROG_TYPE_LWT_XMIT: 5920 case BPF_PROG_TYPE_SK_SKB: 5921 case BPF_PROG_TYPE_SK_MSG: 5922 if (meta) 5923 return meta->pkt_access; 5924 5925 env->seen_direct_write = true; 5926 return true; 5927 5928 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5929 if (t == BPF_WRITE) 5930 env->seen_direct_write = true; 5931 5932 return true; 5933 5934 default: 5935 return false; 5936 } 5937 } 5938 5939 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5940 int size, bool zero_size_allowed) 5941 { 5942 struct bpf_reg_state *regs = cur_regs(env); 5943 struct bpf_reg_state *reg = ®s[regno]; 5944 int err; 5945 5946 /* We may have added a variable offset to the packet pointer; but any 5947 * reg->range we have comes after that. We are only checking the fixed 5948 * offset. 5949 */ 5950 5951 /* We don't allow negative numbers, because we aren't tracking enough 5952 * detail to prove they're safe. 5953 */ 5954 if (reg->smin_value < 0) { 5955 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5956 regno); 5957 return -EACCES; 5958 } 5959 5960 err = reg->range < 0 ? -EINVAL : 5961 __check_mem_access(env, regno, off, size, reg->range, 5962 zero_size_allowed); 5963 if (err) { 5964 verbose(env, "R%d offset is outside of the packet\n", regno); 5965 return err; 5966 } 5967 5968 /* __check_mem_access has made sure "off + size - 1" is within u16. 5969 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5970 * otherwise find_good_pkt_pointers would have refused to set range info 5971 * that __check_mem_access would have rejected this pkt access. 5972 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5973 */ 5974 env->prog->aux->max_pkt_offset = 5975 max_t(u32, env->prog->aux->max_pkt_offset, 5976 off + reg->umax_value + size - 1); 5977 5978 return err; 5979 } 5980 5981 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5982 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5983 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5984 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) 5985 { 5986 struct bpf_insn_access_aux info = { 5987 .reg_type = *reg_type, 5988 .log = &env->log, 5989 .is_retval = false, 5990 .is_ldsx = is_ldsx, 5991 }; 5992 5993 if (env->ops->is_valid_access && 5994 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5995 /* A non zero info.ctx_field_size indicates that this field is a 5996 * candidate for later verifier transformation to load the whole 5997 * field and then apply a mask when accessed with a narrower 5998 * access than actual ctx access size. A zero info.ctx_field_size 5999 * will only allow for whole field access and rejects any other 6000 * type of narrower access. 6001 */ 6002 *reg_type = info.reg_type; 6003 *is_retval = info.is_retval; 6004 6005 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 6006 *btf = info.btf; 6007 *btf_id = info.btf_id; 6008 } else { 6009 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 6010 } 6011 /* remember the offset of last byte accessed in ctx */ 6012 if (env->prog->aux->max_ctx_offset < off + size) 6013 env->prog->aux->max_ctx_offset = off + size; 6014 return 0; 6015 } 6016 6017 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6018 return -EACCES; 6019 } 6020 6021 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6022 int size) 6023 { 6024 if (size < 0 || off < 0 || 6025 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6026 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6027 off, size); 6028 return -EACCES; 6029 } 6030 return 0; 6031 } 6032 6033 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6034 u32 regno, int off, int size, 6035 enum bpf_access_type t) 6036 { 6037 struct bpf_reg_state *regs = cur_regs(env); 6038 struct bpf_reg_state *reg = ®s[regno]; 6039 struct bpf_insn_access_aux info = {}; 6040 bool valid; 6041 6042 if (reg->smin_value < 0) { 6043 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6044 regno); 6045 return -EACCES; 6046 } 6047 6048 switch (reg->type) { 6049 case PTR_TO_SOCK_COMMON: 6050 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6051 break; 6052 case PTR_TO_SOCKET: 6053 valid = bpf_sock_is_valid_access(off, size, t, &info); 6054 break; 6055 case PTR_TO_TCP_SOCK: 6056 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6057 break; 6058 case PTR_TO_XDP_SOCK: 6059 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6060 break; 6061 default: 6062 valid = false; 6063 } 6064 6065 6066 if (valid) { 6067 env->insn_aux_data[insn_idx].ctx_field_size = 6068 info.ctx_field_size; 6069 return 0; 6070 } 6071 6072 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6073 regno, reg_type_str(env, reg->type), off, size); 6074 6075 return -EACCES; 6076 } 6077 6078 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6079 { 6080 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6081 } 6082 6083 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6084 { 6085 const struct bpf_reg_state *reg = reg_state(env, regno); 6086 6087 return reg->type == PTR_TO_CTX; 6088 } 6089 6090 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6091 { 6092 const struct bpf_reg_state *reg = reg_state(env, regno); 6093 6094 return type_is_sk_pointer(reg->type); 6095 } 6096 6097 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6098 { 6099 const struct bpf_reg_state *reg = reg_state(env, regno); 6100 6101 return type_is_pkt_pointer(reg->type); 6102 } 6103 6104 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6105 { 6106 const struct bpf_reg_state *reg = reg_state(env, regno); 6107 6108 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6109 return reg->type == PTR_TO_FLOW_KEYS; 6110 } 6111 6112 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6113 { 6114 const struct bpf_reg_state *reg = reg_state(env, regno); 6115 6116 return reg->type == PTR_TO_ARENA; 6117 } 6118 6119 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6120 #ifdef CONFIG_NET 6121 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6122 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6123 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6124 #endif 6125 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6126 }; 6127 6128 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6129 { 6130 /* A referenced register is always trusted. */ 6131 if (reg->ref_obj_id) 6132 return true; 6133 6134 /* Types listed in the reg2btf_ids are always trusted */ 6135 if (reg2btf_ids[base_type(reg->type)] && 6136 !bpf_type_has_unsafe_modifiers(reg->type)) 6137 return true; 6138 6139 /* If a register is not referenced, it is trusted if it has the 6140 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6141 * other type modifiers may be safe, but we elect to take an opt-in 6142 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6143 * not. 6144 * 6145 * Eventually, we should make PTR_TRUSTED the single source of truth 6146 * for whether a register is trusted. 6147 */ 6148 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6149 !bpf_type_has_unsafe_modifiers(reg->type); 6150 } 6151 6152 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6153 { 6154 return reg->type & MEM_RCU; 6155 } 6156 6157 static void clear_trusted_flags(enum bpf_type_flag *flag) 6158 { 6159 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6160 } 6161 6162 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6163 const struct bpf_reg_state *reg, 6164 int off, int size, bool strict) 6165 { 6166 struct tnum reg_off; 6167 int ip_align; 6168 6169 /* Byte size accesses are always allowed. */ 6170 if (!strict || size == 1) 6171 return 0; 6172 6173 /* For platforms that do not have a Kconfig enabling 6174 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6175 * NET_IP_ALIGN is universally set to '2'. And on platforms 6176 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6177 * to this code only in strict mode where we want to emulate 6178 * the NET_IP_ALIGN==2 checking. Therefore use an 6179 * unconditional IP align value of '2'. 6180 */ 6181 ip_align = 2; 6182 6183 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6184 if (!tnum_is_aligned(reg_off, size)) { 6185 char tn_buf[48]; 6186 6187 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6188 verbose(env, 6189 "misaligned packet access off %d+%s+%d+%d size %d\n", 6190 ip_align, tn_buf, reg->off, off, size); 6191 return -EACCES; 6192 } 6193 6194 return 0; 6195 } 6196 6197 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6198 const struct bpf_reg_state *reg, 6199 const char *pointer_desc, 6200 int off, int size, bool strict) 6201 { 6202 struct tnum reg_off; 6203 6204 /* Byte size accesses are always allowed. */ 6205 if (!strict || size == 1) 6206 return 0; 6207 6208 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6209 if (!tnum_is_aligned(reg_off, size)) { 6210 char tn_buf[48]; 6211 6212 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6213 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6214 pointer_desc, tn_buf, reg->off, off, size); 6215 return -EACCES; 6216 } 6217 6218 return 0; 6219 } 6220 6221 static int check_ptr_alignment(struct bpf_verifier_env *env, 6222 const struct bpf_reg_state *reg, int off, 6223 int size, bool strict_alignment_once) 6224 { 6225 bool strict = env->strict_alignment || strict_alignment_once; 6226 const char *pointer_desc = ""; 6227 6228 switch (reg->type) { 6229 case PTR_TO_PACKET: 6230 case PTR_TO_PACKET_META: 6231 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6232 * right in front, treat it the very same way. 6233 */ 6234 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6235 case PTR_TO_FLOW_KEYS: 6236 pointer_desc = "flow keys "; 6237 break; 6238 case PTR_TO_MAP_KEY: 6239 pointer_desc = "key "; 6240 break; 6241 case PTR_TO_MAP_VALUE: 6242 pointer_desc = "value "; 6243 break; 6244 case PTR_TO_CTX: 6245 pointer_desc = "context "; 6246 break; 6247 case PTR_TO_STACK: 6248 pointer_desc = "stack "; 6249 /* The stack spill tracking logic in check_stack_write_fixed_off() 6250 * and check_stack_read_fixed_off() relies on stack accesses being 6251 * aligned. 6252 */ 6253 strict = true; 6254 break; 6255 case PTR_TO_SOCKET: 6256 pointer_desc = "sock "; 6257 break; 6258 case PTR_TO_SOCK_COMMON: 6259 pointer_desc = "sock_common "; 6260 break; 6261 case PTR_TO_TCP_SOCK: 6262 pointer_desc = "tcp_sock "; 6263 break; 6264 case PTR_TO_XDP_SOCK: 6265 pointer_desc = "xdp_sock "; 6266 break; 6267 case PTR_TO_ARENA: 6268 return 0; 6269 default: 6270 break; 6271 } 6272 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6273 strict); 6274 } 6275 6276 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6277 { 6278 if (!bpf_jit_supports_private_stack()) 6279 return NO_PRIV_STACK; 6280 6281 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6282 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6283 * explicitly. 6284 */ 6285 switch (prog->type) { 6286 case BPF_PROG_TYPE_KPROBE: 6287 case BPF_PROG_TYPE_TRACEPOINT: 6288 case BPF_PROG_TYPE_PERF_EVENT: 6289 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6290 return PRIV_STACK_ADAPTIVE; 6291 case BPF_PROG_TYPE_TRACING: 6292 case BPF_PROG_TYPE_LSM: 6293 case BPF_PROG_TYPE_STRUCT_OPS: 6294 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6295 return PRIV_STACK_ADAPTIVE; 6296 fallthrough; 6297 default: 6298 break; 6299 } 6300 6301 return NO_PRIV_STACK; 6302 } 6303 6304 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6305 { 6306 if (env->prog->jit_requested) 6307 return round_up(stack_depth, 16); 6308 6309 /* round up to 32-bytes, since this is granularity 6310 * of interpreter stack size 6311 */ 6312 return round_up(max_t(u32, stack_depth, 1), 32); 6313 } 6314 6315 /* starting from main bpf function walk all instructions of the function 6316 * and recursively walk all callees that given function can call. 6317 * Ignore jump and exit insns. 6318 * Since recursion is prevented by check_cfg() this algorithm 6319 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6320 */ 6321 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6322 bool priv_stack_supported) 6323 { 6324 struct bpf_subprog_info *subprog = env->subprog_info; 6325 struct bpf_insn *insn = env->prog->insnsi; 6326 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6327 bool tail_call_reachable = false; 6328 int ret_insn[MAX_CALL_FRAMES]; 6329 int ret_prog[MAX_CALL_FRAMES]; 6330 int j; 6331 6332 i = subprog[idx].start; 6333 if (!priv_stack_supported) 6334 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6335 process_func: 6336 /* protect against potential stack overflow that might happen when 6337 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6338 * depth for such case down to 256 so that the worst case scenario 6339 * would result in 8k stack size (32 which is tailcall limit * 256 = 6340 * 8k). 6341 * 6342 * To get the idea what might happen, see an example: 6343 * func1 -> sub rsp, 128 6344 * subfunc1 -> sub rsp, 256 6345 * tailcall1 -> add rsp, 256 6346 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6347 * subfunc2 -> sub rsp, 64 6348 * subfunc22 -> sub rsp, 128 6349 * tailcall2 -> add rsp, 128 6350 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6351 * 6352 * tailcall will unwind the current stack frame but it will not get rid 6353 * of caller's stack as shown on the example above. 6354 */ 6355 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6356 verbose(env, 6357 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6358 depth); 6359 return -EACCES; 6360 } 6361 6362 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6363 if (priv_stack_supported) { 6364 /* Request private stack support only if the subprog stack 6365 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6366 * avoid jit penalty if the stack usage is small. 6367 */ 6368 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6369 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6370 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6371 } 6372 6373 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6374 if (subprog_depth > MAX_BPF_STACK) { 6375 verbose(env, "stack size of subprog %d is %d. Too large\n", 6376 idx, subprog_depth); 6377 return -EACCES; 6378 } 6379 } else { 6380 depth += subprog_depth; 6381 if (depth > MAX_BPF_STACK) { 6382 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6383 frame + 1, depth); 6384 return -EACCES; 6385 } 6386 } 6387 continue_func: 6388 subprog_end = subprog[idx + 1].start; 6389 for (; i < subprog_end; i++) { 6390 int next_insn, sidx; 6391 6392 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6393 bool err = false; 6394 6395 if (!is_bpf_throw_kfunc(insn + i)) 6396 continue; 6397 if (subprog[idx].is_cb) 6398 err = true; 6399 for (int c = 0; c < frame && !err; c++) { 6400 if (subprog[ret_prog[c]].is_cb) { 6401 err = true; 6402 break; 6403 } 6404 } 6405 if (!err) 6406 continue; 6407 verbose(env, 6408 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6409 i, idx); 6410 return -EINVAL; 6411 } 6412 6413 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6414 continue; 6415 /* remember insn and function to return to */ 6416 ret_insn[frame] = i + 1; 6417 ret_prog[frame] = idx; 6418 6419 /* find the callee */ 6420 next_insn = i + insn[i].imm + 1; 6421 sidx = find_subprog(env, next_insn); 6422 if (sidx < 0) { 6423 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6424 next_insn); 6425 return -EFAULT; 6426 } 6427 if (subprog[sidx].is_async_cb) { 6428 if (subprog[sidx].has_tail_call) { 6429 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6430 return -EFAULT; 6431 } 6432 /* async callbacks don't increase bpf prog stack size unless called directly */ 6433 if (!bpf_pseudo_call(insn + i)) 6434 continue; 6435 if (subprog[sidx].is_exception_cb) { 6436 verbose(env, "insn %d cannot call exception cb directly\n", i); 6437 return -EINVAL; 6438 } 6439 } 6440 i = next_insn; 6441 idx = sidx; 6442 if (!priv_stack_supported) 6443 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6444 6445 if (subprog[idx].has_tail_call) 6446 tail_call_reachable = true; 6447 6448 frame++; 6449 if (frame >= MAX_CALL_FRAMES) { 6450 verbose(env, "the call stack of %d frames is too deep !\n", 6451 frame); 6452 return -E2BIG; 6453 } 6454 goto process_func; 6455 } 6456 /* if tail call got detected across bpf2bpf calls then mark each of the 6457 * currently present subprog frames as tail call reachable subprogs; 6458 * this info will be utilized by JIT so that we will be preserving the 6459 * tail call counter throughout bpf2bpf calls combined with tailcalls 6460 */ 6461 if (tail_call_reachable) 6462 for (j = 0; j < frame; j++) { 6463 if (subprog[ret_prog[j]].is_exception_cb) { 6464 verbose(env, "cannot tail call within exception cb\n"); 6465 return -EINVAL; 6466 } 6467 subprog[ret_prog[j]].tail_call_reachable = true; 6468 } 6469 if (subprog[0].tail_call_reachable) 6470 env->prog->aux->tail_call_reachable = true; 6471 6472 /* end of for() loop means the last insn of the 'subprog' 6473 * was reached. Doesn't matter whether it was JA or EXIT 6474 */ 6475 if (frame == 0) 6476 return 0; 6477 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6478 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6479 frame--; 6480 i = ret_insn[frame]; 6481 idx = ret_prog[frame]; 6482 goto continue_func; 6483 } 6484 6485 static int check_max_stack_depth(struct bpf_verifier_env *env) 6486 { 6487 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6488 struct bpf_subprog_info *si = env->subprog_info; 6489 bool priv_stack_supported; 6490 int ret; 6491 6492 for (int i = 0; i < env->subprog_cnt; i++) { 6493 if (si[i].has_tail_call) { 6494 priv_stack_mode = NO_PRIV_STACK; 6495 break; 6496 } 6497 } 6498 6499 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6500 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6501 6502 /* All async_cb subprogs use normal kernel stack. If a particular 6503 * subprog appears in both main prog and async_cb subtree, that 6504 * subprog will use normal kernel stack to avoid potential nesting. 6505 * The reverse subprog traversal ensures when main prog subtree is 6506 * checked, the subprogs appearing in async_cb subtrees are already 6507 * marked as using normal kernel stack, so stack size checking can 6508 * be done properly. 6509 */ 6510 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6511 if (!i || si[i].is_async_cb) { 6512 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6513 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6514 if (ret < 0) 6515 return ret; 6516 } 6517 } 6518 6519 for (int i = 0; i < env->subprog_cnt; i++) { 6520 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6521 env->prog->aux->jits_use_priv_stack = true; 6522 break; 6523 } 6524 } 6525 6526 return 0; 6527 } 6528 6529 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6530 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6531 const struct bpf_insn *insn, int idx) 6532 { 6533 int start = idx + insn->imm + 1, subprog; 6534 6535 subprog = find_subprog(env, start); 6536 if (subprog < 0) { 6537 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6538 start); 6539 return -EFAULT; 6540 } 6541 return env->subprog_info[subprog].stack_depth; 6542 } 6543 #endif 6544 6545 static int __check_buffer_access(struct bpf_verifier_env *env, 6546 const char *buf_info, 6547 const struct bpf_reg_state *reg, 6548 int regno, int off, int size) 6549 { 6550 if (off < 0) { 6551 verbose(env, 6552 "R%d invalid %s buffer access: off=%d, size=%d\n", 6553 regno, buf_info, off, size); 6554 return -EACCES; 6555 } 6556 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6557 char tn_buf[48]; 6558 6559 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6560 verbose(env, 6561 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6562 regno, off, tn_buf); 6563 return -EACCES; 6564 } 6565 6566 return 0; 6567 } 6568 6569 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6570 const struct bpf_reg_state *reg, 6571 int regno, int off, int size) 6572 { 6573 int err; 6574 6575 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6576 if (err) 6577 return err; 6578 6579 if (off + size > env->prog->aux->max_tp_access) 6580 env->prog->aux->max_tp_access = off + size; 6581 6582 return 0; 6583 } 6584 6585 static int check_buffer_access(struct bpf_verifier_env *env, 6586 const struct bpf_reg_state *reg, 6587 int regno, int off, int size, 6588 bool zero_size_allowed, 6589 u32 *max_access) 6590 { 6591 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6592 int err; 6593 6594 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6595 if (err) 6596 return err; 6597 6598 if (off + size > *max_access) 6599 *max_access = off + size; 6600 6601 return 0; 6602 } 6603 6604 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6605 static void zext_32_to_64(struct bpf_reg_state *reg) 6606 { 6607 reg->var_off = tnum_subreg(reg->var_off); 6608 __reg_assign_32_into_64(reg); 6609 } 6610 6611 /* truncate register to smaller size (in bytes) 6612 * must be called with size < BPF_REG_SIZE 6613 */ 6614 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6615 { 6616 u64 mask; 6617 6618 /* clear high bits in bit representation */ 6619 reg->var_off = tnum_cast(reg->var_off, size); 6620 6621 /* fix arithmetic bounds */ 6622 mask = ((u64)1 << (size * 8)) - 1; 6623 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6624 reg->umin_value &= mask; 6625 reg->umax_value &= mask; 6626 } else { 6627 reg->umin_value = 0; 6628 reg->umax_value = mask; 6629 } 6630 reg->smin_value = reg->umin_value; 6631 reg->smax_value = reg->umax_value; 6632 6633 /* If size is smaller than 32bit register the 32bit register 6634 * values are also truncated so we push 64-bit bounds into 6635 * 32-bit bounds. Above were truncated < 32-bits already. 6636 */ 6637 if (size < 4) 6638 __mark_reg32_unbounded(reg); 6639 6640 reg_bounds_sync(reg); 6641 } 6642 6643 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6644 { 6645 if (size == 1) { 6646 reg->smin_value = reg->s32_min_value = S8_MIN; 6647 reg->smax_value = reg->s32_max_value = S8_MAX; 6648 } else if (size == 2) { 6649 reg->smin_value = reg->s32_min_value = S16_MIN; 6650 reg->smax_value = reg->s32_max_value = S16_MAX; 6651 } else { 6652 /* size == 4 */ 6653 reg->smin_value = reg->s32_min_value = S32_MIN; 6654 reg->smax_value = reg->s32_max_value = S32_MAX; 6655 } 6656 reg->umin_value = reg->u32_min_value = 0; 6657 reg->umax_value = U64_MAX; 6658 reg->u32_max_value = U32_MAX; 6659 reg->var_off = tnum_unknown; 6660 } 6661 6662 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6663 { 6664 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6665 u64 top_smax_value, top_smin_value; 6666 u64 num_bits = size * 8; 6667 6668 if (tnum_is_const(reg->var_off)) { 6669 u64_cval = reg->var_off.value; 6670 if (size == 1) 6671 reg->var_off = tnum_const((s8)u64_cval); 6672 else if (size == 2) 6673 reg->var_off = tnum_const((s16)u64_cval); 6674 else 6675 /* size == 4 */ 6676 reg->var_off = tnum_const((s32)u64_cval); 6677 6678 u64_cval = reg->var_off.value; 6679 reg->smax_value = reg->smin_value = u64_cval; 6680 reg->umax_value = reg->umin_value = u64_cval; 6681 reg->s32_max_value = reg->s32_min_value = u64_cval; 6682 reg->u32_max_value = reg->u32_min_value = u64_cval; 6683 return; 6684 } 6685 6686 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6687 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6688 6689 if (top_smax_value != top_smin_value) 6690 goto out; 6691 6692 /* find the s64_min and s64_min after sign extension */ 6693 if (size == 1) { 6694 init_s64_max = (s8)reg->smax_value; 6695 init_s64_min = (s8)reg->smin_value; 6696 } else if (size == 2) { 6697 init_s64_max = (s16)reg->smax_value; 6698 init_s64_min = (s16)reg->smin_value; 6699 } else { 6700 init_s64_max = (s32)reg->smax_value; 6701 init_s64_min = (s32)reg->smin_value; 6702 } 6703 6704 s64_max = max(init_s64_max, init_s64_min); 6705 s64_min = min(init_s64_max, init_s64_min); 6706 6707 /* both of s64_max/s64_min positive or negative */ 6708 if ((s64_max >= 0) == (s64_min >= 0)) { 6709 reg->s32_min_value = reg->smin_value = s64_min; 6710 reg->s32_max_value = reg->smax_value = s64_max; 6711 reg->u32_min_value = reg->umin_value = s64_min; 6712 reg->u32_max_value = reg->umax_value = s64_max; 6713 reg->var_off = tnum_range(s64_min, s64_max); 6714 return; 6715 } 6716 6717 out: 6718 set_sext64_default_val(reg, size); 6719 } 6720 6721 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6722 { 6723 if (size == 1) { 6724 reg->s32_min_value = S8_MIN; 6725 reg->s32_max_value = S8_MAX; 6726 } else { 6727 /* size == 2 */ 6728 reg->s32_min_value = S16_MIN; 6729 reg->s32_max_value = S16_MAX; 6730 } 6731 reg->u32_min_value = 0; 6732 reg->u32_max_value = U32_MAX; 6733 reg->var_off = tnum_subreg(tnum_unknown); 6734 } 6735 6736 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6737 { 6738 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6739 u32 top_smax_value, top_smin_value; 6740 u32 num_bits = size * 8; 6741 6742 if (tnum_is_const(reg->var_off)) { 6743 u32_val = reg->var_off.value; 6744 if (size == 1) 6745 reg->var_off = tnum_const((s8)u32_val); 6746 else 6747 reg->var_off = tnum_const((s16)u32_val); 6748 6749 u32_val = reg->var_off.value; 6750 reg->s32_min_value = reg->s32_max_value = u32_val; 6751 reg->u32_min_value = reg->u32_max_value = u32_val; 6752 return; 6753 } 6754 6755 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6756 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6757 6758 if (top_smax_value != top_smin_value) 6759 goto out; 6760 6761 /* find the s32_min and s32_min after sign extension */ 6762 if (size == 1) { 6763 init_s32_max = (s8)reg->s32_max_value; 6764 init_s32_min = (s8)reg->s32_min_value; 6765 } else { 6766 /* size == 2 */ 6767 init_s32_max = (s16)reg->s32_max_value; 6768 init_s32_min = (s16)reg->s32_min_value; 6769 } 6770 s32_max = max(init_s32_max, init_s32_min); 6771 s32_min = min(init_s32_max, init_s32_min); 6772 6773 if ((s32_min >= 0) == (s32_max >= 0)) { 6774 reg->s32_min_value = s32_min; 6775 reg->s32_max_value = s32_max; 6776 reg->u32_min_value = (u32)s32_min; 6777 reg->u32_max_value = (u32)s32_max; 6778 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6779 return; 6780 } 6781 6782 out: 6783 set_sext32_default_val(reg, size); 6784 } 6785 6786 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6787 { 6788 /* A map is considered read-only if the following condition are true: 6789 * 6790 * 1) BPF program side cannot change any of the map content. The 6791 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6792 * and was set at map creation time. 6793 * 2) The map value(s) have been initialized from user space by a 6794 * loader and then "frozen", such that no new map update/delete 6795 * operations from syscall side are possible for the rest of 6796 * the map's lifetime from that point onwards. 6797 * 3) Any parallel/pending map update/delete operations from syscall 6798 * side have been completed. Only after that point, it's safe to 6799 * assume that map value(s) are immutable. 6800 */ 6801 return (map->map_flags & BPF_F_RDONLY_PROG) && 6802 READ_ONCE(map->frozen) && 6803 !bpf_map_write_active(map); 6804 } 6805 6806 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6807 bool is_ldsx) 6808 { 6809 void *ptr; 6810 u64 addr; 6811 int err; 6812 6813 err = map->ops->map_direct_value_addr(map, &addr, off); 6814 if (err) 6815 return err; 6816 ptr = (void *)(long)addr + off; 6817 6818 switch (size) { 6819 case sizeof(u8): 6820 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6821 break; 6822 case sizeof(u16): 6823 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6824 break; 6825 case sizeof(u32): 6826 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6827 break; 6828 case sizeof(u64): 6829 *val = *(u64 *)ptr; 6830 break; 6831 default: 6832 return -EINVAL; 6833 } 6834 return 0; 6835 } 6836 6837 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6838 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6839 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6840 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6841 6842 /* 6843 * Allow list few fields as RCU trusted or full trusted. 6844 * This logic doesn't allow mix tagging and will be removed once GCC supports 6845 * btf_type_tag. 6846 */ 6847 6848 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6849 BTF_TYPE_SAFE_RCU(struct task_struct) { 6850 const cpumask_t *cpus_ptr; 6851 struct css_set __rcu *cgroups; 6852 struct task_struct __rcu *real_parent; 6853 struct task_struct *group_leader; 6854 }; 6855 6856 BTF_TYPE_SAFE_RCU(struct cgroup) { 6857 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6858 struct kernfs_node *kn; 6859 }; 6860 6861 BTF_TYPE_SAFE_RCU(struct css_set) { 6862 struct cgroup *dfl_cgrp; 6863 }; 6864 6865 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6866 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6867 struct file __rcu *exe_file; 6868 }; 6869 6870 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6871 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6872 */ 6873 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6874 struct sock *sk; 6875 }; 6876 6877 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6878 struct sock *sk; 6879 }; 6880 6881 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6882 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6883 struct seq_file *seq; 6884 }; 6885 6886 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6887 struct bpf_iter_meta *meta; 6888 struct task_struct *task; 6889 }; 6890 6891 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6892 struct file *file; 6893 }; 6894 6895 BTF_TYPE_SAFE_TRUSTED(struct file) { 6896 struct inode *f_inode; 6897 }; 6898 6899 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6900 /* no negative dentry-s in places where bpf can see it */ 6901 struct inode *d_inode; 6902 }; 6903 6904 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6905 struct sock *sk; 6906 }; 6907 6908 static bool type_is_rcu(struct bpf_verifier_env *env, 6909 struct bpf_reg_state *reg, 6910 const char *field_name, u32 btf_id) 6911 { 6912 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6913 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6914 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6915 6916 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6917 } 6918 6919 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6920 struct bpf_reg_state *reg, 6921 const char *field_name, u32 btf_id) 6922 { 6923 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6924 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6925 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6926 6927 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6928 } 6929 6930 static bool type_is_trusted(struct bpf_verifier_env *env, 6931 struct bpf_reg_state *reg, 6932 const char *field_name, u32 btf_id) 6933 { 6934 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6935 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6936 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6937 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6938 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6939 6940 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6941 } 6942 6943 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6944 struct bpf_reg_state *reg, 6945 const char *field_name, u32 btf_id) 6946 { 6947 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6948 6949 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6950 "__safe_trusted_or_null"); 6951 } 6952 6953 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6954 struct bpf_reg_state *regs, 6955 int regno, int off, int size, 6956 enum bpf_access_type atype, 6957 int value_regno) 6958 { 6959 struct bpf_reg_state *reg = regs + regno; 6960 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6961 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6962 const char *field_name = NULL; 6963 enum bpf_type_flag flag = 0; 6964 u32 btf_id = 0; 6965 int ret; 6966 6967 if (!env->allow_ptr_leaks) { 6968 verbose(env, 6969 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6970 tname); 6971 return -EPERM; 6972 } 6973 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6974 verbose(env, 6975 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6976 tname); 6977 return -EINVAL; 6978 } 6979 if (off < 0) { 6980 verbose(env, 6981 "R%d is ptr_%s invalid negative access: off=%d\n", 6982 regno, tname, off); 6983 return -EACCES; 6984 } 6985 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6986 char tn_buf[48]; 6987 6988 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6989 verbose(env, 6990 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6991 regno, tname, off, tn_buf); 6992 return -EACCES; 6993 } 6994 6995 if (reg->type & MEM_USER) { 6996 verbose(env, 6997 "R%d is ptr_%s access user memory: off=%d\n", 6998 regno, tname, off); 6999 return -EACCES; 7000 } 7001 7002 if (reg->type & MEM_PERCPU) { 7003 verbose(env, 7004 "R%d is ptr_%s access percpu memory: off=%d\n", 7005 regno, tname, off); 7006 return -EACCES; 7007 } 7008 7009 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7010 if (!btf_is_kernel(reg->btf)) { 7011 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 7012 return -EFAULT; 7013 } 7014 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7015 } else { 7016 /* Writes are permitted with default btf_struct_access for 7017 * program allocated objects (which always have ref_obj_id > 0), 7018 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7019 */ 7020 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7021 verbose(env, "only read is supported\n"); 7022 return -EACCES; 7023 } 7024 7025 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7026 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7027 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 7028 return -EFAULT; 7029 } 7030 7031 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7032 } 7033 7034 if (ret < 0) 7035 return ret; 7036 7037 if (ret != PTR_TO_BTF_ID) { 7038 /* just mark; */ 7039 7040 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7041 /* If this is an untrusted pointer, all pointers formed by walking it 7042 * also inherit the untrusted flag. 7043 */ 7044 flag = PTR_UNTRUSTED; 7045 7046 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7047 /* By default any pointer obtained from walking a trusted pointer is no 7048 * longer trusted, unless the field being accessed has explicitly been 7049 * marked as inheriting its parent's state of trust (either full or RCU). 7050 * For example: 7051 * 'cgroups' pointer is untrusted if task->cgroups dereference 7052 * happened in a sleepable program outside of bpf_rcu_read_lock() 7053 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7054 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7055 * 7056 * A regular RCU-protected pointer with __rcu tag can also be deemed 7057 * trusted if we are in an RCU CS. Such pointer can be NULL. 7058 */ 7059 if (type_is_trusted(env, reg, field_name, btf_id)) { 7060 flag |= PTR_TRUSTED; 7061 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7062 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7063 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7064 if (type_is_rcu(env, reg, field_name, btf_id)) { 7065 /* ignore __rcu tag and mark it MEM_RCU */ 7066 flag |= MEM_RCU; 7067 } else if (flag & MEM_RCU || 7068 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7069 /* __rcu tagged pointers can be NULL */ 7070 flag |= MEM_RCU | PTR_MAYBE_NULL; 7071 7072 /* We always trust them */ 7073 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7074 flag & PTR_UNTRUSTED) 7075 flag &= ~PTR_UNTRUSTED; 7076 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7077 /* keep as-is */ 7078 } else { 7079 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7080 clear_trusted_flags(&flag); 7081 } 7082 } else { 7083 /* 7084 * If not in RCU CS or MEM_RCU pointer can be NULL then 7085 * aggressively mark as untrusted otherwise such 7086 * pointers will be plain PTR_TO_BTF_ID without flags 7087 * and will be allowed to be passed into helpers for 7088 * compat reasons. 7089 */ 7090 flag = PTR_UNTRUSTED; 7091 } 7092 } else { 7093 /* Old compat. Deprecated */ 7094 clear_trusted_flags(&flag); 7095 } 7096 7097 if (atype == BPF_READ && value_regno >= 0) 7098 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7099 7100 return 0; 7101 } 7102 7103 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7104 struct bpf_reg_state *regs, 7105 int regno, int off, int size, 7106 enum bpf_access_type atype, 7107 int value_regno) 7108 { 7109 struct bpf_reg_state *reg = regs + regno; 7110 struct bpf_map *map = reg->map_ptr; 7111 struct bpf_reg_state map_reg; 7112 enum bpf_type_flag flag = 0; 7113 const struct btf_type *t; 7114 const char *tname; 7115 u32 btf_id; 7116 int ret; 7117 7118 if (!btf_vmlinux) { 7119 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7120 return -ENOTSUPP; 7121 } 7122 7123 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7124 verbose(env, "map_ptr access not supported for map type %d\n", 7125 map->map_type); 7126 return -ENOTSUPP; 7127 } 7128 7129 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7130 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7131 7132 if (!env->allow_ptr_leaks) { 7133 verbose(env, 7134 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7135 tname); 7136 return -EPERM; 7137 } 7138 7139 if (off < 0) { 7140 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7141 regno, tname, off); 7142 return -EACCES; 7143 } 7144 7145 if (atype != BPF_READ) { 7146 verbose(env, "only read from %s is supported\n", tname); 7147 return -EACCES; 7148 } 7149 7150 /* Simulate access to a PTR_TO_BTF_ID */ 7151 memset(&map_reg, 0, sizeof(map_reg)); 7152 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 7153 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7154 if (ret < 0) 7155 return ret; 7156 7157 if (value_regno >= 0) 7158 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7159 7160 return 0; 7161 } 7162 7163 /* Check that the stack access at the given offset is within bounds. The 7164 * maximum valid offset is -1. 7165 * 7166 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7167 * -state->allocated_stack for reads. 7168 */ 7169 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7170 s64 off, 7171 struct bpf_func_state *state, 7172 enum bpf_access_type t) 7173 { 7174 int min_valid_off; 7175 7176 if (t == BPF_WRITE || env->allow_uninit_stack) 7177 min_valid_off = -MAX_BPF_STACK; 7178 else 7179 min_valid_off = -state->allocated_stack; 7180 7181 if (off < min_valid_off || off > -1) 7182 return -EACCES; 7183 return 0; 7184 } 7185 7186 /* Check that the stack access at 'regno + off' falls within the maximum stack 7187 * bounds. 7188 * 7189 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7190 */ 7191 static int check_stack_access_within_bounds( 7192 struct bpf_verifier_env *env, 7193 int regno, int off, int access_size, 7194 enum bpf_access_type type) 7195 { 7196 struct bpf_reg_state *regs = cur_regs(env); 7197 struct bpf_reg_state *reg = regs + regno; 7198 struct bpf_func_state *state = func(env, reg); 7199 s64 min_off, max_off; 7200 int err; 7201 char *err_extra; 7202 7203 if (type == BPF_READ) 7204 err_extra = " read from"; 7205 else 7206 err_extra = " write to"; 7207 7208 if (tnum_is_const(reg->var_off)) { 7209 min_off = (s64)reg->var_off.value + off; 7210 max_off = min_off + access_size; 7211 } else { 7212 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7213 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7214 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7215 err_extra, regno); 7216 return -EACCES; 7217 } 7218 min_off = reg->smin_value + off; 7219 max_off = reg->smax_value + off + access_size; 7220 } 7221 7222 err = check_stack_slot_within_bounds(env, min_off, state, type); 7223 if (!err && max_off > 0) 7224 err = -EINVAL; /* out of stack access into non-negative offsets */ 7225 if (!err && access_size < 0) 7226 /* access_size should not be negative (or overflow an int); others checks 7227 * along the way should have prevented such an access. 7228 */ 7229 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7230 7231 if (err) { 7232 if (tnum_is_const(reg->var_off)) { 7233 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7234 err_extra, regno, off, access_size); 7235 } else { 7236 char tn_buf[48]; 7237 7238 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7239 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7240 err_extra, regno, tn_buf, off, access_size); 7241 } 7242 return err; 7243 } 7244 7245 /* Note that there is no stack access with offset zero, so the needed stack 7246 * size is -min_off, not -min_off+1. 7247 */ 7248 return grow_stack_state(env, state, -min_off /* size */); 7249 } 7250 7251 static bool get_func_retval_range(struct bpf_prog *prog, 7252 struct bpf_retval_range *range) 7253 { 7254 if (prog->type == BPF_PROG_TYPE_LSM && 7255 prog->expected_attach_type == BPF_LSM_MAC && 7256 !bpf_lsm_get_retval_range(prog, range)) { 7257 return true; 7258 } 7259 return false; 7260 } 7261 7262 /* check whether memory at (regno + off) is accessible for t = (read | write) 7263 * if t==write, value_regno is a register which value is stored into memory 7264 * if t==read, value_regno is a register which will receive the value from memory 7265 * if t==write && value_regno==-1, some unknown value is stored into memory 7266 * if t==read && value_regno==-1, don't care what we read from memory 7267 */ 7268 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7269 int off, int bpf_size, enum bpf_access_type t, 7270 int value_regno, bool strict_alignment_once, bool is_ldsx) 7271 { 7272 struct bpf_reg_state *regs = cur_regs(env); 7273 struct bpf_reg_state *reg = regs + regno; 7274 int size, err = 0; 7275 7276 size = bpf_size_to_bytes(bpf_size); 7277 if (size < 0) 7278 return size; 7279 7280 /* alignment checks will add in reg->off themselves */ 7281 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7282 if (err) 7283 return err; 7284 7285 /* for access checks, reg->off is just part of off */ 7286 off += reg->off; 7287 7288 if (reg->type == PTR_TO_MAP_KEY) { 7289 if (t == BPF_WRITE) { 7290 verbose(env, "write to change key R%d not allowed\n", regno); 7291 return -EACCES; 7292 } 7293 7294 err = check_mem_region_access(env, regno, off, size, 7295 reg->map_ptr->key_size, false); 7296 if (err) 7297 return err; 7298 if (value_regno >= 0) 7299 mark_reg_unknown(env, regs, value_regno); 7300 } else if (reg->type == PTR_TO_MAP_VALUE) { 7301 struct btf_field *kptr_field = NULL; 7302 7303 if (t == BPF_WRITE && value_regno >= 0 && 7304 is_pointer_value(env, value_regno)) { 7305 verbose(env, "R%d leaks addr into map\n", value_regno); 7306 return -EACCES; 7307 } 7308 err = check_map_access_type(env, regno, off, size, t); 7309 if (err) 7310 return err; 7311 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7312 if (err) 7313 return err; 7314 if (tnum_is_const(reg->var_off)) 7315 kptr_field = btf_record_find(reg->map_ptr->record, 7316 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7317 if (kptr_field) { 7318 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7319 } else if (t == BPF_READ && value_regno >= 0) { 7320 struct bpf_map *map = reg->map_ptr; 7321 7322 /* if map is read-only, track its contents as scalars */ 7323 if (tnum_is_const(reg->var_off) && 7324 bpf_map_is_rdonly(map) && 7325 map->ops->map_direct_value_addr) { 7326 int map_off = off + reg->var_off.value; 7327 u64 val = 0; 7328 7329 err = bpf_map_direct_read(map, map_off, size, 7330 &val, is_ldsx); 7331 if (err) 7332 return err; 7333 7334 regs[value_regno].type = SCALAR_VALUE; 7335 __mark_reg_known(®s[value_regno], val); 7336 } else { 7337 mark_reg_unknown(env, regs, value_regno); 7338 } 7339 } 7340 } else if (base_type(reg->type) == PTR_TO_MEM) { 7341 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7342 7343 if (type_may_be_null(reg->type)) { 7344 verbose(env, "R%d invalid mem access '%s'\n", regno, 7345 reg_type_str(env, reg->type)); 7346 return -EACCES; 7347 } 7348 7349 if (t == BPF_WRITE && rdonly_mem) { 7350 verbose(env, "R%d cannot write into %s\n", 7351 regno, reg_type_str(env, reg->type)); 7352 return -EACCES; 7353 } 7354 7355 if (t == BPF_WRITE && value_regno >= 0 && 7356 is_pointer_value(env, value_regno)) { 7357 verbose(env, "R%d leaks addr into mem\n", value_regno); 7358 return -EACCES; 7359 } 7360 7361 err = check_mem_region_access(env, regno, off, size, 7362 reg->mem_size, false); 7363 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7364 mark_reg_unknown(env, regs, value_regno); 7365 } else if (reg->type == PTR_TO_CTX) { 7366 bool is_retval = false; 7367 struct bpf_retval_range range; 7368 enum bpf_reg_type reg_type = SCALAR_VALUE; 7369 struct btf *btf = NULL; 7370 u32 btf_id = 0; 7371 7372 if (t == BPF_WRITE && value_regno >= 0 && 7373 is_pointer_value(env, value_regno)) { 7374 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7375 return -EACCES; 7376 } 7377 7378 err = check_ptr_off_reg(env, reg, regno); 7379 if (err < 0) 7380 return err; 7381 7382 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 7383 &btf_id, &is_retval, is_ldsx); 7384 if (err) 7385 verbose_linfo(env, insn_idx, "; "); 7386 if (!err && t == BPF_READ && value_regno >= 0) { 7387 /* ctx access returns either a scalar, or a 7388 * PTR_TO_PACKET[_META,_END]. In the latter 7389 * case, we know the offset is zero. 7390 */ 7391 if (reg_type == SCALAR_VALUE) { 7392 if (is_retval && get_func_retval_range(env->prog, &range)) { 7393 err = __mark_reg_s32_range(env, regs, value_regno, 7394 range.minval, range.maxval); 7395 if (err) 7396 return err; 7397 } else { 7398 mark_reg_unknown(env, regs, value_regno); 7399 } 7400 } else { 7401 mark_reg_known_zero(env, regs, 7402 value_regno); 7403 if (type_may_be_null(reg_type)) 7404 regs[value_regno].id = ++env->id_gen; 7405 /* A load of ctx field could have different 7406 * actual load size with the one encoded in the 7407 * insn. When the dst is PTR, it is for sure not 7408 * a sub-register. 7409 */ 7410 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7411 if (base_type(reg_type) == PTR_TO_BTF_ID) { 7412 regs[value_regno].btf = btf; 7413 regs[value_regno].btf_id = btf_id; 7414 } 7415 } 7416 regs[value_regno].type = reg_type; 7417 } 7418 7419 } else if (reg->type == PTR_TO_STACK) { 7420 /* Basic bounds checks. */ 7421 err = check_stack_access_within_bounds(env, regno, off, size, t); 7422 if (err) 7423 return err; 7424 7425 if (t == BPF_READ) 7426 err = check_stack_read(env, regno, off, size, 7427 value_regno); 7428 else 7429 err = check_stack_write(env, regno, off, size, 7430 value_regno, insn_idx); 7431 } else if (reg_is_pkt_pointer(reg)) { 7432 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7433 verbose(env, "cannot write into packet\n"); 7434 return -EACCES; 7435 } 7436 if (t == BPF_WRITE && value_regno >= 0 && 7437 is_pointer_value(env, value_regno)) { 7438 verbose(env, "R%d leaks addr into packet\n", 7439 value_regno); 7440 return -EACCES; 7441 } 7442 err = check_packet_access(env, regno, off, size, false); 7443 if (!err && t == BPF_READ && value_regno >= 0) 7444 mark_reg_unknown(env, regs, value_regno); 7445 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7446 if (t == BPF_WRITE && value_regno >= 0 && 7447 is_pointer_value(env, value_regno)) { 7448 verbose(env, "R%d leaks addr into flow keys\n", 7449 value_regno); 7450 return -EACCES; 7451 } 7452 7453 err = check_flow_keys_access(env, off, size); 7454 if (!err && t == BPF_READ && value_regno >= 0) 7455 mark_reg_unknown(env, regs, value_regno); 7456 } else if (type_is_sk_pointer(reg->type)) { 7457 if (t == BPF_WRITE) { 7458 verbose(env, "R%d cannot write into %s\n", 7459 regno, reg_type_str(env, reg->type)); 7460 return -EACCES; 7461 } 7462 err = check_sock_access(env, insn_idx, regno, off, size, t); 7463 if (!err && value_regno >= 0) 7464 mark_reg_unknown(env, regs, value_regno); 7465 } else if (reg->type == PTR_TO_TP_BUFFER) { 7466 err = check_tp_buffer_access(env, reg, regno, off, size); 7467 if (!err && t == BPF_READ && value_regno >= 0) 7468 mark_reg_unknown(env, regs, value_regno); 7469 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7470 !type_may_be_null(reg->type)) { 7471 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7472 value_regno); 7473 } else if (reg->type == CONST_PTR_TO_MAP) { 7474 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7475 value_regno); 7476 } else if (base_type(reg->type) == PTR_TO_BUF) { 7477 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7478 u32 *max_access; 7479 7480 if (rdonly_mem) { 7481 if (t == BPF_WRITE) { 7482 verbose(env, "R%d cannot write into %s\n", 7483 regno, reg_type_str(env, reg->type)); 7484 return -EACCES; 7485 } 7486 max_access = &env->prog->aux->max_rdonly_access; 7487 } else { 7488 max_access = &env->prog->aux->max_rdwr_access; 7489 } 7490 7491 err = check_buffer_access(env, reg, regno, off, size, false, 7492 max_access); 7493 7494 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7495 mark_reg_unknown(env, regs, value_regno); 7496 } else if (reg->type == PTR_TO_ARENA) { 7497 if (t == BPF_READ && value_regno >= 0) 7498 mark_reg_unknown(env, regs, value_regno); 7499 } else { 7500 verbose(env, "R%d invalid mem access '%s'\n", regno, 7501 reg_type_str(env, reg->type)); 7502 return -EACCES; 7503 } 7504 7505 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7506 regs[value_regno].type == SCALAR_VALUE) { 7507 if (!is_ldsx) 7508 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7509 coerce_reg_to_size(®s[value_regno], size); 7510 else 7511 coerce_reg_to_size_sx(®s[value_regno], size); 7512 } 7513 return err; 7514 } 7515 7516 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7517 bool allow_trust_mismatch); 7518 7519 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7520 { 7521 int load_reg; 7522 int err; 7523 7524 switch (insn->imm) { 7525 case BPF_ADD: 7526 case BPF_ADD | BPF_FETCH: 7527 case BPF_AND: 7528 case BPF_AND | BPF_FETCH: 7529 case BPF_OR: 7530 case BPF_OR | BPF_FETCH: 7531 case BPF_XOR: 7532 case BPF_XOR | BPF_FETCH: 7533 case BPF_XCHG: 7534 case BPF_CMPXCHG: 7535 break; 7536 default: 7537 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7538 return -EINVAL; 7539 } 7540 7541 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7542 verbose(env, "invalid atomic operand size\n"); 7543 return -EINVAL; 7544 } 7545 7546 /* check src1 operand */ 7547 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7548 if (err) 7549 return err; 7550 7551 /* check src2 operand */ 7552 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7553 if (err) 7554 return err; 7555 7556 if (insn->imm == BPF_CMPXCHG) { 7557 /* Check comparison of R0 with memory location */ 7558 const u32 aux_reg = BPF_REG_0; 7559 7560 err = check_reg_arg(env, aux_reg, SRC_OP); 7561 if (err) 7562 return err; 7563 7564 if (is_pointer_value(env, aux_reg)) { 7565 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7566 return -EACCES; 7567 } 7568 } 7569 7570 if (is_pointer_value(env, insn->src_reg)) { 7571 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7572 return -EACCES; 7573 } 7574 7575 if (is_ctx_reg(env, insn->dst_reg) || 7576 is_pkt_reg(env, insn->dst_reg) || 7577 is_flow_key_reg(env, insn->dst_reg) || 7578 is_sk_reg(env, insn->dst_reg) || 7579 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7580 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7581 insn->dst_reg, 7582 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7583 return -EACCES; 7584 } 7585 7586 if (insn->imm & BPF_FETCH) { 7587 if (insn->imm == BPF_CMPXCHG) 7588 load_reg = BPF_REG_0; 7589 else 7590 load_reg = insn->src_reg; 7591 7592 /* check and record load of old value */ 7593 err = check_reg_arg(env, load_reg, DST_OP); 7594 if (err) 7595 return err; 7596 } else { 7597 /* This instruction accesses a memory location but doesn't 7598 * actually load it into a register. 7599 */ 7600 load_reg = -1; 7601 } 7602 7603 /* Check whether we can read the memory, with second call for fetch 7604 * case to simulate the register fill. 7605 */ 7606 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7607 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7608 if (!err && load_reg >= 0) 7609 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7610 BPF_SIZE(insn->code), BPF_READ, load_reg, 7611 true, false); 7612 if (err) 7613 return err; 7614 7615 if (is_arena_reg(env, insn->dst_reg)) { 7616 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7617 if (err) 7618 return err; 7619 } 7620 /* Check whether we can write into the same memory. */ 7621 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7622 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7623 if (err) 7624 return err; 7625 return 0; 7626 } 7627 7628 /* When register 'regno' is used to read the stack (either directly or through 7629 * a helper function) make sure that it's within stack boundary and, depending 7630 * on the access type and privileges, that all elements of the stack are 7631 * initialized. 7632 * 7633 * 'off' includes 'regno->off', but not its dynamic part (if any). 7634 * 7635 * All registers that have been spilled on the stack in the slots within the 7636 * read offsets are marked as read. 7637 */ 7638 static int check_stack_range_initialized( 7639 struct bpf_verifier_env *env, int regno, int off, 7640 int access_size, bool zero_size_allowed, 7641 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 7642 { 7643 struct bpf_reg_state *reg = reg_state(env, regno); 7644 struct bpf_func_state *state = func(env, reg); 7645 int err, min_off, max_off, i, j, slot, spi; 7646 /* Some accesses can write anything into the stack, others are 7647 * read-only. 7648 */ 7649 bool clobber = false; 7650 7651 if (access_size == 0 && !zero_size_allowed) { 7652 verbose(env, "invalid zero-sized read\n"); 7653 return -EACCES; 7654 } 7655 7656 if (type == BPF_WRITE) 7657 clobber = true; 7658 7659 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 7660 if (err) 7661 return err; 7662 7663 7664 if (tnum_is_const(reg->var_off)) { 7665 min_off = max_off = reg->var_off.value + off; 7666 } else { 7667 /* Variable offset is prohibited for unprivileged mode for 7668 * simplicity since it requires corresponding support in 7669 * Spectre masking for stack ALU. 7670 * See also retrieve_ptr_limit(). 7671 */ 7672 if (!env->bypass_spec_v1) { 7673 char tn_buf[48]; 7674 7675 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7676 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 7677 regno, tn_buf); 7678 return -EACCES; 7679 } 7680 /* Only initialized buffer on stack is allowed to be accessed 7681 * with variable offset. With uninitialized buffer it's hard to 7682 * guarantee that whole memory is marked as initialized on 7683 * helper return since specific bounds are unknown what may 7684 * cause uninitialized stack leaking. 7685 */ 7686 if (meta && meta->raw_mode) 7687 meta = NULL; 7688 7689 min_off = reg->smin_value + off; 7690 max_off = reg->smax_value + off; 7691 } 7692 7693 if (meta && meta->raw_mode) { 7694 /* Ensure we won't be overwriting dynptrs when simulating byte 7695 * by byte access in check_helper_call using meta.access_size. 7696 * This would be a problem if we have a helper in the future 7697 * which takes: 7698 * 7699 * helper(uninit_mem, len, dynptr) 7700 * 7701 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7702 * may end up writing to dynptr itself when touching memory from 7703 * arg 1. This can be relaxed on a case by case basis for known 7704 * safe cases, but reject due to the possibilitiy of aliasing by 7705 * default. 7706 */ 7707 for (i = min_off; i < max_off + access_size; i++) { 7708 int stack_off = -i - 1; 7709 7710 spi = __get_spi(i); 7711 /* raw_mode may write past allocated_stack */ 7712 if (state->allocated_stack <= stack_off) 7713 continue; 7714 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7715 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7716 return -EACCES; 7717 } 7718 } 7719 meta->access_size = access_size; 7720 meta->regno = regno; 7721 return 0; 7722 } 7723 7724 for (i = min_off; i < max_off + access_size; i++) { 7725 u8 *stype; 7726 7727 slot = -i - 1; 7728 spi = slot / BPF_REG_SIZE; 7729 if (state->allocated_stack <= slot) { 7730 verbose(env, "verifier bug: allocated_stack too small\n"); 7731 return -EFAULT; 7732 } 7733 7734 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7735 if (*stype == STACK_MISC) 7736 goto mark; 7737 if ((*stype == STACK_ZERO) || 7738 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7739 if (clobber) { 7740 /* helper can write anything into the stack */ 7741 *stype = STACK_MISC; 7742 } 7743 goto mark; 7744 } 7745 7746 if (is_spilled_reg(&state->stack[spi]) && 7747 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7748 env->allow_ptr_leaks)) { 7749 if (clobber) { 7750 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7751 for (j = 0; j < BPF_REG_SIZE; j++) 7752 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7753 } 7754 goto mark; 7755 } 7756 7757 if (tnum_is_const(reg->var_off)) { 7758 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 7759 regno, min_off, i - min_off, access_size); 7760 } else { 7761 char tn_buf[48]; 7762 7763 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7764 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 7765 regno, tn_buf, i - min_off, access_size); 7766 } 7767 return -EACCES; 7768 mark: 7769 /* reading any byte out of 8-byte 'spill_slot' will cause 7770 * the whole slot to be marked as 'read' 7771 */ 7772 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7773 state->stack[spi].spilled_ptr.parent, 7774 REG_LIVE_READ64); 7775 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7776 * be sure that whether stack slot is written to or not. Hence, 7777 * we must still conservatively propagate reads upwards even if 7778 * helper may write to the entire memory range. 7779 */ 7780 } 7781 return 0; 7782 } 7783 7784 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7785 int access_size, enum bpf_access_type access_type, 7786 bool zero_size_allowed, 7787 struct bpf_call_arg_meta *meta) 7788 { 7789 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7790 u32 *max_access; 7791 7792 switch (base_type(reg->type)) { 7793 case PTR_TO_PACKET: 7794 case PTR_TO_PACKET_META: 7795 return check_packet_access(env, regno, reg->off, access_size, 7796 zero_size_allowed); 7797 case PTR_TO_MAP_KEY: 7798 if (access_type == BPF_WRITE) { 7799 verbose(env, "R%d cannot write into %s\n", regno, 7800 reg_type_str(env, reg->type)); 7801 return -EACCES; 7802 } 7803 return check_mem_region_access(env, regno, reg->off, access_size, 7804 reg->map_ptr->key_size, false); 7805 case PTR_TO_MAP_VALUE: 7806 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 7807 return -EACCES; 7808 return check_map_access(env, regno, reg->off, access_size, 7809 zero_size_allowed, ACCESS_HELPER); 7810 case PTR_TO_MEM: 7811 if (type_is_rdonly_mem(reg->type)) { 7812 if (access_type == BPF_WRITE) { 7813 verbose(env, "R%d cannot write into %s\n", regno, 7814 reg_type_str(env, reg->type)); 7815 return -EACCES; 7816 } 7817 } 7818 return check_mem_region_access(env, regno, reg->off, 7819 access_size, reg->mem_size, 7820 zero_size_allowed); 7821 case PTR_TO_BUF: 7822 if (type_is_rdonly_mem(reg->type)) { 7823 if (access_type == BPF_WRITE) { 7824 verbose(env, "R%d cannot write into %s\n", regno, 7825 reg_type_str(env, reg->type)); 7826 return -EACCES; 7827 } 7828 7829 max_access = &env->prog->aux->max_rdonly_access; 7830 } else { 7831 max_access = &env->prog->aux->max_rdwr_access; 7832 } 7833 return check_buffer_access(env, reg, regno, reg->off, 7834 access_size, zero_size_allowed, 7835 max_access); 7836 case PTR_TO_STACK: 7837 return check_stack_range_initialized( 7838 env, 7839 regno, reg->off, access_size, 7840 zero_size_allowed, access_type, meta); 7841 case PTR_TO_BTF_ID: 7842 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7843 access_size, BPF_READ, -1); 7844 case PTR_TO_CTX: 7845 /* in case the function doesn't know how to access the context, 7846 * (because we are in a program of type SYSCALL for example), we 7847 * can not statically check its size. 7848 * Dynamically check it now. 7849 */ 7850 if (!env->ops->convert_ctx_access) { 7851 int offset = access_size - 1; 7852 7853 /* Allow zero-byte read from PTR_TO_CTX */ 7854 if (access_size == 0) 7855 return zero_size_allowed ? 0 : -EACCES; 7856 7857 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7858 access_type, -1, false, false); 7859 } 7860 7861 fallthrough; 7862 default: /* scalar_value or invalid ptr */ 7863 /* Allow zero-byte read from NULL, regardless of pointer type */ 7864 if (zero_size_allowed && access_size == 0 && 7865 register_is_null(reg)) 7866 return 0; 7867 7868 verbose(env, "R%d type=%s ", regno, 7869 reg_type_str(env, reg->type)); 7870 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7871 return -EACCES; 7872 } 7873 } 7874 7875 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7876 * size. 7877 * 7878 * @regno is the register containing the access size. regno-1 is the register 7879 * containing the pointer. 7880 */ 7881 static int check_mem_size_reg(struct bpf_verifier_env *env, 7882 struct bpf_reg_state *reg, u32 regno, 7883 enum bpf_access_type access_type, 7884 bool zero_size_allowed, 7885 struct bpf_call_arg_meta *meta) 7886 { 7887 int err; 7888 7889 /* This is used to refine r0 return value bounds for helpers 7890 * that enforce this value as an upper bound on return values. 7891 * See do_refine_retval_range() for helpers that can refine 7892 * the return value. C type of helper is u32 so we pull register 7893 * bound from umax_value however, if negative verifier errors 7894 * out. Only upper bounds can be learned because retval is an 7895 * int type and negative retvals are allowed. 7896 */ 7897 meta->msize_max_value = reg->umax_value; 7898 7899 /* The register is SCALAR_VALUE; the access check happens using 7900 * its boundaries. For unprivileged variable accesses, disable 7901 * raw mode so that the program is required to initialize all 7902 * the memory that the helper could just partially fill up. 7903 */ 7904 if (!tnum_is_const(reg->var_off)) 7905 meta = NULL; 7906 7907 if (reg->smin_value < 0) { 7908 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7909 regno); 7910 return -EACCES; 7911 } 7912 7913 if (reg->umin_value == 0 && !zero_size_allowed) { 7914 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7915 regno, reg->umin_value, reg->umax_value); 7916 return -EACCES; 7917 } 7918 7919 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7920 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7921 regno); 7922 return -EACCES; 7923 } 7924 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 7925 access_type, zero_size_allowed, meta); 7926 if (!err) 7927 err = mark_chain_precision(env, regno); 7928 return err; 7929 } 7930 7931 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7932 u32 regno, u32 mem_size) 7933 { 7934 bool may_be_null = type_may_be_null(reg->type); 7935 struct bpf_reg_state saved_reg; 7936 int err; 7937 7938 if (register_is_null(reg)) 7939 return 0; 7940 7941 /* Assuming that the register contains a value check if the memory 7942 * access is safe. Temporarily save and restore the register's state as 7943 * the conversion shouldn't be visible to a caller. 7944 */ 7945 if (may_be_null) { 7946 saved_reg = *reg; 7947 mark_ptr_not_null_reg(reg); 7948 } 7949 7950 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 7951 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 7952 7953 if (may_be_null) 7954 *reg = saved_reg; 7955 7956 return err; 7957 } 7958 7959 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7960 u32 regno) 7961 { 7962 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7963 bool may_be_null = type_may_be_null(mem_reg->type); 7964 struct bpf_reg_state saved_reg; 7965 struct bpf_call_arg_meta meta; 7966 int err; 7967 7968 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7969 7970 memset(&meta, 0, sizeof(meta)); 7971 7972 if (may_be_null) { 7973 saved_reg = *mem_reg; 7974 mark_ptr_not_null_reg(mem_reg); 7975 } 7976 7977 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 7978 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 7979 7980 if (may_be_null) 7981 *mem_reg = saved_reg; 7982 7983 return err; 7984 } 7985 7986 /* Implementation details: 7987 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7988 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7989 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7990 * Two separate bpf_obj_new will also have different reg->id. 7991 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7992 * clears reg->id after value_or_null->value transition, since the verifier only 7993 * cares about the range of access to valid map value pointer and doesn't care 7994 * about actual address of the map element. 7995 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7996 * reg->id > 0 after value_or_null->value transition. By doing so 7997 * two bpf_map_lookups will be considered two different pointers that 7998 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7999 * returned from bpf_obj_new. 8000 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8001 * dead-locks. 8002 * Since only one bpf_spin_lock is allowed the checks are simpler than 8003 * reg_is_refcounted() logic. The verifier needs to remember only 8004 * one spin_lock instead of array of acquired_refs. 8005 * env->cur_state->active_locks remembers which map value element or allocated 8006 * object got locked and clears it after bpf_spin_unlock. 8007 */ 8008 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 8009 bool is_lock) 8010 { 8011 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8012 struct bpf_verifier_state *cur = env->cur_state; 8013 bool is_const = tnum_is_const(reg->var_off); 8014 u64 val = reg->var_off.value; 8015 struct bpf_map *map = NULL; 8016 struct btf *btf = NULL; 8017 struct btf_record *rec; 8018 int err; 8019 8020 if (!is_const) { 8021 verbose(env, 8022 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 8023 regno); 8024 return -EINVAL; 8025 } 8026 if (reg->type == PTR_TO_MAP_VALUE) { 8027 map = reg->map_ptr; 8028 if (!map->btf) { 8029 verbose(env, 8030 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 8031 map->name); 8032 return -EINVAL; 8033 } 8034 } else { 8035 btf = reg->btf; 8036 } 8037 8038 rec = reg_btf_record(reg); 8039 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 8040 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 8041 map ? map->name : "kptr"); 8042 return -EINVAL; 8043 } 8044 if (rec->spin_lock_off != val + reg->off) { 8045 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 8046 val + reg->off, rec->spin_lock_off); 8047 return -EINVAL; 8048 } 8049 if (is_lock) { 8050 void *ptr; 8051 8052 if (map) 8053 ptr = map; 8054 else 8055 ptr = btf; 8056 8057 if (cur->active_locks) { 8058 verbose(env, 8059 "Locking two bpf_spin_locks are not allowed\n"); 8060 return -EINVAL; 8061 } 8062 err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr); 8063 if (err < 0) { 8064 verbose(env, "Failed to acquire lock state\n"); 8065 return err; 8066 } 8067 } else { 8068 void *ptr; 8069 8070 if (map) 8071 ptr = map; 8072 else 8073 ptr = btf; 8074 8075 if (!cur->active_locks) { 8076 verbose(env, "bpf_spin_unlock without taking a lock\n"); 8077 return -EINVAL; 8078 } 8079 8080 if (release_lock_state(env->cur_state, REF_TYPE_LOCK, reg->id, ptr)) { 8081 verbose(env, "bpf_spin_unlock of different lock\n"); 8082 return -EINVAL; 8083 } 8084 8085 invalidate_non_owning_refs(env); 8086 } 8087 return 0; 8088 } 8089 8090 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8091 struct bpf_call_arg_meta *meta) 8092 { 8093 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8094 bool is_const = tnum_is_const(reg->var_off); 8095 struct bpf_map *map = reg->map_ptr; 8096 u64 val = reg->var_off.value; 8097 8098 if (!is_const) { 8099 verbose(env, 8100 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 8101 regno); 8102 return -EINVAL; 8103 } 8104 if (!map->btf) { 8105 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 8106 map->name); 8107 return -EINVAL; 8108 } 8109 if (!btf_record_has_field(map->record, BPF_TIMER)) { 8110 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 8111 return -EINVAL; 8112 } 8113 if (map->record->timer_off != val + reg->off) { 8114 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 8115 val + reg->off, map->record->timer_off); 8116 return -EINVAL; 8117 } 8118 if (meta->map_ptr) { 8119 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 8120 return -EFAULT; 8121 } 8122 meta->map_uid = reg->map_uid; 8123 meta->map_ptr = map; 8124 return 0; 8125 } 8126 8127 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8128 struct bpf_kfunc_call_arg_meta *meta) 8129 { 8130 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8131 struct bpf_map *map = reg->map_ptr; 8132 u64 val = reg->var_off.value; 8133 8134 if (map->record->wq_off != val + reg->off) { 8135 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8136 val + reg->off, map->record->wq_off); 8137 return -EINVAL; 8138 } 8139 meta->map.uid = reg->map_uid; 8140 meta->map.ptr = map; 8141 return 0; 8142 } 8143 8144 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8145 struct bpf_call_arg_meta *meta) 8146 { 8147 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8148 struct btf_field *kptr_field; 8149 struct bpf_map *map_ptr; 8150 struct btf_record *rec; 8151 u32 kptr_off; 8152 8153 if (type_is_ptr_alloc_obj(reg->type)) { 8154 rec = reg_btf_record(reg); 8155 } else { /* PTR_TO_MAP_VALUE */ 8156 map_ptr = reg->map_ptr; 8157 if (!map_ptr->btf) { 8158 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8159 map_ptr->name); 8160 return -EINVAL; 8161 } 8162 rec = map_ptr->record; 8163 meta->map_ptr = map_ptr; 8164 } 8165 8166 if (!tnum_is_const(reg->var_off)) { 8167 verbose(env, 8168 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8169 regno); 8170 return -EINVAL; 8171 } 8172 8173 if (!btf_record_has_field(rec, BPF_KPTR)) { 8174 verbose(env, "R%d has no valid kptr\n", regno); 8175 return -EINVAL; 8176 } 8177 8178 kptr_off = reg->off + reg->var_off.value; 8179 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8180 if (!kptr_field) { 8181 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8182 return -EACCES; 8183 } 8184 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8185 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8186 return -EACCES; 8187 } 8188 meta->kptr_field = kptr_field; 8189 return 0; 8190 } 8191 8192 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8193 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8194 * 8195 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8196 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8197 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8198 * 8199 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8200 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8201 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8202 * mutate the view of the dynptr and also possibly destroy it. In the latter 8203 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8204 * memory that dynptr points to. 8205 * 8206 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8207 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8208 * readonly dynptr view yet, hence only the first case is tracked and checked. 8209 * 8210 * This is consistent with how C applies the const modifier to a struct object, 8211 * where the pointer itself inside bpf_dynptr becomes const but not what it 8212 * points to. 8213 * 8214 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8215 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8216 */ 8217 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8218 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8219 { 8220 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8221 int err; 8222 8223 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8224 verbose(env, 8225 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8226 regno - 1); 8227 return -EINVAL; 8228 } 8229 8230 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8231 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8232 */ 8233 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8234 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 8235 return -EFAULT; 8236 } 8237 8238 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8239 * constructing a mutable bpf_dynptr object. 8240 * 8241 * Currently, this is only possible with PTR_TO_STACK 8242 * pointing to a region of at least 16 bytes which doesn't 8243 * contain an existing bpf_dynptr. 8244 * 8245 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8246 * mutated or destroyed. However, the memory it points to 8247 * may be mutated. 8248 * 8249 * None - Points to a initialized dynptr that can be mutated and 8250 * destroyed, including mutation of the memory it points 8251 * to. 8252 */ 8253 if (arg_type & MEM_UNINIT) { 8254 int i; 8255 8256 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8257 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8258 return -EINVAL; 8259 } 8260 8261 /* we write BPF_DW bits (8 bytes) at a time */ 8262 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8263 err = check_mem_access(env, insn_idx, regno, 8264 i, BPF_DW, BPF_WRITE, -1, false, false); 8265 if (err) 8266 return err; 8267 } 8268 8269 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8270 } else /* MEM_RDONLY and None case from above */ { 8271 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8272 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8273 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8274 return -EINVAL; 8275 } 8276 8277 if (!is_dynptr_reg_valid_init(env, reg)) { 8278 verbose(env, 8279 "Expected an initialized dynptr as arg #%d\n", 8280 regno - 1); 8281 return -EINVAL; 8282 } 8283 8284 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8285 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8286 verbose(env, 8287 "Expected a dynptr of type %s as arg #%d\n", 8288 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8289 return -EINVAL; 8290 } 8291 8292 err = mark_dynptr_read(env, reg); 8293 } 8294 return err; 8295 } 8296 8297 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8298 { 8299 struct bpf_func_state *state = func(env, reg); 8300 8301 return state->stack[spi].spilled_ptr.ref_obj_id; 8302 } 8303 8304 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8305 { 8306 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8307 } 8308 8309 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8310 { 8311 return meta->kfunc_flags & KF_ITER_NEW; 8312 } 8313 8314 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8315 { 8316 return meta->kfunc_flags & KF_ITER_NEXT; 8317 } 8318 8319 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8320 { 8321 return meta->kfunc_flags & KF_ITER_DESTROY; 8322 } 8323 8324 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8325 const struct btf_param *arg) 8326 { 8327 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8328 * kfunc is iter state pointer 8329 */ 8330 if (is_iter_kfunc(meta)) 8331 return arg_idx == 0; 8332 8333 /* iter passed as an argument to a generic kfunc */ 8334 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8335 } 8336 8337 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8338 struct bpf_kfunc_call_arg_meta *meta) 8339 { 8340 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8341 const struct btf_type *t; 8342 int spi, err, i, nr_slots, btf_id; 8343 8344 if (reg->type != PTR_TO_STACK) { 8345 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8346 return -EINVAL; 8347 } 8348 8349 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8350 * ensures struct convention, so we wouldn't need to do any BTF 8351 * validation here. But given iter state can be passed as a parameter 8352 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8353 * conservative here. 8354 */ 8355 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8356 if (btf_id < 0) { 8357 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8358 return -EINVAL; 8359 } 8360 t = btf_type_by_id(meta->btf, btf_id); 8361 nr_slots = t->size / BPF_REG_SIZE; 8362 8363 if (is_iter_new_kfunc(meta)) { 8364 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8365 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8366 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8367 iter_type_str(meta->btf, btf_id), regno - 1); 8368 return -EINVAL; 8369 } 8370 8371 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8372 err = check_mem_access(env, insn_idx, regno, 8373 i, BPF_DW, BPF_WRITE, -1, false, false); 8374 if (err) 8375 return err; 8376 } 8377 8378 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8379 if (err) 8380 return err; 8381 } else { 8382 /* iter_next() or iter_destroy(), as well as any kfunc 8383 * accepting iter argument, expect initialized iter state 8384 */ 8385 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8386 switch (err) { 8387 case 0: 8388 break; 8389 case -EINVAL: 8390 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8391 iter_type_str(meta->btf, btf_id), regno - 1); 8392 return err; 8393 case -EPROTO: 8394 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8395 return err; 8396 default: 8397 return err; 8398 } 8399 8400 spi = iter_get_spi(env, reg, nr_slots); 8401 if (spi < 0) 8402 return spi; 8403 8404 err = mark_iter_read(env, reg, spi, nr_slots); 8405 if (err) 8406 return err; 8407 8408 /* remember meta->iter info for process_iter_next_call() */ 8409 meta->iter.spi = spi; 8410 meta->iter.frameno = reg->frameno; 8411 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8412 8413 if (is_iter_destroy_kfunc(meta)) { 8414 err = unmark_stack_slots_iter(env, reg, nr_slots); 8415 if (err) 8416 return err; 8417 } 8418 } 8419 8420 return 0; 8421 } 8422 8423 /* Look for a previous loop entry at insn_idx: nearest parent state 8424 * stopped at insn_idx with callsites matching those in cur->frame. 8425 */ 8426 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8427 struct bpf_verifier_state *cur, 8428 int insn_idx) 8429 { 8430 struct bpf_verifier_state_list *sl; 8431 struct bpf_verifier_state *st; 8432 8433 /* Explored states are pushed in stack order, most recent states come first */ 8434 sl = *explored_state(env, insn_idx); 8435 for (; sl; sl = sl->next) { 8436 /* If st->branches != 0 state is a part of current DFS verification path, 8437 * hence cur & st for a loop. 8438 */ 8439 st = &sl->state; 8440 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8441 st->dfs_depth < cur->dfs_depth) 8442 return st; 8443 } 8444 8445 return NULL; 8446 } 8447 8448 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8449 static bool regs_exact(const struct bpf_reg_state *rold, 8450 const struct bpf_reg_state *rcur, 8451 struct bpf_idmap *idmap); 8452 8453 static void maybe_widen_reg(struct bpf_verifier_env *env, 8454 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8455 struct bpf_idmap *idmap) 8456 { 8457 if (rold->type != SCALAR_VALUE) 8458 return; 8459 if (rold->type != rcur->type) 8460 return; 8461 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8462 return; 8463 __mark_reg_unknown(env, rcur); 8464 } 8465 8466 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8467 struct bpf_verifier_state *old, 8468 struct bpf_verifier_state *cur) 8469 { 8470 struct bpf_func_state *fold, *fcur; 8471 int i, fr; 8472 8473 reset_idmap_scratch(env); 8474 for (fr = old->curframe; fr >= 0; fr--) { 8475 fold = old->frame[fr]; 8476 fcur = cur->frame[fr]; 8477 8478 for (i = 0; i < MAX_BPF_REG; i++) 8479 maybe_widen_reg(env, 8480 &fold->regs[i], 8481 &fcur->regs[i], 8482 &env->idmap_scratch); 8483 8484 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8485 if (!is_spilled_reg(&fold->stack[i]) || 8486 !is_spilled_reg(&fcur->stack[i])) 8487 continue; 8488 8489 maybe_widen_reg(env, 8490 &fold->stack[i].spilled_ptr, 8491 &fcur->stack[i].spilled_ptr, 8492 &env->idmap_scratch); 8493 } 8494 } 8495 return 0; 8496 } 8497 8498 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8499 struct bpf_kfunc_call_arg_meta *meta) 8500 { 8501 int iter_frameno = meta->iter.frameno; 8502 int iter_spi = meta->iter.spi; 8503 8504 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8505 } 8506 8507 /* process_iter_next_call() is called when verifier gets to iterator's next 8508 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8509 * to it as just "iter_next()" in comments below. 8510 * 8511 * BPF verifier relies on a crucial contract for any iter_next() 8512 * implementation: it should *eventually* return NULL, and once that happens 8513 * it should keep returning NULL. That is, once iterator exhausts elements to 8514 * iterate, it should never reset or spuriously return new elements. 8515 * 8516 * With the assumption of such contract, process_iter_next_call() simulates 8517 * a fork in the verifier state to validate loop logic correctness and safety 8518 * without having to simulate infinite amount of iterations. 8519 * 8520 * In current state, we first assume that iter_next() returned NULL and 8521 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8522 * conditions we should not form an infinite loop and should eventually reach 8523 * exit. 8524 * 8525 * Besides that, we also fork current state and enqueue it for later 8526 * verification. In a forked state we keep iterator state as ACTIVE 8527 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8528 * also bump iteration depth to prevent erroneous infinite loop detection 8529 * later on (see iter_active_depths_differ() comment for details). In this 8530 * state we assume that we'll eventually loop back to another iter_next() 8531 * calls (it could be in exactly same location or in some other instruction, 8532 * it doesn't matter, we don't make any unnecessary assumptions about this, 8533 * everything revolves around iterator state in a stack slot, not which 8534 * instruction is calling iter_next()). When that happens, we either will come 8535 * to iter_next() with equivalent state and can conclude that next iteration 8536 * will proceed in exactly the same way as we just verified, so it's safe to 8537 * assume that loop converges. If not, we'll go on another iteration 8538 * simulation with a different input state, until all possible starting states 8539 * are validated or we reach maximum number of instructions limit. 8540 * 8541 * This way, we will either exhaustively discover all possible input states 8542 * that iterator loop can start with and eventually will converge, or we'll 8543 * effectively regress into bounded loop simulation logic and either reach 8544 * maximum number of instructions if loop is not provably convergent, or there 8545 * is some statically known limit on number of iterations (e.g., if there is 8546 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8547 * 8548 * Iteration convergence logic in is_state_visited() relies on exact 8549 * states comparison, which ignores read and precision marks. 8550 * This is necessary because read and precision marks are not finalized 8551 * while in the loop. Exact comparison might preclude convergence for 8552 * simple programs like below: 8553 * 8554 * i = 0; 8555 * while(iter_next(&it)) 8556 * i++; 8557 * 8558 * At each iteration step i++ would produce a new distinct state and 8559 * eventually instruction processing limit would be reached. 8560 * 8561 * To avoid such behavior speculatively forget (widen) range for 8562 * imprecise scalar registers, if those registers were not precise at the 8563 * end of the previous iteration and do not match exactly. 8564 * 8565 * This is a conservative heuristic that allows to verify wide range of programs, 8566 * however it precludes verification of programs that conjure an 8567 * imprecise value on the first loop iteration and use it as precise on a second. 8568 * For example, the following safe program would fail to verify: 8569 * 8570 * struct bpf_num_iter it; 8571 * int arr[10]; 8572 * int i = 0, a = 0; 8573 * bpf_iter_num_new(&it, 0, 10); 8574 * while (bpf_iter_num_next(&it)) { 8575 * if (a == 0) { 8576 * a = 1; 8577 * i = 7; // Because i changed verifier would forget 8578 * // it's range on second loop entry. 8579 * } else { 8580 * arr[i] = 42; // This would fail to verify. 8581 * } 8582 * } 8583 * bpf_iter_num_destroy(&it); 8584 */ 8585 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8586 struct bpf_kfunc_call_arg_meta *meta) 8587 { 8588 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8589 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8590 struct bpf_reg_state *cur_iter, *queued_iter; 8591 8592 BTF_TYPE_EMIT(struct bpf_iter); 8593 8594 cur_iter = get_iter_from_state(cur_st, meta); 8595 8596 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8597 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8598 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8599 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8600 return -EFAULT; 8601 } 8602 8603 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8604 /* Because iter_next() call is a checkpoint is_state_visitied() 8605 * should guarantee parent state with same call sites and insn_idx. 8606 */ 8607 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8608 !same_callsites(cur_st->parent, cur_st)) { 8609 verbose(env, "bug: bad parent state for iter next call"); 8610 return -EFAULT; 8611 } 8612 /* Note cur_st->parent in the call below, it is necessary to skip 8613 * checkpoint created for cur_st by is_state_visited() 8614 * right at this instruction. 8615 */ 8616 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8617 /* branch out active iter state */ 8618 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8619 if (!queued_st) 8620 return -ENOMEM; 8621 8622 queued_iter = get_iter_from_state(queued_st, meta); 8623 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8624 queued_iter->iter.depth++; 8625 if (prev_st) 8626 widen_imprecise_scalars(env, prev_st, queued_st); 8627 8628 queued_fr = queued_st->frame[queued_st->curframe]; 8629 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8630 } 8631 8632 /* switch to DRAINED state, but keep the depth unchanged */ 8633 /* mark current iter state as drained and assume returned NULL */ 8634 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8635 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8636 8637 return 0; 8638 } 8639 8640 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8641 { 8642 return type == ARG_CONST_SIZE || 8643 type == ARG_CONST_SIZE_OR_ZERO; 8644 } 8645 8646 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8647 { 8648 return base_type(type) == ARG_PTR_TO_MEM && 8649 type & MEM_UNINIT; 8650 } 8651 8652 static bool arg_type_is_release(enum bpf_arg_type type) 8653 { 8654 return type & OBJ_RELEASE; 8655 } 8656 8657 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8658 { 8659 return base_type(type) == ARG_PTR_TO_DYNPTR; 8660 } 8661 8662 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8663 const struct bpf_call_arg_meta *meta, 8664 enum bpf_arg_type *arg_type) 8665 { 8666 if (!meta->map_ptr) { 8667 /* kernel subsystem misconfigured verifier */ 8668 verbose(env, "invalid map_ptr to access map->type\n"); 8669 return -EACCES; 8670 } 8671 8672 switch (meta->map_ptr->map_type) { 8673 case BPF_MAP_TYPE_SOCKMAP: 8674 case BPF_MAP_TYPE_SOCKHASH: 8675 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8676 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8677 } else { 8678 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8679 return -EINVAL; 8680 } 8681 break; 8682 case BPF_MAP_TYPE_BLOOM_FILTER: 8683 if (meta->func_id == BPF_FUNC_map_peek_elem) 8684 *arg_type = ARG_PTR_TO_MAP_VALUE; 8685 break; 8686 default: 8687 break; 8688 } 8689 return 0; 8690 } 8691 8692 struct bpf_reg_types { 8693 const enum bpf_reg_type types[10]; 8694 u32 *btf_id; 8695 }; 8696 8697 static const struct bpf_reg_types sock_types = { 8698 .types = { 8699 PTR_TO_SOCK_COMMON, 8700 PTR_TO_SOCKET, 8701 PTR_TO_TCP_SOCK, 8702 PTR_TO_XDP_SOCK, 8703 }, 8704 }; 8705 8706 #ifdef CONFIG_NET 8707 static const struct bpf_reg_types btf_id_sock_common_types = { 8708 .types = { 8709 PTR_TO_SOCK_COMMON, 8710 PTR_TO_SOCKET, 8711 PTR_TO_TCP_SOCK, 8712 PTR_TO_XDP_SOCK, 8713 PTR_TO_BTF_ID, 8714 PTR_TO_BTF_ID | PTR_TRUSTED, 8715 }, 8716 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8717 }; 8718 #endif 8719 8720 static const struct bpf_reg_types mem_types = { 8721 .types = { 8722 PTR_TO_STACK, 8723 PTR_TO_PACKET, 8724 PTR_TO_PACKET_META, 8725 PTR_TO_MAP_KEY, 8726 PTR_TO_MAP_VALUE, 8727 PTR_TO_MEM, 8728 PTR_TO_MEM | MEM_RINGBUF, 8729 PTR_TO_BUF, 8730 PTR_TO_BTF_ID | PTR_TRUSTED, 8731 }, 8732 }; 8733 8734 static const struct bpf_reg_types spin_lock_types = { 8735 .types = { 8736 PTR_TO_MAP_VALUE, 8737 PTR_TO_BTF_ID | MEM_ALLOC, 8738 } 8739 }; 8740 8741 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8742 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8743 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8744 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8745 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8746 static const struct bpf_reg_types btf_ptr_types = { 8747 .types = { 8748 PTR_TO_BTF_ID, 8749 PTR_TO_BTF_ID | PTR_TRUSTED, 8750 PTR_TO_BTF_ID | MEM_RCU, 8751 }, 8752 }; 8753 static const struct bpf_reg_types percpu_btf_ptr_types = { 8754 .types = { 8755 PTR_TO_BTF_ID | MEM_PERCPU, 8756 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8757 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8758 } 8759 }; 8760 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8761 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8762 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8763 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8764 static const struct bpf_reg_types kptr_xchg_dest_types = { 8765 .types = { 8766 PTR_TO_MAP_VALUE, 8767 PTR_TO_BTF_ID | MEM_ALLOC 8768 } 8769 }; 8770 static const struct bpf_reg_types dynptr_types = { 8771 .types = { 8772 PTR_TO_STACK, 8773 CONST_PTR_TO_DYNPTR, 8774 } 8775 }; 8776 8777 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8778 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8779 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8780 [ARG_CONST_SIZE] = &scalar_types, 8781 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8782 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8783 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8784 [ARG_PTR_TO_CTX] = &context_types, 8785 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8786 #ifdef CONFIG_NET 8787 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8788 #endif 8789 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8790 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8791 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8792 [ARG_PTR_TO_MEM] = &mem_types, 8793 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8794 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8795 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8796 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8797 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8798 [ARG_PTR_TO_TIMER] = &timer_types, 8799 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 8800 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8801 }; 8802 8803 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8804 enum bpf_arg_type arg_type, 8805 const u32 *arg_btf_id, 8806 struct bpf_call_arg_meta *meta) 8807 { 8808 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8809 enum bpf_reg_type expected, type = reg->type; 8810 const struct bpf_reg_types *compatible; 8811 int i, j; 8812 8813 compatible = compatible_reg_types[base_type(arg_type)]; 8814 if (!compatible) { 8815 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8816 return -EFAULT; 8817 } 8818 8819 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8820 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8821 * 8822 * Same for MAYBE_NULL: 8823 * 8824 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8825 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8826 * 8827 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8828 * 8829 * Therefore we fold these flags depending on the arg_type before comparison. 8830 */ 8831 if (arg_type & MEM_RDONLY) 8832 type &= ~MEM_RDONLY; 8833 if (arg_type & PTR_MAYBE_NULL) 8834 type &= ~PTR_MAYBE_NULL; 8835 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8836 type &= ~DYNPTR_TYPE_FLAG_MASK; 8837 8838 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 8839 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 8840 type &= ~MEM_ALLOC; 8841 type &= ~MEM_PERCPU; 8842 } 8843 8844 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8845 expected = compatible->types[i]; 8846 if (expected == NOT_INIT) 8847 break; 8848 8849 if (type == expected) 8850 goto found; 8851 } 8852 8853 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8854 for (j = 0; j + 1 < i; j++) 8855 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8856 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8857 return -EACCES; 8858 8859 found: 8860 if (base_type(reg->type) != PTR_TO_BTF_ID) 8861 return 0; 8862 8863 if (compatible == &mem_types) { 8864 if (!(arg_type & MEM_RDONLY)) { 8865 verbose(env, 8866 "%s() may write into memory pointed by R%d type=%s\n", 8867 func_id_name(meta->func_id), 8868 regno, reg_type_str(env, reg->type)); 8869 return -EACCES; 8870 } 8871 return 0; 8872 } 8873 8874 switch ((int)reg->type) { 8875 case PTR_TO_BTF_ID: 8876 case PTR_TO_BTF_ID | PTR_TRUSTED: 8877 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8878 case PTR_TO_BTF_ID | MEM_RCU: 8879 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8880 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8881 { 8882 /* For bpf_sk_release, it needs to match against first member 8883 * 'struct sock_common', hence make an exception for it. This 8884 * allows bpf_sk_release to work for multiple socket types. 8885 */ 8886 bool strict_type_match = arg_type_is_release(arg_type) && 8887 meta->func_id != BPF_FUNC_sk_release; 8888 8889 if (type_may_be_null(reg->type) && 8890 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8891 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8892 return -EACCES; 8893 } 8894 8895 if (!arg_btf_id) { 8896 if (!compatible->btf_id) { 8897 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8898 return -EFAULT; 8899 } 8900 arg_btf_id = compatible->btf_id; 8901 } 8902 8903 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8904 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8905 return -EACCES; 8906 } else { 8907 if (arg_btf_id == BPF_PTR_POISON) { 8908 verbose(env, "verifier internal error:"); 8909 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8910 regno); 8911 return -EACCES; 8912 } 8913 8914 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8915 btf_vmlinux, *arg_btf_id, 8916 strict_type_match)) { 8917 verbose(env, "R%d is of type %s but %s is expected\n", 8918 regno, btf_type_name(reg->btf, reg->btf_id), 8919 btf_type_name(btf_vmlinux, *arg_btf_id)); 8920 return -EACCES; 8921 } 8922 } 8923 break; 8924 } 8925 case PTR_TO_BTF_ID | MEM_ALLOC: 8926 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8927 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8928 meta->func_id != BPF_FUNC_kptr_xchg) { 8929 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8930 return -EFAULT; 8931 } 8932 /* Check if local kptr in src arg matches kptr in dst arg */ 8933 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 8934 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8935 return -EACCES; 8936 } 8937 break; 8938 case PTR_TO_BTF_ID | MEM_PERCPU: 8939 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8940 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8941 /* Handled by helper specific checks */ 8942 break; 8943 default: 8944 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8945 return -EFAULT; 8946 } 8947 return 0; 8948 } 8949 8950 static struct btf_field * 8951 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8952 { 8953 struct btf_field *field; 8954 struct btf_record *rec; 8955 8956 rec = reg_btf_record(reg); 8957 if (!rec) 8958 return NULL; 8959 8960 field = btf_record_find(rec, off, fields); 8961 if (!field) 8962 return NULL; 8963 8964 return field; 8965 } 8966 8967 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8968 const struct bpf_reg_state *reg, int regno, 8969 enum bpf_arg_type arg_type) 8970 { 8971 u32 type = reg->type; 8972 8973 /* When referenced register is passed to release function, its fixed 8974 * offset must be 0. 8975 * 8976 * We will check arg_type_is_release reg has ref_obj_id when storing 8977 * meta->release_regno. 8978 */ 8979 if (arg_type_is_release(arg_type)) { 8980 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8981 * may not directly point to the object being released, but to 8982 * dynptr pointing to such object, which might be at some offset 8983 * on the stack. In that case, we simply to fallback to the 8984 * default handling. 8985 */ 8986 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8987 return 0; 8988 8989 /* Doing check_ptr_off_reg check for the offset will catch this 8990 * because fixed_off_ok is false, but checking here allows us 8991 * to give the user a better error message. 8992 */ 8993 if (reg->off) { 8994 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8995 regno); 8996 return -EINVAL; 8997 } 8998 return __check_ptr_off_reg(env, reg, regno, false); 8999 } 9000 9001 switch (type) { 9002 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9003 case PTR_TO_STACK: 9004 case PTR_TO_PACKET: 9005 case PTR_TO_PACKET_META: 9006 case PTR_TO_MAP_KEY: 9007 case PTR_TO_MAP_VALUE: 9008 case PTR_TO_MEM: 9009 case PTR_TO_MEM | MEM_RDONLY: 9010 case PTR_TO_MEM | MEM_RINGBUF: 9011 case PTR_TO_BUF: 9012 case PTR_TO_BUF | MEM_RDONLY: 9013 case PTR_TO_ARENA: 9014 case SCALAR_VALUE: 9015 return 0; 9016 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9017 * fixed offset. 9018 */ 9019 case PTR_TO_BTF_ID: 9020 case PTR_TO_BTF_ID | MEM_ALLOC: 9021 case PTR_TO_BTF_ID | PTR_TRUSTED: 9022 case PTR_TO_BTF_ID | MEM_RCU: 9023 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9024 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9025 /* When referenced PTR_TO_BTF_ID is passed to release function, 9026 * its fixed offset must be 0. In the other cases, fixed offset 9027 * can be non-zero. This was already checked above. So pass 9028 * fixed_off_ok as true to allow fixed offset for all other 9029 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9030 * still need to do checks instead of returning. 9031 */ 9032 return __check_ptr_off_reg(env, reg, regno, true); 9033 default: 9034 return __check_ptr_off_reg(env, reg, regno, false); 9035 } 9036 } 9037 9038 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9039 const struct bpf_func_proto *fn, 9040 struct bpf_reg_state *regs) 9041 { 9042 struct bpf_reg_state *state = NULL; 9043 int i; 9044 9045 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9046 if (arg_type_is_dynptr(fn->arg_type[i])) { 9047 if (state) { 9048 verbose(env, "verifier internal error: multiple dynptr args\n"); 9049 return NULL; 9050 } 9051 state = ®s[BPF_REG_1 + i]; 9052 } 9053 9054 if (!state) 9055 verbose(env, "verifier internal error: no dynptr arg found\n"); 9056 9057 return state; 9058 } 9059 9060 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9061 { 9062 struct bpf_func_state *state = func(env, reg); 9063 int spi; 9064 9065 if (reg->type == CONST_PTR_TO_DYNPTR) 9066 return reg->id; 9067 spi = dynptr_get_spi(env, reg); 9068 if (spi < 0) 9069 return spi; 9070 return state->stack[spi].spilled_ptr.id; 9071 } 9072 9073 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9074 { 9075 struct bpf_func_state *state = func(env, reg); 9076 int spi; 9077 9078 if (reg->type == CONST_PTR_TO_DYNPTR) 9079 return reg->ref_obj_id; 9080 spi = dynptr_get_spi(env, reg); 9081 if (spi < 0) 9082 return spi; 9083 return state->stack[spi].spilled_ptr.ref_obj_id; 9084 } 9085 9086 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9087 struct bpf_reg_state *reg) 9088 { 9089 struct bpf_func_state *state = func(env, reg); 9090 int spi; 9091 9092 if (reg->type == CONST_PTR_TO_DYNPTR) 9093 return reg->dynptr.type; 9094 9095 spi = __get_spi(reg->off); 9096 if (spi < 0) { 9097 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9098 return BPF_DYNPTR_TYPE_INVALID; 9099 } 9100 9101 return state->stack[spi].spilled_ptr.dynptr.type; 9102 } 9103 9104 static int check_reg_const_str(struct bpf_verifier_env *env, 9105 struct bpf_reg_state *reg, u32 regno) 9106 { 9107 struct bpf_map *map = reg->map_ptr; 9108 int err; 9109 int map_off; 9110 u64 map_addr; 9111 char *str_ptr; 9112 9113 if (reg->type != PTR_TO_MAP_VALUE) 9114 return -EINVAL; 9115 9116 if (!bpf_map_is_rdonly(map)) { 9117 verbose(env, "R%d does not point to a readonly map'\n", regno); 9118 return -EACCES; 9119 } 9120 9121 if (!tnum_is_const(reg->var_off)) { 9122 verbose(env, "R%d is not a constant address'\n", regno); 9123 return -EACCES; 9124 } 9125 9126 if (!map->ops->map_direct_value_addr) { 9127 verbose(env, "no direct value access support for this map type\n"); 9128 return -EACCES; 9129 } 9130 9131 err = check_map_access(env, regno, reg->off, 9132 map->value_size - reg->off, false, 9133 ACCESS_HELPER); 9134 if (err) 9135 return err; 9136 9137 map_off = reg->off + reg->var_off.value; 9138 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9139 if (err) { 9140 verbose(env, "direct value access on string failed\n"); 9141 return err; 9142 } 9143 9144 str_ptr = (char *)(long)(map_addr); 9145 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9146 verbose(env, "string is not zero-terminated\n"); 9147 return -EINVAL; 9148 } 9149 return 0; 9150 } 9151 9152 /* Returns constant key value if possible, else negative error */ 9153 static s64 get_constant_map_key(struct bpf_verifier_env *env, 9154 struct bpf_reg_state *key, 9155 u32 key_size) 9156 { 9157 struct bpf_func_state *state = func(env, key); 9158 struct bpf_reg_state *reg; 9159 int slot, spi, off; 9160 int spill_size = 0; 9161 int zero_size = 0; 9162 int stack_off; 9163 int i, err; 9164 u8 *stype; 9165 9166 if (!env->bpf_capable) 9167 return -EOPNOTSUPP; 9168 if (key->type != PTR_TO_STACK) 9169 return -EOPNOTSUPP; 9170 if (!tnum_is_const(key->var_off)) 9171 return -EOPNOTSUPP; 9172 9173 stack_off = key->off + key->var_off.value; 9174 slot = -stack_off - 1; 9175 spi = slot / BPF_REG_SIZE; 9176 off = slot % BPF_REG_SIZE; 9177 stype = state->stack[spi].slot_type; 9178 9179 /* First handle precisely tracked STACK_ZERO */ 9180 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9181 zero_size++; 9182 if (zero_size >= key_size) 9183 return 0; 9184 9185 /* Check that stack contains a scalar spill of expected size */ 9186 if (!is_spilled_scalar_reg(&state->stack[spi])) 9187 return -EOPNOTSUPP; 9188 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9189 spill_size++; 9190 if (spill_size != key_size) 9191 return -EOPNOTSUPP; 9192 9193 reg = &state->stack[spi].spilled_ptr; 9194 if (!tnum_is_const(reg->var_off)) 9195 /* Stack value not statically known */ 9196 return -EOPNOTSUPP; 9197 9198 /* We are relying on a constant value. So mark as precise 9199 * to prevent pruning on it. 9200 */ 9201 bt_set_frame_slot(&env->bt, key->frameno, spi); 9202 err = mark_chain_precision_batch(env); 9203 if (err < 0) 9204 return err; 9205 9206 return reg->var_off.value; 9207 } 9208 9209 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9210 struct bpf_call_arg_meta *meta, 9211 const struct bpf_func_proto *fn, 9212 int insn_idx) 9213 { 9214 u32 regno = BPF_REG_1 + arg; 9215 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9216 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9217 enum bpf_reg_type type = reg->type; 9218 u32 *arg_btf_id = NULL; 9219 u32 key_size; 9220 int err = 0; 9221 9222 if (arg_type == ARG_DONTCARE) 9223 return 0; 9224 9225 err = check_reg_arg(env, regno, SRC_OP); 9226 if (err) 9227 return err; 9228 9229 if (arg_type == ARG_ANYTHING) { 9230 if (is_pointer_value(env, regno)) { 9231 verbose(env, "R%d leaks addr into helper function\n", 9232 regno); 9233 return -EACCES; 9234 } 9235 return 0; 9236 } 9237 9238 if (type_is_pkt_pointer(type) && 9239 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9240 verbose(env, "helper access to the packet is not allowed\n"); 9241 return -EACCES; 9242 } 9243 9244 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9245 err = resolve_map_arg_type(env, meta, &arg_type); 9246 if (err) 9247 return err; 9248 } 9249 9250 if (register_is_null(reg) && type_may_be_null(arg_type)) 9251 /* A NULL register has a SCALAR_VALUE type, so skip 9252 * type checking. 9253 */ 9254 goto skip_type_check; 9255 9256 /* arg_btf_id and arg_size are in a union. */ 9257 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9258 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9259 arg_btf_id = fn->arg_btf_id[arg]; 9260 9261 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9262 if (err) 9263 return err; 9264 9265 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9266 if (err) 9267 return err; 9268 9269 skip_type_check: 9270 if (arg_type_is_release(arg_type)) { 9271 if (arg_type_is_dynptr(arg_type)) { 9272 struct bpf_func_state *state = func(env, reg); 9273 int spi; 9274 9275 /* Only dynptr created on stack can be released, thus 9276 * the get_spi and stack state checks for spilled_ptr 9277 * should only be done before process_dynptr_func for 9278 * PTR_TO_STACK. 9279 */ 9280 if (reg->type == PTR_TO_STACK) { 9281 spi = dynptr_get_spi(env, reg); 9282 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9283 verbose(env, "arg %d is an unacquired reference\n", regno); 9284 return -EINVAL; 9285 } 9286 } else { 9287 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9288 return -EINVAL; 9289 } 9290 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9291 verbose(env, "R%d must be referenced when passed to release function\n", 9292 regno); 9293 return -EINVAL; 9294 } 9295 if (meta->release_regno) { 9296 verbose(env, "verifier internal error: more than one release argument\n"); 9297 return -EFAULT; 9298 } 9299 meta->release_regno = regno; 9300 } 9301 9302 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9303 if (meta->ref_obj_id) { 9304 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9305 regno, reg->ref_obj_id, 9306 meta->ref_obj_id); 9307 return -EFAULT; 9308 } 9309 meta->ref_obj_id = reg->ref_obj_id; 9310 } 9311 9312 switch (base_type(arg_type)) { 9313 case ARG_CONST_MAP_PTR: 9314 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9315 if (meta->map_ptr) { 9316 /* Use map_uid (which is unique id of inner map) to reject: 9317 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9318 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9319 * if (inner_map1 && inner_map2) { 9320 * timer = bpf_map_lookup_elem(inner_map1); 9321 * if (timer) 9322 * // mismatch would have been allowed 9323 * bpf_timer_init(timer, inner_map2); 9324 * } 9325 * 9326 * Comparing map_ptr is enough to distinguish normal and outer maps. 9327 */ 9328 if (meta->map_ptr != reg->map_ptr || 9329 meta->map_uid != reg->map_uid) { 9330 verbose(env, 9331 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9332 meta->map_uid, reg->map_uid); 9333 return -EINVAL; 9334 } 9335 } 9336 meta->map_ptr = reg->map_ptr; 9337 meta->map_uid = reg->map_uid; 9338 break; 9339 case ARG_PTR_TO_MAP_KEY: 9340 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9341 * check that [key, key + map->key_size) are within 9342 * stack limits and initialized 9343 */ 9344 if (!meta->map_ptr) { 9345 /* in function declaration map_ptr must come before 9346 * map_key, so that it's verified and known before 9347 * we have to check map_key here. Otherwise it means 9348 * that kernel subsystem misconfigured verifier 9349 */ 9350 verbose(env, "invalid map_ptr to access map->key\n"); 9351 return -EACCES; 9352 } 9353 key_size = meta->map_ptr->key_size; 9354 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9355 if (err) 9356 return err; 9357 meta->const_map_key = get_constant_map_key(env, reg, key_size); 9358 if (meta->const_map_key < 0 && meta->const_map_key != -EOPNOTSUPP) 9359 return meta->const_map_key; 9360 break; 9361 case ARG_PTR_TO_MAP_VALUE: 9362 if (type_may_be_null(arg_type) && register_is_null(reg)) 9363 return 0; 9364 9365 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9366 * check [value, value + map->value_size) validity 9367 */ 9368 if (!meta->map_ptr) { 9369 /* kernel subsystem misconfigured verifier */ 9370 verbose(env, "invalid map_ptr to access map->value\n"); 9371 return -EACCES; 9372 } 9373 meta->raw_mode = arg_type & MEM_UNINIT; 9374 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9375 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9376 false, meta); 9377 break; 9378 case ARG_PTR_TO_PERCPU_BTF_ID: 9379 if (!reg->btf_id) { 9380 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9381 return -EACCES; 9382 } 9383 meta->ret_btf = reg->btf; 9384 meta->ret_btf_id = reg->btf_id; 9385 break; 9386 case ARG_PTR_TO_SPIN_LOCK: 9387 if (in_rbtree_lock_required_cb(env)) { 9388 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9389 return -EACCES; 9390 } 9391 if (meta->func_id == BPF_FUNC_spin_lock) { 9392 err = process_spin_lock(env, regno, true); 9393 if (err) 9394 return err; 9395 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9396 err = process_spin_lock(env, regno, false); 9397 if (err) 9398 return err; 9399 } else { 9400 verbose(env, "verifier internal error\n"); 9401 return -EFAULT; 9402 } 9403 break; 9404 case ARG_PTR_TO_TIMER: 9405 err = process_timer_func(env, regno, meta); 9406 if (err) 9407 return err; 9408 break; 9409 case ARG_PTR_TO_FUNC: 9410 meta->subprogno = reg->subprogno; 9411 break; 9412 case ARG_PTR_TO_MEM: 9413 /* The access to this pointer is only checked when we hit the 9414 * next is_mem_size argument below. 9415 */ 9416 meta->raw_mode = arg_type & MEM_UNINIT; 9417 if (arg_type & MEM_FIXED_SIZE) { 9418 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9419 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9420 false, meta); 9421 if (err) 9422 return err; 9423 if (arg_type & MEM_ALIGNED) 9424 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9425 } 9426 break; 9427 case ARG_CONST_SIZE: 9428 err = check_mem_size_reg(env, reg, regno, 9429 fn->arg_type[arg - 1] & MEM_WRITE ? 9430 BPF_WRITE : BPF_READ, 9431 false, meta); 9432 break; 9433 case ARG_CONST_SIZE_OR_ZERO: 9434 err = check_mem_size_reg(env, reg, regno, 9435 fn->arg_type[arg - 1] & MEM_WRITE ? 9436 BPF_WRITE : BPF_READ, 9437 true, meta); 9438 break; 9439 case ARG_PTR_TO_DYNPTR: 9440 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9441 if (err) 9442 return err; 9443 break; 9444 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9445 if (!tnum_is_const(reg->var_off)) { 9446 verbose(env, "R%d is not a known constant'\n", 9447 regno); 9448 return -EACCES; 9449 } 9450 meta->mem_size = reg->var_off.value; 9451 err = mark_chain_precision(env, regno); 9452 if (err) 9453 return err; 9454 break; 9455 case ARG_PTR_TO_CONST_STR: 9456 { 9457 err = check_reg_const_str(env, reg, regno); 9458 if (err) 9459 return err; 9460 break; 9461 } 9462 case ARG_KPTR_XCHG_DEST: 9463 err = process_kptr_func(env, regno, meta); 9464 if (err) 9465 return err; 9466 break; 9467 } 9468 9469 return err; 9470 } 9471 9472 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9473 { 9474 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9475 enum bpf_prog_type type = resolve_prog_type(env->prog); 9476 9477 if (func_id != BPF_FUNC_map_update_elem && 9478 func_id != BPF_FUNC_map_delete_elem) 9479 return false; 9480 9481 /* It's not possible to get access to a locked struct sock in these 9482 * contexts, so updating is safe. 9483 */ 9484 switch (type) { 9485 case BPF_PROG_TYPE_TRACING: 9486 if (eatype == BPF_TRACE_ITER) 9487 return true; 9488 break; 9489 case BPF_PROG_TYPE_SOCK_OPS: 9490 /* map_update allowed only via dedicated helpers with event type checks */ 9491 if (func_id == BPF_FUNC_map_delete_elem) 9492 return true; 9493 break; 9494 case BPF_PROG_TYPE_SOCKET_FILTER: 9495 case BPF_PROG_TYPE_SCHED_CLS: 9496 case BPF_PROG_TYPE_SCHED_ACT: 9497 case BPF_PROG_TYPE_XDP: 9498 case BPF_PROG_TYPE_SK_REUSEPORT: 9499 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9500 case BPF_PROG_TYPE_SK_LOOKUP: 9501 return true; 9502 default: 9503 break; 9504 } 9505 9506 verbose(env, "cannot update sockmap in this context\n"); 9507 return false; 9508 } 9509 9510 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9511 { 9512 return env->prog->jit_requested && 9513 bpf_jit_supports_subprog_tailcalls(); 9514 } 9515 9516 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9517 struct bpf_map *map, int func_id) 9518 { 9519 if (!map) 9520 return 0; 9521 9522 /* We need a two way check, first is from map perspective ... */ 9523 switch (map->map_type) { 9524 case BPF_MAP_TYPE_PROG_ARRAY: 9525 if (func_id != BPF_FUNC_tail_call) 9526 goto error; 9527 break; 9528 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9529 if (func_id != BPF_FUNC_perf_event_read && 9530 func_id != BPF_FUNC_perf_event_output && 9531 func_id != BPF_FUNC_skb_output && 9532 func_id != BPF_FUNC_perf_event_read_value && 9533 func_id != BPF_FUNC_xdp_output) 9534 goto error; 9535 break; 9536 case BPF_MAP_TYPE_RINGBUF: 9537 if (func_id != BPF_FUNC_ringbuf_output && 9538 func_id != BPF_FUNC_ringbuf_reserve && 9539 func_id != BPF_FUNC_ringbuf_query && 9540 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9541 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9542 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9543 goto error; 9544 break; 9545 case BPF_MAP_TYPE_USER_RINGBUF: 9546 if (func_id != BPF_FUNC_user_ringbuf_drain) 9547 goto error; 9548 break; 9549 case BPF_MAP_TYPE_STACK_TRACE: 9550 if (func_id != BPF_FUNC_get_stackid) 9551 goto error; 9552 break; 9553 case BPF_MAP_TYPE_CGROUP_ARRAY: 9554 if (func_id != BPF_FUNC_skb_under_cgroup && 9555 func_id != BPF_FUNC_current_task_under_cgroup) 9556 goto error; 9557 break; 9558 case BPF_MAP_TYPE_CGROUP_STORAGE: 9559 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9560 if (func_id != BPF_FUNC_get_local_storage) 9561 goto error; 9562 break; 9563 case BPF_MAP_TYPE_DEVMAP: 9564 case BPF_MAP_TYPE_DEVMAP_HASH: 9565 if (func_id != BPF_FUNC_redirect_map && 9566 func_id != BPF_FUNC_map_lookup_elem) 9567 goto error; 9568 break; 9569 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9570 * appear. 9571 */ 9572 case BPF_MAP_TYPE_CPUMAP: 9573 if (func_id != BPF_FUNC_redirect_map) 9574 goto error; 9575 break; 9576 case BPF_MAP_TYPE_XSKMAP: 9577 if (func_id != BPF_FUNC_redirect_map && 9578 func_id != BPF_FUNC_map_lookup_elem) 9579 goto error; 9580 break; 9581 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9582 case BPF_MAP_TYPE_HASH_OF_MAPS: 9583 if (func_id != BPF_FUNC_map_lookup_elem) 9584 goto error; 9585 break; 9586 case BPF_MAP_TYPE_SOCKMAP: 9587 if (func_id != BPF_FUNC_sk_redirect_map && 9588 func_id != BPF_FUNC_sock_map_update && 9589 func_id != BPF_FUNC_msg_redirect_map && 9590 func_id != BPF_FUNC_sk_select_reuseport && 9591 func_id != BPF_FUNC_map_lookup_elem && 9592 !may_update_sockmap(env, func_id)) 9593 goto error; 9594 break; 9595 case BPF_MAP_TYPE_SOCKHASH: 9596 if (func_id != BPF_FUNC_sk_redirect_hash && 9597 func_id != BPF_FUNC_sock_hash_update && 9598 func_id != BPF_FUNC_msg_redirect_hash && 9599 func_id != BPF_FUNC_sk_select_reuseport && 9600 func_id != BPF_FUNC_map_lookup_elem && 9601 !may_update_sockmap(env, func_id)) 9602 goto error; 9603 break; 9604 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9605 if (func_id != BPF_FUNC_sk_select_reuseport) 9606 goto error; 9607 break; 9608 case BPF_MAP_TYPE_QUEUE: 9609 case BPF_MAP_TYPE_STACK: 9610 if (func_id != BPF_FUNC_map_peek_elem && 9611 func_id != BPF_FUNC_map_pop_elem && 9612 func_id != BPF_FUNC_map_push_elem) 9613 goto error; 9614 break; 9615 case BPF_MAP_TYPE_SK_STORAGE: 9616 if (func_id != BPF_FUNC_sk_storage_get && 9617 func_id != BPF_FUNC_sk_storage_delete && 9618 func_id != BPF_FUNC_kptr_xchg) 9619 goto error; 9620 break; 9621 case BPF_MAP_TYPE_INODE_STORAGE: 9622 if (func_id != BPF_FUNC_inode_storage_get && 9623 func_id != BPF_FUNC_inode_storage_delete && 9624 func_id != BPF_FUNC_kptr_xchg) 9625 goto error; 9626 break; 9627 case BPF_MAP_TYPE_TASK_STORAGE: 9628 if (func_id != BPF_FUNC_task_storage_get && 9629 func_id != BPF_FUNC_task_storage_delete && 9630 func_id != BPF_FUNC_kptr_xchg) 9631 goto error; 9632 break; 9633 case BPF_MAP_TYPE_CGRP_STORAGE: 9634 if (func_id != BPF_FUNC_cgrp_storage_get && 9635 func_id != BPF_FUNC_cgrp_storage_delete && 9636 func_id != BPF_FUNC_kptr_xchg) 9637 goto error; 9638 break; 9639 case BPF_MAP_TYPE_BLOOM_FILTER: 9640 if (func_id != BPF_FUNC_map_peek_elem && 9641 func_id != BPF_FUNC_map_push_elem) 9642 goto error; 9643 break; 9644 default: 9645 break; 9646 } 9647 9648 /* ... and second from the function itself. */ 9649 switch (func_id) { 9650 case BPF_FUNC_tail_call: 9651 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9652 goto error; 9653 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9654 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9655 return -EINVAL; 9656 } 9657 break; 9658 case BPF_FUNC_perf_event_read: 9659 case BPF_FUNC_perf_event_output: 9660 case BPF_FUNC_perf_event_read_value: 9661 case BPF_FUNC_skb_output: 9662 case BPF_FUNC_xdp_output: 9663 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9664 goto error; 9665 break; 9666 case BPF_FUNC_ringbuf_output: 9667 case BPF_FUNC_ringbuf_reserve: 9668 case BPF_FUNC_ringbuf_query: 9669 case BPF_FUNC_ringbuf_reserve_dynptr: 9670 case BPF_FUNC_ringbuf_submit_dynptr: 9671 case BPF_FUNC_ringbuf_discard_dynptr: 9672 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9673 goto error; 9674 break; 9675 case BPF_FUNC_user_ringbuf_drain: 9676 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9677 goto error; 9678 break; 9679 case BPF_FUNC_get_stackid: 9680 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9681 goto error; 9682 break; 9683 case BPF_FUNC_current_task_under_cgroup: 9684 case BPF_FUNC_skb_under_cgroup: 9685 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9686 goto error; 9687 break; 9688 case BPF_FUNC_redirect_map: 9689 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9690 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9691 map->map_type != BPF_MAP_TYPE_CPUMAP && 9692 map->map_type != BPF_MAP_TYPE_XSKMAP) 9693 goto error; 9694 break; 9695 case BPF_FUNC_sk_redirect_map: 9696 case BPF_FUNC_msg_redirect_map: 9697 case BPF_FUNC_sock_map_update: 9698 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9699 goto error; 9700 break; 9701 case BPF_FUNC_sk_redirect_hash: 9702 case BPF_FUNC_msg_redirect_hash: 9703 case BPF_FUNC_sock_hash_update: 9704 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9705 goto error; 9706 break; 9707 case BPF_FUNC_get_local_storage: 9708 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9709 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9710 goto error; 9711 break; 9712 case BPF_FUNC_sk_select_reuseport: 9713 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9714 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9715 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9716 goto error; 9717 break; 9718 case BPF_FUNC_map_pop_elem: 9719 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9720 map->map_type != BPF_MAP_TYPE_STACK) 9721 goto error; 9722 break; 9723 case BPF_FUNC_map_peek_elem: 9724 case BPF_FUNC_map_push_elem: 9725 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9726 map->map_type != BPF_MAP_TYPE_STACK && 9727 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9728 goto error; 9729 break; 9730 case BPF_FUNC_map_lookup_percpu_elem: 9731 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9732 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9733 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9734 goto error; 9735 break; 9736 case BPF_FUNC_sk_storage_get: 9737 case BPF_FUNC_sk_storage_delete: 9738 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9739 goto error; 9740 break; 9741 case BPF_FUNC_inode_storage_get: 9742 case BPF_FUNC_inode_storage_delete: 9743 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9744 goto error; 9745 break; 9746 case BPF_FUNC_task_storage_get: 9747 case BPF_FUNC_task_storage_delete: 9748 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9749 goto error; 9750 break; 9751 case BPF_FUNC_cgrp_storage_get: 9752 case BPF_FUNC_cgrp_storage_delete: 9753 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9754 goto error; 9755 break; 9756 default: 9757 break; 9758 } 9759 9760 return 0; 9761 error: 9762 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9763 map->map_type, func_id_name(func_id), func_id); 9764 return -EINVAL; 9765 } 9766 9767 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9768 { 9769 int count = 0; 9770 9771 if (arg_type_is_raw_mem(fn->arg1_type)) 9772 count++; 9773 if (arg_type_is_raw_mem(fn->arg2_type)) 9774 count++; 9775 if (arg_type_is_raw_mem(fn->arg3_type)) 9776 count++; 9777 if (arg_type_is_raw_mem(fn->arg4_type)) 9778 count++; 9779 if (arg_type_is_raw_mem(fn->arg5_type)) 9780 count++; 9781 9782 /* We only support one arg being in raw mode at the moment, 9783 * which is sufficient for the helper functions we have 9784 * right now. 9785 */ 9786 return count <= 1; 9787 } 9788 9789 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9790 { 9791 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9792 bool has_size = fn->arg_size[arg] != 0; 9793 bool is_next_size = false; 9794 9795 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9796 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9797 9798 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9799 return is_next_size; 9800 9801 return has_size == is_next_size || is_next_size == is_fixed; 9802 } 9803 9804 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9805 { 9806 /* bpf_xxx(..., buf, len) call will access 'len' 9807 * bytes from memory 'buf'. Both arg types need 9808 * to be paired, so make sure there's no buggy 9809 * helper function specification. 9810 */ 9811 if (arg_type_is_mem_size(fn->arg1_type) || 9812 check_args_pair_invalid(fn, 0) || 9813 check_args_pair_invalid(fn, 1) || 9814 check_args_pair_invalid(fn, 2) || 9815 check_args_pair_invalid(fn, 3) || 9816 check_args_pair_invalid(fn, 4)) 9817 return false; 9818 9819 return true; 9820 } 9821 9822 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9823 { 9824 int i; 9825 9826 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9827 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9828 return !!fn->arg_btf_id[i]; 9829 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9830 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9831 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9832 /* arg_btf_id and arg_size are in a union. */ 9833 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9834 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9835 return false; 9836 } 9837 9838 return true; 9839 } 9840 9841 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9842 { 9843 return check_raw_mode_ok(fn) && 9844 check_arg_pair_ok(fn) && 9845 check_btf_id_ok(fn) ? 0 : -EINVAL; 9846 } 9847 9848 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9849 * are now invalid, so turn them into unknown SCALAR_VALUE. 9850 * 9851 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9852 * since these slices point to packet data. 9853 */ 9854 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9855 { 9856 struct bpf_func_state *state; 9857 struct bpf_reg_state *reg; 9858 9859 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9860 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9861 mark_reg_invalid(env, reg); 9862 })); 9863 } 9864 9865 enum { 9866 AT_PKT_END = -1, 9867 BEYOND_PKT_END = -2, 9868 }; 9869 9870 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9871 { 9872 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9873 struct bpf_reg_state *reg = &state->regs[regn]; 9874 9875 if (reg->type != PTR_TO_PACKET) 9876 /* PTR_TO_PACKET_META is not supported yet */ 9877 return; 9878 9879 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9880 * How far beyond pkt_end it goes is unknown. 9881 * if (!range_open) it's the case of pkt >= pkt_end 9882 * if (range_open) it's the case of pkt > pkt_end 9883 * hence this pointer is at least 1 byte bigger than pkt_end 9884 */ 9885 if (range_open) 9886 reg->range = BEYOND_PKT_END; 9887 else 9888 reg->range = AT_PKT_END; 9889 } 9890 9891 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 9892 { 9893 int i; 9894 9895 for (i = 0; i < state->acquired_refs; i++) { 9896 if (state->refs[i].type != REF_TYPE_PTR) 9897 continue; 9898 if (state->refs[i].id == ref_obj_id) { 9899 release_reference_state(state, i); 9900 return 0; 9901 } 9902 } 9903 return -EINVAL; 9904 } 9905 9906 /* The pointer with the specified id has released its reference to kernel 9907 * resources. Identify all copies of the same pointer and clear the reference. 9908 * 9909 * This is the release function corresponding to acquire_reference(). Idempotent. 9910 */ 9911 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 9912 { 9913 struct bpf_verifier_state *vstate = env->cur_state; 9914 struct bpf_func_state *state; 9915 struct bpf_reg_state *reg; 9916 int err; 9917 9918 err = release_reference_nomark(vstate, ref_obj_id); 9919 if (err) 9920 return err; 9921 9922 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9923 if (reg->ref_obj_id == ref_obj_id) 9924 mark_reg_invalid(env, reg); 9925 })); 9926 9927 return 0; 9928 } 9929 9930 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9931 { 9932 struct bpf_func_state *unused; 9933 struct bpf_reg_state *reg; 9934 9935 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9936 if (type_is_non_owning_ref(reg->type)) 9937 mark_reg_invalid(env, reg); 9938 })); 9939 } 9940 9941 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9942 struct bpf_reg_state *regs) 9943 { 9944 int i; 9945 9946 /* after the call registers r0 - r5 were scratched */ 9947 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9948 mark_reg_not_init(env, regs, caller_saved[i]); 9949 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9950 } 9951 } 9952 9953 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9954 struct bpf_func_state *caller, 9955 struct bpf_func_state *callee, 9956 int insn_idx); 9957 9958 static int set_callee_state(struct bpf_verifier_env *env, 9959 struct bpf_func_state *caller, 9960 struct bpf_func_state *callee, int insn_idx); 9961 9962 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9963 set_callee_state_fn set_callee_state_cb, 9964 struct bpf_verifier_state *state) 9965 { 9966 struct bpf_func_state *caller, *callee; 9967 int err; 9968 9969 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9970 verbose(env, "the call stack of %d frames is too deep\n", 9971 state->curframe + 2); 9972 return -E2BIG; 9973 } 9974 9975 if (state->frame[state->curframe + 1]) { 9976 verbose(env, "verifier bug. Frame %d already allocated\n", 9977 state->curframe + 1); 9978 return -EFAULT; 9979 } 9980 9981 caller = state->frame[state->curframe]; 9982 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9983 if (!callee) 9984 return -ENOMEM; 9985 state->frame[state->curframe + 1] = callee; 9986 9987 /* callee cannot access r0, r6 - r9 for reading and has to write 9988 * into its own stack before reading from it. 9989 * callee can read/write into caller's stack 9990 */ 9991 init_func_state(env, callee, 9992 /* remember the callsite, it will be used by bpf_exit */ 9993 callsite, 9994 state->curframe + 1 /* frameno within this callchain */, 9995 subprog /* subprog number within this prog */); 9996 err = set_callee_state_cb(env, caller, callee, callsite); 9997 if (err) 9998 goto err_out; 9999 10000 /* only increment it after check_reg_arg() finished */ 10001 state->curframe++; 10002 10003 return 0; 10004 10005 err_out: 10006 free_func_state(callee); 10007 state->frame[state->curframe + 1] = NULL; 10008 return err; 10009 } 10010 10011 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10012 const struct btf *btf, 10013 struct bpf_reg_state *regs) 10014 { 10015 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10016 struct bpf_verifier_log *log = &env->log; 10017 u32 i; 10018 int ret; 10019 10020 ret = btf_prepare_func_args(env, subprog); 10021 if (ret) 10022 return ret; 10023 10024 /* check that BTF function arguments match actual types that the 10025 * verifier sees. 10026 */ 10027 for (i = 0; i < sub->arg_cnt; i++) { 10028 u32 regno = i + 1; 10029 struct bpf_reg_state *reg = ®s[regno]; 10030 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10031 10032 if (arg->arg_type == ARG_ANYTHING) { 10033 if (reg->type != SCALAR_VALUE) { 10034 bpf_log(log, "R%d is not a scalar\n", regno); 10035 return -EINVAL; 10036 } 10037 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10038 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10039 if (ret < 0) 10040 return ret; 10041 /* If function expects ctx type in BTF check that caller 10042 * is passing PTR_TO_CTX. 10043 */ 10044 if (reg->type != PTR_TO_CTX) { 10045 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10046 return -EINVAL; 10047 } 10048 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10049 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10050 if (ret < 0) 10051 return ret; 10052 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10053 return -EINVAL; 10054 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10055 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10056 return -EINVAL; 10057 } 10058 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10059 /* 10060 * Can pass any value and the kernel won't crash, but 10061 * only PTR_TO_ARENA or SCALAR make sense. Everything 10062 * else is a bug in the bpf program. Point it out to 10063 * the user at the verification time instead of 10064 * run-time debug nightmare. 10065 */ 10066 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10067 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10068 return -EINVAL; 10069 } 10070 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10071 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10072 if (ret) 10073 return ret; 10074 10075 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10076 if (ret) 10077 return ret; 10078 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10079 struct bpf_call_arg_meta meta; 10080 int err; 10081 10082 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10083 continue; 10084 10085 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10086 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10087 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10088 if (err) 10089 return err; 10090 } else { 10091 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 10092 i, arg->arg_type); 10093 return -EFAULT; 10094 } 10095 } 10096 10097 return 0; 10098 } 10099 10100 /* Compare BTF of a function call with given bpf_reg_state. 10101 * Returns: 10102 * EFAULT - there is a verifier bug. Abort verification. 10103 * EINVAL - there is a type mismatch or BTF is not available. 10104 * 0 - BTF matches with what bpf_reg_state expects. 10105 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10106 */ 10107 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10108 struct bpf_reg_state *regs) 10109 { 10110 struct bpf_prog *prog = env->prog; 10111 struct btf *btf = prog->aux->btf; 10112 u32 btf_id; 10113 int err; 10114 10115 if (!prog->aux->func_info) 10116 return -EINVAL; 10117 10118 btf_id = prog->aux->func_info[subprog].type_id; 10119 if (!btf_id) 10120 return -EFAULT; 10121 10122 if (prog->aux->func_info_aux[subprog].unreliable) 10123 return -EINVAL; 10124 10125 err = btf_check_func_arg_match(env, subprog, btf, regs); 10126 /* Compiler optimizations can remove arguments from static functions 10127 * or mismatched type can be passed into a global function. 10128 * In such cases mark the function as unreliable from BTF point of view. 10129 */ 10130 if (err) 10131 prog->aux->func_info_aux[subprog].unreliable = true; 10132 return err; 10133 } 10134 10135 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10136 int insn_idx, int subprog, 10137 set_callee_state_fn set_callee_state_cb) 10138 { 10139 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10140 struct bpf_func_state *caller, *callee; 10141 int err; 10142 10143 caller = state->frame[state->curframe]; 10144 err = btf_check_subprog_call(env, subprog, caller->regs); 10145 if (err == -EFAULT) 10146 return err; 10147 10148 /* set_callee_state is used for direct subprog calls, but we are 10149 * interested in validating only BPF helpers that can call subprogs as 10150 * callbacks 10151 */ 10152 env->subprog_info[subprog].is_cb = true; 10153 if (bpf_pseudo_kfunc_call(insn) && 10154 !is_callback_calling_kfunc(insn->imm)) { 10155 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 10156 func_id_name(insn->imm), insn->imm); 10157 return -EFAULT; 10158 } else if (!bpf_pseudo_kfunc_call(insn) && 10159 !is_callback_calling_function(insn->imm)) { /* helper */ 10160 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 10161 func_id_name(insn->imm), insn->imm); 10162 return -EFAULT; 10163 } 10164 10165 if (is_async_callback_calling_insn(insn)) { 10166 struct bpf_verifier_state *async_cb; 10167 10168 /* there is no real recursion here. timer and workqueue callbacks are async */ 10169 env->subprog_info[subprog].is_async_cb = true; 10170 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10171 insn_idx, subprog, 10172 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 10173 if (!async_cb) 10174 return -EFAULT; 10175 callee = async_cb->frame[0]; 10176 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10177 10178 /* Convert bpf_timer_set_callback() args into timer callback args */ 10179 err = set_callee_state_cb(env, caller, callee, insn_idx); 10180 if (err) 10181 return err; 10182 10183 return 0; 10184 } 10185 10186 /* for callback functions enqueue entry to callback and 10187 * proceed with next instruction within current frame. 10188 */ 10189 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10190 if (!callback_state) 10191 return -ENOMEM; 10192 10193 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10194 callback_state); 10195 if (err) 10196 return err; 10197 10198 callback_state->callback_unroll_depth++; 10199 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10200 caller->callback_depth = 0; 10201 return 0; 10202 } 10203 10204 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10205 int *insn_idx) 10206 { 10207 struct bpf_verifier_state *state = env->cur_state; 10208 struct bpf_func_state *caller; 10209 int err, subprog, target_insn; 10210 10211 target_insn = *insn_idx + insn->imm + 1; 10212 subprog = find_subprog(env, target_insn); 10213 if (subprog < 0) { 10214 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 10215 return -EFAULT; 10216 } 10217 10218 caller = state->frame[state->curframe]; 10219 err = btf_check_subprog_call(env, subprog, caller->regs); 10220 if (err == -EFAULT) 10221 return err; 10222 if (subprog_is_global(env, subprog)) { 10223 const char *sub_name = subprog_name(env, subprog); 10224 10225 /* Only global subprogs cannot be called with a lock held. */ 10226 if (env->cur_state->active_locks) { 10227 verbose(env, "global function calls are not allowed while holding a lock,\n" 10228 "use static function instead\n"); 10229 return -EINVAL; 10230 } 10231 10232 /* Only global subprogs cannot be called with preemption disabled. */ 10233 if (env->cur_state->active_preempt_locks) { 10234 verbose(env, "global function calls are not allowed with preemption disabled,\n" 10235 "use static function instead\n"); 10236 return -EINVAL; 10237 } 10238 10239 if (env->cur_state->active_irq_id) { 10240 verbose(env, "global function calls are not allowed with IRQs disabled,\n" 10241 "use static function instead\n"); 10242 return -EINVAL; 10243 } 10244 10245 if (err) { 10246 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10247 subprog, sub_name); 10248 return err; 10249 } 10250 10251 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10252 subprog, sub_name); 10253 if (env->subprog_info[subprog].changes_pkt_data) 10254 clear_all_pkt_pointers(env); 10255 /* mark global subprog for verifying after main prog */ 10256 subprog_aux(env, subprog)->called = true; 10257 clear_caller_saved_regs(env, caller->regs); 10258 10259 /* All global functions return a 64-bit SCALAR_VALUE */ 10260 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10261 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10262 10263 /* continue with next insn after call */ 10264 return 0; 10265 } 10266 10267 /* for regular function entry setup new frame and continue 10268 * from that frame. 10269 */ 10270 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10271 if (err) 10272 return err; 10273 10274 clear_caller_saved_regs(env, caller->regs); 10275 10276 /* and go analyze first insn of the callee */ 10277 *insn_idx = env->subprog_info[subprog].start - 1; 10278 10279 if (env->log.level & BPF_LOG_LEVEL) { 10280 verbose(env, "caller:\n"); 10281 print_verifier_state(env, state, caller->frameno, true); 10282 verbose(env, "callee:\n"); 10283 print_verifier_state(env, state, state->curframe, true); 10284 } 10285 10286 return 0; 10287 } 10288 10289 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10290 struct bpf_func_state *caller, 10291 struct bpf_func_state *callee) 10292 { 10293 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10294 * void *callback_ctx, u64 flags); 10295 * callback_fn(struct bpf_map *map, void *key, void *value, 10296 * void *callback_ctx); 10297 */ 10298 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10299 10300 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10301 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10302 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10303 10304 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10305 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10306 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10307 10308 /* pointer to stack or null */ 10309 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10310 10311 /* unused */ 10312 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10313 return 0; 10314 } 10315 10316 static int set_callee_state(struct bpf_verifier_env *env, 10317 struct bpf_func_state *caller, 10318 struct bpf_func_state *callee, int insn_idx) 10319 { 10320 int i; 10321 10322 /* copy r1 - r5 args that callee can access. The copy includes parent 10323 * pointers, which connects us up to the liveness chain 10324 */ 10325 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10326 callee->regs[i] = caller->regs[i]; 10327 return 0; 10328 } 10329 10330 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10331 struct bpf_func_state *caller, 10332 struct bpf_func_state *callee, 10333 int insn_idx) 10334 { 10335 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10336 struct bpf_map *map; 10337 int err; 10338 10339 /* valid map_ptr and poison value does not matter */ 10340 map = insn_aux->map_ptr_state.map_ptr; 10341 if (!map->ops->map_set_for_each_callback_args || 10342 !map->ops->map_for_each_callback) { 10343 verbose(env, "callback function not allowed for map\n"); 10344 return -ENOTSUPP; 10345 } 10346 10347 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10348 if (err) 10349 return err; 10350 10351 callee->in_callback_fn = true; 10352 callee->callback_ret_range = retval_range(0, 1); 10353 return 0; 10354 } 10355 10356 static int set_loop_callback_state(struct bpf_verifier_env *env, 10357 struct bpf_func_state *caller, 10358 struct bpf_func_state *callee, 10359 int insn_idx) 10360 { 10361 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10362 * u64 flags); 10363 * callback_fn(u64 index, void *callback_ctx); 10364 */ 10365 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10366 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10367 10368 /* unused */ 10369 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10370 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10371 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10372 10373 callee->in_callback_fn = true; 10374 callee->callback_ret_range = retval_range(0, 1); 10375 return 0; 10376 } 10377 10378 static int set_timer_callback_state(struct bpf_verifier_env *env, 10379 struct bpf_func_state *caller, 10380 struct bpf_func_state *callee, 10381 int insn_idx) 10382 { 10383 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10384 10385 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10386 * callback_fn(struct bpf_map *map, void *key, void *value); 10387 */ 10388 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10389 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10390 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10391 10392 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10393 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10394 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10395 10396 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10397 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10398 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10399 10400 /* unused */ 10401 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10402 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10403 callee->in_async_callback_fn = true; 10404 callee->callback_ret_range = retval_range(0, 1); 10405 return 0; 10406 } 10407 10408 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10409 struct bpf_func_state *caller, 10410 struct bpf_func_state *callee, 10411 int insn_idx) 10412 { 10413 /* bpf_find_vma(struct task_struct *task, u64 addr, 10414 * void *callback_fn, void *callback_ctx, u64 flags) 10415 * (callback_fn)(struct task_struct *task, 10416 * struct vm_area_struct *vma, void *callback_ctx); 10417 */ 10418 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10419 10420 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10421 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10422 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10423 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10424 10425 /* pointer to stack or null */ 10426 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10427 10428 /* unused */ 10429 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10430 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10431 callee->in_callback_fn = true; 10432 callee->callback_ret_range = retval_range(0, 1); 10433 return 0; 10434 } 10435 10436 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10437 struct bpf_func_state *caller, 10438 struct bpf_func_state *callee, 10439 int insn_idx) 10440 { 10441 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10442 * callback_ctx, u64 flags); 10443 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10444 */ 10445 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10446 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10447 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10448 10449 /* unused */ 10450 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10451 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10452 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10453 10454 callee->in_callback_fn = true; 10455 callee->callback_ret_range = retval_range(0, 1); 10456 return 0; 10457 } 10458 10459 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10460 struct bpf_func_state *caller, 10461 struct bpf_func_state *callee, 10462 int insn_idx) 10463 { 10464 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10465 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10466 * 10467 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10468 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10469 * by this point, so look at 'root' 10470 */ 10471 struct btf_field *field; 10472 10473 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10474 BPF_RB_ROOT); 10475 if (!field || !field->graph_root.value_btf_id) 10476 return -EFAULT; 10477 10478 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10479 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10480 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10481 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10482 10483 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10484 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10485 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10486 callee->in_callback_fn = true; 10487 callee->callback_ret_range = retval_range(0, 1); 10488 return 0; 10489 } 10490 10491 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10492 10493 /* Are we currently verifying the callback for a rbtree helper that must 10494 * be called with lock held? If so, no need to complain about unreleased 10495 * lock 10496 */ 10497 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10498 { 10499 struct bpf_verifier_state *state = env->cur_state; 10500 struct bpf_insn *insn = env->prog->insnsi; 10501 struct bpf_func_state *callee; 10502 int kfunc_btf_id; 10503 10504 if (!state->curframe) 10505 return false; 10506 10507 callee = state->frame[state->curframe]; 10508 10509 if (!callee->in_callback_fn) 10510 return false; 10511 10512 kfunc_btf_id = insn[callee->callsite].imm; 10513 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10514 } 10515 10516 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10517 bool return_32bit) 10518 { 10519 if (return_32bit) 10520 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10521 else 10522 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10523 } 10524 10525 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10526 { 10527 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10528 struct bpf_func_state *caller, *callee; 10529 struct bpf_reg_state *r0; 10530 bool in_callback_fn; 10531 int err; 10532 10533 callee = state->frame[state->curframe]; 10534 r0 = &callee->regs[BPF_REG_0]; 10535 if (r0->type == PTR_TO_STACK) { 10536 /* technically it's ok to return caller's stack pointer 10537 * (or caller's caller's pointer) back to the caller, 10538 * since these pointers are valid. Only current stack 10539 * pointer will be invalid as soon as function exits, 10540 * but let's be conservative 10541 */ 10542 verbose(env, "cannot return stack pointer to the caller\n"); 10543 return -EINVAL; 10544 } 10545 10546 caller = state->frame[state->curframe - 1]; 10547 if (callee->in_callback_fn) { 10548 if (r0->type != SCALAR_VALUE) { 10549 verbose(env, "R0 not a scalar value\n"); 10550 return -EACCES; 10551 } 10552 10553 /* we are going to rely on register's precise value */ 10554 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10555 err = err ?: mark_chain_precision(env, BPF_REG_0); 10556 if (err) 10557 return err; 10558 10559 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10560 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10561 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10562 "At callback return", "R0"); 10563 return -EINVAL; 10564 } 10565 if (!calls_callback(env, callee->callsite)) { 10566 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10567 *insn_idx, callee->callsite); 10568 return -EFAULT; 10569 } 10570 } else { 10571 /* return to the caller whatever r0 had in the callee */ 10572 caller->regs[BPF_REG_0] = *r0; 10573 } 10574 10575 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10576 * there function call logic would reschedule callback visit. If iteration 10577 * converges is_state_visited() would prune that visit eventually. 10578 */ 10579 in_callback_fn = callee->in_callback_fn; 10580 if (in_callback_fn) 10581 *insn_idx = callee->callsite; 10582 else 10583 *insn_idx = callee->callsite + 1; 10584 10585 if (env->log.level & BPF_LOG_LEVEL) { 10586 verbose(env, "returning from callee:\n"); 10587 print_verifier_state(env, state, callee->frameno, true); 10588 verbose(env, "to caller at %d:\n", *insn_idx); 10589 print_verifier_state(env, state, caller->frameno, true); 10590 } 10591 /* clear everything in the callee. In case of exceptional exits using 10592 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10593 free_func_state(callee); 10594 state->frame[state->curframe--] = NULL; 10595 10596 /* for callbacks widen imprecise scalars to make programs like below verify: 10597 * 10598 * struct ctx { int i; } 10599 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10600 * ... 10601 * struct ctx = { .i = 0; } 10602 * bpf_loop(100, cb, &ctx, 0); 10603 * 10604 * This is similar to what is done in process_iter_next_call() for open 10605 * coded iterators. 10606 */ 10607 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10608 if (prev_st) { 10609 err = widen_imprecise_scalars(env, prev_st, state); 10610 if (err) 10611 return err; 10612 } 10613 return 0; 10614 } 10615 10616 static int do_refine_retval_range(struct bpf_verifier_env *env, 10617 struct bpf_reg_state *regs, int ret_type, 10618 int func_id, 10619 struct bpf_call_arg_meta *meta) 10620 { 10621 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10622 10623 if (ret_type != RET_INTEGER) 10624 return 0; 10625 10626 switch (func_id) { 10627 case BPF_FUNC_get_stack: 10628 case BPF_FUNC_get_task_stack: 10629 case BPF_FUNC_probe_read_str: 10630 case BPF_FUNC_probe_read_kernel_str: 10631 case BPF_FUNC_probe_read_user_str: 10632 ret_reg->smax_value = meta->msize_max_value; 10633 ret_reg->s32_max_value = meta->msize_max_value; 10634 ret_reg->smin_value = -MAX_ERRNO; 10635 ret_reg->s32_min_value = -MAX_ERRNO; 10636 reg_bounds_sync(ret_reg); 10637 break; 10638 case BPF_FUNC_get_smp_processor_id: 10639 ret_reg->umax_value = nr_cpu_ids - 1; 10640 ret_reg->u32_max_value = nr_cpu_ids - 1; 10641 ret_reg->smax_value = nr_cpu_ids - 1; 10642 ret_reg->s32_max_value = nr_cpu_ids - 1; 10643 ret_reg->umin_value = 0; 10644 ret_reg->u32_min_value = 0; 10645 ret_reg->smin_value = 0; 10646 ret_reg->s32_min_value = 0; 10647 reg_bounds_sync(ret_reg); 10648 break; 10649 } 10650 10651 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10652 } 10653 10654 static int 10655 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10656 int func_id, int insn_idx) 10657 { 10658 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10659 struct bpf_map *map = meta->map_ptr; 10660 10661 if (func_id != BPF_FUNC_tail_call && 10662 func_id != BPF_FUNC_map_lookup_elem && 10663 func_id != BPF_FUNC_map_update_elem && 10664 func_id != BPF_FUNC_map_delete_elem && 10665 func_id != BPF_FUNC_map_push_elem && 10666 func_id != BPF_FUNC_map_pop_elem && 10667 func_id != BPF_FUNC_map_peek_elem && 10668 func_id != BPF_FUNC_for_each_map_elem && 10669 func_id != BPF_FUNC_redirect_map && 10670 func_id != BPF_FUNC_map_lookup_percpu_elem) 10671 return 0; 10672 10673 if (map == NULL) { 10674 verbose(env, "kernel subsystem misconfigured verifier\n"); 10675 return -EINVAL; 10676 } 10677 10678 /* In case of read-only, some additional restrictions 10679 * need to be applied in order to prevent altering the 10680 * state of the map from program side. 10681 */ 10682 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10683 (func_id == BPF_FUNC_map_delete_elem || 10684 func_id == BPF_FUNC_map_update_elem || 10685 func_id == BPF_FUNC_map_push_elem || 10686 func_id == BPF_FUNC_map_pop_elem)) { 10687 verbose(env, "write into map forbidden\n"); 10688 return -EACCES; 10689 } 10690 10691 if (!aux->map_ptr_state.map_ptr) 10692 bpf_map_ptr_store(aux, meta->map_ptr, 10693 !meta->map_ptr->bypass_spec_v1, false); 10694 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10695 bpf_map_ptr_store(aux, meta->map_ptr, 10696 !meta->map_ptr->bypass_spec_v1, true); 10697 return 0; 10698 } 10699 10700 static int 10701 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10702 int func_id, int insn_idx) 10703 { 10704 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10705 struct bpf_reg_state *regs = cur_regs(env), *reg; 10706 struct bpf_map *map = meta->map_ptr; 10707 u64 val, max; 10708 int err; 10709 10710 if (func_id != BPF_FUNC_tail_call) 10711 return 0; 10712 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10713 verbose(env, "kernel subsystem misconfigured verifier\n"); 10714 return -EINVAL; 10715 } 10716 10717 reg = ®s[BPF_REG_3]; 10718 val = reg->var_off.value; 10719 max = map->max_entries; 10720 10721 if (!(is_reg_const(reg, false) && val < max)) { 10722 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10723 return 0; 10724 } 10725 10726 err = mark_chain_precision(env, BPF_REG_3); 10727 if (err) 10728 return err; 10729 if (bpf_map_key_unseen(aux)) 10730 bpf_map_key_store(aux, val); 10731 else if (!bpf_map_key_poisoned(aux) && 10732 bpf_map_key_immediate(aux) != val) 10733 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10734 return 0; 10735 } 10736 10737 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10738 { 10739 struct bpf_verifier_state *state = env->cur_state; 10740 bool refs_lingering = false; 10741 int i; 10742 10743 if (!exception_exit && cur_func(env)->frameno) 10744 return 0; 10745 10746 for (i = 0; i < state->acquired_refs; i++) { 10747 if (state->refs[i].type != REF_TYPE_PTR) 10748 continue; 10749 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10750 state->refs[i].id, state->refs[i].insn_idx); 10751 refs_lingering = true; 10752 } 10753 return refs_lingering ? -EINVAL : 0; 10754 } 10755 10756 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 10757 { 10758 int err; 10759 10760 if (check_lock && env->cur_state->active_locks) { 10761 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 10762 return -EINVAL; 10763 } 10764 10765 err = check_reference_leak(env, exception_exit); 10766 if (err) { 10767 verbose(env, "%s would lead to reference leak\n", prefix); 10768 return err; 10769 } 10770 10771 if (check_lock && env->cur_state->active_irq_id) { 10772 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 10773 return -EINVAL; 10774 } 10775 10776 if (check_lock && env->cur_state->active_rcu_lock) { 10777 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 10778 return -EINVAL; 10779 } 10780 10781 if (check_lock && env->cur_state->active_preempt_locks) { 10782 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 10783 return -EINVAL; 10784 } 10785 10786 return 0; 10787 } 10788 10789 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10790 struct bpf_reg_state *regs) 10791 { 10792 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10793 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10794 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10795 struct bpf_bprintf_data data = {}; 10796 int err, fmt_map_off, num_args; 10797 u64 fmt_addr; 10798 char *fmt; 10799 10800 /* data must be an array of u64 */ 10801 if (data_len_reg->var_off.value % 8) 10802 return -EINVAL; 10803 num_args = data_len_reg->var_off.value / 8; 10804 10805 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10806 * and map_direct_value_addr is set. 10807 */ 10808 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10809 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10810 fmt_map_off); 10811 if (err) { 10812 verbose(env, "verifier bug\n"); 10813 return -EFAULT; 10814 } 10815 fmt = (char *)(long)fmt_addr + fmt_map_off; 10816 10817 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10818 * can focus on validating the format specifiers. 10819 */ 10820 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10821 if (err < 0) 10822 verbose(env, "Invalid format string\n"); 10823 10824 return err; 10825 } 10826 10827 static int check_get_func_ip(struct bpf_verifier_env *env) 10828 { 10829 enum bpf_prog_type type = resolve_prog_type(env->prog); 10830 int func_id = BPF_FUNC_get_func_ip; 10831 10832 if (type == BPF_PROG_TYPE_TRACING) { 10833 if (!bpf_prog_has_trampoline(env->prog)) { 10834 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10835 func_id_name(func_id), func_id); 10836 return -ENOTSUPP; 10837 } 10838 return 0; 10839 } else if (type == BPF_PROG_TYPE_KPROBE) { 10840 return 0; 10841 } 10842 10843 verbose(env, "func %s#%d not supported for program type %d\n", 10844 func_id_name(func_id), func_id, type); 10845 return -ENOTSUPP; 10846 } 10847 10848 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10849 { 10850 return &env->insn_aux_data[env->insn_idx]; 10851 } 10852 10853 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10854 { 10855 struct bpf_reg_state *regs = cur_regs(env); 10856 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10857 bool reg_is_null = register_is_null(reg); 10858 10859 if (reg_is_null) 10860 mark_chain_precision(env, BPF_REG_4); 10861 10862 return reg_is_null; 10863 } 10864 10865 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10866 { 10867 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10868 10869 if (!state->initialized) { 10870 state->initialized = 1; 10871 state->fit_for_inline = loop_flag_is_zero(env); 10872 state->callback_subprogno = subprogno; 10873 return; 10874 } 10875 10876 if (!state->fit_for_inline) 10877 return; 10878 10879 state->fit_for_inline = (loop_flag_is_zero(env) && 10880 state->callback_subprogno == subprogno); 10881 } 10882 10883 /* Returns whether or not the given map type can potentially elide 10884 * lookup return value nullness check. This is possible if the key 10885 * is statically known. 10886 */ 10887 static bool can_elide_value_nullness(enum bpf_map_type type) 10888 { 10889 switch (type) { 10890 case BPF_MAP_TYPE_ARRAY: 10891 case BPF_MAP_TYPE_PERCPU_ARRAY: 10892 return true; 10893 default: 10894 return false; 10895 } 10896 } 10897 10898 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 10899 const struct bpf_func_proto **ptr) 10900 { 10901 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 10902 return -ERANGE; 10903 10904 if (!env->ops->get_func_proto) 10905 return -EINVAL; 10906 10907 *ptr = env->ops->get_func_proto(func_id, env->prog); 10908 return *ptr ? 0 : -EINVAL; 10909 } 10910 10911 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10912 int *insn_idx_p) 10913 { 10914 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10915 bool returns_cpu_specific_alloc_ptr = false; 10916 const struct bpf_func_proto *fn = NULL; 10917 enum bpf_return_type ret_type; 10918 enum bpf_type_flag ret_flag; 10919 struct bpf_reg_state *regs; 10920 struct bpf_call_arg_meta meta; 10921 int insn_idx = *insn_idx_p; 10922 bool changes_data; 10923 int i, err, func_id; 10924 10925 /* find function prototype */ 10926 func_id = insn->imm; 10927 err = get_helper_proto(env, insn->imm, &fn); 10928 if (err == -ERANGE) { 10929 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 10930 return -EINVAL; 10931 } 10932 10933 if (err) { 10934 verbose(env, "program of this type cannot use helper %s#%d\n", 10935 func_id_name(func_id), func_id); 10936 return err; 10937 } 10938 10939 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10940 if (!env->prog->gpl_compatible && fn->gpl_only) { 10941 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10942 return -EINVAL; 10943 } 10944 10945 if (fn->allowed && !fn->allowed(env->prog)) { 10946 verbose(env, "helper call is not allowed in probe\n"); 10947 return -EINVAL; 10948 } 10949 10950 if (!in_sleepable(env) && fn->might_sleep) { 10951 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10952 return -EINVAL; 10953 } 10954 10955 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10956 changes_data = bpf_helper_changes_pkt_data(func_id); 10957 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10958 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10959 func_id_name(func_id), func_id); 10960 return -EINVAL; 10961 } 10962 10963 memset(&meta, 0, sizeof(meta)); 10964 meta.pkt_access = fn->pkt_access; 10965 10966 err = check_func_proto(fn, func_id); 10967 if (err) { 10968 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10969 func_id_name(func_id), func_id); 10970 return err; 10971 } 10972 10973 if (env->cur_state->active_rcu_lock) { 10974 if (fn->might_sleep) { 10975 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10976 func_id_name(func_id), func_id); 10977 return -EINVAL; 10978 } 10979 10980 if (in_sleepable(env) && is_storage_get_function(func_id)) 10981 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10982 } 10983 10984 if (env->cur_state->active_preempt_locks) { 10985 if (fn->might_sleep) { 10986 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10987 func_id_name(func_id), func_id); 10988 return -EINVAL; 10989 } 10990 10991 if (in_sleepable(env) && is_storage_get_function(func_id)) 10992 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10993 } 10994 10995 if (env->cur_state->active_irq_id) { 10996 if (fn->might_sleep) { 10997 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 10998 func_id_name(func_id), func_id); 10999 return -EINVAL; 11000 } 11001 11002 if (in_sleepable(env) && is_storage_get_function(func_id)) 11003 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11004 } 11005 11006 meta.func_id = func_id; 11007 /* check args */ 11008 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11009 err = check_func_arg(env, i, &meta, fn, insn_idx); 11010 if (err) 11011 return err; 11012 } 11013 11014 err = record_func_map(env, &meta, func_id, insn_idx); 11015 if (err) 11016 return err; 11017 11018 err = record_func_key(env, &meta, func_id, insn_idx); 11019 if (err) 11020 return err; 11021 11022 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11023 * is inferred from register state. 11024 */ 11025 for (i = 0; i < meta.access_size; i++) { 11026 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11027 BPF_WRITE, -1, false, false); 11028 if (err) 11029 return err; 11030 } 11031 11032 regs = cur_regs(env); 11033 11034 if (meta.release_regno) { 11035 err = -EINVAL; 11036 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11037 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11038 * is safe to do directly. 11039 */ 11040 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11041 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11042 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 11043 return -EFAULT; 11044 } 11045 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11046 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11047 u32 ref_obj_id = meta.ref_obj_id; 11048 bool in_rcu = in_rcu_cs(env); 11049 struct bpf_func_state *state; 11050 struct bpf_reg_state *reg; 11051 11052 err = release_reference_nomark(env->cur_state, ref_obj_id); 11053 if (!err) { 11054 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11055 if (reg->ref_obj_id == ref_obj_id) { 11056 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11057 reg->ref_obj_id = 0; 11058 reg->type &= ~MEM_ALLOC; 11059 reg->type |= MEM_RCU; 11060 } else { 11061 mark_reg_invalid(env, reg); 11062 } 11063 } 11064 })); 11065 } 11066 } else if (meta.ref_obj_id) { 11067 err = release_reference(env, meta.ref_obj_id); 11068 } else if (register_is_null(®s[meta.release_regno])) { 11069 /* meta.ref_obj_id can only be 0 if register that is meant to be 11070 * released is NULL, which must be > R0. 11071 */ 11072 err = 0; 11073 } 11074 if (err) { 11075 verbose(env, "func %s#%d reference has not been acquired before\n", 11076 func_id_name(func_id), func_id); 11077 return err; 11078 } 11079 } 11080 11081 switch (func_id) { 11082 case BPF_FUNC_tail_call: 11083 err = check_resource_leak(env, false, true, "tail_call"); 11084 if (err) 11085 return err; 11086 break; 11087 case BPF_FUNC_get_local_storage: 11088 /* check that flags argument in get_local_storage(map, flags) is 0, 11089 * this is required because get_local_storage() can't return an error. 11090 */ 11091 if (!register_is_null(®s[BPF_REG_2])) { 11092 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11093 return -EINVAL; 11094 } 11095 break; 11096 case BPF_FUNC_for_each_map_elem: 11097 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11098 set_map_elem_callback_state); 11099 break; 11100 case BPF_FUNC_timer_set_callback: 11101 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11102 set_timer_callback_state); 11103 break; 11104 case BPF_FUNC_find_vma: 11105 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11106 set_find_vma_callback_state); 11107 break; 11108 case BPF_FUNC_snprintf: 11109 err = check_bpf_snprintf_call(env, regs); 11110 break; 11111 case BPF_FUNC_loop: 11112 update_loop_inline_state(env, meta.subprogno); 11113 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11114 * is finished, thus mark it precise. 11115 */ 11116 err = mark_chain_precision(env, BPF_REG_1); 11117 if (err) 11118 return err; 11119 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11120 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11121 set_loop_callback_state); 11122 } else { 11123 cur_func(env)->callback_depth = 0; 11124 if (env->log.level & BPF_LOG_LEVEL2) 11125 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11126 env->cur_state->curframe); 11127 } 11128 break; 11129 case BPF_FUNC_dynptr_from_mem: 11130 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11131 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11132 reg_type_str(env, regs[BPF_REG_1].type)); 11133 return -EACCES; 11134 } 11135 break; 11136 case BPF_FUNC_set_retval: 11137 if (prog_type == BPF_PROG_TYPE_LSM && 11138 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11139 if (!env->prog->aux->attach_func_proto->type) { 11140 /* Make sure programs that attach to void 11141 * hooks don't try to modify return value. 11142 */ 11143 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11144 return -EINVAL; 11145 } 11146 } 11147 break; 11148 case BPF_FUNC_dynptr_data: 11149 { 11150 struct bpf_reg_state *reg; 11151 int id, ref_obj_id; 11152 11153 reg = get_dynptr_arg_reg(env, fn, regs); 11154 if (!reg) 11155 return -EFAULT; 11156 11157 11158 if (meta.dynptr_id) { 11159 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 11160 return -EFAULT; 11161 } 11162 if (meta.ref_obj_id) { 11163 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 11164 return -EFAULT; 11165 } 11166 11167 id = dynptr_id(env, reg); 11168 if (id < 0) { 11169 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11170 return id; 11171 } 11172 11173 ref_obj_id = dynptr_ref_obj_id(env, reg); 11174 if (ref_obj_id < 0) { 11175 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 11176 return ref_obj_id; 11177 } 11178 11179 meta.dynptr_id = id; 11180 meta.ref_obj_id = ref_obj_id; 11181 11182 break; 11183 } 11184 case BPF_FUNC_dynptr_write: 11185 { 11186 enum bpf_dynptr_type dynptr_type; 11187 struct bpf_reg_state *reg; 11188 11189 reg = get_dynptr_arg_reg(env, fn, regs); 11190 if (!reg) 11191 return -EFAULT; 11192 11193 dynptr_type = dynptr_get_type(env, reg); 11194 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11195 return -EFAULT; 11196 11197 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 11198 /* this will trigger clear_all_pkt_pointers(), which will 11199 * invalidate all dynptr slices associated with the skb 11200 */ 11201 changes_data = true; 11202 11203 break; 11204 } 11205 case BPF_FUNC_per_cpu_ptr: 11206 case BPF_FUNC_this_cpu_ptr: 11207 { 11208 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11209 const struct btf_type *type; 11210 11211 if (reg->type & MEM_RCU) { 11212 type = btf_type_by_id(reg->btf, reg->btf_id); 11213 if (!type || !btf_type_is_struct(type)) { 11214 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11215 return -EFAULT; 11216 } 11217 returns_cpu_specific_alloc_ptr = true; 11218 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11219 } 11220 break; 11221 } 11222 case BPF_FUNC_user_ringbuf_drain: 11223 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11224 set_user_ringbuf_callback_state); 11225 break; 11226 } 11227 11228 if (err) 11229 return err; 11230 11231 /* reset caller saved regs */ 11232 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11233 mark_reg_not_init(env, regs, caller_saved[i]); 11234 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11235 } 11236 11237 /* helper call returns 64-bit value. */ 11238 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11239 11240 /* update return register (already marked as written above) */ 11241 ret_type = fn->ret_type; 11242 ret_flag = type_flag(ret_type); 11243 11244 switch (base_type(ret_type)) { 11245 case RET_INTEGER: 11246 /* sets type to SCALAR_VALUE */ 11247 mark_reg_unknown(env, regs, BPF_REG_0); 11248 break; 11249 case RET_VOID: 11250 regs[BPF_REG_0].type = NOT_INIT; 11251 break; 11252 case RET_PTR_TO_MAP_VALUE: 11253 /* There is no offset yet applied, variable or fixed */ 11254 mark_reg_known_zero(env, regs, BPF_REG_0); 11255 /* remember map_ptr, so that check_map_access() 11256 * can check 'value_size' boundary of memory access 11257 * to map element returned from bpf_map_lookup_elem() 11258 */ 11259 if (meta.map_ptr == NULL) { 11260 verbose(env, 11261 "kernel subsystem misconfigured verifier\n"); 11262 return -EINVAL; 11263 } 11264 11265 if (func_id == BPF_FUNC_map_lookup_elem && 11266 can_elide_value_nullness(meta.map_ptr->map_type) && 11267 meta.const_map_key >= 0 && 11268 meta.const_map_key < meta.map_ptr->max_entries) 11269 ret_flag &= ~PTR_MAYBE_NULL; 11270 11271 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11272 regs[BPF_REG_0].map_uid = meta.map_uid; 11273 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11274 if (!type_may_be_null(ret_flag) && 11275 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 11276 regs[BPF_REG_0].id = ++env->id_gen; 11277 } 11278 break; 11279 case RET_PTR_TO_SOCKET: 11280 mark_reg_known_zero(env, regs, BPF_REG_0); 11281 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11282 break; 11283 case RET_PTR_TO_SOCK_COMMON: 11284 mark_reg_known_zero(env, regs, BPF_REG_0); 11285 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11286 break; 11287 case RET_PTR_TO_TCP_SOCK: 11288 mark_reg_known_zero(env, regs, BPF_REG_0); 11289 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11290 break; 11291 case RET_PTR_TO_MEM: 11292 mark_reg_known_zero(env, regs, BPF_REG_0); 11293 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11294 regs[BPF_REG_0].mem_size = meta.mem_size; 11295 break; 11296 case RET_PTR_TO_MEM_OR_BTF_ID: 11297 { 11298 const struct btf_type *t; 11299 11300 mark_reg_known_zero(env, regs, BPF_REG_0); 11301 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11302 if (!btf_type_is_struct(t)) { 11303 u32 tsize; 11304 const struct btf_type *ret; 11305 const char *tname; 11306 11307 /* resolve the type size of ksym. */ 11308 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11309 if (IS_ERR(ret)) { 11310 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11311 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11312 tname, PTR_ERR(ret)); 11313 return -EINVAL; 11314 } 11315 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11316 regs[BPF_REG_0].mem_size = tsize; 11317 } else { 11318 if (returns_cpu_specific_alloc_ptr) { 11319 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11320 } else { 11321 /* MEM_RDONLY may be carried from ret_flag, but it 11322 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11323 * it will confuse the check of PTR_TO_BTF_ID in 11324 * check_mem_access(). 11325 */ 11326 ret_flag &= ~MEM_RDONLY; 11327 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11328 } 11329 11330 regs[BPF_REG_0].btf = meta.ret_btf; 11331 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11332 } 11333 break; 11334 } 11335 case RET_PTR_TO_BTF_ID: 11336 { 11337 struct btf *ret_btf; 11338 int ret_btf_id; 11339 11340 mark_reg_known_zero(env, regs, BPF_REG_0); 11341 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11342 if (func_id == BPF_FUNC_kptr_xchg) { 11343 ret_btf = meta.kptr_field->kptr.btf; 11344 ret_btf_id = meta.kptr_field->kptr.btf_id; 11345 if (!btf_is_kernel(ret_btf)) { 11346 regs[BPF_REG_0].type |= MEM_ALLOC; 11347 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11348 regs[BPF_REG_0].type |= MEM_PERCPU; 11349 } 11350 } else { 11351 if (fn->ret_btf_id == BPF_PTR_POISON) { 11352 verbose(env, "verifier internal error:"); 11353 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 11354 func_id_name(func_id)); 11355 return -EINVAL; 11356 } 11357 ret_btf = btf_vmlinux; 11358 ret_btf_id = *fn->ret_btf_id; 11359 } 11360 if (ret_btf_id == 0) { 11361 verbose(env, "invalid return type %u of func %s#%d\n", 11362 base_type(ret_type), func_id_name(func_id), 11363 func_id); 11364 return -EINVAL; 11365 } 11366 regs[BPF_REG_0].btf = ret_btf; 11367 regs[BPF_REG_0].btf_id = ret_btf_id; 11368 break; 11369 } 11370 default: 11371 verbose(env, "unknown return type %u of func %s#%d\n", 11372 base_type(ret_type), func_id_name(func_id), func_id); 11373 return -EINVAL; 11374 } 11375 11376 if (type_may_be_null(regs[BPF_REG_0].type)) 11377 regs[BPF_REG_0].id = ++env->id_gen; 11378 11379 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11380 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 11381 func_id_name(func_id), func_id); 11382 return -EFAULT; 11383 } 11384 11385 if (is_dynptr_ref_function(func_id)) 11386 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11387 11388 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11389 /* For release_reference() */ 11390 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11391 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11392 int id = acquire_reference(env, insn_idx); 11393 11394 if (id < 0) 11395 return id; 11396 /* For mark_ptr_or_null_reg() */ 11397 regs[BPF_REG_0].id = id; 11398 /* For release_reference() */ 11399 regs[BPF_REG_0].ref_obj_id = id; 11400 } 11401 11402 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11403 if (err) 11404 return err; 11405 11406 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11407 if (err) 11408 return err; 11409 11410 if ((func_id == BPF_FUNC_get_stack || 11411 func_id == BPF_FUNC_get_task_stack) && 11412 !env->prog->has_callchain_buf) { 11413 const char *err_str; 11414 11415 #ifdef CONFIG_PERF_EVENTS 11416 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11417 err_str = "cannot get callchain buffer for func %s#%d\n"; 11418 #else 11419 err = -ENOTSUPP; 11420 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11421 #endif 11422 if (err) { 11423 verbose(env, err_str, func_id_name(func_id), func_id); 11424 return err; 11425 } 11426 11427 env->prog->has_callchain_buf = true; 11428 } 11429 11430 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11431 env->prog->call_get_stack = true; 11432 11433 if (func_id == BPF_FUNC_get_func_ip) { 11434 if (check_get_func_ip(env)) 11435 return -ENOTSUPP; 11436 env->prog->call_get_func_ip = true; 11437 } 11438 11439 if (changes_data) 11440 clear_all_pkt_pointers(env); 11441 return 0; 11442 } 11443 11444 /* mark_btf_func_reg_size() is used when the reg size is determined by 11445 * the BTF func_proto's return value size and argument. 11446 */ 11447 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11448 size_t reg_size) 11449 { 11450 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 11451 11452 if (regno == BPF_REG_0) { 11453 /* Function return value */ 11454 reg->live |= REG_LIVE_WRITTEN; 11455 reg->subreg_def = reg_size == sizeof(u64) ? 11456 DEF_NOT_SUBREG : env->insn_idx + 1; 11457 } else { 11458 /* Function argument */ 11459 if (reg_size == sizeof(u64)) { 11460 mark_insn_zext(env, reg); 11461 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11462 } else { 11463 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11464 } 11465 } 11466 } 11467 11468 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11469 { 11470 return meta->kfunc_flags & KF_ACQUIRE; 11471 } 11472 11473 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11474 { 11475 return meta->kfunc_flags & KF_RELEASE; 11476 } 11477 11478 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11479 { 11480 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11481 } 11482 11483 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11484 { 11485 return meta->kfunc_flags & KF_SLEEPABLE; 11486 } 11487 11488 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11489 { 11490 return meta->kfunc_flags & KF_DESTRUCTIVE; 11491 } 11492 11493 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11494 { 11495 return meta->kfunc_flags & KF_RCU; 11496 } 11497 11498 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11499 { 11500 return meta->kfunc_flags & KF_RCU_PROTECTED; 11501 } 11502 11503 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11504 const struct btf_param *arg, 11505 const struct bpf_reg_state *reg) 11506 { 11507 const struct btf_type *t; 11508 11509 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11510 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11511 return false; 11512 11513 return btf_param_match_suffix(btf, arg, "__sz"); 11514 } 11515 11516 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11517 const struct btf_param *arg, 11518 const struct bpf_reg_state *reg) 11519 { 11520 const struct btf_type *t; 11521 11522 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11523 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11524 return false; 11525 11526 return btf_param_match_suffix(btf, arg, "__szk"); 11527 } 11528 11529 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11530 { 11531 return btf_param_match_suffix(btf, arg, "__opt"); 11532 } 11533 11534 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11535 { 11536 return btf_param_match_suffix(btf, arg, "__k"); 11537 } 11538 11539 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11540 { 11541 return btf_param_match_suffix(btf, arg, "__ign"); 11542 } 11543 11544 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11545 { 11546 return btf_param_match_suffix(btf, arg, "__map"); 11547 } 11548 11549 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11550 { 11551 return btf_param_match_suffix(btf, arg, "__alloc"); 11552 } 11553 11554 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11555 { 11556 return btf_param_match_suffix(btf, arg, "__uninit"); 11557 } 11558 11559 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11560 { 11561 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11562 } 11563 11564 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11565 { 11566 return btf_param_match_suffix(btf, arg, "__nullable"); 11567 } 11568 11569 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11570 { 11571 return btf_param_match_suffix(btf, arg, "__str"); 11572 } 11573 11574 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 11575 { 11576 return btf_param_match_suffix(btf, arg, "__irq_flag"); 11577 } 11578 11579 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11580 const struct btf_param *arg, 11581 const char *name) 11582 { 11583 int len, target_len = strlen(name); 11584 const char *param_name; 11585 11586 param_name = btf_name_by_offset(btf, arg->name_off); 11587 if (str_is_empty(param_name)) 11588 return false; 11589 len = strlen(param_name); 11590 if (len != target_len) 11591 return false; 11592 if (strcmp(param_name, name)) 11593 return false; 11594 11595 return true; 11596 } 11597 11598 enum { 11599 KF_ARG_DYNPTR_ID, 11600 KF_ARG_LIST_HEAD_ID, 11601 KF_ARG_LIST_NODE_ID, 11602 KF_ARG_RB_ROOT_ID, 11603 KF_ARG_RB_NODE_ID, 11604 KF_ARG_WORKQUEUE_ID, 11605 }; 11606 11607 BTF_ID_LIST(kf_arg_btf_ids) 11608 BTF_ID(struct, bpf_dynptr) 11609 BTF_ID(struct, bpf_list_head) 11610 BTF_ID(struct, bpf_list_node) 11611 BTF_ID(struct, bpf_rb_root) 11612 BTF_ID(struct, bpf_rb_node) 11613 BTF_ID(struct, bpf_wq) 11614 11615 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11616 const struct btf_param *arg, int type) 11617 { 11618 const struct btf_type *t; 11619 u32 res_id; 11620 11621 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11622 if (!t) 11623 return false; 11624 if (!btf_type_is_ptr(t)) 11625 return false; 11626 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11627 if (!t) 11628 return false; 11629 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11630 } 11631 11632 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11633 { 11634 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11635 } 11636 11637 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11638 { 11639 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11640 } 11641 11642 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11643 { 11644 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11645 } 11646 11647 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11648 { 11649 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11650 } 11651 11652 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11653 { 11654 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11655 } 11656 11657 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11658 { 11659 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11660 } 11661 11662 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11663 const struct btf_param *arg) 11664 { 11665 const struct btf_type *t; 11666 11667 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11668 if (!t) 11669 return false; 11670 11671 return true; 11672 } 11673 11674 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 11675 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 11676 const struct btf *btf, 11677 const struct btf_type *t, int rec) 11678 { 11679 const struct btf_type *member_type; 11680 const struct btf_member *member; 11681 u32 i; 11682 11683 if (!btf_type_is_struct(t)) 11684 return false; 11685 11686 for_each_member(i, t, member) { 11687 const struct btf_array *array; 11688 11689 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11690 if (btf_type_is_struct(member_type)) { 11691 if (rec >= 3) { 11692 verbose(env, "max struct nesting depth exceeded\n"); 11693 return false; 11694 } 11695 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11696 return false; 11697 continue; 11698 } 11699 if (btf_type_is_array(member_type)) { 11700 array = btf_array(member_type); 11701 if (!array->nelems) 11702 return false; 11703 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11704 if (!btf_type_is_scalar(member_type)) 11705 return false; 11706 continue; 11707 } 11708 if (!btf_type_is_scalar(member_type)) 11709 return false; 11710 } 11711 return true; 11712 } 11713 11714 enum kfunc_ptr_arg_type { 11715 KF_ARG_PTR_TO_CTX, 11716 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11717 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11718 KF_ARG_PTR_TO_DYNPTR, 11719 KF_ARG_PTR_TO_ITER, 11720 KF_ARG_PTR_TO_LIST_HEAD, 11721 KF_ARG_PTR_TO_LIST_NODE, 11722 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11723 KF_ARG_PTR_TO_MEM, 11724 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11725 KF_ARG_PTR_TO_CALLBACK, 11726 KF_ARG_PTR_TO_RB_ROOT, 11727 KF_ARG_PTR_TO_RB_NODE, 11728 KF_ARG_PTR_TO_NULL, 11729 KF_ARG_PTR_TO_CONST_STR, 11730 KF_ARG_PTR_TO_MAP, 11731 KF_ARG_PTR_TO_WORKQUEUE, 11732 KF_ARG_PTR_TO_IRQ_FLAG, 11733 }; 11734 11735 enum special_kfunc_type { 11736 KF_bpf_obj_new_impl, 11737 KF_bpf_obj_drop_impl, 11738 KF_bpf_refcount_acquire_impl, 11739 KF_bpf_list_push_front_impl, 11740 KF_bpf_list_push_back_impl, 11741 KF_bpf_list_pop_front, 11742 KF_bpf_list_pop_back, 11743 KF_bpf_cast_to_kern_ctx, 11744 KF_bpf_rdonly_cast, 11745 KF_bpf_rcu_read_lock, 11746 KF_bpf_rcu_read_unlock, 11747 KF_bpf_rbtree_remove, 11748 KF_bpf_rbtree_add_impl, 11749 KF_bpf_rbtree_first, 11750 KF_bpf_dynptr_from_skb, 11751 KF_bpf_dynptr_from_xdp, 11752 KF_bpf_dynptr_slice, 11753 KF_bpf_dynptr_slice_rdwr, 11754 KF_bpf_dynptr_clone, 11755 KF_bpf_percpu_obj_new_impl, 11756 KF_bpf_percpu_obj_drop_impl, 11757 KF_bpf_throw, 11758 KF_bpf_wq_set_callback_impl, 11759 KF_bpf_preempt_disable, 11760 KF_bpf_preempt_enable, 11761 KF_bpf_iter_css_task_new, 11762 KF_bpf_session_cookie, 11763 KF_bpf_get_kmem_cache, 11764 KF_bpf_local_irq_save, 11765 KF_bpf_local_irq_restore, 11766 KF_bpf_iter_num_new, 11767 KF_bpf_iter_num_next, 11768 KF_bpf_iter_num_destroy, 11769 }; 11770 11771 BTF_SET_START(special_kfunc_set) 11772 BTF_ID(func, bpf_obj_new_impl) 11773 BTF_ID(func, bpf_obj_drop_impl) 11774 BTF_ID(func, bpf_refcount_acquire_impl) 11775 BTF_ID(func, bpf_list_push_front_impl) 11776 BTF_ID(func, bpf_list_push_back_impl) 11777 BTF_ID(func, bpf_list_pop_front) 11778 BTF_ID(func, bpf_list_pop_back) 11779 BTF_ID(func, bpf_cast_to_kern_ctx) 11780 BTF_ID(func, bpf_rdonly_cast) 11781 BTF_ID(func, bpf_rbtree_remove) 11782 BTF_ID(func, bpf_rbtree_add_impl) 11783 BTF_ID(func, bpf_rbtree_first) 11784 #ifdef CONFIG_NET 11785 BTF_ID(func, bpf_dynptr_from_skb) 11786 BTF_ID(func, bpf_dynptr_from_xdp) 11787 #endif 11788 BTF_ID(func, bpf_dynptr_slice) 11789 BTF_ID(func, bpf_dynptr_slice_rdwr) 11790 BTF_ID(func, bpf_dynptr_clone) 11791 BTF_ID(func, bpf_percpu_obj_new_impl) 11792 BTF_ID(func, bpf_percpu_obj_drop_impl) 11793 BTF_ID(func, bpf_throw) 11794 BTF_ID(func, bpf_wq_set_callback_impl) 11795 #ifdef CONFIG_CGROUPS 11796 BTF_ID(func, bpf_iter_css_task_new) 11797 #endif 11798 BTF_SET_END(special_kfunc_set) 11799 11800 BTF_ID_LIST(special_kfunc_list) 11801 BTF_ID(func, bpf_obj_new_impl) 11802 BTF_ID(func, bpf_obj_drop_impl) 11803 BTF_ID(func, bpf_refcount_acquire_impl) 11804 BTF_ID(func, bpf_list_push_front_impl) 11805 BTF_ID(func, bpf_list_push_back_impl) 11806 BTF_ID(func, bpf_list_pop_front) 11807 BTF_ID(func, bpf_list_pop_back) 11808 BTF_ID(func, bpf_cast_to_kern_ctx) 11809 BTF_ID(func, bpf_rdonly_cast) 11810 BTF_ID(func, bpf_rcu_read_lock) 11811 BTF_ID(func, bpf_rcu_read_unlock) 11812 BTF_ID(func, bpf_rbtree_remove) 11813 BTF_ID(func, bpf_rbtree_add_impl) 11814 BTF_ID(func, bpf_rbtree_first) 11815 #ifdef CONFIG_NET 11816 BTF_ID(func, bpf_dynptr_from_skb) 11817 BTF_ID(func, bpf_dynptr_from_xdp) 11818 #else 11819 BTF_ID_UNUSED 11820 BTF_ID_UNUSED 11821 #endif 11822 BTF_ID(func, bpf_dynptr_slice) 11823 BTF_ID(func, bpf_dynptr_slice_rdwr) 11824 BTF_ID(func, bpf_dynptr_clone) 11825 BTF_ID(func, bpf_percpu_obj_new_impl) 11826 BTF_ID(func, bpf_percpu_obj_drop_impl) 11827 BTF_ID(func, bpf_throw) 11828 BTF_ID(func, bpf_wq_set_callback_impl) 11829 BTF_ID(func, bpf_preempt_disable) 11830 BTF_ID(func, bpf_preempt_enable) 11831 #ifdef CONFIG_CGROUPS 11832 BTF_ID(func, bpf_iter_css_task_new) 11833 #else 11834 BTF_ID_UNUSED 11835 #endif 11836 #ifdef CONFIG_BPF_EVENTS 11837 BTF_ID(func, bpf_session_cookie) 11838 #else 11839 BTF_ID_UNUSED 11840 #endif 11841 BTF_ID(func, bpf_get_kmem_cache) 11842 BTF_ID(func, bpf_local_irq_save) 11843 BTF_ID(func, bpf_local_irq_restore) 11844 BTF_ID(func, bpf_iter_num_new) 11845 BTF_ID(func, bpf_iter_num_next) 11846 BTF_ID(func, bpf_iter_num_destroy) 11847 11848 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11849 { 11850 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11851 meta->arg_owning_ref) { 11852 return false; 11853 } 11854 11855 return meta->kfunc_flags & KF_RET_NULL; 11856 } 11857 11858 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11859 { 11860 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11861 } 11862 11863 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11864 { 11865 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11866 } 11867 11868 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11869 { 11870 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11871 } 11872 11873 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11874 { 11875 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11876 } 11877 11878 static enum kfunc_ptr_arg_type 11879 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11880 struct bpf_kfunc_call_arg_meta *meta, 11881 const struct btf_type *t, const struct btf_type *ref_t, 11882 const char *ref_tname, const struct btf_param *args, 11883 int argno, int nargs) 11884 { 11885 u32 regno = argno + 1; 11886 struct bpf_reg_state *regs = cur_regs(env); 11887 struct bpf_reg_state *reg = ®s[regno]; 11888 bool arg_mem_size = false; 11889 11890 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11891 return KF_ARG_PTR_TO_CTX; 11892 11893 /* In this function, we verify the kfunc's BTF as per the argument type, 11894 * leaving the rest of the verification with respect to the register 11895 * type to our caller. When a set of conditions hold in the BTF type of 11896 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11897 */ 11898 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11899 return KF_ARG_PTR_TO_CTX; 11900 11901 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11902 return KF_ARG_PTR_TO_NULL; 11903 11904 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11905 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11906 11907 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11908 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11909 11910 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11911 return KF_ARG_PTR_TO_DYNPTR; 11912 11913 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 11914 return KF_ARG_PTR_TO_ITER; 11915 11916 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11917 return KF_ARG_PTR_TO_LIST_HEAD; 11918 11919 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11920 return KF_ARG_PTR_TO_LIST_NODE; 11921 11922 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11923 return KF_ARG_PTR_TO_RB_ROOT; 11924 11925 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11926 return KF_ARG_PTR_TO_RB_NODE; 11927 11928 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11929 return KF_ARG_PTR_TO_CONST_STR; 11930 11931 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11932 return KF_ARG_PTR_TO_MAP; 11933 11934 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11935 return KF_ARG_PTR_TO_WORKQUEUE; 11936 11937 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 11938 return KF_ARG_PTR_TO_IRQ_FLAG; 11939 11940 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11941 if (!btf_type_is_struct(ref_t)) { 11942 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11943 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11944 return -EINVAL; 11945 } 11946 return KF_ARG_PTR_TO_BTF_ID; 11947 } 11948 11949 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11950 return KF_ARG_PTR_TO_CALLBACK; 11951 11952 if (argno + 1 < nargs && 11953 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11954 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11955 arg_mem_size = true; 11956 11957 /* This is the catch all argument type of register types supported by 11958 * check_helper_mem_access. However, we only allow when argument type is 11959 * pointer to scalar, or struct composed (recursively) of scalars. When 11960 * arg_mem_size is true, the pointer can be void *. 11961 */ 11962 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11963 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11964 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11965 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11966 return -EINVAL; 11967 } 11968 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11969 } 11970 11971 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11972 struct bpf_reg_state *reg, 11973 const struct btf_type *ref_t, 11974 const char *ref_tname, u32 ref_id, 11975 struct bpf_kfunc_call_arg_meta *meta, 11976 int argno) 11977 { 11978 const struct btf_type *reg_ref_t; 11979 bool strict_type_match = false; 11980 const struct btf *reg_btf; 11981 const char *reg_ref_tname; 11982 bool taking_projection; 11983 bool struct_same; 11984 u32 reg_ref_id; 11985 11986 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11987 reg_btf = reg->btf; 11988 reg_ref_id = reg->btf_id; 11989 } else { 11990 reg_btf = btf_vmlinux; 11991 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11992 } 11993 11994 /* Enforce strict type matching for calls to kfuncs that are acquiring 11995 * or releasing a reference, or are no-cast aliases. We do _not_ 11996 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11997 * as we want to enable BPF programs to pass types that are bitwise 11998 * equivalent without forcing them to explicitly cast with something 11999 * like bpf_cast_to_kern_ctx(). 12000 * 12001 * For example, say we had a type like the following: 12002 * 12003 * struct bpf_cpumask { 12004 * cpumask_t cpumask; 12005 * refcount_t usage; 12006 * }; 12007 * 12008 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12009 * to a struct cpumask, so it would be safe to pass a struct 12010 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12011 * 12012 * The philosophy here is similar to how we allow scalars of different 12013 * types to be passed to kfuncs as long as the size is the same. The 12014 * only difference here is that we're simply allowing 12015 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12016 * resolve types. 12017 */ 12018 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12019 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12020 strict_type_match = true; 12021 12022 WARN_ON_ONCE(is_kfunc_release(meta) && 12023 (reg->off || !tnum_is_const(reg->var_off) || 12024 reg->var_off.value)); 12025 12026 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12027 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12028 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12029 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12030 * actually use it -- it must cast to the underlying type. So we allow 12031 * caller to pass in the underlying type. 12032 */ 12033 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12034 if (!taking_projection && !struct_same) { 12035 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12036 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12037 btf_type_str(reg_ref_t), reg_ref_tname); 12038 return -EINVAL; 12039 } 12040 return 0; 12041 } 12042 12043 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12044 struct bpf_kfunc_call_arg_meta *meta) 12045 { 12046 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12047 bool irq_save; 12048 int err; 12049 12050 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save]) { 12051 irq_save = true; 12052 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore]) { 12053 irq_save = false; 12054 } else { 12055 verbose(env, "verifier internal error: unknown irq flags kfunc\n"); 12056 return -EFAULT; 12057 } 12058 12059 if (irq_save) { 12060 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12061 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12062 return -EINVAL; 12063 } 12064 12065 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12066 if (err) 12067 return err; 12068 12069 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx); 12070 if (err) 12071 return err; 12072 } else { 12073 err = is_irq_flag_reg_valid_init(env, reg); 12074 if (err) { 12075 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12076 return err; 12077 } 12078 12079 err = mark_irq_flag_read(env, reg); 12080 if (err) 12081 return err; 12082 12083 err = unmark_stack_slot_irq_flag(env, reg); 12084 if (err) 12085 return err; 12086 } 12087 return 0; 12088 } 12089 12090 12091 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12092 { 12093 struct btf_record *rec = reg_btf_record(reg); 12094 12095 if (!env->cur_state->active_locks) { 12096 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 12097 return -EFAULT; 12098 } 12099 12100 if (type_flag(reg->type) & NON_OWN_REF) { 12101 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 12102 return -EFAULT; 12103 } 12104 12105 reg->type |= NON_OWN_REF; 12106 if (rec->refcount_off >= 0) 12107 reg->type |= MEM_RCU; 12108 12109 return 0; 12110 } 12111 12112 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12113 { 12114 struct bpf_verifier_state *state = env->cur_state; 12115 struct bpf_func_state *unused; 12116 struct bpf_reg_state *reg; 12117 int i; 12118 12119 if (!ref_obj_id) { 12120 verbose(env, "verifier internal error: ref_obj_id is zero for " 12121 "owning -> non-owning conversion\n"); 12122 return -EFAULT; 12123 } 12124 12125 for (i = 0; i < state->acquired_refs; i++) { 12126 if (state->refs[i].id != ref_obj_id) 12127 continue; 12128 12129 /* Clear ref_obj_id here so release_reference doesn't clobber 12130 * the whole reg 12131 */ 12132 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12133 if (reg->ref_obj_id == ref_obj_id) { 12134 reg->ref_obj_id = 0; 12135 ref_set_non_owning(env, reg); 12136 } 12137 })); 12138 return 0; 12139 } 12140 12141 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 12142 return -EFAULT; 12143 } 12144 12145 /* Implementation details: 12146 * 12147 * Each register points to some region of memory, which we define as an 12148 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12149 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12150 * allocation. The lock and the data it protects are colocated in the same 12151 * memory region. 12152 * 12153 * Hence, everytime a register holds a pointer value pointing to such 12154 * allocation, the verifier preserves a unique reg->id for it. 12155 * 12156 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12157 * bpf_spin_lock is called. 12158 * 12159 * To enable this, lock state in the verifier captures two values: 12160 * active_lock.ptr = Register's type specific pointer 12161 * active_lock.id = A unique ID for each register pointer value 12162 * 12163 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12164 * supported register types. 12165 * 12166 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12167 * allocated objects is the reg->btf pointer. 12168 * 12169 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12170 * can establish the provenance of the map value statically for each distinct 12171 * lookup into such maps. They always contain a single map value hence unique 12172 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12173 * 12174 * So, in case of global variables, they use array maps with max_entries = 1, 12175 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12176 * into the same map value as max_entries is 1, as described above). 12177 * 12178 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12179 * outer map pointer (in verifier context), but each lookup into an inner map 12180 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12181 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12182 * will get different reg->id assigned to each lookup, hence different 12183 * active_lock.id. 12184 * 12185 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12186 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12187 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12188 */ 12189 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12190 { 12191 struct bpf_reference_state *s; 12192 void *ptr; 12193 u32 id; 12194 12195 switch ((int)reg->type) { 12196 case PTR_TO_MAP_VALUE: 12197 ptr = reg->map_ptr; 12198 break; 12199 case PTR_TO_BTF_ID | MEM_ALLOC: 12200 ptr = reg->btf; 12201 break; 12202 default: 12203 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 12204 return -EFAULT; 12205 } 12206 id = reg->id; 12207 12208 if (!env->cur_state->active_locks) 12209 return -EINVAL; 12210 s = find_lock_state(env->cur_state, REF_TYPE_LOCK, id, ptr); 12211 if (!s) { 12212 verbose(env, "held lock and object are not in the same allocation\n"); 12213 return -EINVAL; 12214 } 12215 return 0; 12216 } 12217 12218 static bool is_bpf_list_api_kfunc(u32 btf_id) 12219 { 12220 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12221 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12222 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12223 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 12224 } 12225 12226 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12227 { 12228 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12229 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12230 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 12231 } 12232 12233 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12234 { 12235 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12236 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12237 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12238 } 12239 12240 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12241 { 12242 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12243 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12244 } 12245 12246 static bool kfunc_spin_allowed(u32 btf_id) 12247 { 12248 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id); 12249 } 12250 12251 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12252 { 12253 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12254 } 12255 12256 static bool is_async_callback_calling_kfunc(u32 btf_id) 12257 { 12258 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12259 } 12260 12261 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12262 { 12263 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12264 insn->imm == special_kfunc_list[KF_bpf_throw]; 12265 } 12266 12267 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12268 { 12269 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12270 } 12271 12272 static bool is_callback_calling_kfunc(u32 btf_id) 12273 { 12274 return is_sync_callback_calling_kfunc(btf_id) || 12275 is_async_callback_calling_kfunc(btf_id); 12276 } 12277 12278 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12279 { 12280 return is_bpf_rbtree_api_kfunc(btf_id); 12281 } 12282 12283 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12284 enum btf_field_type head_field_type, 12285 u32 kfunc_btf_id) 12286 { 12287 bool ret; 12288 12289 switch (head_field_type) { 12290 case BPF_LIST_HEAD: 12291 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12292 break; 12293 case BPF_RB_ROOT: 12294 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12295 break; 12296 default: 12297 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12298 btf_field_type_name(head_field_type)); 12299 return false; 12300 } 12301 12302 if (!ret) 12303 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12304 btf_field_type_name(head_field_type)); 12305 return ret; 12306 } 12307 12308 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12309 enum btf_field_type node_field_type, 12310 u32 kfunc_btf_id) 12311 { 12312 bool ret; 12313 12314 switch (node_field_type) { 12315 case BPF_LIST_NODE: 12316 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12317 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12318 break; 12319 case BPF_RB_NODE: 12320 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12321 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 12322 break; 12323 default: 12324 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12325 btf_field_type_name(node_field_type)); 12326 return false; 12327 } 12328 12329 if (!ret) 12330 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12331 btf_field_type_name(node_field_type)); 12332 return ret; 12333 } 12334 12335 static int 12336 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12337 struct bpf_reg_state *reg, u32 regno, 12338 struct bpf_kfunc_call_arg_meta *meta, 12339 enum btf_field_type head_field_type, 12340 struct btf_field **head_field) 12341 { 12342 const char *head_type_name; 12343 struct btf_field *field; 12344 struct btf_record *rec; 12345 u32 head_off; 12346 12347 if (meta->btf != btf_vmlinux) { 12348 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12349 return -EFAULT; 12350 } 12351 12352 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12353 return -EFAULT; 12354 12355 head_type_name = btf_field_type_name(head_field_type); 12356 if (!tnum_is_const(reg->var_off)) { 12357 verbose(env, 12358 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12359 regno, head_type_name); 12360 return -EINVAL; 12361 } 12362 12363 rec = reg_btf_record(reg); 12364 head_off = reg->off + reg->var_off.value; 12365 field = btf_record_find(rec, head_off, head_field_type); 12366 if (!field) { 12367 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12368 return -EINVAL; 12369 } 12370 12371 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12372 if (check_reg_allocation_locked(env, reg)) { 12373 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12374 rec->spin_lock_off, head_type_name); 12375 return -EINVAL; 12376 } 12377 12378 if (*head_field) { 12379 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 12380 return -EFAULT; 12381 } 12382 *head_field = field; 12383 return 0; 12384 } 12385 12386 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12387 struct bpf_reg_state *reg, u32 regno, 12388 struct bpf_kfunc_call_arg_meta *meta) 12389 { 12390 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12391 &meta->arg_list_head.field); 12392 } 12393 12394 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12395 struct bpf_reg_state *reg, u32 regno, 12396 struct bpf_kfunc_call_arg_meta *meta) 12397 { 12398 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12399 &meta->arg_rbtree_root.field); 12400 } 12401 12402 static int 12403 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12404 struct bpf_reg_state *reg, u32 regno, 12405 struct bpf_kfunc_call_arg_meta *meta, 12406 enum btf_field_type head_field_type, 12407 enum btf_field_type node_field_type, 12408 struct btf_field **node_field) 12409 { 12410 const char *node_type_name; 12411 const struct btf_type *et, *t; 12412 struct btf_field *field; 12413 u32 node_off; 12414 12415 if (meta->btf != btf_vmlinux) { 12416 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12417 return -EFAULT; 12418 } 12419 12420 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12421 return -EFAULT; 12422 12423 node_type_name = btf_field_type_name(node_field_type); 12424 if (!tnum_is_const(reg->var_off)) { 12425 verbose(env, 12426 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12427 regno, node_type_name); 12428 return -EINVAL; 12429 } 12430 12431 node_off = reg->off + reg->var_off.value; 12432 field = reg_find_field_offset(reg, node_off, node_field_type); 12433 if (!field) { 12434 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12435 return -EINVAL; 12436 } 12437 12438 field = *node_field; 12439 12440 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12441 t = btf_type_by_id(reg->btf, reg->btf_id); 12442 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12443 field->graph_root.value_btf_id, true)) { 12444 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12445 "in struct %s, but arg is at offset=%d in struct %s\n", 12446 btf_field_type_name(head_field_type), 12447 btf_field_type_name(node_field_type), 12448 field->graph_root.node_offset, 12449 btf_name_by_offset(field->graph_root.btf, et->name_off), 12450 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12451 return -EINVAL; 12452 } 12453 meta->arg_btf = reg->btf; 12454 meta->arg_btf_id = reg->btf_id; 12455 12456 if (node_off != field->graph_root.node_offset) { 12457 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12458 node_off, btf_field_type_name(node_field_type), 12459 field->graph_root.node_offset, 12460 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12461 return -EINVAL; 12462 } 12463 12464 return 0; 12465 } 12466 12467 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12468 struct bpf_reg_state *reg, u32 regno, 12469 struct bpf_kfunc_call_arg_meta *meta) 12470 { 12471 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12472 BPF_LIST_HEAD, BPF_LIST_NODE, 12473 &meta->arg_list_head.field); 12474 } 12475 12476 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12477 struct bpf_reg_state *reg, u32 regno, 12478 struct bpf_kfunc_call_arg_meta *meta) 12479 { 12480 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12481 BPF_RB_ROOT, BPF_RB_NODE, 12482 &meta->arg_rbtree_root.field); 12483 } 12484 12485 /* 12486 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12487 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12488 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12489 * them can only be attached to some specific hook points. 12490 */ 12491 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12492 { 12493 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12494 12495 switch (prog_type) { 12496 case BPF_PROG_TYPE_LSM: 12497 return true; 12498 case BPF_PROG_TYPE_TRACING: 12499 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 12500 return true; 12501 fallthrough; 12502 default: 12503 return in_sleepable(env); 12504 } 12505 } 12506 12507 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 12508 int insn_idx) 12509 { 12510 const char *func_name = meta->func_name, *ref_tname; 12511 const struct btf *btf = meta->btf; 12512 const struct btf_param *args; 12513 struct btf_record *rec; 12514 u32 i, nargs; 12515 int ret; 12516 12517 args = (const struct btf_param *)(meta->func_proto + 1); 12518 nargs = btf_type_vlen(meta->func_proto); 12519 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 12520 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 12521 MAX_BPF_FUNC_REG_ARGS); 12522 return -EINVAL; 12523 } 12524 12525 /* Check that BTF function arguments match actual types that the 12526 * verifier sees. 12527 */ 12528 for (i = 0; i < nargs; i++) { 12529 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 12530 const struct btf_type *t, *ref_t, *resolve_ret; 12531 enum bpf_arg_type arg_type = ARG_DONTCARE; 12532 u32 regno = i + 1, ref_id, type_size; 12533 bool is_ret_buf_sz = false; 12534 int kf_arg_type; 12535 12536 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 12537 12538 if (is_kfunc_arg_ignore(btf, &args[i])) 12539 continue; 12540 12541 if (btf_type_is_scalar(t)) { 12542 if (reg->type != SCALAR_VALUE) { 12543 verbose(env, "R%d is not a scalar\n", regno); 12544 return -EINVAL; 12545 } 12546 12547 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 12548 if (meta->arg_constant.found) { 12549 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12550 return -EFAULT; 12551 } 12552 if (!tnum_is_const(reg->var_off)) { 12553 verbose(env, "R%d must be a known constant\n", regno); 12554 return -EINVAL; 12555 } 12556 ret = mark_chain_precision(env, regno); 12557 if (ret < 0) 12558 return ret; 12559 meta->arg_constant.found = true; 12560 meta->arg_constant.value = reg->var_off.value; 12561 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 12562 meta->r0_rdonly = true; 12563 is_ret_buf_sz = true; 12564 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 12565 is_ret_buf_sz = true; 12566 } 12567 12568 if (is_ret_buf_sz) { 12569 if (meta->r0_size) { 12570 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 12571 return -EINVAL; 12572 } 12573 12574 if (!tnum_is_const(reg->var_off)) { 12575 verbose(env, "R%d is not a const\n", regno); 12576 return -EINVAL; 12577 } 12578 12579 meta->r0_size = reg->var_off.value; 12580 ret = mark_chain_precision(env, regno); 12581 if (ret) 12582 return ret; 12583 } 12584 continue; 12585 } 12586 12587 if (!btf_type_is_ptr(t)) { 12588 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12589 return -EINVAL; 12590 } 12591 12592 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12593 (register_is_null(reg) || type_may_be_null(reg->type)) && 12594 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12595 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12596 return -EACCES; 12597 } 12598 12599 if (reg->ref_obj_id) { 12600 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12601 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12602 regno, reg->ref_obj_id, 12603 meta->ref_obj_id); 12604 return -EFAULT; 12605 } 12606 meta->ref_obj_id = reg->ref_obj_id; 12607 if (is_kfunc_release(meta)) 12608 meta->release_regno = regno; 12609 } 12610 12611 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12612 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12613 12614 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12615 if (kf_arg_type < 0) 12616 return kf_arg_type; 12617 12618 switch (kf_arg_type) { 12619 case KF_ARG_PTR_TO_NULL: 12620 continue; 12621 case KF_ARG_PTR_TO_MAP: 12622 if (!reg->map_ptr) { 12623 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12624 return -EINVAL; 12625 } 12626 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12627 /* Use map_uid (which is unique id of inner map) to reject: 12628 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12629 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12630 * if (inner_map1 && inner_map2) { 12631 * wq = bpf_map_lookup_elem(inner_map1); 12632 * if (wq) 12633 * // mismatch would have been allowed 12634 * bpf_wq_init(wq, inner_map2); 12635 * } 12636 * 12637 * Comparing map_ptr is enough to distinguish normal and outer maps. 12638 */ 12639 if (meta->map.ptr != reg->map_ptr || 12640 meta->map.uid != reg->map_uid) { 12641 verbose(env, 12642 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 12643 meta->map.uid, reg->map_uid); 12644 return -EINVAL; 12645 } 12646 } 12647 meta->map.ptr = reg->map_ptr; 12648 meta->map.uid = reg->map_uid; 12649 fallthrough; 12650 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12651 case KF_ARG_PTR_TO_BTF_ID: 12652 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 12653 break; 12654 12655 if (!is_trusted_reg(reg)) { 12656 if (!is_kfunc_rcu(meta)) { 12657 verbose(env, "R%d must be referenced or trusted\n", regno); 12658 return -EINVAL; 12659 } 12660 if (!is_rcu_reg(reg)) { 12661 verbose(env, "R%d must be a rcu pointer\n", regno); 12662 return -EINVAL; 12663 } 12664 } 12665 fallthrough; 12666 case KF_ARG_PTR_TO_CTX: 12667 case KF_ARG_PTR_TO_DYNPTR: 12668 case KF_ARG_PTR_TO_ITER: 12669 case KF_ARG_PTR_TO_LIST_HEAD: 12670 case KF_ARG_PTR_TO_LIST_NODE: 12671 case KF_ARG_PTR_TO_RB_ROOT: 12672 case KF_ARG_PTR_TO_RB_NODE: 12673 case KF_ARG_PTR_TO_MEM: 12674 case KF_ARG_PTR_TO_MEM_SIZE: 12675 case KF_ARG_PTR_TO_CALLBACK: 12676 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12677 case KF_ARG_PTR_TO_CONST_STR: 12678 case KF_ARG_PTR_TO_WORKQUEUE: 12679 case KF_ARG_PTR_TO_IRQ_FLAG: 12680 break; 12681 default: 12682 WARN_ON_ONCE(1); 12683 return -EFAULT; 12684 } 12685 12686 if (is_kfunc_release(meta) && reg->ref_obj_id) 12687 arg_type |= OBJ_RELEASE; 12688 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 12689 if (ret < 0) 12690 return ret; 12691 12692 switch (kf_arg_type) { 12693 case KF_ARG_PTR_TO_CTX: 12694 if (reg->type != PTR_TO_CTX) { 12695 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 12696 i, reg_type_str(env, reg->type)); 12697 return -EINVAL; 12698 } 12699 12700 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12701 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 12702 if (ret < 0) 12703 return -EINVAL; 12704 meta->ret_btf_id = ret; 12705 } 12706 break; 12707 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12708 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 12709 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 12710 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 12711 return -EINVAL; 12712 } 12713 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 12714 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12715 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 12716 return -EINVAL; 12717 } 12718 } else { 12719 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12720 return -EINVAL; 12721 } 12722 if (!reg->ref_obj_id) { 12723 verbose(env, "allocated object must be referenced\n"); 12724 return -EINVAL; 12725 } 12726 if (meta->btf == btf_vmlinux) { 12727 meta->arg_btf = reg->btf; 12728 meta->arg_btf_id = reg->btf_id; 12729 } 12730 break; 12731 case KF_ARG_PTR_TO_DYNPTR: 12732 { 12733 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 12734 int clone_ref_obj_id = 0; 12735 12736 if (reg->type == CONST_PTR_TO_DYNPTR) 12737 dynptr_arg_type |= MEM_RDONLY; 12738 12739 if (is_kfunc_arg_uninit(btf, &args[i])) 12740 dynptr_arg_type |= MEM_UNINIT; 12741 12742 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 12743 dynptr_arg_type |= DYNPTR_TYPE_SKB; 12744 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 12745 dynptr_arg_type |= DYNPTR_TYPE_XDP; 12746 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 12747 (dynptr_arg_type & MEM_UNINIT)) { 12748 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 12749 12750 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 12751 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 12752 return -EFAULT; 12753 } 12754 12755 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 12756 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 12757 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 12758 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 12759 return -EFAULT; 12760 } 12761 } 12762 12763 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 12764 if (ret < 0) 12765 return ret; 12766 12767 if (!(dynptr_arg_type & MEM_UNINIT)) { 12768 int id = dynptr_id(env, reg); 12769 12770 if (id < 0) { 12771 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12772 return id; 12773 } 12774 meta->initialized_dynptr.id = id; 12775 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12776 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12777 } 12778 12779 break; 12780 } 12781 case KF_ARG_PTR_TO_ITER: 12782 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12783 if (!check_css_task_iter_allowlist(env)) { 12784 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12785 return -EINVAL; 12786 } 12787 } 12788 ret = process_iter_arg(env, regno, insn_idx, meta); 12789 if (ret < 0) 12790 return ret; 12791 break; 12792 case KF_ARG_PTR_TO_LIST_HEAD: 12793 if (reg->type != PTR_TO_MAP_VALUE && 12794 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12795 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12796 return -EINVAL; 12797 } 12798 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12799 verbose(env, "allocated object must be referenced\n"); 12800 return -EINVAL; 12801 } 12802 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12803 if (ret < 0) 12804 return ret; 12805 break; 12806 case KF_ARG_PTR_TO_RB_ROOT: 12807 if (reg->type != PTR_TO_MAP_VALUE && 12808 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12809 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12810 return -EINVAL; 12811 } 12812 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12813 verbose(env, "allocated object must be referenced\n"); 12814 return -EINVAL; 12815 } 12816 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12817 if (ret < 0) 12818 return ret; 12819 break; 12820 case KF_ARG_PTR_TO_LIST_NODE: 12821 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12822 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12823 return -EINVAL; 12824 } 12825 if (!reg->ref_obj_id) { 12826 verbose(env, "allocated object must be referenced\n"); 12827 return -EINVAL; 12828 } 12829 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12830 if (ret < 0) 12831 return ret; 12832 break; 12833 case KF_ARG_PTR_TO_RB_NODE: 12834 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12835 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12836 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12837 return -EINVAL; 12838 } 12839 if (in_rbtree_lock_required_cb(env)) { 12840 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12841 return -EINVAL; 12842 } 12843 } else { 12844 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12845 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12846 return -EINVAL; 12847 } 12848 if (!reg->ref_obj_id) { 12849 verbose(env, "allocated object must be referenced\n"); 12850 return -EINVAL; 12851 } 12852 } 12853 12854 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12855 if (ret < 0) 12856 return ret; 12857 break; 12858 case KF_ARG_PTR_TO_MAP: 12859 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12860 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12861 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12862 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12863 fallthrough; 12864 case KF_ARG_PTR_TO_BTF_ID: 12865 /* Only base_type is checked, further checks are done here */ 12866 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12867 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12868 !reg2btf_ids[base_type(reg->type)]) { 12869 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12870 verbose(env, "expected %s or socket\n", 12871 reg_type_str(env, base_type(reg->type) | 12872 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12873 return -EINVAL; 12874 } 12875 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12876 if (ret < 0) 12877 return ret; 12878 break; 12879 case KF_ARG_PTR_TO_MEM: 12880 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12881 if (IS_ERR(resolve_ret)) { 12882 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12883 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12884 return -EINVAL; 12885 } 12886 ret = check_mem_reg(env, reg, regno, type_size); 12887 if (ret < 0) 12888 return ret; 12889 break; 12890 case KF_ARG_PTR_TO_MEM_SIZE: 12891 { 12892 struct bpf_reg_state *buff_reg = ®s[regno]; 12893 const struct btf_param *buff_arg = &args[i]; 12894 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12895 const struct btf_param *size_arg = &args[i + 1]; 12896 12897 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12898 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12899 if (ret < 0) { 12900 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12901 return ret; 12902 } 12903 } 12904 12905 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12906 if (meta->arg_constant.found) { 12907 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12908 return -EFAULT; 12909 } 12910 if (!tnum_is_const(size_reg->var_off)) { 12911 verbose(env, "R%d must be a known constant\n", regno + 1); 12912 return -EINVAL; 12913 } 12914 meta->arg_constant.found = true; 12915 meta->arg_constant.value = size_reg->var_off.value; 12916 } 12917 12918 /* Skip next '__sz' or '__szk' argument */ 12919 i++; 12920 break; 12921 } 12922 case KF_ARG_PTR_TO_CALLBACK: 12923 if (reg->type != PTR_TO_FUNC) { 12924 verbose(env, "arg%d expected pointer to func\n", i); 12925 return -EINVAL; 12926 } 12927 meta->subprogno = reg->subprogno; 12928 break; 12929 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12930 if (!type_is_ptr_alloc_obj(reg->type)) { 12931 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12932 return -EINVAL; 12933 } 12934 if (!type_is_non_owning_ref(reg->type)) 12935 meta->arg_owning_ref = true; 12936 12937 rec = reg_btf_record(reg); 12938 if (!rec) { 12939 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12940 return -EFAULT; 12941 } 12942 12943 if (rec->refcount_off < 0) { 12944 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12945 return -EINVAL; 12946 } 12947 12948 meta->arg_btf = reg->btf; 12949 meta->arg_btf_id = reg->btf_id; 12950 break; 12951 case KF_ARG_PTR_TO_CONST_STR: 12952 if (reg->type != PTR_TO_MAP_VALUE) { 12953 verbose(env, "arg#%d doesn't point to a const string\n", i); 12954 return -EINVAL; 12955 } 12956 ret = check_reg_const_str(env, reg, regno); 12957 if (ret) 12958 return ret; 12959 break; 12960 case KF_ARG_PTR_TO_WORKQUEUE: 12961 if (reg->type != PTR_TO_MAP_VALUE) { 12962 verbose(env, "arg#%d doesn't point to a map value\n", i); 12963 return -EINVAL; 12964 } 12965 ret = process_wq_func(env, regno, meta); 12966 if (ret < 0) 12967 return ret; 12968 break; 12969 case KF_ARG_PTR_TO_IRQ_FLAG: 12970 if (reg->type != PTR_TO_STACK) { 12971 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 12972 return -EINVAL; 12973 } 12974 ret = process_irq_flag(env, regno, meta); 12975 if (ret < 0) 12976 return ret; 12977 break; 12978 } 12979 } 12980 12981 if (is_kfunc_release(meta) && !meta->release_regno) { 12982 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12983 func_name); 12984 return -EINVAL; 12985 } 12986 12987 return 0; 12988 } 12989 12990 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12991 struct bpf_insn *insn, 12992 struct bpf_kfunc_call_arg_meta *meta, 12993 const char **kfunc_name) 12994 { 12995 const struct btf_type *func, *func_proto; 12996 u32 func_id, *kfunc_flags; 12997 const char *func_name; 12998 struct btf *desc_btf; 12999 13000 if (kfunc_name) 13001 *kfunc_name = NULL; 13002 13003 if (!insn->imm) 13004 return -EINVAL; 13005 13006 desc_btf = find_kfunc_desc_btf(env, insn->off); 13007 if (IS_ERR(desc_btf)) 13008 return PTR_ERR(desc_btf); 13009 13010 func_id = insn->imm; 13011 func = btf_type_by_id(desc_btf, func_id); 13012 func_name = btf_name_by_offset(desc_btf, func->name_off); 13013 if (kfunc_name) 13014 *kfunc_name = func_name; 13015 func_proto = btf_type_by_id(desc_btf, func->type); 13016 13017 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13018 if (!kfunc_flags) { 13019 return -EACCES; 13020 } 13021 13022 memset(meta, 0, sizeof(*meta)); 13023 meta->btf = desc_btf; 13024 meta->func_id = func_id; 13025 meta->kfunc_flags = *kfunc_flags; 13026 meta->func_proto = func_proto; 13027 meta->func_name = func_name; 13028 13029 return 0; 13030 } 13031 13032 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13033 13034 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13035 int *insn_idx_p) 13036 { 13037 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13038 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13039 struct bpf_reg_state *regs = cur_regs(env); 13040 const char *func_name, *ptr_type_name; 13041 const struct btf_type *t, *ptr_type; 13042 struct bpf_kfunc_call_arg_meta meta; 13043 struct bpf_insn_aux_data *insn_aux; 13044 int err, insn_idx = *insn_idx_p; 13045 const struct btf_param *args; 13046 const struct btf_type *ret_t; 13047 struct btf *desc_btf; 13048 13049 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13050 if (!insn->imm) 13051 return 0; 13052 13053 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13054 if (err == -EACCES && func_name) 13055 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13056 if (err) 13057 return err; 13058 desc_btf = meta.btf; 13059 insn_aux = &env->insn_aux_data[insn_idx]; 13060 13061 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13062 13063 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13064 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13065 return -EACCES; 13066 } 13067 13068 sleepable = is_kfunc_sleepable(&meta); 13069 if (sleepable && !in_sleepable(env)) { 13070 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13071 return -EACCES; 13072 } 13073 13074 /* Check the arguments */ 13075 err = check_kfunc_args(env, &meta, insn_idx); 13076 if (err < 0) 13077 return err; 13078 13079 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13080 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13081 set_rbtree_add_callback_state); 13082 if (err) { 13083 verbose(env, "kfunc %s#%d failed callback verification\n", 13084 func_name, meta.func_id); 13085 return err; 13086 } 13087 } 13088 13089 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13090 meta.r0_size = sizeof(u64); 13091 meta.r0_rdonly = false; 13092 } 13093 13094 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13095 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13096 set_timer_callback_state); 13097 if (err) { 13098 verbose(env, "kfunc %s#%d failed callback verification\n", 13099 func_name, meta.func_id); 13100 return err; 13101 } 13102 } 13103 13104 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13105 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13106 13107 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13108 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13109 13110 if (env->cur_state->active_rcu_lock) { 13111 struct bpf_func_state *state; 13112 struct bpf_reg_state *reg; 13113 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13114 13115 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13116 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13117 return -EACCES; 13118 } 13119 13120 if (rcu_lock) { 13121 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13122 return -EINVAL; 13123 } else if (rcu_unlock) { 13124 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13125 if (reg->type & MEM_RCU) { 13126 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13127 reg->type |= PTR_UNTRUSTED; 13128 } 13129 })); 13130 env->cur_state->active_rcu_lock = false; 13131 } else if (sleepable) { 13132 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13133 return -EACCES; 13134 } 13135 } else if (rcu_lock) { 13136 env->cur_state->active_rcu_lock = true; 13137 } else if (rcu_unlock) { 13138 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13139 return -EINVAL; 13140 } 13141 13142 if (env->cur_state->active_preempt_locks) { 13143 if (preempt_disable) { 13144 env->cur_state->active_preempt_locks++; 13145 } else if (preempt_enable) { 13146 env->cur_state->active_preempt_locks--; 13147 } else if (sleepable) { 13148 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13149 return -EACCES; 13150 } 13151 } else if (preempt_disable) { 13152 env->cur_state->active_preempt_locks++; 13153 } else if (preempt_enable) { 13154 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13155 return -EINVAL; 13156 } 13157 13158 if (env->cur_state->active_irq_id && sleepable) { 13159 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13160 return -EACCES; 13161 } 13162 13163 /* In case of release function, we get register number of refcounted 13164 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13165 */ 13166 if (meta.release_regno) { 13167 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13168 if (err) { 13169 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13170 func_name, meta.func_id); 13171 return err; 13172 } 13173 } 13174 13175 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13176 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13177 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13178 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13179 insn_aux->insert_off = regs[BPF_REG_2].off; 13180 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13181 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13182 if (err) { 13183 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13184 func_name, meta.func_id); 13185 return err; 13186 } 13187 13188 err = release_reference(env, release_ref_obj_id); 13189 if (err) { 13190 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13191 func_name, meta.func_id); 13192 return err; 13193 } 13194 } 13195 13196 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 13197 if (!bpf_jit_supports_exceptions()) { 13198 verbose(env, "JIT does not support calling kfunc %s#%d\n", 13199 func_name, meta.func_id); 13200 return -ENOTSUPP; 13201 } 13202 env->seen_exception = true; 13203 13204 /* In the case of the default callback, the cookie value passed 13205 * to bpf_throw becomes the return value of the program. 13206 */ 13207 if (!env->exception_callback_subprog) { 13208 err = check_return_code(env, BPF_REG_1, "R1"); 13209 if (err < 0) 13210 return err; 13211 } 13212 } 13213 13214 for (i = 0; i < CALLER_SAVED_REGS; i++) 13215 mark_reg_not_init(env, regs, caller_saved[i]); 13216 13217 /* Check return type */ 13218 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 13219 13220 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 13221 /* Only exception is bpf_obj_new_impl */ 13222 if (meta.btf != btf_vmlinux || 13223 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 13224 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 13225 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 13226 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 13227 return -EINVAL; 13228 } 13229 } 13230 13231 if (btf_type_is_scalar(t)) { 13232 mark_reg_unknown(env, regs, BPF_REG_0); 13233 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 13234 } else if (btf_type_is_ptr(t)) { 13235 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 13236 13237 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 13238 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13239 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13240 struct btf_struct_meta *struct_meta; 13241 struct btf *ret_btf; 13242 u32 ret_btf_id; 13243 13244 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13245 return -ENOMEM; 13246 13247 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 13248 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13249 return -EINVAL; 13250 } 13251 13252 ret_btf = env->prog->aux->btf; 13253 ret_btf_id = meta.arg_constant.value; 13254 13255 /* This may be NULL due to user not supplying a BTF */ 13256 if (!ret_btf) { 13257 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13258 return -EINVAL; 13259 } 13260 13261 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13262 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13263 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13264 return -EINVAL; 13265 } 13266 13267 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13268 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13269 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13270 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13271 return -EINVAL; 13272 } 13273 13274 if (!bpf_global_percpu_ma_set) { 13275 mutex_lock(&bpf_percpu_ma_lock); 13276 if (!bpf_global_percpu_ma_set) { 13277 /* Charge memory allocated with bpf_global_percpu_ma to 13278 * root memcg. The obj_cgroup for root memcg is NULL. 13279 */ 13280 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13281 if (!err) 13282 bpf_global_percpu_ma_set = true; 13283 } 13284 mutex_unlock(&bpf_percpu_ma_lock); 13285 if (err) 13286 return err; 13287 } 13288 13289 mutex_lock(&bpf_percpu_ma_lock); 13290 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13291 mutex_unlock(&bpf_percpu_ma_lock); 13292 if (err) 13293 return err; 13294 } 13295 13296 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13297 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13298 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13299 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13300 return -EINVAL; 13301 } 13302 13303 if (struct_meta) { 13304 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13305 return -EINVAL; 13306 } 13307 } 13308 13309 mark_reg_known_zero(env, regs, BPF_REG_0); 13310 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13311 regs[BPF_REG_0].btf = ret_btf; 13312 regs[BPF_REG_0].btf_id = ret_btf_id; 13313 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13314 regs[BPF_REG_0].type |= MEM_PERCPU; 13315 13316 insn_aux->obj_new_size = ret_t->size; 13317 insn_aux->kptr_struct_meta = struct_meta; 13318 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13319 mark_reg_known_zero(env, regs, BPF_REG_0); 13320 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13321 regs[BPF_REG_0].btf = meta.arg_btf; 13322 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 13323 13324 insn_aux->kptr_struct_meta = 13325 btf_find_struct_meta(meta.arg_btf, 13326 meta.arg_btf_id); 13327 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 13328 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 13329 struct btf_field *field = meta.arg_list_head.field; 13330 13331 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13332 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 13333 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 13334 struct btf_field *field = meta.arg_rbtree_root.field; 13335 13336 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13337 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13338 mark_reg_known_zero(env, regs, BPF_REG_0); 13339 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13340 regs[BPF_REG_0].btf = desc_btf; 13341 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 13342 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13343 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 13344 if (!ret_t || !btf_type_is_struct(ret_t)) { 13345 verbose(env, 13346 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 13347 return -EINVAL; 13348 } 13349 13350 mark_reg_known_zero(env, regs, BPF_REG_0); 13351 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13352 regs[BPF_REG_0].btf = desc_btf; 13353 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 13354 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13355 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13356 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 13357 13358 mark_reg_known_zero(env, regs, BPF_REG_0); 13359 13360 if (!meta.arg_constant.found) { 13361 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 13362 return -EFAULT; 13363 } 13364 13365 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 13366 13367 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13368 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13369 13370 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13371 regs[BPF_REG_0].type |= MEM_RDONLY; 13372 } else { 13373 /* this will set env->seen_direct_write to true */ 13374 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13375 verbose(env, "the prog does not allow writes to packet data\n"); 13376 return -EINVAL; 13377 } 13378 } 13379 13380 if (!meta.initialized_dynptr.id) { 13381 verbose(env, "verifier internal error: no dynptr id\n"); 13382 return -EFAULT; 13383 } 13384 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 13385 13386 /* we don't need to set BPF_REG_0's ref obj id 13387 * because packet slices are not refcounted (see 13388 * dynptr_type_refcounted) 13389 */ 13390 } else { 13391 verbose(env, "kernel function %s unhandled dynamic return type\n", 13392 meta.func_name); 13393 return -EFAULT; 13394 } 13395 } else if (btf_type_is_void(ptr_type)) { 13396 /* kfunc returning 'void *' is equivalent to returning scalar */ 13397 mark_reg_unknown(env, regs, BPF_REG_0); 13398 } else if (!__btf_type_is_struct(ptr_type)) { 13399 if (!meta.r0_size) { 13400 __u32 sz; 13401 13402 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 13403 meta.r0_size = sz; 13404 meta.r0_rdonly = true; 13405 } 13406 } 13407 if (!meta.r0_size) { 13408 ptr_type_name = btf_name_by_offset(desc_btf, 13409 ptr_type->name_off); 13410 verbose(env, 13411 "kernel function %s returns pointer type %s %s is not supported\n", 13412 func_name, 13413 btf_type_str(ptr_type), 13414 ptr_type_name); 13415 return -EINVAL; 13416 } 13417 13418 mark_reg_known_zero(env, regs, BPF_REG_0); 13419 regs[BPF_REG_0].type = PTR_TO_MEM; 13420 regs[BPF_REG_0].mem_size = meta.r0_size; 13421 13422 if (meta.r0_rdonly) 13423 regs[BPF_REG_0].type |= MEM_RDONLY; 13424 13425 /* Ensures we don't access the memory after a release_reference() */ 13426 if (meta.ref_obj_id) 13427 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 13428 } else { 13429 mark_reg_known_zero(env, regs, BPF_REG_0); 13430 regs[BPF_REG_0].btf = desc_btf; 13431 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 13432 regs[BPF_REG_0].btf_id = ptr_type_id; 13433 13434 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 13435 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 13436 13437 if (is_iter_next_kfunc(&meta)) { 13438 struct bpf_reg_state *cur_iter; 13439 13440 cur_iter = get_iter_from_state(env->cur_state, &meta); 13441 13442 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 13443 regs[BPF_REG_0].type |= MEM_RCU; 13444 else 13445 regs[BPF_REG_0].type |= PTR_TRUSTED; 13446 } 13447 } 13448 13449 if (is_kfunc_ret_null(&meta)) { 13450 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 13451 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 13452 regs[BPF_REG_0].id = ++env->id_gen; 13453 } 13454 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 13455 if (is_kfunc_acquire(&meta)) { 13456 int id = acquire_reference(env, insn_idx); 13457 13458 if (id < 0) 13459 return id; 13460 if (is_kfunc_ret_null(&meta)) 13461 regs[BPF_REG_0].id = id; 13462 regs[BPF_REG_0].ref_obj_id = id; 13463 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 13464 ref_set_non_owning(env, ®s[BPF_REG_0]); 13465 } 13466 13467 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 13468 regs[BPF_REG_0].id = ++env->id_gen; 13469 } else if (btf_type_is_void(t)) { 13470 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 13471 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 13472 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13473 insn_aux->kptr_struct_meta = 13474 btf_find_struct_meta(meta.arg_btf, 13475 meta.arg_btf_id); 13476 } 13477 } 13478 } 13479 13480 nargs = btf_type_vlen(meta.func_proto); 13481 args = (const struct btf_param *)(meta.func_proto + 1); 13482 for (i = 0; i < nargs; i++) { 13483 u32 regno = i + 1; 13484 13485 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 13486 if (btf_type_is_ptr(t)) 13487 mark_btf_func_reg_size(env, regno, sizeof(void *)); 13488 else 13489 /* scalar. ensured by btf_check_kfunc_arg_match() */ 13490 mark_btf_func_reg_size(env, regno, t->size); 13491 } 13492 13493 if (is_iter_next_kfunc(&meta)) { 13494 err = process_iter_next_call(env, insn_idx, &meta); 13495 if (err) 13496 return err; 13497 } 13498 13499 return 0; 13500 } 13501 13502 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 13503 const struct bpf_reg_state *reg, 13504 enum bpf_reg_type type) 13505 { 13506 bool known = tnum_is_const(reg->var_off); 13507 s64 val = reg->var_off.value; 13508 s64 smin = reg->smin_value; 13509 13510 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 13511 verbose(env, "math between %s pointer and %lld is not allowed\n", 13512 reg_type_str(env, type), val); 13513 return false; 13514 } 13515 13516 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 13517 verbose(env, "%s pointer offset %d is not allowed\n", 13518 reg_type_str(env, type), reg->off); 13519 return false; 13520 } 13521 13522 if (smin == S64_MIN) { 13523 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 13524 reg_type_str(env, type)); 13525 return false; 13526 } 13527 13528 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 13529 verbose(env, "value %lld makes %s pointer be out of bounds\n", 13530 smin, reg_type_str(env, type)); 13531 return false; 13532 } 13533 13534 return true; 13535 } 13536 13537 enum { 13538 REASON_BOUNDS = -1, 13539 REASON_TYPE = -2, 13540 REASON_PATHS = -3, 13541 REASON_LIMIT = -4, 13542 REASON_STACK = -5, 13543 }; 13544 13545 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 13546 u32 *alu_limit, bool mask_to_left) 13547 { 13548 u32 max = 0, ptr_limit = 0; 13549 13550 switch (ptr_reg->type) { 13551 case PTR_TO_STACK: 13552 /* Offset 0 is out-of-bounds, but acceptable start for the 13553 * left direction, see BPF_REG_FP. Also, unknown scalar 13554 * offset where we would need to deal with min/max bounds is 13555 * currently prohibited for unprivileged. 13556 */ 13557 max = MAX_BPF_STACK + mask_to_left; 13558 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 13559 break; 13560 case PTR_TO_MAP_VALUE: 13561 max = ptr_reg->map_ptr->value_size; 13562 ptr_limit = (mask_to_left ? 13563 ptr_reg->smin_value : 13564 ptr_reg->umax_value) + ptr_reg->off; 13565 break; 13566 default: 13567 return REASON_TYPE; 13568 } 13569 13570 if (ptr_limit >= max) 13571 return REASON_LIMIT; 13572 *alu_limit = ptr_limit; 13573 return 0; 13574 } 13575 13576 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 13577 const struct bpf_insn *insn) 13578 { 13579 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 13580 } 13581 13582 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 13583 u32 alu_state, u32 alu_limit) 13584 { 13585 /* If we arrived here from different branches with different 13586 * state or limits to sanitize, then this won't work. 13587 */ 13588 if (aux->alu_state && 13589 (aux->alu_state != alu_state || 13590 aux->alu_limit != alu_limit)) 13591 return REASON_PATHS; 13592 13593 /* Corresponding fixup done in do_misc_fixups(). */ 13594 aux->alu_state = alu_state; 13595 aux->alu_limit = alu_limit; 13596 return 0; 13597 } 13598 13599 static int sanitize_val_alu(struct bpf_verifier_env *env, 13600 struct bpf_insn *insn) 13601 { 13602 struct bpf_insn_aux_data *aux = cur_aux(env); 13603 13604 if (can_skip_alu_sanitation(env, insn)) 13605 return 0; 13606 13607 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 13608 } 13609 13610 static bool sanitize_needed(u8 opcode) 13611 { 13612 return opcode == BPF_ADD || opcode == BPF_SUB; 13613 } 13614 13615 struct bpf_sanitize_info { 13616 struct bpf_insn_aux_data aux; 13617 bool mask_to_left; 13618 }; 13619 13620 static struct bpf_verifier_state * 13621 sanitize_speculative_path(struct bpf_verifier_env *env, 13622 const struct bpf_insn *insn, 13623 u32 next_idx, u32 curr_idx) 13624 { 13625 struct bpf_verifier_state *branch; 13626 struct bpf_reg_state *regs; 13627 13628 branch = push_stack(env, next_idx, curr_idx, true); 13629 if (branch && insn) { 13630 regs = branch->frame[branch->curframe]->regs; 13631 if (BPF_SRC(insn->code) == BPF_K) { 13632 mark_reg_unknown(env, regs, insn->dst_reg); 13633 } else if (BPF_SRC(insn->code) == BPF_X) { 13634 mark_reg_unknown(env, regs, insn->dst_reg); 13635 mark_reg_unknown(env, regs, insn->src_reg); 13636 } 13637 } 13638 return branch; 13639 } 13640 13641 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 13642 struct bpf_insn *insn, 13643 const struct bpf_reg_state *ptr_reg, 13644 const struct bpf_reg_state *off_reg, 13645 struct bpf_reg_state *dst_reg, 13646 struct bpf_sanitize_info *info, 13647 const bool commit_window) 13648 { 13649 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 13650 struct bpf_verifier_state *vstate = env->cur_state; 13651 bool off_is_imm = tnum_is_const(off_reg->var_off); 13652 bool off_is_neg = off_reg->smin_value < 0; 13653 bool ptr_is_dst_reg = ptr_reg == dst_reg; 13654 u8 opcode = BPF_OP(insn->code); 13655 u32 alu_state, alu_limit; 13656 struct bpf_reg_state tmp; 13657 bool ret; 13658 int err; 13659 13660 if (can_skip_alu_sanitation(env, insn)) 13661 return 0; 13662 13663 /* We already marked aux for masking from non-speculative 13664 * paths, thus we got here in the first place. We only care 13665 * to explore bad access from here. 13666 */ 13667 if (vstate->speculative) 13668 goto do_sim; 13669 13670 if (!commit_window) { 13671 if (!tnum_is_const(off_reg->var_off) && 13672 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 13673 return REASON_BOUNDS; 13674 13675 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 13676 (opcode == BPF_SUB && !off_is_neg); 13677 } 13678 13679 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 13680 if (err < 0) 13681 return err; 13682 13683 if (commit_window) { 13684 /* In commit phase we narrow the masking window based on 13685 * the observed pointer move after the simulated operation. 13686 */ 13687 alu_state = info->aux.alu_state; 13688 alu_limit = abs(info->aux.alu_limit - alu_limit); 13689 } else { 13690 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 13691 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 13692 alu_state |= ptr_is_dst_reg ? 13693 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 13694 13695 /* Limit pruning on unknown scalars to enable deep search for 13696 * potential masking differences from other program paths. 13697 */ 13698 if (!off_is_imm) 13699 env->explore_alu_limits = true; 13700 } 13701 13702 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 13703 if (err < 0) 13704 return err; 13705 do_sim: 13706 /* If we're in commit phase, we're done here given we already 13707 * pushed the truncated dst_reg into the speculative verification 13708 * stack. 13709 * 13710 * Also, when register is a known constant, we rewrite register-based 13711 * operation to immediate-based, and thus do not need masking (and as 13712 * a consequence, do not need to simulate the zero-truncation either). 13713 */ 13714 if (commit_window || off_is_imm) 13715 return 0; 13716 13717 /* Simulate and find potential out-of-bounds access under 13718 * speculative execution from truncation as a result of 13719 * masking when off was not within expected range. If off 13720 * sits in dst, then we temporarily need to move ptr there 13721 * to simulate dst (== 0) +/-= ptr. Needed, for example, 13722 * for cases where we use K-based arithmetic in one direction 13723 * and truncated reg-based in the other in order to explore 13724 * bad access. 13725 */ 13726 if (!ptr_is_dst_reg) { 13727 tmp = *dst_reg; 13728 copy_register_state(dst_reg, ptr_reg); 13729 } 13730 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 13731 env->insn_idx); 13732 if (!ptr_is_dst_reg && ret) 13733 *dst_reg = tmp; 13734 return !ret ? REASON_STACK : 0; 13735 } 13736 13737 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 13738 { 13739 struct bpf_verifier_state *vstate = env->cur_state; 13740 13741 /* If we simulate paths under speculation, we don't update the 13742 * insn as 'seen' such that when we verify unreachable paths in 13743 * the non-speculative domain, sanitize_dead_code() can still 13744 * rewrite/sanitize them. 13745 */ 13746 if (!vstate->speculative) 13747 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 13748 } 13749 13750 static int sanitize_err(struct bpf_verifier_env *env, 13751 const struct bpf_insn *insn, int reason, 13752 const struct bpf_reg_state *off_reg, 13753 const struct bpf_reg_state *dst_reg) 13754 { 13755 static const char *err = "pointer arithmetic with it prohibited for !root"; 13756 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 13757 u32 dst = insn->dst_reg, src = insn->src_reg; 13758 13759 switch (reason) { 13760 case REASON_BOUNDS: 13761 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13762 off_reg == dst_reg ? dst : src, err); 13763 break; 13764 case REASON_TYPE: 13765 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13766 off_reg == dst_reg ? src : dst, err); 13767 break; 13768 case REASON_PATHS: 13769 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13770 dst, op, err); 13771 break; 13772 case REASON_LIMIT: 13773 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13774 dst, op, err); 13775 break; 13776 case REASON_STACK: 13777 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13778 dst, err); 13779 break; 13780 default: 13781 verbose(env, "verifier internal error: unknown reason (%d)\n", 13782 reason); 13783 break; 13784 } 13785 13786 return -EACCES; 13787 } 13788 13789 /* check that stack access falls within stack limits and that 'reg' doesn't 13790 * have a variable offset. 13791 * 13792 * Variable offset is prohibited for unprivileged mode for simplicity since it 13793 * requires corresponding support in Spectre masking for stack ALU. See also 13794 * retrieve_ptr_limit(). 13795 * 13796 * 13797 * 'off' includes 'reg->off'. 13798 */ 13799 static int check_stack_access_for_ptr_arithmetic( 13800 struct bpf_verifier_env *env, 13801 int regno, 13802 const struct bpf_reg_state *reg, 13803 int off) 13804 { 13805 if (!tnum_is_const(reg->var_off)) { 13806 char tn_buf[48]; 13807 13808 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13809 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13810 regno, tn_buf, off); 13811 return -EACCES; 13812 } 13813 13814 if (off >= 0 || off < -MAX_BPF_STACK) { 13815 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13816 "prohibited for !root; off=%d\n", regno, off); 13817 return -EACCES; 13818 } 13819 13820 return 0; 13821 } 13822 13823 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13824 const struct bpf_insn *insn, 13825 const struct bpf_reg_state *dst_reg) 13826 { 13827 u32 dst = insn->dst_reg; 13828 13829 /* For unprivileged we require that resulting offset must be in bounds 13830 * in order to be able to sanitize access later on. 13831 */ 13832 if (env->bypass_spec_v1) 13833 return 0; 13834 13835 switch (dst_reg->type) { 13836 case PTR_TO_STACK: 13837 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13838 dst_reg->off + dst_reg->var_off.value)) 13839 return -EACCES; 13840 break; 13841 case PTR_TO_MAP_VALUE: 13842 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13843 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13844 "prohibited for !root\n", dst); 13845 return -EACCES; 13846 } 13847 break; 13848 default: 13849 break; 13850 } 13851 13852 return 0; 13853 } 13854 13855 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13856 * Caller should also handle BPF_MOV case separately. 13857 * If we return -EACCES, caller may want to try again treating pointer as a 13858 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13859 */ 13860 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13861 struct bpf_insn *insn, 13862 const struct bpf_reg_state *ptr_reg, 13863 const struct bpf_reg_state *off_reg) 13864 { 13865 struct bpf_verifier_state *vstate = env->cur_state; 13866 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13867 struct bpf_reg_state *regs = state->regs, *dst_reg; 13868 bool known = tnum_is_const(off_reg->var_off); 13869 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13870 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13871 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13872 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13873 struct bpf_sanitize_info info = {}; 13874 u8 opcode = BPF_OP(insn->code); 13875 u32 dst = insn->dst_reg; 13876 int ret; 13877 13878 dst_reg = ®s[dst]; 13879 13880 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13881 smin_val > smax_val || umin_val > umax_val) { 13882 /* Taint dst register if offset had invalid bounds derived from 13883 * e.g. dead branches. 13884 */ 13885 __mark_reg_unknown(env, dst_reg); 13886 return 0; 13887 } 13888 13889 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13890 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13891 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13892 __mark_reg_unknown(env, dst_reg); 13893 return 0; 13894 } 13895 13896 verbose(env, 13897 "R%d 32-bit pointer arithmetic prohibited\n", 13898 dst); 13899 return -EACCES; 13900 } 13901 13902 if (ptr_reg->type & PTR_MAYBE_NULL) { 13903 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13904 dst, reg_type_str(env, ptr_reg->type)); 13905 return -EACCES; 13906 } 13907 13908 switch (base_type(ptr_reg->type)) { 13909 case PTR_TO_CTX: 13910 case PTR_TO_MAP_VALUE: 13911 case PTR_TO_MAP_KEY: 13912 case PTR_TO_STACK: 13913 case PTR_TO_PACKET_META: 13914 case PTR_TO_PACKET: 13915 case PTR_TO_TP_BUFFER: 13916 case PTR_TO_BTF_ID: 13917 case PTR_TO_MEM: 13918 case PTR_TO_BUF: 13919 case PTR_TO_FUNC: 13920 case CONST_PTR_TO_DYNPTR: 13921 break; 13922 case PTR_TO_FLOW_KEYS: 13923 if (known) 13924 break; 13925 fallthrough; 13926 case CONST_PTR_TO_MAP: 13927 /* smin_val represents the known value */ 13928 if (known && smin_val == 0 && opcode == BPF_ADD) 13929 break; 13930 fallthrough; 13931 default: 13932 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13933 dst, reg_type_str(env, ptr_reg->type)); 13934 return -EACCES; 13935 } 13936 13937 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13938 * The id may be overwritten later if we create a new variable offset. 13939 */ 13940 dst_reg->type = ptr_reg->type; 13941 dst_reg->id = ptr_reg->id; 13942 13943 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13944 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13945 return -EINVAL; 13946 13947 /* pointer types do not carry 32-bit bounds at the moment. */ 13948 __mark_reg32_unbounded(dst_reg); 13949 13950 if (sanitize_needed(opcode)) { 13951 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13952 &info, false); 13953 if (ret < 0) 13954 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13955 } 13956 13957 switch (opcode) { 13958 case BPF_ADD: 13959 /* We can take a fixed offset as long as it doesn't overflow 13960 * the s32 'off' field 13961 */ 13962 if (known && (ptr_reg->off + smin_val == 13963 (s64)(s32)(ptr_reg->off + smin_val))) { 13964 /* pointer += K. Accumulate it into fixed offset */ 13965 dst_reg->smin_value = smin_ptr; 13966 dst_reg->smax_value = smax_ptr; 13967 dst_reg->umin_value = umin_ptr; 13968 dst_reg->umax_value = umax_ptr; 13969 dst_reg->var_off = ptr_reg->var_off; 13970 dst_reg->off = ptr_reg->off + smin_val; 13971 dst_reg->raw = ptr_reg->raw; 13972 break; 13973 } 13974 /* A new variable offset is created. Note that off_reg->off 13975 * == 0, since it's a scalar. 13976 * dst_reg gets the pointer type and since some positive 13977 * integer value was added to the pointer, give it a new 'id' 13978 * if it's a PTR_TO_PACKET. 13979 * this creates a new 'base' pointer, off_reg (variable) gets 13980 * added into the variable offset, and we copy the fixed offset 13981 * from ptr_reg. 13982 */ 13983 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 13984 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 13985 dst_reg->smin_value = S64_MIN; 13986 dst_reg->smax_value = S64_MAX; 13987 } 13988 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 13989 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 13990 dst_reg->umin_value = 0; 13991 dst_reg->umax_value = U64_MAX; 13992 } 13993 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13994 dst_reg->off = ptr_reg->off; 13995 dst_reg->raw = ptr_reg->raw; 13996 if (reg_is_pkt_pointer(ptr_reg)) { 13997 dst_reg->id = ++env->id_gen; 13998 /* something was added to pkt_ptr, set range to zero */ 13999 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14000 } 14001 break; 14002 case BPF_SUB: 14003 if (dst_reg == off_reg) { 14004 /* scalar -= pointer. Creates an unknown scalar */ 14005 verbose(env, "R%d tried to subtract pointer from scalar\n", 14006 dst); 14007 return -EACCES; 14008 } 14009 /* We don't allow subtraction from FP, because (according to 14010 * test_verifier.c test "invalid fp arithmetic", JITs might not 14011 * be able to deal with it. 14012 */ 14013 if (ptr_reg->type == PTR_TO_STACK) { 14014 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14015 dst); 14016 return -EACCES; 14017 } 14018 if (known && (ptr_reg->off - smin_val == 14019 (s64)(s32)(ptr_reg->off - smin_val))) { 14020 /* pointer -= K. Subtract it from fixed offset */ 14021 dst_reg->smin_value = smin_ptr; 14022 dst_reg->smax_value = smax_ptr; 14023 dst_reg->umin_value = umin_ptr; 14024 dst_reg->umax_value = umax_ptr; 14025 dst_reg->var_off = ptr_reg->var_off; 14026 dst_reg->id = ptr_reg->id; 14027 dst_reg->off = ptr_reg->off - smin_val; 14028 dst_reg->raw = ptr_reg->raw; 14029 break; 14030 } 14031 /* A new variable offset is created. If the subtrahend is known 14032 * nonnegative, then any reg->range we had before is still good. 14033 */ 14034 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14035 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14036 /* Overflow possible, we know nothing */ 14037 dst_reg->smin_value = S64_MIN; 14038 dst_reg->smax_value = S64_MAX; 14039 } 14040 if (umin_ptr < umax_val) { 14041 /* Overflow possible, we know nothing */ 14042 dst_reg->umin_value = 0; 14043 dst_reg->umax_value = U64_MAX; 14044 } else { 14045 /* Cannot overflow (as long as bounds are consistent) */ 14046 dst_reg->umin_value = umin_ptr - umax_val; 14047 dst_reg->umax_value = umax_ptr - umin_val; 14048 } 14049 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14050 dst_reg->off = ptr_reg->off; 14051 dst_reg->raw = ptr_reg->raw; 14052 if (reg_is_pkt_pointer(ptr_reg)) { 14053 dst_reg->id = ++env->id_gen; 14054 /* something was added to pkt_ptr, set range to zero */ 14055 if (smin_val < 0) 14056 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14057 } 14058 break; 14059 case BPF_AND: 14060 case BPF_OR: 14061 case BPF_XOR: 14062 /* bitwise ops on pointers are troublesome, prohibit. */ 14063 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14064 dst, bpf_alu_string[opcode >> 4]); 14065 return -EACCES; 14066 default: 14067 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14068 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14069 dst, bpf_alu_string[opcode >> 4]); 14070 return -EACCES; 14071 } 14072 14073 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14074 return -EINVAL; 14075 reg_bounds_sync(dst_reg); 14076 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 14077 return -EACCES; 14078 if (sanitize_needed(opcode)) { 14079 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14080 &info, true); 14081 if (ret < 0) 14082 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14083 } 14084 14085 return 0; 14086 } 14087 14088 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14089 struct bpf_reg_state *src_reg) 14090 { 14091 s32 *dst_smin = &dst_reg->s32_min_value; 14092 s32 *dst_smax = &dst_reg->s32_max_value; 14093 u32 *dst_umin = &dst_reg->u32_min_value; 14094 u32 *dst_umax = &dst_reg->u32_max_value; 14095 14096 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14097 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14098 *dst_smin = S32_MIN; 14099 *dst_smax = S32_MAX; 14100 } 14101 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 14102 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 14103 *dst_umin = 0; 14104 *dst_umax = U32_MAX; 14105 } 14106 } 14107 14108 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14109 struct bpf_reg_state *src_reg) 14110 { 14111 s64 *dst_smin = &dst_reg->smin_value; 14112 s64 *dst_smax = &dst_reg->smax_value; 14113 u64 *dst_umin = &dst_reg->umin_value; 14114 u64 *dst_umax = &dst_reg->umax_value; 14115 14116 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14117 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14118 *dst_smin = S64_MIN; 14119 *dst_smax = S64_MAX; 14120 } 14121 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 14122 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 14123 *dst_umin = 0; 14124 *dst_umax = U64_MAX; 14125 } 14126 } 14127 14128 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14129 struct bpf_reg_state *src_reg) 14130 { 14131 s32 *dst_smin = &dst_reg->s32_min_value; 14132 s32 *dst_smax = &dst_reg->s32_max_value; 14133 u32 umin_val = src_reg->u32_min_value; 14134 u32 umax_val = src_reg->u32_max_value; 14135 14136 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14137 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14138 /* Overflow possible, we know nothing */ 14139 *dst_smin = S32_MIN; 14140 *dst_smax = S32_MAX; 14141 } 14142 if (dst_reg->u32_min_value < umax_val) { 14143 /* Overflow possible, we know nothing */ 14144 dst_reg->u32_min_value = 0; 14145 dst_reg->u32_max_value = U32_MAX; 14146 } else { 14147 /* Cannot overflow (as long as bounds are consistent) */ 14148 dst_reg->u32_min_value -= umax_val; 14149 dst_reg->u32_max_value -= umin_val; 14150 } 14151 } 14152 14153 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14154 struct bpf_reg_state *src_reg) 14155 { 14156 s64 *dst_smin = &dst_reg->smin_value; 14157 s64 *dst_smax = &dst_reg->smax_value; 14158 u64 umin_val = src_reg->umin_value; 14159 u64 umax_val = src_reg->umax_value; 14160 14161 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14162 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14163 /* Overflow possible, we know nothing */ 14164 *dst_smin = S64_MIN; 14165 *dst_smax = S64_MAX; 14166 } 14167 if (dst_reg->umin_value < umax_val) { 14168 /* Overflow possible, we know nothing */ 14169 dst_reg->umin_value = 0; 14170 dst_reg->umax_value = U64_MAX; 14171 } else { 14172 /* Cannot overflow (as long as bounds are consistent) */ 14173 dst_reg->umin_value -= umax_val; 14174 dst_reg->umax_value -= umin_val; 14175 } 14176 } 14177 14178 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14179 struct bpf_reg_state *src_reg) 14180 { 14181 s32 *dst_smin = &dst_reg->s32_min_value; 14182 s32 *dst_smax = &dst_reg->s32_max_value; 14183 u32 *dst_umin = &dst_reg->u32_min_value; 14184 u32 *dst_umax = &dst_reg->u32_max_value; 14185 s32 tmp_prod[4]; 14186 14187 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14188 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14189 /* Overflow possible, we know nothing */ 14190 *dst_umin = 0; 14191 *dst_umax = U32_MAX; 14192 } 14193 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14194 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14195 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14196 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14197 /* Overflow possible, we know nothing */ 14198 *dst_smin = S32_MIN; 14199 *dst_smax = S32_MAX; 14200 } else { 14201 *dst_smin = min_array(tmp_prod, 4); 14202 *dst_smax = max_array(tmp_prod, 4); 14203 } 14204 } 14205 14206 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14207 struct bpf_reg_state *src_reg) 14208 { 14209 s64 *dst_smin = &dst_reg->smin_value; 14210 s64 *dst_smax = &dst_reg->smax_value; 14211 u64 *dst_umin = &dst_reg->umin_value; 14212 u64 *dst_umax = &dst_reg->umax_value; 14213 s64 tmp_prod[4]; 14214 14215 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14216 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14217 /* Overflow possible, we know nothing */ 14218 *dst_umin = 0; 14219 *dst_umax = U64_MAX; 14220 } 14221 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14222 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14223 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14224 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14225 /* Overflow possible, we know nothing */ 14226 *dst_smin = S64_MIN; 14227 *dst_smax = S64_MAX; 14228 } else { 14229 *dst_smin = min_array(tmp_prod, 4); 14230 *dst_smax = max_array(tmp_prod, 4); 14231 } 14232 } 14233 14234 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14235 struct bpf_reg_state *src_reg) 14236 { 14237 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14238 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14239 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14240 u32 umax_val = src_reg->u32_max_value; 14241 14242 if (src_known && dst_known) { 14243 __mark_reg32_known(dst_reg, var32_off.value); 14244 return; 14245 } 14246 14247 /* We get our minimum from the var_off, since that's inherently 14248 * bitwise. Our maximum is the minimum of the operands' maxima. 14249 */ 14250 dst_reg->u32_min_value = var32_off.value; 14251 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14252 14253 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14254 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14255 */ 14256 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14257 dst_reg->s32_min_value = dst_reg->u32_min_value; 14258 dst_reg->s32_max_value = dst_reg->u32_max_value; 14259 } else { 14260 dst_reg->s32_min_value = S32_MIN; 14261 dst_reg->s32_max_value = S32_MAX; 14262 } 14263 } 14264 14265 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14266 struct bpf_reg_state *src_reg) 14267 { 14268 bool src_known = tnum_is_const(src_reg->var_off); 14269 bool dst_known = tnum_is_const(dst_reg->var_off); 14270 u64 umax_val = src_reg->umax_value; 14271 14272 if (src_known && dst_known) { 14273 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14274 return; 14275 } 14276 14277 /* We get our minimum from the var_off, since that's inherently 14278 * bitwise. Our maximum is the minimum of the operands' maxima. 14279 */ 14280 dst_reg->umin_value = dst_reg->var_off.value; 14281 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14282 14283 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14284 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14285 */ 14286 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14287 dst_reg->smin_value = dst_reg->umin_value; 14288 dst_reg->smax_value = dst_reg->umax_value; 14289 } else { 14290 dst_reg->smin_value = S64_MIN; 14291 dst_reg->smax_value = S64_MAX; 14292 } 14293 /* We may learn something more from the var_off */ 14294 __update_reg_bounds(dst_reg); 14295 } 14296 14297 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 14298 struct bpf_reg_state *src_reg) 14299 { 14300 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14301 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14302 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14303 u32 umin_val = src_reg->u32_min_value; 14304 14305 if (src_known && dst_known) { 14306 __mark_reg32_known(dst_reg, var32_off.value); 14307 return; 14308 } 14309 14310 /* We get our maximum from the var_off, and our minimum is the 14311 * maximum of the operands' minima 14312 */ 14313 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 14314 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14315 14316 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14317 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14318 */ 14319 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14320 dst_reg->s32_min_value = dst_reg->u32_min_value; 14321 dst_reg->s32_max_value = dst_reg->u32_max_value; 14322 } else { 14323 dst_reg->s32_min_value = S32_MIN; 14324 dst_reg->s32_max_value = S32_MAX; 14325 } 14326 } 14327 14328 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 14329 struct bpf_reg_state *src_reg) 14330 { 14331 bool src_known = tnum_is_const(src_reg->var_off); 14332 bool dst_known = tnum_is_const(dst_reg->var_off); 14333 u64 umin_val = src_reg->umin_value; 14334 14335 if (src_known && dst_known) { 14336 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14337 return; 14338 } 14339 14340 /* We get our maximum from the var_off, and our minimum is the 14341 * maximum of the operands' minima 14342 */ 14343 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14344 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14345 14346 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14347 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14348 */ 14349 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14350 dst_reg->smin_value = dst_reg->umin_value; 14351 dst_reg->smax_value = dst_reg->umax_value; 14352 } else { 14353 dst_reg->smin_value = S64_MIN; 14354 dst_reg->smax_value = S64_MAX; 14355 } 14356 /* We may learn something more from the var_off */ 14357 __update_reg_bounds(dst_reg); 14358 } 14359 14360 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 14361 struct bpf_reg_state *src_reg) 14362 { 14363 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14364 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14365 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14366 14367 if (src_known && dst_known) { 14368 __mark_reg32_known(dst_reg, var32_off.value); 14369 return; 14370 } 14371 14372 /* We get both minimum and maximum from the var32_off. */ 14373 dst_reg->u32_min_value = var32_off.value; 14374 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14375 14376 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14377 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14378 */ 14379 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14380 dst_reg->s32_min_value = dst_reg->u32_min_value; 14381 dst_reg->s32_max_value = dst_reg->u32_max_value; 14382 } else { 14383 dst_reg->s32_min_value = S32_MIN; 14384 dst_reg->s32_max_value = S32_MAX; 14385 } 14386 } 14387 14388 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 14389 struct bpf_reg_state *src_reg) 14390 { 14391 bool src_known = tnum_is_const(src_reg->var_off); 14392 bool dst_known = tnum_is_const(dst_reg->var_off); 14393 14394 if (src_known && dst_known) { 14395 /* dst_reg->var_off.value has been updated earlier */ 14396 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14397 return; 14398 } 14399 14400 /* We get both minimum and maximum from the var_off. */ 14401 dst_reg->umin_value = dst_reg->var_off.value; 14402 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14403 14404 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14405 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14406 */ 14407 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14408 dst_reg->smin_value = dst_reg->umin_value; 14409 dst_reg->smax_value = dst_reg->umax_value; 14410 } else { 14411 dst_reg->smin_value = S64_MIN; 14412 dst_reg->smax_value = S64_MAX; 14413 } 14414 14415 __update_reg_bounds(dst_reg); 14416 } 14417 14418 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14419 u64 umin_val, u64 umax_val) 14420 { 14421 /* We lose all sign bit information (except what we can pick 14422 * up from var_off) 14423 */ 14424 dst_reg->s32_min_value = S32_MIN; 14425 dst_reg->s32_max_value = S32_MAX; 14426 /* If we might shift our top bit out, then we know nothing */ 14427 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 14428 dst_reg->u32_min_value = 0; 14429 dst_reg->u32_max_value = U32_MAX; 14430 } else { 14431 dst_reg->u32_min_value <<= umin_val; 14432 dst_reg->u32_max_value <<= umax_val; 14433 } 14434 } 14435 14436 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14437 struct bpf_reg_state *src_reg) 14438 { 14439 u32 umax_val = src_reg->u32_max_value; 14440 u32 umin_val = src_reg->u32_min_value; 14441 /* u32 alu operation will zext upper bits */ 14442 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14443 14444 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14445 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 14446 /* Not required but being careful mark reg64 bounds as unknown so 14447 * that we are forced to pick them up from tnum and zext later and 14448 * if some path skips this step we are still safe. 14449 */ 14450 __mark_reg64_unbounded(dst_reg); 14451 __update_reg32_bounds(dst_reg); 14452 } 14453 14454 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 14455 u64 umin_val, u64 umax_val) 14456 { 14457 /* Special case <<32 because it is a common compiler pattern to sign 14458 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 14459 * positive we know this shift will also be positive so we can track 14460 * bounds correctly. Otherwise we lose all sign bit information except 14461 * what we can pick up from var_off. Perhaps we can generalize this 14462 * later to shifts of any length. 14463 */ 14464 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 14465 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 14466 else 14467 dst_reg->smax_value = S64_MAX; 14468 14469 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 14470 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 14471 else 14472 dst_reg->smin_value = S64_MIN; 14473 14474 /* If we might shift our top bit out, then we know nothing */ 14475 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 14476 dst_reg->umin_value = 0; 14477 dst_reg->umax_value = U64_MAX; 14478 } else { 14479 dst_reg->umin_value <<= umin_val; 14480 dst_reg->umax_value <<= umax_val; 14481 } 14482 } 14483 14484 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 14485 struct bpf_reg_state *src_reg) 14486 { 14487 u64 umax_val = src_reg->umax_value; 14488 u64 umin_val = src_reg->umin_value; 14489 14490 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 14491 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 14492 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14493 14494 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 14495 /* We may learn something more from the var_off */ 14496 __update_reg_bounds(dst_reg); 14497 } 14498 14499 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 14500 struct bpf_reg_state *src_reg) 14501 { 14502 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14503 u32 umax_val = src_reg->u32_max_value; 14504 u32 umin_val = src_reg->u32_min_value; 14505 14506 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14507 * be negative, then either: 14508 * 1) src_reg might be zero, so the sign bit of the result is 14509 * unknown, so we lose our signed bounds 14510 * 2) it's known negative, thus the unsigned bounds capture the 14511 * signed bounds 14512 * 3) the signed bounds cross zero, so they tell us nothing 14513 * about the result 14514 * If the value in dst_reg is known nonnegative, then again the 14515 * unsigned bounds capture the signed bounds. 14516 * Thus, in all cases it suffices to blow away our signed bounds 14517 * and rely on inferring new ones from the unsigned bounds and 14518 * var_off of the result. 14519 */ 14520 dst_reg->s32_min_value = S32_MIN; 14521 dst_reg->s32_max_value = S32_MAX; 14522 14523 dst_reg->var_off = tnum_rshift(subreg, umin_val); 14524 dst_reg->u32_min_value >>= umax_val; 14525 dst_reg->u32_max_value >>= umin_val; 14526 14527 __mark_reg64_unbounded(dst_reg); 14528 __update_reg32_bounds(dst_reg); 14529 } 14530 14531 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 14532 struct bpf_reg_state *src_reg) 14533 { 14534 u64 umax_val = src_reg->umax_value; 14535 u64 umin_val = src_reg->umin_value; 14536 14537 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14538 * be negative, then either: 14539 * 1) src_reg might be zero, so the sign bit of the result is 14540 * unknown, so we lose our signed bounds 14541 * 2) it's known negative, thus the unsigned bounds capture the 14542 * signed bounds 14543 * 3) the signed bounds cross zero, so they tell us nothing 14544 * about the result 14545 * If the value in dst_reg is known nonnegative, then again the 14546 * unsigned bounds capture the signed bounds. 14547 * Thus, in all cases it suffices to blow away our signed bounds 14548 * and rely on inferring new ones from the unsigned bounds and 14549 * var_off of the result. 14550 */ 14551 dst_reg->smin_value = S64_MIN; 14552 dst_reg->smax_value = S64_MAX; 14553 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 14554 dst_reg->umin_value >>= umax_val; 14555 dst_reg->umax_value >>= umin_val; 14556 14557 /* Its not easy to operate on alu32 bounds here because it depends 14558 * on bits being shifted in. Take easy way out and mark unbounded 14559 * so we can recalculate later from tnum. 14560 */ 14561 __mark_reg32_unbounded(dst_reg); 14562 __update_reg_bounds(dst_reg); 14563 } 14564 14565 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 14566 struct bpf_reg_state *src_reg) 14567 { 14568 u64 umin_val = src_reg->u32_min_value; 14569 14570 /* Upon reaching here, src_known is true and 14571 * umax_val is equal to umin_val. 14572 */ 14573 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 14574 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 14575 14576 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 14577 14578 /* blow away the dst_reg umin_value/umax_value and rely on 14579 * dst_reg var_off to refine the result. 14580 */ 14581 dst_reg->u32_min_value = 0; 14582 dst_reg->u32_max_value = U32_MAX; 14583 14584 __mark_reg64_unbounded(dst_reg); 14585 __update_reg32_bounds(dst_reg); 14586 } 14587 14588 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 14589 struct bpf_reg_state *src_reg) 14590 { 14591 u64 umin_val = src_reg->umin_value; 14592 14593 /* Upon reaching here, src_known is true and umax_val is equal 14594 * to umin_val. 14595 */ 14596 dst_reg->smin_value >>= umin_val; 14597 dst_reg->smax_value >>= umin_val; 14598 14599 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 14600 14601 /* blow away the dst_reg umin_value/umax_value and rely on 14602 * dst_reg var_off to refine the result. 14603 */ 14604 dst_reg->umin_value = 0; 14605 dst_reg->umax_value = U64_MAX; 14606 14607 /* Its not easy to operate on alu32 bounds here because it depends 14608 * on bits being shifted in from upper 32-bits. Take easy way out 14609 * and mark unbounded so we can recalculate later from tnum. 14610 */ 14611 __mark_reg32_unbounded(dst_reg); 14612 __update_reg_bounds(dst_reg); 14613 } 14614 14615 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 14616 const struct bpf_reg_state *src_reg) 14617 { 14618 bool src_is_const = false; 14619 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 14620 14621 if (insn_bitness == 32) { 14622 if (tnum_subreg_is_const(src_reg->var_off) 14623 && src_reg->s32_min_value == src_reg->s32_max_value 14624 && src_reg->u32_min_value == src_reg->u32_max_value) 14625 src_is_const = true; 14626 } else { 14627 if (tnum_is_const(src_reg->var_off) 14628 && src_reg->smin_value == src_reg->smax_value 14629 && src_reg->umin_value == src_reg->umax_value) 14630 src_is_const = true; 14631 } 14632 14633 switch (BPF_OP(insn->code)) { 14634 case BPF_ADD: 14635 case BPF_SUB: 14636 case BPF_AND: 14637 case BPF_XOR: 14638 case BPF_OR: 14639 case BPF_MUL: 14640 return true; 14641 14642 /* Shift operators range is only computable if shift dimension operand 14643 * is a constant. Shifts greater than 31 or 63 are undefined. This 14644 * includes shifts by a negative number. 14645 */ 14646 case BPF_LSH: 14647 case BPF_RSH: 14648 case BPF_ARSH: 14649 return (src_is_const && src_reg->umax_value < insn_bitness); 14650 default: 14651 return false; 14652 } 14653 } 14654 14655 /* WARNING: This function does calculations on 64-bit values, but the actual 14656 * execution may occur on 32-bit values. Therefore, things like bitshifts 14657 * need extra checks in the 32-bit case. 14658 */ 14659 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 14660 struct bpf_insn *insn, 14661 struct bpf_reg_state *dst_reg, 14662 struct bpf_reg_state src_reg) 14663 { 14664 u8 opcode = BPF_OP(insn->code); 14665 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14666 int ret; 14667 14668 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 14669 __mark_reg_unknown(env, dst_reg); 14670 return 0; 14671 } 14672 14673 if (sanitize_needed(opcode)) { 14674 ret = sanitize_val_alu(env, insn); 14675 if (ret < 0) 14676 return sanitize_err(env, insn, ret, NULL, NULL); 14677 } 14678 14679 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 14680 * There are two classes of instructions: The first class we track both 14681 * alu32 and alu64 sign/unsigned bounds independently this provides the 14682 * greatest amount of precision when alu operations are mixed with jmp32 14683 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 14684 * and BPF_OR. This is possible because these ops have fairly easy to 14685 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 14686 * See alu32 verifier tests for examples. The second class of 14687 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 14688 * with regards to tracking sign/unsigned bounds because the bits may 14689 * cross subreg boundaries in the alu64 case. When this happens we mark 14690 * the reg unbounded in the subreg bound space and use the resulting 14691 * tnum to calculate an approximation of the sign/unsigned bounds. 14692 */ 14693 switch (opcode) { 14694 case BPF_ADD: 14695 scalar32_min_max_add(dst_reg, &src_reg); 14696 scalar_min_max_add(dst_reg, &src_reg); 14697 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 14698 break; 14699 case BPF_SUB: 14700 scalar32_min_max_sub(dst_reg, &src_reg); 14701 scalar_min_max_sub(dst_reg, &src_reg); 14702 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 14703 break; 14704 case BPF_MUL: 14705 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 14706 scalar32_min_max_mul(dst_reg, &src_reg); 14707 scalar_min_max_mul(dst_reg, &src_reg); 14708 break; 14709 case BPF_AND: 14710 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 14711 scalar32_min_max_and(dst_reg, &src_reg); 14712 scalar_min_max_and(dst_reg, &src_reg); 14713 break; 14714 case BPF_OR: 14715 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 14716 scalar32_min_max_or(dst_reg, &src_reg); 14717 scalar_min_max_or(dst_reg, &src_reg); 14718 break; 14719 case BPF_XOR: 14720 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 14721 scalar32_min_max_xor(dst_reg, &src_reg); 14722 scalar_min_max_xor(dst_reg, &src_reg); 14723 break; 14724 case BPF_LSH: 14725 if (alu32) 14726 scalar32_min_max_lsh(dst_reg, &src_reg); 14727 else 14728 scalar_min_max_lsh(dst_reg, &src_reg); 14729 break; 14730 case BPF_RSH: 14731 if (alu32) 14732 scalar32_min_max_rsh(dst_reg, &src_reg); 14733 else 14734 scalar_min_max_rsh(dst_reg, &src_reg); 14735 break; 14736 case BPF_ARSH: 14737 if (alu32) 14738 scalar32_min_max_arsh(dst_reg, &src_reg); 14739 else 14740 scalar_min_max_arsh(dst_reg, &src_reg); 14741 break; 14742 default: 14743 break; 14744 } 14745 14746 /* ALU32 ops are zero extended into 64bit register */ 14747 if (alu32) 14748 zext_32_to_64(dst_reg); 14749 reg_bounds_sync(dst_reg); 14750 return 0; 14751 } 14752 14753 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14754 * and var_off. 14755 */ 14756 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14757 struct bpf_insn *insn) 14758 { 14759 struct bpf_verifier_state *vstate = env->cur_state; 14760 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14761 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14762 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14763 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14764 u8 opcode = BPF_OP(insn->code); 14765 int err; 14766 14767 dst_reg = ®s[insn->dst_reg]; 14768 src_reg = NULL; 14769 14770 if (dst_reg->type == PTR_TO_ARENA) { 14771 struct bpf_insn_aux_data *aux = cur_aux(env); 14772 14773 if (BPF_CLASS(insn->code) == BPF_ALU64) 14774 /* 14775 * 32-bit operations zero upper bits automatically. 14776 * 64-bit operations need to be converted to 32. 14777 */ 14778 aux->needs_zext = true; 14779 14780 /* Any arithmetic operations are allowed on arena pointers */ 14781 return 0; 14782 } 14783 14784 if (dst_reg->type != SCALAR_VALUE) 14785 ptr_reg = dst_reg; 14786 14787 if (BPF_SRC(insn->code) == BPF_X) { 14788 src_reg = ®s[insn->src_reg]; 14789 if (src_reg->type != SCALAR_VALUE) { 14790 if (dst_reg->type != SCALAR_VALUE) { 14791 /* Combining two pointers by any ALU op yields 14792 * an arbitrary scalar. Disallow all math except 14793 * pointer subtraction 14794 */ 14795 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14796 mark_reg_unknown(env, regs, insn->dst_reg); 14797 return 0; 14798 } 14799 verbose(env, "R%d pointer %s pointer prohibited\n", 14800 insn->dst_reg, 14801 bpf_alu_string[opcode >> 4]); 14802 return -EACCES; 14803 } else { 14804 /* scalar += pointer 14805 * This is legal, but we have to reverse our 14806 * src/dest handling in computing the range 14807 */ 14808 err = mark_chain_precision(env, insn->dst_reg); 14809 if (err) 14810 return err; 14811 return adjust_ptr_min_max_vals(env, insn, 14812 src_reg, dst_reg); 14813 } 14814 } else if (ptr_reg) { 14815 /* pointer += scalar */ 14816 err = mark_chain_precision(env, insn->src_reg); 14817 if (err) 14818 return err; 14819 return adjust_ptr_min_max_vals(env, insn, 14820 dst_reg, src_reg); 14821 } else if (dst_reg->precise) { 14822 /* if dst_reg is precise, src_reg should be precise as well */ 14823 err = mark_chain_precision(env, insn->src_reg); 14824 if (err) 14825 return err; 14826 } 14827 } else { 14828 /* Pretend the src is a reg with a known value, since we only 14829 * need to be able to read from this state. 14830 */ 14831 off_reg.type = SCALAR_VALUE; 14832 __mark_reg_known(&off_reg, insn->imm); 14833 src_reg = &off_reg; 14834 if (ptr_reg) /* pointer += K */ 14835 return adjust_ptr_min_max_vals(env, insn, 14836 ptr_reg, src_reg); 14837 } 14838 14839 /* Got here implies adding two SCALAR_VALUEs */ 14840 if (WARN_ON_ONCE(ptr_reg)) { 14841 print_verifier_state(env, vstate, vstate->curframe, true); 14842 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14843 return -EINVAL; 14844 } 14845 if (WARN_ON(!src_reg)) { 14846 print_verifier_state(env, vstate, vstate->curframe, true); 14847 verbose(env, "verifier internal error: no src_reg\n"); 14848 return -EINVAL; 14849 } 14850 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14851 if (err) 14852 return err; 14853 /* 14854 * Compilers can generate the code 14855 * r1 = r2 14856 * r1 += 0x1 14857 * if r2 < 1000 goto ... 14858 * use r1 in memory access 14859 * So for 64-bit alu remember constant delta between r2 and r1 and 14860 * update r1 after 'if' condition. 14861 */ 14862 if (env->bpf_capable && 14863 BPF_OP(insn->code) == BPF_ADD && !alu32 && 14864 dst_reg->id && is_reg_const(src_reg, false)) { 14865 u64 val = reg_const_value(src_reg, false); 14866 14867 if ((dst_reg->id & BPF_ADD_CONST) || 14868 /* prevent overflow in sync_linked_regs() later */ 14869 val > (u32)S32_MAX) { 14870 /* 14871 * If the register already went through rX += val 14872 * we cannot accumulate another val into rx->off. 14873 */ 14874 dst_reg->off = 0; 14875 dst_reg->id = 0; 14876 } else { 14877 dst_reg->id |= BPF_ADD_CONST; 14878 dst_reg->off = val; 14879 } 14880 } else { 14881 /* 14882 * Make sure ID is cleared otherwise dst_reg min/max could be 14883 * incorrectly propagated into other registers by sync_linked_regs() 14884 */ 14885 dst_reg->id = 0; 14886 } 14887 return 0; 14888 } 14889 14890 /* check validity of 32-bit and 64-bit arithmetic operations */ 14891 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14892 { 14893 struct bpf_reg_state *regs = cur_regs(env); 14894 u8 opcode = BPF_OP(insn->code); 14895 int err; 14896 14897 if (opcode == BPF_END || opcode == BPF_NEG) { 14898 if (opcode == BPF_NEG) { 14899 if (BPF_SRC(insn->code) != BPF_K || 14900 insn->src_reg != BPF_REG_0 || 14901 insn->off != 0 || insn->imm != 0) { 14902 verbose(env, "BPF_NEG uses reserved fields\n"); 14903 return -EINVAL; 14904 } 14905 } else { 14906 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14907 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14908 (BPF_CLASS(insn->code) == BPF_ALU64 && 14909 BPF_SRC(insn->code) != BPF_TO_LE)) { 14910 verbose(env, "BPF_END uses reserved fields\n"); 14911 return -EINVAL; 14912 } 14913 } 14914 14915 /* check src operand */ 14916 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14917 if (err) 14918 return err; 14919 14920 if (is_pointer_value(env, insn->dst_reg)) { 14921 verbose(env, "R%d pointer arithmetic prohibited\n", 14922 insn->dst_reg); 14923 return -EACCES; 14924 } 14925 14926 /* check dest operand */ 14927 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14928 if (err) 14929 return err; 14930 14931 } else if (opcode == BPF_MOV) { 14932 14933 if (BPF_SRC(insn->code) == BPF_X) { 14934 if (BPF_CLASS(insn->code) == BPF_ALU) { 14935 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14936 insn->imm) { 14937 verbose(env, "BPF_MOV uses reserved fields\n"); 14938 return -EINVAL; 14939 } 14940 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14941 if (insn->imm != 1 && insn->imm != 1u << 16) { 14942 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14943 return -EINVAL; 14944 } 14945 if (!env->prog->aux->arena) { 14946 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14947 return -EINVAL; 14948 } 14949 } else { 14950 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14951 insn->off != 32) || insn->imm) { 14952 verbose(env, "BPF_MOV uses reserved fields\n"); 14953 return -EINVAL; 14954 } 14955 } 14956 14957 /* check src operand */ 14958 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14959 if (err) 14960 return err; 14961 } else { 14962 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14963 verbose(env, "BPF_MOV uses reserved fields\n"); 14964 return -EINVAL; 14965 } 14966 } 14967 14968 /* check dest operand, mark as required later */ 14969 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14970 if (err) 14971 return err; 14972 14973 if (BPF_SRC(insn->code) == BPF_X) { 14974 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14975 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14976 14977 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14978 if (insn->imm) { 14979 /* off == BPF_ADDR_SPACE_CAST */ 14980 mark_reg_unknown(env, regs, insn->dst_reg); 14981 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14982 dst_reg->type = PTR_TO_ARENA; 14983 /* PTR_TO_ARENA is 32-bit */ 14984 dst_reg->subreg_def = env->insn_idx + 1; 14985 } 14986 } else if (insn->off == 0) { 14987 /* case: R1 = R2 14988 * copy register state to dest reg 14989 */ 14990 assign_scalar_id_before_mov(env, src_reg); 14991 copy_register_state(dst_reg, src_reg); 14992 dst_reg->live |= REG_LIVE_WRITTEN; 14993 dst_reg->subreg_def = DEF_NOT_SUBREG; 14994 } else { 14995 /* case: R1 = (s8, s16 s32)R2 */ 14996 if (is_pointer_value(env, insn->src_reg)) { 14997 verbose(env, 14998 "R%d sign-extension part of pointer\n", 14999 insn->src_reg); 15000 return -EACCES; 15001 } else if (src_reg->type == SCALAR_VALUE) { 15002 bool no_sext; 15003 15004 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15005 if (no_sext) 15006 assign_scalar_id_before_mov(env, src_reg); 15007 copy_register_state(dst_reg, src_reg); 15008 if (!no_sext) 15009 dst_reg->id = 0; 15010 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15011 dst_reg->live |= REG_LIVE_WRITTEN; 15012 dst_reg->subreg_def = DEF_NOT_SUBREG; 15013 } else { 15014 mark_reg_unknown(env, regs, insn->dst_reg); 15015 } 15016 } 15017 } else { 15018 /* R1 = (u32) R2 */ 15019 if (is_pointer_value(env, insn->src_reg)) { 15020 verbose(env, 15021 "R%d partial copy of pointer\n", 15022 insn->src_reg); 15023 return -EACCES; 15024 } else if (src_reg->type == SCALAR_VALUE) { 15025 if (insn->off == 0) { 15026 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15027 15028 if (is_src_reg_u32) 15029 assign_scalar_id_before_mov(env, src_reg); 15030 copy_register_state(dst_reg, src_reg); 15031 /* Make sure ID is cleared if src_reg is not in u32 15032 * range otherwise dst_reg min/max could be incorrectly 15033 * propagated into src_reg by sync_linked_regs() 15034 */ 15035 if (!is_src_reg_u32) 15036 dst_reg->id = 0; 15037 dst_reg->live |= REG_LIVE_WRITTEN; 15038 dst_reg->subreg_def = env->insn_idx + 1; 15039 } else { 15040 /* case: W1 = (s8, s16)W2 */ 15041 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15042 15043 if (no_sext) 15044 assign_scalar_id_before_mov(env, src_reg); 15045 copy_register_state(dst_reg, src_reg); 15046 if (!no_sext) 15047 dst_reg->id = 0; 15048 dst_reg->live |= REG_LIVE_WRITTEN; 15049 dst_reg->subreg_def = env->insn_idx + 1; 15050 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15051 } 15052 } else { 15053 mark_reg_unknown(env, regs, 15054 insn->dst_reg); 15055 } 15056 zext_32_to_64(dst_reg); 15057 reg_bounds_sync(dst_reg); 15058 } 15059 } else { 15060 /* case: R = imm 15061 * remember the value we stored into this reg 15062 */ 15063 /* clear any state __mark_reg_known doesn't set */ 15064 mark_reg_unknown(env, regs, insn->dst_reg); 15065 regs[insn->dst_reg].type = SCALAR_VALUE; 15066 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15067 __mark_reg_known(regs + insn->dst_reg, 15068 insn->imm); 15069 } else { 15070 __mark_reg_known(regs + insn->dst_reg, 15071 (u32)insn->imm); 15072 } 15073 } 15074 15075 } else if (opcode > BPF_END) { 15076 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15077 return -EINVAL; 15078 15079 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15080 15081 if (BPF_SRC(insn->code) == BPF_X) { 15082 if (insn->imm != 0 || insn->off > 1 || 15083 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15084 verbose(env, "BPF_ALU uses reserved fields\n"); 15085 return -EINVAL; 15086 } 15087 /* check src1 operand */ 15088 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15089 if (err) 15090 return err; 15091 } else { 15092 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 15093 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15094 verbose(env, "BPF_ALU uses reserved fields\n"); 15095 return -EINVAL; 15096 } 15097 } 15098 15099 /* check src2 operand */ 15100 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15101 if (err) 15102 return err; 15103 15104 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15105 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15106 verbose(env, "div by zero\n"); 15107 return -EINVAL; 15108 } 15109 15110 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15111 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15112 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15113 15114 if (insn->imm < 0 || insn->imm >= size) { 15115 verbose(env, "invalid shift %d\n", insn->imm); 15116 return -EINVAL; 15117 } 15118 } 15119 15120 /* check dest operand */ 15121 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15122 err = err ?: adjust_reg_min_max_vals(env, insn); 15123 if (err) 15124 return err; 15125 } 15126 15127 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15128 } 15129 15130 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15131 struct bpf_reg_state *dst_reg, 15132 enum bpf_reg_type type, 15133 bool range_right_open) 15134 { 15135 struct bpf_func_state *state; 15136 struct bpf_reg_state *reg; 15137 int new_range; 15138 15139 if (dst_reg->off < 0 || 15140 (dst_reg->off == 0 && range_right_open)) 15141 /* This doesn't give us any range */ 15142 return; 15143 15144 if (dst_reg->umax_value > MAX_PACKET_OFF || 15145 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15146 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15147 * than pkt_end, but that's because it's also less than pkt. 15148 */ 15149 return; 15150 15151 new_range = dst_reg->off; 15152 if (range_right_open) 15153 new_range++; 15154 15155 /* Examples for register markings: 15156 * 15157 * pkt_data in dst register: 15158 * 15159 * r2 = r3; 15160 * r2 += 8; 15161 * if (r2 > pkt_end) goto <handle exception> 15162 * <access okay> 15163 * 15164 * r2 = r3; 15165 * r2 += 8; 15166 * if (r2 < pkt_end) goto <access okay> 15167 * <handle exception> 15168 * 15169 * Where: 15170 * r2 == dst_reg, pkt_end == src_reg 15171 * r2=pkt(id=n,off=8,r=0) 15172 * r3=pkt(id=n,off=0,r=0) 15173 * 15174 * pkt_data in src register: 15175 * 15176 * r2 = r3; 15177 * r2 += 8; 15178 * if (pkt_end >= r2) goto <access okay> 15179 * <handle exception> 15180 * 15181 * r2 = r3; 15182 * r2 += 8; 15183 * if (pkt_end <= r2) goto <handle exception> 15184 * <access okay> 15185 * 15186 * Where: 15187 * pkt_end == dst_reg, r2 == src_reg 15188 * r2=pkt(id=n,off=8,r=0) 15189 * r3=pkt(id=n,off=0,r=0) 15190 * 15191 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15192 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15193 * and [r3, r3 + 8-1) respectively is safe to access depending on 15194 * the check. 15195 */ 15196 15197 /* If our ids match, then we must have the same max_value. And we 15198 * don't care about the other reg's fixed offset, since if it's too big 15199 * the range won't allow anything. 15200 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15201 */ 15202 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15203 if (reg->type == type && reg->id == dst_reg->id) 15204 /* keep the maximum range already checked */ 15205 reg->range = max(reg->range, new_range); 15206 })); 15207 } 15208 15209 /* 15210 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15211 */ 15212 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15213 u8 opcode, bool is_jmp32) 15214 { 15215 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15216 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15217 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15218 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15219 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15220 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15221 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15222 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15223 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15224 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15225 15226 switch (opcode) { 15227 case BPF_JEQ: 15228 /* constants, umin/umax and smin/smax checks would be 15229 * redundant in this case because they all should match 15230 */ 15231 if (tnum_is_const(t1) && tnum_is_const(t2)) 15232 return t1.value == t2.value; 15233 /* non-overlapping ranges */ 15234 if (umin1 > umax2 || umax1 < umin2) 15235 return 0; 15236 if (smin1 > smax2 || smax1 < smin2) 15237 return 0; 15238 if (!is_jmp32) { 15239 /* if 64-bit ranges are inconclusive, see if we can 15240 * utilize 32-bit subrange knowledge to eliminate 15241 * branches that can't be taken a priori 15242 */ 15243 if (reg1->u32_min_value > reg2->u32_max_value || 15244 reg1->u32_max_value < reg2->u32_min_value) 15245 return 0; 15246 if (reg1->s32_min_value > reg2->s32_max_value || 15247 reg1->s32_max_value < reg2->s32_min_value) 15248 return 0; 15249 } 15250 break; 15251 case BPF_JNE: 15252 /* constants, umin/umax and smin/smax checks would be 15253 * redundant in this case because they all should match 15254 */ 15255 if (tnum_is_const(t1) && tnum_is_const(t2)) 15256 return t1.value != t2.value; 15257 /* non-overlapping ranges */ 15258 if (umin1 > umax2 || umax1 < umin2) 15259 return 1; 15260 if (smin1 > smax2 || smax1 < smin2) 15261 return 1; 15262 if (!is_jmp32) { 15263 /* if 64-bit ranges are inconclusive, see if we can 15264 * utilize 32-bit subrange knowledge to eliminate 15265 * branches that can't be taken a priori 15266 */ 15267 if (reg1->u32_min_value > reg2->u32_max_value || 15268 reg1->u32_max_value < reg2->u32_min_value) 15269 return 1; 15270 if (reg1->s32_min_value > reg2->s32_max_value || 15271 reg1->s32_max_value < reg2->s32_min_value) 15272 return 1; 15273 } 15274 break; 15275 case BPF_JSET: 15276 if (!is_reg_const(reg2, is_jmp32)) { 15277 swap(reg1, reg2); 15278 swap(t1, t2); 15279 } 15280 if (!is_reg_const(reg2, is_jmp32)) 15281 return -1; 15282 if ((~t1.mask & t1.value) & t2.value) 15283 return 1; 15284 if (!((t1.mask | t1.value) & t2.value)) 15285 return 0; 15286 break; 15287 case BPF_JGT: 15288 if (umin1 > umax2) 15289 return 1; 15290 else if (umax1 <= umin2) 15291 return 0; 15292 break; 15293 case BPF_JSGT: 15294 if (smin1 > smax2) 15295 return 1; 15296 else if (smax1 <= smin2) 15297 return 0; 15298 break; 15299 case BPF_JLT: 15300 if (umax1 < umin2) 15301 return 1; 15302 else if (umin1 >= umax2) 15303 return 0; 15304 break; 15305 case BPF_JSLT: 15306 if (smax1 < smin2) 15307 return 1; 15308 else if (smin1 >= smax2) 15309 return 0; 15310 break; 15311 case BPF_JGE: 15312 if (umin1 >= umax2) 15313 return 1; 15314 else if (umax1 < umin2) 15315 return 0; 15316 break; 15317 case BPF_JSGE: 15318 if (smin1 >= smax2) 15319 return 1; 15320 else if (smax1 < smin2) 15321 return 0; 15322 break; 15323 case BPF_JLE: 15324 if (umax1 <= umin2) 15325 return 1; 15326 else if (umin1 > umax2) 15327 return 0; 15328 break; 15329 case BPF_JSLE: 15330 if (smax1 <= smin2) 15331 return 1; 15332 else if (smin1 > smax2) 15333 return 0; 15334 break; 15335 } 15336 15337 return -1; 15338 } 15339 15340 static int flip_opcode(u32 opcode) 15341 { 15342 /* How can we transform "a <op> b" into "b <op> a"? */ 15343 static const u8 opcode_flip[16] = { 15344 /* these stay the same */ 15345 [BPF_JEQ >> 4] = BPF_JEQ, 15346 [BPF_JNE >> 4] = BPF_JNE, 15347 [BPF_JSET >> 4] = BPF_JSET, 15348 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 15349 [BPF_JGE >> 4] = BPF_JLE, 15350 [BPF_JGT >> 4] = BPF_JLT, 15351 [BPF_JLE >> 4] = BPF_JGE, 15352 [BPF_JLT >> 4] = BPF_JGT, 15353 [BPF_JSGE >> 4] = BPF_JSLE, 15354 [BPF_JSGT >> 4] = BPF_JSLT, 15355 [BPF_JSLE >> 4] = BPF_JSGE, 15356 [BPF_JSLT >> 4] = BPF_JSGT 15357 }; 15358 return opcode_flip[opcode >> 4]; 15359 } 15360 15361 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 15362 struct bpf_reg_state *src_reg, 15363 u8 opcode) 15364 { 15365 struct bpf_reg_state *pkt; 15366 15367 if (src_reg->type == PTR_TO_PACKET_END) { 15368 pkt = dst_reg; 15369 } else if (dst_reg->type == PTR_TO_PACKET_END) { 15370 pkt = src_reg; 15371 opcode = flip_opcode(opcode); 15372 } else { 15373 return -1; 15374 } 15375 15376 if (pkt->range >= 0) 15377 return -1; 15378 15379 switch (opcode) { 15380 case BPF_JLE: 15381 /* pkt <= pkt_end */ 15382 fallthrough; 15383 case BPF_JGT: 15384 /* pkt > pkt_end */ 15385 if (pkt->range == BEYOND_PKT_END) 15386 /* pkt has at last one extra byte beyond pkt_end */ 15387 return opcode == BPF_JGT; 15388 break; 15389 case BPF_JLT: 15390 /* pkt < pkt_end */ 15391 fallthrough; 15392 case BPF_JGE: 15393 /* pkt >= pkt_end */ 15394 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 15395 return opcode == BPF_JGE; 15396 break; 15397 } 15398 return -1; 15399 } 15400 15401 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 15402 * and return: 15403 * 1 - branch will be taken and "goto target" will be executed 15404 * 0 - branch will not be taken and fall-through to next insn 15405 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 15406 * range [0,10] 15407 */ 15408 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15409 u8 opcode, bool is_jmp32) 15410 { 15411 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 15412 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 15413 15414 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 15415 u64 val; 15416 15417 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 15418 if (!is_reg_const(reg2, is_jmp32)) { 15419 opcode = flip_opcode(opcode); 15420 swap(reg1, reg2); 15421 } 15422 /* and ensure that reg2 is a constant */ 15423 if (!is_reg_const(reg2, is_jmp32)) 15424 return -1; 15425 15426 if (!reg_not_null(reg1)) 15427 return -1; 15428 15429 /* If pointer is valid tests against zero will fail so we can 15430 * use this to direct branch taken. 15431 */ 15432 val = reg_const_value(reg2, is_jmp32); 15433 if (val != 0) 15434 return -1; 15435 15436 switch (opcode) { 15437 case BPF_JEQ: 15438 return 0; 15439 case BPF_JNE: 15440 return 1; 15441 default: 15442 return -1; 15443 } 15444 } 15445 15446 /* now deal with two scalars, but not necessarily constants */ 15447 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 15448 } 15449 15450 /* Opcode that corresponds to a *false* branch condition. 15451 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 15452 */ 15453 static u8 rev_opcode(u8 opcode) 15454 { 15455 switch (opcode) { 15456 case BPF_JEQ: return BPF_JNE; 15457 case BPF_JNE: return BPF_JEQ; 15458 /* JSET doesn't have it's reverse opcode in BPF, so add 15459 * BPF_X flag to denote the reverse of that operation 15460 */ 15461 case BPF_JSET: return BPF_JSET | BPF_X; 15462 case BPF_JSET | BPF_X: return BPF_JSET; 15463 case BPF_JGE: return BPF_JLT; 15464 case BPF_JGT: return BPF_JLE; 15465 case BPF_JLE: return BPF_JGT; 15466 case BPF_JLT: return BPF_JGE; 15467 case BPF_JSGE: return BPF_JSLT; 15468 case BPF_JSGT: return BPF_JSLE; 15469 case BPF_JSLE: return BPF_JSGT; 15470 case BPF_JSLT: return BPF_JSGE; 15471 default: return 0; 15472 } 15473 } 15474 15475 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 15476 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15477 u8 opcode, bool is_jmp32) 15478 { 15479 struct tnum t; 15480 u64 val; 15481 15482 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 15483 switch (opcode) { 15484 case BPF_JGE: 15485 case BPF_JGT: 15486 case BPF_JSGE: 15487 case BPF_JSGT: 15488 opcode = flip_opcode(opcode); 15489 swap(reg1, reg2); 15490 break; 15491 default: 15492 break; 15493 } 15494 15495 switch (opcode) { 15496 case BPF_JEQ: 15497 if (is_jmp32) { 15498 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15499 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15500 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15501 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15502 reg2->u32_min_value = reg1->u32_min_value; 15503 reg2->u32_max_value = reg1->u32_max_value; 15504 reg2->s32_min_value = reg1->s32_min_value; 15505 reg2->s32_max_value = reg1->s32_max_value; 15506 15507 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 15508 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15509 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 15510 } else { 15511 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 15512 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15513 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 15514 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15515 reg2->umin_value = reg1->umin_value; 15516 reg2->umax_value = reg1->umax_value; 15517 reg2->smin_value = reg1->smin_value; 15518 reg2->smax_value = reg1->smax_value; 15519 15520 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 15521 reg2->var_off = reg1->var_off; 15522 } 15523 break; 15524 case BPF_JNE: 15525 if (!is_reg_const(reg2, is_jmp32)) 15526 swap(reg1, reg2); 15527 if (!is_reg_const(reg2, is_jmp32)) 15528 break; 15529 15530 /* try to recompute the bound of reg1 if reg2 is a const and 15531 * is exactly the edge of reg1. 15532 */ 15533 val = reg_const_value(reg2, is_jmp32); 15534 if (is_jmp32) { 15535 /* u32_min_value is not equal to 0xffffffff at this point, 15536 * because otherwise u32_max_value is 0xffffffff as well, 15537 * in such a case both reg1 and reg2 would be constants, 15538 * jump would be predicted and reg_set_min_max() won't 15539 * be called. 15540 * 15541 * Same reasoning works for all {u,s}{min,max}{32,64} cases 15542 * below. 15543 */ 15544 if (reg1->u32_min_value == (u32)val) 15545 reg1->u32_min_value++; 15546 if (reg1->u32_max_value == (u32)val) 15547 reg1->u32_max_value--; 15548 if (reg1->s32_min_value == (s32)val) 15549 reg1->s32_min_value++; 15550 if (reg1->s32_max_value == (s32)val) 15551 reg1->s32_max_value--; 15552 } else { 15553 if (reg1->umin_value == (u64)val) 15554 reg1->umin_value++; 15555 if (reg1->umax_value == (u64)val) 15556 reg1->umax_value--; 15557 if (reg1->smin_value == (s64)val) 15558 reg1->smin_value++; 15559 if (reg1->smax_value == (s64)val) 15560 reg1->smax_value--; 15561 } 15562 break; 15563 case BPF_JSET: 15564 if (!is_reg_const(reg2, is_jmp32)) 15565 swap(reg1, reg2); 15566 if (!is_reg_const(reg2, is_jmp32)) 15567 break; 15568 val = reg_const_value(reg2, is_jmp32); 15569 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 15570 * requires single bit to learn something useful. E.g., if we 15571 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 15572 * are actually set? We can learn something definite only if 15573 * it's a single-bit value to begin with. 15574 * 15575 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 15576 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 15577 * bit 1 is set, which we can readily use in adjustments. 15578 */ 15579 if (!is_power_of_2(val)) 15580 break; 15581 if (is_jmp32) { 15582 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 15583 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15584 } else { 15585 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 15586 } 15587 break; 15588 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 15589 if (!is_reg_const(reg2, is_jmp32)) 15590 swap(reg1, reg2); 15591 if (!is_reg_const(reg2, is_jmp32)) 15592 break; 15593 val = reg_const_value(reg2, is_jmp32); 15594 if (is_jmp32) { 15595 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 15596 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15597 } else { 15598 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 15599 } 15600 break; 15601 case BPF_JLE: 15602 if (is_jmp32) { 15603 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15604 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15605 } else { 15606 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15607 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 15608 } 15609 break; 15610 case BPF_JLT: 15611 if (is_jmp32) { 15612 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 15613 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 15614 } else { 15615 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 15616 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 15617 } 15618 break; 15619 case BPF_JSLE: 15620 if (is_jmp32) { 15621 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15622 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15623 } else { 15624 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15625 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 15626 } 15627 break; 15628 case BPF_JSLT: 15629 if (is_jmp32) { 15630 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 15631 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 15632 } else { 15633 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 15634 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 15635 } 15636 break; 15637 default: 15638 return; 15639 } 15640 } 15641 15642 /* Adjusts the register min/max values in the case that the dst_reg and 15643 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 15644 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 15645 * Technically we can do similar adjustments for pointers to the same object, 15646 * but we don't support that right now. 15647 */ 15648 static int reg_set_min_max(struct bpf_verifier_env *env, 15649 struct bpf_reg_state *true_reg1, 15650 struct bpf_reg_state *true_reg2, 15651 struct bpf_reg_state *false_reg1, 15652 struct bpf_reg_state *false_reg2, 15653 u8 opcode, bool is_jmp32) 15654 { 15655 int err; 15656 15657 /* If either register is a pointer, we can't learn anything about its 15658 * variable offset from the compare (unless they were a pointer into 15659 * the same object, but we don't bother with that). 15660 */ 15661 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 15662 return 0; 15663 15664 /* fallthrough (FALSE) branch */ 15665 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 15666 reg_bounds_sync(false_reg1); 15667 reg_bounds_sync(false_reg2); 15668 15669 /* jump (TRUE) branch */ 15670 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 15671 reg_bounds_sync(true_reg1); 15672 reg_bounds_sync(true_reg2); 15673 15674 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 15675 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 15676 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 15677 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 15678 return err; 15679 } 15680 15681 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 15682 struct bpf_reg_state *reg, u32 id, 15683 bool is_null) 15684 { 15685 if (type_may_be_null(reg->type) && reg->id == id && 15686 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 15687 /* Old offset (both fixed and variable parts) should have been 15688 * known-zero, because we don't allow pointer arithmetic on 15689 * pointers that might be NULL. If we see this happening, don't 15690 * convert the register. 15691 * 15692 * But in some cases, some helpers that return local kptrs 15693 * advance offset for the returned pointer. In those cases, it 15694 * is fine to expect to see reg->off. 15695 */ 15696 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 15697 return; 15698 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 15699 WARN_ON_ONCE(reg->off)) 15700 return; 15701 15702 if (is_null) { 15703 reg->type = SCALAR_VALUE; 15704 /* We don't need id and ref_obj_id from this point 15705 * onwards anymore, thus we should better reset it, 15706 * so that state pruning has chances to take effect. 15707 */ 15708 reg->id = 0; 15709 reg->ref_obj_id = 0; 15710 15711 return; 15712 } 15713 15714 mark_ptr_not_null_reg(reg); 15715 15716 if (!reg_may_point_to_spin_lock(reg)) { 15717 /* For not-NULL ptr, reg->ref_obj_id will be reset 15718 * in release_reference(). 15719 * 15720 * reg->id is still used by spin_lock ptr. Other 15721 * than spin_lock ptr type, reg->id can be reset. 15722 */ 15723 reg->id = 0; 15724 } 15725 } 15726 } 15727 15728 /* The logic is similar to find_good_pkt_pointers(), both could eventually 15729 * be folded together at some point. 15730 */ 15731 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 15732 bool is_null) 15733 { 15734 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15735 struct bpf_reg_state *regs = state->regs, *reg; 15736 u32 ref_obj_id = regs[regno].ref_obj_id; 15737 u32 id = regs[regno].id; 15738 15739 if (ref_obj_id && ref_obj_id == id && is_null) 15740 /* regs[regno] is in the " == NULL" branch. 15741 * No one could have freed the reference state before 15742 * doing the NULL check. 15743 */ 15744 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 15745 15746 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15747 mark_ptr_or_null_reg(state, reg, id, is_null); 15748 })); 15749 } 15750 15751 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 15752 struct bpf_reg_state *dst_reg, 15753 struct bpf_reg_state *src_reg, 15754 struct bpf_verifier_state *this_branch, 15755 struct bpf_verifier_state *other_branch) 15756 { 15757 if (BPF_SRC(insn->code) != BPF_X) 15758 return false; 15759 15760 /* Pointers are always 64-bit. */ 15761 if (BPF_CLASS(insn->code) == BPF_JMP32) 15762 return false; 15763 15764 switch (BPF_OP(insn->code)) { 15765 case BPF_JGT: 15766 if ((dst_reg->type == PTR_TO_PACKET && 15767 src_reg->type == PTR_TO_PACKET_END) || 15768 (dst_reg->type == PTR_TO_PACKET_META && 15769 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15770 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15771 find_good_pkt_pointers(this_branch, dst_reg, 15772 dst_reg->type, false); 15773 mark_pkt_end(other_branch, insn->dst_reg, true); 15774 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15775 src_reg->type == PTR_TO_PACKET) || 15776 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15777 src_reg->type == PTR_TO_PACKET_META)) { 15778 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15779 find_good_pkt_pointers(other_branch, src_reg, 15780 src_reg->type, true); 15781 mark_pkt_end(this_branch, insn->src_reg, false); 15782 } else { 15783 return false; 15784 } 15785 break; 15786 case BPF_JLT: 15787 if ((dst_reg->type == PTR_TO_PACKET && 15788 src_reg->type == PTR_TO_PACKET_END) || 15789 (dst_reg->type == PTR_TO_PACKET_META && 15790 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15791 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15792 find_good_pkt_pointers(other_branch, dst_reg, 15793 dst_reg->type, true); 15794 mark_pkt_end(this_branch, insn->dst_reg, false); 15795 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15796 src_reg->type == PTR_TO_PACKET) || 15797 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15798 src_reg->type == PTR_TO_PACKET_META)) { 15799 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15800 find_good_pkt_pointers(this_branch, src_reg, 15801 src_reg->type, false); 15802 mark_pkt_end(other_branch, insn->src_reg, true); 15803 } else { 15804 return false; 15805 } 15806 break; 15807 case BPF_JGE: 15808 if ((dst_reg->type == PTR_TO_PACKET && 15809 src_reg->type == PTR_TO_PACKET_END) || 15810 (dst_reg->type == PTR_TO_PACKET_META && 15811 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15812 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15813 find_good_pkt_pointers(this_branch, dst_reg, 15814 dst_reg->type, true); 15815 mark_pkt_end(other_branch, insn->dst_reg, false); 15816 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15817 src_reg->type == PTR_TO_PACKET) || 15818 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15819 src_reg->type == PTR_TO_PACKET_META)) { 15820 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15821 find_good_pkt_pointers(other_branch, src_reg, 15822 src_reg->type, false); 15823 mark_pkt_end(this_branch, insn->src_reg, true); 15824 } else { 15825 return false; 15826 } 15827 break; 15828 case BPF_JLE: 15829 if ((dst_reg->type == PTR_TO_PACKET && 15830 src_reg->type == PTR_TO_PACKET_END) || 15831 (dst_reg->type == PTR_TO_PACKET_META && 15832 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15833 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15834 find_good_pkt_pointers(other_branch, dst_reg, 15835 dst_reg->type, false); 15836 mark_pkt_end(this_branch, insn->dst_reg, true); 15837 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15838 src_reg->type == PTR_TO_PACKET) || 15839 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15840 src_reg->type == PTR_TO_PACKET_META)) { 15841 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15842 find_good_pkt_pointers(this_branch, src_reg, 15843 src_reg->type, true); 15844 mark_pkt_end(other_branch, insn->src_reg, false); 15845 } else { 15846 return false; 15847 } 15848 break; 15849 default: 15850 return false; 15851 } 15852 15853 return true; 15854 } 15855 15856 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 15857 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 15858 { 15859 struct linked_reg *e; 15860 15861 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 15862 return; 15863 15864 e = linked_regs_push(reg_set); 15865 if (e) { 15866 e->frameno = frameno; 15867 e->is_reg = is_reg; 15868 e->regno = spi_or_reg; 15869 } else { 15870 reg->id = 0; 15871 } 15872 } 15873 15874 /* For all R being scalar registers or spilled scalar registers 15875 * in verifier state, save R in linked_regs if R->id == id. 15876 * If there are too many Rs sharing same id, reset id for leftover Rs. 15877 */ 15878 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 15879 struct linked_regs *linked_regs) 15880 { 15881 struct bpf_func_state *func; 15882 struct bpf_reg_state *reg; 15883 int i, j; 15884 15885 id = id & ~BPF_ADD_CONST; 15886 for (i = vstate->curframe; i >= 0; i--) { 15887 func = vstate->frame[i]; 15888 for (j = 0; j < BPF_REG_FP; j++) { 15889 reg = &func->regs[j]; 15890 __collect_linked_regs(linked_regs, reg, id, i, j, true); 15891 } 15892 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 15893 if (!is_spilled_reg(&func->stack[j])) 15894 continue; 15895 reg = &func->stack[j].spilled_ptr; 15896 __collect_linked_regs(linked_regs, reg, id, i, j, false); 15897 } 15898 } 15899 } 15900 15901 /* For all R in linked_regs, copy known_reg range into R 15902 * if R->id == known_reg->id. 15903 */ 15904 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 15905 struct linked_regs *linked_regs) 15906 { 15907 struct bpf_reg_state fake_reg; 15908 struct bpf_reg_state *reg; 15909 struct linked_reg *e; 15910 int i; 15911 15912 for (i = 0; i < linked_regs->cnt; ++i) { 15913 e = &linked_regs->entries[i]; 15914 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 15915 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 15916 if (reg->type != SCALAR_VALUE || reg == known_reg) 15917 continue; 15918 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 15919 continue; 15920 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 15921 reg->off == known_reg->off) { 15922 s32 saved_subreg_def = reg->subreg_def; 15923 15924 copy_register_state(reg, known_reg); 15925 reg->subreg_def = saved_subreg_def; 15926 } else { 15927 s32 saved_subreg_def = reg->subreg_def; 15928 s32 saved_off = reg->off; 15929 15930 fake_reg.type = SCALAR_VALUE; 15931 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 15932 15933 /* reg = known_reg; reg += delta */ 15934 copy_register_state(reg, known_reg); 15935 /* 15936 * Must preserve off, id and add_const flag, 15937 * otherwise another sync_linked_regs() will be incorrect. 15938 */ 15939 reg->off = saved_off; 15940 reg->subreg_def = saved_subreg_def; 15941 15942 scalar32_min_max_add(reg, &fake_reg); 15943 scalar_min_max_add(reg, &fake_reg); 15944 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 15945 } 15946 } 15947 } 15948 15949 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15950 struct bpf_insn *insn, int *insn_idx) 15951 { 15952 struct bpf_verifier_state *this_branch = env->cur_state; 15953 struct bpf_verifier_state *other_branch; 15954 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15955 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15956 struct bpf_reg_state *eq_branch_regs; 15957 struct linked_regs linked_regs = {}; 15958 u8 opcode = BPF_OP(insn->code); 15959 bool is_jmp32; 15960 int pred = -1; 15961 int err; 15962 15963 /* Only conditional jumps are expected to reach here. */ 15964 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15965 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15966 return -EINVAL; 15967 } 15968 15969 if (opcode == BPF_JCOND) { 15970 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15971 int idx = *insn_idx; 15972 15973 if (insn->code != (BPF_JMP | BPF_JCOND) || 15974 insn->src_reg != BPF_MAY_GOTO || 15975 insn->dst_reg || insn->imm) { 15976 verbose(env, "invalid may_goto imm %d\n", insn->imm); 15977 return -EINVAL; 15978 } 15979 prev_st = find_prev_entry(env, cur_st->parent, idx); 15980 15981 /* branch out 'fallthrough' insn as a new state to explore */ 15982 queued_st = push_stack(env, idx + 1, idx, false); 15983 if (!queued_st) 15984 return -ENOMEM; 15985 15986 queued_st->may_goto_depth++; 15987 if (prev_st) 15988 widen_imprecise_scalars(env, prev_st, queued_st); 15989 *insn_idx += insn->off; 15990 return 0; 15991 } 15992 15993 /* check src2 operand */ 15994 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15995 if (err) 15996 return err; 15997 15998 dst_reg = ®s[insn->dst_reg]; 15999 if (BPF_SRC(insn->code) == BPF_X) { 16000 if (insn->imm != 0) { 16001 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16002 return -EINVAL; 16003 } 16004 16005 /* check src1 operand */ 16006 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16007 if (err) 16008 return err; 16009 16010 src_reg = ®s[insn->src_reg]; 16011 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16012 is_pointer_value(env, insn->src_reg)) { 16013 verbose(env, "R%d pointer comparison prohibited\n", 16014 insn->src_reg); 16015 return -EACCES; 16016 } 16017 } else { 16018 if (insn->src_reg != BPF_REG_0) { 16019 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16020 return -EINVAL; 16021 } 16022 src_reg = &env->fake_reg[0]; 16023 memset(src_reg, 0, sizeof(*src_reg)); 16024 src_reg->type = SCALAR_VALUE; 16025 __mark_reg_known(src_reg, insn->imm); 16026 } 16027 16028 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16029 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16030 if (pred >= 0) { 16031 /* If we get here with a dst_reg pointer type it is because 16032 * above is_branch_taken() special cased the 0 comparison. 16033 */ 16034 if (!__is_pointer_value(false, dst_reg)) 16035 err = mark_chain_precision(env, insn->dst_reg); 16036 if (BPF_SRC(insn->code) == BPF_X && !err && 16037 !__is_pointer_value(false, src_reg)) 16038 err = mark_chain_precision(env, insn->src_reg); 16039 if (err) 16040 return err; 16041 } 16042 16043 if (pred == 1) { 16044 /* Only follow the goto, ignore fall-through. If needed, push 16045 * the fall-through branch for simulation under speculative 16046 * execution. 16047 */ 16048 if (!env->bypass_spec_v1 && 16049 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16050 *insn_idx)) 16051 return -EFAULT; 16052 if (env->log.level & BPF_LOG_LEVEL) 16053 print_insn_state(env, this_branch, this_branch->curframe); 16054 *insn_idx += insn->off; 16055 return 0; 16056 } else if (pred == 0) { 16057 /* Only follow the fall-through branch, since that's where the 16058 * program will go. If needed, push the goto branch for 16059 * simulation under speculative execution. 16060 */ 16061 if (!env->bypass_spec_v1 && 16062 !sanitize_speculative_path(env, insn, 16063 *insn_idx + insn->off + 1, 16064 *insn_idx)) 16065 return -EFAULT; 16066 if (env->log.level & BPF_LOG_LEVEL) 16067 print_insn_state(env, this_branch, this_branch->curframe); 16068 return 0; 16069 } 16070 16071 /* Push scalar registers sharing same ID to jump history, 16072 * do this before creating 'other_branch', so that both 16073 * 'this_branch' and 'other_branch' share this history 16074 * if parent state is created. 16075 */ 16076 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16077 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16078 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16079 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16080 if (linked_regs.cnt > 1) { 16081 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16082 if (err) 16083 return err; 16084 } 16085 16086 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16087 false); 16088 if (!other_branch) 16089 return -EFAULT; 16090 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16091 16092 if (BPF_SRC(insn->code) == BPF_X) { 16093 err = reg_set_min_max(env, 16094 &other_branch_regs[insn->dst_reg], 16095 &other_branch_regs[insn->src_reg], 16096 dst_reg, src_reg, opcode, is_jmp32); 16097 } else /* BPF_SRC(insn->code) == BPF_K */ { 16098 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16099 * so that these are two different memory locations. The 16100 * src_reg is not used beyond here in context of K. 16101 */ 16102 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16103 sizeof(env->fake_reg[0])); 16104 err = reg_set_min_max(env, 16105 &other_branch_regs[insn->dst_reg], 16106 &env->fake_reg[0], 16107 dst_reg, &env->fake_reg[1], 16108 opcode, is_jmp32); 16109 } 16110 if (err) 16111 return err; 16112 16113 if (BPF_SRC(insn->code) == BPF_X && 16114 src_reg->type == SCALAR_VALUE && src_reg->id && 16115 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16116 sync_linked_regs(this_branch, src_reg, &linked_regs); 16117 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16118 } 16119 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16120 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16121 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16122 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16123 } 16124 16125 /* if one pointer register is compared to another pointer 16126 * register check if PTR_MAYBE_NULL could be lifted. 16127 * E.g. register A - maybe null 16128 * register B - not null 16129 * for JNE A, B, ... - A is not null in the false branch; 16130 * for JEQ A, B, ... - A is not null in the true branch. 16131 * 16132 * Since PTR_TO_BTF_ID points to a kernel struct that does 16133 * not need to be null checked by the BPF program, i.e., 16134 * could be null even without PTR_MAYBE_NULL marking, so 16135 * only propagate nullness when neither reg is that type. 16136 */ 16137 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16138 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16139 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16140 base_type(src_reg->type) != PTR_TO_BTF_ID && 16141 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16142 eq_branch_regs = NULL; 16143 switch (opcode) { 16144 case BPF_JEQ: 16145 eq_branch_regs = other_branch_regs; 16146 break; 16147 case BPF_JNE: 16148 eq_branch_regs = regs; 16149 break; 16150 default: 16151 /* do nothing */ 16152 break; 16153 } 16154 if (eq_branch_regs) { 16155 if (type_may_be_null(src_reg->type)) 16156 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16157 else 16158 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16159 } 16160 } 16161 16162 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16163 * NOTE: these optimizations below are related with pointer comparison 16164 * which will never be JMP32. 16165 */ 16166 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16167 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16168 type_may_be_null(dst_reg->type)) { 16169 /* Mark all identical registers in each branch as either 16170 * safe or unknown depending R == 0 or R != 0 conditional. 16171 */ 16172 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16173 opcode == BPF_JNE); 16174 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16175 opcode == BPF_JEQ); 16176 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16177 this_branch, other_branch) && 16178 is_pointer_value(env, insn->dst_reg)) { 16179 verbose(env, "R%d pointer comparison prohibited\n", 16180 insn->dst_reg); 16181 return -EACCES; 16182 } 16183 if (env->log.level & BPF_LOG_LEVEL) 16184 print_insn_state(env, this_branch, this_branch->curframe); 16185 return 0; 16186 } 16187 16188 /* verify BPF_LD_IMM64 instruction */ 16189 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16190 { 16191 struct bpf_insn_aux_data *aux = cur_aux(env); 16192 struct bpf_reg_state *regs = cur_regs(env); 16193 struct bpf_reg_state *dst_reg; 16194 struct bpf_map *map; 16195 int err; 16196 16197 if (BPF_SIZE(insn->code) != BPF_DW) { 16198 verbose(env, "invalid BPF_LD_IMM insn\n"); 16199 return -EINVAL; 16200 } 16201 if (insn->off != 0) { 16202 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16203 return -EINVAL; 16204 } 16205 16206 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16207 if (err) 16208 return err; 16209 16210 dst_reg = ®s[insn->dst_reg]; 16211 if (insn->src_reg == 0) { 16212 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16213 16214 dst_reg->type = SCALAR_VALUE; 16215 __mark_reg_known(®s[insn->dst_reg], imm); 16216 return 0; 16217 } 16218 16219 /* All special src_reg cases are listed below. From this point onwards 16220 * we either succeed and assign a corresponding dst_reg->type after 16221 * zeroing the offset, or fail and reject the program. 16222 */ 16223 mark_reg_known_zero(env, regs, insn->dst_reg); 16224 16225 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16226 dst_reg->type = aux->btf_var.reg_type; 16227 switch (base_type(dst_reg->type)) { 16228 case PTR_TO_MEM: 16229 dst_reg->mem_size = aux->btf_var.mem_size; 16230 break; 16231 case PTR_TO_BTF_ID: 16232 dst_reg->btf = aux->btf_var.btf; 16233 dst_reg->btf_id = aux->btf_var.btf_id; 16234 break; 16235 default: 16236 verbose(env, "bpf verifier is misconfigured\n"); 16237 return -EFAULT; 16238 } 16239 return 0; 16240 } 16241 16242 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16243 struct bpf_prog_aux *aux = env->prog->aux; 16244 u32 subprogno = find_subprog(env, 16245 env->insn_idx + insn->imm + 1); 16246 16247 if (!aux->func_info) { 16248 verbose(env, "missing btf func_info\n"); 16249 return -EINVAL; 16250 } 16251 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 16252 verbose(env, "callback function not static\n"); 16253 return -EINVAL; 16254 } 16255 16256 dst_reg->type = PTR_TO_FUNC; 16257 dst_reg->subprogno = subprogno; 16258 return 0; 16259 } 16260 16261 map = env->used_maps[aux->map_index]; 16262 dst_reg->map_ptr = map; 16263 16264 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 16265 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 16266 if (map->map_type == BPF_MAP_TYPE_ARENA) { 16267 __mark_reg_unknown(env, dst_reg); 16268 return 0; 16269 } 16270 dst_reg->type = PTR_TO_MAP_VALUE; 16271 dst_reg->off = aux->map_off; 16272 WARN_ON_ONCE(map->max_entries != 1); 16273 /* We want reg->id to be same (0) as map_value is not distinct */ 16274 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 16275 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 16276 dst_reg->type = CONST_PTR_TO_MAP; 16277 } else { 16278 verbose(env, "bpf verifier is misconfigured\n"); 16279 return -EINVAL; 16280 } 16281 16282 return 0; 16283 } 16284 16285 static bool may_access_skb(enum bpf_prog_type type) 16286 { 16287 switch (type) { 16288 case BPF_PROG_TYPE_SOCKET_FILTER: 16289 case BPF_PROG_TYPE_SCHED_CLS: 16290 case BPF_PROG_TYPE_SCHED_ACT: 16291 return true; 16292 default: 16293 return false; 16294 } 16295 } 16296 16297 /* verify safety of LD_ABS|LD_IND instructions: 16298 * - they can only appear in the programs where ctx == skb 16299 * - since they are wrappers of function calls, they scratch R1-R5 registers, 16300 * preserve R6-R9, and store return value into R0 16301 * 16302 * Implicit input: 16303 * ctx == skb == R6 == CTX 16304 * 16305 * Explicit input: 16306 * SRC == any register 16307 * IMM == 32-bit immediate 16308 * 16309 * Output: 16310 * R0 - 8/16/32-bit skb data converted to cpu endianness 16311 */ 16312 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 16313 { 16314 struct bpf_reg_state *regs = cur_regs(env); 16315 static const int ctx_reg = BPF_REG_6; 16316 u8 mode = BPF_MODE(insn->code); 16317 int i, err; 16318 16319 if (!may_access_skb(resolve_prog_type(env->prog))) { 16320 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 16321 return -EINVAL; 16322 } 16323 16324 if (!env->ops->gen_ld_abs) { 16325 verbose(env, "bpf verifier is misconfigured\n"); 16326 return -EINVAL; 16327 } 16328 16329 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 16330 BPF_SIZE(insn->code) == BPF_DW || 16331 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 16332 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 16333 return -EINVAL; 16334 } 16335 16336 /* check whether implicit source operand (register R6) is readable */ 16337 err = check_reg_arg(env, ctx_reg, SRC_OP); 16338 if (err) 16339 return err; 16340 16341 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 16342 * gen_ld_abs() may terminate the program at runtime, leading to 16343 * reference leak. 16344 */ 16345 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 16346 if (err) 16347 return err; 16348 16349 if (regs[ctx_reg].type != PTR_TO_CTX) { 16350 verbose(env, 16351 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 16352 return -EINVAL; 16353 } 16354 16355 if (mode == BPF_IND) { 16356 /* check explicit source operand */ 16357 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16358 if (err) 16359 return err; 16360 } 16361 16362 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 16363 if (err < 0) 16364 return err; 16365 16366 /* reset caller saved regs to unreadable */ 16367 for (i = 0; i < CALLER_SAVED_REGS; i++) { 16368 mark_reg_not_init(env, regs, caller_saved[i]); 16369 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 16370 } 16371 16372 /* mark destination R0 register as readable, since it contains 16373 * the value fetched from the packet. 16374 * Already marked as written above. 16375 */ 16376 mark_reg_unknown(env, regs, BPF_REG_0); 16377 /* ld_abs load up to 32-bit skb data. */ 16378 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 16379 return 0; 16380 } 16381 16382 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 16383 { 16384 const char *exit_ctx = "At program exit"; 16385 struct tnum enforce_attach_type_range = tnum_unknown; 16386 const struct bpf_prog *prog = env->prog; 16387 struct bpf_reg_state *reg; 16388 struct bpf_retval_range range = retval_range(0, 1); 16389 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 16390 int err; 16391 struct bpf_func_state *frame = env->cur_state->frame[0]; 16392 const bool is_subprog = frame->subprogno; 16393 bool return_32bit = false; 16394 16395 /* LSM and struct_ops func-ptr's return type could be "void" */ 16396 if (!is_subprog || frame->in_exception_callback_fn) { 16397 switch (prog_type) { 16398 case BPF_PROG_TYPE_LSM: 16399 if (prog->expected_attach_type == BPF_LSM_CGROUP) 16400 /* See below, can be 0 or 0-1 depending on hook. */ 16401 break; 16402 fallthrough; 16403 case BPF_PROG_TYPE_STRUCT_OPS: 16404 if (!prog->aux->attach_func_proto->type) 16405 return 0; 16406 break; 16407 default: 16408 break; 16409 } 16410 } 16411 16412 /* eBPF calling convention is such that R0 is used 16413 * to return the value from eBPF program. 16414 * Make sure that it's readable at this time 16415 * of bpf_exit, which means that program wrote 16416 * something into it earlier 16417 */ 16418 err = check_reg_arg(env, regno, SRC_OP); 16419 if (err) 16420 return err; 16421 16422 if (is_pointer_value(env, regno)) { 16423 verbose(env, "R%d leaks addr as return value\n", regno); 16424 return -EACCES; 16425 } 16426 16427 reg = cur_regs(env) + regno; 16428 16429 if (frame->in_async_callback_fn) { 16430 /* enforce return zero from async callbacks like timer */ 16431 exit_ctx = "At async callback return"; 16432 range = retval_range(0, 0); 16433 goto enforce_retval; 16434 } 16435 16436 if (is_subprog && !frame->in_exception_callback_fn) { 16437 if (reg->type != SCALAR_VALUE) { 16438 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 16439 regno, reg_type_str(env, reg->type)); 16440 return -EINVAL; 16441 } 16442 return 0; 16443 } 16444 16445 switch (prog_type) { 16446 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 16447 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 16448 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 16449 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 16450 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 16451 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 16452 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 16453 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 16454 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 16455 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 16456 range = retval_range(1, 1); 16457 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 16458 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 16459 range = retval_range(0, 3); 16460 break; 16461 case BPF_PROG_TYPE_CGROUP_SKB: 16462 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 16463 range = retval_range(0, 3); 16464 enforce_attach_type_range = tnum_range(2, 3); 16465 } 16466 break; 16467 case BPF_PROG_TYPE_CGROUP_SOCK: 16468 case BPF_PROG_TYPE_SOCK_OPS: 16469 case BPF_PROG_TYPE_CGROUP_DEVICE: 16470 case BPF_PROG_TYPE_CGROUP_SYSCTL: 16471 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 16472 break; 16473 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16474 if (!env->prog->aux->attach_btf_id) 16475 return 0; 16476 range = retval_range(0, 0); 16477 break; 16478 case BPF_PROG_TYPE_TRACING: 16479 switch (env->prog->expected_attach_type) { 16480 case BPF_TRACE_FENTRY: 16481 case BPF_TRACE_FEXIT: 16482 range = retval_range(0, 0); 16483 break; 16484 case BPF_TRACE_RAW_TP: 16485 case BPF_MODIFY_RETURN: 16486 return 0; 16487 case BPF_TRACE_ITER: 16488 break; 16489 default: 16490 return -ENOTSUPP; 16491 } 16492 break; 16493 case BPF_PROG_TYPE_KPROBE: 16494 switch (env->prog->expected_attach_type) { 16495 case BPF_TRACE_KPROBE_SESSION: 16496 case BPF_TRACE_UPROBE_SESSION: 16497 range = retval_range(0, 1); 16498 break; 16499 default: 16500 return 0; 16501 } 16502 break; 16503 case BPF_PROG_TYPE_SK_LOOKUP: 16504 range = retval_range(SK_DROP, SK_PASS); 16505 break; 16506 16507 case BPF_PROG_TYPE_LSM: 16508 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 16509 /* no range found, any return value is allowed */ 16510 if (!get_func_retval_range(env->prog, &range)) 16511 return 0; 16512 /* no restricted range, any return value is allowed */ 16513 if (range.minval == S32_MIN && range.maxval == S32_MAX) 16514 return 0; 16515 return_32bit = true; 16516 } else if (!env->prog->aux->attach_func_proto->type) { 16517 /* Make sure programs that attach to void 16518 * hooks don't try to modify return value. 16519 */ 16520 range = retval_range(1, 1); 16521 } 16522 break; 16523 16524 case BPF_PROG_TYPE_NETFILTER: 16525 range = retval_range(NF_DROP, NF_ACCEPT); 16526 break; 16527 case BPF_PROG_TYPE_EXT: 16528 /* freplace program can return anything as its return value 16529 * depends on the to-be-replaced kernel func or bpf program. 16530 */ 16531 default: 16532 return 0; 16533 } 16534 16535 enforce_retval: 16536 if (reg->type != SCALAR_VALUE) { 16537 verbose(env, "%s the register R%d is not a known value (%s)\n", 16538 exit_ctx, regno, reg_type_str(env, reg->type)); 16539 return -EINVAL; 16540 } 16541 16542 err = mark_chain_precision(env, regno); 16543 if (err) 16544 return err; 16545 16546 if (!retval_range_within(range, reg, return_32bit)) { 16547 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 16548 if (!is_subprog && 16549 prog->expected_attach_type == BPF_LSM_CGROUP && 16550 prog_type == BPF_PROG_TYPE_LSM && 16551 !prog->aux->attach_func_proto->type) 16552 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 16553 return -EINVAL; 16554 } 16555 16556 if (!tnum_is_unknown(enforce_attach_type_range) && 16557 tnum_in(enforce_attach_type_range, reg->var_off)) 16558 env->prog->enforce_expected_attach_type = 1; 16559 return 0; 16560 } 16561 16562 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 16563 { 16564 struct bpf_subprog_info *subprog; 16565 16566 subprog = find_containing_subprog(env, off); 16567 subprog->changes_pkt_data = true; 16568 } 16569 16570 /* 't' is an index of a call-site. 16571 * 'w' is a callee entry point. 16572 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 16573 * Rely on DFS traversal order and absence of recursive calls to guarantee that 16574 * callee's change_pkt_data marks would be correct at that moment. 16575 */ 16576 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 16577 { 16578 struct bpf_subprog_info *caller, *callee; 16579 16580 caller = find_containing_subprog(env, t); 16581 callee = find_containing_subprog(env, w); 16582 caller->changes_pkt_data |= callee->changes_pkt_data; 16583 } 16584 16585 /* non-recursive DFS pseudo code 16586 * 1 procedure DFS-iterative(G,v): 16587 * 2 label v as discovered 16588 * 3 let S be a stack 16589 * 4 S.push(v) 16590 * 5 while S is not empty 16591 * 6 t <- S.peek() 16592 * 7 if t is what we're looking for: 16593 * 8 return t 16594 * 9 for all edges e in G.adjacentEdges(t) do 16595 * 10 if edge e is already labelled 16596 * 11 continue with the next edge 16597 * 12 w <- G.adjacentVertex(t,e) 16598 * 13 if vertex w is not discovered and not explored 16599 * 14 label e as tree-edge 16600 * 15 label w as discovered 16601 * 16 S.push(w) 16602 * 17 continue at 5 16603 * 18 else if vertex w is discovered 16604 * 19 label e as back-edge 16605 * 20 else 16606 * 21 // vertex w is explored 16607 * 22 label e as forward- or cross-edge 16608 * 23 label t as explored 16609 * 24 S.pop() 16610 * 16611 * convention: 16612 * 0x10 - discovered 16613 * 0x11 - discovered and fall-through edge labelled 16614 * 0x12 - discovered and fall-through and branch edges labelled 16615 * 0x20 - explored 16616 */ 16617 16618 enum { 16619 DISCOVERED = 0x10, 16620 EXPLORED = 0x20, 16621 FALLTHROUGH = 1, 16622 BRANCH = 2, 16623 }; 16624 16625 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 16626 { 16627 env->insn_aux_data[idx].prune_point = true; 16628 } 16629 16630 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 16631 { 16632 return env->insn_aux_data[insn_idx].prune_point; 16633 } 16634 16635 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 16636 { 16637 env->insn_aux_data[idx].force_checkpoint = true; 16638 } 16639 16640 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 16641 { 16642 return env->insn_aux_data[insn_idx].force_checkpoint; 16643 } 16644 16645 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 16646 { 16647 env->insn_aux_data[idx].calls_callback = true; 16648 } 16649 16650 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 16651 { 16652 return env->insn_aux_data[insn_idx].calls_callback; 16653 } 16654 16655 enum { 16656 DONE_EXPLORING = 0, 16657 KEEP_EXPLORING = 1, 16658 }; 16659 16660 /* t, w, e - match pseudo-code above: 16661 * t - index of current instruction 16662 * w - next instruction 16663 * e - edge 16664 */ 16665 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 16666 { 16667 int *insn_stack = env->cfg.insn_stack; 16668 int *insn_state = env->cfg.insn_state; 16669 16670 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 16671 return DONE_EXPLORING; 16672 16673 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 16674 return DONE_EXPLORING; 16675 16676 if (w < 0 || w >= env->prog->len) { 16677 verbose_linfo(env, t, "%d: ", t); 16678 verbose(env, "jump out of range from insn %d to %d\n", t, w); 16679 return -EINVAL; 16680 } 16681 16682 if (e == BRANCH) { 16683 /* mark branch target for state pruning */ 16684 mark_prune_point(env, w); 16685 mark_jmp_point(env, w); 16686 } 16687 16688 if (insn_state[w] == 0) { 16689 /* tree-edge */ 16690 insn_state[t] = DISCOVERED | e; 16691 insn_state[w] = DISCOVERED; 16692 if (env->cfg.cur_stack >= env->prog->len) 16693 return -E2BIG; 16694 insn_stack[env->cfg.cur_stack++] = w; 16695 return KEEP_EXPLORING; 16696 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 16697 if (env->bpf_capable) 16698 return DONE_EXPLORING; 16699 verbose_linfo(env, t, "%d: ", t); 16700 verbose_linfo(env, w, "%d: ", w); 16701 verbose(env, "back-edge from insn %d to %d\n", t, w); 16702 return -EINVAL; 16703 } else if (insn_state[w] == EXPLORED) { 16704 /* forward- or cross-edge */ 16705 insn_state[t] = DISCOVERED | e; 16706 } else { 16707 verbose(env, "insn state internal bug\n"); 16708 return -EFAULT; 16709 } 16710 return DONE_EXPLORING; 16711 } 16712 16713 static int visit_func_call_insn(int t, struct bpf_insn *insns, 16714 struct bpf_verifier_env *env, 16715 bool visit_callee) 16716 { 16717 int ret, insn_sz; 16718 int w; 16719 16720 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 16721 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 16722 if (ret) 16723 return ret; 16724 16725 mark_prune_point(env, t + insn_sz); 16726 /* when we exit from subprog, we need to record non-linear history */ 16727 mark_jmp_point(env, t + insn_sz); 16728 16729 if (visit_callee) { 16730 w = t + insns[t].imm + 1; 16731 mark_prune_point(env, t); 16732 merge_callee_effects(env, t, w); 16733 ret = push_insn(t, w, BRANCH, env); 16734 } 16735 return ret; 16736 } 16737 16738 /* Bitmask with 1s for all caller saved registers */ 16739 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 16740 16741 /* Return a bitmask specifying which caller saved registers are 16742 * clobbered by a call to a helper *as if* this helper follows 16743 * bpf_fastcall contract: 16744 * - includes R0 if function is non-void; 16745 * - includes R1-R5 if corresponding parameter has is described 16746 * in the function prototype. 16747 */ 16748 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) 16749 { 16750 u32 mask; 16751 int i; 16752 16753 mask = 0; 16754 if (fn->ret_type != RET_VOID) 16755 mask |= BIT(BPF_REG_0); 16756 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) 16757 if (fn->arg_type[i] != ARG_DONTCARE) 16758 mask |= BIT(BPF_REG_1 + i); 16759 return mask; 16760 } 16761 16762 /* True if do_misc_fixups() replaces calls to helper number 'imm', 16763 * replacement patch is presumed to follow bpf_fastcall contract 16764 * (see mark_fastcall_pattern_for_call() below). 16765 */ 16766 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 16767 { 16768 switch (imm) { 16769 #ifdef CONFIG_X86_64 16770 case BPF_FUNC_get_smp_processor_id: 16771 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 16772 #endif 16773 default: 16774 return false; 16775 } 16776 } 16777 16778 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ 16779 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) 16780 { 16781 u32 vlen, i, mask; 16782 16783 vlen = btf_type_vlen(meta->func_proto); 16784 mask = 0; 16785 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) 16786 mask |= BIT(BPF_REG_0); 16787 for (i = 0; i < vlen; ++i) 16788 mask |= BIT(BPF_REG_1 + i); 16789 return mask; 16790 } 16791 16792 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ 16793 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) 16794 { 16795 return meta->kfunc_flags & KF_FASTCALL; 16796 } 16797 16798 /* LLVM define a bpf_fastcall function attribute. 16799 * This attribute means that function scratches only some of 16800 * the caller saved registers defined by ABI. 16801 * For BPF the set of such registers could be defined as follows: 16802 * - R0 is scratched only if function is non-void; 16803 * - R1-R5 are scratched only if corresponding parameter type is defined 16804 * in the function prototype. 16805 * 16806 * The contract between kernel and clang allows to simultaneously use 16807 * such functions and maintain backwards compatibility with old 16808 * kernels that don't understand bpf_fastcall calls: 16809 * 16810 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 16811 * registers are not scratched by the call; 16812 * 16813 * - as a post-processing step, clang visits each bpf_fastcall call and adds 16814 * spill/fill for every live r0-r5; 16815 * 16816 * - stack offsets used for the spill/fill are allocated as lowest 16817 * stack offsets in whole function and are not used for any other 16818 * purposes; 16819 * 16820 * - when kernel loads a program, it looks for such patterns 16821 * (bpf_fastcall function surrounded by spills/fills) and checks if 16822 * spill/fill stack offsets are used exclusively in fastcall patterns; 16823 * 16824 * - if so, and if verifier or current JIT inlines the call to the 16825 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 16826 * spill/fill pairs; 16827 * 16828 * - when old kernel loads a program, presence of spill/fill pairs 16829 * keeps BPF program valid, albeit slightly less efficient. 16830 * 16831 * For example: 16832 * 16833 * r1 = 1; 16834 * r2 = 2; 16835 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16836 * *(u64 *)(r10 - 16) = r2; r2 = 2; 16837 * call %[to_be_inlined] --> call %[to_be_inlined] 16838 * r2 = *(u64 *)(r10 - 16); r0 = r1; 16839 * r1 = *(u64 *)(r10 - 8); r0 += r2; 16840 * r0 = r1; exit; 16841 * r0 += r2; 16842 * exit; 16843 * 16844 * The purpose of mark_fastcall_pattern_for_call is to: 16845 * - look for such patterns; 16846 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 16847 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 16848 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 16849 * at which bpf_fastcall spill/fill stack slots start; 16850 * - update env->subprog_info[*]->keep_fastcall_stack. 16851 * 16852 * The .fastcall_pattern and .fastcall_stack_off are used by 16853 * check_fastcall_stack_contract() to check if every stack access to 16854 * fastcall spill/fill stack slot originates from spill/fill 16855 * instructions, members of fastcall patterns. 16856 * 16857 * If such condition holds true for a subprogram, fastcall patterns could 16858 * be rewritten by remove_fastcall_spills_fills(). 16859 * Otherwise bpf_fastcall patterns are not changed in the subprogram 16860 * (code, presumably, generated by an older clang version). 16861 * 16862 * For example, it is *not* safe to remove spill/fill below: 16863 * 16864 * r1 = 1; 16865 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16866 * call %[to_be_inlined] --> call %[to_be_inlined] 16867 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 16868 * r0 = *(u64 *)(r10 - 8); r0 += r1; 16869 * r0 += r1; exit; 16870 * exit; 16871 */ 16872 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 16873 struct bpf_subprog_info *subprog, 16874 int insn_idx, s16 lowest_off) 16875 { 16876 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 16877 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 16878 const struct bpf_func_proto *fn; 16879 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; 16880 u32 expected_regs_mask; 16881 bool can_be_inlined = false; 16882 s16 off; 16883 int i; 16884 16885 if (bpf_helper_call(call)) { 16886 if (get_helper_proto(env, call->imm, &fn) < 0) 16887 /* error would be reported later */ 16888 return; 16889 clobbered_regs_mask = helper_fastcall_clobber_mask(fn); 16890 can_be_inlined = fn->allow_fastcall && 16891 (verifier_inlines_helper_call(env, call->imm) || 16892 bpf_jit_inlines_helper_call(call->imm)); 16893 } 16894 16895 if (bpf_pseudo_kfunc_call(call)) { 16896 struct bpf_kfunc_call_arg_meta meta; 16897 int err; 16898 16899 err = fetch_kfunc_meta(env, call, &meta, NULL); 16900 if (err < 0) 16901 /* error would be reported later */ 16902 return; 16903 16904 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); 16905 can_be_inlined = is_fastcall_kfunc_call(&meta); 16906 } 16907 16908 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) 16909 return; 16910 16911 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 16912 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 16913 16914 /* match pairs of form: 16915 * 16916 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 16917 * ... 16918 * call %[to_be_inlined] 16919 * ... 16920 * rX = *(u64 *)(r10 - Y) 16921 */ 16922 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 16923 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 16924 break; 16925 stx = &insns[insn_idx - i]; 16926 ldx = &insns[insn_idx + i]; 16927 /* must be a stack spill/fill pair */ 16928 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 16929 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 16930 stx->dst_reg != BPF_REG_10 || 16931 ldx->src_reg != BPF_REG_10) 16932 break; 16933 /* must be a spill/fill for the same reg */ 16934 if (stx->src_reg != ldx->dst_reg) 16935 break; 16936 /* must be one of the previously unseen registers */ 16937 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 16938 break; 16939 /* must be a spill/fill for the same expected offset, 16940 * no need to check offset alignment, BPF_DW stack access 16941 * is always 8-byte aligned. 16942 */ 16943 if (stx->off != off || ldx->off != off) 16944 break; 16945 expected_regs_mask &= ~BIT(stx->src_reg); 16946 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 16947 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 16948 } 16949 if (i == 1) 16950 return; 16951 16952 /* Conditionally set 'fastcall_spills_num' to allow forward 16953 * compatibility when more helper functions are marked as 16954 * bpf_fastcall at compile time than current kernel supports, e.g: 16955 * 16956 * 1: *(u64 *)(r10 - 8) = r1 16957 * 2: call A ;; assume A is bpf_fastcall for current kernel 16958 * 3: r1 = *(u64 *)(r10 - 8) 16959 * 4: *(u64 *)(r10 - 8) = r1 16960 * 5: call B ;; assume B is not bpf_fastcall for current kernel 16961 * 6: r1 = *(u64 *)(r10 - 8) 16962 * 16963 * There is no need to block bpf_fastcall rewrite for such program. 16964 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 16965 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 16966 * does not remove spill/fill pair {4,6}. 16967 */ 16968 if (can_be_inlined) 16969 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 16970 else 16971 subprog->keep_fastcall_stack = 1; 16972 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 16973 } 16974 16975 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 16976 { 16977 struct bpf_subprog_info *subprog = env->subprog_info; 16978 struct bpf_insn *insn; 16979 s16 lowest_off; 16980 int s, i; 16981 16982 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 16983 /* find lowest stack spill offset used in this subprog */ 16984 lowest_off = 0; 16985 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16986 insn = env->prog->insnsi + i; 16987 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 16988 insn->dst_reg != BPF_REG_10) 16989 continue; 16990 lowest_off = min(lowest_off, insn->off); 16991 } 16992 /* use this offset to find fastcall patterns */ 16993 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16994 insn = env->prog->insnsi + i; 16995 if (insn->code != (BPF_JMP | BPF_CALL)) 16996 continue; 16997 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 16998 } 16999 } 17000 return 0; 17001 } 17002 17003 /* Visits the instruction at index t and returns one of the following: 17004 * < 0 - an error occurred 17005 * DONE_EXPLORING - the instruction was fully explored 17006 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17007 */ 17008 static int visit_insn(int t, struct bpf_verifier_env *env) 17009 { 17010 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17011 int ret, off, insn_sz; 17012 17013 if (bpf_pseudo_func(insn)) 17014 return visit_func_call_insn(t, insns, env, true); 17015 17016 /* All non-branch instructions have a single fall-through edge. */ 17017 if (BPF_CLASS(insn->code) != BPF_JMP && 17018 BPF_CLASS(insn->code) != BPF_JMP32) { 17019 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17020 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17021 } 17022 17023 switch (BPF_OP(insn->code)) { 17024 case BPF_EXIT: 17025 return DONE_EXPLORING; 17026 17027 case BPF_CALL: 17028 if (is_async_callback_calling_insn(insn)) 17029 /* Mark this call insn as a prune point to trigger 17030 * is_state_visited() check before call itself is 17031 * processed by __check_func_call(). Otherwise new 17032 * async state will be pushed for further exploration. 17033 */ 17034 mark_prune_point(env, t); 17035 /* For functions that invoke callbacks it is not known how many times 17036 * callback would be called. Verifier models callback calling functions 17037 * by repeatedly visiting callback bodies and returning to origin call 17038 * instruction. 17039 * In order to stop such iteration verifier needs to identify when a 17040 * state identical some state from a previous iteration is reached. 17041 * Check below forces creation of checkpoint before callback calling 17042 * instruction to allow search for such identical states. 17043 */ 17044 if (is_sync_callback_calling_insn(insn)) { 17045 mark_calls_callback(env, t); 17046 mark_force_checkpoint(env, t); 17047 mark_prune_point(env, t); 17048 mark_jmp_point(env, t); 17049 } 17050 if (bpf_helper_call(insn) && bpf_helper_changes_pkt_data(insn->imm)) 17051 mark_subprog_changes_pkt_data(env, t); 17052 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17053 struct bpf_kfunc_call_arg_meta meta; 17054 17055 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17056 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17057 mark_prune_point(env, t); 17058 /* Checking and saving state checkpoints at iter_next() call 17059 * is crucial for fast convergence of open-coded iterator loop 17060 * logic, so we need to force it. If we don't do that, 17061 * is_state_visited() might skip saving a checkpoint, causing 17062 * unnecessarily long sequence of not checkpointed 17063 * instructions and jumps, leading to exhaustion of jump 17064 * history buffer, and potentially other undesired outcomes. 17065 * It is expected that with correct open-coded iterators 17066 * convergence will happen quickly, so we don't run a risk of 17067 * exhausting memory. 17068 */ 17069 mark_force_checkpoint(env, t); 17070 } 17071 } 17072 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17073 17074 case BPF_JA: 17075 if (BPF_SRC(insn->code) != BPF_K) 17076 return -EINVAL; 17077 17078 if (BPF_CLASS(insn->code) == BPF_JMP) 17079 off = insn->off; 17080 else 17081 off = insn->imm; 17082 17083 /* unconditional jump with single edge */ 17084 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17085 if (ret) 17086 return ret; 17087 17088 mark_prune_point(env, t + off + 1); 17089 mark_jmp_point(env, t + off + 1); 17090 17091 return ret; 17092 17093 default: 17094 /* conditional jump with two edges */ 17095 mark_prune_point(env, t); 17096 if (is_may_goto_insn(insn)) 17097 mark_force_checkpoint(env, t); 17098 17099 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17100 if (ret) 17101 return ret; 17102 17103 return push_insn(t, t + insn->off + 1, BRANCH, env); 17104 } 17105 } 17106 17107 /* non-recursive depth-first-search to detect loops in BPF program 17108 * loop == back-edge in directed graph 17109 */ 17110 static int check_cfg(struct bpf_verifier_env *env) 17111 { 17112 int insn_cnt = env->prog->len; 17113 int *insn_stack, *insn_state; 17114 int ex_insn_beg, i, ret = 0; 17115 bool ex_done = false; 17116 17117 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17118 if (!insn_state) 17119 return -ENOMEM; 17120 17121 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17122 if (!insn_stack) { 17123 kvfree(insn_state); 17124 return -ENOMEM; 17125 } 17126 17127 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17128 insn_stack[0] = 0; /* 0 is the first instruction */ 17129 env->cfg.cur_stack = 1; 17130 17131 walk_cfg: 17132 while (env->cfg.cur_stack > 0) { 17133 int t = insn_stack[env->cfg.cur_stack - 1]; 17134 17135 ret = visit_insn(t, env); 17136 switch (ret) { 17137 case DONE_EXPLORING: 17138 insn_state[t] = EXPLORED; 17139 env->cfg.cur_stack--; 17140 break; 17141 case KEEP_EXPLORING: 17142 break; 17143 default: 17144 if (ret > 0) { 17145 verbose(env, "visit_insn internal bug\n"); 17146 ret = -EFAULT; 17147 } 17148 goto err_free; 17149 } 17150 } 17151 17152 if (env->cfg.cur_stack < 0) { 17153 verbose(env, "pop stack internal bug\n"); 17154 ret = -EFAULT; 17155 goto err_free; 17156 } 17157 17158 if (env->exception_callback_subprog && !ex_done) { 17159 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 17160 17161 insn_state[ex_insn_beg] = DISCOVERED; 17162 insn_stack[0] = ex_insn_beg; 17163 env->cfg.cur_stack = 1; 17164 ex_done = true; 17165 goto walk_cfg; 17166 } 17167 17168 for (i = 0; i < insn_cnt; i++) { 17169 struct bpf_insn *insn = &env->prog->insnsi[i]; 17170 17171 if (insn_state[i] != EXPLORED) { 17172 verbose(env, "unreachable insn %d\n", i); 17173 ret = -EINVAL; 17174 goto err_free; 17175 } 17176 if (bpf_is_ldimm64(insn)) { 17177 if (insn_state[i + 1] != 0) { 17178 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17179 ret = -EINVAL; 17180 goto err_free; 17181 } 17182 i++; /* skip second half of ldimm64 */ 17183 } 17184 } 17185 ret = 0; /* cfg looks good */ 17186 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17187 17188 err_free: 17189 kvfree(insn_state); 17190 kvfree(insn_stack); 17191 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17192 return ret; 17193 } 17194 17195 static int check_abnormal_return(struct bpf_verifier_env *env) 17196 { 17197 int i; 17198 17199 for (i = 1; i < env->subprog_cnt; i++) { 17200 if (env->subprog_info[i].has_ld_abs) { 17201 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 17202 return -EINVAL; 17203 } 17204 if (env->subprog_info[i].has_tail_call) { 17205 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 17206 return -EINVAL; 17207 } 17208 } 17209 return 0; 17210 } 17211 17212 /* The minimum supported BTF func info size */ 17213 #define MIN_BPF_FUNCINFO_SIZE 8 17214 #define MAX_FUNCINFO_REC_SIZE 252 17215 17216 static int check_btf_func_early(struct bpf_verifier_env *env, 17217 const union bpf_attr *attr, 17218 bpfptr_t uattr) 17219 { 17220 u32 krec_size = sizeof(struct bpf_func_info); 17221 const struct btf_type *type, *func_proto; 17222 u32 i, nfuncs, urec_size, min_size; 17223 struct bpf_func_info *krecord; 17224 struct bpf_prog *prog; 17225 const struct btf *btf; 17226 u32 prev_offset = 0; 17227 bpfptr_t urecord; 17228 int ret = -ENOMEM; 17229 17230 nfuncs = attr->func_info_cnt; 17231 if (!nfuncs) { 17232 if (check_abnormal_return(env)) 17233 return -EINVAL; 17234 return 0; 17235 } 17236 17237 urec_size = attr->func_info_rec_size; 17238 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 17239 urec_size > MAX_FUNCINFO_REC_SIZE || 17240 urec_size % sizeof(u32)) { 17241 verbose(env, "invalid func info rec size %u\n", urec_size); 17242 return -EINVAL; 17243 } 17244 17245 prog = env->prog; 17246 btf = prog->aux->btf; 17247 17248 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17249 min_size = min_t(u32, krec_size, urec_size); 17250 17251 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 17252 if (!krecord) 17253 return -ENOMEM; 17254 17255 for (i = 0; i < nfuncs; i++) { 17256 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 17257 if (ret) { 17258 if (ret == -E2BIG) { 17259 verbose(env, "nonzero tailing record in func info"); 17260 /* set the size kernel expects so loader can zero 17261 * out the rest of the record. 17262 */ 17263 if (copy_to_bpfptr_offset(uattr, 17264 offsetof(union bpf_attr, func_info_rec_size), 17265 &min_size, sizeof(min_size))) 17266 ret = -EFAULT; 17267 } 17268 goto err_free; 17269 } 17270 17271 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 17272 ret = -EFAULT; 17273 goto err_free; 17274 } 17275 17276 /* check insn_off */ 17277 ret = -EINVAL; 17278 if (i == 0) { 17279 if (krecord[i].insn_off) { 17280 verbose(env, 17281 "nonzero insn_off %u for the first func info record", 17282 krecord[i].insn_off); 17283 goto err_free; 17284 } 17285 } else if (krecord[i].insn_off <= prev_offset) { 17286 verbose(env, 17287 "same or smaller insn offset (%u) than previous func info record (%u)", 17288 krecord[i].insn_off, prev_offset); 17289 goto err_free; 17290 } 17291 17292 /* check type_id */ 17293 type = btf_type_by_id(btf, krecord[i].type_id); 17294 if (!type || !btf_type_is_func(type)) { 17295 verbose(env, "invalid type id %d in func info", 17296 krecord[i].type_id); 17297 goto err_free; 17298 } 17299 17300 func_proto = btf_type_by_id(btf, type->type); 17301 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 17302 /* btf_func_check() already verified it during BTF load */ 17303 goto err_free; 17304 17305 prev_offset = krecord[i].insn_off; 17306 bpfptr_add(&urecord, urec_size); 17307 } 17308 17309 prog->aux->func_info = krecord; 17310 prog->aux->func_info_cnt = nfuncs; 17311 return 0; 17312 17313 err_free: 17314 kvfree(krecord); 17315 return ret; 17316 } 17317 17318 static int check_btf_func(struct bpf_verifier_env *env, 17319 const union bpf_attr *attr, 17320 bpfptr_t uattr) 17321 { 17322 const struct btf_type *type, *func_proto, *ret_type; 17323 u32 i, nfuncs, urec_size; 17324 struct bpf_func_info *krecord; 17325 struct bpf_func_info_aux *info_aux = NULL; 17326 struct bpf_prog *prog; 17327 const struct btf *btf; 17328 bpfptr_t urecord; 17329 bool scalar_return; 17330 int ret = -ENOMEM; 17331 17332 nfuncs = attr->func_info_cnt; 17333 if (!nfuncs) { 17334 if (check_abnormal_return(env)) 17335 return -EINVAL; 17336 return 0; 17337 } 17338 if (nfuncs != env->subprog_cnt) { 17339 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 17340 return -EINVAL; 17341 } 17342 17343 urec_size = attr->func_info_rec_size; 17344 17345 prog = env->prog; 17346 btf = prog->aux->btf; 17347 17348 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17349 17350 krecord = prog->aux->func_info; 17351 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 17352 if (!info_aux) 17353 return -ENOMEM; 17354 17355 for (i = 0; i < nfuncs; i++) { 17356 /* check insn_off */ 17357 ret = -EINVAL; 17358 17359 if (env->subprog_info[i].start != krecord[i].insn_off) { 17360 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 17361 goto err_free; 17362 } 17363 17364 /* Already checked type_id */ 17365 type = btf_type_by_id(btf, krecord[i].type_id); 17366 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 17367 /* Already checked func_proto */ 17368 func_proto = btf_type_by_id(btf, type->type); 17369 17370 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 17371 scalar_return = 17372 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 17373 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 17374 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 17375 goto err_free; 17376 } 17377 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 17378 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 17379 goto err_free; 17380 } 17381 17382 bpfptr_add(&urecord, urec_size); 17383 } 17384 17385 prog->aux->func_info_aux = info_aux; 17386 return 0; 17387 17388 err_free: 17389 kfree(info_aux); 17390 return ret; 17391 } 17392 17393 static void adjust_btf_func(struct bpf_verifier_env *env) 17394 { 17395 struct bpf_prog_aux *aux = env->prog->aux; 17396 int i; 17397 17398 if (!aux->func_info) 17399 return; 17400 17401 /* func_info is not available for hidden subprogs */ 17402 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 17403 aux->func_info[i].insn_off = env->subprog_info[i].start; 17404 } 17405 17406 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 17407 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 17408 17409 static int check_btf_line(struct bpf_verifier_env *env, 17410 const union bpf_attr *attr, 17411 bpfptr_t uattr) 17412 { 17413 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 17414 struct bpf_subprog_info *sub; 17415 struct bpf_line_info *linfo; 17416 struct bpf_prog *prog; 17417 const struct btf *btf; 17418 bpfptr_t ulinfo; 17419 int err; 17420 17421 nr_linfo = attr->line_info_cnt; 17422 if (!nr_linfo) 17423 return 0; 17424 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 17425 return -EINVAL; 17426 17427 rec_size = attr->line_info_rec_size; 17428 if (rec_size < MIN_BPF_LINEINFO_SIZE || 17429 rec_size > MAX_LINEINFO_REC_SIZE || 17430 rec_size & (sizeof(u32) - 1)) 17431 return -EINVAL; 17432 17433 /* Need to zero it in case the userspace may 17434 * pass in a smaller bpf_line_info object. 17435 */ 17436 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 17437 GFP_KERNEL | __GFP_NOWARN); 17438 if (!linfo) 17439 return -ENOMEM; 17440 17441 prog = env->prog; 17442 btf = prog->aux->btf; 17443 17444 s = 0; 17445 sub = env->subprog_info; 17446 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 17447 expected_size = sizeof(struct bpf_line_info); 17448 ncopy = min_t(u32, expected_size, rec_size); 17449 for (i = 0; i < nr_linfo; i++) { 17450 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 17451 if (err) { 17452 if (err == -E2BIG) { 17453 verbose(env, "nonzero tailing record in line_info"); 17454 if (copy_to_bpfptr_offset(uattr, 17455 offsetof(union bpf_attr, line_info_rec_size), 17456 &expected_size, sizeof(expected_size))) 17457 err = -EFAULT; 17458 } 17459 goto err_free; 17460 } 17461 17462 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 17463 err = -EFAULT; 17464 goto err_free; 17465 } 17466 17467 /* 17468 * Check insn_off to ensure 17469 * 1) strictly increasing AND 17470 * 2) bounded by prog->len 17471 * 17472 * The linfo[0].insn_off == 0 check logically falls into 17473 * the later "missing bpf_line_info for func..." case 17474 * because the first linfo[0].insn_off must be the 17475 * first sub also and the first sub must have 17476 * subprog_info[0].start == 0. 17477 */ 17478 if ((i && linfo[i].insn_off <= prev_offset) || 17479 linfo[i].insn_off >= prog->len) { 17480 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 17481 i, linfo[i].insn_off, prev_offset, 17482 prog->len); 17483 err = -EINVAL; 17484 goto err_free; 17485 } 17486 17487 if (!prog->insnsi[linfo[i].insn_off].code) { 17488 verbose(env, 17489 "Invalid insn code at line_info[%u].insn_off\n", 17490 i); 17491 err = -EINVAL; 17492 goto err_free; 17493 } 17494 17495 if (!btf_name_by_offset(btf, linfo[i].line_off) || 17496 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 17497 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 17498 err = -EINVAL; 17499 goto err_free; 17500 } 17501 17502 if (s != env->subprog_cnt) { 17503 if (linfo[i].insn_off == sub[s].start) { 17504 sub[s].linfo_idx = i; 17505 s++; 17506 } else if (sub[s].start < linfo[i].insn_off) { 17507 verbose(env, "missing bpf_line_info for func#%u\n", s); 17508 err = -EINVAL; 17509 goto err_free; 17510 } 17511 } 17512 17513 prev_offset = linfo[i].insn_off; 17514 bpfptr_add(&ulinfo, rec_size); 17515 } 17516 17517 if (s != env->subprog_cnt) { 17518 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 17519 env->subprog_cnt - s, s); 17520 err = -EINVAL; 17521 goto err_free; 17522 } 17523 17524 prog->aux->linfo = linfo; 17525 prog->aux->nr_linfo = nr_linfo; 17526 17527 return 0; 17528 17529 err_free: 17530 kvfree(linfo); 17531 return err; 17532 } 17533 17534 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 17535 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 17536 17537 static int check_core_relo(struct bpf_verifier_env *env, 17538 const union bpf_attr *attr, 17539 bpfptr_t uattr) 17540 { 17541 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 17542 struct bpf_core_relo core_relo = {}; 17543 struct bpf_prog *prog = env->prog; 17544 const struct btf *btf = prog->aux->btf; 17545 struct bpf_core_ctx ctx = { 17546 .log = &env->log, 17547 .btf = btf, 17548 }; 17549 bpfptr_t u_core_relo; 17550 int err; 17551 17552 nr_core_relo = attr->core_relo_cnt; 17553 if (!nr_core_relo) 17554 return 0; 17555 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 17556 return -EINVAL; 17557 17558 rec_size = attr->core_relo_rec_size; 17559 if (rec_size < MIN_CORE_RELO_SIZE || 17560 rec_size > MAX_CORE_RELO_SIZE || 17561 rec_size % sizeof(u32)) 17562 return -EINVAL; 17563 17564 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 17565 expected_size = sizeof(struct bpf_core_relo); 17566 ncopy = min_t(u32, expected_size, rec_size); 17567 17568 /* Unlike func_info and line_info, copy and apply each CO-RE 17569 * relocation record one at a time. 17570 */ 17571 for (i = 0; i < nr_core_relo; i++) { 17572 /* future proofing when sizeof(bpf_core_relo) changes */ 17573 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 17574 if (err) { 17575 if (err == -E2BIG) { 17576 verbose(env, "nonzero tailing record in core_relo"); 17577 if (copy_to_bpfptr_offset(uattr, 17578 offsetof(union bpf_attr, core_relo_rec_size), 17579 &expected_size, sizeof(expected_size))) 17580 err = -EFAULT; 17581 } 17582 break; 17583 } 17584 17585 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 17586 err = -EFAULT; 17587 break; 17588 } 17589 17590 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 17591 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 17592 i, core_relo.insn_off, prog->len); 17593 err = -EINVAL; 17594 break; 17595 } 17596 17597 err = bpf_core_apply(&ctx, &core_relo, i, 17598 &prog->insnsi[core_relo.insn_off / 8]); 17599 if (err) 17600 break; 17601 bpfptr_add(&u_core_relo, rec_size); 17602 } 17603 return err; 17604 } 17605 17606 static int check_btf_info_early(struct bpf_verifier_env *env, 17607 const union bpf_attr *attr, 17608 bpfptr_t uattr) 17609 { 17610 struct btf *btf; 17611 int err; 17612 17613 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17614 if (check_abnormal_return(env)) 17615 return -EINVAL; 17616 return 0; 17617 } 17618 17619 btf = btf_get_by_fd(attr->prog_btf_fd); 17620 if (IS_ERR(btf)) 17621 return PTR_ERR(btf); 17622 if (btf_is_kernel(btf)) { 17623 btf_put(btf); 17624 return -EACCES; 17625 } 17626 env->prog->aux->btf = btf; 17627 17628 err = check_btf_func_early(env, attr, uattr); 17629 if (err) 17630 return err; 17631 return 0; 17632 } 17633 17634 static int check_btf_info(struct bpf_verifier_env *env, 17635 const union bpf_attr *attr, 17636 bpfptr_t uattr) 17637 { 17638 int err; 17639 17640 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17641 if (check_abnormal_return(env)) 17642 return -EINVAL; 17643 return 0; 17644 } 17645 17646 err = check_btf_func(env, attr, uattr); 17647 if (err) 17648 return err; 17649 17650 err = check_btf_line(env, attr, uattr); 17651 if (err) 17652 return err; 17653 17654 err = check_core_relo(env, attr, uattr); 17655 if (err) 17656 return err; 17657 17658 return 0; 17659 } 17660 17661 /* check %cur's range satisfies %old's */ 17662 static bool range_within(const struct bpf_reg_state *old, 17663 const struct bpf_reg_state *cur) 17664 { 17665 return old->umin_value <= cur->umin_value && 17666 old->umax_value >= cur->umax_value && 17667 old->smin_value <= cur->smin_value && 17668 old->smax_value >= cur->smax_value && 17669 old->u32_min_value <= cur->u32_min_value && 17670 old->u32_max_value >= cur->u32_max_value && 17671 old->s32_min_value <= cur->s32_min_value && 17672 old->s32_max_value >= cur->s32_max_value; 17673 } 17674 17675 /* If in the old state two registers had the same id, then they need to have 17676 * the same id in the new state as well. But that id could be different from 17677 * the old state, so we need to track the mapping from old to new ids. 17678 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 17679 * regs with old id 5 must also have new id 9 for the new state to be safe. But 17680 * regs with a different old id could still have new id 9, we don't care about 17681 * that. 17682 * So we look through our idmap to see if this old id has been seen before. If 17683 * so, we require the new id to match; otherwise, we add the id pair to the map. 17684 */ 17685 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17686 { 17687 struct bpf_id_pair *map = idmap->map; 17688 unsigned int i; 17689 17690 /* either both IDs should be set or both should be zero */ 17691 if (!!old_id != !!cur_id) 17692 return false; 17693 17694 if (old_id == 0) /* cur_id == 0 as well */ 17695 return true; 17696 17697 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 17698 if (!map[i].old) { 17699 /* Reached an empty slot; haven't seen this id before */ 17700 map[i].old = old_id; 17701 map[i].cur = cur_id; 17702 return true; 17703 } 17704 if (map[i].old == old_id) 17705 return map[i].cur == cur_id; 17706 if (map[i].cur == cur_id) 17707 return false; 17708 } 17709 /* We ran out of idmap slots, which should be impossible */ 17710 WARN_ON_ONCE(1); 17711 return false; 17712 } 17713 17714 /* Similar to check_ids(), but allocate a unique temporary ID 17715 * for 'old_id' or 'cur_id' of zero. 17716 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 17717 */ 17718 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17719 { 17720 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 17721 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 17722 17723 return check_ids(old_id, cur_id, idmap); 17724 } 17725 17726 static void clean_func_state(struct bpf_verifier_env *env, 17727 struct bpf_func_state *st) 17728 { 17729 enum bpf_reg_liveness live; 17730 int i, j; 17731 17732 for (i = 0; i < BPF_REG_FP; i++) { 17733 live = st->regs[i].live; 17734 /* liveness must not touch this register anymore */ 17735 st->regs[i].live |= REG_LIVE_DONE; 17736 if (!(live & REG_LIVE_READ)) 17737 /* since the register is unused, clear its state 17738 * to make further comparison simpler 17739 */ 17740 __mark_reg_not_init(env, &st->regs[i]); 17741 } 17742 17743 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 17744 live = st->stack[i].spilled_ptr.live; 17745 /* liveness must not touch this stack slot anymore */ 17746 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 17747 if (!(live & REG_LIVE_READ)) { 17748 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 17749 for (j = 0; j < BPF_REG_SIZE; j++) 17750 st->stack[i].slot_type[j] = STACK_INVALID; 17751 } 17752 } 17753 } 17754 17755 static void clean_verifier_state(struct bpf_verifier_env *env, 17756 struct bpf_verifier_state *st) 17757 { 17758 int i; 17759 17760 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 17761 /* all regs in this state in all frames were already marked */ 17762 return; 17763 17764 for (i = 0; i <= st->curframe; i++) 17765 clean_func_state(env, st->frame[i]); 17766 } 17767 17768 /* the parentage chains form a tree. 17769 * the verifier states are added to state lists at given insn and 17770 * pushed into state stack for future exploration. 17771 * when the verifier reaches bpf_exit insn some of the verifer states 17772 * stored in the state lists have their final liveness state already, 17773 * but a lot of states will get revised from liveness point of view when 17774 * the verifier explores other branches. 17775 * Example: 17776 * 1: r0 = 1 17777 * 2: if r1 == 100 goto pc+1 17778 * 3: r0 = 2 17779 * 4: exit 17780 * when the verifier reaches exit insn the register r0 in the state list of 17781 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 17782 * of insn 2 and goes exploring further. At the insn 4 it will walk the 17783 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 17784 * 17785 * Since the verifier pushes the branch states as it sees them while exploring 17786 * the program the condition of walking the branch instruction for the second 17787 * time means that all states below this branch were already explored and 17788 * their final liveness marks are already propagated. 17789 * Hence when the verifier completes the search of state list in is_state_visited() 17790 * we can call this clean_live_states() function to mark all liveness states 17791 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 17792 * will not be used. 17793 * This function also clears the registers and stack for states that !READ 17794 * to simplify state merging. 17795 * 17796 * Important note here that walking the same branch instruction in the callee 17797 * doesn't meant that the states are DONE. The verifier has to compare 17798 * the callsites 17799 */ 17800 static void clean_live_states(struct bpf_verifier_env *env, int insn, 17801 struct bpf_verifier_state *cur) 17802 { 17803 struct bpf_verifier_state_list *sl; 17804 17805 sl = *explored_state(env, insn); 17806 while (sl) { 17807 if (sl->state.branches) 17808 goto next; 17809 if (sl->state.insn_idx != insn || 17810 !same_callsites(&sl->state, cur)) 17811 goto next; 17812 clean_verifier_state(env, &sl->state); 17813 next: 17814 sl = sl->next; 17815 } 17816 } 17817 17818 static bool regs_exact(const struct bpf_reg_state *rold, 17819 const struct bpf_reg_state *rcur, 17820 struct bpf_idmap *idmap) 17821 { 17822 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17823 check_ids(rold->id, rcur->id, idmap) && 17824 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17825 } 17826 17827 enum exact_level { 17828 NOT_EXACT, 17829 EXACT, 17830 RANGE_WITHIN 17831 }; 17832 17833 /* Returns true if (rold safe implies rcur safe) */ 17834 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 17835 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 17836 enum exact_level exact) 17837 { 17838 if (exact == EXACT) 17839 return regs_exact(rold, rcur, idmap); 17840 17841 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 17842 /* explored state didn't use this */ 17843 return true; 17844 if (rold->type == NOT_INIT) { 17845 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 17846 /* explored state can't have used this */ 17847 return true; 17848 } 17849 17850 /* Enforce that register types have to match exactly, including their 17851 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 17852 * rule. 17853 * 17854 * One can make a point that using a pointer register as unbounded 17855 * SCALAR would be technically acceptable, but this could lead to 17856 * pointer leaks because scalars are allowed to leak while pointers 17857 * are not. We could make this safe in special cases if root is 17858 * calling us, but it's probably not worth the hassle. 17859 * 17860 * Also, register types that are *not* MAYBE_NULL could technically be 17861 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 17862 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 17863 * to the same map). 17864 * However, if the old MAYBE_NULL register then got NULL checked, 17865 * doing so could have affected others with the same id, and we can't 17866 * check for that because we lost the id when we converted to 17867 * a non-MAYBE_NULL variant. 17868 * So, as a general rule we don't allow mixing MAYBE_NULL and 17869 * non-MAYBE_NULL registers as well. 17870 */ 17871 if (rold->type != rcur->type) 17872 return false; 17873 17874 switch (base_type(rold->type)) { 17875 case SCALAR_VALUE: 17876 if (env->explore_alu_limits) { 17877 /* explore_alu_limits disables tnum_in() and range_within() 17878 * logic and requires everything to be strict 17879 */ 17880 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17881 check_scalar_ids(rold->id, rcur->id, idmap); 17882 } 17883 if (!rold->precise && exact == NOT_EXACT) 17884 return true; 17885 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 17886 return false; 17887 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 17888 return false; 17889 /* Why check_ids() for scalar registers? 17890 * 17891 * Consider the following BPF code: 17892 * 1: r6 = ... unbound scalar, ID=a ... 17893 * 2: r7 = ... unbound scalar, ID=b ... 17894 * 3: if (r6 > r7) goto +1 17895 * 4: r6 = r7 17896 * 5: if (r6 > X) goto ... 17897 * 6: ... memory operation using r7 ... 17898 * 17899 * First verification path is [1-6]: 17900 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 17901 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 17902 * r7 <= X, because r6 and r7 share same id. 17903 * Next verification path is [1-4, 6]. 17904 * 17905 * Instruction (6) would be reached in two states: 17906 * I. r6{.id=b}, r7{.id=b} via path 1-6; 17907 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 17908 * 17909 * Use check_ids() to distinguish these states. 17910 * --- 17911 * Also verify that new value satisfies old value range knowledge. 17912 */ 17913 return range_within(rold, rcur) && 17914 tnum_in(rold->var_off, rcur->var_off) && 17915 check_scalar_ids(rold->id, rcur->id, idmap); 17916 case PTR_TO_MAP_KEY: 17917 case PTR_TO_MAP_VALUE: 17918 case PTR_TO_MEM: 17919 case PTR_TO_BUF: 17920 case PTR_TO_TP_BUFFER: 17921 /* If the new min/max/var_off satisfy the old ones and 17922 * everything else matches, we are OK. 17923 */ 17924 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 17925 range_within(rold, rcur) && 17926 tnum_in(rold->var_off, rcur->var_off) && 17927 check_ids(rold->id, rcur->id, idmap) && 17928 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17929 case PTR_TO_PACKET_META: 17930 case PTR_TO_PACKET: 17931 /* We must have at least as much range as the old ptr 17932 * did, so that any accesses which were safe before are 17933 * still safe. This is true even if old range < old off, 17934 * since someone could have accessed through (ptr - k), or 17935 * even done ptr -= k in a register, to get a safe access. 17936 */ 17937 if (rold->range > rcur->range) 17938 return false; 17939 /* If the offsets don't match, we can't trust our alignment; 17940 * nor can we be sure that we won't fall out of range. 17941 */ 17942 if (rold->off != rcur->off) 17943 return false; 17944 /* id relations must be preserved */ 17945 if (!check_ids(rold->id, rcur->id, idmap)) 17946 return false; 17947 /* new val must satisfy old val knowledge */ 17948 return range_within(rold, rcur) && 17949 tnum_in(rold->var_off, rcur->var_off); 17950 case PTR_TO_STACK: 17951 /* two stack pointers are equal only if they're pointing to 17952 * the same stack frame, since fp-8 in foo != fp-8 in bar 17953 */ 17954 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 17955 case PTR_TO_ARENA: 17956 return true; 17957 default: 17958 return regs_exact(rold, rcur, idmap); 17959 } 17960 } 17961 17962 static struct bpf_reg_state unbound_reg; 17963 17964 static __init int unbound_reg_init(void) 17965 { 17966 __mark_reg_unknown_imprecise(&unbound_reg); 17967 unbound_reg.live |= REG_LIVE_READ; 17968 return 0; 17969 } 17970 late_initcall(unbound_reg_init); 17971 17972 static bool is_stack_all_misc(struct bpf_verifier_env *env, 17973 struct bpf_stack_state *stack) 17974 { 17975 u32 i; 17976 17977 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 17978 if ((stack->slot_type[i] == STACK_MISC) || 17979 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 17980 continue; 17981 return false; 17982 } 17983 17984 return true; 17985 } 17986 17987 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 17988 struct bpf_stack_state *stack) 17989 { 17990 if (is_spilled_scalar_reg64(stack)) 17991 return &stack->spilled_ptr; 17992 17993 if (is_stack_all_misc(env, stack)) 17994 return &unbound_reg; 17995 17996 return NULL; 17997 } 17998 17999 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18000 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18001 enum exact_level exact) 18002 { 18003 int i, spi; 18004 18005 /* walk slots of the explored stack and ignore any additional 18006 * slots in the current stack, since explored(safe) state 18007 * didn't use them 18008 */ 18009 for (i = 0; i < old->allocated_stack; i++) { 18010 struct bpf_reg_state *old_reg, *cur_reg; 18011 18012 spi = i / BPF_REG_SIZE; 18013 18014 if (exact != NOT_EXACT && 18015 (i >= cur->allocated_stack || 18016 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18017 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18018 return false; 18019 18020 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 18021 && exact == NOT_EXACT) { 18022 i += BPF_REG_SIZE - 1; 18023 /* explored state didn't use this */ 18024 continue; 18025 } 18026 18027 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18028 continue; 18029 18030 if (env->allow_uninit_stack && 18031 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18032 continue; 18033 18034 /* explored stack has more populated slots than current stack 18035 * and these slots were used 18036 */ 18037 if (i >= cur->allocated_stack) 18038 return false; 18039 18040 /* 64-bit scalar spill vs all slots MISC and vice versa. 18041 * Load from all slots MISC produces unbound scalar. 18042 * Construct a fake register for such stack and call 18043 * regsafe() to ensure scalar ids are compared. 18044 */ 18045 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18046 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18047 if (old_reg && cur_reg) { 18048 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18049 return false; 18050 i += BPF_REG_SIZE - 1; 18051 continue; 18052 } 18053 18054 /* if old state was safe with misc data in the stack 18055 * it will be safe with zero-initialized stack. 18056 * The opposite is not true 18057 */ 18058 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18059 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18060 continue; 18061 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18062 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18063 /* Ex: old explored (safe) state has STACK_SPILL in 18064 * this stack slot, but current has STACK_MISC -> 18065 * this verifier states are not equivalent, 18066 * return false to continue verification of this path 18067 */ 18068 return false; 18069 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18070 continue; 18071 /* Both old and cur are having same slot_type */ 18072 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18073 case STACK_SPILL: 18074 /* when explored and current stack slot are both storing 18075 * spilled registers, check that stored pointers types 18076 * are the same as well. 18077 * Ex: explored safe path could have stored 18078 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18079 * but current path has stored: 18080 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18081 * such verifier states are not equivalent. 18082 * return false to continue verification of this path 18083 */ 18084 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18085 &cur->stack[spi].spilled_ptr, idmap, exact)) 18086 return false; 18087 break; 18088 case STACK_DYNPTR: 18089 old_reg = &old->stack[spi].spilled_ptr; 18090 cur_reg = &cur->stack[spi].spilled_ptr; 18091 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18092 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18093 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18094 return false; 18095 break; 18096 case STACK_ITER: 18097 old_reg = &old->stack[spi].spilled_ptr; 18098 cur_reg = &cur->stack[spi].spilled_ptr; 18099 /* iter.depth is not compared between states as it 18100 * doesn't matter for correctness and would otherwise 18101 * prevent convergence; we maintain it only to prevent 18102 * infinite loop check triggering, see 18103 * iter_active_depths_differ() 18104 */ 18105 if (old_reg->iter.btf != cur_reg->iter.btf || 18106 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18107 old_reg->iter.state != cur_reg->iter.state || 18108 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18109 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18110 return false; 18111 break; 18112 case STACK_IRQ_FLAG: 18113 old_reg = &old->stack[spi].spilled_ptr; 18114 cur_reg = &cur->stack[spi].spilled_ptr; 18115 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18116 return false; 18117 break; 18118 case STACK_MISC: 18119 case STACK_ZERO: 18120 case STACK_INVALID: 18121 continue; 18122 /* Ensure that new unhandled slot types return false by default */ 18123 default: 18124 return false; 18125 } 18126 } 18127 return true; 18128 } 18129 18130 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18131 struct bpf_idmap *idmap) 18132 { 18133 int i; 18134 18135 if (old->acquired_refs != cur->acquired_refs) 18136 return false; 18137 18138 if (old->active_locks != cur->active_locks) 18139 return false; 18140 18141 if (old->active_preempt_locks != cur->active_preempt_locks) 18142 return false; 18143 18144 if (old->active_rcu_lock != cur->active_rcu_lock) 18145 return false; 18146 18147 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18148 return false; 18149 18150 for (i = 0; i < old->acquired_refs; i++) { 18151 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18152 old->refs[i].type != cur->refs[i].type) 18153 return false; 18154 switch (old->refs[i].type) { 18155 case REF_TYPE_PTR: 18156 case REF_TYPE_IRQ: 18157 break; 18158 case REF_TYPE_LOCK: 18159 if (old->refs[i].ptr != cur->refs[i].ptr) 18160 return false; 18161 break; 18162 default: 18163 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 18164 return false; 18165 } 18166 } 18167 18168 return true; 18169 } 18170 18171 /* compare two verifier states 18172 * 18173 * all states stored in state_list are known to be valid, since 18174 * verifier reached 'bpf_exit' instruction through them 18175 * 18176 * this function is called when verifier exploring different branches of 18177 * execution popped from the state stack. If it sees an old state that has 18178 * more strict register state and more strict stack state then this execution 18179 * branch doesn't need to be explored further, since verifier already 18180 * concluded that more strict state leads to valid finish. 18181 * 18182 * Therefore two states are equivalent if register state is more conservative 18183 * and explored stack state is more conservative than the current one. 18184 * Example: 18185 * explored current 18186 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 18187 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 18188 * 18189 * In other words if current stack state (one being explored) has more 18190 * valid slots than old one that already passed validation, it means 18191 * the verifier can stop exploring and conclude that current state is valid too 18192 * 18193 * Similarly with registers. If explored state has register type as invalid 18194 * whereas register type in current state is meaningful, it means that 18195 * the current state will reach 'bpf_exit' instruction safely 18196 */ 18197 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 18198 struct bpf_func_state *cur, enum exact_level exact) 18199 { 18200 int i; 18201 18202 if (old->callback_depth > cur->callback_depth) 18203 return false; 18204 18205 for (i = 0; i < MAX_BPF_REG; i++) 18206 if (!regsafe(env, &old->regs[i], &cur->regs[i], 18207 &env->idmap_scratch, exact)) 18208 return false; 18209 18210 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 18211 return false; 18212 18213 return true; 18214 } 18215 18216 static void reset_idmap_scratch(struct bpf_verifier_env *env) 18217 { 18218 env->idmap_scratch.tmp_id_gen = env->id_gen; 18219 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 18220 } 18221 18222 static bool states_equal(struct bpf_verifier_env *env, 18223 struct bpf_verifier_state *old, 18224 struct bpf_verifier_state *cur, 18225 enum exact_level exact) 18226 { 18227 int i; 18228 18229 if (old->curframe != cur->curframe) 18230 return false; 18231 18232 reset_idmap_scratch(env); 18233 18234 /* Verification state from speculative execution simulation 18235 * must never prune a non-speculative execution one. 18236 */ 18237 if (old->speculative && !cur->speculative) 18238 return false; 18239 18240 if (old->in_sleepable != cur->in_sleepable) 18241 return false; 18242 18243 if (!refsafe(old, cur, &env->idmap_scratch)) 18244 return false; 18245 18246 /* for states to be equal callsites have to be the same 18247 * and all frame states need to be equivalent 18248 */ 18249 for (i = 0; i <= old->curframe; i++) { 18250 if (old->frame[i]->callsite != cur->frame[i]->callsite) 18251 return false; 18252 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 18253 return false; 18254 } 18255 return true; 18256 } 18257 18258 /* Return 0 if no propagation happened. Return negative error code if error 18259 * happened. Otherwise, return the propagated bit. 18260 */ 18261 static int propagate_liveness_reg(struct bpf_verifier_env *env, 18262 struct bpf_reg_state *reg, 18263 struct bpf_reg_state *parent_reg) 18264 { 18265 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 18266 u8 flag = reg->live & REG_LIVE_READ; 18267 int err; 18268 18269 /* When comes here, read flags of PARENT_REG or REG could be any of 18270 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 18271 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 18272 */ 18273 if (parent_flag == REG_LIVE_READ64 || 18274 /* Or if there is no read flag from REG. */ 18275 !flag || 18276 /* Or if the read flag from REG is the same as PARENT_REG. */ 18277 parent_flag == flag) 18278 return 0; 18279 18280 err = mark_reg_read(env, reg, parent_reg, flag); 18281 if (err) 18282 return err; 18283 18284 return flag; 18285 } 18286 18287 /* A write screens off any subsequent reads; but write marks come from the 18288 * straight-line code between a state and its parent. When we arrive at an 18289 * equivalent state (jump target or such) we didn't arrive by the straight-line 18290 * code, so read marks in the state must propagate to the parent regardless 18291 * of the state's write marks. That's what 'parent == state->parent' comparison 18292 * in mark_reg_read() is for. 18293 */ 18294 static int propagate_liveness(struct bpf_verifier_env *env, 18295 const struct bpf_verifier_state *vstate, 18296 struct bpf_verifier_state *vparent) 18297 { 18298 struct bpf_reg_state *state_reg, *parent_reg; 18299 struct bpf_func_state *state, *parent; 18300 int i, frame, err = 0; 18301 18302 if (vparent->curframe != vstate->curframe) { 18303 WARN(1, "propagate_live: parent frame %d current frame %d\n", 18304 vparent->curframe, vstate->curframe); 18305 return -EFAULT; 18306 } 18307 /* Propagate read liveness of registers... */ 18308 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 18309 for (frame = 0; frame <= vstate->curframe; frame++) { 18310 parent = vparent->frame[frame]; 18311 state = vstate->frame[frame]; 18312 parent_reg = parent->regs; 18313 state_reg = state->regs; 18314 /* We don't need to worry about FP liveness, it's read-only */ 18315 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 18316 err = propagate_liveness_reg(env, &state_reg[i], 18317 &parent_reg[i]); 18318 if (err < 0) 18319 return err; 18320 if (err == REG_LIVE_READ64) 18321 mark_insn_zext(env, &parent_reg[i]); 18322 } 18323 18324 /* Propagate stack slots. */ 18325 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 18326 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 18327 parent_reg = &parent->stack[i].spilled_ptr; 18328 state_reg = &state->stack[i].spilled_ptr; 18329 err = propagate_liveness_reg(env, state_reg, 18330 parent_reg); 18331 if (err < 0) 18332 return err; 18333 } 18334 } 18335 return 0; 18336 } 18337 18338 /* find precise scalars in the previous equivalent state and 18339 * propagate them into the current state 18340 */ 18341 static int propagate_precision(struct bpf_verifier_env *env, 18342 const struct bpf_verifier_state *old) 18343 { 18344 struct bpf_reg_state *state_reg; 18345 struct bpf_func_state *state; 18346 int i, err = 0, fr; 18347 bool first; 18348 18349 for (fr = old->curframe; fr >= 0; fr--) { 18350 state = old->frame[fr]; 18351 state_reg = state->regs; 18352 first = true; 18353 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 18354 if (state_reg->type != SCALAR_VALUE || 18355 !state_reg->precise || 18356 !(state_reg->live & REG_LIVE_READ)) 18357 continue; 18358 if (env->log.level & BPF_LOG_LEVEL2) { 18359 if (first) 18360 verbose(env, "frame %d: propagating r%d", fr, i); 18361 else 18362 verbose(env, ",r%d", i); 18363 } 18364 bt_set_frame_reg(&env->bt, fr, i); 18365 first = false; 18366 } 18367 18368 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18369 if (!is_spilled_reg(&state->stack[i])) 18370 continue; 18371 state_reg = &state->stack[i].spilled_ptr; 18372 if (state_reg->type != SCALAR_VALUE || 18373 !state_reg->precise || 18374 !(state_reg->live & REG_LIVE_READ)) 18375 continue; 18376 if (env->log.level & BPF_LOG_LEVEL2) { 18377 if (first) 18378 verbose(env, "frame %d: propagating fp%d", 18379 fr, (-i - 1) * BPF_REG_SIZE); 18380 else 18381 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 18382 } 18383 bt_set_frame_slot(&env->bt, fr, i); 18384 first = false; 18385 } 18386 if (!first) 18387 verbose(env, "\n"); 18388 } 18389 18390 err = mark_chain_precision_batch(env); 18391 if (err < 0) 18392 return err; 18393 18394 return 0; 18395 } 18396 18397 static bool states_maybe_looping(struct bpf_verifier_state *old, 18398 struct bpf_verifier_state *cur) 18399 { 18400 struct bpf_func_state *fold, *fcur; 18401 int i, fr = cur->curframe; 18402 18403 if (old->curframe != fr) 18404 return false; 18405 18406 fold = old->frame[fr]; 18407 fcur = cur->frame[fr]; 18408 for (i = 0; i < MAX_BPF_REG; i++) 18409 if (memcmp(&fold->regs[i], &fcur->regs[i], 18410 offsetof(struct bpf_reg_state, parent))) 18411 return false; 18412 return true; 18413 } 18414 18415 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 18416 { 18417 return env->insn_aux_data[insn_idx].is_iter_next; 18418 } 18419 18420 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 18421 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 18422 * states to match, which otherwise would look like an infinite loop. So while 18423 * iter_next() calls are taken care of, we still need to be careful and 18424 * prevent erroneous and too eager declaration of "ininite loop", when 18425 * iterators are involved. 18426 * 18427 * Here's a situation in pseudo-BPF assembly form: 18428 * 18429 * 0: again: ; set up iter_next() call args 18430 * 1: r1 = &it ; <CHECKPOINT HERE> 18431 * 2: call bpf_iter_num_next ; this is iter_next() call 18432 * 3: if r0 == 0 goto done 18433 * 4: ... something useful here ... 18434 * 5: goto again ; another iteration 18435 * 6: done: 18436 * 7: r1 = &it 18437 * 8: call bpf_iter_num_destroy ; clean up iter state 18438 * 9: exit 18439 * 18440 * This is a typical loop. Let's assume that we have a prune point at 1:, 18441 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 18442 * again`, assuming other heuristics don't get in a way). 18443 * 18444 * When we first time come to 1:, let's say we have some state X. We proceed 18445 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 18446 * Now we come back to validate that forked ACTIVE state. We proceed through 18447 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 18448 * are converging. But the problem is that we don't know that yet, as this 18449 * convergence has to happen at iter_next() call site only. So if nothing is 18450 * done, at 1: verifier will use bounded loop logic and declare infinite 18451 * looping (and would be *technically* correct, if not for iterator's 18452 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 18453 * don't want that. So what we do in process_iter_next_call() when we go on 18454 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 18455 * a different iteration. So when we suspect an infinite loop, we additionally 18456 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 18457 * pretend we are not looping and wait for next iter_next() call. 18458 * 18459 * This only applies to ACTIVE state. In DRAINED state we don't expect to 18460 * loop, because that would actually mean infinite loop, as DRAINED state is 18461 * "sticky", and so we'll keep returning into the same instruction with the 18462 * same state (at least in one of possible code paths). 18463 * 18464 * This approach allows to keep infinite loop heuristic even in the face of 18465 * active iterator. E.g., C snippet below is and will be detected as 18466 * inifintely looping: 18467 * 18468 * struct bpf_iter_num it; 18469 * int *p, x; 18470 * 18471 * bpf_iter_num_new(&it, 0, 10); 18472 * while ((p = bpf_iter_num_next(&t))) { 18473 * x = p; 18474 * while (x--) {} // <<-- infinite loop here 18475 * } 18476 * 18477 */ 18478 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 18479 { 18480 struct bpf_reg_state *slot, *cur_slot; 18481 struct bpf_func_state *state; 18482 int i, fr; 18483 18484 for (fr = old->curframe; fr >= 0; fr--) { 18485 state = old->frame[fr]; 18486 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18487 if (state->stack[i].slot_type[0] != STACK_ITER) 18488 continue; 18489 18490 slot = &state->stack[i].spilled_ptr; 18491 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 18492 continue; 18493 18494 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 18495 if (cur_slot->iter.depth != slot->iter.depth) 18496 return true; 18497 } 18498 } 18499 return false; 18500 } 18501 18502 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 18503 { 18504 struct bpf_verifier_state_list *new_sl; 18505 struct bpf_verifier_state_list *sl, **pprev; 18506 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 18507 int i, j, n, err, states_cnt = 0; 18508 bool force_new_state, add_new_state, force_exact; 18509 18510 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 18511 /* Avoid accumulating infinitely long jmp history */ 18512 cur->insn_hist_end - cur->insn_hist_start > 40; 18513 18514 /* bpf progs typically have pruning point every 4 instructions 18515 * http://vger.kernel.org/bpfconf2019.html#session-1 18516 * Do not add new state for future pruning if the verifier hasn't seen 18517 * at least 2 jumps and at least 8 instructions. 18518 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 18519 * In tests that amounts to up to 50% reduction into total verifier 18520 * memory consumption and 20% verifier time speedup. 18521 */ 18522 add_new_state = force_new_state; 18523 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 18524 env->insn_processed - env->prev_insn_processed >= 8) 18525 add_new_state = true; 18526 18527 pprev = explored_state(env, insn_idx); 18528 sl = *pprev; 18529 18530 clean_live_states(env, insn_idx, cur); 18531 18532 while (sl) { 18533 states_cnt++; 18534 if (sl->state.insn_idx != insn_idx) 18535 goto next; 18536 18537 if (sl->state.branches) { 18538 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 18539 18540 if (frame->in_async_callback_fn && 18541 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 18542 /* Different async_entry_cnt means that the verifier is 18543 * processing another entry into async callback. 18544 * Seeing the same state is not an indication of infinite 18545 * loop or infinite recursion. 18546 * But finding the same state doesn't mean that it's safe 18547 * to stop processing the current state. The previous state 18548 * hasn't yet reached bpf_exit, since state.branches > 0. 18549 * Checking in_async_callback_fn alone is not enough either. 18550 * Since the verifier still needs to catch infinite loops 18551 * inside async callbacks. 18552 */ 18553 goto skip_inf_loop_check; 18554 } 18555 /* BPF open-coded iterators loop detection is special. 18556 * states_maybe_looping() logic is too simplistic in detecting 18557 * states that *might* be equivalent, because it doesn't know 18558 * about ID remapping, so don't even perform it. 18559 * See process_iter_next_call() and iter_active_depths_differ() 18560 * for overview of the logic. When current and one of parent 18561 * states are detected as equivalent, it's a good thing: we prove 18562 * convergence and can stop simulating further iterations. 18563 * It's safe to assume that iterator loop will finish, taking into 18564 * account iter_next() contract of eventually returning 18565 * sticky NULL result. 18566 * 18567 * Note, that states have to be compared exactly in this case because 18568 * read and precision marks might not be finalized inside the loop. 18569 * E.g. as in the program below: 18570 * 18571 * 1. r7 = -16 18572 * 2. r6 = bpf_get_prandom_u32() 18573 * 3. while (bpf_iter_num_next(&fp[-8])) { 18574 * 4. if (r6 != 42) { 18575 * 5. r7 = -32 18576 * 6. r6 = bpf_get_prandom_u32() 18577 * 7. continue 18578 * 8. } 18579 * 9. r0 = r10 18580 * 10. r0 += r7 18581 * 11. r8 = *(u64 *)(r0 + 0) 18582 * 12. r6 = bpf_get_prandom_u32() 18583 * 13. } 18584 * 18585 * Here verifier would first visit path 1-3, create a checkpoint at 3 18586 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 18587 * not have read or precision mark for r7 yet, thus inexact states 18588 * comparison would discard current state with r7=-32 18589 * => unsafe memory access at 11 would not be caught. 18590 */ 18591 if (is_iter_next_insn(env, insn_idx)) { 18592 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18593 struct bpf_func_state *cur_frame; 18594 struct bpf_reg_state *iter_state, *iter_reg; 18595 int spi; 18596 18597 cur_frame = cur->frame[cur->curframe]; 18598 /* btf_check_iter_kfuncs() enforces that 18599 * iter state pointer is always the first arg 18600 */ 18601 iter_reg = &cur_frame->regs[BPF_REG_1]; 18602 /* current state is valid due to states_equal(), 18603 * so we can assume valid iter and reg state, 18604 * no need for extra (re-)validations 18605 */ 18606 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 18607 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 18608 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 18609 update_loop_entry(cur, &sl->state); 18610 goto hit; 18611 } 18612 } 18613 goto skip_inf_loop_check; 18614 } 18615 if (is_may_goto_insn_at(env, insn_idx)) { 18616 if (sl->state.may_goto_depth != cur->may_goto_depth && 18617 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18618 update_loop_entry(cur, &sl->state); 18619 goto hit; 18620 } 18621 } 18622 if (calls_callback(env, insn_idx)) { 18623 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 18624 goto hit; 18625 goto skip_inf_loop_check; 18626 } 18627 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 18628 if (states_maybe_looping(&sl->state, cur) && 18629 states_equal(env, &sl->state, cur, EXACT) && 18630 !iter_active_depths_differ(&sl->state, cur) && 18631 sl->state.may_goto_depth == cur->may_goto_depth && 18632 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 18633 verbose_linfo(env, insn_idx, "; "); 18634 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 18635 verbose(env, "cur state:"); 18636 print_verifier_state(env, cur, cur->curframe, true); 18637 verbose(env, "old state:"); 18638 print_verifier_state(env, &sl->state, cur->curframe, true); 18639 return -EINVAL; 18640 } 18641 /* if the verifier is processing a loop, avoid adding new state 18642 * too often, since different loop iterations have distinct 18643 * states and may not help future pruning. 18644 * This threshold shouldn't be too low to make sure that 18645 * a loop with large bound will be rejected quickly. 18646 * The most abusive loop will be: 18647 * r1 += 1 18648 * if r1 < 1000000 goto pc-2 18649 * 1M insn_procssed limit / 100 == 10k peak states. 18650 * This threshold shouldn't be too high either, since states 18651 * at the end of the loop are likely to be useful in pruning. 18652 */ 18653 skip_inf_loop_check: 18654 if (!force_new_state && 18655 env->jmps_processed - env->prev_jmps_processed < 20 && 18656 env->insn_processed - env->prev_insn_processed < 100) 18657 add_new_state = false; 18658 goto miss; 18659 } 18660 /* If sl->state is a part of a loop and this loop's entry is a part of 18661 * current verification path then states have to be compared exactly. 18662 * 'force_exact' is needed to catch the following case: 18663 * 18664 * initial Here state 'succ' was processed first, 18665 * | it was eventually tracked to produce a 18666 * V state identical to 'hdr'. 18667 * .---------> hdr All branches from 'succ' had been explored 18668 * | | and thus 'succ' has its .branches == 0. 18669 * | V 18670 * | .------... Suppose states 'cur' and 'succ' correspond 18671 * | | | to the same instruction + callsites. 18672 * | V V In such case it is necessary to check 18673 * | ... ... if 'succ' and 'cur' are states_equal(). 18674 * | | | If 'succ' and 'cur' are a part of the 18675 * | V V same loop exact flag has to be set. 18676 * | succ <- cur To check if that is the case, verify 18677 * | | if loop entry of 'succ' is in current 18678 * | V DFS path. 18679 * | ... 18680 * | | 18681 * '----' 18682 * 18683 * Additional details are in the comment before get_loop_entry(). 18684 */ 18685 loop_entry = get_loop_entry(&sl->state); 18686 force_exact = loop_entry && loop_entry->branches > 0; 18687 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 18688 if (force_exact) 18689 update_loop_entry(cur, loop_entry); 18690 hit: 18691 sl->hit_cnt++; 18692 /* reached equivalent register/stack state, 18693 * prune the search. 18694 * Registers read by the continuation are read by us. 18695 * If we have any write marks in env->cur_state, they 18696 * will prevent corresponding reads in the continuation 18697 * from reaching our parent (an explored_state). Our 18698 * own state will get the read marks recorded, but 18699 * they'll be immediately forgotten as we're pruning 18700 * this state and will pop a new one. 18701 */ 18702 err = propagate_liveness(env, &sl->state, cur); 18703 18704 /* if previous state reached the exit with precision and 18705 * current state is equivalent to it (except precision marks) 18706 * the precision needs to be propagated back in 18707 * the current state. 18708 */ 18709 if (is_jmp_point(env, env->insn_idx)) 18710 err = err ? : push_insn_history(env, cur, 0, 0); 18711 err = err ? : propagate_precision(env, &sl->state); 18712 if (err) 18713 return err; 18714 return 1; 18715 } 18716 miss: 18717 /* when new state is not going to be added do not increase miss count. 18718 * Otherwise several loop iterations will remove the state 18719 * recorded earlier. The goal of these heuristics is to have 18720 * states from some iterations of the loop (some in the beginning 18721 * and some at the end) to help pruning. 18722 */ 18723 if (add_new_state) 18724 sl->miss_cnt++; 18725 /* heuristic to determine whether this state is beneficial 18726 * to keep checking from state equivalence point of view. 18727 * Higher numbers increase max_states_per_insn and verification time, 18728 * but do not meaningfully decrease insn_processed. 18729 * 'n' controls how many times state could miss before eviction. 18730 * Use bigger 'n' for checkpoints because evicting checkpoint states 18731 * too early would hinder iterator convergence. 18732 */ 18733 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 18734 if (sl->miss_cnt > sl->hit_cnt * n + n) { 18735 /* the state is unlikely to be useful. Remove it to 18736 * speed up verification 18737 */ 18738 *pprev = sl->next; 18739 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 18740 !sl->state.used_as_loop_entry) { 18741 u32 br = sl->state.branches; 18742 18743 WARN_ONCE(br, 18744 "BUG live_done but branches_to_explore %d\n", 18745 br); 18746 free_verifier_state(&sl->state, false); 18747 kfree(sl); 18748 env->peak_states--; 18749 } else { 18750 /* cannot free this state, since parentage chain may 18751 * walk it later. Add it for free_list instead to 18752 * be freed at the end of verification 18753 */ 18754 sl->next = env->free_list; 18755 env->free_list = sl; 18756 } 18757 sl = *pprev; 18758 continue; 18759 } 18760 next: 18761 pprev = &sl->next; 18762 sl = *pprev; 18763 } 18764 18765 if (env->max_states_per_insn < states_cnt) 18766 env->max_states_per_insn = states_cnt; 18767 18768 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 18769 return 0; 18770 18771 if (!add_new_state) 18772 return 0; 18773 18774 /* There were no equivalent states, remember the current one. 18775 * Technically the current state is not proven to be safe yet, 18776 * but it will either reach outer most bpf_exit (which means it's safe) 18777 * or it will be rejected. When there are no loops the verifier won't be 18778 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 18779 * again on the way to bpf_exit. 18780 * When looping the sl->state.branches will be > 0 and this state 18781 * will not be considered for equivalence until branches == 0. 18782 */ 18783 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 18784 if (!new_sl) 18785 return -ENOMEM; 18786 env->total_states++; 18787 env->peak_states++; 18788 env->prev_jmps_processed = env->jmps_processed; 18789 env->prev_insn_processed = env->insn_processed; 18790 18791 /* forget precise markings we inherited, see __mark_chain_precision */ 18792 if (env->bpf_capable) 18793 mark_all_scalars_imprecise(env, cur); 18794 18795 /* add new state to the head of linked list */ 18796 new = &new_sl->state; 18797 err = copy_verifier_state(new, cur); 18798 if (err) { 18799 free_verifier_state(new, false); 18800 kfree(new_sl); 18801 return err; 18802 } 18803 new->insn_idx = insn_idx; 18804 WARN_ONCE(new->branches != 1, 18805 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 18806 18807 cur->parent = new; 18808 cur->first_insn_idx = insn_idx; 18809 cur->insn_hist_start = cur->insn_hist_end; 18810 cur->dfs_depth = new->dfs_depth + 1; 18811 new_sl->next = *explored_state(env, insn_idx); 18812 *explored_state(env, insn_idx) = new_sl; 18813 /* connect new state to parentage chain. Current frame needs all 18814 * registers connected. Only r6 - r9 of the callers are alive (pushed 18815 * to the stack implicitly by JITs) so in callers' frames connect just 18816 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 18817 * the state of the call instruction (with WRITTEN set), and r0 comes 18818 * from callee with its full parentage chain, anyway. 18819 */ 18820 /* clear write marks in current state: the writes we did are not writes 18821 * our child did, so they don't screen off its reads from us. 18822 * (There are no read marks in current state, because reads always mark 18823 * their parent and current state never has children yet. Only 18824 * explored_states can get read marks.) 18825 */ 18826 for (j = 0; j <= cur->curframe; j++) { 18827 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 18828 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 18829 for (i = 0; i < BPF_REG_FP; i++) 18830 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 18831 } 18832 18833 /* all stack frames are accessible from callee, clear them all */ 18834 for (j = 0; j <= cur->curframe; j++) { 18835 struct bpf_func_state *frame = cur->frame[j]; 18836 struct bpf_func_state *newframe = new->frame[j]; 18837 18838 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 18839 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 18840 frame->stack[i].spilled_ptr.parent = 18841 &newframe->stack[i].spilled_ptr; 18842 } 18843 } 18844 return 0; 18845 } 18846 18847 /* Return true if it's OK to have the same insn return a different type. */ 18848 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 18849 { 18850 switch (base_type(type)) { 18851 case PTR_TO_CTX: 18852 case PTR_TO_SOCKET: 18853 case PTR_TO_SOCK_COMMON: 18854 case PTR_TO_TCP_SOCK: 18855 case PTR_TO_XDP_SOCK: 18856 case PTR_TO_BTF_ID: 18857 case PTR_TO_ARENA: 18858 return false; 18859 default: 18860 return true; 18861 } 18862 } 18863 18864 /* If an instruction was previously used with particular pointer types, then we 18865 * need to be careful to avoid cases such as the below, where it may be ok 18866 * for one branch accessing the pointer, but not ok for the other branch: 18867 * 18868 * R1 = sock_ptr 18869 * goto X; 18870 * ... 18871 * R1 = some_other_valid_ptr; 18872 * goto X; 18873 * ... 18874 * R2 = *(u32 *)(R1 + 0); 18875 */ 18876 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 18877 { 18878 return src != prev && (!reg_type_mismatch_ok(src) || 18879 !reg_type_mismatch_ok(prev)); 18880 } 18881 18882 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 18883 bool allow_trust_mismatch) 18884 { 18885 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 18886 18887 if (*prev_type == NOT_INIT) { 18888 /* Saw a valid insn 18889 * dst_reg = *(u32 *)(src_reg + off) 18890 * save type to validate intersecting paths 18891 */ 18892 *prev_type = type; 18893 } else if (reg_type_mismatch(type, *prev_type)) { 18894 /* Abuser program is trying to use the same insn 18895 * dst_reg = *(u32*) (src_reg + off) 18896 * with different pointer types: 18897 * src_reg == ctx in one branch and 18898 * src_reg == stack|map in some other branch. 18899 * Reject it. 18900 */ 18901 if (allow_trust_mismatch && 18902 base_type(type) == PTR_TO_BTF_ID && 18903 base_type(*prev_type) == PTR_TO_BTF_ID) { 18904 /* 18905 * Have to support a use case when one path through 18906 * the program yields TRUSTED pointer while another 18907 * is UNTRUSTED. Fallback to UNTRUSTED to generate 18908 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 18909 */ 18910 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 18911 } else { 18912 verbose(env, "same insn cannot be used with different pointers\n"); 18913 return -EINVAL; 18914 } 18915 } 18916 18917 return 0; 18918 } 18919 18920 static int do_check(struct bpf_verifier_env *env) 18921 { 18922 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18923 struct bpf_verifier_state *state = env->cur_state; 18924 struct bpf_insn *insns = env->prog->insnsi; 18925 struct bpf_reg_state *regs; 18926 int insn_cnt = env->prog->len; 18927 bool do_print_state = false; 18928 int prev_insn_idx = -1; 18929 18930 for (;;) { 18931 bool exception_exit = false; 18932 struct bpf_insn *insn; 18933 u8 class; 18934 int err; 18935 18936 /* reset current history entry on each new instruction */ 18937 env->cur_hist_ent = NULL; 18938 18939 env->prev_insn_idx = prev_insn_idx; 18940 if (env->insn_idx >= insn_cnt) { 18941 verbose(env, "invalid insn idx %d insn_cnt %d\n", 18942 env->insn_idx, insn_cnt); 18943 return -EFAULT; 18944 } 18945 18946 insn = &insns[env->insn_idx]; 18947 class = BPF_CLASS(insn->code); 18948 18949 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 18950 verbose(env, 18951 "BPF program is too large. Processed %d insn\n", 18952 env->insn_processed); 18953 return -E2BIG; 18954 } 18955 18956 state->last_insn_idx = env->prev_insn_idx; 18957 18958 if (is_prune_point(env, env->insn_idx)) { 18959 err = is_state_visited(env, env->insn_idx); 18960 if (err < 0) 18961 return err; 18962 if (err == 1) { 18963 /* found equivalent state, can prune the search */ 18964 if (env->log.level & BPF_LOG_LEVEL) { 18965 if (do_print_state) 18966 verbose(env, "\nfrom %d to %d%s: safe\n", 18967 env->prev_insn_idx, env->insn_idx, 18968 env->cur_state->speculative ? 18969 " (speculative execution)" : ""); 18970 else 18971 verbose(env, "%d: safe\n", env->insn_idx); 18972 } 18973 goto process_bpf_exit; 18974 } 18975 } 18976 18977 if (is_jmp_point(env, env->insn_idx)) { 18978 err = push_insn_history(env, state, 0, 0); 18979 if (err) 18980 return err; 18981 } 18982 18983 if (signal_pending(current)) 18984 return -EAGAIN; 18985 18986 if (need_resched()) 18987 cond_resched(); 18988 18989 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 18990 verbose(env, "\nfrom %d to %d%s:", 18991 env->prev_insn_idx, env->insn_idx, 18992 env->cur_state->speculative ? 18993 " (speculative execution)" : ""); 18994 print_verifier_state(env, state, state->curframe, true); 18995 do_print_state = false; 18996 } 18997 18998 if (env->log.level & BPF_LOG_LEVEL) { 18999 const struct bpf_insn_cbs cbs = { 19000 .cb_call = disasm_kfunc_name, 19001 .cb_print = verbose, 19002 .private_data = env, 19003 }; 19004 19005 if (verifier_state_scratched(env)) 19006 print_insn_state(env, state, state->curframe); 19007 19008 verbose_linfo(env, env->insn_idx, "; "); 19009 env->prev_log_pos = env->log.end_pos; 19010 verbose(env, "%d: ", env->insn_idx); 19011 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 19012 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 19013 env->prev_log_pos = env->log.end_pos; 19014 } 19015 19016 if (bpf_prog_is_offloaded(env->prog->aux)) { 19017 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 19018 env->prev_insn_idx); 19019 if (err) 19020 return err; 19021 } 19022 19023 regs = cur_regs(env); 19024 sanitize_mark_insn_seen(env); 19025 prev_insn_idx = env->insn_idx; 19026 19027 if (class == BPF_ALU || class == BPF_ALU64) { 19028 err = check_alu_op(env, insn); 19029 if (err) 19030 return err; 19031 19032 } else if (class == BPF_LDX) { 19033 enum bpf_reg_type src_reg_type; 19034 19035 /* check for reserved fields is already done */ 19036 19037 /* check src operand */ 19038 err = check_reg_arg(env, insn->src_reg, SRC_OP); 19039 if (err) 19040 return err; 19041 19042 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 19043 if (err) 19044 return err; 19045 19046 src_reg_type = regs[insn->src_reg].type; 19047 19048 /* check that memory (src_reg + off) is readable, 19049 * the state of dst_reg will be updated by this func 19050 */ 19051 err = check_mem_access(env, env->insn_idx, insn->src_reg, 19052 insn->off, BPF_SIZE(insn->code), 19053 BPF_READ, insn->dst_reg, false, 19054 BPF_MODE(insn->code) == BPF_MEMSX); 19055 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 19056 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 19057 if (err) 19058 return err; 19059 } else if (class == BPF_STX) { 19060 enum bpf_reg_type dst_reg_type; 19061 19062 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19063 err = check_atomic(env, env->insn_idx, insn); 19064 if (err) 19065 return err; 19066 env->insn_idx++; 19067 continue; 19068 } 19069 19070 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19071 verbose(env, "BPF_STX uses reserved fields\n"); 19072 return -EINVAL; 19073 } 19074 19075 /* check src1 operand */ 19076 err = check_reg_arg(env, insn->src_reg, SRC_OP); 19077 if (err) 19078 return err; 19079 /* check src2 operand */ 19080 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19081 if (err) 19082 return err; 19083 19084 dst_reg_type = regs[insn->dst_reg].type; 19085 19086 /* check that memory (dst_reg + off) is writeable */ 19087 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19088 insn->off, BPF_SIZE(insn->code), 19089 BPF_WRITE, insn->src_reg, false, false); 19090 if (err) 19091 return err; 19092 19093 err = save_aux_ptr_type(env, dst_reg_type, false); 19094 if (err) 19095 return err; 19096 } else if (class == BPF_ST) { 19097 enum bpf_reg_type dst_reg_type; 19098 19099 if (BPF_MODE(insn->code) != BPF_MEM || 19100 insn->src_reg != BPF_REG_0) { 19101 verbose(env, "BPF_ST uses reserved fields\n"); 19102 return -EINVAL; 19103 } 19104 /* check src operand */ 19105 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19106 if (err) 19107 return err; 19108 19109 dst_reg_type = regs[insn->dst_reg].type; 19110 19111 /* check that memory (dst_reg + off) is writeable */ 19112 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19113 insn->off, BPF_SIZE(insn->code), 19114 BPF_WRITE, -1, false, false); 19115 if (err) 19116 return err; 19117 19118 err = save_aux_ptr_type(env, dst_reg_type, false); 19119 if (err) 19120 return err; 19121 } else if (class == BPF_JMP || class == BPF_JMP32) { 19122 u8 opcode = BPF_OP(insn->code); 19123 19124 env->jmps_processed++; 19125 if (opcode == BPF_CALL) { 19126 if (BPF_SRC(insn->code) != BPF_K || 19127 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 19128 && insn->off != 0) || 19129 (insn->src_reg != BPF_REG_0 && 19130 insn->src_reg != BPF_PSEUDO_CALL && 19131 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19132 insn->dst_reg != BPF_REG_0 || 19133 class == BPF_JMP32) { 19134 verbose(env, "BPF_CALL uses reserved fields\n"); 19135 return -EINVAL; 19136 } 19137 19138 if (env->cur_state->active_locks) { 19139 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 19140 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19141 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19142 verbose(env, "function calls are not allowed while holding a lock\n"); 19143 return -EINVAL; 19144 } 19145 } 19146 if (insn->src_reg == BPF_PSEUDO_CALL) { 19147 err = check_func_call(env, insn, &env->insn_idx); 19148 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19149 err = check_kfunc_call(env, insn, &env->insn_idx); 19150 if (!err && is_bpf_throw_kfunc(insn)) { 19151 exception_exit = true; 19152 goto process_bpf_exit_full; 19153 } 19154 } else { 19155 err = check_helper_call(env, insn, &env->insn_idx); 19156 } 19157 if (err) 19158 return err; 19159 19160 mark_reg_scratched(env, BPF_REG_0); 19161 } else if (opcode == BPF_JA) { 19162 if (BPF_SRC(insn->code) != BPF_K || 19163 insn->src_reg != BPF_REG_0 || 19164 insn->dst_reg != BPF_REG_0 || 19165 (class == BPF_JMP && insn->imm != 0) || 19166 (class == BPF_JMP32 && insn->off != 0)) { 19167 verbose(env, "BPF_JA uses reserved fields\n"); 19168 return -EINVAL; 19169 } 19170 19171 if (class == BPF_JMP) 19172 env->insn_idx += insn->off + 1; 19173 else 19174 env->insn_idx += insn->imm + 1; 19175 continue; 19176 19177 } else if (opcode == BPF_EXIT) { 19178 if (BPF_SRC(insn->code) != BPF_K || 19179 insn->imm != 0 || 19180 insn->src_reg != BPF_REG_0 || 19181 insn->dst_reg != BPF_REG_0 || 19182 class == BPF_JMP32) { 19183 verbose(env, "BPF_EXIT uses reserved fields\n"); 19184 return -EINVAL; 19185 } 19186 process_bpf_exit_full: 19187 /* We must do check_reference_leak here before 19188 * prepare_func_exit to handle the case when 19189 * state->curframe > 0, it may be a callback 19190 * function, for which reference_state must 19191 * match caller reference state when it exits. 19192 */ 19193 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, 19194 "BPF_EXIT instruction in main prog"); 19195 if (err) 19196 return err; 19197 19198 /* The side effect of the prepare_func_exit 19199 * which is being skipped is that it frees 19200 * bpf_func_state. Typically, process_bpf_exit 19201 * will only be hit with outermost exit. 19202 * copy_verifier_state in pop_stack will handle 19203 * freeing of any extra bpf_func_state left over 19204 * from not processing all nested function 19205 * exits. We also skip return code checks as 19206 * they are not needed for exceptional exits. 19207 */ 19208 if (exception_exit) 19209 goto process_bpf_exit; 19210 19211 if (state->curframe) { 19212 /* exit from nested function */ 19213 err = prepare_func_exit(env, &env->insn_idx); 19214 if (err) 19215 return err; 19216 do_print_state = true; 19217 continue; 19218 } 19219 19220 err = check_return_code(env, BPF_REG_0, "R0"); 19221 if (err) 19222 return err; 19223 process_bpf_exit: 19224 mark_verifier_state_scratched(env); 19225 update_branch_counts(env, env->cur_state); 19226 err = pop_stack(env, &prev_insn_idx, 19227 &env->insn_idx, pop_log); 19228 if (err < 0) { 19229 if (err != -ENOENT) 19230 return err; 19231 break; 19232 } else { 19233 do_print_state = true; 19234 continue; 19235 } 19236 } else { 19237 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19238 if (err) 19239 return err; 19240 } 19241 } else if (class == BPF_LD) { 19242 u8 mode = BPF_MODE(insn->code); 19243 19244 if (mode == BPF_ABS || mode == BPF_IND) { 19245 err = check_ld_abs(env, insn); 19246 if (err) 19247 return err; 19248 19249 } else if (mode == BPF_IMM) { 19250 err = check_ld_imm(env, insn); 19251 if (err) 19252 return err; 19253 19254 env->insn_idx++; 19255 sanitize_mark_insn_seen(env); 19256 } else { 19257 verbose(env, "invalid BPF_LD mode\n"); 19258 return -EINVAL; 19259 } 19260 } else { 19261 verbose(env, "unknown insn class %d\n", class); 19262 return -EINVAL; 19263 } 19264 19265 env->insn_idx++; 19266 } 19267 19268 return 0; 19269 } 19270 19271 static int find_btf_percpu_datasec(struct btf *btf) 19272 { 19273 const struct btf_type *t; 19274 const char *tname; 19275 int i, n; 19276 19277 /* 19278 * Both vmlinux and module each have their own ".data..percpu" 19279 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 19280 * types to look at only module's own BTF types. 19281 */ 19282 n = btf_nr_types(btf); 19283 if (btf_is_module(btf)) 19284 i = btf_nr_types(btf_vmlinux); 19285 else 19286 i = 1; 19287 19288 for(; i < n; i++) { 19289 t = btf_type_by_id(btf, i); 19290 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 19291 continue; 19292 19293 tname = btf_name_by_offset(btf, t->name_off); 19294 if (!strcmp(tname, ".data..percpu")) 19295 return i; 19296 } 19297 19298 return -ENOENT; 19299 } 19300 19301 /* 19302 * Add btf to the used_btfs array and return the index. (If the btf was 19303 * already added, then just return the index.) Upon successful insertion 19304 * increase btf refcnt, and, if present, also refcount the corresponding 19305 * kernel module. 19306 */ 19307 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 19308 { 19309 struct btf_mod_pair *btf_mod; 19310 int i; 19311 19312 /* check whether we recorded this BTF (and maybe module) already */ 19313 for (i = 0; i < env->used_btf_cnt; i++) 19314 if (env->used_btfs[i].btf == btf) 19315 return i; 19316 19317 if (env->used_btf_cnt >= MAX_USED_BTFS) 19318 return -E2BIG; 19319 19320 btf_get(btf); 19321 19322 btf_mod = &env->used_btfs[env->used_btf_cnt]; 19323 btf_mod->btf = btf; 19324 btf_mod->module = NULL; 19325 19326 /* if we reference variables from kernel module, bump its refcount */ 19327 if (btf_is_module(btf)) { 19328 btf_mod->module = btf_try_get_module(btf); 19329 if (!btf_mod->module) { 19330 btf_put(btf); 19331 return -ENXIO; 19332 } 19333 } 19334 19335 return env->used_btf_cnt++; 19336 } 19337 19338 /* replace pseudo btf_id with kernel symbol address */ 19339 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 19340 struct bpf_insn *insn, 19341 struct bpf_insn_aux_data *aux, 19342 struct btf *btf) 19343 { 19344 const struct btf_var_secinfo *vsi; 19345 const struct btf_type *datasec; 19346 const struct btf_type *t; 19347 const char *sym_name; 19348 bool percpu = false; 19349 u32 type, id = insn->imm; 19350 s32 datasec_id; 19351 u64 addr; 19352 int i; 19353 19354 t = btf_type_by_id(btf, id); 19355 if (!t) { 19356 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 19357 return -ENOENT; 19358 } 19359 19360 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 19361 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 19362 return -EINVAL; 19363 } 19364 19365 sym_name = btf_name_by_offset(btf, t->name_off); 19366 addr = kallsyms_lookup_name(sym_name); 19367 if (!addr) { 19368 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 19369 sym_name); 19370 return -ENOENT; 19371 } 19372 insn[0].imm = (u32)addr; 19373 insn[1].imm = addr >> 32; 19374 19375 if (btf_type_is_func(t)) { 19376 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19377 aux->btf_var.mem_size = 0; 19378 return 0; 19379 } 19380 19381 datasec_id = find_btf_percpu_datasec(btf); 19382 if (datasec_id > 0) { 19383 datasec = btf_type_by_id(btf, datasec_id); 19384 for_each_vsi(i, datasec, vsi) { 19385 if (vsi->type == id) { 19386 percpu = true; 19387 break; 19388 } 19389 } 19390 } 19391 19392 type = t->type; 19393 t = btf_type_skip_modifiers(btf, type, NULL); 19394 if (percpu) { 19395 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 19396 aux->btf_var.btf = btf; 19397 aux->btf_var.btf_id = type; 19398 } else if (!btf_type_is_struct(t)) { 19399 const struct btf_type *ret; 19400 const char *tname; 19401 u32 tsize; 19402 19403 /* resolve the type size of ksym. */ 19404 ret = btf_resolve_size(btf, t, &tsize); 19405 if (IS_ERR(ret)) { 19406 tname = btf_name_by_offset(btf, t->name_off); 19407 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 19408 tname, PTR_ERR(ret)); 19409 return -EINVAL; 19410 } 19411 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19412 aux->btf_var.mem_size = tsize; 19413 } else { 19414 aux->btf_var.reg_type = PTR_TO_BTF_ID; 19415 aux->btf_var.btf = btf; 19416 aux->btf_var.btf_id = type; 19417 } 19418 19419 return 0; 19420 } 19421 19422 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 19423 struct bpf_insn *insn, 19424 struct bpf_insn_aux_data *aux) 19425 { 19426 struct btf *btf; 19427 int btf_fd; 19428 int err; 19429 19430 btf_fd = insn[1].imm; 19431 if (btf_fd) { 19432 CLASS(fd, f)(btf_fd); 19433 19434 btf = __btf_get_by_fd(f); 19435 if (IS_ERR(btf)) { 19436 verbose(env, "invalid module BTF object FD specified.\n"); 19437 return -EINVAL; 19438 } 19439 } else { 19440 if (!btf_vmlinux) { 19441 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 19442 return -EINVAL; 19443 } 19444 btf = btf_vmlinux; 19445 } 19446 19447 err = __check_pseudo_btf_id(env, insn, aux, btf); 19448 if (err) 19449 return err; 19450 19451 err = __add_used_btf(env, btf); 19452 if (err < 0) 19453 return err; 19454 return 0; 19455 } 19456 19457 static bool is_tracing_prog_type(enum bpf_prog_type type) 19458 { 19459 switch (type) { 19460 case BPF_PROG_TYPE_KPROBE: 19461 case BPF_PROG_TYPE_TRACEPOINT: 19462 case BPF_PROG_TYPE_PERF_EVENT: 19463 case BPF_PROG_TYPE_RAW_TRACEPOINT: 19464 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 19465 return true; 19466 default: 19467 return false; 19468 } 19469 } 19470 19471 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 19472 { 19473 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 19474 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 19475 } 19476 19477 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 19478 struct bpf_map *map, 19479 struct bpf_prog *prog) 19480 19481 { 19482 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19483 19484 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 19485 btf_record_has_field(map->record, BPF_RB_ROOT)) { 19486 if (is_tracing_prog_type(prog_type)) { 19487 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 19488 return -EINVAL; 19489 } 19490 } 19491 19492 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 19493 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 19494 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 19495 return -EINVAL; 19496 } 19497 19498 if (is_tracing_prog_type(prog_type)) { 19499 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 19500 return -EINVAL; 19501 } 19502 } 19503 19504 if (btf_record_has_field(map->record, BPF_TIMER)) { 19505 if (is_tracing_prog_type(prog_type)) { 19506 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 19507 return -EINVAL; 19508 } 19509 } 19510 19511 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 19512 if (is_tracing_prog_type(prog_type)) { 19513 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 19514 return -EINVAL; 19515 } 19516 } 19517 19518 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 19519 !bpf_offload_prog_map_match(prog, map)) { 19520 verbose(env, "offload device mismatch between prog and map\n"); 19521 return -EINVAL; 19522 } 19523 19524 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 19525 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 19526 return -EINVAL; 19527 } 19528 19529 if (prog->sleepable) 19530 switch (map->map_type) { 19531 case BPF_MAP_TYPE_HASH: 19532 case BPF_MAP_TYPE_LRU_HASH: 19533 case BPF_MAP_TYPE_ARRAY: 19534 case BPF_MAP_TYPE_PERCPU_HASH: 19535 case BPF_MAP_TYPE_PERCPU_ARRAY: 19536 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 19537 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 19538 case BPF_MAP_TYPE_HASH_OF_MAPS: 19539 case BPF_MAP_TYPE_RINGBUF: 19540 case BPF_MAP_TYPE_USER_RINGBUF: 19541 case BPF_MAP_TYPE_INODE_STORAGE: 19542 case BPF_MAP_TYPE_SK_STORAGE: 19543 case BPF_MAP_TYPE_TASK_STORAGE: 19544 case BPF_MAP_TYPE_CGRP_STORAGE: 19545 case BPF_MAP_TYPE_QUEUE: 19546 case BPF_MAP_TYPE_STACK: 19547 case BPF_MAP_TYPE_ARENA: 19548 break; 19549 default: 19550 verbose(env, 19551 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 19552 return -EINVAL; 19553 } 19554 19555 if (bpf_map_is_cgroup_storage(map) && 19556 bpf_cgroup_storage_assign(env->prog->aux, map)) { 19557 verbose(env, "only one cgroup storage of each type is allowed\n"); 19558 return -EBUSY; 19559 } 19560 19561 if (map->map_type == BPF_MAP_TYPE_ARENA) { 19562 if (env->prog->aux->arena) { 19563 verbose(env, "Only one arena per program\n"); 19564 return -EBUSY; 19565 } 19566 if (!env->allow_ptr_leaks || !env->bpf_capable) { 19567 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 19568 return -EPERM; 19569 } 19570 if (!env->prog->jit_requested) { 19571 verbose(env, "JIT is required to use arena\n"); 19572 return -EOPNOTSUPP; 19573 } 19574 if (!bpf_jit_supports_arena()) { 19575 verbose(env, "JIT doesn't support arena\n"); 19576 return -EOPNOTSUPP; 19577 } 19578 env->prog->aux->arena = (void *)map; 19579 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 19580 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 19581 return -EINVAL; 19582 } 19583 } 19584 19585 return 0; 19586 } 19587 19588 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 19589 { 19590 int i, err; 19591 19592 /* check whether we recorded this map already */ 19593 for (i = 0; i < env->used_map_cnt; i++) 19594 if (env->used_maps[i] == map) 19595 return i; 19596 19597 if (env->used_map_cnt >= MAX_USED_MAPS) { 19598 verbose(env, "The total number of maps per program has reached the limit of %u\n", 19599 MAX_USED_MAPS); 19600 return -E2BIG; 19601 } 19602 19603 err = check_map_prog_compatibility(env, map, env->prog); 19604 if (err) 19605 return err; 19606 19607 if (env->prog->sleepable) 19608 atomic64_inc(&map->sleepable_refcnt); 19609 19610 /* hold the map. If the program is rejected by verifier, 19611 * the map will be released by release_maps() or it 19612 * will be used by the valid program until it's unloaded 19613 * and all maps are released in bpf_free_used_maps() 19614 */ 19615 bpf_map_inc(map); 19616 19617 env->used_maps[env->used_map_cnt++] = map; 19618 19619 return env->used_map_cnt - 1; 19620 } 19621 19622 /* Add map behind fd to used maps list, if it's not already there, and return 19623 * its index. 19624 * Returns <0 on error, or >= 0 index, on success. 19625 */ 19626 static int add_used_map(struct bpf_verifier_env *env, int fd) 19627 { 19628 struct bpf_map *map; 19629 CLASS(fd, f)(fd); 19630 19631 map = __bpf_map_get(f); 19632 if (IS_ERR(map)) { 19633 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 19634 return PTR_ERR(map); 19635 } 19636 19637 return __add_used_map(env, map); 19638 } 19639 19640 /* find and rewrite pseudo imm in ld_imm64 instructions: 19641 * 19642 * 1. if it accesses map FD, replace it with actual map pointer. 19643 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 19644 * 19645 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 19646 */ 19647 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 19648 { 19649 struct bpf_insn *insn = env->prog->insnsi; 19650 int insn_cnt = env->prog->len; 19651 int i, err; 19652 19653 err = bpf_prog_calc_tag(env->prog); 19654 if (err) 19655 return err; 19656 19657 for (i = 0; i < insn_cnt; i++, insn++) { 19658 if (BPF_CLASS(insn->code) == BPF_LDX && 19659 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 19660 insn->imm != 0)) { 19661 verbose(env, "BPF_LDX uses reserved fields\n"); 19662 return -EINVAL; 19663 } 19664 19665 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 19666 struct bpf_insn_aux_data *aux; 19667 struct bpf_map *map; 19668 int map_idx; 19669 u64 addr; 19670 u32 fd; 19671 19672 if (i == insn_cnt - 1 || insn[1].code != 0 || 19673 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 19674 insn[1].off != 0) { 19675 verbose(env, "invalid bpf_ld_imm64 insn\n"); 19676 return -EINVAL; 19677 } 19678 19679 if (insn[0].src_reg == 0) 19680 /* valid generic load 64-bit imm */ 19681 goto next_insn; 19682 19683 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 19684 aux = &env->insn_aux_data[i]; 19685 err = check_pseudo_btf_id(env, insn, aux); 19686 if (err) 19687 return err; 19688 goto next_insn; 19689 } 19690 19691 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 19692 aux = &env->insn_aux_data[i]; 19693 aux->ptr_type = PTR_TO_FUNC; 19694 goto next_insn; 19695 } 19696 19697 /* In final convert_pseudo_ld_imm64() step, this is 19698 * converted into regular 64-bit imm load insn. 19699 */ 19700 switch (insn[0].src_reg) { 19701 case BPF_PSEUDO_MAP_VALUE: 19702 case BPF_PSEUDO_MAP_IDX_VALUE: 19703 break; 19704 case BPF_PSEUDO_MAP_FD: 19705 case BPF_PSEUDO_MAP_IDX: 19706 if (insn[1].imm == 0) 19707 break; 19708 fallthrough; 19709 default: 19710 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 19711 return -EINVAL; 19712 } 19713 19714 switch (insn[0].src_reg) { 19715 case BPF_PSEUDO_MAP_IDX_VALUE: 19716 case BPF_PSEUDO_MAP_IDX: 19717 if (bpfptr_is_null(env->fd_array)) { 19718 verbose(env, "fd_idx without fd_array is invalid\n"); 19719 return -EPROTO; 19720 } 19721 if (copy_from_bpfptr_offset(&fd, env->fd_array, 19722 insn[0].imm * sizeof(fd), 19723 sizeof(fd))) 19724 return -EFAULT; 19725 break; 19726 default: 19727 fd = insn[0].imm; 19728 break; 19729 } 19730 19731 map_idx = add_used_map(env, fd); 19732 if (map_idx < 0) 19733 return map_idx; 19734 map = env->used_maps[map_idx]; 19735 19736 aux = &env->insn_aux_data[i]; 19737 aux->map_index = map_idx; 19738 19739 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 19740 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 19741 addr = (unsigned long)map; 19742 } else { 19743 u32 off = insn[1].imm; 19744 19745 if (off >= BPF_MAX_VAR_OFF) { 19746 verbose(env, "direct value offset of %u is not allowed\n", off); 19747 return -EINVAL; 19748 } 19749 19750 if (!map->ops->map_direct_value_addr) { 19751 verbose(env, "no direct value access support for this map type\n"); 19752 return -EINVAL; 19753 } 19754 19755 err = map->ops->map_direct_value_addr(map, &addr, off); 19756 if (err) { 19757 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 19758 map->value_size, off); 19759 return err; 19760 } 19761 19762 aux->map_off = off; 19763 addr += off; 19764 } 19765 19766 insn[0].imm = (u32)addr; 19767 insn[1].imm = addr >> 32; 19768 19769 next_insn: 19770 insn++; 19771 i++; 19772 continue; 19773 } 19774 19775 /* Basic sanity check before we invest more work here. */ 19776 if (!bpf_opcode_in_insntable(insn->code)) { 19777 verbose(env, "unknown opcode %02x\n", insn->code); 19778 return -EINVAL; 19779 } 19780 } 19781 19782 /* now all pseudo BPF_LD_IMM64 instructions load valid 19783 * 'struct bpf_map *' into a register instead of user map_fd. 19784 * These pointers will be used later by verifier to validate map access. 19785 */ 19786 return 0; 19787 } 19788 19789 /* drop refcnt of maps used by the rejected program */ 19790 static void release_maps(struct bpf_verifier_env *env) 19791 { 19792 __bpf_free_used_maps(env->prog->aux, env->used_maps, 19793 env->used_map_cnt); 19794 } 19795 19796 /* drop refcnt of maps used by the rejected program */ 19797 static void release_btfs(struct bpf_verifier_env *env) 19798 { 19799 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 19800 } 19801 19802 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 19803 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 19804 { 19805 struct bpf_insn *insn = env->prog->insnsi; 19806 int insn_cnt = env->prog->len; 19807 int i; 19808 19809 for (i = 0; i < insn_cnt; i++, insn++) { 19810 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 19811 continue; 19812 if (insn->src_reg == BPF_PSEUDO_FUNC) 19813 continue; 19814 insn->src_reg = 0; 19815 } 19816 } 19817 19818 /* single env->prog->insni[off] instruction was replaced with the range 19819 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 19820 * [0, off) and [off, end) to new locations, so the patched range stays zero 19821 */ 19822 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 19823 struct bpf_insn_aux_data *new_data, 19824 struct bpf_prog *new_prog, u32 off, u32 cnt) 19825 { 19826 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 19827 struct bpf_insn *insn = new_prog->insnsi; 19828 u32 old_seen = old_data[off].seen; 19829 u32 prog_len; 19830 int i; 19831 19832 /* aux info at OFF always needs adjustment, no matter fast path 19833 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 19834 * original insn at old prog. 19835 */ 19836 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 19837 19838 if (cnt == 1) 19839 return; 19840 prog_len = new_prog->len; 19841 19842 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 19843 memcpy(new_data + off + cnt - 1, old_data + off, 19844 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 19845 for (i = off; i < off + cnt - 1; i++) { 19846 /* Expand insni[off]'s seen count to the patched range. */ 19847 new_data[i].seen = old_seen; 19848 new_data[i].zext_dst = insn_has_def32(env, insn + i); 19849 } 19850 env->insn_aux_data = new_data; 19851 vfree(old_data); 19852 } 19853 19854 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 19855 { 19856 int i; 19857 19858 if (len == 1) 19859 return; 19860 /* NOTE: fake 'exit' subprog should be updated as well. */ 19861 for (i = 0; i <= env->subprog_cnt; i++) { 19862 if (env->subprog_info[i].start <= off) 19863 continue; 19864 env->subprog_info[i].start += len - 1; 19865 } 19866 } 19867 19868 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 19869 { 19870 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 19871 int i, sz = prog->aux->size_poke_tab; 19872 struct bpf_jit_poke_descriptor *desc; 19873 19874 for (i = 0; i < sz; i++) { 19875 desc = &tab[i]; 19876 if (desc->insn_idx <= off) 19877 continue; 19878 desc->insn_idx += len - 1; 19879 } 19880 } 19881 19882 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 19883 const struct bpf_insn *patch, u32 len) 19884 { 19885 struct bpf_prog *new_prog; 19886 struct bpf_insn_aux_data *new_data = NULL; 19887 19888 if (len > 1) { 19889 new_data = vzalloc(array_size(env->prog->len + len - 1, 19890 sizeof(struct bpf_insn_aux_data))); 19891 if (!new_data) 19892 return NULL; 19893 } 19894 19895 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 19896 if (IS_ERR(new_prog)) { 19897 if (PTR_ERR(new_prog) == -ERANGE) 19898 verbose(env, 19899 "insn %d cannot be patched due to 16-bit range\n", 19900 env->insn_aux_data[off].orig_idx); 19901 vfree(new_data); 19902 return NULL; 19903 } 19904 adjust_insn_aux_data(env, new_data, new_prog, off, len); 19905 adjust_subprog_starts(env, off, len); 19906 adjust_poke_descs(new_prog, off, len); 19907 return new_prog; 19908 } 19909 19910 /* 19911 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 19912 * jump offset by 'delta'. 19913 */ 19914 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 19915 { 19916 struct bpf_insn *insn = prog->insnsi; 19917 u32 insn_cnt = prog->len, i; 19918 s32 imm; 19919 s16 off; 19920 19921 for (i = 0; i < insn_cnt; i++, insn++) { 19922 u8 code = insn->code; 19923 19924 if (tgt_idx <= i && i < tgt_idx + delta) 19925 continue; 19926 19927 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 19928 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 19929 continue; 19930 19931 if (insn->code == (BPF_JMP32 | BPF_JA)) { 19932 if (i + 1 + insn->imm != tgt_idx) 19933 continue; 19934 if (check_add_overflow(insn->imm, delta, &imm)) 19935 return -ERANGE; 19936 insn->imm = imm; 19937 } else { 19938 if (i + 1 + insn->off != tgt_idx) 19939 continue; 19940 if (check_add_overflow(insn->off, delta, &off)) 19941 return -ERANGE; 19942 insn->off = off; 19943 } 19944 } 19945 return 0; 19946 } 19947 19948 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 19949 u32 off, u32 cnt) 19950 { 19951 int i, j; 19952 19953 /* find first prog starting at or after off (first to remove) */ 19954 for (i = 0; i < env->subprog_cnt; i++) 19955 if (env->subprog_info[i].start >= off) 19956 break; 19957 /* find first prog starting at or after off + cnt (first to stay) */ 19958 for (j = i; j < env->subprog_cnt; j++) 19959 if (env->subprog_info[j].start >= off + cnt) 19960 break; 19961 /* if j doesn't start exactly at off + cnt, we are just removing 19962 * the front of previous prog 19963 */ 19964 if (env->subprog_info[j].start != off + cnt) 19965 j--; 19966 19967 if (j > i) { 19968 struct bpf_prog_aux *aux = env->prog->aux; 19969 int move; 19970 19971 /* move fake 'exit' subprog as well */ 19972 move = env->subprog_cnt + 1 - j; 19973 19974 memmove(env->subprog_info + i, 19975 env->subprog_info + j, 19976 sizeof(*env->subprog_info) * move); 19977 env->subprog_cnt -= j - i; 19978 19979 /* remove func_info */ 19980 if (aux->func_info) { 19981 move = aux->func_info_cnt - j; 19982 19983 memmove(aux->func_info + i, 19984 aux->func_info + j, 19985 sizeof(*aux->func_info) * move); 19986 aux->func_info_cnt -= j - i; 19987 /* func_info->insn_off is set after all code rewrites, 19988 * in adjust_btf_func() - no need to adjust 19989 */ 19990 } 19991 } else { 19992 /* convert i from "first prog to remove" to "first to adjust" */ 19993 if (env->subprog_info[i].start == off) 19994 i++; 19995 } 19996 19997 /* update fake 'exit' subprog as well */ 19998 for (; i <= env->subprog_cnt; i++) 19999 env->subprog_info[i].start -= cnt; 20000 20001 return 0; 20002 } 20003 20004 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20005 u32 cnt) 20006 { 20007 struct bpf_prog *prog = env->prog; 20008 u32 i, l_off, l_cnt, nr_linfo; 20009 struct bpf_line_info *linfo; 20010 20011 nr_linfo = prog->aux->nr_linfo; 20012 if (!nr_linfo) 20013 return 0; 20014 20015 linfo = prog->aux->linfo; 20016 20017 /* find first line info to remove, count lines to be removed */ 20018 for (i = 0; i < nr_linfo; i++) 20019 if (linfo[i].insn_off >= off) 20020 break; 20021 20022 l_off = i; 20023 l_cnt = 0; 20024 for (; i < nr_linfo; i++) 20025 if (linfo[i].insn_off < off + cnt) 20026 l_cnt++; 20027 else 20028 break; 20029 20030 /* First live insn doesn't match first live linfo, it needs to "inherit" 20031 * last removed linfo. prog is already modified, so prog->len == off 20032 * means no live instructions after (tail of the program was removed). 20033 */ 20034 if (prog->len != off && l_cnt && 20035 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20036 l_cnt--; 20037 linfo[--i].insn_off = off + cnt; 20038 } 20039 20040 /* remove the line info which refer to the removed instructions */ 20041 if (l_cnt) { 20042 memmove(linfo + l_off, linfo + i, 20043 sizeof(*linfo) * (nr_linfo - i)); 20044 20045 prog->aux->nr_linfo -= l_cnt; 20046 nr_linfo = prog->aux->nr_linfo; 20047 } 20048 20049 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20050 for (i = l_off; i < nr_linfo; i++) 20051 linfo[i].insn_off -= cnt; 20052 20053 /* fix up all subprogs (incl. 'exit') which start >= off */ 20054 for (i = 0; i <= env->subprog_cnt; i++) 20055 if (env->subprog_info[i].linfo_idx > l_off) { 20056 /* program may have started in the removed region but 20057 * may not be fully removed 20058 */ 20059 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20060 env->subprog_info[i].linfo_idx -= l_cnt; 20061 else 20062 env->subprog_info[i].linfo_idx = l_off; 20063 } 20064 20065 return 0; 20066 } 20067 20068 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20069 { 20070 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20071 unsigned int orig_prog_len = env->prog->len; 20072 int err; 20073 20074 if (bpf_prog_is_offloaded(env->prog->aux)) 20075 bpf_prog_offload_remove_insns(env, off, cnt); 20076 20077 err = bpf_remove_insns(env->prog, off, cnt); 20078 if (err) 20079 return err; 20080 20081 err = adjust_subprog_starts_after_remove(env, off, cnt); 20082 if (err) 20083 return err; 20084 20085 err = bpf_adj_linfo_after_remove(env, off, cnt); 20086 if (err) 20087 return err; 20088 20089 memmove(aux_data + off, aux_data + off + cnt, 20090 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20091 20092 return 0; 20093 } 20094 20095 /* The verifier does more data flow analysis than llvm and will not 20096 * explore branches that are dead at run time. Malicious programs can 20097 * have dead code too. Therefore replace all dead at-run-time code 20098 * with 'ja -1'. 20099 * 20100 * Just nops are not optimal, e.g. if they would sit at the end of the 20101 * program and through another bug we would manage to jump there, then 20102 * we'd execute beyond program memory otherwise. Returning exception 20103 * code also wouldn't work since we can have subprogs where the dead 20104 * code could be located. 20105 */ 20106 static void sanitize_dead_code(struct bpf_verifier_env *env) 20107 { 20108 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20109 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 20110 struct bpf_insn *insn = env->prog->insnsi; 20111 const int insn_cnt = env->prog->len; 20112 int i; 20113 20114 for (i = 0; i < insn_cnt; i++) { 20115 if (aux_data[i].seen) 20116 continue; 20117 memcpy(insn + i, &trap, sizeof(trap)); 20118 aux_data[i].zext_dst = false; 20119 } 20120 } 20121 20122 static bool insn_is_cond_jump(u8 code) 20123 { 20124 u8 op; 20125 20126 op = BPF_OP(code); 20127 if (BPF_CLASS(code) == BPF_JMP32) 20128 return op != BPF_JA; 20129 20130 if (BPF_CLASS(code) != BPF_JMP) 20131 return false; 20132 20133 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 20134 } 20135 20136 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 20137 { 20138 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20139 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20140 struct bpf_insn *insn = env->prog->insnsi; 20141 const int insn_cnt = env->prog->len; 20142 int i; 20143 20144 for (i = 0; i < insn_cnt; i++, insn++) { 20145 if (!insn_is_cond_jump(insn->code)) 20146 continue; 20147 20148 if (!aux_data[i + 1].seen) 20149 ja.off = insn->off; 20150 else if (!aux_data[i + 1 + insn->off].seen) 20151 ja.off = 0; 20152 else 20153 continue; 20154 20155 if (bpf_prog_is_offloaded(env->prog->aux)) 20156 bpf_prog_offload_replace_insn(env, i, &ja); 20157 20158 memcpy(insn, &ja, sizeof(ja)); 20159 } 20160 } 20161 20162 static int opt_remove_dead_code(struct bpf_verifier_env *env) 20163 { 20164 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20165 int insn_cnt = env->prog->len; 20166 int i, err; 20167 20168 for (i = 0; i < insn_cnt; i++) { 20169 int j; 20170 20171 j = 0; 20172 while (i + j < insn_cnt && !aux_data[i + j].seen) 20173 j++; 20174 if (!j) 20175 continue; 20176 20177 err = verifier_remove_insns(env, i, j); 20178 if (err) 20179 return err; 20180 insn_cnt = env->prog->len; 20181 } 20182 20183 return 0; 20184 } 20185 20186 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20187 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 20188 20189 static int opt_remove_nops(struct bpf_verifier_env *env) 20190 { 20191 struct bpf_insn *insn = env->prog->insnsi; 20192 int insn_cnt = env->prog->len; 20193 bool is_may_goto_0, is_ja; 20194 int i, err; 20195 20196 for (i = 0; i < insn_cnt; i++) { 20197 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 20198 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 20199 20200 if (!is_may_goto_0 && !is_ja) 20201 continue; 20202 20203 err = verifier_remove_insns(env, i, 1); 20204 if (err) 20205 return err; 20206 insn_cnt--; 20207 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 20208 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 20209 } 20210 20211 return 0; 20212 } 20213 20214 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 20215 const union bpf_attr *attr) 20216 { 20217 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 20218 struct bpf_insn_aux_data *aux = env->insn_aux_data; 20219 int i, patch_len, delta = 0, len = env->prog->len; 20220 struct bpf_insn *insns = env->prog->insnsi; 20221 struct bpf_prog *new_prog; 20222 bool rnd_hi32; 20223 20224 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 20225 zext_patch[1] = BPF_ZEXT_REG(0); 20226 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 20227 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 20228 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 20229 for (i = 0; i < len; i++) { 20230 int adj_idx = i + delta; 20231 struct bpf_insn insn; 20232 int load_reg; 20233 20234 insn = insns[adj_idx]; 20235 load_reg = insn_def_regno(&insn); 20236 if (!aux[adj_idx].zext_dst) { 20237 u8 code, class; 20238 u32 imm_rnd; 20239 20240 if (!rnd_hi32) 20241 continue; 20242 20243 code = insn.code; 20244 class = BPF_CLASS(code); 20245 if (load_reg == -1) 20246 continue; 20247 20248 /* NOTE: arg "reg" (the fourth one) is only used for 20249 * BPF_STX + SRC_OP, so it is safe to pass NULL 20250 * here. 20251 */ 20252 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 20253 if (class == BPF_LD && 20254 BPF_MODE(code) == BPF_IMM) 20255 i++; 20256 continue; 20257 } 20258 20259 /* ctx load could be transformed into wider load. */ 20260 if (class == BPF_LDX && 20261 aux[adj_idx].ptr_type == PTR_TO_CTX) 20262 continue; 20263 20264 imm_rnd = get_random_u32(); 20265 rnd_hi32_patch[0] = insn; 20266 rnd_hi32_patch[1].imm = imm_rnd; 20267 rnd_hi32_patch[3].dst_reg = load_reg; 20268 patch = rnd_hi32_patch; 20269 patch_len = 4; 20270 goto apply_patch_buffer; 20271 } 20272 20273 /* Add in an zero-extend instruction if a) the JIT has requested 20274 * it or b) it's a CMPXCHG. 20275 * 20276 * The latter is because: BPF_CMPXCHG always loads a value into 20277 * R0, therefore always zero-extends. However some archs' 20278 * equivalent instruction only does this load when the 20279 * comparison is successful. This detail of CMPXCHG is 20280 * orthogonal to the general zero-extension behaviour of the 20281 * CPU, so it's treated independently of bpf_jit_needs_zext. 20282 */ 20283 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 20284 continue; 20285 20286 /* Zero-extension is done by the caller. */ 20287 if (bpf_pseudo_kfunc_call(&insn)) 20288 continue; 20289 20290 if (WARN_ON(load_reg == -1)) { 20291 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 20292 return -EFAULT; 20293 } 20294 20295 zext_patch[0] = insn; 20296 zext_patch[1].dst_reg = load_reg; 20297 zext_patch[1].src_reg = load_reg; 20298 patch = zext_patch; 20299 patch_len = 2; 20300 apply_patch_buffer: 20301 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 20302 if (!new_prog) 20303 return -ENOMEM; 20304 env->prog = new_prog; 20305 insns = new_prog->insnsi; 20306 aux = env->insn_aux_data; 20307 delta += patch_len - 1; 20308 } 20309 20310 return 0; 20311 } 20312 20313 /* convert load instructions that access fields of a context type into a 20314 * sequence of instructions that access fields of the underlying structure: 20315 * struct __sk_buff -> struct sk_buff 20316 * struct bpf_sock_ops -> struct sock 20317 */ 20318 static int convert_ctx_accesses(struct bpf_verifier_env *env) 20319 { 20320 struct bpf_subprog_info *subprogs = env->subprog_info; 20321 const struct bpf_verifier_ops *ops = env->ops; 20322 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; 20323 const int insn_cnt = env->prog->len; 20324 struct bpf_insn *epilogue_buf = env->epilogue_buf; 20325 struct bpf_insn *insn_buf = env->insn_buf; 20326 struct bpf_insn *insn; 20327 u32 target_size, size_default, off; 20328 struct bpf_prog *new_prog; 20329 enum bpf_access_type type; 20330 bool is_narrower_load; 20331 int epilogue_idx = 0; 20332 20333 if (ops->gen_epilogue) { 20334 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 20335 -(subprogs[0].stack_depth + 8)); 20336 if (epilogue_cnt >= INSN_BUF_SIZE) { 20337 verbose(env, "bpf verifier is misconfigured\n"); 20338 return -EINVAL; 20339 } else if (epilogue_cnt) { 20340 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 20341 cnt = 0; 20342 subprogs[0].stack_depth += 8; 20343 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 20344 -subprogs[0].stack_depth); 20345 insn_buf[cnt++] = env->prog->insnsi[0]; 20346 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20347 if (!new_prog) 20348 return -ENOMEM; 20349 env->prog = new_prog; 20350 delta += cnt - 1; 20351 } 20352 } 20353 20354 if (ops->gen_prologue || env->seen_direct_write) { 20355 if (!ops->gen_prologue) { 20356 verbose(env, "bpf verifier is misconfigured\n"); 20357 return -EINVAL; 20358 } 20359 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 20360 env->prog); 20361 if (cnt >= INSN_BUF_SIZE) { 20362 verbose(env, "bpf verifier is misconfigured\n"); 20363 return -EINVAL; 20364 } else if (cnt) { 20365 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20366 if (!new_prog) 20367 return -ENOMEM; 20368 20369 env->prog = new_prog; 20370 delta += cnt - 1; 20371 } 20372 } 20373 20374 if (delta) 20375 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 20376 20377 if (bpf_prog_is_offloaded(env->prog->aux)) 20378 return 0; 20379 20380 insn = env->prog->insnsi + delta; 20381 20382 for (i = 0; i < insn_cnt; i++, insn++) { 20383 bpf_convert_ctx_access_t convert_ctx_access; 20384 u8 mode; 20385 20386 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 20387 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 20388 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 20389 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 20390 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 20391 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 20392 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 20393 type = BPF_READ; 20394 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 20395 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 20396 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 20397 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 20398 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 20399 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 20400 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 20401 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 20402 type = BPF_WRITE; 20403 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 20404 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 20405 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 20406 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 20407 env->prog->aux->num_exentries++; 20408 continue; 20409 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 20410 epilogue_cnt && 20411 i + delta < subprogs[1].start) { 20412 /* Generate epilogue for the main prog */ 20413 if (epilogue_idx) { 20414 /* jump back to the earlier generated epilogue */ 20415 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 20416 cnt = 1; 20417 } else { 20418 memcpy(insn_buf, epilogue_buf, 20419 epilogue_cnt * sizeof(*epilogue_buf)); 20420 cnt = epilogue_cnt; 20421 /* epilogue_idx cannot be 0. It must have at 20422 * least one ctx ptr saving insn before the 20423 * epilogue. 20424 */ 20425 epilogue_idx = i + delta; 20426 } 20427 goto patch_insn_buf; 20428 } else { 20429 continue; 20430 } 20431 20432 if (type == BPF_WRITE && 20433 env->insn_aux_data[i + delta].sanitize_stack_spill) { 20434 struct bpf_insn patch[] = { 20435 *insn, 20436 BPF_ST_NOSPEC(), 20437 }; 20438 20439 cnt = ARRAY_SIZE(patch); 20440 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 20441 if (!new_prog) 20442 return -ENOMEM; 20443 20444 delta += cnt - 1; 20445 env->prog = new_prog; 20446 insn = new_prog->insnsi + i + delta; 20447 continue; 20448 } 20449 20450 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 20451 case PTR_TO_CTX: 20452 if (!ops->convert_ctx_access) 20453 continue; 20454 convert_ctx_access = ops->convert_ctx_access; 20455 break; 20456 case PTR_TO_SOCKET: 20457 case PTR_TO_SOCK_COMMON: 20458 convert_ctx_access = bpf_sock_convert_ctx_access; 20459 break; 20460 case PTR_TO_TCP_SOCK: 20461 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 20462 break; 20463 case PTR_TO_XDP_SOCK: 20464 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 20465 break; 20466 case PTR_TO_BTF_ID: 20467 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 20468 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 20469 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 20470 * be said once it is marked PTR_UNTRUSTED, hence we must handle 20471 * any faults for loads into such types. BPF_WRITE is disallowed 20472 * for this case. 20473 */ 20474 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 20475 if (type == BPF_READ) { 20476 if (BPF_MODE(insn->code) == BPF_MEM) 20477 insn->code = BPF_LDX | BPF_PROBE_MEM | 20478 BPF_SIZE((insn)->code); 20479 else 20480 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 20481 BPF_SIZE((insn)->code); 20482 env->prog->aux->num_exentries++; 20483 } 20484 continue; 20485 case PTR_TO_ARENA: 20486 if (BPF_MODE(insn->code) == BPF_MEMSX) { 20487 verbose(env, "sign extending loads from arena are not supported yet\n"); 20488 return -EOPNOTSUPP; 20489 } 20490 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 20491 env->prog->aux->num_exentries++; 20492 continue; 20493 default: 20494 continue; 20495 } 20496 20497 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 20498 size = BPF_LDST_BYTES(insn); 20499 mode = BPF_MODE(insn->code); 20500 20501 /* If the read access is a narrower load of the field, 20502 * convert to a 4/8-byte load, to minimum program type specific 20503 * convert_ctx_access changes. If conversion is successful, 20504 * we will apply proper mask to the result. 20505 */ 20506 is_narrower_load = size < ctx_field_size; 20507 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 20508 off = insn->off; 20509 if (is_narrower_load) { 20510 u8 size_code; 20511 20512 if (type == BPF_WRITE) { 20513 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 20514 return -EINVAL; 20515 } 20516 20517 size_code = BPF_H; 20518 if (ctx_field_size == 4) 20519 size_code = BPF_W; 20520 else if (ctx_field_size == 8) 20521 size_code = BPF_DW; 20522 20523 insn->off = off & ~(size_default - 1); 20524 insn->code = BPF_LDX | BPF_MEM | size_code; 20525 } 20526 20527 target_size = 0; 20528 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 20529 &target_size); 20530 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 20531 (ctx_field_size && !target_size)) { 20532 verbose(env, "bpf verifier is misconfigured\n"); 20533 return -EINVAL; 20534 } 20535 20536 if (is_narrower_load && size < target_size) { 20537 u8 shift = bpf_ctx_narrow_access_offset( 20538 off, size, size_default) * 8; 20539 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 20540 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 20541 return -EINVAL; 20542 } 20543 if (ctx_field_size <= 4) { 20544 if (shift) 20545 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 20546 insn->dst_reg, 20547 shift); 20548 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20549 (1 << size * 8) - 1); 20550 } else { 20551 if (shift) 20552 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 20553 insn->dst_reg, 20554 shift); 20555 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20556 (1ULL << size * 8) - 1); 20557 } 20558 } 20559 if (mode == BPF_MEMSX) 20560 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 20561 insn->dst_reg, insn->dst_reg, 20562 size * 8, 0); 20563 20564 patch_insn_buf: 20565 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20566 if (!new_prog) 20567 return -ENOMEM; 20568 20569 delta += cnt - 1; 20570 20571 /* keep walking new program and skip insns we just inserted */ 20572 env->prog = new_prog; 20573 insn = new_prog->insnsi + i + delta; 20574 } 20575 20576 return 0; 20577 } 20578 20579 static int jit_subprogs(struct bpf_verifier_env *env) 20580 { 20581 struct bpf_prog *prog = env->prog, **func, *tmp; 20582 int i, j, subprog_start, subprog_end = 0, len, subprog; 20583 struct bpf_map *map_ptr; 20584 struct bpf_insn *insn; 20585 void *old_bpf_func; 20586 int err, num_exentries; 20587 20588 if (env->subprog_cnt <= 1) 20589 return 0; 20590 20591 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20592 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 20593 continue; 20594 20595 /* Upon error here we cannot fall back to interpreter but 20596 * need a hard reject of the program. Thus -EFAULT is 20597 * propagated in any case. 20598 */ 20599 subprog = find_subprog(env, i + insn->imm + 1); 20600 if (subprog < 0) { 20601 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 20602 i + insn->imm + 1); 20603 return -EFAULT; 20604 } 20605 /* temporarily remember subprog id inside insn instead of 20606 * aux_data, since next loop will split up all insns into funcs 20607 */ 20608 insn->off = subprog; 20609 /* remember original imm in case JIT fails and fallback 20610 * to interpreter will be needed 20611 */ 20612 env->insn_aux_data[i].call_imm = insn->imm; 20613 /* point imm to __bpf_call_base+1 from JITs point of view */ 20614 insn->imm = 1; 20615 if (bpf_pseudo_func(insn)) { 20616 #if defined(MODULES_VADDR) 20617 u64 addr = MODULES_VADDR; 20618 #else 20619 u64 addr = VMALLOC_START; 20620 #endif 20621 /* jit (e.g. x86_64) may emit fewer instructions 20622 * if it learns a u32 imm is the same as a u64 imm. 20623 * Set close enough to possible prog address. 20624 */ 20625 insn[0].imm = (u32)addr; 20626 insn[1].imm = addr >> 32; 20627 } 20628 } 20629 20630 err = bpf_prog_alloc_jited_linfo(prog); 20631 if (err) 20632 goto out_undo_insn; 20633 20634 err = -ENOMEM; 20635 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 20636 if (!func) 20637 goto out_undo_insn; 20638 20639 for (i = 0; i < env->subprog_cnt; i++) { 20640 subprog_start = subprog_end; 20641 subprog_end = env->subprog_info[i + 1].start; 20642 20643 len = subprog_end - subprog_start; 20644 /* bpf_prog_run() doesn't call subprogs directly, 20645 * hence main prog stats include the runtime of subprogs. 20646 * subprogs don't have IDs and not reachable via prog_get_next_id 20647 * func[i]->stats will never be accessed and stays NULL 20648 */ 20649 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 20650 if (!func[i]) 20651 goto out_free; 20652 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 20653 len * sizeof(struct bpf_insn)); 20654 func[i]->type = prog->type; 20655 func[i]->len = len; 20656 if (bpf_prog_calc_tag(func[i])) 20657 goto out_free; 20658 func[i]->is_func = 1; 20659 func[i]->sleepable = prog->sleepable; 20660 func[i]->aux->func_idx = i; 20661 /* Below members will be freed only at prog->aux */ 20662 func[i]->aux->btf = prog->aux->btf; 20663 func[i]->aux->func_info = prog->aux->func_info; 20664 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 20665 func[i]->aux->poke_tab = prog->aux->poke_tab; 20666 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 20667 20668 for (j = 0; j < prog->aux->size_poke_tab; j++) { 20669 struct bpf_jit_poke_descriptor *poke; 20670 20671 poke = &prog->aux->poke_tab[j]; 20672 if (poke->insn_idx < subprog_end && 20673 poke->insn_idx >= subprog_start) 20674 poke->aux = func[i]->aux; 20675 } 20676 20677 func[i]->aux->name[0] = 'F'; 20678 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 20679 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 20680 func[i]->aux->jits_use_priv_stack = true; 20681 20682 func[i]->jit_requested = 1; 20683 func[i]->blinding_requested = prog->blinding_requested; 20684 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 20685 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 20686 func[i]->aux->linfo = prog->aux->linfo; 20687 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 20688 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 20689 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 20690 func[i]->aux->arena = prog->aux->arena; 20691 num_exentries = 0; 20692 insn = func[i]->insnsi; 20693 for (j = 0; j < func[i]->len; j++, insn++) { 20694 if (BPF_CLASS(insn->code) == BPF_LDX && 20695 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20696 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 20697 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 20698 num_exentries++; 20699 if ((BPF_CLASS(insn->code) == BPF_STX || 20700 BPF_CLASS(insn->code) == BPF_ST) && 20701 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 20702 num_exentries++; 20703 if (BPF_CLASS(insn->code) == BPF_STX && 20704 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 20705 num_exentries++; 20706 } 20707 func[i]->aux->num_exentries = num_exentries; 20708 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 20709 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 20710 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 20711 if (!i) 20712 func[i]->aux->exception_boundary = env->seen_exception; 20713 func[i] = bpf_int_jit_compile(func[i]); 20714 if (!func[i]->jited) { 20715 err = -ENOTSUPP; 20716 goto out_free; 20717 } 20718 cond_resched(); 20719 } 20720 20721 /* at this point all bpf functions were successfully JITed 20722 * now populate all bpf_calls with correct addresses and 20723 * run last pass of JIT 20724 */ 20725 for (i = 0; i < env->subprog_cnt; i++) { 20726 insn = func[i]->insnsi; 20727 for (j = 0; j < func[i]->len; j++, insn++) { 20728 if (bpf_pseudo_func(insn)) { 20729 subprog = insn->off; 20730 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 20731 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 20732 continue; 20733 } 20734 if (!bpf_pseudo_call(insn)) 20735 continue; 20736 subprog = insn->off; 20737 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 20738 } 20739 20740 /* we use the aux data to keep a list of the start addresses 20741 * of the JITed images for each function in the program 20742 * 20743 * for some architectures, such as powerpc64, the imm field 20744 * might not be large enough to hold the offset of the start 20745 * address of the callee's JITed image from __bpf_call_base 20746 * 20747 * in such cases, we can lookup the start address of a callee 20748 * by using its subprog id, available from the off field of 20749 * the call instruction, as an index for this list 20750 */ 20751 func[i]->aux->func = func; 20752 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20753 func[i]->aux->real_func_cnt = env->subprog_cnt; 20754 } 20755 for (i = 0; i < env->subprog_cnt; i++) { 20756 old_bpf_func = func[i]->bpf_func; 20757 tmp = bpf_int_jit_compile(func[i]); 20758 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 20759 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 20760 err = -ENOTSUPP; 20761 goto out_free; 20762 } 20763 cond_resched(); 20764 } 20765 20766 /* finally lock prog and jit images for all functions and 20767 * populate kallsysm. Begin at the first subprogram, since 20768 * bpf_prog_load will add the kallsyms for the main program. 20769 */ 20770 for (i = 1; i < env->subprog_cnt; i++) { 20771 err = bpf_prog_lock_ro(func[i]); 20772 if (err) 20773 goto out_free; 20774 } 20775 20776 for (i = 1; i < env->subprog_cnt; i++) 20777 bpf_prog_kallsyms_add(func[i]); 20778 20779 /* Last step: make now unused interpreter insns from main 20780 * prog consistent for later dump requests, so they can 20781 * later look the same as if they were interpreted only. 20782 */ 20783 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20784 if (bpf_pseudo_func(insn)) { 20785 insn[0].imm = env->insn_aux_data[i].call_imm; 20786 insn[1].imm = insn->off; 20787 insn->off = 0; 20788 continue; 20789 } 20790 if (!bpf_pseudo_call(insn)) 20791 continue; 20792 insn->off = env->insn_aux_data[i].call_imm; 20793 subprog = find_subprog(env, i + insn->off + 1); 20794 insn->imm = subprog; 20795 } 20796 20797 prog->jited = 1; 20798 prog->bpf_func = func[0]->bpf_func; 20799 prog->jited_len = func[0]->jited_len; 20800 prog->aux->extable = func[0]->aux->extable; 20801 prog->aux->num_exentries = func[0]->aux->num_exentries; 20802 prog->aux->func = func; 20803 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20804 prog->aux->real_func_cnt = env->subprog_cnt; 20805 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 20806 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 20807 bpf_prog_jit_attempt_done(prog); 20808 return 0; 20809 out_free: 20810 /* We failed JIT'ing, so at this point we need to unregister poke 20811 * descriptors from subprogs, so that kernel is not attempting to 20812 * patch it anymore as we're freeing the subprog JIT memory. 20813 */ 20814 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20815 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20816 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 20817 } 20818 /* At this point we're guaranteed that poke descriptors are not 20819 * live anymore. We can just unlink its descriptor table as it's 20820 * released with the main prog. 20821 */ 20822 for (i = 0; i < env->subprog_cnt; i++) { 20823 if (!func[i]) 20824 continue; 20825 func[i]->aux->poke_tab = NULL; 20826 bpf_jit_free(func[i]); 20827 } 20828 kfree(func); 20829 out_undo_insn: 20830 /* cleanup main prog to be interpreted */ 20831 prog->jit_requested = 0; 20832 prog->blinding_requested = 0; 20833 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20834 if (!bpf_pseudo_call(insn)) 20835 continue; 20836 insn->off = 0; 20837 insn->imm = env->insn_aux_data[i].call_imm; 20838 } 20839 bpf_prog_jit_attempt_done(prog); 20840 return err; 20841 } 20842 20843 static int fixup_call_args(struct bpf_verifier_env *env) 20844 { 20845 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20846 struct bpf_prog *prog = env->prog; 20847 struct bpf_insn *insn = prog->insnsi; 20848 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 20849 int i, depth; 20850 #endif 20851 int err = 0; 20852 20853 if (env->prog->jit_requested && 20854 !bpf_prog_is_offloaded(env->prog->aux)) { 20855 err = jit_subprogs(env); 20856 if (err == 0) 20857 return 0; 20858 if (err == -EFAULT) 20859 return err; 20860 } 20861 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20862 if (has_kfunc_call) { 20863 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 20864 return -EINVAL; 20865 } 20866 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 20867 /* When JIT fails the progs with bpf2bpf calls and tail_calls 20868 * have to be rejected, since interpreter doesn't support them yet. 20869 */ 20870 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 20871 return -EINVAL; 20872 } 20873 for (i = 0; i < prog->len; i++, insn++) { 20874 if (bpf_pseudo_func(insn)) { 20875 /* When JIT fails the progs with callback calls 20876 * have to be rejected, since interpreter doesn't support them yet. 20877 */ 20878 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 20879 return -EINVAL; 20880 } 20881 20882 if (!bpf_pseudo_call(insn)) 20883 continue; 20884 depth = get_callee_stack_depth(env, insn, i); 20885 if (depth < 0) 20886 return depth; 20887 bpf_patch_call_args(insn, depth); 20888 } 20889 err = 0; 20890 #endif 20891 return err; 20892 } 20893 20894 /* replace a generic kfunc with a specialized version if necessary */ 20895 static void specialize_kfunc(struct bpf_verifier_env *env, 20896 u32 func_id, u16 offset, unsigned long *addr) 20897 { 20898 struct bpf_prog *prog = env->prog; 20899 bool seen_direct_write; 20900 void *xdp_kfunc; 20901 bool is_rdonly; 20902 20903 if (bpf_dev_bound_kfunc_id(func_id)) { 20904 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 20905 if (xdp_kfunc) { 20906 *addr = (unsigned long)xdp_kfunc; 20907 return; 20908 } 20909 /* fallback to default kfunc when not supported by netdev */ 20910 } 20911 20912 if (offset) 20913 return; 20914 20915 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 20916 seen_direct_write = env->seen_direct_write; 20917 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 20918 20919 if (is_rdonly) 20920 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 20921 20922 /* restore env->seen_direct_write to its original value, since 20923 * may_access_direct_pkt_data mutates it 20924 */ 20925 env->seen_direct_write = seen_direct_write; 20926 } 20927 } 20928 20929 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 20930 u16 struct_meta_reg, 20931 u16 node_offset_reg, 20932 struct bpf_insn *insn, 20933 struct bpf_insn *insn_buf, 20934 int *cnt) 20935 { 20936 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 20937 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 20938 20939 insn_buf[0] = addr[0]; 20940 insn_buf[1] = addr[1]; 20941 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 20942 insn_buf[3] = *insn; 20943 *cnt = 4; 20944 } 20945 20946 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 20947 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 20948 { 20949 const struct bpf_kfunc_desc *desc; 20950 20951 if (!insn->imm) { 20952 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 20953 return -EINVAL; 20954 } 20955 20956 *cnt = 0; 20957 20958 /* insn->imm has the btf func_id. Replace it with an offset relative to 20959 * __bpf_call_base, unless the JIT needs to call functions that are 20960 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 20961 */ 20962 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 20963 if (!desc) { 20964 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 20965 insn->imm); 20966 return -EFAULT; 20967 } 20968 20969 if (!bpf_jit_supports_far_kfunc_call()) 20970 insn->imm = BPF_CALL_IMM(desc->addr); 20971 if (insn->off) 20972 return 0; 20973 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 20974 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 20975 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20976 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20977 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 20978 20979 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 20980 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20981 insn_idx); 20982 return -EFAULT; 20983 } 20984 20985 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 20986 insn_buf[1] = addr[0]; 20987 insn_buf[2] = addr[1]; 20988 insn_buf[3] = *insn; 20989 *cnt = 4; 20990 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 20991 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 20992 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 20993 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20994 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20995 20996 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 20997 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20998 insn_idx); 20999 return -EFAULT; 21000 } 21001 21002 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21003 !kptr_struct_meta) { 21004 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21005 insn_idx); 21006 return -EFAULT; 21007 } 21008 21009 insn_buf[0] = addr[0]; 21010 insn_buf[1] = addr[1]; 21011 insn_buf[2] = *insn; 21012 *cnt = 3; 21013 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21014 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21015 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21016 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21017 int struct_meta_reg = BPF_REG_3; 21018 int node_offset_reg = BPF_REG_4; 21019 21020 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21021 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21022 struct_meta_reg = BPF_REG_4; 21023 node_offset_reg = BPF_REG_5; 21024 } 21025 21026 if (!kptr_struct_meta) { 21027 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21028 insn_idx); 21029 return -EFAULT; 21030 } 21031 21032 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21033 node_offset_reg, insn, insn_buf, cnt); 21034 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21035 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21036 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21037 *cnt = 1; 21038 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 21039 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 21040 21041 insn_buf[0] = ld_addrs[0]; 21042 insn_buf[1] = ld_addrs[1]; 21043 insn_buf[2] = *insn; 21044 *cnt = 3; 21045 } 21046 return 0; 21047 } 21048 21049 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21050 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21051 { 21052 struct bpf_subprog_info *info = env->subprog_info; 21053 int cnt = env->subprog_cnt; 21054 struct bpf_prog *prog; 21055 21056 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21057 if (env->hidden_subprog_cnt) { 21058 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 21059 return -EFAULT; 21060 } 21061 /* We're not patching any existing instruction, just appending the new 21062 * ones for the hidden subprog. Hence all of the adjustment operations 21063 * in bpf_patch_insn_data are no-ops. 21064 */ 21065 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 21066 if (!prog) 21067 return -ENOMEM; 21068 env->prog = prog; 21069 info[cnt + 1].start = info[cnt].start; 21070 info[cnt].start = prog->len - len + 1; 21071 env->subprog_cnt++; 21072 env->hidden_subprog_cnt++; 21073 return 0; 21074 } 21075 21076 /* Do various post-verification rewrites in a single program pass. 21077 * These rewrites simplify JIT and interpreter implementations. 21078 */ 21079 static int do_misc_fixups(struct bpf_verifier_env *env) 21080 { 21081 struct bpf_prog *prog = env->prog; 21082 enum bpf_attach_type eatype = prog->expected_attach_type; 21083 enum bpf_prog_type prog_type = resolve_prog_type(prog); 21084 struct bpf_insn *insn = prog->insnsi; 21085 const struct bpf_func_proto *fn; 21086 const int insn_cnt = prog->len; 21087 const struct bpf_map_ops *ops; 21088 struct bpf_insn_aux_data *aux; 21089 struct bpf_insn *insn_buf = env->insn_buf; 21090 struct bpf_prog *new_prog; 21091 struct bpf_map *map_ptr; 21092 int i, ret, cnt, delta = 0, cur_subprog = 0; 21093 struct bpf_subprog_info *subprogs = env->subprog_info; 21094 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21095 u16 stack_depth_extra = 0; 21096 21097 if (env->seen_exception && !env->exception_callback_subprog) { 21098 struct bpf_insn patch[] = { 21099 env->prog->insnsi[insn_cnt - 1], 21100 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 21101 BPF_EXIT_INSN(), 21102 }; 21103 21104 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 21105 if (ret < 0) 21106 return ret; 21107 prog = env->prog; 21108 insn = prog->insnsi; 21109 21110 env->exception_callback_subprog = env->subprog_cnt - 1; 21111 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 21112 mark_subprog_exc_cb(env, env->exception_callback_subprog); 21113 } 21114 21115 for (i = 0; i < insn_cnt;) { 21116 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 21117 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 21118 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 21119 /* convert to 32-bit mov that clears upper 32-bit */ 21120 insn->code = BPF_ALU | BPF_MOV | BPF_X; 21121 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 21122 insn->off = 0; 21123 insn->imm = 0; 21124 } /* cast from as(0) to as(1) should be handled by JIT */ 21125 goto next_insn; 21126 } 21127 21128 if (env->insn_aux_data[i + delta].needs_zext) 21129 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 21130 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 21131 21132 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 21133 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 21134 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 21135 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 21136 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 21137 insn->off == 1 && insn->imm == -1) { 21138 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21139 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21140 struct bpf_insn *patchlet; 21141 struct bpf_insn chk_and_sdiv[] = { 21142 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21143 BPF_NEG | BPF_K, insn->dst_reg, 21144 0, 0, 0), 21145 }; 21146 struct bpf_insn chk_and_smod[] = { 21147 BPF_MOV32_IMM(insn->dst_reg, 0), 21148 }; 21149 21150 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 21151 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 21152 21153 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21154 if (!new_prog) 21155 return -ENOMEM; 21156 21157 delta += cnt - 1; 21158 env->prog = prog = new_prog; 21159 insn = new_prog->insnsi + i + delta; 21160 goto next_insn; 21161 } 21162 21163 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 21164 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 21165 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 21166 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 21167 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 21168 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21169 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21170 bool is_sdiv = isdiv && insn->off == 1; 21171 bool is_smod = !isdiv && insn->off == 1; 21172 struct bpf_insn *patchlet; 21173 struct bpf_insn chk_and_div[] = { 21174 /* [R,W]x div 0 -> 0 */ 21175 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21176 BPF_JNE | BPF_K, insn->src_reg, 21177 0, 2, 0), 21178 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 21179 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21180 *insn, 21181 }; 21182 struct bpf_insn chk_and_mod[] = { 21183 /* [R,W]x mod 0 -> [R,W]x */ 21184 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21185 BPF_JEQ | BPF_K, insn->src_reg, 21186 0, 1 + (is64 ? 0 : 1), 0), 21187 *insn, 21188 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21189 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21190 }; 21191 struct bpf_insn chk_and_sdiv[] = { 21192 /* [R,W]x sdiv 0 -> 0 21193 * LLONG_MIN sdiv -1 -> LLONG_MIN 21194 * INT_MIN sdiv -1 -> INT_MIN 21195 */ 21196 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21197 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21198 BPF_ADD | BPF_K, BPF_REG_AX, 21199 0, 0, 1), 21200 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21201 BPF_JGT | BPF_K, BPF_REG_AX, 21202 0, 4, 1), 21203 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21204 BPF_JEQ | BPF_K, BPF_REG_AX, 21205 0, 1, 0), 21206 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21207 BPF_MOV | BPF_K, insn->dst_reg, 21208 0, 0, 0), 21209 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 21210 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21211 BPF_NEG | BPF_K, insn->dst_reg, 21212 0, 0, 0), 21213 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21214 *insn, 21215 }; 21216 struct bpf_insn chk_and_smod[] = { 21217 /* [R,W]x mod 0 -> [R,W]x */ 21218 /* [R,W]x mod -1 -> 0 */ 21219 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21220 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21221 BPF_ADD | BPF_K, BPF_REG_AX, 21222 0, 0, 1), 21223 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21224 BPF_JGT | BPF_K, BPF_REG_AX, 21225 0, 3, 1), 21226 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21227 BPF_JEQ | BPF_K, BPF_REG_AX, 21228 0, 3 + (is64 ? 0 : 1), 1), 21229 BPF_MOV32_IMM(insn->dst_reg, 0), 21230 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21231 *insn, 21232 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21233 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21234 }; 21235 21236 if (is_sdiv) { 21237 patchlet = chk_and_sdiv; 21238 cnt = ARRAY_SIZE(chk_and_sdiv); 21239 } else if (is_smod) { 21240 patchlet = chk_and_smod; 21241 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 21242 } else { 21243 patchlet = isdiv ? chk_and_div : chk_and_mod; 21244 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 21245 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 21246 } 21247 21248 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21249 if (!new_prog) 21250 return -ENOMEM; 21251 21252 delta += cnt - 1; 21253 env->prog = prog = new_prog; 21254 insn = new_prog->insnsi + i + delta; 21255 goto next_insn; 21256 } 21257 21258 /* Make it impossible to de-reference a userspace address */ 21259 if (BPF_CLASS(insn->code) == BPF_LDX && 21260 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21261 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 21262 struct bpf_insn *patch = &insn_buf[0]; 21263 u64 uaddress_limit = bpf_arch_uaddress_limit(); 21264 21265 if (!uaddress_limit) 21266 goto next_insn; 21267 21268 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 21269 if (insn->off) 21270 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 21271 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 21272 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 21273 *patch++ = *insn; 21274 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 21275 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 21276 21277 cnt = patch - insn_buf; 21278 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21279 if (!new_prog) 21280 return -ENOMEM; 21281 21282 delta += cnt - 1; 21283 env->prog = prog = new_prog; 21284 insn = new_prog->insnsi + i + delta; 21285 goto next_insn; 21286 } 21287 21288 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 21289 if (BPF_CLASS(insn->code) == BPF_LD && 21290 (BPF_MODE(insn->code) == BPF_ABS || 21291 BPF_MODE(insn->code) == BPF_IND)) { 21292 cnt = env->ops->gen_ld_abs(insn, insn_buf); 21293 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 21294 verbose(env, "bpf verifier is misconfigured\n"); 21295 return -EINVAL; 21296 } 21297 21298 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21299 if (!new_prog) 21300 return -ENOMEM; 21301 21302 delta += cnt - 1; 21303 env->prog = prog = new_prog; 21304 insn = new_prog->insnsi + i + delta; 21305 goto next_insn; 21306 } 21307 21308 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 21309 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 21310 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 21311 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 21312 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 21313 struct bpf_insn *patch = &insn_buf[0]; 21314 bool issrc, isneg, isimm; 21315 u32 off_reg; 21316 21317 aux = &env->insn_aux_data[i + delta]; 21318 if (!aux->alu_state || 21319 aux->alu_state == BPF_ALU_NON_POINTER) 21320 goto next_insn; 21321 21322 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 21323 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 21324 BPF_ALU_SANITIZE_SRC; 21325 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 21326 21327 off_reg = issrc ? insn->src_reg : insn->dst_reg; 21328 if (isimm) { 21329 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21330 } else { 21331 if (isneg) 21332 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21333 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21334 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 21335 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 21336 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 21337 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 21338 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 21339 } 21340 if (!issrc) 21341 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 21342 insn->src_reg = BPF_REG_AX; 21343 if (isneg) 21344 insn->code = insn->code == code_add ? 21345 code_sub : code_add; 21346 *patch++ = *insn; 21347 if (issrc && isneg && !isimm) 21348 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21349 cnt = patch - insn_buf; 21350 21351 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21352 if (!new_prog) 21353 return -ENOMEM; 21354 21355 delta += cnt - 1; 21356 env->prog = prog = new_prog; 21357 insn = new_prog->insnsi + i + delta; 21358 goto next_insn; 21359 } 21360 21361 if (is_may_goto_insn(insn)) { 21362 int stack_off = -stack_depth - 8; 21363 21364 stack_depth_extra = 8; 21365 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 21366 if (insn->off >= 0) 21367 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 21368 else 21369 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 21370 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 21371 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 21372 cnt = 4; 21373 21374 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21375 if (!new_prog) 21376 return -ENOMEM; 21377 21378 delta += cnt - 1; 21379 env->prog = prog = new_prog; 21380 insn = new_prog->insnsi + i + delta; 21381 goto next_insn; 21382 } 21383 21384 if (insn->code != (BPF_JMP | BPF_CALL)) 21385 goto next_insn; 21386 if (insn->src_reg == BPF_PSEUDO_CALL) 21387 goto next_insn; 21388 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 21389 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 21390 if (ret) 21391 return ret; 21392 if (cnt == 0) 21393 goto next_insn; 21394 21395 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21396 if (!new_prog) 21397 return -ENOMEM; 21398 21399 delta += cnt - 1; 21400 env->prog = prog = new_prog; 21401 insn = new_prog->insnsi + i + delta; 21402 goto next_insn; 21403 } 21404 21405 /* Skip inlining the helper call if the JIT does it. */ 21406 if (bpf_jit_inlines_helper_call(insn->imm)) 21407 goto next_insn; 21408 21409 if (insn->imm == BPF_FUNC_get_route_realm) 21410 prog->dst_needed = 1; 21411 if (insn->imm == BPF_FUNC_get_prandom_u32) 21412 bpf_user_rnd_init_once(); 21413 if (insn->imm == BPF_FUNC_override_return) 21414 prog->kprobe_override = 1; 21415 if (insn->imm == BPF_FUNC_tail_call) { 21416 /* If we tail call into other programs, we 21417 * cannot make any assumptions since they can 21418 * be replaced dynamically during runtime in 21419 * the program array. 21420 */ 21421 prog->cb_access = 1; 21422 if (!allow_tail_call_in_subprogs(env)) 21423 prog->aux->stack_depth = MAX_BPF_STACK; 21424 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 21425 21426 /* mark bpf_tail_call as different opcode to avoid 21427 * conditional branch in the interpreter for every normal 21428 * call and to prevent accidental JITing by JIT compiler 21429 * that doesn't support bpf_tail_call yet 21430 */ 21431 insn->imm = 0; 21432 insn->code = BPF_JMP | BPF_TAIL_CALL; 21433 21434 aux = &env->insn_aux_data[i + delta]; 21435 if (env->bpf_capable && !prog->blinding_requested && 21436 prog->jit_requested && 21437 !bpf_map_key_poisoned(aux) && 21438 !bpf_map_ptr_poisoned(aux) && 21439 !bpf_map_ptr_unpriv(aux)) { 21440 struct bpf_jit_poke_descriptor desc = { 21441 .reason = BPF_POKE_REASON_TAIL_CALL, 21442 .tail_call.map = aux->map_ptr_state.map_ptr, 21443 .tail_call.key = bpf_map_key_immediate(aux), 21444 .insn_idx = i + delta, 21445 }; 21446 21447 ret = bpf_jit_add_poke_descriptor(prog, &desc); 21448 if (ret < 0) { 21449 verbose(env, "adding tail call poke descriptor failed\n"); 21450 return ret; 21451 } 21452 21453 insn->imm = ret + 1; 21454 goto next_insn; 21455 } 21456 21457 if (!bpf_map_ptr_unpriv(aux)) 21458 goto next_insn; 21459 21460 /* instead of changing every JIT dealing with tail_call 21461 * emit two extra insns: 21462 * if (index >= max_entries) goto out; 21463 * index &= array->index_mask; 21464 * to avoid out-of-bounds cpu speculation 21465 */ 21466 if (bpf_map_ptr_poisoned(aux)) { 21467 verbose(env, "tail_call abusing map_ptr\n"); 21468 return -EINVAL; 21469 } 21470 21471 map_ptr = aux->map_ptr_state.map_ptr; 21472 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 21473 map_ptr->max_entries, 2); 21474 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 21475 container_of(map_ptr, 21476 struct bpf_array, 21477 map)->index_mask); 21478 insn_buf[2] = *insn; 21479 cnt = 3; 21480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21481 if (!new_prog) 21482 return -ENOMEM; 21483 21484 delta += cnt - 1; 21485 env->prog = prog = new_prog; 21486 insn = new_prog->insnsi + i + delta; 21487 goto next_insn; 21488 } 21489 21490 if (insn->imm == BPF_FUNC_timer_set_callback) { 21491 /* The verifier will process callback_fn as many times as necessary 21492 * with different maps and the register states prepared by 21493 * set_timer_callback_state will be accurate. 21494 * 21495 * The following use case is valid: 21496 * map1 is shared by prog1, prog2, prog3. 21497 * prog1 calls bpf_timer_init for some map1 elements 21498 * prog2 calls bpf_timer_set_callback for some map1 elements. 21499 * Those that were not bpf_timer_init-ed will return -EINVAL. 21500 * prog3 calls bpf_timer_start for some map1 elements. 21501 * Those that were not both bpf_timer_init-ed and 21502 * bpf_timer_set_callback-ed will return -EINVAL. 21503 */ 21504 struct bpf_insn ld_addrs[2] = { 21505 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 21506 }; 21507 21508 insn_buf[0] = ld_addrs[0]; 21509 insn_buf[1] = ld_addrs[1]; 21510 insn_buf[2] = *insn; 21511 cnt = 3; 21512 21513 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21514 if (!new_prog) 21515 return -ENOMEM; 21516 21517 delta += cnt - 1; 21518 env->prog = prog = new_prog; 21519 insn = new_prog->insnsi + i + delta; 21520 goto patch_call_imm; 21521 } 21522 21523 if (is_storage_get_function(insn->imm)) { 21524 if (!in_sleepable(env) || 21525 env->insn_aux_data[i + delta].storage_get_func_atomic) 21526 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 21527 else 21528 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 21529 insn_buf[1] = *insn; 21530 cnt = 2; 21531 21532 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21533 if (!new_prog) 21534 return -ENOMEM; 21535 21536 delta += cnt - 1; 21537 env->prog = prog = new_prog; 21538 insn = new_prog->insnsi + i + delta; 21539 goto patch_call_imm; 21540 } 21541 21542 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 21543 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 21544 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 21545 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 21546 */ 21547 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 21548 insn_buf[1] = *insn; 21549 cnt = 2; 21550 21551 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21552 if (!new_prog) 21553 return -ENOMEM; 21554 21555 delta += cnt - 1; 21556 env->prog = prog = new_prog; 21557 insn = new_prog->insnsi + i + delta; 21558 goto patch_call_imm; 21559 } 21560 21561 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 21562 * and other inlining handlers are currently limited to 64 bit 21563 * only. 21564 */ 21565 if (prog->jit_requested && BITS_PER_LONG == 64 && 21566 (insn->imm == BPF_FUNC_map_lookup_elem || 21567 insn->imm == BPF_FUNC_map_update_elem || 21568 insn->imm == BPF_FUNC_map_delete_elem || 21569 insn->imm == BPF_FUNC_map_push_elem || 21570 insn->imm == BPF_FUNC_map_pop_elem || 21571 insn->imm == BPF_FUNC_map_peek_elem || 21572 insn->imm == BPF_FUNC_redirect_map || 21573 insn->imm == BPF_FUNC_for_each_map_elem || 21574 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 21575 aux = &env->insn_aux_data[i + delta]; 21576 if (bpf_map_ptr_poisoned(aux)) 21577 goto patch_call_imm; 21578 21579 map_ptr = aux->map_ptr_state.map_ptr; 21580 ops = map_ptr->ops; 21581 if (insn->imm == BPF_FUNC_map_lookup_elem && 21582 ops->map_gen_lookup) { 21583 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 21584 if (cnt == -EOPNOTSUPP) 21585 goto patch_map_ops_generic; 21586 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 21587 verbose(env, "bpf verifier is misconfigured\n"); 21588 return -EINVAL; 21589 } 21590 21591 new_prog = bpf_patch_insn_data(env, i + delta, 21592 insn_buf, cnt); 21593 if (!new_prog) 21594 return -ENOMEM; 21595 21596 delta += cnt - 1; 21597 env->prog = prog = new_prog; 21598 insn = new_prog->insnsi + i + delta; 21599 goto next_insn; 21600 } 21601 21602 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 21603 (void *(*)(struct bpf_map *map, void *key))NULL)); 21604 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 21605 (long (*)(struct bpf_map *map, void *key))NULL)); 21606 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 21607 (long (*)(struct bpf_map *map, void *key, void *value, 21608 u64 flags))NULL)); 21609 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 21610 (long (*)(struct bpf_map *map, void *value, 21611 u64 flags))NULL)); 21612 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 21613 (long (*)(struct bpf_map *map, void *value))NULL)); 21614 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 21615 (long (*)(struct bpf_map *map, void *value))NULL)); 21616 BUILD_BUG_ON(!__same_type(ops->map_redirect, 21617 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 21618 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 21619 (long (*)(struct bpf_map *map, 21620 bpf_callback_t callback_fn, 21621 void *callback_ctx, 21622 u64 flags))NULL)); 21623 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 21624 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 21625 21626 patch_map_ops_generic: 21627 switch (insn->imm) { 21628 case BPF_FUNC_map_lookup_elem: 21629 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 21630 goto next_insn; 21631 case BPF_FUNC_map_update_elem: 21632 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 21633 goto next_insn; 21634 case BPF_FUNC_map_delete_elem: 21635 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 21636 goto next_insn; 21637 case BPF_FUNC_map_push_elem: 21638 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 21639 goto next_insn; 21640 case BPF_FUNC_map_pop_elem: 21641 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 21642 goto next_insn; 21643 case BPF_FUNC_map_peek_elem: 21644 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 21645 goto next_insn; 21646 case BPF_FUNC_redirect_map: 21647 insn->imm = BPF_CALL_IMM(ops->map_redirect); 21648 goto next_insn; 21649 case BPF_FUNC_for_each_map_elem: 21650 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 21651 goto next_insn; 21652 case BPF_FUNC_map_lookup_percpu_elem: 21653 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 21654 goto next_insn; 21655 } 21656 21657 goto patch_call_imm; 21658 } 21659 21660 /* Implement bpf_jiffies64 inline. */ 21661 if (prog->jit_requested && BITS_PER_LONG == 64 && 21662 insn->imm == BPF_FUNC_jiffies64) { 21663 struct bpf_insn ld_jiffies_addr[2] = { 21664 BPF_LD_IMM64(BPF_REG_0, 21665 (unsigned long)&jiffies), 21666 }; 21667 21668 insn_buf[0] = ld_jiffies_addr[0]; 21669 insn_buf[1] = ld_jiffies_addr[1]; 21670 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 21671 BPF_REG_0, 0); 21672 cnt = 3; 21673 21674 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 21675 cnt); 21676 if (!new_prog) 21677 return -ENOMEM; 21678 21679 delta += cnt - 1; 21680 env->prog = prog = new_prog; 21681 insn = new_prog->insnsi + i + delta; 21682 goto next_insn; 21683 } 21684 21685 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 21686 /* Implement bpf_get_smp_processor_id() inline. */ 21687 if (insn->imm == BPF_FUNC_get_smp_processor_id && 21688 verifier_inlines_helper_call(env, insn->imm)) { 21689 /* BPF_FUNC_get_smp_processor_id inlining is an 21690 * optimization, so if pcpu_hot.cpu_number is ever 21691 * changed in some incompatible and hard to support 21692 * way, it's fine to back out this inlining logic 21693 */ 21694 #ifdef CONFIG_SMP 21695 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 21696 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 21697 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 21698 cnt = 3; 21699 #else 21700 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 21701 cnt = 1; 21702 #endif 21703 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21704 if (!new_prog) 21705 return -ENOMEM; 21706 21707 delta += cnt - 1; 21708 env->prog = prog = new_prog; 21709 insn = new_prog->insnsi + i + delta; 21710 goto next_insn; 21711 } 21712 #endif 21713 /* Implement bpf_get_func_arg inline. */ 21714 if (prog_type == BPF_PROG_TYPE_TRACING && 21715 insn->imm == BPF_FUNC_get_func_arg) { 21716 /* Load nr_args from ctx - 8 */ 21717 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21718 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 21719 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 21720 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 21721 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 21722 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21723 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 21724 insn_buf[7] = BPF_JMP_A(1); 21725 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21726 cnt = 9; 21727 21728 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21729 if (!new_prog) 21730 return -ENOMEM; 21731 21732 delta += cnt - 1; 21733 env->prog = prog = new_prog; 21734 insn = new_prog->insnsi + i + delta; 21735 goto next_insn; 21736 } 21737 21738 /* Implement bpf_get_func_ret inline. */ 21739 if (prog_type == BPF_PROG_TYPE_TRACING && 21740 insn->imm == BPF_FUNC_get_func_ret) { 21741 if (eatype == BPF_TRACE_FEXIT || 21742 eatype == BPF_MODIFY_RETURN) { 21743 /* Load nr_args from ctx - 8 */ 21744 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21745 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 21746 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 21747 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21748 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 21749 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 21750 cnt = 6; 21751 } else { 21752 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 21753 cnt = 1; 21754 } 21755 21756 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21757 if (!new_prog) 21758 return -ENOMEM; 21759 21760 delta += cnt - 1; 21761 env->prog = prog = new_prog; 21762 insn = new_prog->insnsi + i + delta; 21763 goto next_insn; 21764 } 21765 21766 /* Implement get_func_arg_cnt inline. */ 21767 if (prog_type == BPF_PROG_TYPE_TRACING && 21768 insn->imm == BPF_FUNC_get_func_arg_cnt) { 21769 /* Load nr_args from ctx - 8 */ 21770 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21771 21772 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21773 if (!new_prog) 21774 return -ENOMEM; 21775 21776 env->prog = prog = new_prog; 21777 insn = new_prog->insnsi + i + delta; 21778 goto next_insn; 21779 } 21780 21781 /* Implement bpf_get_func_ip inline. */ 21782 if (prog_type == BPF_PROG_TYPE_TRACING && 21783 insn->imm == BPF_FUNC_get_func_ip) { 21784 /* Load IP address from ctx - 16 */ 21785 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 21786 21787 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21788 if (!new_prog) 21789 return -ENOMEM; 21790 21791 env->prog = prog = new_prog; 21792 insn = new_prog->insnsi + i + delta; 21793 goto next_insn; 21794 } 21795 21796 /* Implement bpf_get_branch_snapshot inline. */ 21797 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 21798 prog->jit_requested && BITS_PER_LONG == 64 && 21799 insn->imm == BPF_FUNC_get_branch_snapshot) { 21800 /* We are dealing with the following func protos: 21801 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 21802 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 21803 */ 21804 const u32 br_entry_size = sizeof(struct perf_branch_entry); 21805 21806 /* struct perf_branch_entry is part of UAPI and is 21807 * used as an array element, so extremely unlikely to 21808 * ever grow or shrink 21809 */ 21810 BUILD_BUG_ON(br_entry_size != 24); 21811 21812 /* if (unlikely(flags)) return -EINVAL */ 21813 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 21814 21815 /* Transform size (bytes) into number of entries (cnt = size / 24). 21816 * But to avoid expensive division instruction, we implement 21817 * divide-by-3 through multiplication, followed by further 21818 * division by 8 through 3-bit right shift. 21819 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 21820 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 21821 * 21822 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 21823 */ 21824 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 21825 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 21826 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 21827 21828 /* call perf_snapshot_branch_stack implementation */ 21829 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 21830 /* if (entry_cnt == 0) return -ENOENT */ 21831 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 21832 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 21833 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 21834 insn_buf[7] = BPF_JMP_A(3); 21835 /* return -EINVAL; */ 21836 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21837 insn_buf[9] = BPF_JMP_A(1); 21838 /* return -ENOENT; */ 21839 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 21840 cnt = 11; 21841 21842 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21843 if (!new_prog) 21844 return -ENOMEM; 21845 21846 delta += cnt - 1; 21847 env->prog = prog = new_prog; 21848 insn = new_prog->insnsi + i + delta; 21849 goto next_insn; 21850 } 21851 21852 /* Implement bpf_kptr_xchg inline */ 21853 if (prog->jit_requested && BITS_PER_LONG == 64 && 21854 insn->imm == BPF_FUNC_kptr_xchg && 21855 bpf_jit_supports_ptr_xchg()) { 21856 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 21857 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 21858 cnt = 2; 21859 21860 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21861 if (!new_prog) 21862 return -ENOMEM; 21863 21864 delta += cnt - 1; 21865 env->prog = prog = new_prog; 21866 insn = new_prog->insnsi + i + delta; 21867 goto next_insn; 21868 } 21869 patch_call_imm: 21870 fn = env->ops->get_func_proto(insn->imm, env->prog); 21871 /* all functions that have prototype and verifier allowed 21872 * programs to call them, must be real in-kernel functions 21873 */ 21874 if (!fn->func) { 21875 verbose(env, 21876 "kernel subsystem misconfigured func %s#%d\n", 21877 func_id_name(insn->imm), insn->imm); 21878 return -EFAULT; 21879 } 21880 insn->imm = fn->func - __bpf_call_base; 21881 next_insn: 21882 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21883 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21884 subprogs[cur_subprog].stack_extra = stack_depth_extra; 21885 cur_subprog++; 21886 stack_depth = subprogs[cur_subprog].stack_depth; 21887 stack_depth_extra = 0; 21888 } 21889 i++; 21890 insn++; 21891 } 21892 21893 env->prog->aux->stack_depth = subprogs[0].stack_depth; 21894 for (i = 0; i < env->subprog_cnt; i++) { 21895 int subprog_start = subprogs[i].start; 21896 int stack_slots = subprogs[i].stack_extra / 8; 21897 21898 if (!stack_slots) 21899 continue; 21900 if (stack_slots > 1) { 21901 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 21902 return -EFAULT; 21903 } 21904 21905 /* Add ST insn to subprog prologue to init extra stack */ 21906 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 21907 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 21908 /* Copy first actual insn to preserve it */ 21909 insn_buf[1] = env->prog->insnsi[subprog_start]; 21910 21911 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 21912 if (!new_prog) 21913 return -ENOMEM; 21914 env->prog = prog = new_prog; 21915 /* 21916 * If may_goto is a first insn of a prog there could be a jmp 21917 * insn that points to it, hence adjust all such jmps to point 21918 * to insn after BPF_ST that inits may_goto count. 21919 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 21920 */ 21921 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); 21922 } 21923 21924 /* Since poke tab is now finalized, publish aux to tracker. */ 21925 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21926 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21927 if (!map_ptr->ops->map_poke_track || 21928 !map_ptr->ops->map_poke_untrack || 21929 !map_ptr->ops->map_poke_run) { 21930 verbose(env, "bpf verifier is misconfigured\n"); 21931 return -EINVAL; 21932 } 21933 21934 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 21935 if (ret < 0) { 21936 verbose(env, "tracking tail call prog failed\n"); 21937 return ret; 21938 } 21939 } 21940 21941 sort_kfunc_descs_by_imm_off(env->prog); 21942 21943 return 0; 21944 } 21945 21946 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 21947 int position, 21948 s32 stack_base, 21949 u32 callback_subprogno, 21950 u32 *total_cnt) 21951 { 21952 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 21953 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 21954 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 21955 int reg_loop_max = BPF_REG_6; 21956 int reg_loop_cnt = BPF_REG_7; 21957 int reg_loop_ctx = BPF_REG_8; 21958 21959 struct bpf_insn *insn_buf = env->insn_buf; 21960 struct bpf_prog *new_prog; 21961 u32 callback_start; 21962 u32 call_insn_offset; 21963 s32 callback_offset; 21964 u32 cnt = 0; 21965 21966 /* This represents an inlined version of bpf_iter.c:bpf_loop, 21967 * be careful to modify this code in sync. 21968 */ 21969 21970 /* Return error and jump to the end of the patch if 21971 * expected number of iterations is too big. 21972 */ 21973 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 21974 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 21975 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 21976 /* spill R6, R7, R8 to use these as loop vars */ 21977 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 21978 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 21979 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 21980 /* initialize loop vars */ 21981 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 21982 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 21983 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 21984 /* loop header, 21985 * if reg_loop_cnt >= reg_loop_max skip the loop body 21986 */ 21987 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 21988 /* callback call, 21989 * correct callback offset would be set after patching 21990 */ 21991 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 21992 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 21993 insn_buf[cnt++] = BPF_CALL_REL(0); 21994 /* increment loop counter */ 21995 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 21996 /* jump to loop header if callback returned 0 */ 21997 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 21998 /* return value of bpf_loop, 21999 * set R0 to the number of iterations 22000 */ 22001 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22002 /* restore original values of R6, R7, R8 */ 22003 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22004 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22005 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22006 22007 *total_cnt = cnt; 22008 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 22009 if (!new_prog) 22010 return new_prog; 22011 22012 /* callback start is known only after patching */ 22013 callback_start = env->subprog_info[callback_subprogno].start; 22014 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 22015 call_insn_offset = position + 12; 22016 callback_offset = callback_start - call_insn_offset - 1; 22017 new_prog->insnsi[call_insn_offset].imm = callback_offset; 22018 22019 return new_prog; 22020 } 22021 22022 static bool is_bpf_loop_call(struct bpf_insn *insn) 22023 { 22024 return insn->code == (BPF_JMP | BPF_CALL) && 22025 insn->src_reg == 0 && 22026 insn->imm == BPF_FUNC_loop; 22027 } 22028 22029 /* For all sub-programs in the program (including main) check 22030 * insn_aux_data to see if there are bpf_loop calls that require 22031 * inlining. If such calls are found the calls are replaced with a 22032 * sequence of instructions produced by `inline_bpf_loop` function and 22033 * subprog stack_depth is increased by the size of 3 registers. 22034 * This stack space is used to spill values of the R6, R7, R8. These 22035 * registers are used to store the loop bound, counter and context 22036 * variables. 22037 */ 22038 static int optimize_bpf_loop(struct bpf_verifier_env *env) 22039 { 22040 struct bpf_subprog_info *subprogs = env->subprog_info; 22041 int i, cur_subprog = 0, cnt, delta = 0; 22042 struct bpf_insn *insn = env->prog->insnsi; 22043 int insn_cnt = env->prog->len; 22044 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22045 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22046 u16 stack_depth_extra = 0; 22047 22048 for (i = 0; i < insn_cnt; i++, insn++) { 22049 struct bpf_loop_inline_state *inline_state = 22050 &env->insn_aux_data[i + delta].loop_inline_state; 22051 22052 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 22053 struct bpf_prog *new_prog; 22054 22055 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 22056 new_prog = inline_bpf_loop(env, 22057 i + delta, 22058 -(stack_depth + stack_depth_extra), 22059 inline_state->callback_subprogno, 22060 &cnt); 22061 if (!new_prog) 22062 return -ENOMEM; 22063 22064 delta += cnt - 1; 22065 env->prog = new_prog; 22066 insn = new_prog->insnsi + i + delta; 22067 } 22068 22069 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22070 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22071 cur_subprog++; 22072 stack_depth = subprogs[cur_subprog].stack_depth; 22073 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22074 stack_depth_extra = 0; 22075 } 22076 } 22077 22078 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22079 22080 return 0; 22081 } 22082 22083 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 22084 * adjust subprograms stack depth when possible. 22085 */ 22086 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 22087 { 22088 struct bpf_subprog_info *subprog = env->subprog_info; 22089 struct bpf_insn_aux_data *aux = env->insn_aux_data; 22090 struct bpf_insn *insn = env->prog->insnsi; 22091 int insn_cnt = env->prog->len; 22092 u32 spills_num; 22093 bool modified = false; 22094 int i, j; 22095 22096 for (i = 0; i < insn_cnt; i++, insn++) { 22097 if (aux[i].fastcall_spills_num > 0) { 22098 spills_num = aux[i].fastcall_spills_num; 22099 /* NOPs would be removed by opt_remove_nops() */ 22100 for (j = 1; j <= spills_num; ++j) { 22101 *(insn - j) = NOP; 22102 *(insn + j) = NOP; 22103 } 22104 modified = true; 22105 } 22106 if ((subprog + 1)->start == i + 1) { 22107 if (modified && !subprog->keep_fastcall_stack) 22108 subprog->stack_depth = -subprog->fastcall_stack_off; 22109 subprog++; 22110 modified = false; 22111 } 22112 } 22113 22114 return 0; 22115 } 22116 22117 static void free_states(struct bpf_verifier_env *env) 22118 { 22119 struct bpf_verifier_state_list *sl, *sln; 22120 int i; 22121 22122 sl = env->free_list; 22123 while (sl) { 22124 sln = sl->next; 22125 free_verifier_state(&sl->state, false); 22126 kfree(sl); 22127 sl = sln; 22128 } 22129 env->free_list = NULL; 22130 22131 if (!env->explored_states) 22132 return; 22133 22134 for (i = 0; i < state_htab_size(env); i++) { 22135 sl = env->explored_states[i]; 22136 22137 while (sl) { 22138 sln = sl->next; 22139 free_verifier_state(&sl->state, false); 22140 kfree(sl); 22141 sl = sln; 22142 } 22143 env->explored_states[i] = NULL; 22144 } 22145 } 22146 22147 static int do_check_common(struct bpf_verifier_env *env, int subprog) 22148 { 22149 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 22150 struct bpf_subprog_info *sub = subprog_info(env, subprog); 22151 struct bpf_verifier_state *state; 22152 struct bpf_reg_state *regs; 22153 int ret, i; 22154 22155 env->prev_linfo = NULL; 22156 env->pass_cnt++; 22157 22158 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 22159 if (!state) 22160 return -ENOMEM; 22161 state->curframe = 0; 22162 state->speculative = false; 22163 state->branches = 1; 22164 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 22165 if (!state->frame[0]) { 22166 kfree(state); 22167 return -ENOMEM; 22168 } 22169 env->cur_state = state; 22170 init_func_state(env, state->frame[0], 22171 BPF_MAIN_FUNC /* callsite */, 22172 0 /* frameno */, 22173 subprog); 22174 state->first_insn_idx = env->subprog_info[subprog].start; 22175 state->last_insn_idx = -1; 22176 22177 regs = state->frame[state->curframe]->regs; 22178 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 22179 const char *sub_name = subprog_name(env, subprog); 22180 struct bpf_subprog_arg_info *arg; 22181 struct bpf_reg_state *reg; 22182 22183 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 22184 ret = btf_prepare_func_args(env, subprog); 22185 if (ret) 22186 goto out; 22187 22188 if (subprog_is_exc_cb(env, subprog)) { 22189 state->frame[0]->in_exception_callback_fn = true; 22190 /* We have already ensured that the callback returns an integer, just 22191 * like all global subprogs. We need to determine it only has a single 22192 * scalar argument. 22193 */ 22194 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 22195 verbose(env, "exception cb only supports single integer argument\n"); 22196 ret = -EINVAL; 22197 goto out; 22198 } 22199 } 22200 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 22201 arg = &sub->args[i - BPF_REG_1]; 22202 reg = ®s[i]; 22203 22204 if (arg->arg_type == ARG_PTR_TO_CTX) { 22205 reg->type = PTR_TO_CTX; 22206 mark_reg_known_zero(env, regs, i); 22207 } else if (arg->arg_type == ARG_ANYTHING) { 22208 reg->type = SCALAR_VALUE; 22209 mark_reg_unknown(env, regs, i); 22210 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 22211 /* assume unspecial LOCAL dynptr type */ 22212 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 22213 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 22214 reg->type = PTR_TO_MEM; 22215 if (arg->arg_type & PTR_MAYBE_NULL) 22216 reg->type |= PTR_MAYBE_NULL; 22217 mark_reg_known_zero(env, regs, i); 22218 reg->mem_size = arg->mem_size; 22219 reg->id = ++env->id_gen; 22220 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 22221 reg->type = PTR_TO_BTF_ID; 22222 if (arg->arg_type & PTR_MAYBE_NULL) 22223 reg->type |= PTR_MAYBE_NULL; 22224 if (arg->arg_type & PTR_UNTRUSTED) 22225 reg->type |= PTR_UNTRUSTED; 22226 if (arg->arg_type & PTR_TRUSTED) 22227 reg->type |= PTR_TRUSTED; 22228 mark_reg_known_zero(env, regs, i); 22229 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 22230 reg->btf_id = arg->btf_id; 22231 reg->id = ++env->id_gen; 22232 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 22233 /* caller can pass either PTR_TO_ARENA or SCALAR */ 22234 mark_reg_unknown(env, regs, i); 22235 } else { 22236 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 22237 i - BPF_REG_1, arg->arg_type); 22238 ret = -EFAULT; 22239 goto out; 22240 } 22241 } 22242 } else { 22243 /* if main BPF program has associated BTF info, validate that 22244 * it's matching expected signature, and otherwise mark BTF 22245 * info for main program as unreliable 22246 */ 22247 if (env->prog->aux->func_info_aux) { 22248 ret = btf_prepare_func_args(env, 0); 22249 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 22250 env->prog->aux->func_info_aux[0].unreliable = true; 22251 } 22252 22253 /* 1st arg to a function */ 22254 regs[BPF_REG_1].type = PTR_TO_CTX; 22255 mark_reg_known_zero(env, regs, BPF_REG_1); 22256 } 22257 22258 ret = do_check(env); 22259 out: 22260 /* check for NULL is necessary, since cur_state can be freed inside 22261 * do_check() under memory pressure. 22262 */ 22263 if (env->cur_state) { 22264 free_verifier_state(env->cur_state, true); 22265 env->cur_state = NULL; 22266 } 22267 while (!pop_stack(env, NULL, NULL, false)); 22268 if (!ret && pop_log) 22269 bpf_vlog_reset(&env->log, 0); 22270 free_states(env); 22271 return ret; 22272 } 22273 22274 /* Lazily verify all global functions based on their BTF, if they are called 22275 * from main BPF program or any of subprograms transitively. 22276 * BPF global subprogs called from dead code are not validated. 22277 * All callable global functions must pass verification. 22278 * Otherwise the whole program is rejected. 22279 * Consider: 22280 * int bar(int); 22281 * int foo(int f) 22282 * { 22283 * return bar(f); 22284 * } 22285 * int bar(int b) 22286 * { 22287 * ... 22288 * } 22289 * foo() will be verified first for R1=any_scalar_value. During verification it 22290 * will be assumed that bar() already verified successfully and call to bar() 22291 * from foo() will be checked for type match only. Later bar() will be verified 22292 * independently to check that it's safe for R1=any_scalar_value. 22293 */ 22294 static int do_check_subprogs(struct bpf_verifier_env *env) 22295 { 22296 struct bpf_prog_aux *aux = env->prog->aux; 22297 struct bpf_func_info_aux *sub_aux; 22298 int i, ret, new_cnt; 22299 22300 if (!aux->func_info) 22301 return 0; 22302 22303 /* exception callback is presumed to be always called */ 22304 if (env->exception_callback_subprog) 22305 subprog_aux(env, env->exception_callback_subprog)->called = true; 22306 22307 again: 22308 new_cnt = 0; 22309 for (i = 1; i < env->subprog_cnt; i++) { 22310 if (!subprog_is_global(env, i)) 22311 continue; 22312 22313 sub_aux = subprog_aux(env, i); 22314 if (!sub_aux->called || sub_aux->verified) 22315 continue; 22316 22317 env->insn_idx = env->subprog_info[i].start; 22318 WARN_ON_ONCE(env->insn_idx == 0); 22319 ret = do_check_common(env, i); 22320 if (ret) { 22321 return ret; 22322 } else if (env->log.level & BPF_LOG_LEVEL) { 22323 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 22324 i, subprog_name(env, i)); 22325 } 22326 22327 /* We verified new global subprog, it might have called some 22328 * more global subprogs that we haven't verified yet, so we 22329 * need to do another pass over subprogs to verify those. 22330 */ 22331 sub_aux->verified = true; 22332 new_cnt++; 22333 } 22334 22335 /* We can't loop forever as we verify at least one global subprog on 22336 * each pass. 22337 */ 22338 if (new_cnt) 22339 goto again; 22340 22341 return 0; 22342 } 22343 22344 static int do_check_main(struct bpf_verifier_env *env) 22345 { 22346 int ret; 22347 22348 env->insn_idx = 0; 22349 ret = do_check_common(env, 0); 22350 if (!ret) 22351 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22352 return ret; 22353 } 22354 22355 22356 static void print_verification_stats(struct bpf_verifier_env *env) 22357 { 22358 int i; 22359 22360 if (env->log.level & BPF_LOG_STATS) { 22361 verbose(env, "verification time %lld usec\n", 22362 div_u64(env->verification_time, 1000)); 22363 verbose(env, "stack depth "); 22364 for (i = 0; i < env->subprog_cnt; i++) { 22365 u32 depth = env->subprog_info[i].stack_depth; 22366 22367 verbose(env, "%d", depth); 22368 if (i + 1 < env->subprog_cnt) 22369 verbose(env, "+"); 22370 } 22371 verbose(env, "\n"); 22372 } 22373 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 22374 "total_states %d peak_states %d mark_read %d\n", 22375 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 22376 env->max_states_per_insn, env->total_states, 22377 env->peak_states, env->longest_mark_read_walk); 22378 } 22379 22380 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 22381 { 22382 const struct btf_type *t, *func_proto; 22383 const struct bpf_struct_ops_desc *st_ops_desc; 22384 const struct bpf_struct_ops *st_ops; 22385 const struct btf_member *member; 22386 struct bpf_prog *prog = env->prog; 22387 u32 btf_id, member_idx; 22388 struct btf *btf; 22389 const char *mname; 22390 int err; 22391 22392 if (!prog->gpl_compatible) { 22393 verbose(env, "struct ops programs must have a GPL compatible license\n"); 22394 return -EINVAL; 22395 } 22396 22397 if (!prog->aux->attach_btf_id) 22398 return -ENOTSUPP; 22399 22400 btf = prog->aux->attach_btf; 22401 if (btf_is_module(btf)) { 22402 /* Make sure st_ops is valid through the lifetime of env */ 22403 env->attach_btf_mod = btf_try_get_module(btf); 22404 if (!env->attach_btf_mod) { 22405 verbose(env, "struct_ops module %s is not found\n", 22406 btf_get_name(btf)); 22407 return -ENOTSUPP; 22408 } 22409 } 22410 22411 btf_id = prog->aux->attach_btf_id; 22412 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 22413 if (!st_ops_desc) { 22414 verbose(env, "attach_btf_id %u is not a supported struct\n", 22415 btf_id); 22416 return -ENOTSUPP; 22417 } 22418 st_ops = st_ops_desc->st_ops; 22419 22420 t = st_ops_desc->type; 22421 member_idx = prog->expected_attach_type; 22422 if (member_idx >= btf_type_vlen(t)) { 22423 verbose(env, "attach to invalid member idx %u of struct %s\n", 22424 member_idx, st_ops->name); 22425 return -EINVAL; 22426 } 22427 22428 member = &btf_type_member(t)[member_idx]; 22429 mname = btf_name_by_offset(btf, member->name_off); 22430 func_proto = btf_type_resolve_func_ptr(btf, member->type, 22431 NULL); 22432 if (!func_proto) { 22433 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 22434 mname, member_idx, st_ops->name); 22435 return -EINVAL; 22436 } 22437 22438 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); 22439 if (err) { 22440 verbose(env, "attach to unsupported member %s of struct %s\n", 22441 mname, st_ops->name); 22442 return err; 22443 } 22444 22445 if (st_ops->check_member) { 22446 err = st_ops->check_member(t, member, prog); 22447 22448 if (err) { 22449 verbose(env, "attach to unsupported member %s of struct %s\n", 22450 mname, st_ops->name); 22451 return err; 22452 } 22453 } 22454 22455 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 22456 verbose(env, "Private stack not supported by jit\n"); 22457 return -EACCES; 22458 } 22459 22460 /* btf_ctx_access() used this to provide argument type info */ 22461 prog->aux->ctx_arg_info = 22462 st_ops_desc->arg_info[member_idx].info; 22463 prog->aux->ctx_arg_info_size = 22464 st_ops_desc->arg_info[member_idx].cnt; 22465 22466 prog->aux->attach_func_proto = func_proto; 22467 prog->aux->attach_func_name = mname; 22468 env->ops = st_ops->verifier_ops; 22469 22470 return 0; 22471 } 22472 #define SECURITY_PREFIX "security_" 22473 22474 static int check_attach_modify_return(unsigned long addr, const char *func_name) 22475 { 22476 if (within_error_injection_list(addr) || 22477 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 22478 return 0; 22479 22480 return -EINVAL; 22481 } 22482 22483 /* list of non-sleepable functions that are otherwise on 22484 * ALLOW_ERROR_INJECTION list 22485 */ 22486 BTF_SET_START(btf_non_sleepable_error_inject) 22487 /* Three functions below can be called from sleepable and non-sleepable context. 22488 * Assume non-sleepable from bpf safety point of view. 22489 */ 22490 BTF_ID(func, __filemap_add_folio) 22491 #ifdef CONFIG_FAIL_PAGE_ALLOC 22492 BTF_ID(func, should_fail_alloc_page) 22493 #endif 22494 #ifdef CONFIG_FAILSLAB 22495 BTF_ID(func, should_failslab) 22496 #endif 22497 BTF_SET_END(btf_non_sleepable_error_inject) 22498 22499 static int check_non_sleepable_error_inject(u32 btf_id) 22500 { 22501 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 22502 } 22503 22504 int bpf_check_attach_target(struct bpf_verifier_log *log, 22505 const struct bpf_prog *prog, 22506 const struct bpf_prog *tgt_prog, 22507 u32 btf_id, 22508 struct bpf_attach_target_info *tgt_info) 22509 { 22510 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 22511 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 22512 char trace_symbol[KSYM_SYMBOL_LEN]; 22513 const char prefix[] = "btf_trace_"; 22514 struct bpf_raw_event_map *btp; 22515 int ret = 0, subprog = -1, i; 22516 const struct btf_type *t; 22517 bool conservative = true; 22518 const char *tname, *fname; 22519 struct btf *btf; 22520 long addr = 0; 22521 struct module *mod = NULL; 22522 22523 if (!btf_id) { 22524 bpf_log(log, "Tracing programs must provide btf_id\n"); 22525 return -EINVAL; 22526 } 22527 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 22528 if (!btf) { 22529 bpf_log(log, 22530 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 22531 return -EINVAL; 22532 } 22533 t = btf_type_by_id(btf, btf_id); 22534 if (!t) { 22535 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 22536 return -EINVAL; 22537 } 22538 tname = btf_name_by_offset(btf, t->name_off); 22539 if (!tname) { 22540 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 22541 return -EINVAL; 22542 } 22543 if (tgt_prog) { 22544 struct bpf_prog_aux *aux = tgt_prog->aux; 22545 bool tgt_changes_pkt_data; 22546 22547 if (bpf_prog_is_dev_bound(prog->aux) && 22548 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 22549 bpf_log(log, "Target program bound device mismatch"); 22550 return -EINVAL; 22551 } 22552 22553 for (i = 0; i < aux->func_info_cnt; i++) 22554 if (aux->func_info[i].type_id == btf_id) { 22555 subprog = i; 22556 break; 22557 } 22558 if (subprog == -1) { 22559 bpf_log(log, "Subprog %s doesn't exist\n", tname); 22560 return -EINVAL; 22561 } 22562 if (aux->func && aux->func[subprog]->aux->exception_cb) { 22563 bpf_log(log, 22564 "%s programs cannot attach to exception callback\n", 22565 prog_extension ? "Extension" : "FENTRY/FEXIT"); 22566 return -EINVAL; 22567 } 22568 conservative = aux->func_info_aux[subprog].unreliable; 22569 if (prog_extension) { 22570 if (conservative) { 22571 bpf_log(log, 22572 "Cannot replace static functions\n"); 22573 return -EINVAL; 22574 } 22575 if (!prog->jit_requested) { 22576 bpf_log(log, 22577 "Extension programs should be JITed\n"); 22578 return -EINVAL; 22579 } 22580 tgt_changes_pkt_data = aux->func 22581 ? aux->func[subprog]->aux->changes_pkt_data 22582 : aux->changes_pkt_data; 22583 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 22584 bpf_log(log, 22585 "Extension program changes packet data, while original does not\n"); 22586 return -EINVAL; 22587 } 22588 } 22589 if (!tgt_prog->jited) { 22590 bpf_log(log, "Can attach to only JITed progs\n"); 22591 return -EINVAL; 22592 } 22593 if (prog_tracing) { 22594 if (aux->attach_tracing_prog) { 22595 /* 22596 * Target program is an fentry/fexit which is already attached 22597 * to another tracing program. More levels of nesting 22598 * attachment are not allowed. 22599 */ 22600 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 22601 return -EINVAL; 22602 } 22603 } else if (tgt_prog->type == prog->type) { 22604 /* 22605 * To avoid potential call chain cycles, prevent attaching of a 22606 * program extension to another extension. It's ok to attach 22607 * fentry/fexit to extension program. 22608 */ 22609 bpf_log(log, "Cannot recursively attach\n"); 22610 return -EINVAL; 22611 } 22612 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 22613 prog_extension && 22614 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 22615 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 22616 /* Program extensions can extend all program types 22617 * except fentry/fexit. The reason is the following. 22618 * The fentry/fexit programs are used for performance 22619 * analysis, stats and can be attached to any program 22620 * type. When extension program is replacing XDP function 22621 * it is necessary to allow performance analysis of all 22622 * functions. Both original XDP program and its program 22623 * extension. Hence attaching fentry/fexit to 22624 * BPF_PROG_TYPE_EXT is allowed. If extending of 22625 * fentry/fexit was allowed it would be possible to create 22626 * long call chain fentry->extension->fentry->extension 22627 * beyond reasonable stack size. Hence extending fentry 22628 * is not allowed. 22629 */ 22630 bpf_log(log, "Cannot extend fentry/fexit\n"); 22631 return -EINVAL; 22632 } 22633 } else { 22634 if (prog_extension) { 22635 bpf_log(log, "Cannot replace kernel functions\n"); 22636 return -EINVAL; 22637 } 22638 } 22639 22640 switch (prog->expected_attach_type) { 22641 case BPF_TRACE_RAW_TP: 22642 if (tgt_prog) { 22643 bpf_log(log, 22644 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 22645 return -EINVAL; 22646 } 22647 if (!btf_type_is_typedef(t)) { 22648 bpf_log(log, "attach_btf_id %u is not a typedef\n", 22649 btf_id); 22650 return -EINVAL; 22651 } 22652 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 22653 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 22654 btf_id, tname); 22655 return -EINVAL; 22656 } 22657 tname += sizeof(prefix) - 1; 22658 22659 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 22660 * names. Thus using bpf_raw_event_map to get argument names. 22661 */ 22662 btp = bpf_get_raw_tracepoint(tname); 22663 if (!btp) 22664 return -EINVAL; 22665 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 22666 trace_symbol); 22667 bpf_put_raw_tracepoint(btp); 22668 22669 if (fname) 22670 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 22671 22672 if (!fname || ret < 0) { 22673 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 22674 prefix, tname); 22675 t = btf_type_by_id(btf, t->type); 22676 if (!btf_type_is_ptr(t)) 22677 /* should never happen in valid vmlinux build */ 22678 return -EINVAL; 22679 } else { 22680 t = btf_type_by_id(btf, ret); 22681 if (!btf_type_is_func(t)) 22682 /* should never happen in valid vmlinux build */ 22683 return -EINVAL; 22684 } 22685 22686 t = btf_type_by_id(btf, t->type); 22687 if (!btf_type_is_func_proto(t)) 22688 /* should never happen in valid vmlinux build */ 22689 return -EINVAL; 22690 22691 break; 22692 case BPF_TRACE_ITER: 22693 if (!btf_type_is_func(t)) { 22694 bpf_log(log, "attach_btf_id %u is not a function\n", 22695 btf_id); 22696 return -EINVAL; 22697 } 22698 t = btf_type_by_id(btf, t->type); 22699 if (!btf_type_is_func_proto(t)) 22700 return -EINVAL; 22701 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22702 if (ret) 22703 return ret; 22704 break; 22705 default: 22706 if (!prog_extension) 22707 return -EINVAL; 22708 fallthrough; 22709 case BPF_MODIFY_RETURN: 22710 case BPF_LSM_MAC: 22711 case BPF_LSM_CGROUP: 22712 case BPF_TRACE_FENTRY: 22713 case BPF_TRACE_FEXIT: 22714 if (!btf_type_is_func(t)) { 22715 bpf_log(log, "attach_btf_id %u is not a function\n", 22716 btf_id); 22717 return -EINVAL; 22718 } 22719 if (prog_extension && 22720 btf_check_type_match(log, prog, btf, t)) 22721 return -EINVAL; 22722 t = btf_type_by_id(btf, t->type); 22723 if (!btf_type_is_func_proto(t)) 22724 return -EINVAL; 22725 22726 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 22727 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 22728 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 22729 return -EINVAL; 22730 22731 if (tgt_prog && conservative) 22732 t = NULL; 22733 22734 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22735 if (ret < 0) 22736 return ret; 22737 22738 if (tgt_prog) { 22739 if (subprog == 0) 22740 addr = (long) tgt_prog->bpf_func; 22741 else 22742 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 22743 } else { 22744 if (btf_is_module(btf)) { 22745 mod = btf_try_get_module(btf); 22746 if (mod) 22747 addr = find_kallsyms_symbol_value(mod, tname); 22748 else 22749 addr = 0; 22750 } else { 22751 addr = kallsyms_lookup_name(tname); 22752 } 22753 if (!addr) { 22754 module_put(mod); 22755 bpf_log(log, 22756 "The address of function %s cannot be found\n", 22757 tname); 22758 return -ENOENT; 22759 } 22760 } 22761 22762 if (prog->sleepable) { 22763 ret = -EINVAL; 22764 switch (prog->type) { 22765 case BPF_PROG_TYPE_TRACING: 22766 22767 /* fentry/fexit/fmod_ret progs can be sleepable if they are 22768 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 22769 */ 22770 if (!check_non_sleepable_error_inject(btf_id) && 22771 within_error_injection_list(addr)) 22772 ret = 0; 22773 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 22774 * in the fmodret id set with the KF_SLEEPABLE flag. 22775 */ 22776 else { 22777 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 22778 prog); 22779 22780 if (flags && (*flags & KF_SLEEPABLE)) 22781 ret = 0; 22782 } 22783 break; 22784 case BPF_PROG_TYPE_LSM: 22785 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 22786 * Only some of them are sleepable. 22787 */ 22788 if (bpf_lsm_is_sleepable_hook(btf_id)) 22789 ret = 0; 22790 break; 22791 default: 22792 break; 22793 } 22794 if (ret) { 22795 module_put(mod); 22796 bpf_log(log, "%s is not sleepable\n", tname); 22797 return ret; 22798 } 22799 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 22800 if (tgt_prog) { 22801 module_put(mod); 22802 bpf_log(log, "can't modify return codes of BPF programs\n"); 22803 return -EINVAL; 22804 } 22805 ret = -EINVAL; 22806 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 22807 !check_attach_modify_return(addr, tname)) 22808 ret = 0; 22809 if (ret) { 22810 module_put(mod); 22811 bpf_log(log, "%s() is not modifiable\n", tname); 22812 return ret; 22813 } 22814 } 22815 22816 break; 22817 } 22818 tgt_info->tgt_addr = addr; 22819 tgt_info->tgt_name = tname; 22820 tgt_info->tgt_type = t; 22821 tgt_info->tgt_mod = mod; 22822 return 0; 22823 } 22824 22825 BTF_SET_START(btf_id_deny) 22826 BTF_ID_UNUSED 22827 #ifdef CONFIG_SMP 22828 BTF_ID(func, migrate_disable) 22829 BTF_ID(func, migrate_enable) 22830 #endif 22831 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 22832 BTF_ID(func, rcu_read_unlock_strict) 22833 #endif 22834 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 22835 BTF_ID(func, preempt_count_add) 22836 BTF_ID(func, preempt_count_sub) 22837 #endif 22838 #ifdef CONFIG_PREEMPT_RCU 22839 BTF_ID(func, __rcu_read_lock) 22840 BTF_ID(func, __rcu_read_unlock) 22841 #endif 22842 BTF_SET_END(btf_id_deny) 22843 22844 static bool can_be_sleepable(struct bpf_prog *prog) 22845 { 22846 if (prog->type == BPF_PROG_TYPE_TRACING) { 22847 switch (prog->expected_attach_type) { 22848 case BPF_TRACE_FENTRY: 22849 case BPF_TRACE_FEXIT: 22850 case BPF_MODIFY_RETURN: 22851 case BPF_TRACE_ITER: 22852 return true; 22853 default: 22854 return false; 22855 } 22856 } 22857 return prog->type == BPF_PROG_TYPE_LSM || 22858 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 22859 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 22860 } 22861 22862 static int check_attach_btf_id(struct bpf_verifier_env *env) 22863 { 22864 struct bpf_prog *prog = env->prog; 22865 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 22866 struct bpf_attach_target_info tgt_info = {}; 22867 u32 btf_id = prog->aux->attach_btf_id; 22868 struct bpf_trampoline *tr; 22869 int ret; 22870 u64 key; 22871 22872 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 22873 if (prog->sleepable) 22874 /* attach_btf_id checked to be zero already */ 22875 return 0; 22876 verbose(env, "Syscall programs can only be sleepable\n"); 22877 return -EINVAL; 22878 } 22879 22880 if (prog->sleepable && !can_be_sleepable(prog)) { 22881 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 22882 return -EINVAL; 22883 } 22884 22885 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 22886 return check_struct_ops_btf_id(env); 22887 22888 if (prog->type != BPF_PROG_TYPE_TRACING && 22889 prog->type != BPF_PROG_TYPE_LSM && 22890 prog->type != BPF_PROG_TYPE_EXT) 22891 return 0; 22892 22893 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 22894 if (ret) 22895 return ret; 22896 22897 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 22898 /* to make freplace equivalent to their targets, they need to 22899 * inherit env->ops and expected_attach_type for the rest of the 22900 * verification 22901 */ 22902 env->ops = bpf_verifier_ops[tgt_prog->type]; 22903 prog->expected_attach_type = tgt_prog->expected_attach_type; 22904 } 22905 22906 /* store info about the attachment target that will be used later */ 22907 prog->aux->attach_func_proto = tgt_info.tgt_type; 22908 prog->aux->attach_func_name = tgt_info.tgt_name; 22909 prog->aux->mod = tgt_info.tgt_mod; 22910 22911 if (tgt_prog) { 22912 prog->aux->saved_dst_prog_type = tgt_prog->type; 22913 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 22914 } 22915 22916 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 22917 prog->aux->attach_btf_trace = true; 22918 return 0; 22919 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 22920 if (!bpf_iter_prog_supported(prog)) 22921 return -EINVAL; 22922 return 0; 22923 } 22924 22925 if (prog->type == BPF_PROG_TYPE_LSM) { 22926 ret = bpf_lsm_verify_prog(&env->log, prog); 22927 if (ret < 0) 22928 return ret; 22929 } else if (prog->type == BPF_PROG_TYPE_TRACING && 22930 btf_id_set_contains(&btf_id_deny, btf_id)) { 22931 return -EINVAL; 22932 } 22933 22934 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 22935 tr = bpf_trampoline_get(key, &tgt_info); 22936 if (!tr) 22937 return -ENOMEM; 22938 22939 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 22940 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 22941 22942 prog->aux->dst_trampoline = tr; 22943 return 0; 22944 } 22945 22946 struct btf *bpf_get_btf_vmlinux(void) 22947 { 22948 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 22949 mutex_lock(&bpf_verifier_lock); 22950 if (!btf_vmlinux) 22951 btf_vmlinux = btf_parse_vmlinux(); 22952 mutex_unlock(&bpf_verifier_lock); 22953 } 22954 return btf_vmlinux; 22955 } 22956 22957 /* 22958 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 22959 * this case expect that every file descriptor in the array is either a map or 22960 * a BTF. Everything else is considered to be trash. 22961 */ 22962 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 22963 { 22964 struct bpf_map *map; 22965 struct btf *btf; 22966 CLASS(fd, f)(fd); 22967 int err; 22968 22969 map = __bpf_map_get(f); 22970 if (!IS_ERR(map)) { 22971 err = __add_used_map(env, map); 22972 if (err < 0) 22973 return err; 22974 return 0; 22975 } 22976 22977 btf = __btf_get_by_fd(f); 22978 if (!IS_ERR(btf)) { 22979 err = __add_used_btf(env, btf); 22980 if (err < 0) 22981 return err; 22982 return 0; 22983 } 22984 22985 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 22986 return PTR_ERR(map); 22987 } 22988 22989 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 22990 { 22991 size_t size = sizeof(int); 22992 int ret; 22993 int fd; 22994 u32 i; 22995 22996 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 22997 22998 /* 22999 * The only difference between old (no fd_array_cnt is given) and new 23000 * APIs is that in the latter case the fd_array is expected to be 23001 * continuous and is scanned for map fds right away 23002 */ 23003 if (!attr->fd_array_cnt) 23004 return 0; 23005 23006 /* Check for integer overflow */ 23007 if (attr->fd_array_cnt >= (U32_MAX / size)) { 23008 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 23009 return -EINVAL; 23010 } 23011 23012 for (i = 0; i < attr->fd_array_cnt; i++) { 23013 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 23014 return -EFAULT; 23015 23016 ret = add_fd_from_fd_array(env, fd); 23017 if (ret) 23018 return ret; 23019 } 23020 23021 return 0; 23022 } 23023 23024 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 23025 { 23026 u64 start_time = ktime_get_ns(); 23027 struct bpf_verifier_env *env; 23028 int i, len, ret = -EINVAL, err; 23029 u32 log_true_size; 23030 bool is_priv; 23031 23032 /* no program is valid */ 23033 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 23034 return -EINVAL; 23035 23036 /* 'struct bpf_verifier_env' can be global, but since it's not small, 23037 * allocate/free it every time bpf_check() is called 23038 */ 23039 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 23040 if (!env) 23041 return -ENOMEM; 23042 23043 env->bt.env = env; 23044 23045 len = (*prog)->len; 23046 env->insn_aux_data = 23047 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 23048 ret = -ENOMEM; 23049 if (!env->insn_aux_data) 23050 goto err_free_env; 23051 for (i = 0; i < len; i++) 23052 env->insn_aux_data[i].orig_idx = i; 23053 env->prog = *prog; 23054 env->ops = bpf_verifier_ops[env->prog->type]; 23055 23056 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 23057 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 23058 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 23059 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 23060 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 23061 23062 bpf_get_btf_vmlinux(); 23063 23064 /* grab the mutex to protect few globals used by verifier */ 23065 if (!is_priv) 23066 mutex_lock(&bpf_verifier_lock); 23067 23068 /* user could have requested verbose verifier output 23069 * and supplied buffer to store the verification trace 23070 */ 23071 ret = bpf_vlog_init(&env->log, attr->log_level, 23072 (char __user *) (unsigned long) attr->log_buf, 23073 attr->log_size); 23074 if (ret) 23075 goto err_unlock; 23076 23077 ret = process_fd_array(env, attr, uattr); 23078 if (ret) 23079 goto skip_full_check; 23080 23081 mark_verifier_state_clean(env); 23082 23083 if (IS_ERR(btf_vmlinux)) { 23084 /* Either gcc or pahole or kernel are broken. */ 23085 verbose(env, "in-kernel BTF is malformed\n"); 23086 ret = PTR_ERR(btf_vmlinux); 23087 goto skip_full_check; 23088 } 23089 23090 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 23091 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 23092 env->strict_alignment = true; 23093 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 23094 env->strict_alignment = false; 23095 23096 if (is_priv) 23097 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 23098 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 23099 23100 env->explored_states = kvcalloc(state_htab_size(env), 23101 sizeof(struct bpf_verifier_state_list *), 23102 GFP_USER); 23103 ret = -ENOMEM; 23104 if (!env->explored_states) 23105 goto skip_full_check; 23106 23107 ret = check_btf_info_early(env, attr, uattr); 23108 if (ret < 0) 23109 goto skip_full_check; 23110 23111 ret = add_subprog_and_kfunc(env); 23112 if (ret < 0) 23113 goto skip_full_check; 23114 23115 ret = check_subprogs(env); 23116 if (ret < 0) 23117 goto skip_full_check; 23118 23119 ret = check_btf_info(env, attr, uattr); 23120 if (ret < 0) 23121 goto skip_full_check; 23122 23123 ret = resolve_pseudo_ldimm64(env); 23124 if (ret < 0) 23125 goto skip_full_check; 23126 23127 if (bpf_prog_is_offloaded(env->prog->aux)) { 23128 ret = bpf_prog_offload_verifier_prep(env->prog); 23129 if (ret) 23130 goto skip_full_check; 23131 } 23132 23133 ret = check_cfg(env); 23134 if (ret < 0) 23135 goto skip_full_check; 23136 23137 ret = check_attach_btf_id(env); 23138 if (ret) 23139 goto skip_full_check; 23140 23141 ret = mark_fastcall_patterns(env); 23142 if (ret < 0) 23143 goto skip_full_check; 23144 23145 ret = do_check_main(env); 23146 ret = ret ?: do_check_subprogs(env); 23147 23148 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 23149 ret = bpf_prog_offload_finalize(env); 23150 23151 skip_full_check: 23152 kvfree(env->explored_states); 23153 23154 /* might decrease stack depth, keep it before passes that 23155 * allocate additional slots. 23156 */ 23157 if (ret == 0) 23158 ret = remove_fastcall_spills_fills(env); 23159 23160 if (ret == 0) 23161 ret = check_max_stack_depth(env); 23162 23163 /* instruction rewrites happen after this point */ 23164 if (ret == 0) 23165 ret = optimize_bpf_loop(env); 23166 23167 if (is_priv) { 23168 if (ret == 0) 23169 opt_hard_wire_dead_code_branches(env); 23170 if (ret == 0) 23171 ret = opt_remove_dead_code(env); 23172 if (ret == 0) 23173 ret = opt_remove_nops(env); 23174 } else { 23175 if (ret == 0) 23176 sanitize_dead_code(env); 23177 } 23178 23179 if (ret == 0) 23180 /* program is valid, convert *(u32*)(ctx + off) accesses */ 23181 ret = convert_ctx_accesses(env); 23182 23183 if (ret == 0) 23184 ret = do_misc_fixups(env); 23185 23186 /* do 32-bit optimization after insn patching has done so those patched 23187 * insns could be handled correctly. 23188 */ 23189 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 23190 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 23191 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 23192 : false; 23193 } 23194 23195 if (ret == 0) 23196 ret = fixup_call_args(env); 23197 23198 env->verification_time = ktime_get_ns() - start_time; 23199 print_verification_stats(env); 23200 env->prog->aux->verified_insns = env->insn_processed; 23201 23202 /* preserve original error even if log finalization is successful */ 23203 err = bpf_vlog_finalize(&env->log, &log_true_size); 23204 if (err) 23205 ret = err; 23206 23207 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 23208 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 23209 &log_true_size, sizeof(log_true_size))) { 23210 ret = -EFAULT; 23211 goto err_release_maps; 23212 } 23213 23214 if (ret) 23215 goto err_release_maps; 23216 23217 if (env->used_map_cnt) { 23218 /* if program passed verifier, update used_maps in bpf_prog_info */ 23219 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 23220 sizeof(env->used_maps[0]), 23221 GFP_KERNEL); 23222 23223 if (!env->prog->aux->used_maps) { 23224 ret = -ENOMEM; 23225 goto err_release_maps; 23226 } 23227 23228 memcpy(env->prog->aux->used_maps, env->used_maps, 23229 sizeof(env->used_maps[0]) * env->used_map_cnt); 23230 env->prog->aux->used_map_cnt = env->used_map_cnt; 23231 } 23232 if (env->used_btf_cnt) { 23233 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 23234 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 23235 sizeof(env->used_btfs[0]), 23236 GFP_KERNEL); 23237 if (!env->prog->aux->used_btfs) { 23238 ret = -ENOMEM; 23239 goto err_release_maps; 23240 } 23241 23242 memcpy(env->prog->aux->used_btfs, env->used_btfs, 23243 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 23244 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 23245 } 23246 if (env->used_map_cnt || env->used_btf_cnt) { 23247 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 23248 * bpf_ld_imm64 instructions 23249 */ 23250 convert_pseudo_ld_imm64(env); 23251 } 23252 23253 adjust_btf_func(env); 23254 23255 err_release_maps: 23256 if (!env->prog->aux->used_maps) 23257 /* if we didn't copy map pointers into bpf_prog_info, release 23258 * them now. Otherwise free_used_maps() will release them. 23259 */ 23260 release_maps(env); 23261 if (!env->prog->aux->used_btfs) 23262 release_btfs(env); 23263 23264 /* extension progs temporarily inherit the attach_type of their targets 23265 for verification purposes, so set it back to zero before returning 23266 */ 23267 if (env->prog->type == BPF_PROG_TYPE_EXT) 23268 env->prog->expected_attach_type = 0; 23269 23270 *prog = env->prog; 23271 23272 module_put(env->attach_btf_mod); 23273 err_unlock: 23274 if (!is_priv) 23275 mutex_unlock(&bpf_verifier_lock); 23276 vfree(env->insn_aux_data); 23277 kvfree(env->insn_hist); 23278 err_free_env: 23279 kvfree(env); 23280 return ret; 23281 } 23282