1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_PTR_UNPRIV 1UL 183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 184 POISON_POINTER_DELTA)) 185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 186 187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 188 { 189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 190 } 191 192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 193 { 194 return aux->map_state & BPF_MAP_PTR_UNPRIV; 195 } 196 197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 198 const struct bpf_map *map, bool unpriv) 199 { 200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 201 unpriv |= bpf_map_ptr_unpriv(aux); 202 aux->map_state = (unsigned long)map | 203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 204 } 205 206 struct bpf_call_arg_meta { 207 struct bpf_map *map_ptr; 208 bool raw_mode; 209 bool pkt_access; 210 int regno; 211 int access_size; 212 s64 msize_smax_value; 213 u64 msize_umax_value; 214 int ref_obj_id; 215 int func_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool type_is_sk_pointer(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_SOCKET || 336 type == PTR_TO_SOCK_COMMON || 337 type == PTR_TO_TCP_SOCK; 338 } 339 340 static bool reg_type_may_be_null(enum bpf_reg_type type) 341 { 342 return type == PTR_TO_MAP_VALUE_OR_NULL || 343 type == PTR_TO_SOCKET_OR_NULL || 344 type == PTR_TO_SOCK_COMMON_OR_NULL || 345 type == PTR_TO_TCP_SOCK_OR_NULL; 346 } 347 348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 349 { 350 return reg->type == PTR_TO_MAP_VALUE && 351 map_value_has_spin_lock(reg->map_ptr); 352 } 353 354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 355 { 356 return type == PTR_TO_SOCKET || 357 type == PTR_TO_SOCKET_OR_NULL || 358 type == PTR_TO_TCP_SOCK || 359 type == PTR_TO_TCP_SOCK_OR_NULL; 360 } 361 362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 363 { 364 return type == ARG_PTR_TO_SOCK_COMMON; 365 } 366 367 /* Determine whether the function releases some resources allocated by another 368 * function call. The first reference type argument will be assumed to be 369 * released by release_reference(). 370 */ 371 static bool is_release_function(enum bpf_func_id func_id) 372 { 373 return func_id == BPF_FUNC_sk_release; 374 } 375 376 static bool is_acquire_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_sk_lookup_tcp || 379 func_id == BPF_FUNC_sk_lookup_udp || 380 func_id == BPF_FUNC_skc_lookup_tcp; 381 } 382 383 static bool is_ptr_cast_function(enum bpf_func_id func_id) 384 { 385 return func_id == BPF_FUNC_tcp_sock || 386 func_id == BPF_FUNC_sk_fullsock; 387 } 388 389 /* string representation of 'enum bpf_reg_type' */ 390 static const char * const reg_type_str[] = { 391 [NOT_INIT] = "?", 392 [SCALAR_VALUE] = "inv", 393 [PTR_TO_CTX] = "ctx", 394 [CONST_PTR_TO_MAP] = "map_ptr", 395 [PTR_TO_MAP_VALUE] = "map_value", 396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 397 [PTR_TO_STACK] = "fp", 398 [PTR_TO_PACKET] = "pkt", 399 [PTR_TO_PACKET_META] = "pkt_meta", 400 [PTR_TO_PACKET_END] = "pkt_end", 401 [PTR_TO_FLOW_KEYS] = "flow_keys", 402 [PTR_TO_SOCKET] = "sock", 403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 404 [PTR_TO_SOCK_COMMON] = "sock_common", 405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 406 [PTR_TO_TCP_SOCK] = "tcp_sock", 407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 408 [PTR_TO_TP_BUFFER] = "tp_buffer", 409 }; 410 411 static char slot_type_char[] = { 412 [STACK_INVALID] = '?', 413 [STACK_SPILL] = 'r', 414 [STACK_MISC] = 'm', 415 [STACK_ZERO] = '0', 416 }; 417 418 static void print_liveness(struct bpf_verifier_env *env, 419 enum bpf_reg_liveness live) 420 { 421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 422 verbose(env, "_"); 423 if (live & REG_LIVE_READ) 424 verbose(env, "r"); 425 if (live & REG_LIVE_WRITTEN) 426 verbose(env, "w"); 427 if (live & REG_LIVE_DONE) 428 verbose(env, "D"); 429 } 430 431 static struct bpf_func_state *func(struct bpf_verifier_env *env, 432 const struct bpf_reg_state *reg) 433 { 434 struct bpf_verifier_state *cur = env->cur_state; 435 436 return cur->frame[reg->frameno]; 437 } 438 439 static void print_verifier_state(struct bpf_verifier_env *env, 440 const struct bpf_func_state *state) 441 { 442 const struct bpf_reg_state *reg; 443 enum bpf_reg_type t; 444 int i; 445 446 if (state->frameno) 447 verbose(env, " frame%d:", state->frameno); 448 for (i = 0; i < MAX_BPF_REG; i++) { 449 reg = &state->regs[i]; 450 t = reg->type; 451 if (t == NOT_INIT) 452 continue; 453 verbose(env, " R%d", i); 454 print_liveness(env, reg->live); 455 verbose(env, "=%s", reg_type_str[t]); 456 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 457 tnum_is_const(reg->var_off)) { 458 /* reg->off should be 0 for SCALAR_VALUE */ 459 verbose(env, "%lld", reg->var_off.value + reg->off); 460 if (t == PTR_TO_STACK) 461 verbose(env, ",call_%d", func(env, reg)->callsite); 462 } else { 463 verbose(env, "(id=%d", reg->id); 464 if (reg_type_may_be_refcounted_or_null(t)) 465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 466 if (t != SCALAR_VALUE) 467 verbose(env, ",off=%d", reg->off); 468 if (type_is_pkt_pointer(t)) 469 verbose(env, ",r=%d", reg->range); 470 else if (t == CONST_PTR_TO_MAP || 471 t == PTR_TO_MAP_VALUE || 472 t == PTR_TO_MAP_VALUE_OR_NULL) 473 verbose(env, ",ks=%d,vs=%d", 474 reg->map_ptr->key_size, 475 reg->map_ptr->value_size); 476 if (tnum_is_const(reg->var_off)) { 477 /* Typically an immediate SCALAR_VALUE, but 478 * could be a pointer whose offset is too big 479 * for reg->off 480 */ 481 verbose(env, ",imm=%llx", reg->var_off.value); 482 } else { 483 if (reg->smin_value != reg->umin_value && 484 reg->smin_value != S64_MIN) 485 verbose(env, ",smin_value=%lld", 486 (long long)reg->smin_value); 487 if (reg->smax_value != reg->umax_value && 488 reg->smax_value != S64_MAX) 489 verbose(env, ",smax_value=%lld", 490 (long long)reg->smax_value); 491 if (reg->umin_value != 0) 492 verbose(env, ",umin_value=%llu", 493 (unsigned long long)reg->umin_value); 494 if (reg->umax_value != U64_MAX) 495 verbose(env, ",umax_value=%llu", 496 (unsigned long long)reg->umax_value); 497 if (!tnum_is_unknown(reg->var_off)) { 498 char tn_buf[48]; 499 500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 501 verbose(env, ",var_off=%s", tn_buf); 502 } 503 } 504 verbose(env, ")"); 505 } 506 } 507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 508 char types_buf[BPF_REG_SIZE + 1]; 509 bool valid = false; 510 int j; 511 512 for (j = 0; j < BPF_REG_SIZE; j++) { 513 if (state->stack[i].slot_type[j] != STACK_INVALID) 514 valid = true; 515 types_buf[j] = slot_type_char[ 516 state->stack[i].slot_type[j]]; 517 } 518 types_buf[BPF_REG_SIZE] = 0; 519 if (!valid) 520 continue; 521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 522 print_liveness(env, state->stack[i].spilled_ptr.live); 523 if (state->stack[i].slot_type[0] == STACK_SPILL) 524 verbose(env, "=%s", 525 reg_type_str[state->stack[i].spilled_ptr.type]); 526 else 527 verbose(env, "=%s", types_buf); 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void free_verifier_state(struct bpf_verifier_state *state, 677 bool free_self) 678 { 679 int i; 680 681 for (i = 0; i <= state->curframe; i++) { 682 free_func_state(state->frame[i]); 683 state->frame[i] = NULL; 684 } 685 if (free_self) 686 kfree(state); 687 } 688 689 /* copy verifier state from src to dst growing dst stack space 690 * when necessary to accommodate larger src stack 691 */ 692 static int copy_func_state(struct bpf_func_state *dst, 693 const struct bpf_func_state *src) 694 { 695 int err; 696 697 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 698 false); 699 if (err) 700 return err; 701 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 702 err = copy_reference_state(dst, src); 703 if (err) 704 return err; 705 return copy_stack_state(dst, src); 706 } 707 708 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 709 const struct bpf_verifier_state *src) 710 { 711 struct bpf_func_state *dst; 712 int i, err; 713 714 /* if dst has more stack frames then src frame, free them */ 715 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 716 free_func_state(dst_state->frame[i]); 717 dst_state->frame[i] = NULL; 718 } 719 dst_state->speculative = src->speculative; 720 dst_state->curframe = src->curframe; 721 dst_state->active_spin_lock = src->active_spin_lock; 722 for (i = 0; i <= src->curframe; i++) { 723 dst = dst_state->frame[i]; 724 if (!dst) { 725 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 726 if (!dst) 727 return -ENOMEM; 728 dst_state->frame[i] = dst; 729 } 730 err = copy_func_state(dst, src->frame[i]); 731 if (err) 732 return err; 733 } 734 return 0; 735 } 736 737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 738 int *insn_idx) 739 { 740 struct bpf_verifier_state *cur = env->cur_state; 741 struct bpf_verifier_stack_elem *elem, *head = env->head; 742 int err; 743 744 if (env->head == NULL) 745 return -ENOENT; 746 747 if (cur) { 748 err = copy_verifier_state(cur, &head->st); 749 if (err) 750 return err; 751 } 752 if (insn_idx) 753 *insn_idx = head->insn_idx; 754 if (prev_insn_idx) 755 *prev_insn_idx = head->prev_insn_idx; 756 elem = head->next; 757 free_verifier_state(&head->st, false); 758 kfree(head); 759 env->head = elem; 760 env->stack_size--; 761 return 0; 762 } 763 764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 765 int insn_idx, int prev_insn_idx, 766 bool speculative) 767 { 768 struct bpf_verifier_state *cur = env->cur_state; 769 struct bpf_verifier_stack_elem *elem; 770 int err; 771 772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 773 if (!elem) 774 goto err; 775 776 elem->insn_idx = insn_idx; 777 elem->prev_insn_idx = prev_insn_idx; 778 elem->next = env->head; 779 env->head = elem; 780 env->stack_size++; 781 err = copy_verifier_state(&elem->st, cur); 782 if (err) 783 goto err; 784 elem->st.speculative |= speculative; 785 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 786 verbose(env, "The sequence of %d jumps is too complex.\n", 787 env->stack_size); 788 goto err; 789 } 790 return &elem->st; 791 err: 792 free_verifier_state(env->cur_state, true); 793 env->cur_state = NULL; 794 /* pop all elements and return */ 795 while (!pop_stack(env, NULL, NULL)); 796 return NULL; 797 } 798 799 #define CALLER_SAVED_REGS 6 800 static const int caller_saved[CALLER_SAVED_REGS] = { 801 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 802 }; 803 804 static void __mark_reg_not_init(struct bpf_reg_state *reg); 805 806 /* Mark the unknown part of a register (variable offset or scalar value) as 807 * known to have the value @imm. 808 */ 809 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 810 { 811 /* Clear id, off, and union(map_ptr, range) */ 812 memset(((u8 *)reg) + sizeof(reg->type), 0, 813 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 814 reg->var_off = tnum_const(imm); 815 reg->smin_value = (s64)imm; 816 reg->smax_value = (s64)imm; 817 reg->umin_value = imm; 818 reg->umax_value = imm; 819 } 820 821 /* Mark the 'variable offset' part of a register as zero. This should be 822 * used only on registers holding a pointer type. 823 */ 824 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 825 { 826 __mark_reg_known(reg, 0); 827 } 828 829 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 830 { 831 __mark_reg_known(reg, 0); 832 reg->type = SCALAR_VALUE; 833 } 834 835 static void mark_reg_known_zero(struct bpf_verifier_env *env, 836 struct bpf_reg_state *regs, u32 regno) 837 { 838 if (WARN_ON(regno >= MAX_BPF_REG)) { 839 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 840 /* Something bad happened, let's kill all regs */ 841 for (regno = 0; regno < MAX_BPF_REG; regno++) 842 __mark_reg_not_init(regs + regno); 843 return; 844 } 845 __mark_reg_known_zero(regs + regno); 846 } 847 848 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 849 { 850 return type_is_pkt_pointer(reg->type); 851 } 852 853 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 854 { 855 return reg_is_pkt_pointer(reg) || 856 reg->type == PTR_TO_PACKET_END; 857 } 858 859 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 860 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 861 enum bpf_reg_type which) 862 { 863 /* The register can already have a range from prior markings. 864 * This is fine as long as it hasn't been advanced from its 865 * origin. 866 */ 867 return reg->type == which && 868 reg->id == 0 && 869 reg->off == 0 && 870 tnum_equals_const(reg->var_off, 0); 871 } 872 873 /* Attempts to improve min/max values based on var_off information */ 874 static void __update_reg_bounds(struct bpf_reg_state *reg) 875 { 876 /* min signed is max(sign bit) | min(other bits) */ 877 reg->smin_value = max_t(s64, reg->smin_value, 878 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 879 /* max signed is min(sign bit) | max(other bits) */ 880 reg->smax_value = min_t(s64, reg->smax_value, 881 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 882 reg->umin_value = max(reg->umin_value, reg->var_off.value); 883 reg->umax_value = min(reg->umax_value, 884 reg->var_off.value | reg->var_off.mask); 885 } 886 887 /* Uses signed min/max values to inform unsigned, and vice-versa */ 888 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 889 { 890 /* Learn sign from signed bounds. 891 * If we cannot cross the sign boundary, then signed and unsigned bounds 892 * are the same, so combine. This works even in the negative case, e.g. 893 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 894 */ 895 if (reg->smin_value >= 0 || reg->smax_value < 0) { 896 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 897 reg->umin_value); 898 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 899 reg->umax_value); 900 return; 901 } 902 /* Learn sign from unsigned bounds. Signed bounds cross the sign 903 * boundary, so we must be careful. 904 */ 905 if ((s64)reg->umax_value >= 0) { 906 /* Positive. We can't learn anything from the smin, but smax 907 * is positive, hence safe. 908 */ 909 reg->smin_value = reg->umin_value; 910 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 911 reg->umax_value); 912 } else if ((s64)reg->umin_value < 0) { 913 /* Negative. We can't learn anything from the smax, but smin 914 * is negative, hence safe. 915 */ 916 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 917 reg->umin_value); 918 reg->smax_value = reg->umax_value; 919 } 920 } 921 922 /* Attempts to improve var_off based on unsigned min/max information */ 923 static void __reg_bound_offset(struct bpf_reg_state *reg) 924 { 925 reg->var_off = tnum_intersect(reg->var_off, 926 tnum_range(reg->umin_value, 927 reg->umax_value)); 928 } 929 930 /* Reset the min/max bounds of a register */ 931 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 932 { 933 reg->smin_value = S64_MIN; 934 reg->smax_value = S64_MAX; 935 reg->umin_value = 0; 936 reg->umax_value = U64_MAX; 937 } 938 939 /* Mark a register as having a completely unknown (scalar) value. */ 940 static void __mark_reg_unknown(struct bpf_reg_state *reg) 941 { 942 /* 943 * Clear type, id, off, and union(map_ptr, range) and 944 * padding between 'type' and union 945 */ 946 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 947 reg->type = SCALAR_VALUE; 948 reg->var_off = tnum_unknown; 949 reg->frameno = 0; 950 __mark_reg_unbounded(reg); 951 } 952 953 static void mark_reg_unknown(struct bpf_verifier_env *env, 954 struct bpf_reg_state *regs, u32 regno) 955 { 956 if (WARN_ON(regno >= MAX_BPF_REG)) { 957 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 958 /* Something bad happened, let's kill all regs except FP */ 959 for (regno = 0; regno < BPF_REG_FP; regno++) 960 __mark_reg_not_init(regs + regno); 961 return; 962 } 963 __mark_reg_unknown(regs + regno); 964 } 965 966 static void __mark_reg_not_init(struct bpf_reg_state *reg) 967 { 968 __mark_reg_unknown(reg); 969 reg->type = NOT_INIT; 970 } 971 972 static void mark_reg_not_init(struct bpf_verifier_env *env, 973 struct bpf_reg_state *regs, u32 regno) 974 { 975 if (WARN_ON(regno >= MAX_BPF_REG)) { 976 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 977 /* Something bad happened, let's kill all regs except FP */ 978 for (regno = 0; regno < BPF_REG_FP; regno++) 979 __mark_reg_not_init(regs + regno); 980 return; 981 } 982 __mark_reg_not_init(regs + regno); 983 } 984 985 #define DEF_NOT_SUBREG (0) 986 static void init_reg_state(struct bpf_verifier_env *env, 987 struct bpf_func_state *state) 988 { 989 struct bpf_reg_state *regs = state->regs; 990 int i; 991 992 for (i = 0; i < MAX_BPF_REG; i++) { 993 mark_reg_not_init(env, regs, i); 994 regs[i].live = REG_LIVE_NONE; 995 regs[i].parent = NULL; 996 regs[i].subreg_def = DEF_NOT_SUBREG; 997 } 998 999 /* frame pointer */ 1000 regs[BPF_REG_FP].type = PTR_TO_STACK; 1001 mark_reg_known_zero(env, regs, BPF_REG_FP); 1002 regs[BPF_REG_FP].frameno = state->frameno; 1003 1004 /* 1st arg to a function */ 1005 regs[BPF_REG_1].type = PTR_TO_CTX; 1006 mark_reg_known_zero(env, regs, BPF_REG_1); 1007 } 1008 1009 #define BPF_MAIN_FUNC (-1) 1010 static void init_func_state(struct bpf_verifier_env *env, 1011 struct bpf_func_state *state, 1012 int callsite, int frameno, int subprogno) 1013 { 1014 state->callsite = callsite; 1015 state->frameno = frameno; 1016 state->subprogno = subprogno; 1017 init_reg_state(env, state); 1018 } 1019 1020 enum reg_arg_type { 1021 SRC_OP, /* register is used as source operand */ 1022 DST_OP, /* register is used as destination operand */ 1023 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1024 }; 1025 1026 static int cmp_subprogs(const void *a, const void *b) 1027 { 1028 return ((struct bpf_subprog_info *)a)->start - 1029 ((struct bpf_subprog_info *)b)->start; 1030 } 1031 1032 static int find_subprog(struct bpf_verifier_env *env, int off) 1033 { 1034 struct bpf_subprog_info *p; 1035 1036 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1037 sizeof(env->subprog_info[0]), cmp_subprogs); 1038 if (!p) 1039 return -ENOENT; 1040 return p - env->subprog_info; 1041 1042 } 1043 1044 static int add_subprog(struct bpf_verifier_env *env, int off) 1045 { 1046 int insn_cnt = env->prog->len; 1047 int ret; 1048 1049 if (off >= insn_cnt || off < 0) { 1050 verbose(env, "call to invalid destination\n"); 1051 return -EINVAL; 1052 } 1053 ret = find_subprog(env, off); 1054 if (ret >= 0) 1055 return 0; 1056 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1057 verbose(env, "too many subprograms\n"); 1058 return -E2BIG; 1059 } 1060 env->subprog_info[env->subprog_cnt++].start = off; 1061 sort(env->subprog_info, env->subprog_cnt, 1062 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1063 return 0; 1064 } 1065 1066 static int check_subprogs(struct bpf_verifier_env *env) 1067 { 1068 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1069 struct bpf_subprog_info *subprog = env->subprog_info; 1070 struct bpf_insn *insn = env->prog->insnsi; 1071 int insn_cnt = env->prog->len; 1072 1073 /* Add entry function. */ 1074 ret = add_subprog(env, 0); 1075 if (ret < 0) 1076 return ret; 1077 1078 /* determine subprog starts. The end is one before the next starts */ 1079 for (i = 0; i < insn_cnt; i++) { 1080 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1081 continue; 1082 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1083 continue; 1084 if (!env->allow_ptr_leaks) { 1085 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1086 return -EPERM; 1087 } 1088 ret = add_subprog(env, i + insn[i].imm + 1); 1089 if (ret < 0) 1090 return ret; 1091 } 1092 1093 /* Add a fake 'exit' subprog which could simplify subprog iteration 1094 * logic. 'subprog_cnt' should not be increased. 1095 */ 1096 subprog[env->subprog_cnt].start = insn_cnt; 1097 1098 if (env->log.level & BPF_LOG_LEVEL2) 1099 for (i = 0; i < env->subprog_cnt; i++) 1100 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1101 1102 /* now check that all jumps are within the same subprog */ 1103 subprog_start = subprog[cur_subprog].start; 1104 subprog_end = subprog[cur_subprog + 1].start; 1105 for (i = 0; i < insn_cnt; i++) { 1106 u8 code = insn[i].code; 1107 1108 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1109 goto next; 1110 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1111 goto next; 1112 off = i + insn[i].off + 1; 1113 if (off < subprog_start || off >= subprog_end) { 1114 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1115 return -EINVAL; 1116 } 1117 next: 1118 if (i == subprog_end - 1) { 1119 /* to avoid fall-through from one subprog into another 1120 * the last insn of the subprog should be either exit 1121 * or unconditional jump back 1122 */ 1123 if (code != (BPF_JMP | BPF_EXIT) && 1124 code != (BPF_JMP | BPF_JA)) { 1125 verbose(env, "last insn is not an exit or jmp\n"); 1126 return -EINVAL; 1127 } 1128 subprog_start = subprog_end; 1129 cur_subprog++; 1130 if (cur_subprog < env->subprog_cnt) 1131 subprog_end = subprog[cur_subprog + 1].start; 1132 } 1133 } 1134 return 0; 1135 } 1136 1137 /* Parentage chain of this register (or stack slot) should take care of all 1138 * issues like callee-saved registers, stack slot allocation time, etc. 1139 */ 1140 static int mark_reg_read(struct bpf_verifier_env *env, 1141 const struct bpf_reg_state *state, 1142 struct bpf_reg_state *parent, u8 flag) 1143 { 1144 bool writes = parent == state->parent; /* Observe write marks */ 1145 int cnt = 0; 1146 1147 while (parent) { 1148 /* if read wasn't screened by an earlier write ... */ 1149 if (writes && state->live & REG_LIVE_WRITTEN) 1150 break; 1151 if (parent->live & REG_LIVE_DONE) { 1152 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1153 reg_type_str[parent->type], 1154 parent->var_off.value, parent->off); 1155 return -EFAULT; 1156 } 1157 /* The first condition is more likely to be true than the 1158 * second, checked it first. 1159 */ 1160 if ((parent->live & REG_LIVE_READ) == flag || 1161 parent->live & REG_LIVE_READ64) 1162 /* The parentage chain never changes and 1163 * this parent was already marked as LIVE_READ. 1164 * There is no need to keep walking the chain again and 1165 * keep re-marking all parents as LIVE_READ. 1166 * This case happens when the same register is read 1167 * multiple times without writes into it in-between. 1168 * Also, if parent has the stronger REG_LIVE_READ64 set, 1169 * then no need to set the weak REG_LIVE_READ32. 1170 */ 1171 break; 1172 /* ... then we depend on parent's value */ 1173 parent->live |= flag; 1174 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1175 if (flag == REG_LIVE_READ64) 1176 parent->live &= ~REG_LIVE_READ32; 1177 state = parent; 1178 parent = state->parent; 1179 writes = true; 1180 cnt++; 1181 } 1182 1183 if (env->longest_mark_read_walk < cnt) 1184 env->longest_mark_read_walk = cnt; 1185 return 0; 1186 } 1187 1188 /* This function is supposed to be used by the following 32-bit optimization 1189 * code only. It returns TRUE if the source or destination register operates 1190 * on 64-bit, otherwise return FALSE. 1191 */ 1192 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1193 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1194 { 1195 u8 code, class, op; 1196 1197 code = insn->code; 1198 class = BPF_CLASS(code); 1199 op = BPF_OP(code); 1200 if (class == BPF_JMP) { 1201 /* BPF_EXIT for "main" will reach here. Return TRUE 1202 * conservatively. 1203 */ 1204 if (op == BPF_EXIT) 1205 return true; 1206 if (op == BPF_CALL) { 1207 /* BPF to BPF call will reach here because of marking 1208 * caller saved clobber with DST_OP_NO_MARK for which we 1209 * don't care the register def because they are anyway 1210 * marked as NOT_INIT already. 1211 */ 1212 if (insn->src_reg == BPF_PSEUDO_CALL) 1213 return false; 1214 /* Helper call will reach here because of arg type 1215 * check, conservatively return TRUE. 1216 */ 1217 if (t == SRC_OP) 1218 return true; 1219 1220 return false; 1221 } 1222 } 1223 1224 if (class == BPF_ALU64 || class == BPF_JMP || 1225 /* BPF_END always use BPF_ALU class. */ 1226 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1227 return true; 1228 1229 if (class == BPF_ALU || class == BPF_JMP32) 1230 return false; 1231 1232 if (class == BPF_LDX) { 1233 if (t != SRC_OP) 1234 return BPF_SIZE(code) == BPF_DW; 1235 /* LDX source must be ptr. */ 1236 return true; 1237 } 1238 1239 if (class == BPF_STX) { 1240 if (reg->type != SCALAR_VALUE) 1241 return true; 1242 return BPF_SIZE(code) == BPF_DW; 1243 } 1244 1245 if (class == BPF_LD) { 1246 u8 mode = BPF_MODE(code); 1247 1248 /* LD_IMM64 */ 1249 if (mode == BPF_IMM) 1250 return true; 1251 1252 /* Both LD_IND and LD_ABS return 32-bit data. */ 1253 if (t != SRC_OP) 1254 return false; 1255 1256 /* Implicit ctx ptr. */ 1257 if (regno == BPF_REG_6) 1258 return true; 1259 1260 /* Explicit source could be any width. */ 1261 return true; 1262 } 1263 1264 if (class == BPF_ST) 1265 /* The only source register for BPF_ST is a ptr. */ 1266 return true; 1267 1268 /* Conservatively return true at default. */ 1269 return true; 1270 } 1271 1272 /* Return TRUE if INSN doesn't have explicit value define. */ 1273 static bool insn_no_def(struct bpf_insn *insn) 1274 { 1275 u8 class = BPF_CLASS(insn->code); 1276 1277 return (class == BPF_JMP || class == BPF_JMP32 || 1278 class == BPF_STX || class == BPF_ST); 1279 } 1280 1281 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1282 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1283 { 1284 if (insn_no_def(insn)) 1285 return false; 1286 1287 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1288 } 1289 1290 static void mark_insn_zext(struct bpf_verifier_env *env, 1291 struct bpf_reg_state *reg) 1292 { 1293 s32 def_idx = reg->subreg_def; 1294 1295 if (def_idx == DEF_NOT_SUBREG) 1296 return; 1297 1298 env->insn_aux_data[def_idx - 1].zext_dst = true; 1299 /* The dst will be zero extended, so won't be sub-register anymore. */ 1300 reg->subreg_def = DEF_NOT_SUBREG; 1301 } 1302 1303 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1304 enum reg_arg_type t) 1305 { 1306 struct bpf_verifier_state *vstate = env->cur_state; 1307 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1308 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1309 struct bpf_reg_state *reg, *regs = state->regs; 1310 bool rw64; 1311 1312 if (regno >= MAX_BPF_REG) { 1313 verbose(env, "R%d is invalid\n", regno); 1314 return -EINVAL; 1315 } 1316 1317 reg = ®s[regno]; 1318 rw64 = is_reg64(env, insn, regno, reg, t); 1319 if (t == SRC_OP) { 1320 /* check whether register used as source operand can be read */ 1321 if (reg->type == NOT_INIT) { 1322 verbose(env, "R%d !read_ok\n", regno); 1323 return -EACCES; 1324 } 1325 /* We don't need to worry about FP liveness because it's read-only */ 1326 if (regno == BPF_REG_FP) 1327 return 0; 1328 1329 if (rw64) 1330 mark_insn_zext(env, reg); 1331 1332 return mark_reg_read(env, reg, reg->parent, 1333 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1334 } else { 1335 /* check whether register used as dest operand can be written to */ 1336 if (regno == BPF_REG_FP) { 1337 verbose(env, "frame pointer is read only\n"); 1338 return -EACCES; 1339 } 1340 reg->live |= REG_LIVE_WRITTEN; 1341 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1342 if (t == DST_OP) 1343 mark_reg_unknown(env, regs, regno); 1344 } 1345 return 0; 1346 } 1347 1348 static bool is_spillable_regtype(enum bpf_reg_type type) 1349 { 1350 switch (type) { 1351 case PTR_TO_MAP_VALUE: 1352 case PTR_TO_MAP_VALUE_OR_NULL: 1353 case PTR_TO_STACK: 1354 case PTR_TO_CTX: 1355 case PTR_TO_PACKET: 1356 case PTR_TO_PACKET_META: 1357 case PTR_TO_PACKET_END: 1358 case PTR_TO_FLOW_KEYS: 1359 case CONST_PTR_TO_MAP: 1360 case PTR_TO_SOCKET: 1361 case PTR_TO_SOCKET_OR_NULL: 1362 case PTR_TO_SOCK_COMMON: 1363 case PTR_TO_SOCK_COMMON_OR_NULL: 1364 case PTR_TO_TCP_SOCK: 1365 case PTR_TO_TCP_SOCK_OR_NULL: 1366 return true; 1367 default: 1368 return false; 1369 } 1370 } 1371 1372 /* Does this register contain a constant zero? */ 1373 static bool register_is_null(struct bpf_reg_state *reg) 1374 { 1375 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1376 } 1377 1378 /* check_stack_read/write functions track spill/fill of registers, 1379 * stack boundary and alignment are checked in check_mem_access() 1380 */ 1381 static int check_stack_write(struct bpf_verifier_env *env, 1382 struct bpf_func_state *state, /* func where register points to */ 1383 int off, int size, int value_regno, int insn_idx) 1384 { 1385 struct bpf_func_state *cur; /* state of the current function */ 1386 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1387 enum bpf_reg_type type; 1388 1389 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1390 state->acquired_refs, true); 1391 if (err) 1392 return err; 1393 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1394 * so it's aligned access and [off, off + size) are within stack limits 1395 */ 1396 if (!env->allow_ptr_leaks && 1397 state->stack[spi].slot_type[0] == STACK_SPILL && 1398 size != BPF_REG_SIZE) { 1399 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1400 return -EACCES; 1401 } 1402 1403 cur = env->cur_state->frame[env->cur_state->curframe]; 1404 if (value_regno >= 0 && 1405 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1406 1407 /* register containing pointer is being spilled into stack */ 1408 if (size != BPF_REG_SIZE) { 1409 verbose(env, "invalid size of register spill\n"); 1410 return -EACCES; 1411 } 1412 1413 if (state != cur && type == PTR_TO_STACK) { 1414 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1415 return -EINVAL; 1416 } 1417 1418 /* save register state */ 1419 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1420 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1421 1422 for (i = 0; i < BPF_REG_SIZE; i++) { 1423 if (state->stack[spi].slot_type[i] == STACK_MISC && 1424 !env->allow_ptr_leaks) { 1425 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1426 int soff = (-spi - 1) * BPF_REG_SIZE; 1427 1428 /* detected reuse of integer stack slot with a pointer 1429 * which means either llvm is reusing stack slot or 1430 * an attacker is trying to exploit CVE-2018-3639 1431 * (speculative store bypass) 1432 * Have to sanitize that slot with preemptive 1433 * store of zero. 1434 */ 1435 if (*poff && *poff != soff) { 1436 /* disallow programs where single insn stores 1437 * into two different stack slots, since verifier 1438 * cannot sanitize them 1439 */ 1440 verbose(env, 1441 "insn %d cannot access two stack slots fp%d and fp%d", 1442 insn_idx, *poff, soff); 1443 return -EINVAL; 1444 } 1445 *poff = soff; 1446 } 1447 state->stack[spi].slot_type[i] = STACK_SPILL; 1448 } 1449 } else { 1450 u8 type = STACK_MISC; 1451 1452 /* regular write of data into stack destroys any spilled ptr */ 1453 state->stack[spi].spilled_ptr.type = NOT_INIT; 1454 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1455 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1456 for (i = 0; i < BPF_REG_SIZE; i++) 1457 state->stack[spi].slot_type[i] = STACK_MISC; 1458 1459 /* only mark the slot as written if all 8 bytes were written 1460 * otherwise read propagation may incorrectly stop too soon 1461 * when stack slots are partially written. 1462 * This heuristic means that read propagation will be 1463 * conservative, since it will add reg_live_read marks 1464 * to stack slots all the way to first state when programs 1465 * writes+reads less than 8 bytes 1466 */ 1467 if (size == BPF_REG_SIZE) 1468 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1469 1470 /* when we zero initialize stack slots mark them as such */ 1471 if (value_regno >= 0 && 1472 register_is_null(&cur->regs[value_regno])) 1473 type = STACK_ZERO; 1474 1475 /* Mark slots affected by this stack write. */ 1476 for (i = 0; i < size; i++) 1477 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1478 type; 1479 } 1480 return 0; 1481 } 1482 1483 static int check_stack_read(struct bpf_verifier_env *env, 1484 struct bpf_func_state *reg_state /* func where register points to */, 1485 int off, int size, int value_regno) 1486 { 1487 struct bpf_verifier_state *vstate = env->cur_state; 1488 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1489 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1490 u8 *stype; 1491 1492 if (reg_state->allocated_stack <= slot) { 1493 verbose(env, "invalid read from stack off %d+0 size %d\n", 1494 off, size); 1495 return -EACCES; 1496 } 1497 stype = reg_state->stack[spi].slot_type; 1498 1499 if (stype[0] == STACK_SPILL) { 1500 if (size != BPF_REG_SIZE) { 1501 verbose(env, "invalid size of register spill\n"); 1502 return -EACCES; 1503 } 1504 for (i = 1; i < BPF_REG_SIZE; i++) { 1505 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1506 verbose(env, "corrupted spill memory\n"); 1507 return -EACCES; 1508 } 1509 } 1510 1511 if (value_regno >= 0) { 1512 /* restore register state from stack */ 1513 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1514 /* mark reg as written since spilled pointer state likely 1515 * has its liveness marks cleared by is_state_visited() 1516 * which resets stack/reg liveness for state transitions 1517 */ 1518 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1519 } 1520 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1521 reg_state->stack[spi].spilled_ptr.parent, 1522 REG_LIVE_READ64); 1523 return 0; 1524 } else { 1525 int zeros = 0; 1526 1527 for (i = 0; i < size; i++) { 1528 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1529 continue; 1530 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1531 zeros++; 1532 continue; 1533 } 1534 verbose(env, "invalid read from stack off %d+%d size %d\n", 1535 off, i, size); 1536 return -EACCES; 1537 } 1538 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1539 reg_state->stack[spi].spilled_ptr.parent, 1540 REG_LIVE_READ64); 1541 if (value_regno >= 0) { 1542 if (zeros == size) { 1543 /* any size read into register is zero extended, 1544 * so the whole register == const_zero 1545 */ 1546 __mark_reg_const_zero(&state->regs[value_regno]); 1547 } else { 1548 /* have read misc data from the stack */ 1549 mark_reg_unknown(env, state->regs, value_regno); 1550 } 1551 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1552 } 1553 return 0; 1554 } 1555 } 1556 1557 static int check_stack_access(struct bpf_verifier_env *env, 1558 const struct bpf_reg_state *reg, 1559 int off, int size) 1560 { 1561 /* Stack accesses must be at a fixed offset, so that we 1562 * can determine what type of data were returned. See 1563 * check_stack_read(). 1564 */ 1565 if (!tnum_is_const(reg->var_off)) { 1566 char tn_buf[48]; 1567 1568 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1569 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 1570 tn_buf, off, size); 1571 return -EACCES; 1572 } 1573 1574 if (off >= 0 || off < -MAX_BPF_STACK) { 1575 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1576 return -EACCES; 1577 } 1578 1579 return 0; 1580 } 1581 1582 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 1583 int off, int size, enum bpf_access_type type) 1584 { 1585 struct bpf_reg_state *regs = cur_regs(env); 1586 struct bpf_map *map = regs[regno].map_ptr; 1587 u32 cap = bpf_map_flags_to_cap(map); 1588 1589 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 1590 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 1591 map->value_size, off, size); 1592 return -EACCES; 1593 } 1594 1595 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 1596 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 1597 map->value_size, off, size); 1598 return -EACCES; 1599 } 1600 1601 return 0; 1602 } 1603 1604 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1605 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1606 int size, bool zero_size_allowed) 1607 { 1608 struct bpf_reg_state *regs = cur_regs(env); 1609 struct bpf_map *map = regs[regno].map_ptr; 1610 1611 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1612 off + size > map->value_size) { 1613 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1614 map->value_size, off, size); 1615 return -EACCES; 1616 } 1617 return 0; 1618 } 1619 1620 /* check read/write into a map element with possible variable offset */ 1621 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1622 int off, int size, bool zero_size_allowed) 1623 { 1624 struct bpf_verifier_state *vstate = env->cur_state; 1625 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1626 struct bpf_reg_state *reg = &state->regs[regno]; 1627 int err; 1628 1629 /* We may have adjusted the register to this map value, so we 1630 * need to try adding each of min_value and max_value to off 1631 * to make sure our theoretical access will be safe. 1632 */ 1633 if (env->log.level & BPF_LOG_LEVEL) 1634 print_verifier_state(env, state); 1635 1636 /* The minimum value is only important with signed 1637 * comparisons where we can't assume the floor of a 1638 * value is 0. If we are using signed variables for our 1639 * index'es we need to make sure that whatever we use 1640 * will have a set floor within our range. 1641 */ 1642 if (reg->smin_value < 0 && 1643 (reg->smin_value == S64_MIN || 1644 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1645 reg->smin_value + off < 0)) { 1646 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1647 regno); 1648 return -EACCES; 1649 } 1650 err = __check_map_access(env, regno, reg->smin_value + off, size, 1651 zero_size_allowed); 1652 if (err) { 1653 verbose(env, "R%d min value is outside of the array range\n", 1654 regno); 1655 return err; 1656 } 1657 1658 /* If we haven't set a max value then we need to bail since we can't be 1659 * sure we won't do bad things. 1660 * If reg->umax_value + off could overflow, treat that as unbounded too. 1661 */ 1662 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1663 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1664 regno); 1665 return -EACCES; 1666 } 1667 err = __check_map_access(env, regno, reg->umax_value + off, size, 1668 zero_size_allowed); 1669 if (err) 1670 verbose(env, "R%d max value is outside of the array range\n", 1671 regno); 1672 1673 if (map_value_has_spin_lock(reg->map_ptr)) { 1674 u32 lock = reg->map_ptr->spin_lock_off; 1675 1676 /* if any part of struct bpf_spin_lock can be touched by 1677 * load/store reject this program. 1678 * To check that [x1, x2) overlaps with [y1, y2) 1679 * it is sufficient to check x1 < y2 && y1 < x2. 1680 */ 1681 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1682 lock < reg->umax_value + off + size) { 1683 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1684 return -EACCES; 1685 } 1686 } 1687 return err; 1688 } 1689 1690 #define MAX_PACKET_OFF 0xffff 1691 1692 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1693 const struct bpf_call_arg_meta *meta, 1694 enum bpf_access_type t) 1695 { 1696 switch (env->prog->type) { 1697 /* Program types only with direct read access go here! */ 1698 case BPF_PROG_TYPE_LWT_IN: 1699 case BPF_PROG_TYPE_LWT_OUT: 1700 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1701 case BPF_PROG_TYPE_SK_REUSEPORT: 1702 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1703 case BPF_PROG_TYPE_CGROUP_SKB: 1704 if (t == BPF_WRITE) 1705 return false; 1706 /* fallthrough */ 1707 1708 /* Program types with direct read + write access go here! */ 1709 case BPF_PROG_TYPE_SCHED_CLS: 1710 case BPF_PROG_TYPE_SCHED_ACT: 1711 case BPF_PROG_TYPE_XDP: 1712 case BPF_PROG_TYPE_LWT_XMIT: 1713 case BPF_PROG_TYPE_SK_SKB: 1714 case BPF_PROG_TYPE_SK_MSG: 1715 if (meta) 1716 return meta->pkt_access; 1717 1718 env->seen_direct_write = true; 1719 return true; 1720 default: 1721 return false; 1722 } 1723 } 1724 1725 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1726 int off, int size, bool zero_size_allowed) 1727 { 1728 struct bpf_reg_state *regs = cur_regs(env); 1729 struct bpf_reg_state *reg = ®s[regno]; 1730 1731 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1732 (u64)off + size > reg->range) { 1733 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1734 off, size, regno, reg->id, reg->off, reg->range); 1735 return -EACCES; 1736 } 1737 return 0; 1738 } 1739 1740 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1741 int size, bool zero_size_allowed) 1742 { 1743 struct bpf_reg_state *regs = cur_regs(env); 1744 struct bpf_reg_state *reg = ®s[regno]; 1745 int err; 1746 1747 /* We may have added a variable offset to the packet pointer; but any 1748 * reg->range we have comes after that. We are only checking the fixed 1749 * offset. 1750 */ 1751 1752 /* We don't allow negative numbers, because we aren't tracking enough 1753 * detail to prove they're safe. 1754 */ 1755 if (reg->smin_value < 0) { 1756 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1757 regno); 1758 return -EACCES; 1759 } 1760 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1761 if (err) { 1762 verbose(env, "R%d offset is outside of the packet\n", regno); 1763 return err; 1764 } 1765 1766 /* __check_packet_access has made sure "off + size - 1" is within u16. 1767 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1768 * otherwise find_good_pkt_pointers would have refused to set range info 1769 * that __check_packet_access would have rejected this pkt access. 1770 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1771 */ 1772 env->prog->aux->max_pkt_offset = 1773 max_t(u32, env->prog->aux->max_pkt_offset, 1774 off + reg->umax_value + size - 1); 1775 1776 return err; 1777 } 1778 1779 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1780 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1781 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1782 { 1783 struct bpf_insn_access_aux info = { 1784 .reg_type = *reg_type, 1785 }; 1786 1787 if (env->ops->is_valid_access && 1788 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1789 /* A non zero info.ctx_field_size indicates that this field is a 1790 * candidate for later verifier transformation to load the whole 1791 * field and then apply a mask when accessed with a narrower 1792 * access than actual ctx access size. A zero info.ctx_field_size 1793 * will only allow for whole field access and rejects any other 1794 * type of narrower access. 1795 */ 1796 *reg_type = info.reg_type; 1797 1798 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1799 /* remember the offset of last byte accessed in ctx */ 1800 if (env->prog->aux->max_ctx_offset < off + size) 1801 env->prog->aux->max_ctx_offset = off + size; 1802 return 0; 1803 } 1804 1805 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1806 return -EACCES; 1807 } 1808 1809 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1810 int size) 1811 { 1812 if (size < 0 || off < 0 || 1813 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1814 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1815 off, size); 1816 return -EACCES; 1817 } 1818 return 0; 1819 } 1820 1821 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1822 u32 regno, int off, int size, 1823 enum bpf_access_type t) 1824 { 1825 struct bpf_reg_state *regs = cur_regs(env); 1826 struct bpf_reg_state *reg = ®s[regno]; 1827 struct bpf_insn_access_aux info = {}; 1828 bool valid; 1829 1830 if (reg->smin_value < 0) { 1831 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1832 regno); 1833 return -EACCES; 1834 } 1835 1836 switch (reg->type) { 1837 case PTR_TO_SOCK_COMMON: 1838 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1839 break; 1840 case PTR_TO_SOCKET: 1841 valid = bpf_sock_is_valid_access(off, size, t, &info); 1842 break; 1843 case PTR_TO_TCP_SOCK: 1844 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1845 break; 1846 default: 1847 valid = false; 1848 } 1849 1850 1851 if (valid) { 1852 env->insn_aux_data[insn_idx].ctx_field_size = 1853 info.ctx_field_size; 1854 return 0; 1855 } 1856 1857 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1858 regno, reg_type_str[reg->type], off, size); 1859 1860 return -EACCES; 1861 } 1862 1863 static bool __is_pointer_value(bool allow_ptr_leaks, 1864 const struct bpf_reg_state *reg) 1865 { 1866 if (allow_ptr_leaks) 1867 return false; 1868 1869 return reg->type != SCALAR_VALUE; 1870 } 1871 1872 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1873 { 1874 return cur_regs(env) + regno; 1875 } 1876 1877 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1878 { 1879 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1880 } 1881 1882 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1883 { 1884 const struct bpf_reg_state *reg = reg_state(env, regno); 1885 1886 return reg->type == PTR_TO_CTX; 1887 } 1888 1889 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1890 { 1891 const struct bpf_reg_state *reg = reg_state(env, regno); 1892 1893 return type_is_sk_pointer(reg->type); 1894 } 1895 1896 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1897 { 1898 const struct bpf_reg_state *reg = reg_state(env, regno); 1899 1900 return type_is_pkt_pointer(reg->type); 1901 } 1902 1903 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1904 { 1905 const struct bpf_reg_state *reg = reg_state(env, regno); 1906 1907 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1908 return reg->type == PTR_TO_FLOW_KEYS; 1909 } 1910 1911 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1912 const struct bpf_reg_state *reg, 1913 int off, int size, bool strict) 1914 { 1915 struct tnum reg_off; 1916 int ip_align; 1917 1918 /* Byte size accesses are always allowed. */ 1919 if (!strict || size == 1) 1920 return 0; 1921 1922 /* For platforms that do not have a Kconfig enabling 1923 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1924 * NET_IP_ALIGN is universally set to '2'. And on platforms 1925 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1926 * to this code only in strict mode where we want to emulate 1927 * the NET_IP_ALIGN==2 checking. Therefore use an 1928 * unconditional IP align value of '2'. 1929 */ 1930 ip_align = 2; 1931 1932 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1933 if (!tnum_is_aligned(reg_off, size)) { 1934 char tn_buf[48]; 1935 1936 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1937 verbose(env, 1938 "misaligned packet access off %d+%s+%d+%d size %d\n", 1939 ip_align, tn_buf, reg->off, off, size); 1940 return -EACCES; 1941 } 1942 1943 return 0; 1944 } 1945 1946 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1947 const struct bpf_reg_state *reg, 1948 const char *pointer_desc, 1949 int off, int size, bool strict) 1950 { 1951 struct tnum reg_off; 1952 1953 /* Byte size accesses are always allowed. */ 1954 if (!strict || size == 1) 1955 return 0; 1956 1957 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1958 if (!tnum_is_aligned(reg_off, size)) { 1959 char tn_buf[48]; 1960 1961 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1962 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1963 pointer_desc, tn_buf, reg->off, off, size); 1964 return -EACCES; 1965 } 1966 1967 return 0; 1968 } 1969 1970 static int check_ptr_alignment(struct bpf_verifier_env *env, 1971 const struct bpf_reg_state *reg, int off, 1972 int size, bool strict_alignment_once) 1973 { 1974 bool strict = env->strict_alignment || strict_alignment_once; 1975 const char *pointer_desc = ""; 1976 1977 switch (reg->type) { 1978 case PTR_TO_PACKET: 1979 case PTR_TO_PACKET_META: 1980 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1981 * right in front, treat it the very same way. 1982 */ 1983 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1984 case PTR_TO_FLOW_KEYS: 1985 pointer_desc = "flow keys "; 1986 break; 1987 case PTR_TO_MAP_VALUE: 1988 pointer_desc = "value "; 1989 break; 1990 case PTR_TO_CTX: 1991 pointer_desc = "context "; 1992 break; 1993 case PTR_TO_STACK: 1994 pointer_desc = "stack "; 1995 /* The stack spill tracking logic in check_stack_write() 1996 * and check_stack_read() relies on stack accesses being 1997 * aligned. 1998 */ 1999 strict = true; 2000 break; 2001 case PTR_TO_SOCKET: 2002 pointer_desc = "sock "; 2003 break; 2004 case PTR_TO_SOCK_COMMON: 2005 pointer_desc = "sock_common "; 2006 break; 2007 case PTR_TO_TCP_SOCK: 2008 pointer_desc = "tcp_sock "; 2009 break; 2010 default: 2011 break; 2012 } 2013 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2014 strict); 2015 } 2016 2017 static int update_stack_depth(struct bpf_verifier_env *env, 2018 const struct bpf_func_state *func, 2019 int off) 2020 { 2021 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2022 2023 if (stack >= -off) 2024 return 0; 2025 2026 /* update known max for given subprogram */ 2027 env->subprog_info[func->subprogno].stack_depth = -off; 2028 return 0; 2029 } 2030 2031 /* starting from main bpf function walk all instructions of the function 2032 * and recursively walk all callees that given function can call. 2033 * Ignore jump and exit insns. 2034 * Since recursion is prevented by check_cfg() this algorithm 2035 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2036 */ 2037 static int check_max_stack_depth(struct bpf_verifier_env *env) 2038 { 2039 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2040 struct bpf_subprog_info *subprog = env->subprog_info; 2041 struct bpf_insn *insn = env->prog->insnsi; 2042 int ret_insn[MAX_CALL_FRAMES]; 2043 int ret_prog[MAX_CALL_FRAMES]; 2044 2045 process_func: 2046 /* round up to 32-bytes, since this is granularity 2047 * of interpreter stack size 2048 */ 2049 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2050 if (depth > MAX_BPF_STACK) { 2051 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2052 frame + 1, depth); 2053 return -EACCES; 2054 } 2055 continue_func: 2056 subprog_end = subprog[idx + 1].start; 2057 for (; i < subprog_end; i++) { 2058 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2059 continue; 2060 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2061 continue; 2062 /* remember insn and function to return to */ 2063 ret_insn[frame] = i + 1; 2064 ret_prog[frame] = idx; 2065 2066 /* find the callee */ 2067 i = i + insn[i].imm + 1; 2068 idx = find_subprog(env, i); 2069 if (idx < 0) { 2070 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2071 i); 2072 return -EFAULT; 2073 } 2074 frame++; 2075 if (frame >= MAX_CALL_FRAMES) { 2076 verbose(env, "the call stack of %d frames is too deep !\n", 2077 frame); 2078 return -E2BIG; 2079 } 2080 goto process_func; 2081 } 2082 /* end of for() loop means the last insn of the 'subprog' 2083 * was reached. Doesn't matter whether it was JA or EXIT 2084 */ 2085 if (frame == 0) 2086 return 0; 2087 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2088 frame--; 2089 i = ret_insn[frame]; 2090 idx = ret_prog[frame]; 2091 goto continue_func; 2092 } 2093 2094 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2095 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2096 const struct bpf_insn *insn, int idx) 2097 { 2098 int start = idx + insn->imm + 1, subprog; 2099 2100 subprog = find_subprog(env, start); 2101 if (subprog < 0) { 2102 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2103 start); 2104 return -EFAULT; 2105 } 2106 return env->subprog_info[subprog].stack_depth; 2107 } 2108 #endif 2109 2110 static int check_ctx_reg(struct bpf_verifier_env *env, 2111 const struct bpf_reg_state *reg, int regno) 2112 { 2113 /* Access to ctx or passing it to a helper is only allowed in 2114 * its original, unmodified form. 2115 */ 2116 2117 if (reg->off) { 2118 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2119 regno, reg->off); 2120 return -EACCES; 2121 } 2122 2123 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2124 char tn_buf[48]; 2125 2126 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2127 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2128 return -EACCES; 2129 } 2130 2131 return 0; 2132 } 2133 2134 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2135 const struct bpf_reg_state *reg, 2136 int regno, int off, int size) 2137 { 2138 if (off < 0) { 2139 verbose(env, 2140 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2141 regno, off, size); 2142 return -EACCES; 2143 } 2144 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2145 char tn_buf[48]; 2146 2147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2148 verbose(env, 2149 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2150 regno, off, tn_buf); 2151 return -EACCES; 2152 } 2153 if (off + size > env->prog->aux->max_tp_access) 2154 env->prog->aux->max_tp_access = off + size; 2155 2156 return 0; 2157 } 2158 2159 2160 /* truncate register to smaller size (in bytes) 2161 * must be called with size < BPF_REG_SIZE 2162 */ 2163 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2164 { 2165 u64 mask; 2166 2167 /* clear high bits in bit representation */ 2168 reg->var_off = tnum_cast(reg->var_off, size); 2169 2170 /* fix arithmetic bounds */ 2171 mask = ((u64)1 << (size * 8)) - 1; 2172 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2173 reg->umin_value &= mask; 2174 reg->umax_value &= mask; 2175 } else { 2176 reg->umin_value = 0; 2177 reg->umax_value = mask; 2178 } 2179 reg->smin_value = reg->umin_value; 2180 reg->smax_value = reg->umax_value; 2181 } 2182 2183 /* check whether memory at (regno + off) is accessible for t = (read | write) 2184 * if t==write, value_regno is a register which value is stored into memory 2185 * if t==read, value_regno is a register which will receive the value from memory 2186 * if t==write && value_regno==-1, some unknown value is stored into memory 2187 * if t==read && value_regno==-1, don't care what we read from memory 2188 */ 2189 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2190 int off, int bpf_size, enum bpf_access_type t, 2191 int value_regno, bool strict_alignment_once) 2192 { 2193 struct bpf_reg_state *regs = cur_regs(env); 2194 struct bpf_reg_state *reg = regs + regno; 2195 struct bpf_func_state *state; 2196 int size, err = 0; 2197 2198 size = bpf_size_to_bytes(bpf_size); 2199 if (size < 0) 2200 return size; 2201 2202 /* alignment checks will add in reg->off themselves */ 2203 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2204 if (err) 2205 return err; 2206 2207 /* for access checks, reg->off is just part of off */ 2208 off += reg->off; 2209 2210 if (reg->type == PTR_TO_MAP_VALUE) { 2211 if (t == BPF_WRITE && value_regno >= 0 && 2212 is_pointer_value(env, value_regno)) { 2213 verbose(env, "R%d leaks addr into map\n", value_regno); 2214 return -EACCES; 2215 } 2216 err = check_map_access_type(env, regno, off, size, t); 2217 if (err) 2218 return err; 2219 err = check_map_access(env, regno, off, size, false); 2220 if (!err && t == BPF_READ && value_regno >= 0) 2221 mark_reg_unknown(env, regs, value_regno); 2222 2223 } else if (reg->type == PTR_TO_CTX) { 2224 enum bpf_reg_type reg_type = SCALAR_VALUE; 2225 2226 if (t == BPF_WRITE && value_regno >= 0 && 2227 is_pointer_value(env, value_regno)) { 2228 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2229 return -EACCES; 2230 } 2231 2232 err = check_ctx_reg(env, reg, regno); 2233 if (err < 0) 2234 return err; 2235 2236 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2237 if (!err && t == BPF_READ && value_regno >= 0) { 2238 /* ctx access returns either a scalar, or a 2239 * PTR_TO_PACKET[_META,_END]. In the latter 2240 * case, we know the offset is zero. 2241 */ 2242 if (reg_type == SCALAR_VALUE) { 2243 mark_reg_unknown(env, regs, value_regno); 2244 } else { 2245 mark_reg_known_zero(env, regs, 2246 value_regno); 2247 if (reg_type_may_be_null(reg_type)) 2248 regs[value_regno].id = ++env->id_gen; 2249 /* A load of ctx field could have different 2250 * actual load size with the one encoded in the 2251 * insn. When the dst is PTR, it is for sure not 2252 * a sub-register. 2253 */ 2254 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2255 } 2256 regs[value_regno].type = reg_type; 2257 } 2258 2259 } else if (reg->type == PTR_TO_STACK) { 2260 off += reg->var_off.value; 2261 err = check_stack_access(env, reg, off, size); 2262 if (err) 2263 return err; 2264 2265 state = func(env, reg); 2266 err = update_stack_depth(env, state, off); 2267 if (err) 2268 return err; 2269 2270 if (t == BPF_WRITE) 2271 err = check_stack_write(env, state, off, size, 2272 value_regno, insn_idx); 2273 else 2274 err = check_stack_read(env, state, off, size, 2275 value_regno); 2276 } else if (reg_is_pkt_pointer(reg)) { 2277 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2278 verbose(env, "cannot write into packet\n"); 2279 return -EACCES; 2280 } 2281 if (t == BPF_WRITE && value_regno >= 0 && 2282 is_pointer_value(env, value_regno)) { 2283 verbose(env, "R%d leaks addr into packet\n", 2284 value_regno); 2285 return -EACCES; 2286 } 2287 err = check_packet_access(env, regno, off, size, false); 2288 if (!err && t == BPF_READ && value_regno >= 0) 2289 mark_reg_unknown(env, regs, value_regno); 2290 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2291 if (t == BPF_WRITE && value_regno >= 0 && 2292 is_pointer_value(env, value_regno)) { 2293 verbose(env, "R%d leaks addr into flow keys\n", 2294 value_regno); 2295 return -EACCES; 2296 } 2297 2298 err = check_flow_keys_access(env, off, size); 2299 if (!err && t == BPF_READ && value_regno >= 0) 2300 mark_reg_unknown(env, regs, value_regno); 2301 } else if (type_is_sk_pointer(reg->type)) { 2302 if (t == BPF_WRITE) { 2303 verbose(env, "R%d cannot write into %s\n", 2304 regno, reg_type_str[reg->type]); 2305 return -EACCES; 2306 } 2307 err = check_sock_access(env, insn_idx, regno, off, size, t); 2308 if (!err && value_regno >= 0) 2309 mark_reg_unknown(env, regs, value_regno); 2310 } else if (reg->type == PTR_TO_TP_BUFFER) { 2311 err = check_tp_buffer_access(env, reg, regno, off, size); 2312 if (!err && t == BPF_READ && value_regno >= 0) 2313 mark_reg_unknown(env, regs, value_regno); 2314 } else { 2315 verbose(env, "R%d invalid mem access '%s'\n", regno, 2316 reg_type_str[reg->type]); 2317 return -EACCES; 2318 } 2319 2320 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2321 regs[value_regno].type == SCALAR_VALUE) { 2322 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2323 coerce_reg_to_size(®s[value_regno], size); 2324 } 2325 return err; 2326 } 2327 2328 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2329 { 2330 int err; 2331 2332 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2333 insn->imm != 0) { 2334 verbose(env, "BPF_XADD uses reserved fields\n"); 2335 return -EINVAL; 2336 } 2337 2338 /* check src1 operand */ 2339 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2340 if (err) 2341 return err; 2342 2343 /* check src2 operand */ 2344 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2345 if (err) 2346 return err; 2347 2348 if (is_pointer_value(env, insn->src_reg)) { 2349 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2350 return -EACCES; 2351 } 2352 2353 if (is_ctx_reg(env, insn->dst_reg) || 2354 is_pkt_reg(env, insn->dst_reg) || 2355 is_flow_key_reg(env, insn->dst_reg) || 2356 is_sk_reg(env, insn->dst_reg)) { 2357 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2358 insn->dst_reg, 2359 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2360 return -EACCES; 2361 } 2362 2363 /* check whether atomic_add can read the memory */ 2364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2365 BPF_SIZE(insn->code), BPF_READ, -1, true); 2366 if (err) 2367 return err; 2368 2369 /* check whether atomic_add can write into the same memory */ 2370 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2371 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2372 } 2373 2374 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2375 int off, int access_size, 2376 bool zero_size_allowed) 2377 { 2378 struct bpf_reg_state *reg = reg_state(env, regno); 2379 2380 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2381 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2382 if (tnum_is_const(reg->var_off)) { 2383 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2384 regno, off, access_size); 2385 } else { 2386 char tn_buf[48]; 2387 2388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2389 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2390 regno, tn_buf, access_size); 2391 } 2392 return -EACCES; 2393 } 2394 return 0; 2395 } 2396 2397 /* when register 'regno' is passed into function that will read 'access_size' 2398 * bytes from that pointer, make sure that it's within stack boundary 2399 * and all elements of stack are initialized. 2400 * Unlike most pointer bounds-checking functions, this one doesn't take an 2401 * 'off' argument, so it has to add in reg->off itself. 2402 */ 2403 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2404 int access_size, bool zero_size_allowed, 2405 struct bpf_call_arg_meta *meta) 2406 { 2407 struct bpf_reg_state *reg = reg_state(env, regno); 2408 struct bpf_func_state *state = func(env, reg); 2409 int err, min_off, max_off, i, slot, spi; 2410 2411 if (reg->type != PTR_TO_STACK) { 2412 /* Allow zero-byte read from NULL, regardless of pointer type */ 2413 if (zero_size_allowed && access_size == 0 && 2414 register_is_null(reg)) 2415 return 0; 2416 2417 verbose(env, "R%d type=%s expected=%s\n", regno, 2418 reg_type_str[reg->type], 2419 reg_type_str[PTR_TO_STACK]); 2420 return -EACCES; 2421 } 2422 2423 if (tnum_is_const(reg->var_off)) { 2424 min_off = max_off = reg->var_off.value + reg->off; 2425 err = __check_stack_boundary(env, regno, min_off, access_size, 2426 zero_size_allowed); 2427 if (err) 2428 return err; 2429 } else { 2430 /* Variable offset is prohibited for unprivileged mode for 2431 * simplicity since it requires corresponding support in 2432 * Spectre masking for stack ALU. 2433 * See also retrieve_ptr_limit(). 2434 */ 2435 if (!env->allow_ptr_leaks) { 2436 char tn_buf[48]; 2437 2438 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2439 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2440 regno, tn_buf); 2441 return -EACCES; 2442 } 2443 /* Only initialized buffer on stack is allowed to be accessed 2444 * with variable offset. With uninitialized buffer it's hard to 2445 * guarantee that whole memory is marked as initialized on 2446 * helper return since specific bounds are unknown what may 2447 * cause uninitialized stack leaking. 2448 */ 2449 if (meta && meta->raw_mode) 2450 meta = NULL; 2451 2452 if (reg->smax_value >= BPF_MAX_VAR_OFF || 2453 reg->smax_value <= -BPF_MAX_VAR_OFF) { 2454 verbose(env, "R%d unbounded indirect variable offset stack access\n", 2455 regno); 2456 return -EACCES; 2457 } 2458 min_off = reg->smin_value + reg->off; 2459 max_off = reg->smax_value + reg->off; 2460 err = __check_stack_boundary(env, regno, min_off, access_size, 2461 zero_size_allowed); 2462 if (err) { 2463 verbose(env, "R%d min value is outside of stack bound\n", 2464 regno); 2465 return err; 2466 } 2467 err = __check_stack_boundary(env, regno, max_off, access_size, 2468 zero_size_allowed); 2469 if (err) { 2470 verbose(env, "R%d max value is outside of stack bound\n", 2471 regno); 2472 return err; 2473 } 2474 } 2475 2476 if (meta && meta->raw_mode) { 2477 meta->access_size = access_size; 2478 meta->regno = regno; 2479 return 0; 2480 } 2481 2482 for (i = min_off; i < max_off + access_size; i++) { 2483 u8 *stype; 2484 2485 slot = -i - 1; 2486 spi = slot / BPF_REG_SIZE; 2487 if (state->allocated_stack <= slot) 2488 goto err; 2489 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2490 if (*stype == STACK_MISC) 2491 goto mark; 2492 if (*stype == STACK_ZERO) { 2493 /* helper can write anything into the stack */ 2494 *stype = STACK_MISC; 2495 goto mark; 2496 } 2497 err: 2498 if (tnum_is_const(reg->var_off)) { 2499 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2500 min_off, i - min_off, access_size); 2501 } else { 2502 char tn_buf[48]; 2503 2504 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2505 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 2506 tn_buf, i - min_off, access_size); 2507 } 2508 return -EACCES; 2509 mark: 2510 /* reading any byte out of 8-byte 'spill_slot' will cause 2511 * the whole slot to be marked as 'read' 2512 */ 2513 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2514 state->stack[spi].spilled_ptr.parent, 2515 REG_LIVE_READ64); 2516 } 2517 return update_stack_depth(env, state, min_off); 2518 } 2519 2520 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2521 int access_size, bool zero_size_allowed, 2522 struct bpf_call_arg_meta *meta) 2523 { 2524 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2525 2526 switch (reg->type) { 2527 case PTR_TO_PACKET: 2528 case PTR_TO_PACKET_META: 2529 return check_packet_access(env, regno, reg->off, access_size, 2530 zero_size_allowed); 2531 case PTR_TO_MAP_VALUE: 2532 if (check_map_access_type(env, regno, reg->off, access_size, 2533 meta && meta->raw_mode ? BPF_WRITE : 2534 BPF_READ)) 2535 return -EACCES; 2536 return check_map_access(env, regno, reg->off, access_size, 2537 zero_size_allowed); 2538 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2539 return check_stack_boundary(env, regno, access_size, 2540 zero_size_allowed, meta); 2541 } 2542 } 2543 2544 /* Implementation details: 2545 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2546 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2547 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2548 * value_or_null->value transition, since the verifier only cares about 2549 * the range of access to valid map value pointer and doesn't care about actual 2550 * address of the map element. 2551 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2552 * reg->id > 0 after value_or_null->value transition. By doing so 2553 * two bpf_map_lookups will be considered two different pointers that 2554 * point to different bpf_spin_locks. 2555 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2556 * dead-locks. 2557 * Since only one bpf_spin_lock is allowed the checks are simpler than 2558 * reg_is_refcounted() logic. The verifier needs to remember only 2559 * one spin_lock instead of array of acquired_refs. 2560 * cur_state->active_spin_lock remembers which map value element got locked 2561 * and clears it after bpf_spin_unlock. 2562 */ 2563 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2564 bool is_lock) 2565 { 2566 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2567 struct bpf_verifier_state *cur = env->cur_state; 2568 bool is_const = tnum_is_const(reg->var_off); 2569 struct bpf_map *map = reg->map_ptr; 2570 u64 val = reg->var_off.value; 2571 2572 if (reg->type != PTR_TO_MAP_VALUE) { 2573 verbose(env, "R%d is not a pointer to map_value\n", regno); 2574 return -EINVAL; 2575 } 2576 if (!is_const) { 2577 verbose(env, 2578 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2579 regno); 2580 return -EINVAL; 2581 } 2582 if (!map->btf) { 2583 verbose(env, 2584 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2585 map->name); 2586 return -EINVAL; 2587 } 2588 if (!map_value_has_spin_lock(map)) { 2589 if (map->spin_lock_off == -E2BIG) 2590 verbose(env, 2591 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2592 map->name); 2593 else if (map->spin_lock_off == -ENOENT) 2594 verbose(env, 2595 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2596 map->name); 2597 else 2598 verbose(env, 2599 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2600 map->name); 2601 return -EINVAL; 2602 } 2603 if (map->spin_lock_off != val + reg->off) { 2604 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2605 val + reg->off); 2606 return -EINVAL; 2607 } 2608 if (is_lock) { 2609 if (cur->active_spin_lock) { 2610 verbose(env, 2611 "Locking two bpf_spin_locks are not allowed\n"); 2612 return -EINVAL; 2613 } 2614 cur->active_spin_lock = reg->id; 2615 } else { 2616 if (!cur->active_spin_lock) { 2617 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2618 return -EINVAL; 2619 } 2620 if (cur->active_spin_lock != reg->id) { 2621 verbose(env, "bpf_spin_unlock of different lock\n"); 2622 return -EINVAL; 2623 } 2624 cur->active_spin_lock = 0; 2625 } 2626 return 0; 2627 } 2628 2629 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2630 { 2631 return type == ARG_PTR_TO_MEM || 2632 type == ARG_PTR_TO_MEM_OR_NULL || 2633 type == ARG_PTR_TO_UNINIT_MEM; 2634 } 2635 2636 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2637 { 2638 return type == ARG_CONST_SIZE || 2639 type == ARG_CONST_SIZE_OR_ZERO; 2640 } 2641 2642 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 2643 { 2644 return type == ARG_PTR_TO_INT || 2645 type == ARG_PTR_TO_LONG; 2646 } 2647 2648 static int int_ptr_type_to_size(enum bpf_arg_type type) 2649 { 2650 if (type == ARG_PTR_TO_INT) 2651 return sizeof(u32); 2652 else if (type == ARG_PTR_TO_LONG) 2653 return sizeof(u64); 2654 2655 return -EINVAL; 2656 } 2657 2658 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2659 enum bpf_arg_type arg_type, 2660 struct bpf_call_arg_meta *meta) 2661 { 2662 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2663 enum bpf_reg_type expected_type, type = reg->type; 2664 int err = 0; 2665 2666 if (arg_type == ARG_DONTCARE) 2667 return 0; 2668 2669 err = check_reg_arg(env, regno, SRC_OP); 2670 if (err) 2671 return err; 2672 2673 if (arg_type == ARG_ANYTHING) { 2674 if (is_pointer_value(env, regno)) { 2675 verbose(env, "R%d leaks addr into helper function\n", 2676 regno); 2677 return -EACCES; 2678 } 2679 return 0; 2680 } 2681 2682 if (type_is_pkt_pointer(type) && 2683 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2684 verbose(env, "helper access to the packet is not allowed\n"); 2685 return -EACCES; 2686 } 2687 2688 if (arg_type == ARG_PTR_TO_MAP_KEY || 2689 arg_type == ARG_PTR_TO_MAP_VALUE || 2690 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 2691 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 2692 expected_type = PTR_TO_STACK; 2693 if (register_is_null(reg) && 2694 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 2695 /* final test in check_stack_boundary() */; 2696 else if (!type_is_pkt_pointer(type) && 2697 type != PTR_TO_MAP_VALUE && 2698 type != expected_type) 2699 goto err_type; 2700 } else if (arg_type == ARG_CONST_SIZE || 2701 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2702 expected_type = SCALAR_VALUE; 2703 if (type != expected_type) 2704 goto err_type; 2705 } else if (arg_type == ARG_CONST_MAP_PTR) { 2706 expected_type = CONST_PTR_TO_MAP; 2707 if (type != expected_type) 2708 goto err_type; 2709 } else if (arg_type == ARG_PTR_TO_CTX) { 2710 expected_type = PTR_TO_CTX; 2711 if (type != expected_type) 2712 goto err_type; 2713 err = check_ctx_reg(env, reg, regno); 2714 if (err < 0) 2715 return err; 2716 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2717 expected_type = PTR_TO_SOCK_COMMON; 2718 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2719 if (!type_is_sk_pointer(type)) 2720 goto err_type; 2721 if (reg->ref_obj_id) { 2722 if (meta->ref_obj_id) { 2723 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 2724 regno, reg->ref_obj_id, 2725 meta->ref_obj_id); 2726 return -EFAULT; 2727 } 2728 meta->ref_obj_id = reg->ref_obj_id; 2729 } 2730 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2731 expected_type = PTR_TO_SOCKET; 2732 if (type != expected_type) 2733 goto err_type; 2734 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2735 if (meta->func_id == BPF_FUNC_spin_lock) { 2736 if (process_spin_lock(env, regno, true)) 2737 return -EACCES; 2738 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2739 if (process_spin_lock(env, regno, false)) 2740 return -EACCES; 2741 } else { 2742 verbose(env, "verifier internal error\n"); 2743 return -EFAULT; 2744 } 2745 } else if (arg_type_is_mem_ptr(arg_type)) { 2746 expected_type = PTR_TO_STACK; 2747 /* One exception here. In case function allows for NULL to be 2748 * passed in as argument, it's a SCALAR_VALUE type. Final test 2749 * happens during stack boundary checking. 2750 */ 2751 if (register_is_null(reg) && 2752 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2753 /* final test in check_stack_boundary() */; 2754 else if (!type_is_pkt_pointer(type) && 2755 type != PTR_TO_MAP_VALUE && 2756 type != expected_type) 2757 goto err_type; 2758 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2759 } else if (arg_type_is_int_ptr(arg_type)) { 2760 expected_type = PTR_TO_STACK; 2761 if (!type_is_pkt_pointer(type) && 2762 type != PTR_TO_MAP_VALUE && 2763 type != expected_type) 2764 goto err_type; 2765 } else { 2766 verbose(env, "unsupported arg_type %d\n", arg_type); 2767 return -EFAULT; 2768 } 2769 2770 if (arg_type == ARG_CONST_MAP_PTR) { 2771 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2772 meta->map_ptr = reg->map_ptr; 2773 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2774 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2775 * check that [key, key + map->key_size) are within 2776 * stack limits and initialized 2777 */ 2778 if (!meta->map_ptr) { 2779 /* in function declaration map_ptr must come before 2780 * map_key, so that it's verified and known before 2781 * we have to check map_key here. Otherwise it means 2782 * that kernel subsystem misconfigured verifier 2783 */ 2784 verbose(env, "invalid map_ptr to access map->key\n"); 2785 return -EACCES; 2786 } 2787 err = check_helper_mem_access(env, regno, 2788 meta->map_ptr->key_size, false, 2789 NULL); 2790 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2791 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 2792 !register_is_null(reg)) || 2793 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2794 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2795 * check [value, value + map->value_size) validity 2796 */ 2797 if (!meta->map_ptr) { 2798 /* kernel subsystem misconfigured verifier */ 2799 verbose(env, "invalid map_ptr to access map->value\n"); 2800 return -EACCES; 2801 } 2802 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2803 err = check_helper_mem_access(env, regno, 2804 meta->map_ptr->value_size, false, 2805 meta); 2806 } else if (arg_type_is_mem_size(arg_type)) { 2807 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2808 2809 /* remember the mem_size which may be used later 2810 * to refine return values. 2811 */ 2812 meta->msize_smax_value = reg->smax_value; 2813 meta->msize_umax_value = reg->umax_value; 2814 2815 /* The register is SCALAR_VALUE; the access check 2816 * happens using its boundaries. 2817 */ 2818 if (!tnum_is_const(reg->var_off)) 2819 /* For unprivileged variable accesses, disable raw 2820 * mode so that the program is required to 2821 * initialize all the memory that the helper could 2822 * just partially fill up. 2823 */ 2824 meta = NULL; 2825 2826 if (reg->smin_value < 0) { 2827 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2828 regno); 2829 return -EACCES; 2830 } 2831 2832 if (reg->umin_value == 0) { 2833 err = check_helper_mem_access(env, regno - 1, 0, 2834 zero_size_allowed, 2835 meta); 2836 if (err) 2837 return err; 2838 } 2839 2840 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2841 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2842 regno); 2843 return -EACCES; 2844 } 2845 err = check_helper_mem_access(env, regno - 1, 2846 reg->umax_value, 2847 zero_size_allowed, meta); 2848 } else if (arg_type_is_int_ptr(arg_type)) { 2849 int size = int_ptr_type_to_size(arg_type); 2850 2851 err = check_helper_mem_access(env, regno, size, false, meta); 2852 if (err) 2853 return err; 2854 err = check_ptr_alignment(env, reg, 0, size, true); 2855 } 2856 2857 return err; 2858 err_type: 2859 verbose(env, "R%d type=%s expected=%s\n", regno, 2860 reg_type_str[type], reg_type_str[expected_type]); 2861 return -EACCES; 2862 } 2863 2864 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2865 struct bpf_map *map, int func_id) 2866 { 2867 if (!map) 2868 return 0; 2869 2870 /* We need a two way check, first is from map perspective ... */ 2871 switch (map->map_type) { 2872 case BPF_MAP_TYPE_PROG_ARRAY: 2873 if (func_id != BPF_FUNC_tail_call) 2874 goto error; 2875 break; 2876 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2877 if (func_id != BPF_FUNC_perf_event_read && 2878 func_id != BPF_FUNC_perf_event_output && 2879 func_id != BPF_FUNC_perf_event_read_value) 2880 goto error; 2881 break; 2882 case BPF_MAP_TYPE_STACK_TRACE: 2883 if (func_id != BPF_FUNC_get_stackid) 2884 goto error; 2885 break; 2886 case BPF_MAP_TYPE_CGROUP_ARRAY: 2887 if (func_id != BPF_FUNC_skb_under_cgroup && 2888 func_id != BPF_FUNC_current_task_under_cgroup) 2889 goto error; 2890 break; 2891 case BPF_MAP_TYPE_CGROUP_STORAGE: 2892 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2893 if (func_id != BPF_FUNC_get_local_storage) 2894 goto error; 2895 break; 2896 /* devmap returns a pointer to a live net_device ifindex that we cannot 2897 * allow to be modified from bpf side. So do not allow lookup elements 2898 * for now. 2899 */ 2900 case BPF_MAP_TYPE_DEVMAP: 2901 if (func_id != BPF_FUNC_redirect_map) 2902 goto error; 2903 break; 2904 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2905 * appear. 2906 */ 2907 case BPF_MAP_TYPE_CPUMAP: 2908 case BPF_MAP_TYPE_XSKMAP: 2909 if (func_id != BPF_FUNC_redirect_map) 2910 goto error; 2911 break; 2912 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2913 case BPF_MAP_TYPE_HASH_OF_MAPS: 2914 if (func_id != BPF_FUNC_map_lookup_elem) 2915 goto error; 2916 break; 2917 case BPF_MAP_TYPE_SOCKMAP: 2918 if (func_id != BPF_FUNC_sk_redirect_map && 2919 func_id != BPF_FUNC_sock_map_update && 2920 func_id != BPF_FUNC_map_delete_elem && 2921 func_id != BPF_FUNC_msg_redirect_map) 2922 goto error; 2923 break; 2924 case BPF_MAP_TYPE_SOCKHASH: 2925 if (func_id != BPF_FUNC_sk_redirect_hash && 2926 func_id != BPF_FUNC_sock_hash_update && 2927 func_id != BPF_FUNC_map_delete_elem && 2928 func_id != BPF_FUNC_msg_redirect_hash) 2929 goto error; 2930 break; 2931 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2932 if (func_id != BPF_FUNC_sk_select_reuseport) 2933 goto error; 2934 break; 2935 case BPF_MAP_TYPE_QUEUE: 2936 case BPF_MAP_TYPE_STACK: 2937 if (func_id != BPF_FUNC_map_peek_elem && 2938 func_id != BPF_FUNC_map_pop_elem && 2939 func_id != BPF_FUNC_map_push_elem) 2940 goto error; 2941 break; 2942 case BPF_MAP_TYPE_SK_STORAGE: 2943 if (func_id != BPF_FUNC_sk_storage_get && 2944 func_id != BPF_FUNC_sk_storage_delete) 2945 goto error; 2946 break; 2947 default: 2948 break; 2949 } 2950 2951 /* ... and second from the function itself. */ 2952 switch (func_id) { 2953 case BPF_FUNC_tail_call: 2954 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2955 goto error; 2956 if (env->subprog_cnt > 1) { 2957 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2958 return -EINVAL; 2959 } 2960 break; 2961 case BPF_FUNC_perf_event_read: 2962 case BPF_FUNC_perf_event_output: 2963 case BPF_FUNC_perf_event_read_value: 2964 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2965 goto error; 2966 break; 2967 case BPF_FUNC_get_stackid: 2968 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2969 goto error; 2970 break; 2971 case BPF_FUNC_current_task_under_cgroup: 2972 case BPF_FUNC_skb_under_cgroup: 2973 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2974 goto error; 2975 break; 2976 case BPF_FUNC_redirect_map: 2977 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2978 map->map_type != BPF_MAP_TYPE_CPUMAP && 2979 map->map_type != BPF_MAP_TYPE_XSKMAP) 2980 goto error; 2981 break; 2982 case BPF_FUNC_sk_redirect_map: 2983 case BPF_FUNC_msg_redirect_map: 2984 case BPF_FUNC_sock_map_update: 2985 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2986 goto error; 2987 break; 2988 case BPF_FUNC_sk_redirect_hash: 2989 case BPF_FUNC_msg_redirect_hash: 2990 case BPF_FUNC_sock_hash_update: 2991 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2992 goto error; 2993 break; 2994 case BPF_FUNC_get_local_storage: 2995 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2996 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2997 goto error; 2998 break; 2999 case BPF_FUNC_sk_select_reuseport: 3000 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3001 goto error; 3002 break; 3003 case BPF_FUNC_map_peek_elem: 3004 case BPF_FUNC_map_pop_elem: 3005 case BPF_FUNC_map_push_elem: 3006 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3007 map->map_type != BPF_MAP_TYPE_STACK) 3008 goto error; 3009 break; 3010 case BPF_FUNC_sk_storage_get: 3011 case BPF_FUNC_sk_storage_delete: 3012 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3013 goto error; 3014 break; 3015 default: 3016 break; 3017 } 3018 3019 return 0; 3020 error: 3021 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3022 map->map_type, func_id_name(func_id), func_id); 3023 return -EINVAL; 3024 } 3025 3026 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3027 { 3028 int count = 0; 3029 3030 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3031 count++; 3032 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3033 count++; 3034 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3035 count++; 3036 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3037 count++; 3038 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3039 count++; 3040 3041 /* We only support one arg being in raw mode at the moment, 3042 * which is sufficient for the helper functions we have 3043 * right now. 3044 */ 3045 return count <= 1; 3046 } 3047 3048 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3049 enum bpf_arg_type arg_next) 3050 { 3051 return (arg_type_is_mem_ptr(arg_curr) && 3052 !arg_type_is_mem_size(arg_next)) || 3053 (!arg_type_is_mem_ptr(arg_curr) && 3054 arg_type_is_mem_size(arg_next)); 3055 } 3056 3057 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3058 { 3059 /* bpf_xxx(..., buf, len) call will access 'len' 3060 * bytes from memory 'buf'. Both arg types need 3061 * to be paired, so make sure there's no buggy 3062 * helper function specification. 3063 */ 3064 if (arg_type_is_mem_size(fn->arg1_type) || 3065 arg_type_is_mem_ptr(fn->arg5_type) || 3066 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3067 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3068 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3069 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3070 return false; 3071 3072 return true; 3073 } 3074 3075 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3076 { 3077 int count = 0; 3078 3079 if (arg_type_may_be_refcounted(fn->arg1_type)) 3080 count++; 3081 if (arg_type_may_be_refcounted(fn->arg2_type)) 3082 count++; 3083 if (arg_type_may_be_refcounted(fn->arg3_type)) 3084 count++; 3085 if (arg_type_may_be_refcounted(fn->arg4_type)) 3086 count++; 3087 if (arg_type_may_be_refcounted(fn->arg5_type)) 3088 count++; 3089 3090 /* A reference acquiring function cannot acquire 3091 * another refcounted ptr. 3092 */ 3093 if (is_acquire_function(func_id) && count) 3094 return false; 3095 3096 /* We only support one arg being unreferenced at the moment, 3097 * which is sufficient for the helper functions we have right now. 3098 */ 3099 return count <= 1; 3100 } 3101 3102 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3103 { 3104 return check_raw_mode_ok(fn) && 3105 check_arg_pair_ok(fn) && 3106 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3107 } 3108 3109 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3110 * are now invalid, so turn them into unknown SCALAR_VALUE. 3111 */ 3112 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3113 struct bpf_func_state *state) 3114 { 3115 struct bpf_reg_state *regs = state->regs, *reg; 3116 int i; 3117 3118 for (i = 0; i < MAX_BPF_REG; i++) 3119 if (reg_is_pkt_pointer_any(®s[i])) 3120 mark_reg_unknown(env, regs, i); 3121 3122 bpf_for_each_spilled_reg(i, state, reg) { 3123 if (!reg) 3124 continue; 3125 if (reg_is_pkt_pointer_any(reg)) 3126 __mark_reg_unknown(reg); 3127 } 3128 } 3129 3130 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3131 { 3132 struct bpf_verifier_state *vstate = env->cur_state; 3133 int i; 3134 3135 for (i = 0; i <= vstate->curframe; i++) 3136 __clear_all_pkt_pointers(env, vstate->frame[i]); 3137 } 3138 3139 static void release_reg_references(struct bpf_verifier_env *env, 3140 struct bpf_func_state *state, 3141 int ref_obj_id) 3142 { 3143 struct bpf_reg_state *regs = state->regs, *reg; 3144 int i; 3145 3146 for (i = 0; i < MAX_BPF_REG; i++) 3147 if (regs[i].ref_obj_id == ref_obj_id) 3148 mark_reg_unknown(env, regs, i); 3149 3150 bpf_for_each_spilled_reg(i, state, reg) { 3151 if (!reg) 3152 continue; 3153 if (reg->ref_obj_id == ref_obj_id) 3154 __mark_reg_unknown(reg); 3155 } 3156 } 3157 3158 /* The pointer with the specified id has released its reference to kernel 3159 * resources. Identify all copies of the same pointer and clear the reference. 3160 */ 3161 static int release_reference(struct bpf_verifier_env *env, 3162 int ref_obj_id) 3163 { 3164 struct bpf_verifier_state *vstate = env->cur_state; 3165 int err; 3166 int i; 3167 3168 err = release_reference_state(cur_func(env), ref_obj_id); 3169 if (err) 3170 return err; 3171 3172 for (i = 0; i <= vstate->curframe; i++) 3173 release_reg_references(env, vstate->frame[i], ref_obj_id); 3174 3175 return 0; 3176 } 3177 3178 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3179 int *insn_idx) 3180 { 3181 struct bpf_verifier_state *state = env->cur_state; 3182 struct bpf_func_state *caller, *callee; 3183 int i, err, subprog, target_insn; 3184 3185 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3186 verbose(env, "the call stack of %d frames is too deep\n", 3187 state->curframe + 2); 3188 return -E2BIG; 3189 } 3190 3191 target_insn = *insn_idx + insn->imm; 3192 subprog = find_subprog(env, target_insn + 1); 3193 if (subprog < 0) { 3194 verbose(env, "verifier bug. No program starts at insn %d\n", 3195 target_insn + 1); 3196 return -EFAULT; 3197 } 3198 3199 caller = state->frame[state->curframe]; 3200 if (state->frame[state->curframe + 1]) { 3201 verbose(env, "verifier bug. Frame %d already allocated\n", 3202 state->curframe + 1); 3203 return -EFAULT; 3204 } 3205 3206 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3207 if (!callee) 3208 return -ENOMEM; 3209 state->frame[state->curframe + 1] = callee; 3210 3211 /* callee cannot access r0, r6 - r9 for reading and has to write 3212 * into its own stack before reading from it. 3213 * callee can read/write into caller's stack 3214 */ 3215 init_func_state(env, callee, 3216 /* remember the callsite, it will be used by bpf_exit */ 3217 *insn_idx /* callsite */, 3218 state->curframe + 1 /* frameno within this callchain */, 3219 subprog /* subprog number within this prog */); 3220 3221 /* Transfer references to the callee */ 3222 err = transfer_reference_state(callee, caller); 3223 if (err) 3224 return err; 3225 3226 /* copy r1 - r5 args that callee can access. The copy includes parent 3227 * pointers, which connects us up to the liveness chain 3228 */ 3229 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3230 callee->regs[i] = caller->regs[i]; 3231 3232 /* after the call registers r0 - r5 were scratched */ 3233 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3234 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3235 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3236 } 3237 3238 /* only increment it after check_reg_arg() finished */ 3239 state->curframe++; 3240 3241 /* and go analyze first insn of the callee */ 3242 *insn_idx = target_insn; 3243 3244 if (env->log.level & BPF_LOG_LEVEL) { 3245 verbose(env, "caller:\n"); 3246 print_verifier_state(env, caller); 3247 verbose(env, "callee:\n"); 3248 print_verifier_state(env, callee); 3249 } 3250 return 0; 3251 } 3252 3253 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3254 { 3255 struct bpf_verifier_state *state = env->cur_state; 3256 struct bpf_func_state *caller, *callee; 3257 struct bpf_reg_state *r0; 3258 int err; 3259 3260 callee = state->frame[state->curframe]; 3261 r0 = &callee->regs[BPF_REG_0]; 3262 if (r0->type == PTR_TO_STACK) { 3263 /* technically it's ok to return caller's stack pointer 3264 * (or caller's caller's pointer) back to the caller, 3265 * since these pointers are valid. Only current stack 3266 * pointer will be invalid as soon as function exits, 3267 * but let's be conservative 3268 */ 3269 verbose(env, "cannot return stack pointer to the caller\n"); 3270 return -EINVAL; 3271 } 3272 3273 state->curframe--; 3274 caller = state->frame[state->curframe]; 3275 /* return to the caller whatever r0 had in the callee */ 3276 caller->regs[BPF_REG_0] = *r0; 3277 3278 /* Transfer references to the caller */ 3279 err = transfer_reference_state(caller, callee); 3280 if (err) 3281 return err; 3282 3283 *insn_idx = callee->callsite + 1; 3284 if (env->log.level & BPF_LOG_LEVEL) { 3285 verbose(env, "returning from callee:\n"); 3286 print_verifier_state(env, callee); 3287 verbose(env, "to caller at %d:\n", *insn_idx); 3288 print_verifier_state(env, caller); 3289 } 3290 /* clear everything in the callee */ 3291 free_func_state(callee); 3292 state->frame[state->curframe + 1] = NULL; 3293 return 0; 3294 } 3295 3296 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3297 int func_id, 3298 struct bpf_call_arg_meta *meta) 3299 { 3300 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3301 3302 if (ret_type != RET_INTEGER || 3303 (func_id != BPF_FUNC_get_stack && 3304 func_id != BPF_FUNC_probe_read_str)) 3305 return; 3306 3307 ret_reg->smax_value = meta->msize_smax_value; 3308 ret_reg->umax_value = meta->msize_umax_value; 3309 __reg_deduce_bounds(ret_reg); 3310 __reg_bound_offset(ret_reg); 3311 } 3312 3313 static int 3314 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3315 int func_id, int insn_idx) 3316 { 3317 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3318 struct bpf_map *map = meta->map_ptr; 3319 3320 if (func_id != BPF_FUNC_tail_call && 3321 func_id != BPF_FUNC_map_lookup_elem && 3322 func_id != BPF_FUNC_map_update_elem && 3323 func_id != BPF_FUNC_map_delete_elem && 3324 func_id != BPF_FUNC_map_push_elem && 3325 func_id != BPF_FUNC_map_pop_elem && 3326 func_id != BPF_FUNC_map_peek_elem) 3327 return 0; 3328 3329 if (map == NULL) { 3330 verbose(env, "kernel subsystem misconfigured verifier\n"); 3331 return -EINVAL; 3332 } 3333 3334 /* In case of read-only, some additional restrictions 3335 * need to be applied in order to prevent altering the 3336 * state of the map from program side. 3337 */ 3338 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3339 (func_id == BPF_FUNC_map_delete_elem || 3340 func_id == BPF_FUNC_map_update_elem || 3341 func_id == BPF_FUNC_map_push_elem || 3342 func_id == BPF_FUNC_map_pop_elem)) { 3343 verbose(env, "write into map forbidden\n"); 3344 return -EACCES; 3345 } 3346 3347 if (!BPF_MAP_PTR(aux->map_state)) 3348 bpf_map_ptr_store(aux, meta->map_ptr, 3349 meta->map_ptr->unpriv_array); 3350 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3351 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3352 meta->map_ptr->unpriv_array); 3353 return 0; 3354 } 3355 3356 static int check_reference_leak(struct bpf_verifier_env *env) 3357 { 3358 struct bpf_func_state *state = cur_func(env); 3359 int i; 3360 3361 for (i = 0; i < state->acquired_refs; i++) { 3362 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3363 state->refs[i].id, state->refs[i].insn_idx); 3364 } 3365 return state->acquired_refs ? -EINVAL : 0; 3366 } 3367 3368 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3369 { 3370 const struct bpf_func_proto *fn = NULL; 3371 struct bpf_reg_state *regs; 3372 struct bpf_call_arg_meta meta; 3373 bool changes_data; 3374 int i, err; 3375 3376 /* find function prototype */ 3377 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3378 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3379 func_id); 3380 return -EINVAL; 3381 } 3382 3383 if (env->ops->get_func_proto) 3384 fn = env->ops->get_func_proto(func_id, env->prog); 3385 if (!fn) { 3386 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3387 func_id); 3388 return -EINVAL; 3389 } 3390 3391 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3392 if (!env->prog->gpl_compatible && fn->gpl_only) { 3393 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3394 return -EINVAL; 3395 } 3396 3397 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3398 changes_data = bpf_helper_changes_pkt_data(fn->func); 3399 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3400 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3401 func_id_name(func_id), func_id); 3402 return -EINVAL; 3403 } 3404 3405 memset(&meta, 0, sizeof(meta)); 3406 meta.pkt_access = fn->pkt_access; 3407 3408 err = check_func_proto(fn, func_id); 3409 if (err) { 3410 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3411 func_id_name(func_id), func_id); 3412 return err; 3413 } 3414 3415 meta.func_id = func_id; 3416 /* check args */ 3417 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3418 if (err) 3419 return err; 3420 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3421 if (err) 3422 return err; 3423 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3424 if (err) 3425 return err; 3426 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3427 if (err) 3428 return err; 3429 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3430 if (err) 3431 return err; 3432 3433 err = record_func_map(env, &meta, func_id, insn_idx); 3434 if (err) 3435 return err; 3436 3437 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3438 * is inferred from register state. 3439 */ 3440 for (i = 0; i < meta.access_size; i++) { 3441 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3442 BPF_WRITE, -1, false); 3443 if (err) 3444 return err; 3445 } 3446 3447 if (func_id == BPF_FUNC_tail_call) { 3448 err = check_reference_leak(env); 3449 if (err) { 3450 verbose(env, "tail_call would lead to reference leak\n"); 3451 return err; 3452 } 3453 } else if (is_release_function(func_id)) { 3454 err = release_reference(env, meta.ref_obj_id); 3455 if (err) { 3456 verbose(env, "func %s#%d reference has not been acquired before\n", 3457 func_id_name(func_id), func_id); 3458 return err; 3459 } 3460 } 3461 3462 regs = cur_regs(env); 3463 3464 /* check that flags argument in get_local_storage(map, flags) is 0, 3465 * this is required because get_local_storage() can't return an error. 3466 */ 3467 if (func_id == BPF_FUNC_get_local_storage && 3468 !register_is_null(®s[BPF_REG_2])) { 3469 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3470 return -EINVAL; 3471 } 3472 3473 /* reset caller saved regs */ 3474 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3475 mark_reg_not_init(env, regs, caller_saved[i]); 3476 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3477 } 3478 3479 /* helper call returns 64-bit value. */ 3480 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 3481 3482 /* update return register (already marked as written above) */ 3483 if (fn->ret_type == RET_INTEGER) { 3484 /* sets type to SCALAR_VALUE */ 3485 mark_reg_unknown(env, regs, BPF_REG_0); 3486 } else if (fn->ret_type == RET_VOID) { 3487 regs[BPF_REG_0].type = NOT_INIT; 3488 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3489 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3490 /* There is no offset yet applied, variable or fixed */ 3491 mark_reg_known_zero(env, regs, BPF_REG_0); 3492 /* remember map_ptr, so that check_map_access() 3493 * can check 'value_size' boundary of memory access 3494 * to map element returned from bpf_map_lookup_elem() 3495 */ 3496 if (meta.map_ptr == NULL) { 3497 verbose(env, 3498 "kernel subsystem misconfigured verifier\n"); 3499 return -EINVAL; 3500 } 3501 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3502 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3503 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3504 if (map_value_has_spin_lock(meta.map_ptr)) 3505 regs[BPF_REG_0].id = ++env->id_gen; 3506 } else { 3507 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3508 regs[BPF_REG_0].id = ++env->id_gen; 3509 } 3510 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3511 mark_reg_known_zero(env, regs, BPF_REG_0); 3512 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3513 regs[BPF_REG_0].id = ++env->id_gen; 3514 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 3515 mark_reg_known_zero(env, regs, BPF_REG_0); 3516 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 3517 regs[BPF_REG_0].id = ++env->id_gen; 3518 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3519 mark_reg_known_zero(env, regs, BPF_REG_0); 3520 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3521 regs[BPF_REG_0].id = ++env->id_gen; 3522 } else { 3523 verbose(env, "unknown return type %d of func %s#%d\n", 3524 fn->ret_type, func_id_name(func_id), func_id); 3525 return -EINVAL; 3526 } 3527 3528 if (is_ptr_cast_function(func_id)) { 3529 /* For release_reference() */ 3530 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 3531 } else if (is_acquire_function(func_id)) { 3532 int id = acquire_reference_state(env, insn_idx); 3533 3534 if (id < 0) 3535 return id; 3536 /* For mark_ptr_or_null_reg() */ 3537 regs[BPF_REG_0].id = id; 3538 /* For release_reference() */ 3539 regs[BPF_REG_0].ref_obj_id = id; 3540 } 3541 3542 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3543 3544 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3545 if (err) 3546 return err; 3547 3548 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3549 const char *err_str; 3550 3551 #ifdef CONFIG_PERF_EVENTS 3552 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3553 err_str = "cannot get callchain buffer for func %s#%d\n"; 3554 #else 3555 err = -ENOTSUPP; 3556 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3557 #endif 3558 if (err) { 3559 verbose(env, err_str, func_id_name(func_id), func_id); 3560 return err; 3561 } 3562 3563 env->prog->has_callchain_buf = true; 3564 } 3565 3566 if (changes_data) 3567 clear_all_pkt_pointers(env); 3568 return 0; 3569 } 3570 3571 static bool signed_add_overflows(s64 a, s64 b) 3572 { 3573 /* Do the add in u64, where overflow is well-defined */ 3574 s64 res = (s64)((u64)a + (u64)b); 3575 3576 if (b < 0) 3577 return res > a; 3578 return res < a; 3579 } 3580 3581 static bool signed_sub_overflows(s64 a, s64 b) 3582 { 3583 /* Do the sub in u64, where overflow is well-defined */ 3584 s64 res = (s64)((u64)a - (u64)b); 3585 3586 if (b < 0) 3587 return res < a; 3588 return res > a; 3589 } 3590 3591 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3592 const struct bpf_reg_state *reg, 3593 enum bpf_reg_type type) 3594 { 3595 bool known = tnum_is_const(reg->var_off); 3596 s64 val = reg->var_off.value; 3597 s64 smin = reg->smin_value; 3598 3599 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3600 verbose(env, "math between %s pointer and %lld is not allowed\n", 3601 reg_type_str[type], val); 3602 return false; 3603 } 3604 3605 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3606 verbose(env, "%s pointer offset %d is not allowed\n", 3607 reg_type_str[type], reg->off); 3608 return false; 3609 } 3610 3611 if (smin == S64_MIN) { 3612 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3613 reg_type_str[type]); 3614 return false; 3615 } 3616 3617 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3618 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3619 smin, reg_type_str[type]); 3620 return false; 3621 } 3622 3623 return true; 3624 } 3625 3626 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3627 { 3628 return &env->insn_aux_data[env->insn_idx]; 3629 } 3630 3631 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3632 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3633 { 3634 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3635 (opcode == BPF_SUB && !off_is_neg); 3636 u32 off; 3637 3638 switch (ptr_reg->type) { 3639 case PTR_TO_STACK: 3640 /* Indirect variable offset stack access is prohibited in 3641 * unprivileged mode so it's not handled here. 3642 */ 3643 off = ptr_reg->off + ptr_reg->var_off.value; 3644 if (mask_to_left) 3645 *ptr_limit = MAX_BPF_STACK + off; 3646 else 3647 *ptr_limit = -off; 3648 return 0; 3649 case PTR_TO_MAP_VALUE: 3650 if (mask_to_left) { 3651 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3652 } else { 3653 off = ptr_reg->smin_value + ptr_reg->off; 3654 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3655 } 3656 return 0; 3657 default: 3658 return -EINVAL; 3659 } 3660 } 3661 3662 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3663 const struct bpf_insn *insn) 3664 { 3665 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3666 } 3667 3668 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3669 u32 alu_state, u32 alu_limit) 3670 { 3671 /* If we arrived here from different branches with different 3672 * state or limits to sanitize, then this won't work. 3673 */ 3674 if (aux->alu_state && 3675 (aux->alu_state != alu_state || 3676 aux->alu_limit != alu_limit)) 3677 return -EACCES; 3678 3679 /* Corresponding fixup done in fixup_bpf_calls(). */ 3680 aux->alu_state = alu_state; 3681 aux->alu_limit = alu_limit; 3682 return 0; 3683 } 3684 3685 static int sanitize_val_alu(struct bpf_verifier_env *env, 3686 struct bpf_insn *insn) 3687 { 3688 struct bpf_insn_aux_data *aux = cur_aux(env); 3689 3690 if (can_skip_alu_sanitation(env, insn)) 3691 return 0; 3692 3693 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3694 } 3695 3696 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3697 struct bpf_insn *insn, 3698 const struct bpf_reg_state *ptr_reg, 3699 struct bpf_reg_state *dst_reg, 3700 bool off_is_neg) 3701 { 3702 struct bpf_verifier_state *vstate = env->cur_state; 3703 struct bpf_insn_aux_data *aux = cur_aux(env); 3704 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3705 u8 opcode = BPF_OP(insn->code); 3706 u32 alu_state, alu_limit; 3707 struct bpf_reg_state tmp; 3708 bool ret; 3709 3710 if (can_skip_alu_sanitation(env, insn)) 3711 return 0; 3712 3713 /* We already marked aux for masking from non-speculative 3714 * paths, thus we got here in the first place. We only care 3715 * to explore bad access from here. 3716 */ 3717 if (vstate->speculative) 3718 goto do_sim; 3719 3720 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3721 alu_state |= ptr_is_dst_reg ? 3722 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3723 3724 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3725 return 0; 3726 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3727 return -EACCES; 3728 do_sim: 3729 /* Simulate and find potential out-of-bounds access under 3730 * speculative execution from truncation as a result of 3731 * masking when off was not within expected range. If off 3732 * sits in dst, then we temporarily need to move ptr there 3733 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3734 * for cases where we use K-based arithmetic in one direction 3735 * and truncated reg-based in the other in order to explore 3736 * bad access. 3737 */ 3738 if (!ptr_is_dst_reg) { 3739 tmp = *dst_reg; 3740 *dst_reg = *ptr_reg; 3741 } 3742 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3743 if (!ptr_is_dst_reg && ret) 3744 *dst_reg = tmp; 3745 return !ret ? -EFAULT : 0; 3746 } 3747 3748 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3749 * Caller should also handle BPF_MOV case separately. 3750 * If we return -EACCES, caller may want to try again treating pointer as a 3751 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3752 */ 3753 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3754 struct bpf_insn *insn, 3755 const struct bpf_reg_state *ptr_reg, 3756 const struct bpf_reg_state *off_reg) 3757 { 3758 struct bpf_verifier_state *vstate = env->cur_state; 3759 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3760 struct bpf_reg_state *regs = state->regs, *dst_reg; 3761 bool known = tnum_is_const(off_reg->var_off); 3762 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3763 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3764 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3765 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3766 u32 dst = insn->dst_reg, src = insn->src_reg; 3767 u8 opcode = BPF_OP(insn->code); 3768 int ret; 3769 3770 dst_reg = ®s[dst]; 3771 3772 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3773 smin_val > smax_val || umin_val > umax_val) { 3774 /* Taint dst register if offset had invalid bounds derived from 3775 * e.g. dead branches. 3776 */ 3777 __mark_reg_unknown(dst_reg); 3778 return 0; 3779 } 3780 3781 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3782 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3783 verbose(env, 3784 "R%d 32-bit pointer arithmetic prohibited\n", 3785 dst); 3786 return -EACCES; 3787 } 3788 3789 switch (ptr_reg->type) { 3790 case PTR_TO_MAP_VALUE_OR_NULL: 3791 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3792 dst, reg_type_str[ptr_reg->type]); 3793 return -EACCES; 3794 case CONST_PTR_TO_MAP: 3795 case PTR_TO_PACKET_END: 3796 case PTR_TO_SOCKET: 3797 case PTR_TO_SOCKET_OR_NULL: 3798 case PTR_TO_SOCK_COMMON: 3799 case PTR_TO_SOCK_COMMON_OR_NULL: 3800 case PTR_TO_TCP_SOCK: 3801 case PTR_TO_TCP_SOCK_OR_NULL: 3802 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3803 dst, reg_type_str[ptr_reg->type]); 3804 return -EACCES; 3805 case PTR_TO_MAP_VALUE: 3806 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3807 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3808 off_reg == dst_reg ? dst : src); 3809 return -EACCES; 3810 } 3811 /* fall-through */ 3812 default: 3813 break; 3814 } 3815 3816 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3817 * The id may be overwritten later if we create a new variable offset. 3818 */ 3819 dst_reg->type = ptr_reg->type; 3820 dst_reg->id = ptr_reg->id; 3821 3822 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3823 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3824 return -EINVAL; 3825 3826 switch (opcode) { 3827 case BPF_ADD: 3828 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3829 if (ret < 0) { 3830 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3831 return ret; 3832 } 3833 /* We can take a fixed offset as long as it doesn't overflow 3834 * the s32 'off' field 3835 */ 3836 if (known && (ptr_reg->off + smin_val == 3837 (s64)(s32)(ptr_reg->off + smin_val))) { 3838 /* pointer += K. Accumulate it into fixed offset */ 3839 dst_reg->smin_value = smin_ptr; 3840 dst_reg->smax_value = smax_ptr; 3841 dst_reg->umin_value = umin_ptr; 3842 dst_reg->umax_value = umax_ptr; 3843 dst_reg->var_off = ptr_reg->var_off; 3844 dst_reg->off = ptr_reg->off + smin_val; 3845 dst_reg->raw = ptr_reg->raw; 3846 break; 3847 } 3848 /* A new variable offset is created. Note that off_reg->off 3849 * == 0, since it's a scalar. 3850 * dst_reg gets the pointer type and since some positive 3851 * integer value was added to the pointer, give it a new 'id' 3852 * if it's a PTR_TO_PACKET. 3853 * this creates a new 'base' pointer, off_reg (variable) gets 3854 * added into the variable offset, and we copy the fixed offset 3855 * from ptr_reg. 3856 */ 3857 if (signed_add_overflows(smin_ptr, smin_val) || 3858 signed_add_overflows(smax_ptr, smax_val)) { 3859 dst_reg->smin_value = S64_MIN; 3860 dst_reg->smax_value = S64_MAX; 3861 } else { 3862 dst_reg->smin_value = smin_ptr + smin_val; 3863 dst_reg->smax_value = smax_ptr + smax_val; 3864 } 3865 if (umin_ptr + umin_val < umin_ptr || 3866 umax_ptr + umax_val < umax_ptr) { 3867 dst_reg->umin_value = 0; 3868 dst_reg->umax_value = U64_MAX; 3869 } else { 3870 dst_reg->umin_value = umin_ptr + umin_val; 3871 dst_reg->umax_value = umax_ptr + umax_val; 3872 } 3873 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3874 dst_reg->off = ptr_reg->off; 3875 dst_reg->raw = ptr_reg->raw; 3876 if (reg_is_pkt_pointer(ptr_reg)) { 3877 dst_reg->id = ++env->id_gen; 3878 /* something was added to pkt_ptr, set range to zero */ 3879 dst_reg->raw = 0; 3880 } 3881 break; 3882 case BPF_SUB: 3883 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3884 if (ret < 0) { 3885 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3886 return ret; 3887 } 3888 if (dst_reg == off_reg) { 3889 /* scalar -= pointer. Creates an unknown scalar */ 3890 verbose(env, "R%d tried to subtract pointer from scalar\n", 3891 dst); 3892 return -EACCES; 3893 } 3894 /* We don't allow subtraction from FP, because (according to 3895 * test_verifier.c test "invalid fp arithmetic", JITs might not 3896 * be able to deal with it. 3897 */ 3898 if (ptr_reg->type == PTR_TO_STACK) { 3899 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3900 dst); 3901 return -EACCES; 3902 } 3903 if (known && (ptr_reg->off - smin_val == 3904 (s64)(s32)(ptr_reg->off - smin_val))) { 3905 /* pointer -= K. Subtract it from fixed offset */ 3906 dst_reg->smin_value = smin_ptr; 3907 dst_reg->smax_value = smax_ptr; 3908 dst_reg->umin_value = umin_ptr; 3909 dst_reg->umax_value = umax_ptr; 3910 dst_reg->var_off = ptr_reg->var_off; 3911 dst_reg->id = ptr_reg->id; 3912 dst_reg->off = ptr_reg->off - smin_val; 3913 dst_reg->raw = ptr_reg->raw; 3914 break; 3915 } 3916 /* A new variable offset is created. If the subtrahend is known 3917 * nonnegative, then any reg->range we had before is still good. 3918 */ 3919 if (signed_sub_overflows(smin_ptr, smax_val) || 3920 signed_sub_overflows(smax_ptr, smin_val)) { 3921 /* Overflow possible, we know nothing */ 3922 dst_reg->smin_value = S64_MIN; 3923 dst_reg->smax_value = S64_MAX; 3924 } else { 3925 dst_reg->smin_value = smin_ptr - smax_val; 3926 dst_reg->smax_value = smax_ptr - smin_val; 3927 } 3928 if (umin_ptr < umax_val) { 3929 /* Overflow possible, we know nothing */ 3930 dst_reg->umin_value = 0; 3931 dst_reg->umax_value = U64_MAX; 3932 } else { 3933 /* Cannot overflow (as long as bounds are consistent) */ 3934 dst_reg->umin_value = umin_ptr - umax_val; 3935 dst_reg->umax_value = umax_ptr - umin_val; 3936 } 3937 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3938 dst_reg->off = ptr_reg->off; 3939 dst_reg->raw = ptr_reg->raw; 3940 if (reg_is_pkt_pointer(ptr_reg)) { 3941 dst_reg->id = ++env->id_gen; 3942 /* something was added to pkt_ptr, set range to zero */ 3943 if (smin_val < 0) 3944 dst_reg->raw = 0; 3945 } 3946 break; 3947 case BPF_AND: 3948 case BPF_OR: 3949 case BPF_XOR: 3950 /* bitwise ops on pointers are troublesome, prohibit. */ 3951 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3952 dst, bpf_alu_string[opcode >> 4]); 3953 return -EACCES; 3954 default: 3955 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3956 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3957 dst, bpf_alu_string[opcode >> 4]); 3958 return -EACCES; 3959 } 3960 3961 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3962 return -EINVAL; 3963 3964 __update_reg_bounds(dst_reg); 3965 __reg_deduce_bounds(dst_reg); 3966 __reg_bound_offset(dst_reg); 3967 3968 /* For unprivileged we require that resulting offset must be in bounds 3969 * in order to be able to sanitize access later on. 3970 */ 3971 if (!env->allow_ptr_leaks) { 3972 if (dst_reg->type == PTR_TO_MAP_VALUE && 3973 check_map_access(env, dst, dst_reg->off, 1, false)) { 3974 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3975 "prohibited for !root\n", dst); 3976 return -EACCES; 3977 } else if (dst_reg->type == PTR_TO_STACK && 3978 check_stack_access(env, dst_reg, dst_reg->off + 3979 dst_reg->var_off.value, 1)) { 3980 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3981 "prohibited for !root\n", dst); 3982 return -EACCES; 3983 } 3984 } 3985 3986 return 0; 3987 } 3988 3989 /* WARNING: This function does calculations on 64-bit values, but the actual 3990 * execution may occur on 32-bit values. Therefore, things like bitshifts 3991 * need extra checks in the 32-bit case. 3992 */ 3993 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3994 struct bpf_insn *insn, 3995 struct bpf_reg_state *dst_reg, 3996 struct bpf_reg_state src_reg) 3997 { 3998 struct bpf_reg_state *regs = cur_regs(env); 3999 u8 opcode = BPF_OP(insn->code); 4000 bool src_known, dst_known; 4001 s64 smin_val, smax_val; 4002 u64 umin_val, umax_val; 4003 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4004 u32 dst = insn->dst_reg; 4005 int ret; 4006 4007 if (insn_bitness == 32) { 4008 /* Relevant for 32-bit RSH: Information can propagate towards 4009 * LSB, so it isn't sufficient to only truncate the output to 4010 * 32 bits. 4011 */ 4012 coerce_reg_to_size(dst_reg, 4); 4013 coerce_reg_to_size(&src_reg, 4); 4014 } 4015 4016 smin_val = src_reg.smin_value; 4017 smax_val = src_reg.smax_value; 4018 umin_val = src_reg.umin_value; 4019 umax_val = src_reg.umax_value; 4020 src_known = tnum_is_const(src_reg.var_off); 4021 dst_known = tnum_is_const(dst_reg->var_off); 4022 4023 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4024 smin_val > smax_val || umin_val > umax_val) { 4025 /* Taint dst register if offset had invalid bounds derived from 4026 * e.g. dead branches. 4027 */ 4028 __mark_reg_unknown(dst_reg); 4029 return 0; 4030 } 4031 4032 if (!src_known && 4033 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4034 __mark_reg_unknown(dst_reg); 4035 return 0; 4036 } 4037 4038 switch (opcode) { 4039 case BPF_ADD: 4040 ret = sanitize_val_alu(env, insn); 4041 if (ret < 0) { 4042 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4043 return ret; 4044 } 4045 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4046 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4047 dst_reg->smin_value = S64_MIN; 4048 dst_reg->smax_value = S64_MAX; 4049 } else { 4050 dst_reg->smin_value += smin_val; 4051 dst_reg->smax_value += smax_val; 4052 } 4053 if (dst_reg->umin_value + umin_val < umin_val || 4054 dst_reg->umax_value + umax_val < umax_val) { 4055 dst_reg->umin_value = 0; 4056 dst_reg->umax_value = U64_MAX; 4057 } else { 4058 dst_reg->umin_value += umin_val; 4059 dst_reg->umax_value += umax_val; 4060 } 4061 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4062 break; 4063 case BPF_SUB: 4064 ret = sanitize_val_alu(env, insn); 4065 if (ret < 0) { 4066 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4067 return ret; 4068 } 4069 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4070 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4071 /* Overflow possible, we know nothing */ 4072 dst_reg->smin_value = S64_MIN; 4073 dst_reg->smax_value = S64_MAX; 4074 } else { 4075 dst_reg->smin_value -= smax_val; 4076 dst_reg->smax_value -= smin_val; 4077 } 4078 if (dst_reg->umin_value < umax_val) { 4079 /* Overflow possible, we know nothing */ 4080 dst_reg->umin_value = 0; 4081 dst_reg->umax_value = U64_MAX; 4082 } else { 4083 /* Cannot overflow (as long as bounds are consistent) */ 4084 dst_reg->umin_value -= umax_val; 4085 dst_reg->umax_value -= umin_val; 4086 } 4087 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4088 break; 4089 case BPF_MUL: 4090 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4091 if (smin_val < 0 || dst_reg->smin_value < 0) { 4092 /* Ain't nobody got time to multiply that sign */ 4093 __mark_reg_unbounded(dst_reg); 4094 __update_reg_bounds(dst_reg); 4095 break; 4096 } 4097 /* Both values are positive, so we can work with unsigned and 4098 * copy the result to signed (unless it exceeds S64_MAX). 4099 */ 4100 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4101 /* Potential overflow, we know nothing */ 4102 __mark_reg_unbounded(dst_reg); 4103 /* (except what we can learn from the var_off) */ 4104 __update_reg_bounds(dst_reg); 4105 break; 4106 } 4107 dst_reg->umin_value *= umin_val; 4108 dst_reg->umax_value *= umax_val; 4109 if (dst_reg->umax_value > S64_MAX) { 4110 /* Overflow possible, we know nothing */ 4111 dst_reg->smin_value = S64_MIN; 4112 dst_reg->smax_value = S64_MAX; 4113 } else { 4114 dst_reg->smin_value = dst_reg->umin_value; 4115 dst_reg->smax_value = dst_reg->umax_value; 4116 } 4117 break; 4118 case BPF_AND: 4119 if (src_known && dst_known) { 4120 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4121 src_reg.var_off.value); 4122 break; 4123 } 4124 /* We get our minimum from the var_off, since that's inherently 4125 * bitwise. Our maximum is the minimum of the operands' maxima. 4126 */ 4127 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4128 dst_reg->umin_value = dst_reg->var_off.value; 4129 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4130 if (dst_reg->smin_value < 0 || smin_val < 0) { 4131 /* Lose signed bounds when ANDing negative numbers, 4132 * ain't nobody got time for that. 4133 */ 4134 dst_reg->smin_value = S64_MIN; 4135 dst_reg->smax_value = S64_MAX; 4136 } else { 4137 /* ANDing two positives gives a positive, so safe to 4138 * cast result into s64. 4139 */ 4140 dst_reg->smin_value = dst_reg->umin_value; 4141 dst_reg->smax_value = dst_reg->umax_value; 4142 } 4143 /* We may learn something more from the var_off */ 4144 __update_reg_bounds(dst_reg); 4145 break; 4146 case BPF_OR: 4147 if (src_known && dst_known) { 4148 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4149 src_reg.var_off.value); 4150 break; 4151 } 4152 /* We get our maximum from the var_off, and our minimum is the 4153 * maximum of the operands' minima 4154 */ 4155 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4156 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4157 dst_reg->umax_value = dst_reg->var_off.value | 4158 dst_reg->var_off.mask; 4159 if (dst_reg->smin_value < 0 || smin_val < 0) { 4160 /* Lose signed bounds when ORing negative numbers, 4161 * ain't nobody got time for that. 4162 */ 4163 dst_reg->smin_value = S64_MIN; 4164 dst_reg->smax_value = S64_MAX; 4165 } else { 4166 /* ORing two positives gives a positive, so safe to 4167 * cast result into s64. 4168 */ 4169 dst_reg->smin_value = dst_reg->umin_value; 4170 dst_reg->smax_value = dst_reg->umax_value; 4171 } 4172 /* We may learn something more from the var_off */ 4173 __update_reg_bounds(dst_reg); 4174 break; 4175 case BPF_LSH: 4176 if (umax_val >= insn_bitness) { 4177 /* Shifts greater than 31 or 63 are undefined. 4178 * This includes shifts by a negative number. 4179 */ 4180 mark_reg_unknown(env, regs, insn->dst_reg); 4181 break; 4182 } 4183 /* We lose all sign bit information (except what we can pick 4184 * up from var_off) 4185 */ 4186 dst_reg->smin_value = S64_MIN; 4187 dst_reg->smax_value = S64_MAX; 4188 /* If we might shift our top bit out, then we know nothing */ 4189 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4190 dst_reg->umin_value = 0; 4191 dst_reg->umax_value = U64_MAX; 4192 } else { 4193 dst_reg->umin_value <<= umin_val; 4194 dst_reg->umax_value <<= umax_val; 4195 } 4196 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4197 /* We may learn something more from the var_off */ 4198 __update_reg_bounds(dst_reg); 4199 break; 4200 case BPF_RSH: 4201 if (umax_val >= insn_bitness) { 4202 /* Shifts greater than 31 or 63 are undefined. 4203 * This includes shifts by a negative number. 4204 */ 4205 mark_reg_unknown(env, regs, insn->dst_reg); 4206 break; 4207 } 4208 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4209 * be negative, then either: 4210 * 1) src_reg might be zero, so the sign bit of the result is 4211 * unknown, so we lose our signed bounds 4212 * 2) it's known negative, thus the unsigned bounds capture the 4213 * signed bounds 4214 * 3) the signed bounds cross zero, so they tell us nothing 4215 * about the result 4216 * If the value in dst_reg is known nonnegative, then again the 4217 * unsigned bounts capture the signed bounds. 4218 * Thus, in all cases it suffices to blow away our signed bounds 4219 * and rely on inferring new ones from the unsigned bounds and 4220 * var_off of the result. 4221 */ 4222 dst_reg->smin_value = S64_MIN; 4223 dst_reg->smax_value = S64_MAX; 4224 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4225 dst_reg->umin_value >>= umax_val; 4226 dst_reg->umax_value >>= umin_val; 4227 /* We may learn something more from the var_off */ 4228 __update_reg_bounds(dst_reg); 4229 break; 4230 case BPF_ARSH: 4231 if (umax_val >= insn_bitness) { 4232 /* Shifts greater than 31 or 63 are undefined. 4233 * This includes shifts by a negative number. 4234 */ 4235 mark_reg_unknown(env, regs, insn->dst_reg); 4236 break; 4237 } 4238 4239 /* Upon reaching here, src_known is true and 4240 * umax_val is equal to umin_val. 4241 */ 4242 dst_reg->smin_value >>= umin_val; 4243 dst_reg->smax_value >>= umin_val; 4244 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4245 4246 /* blow away the dst_reg umin_value/umax_value and rely on 4247 * dst_reg var_off to refine the result. 4248 */ 4249 dst_reg->umin_value = 0; 4250 dst_reg->umax_value = U64_MAX; 4251 __update_reg_bounds(dst_reg); 4252 break; 4253 default: 4254 mark_reg_unknown(env, regs, insn->dst_reg); 4255 break; 4256 } 4257 4258 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4259 /* 32-bit ALU ops are (32,32)->32 */ 4260 coerce_reg_to_size(dst_reg, 4); 4261 } 4262 4263 __reg_deduce_bounds(dst_reg); 4264 __reg_bound_offset(dst_reg); 4265 return 0; 4266 } 4267 4268 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4269 * and var_off. 4270 */ 4271 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4272 struct bpf_insn *insn) 4273 { 4274 struct bpf_verifier_state *vstate = env->cur_state; 4275 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4276 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4277 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4278 u8 opcode = BPF_OP(insn->code); 4279 4280 dst_reg = ®s[insn->dst_reg]; 4281 src_reg = NULL; 4282 if (dst_reg->type != SCALAR_VALUE) 4283 ptr_reg = dst_reg; 4284 if (BPF_SRC(insn->code) == BPF_X) { 4285 src_reg = ®s[insn->src_reg]; 4286 if (src_reg->type != SCALAR_VALUE) { 4287 if (dst_reg->type != SCALAR_VALUE) { 4288 /* Combining two pointers by any ALU op yields 4289 * an arbitrary scalar. Disallow all math except 4290 * pointer subtraction 4291 */ 4292 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4293 mark_reg_unknown(env, regs, insn->dst_reg); 4294 return 0; 4295 } 4296 verbose(env, "R%d pointer %s pointer prohibited\n", 4297 insn->dst_reg, 4298 bpf_alu_string[opcode >> 4]); 4299 return -EACCES; 4300 } else { 4301 /* scalar += pointer 4302 * This is legal, but we have to reverse our 4303 * src/dest handling in computing the range 4304 */ 4305 return adjust_ptr_min_max_vals(env, insn, 4306 src_reg, dst_reg); 4307 } 4308 } else if (ptr_reg) { 4309 /* pointer += scalar */ 4310 return adjust_ptr_min_max_vals(env, insn, 4311 dst_reg, src_reg); 4312 } 4313 } else { 4314 /* Pretend the src is a reg with a known value, since we only 4315 * need to be able to read from this state. 4316 */ 4317 off_reg.type = SCALAR_VALUE; 4318 __mark_reg_known(&off_reg, insn->imm); 4319 src_reg = &off_reg; 4320 if (ptr_reg) /* pointer += K */ 4321 return adjust_ptr_min_max_vals(env, insn, 4322 ptr_reg, src_reg); 4323 } 4324 4325 /* Got here implies adding two SCALAR_VALUEs */ 4326 if (WARN_ON_ONCE(ptr_reg)) { 4327 print_verifier_state(env, state); 4328 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4329 return -EINVAL; 4330 } 4331 if (WARN_ON(!src_reg)) { 4332 print_verifier_state(env, state); 4333 verbose(env, "verifier internal error: no src_reg\n"); 4334 return -EINVAL; 4335 } 4336 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4337 } 4338 4339 /* check validity of 32-bit and 64-bit arithmetic operations */ 4340 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4341 { 4342 struct bpf_reg_state *regs = cur_regs(env); 4343 u8 opcode = BPF_OP(insn->code); 4344 int err; 4345 4346 if (opcode == BPF_END || opcode == BPF_NEG) { 4347 if (opcode == BPF_NEG) { 4348 if (BPF_SRC(insn->code) != 0 || 4349 insn->src_reg != BPF_REG_0 || 4350 insn->off != 0 || insn->imm != 0) { 4351 verbose(env, "BPF_NEG uses reserved fields\n"); 4352 return -EINVAL; 4353 } 4354 } else { 4355 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4356 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4357 BPF_CLASS(insn->code) == BPF_ALU64) { 4358 verbose(env, "BPF_END uses reserved fields\n"); 4359 return -EINVAL; 4360 } 4361 } 4362 4363 /* check src operand */ 4364 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4365 if (err) 4366 return err; 4367 4368 if (is_pointer_value(env, insn->dst_reg)) { 4369 verbose(env, "R%d pointer arithmetic prohibited\n", 4370 insn->dst_reg); 4371 return -EACCES; 4372 } 4373 4374 /* check dest operand */ 4375 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4376 if (err) 4377 return err; 4378 4379 } else if (opcode == BPF_MOV) { 4380 4381 if (BPF_SRC(insn->code) == BPF_X) { 4382 if (insn->imm != 0 || insn->off != 0) { 4383 verbose(env, "BPF_MOV uses reserved fields\n"); 4384 return -EINVAL; 4385 } 4386 4387 /* check src operand */ 4388 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4389 if (err) 4390 return err; 4391 } else { 4392 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4393 verbose(env, "BPF_MOV uses reserved fields\n"); 4394 return -EINVAL; 4395 } 4396 } 4397 4398 /* check dest operand, mark as required later */ 4399 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4400 if (err) 4401 return err; 4402 4403 if (BPF_SRC(insn->code) == BPF_X) { 4404 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4405 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4406 4407 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4408 /* case: R1 = R2 4409 * copy register state to dest reg 4410 */ 4411 *dst_reg = *src_reg; 4412 dst_reg->live |= REG_LIVE_WRITTEN; 4413 dst_reg->subreg_def = DEF_NOT_SUBREG; 4414 } else { 4415 /* R1 = (u32) R2 */ 4416 if (is_pointer_value(env, insn->src_reg)) { 4417 verbose(env, 4418 "R%d partial copy of pointer\n", 4419 insn->src_reg); 4420 return -EACCES; 4421 } else if (src_reg->type == SCALAR_VALUE) { 4422 *dst_reg = *src_reg; 4423 dst_reg->live |= REG_LIVE_WRITTEN; 4424 dst_reg->subreg_def = env->insn_idx + 1; 4425 } else { 4426 mark_reg_unknown(env, regs, 4427 insn->dst_reg); 4428 } 4429 coerce_reg_to_size(dst_reg, 4); 4430 } 4431 } else { 4432 /* case: R = imm 4433 * remember the value we stored into this reg 4434 */ 4435 /* clear any state __mark_reg_known doesn't set */ 4436 mark_reg_unknown(env, regs, insn->dst_reg); 4437 regs[insn->dst_reg].type = SCALAR_VALUE; 4438 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4439 __mark_reg_known(regs + insn->dst_reg, 4440 insn->imm); 4441 } else { 4442 __mark_reg_known(regs + insn->dst_reg, 4443 (u32)insn->imm); 4444 } 4445 } 4446 4447 } else if (opcode > BPF_END) { 4448 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4449 return -EINVAL; 4450 4451 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4452 4453 if (BPF_SRC(insn->code) == BPF_X) { 4454 if (insn->imm != 0 || insn->off != 0) { 4455 verbose(env, "BPF_ALU uses reserved fields\n"); 4456 return -EINVAL; 4457 } 4458 /* check src1 operand */ 4459 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4460 if (err) 4461 return err; 4462 } else { 4463 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4464 verbose(env, "BPF_ALU uses reserved fields\n"); 4465 return -EINVAL; 4466 } 4467 } 4468 4469 /* check src2 operand */ 4470 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4471 if (err) 4472 return err; 4473 4474 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4475 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4476 verbose(env, "div by zero\n"); 4477 return -EINVAL; 4478 } 4479 4480 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4481 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4482 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4483 4484 if (insn->imm < 0 || insn->imm >= size) { 4485 verbose(env, "invalid shift %d\n", insn->imm); 4486 return -EINVAL; 4487 } 4488 } 4489 4490 /* check dest operand */ 4491 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4492 if (err) 4493 return err; 4494 4495 return adjust_reg_min_max_vals(env, insn); 4496 } 4497 4498 return 0; 4499 } 4500 4501 static void __find_good_pkt_pointers(struct bpf_func_state *state, 4502 struct bpf_reg_state *dst_reg, 4503 enum bpf_reg_type type, u16 new_range) 4504 { 4505 struct bpf_reg_state *reg; 4506 int i; 4507 4508 for (i = 0; i < MAX_BPF_REG; i++) { 4509 reg = &state->regs[i]; 4510 if (reg->type == type && reg->id == dst_reg->id) 4511 /* keep the maximum range already checked */ 4512 reg->range = max(reg->range, new_range); 4513 } 4514 4515 bpf_for_each_spilled_reg(i, state, reg) { 4516 if (!reg) 4517 continue; 4518 if (reg->type == type && reg->id == dst_reg->id) 4519 reg->range = max(reg->range, new_range); 4520 } 4521 } 4522 4523 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4524 struct bpf_reg_state *dst_reg, 4525 enum bpf_reg_type type, 4526 bool range_right_open) 4527 { 4528 u16 new_range; 4529 int i; 4530 4531 if (dst_reg->off < 0 || 4532 (dst_reg->off == 0 && range_right_open)) 4533 /* This doesn't give us any range */ 4534 return; 4535 4536 if (dst_reg->umax_value > MAX_PACKET_OFF || 4537 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4538 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4539 * than pkt_end, but that's because it's also less than pkt. 4540 */ 4541 return; 4542 4543 new_range = dst_reg->off; 4544 if (range_right_open) 4545 new_range--; 4546 4547 /* Examples for register markings: 4548 * 4549 * pkt_data in dst register: 4550 * 4551 * r2 = r3; 4552 * r2 += 8; 4553 * if (r2 > pkt_end) goto <handle exception> 4554 * <access okay> 4555 * 4556 * r2 = r3; 4557 * r2 += 8; 4558 * if (r2 < pkt_end) goto <access okay> 4559 * <handle exception> 4560 * 4561 * Where: 4562 * r2 == dst_reg, pkt_end == src_reg 4563 * r2=pkt(id=n,off=8,r=0) 4564 * r3=pkt(id=n,off=0,r=0) 4565 * 4566 * pkt_data in src register: 4567 * 4568 * r2 = r3; 4569 * r2 += 8; 4570 * if (pkt_end >= r2) goto <access okay> 4571 * <handle exception> 4572 * 4573 * r2 = r3; 4574 * r2 += 8; 4575 * if (pkt_end <= r2) goto <handle exception> 4576 * <access okay> 4577 * 4578 * Where: 4579 * pkt_end == dst_reg, r2 == src_reg 4580 * r2=pkt(id=n,off=8,r=0) 4581 * r3=pkt(id=n,off=0,r=0) 4582 * 4583 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4584 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4585 * and [r3, r3 + 8-1) respectively is safe to access depending on 4586 * the check. 4587 */ 4588 4589 /* If our ids match, then we must have the same max_value. And we 4590 * don't care about the other reg's fixed offset, since if it's too big 4591 * the range won't allow anything. 4592 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4593 */ 4594 for (i = 0; i <= vstate->curframe; i++) 4595 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 4596 new_range); 4597 } 4598 4599 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4600 * and return: 4601 * 1 - branch will be taken and "goto target" will be executed 4602 * 0 - branch will not be taken and fall-through to next insn 4603 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4604 */ 4605 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4606 bool is_jmp32) 4607 { 4608 struct bpf_reg_state reg_lo; 4609 s64 sval; 4610 4611 if (__is_pointer_value(false, reg)) 4612 return -1; 4613 4614 if (is_jmp32) { 4615 reg_lo = *reg; 4616 reg = ®_lo; 4617 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4618 * could truncate high bits and update umin/umax according to 4619 * information of low bits. 4620 */ 4621 coerce_reg_to_size(reg, 4); 4622 /* smin/smax need special handling. For example, after coerce, 4623 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4624 * used as operand to JMP32. It is a negative number from s32's 4625 * point of view, while it is a positive number when seen as 4626 * s64. The smin/smax are kept as s64, therefore, when used with 4627 * JMP32, they need to be transformed into s32, then sign 4628 * extended back to s64. 4629 * 4630 * Also, smin/smax were copied from umin/umax. If umin/umax has 4631 * different sign bit, then min/max relationship doesn't 4632 * maintain after casting into s32, for this case, set smin/smax 4633 * to safest range. 4634 */ 4635 if ((reg->umax_value ^ reg->umin_value) & 4636 (1ULL << 31)) { 4637 reg->smin_value = S32_MIN; 4638 reg->smax_value = S32_MAX; 4639 } 4640 reg->smin_value = (s64)(s32)reg->smin_value; 4641 reg->smax_value = (s64)(s32)reg->smax_value; 4642 4643 val = (u32)val; 4644 sval = (s64)(s32)val; 4645 } else { 4646 sval = (s64)val; 4647 } 4648 4649 switch (opcode) { 4650 case BPF_JEQ: 4651 if (tnum_is_const(reg->var_off)) 4652 return !!tnum_equals_const(reg->var_off, val); 4653 break; 4654 case BPF_JNE: 4655 if (tnum_is_const(reg->var_off)) 4656 return !tnum_equals_const(reg->var_off, val); 4657 break; 4658 case BPF_JSET: 4659 if ((~reg->var_off.mask & reg->var_off.value) & val) 4660 return 1; 4661 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4662 return 0; 4663 break; 4664 case BPF_JGT: 4665 if (reg->umin_value > val) 4666 return 1; 4667 else if (reg->umax_value <= val) 4668 return 0; 4669 break; 4670 case BPF_JSGT: 4671 if (reg->smin_value > sval) 4672 return 1; 4673 else if (reg->smax_value < sval) 4674 return 0; 4675 break; 4676 case BPF_JLT: 4677 if (reg->umax_value < val) 4678 return 1; 4679 else if (reg->umin_value >= val) 4680 return 0; 4681 break; 4682 case BPF_JSLT: 4683 if (reg->smax_value < sval) 4684 return 1; 4685 else if (reg->smin_value >= sval) 4686 return 0; 4687 break; 4688 case BPF_JGE: 4689 if (reg->umin_value >= val) 4690 return 1; 4691 else if (reg->umax_value < val) 4692 return 0; 4693 break; 4694 case BPF_JSGE: 4695 if (reg->smin_value >= sval) 4696 return 1; 4697 else if (reg->smax_value < sval) 4698 return 0; 4699 break; 4700 case BPF_JLE: 4701 if (reg->umax_value <= val) 4702 return 1; 4703 else if (reg->umin_value > val) 4704 return 0; 4705 break; 4706 case BPF_JSLE: 4707 if (reg->smax_value <= sval) 4708 return 1; 4709 else if (reg->smin_value > sval) 4710 return 0; 4711 break; 4712 } 4713 4714 return -1; 4715 } 4716 4717 /* Generate min value of the high 32-bit from TNUM info. */ 4718 static u64 gen_hi_min(struct tnum var) 4719 { 4720 return var.value & ~0xffffffffULL; 4721 } 4722 4723 /* Generate max value of the high 32-bit from TNUM info. */ 4724 static u64 gen_hi_max(struct tnum var) 4725 { 4726 return (var.value | var.mask) & ~0xffffffffULL; 4727 } 4728 4729 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4730 * are with the same signedness. 4731 */ 4732 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4733 { 4734 return ((s32)sval >= 0 && 4735 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4736 ((s32)sval < 0 && 4737 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4738 } 4739 4740 /* Adjusts the register min/max values in the case that the dst_reg is the 4741 * variable register that we are working on, and src_reg is a constant or we're 4742 * simply doing a BPF_K check. 4743 * In JEQ/JNE cases we also adjust the var_off values. 4744 */ 4745 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4746 struct bpf_reg_state *false_reg, u64 val, 4747 u8 opcode, bool is_jmp32) 4748 { 4749 s64 sval; 4750 4751 /* If the dst_reg is a pointer, we can't learn anything about its 4752 * variable offset from the compare (unless src_reg were a pointer into 4753 * the same object, but we don't bother with that. 4754 * Since false_reg and true_reg have the same type by construction, we 4755 * only need to check one of them for pointerness. 4756 */ 4757 if (__is_pointer_value(false, false_reg)) 4758 return; 4759 4760 val = is_jmp32 ? (u32)val : val; 4761 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4762 4763 switch (opcode) { 4764 case BPF_JEQ: 4765 case BPF_JNE: 4766 { 4767 struct bpf_reg_state *reg = 4768 opcode == BPF_JEQ ? true_reg : false_reg; 4769 4770 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4771 * if it is true we know the value for sure. Likewise for 4772 * BPF_JNE. 4773 */ 4774 if (is_jmp32) { 4775 u64 old_v = reg->var_off.value; 4776 u64 hi_mask = ~0xffffffffULL; 4777 4778 reg->var_off.value = (old_v & hi_mask) | val; 4779 reg->var_off.mask &= hi_mask; 4780 } else { 4781 __mark_reg_known(reg, val); 4782 } 4783 break; 4784 } 4785 case BPF_JSET: 4786 false_reg->var_off = tnum_and(false_reg->var_off, 4787 tnum_const(~val)); 4788 if (is_power_of_2(val)) 4789 true_reg->var_off = tnum_or(true_reg->var_off, 4790 tnum_const(val)); 4791 break; 4792 case BPF_JGE: 4793 case BPF_JGT: 4794 { 4795 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4796 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4797 4798 if (is_jmp32) { 4799 false_umax += gen_hi_max(false_reg->var_off); 4800 true_umin += gen_hi_min(true_reg->var_off); 4801 } 4802 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4803 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4804 break; 4805 } 4806 case BPF_JSGE: 4807 case BPF_JSGT: 4808 { 4809 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4810 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4811 4812 /* If the full s64 was not sign-extended from s32 then don't 4813 * deduct further info. 4814 */ 4815 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4816 break; 4817 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4818 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4819 break; 4820 } 4821 case BPF_JLE: 4822 case BPF_JLT: 4823 { 4824 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4825 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4826 4827 if (is_jmp32) { 4828 false_umin += gen_hi_min(false_reg->var_off); 4829 true_umax += gen_hi_max(true_reg->var_off); 4830 } 4831 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4832 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4833 break; 4834 } 4835 case BPF_JSLE: 4836 case BPF_JSLT: 4837 { 4838 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4839 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4840 4841 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4842 break; 4843 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4844 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4845 break; 4846 } 4847 default: 4848 break; 4849 } 4850 4851 __reg_deduce_bounds(false_reg); 4852 __reg_deduce_bounds(true_reg); 4853 /* We might have learned some bits from the bounds. */ 4854 __reg_bound_offset(false_reg); 4855 __reg_bound_offset(true_reg); 4856 /* Intersecting with the old var_off might have improved our bounds 4857 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4858 * then new var_off is (0; 0x7f...fc) which improves our umax. 4859 */ 4860 __update_reg_bounds(false_reg); 4861 __update_reg_bounds(true_reg); 4862 } 4863 4864 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4865 * the variable reg. 4866 */ 4867 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4868 struct bpf_reg_state *false_reg, u64 val, 4869 u8 opcode, bool is_jmp32) 4870 { 4871 s64 sval; 4872 4873 if (__is_pointer_value(false, false_reg)) 4874 return; 4875 4876 val = is_jmp32 ? (u32)val : val; 4877 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4878 4879 switch (opcode) { 4880 case BPF_JEQ: 4881 case BPF_JNE: 4882 { 4883 struct bpf_reg_state *reg = 4884 opcode == BPF_JEQ ? true_reg : false_reg; 4885 4886 if (is_jmp32) { 4887 u64 old_v = reg->var_off.value; 4888 u64 hi_mask = ~0xffffffffULL; 4889 4890 reg->var_off.value = (old_v & hi_mask) | val; 4891 reg->var_off.mask &= hi_mask; 4892 } else { 4893 __mark_reg_known(reg, val); 4894 } 4895 break; 4896 } 4897 case BPF_JSET: 4898 false_reg->var_off = tnum_and(false_reg->var_off, 4899 tnum_const(~val)); 4900 if (is_power_of_2(val)) 4901 true_reg->var_off = tnum_or(true_reg->var_off, 4902 tnum_const(val)); 4903 break; 4904 case BPF_JGE: 4905 case BPF_JGT: 4906 { 4907 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4908 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4909 4910 if (is_jmp32) { 4911 false_umin += gen_hi_min(false_reg->var_off); 4912 true_umax += gen_hi_max(true_reg->var_off); 4913 } 4914 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4915 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4916 break; 4917 } 4918 case BPF_JSGE: 4919 case BPF_JSGT: 4920 { 4921 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4922 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4923 4924 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4925 break; 4926 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4927 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4928 break; 4929 } 4930 case BPF_JLE: 4931 case BPF_JLT: 4932 { 4933 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4934 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4935 4936 if (is_jmp32) { 4937 false_umax += gen_hi_max(false_reg->var_off); 4938 true_umin += gen_hi_min(true_reg->var_off); 4939 } 4940 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4941 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4942 break; 4943 } 4944 case BPF_JSLE: 4945 case BPF_JSLT: 4946 { 4947 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4948 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4949 4950 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4951 break; 4952 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4953 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4954 break; 4955 } 4956 default: 4957 break; 4958 } 4959 4960 __reg_deduce_bounds(false_reg); 4961 __reg_deduce_bounds(true_reg); 4962 /* We might have learned some bits from the bounds. */ 4963 __reg_bound_offset(false_reg); 4964 __reg_bound_offset(true_reg); 4965 /* Intersecting with the old var_off might have improved our bounds 4966 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4967 * then new var_off is (0; 0x7f...fc) which improves our umax. 4968 */ 4969 __update_reg_bounds(false_reg); 4970 __update_reg_bounds(true_reg); 4971 } 4972 4973 /* Regs are known to be equal, so intersect their min/max/var_off */ 4974 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4975 struct bpf_reg_state *dst_reg) 4976 { 4977 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4978 dst_reg->umin_value); 4979 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4980 dst_reg->umax_value); 4981 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4982 dst_reg->smin_value); 4983 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4984 dst_reg->smax_value); 4985 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4986 dst_reg->var_off); 4987 /* We might have learned new bounds from the var_off. */ 4988 __update_reg_bounds(src_reg); 4989 __update_reg_bounds(dst_reg); 4990 /* We might have learned something about the sign bit. */ 4991 __reg_deduce_bounds(src_reg); 4992 __reg_deduce_bounds(dst_reg); 4993 /* We might have learned some bits from the bounds. */ 4994 __reg_bound_offset(src_reg); 4995 __reg_bound_offset(dst_reg); 4996 /* Intersecting with the old var_off might have improved our bounds 4997 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4998 * then new var_off is (0; 0x7f...fc) which improves our umax. 4999 */ 5000 __update_reg_bounds(src_reg); 5001 __update_reg_bounds(dst_reg); 5002 } 5003 5004 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5005 struct bpf_reg_state *true_dst, 5006 struct bpf_reg_state *false_src, 5007 struct bpf_reg_state *false_dst, 5008 u8 opcode) 5009 { 5010 switch (opcode) { 5011 case BPF_JEQ: 5012 __reg_combine_min_max(true_src, true_dst); 5013 break; 5014 case BPF_JNE: 5015 __reg_combine_min_max(false_src, false_dst); 5016 break; 5017 } 5018 } 5019 5020 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5021 struct bpf_reg_state *reg, u32 id, 5022 bool is_null) 5023 { 5024 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5025 /* Old offset (both fixed and variable parts) should 5026 * have been known-zero, because we don't allow pointer 5027 * arithmetic on pointers that might be NULL. 5028 */ 5029 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5030 !tnum_equals_const(reg->var_off, 0) || 5031 reg->off)) { 5032 __mark_reg_known_zero(reg); 5033 reg->off = 0; 5034 } 5035 if (is_null) { 5036 reg->type = SCALAR_VALUE; 5037 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5038 if (reg->map_ptr->inner_map_meta) { 5039 reg->type = CONST_PTR_TO_MAP; 5040 reg->map_ptr = reg->map_ptr->inner_map_meta; 5041 } else { 5042 reg->type = PTR_TO_MAP_VALUE; 5043 } 5044 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5045 reg->type = PTR_TO_SOCKET; 5046 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5047 reg->type = PTR_TO_SOCK_COMMON; 5048 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5049 reg->type = PTR_TO_TCP_SOCK; 5050 } 5051 if (is_null) { 5052 /* We don't need id and ref_obj_id from this point 5053 * onwards anymore, thus we should better reset it, 5054 * so that state pruning has chances to take effect. 5055 */ 5056 reg->id = 0; 5057 reg->ref_obj_id = 0; 5058 } else if (!reg_may_point_to_spin_lock(reg)) { 5059 /* For not-NULL ptr, reg->ref_obj_id will be reset 5060 * in release_reg_references(). 5061 * 5062 * reg->id is still used by spin_lock ptr. Other 5063 * than spin_lock ptr type, reg->id can be reset. 5064 */ 5065 reg->id = 0; 5066 } 5067 } 5068 } 5069 5070 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5071 bool is_null) 5072 { 5073 struct bpf_reg_state *reg; 5074 int i; 5075 5076 for (i = 0; i < MAX_BPF_REG; i++) 5077 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5078 5079 bpf_for_each_spilled_reg(i, state, reg) { 5080 if (!reg) 5081 continue; 5082 mark_ptr_or_null_reg(state, reg, id, is_null); 5083 } 5084 } 5085 5086 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5087 * be folded together at some point. 5088 */ 5089 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5090 bool is_null) 5091 { 5092 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5093 struct bpf_reg_state *regs = state->regs; 5094 u32 ref_obj_id = regs[regno].ref_obj_id; 5095 u32 id = regs[regno].id; 5096 int i; 5097 5098 if (ref_obj_id && ref_obj_id == id && is_null) 5099 /* regs[regno] is in the " == NULL" branch. 5100 * No one could have freed the reference state before 5101 * doing the NULL check. 5102 */ 5103 WARN_ON_ONCE(release_reference_state(state, id)); 5104 5105 for (i = 0; i <= vstate->curframe; i++) 5106 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5107 } 5108 5109 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5110 struct bpf_reg_state *dst_reg, 5111 struct bpf_reg_state *src_reg, 5112 struct bpf_verifier_state *this_branch, 5113 struct bpf_verifier_state *other_branch) 5114 { 5115 if (BPF_SRC(insn->code) != BPF_X) 5116 return false; 5117 5118 /* Pointers are always 64-bit. */ 5119 if (BPF_CLASS(insn->code) == BPF_JMP32) 5120 return false; 5121 5122 switch (BPF_OP(insn->code)) { 5123 case BPF_JGT: 5124 if ((dst_reg->type == PTR_TO_PACKET && 5125 src_reg->type == PTR_TO_PACKET_END) || 5126 (dst_reg->type == PTR_TO_PACKET_META && 5127 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5128 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5129 find_good_pkt_pointers(this_branch, dst_reg, 5130 dst_reg->type, false); 5131 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5132 src_reg->type == PTR_TO_PACKET) || 5133 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5134 src_reg->type == PTR_TO_PACKET_META)) { 5135 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5136 find_good_pkt_pointers(other_branch, src_reg, 5137 src_reg->type, true); 5138 } else { 5139 return false; 5140 } 5141 break; 5142 case BPF_JLT: 5143 if ((dst_reg->type == PTR_TO_PACKET && 5144 src_reg->type == PTR_TO_PACKET_END) || 5145 (dst_reg->type == PTR_TO_PACKET_META && 5146 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5147 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5148 find_good_pkt_pointers(other_branch, dst_reg, 5149 dst_reg->type, true); 5150 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5151 src_reg->type == PTR_TO_PACKET) || 5152 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5153 src_reg->type == PTR_TO_PACKET_META)) { 5154 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5155 find_good_pkt_pointers(this_branch, src_reg, 5156 src_reg->type, false); 5157 } else { 5158 return false; 5159 } 5160 break; 5161 case BPF_JGE: 5162 if ((dst_reg->type == PTR_TO_PACKET && 5163 src_reg->type == PTR_TO_PACKET_END) || 5164 (dst_reg->type == PTR_TO_PACKET_META && 5165 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5166 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5167 find_good_pkt_pointers(this_branch, dst_reg, 5168 dst_reg->type, true); 5169 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5170 src_reg->type == PTR_TO_PACKET) || 5171 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5172 src_reg->type == PTR_TO_PACKET_META)) { 5173 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5174 find_good_pkt_pointers(other_branch, src_reg, 5175 src_reg->type, false); 5176 } else { 5177 return false; 5178 } 5179 break; 5180 case BPF_JLE: 5181 if ((dst_reg->type == PTR_TO_PACKET && 5182 src_reg->type == PTR_TO_PACKET_END) || 5183 (dst_reg->type == PTR_TO_PACKET_META && 5184 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5185 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5186 find_good_pkt_pointers(other_branch, dst_reg, 5187 dst_reg->type, false); 5188 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5189 src_reg->type == PTR_TO_PACKET) || 5190 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5191 src_reg->type == PTR_TO_PACKET_META)) { 5192 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5193 find_good_pkt_pointers(this_branch, src_reg, 5194 src_reg->type, true); 5195 } else { 5196 return false; 5197 } 5198 break; 5199 default: 5200 return false; 5201 } 5202 5203 return true; 5204 } 5205 5206 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5207 struct bpf_insn *insn, int *insn_idx) 5208 { 5209 struct bpf_verifier_state *this_branch = env->cur_state; 5210 struct bpf_verifier_state *other_branch; 5211 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5212 struct bpf_reg_state *dst_reg, *other_branch_regs; 5213 u8 opcode = BPF_OP(insn->code); 5214 bool is_jmp32; 5215 int err; 5216 5217 /* Only conditional jumps are expected to reach here. */ 5218 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5219 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5220 return -EINVAL; 5221 } 5222 5223 if (BPF_SRC(insn->code) == BPF_X) { 5224 if (insn->imm != 0) { 5225 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5226 return -EINVAL; 5227 } 5228 5229 /* check src1 operand */ 5230 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5231 if (err) 5232 return err; 5233 5234 if (is_pointer_value(env, insn->src_reg)) { 5235 verbose(env, "R%d pointer comparison prohibited\n", 5236 insn->src_reg); 5237 return -EACCES; 5238 } 5239 } else { 5240 if (insn->src_reg != BPF_REG_0) { 5241 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5242 return -EINVAL; 5243 } 5244 } 5245 5246 /* check src2 operand */ 5247 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5248 if (err) 5249 return err; 5250 5251 dst_reg = ®s[insn->dst_reg]; 5252 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5253 5254 if (BPF_SRC(insn->code) == BPF_K) { 5255 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 5256 is_jmp32); 5257 5258 if (pred == 1) { 5259 /* only follow the goto, ignore fall-through */ 5260 *insn_idx += insn->off; 5261 return 0; 5262 } else if (pred == 0) { 5263 /* only follow fall-through branch, since 5264 * that's where the program will go 5265 */ 5266 return 0; 5267 } 5268 } 5269 5270 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5271 false); 5272 if (!other_branch) 5273 return -EFAULT; 5274 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5275 5276 /* detect if we are comparing against a constant value so we can adjust 5277 * our min/max values for our dst register. 5278 * this is only legit if both are scalars (or pointers to the same 5279 * object, I suppose, but we don't support that right now), because 5280 * otherwise the different base pointers mean the offsets aren't 5281 * comparable. 5282 */ 5283 if (BPF_SRC(insn->code) == BPF_X) { 5284 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5285 struct bpf_reg_state lo_reg0 = *dst_reg; 5286 struct bpf_reg_state lo_reg1 = *src_reg; 5287 struct bpf_reg_state *src_lo, *dst_lo; 5288 5289 dst_lo = &lo_reg0; 5290 src_lo = &lo_reg1; 5291 coerce_reg_to_size(dst_lo, 4); 5292 coerce_reg_to_size(src_lo, 4); 5293 5294 if (dst_reg->type == SCALAR_VALUE && 5295 src_reg->type == SCALAR_VALUE) { 5296 if (tnum_is_const(src_reg->var_off) || 5297 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5298 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5299 dst_reg, 5300 is_jmp32 5301 ? src_lo->var_off.value 5302 : src_reg->var_off.value, 5303 opcode, is_jmp32); 5304 else if (tnum_is_const(dst_reg->var_off) || 5305 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5306 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5307 src_reg, 5308 is_jmp32 5309 ? dst_lo->var_off.value 5310 : dst_reg->var_off.value, 5311 opcode, is_jmp32); 5312 else if (!is_jmp32 && 5313 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5314 /* Comparing for equality, we can combine knowledge */ 5315 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5316 &other_branch_regs[insn->dst_reg], 5317 src_reg, dst_reg, opcode); 5318 } 5319 } else if (dst_reg->type == SCALAR_VALUE) { 5320 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5321 dst_reg, insn->imm, opcode, is_jmp32); 5322 } 5323 5324 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5325 * NOTE: these optimizations below are related with pointer comparison 5326 * which will never be JMP32. 5327 */ 5328 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5329 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5330 reg_type_may_be_null(dst_reg->type)) { 5331 /* Mark all identical registers in each branch as either 5332 * safe or unknown depending R == 0 or R != 0 conditional. 5333 */ 5334 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5335 opcode == BPF_JNE); 5336 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5337 opcode == BPF_JEQ); 5338 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5339 this_branch, other_branch) && 5340 is_pointer_value(env, insn->dst_reg)) { 5341 verbose(env, "R%d pointer comparison prohibited\n", 5342 insn->dst_reg); 5343 return -EACCES; 5344 } 5345 if (env->log.level & BPF_LOG_LEVEL) 5346 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5347 return 0; 5348 } 5349 5350 /* verify BPF_LD_IMM64 instruction */ 5351 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5352 { 5353 struct bpf_insn_aux_data *aux = cur_aux(env); 5354 struct bpf_reg_state *regs = cur_regs(env); 5355 struct bpf_map *map; 5356 int err; 5357 5358 if (BPF_SIZE(insn->code) != BPF_DW) { 5359 verbose(env, "invalid BPF_LD_IMM insn\n"); 5360 return -EINVAL; 5361 } 5362 if (insn->off != 0) { 5363 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5364 return -EINVAL; 5365 } 5366 5367 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5368 if (err) 5369 return err; 5370 5371 if (insn->src_reg == 0) { 5372 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5373 5374 regs[insn->dst_reg].type = SCALAR_VALUE; 5375 __mark_reg_known(®s[insn->dst_reg], imm); 5376 return 0; 5377 } 5378 5379 map = env->used_maps[aux->map_index]; 5380 mark_reg_known_zero(env, regs, insn->dst_reg); 5381 regs[insn->dst_reg].map_ptr = map; 5382 5383 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5384 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5385 regs[insn->dst_reg].off = aux->map_off; 5386 if (map_value_has_spin_lock(map)) 5387 regs[insn->dst_reg].id = ++env->id_gen; 5388 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5389 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5390 } else { 5391 verbose(env, "bpf verifier is misconfigured\n"); 5392 return -EINVAL; 5393 } 5394 5395 return 0; 5396 } 5397 5398 static bool may_access_skb(enum bpf_prog_type type) 5399 { 5400 switch (type) { 5401 case BPF_PROG_TYPE_SOCKET_FILTER: 5402 case BPF_PROG_TYPE_SCHED_CLS: 5403 case BPF_PROG_TYPE_SCHED_ACT: 5404 return true; 5405 default: 5406 return false; 5407 } 5408 } 5409 5410 /* verify safety of LD_ABS|LD_IND instructions: 5411 * - they can only appear in the programs where ctx == skb 5412 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5413 * preserve R6-R9, and store return value into R0 5414 * 5415 * Implicit input: 5416 * ctx == skb == R6 == CTX 5417 * 5418 * Explicit input: 5419 * SRC == any register 5420 * IMM == 32-bit immediate 5421 * 5422 * Output: 5423 * R0 - 8/16/32-bit skb data converted to cpu endianness 5424 */ 5425 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5426 { 5427 struct bpf_reg_state *regs = cur_regs(env); 5428 u8 mode = BPF_MODE(insn->code); 5429 int i, err; 5430 5431 if (!may_access_skb(env->prog->type)) { 5432 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5433 return -EINVAL; 5434 } 5435 5436 if (!env->ops->gen_ld_abs) { 5437 verbose(env, "bpf verifier is misconfigured\n"); 5438 return -EINVAL; 5439 } 5440 5441 if (env->subprog_cnt > 1) { 5442 /* when program has LD_ABS insn JITs and interpreter assume 5443 * that r1 == ctx == skb which is not the case for callees 5444 * that can have arbitrary arguments. It's problematic 5445 * for main prog as well since JITs would need to analyze 5446 * all functions in order to make proper register save/restore 5447 * decisions in the main prog. Hence disallow LD_ABS with calls 5448 */ 5449 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5450 return -EINVAL; 5451 } 5452 5453 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5454 BPF_SIZE(insn->code) == BPF_DW || 5455 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5456 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5457 return -EINVAL; 5458 } 5459 5460 /* check whether implicit source operand (register R6) is readable */ 5461 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5462 if (err) 5463 return err; 5464 5465 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5466 * gen_ld_abs() may terminate the program at runtime, leading to 5467 * reference leak. 5468 */ 5469 err = check_reference_leak(env); 5470 if (err) { 5471 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5472 return err; 5473 } 5474 5475 if (env->cur_state->active_spin_lock) { 5476 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5477 return -EINVAL; 5478 } 5479 5480 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5481 verbose(env, 5482 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5483 return -EINVAL; 5484 } 5485 5486 if (mode == BPF_IND) { 5487 /* check explicit source operand */ 5488 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5489 if (err) 5490 return err; 5491 } 5492 5493 /* reset caller saved regs to unreadable */ 5494 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5495 mark_reg_not_init(env, regs, caller_saved[i]); 5496 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5497 } 5498 5499 /* mark destination R0 register as readable, since it contains 5500 * the value fetched from the packet. 5501 * Already marked as written above. 5502 */ 5503 mark_reg_unknown(env, regs, BPF_REG_0); 5504 /* ld_abs load up to 32-bit skb data. */ 5505 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 5506 return 0; 5507 } 5508 5509 static int check_return_code(struct bpf_verifier_env *env) 5510 { 5511 struct tnum enforce_attach_type_range = tnum_unknown; 5512 struct bpf_reg_state *reg; 5513 struct tnum range = tnum_range(0, 1); 5514 5515 switch (env->prog->type) { 5516 case BPF_PROG_TYPE_CGROUP_SKB: 5517 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 5518 range = tnum_range(0, 3); 5519 enforce_attach_type_range = tnum_range(2, 3); 5520 } 5521 case BPF_PROG_TYPE_CGROUP_SOCK: 5522 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5523 case BPF_PROG_TYPE_SOCK_OPS: 5524 case BPF_PROG_TYPE_CGROUP_DEVICE: 5525 case BPF_PROG_TYPE_CGROUP_SYSCTL: 5526 break; 5527 default: 5528 return 0; 5529 } 5530 5531 reg = cur_regs(env) + BPF_REG_0; 5532 if (reg->type != SCALAR_VALUE) { 5533 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5534 reg_type_str[reg->type]); 5535 return -EINVAL; 5536 } 5537 5538 if (!tnum_in(range, reg->var_off)) { 5539 char tn_buf[48]; 5540 5541 verbose(env, "At program exit the register R0 "); 5542 if (!tnum_is_unknown(reg->var_off)) { 5543 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5544 verbose(env, "has value %s", tn_buf); 5545 } else { 5546 verbose(env, "has unknown scalar value"); 5547 } 5548 tnum_strn(tn_buf, sizeof(tn_buf), range); 5549 verbose(env, " should have been %s\n", tn_buf); 5550 return -EINVAL; 5551 } 5552 5553 if (!tnum_is_unknown(enforce_attach_type_range) && 5554 tnum_in(enforce_attach_type_range, reg->var_off)) 5555 env->prog->enforce_expected_attach_type = 1; 5556 return 0; 5557 } 5558 5559 /* non-recursive DFS pseudo code 5560 * 1 procedure DFS-iterative(G,v): 5561 * 2 label v as discovered 5562 * 3 let S be a stack 5563 * 4 S.push(v) 5564 * 5 while S is not empty 5565 * 6 t <- S.pop() 5566 * 7 if t is what we're looking for: 5567 * 8 return t 5568 * 9 for all edges e in G.adjacentEdges(t) do 5569 * 10 if edge e is already labelled 5570 * 11 continue with the next edge 5571 * 12 w <- G.adjacentVertex(t,e) 5572 * 13 if vertex w is not discovered and not explored 5573 * 14 label e as tree-edge 5574 * 15 label w as discovered 5575 * 16 S.push(w) 5576 * 17 continue at 5 5577 * 18 else if vertex w is discovered 5578 * 19 label e as back-edge 5579 * 20 else 5580 * 21 // vertex w is explored 5581 * 22 label e as forward- or cross-edge 5582 * 23 label t as explored 5583 * 24 S.pop() 5584 * 5585 * convention: 5586 * 0x10 - discovered 5587 * 0x11 - discovered and fall-through edge labelled 5588 * 0x12 - discovered and fall-through and branch edges labelled 5589 * 0x20 - explored 5590 */ 5591 5592 enum { 5593 DISCOVERED = 0x10, 5594 EXPLORED = 0x20, 5595 FALLTHROUGH = 1, 5596 BRANCH = 2, 5597 }; 5598 5599 static u32 state_htab_size(struct bpf_verifier_env *env) 5600 { 5601 return env->prog->len; 5602 } 5603 5604 static struct bpf_verifier_state_list **explored_state( 5605 struct bpf_verifier_env *env, 5606 int idx) 5607 { 5608 struct bpf_verifier_state *cur = env->cur_state; 5609 struct bpf_func_state *state = cur->frame[cur->curframe]; 5610 5611 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 5612 } 5613 5614 static void init_explored_state(struct bpf_verifier_env *env, int idx) 5615 { 5616 env->insn_aux_data[idx].prune_point = true; 5617 } 5618 5619 /* t, w, e - match pseudo-code above: 5620 * t - index of current instruction 5621 * w - next instruction 5622 * e - edge 5623 */ 5624 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5625 { 5626 int *insn_stack = env->cfg.insn_stack; 5627 int *insn_state = env->cfg.insn_state; 5628 5629 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5630 return 0; 5631 5632 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5633 return 0; 5634 5635 if (w < 0 || w >= env->prog->len) { 5636 verbose_linfo(env, t, "%d: ", t); 5637 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5638 return -EINVAL; 5639 } 5640 5641 if (e == BRANCH) 5642 /* mark branch target for state pruning */ 5643 init_explored_state(env, w); 5644 5645 if (insn_state[w] == 0) { 5646 /* tree-edge */ 5647 insn_state[t] = DISCOVERED | e; 5648 insn_state[w] = DISCOVERED; 5649 if (env->cfg.cur_stack >= env->prog->len) 5650 return -E2BIG; 5651 insn_stack[env->cfg.cur_stack++] = w; 5652 return 1; 5653 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5654 verbose_linfo(env, t, "%d: ", t); 5655 verbose_linfo(env, w, "%d: ", w); 5656 verbose(env, "back-edge from insn %d to %d\n", t, w); 5657 return -EINVAL; 5658 } else if (insn_state[w] == EXPLORED) { 5659 /* forward- or cross-edge */ 5660 insn_state[t] = DISCOVERED | e; 5661 } else { 5662 verbose(env, "insn state internal bug\n"); 5663 return -EFAULT; 5664 } 5665 return 0; 5666 } 5667 5668 /* non-recursive depth-first-search to detect loops in BPF program 5669 * loop == back-edge in directed graph 5670 */ 5671 static int check_cfg(struct bpf_verifier_env *env) 5672 { 5673 struct bpf_insn *insns = env->prog->insnsi; 5674 int insn_cnt = env->prog->len; 5675 int *insn_stack, *insn_state; 5676 int ret = 0; 5677 int i, t; 5678 5679 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5680 if (!insn_state) 5681 return -ENOMEM; 5682 5683 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5684 if (!insn_stack) { 5685 kvfree(insn_state); 5686 return -ENOMEM; 5687 } 5688 5689 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5690 insn_stack[0] = 0; /* 0 is the first instruction */ 5691 env->cfg.cur_stack = 1; 5692 5693 peek_stack: 5694 if (env->cfg.cur_stack == 0) 5695 goto check_state; 5696 t = insn_stack[env->cfg.cur_stack - 1]; 5697 5698 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5699 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5700 u8 opcode = BPF_OP(insns[t].code); 5701 5702 if (opcode == BPF_EXIT) { 5703 goto mark_explored; 5704 } else if (opcode == BPF_CALL) { 5705 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5706 if (ret == 1) 5707 goto peek_stack; 5708 else if (ret < 0) 5709 goto err_free; 5710 if (t + 1 < insn_cnt) 5711 init_explored_state(env, t + 1); 5712 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5713 init_explored_state(env, t); 5714 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5715 if (ret == 1) 5716 goto peek_stack; 5717 else if (ret < 0) 5718 goto err_free; 5719 } 5720 } else if (opcode == BPF_JA) { 5721 if (BPF_SRC(insns[t].code) != BPF_K) { 5722 ret = -EINVAL; 5723 goto err_free; 5724 } 5725 /* unconditional jump with single edge */ 5726 ret = push_insn(t, t + insns[t].off + 1, 5727 FALLTHROUGH, env); 5728 if (ret == 1) 5729 goto peek_stack; 5730 else if (ret < 0) 5731 goto err_free; 5732 /* tell verifier to check for equivalent states 5733 * after every call and jump 5734 */ 5735 if (t + 1 < insn_cnt) 5736 init_explored_state(env, t + 1); 5737 } else { 5738 /* conditional jump with two edges */ 5739 init_explored_state(env, t); 5740 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5741 if (ret == 1) 5742 goto peek_stack; 5743 else if (ret < 0) 5744 goto err_free; 5745 5746 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5747 if (ret == 1) 5748 goto peek_stack; 5749 else if (ret < 0) 5750 goto err_free; 5751 } 5752 } else { 5753 /* all other non-branch instructions with single 5754 * fall-through edge 5755 */ 5756 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5757 if (ret == 1) 5758 goto peek_stack; 5759 else if (ret < 0) 5760 goto err_free; 5761 } 5762 5763 mark_explored: 5764 insn_state[t] = EXPLORED; 5765 if (env->cfg.cur_stack-- <= 0) { 5766 verbose(env, "pop stack internal bug\n"); 5767 ret = -EFAULT; 5768 goto err_free; 5769 } 5770 goto peek_stack; 5771 5772 check_state: 5773 for (i = 0; i < insn_cnt; i++) { 5774 if (insn_state[i] != EXPLORED) { 5775 verbose(env, "unreachable insn %d\n", i); 5776 ret = -EINVAL; 5777 goto err_free; 5778 } 5779 } 5780 ret = 0; /* cfg looks good */ 5781 5782 err_free: 5783 kvfree(insn_state); 5784 kvfree(insn_stack); 5785 env->cfg.insn_state = env->cfg.insn_stack = NULL; 5786 return ret; 5787 } 5788 5789 /* The minimum supported BTF func info size */ 5790 #define MIN_BPF_FUNCINFO_SIZE 8 5791 #define MAX_FUNCINFO_REC_SIZE 252 5792 5793 static int check_btf_func(struct bpf_verifier_env *env, 5794 const union bpf_attr *attr, 5795 union bpf_attr __user *uattr) 5796 { 5797 u32 i, nfuncs, urec_size, min_size; 5798 u32 krec_size = sizeof(struct bpf_func_info); 5799 struct bpf_func_info *krecord; 5800 const struct btf_type *type; 5801 struct bpf_prog *prog; 5802 const struct btf *btf; 5803 void __user *urecord; 5804 u32 prev_offset = 0; 5805 int ret = 0; 5806 5807 nfuncs = attr->func_info_cnt; 5808 if (!nfuncs) 5809 return 0; 5810 5811 if (nfuncs != env->subprog_cnt) { 5812 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5813 return -EINVAL; 5814 } 5815 5816 urec_size = attr->func_info_rec_size; 5817 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5818 urec_size > MAX_FUNCINFO_REC_SIZE || 5819 urec_size % sizeof(u32)) { 5820 verbose(env, "invalid func info rec size %u\n", urec_size); 5821 return -EINVAL; 5822 } 5823 5824 prog = env->prog; 5825 btf = prog->aux->btf; 5826 5827 urecord = u64_to_user_ptr(attr->func_info); 5828 min_size = min_t(u32, krec_size, urec_size); 5829 5830 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5831 if (!krecord) 5832 return -ENOMEM; 5833 5834 for (i = 0; i < nfuncs; i++) { 5835 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5836 if (ret) { 5837 if (ret == -E2BIG) { 5838 verbose(env, "nonzero tailing record in func info"); 5839 /* set the size kernel expects so loader can zero 5840 * out the rest of the record. 5841 */ 5842 if (put_user(min_size, &uattr->func_info_rec_size)) 5843 ret = -EFAULT; 5844 } 5845 goto err_free; 5846 } 5847 5848 if (copy_from_user(&krecord[i], urecord, min_size)) { 5849 ret = -EFAULT; 5850 goto err_free; 5851 } 5852 5853 /* check insn_off */ 5854 if (i == 0) { 5855 if (krecord[i].insn_off) { 5856 verbose(env, 5857 "nonzero insn_off %u for the first func info record", 5858 krecord[i].insn_off); 5859 ret = -EINVAL; 5860 goto err_free; 5861 } 5862 } else if (krecord[i].insn_off <= prev_offset) { 5863 verbose(env, 5864 "same or smaller insn offset (%u) than previous func info record (%u)", 5865 krecord[i].insn_off, prev_offset); 5866 ret = -EINVAL; 5867 goto err_free; 5868 } 5869 5870 if (env->subprog_info[i].start != krecord[i].insn_off) { 5871 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5872 ret = -EINVAL; 5873 goto err_free; 5874 } 5875 5876 /* check type_id */ 5877 type = btf_type_by_id(btf, krecord[i].type_id); 5878 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5879 verbose(env, "invalid type id %d in func info", 5880 krecord[i].type_id); 5881 ret = -EINVAL; 5882 goto err_free; 5883 } 5884 5885 prev_offset = krecord[i].insn_off; 5886 urecord += urec_size; 5887 } 5888 5889 prog->aux->func_info = krecord; 5890 prog->aux->func_info_cnt = nfuncs; 5891 return 0; 5892 5893 err_free: 5894 kvfree(krecord); 5895 return ret; 5896 } 5897 5898 static void adjust_btf_func(struct bpf_verifier_env *env) 5899 { 5900 int i; 5901 5902 if (!env->prog->aux->func_info) 5903 return; 5904 5905 for (i = 0; i < env->subprog_cnt; i++) 5906 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5907 } 5908 5909 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5910 sizeof(((struct bpf_line_info *)(0))->line_col)) 5911 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5912 5913 static int check_btf_line(struct bpf_verifier_env *env, 5914 const union bpf_attr *attr, 5915 union bpf_attr __user *uattr) 5916 { 5917 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5918 struct bpf_subprog_info *sub; 5919 struct bpf_line_info *linfo; 5920 struct bpf_prog *prog; 5921 const struct btf *btf; 5922 void __user *ulinfo; 5923 int err; 5924 5925 nr_linfo = attr->line_info_cnt; 5926 if (!nr_linfo) 5927 return 0; 5928 5929 rec_size = attr->line_info_rec_size; 5930 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5931 rec_size > MAX_LINEINFO_REC_SIZE || 5932 rec_size & (sizeof(u32) - 1)) 5933 return -EINVAL; 5934 5935 /* Need to zero it in case the userspace may 5936 * pass in a smaller bpf_line_info object. 5937 */ 5938 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5939 GFP_KERNEL | __GFP_NOWARN); 5940 if (!linfo) 5941 return -ENOMEM; 5942 5943 prog = env->prog; 5944 btf = prog->aux->btf; 5945 5946 s = 0; 5947 sub = env->subprog_info; 5948 ulinfo = u64_to_user_ptr(attr->line_info); 5949 expected_size = sizeof(struct bpf_line_info); 5950 ncopy = min_t(u32, expected_size, rec_size); 5951 for (i = 0; i < nr_linfo; i++) { 5952 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5953 if (err) { 5954 if (err == -E2BIG) { 5955 verbose(env, "nonzero tailing record in line_info"); 5956 if (put_user(expected_size, 5957 &uattr->line_info_rec_size)) 5958 err = -EFAULT; 5959 } 5960 goto err_free; 5961 } 5962 5963 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5964 err = -EFAULT; 5965 goto err_free; 5966 } 5967 5968 /* 5969 * Check insn_off to ensure 5970 * 1) strictly increasing AND 5971 * 2) bounded by prog->len 5972 * 5973 * The linfo[0].insn_off == 0 check logically falls into 5974 * the later "missing bpf_line_info for func..." case 5975 * because the first linfo[0].insn_off must be the 5976 * first sub also and the first sub must have 5977 * subprog_info[0].start == 0. 5978 */ 5979 if ((i && linfo[i].insn_off <= prev_offset) || 5980 linfo[i].insn_off >= prog->len) { 5981 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5982 i, linfo[i].insn_off, prev_offset, 5983 prog->len); 5984 err = -EINVAL; 5985 goto err_free; 5986 } 5987 5988 if (!prog->insnsi[linfo[i].insn_off].code) { 5989 verbose(env, 5990 "Invalid insn code at line_info[%u].insn_off\n", 5991 i); 5992 err = -EINVAL; 5993 goto err_free; 5994 } 5995 5996 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5997 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5998 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5999 err = -EINVAL; 6000 goto err_free; 6001 } 6002 6003 if (s != env->subprog_cnt) { 6004 if (linfo[i].insn_off == sub[s].start) { 6005 sub[s].linfo_idx = i; 6006 s++; 6007 } else if (sub[s].start < linfo[i].insn_off) { 6008 verbose(env, "missing bpf_line_info for func#%u\n", s); 6009 err = -EINVAL; 6010 goto err_free; 6011 } 6012 } 6013 6014 prev_offset = linfo[i].insn_off; 6015 ulinfo += rec_size; 6016 } 6017 6018 if (s != env->subprog_cnt) { 6019 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6020 env->subprog_cnt - s, s); 6021 err = -EINVAL; 6022 goto err_free; 6023 } 6024 6025 prog->aux->linfo = linfo; 6026 prog->aux->nr_linfo = nr_linfo; 6027 6028 return 0; 6029 6030 err_free: 6031 kvfree(linfo); 6032 return err; 6033 } 6034 6035 static int check_btf_info(struct bpf_verifier_env *env, 6036 const union bpf_attr *attr, 6037 union bpf_attr __user *uattr) 6038 { 6039 struct btf *btf; 6040 int err; 6041 6042 if (!attr->func_info_cnt && !attr->line_info_cnt) 6043 return 0; 6044 6045 btf = btf_get_by_fd(attr->prog_btf_fd); 6046 if (IS_ERR(btf)) 6047 return PTR_ERR(btf); 6048 env->prog->aux->btf = btf; 6049 6050 err = check_btf_func(env, attr, uattr); 6051 if (err) 6052 return err; 6053 6054 err = check_btf_line(env, attr, uattr); 6055 if (err) 6056 return err; 6057 6058 return 0; 6059 } 6060 6061 /* check %cur's range satisfies %old's */ 6062 static bool range_within(struct bpf_reg_state *old, 6063 struct bpf_reg_state *cur) 6064 { 6065 return old->umin_value <= cur->umin_value && 6066 old->umax_value >= cur->umax_value && 6067 old->smin_value <= cur->smin_value && 6068 old->smax_value >= cur->smax_value; 6069 } 6070 6071 /* Maximum number of register states that can exist at once */ 6072 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6073 struct idpair { 6074 u32 old; 6075 u32 cur; 6076 }; 6077 6078 /* If in the old state two registers had the same id, then they need to have 6079 * the same id in the new state as well. But that id could be different from 6080 * the old state, so we need to track the mapping from old to new ids. 6081 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6082 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6083 * regs with a different old id could still have new id 9, we don't care about 6084 * that. 6085 * So we look through our idmap to see if this old id has been seen before. If 6086 * so, we require the new id to match; otherwise, we add the id pair to the map. 6087 */ 6088 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6089 { 6090 unsigned int i; 6091 6092 for (i = 0; i < ID_MAP_SIZE; i++) { 6093 if (!idmap[i].old) { 6094 /* Reached an empty slot; haven't seen this id before */ 6095 idmap[i].old = old_id; 6096 idmap[i].cur = cur_id; 6097 return true; 6098 } 6099 if (idmap[i].old == old_id) 6100 return idmap[i].cur == cur_id; 6101 } 6102 /* We ran out of idmap slots, which should be impossible */ 6103 WARN_ON_ONCE(1); 6104 return false; 6105 } 6106 6107 static void clean_func_state(struct bpf_verifier_env *env, 6108 struct bpf_func_state *st) 6109 { 6110 enum bpf_reg_liveness live; 6111 int i, j; 6112 6113 for (i = 0; i < BPF_REG_FP; i++) { 6114 live = st->regs[i].live; 6115 /* liveness must not touch this register anymore */ 6116 st->regs[i].live |= REG_LIVE_DONE; 6117 if (!(live & REG_LIVE_READ)) 6118 /* since the register is unused, clear its state 6119 * to make further comparison simpler 6120 */ 6121 __mark_reg_not_init(&st->regs[i]); 6122 } 6123 6124 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6125 live = st->stack[i].spilled_ptr.live; 6126 /* liveness must not touch this stack slot anymore */ 6127 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6128 if (!(live & REG_LIVE_READ)) { 6129 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6130 for (j = 0; j < BPF_REG_SIZE; j++) 6131 st->stack[i].slot_type[j] = STACK_INVALID; 6132 } 6133 } 6134 } 6135 6136 static void clean_verifier_state(struct bpf_verifier_env *env, 6137 struct bpf_verifier_state *st) 6138 { 6139 int i; 6140 6141 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6142 /* all regs in this state in all frames were already marked */ 6143 return; 6144 6145 for (i = 0; i <= st->curframe; i++) 6146 clean_func_state(env, st->frame[i]); 6147 } 6148 6149 /* the parentage chains form a tree. 6150 * the verifier states are added to state lists at given insn and 6151 * pushed into state stack for future exploration. 6152 * when the verifier reaches bpf_exit insn some of the verifer states 6153 * stored in the state lists have their final liveness state already, 6154 * but a lot of states will get revised from liveness point of view when 6155 * the verifier explores other branches. 6156 * Example: 6157 * 1: r0 = 1 6158 * 2: if r1 == 100 goto pc+1 6159 * 3: r0 = 2 6160 * 4: exit 6161 * when the verifier reaches exit insn the register r0 in the state list of 6162 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6163 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6164 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6165 * 6166 * Since the verifier pushes the branch states as it sees them while exploring 6167 * the program the condition of walking the branch instruction for the second 6168 * time means that all states below this branch were already explored and 6169 * their final liveness markes are already propagated. 6170 * Hence when the verifier completes the search of state list in is_state_visited() 6171 * we can call this clean_live_states() function to mark all liveness states 6172 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6173 * will not be used. 6174 * This function also clears the registers and stack for states that !READ 6175 * to simplify state merging. 6176 * 6177 * Important note here that walking the same branch instruction in the callee 6178 * doesn't meant that the states are DONE. The verifier has to compare 6179 * the callsites 6180 */ 6181 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6182 struct bpf_verifier_state *cur) 6183 { 6184 struct bpf_verifier_state_list *sl; 6185 int i; 6186 6187 sl = *explored_state(env, insn); 6188 while (sl) { 6189 if (sl->state.insn_idx != insn || 6190 sl->state.curframe != cur->curframe) 6191 goto next; 6192 for (i = 0; i <= cur->curframe; i++) 6193 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6194 goto next; 6195 clean_verifier_state(env, &sl->state); 6196 next: 6197 sl = sl->next; 6198 } 6199 } 6200 6201 /* Returns true if (rold safe implies rcur safe) */ 6202 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6203 struct idpair *idmap) 6204 { 6205 bool equal; 6206 6207 if (!(rold->live & REG_LIVE_READ)) 6208 /* explored state didn't use this */ 6209 return true; 6210 6211 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6212 6213 if (rold->type == PTR_TO_STACK) 6214 /* two stack pointers are equal only if they're pointing to 6215 * the same stack frame, since fp-8 in foo != fp-8 in bar 6216 */ 6217 return equal && rold->frameno == rcur->frameno; 6218 6219 if (equal) 6220 return true; 6221 6222 if (rold->type == NOT_INIT) 6223 /* explored state can't have used this */ 6224 return true; 6225 if (rcur->type == NOT_INIT) 6226 return false; 6227 switch (rold->type) { 6228 case SCALAR_VALUE: 6229 if (rcur->type == SCALAR_VALUE) { 6230 /* new val must satisfy old val knowledge */ 6231 return range_within(rold, rcur) && 6232 tnum_in(rold->var_off, rcur->var_off); 6233 } else { 6234 /* We're trying to use a pointer in place of a scalar. 6235 * Even if the scalar was unbounded, this could lead to 6236 * pointer leaks because scalars are allowed to leak 6237 * while pointers are not. We could make this safe in 6238 * special cases if root is calling us, but it's 6239 * probably not worth the hassle. 6240 */ 6241 return false; 6242 } 6243 case PTR_TO_MAP_VALUE: 6244 /* If the new min/max/var_off satisfy the old ones and 6245 * everything else matches, we are OK. 6246 * 'id' is not compared, since it's only used for maps with 6247 * bpf_spin_lock inside map element and in such cases if 6248 * the rest of the prog is valid for one map element then 6249 * it's valid for all map elements regardless of the key 6250 * used in bpf_map_lookup() 6251 */ 6252 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6253 range_within(rold, rcur) && 6254 tnum_in(rold->var_off, rcur->var_off); 6255 case PTR_TO_MAP_VALUE_OR_NULL: 6256 /* a PTR_TO_MAP_VALUE could be safe to use as a 6257 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6258 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6259 * checked, doing so could have affected others with the same 6260 * id, and we can't check for that because we lost the id when 6261 * we converted to a PTR_TO_MAP_VALUE. 6262 */ 6263 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6264 return false; 6265 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6266 return false; 6267 /* Check our ids match any regs they're supposed to */ 6268 return check_ids(rold->id, rcur->id, idmap); 6269 case PTR_TO_PACKET_META: 6270 case PTR_TO_PACKET: 6271 if (rcur->type != rold->type) 6272 return false; 6273 /* We must have at least as much range as the old ptr 6274 * did, so that any accesses which were safe before are 6275 * still safe. This is true even if old range < old off, 6276 * since someone could have accessed through (ptr - k), or 6277 * even done ptr -= k in a register, to get a safe access. 6278 */ 6279 if (rold->range > rcur->range) 6280 return false; 6281 /* If the offsets don't match, we can't trust our alignment; 6282 * nor can we be sure that we won't fall out of range. 6283 */ 6284 if (rold->off != rcur->off) 6285 return false; 6286 /* id relations must be preserved */ 6287 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6288 return false; 6289 /* new val must satisfy old val knowledge */ 6290 return range_within(rold, rcur) && 6291 tnum_in(rold->var_off, rcur->var_off); 6292 case PTR_TO_CTX: 6293 case CONST_PTR_TO_MAP: 6294 case PTR_TO_PACKET_END: 6295 case PTR_TO_FLOW_KEYS: 6296 case PTR_TO_SOCKET: 6297 case PTR_TO_SOCKET_OR_NULL: 6298 case PTR_TO_SOCK_COMMON: 6299 case PTR_TO_SOCK_COMMON_OR_NULL: 6300 case PTR_TO_TCP_SOCK: 6301 case PTR_TO_TCP_SOCK_OR_NULL: 6302 /* Only valid matches are exact, which memcmp() above 6303 * would have accepted 6304 */ 6305 default: 6306 /* Don't know what's going on, just say it's not safe */ 6307 return false; 6308 } 6309 6310 /* Shouldn't get here; if we do, say it's not safe */ 6311 WARN_ON_ONCE(1); 6312 return false; 6313 } 6314 6315 static bool stacksafe(struct bpf_func_state *old, 6316 struct bpf_func_state *cur, 6317 struct idpair *idmap) 6318 { 6319 int i, spi; 6320 6321 /* walk slots of the explored stack and ignore any additional 6322 * slots in the current stack, since explored(safe) state 6323 * didn't use them 6324 */ 6325 for (i = 0; i < old->allocated_stack; i++) { 6326 spi = i / BPF_REG_SIZE; 6327 6328 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6329 i += BPF_REG_SIZE - 1; 6330 /* explored state didn't use this */ 6331 continue; 6332 } 6333 6334 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6335 continue; 6336 6337 /* explored stack has more populated slots than current stack 6338 * and these slots were used 6339 */ 6340 if (i >= cur->allocated_stack) 6341 return false; 6342 6343 /* if old state was safe with misc data in the stack 6344 * it will be safe with zero-initialized stack. 6345 * The opposite is not true 6346 */ 6347 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6348 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6349 continue; 6350 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6351 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6352 /* Ex: old explored (safe) state has STACK_SPILL in 6353 * this stack slot, but current has has STACK_MISC -> 6354 * this verifier states are not equivalent, 6355 * return false to continue verification of this path 6356 */ 6357 return false; 6358 if (i % BPF_REG_SIZE) 6359 continue; 6360 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6361 continue; 6362 if (!regsafe(&old->stack[spi].spilled_ptr, 6363 &cur->stack[spi].spilled_ptr, 6364 idmap)) 6365 /* when explored and current stack slot are both storing 6366 * spilled registers, check that stored pointers types 6367 * are the same as well. 6368 * Ex: explored safe path could have stored 6369 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6370 * but current path has stored: 6371 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6372 * such verifier states are not equivalent. 6373 * return false to continue verification of this path 6374 */ 6375 return false; 6376 } 6377 return true; 6378 } 6379 6380 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6381 { 6382 if (old->acquired_refs != cur->acquired_refs) 6383 return false; 6384 return !memcmp(old->refs, cur->refs, 6385 sizeof(*old->refs) * old->acquired_refs); 6386 } 6387 6388 /* compare two verifier states 6389 * 6390 * all states stored in state_list are known to be valid, since 6391 * verifier reached 'bpf_exit' instruction through them 6392 * 6393 * this function is called when verifier exploring different branches of 6394 * execution popped from the state stack. If it sees an old state that has 6395 * more strict register state and more strict stack state then this execution 6396 * branch doesn't need to be explored further, since verifier already 6397 * concluded that more strict state leads to valid finish. 6398 * 6399 * Therefore two states are equivalent if register state is more conservative 6400 * and explored stack state is more conservative than the current one. 6401 * Example: 6402 * explored current 6403 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 6404 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 6405 * 6406 * In other words if current stack state (one being explored) has more 6407 * valid slots than old one that already passed validation, it means 6408 * the verifier can stop exploring and conclude that current state is valid too 6409 * 6410 * Similarly with registers. If explored state has register type as invalid 6411 * whereas register type in current state is meaningful, it means that 6412 * the current state will reach 'bpf_exit' instruction safely 6413 */ 6414 static bool func_states_equal(struct bpf_func_state *old, 6415 struct bpf_func_state *cur) 6416 { 6417 struct idpair *idmap; 6418 bool ret = false; 6419 int i; 6420 6421 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6422 /* If we failed to allocate the idmap, just say it's not safe */ 6423 if (!idmap) 6424 return false; 6425 6426 for (i = 0; i < MAX_BPF_REG; i++) { 6427 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6428 goto out_free; 6429 } 6430 6431 if (!stacksafe(old, cur, idmap)) 6432 goto out_free; 6433 6434 if (!refsafe(old, cur)) 6435 goto out_free; 6436 ret = true; 6437 out_free: 6438 kfree(idmap); 6439 return ret; 6440 } 6441 6442 static bool states_equal(struct bpf_verifier_env *env, 6443 struct bpf_verifier_state *old, 6444 struct bpf_verifier_state *cur) 6445 { 6446 int i; 6447 6448 if (old->curframe != cur->curframe) 6449 return false; 6450 6451 /* Verification state from speculative execution simulation 6452 * must never prune a non-speculative execution one. 6453 */ 6454 if (old->speculative && !cur->speculative) 6455 return false; 6456 6457 if (old->active_spin_lock != cur->active_spin_lock) 6458 return false; 6459 6460 /* for states to be equal callsites have to be the same 6461 * and all frame states need to be equivalent 6462 */ 6463 for (i = 0; i <= old->curframe; i++) { 6464 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6465 return false; 6466 if (!func_states_equal(old->frame[i], cur->frame[i])) 6467 return false; 6468 } 6469 return true; 6470 } 6471 6472 /* Return 0 if no propagation happened. Return negative error code if error 6473 * happened. Otherwise, return the propagated bit. 6474 */ 6475 static int propagate_liveness_reg(struct bpf_verifier_env *env, 6476 struct bpf_reg_state *reg, 6477 struct bpf_reg_state *parent_reg) 6478 { 6479 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 6480 u8 flag = reg->live & REG_LIVE_READ; 6481 int err; 6482 6483 /* When comes here, read flags of PARENT_REG or REG could be any of 6484 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 6485 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 6486 */ 6487 if (parent_flag == REG_LIVE_READ64 || 6488 /* Or if there is no read flag from REG. */ 6489 !flag || 6490 /* Or if the read flag from REG is the same as PARENT_REG. */ 6491 parent_flag == flag) 6492 return 0; 6493 6494 err = mark_reg_read(env, reg, parent_reg, flag); 6495 if (err) 6496 return err; 6497 6498 return flag; 6499 } 6500 6501 /* A write screens off any subsequent reads; but write marks come from the 6502 * straight-line code between a state and its parent. When we arrive at an 6503 * equivalent state (jump target or such) we didn't arrive by the straight-line 6504 * code, so read marks in the state must propagate to the parent regardless 6505 * of the state's write marks. That's what 'parent == state->parent' comparison 6506 * in mark_reg_read() is for. 6507 */ 6508 static int propagate_liveness(struct bpf_verifier_env *env, 6509 const struct bpf_verifier_state *vstate, 6510 struct bpf_verifier_state *vparent) 6511 { 6512 struct bpf_reg_state *state_reg, *parent_reg; 6513 struct bpf_func_state *state, *parent; 6514 int i, frame, err = 0; 6515 6516 if (vparent->curframe != vstate->curframe) { 6517 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6518 vparent->curframe, vstate->curframe); 6519 return -EFAULT; 6520 } 6521 /* Propagate read liveness of registers... */ 6522 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6523 for (frame = 0; frame <= vstate->curframe; frame++) { 6524 parent = vparent->frame[frame]; 6525 state = vstate->frame[frame]; 6526 parent_reg = parent->regs; 6527 state_reg = state->regs; 6528 /* We don't need to worry about FP liveness, it's read-only */ 6529 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 6530 err = propagate_liveness_reg(env, &state_reg[i], 6531 &parent_reg[i]); 6532 if (err < 0) 6533 return err; 6534 if (err == REG_LIVE_READ64) 6535 mark_insn_zext(env, &parent_reg[i]); 6536 } 6537 6538 /* Propagate stack slots. */ 6539 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6540 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6541 parent_reg = &parent->stack[i].spilled_ptr; 6542 state_reg = &state->stack[i].spilled_ptr; 6543 err = propagate_liveness_reg(env, state_reg, 6544 parent_reg); 6545 if (err < 0) 6546 return err; 6547 } 6548 } 6549 return 0; 6550 } 6551 6552 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6553 { 6554 struct bpf_verifier_state_list *new_sl; 6555 struct bpf_verifier_state_list *sl, **pprev; 6556 struct bpf_verifier_state *cur = env->cur_state, *new; 6557 int i, j, err, states_cnt = 0; 6558 6559 if (!env->insn_aux_data[insn_idx].prune_point) 6560 /* this 'insn_idx' instruction wasn't marked, so we will not 6561 * be doing state search here 6562 */ 6563 return 0; 6564 6565 pprev = explored_state(env, insn_idx); 6566 sl = *pprev; 6567 6568 clean_live_states(env, insn_idx, cur); 6569 6570 while (sl) { 6571 states_cnt++; 6572 if (sl->state.insn_idx != insn_idx) 6573 goto next; 6574 if (states_equal(env, &sl->state, cur)) { 6575 sl->hit_cnt++; 6576 /* reached equivalent register/stack state, 6577 * prune the search. 6578 * Registers read by the continuation are read by us. 6579 * If we have any write marks in env->cur_state, they 6580 * will prevent corresponding reads in the continuation 6581 * from reaching our parent (an explored_state). Our 6582 * own state will get the read marks recorded, but 6583 * they'll be immediately forgotten as we're pruning 6584 * this state and will pop a new one. 6585 */ 6586 err = propagate_liveness(env, &sl->state, cur); 6587 if (err) 6588 return err; 6589 return 1; 6590 } 6591 sl->miss_cnt++; 6592 /* heuristic to determine whether this state is beneficial 6593 * to keep checking from state equivalence point of view. 6594 * Higher numbers increase max_states_per_insn and verification time, 6595 * but do not meaningfully decrease insn_processed. 6596 */ 6597 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 6598 /* the state is unlikely to be useful. Remove it to 6599 * speed up verification 6600 */ 6601 *pprev = sl->next; 6602 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 6603 free_verifier_state(&sl->state, false); 6604 kfree(sl); 6605 env->peak_states--; 6606 } else { 6607 /* cannot free this state, since parentage chain may 6608 * walk it later. Add it for free_list instead to 6609 * be freed at the end of verification 6610 */ 6611 sl->next = env->free_list; 6612 env->free_list = sl; 6613 } 6614 sl = *pprev; 6615 continue; 6616 } 6617 next: 6618 pprev = &sl->next; 6619 sl = *pprev; 6620 } 6621 6622 if (env->max_states_per_insn < states_cnt) 6623 env->max_states_per_insn = states_cnt; 6624 6625 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6626 return 0; 6627 6628 /* there were no equivalent states, remember current one. 6629 * technically the current state is not proven to be safe yet, 6630 * but it will either reach outer most bpf_exit (which means it's safe) 6631 * or it will be rejected. Since there are no loops, we won't be 6632 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6633 * again on the way to bpf_exit 6634 */ 6635 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6636 if (!new_sl) 6637 return -ENOMEM; 6638 env->total_states++; 6639 env->peak_states++; 6640 6641 /* add new state to the head of linked list */ 6642 new = &new_sl->state; 6643 err = copy_verifier_state(new, cur); 6644 if (err) { 6645 free_verifier_state(new, false); 6646 kfree(new_sl); 6647 return err; 6648 } 6649 new->insn_idx = insn_idx; 6650 new_sl->next = *explored_state(env, insn_idx); 6651 *explored_state(env, insn_idx) = new_sl; 6652 /* connect new state to parentage chain. Current frame needs all 6653 * registers connected. Only r6 - r9 of the callers are alive (pushed 6654 * to the stack implicitly by JITs) so in callers' frames connect just 6655 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6656 * the state of the call instruction (with WRITTEN set), and r0 comes 6657 * from callee with its full parentage chain, anyway. 6658 */ 6659 for (j = 0; j <= cur->curframe; j++) 6660 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6661 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6662 /* clear write marks in current state: the writes we did are not writes 6663 * our child did, so they don't screen off its reads from us. 6664 * (There are no read marks in current state, because reads always mark 6665 * their parent and current state never has children yet. Only 6666 * explored_states can get read marks.) 6667 */ 6668 for (i = 0; i < BPF_REG_FP; i++) 6669 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6670 6671 /* all stack frames are accessible from callee, clear them all */ 6672 for (j = 0; j <= cur->curframe; j++) { 6673 struct bpf_func_state *frame = cur->frame[j]; 6674 struct bpf_func_state *newframe = new->frame[j]; 6675 6676 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6677 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6678 frame->stack[i].spilled_ptr.parent = 6679 &newframe->stack[i].spilled_ptr; 6680 } 6681 } 6682 return 0; 6683 } 6684 6685 /* Return true if it's OK to have the same insn return a different type. */ 6686 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6687 { 6688 switch (type) { 6689 case PTR_TO_CTX: 6690 case PTR_TO_SOCKET: 6691 case PTR_TO_SOCKET_OR_NULL: 6692 case PTR_TO_SOCK_COMMON: 6693 case PTR_TO_SOCK_COMMON_OR_NULL: 6694 case PTR_TO_TCP_SOCK: 6695 case PTR_TO_TCP_SOCK_OR_NULL: 6696 return false; 6697 default: 6698 return true; 6699 } 6700 } 6701 6702 /* If an instruction was previously used with particular pointer types, then we 6703 * need to be careful to avoid cases such as the below, where it may be ok 6704 * for one branch accessing the pointer, but not ok for the other branch: 6705 * 6706 * R1 = sock_ptr 6707 * goto X; 6708 * ... 6709 * R1 = some_other_valid_ptr; 6710 * goto X; 6711 * ... 6712 * R2 = *(u32 *)(R1 + 0); 6713 */ 6714 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6715 { 6716 return src != prev && (!reg_type_mismatch_ok(src) || 6717 !reg_type_mismatch_ok(prev)); 6718 } 6719 6720 static int do_check(struct bpf_verifier_env *env) 6721 { 6722 struct bpf_verifier_state *state; 6723 struct bpf_insn *insns = env->prog->insnsi; 6724 struct bpf_reg_state *regs; 6725 int insn_cnt = env->prog->len; 6726 bool do_print_state = false; 6727 6728 env->prev_linfo = NULL; 6729 6730 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6731 if (!state) 6732 return -ENOMEM; 6733 state->curframe = 0; 6734 state->speculative = false; 6735 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6736 if (!state->frame[0]) { 6737 kfree(state); 6738 return -ENOMEM; 6739 } 6740 env->cur_state = state; 6741 init_func_state(env, state->frame[0], 6742 BPF_MAIN_FUNC /* callsite */, 6743 0 /* frameno */, 6744 0 /* subprogno, zero == main subprog */); 6745 6746 for (;;) { 6747 struct bpf_insn *insn; 6748 u8 class; 6749 int err; 6750 6751 if (env->insn_idx >= insn_cnt) { 6752 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6753 env->insn_idx, insn_cnt); 6754 return -EFAULT; 6755 } 6756 6757 insn = &insns[env->insn_idx]; 6758 class = BPF_CLASS(insn->code); 6759 6760 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6761 verbose(env, 6762 "BPF program is too large. Processed %d insn\n", 6763 env->insn_processed); 6764 return -E2BIG; 6765 } 6766 6767 err = is_state_visited(env, env->insn_idx); 6768 if (err < 0) 6769 return err; 6770 if (err == 1) { 6771 /* found equivalent state, can prune the search */ 6772 if (env->log.level & BPF_LOG_LEVEL) { 6773 if (do_print_state) 6774 verbose(env, "\nfrom %d to %d%s: safe\n", 6775 env->prev_insn_idx, env->insn_idx, 6776 env->cur_state->speculative ? 6777 " (speculative execution)" : ""); 6778 else 6779 verbose(env, "%d: safe\n", env->insn_idx); 6780 } 6781 goto process_bpf_exit; 6782 } 6783 6784 if (signal_pending(current)) 6785 return -EAGAIN; 6786 6787 if (need_resched()) 6788 cond_resched(); 6789 6790 if (env->log.level & BPF_LOG_LEVEL2 || 6791 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 6792 if (env->log.level & BPF_LOG_LEVEL2) 6793 verbose(env, "%d:", env->insn_idx); 6794 else 6795 verbose(env, "\nfrom %d to %d%s:", 6796 env->prev_insn_idx, env->insn_idx, 6797 env->cur_state->speculative ? 6798 " (speculative execution)" : ""); 6799 print_verifier_state(env, state->frame[state->curframe]); 6800 do_print_state = false; 6801 } 6802 6803 if (env->log.level & BPF_LOG_LEVEL) { 6804 const struct bpf_insn_cbs cbs = { 6805 .cb_print = verbose, 6806 .private_data = env, 6807 }; 6808 6809 verbose_linfo(env, env->insn_idx, "; "); 6810 verbose(env, "%d: ", env->insn_idx); 6811 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6812 } 6813 6814 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6815 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6816 env->prev_insn_idx); 6817 if (err) 6818 return err; 6819 } 6820 6821 regs = cur_regs(env); 6822 env->insn_aux_data[env->insn_idx].seen = true; 6823 6824 if (class == BPF_ALU || class == BPF_ALU64) { 6825 err = check_alu_op(env, insn); 6826 if (err) 6827 return err; 6828 6829 } else if (class == BPF_LDX) { 6830 enum bpf_reg_type *prev_src_type, src_reg_type; 6831 6832 /* check for reserved fields is already done */ 6833 6834 /* check src operand */ 6835 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6836 if (err) 6837 return err; 6838 6839 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6840 if (err) 6841 return err; 6842 6843 src_reg_type = regs[insn->src_reg].type; 6844 6845 /* check that memory (src_reg + off) is readable, 6846 * the state of dst_reg will be updated by this func 6847 */ 6848 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6849 insn->off, BPF_SIZE(insn->code), 6850 BPF_READ, insn->dst_reg, false); 6851 if (err) 6852 return err; 6853 6854 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6855 6856 if (*prev_src_type == NOT_INIT) { 6857 /* saw a valid insn 6858 * dst_reg = *(u32 *)(src_reg + off) 6859 * save type to validate intersecting paths 6860 */ 6861 *prev_src_type = src_reg_type; 6862 6863 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6864 /* ABuser program is trying to use the same insn 6865 * dst_reg = *(u32*) (src_reg + off) 6866 * with different pointer types: 6867 * src_reg == ctx in one branch and 6868 * src_reg == stack|map in some other branch. 6869 * Reject it. 6870 */ 6871 verbose(env, "same insn cannot be used with different pointers\n"); 6872 return -EINVAL; 6873 } 6874 6875 } else if (class == BPF_STX) { 6876 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6877 6878 if (BPF_MODE(insn->code) == BPF_XADD) { 6879 err = check_xadd(env, env->insn_idx, insn); 6880 if (err) 6881 return err; 6882 env->insn_idx++; 6883 continue; 6884 } 6885 6886 /* check src1 operand */ 6887 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6888 if (err) 6889 return err; 6890 /* check src2 operand */ 6891 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6892 if (err) 6893 return err; 6894 6895 dst_reg_type = regs[insn->dst_reg].type; 6896 6897 /* check that memory (dst_reg + off) is writeable */ 6898 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6899 insn->off, BPF_SIZE(insn->code), 6900 BPF_WRITE, insn->src_reg, false); 6901 if (err) 6902 return err; 6903 6904 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6905 6906 if (*prev_dst_type == NOT_INIT) { 6907 *prev_dst_type = dst_reg_type; 6908 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6909 verbose(env, "same insn cannot be used with different pointers\n"); 6910 return -EINVAL; 6911 } 6912 6913 } else if (class == BPF_ST) { 6914 if (BPF_MODE(insn->code) != BPF_MEM || 6915 insn->src_reg != BPF_REG_0) { 6916 verbose(env, "BPF_ST uses reserved fields\n"); 6917 return -EINVAL; 6918 } 6919 /* check src operand */ 6920 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6921 if (err) 6922 return err; 6923 6924 if (is_ctx_reg(env, insn->dst_reg)) { 6925 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6926 insn->dst_reg, 6927 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6928 return -EACCES; 6929 } 6930 6931 /* check that memory (dst_reg + off) is writeable */ 6932 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6933 insn->off, BPF_SIZE(insn->code), 6934 BPF_WRITE, -1, false); 6935 if (err) 6936 return err; 6937 6938 } else if (class == BPF_JMP || class == BPF_JMP32) { 6939 u8 opcode = BPF_OP(insn->code); 6940 6941 if (opcode == BPF_CALL) { 6942 if (BPF_SRC(insn->code) != BPF_K || 6943 insn->off != 0 || 6944 (insn->src_reg != BPF_REG_0 && 6945 insn->src_reg != BPF_PSEUDO_CALL) || 6946 insn->dst_reg != BPF_REG_0 || 6947 class == BPF_JMP32) { 6948 verbose(env, "BPF_CALL uses reserved fields\n"); 6949 return -EINVAL; 6950 } 6951 6952 if (env->cur_state->active_spin_lock && 6953 (insn->src_reg == BPF_PSEUDO_CALL || 6954 insn->imm != BPF_FUNC_spin_unlock)) { 6955 verbose(env, "function calls are not allowed while holding a lock\n"); 6956 return -EINVAL; 6957 } 6958 if (insn->src_reg == BPF_PSEUDO_CALL) 6959 err = check_func_call(env, insn, &env->insn_idx); 6960 else 6961 err = check_helper_call(env, insn->imm, env->insn_idx); 6962 if (err) 6963 return err; 6964 6965 } else if (opcode == BPF_JA) { 6966 if (BPF_SRC(insn->code) != BPF_K || 6967 insn->imm != 0 || 6968 insn->src_reg != BPF_REG_0 || 6969 insn->dst_reg != BPF_REG_0 || 6970 class == BPF_JMP32) { 6971 verbose(env, "BPF_JA uses reserved fields\n"); 6972 return -EINVAL; 6973 } 6974 6975 env->insn_idx += insn->off + 1; 6976 continue; 6977 6978 } else if (opcode == BPF_EXIT) { 6979 if (BPF_SRC(insn->code) != BPF_K || 6980 insn->imm != 0 || 6981 insn->src_reg != BPF_REG_0 || 6982 insn->dst_reg != BPF_REG_0 || 6983 class == BPF_JMP32) { 6984 verbose(env, "BPF_EXIT uses reserved fields\n"); 6985 return -EINVAL; 6986 } 6987 6988 if (env->cur_state->active_spin_lock) { 6989 verbose(env, "bpf_spin_unlock is missing\n"); 6990 return -EINVAL; 6991 } 6992 6993 if (state->curframe) { 6994 /* exit from nested function */ 6995 env->prev_insn_idx = env->insn_idx; 6996 err = prepare_func_exit(env, &env->insn_idx); 6997 if (err) 6998 return err; 6999 do_print_state = true; 7000 continue; 7001 } 7002 7003 err = check_reference_leak(env); 7004 if (err) 7005 return err; 7006 7007 /* eBPF calling convetion is such that R0 is used 7008 * to return the value from eBPF program. 7009 * Make sure that it's readable at this time 7010 * of bpf_exit, which means that program wrote 7011 * something into it earlier 7012 */ 7013 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7014 if (err) 7015 return err; 7016 7017 if (is_pointer_value(env, BPF_REG_0)) { 7018 verbose(env, "R0 leaks addr as return value\n"); 7019 return -EACCES; 7020 } 7021 7022 err = check_return_code(env); 7023 if (err) 7024 return err; 7025 process_bpf_exit: 7026 err = pop_stack(env, &env->prev_insn_idx, 7027 &env->insn_idx); 7028 if (err < 0) { 7029 if (err != -ENOENT) 7030 return err; 7031 break; 7032 } else { 7033 do_print_state = true; 7034 continue; 7035 } 7036 } else { 7037 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7038 if (err) 7039 return err; 7040 } 7041 } else if (class == BPF_LD) { 7042 u8 mode = BPF_MODE(insn->code); 7043 7044 if (mode == BPF_ABS || mode == BPF_IND) { 7045 err = check_ld_abs(env, insn); 7046 if (err) 7047 return err; 7048 7049 } else if (mode == BPF_IMM) { 7050 err = check_ld_imm(env, insn); 7051 if (err) 7052 return err; 7053 7054 env->insn_idx++; 7055 env->insn_aux_data[env->insn_idx].seen = true; 7056 } else { 7057 verbose(env, "invalid BPF_LD mode\n"); 7058 return -EINVAL; 7059 } 7060 } else { 7061 verbose(env, "unknown insn class %d\n", class); 7062 return -EINVAL; 7063 } 7064 7065 env->insn_idx++; 7066 } 7067 7068 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7069 return 0; 7070 } 7071 7072 static int check_map_prealloc(struct bpf_map *map) 7073 { 7074 return (map->map_type != BPF_MAP_TYPE_HASH && 7075 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7076 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7077 !(map->map_flags & BPF_F_NO_PREALLOC); 7078 } 7079 7080 static bool is_tracing_prog_type(enum bpf_prog_type type) 7081 { 7082 switch (type) { 7083 case BPF_PROG_TYPE_KPROBE: 7084 case BPF_PROG_TYPE_TRACEPOINT: 7085 case BPF_PROG_TYPE_PERF_EVENT: 7086 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7087 return true; 7088 default: 7089 return false; 7090 } 7091 } 7092 7093 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7094 struct bpf_map *map, 7095 struct bpf_prog *prog) 7096 7097 { 7098 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7099 * preallocated hash maps, since doing memory allocation 7100 * in overflow_handler can crash depending on where nmi got 7101 * triggered. 7102 */ 7103 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7104 if (!check_map_prealloc(map)) { 7105 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7106 return -EINVAL; 7107 } 7108 if (map->inner_map_meta && 7109 !check_map_prealloc(map->inner_map_meta)) { 7110 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7111 return -EINVAL; 7112 } 7113 } 7114 7115 if ((is_tracing_prog_type(prog->type) || 7116 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7117 map_value_has_spin_lock(map)) { 7118 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7119 return -EINVAL; 7120 } 7121 7122 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7123 !bpf_offload_prog_map_match(prog, map)) { 7124 verbose(env, "offload device mismatch between prog and map\n"); 7125 return -EINVAL; 7126 } 7127 7128 return 0; 7129 } 7130 7131 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7132 { 7133 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7134 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7135 } 7136 7137 /* look for pseudo eBPF instructions that access map FDs and 7138 * replace them with actual map pointers 7139 */ 7140 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7141 { 7142 struct bpf_insn *insn = env->prog->insnsi; 7143 int insn_cnt = env->prog->len; 7144 int i, j, err; 7145 7146 err = bpf_prog_calc_tag(env->prog); 7147 if (err) 7148 return err; 7149 7150 for (i = 0; i < insn_cnt; i++, insn++) { 7151 if (BPF_CLASS(insn->code) == BPF_LDX && 7152 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7153 verbose(env, "BPF_LDX uses reserved fields\n"); 7154 return -EINVAL; 7155 } 7156 7157 if (BPF_CLASS(insn->code) == BPF_STX && 7158 ((BPF_MODE(insn->code) != BPF_MEM && 7159 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7160 verbose(env, "BPF_STX uses reserved fields\n"); 7161 return -EINVAL; 7162 } 7163 7164 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7165 struct bpf_insn_aux_data *aux; 7166 struct bpf_map *map; 7167 struct fd f; 7168 u64 addr; 7169 7170 if (i == insn_cnt - 1 || insn[1].code != 0 || 7171 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7172 insn[1].off != 0) { 7173 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7174 return -EINVAL; 7175 } 7176 7177 if (insn[0].src_reg == 0) 7178 /* valid generic load 64-bit imm */ 7179 goto next_insn; 7180 7181 /* In final convert_pseudo_ld_imm64() step, this is 7182 * converted into regular 64-bit imm load insn. 7183 */ 7184 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7185 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7186 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7187 insn[1].imm != 0)) { 7188 verbose(env, 7189 "unrecognized bpf_ld_imm64 insn\n"); 7190 return -EINVAL; 7191 } 7192 7193 f = fdget(insn[0].imm); 7194 map = __bpf_map_get(f); 7195 if (IS_ERR(map)) { 7196 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7197 insn[0].imm); 7198 return PTR_ERR(map); 7199 } 7200 7201 err = check_map_prog_compatibility(env, map, env->prog); 7202 if (err) { 7203 fdput(f); 7204 return err; 7205 } 7206 7207 aux = &env->insn_aux_data[i]; 7208 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7209 addr = (unsigned long)map; 7210 } else { 7211 u32 off = insn[1].imm; 7212 7213 if (off >= BPF_MAX_VAR_OFF) { 7214 verbose(env, "direct value offset of %u is not allowed\n", off); 7215 fdput(f); 7216 return -EINVAL; 7217 } 7218 7219 if (!map->ops->map_direct_value_addr) { 7220 verbose(env, "no direct value access support for this map type\n"); 7221 fdput(f); 7222 return -EINVAL; 7223 } 7224 7225 err = map->ops->map_direct_value_addr(map, &addr, off); 7226 if (err) { 7227 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7228 map->value_size, off); 7229 fdput(f); 7230 return err; 7231 } 7232 7233 aux->map_off = off; 7234 addr += off; 7235 } 7236 7237 insn[0].imm = (u32)addr; 7238 insn[1].imm = addr >> 32; 7239 7240 /* check whether we recorded this map already */ 7241 for (j = 0; j < env->used_map_cnt; j++) { 7242 if (env->used_maps[j] == map) { 7243 aux->map_index = j; 7244 fdput(f); 7245 goto next_insn; 7246 } 7247 } 7248 7249 if (env->used_map_cnt >= MAX_USED_MAPS) { 7250 fdput(f); 7251 return -E2BIG; 7252 } 7253 7254 /* hold the map. If the program is rejected by verifier, 7255 * the map will be released by release_maps() or it 7256 * will be used by the valid program until it's unloaded 7257 * and all maps are released in free_used_maps() 7258 */ 7259 map = bpf_map_inc(map, false); 7260 if (IS_ERR(map)) { 7261 fdput(f); 7262 return PTR_ERR(map); 7263 } 7264 7265 aux->map_index = env->used_map_cnt; 7266 env->used_maps[env->used_map_cnt++] = map; 7267 7268 if (bpf_map_is_cgroup_storage(map) && 7269 bpf_cgroup_storage_assign(env->prog, map)) { 7270 verbose(env, "only one cgroup storage of each type is allowed\n"); 7271 fdput(f); 7272 return -EBUSY; 7273 } 7274 7275 fdput(f); 7276 next_insn: 7277 insn++; 7278 i++; 7279 continue; 7280 } 7281 7282 /* Basic sanity check before we invest more work here. */ 7283 if (!bpf_opcode_in_insntable(insn->code)) { 7284 verbose(env, "unknown opcode %02x\n", insn->code); 7285 return -EINVAL; 7286 } 7287 } 7288 7289 /* now all pseudo BPF_LD_IMM64 instructions load valid 7290 * 'struct bpf_map *' into a register instead of user map_fd. 7291 * These pointers will be used later by verifier to validate map access. 7292 */ 7293 return 0; 7294 } 7295 7296 /* drop refcnt of maps used by the rejected program */ 7297 static void release_maps(struct bpf_verifier_env *env) 7298 { 7299 enum bpf_cgroup_storage_type stype; 7300 int i; 7301 7302 for_each_cgroup_storage_type(stype) { 7303 if (!env->prog->aux->cgroup_storage[stype]) 7304 continue; 7305 bpf_cgroup_storage_release(env->prog, 7306 env->prog->aux->cgroup_storage[stype]); 7307 } 7308 7309 for (i = 0; i < env->used_map_cnt; i++) 7310 bpf_map_put(env->used_maps[i]); 7311 } 7312 7313 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 7314 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 7315 { 7316 struct bpf_insn *insn = env->prog->insnsi; 7317 int insn_cnt = env->prog->len; 7318 int i; 7319 7320 for (i = 0; i < insn_cnt; i++, insn++) 7321 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 7322 insn->src_reg = 0; 7323 } 7324 7325 /* single env->prog->insni[off] instruction was replaced with the range 7326 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 7327 * [0, off) and [off, end) to new locations, so the patched range stays zero 7328 */ 7329 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 7330 struct bpf_prog *new_prog, u32 off, u32 cnt) 7331 { 7332 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 7333 struct bpf_insn *insn = new_prog->insnsi; 7334 u32 prog_len; 7335 int i; 7336 7337 /* aux info at OFF always needs adjustment, no matter fast path 7338 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 7339 * original insn at old prog. 7340 */ 7341 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 7342 7343 if (cnt == 1) 7344 return 0; 7345 prog_len = new_prog->len; 7346 new_data = vzalloc(array_size(prog_len, 7347 sizeof(struct bpf_insn_aux_data))); 7348 if (!new_data) 7349 return -ENOMEM; 7350 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 7351 memcpy(new_data + off + cnt - 1, old_data + off, 7352 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 7353 for (i = off; i < off + cnt - 1; i++) { 7354 new_data[i].seen = true; 7355 new_data[i].zext_dst = insn_has_def32(env, insn + i); 7356 } 7357 env->insn_aux_data = new_data; 7358 vfree(old_data); 7359 return 0; 7360 } 7361 7362 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 7363 { 7364 int i; 7365 7366 if (len == 1) 7367 return; 7368 /* NOTE: fake 'exit' subprog should be updated as well. */ 7369 for (i = 0; i <= env->subprog_cnt; i++) { 7370 if (env->subprog_info[i].start <= off) 7371 continue; 7372 env->subprog_info[i].start += len - 1; 7373 } 7374 } 7375 7376 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 7377 const struct bpf_insn *patch, u32 len) 7378 { 7379 struct bpf_prog *new_prog; 7380 7381 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 7382 if (IS_ERR(new_prog)) { 7383 if (PTR_ERR(new_prog) == -ERANGE) 7384 verbose(env, 7385 "insn %d cannot be patched due to 16-bit range\n", 7386 env->insn_aux_data[off].orig_idx); 7387 return NULL; 7388 } 7389 if (adjust_insn_aux_data(env, new_prog, off, len)) 7390 return NULL; 7391 adjust_subprog_starts(env, off, len); 7392 return new_prog; 7393 } 7394 7395 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 7396 u32 off, u32 cnt) 7397 { 7398 int i, j; 7399 7400 /* find first prog starting at or after off (first to remove) */ 7401 for (i = 0; i < env->subprog_cnt; i++) 7402 if (env->subprog_info[i].start >= off) 7403 break; 7404 /* find first prog starting at or after off + cnt (first to stay) */ 7405 for (j = i; j < env->subprog_cnt; j++) 7406 if (env->subprog_info[j].start >= off + cnt) 7407 break; 7408 /* if j doesn't start exactly at off + cnt, we are just removing 7409 * the front of previous prog 7410 */ 7411 if (env->subprog_info[j].start != off + cnt) 7412 j--; 7413 7414 if (j > i) { 7415 struct bpf_prog_aux *aux = env->prog->aux; 7416 int move; 7417 7418 /* move fake 'exit' subprog as well */ 7419 move = env->subprog_cnt + 1 - j; 7420 7421 memmove(env->subprog_info + i, 7422 env->subprog_info + j, 7423 sizeof(*env->subprog_info) * move); 7424 env->subprog_cnt -= j - i; 7425 7426 /* remove func_info */ 7427 if (aux->func_info) { 7428 move = aux->func_info_cnt - j; 7429 7430 memmove(aux->func_info + i, 7431 aux->func_info + j, 7432 sizeof(*aux->func_info) * move); 7433 aux->func_info_cnt -= j - i; 7434 /* func_info->insn_off is set after all code rewrites, 7435 * in adjust_btf_func() - no need to adjust 7436 */ 7437 } 7438 } else { 7439 /* convert i from "first prog to remove" to "first to adjust" */ 7440 if (env->subprog_info[i].start == off) 7441 i++; 7442 } 7443 7444 /* update fake 'exit' subprog as well */ 7445 for (; i <= env->subprog_cnt; i++) 7446 env->subprog_info[i].start -= cnt; 7447 7448 return 0; 7449 } 7450 7451 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 7452 u32 cnt) 7453 { 7454 struct bpf_prog *prog = env->prog; 7455 u32 i, l_off, l_cnt, nr_linfo; 7456 struct bpf_line_info *linfo; 7457 7458 nr_linfo = prog->aux->nr_linfo; 7459 if (!nr_linfo) 7460 return 0; 7461 7462 linfo = prog->aux->linfo; 7463 7464 /* find first line info to remove, count lines to be removed */ 7465 for (i = 0; i < nr_linfo; i++) 7466 if (linfo[i].insn_off >= off) 7467 break; 7468 7469 l_off = i; 7470 l_cnt = 0; 7471 for (; i < nr_linfo; i++) 7472 if (linfo[i].insn_off < off + cnt) 7473 l_cnt++; 7474 else 7475 break; 7476 7477 /* First live insn doesn't match first live linfo, it needs to "inherit" 7478 * last removed linfo. prog is already modified, so prog->len == off 7479 * means no live instructions after (tail of the program was removed). 7480 */ 7481 if (prog->len != off && l_cnt && 7482 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 7483 l_cnt--; 7484 linfo[--i].insn_off = off + cnt; 7485 } 7486 7487 /* remove the line info which refer to the removed instructions */ 7488 if (l_cnt) { 7489 memmove(linfo + l_off, linfo + i, 7490 sizeof(*linfo) * (nr_linfo - i)); 7491 7492 prog->aux->nr_linfo -= l_cnt; 7493 nr_linfo = prog->aux->nr_linfo; 7494 } 7495 7496 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 7497 for (i = l_off; i < nr_linfo; i++) 7498 linfo[i].insn_off -= cnt; 7499 7500 /* fix up all subprogs (incl. 'exit') which start >= off */ 7501 for (i = 0; i <= env->subprog_cnt; i++) 7502 if (env->subprog_info[i].linfo_idx > l_off) { 7503 /* program may have started in the removed region but 7504 * may not be fully removed 7505 */ 7506 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 7507 env->subprog_info[i].linfo_idx -= l_cnt; 7508 else 7509 env->subprog_info[i].linfo_idx = l_off; 7510 } 7511 7512 return 0; 7513 } 7514 7515 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 7516 { 7517 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7518 unsigned int orig_prog_len = env->prog->len; 7519 int err; 7520 7521 if (bpf_prog_is_dev_bound(env->prog->aux)) 7522 bpf_prog_offload_remove_insns(env, off, cnt); 7523 7524 err = bpf_remove_insns(env->prog, off, cnt); 7525 if (err) 7526 return err; 7527 7528 err = adjust_subprog_starts_after_remove(env, off, cnt); 7529 if (err) 7530 return err; 7531 7532 err = bpf_adj_linfo_after_remove(env, off, cnt); 7533 if (err) 7534 return err; 7535 7536 memmove(aux_data + off, aux_data + off + cnt, 7537 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 7538 7539 return 0; 7540 } 7541 7542 /* The verifier does more data flow analysis than llvm and will not 7543 * explore branches that are dead at run time. Malicious programs can 7544 * have dead code too. Therefore replace all dead at-run-time code 7545 * with 'ja -1'. 7546 * 7547 * Just nops are not optimal, e.g. if they would sit at the end of the 7548 * program and through another bug we would manage to jump there, then 7549 * we'd execute beyond program memory otherwise. Returning exception 7550 * code also wouldn't work since we can have subprogs where the dead 7551 * code could be located. 7552 */ 7553 static void sanitize_dead_code(struct bpf_verifier_env *env) 7554 { 7555 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7556 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7557 struct bpf_insn *insn = env->prog->insnsi; 7558 const int insn_cnt = env->prog->len; 7559 int i; 7560 7561 for (i = 0; i < insn_cnt; i++) { 7562 if (aux_data[i].seen) 7563 continue; 7564 memcpy(insn + i, &trap, sizeof(trap)); 7565 } 7566 } 7567 7568 static bool insn_is_cond_jump(u8 code) 7569 { 7570 u8 op; 7571 7572 if (BPF_CLASS(code) == BPF_JMP32) 7573 return true; 7574 7575 if (BPF_CLASS(code) != BPF_JMP) 7576 return false; 7577 7578 op = BPF_OP(code); 7579 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7580 } 7581 7582 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7583 { 7584 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7585 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7586 struct bpf_insn *insn = env->prog->insnsi; 7587 const int insn_cnt = env->prog->len; 7588 int i; 7589 7590 for (i = 0; i < insn_cnt; i++, insn++) { 7591 if (!insn_is_cond_jump(insn->code)) 7592 continue; 7593 7594 if (!aux_data[i + 1].seen) 7595 ja.off = insn->off; 7596 else if (!aux_data[i + 1 + insn->off].seen) 7597 ja.off = 0; 7598 else 7599 continue; 7600 7601 if (bpf_prog_is_dev_bound(env->prog->aux)) 7602 bpf_prog_offload_replace_insn(env, i, &ja); 7603 7604 memcpy(insn, &ja, sizeof(ja)); 7605 } 7606 } 7607 7608 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7609 { 7610 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7611 int insn_cnt = env->prog->len; 7612 int i, err; 7613 7614 for (i = 0; i < insn_cnt; i++) { 7615 int j; 7616 7617 j = 0; 7618 while (i + j < insn_cnt && !aux_data[i + j].seen) 7619 j++; 7620 if (!j) 7621 continue; 7622 7623 err = verifier_remove_insns(env, i, j); 7624 if (err) 7625 return err; 7626 insn_cnt = env->prog->len; 7627 } 7628 7629 return 0; 7630 } 7631 7632 static int opt_remove_nops(struct bpf_verifier_env *env) 7633 { 7634 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7635 struct bpf_insn *insn = env->prog->insnsi; 7636 int insn_cnt = env->prog->len; 7637 int i, err; 7638 7639 for (i = 0; i < insn_cnt; i++) { 7640 if (memcmp(&insn[i], &ja, sizeof(ja))) 7641 continue; 7642 7643 err = verifier_remove_insns(env, i, 1); 7644 if (err) 7645 return err; 7646 insn_cnt--; 7647 i--; 7648 } 7649 7650 return 0; 7651 } 7652 7653 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 7654 const union bpf_attr *attr) 7655 { 7656 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 7657 struct bpf_insn_aux_data *aux = env->insn_aux_data; 7658 int i, patch_len, delta = 0, len = env->prog->len; 7659 struct bpf_insn *insns = env->prog->insnsi; 7660 struct bpf_prog *new_prog; 7661 bool rnd_hi32; 7662 7663 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 7664 zext_patch[1] = BPF_ZEXT_REG(0); 7665 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 7666 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 7667 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 7668 for (i = 0; i < len; i++) { 7669 int adj_idx = i + delta; 7670 struct bpf_insn insn; 7671 7672 insn = insns[adj_idx]; 7673 if (!aux[adj_idx].zext_dst) { 7674 u8 code, class; 7675 u32 imm_rnd; 7676 7677 if (!rnd_hi32) 7678 continue; 7679 7680 code = insn.code; 7681 class = BPF_CLASS(code); 7682 if (insn_no_def(&insn)) 7683 continue; 7684 7685 /* NOTE: arg "reg" (the fourth one) is only used for 7686 * BPF_STX which has been ruled out in above 7687 * check, it is safe to pass NULL here. 7688 */ 7689 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 7690 if (class == BPF_LD && 7691 BPF_MODE(code) == BPF_IMM) 7692 i++; 7693 continue; 7694 } 7695 7696 /* ctx load could be transformed into wider load. */ 7697 if (class == BPF_LDX && 7698 aux[adj_idx].ptr_type == PTR_TO_CTX) 7699 continue; 7700 7701 imm_rnd = get_random_int(); 7702 rnd_hi32_patch[0] = insn; 7703 rnd_hi32_patch[1].imm = imm_rnd; 7704 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 7705 patch = rnd_hi32_patch; 7706 patch_len = 4; 7707 goto apply_patch_buffer; 7708 } 7709 7710 if (!bpf_jit_needs_zext()) 7711 continue; 7712 7713 zext_patch[0] = insn; 7714 zext_patch[1].dst_reg = insn.dst_reg; 7715 zext_patch[1].src_reg = insn.dst_reg; 7716 patch = zext_patch; 7717 patch_len = 2; 7718 apply_patch_buffer: 7719 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 7720 if (!new_prog) 7721 return -ENOMEM; 7722 env->prog = new_prog; 7723 insns = new_prog->insnsi; 7724 aux = env->insn_aux_data; 7725 delta += patch_len - 1; 7726 } 7727 7728 return 0; 7729 } 7730 7731 /* convert load instructions that access fields of a context type into a 7732 * sequence of instructions that access fields of the underlying structure: 7733 * struct __sk_buff -> struct sk_buff 7734 * struct bpf_sock_ops -> struct sock 7735 */ 7736 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7737 { 7738 const struct bpf_verifier_ops *ops = env->ops; 7739 int i, cnt, size, ctx_field_size, delta = 0; 7740 const int insn_cnt = env->prog->len; 7741 struct bpf_insn insn_buf[16], *insn; 7742 u32 target_size, size_default, off; 7743 struct bpf_prog *new_prog; 7744 enum bpf_access_type type; 7745 bool is_narrower_load; 7746 7747 if (ops->gen_prologue || env->seen_direct_write) { 7748 if (!ops->gen_prologue) { 7749 verbose(env, "bpf verifier is misconfigured\n"); 7750 return -EINVAL; 7751 } 7752 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7753 env->prog); 7754 if (cnt >= ARRAY_SIZE(insn_buf)) { 7755 verbose(env, "bpf verifier is misconfigured\n"); 7756 return -EINVAL; 7757 } else if (cnt) { 7758 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7759 if (!new_prog) 7760 return -ENOMEM; 7761 7762 env->prog = new_prog; 7763 delta += cnt - 1; 7764 } 7765 } 7766 7767 if (bpf_prog_is_dev_bound(env->prog->aux)) 7768 return 0; 7769 7770 insn = env->prog->insnsi + delta; 7771 7772 for (i = 0; i < insn_cnt; i++, insn++) { 7773 bpf_convert_ctx_access_t convert_ctx_access; 7774 7775 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7776 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7777 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7778 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7779 type = BPF_READ; 7780 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7781 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7782 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7783 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7784 type = BPF_WRITE; 7785 else 7786 continue; 7787 7788 if (type == BPF_WRITE && 7789 env->insn_aux_data[i + delta].sanitize_stack_off) { 7790 struct bpf_insn patch[] = { 7791 /* Sanitize suspicious stack slot with zero. 7792 * There are no memory dependencies for this store, 7793 * since it's only using frame pointer and immediate 7794 * constant of zero 7795 */ 7796 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7797 env->insn_aux_data[i + delta].sanitize_stack_off, 7798 0), 7799 /* the original STX instruction will immediately 7800 * overwrite the same stack slot with appropriate value 7801 */ 7802 *insn, 7803 }; 7804 7805 cnt = ARRAY_SIZE(patch); 7806 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7807 if (!new_prog) 7808 return -ENOMEM; 7809 7810 delta += cnt - 1; 7811 env->prog = new_prog; 7812 insn = new_prog->insnsi + i + delta; 7813 continue; 7814 } 7815 7816 switch (env->insn_aux_data[i + delta].ptr_type) { 7817 case PTR_TO_CTX: 7818 if (!ops->convert_ctx_access) 7819 continue; 7820 convert_ctx_access = ops->convert_ctx_access; 7821 break; 7822 case PTR_TO_SOCKET: 7823 case PTR_TO_SOCK_COMMON: 7824 convert_ctx_access = bpf_sock_convert_ctx_access; 7825 break; 7826 case PTR_TO_TCP_SOCK: 7827 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7828 break; 7829 default: 7830 continue; 7831 } 7832 7833 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7834 size = BPF_LDST_BYTES(insn); 7835 7836 /* If the read access is a narrower load of the field, 7837 * convert to a 4/8-byte load, to minimum program type specific 7838 * convert_ctx_access changes. If conversion is successful, 7839 * we will apply proper mask to the result. 7840 */ 7841 is_narrower_load = size < ctx_field_size; 7842 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7843 off = insn->off; 7844 if (is_narrower_load) { 7845 u8 size_code; 7846 7847 if (type == BPF_WRITE) { 7848 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7849 return -EINVAL; 7850 } 7851 7852 size_code = BPF_H; 7853 if (ctx_field_size == 4) 7854 size_code = BPF_W; 7855 else if (ctx_field_size == 8) 7856 size_code = BPF_DW; 7857 7858 insn->off = off & ~(size_default - 1); 7859 insn->code = BPF_LDX | BPF_MEM | size_code; 7860 } 7861 7862 target_size = 0; 7863 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7864 &target_size); 7865 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7866 (ctx_field_size && !target_size)) { 7867 verbose(env, "bpf verifier is misconfigured\n"); 7868 return -EINVAL; 7869 } 7870 7871 if (is_narrower_load && size < target_size) { 7872 u8 shift = (off & (size_default - 1)) * 8; 7873 7874 if (ctx_field_size <= 4) { 7875 if (shift) 7876 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7877 insn->dst_reg, 7878 shift); 7879 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7880 (1 << size * 8) - 1); 7881 } else { 7882 if (shift) 7883 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7884 insn->dst_reg, 7885 shift); 7886 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7887 (1ULL << size * 8) - 1); 7888 } 7889 } 7890 7891 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7892 if (!new_prog) 7893 return -ENOMEM; 7894 7895 delta += cnt - 1; 7896 7897 /* keep walking new program and skip insns we just inserted */ 7898 env->prog = new_prog; 7899 insn = new_prog->insnsi + i + delta; 7900 } 7901 7902 return 0; 7903 } 7904 7905 static int jit_subprogs(struct bpf_verifier_env *env) 7906 { 7907 struct bpf_prog *prog = env->prog, **func, *tmp; 7908 int i, j, subprog_start, subprog_end = 0, len, subprog; 7909 struct bpf_insn *insn; 7910 void *old_bpf_func; 7911 int err; 7912 7913 if (env->subprog_cnt <= 1) 7914 return 0; 7915 7916 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7917 if (insn->code != (BPF_JMP | BPF_CALL) || 7918 insn->src_reg != BPF_PSEUDO_CALL) 7919 continue; 7920 /* Upon error here we cannot fall back to interpreter but 7921 * need a hard reject of the program. Thus -EFAULT is 7922 * propagated in any case. 7923 */ 7924 subprog = find_subprog(env, i + insn->imm + 1); 7925 if (subprog < 0) { 7926 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7927 i + insn->imm + 1); 7928 return -EFAULT; 7929 } 7930 /* temporarily remember subprog id inside insn instead of 7931 * aux_data, since next loop will split up all insns into funcs 7932 */ 7933 insn->off = subprog; 7934 /* remember original imm in case JIT fails and fallback 7935 * to interpreter will be needed 7936 */ 7937 env->insn_aux_data[i].call_imm = insn->imm; 7938 /* point imm to __bpf_call_base+1 from JITs point of view */ 7939 insn->imm = 1; 7940 } 7941 7942 err = bpf_prog_alloc_jited_linfo(prog); 7943 if (err) 7944 goto out_undo_insn; 7945 7946 err = -ENOMEM; 7947 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7948 if (!func) 7949 goto out_undo_insn; 7950 7951 for (i = 0; i < env->subprog_cnt; i++) { 7952 subprog_start = subprog_end; 7953 subprog_end = env->subprog_info[i + 1].start; 7954 7955 len = subprog_end - subprog_start; 7956 /* BPF_PROG_RUN doesn't call subprogs directly, 7957 * hence main prog stats include the runtime of subprogs. 7958 * subprogs don't have IDs and not reachable via prog_get_next_id 7959 * func[i]->aux->stats will never be accessed and stays NULL 7960 */ 7961 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7962 if (!func[i]) 7963 goto out_free; 7964 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7965 len * sizeof(struct bpf_insn)); 7966 func[i]->type = prog->type; 7967 func[i]->len = len; 7968 if (bpf_prog_calc_tag(func[i])) 7969 goto out_free; 7970 func[i]->is_func = 1; 7971 func[i]->aux->func_idx = i; 7972 /* the btf and func_info will be freed only at prog->aux */ 7973 func[i]->aux->btf = prog->aux->btf; 7974 func[i]->aux->func_info = prog->aux->func_info; 7975 7976 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7977 * Long term would need debug info to populate names 7978 */ 7979 func[i]->aux->name[0] = 'F'; 7980 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7981 func[i]->jit_requested = 1; 7982 func[i]->aux->linfo = prog->aux->linfo; 7983 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7984 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7985 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7986 func[i] = bpf_int_jit_compile(func[i]); 7987 if (!func[i]->jited) { 7988 err = -ENOTSUPP; 7989 goto out_free; 7990 } 7991 cond_resched(); 7992 } 7993 /* at this point all bpf functions were successfully JITed 7994 * now populate all bpf_calls with correct addresses and 7995 * run last pass of JIT 7996 */ 7997 for (i = 0; i < env->subprog_cnt; i++) { 7998 insn = func[i]->insnsi; 7999 for (j = 0; j < func[i]->len; j++, insn++) { 8000 if (insn->code != (BPF_JMP | BPF_CALL) || 8001 insn->src_reg != BPF_PSEUDO_CALL) 8002 continue; 8003 subprog = insn->off; 8004 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8005 __bpf_call_base; 8006 } 8007 8008 /* we use the aux data to keep a list of the start addresses 8009 * of the JITed images for each function in the program 8010 * 8011 * for some architectures, such as powerpc64, the imm field 8012 * might not be large enough to hold the offset of the start 8013 * address of the callee's JITed image from __bpf_call_base 8014 * 8015 * in such cases, we can lookup the start address of a callee 8016 * by using its subprog id, available from the off field of 8017 * the call instruction, as an index for this list 8018 */ 8019 func[i]->aux->func = func; 8020 func[i]->aux->func_cnt = env->subprog_cnt; 8021 } 8022 for (i = 0; i < env->subprog_cnt; i++) { 8023 old_bpf_func = func[i]->bpf_func; 8024 tmp = bpf_int_jit_compile(func[i]); 8025 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8026 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8027 err = -ENOTSUPP; 8028 goto out_free; 8029 } 8030 cond_resched(); 8031 } 8032 8033 /* finally lock prog and jit images for all functions and 8034 * populate kallsysm 8035 */ 8036 for (i = 0; i < env->subprog_cnt; i++) { 8037 bpf_prog_lock_ro(func[i]); 8038 bpf_prog_kallsyms_add(func[i]); 8039 } 8040 8041 /* Last step: make now unused interpreter insns from main 8042 * prog consistent for later dump requests, so they can 8043 * later look the same as if they were interpreted only. 8044 */ 8045 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8046 if (insn->code != (BPF_JMP | BPF_CALL) || 8047 insn->src_reg != BPF_PSEUDO_CALL) 8048 continue; 8049 insn->off = env->insn_aux_data[i].call_imm; 8050 subprog = find_subprog(env, i + insn->off + 1); 8051 insn->imm = subprog; 8052 } 8053 8054 prog->jited = 1; 8055 prog->bpf_func = func[0]->bpf_func; 8056 prog->aux->func = func; 8057 prog->aux->func_cnt = env->subprog_cnt; 8058 bpf_prog_free_unused_jited_linfo(prog); 8059 return 0; 8060 out_free: 8061 for (i = 0; i < env->subprog_cnt; i++) 8062 if (func[i]) 8063 bpf_jit_free(func[i]); 8064 kfree(func); 8065 out_undo_insn: 8066 /* cleanup main prog to be interpreted */ 8067 prog->jit_requested = 0; 8068 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8069 if (insn->code != (BPF_JMP | BPF_CALL) || 8070 insn->src_reg != BPF_PSEUDO_CALL) 8071 continue; 8072 insn->off = 0; 8073 insn->imm = env->insn_aux_data[i].call_imm; 8074 } 8075 bpf_prog_free_jited_linfo(prog); 8076 return err; 8077 } 8078 8079 static int fixup_call_args(struct bpf_verifier_env *env) 8080 { 8081 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8082 struct bpf_prog *prog = env->prog; 8083 struct bpf_insn *insn = prog->insnsi; 8084 int i, depth; 8085 #endif 8086 int err = 0; 8087 8088 if (env->prog->jit_requested && 8089 !bpf_prog_is_dev_bound(env->prog->aux)) { 8090 err = jit_subprogs(env); 8091 if (err == 0) 8092 return 0; 8093 if (err == -EFAULT) 8094 return err; 8095 } 8096 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8097 for (i = 0; i < prog->len; i++, insn++) { 8098 if (insn->code != (BPF_JMP | BPF_CALL) || 8099 insn->src_reg != BPF_PSEUDO_CALL) 8100 continue; 8101 depth = get_callee_stack_depth(env, insn, i); 8102 if (depth < 0) 8103 return depth; 8104 bpf_patch_call_args(insn, depth); 8105 } 8106 err = 0; 8107 #endif 8108 return err; 8109 } 8110 8111 /* fixup insn->imm field of bpf_call instructions 8112 * and inline eligible helpers as explicit sequence of BPF instructions 8113 * 8114 * this function is called after eBPF program passed verification 8115 */ 8116 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8117 { 8118 struct bpf_prog *prog = env->prog; 8119 struct bpf_insn *insn = prog->insnsi; 8120 const struct bpf_func_proto *fn; 8121 const int insn_cnt = prog->len; 8122 const struct bpf_map_ops *ops; 8123 struct bpf_insn_aux_data *aux; 8124 struct bpf_insn insn_buf[16]; 8125 struct bpf_prog *new_prog; 8126 struct bpf_map *map_ptr; 8127 int i, cnt, delta = 0; 8128 8129 for (i = 0; i < insn_cnt; i++, insn++) { 8130 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8131 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8132 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8133 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8134 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8135 struct bpf_insn mask_and_div[] = { 8136 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8137 /* Rx div 0 -> 0 */ 8138 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8139 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8140 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8141 *insn, 8142 }; 8143 struct bpf_insn mask_and_mod[] = { 8144 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8145 /* Rx mod 0 -> Rx */ 8146 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8147 *insn, 8148 }; 8149 struct bpf_insn *patchlet; 8150 8151 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8152 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8153 patchlet = mask_and_div + (is64 ? 1 : 0); 8154 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8155 } else { 8156 patchlet = mask_and_mod + (is64 ? 1 : 0); 8157 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8158 } 8159 8160 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8161 if (!new_prog) 8162 return -ENOMEM; 8163 8164 delta += cnt - 1; 8165 env->prog = prog = new_prog; 8166 insn = new_prog->insnsi + i + delta; 8167 continue; 8168 } 8169 8170 if (BPF_CLASS(insn->code) == BPF_LD && 8171 (BPF_MODE(insn->code) == BPF_ABS || 8172 BPF_MODE(insn->code) == BPF_IND)) { 8173 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8174 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8175 verbose(env, "bpf verifier is misconfigured\n"); 8176 return -EINVAL; 8177 } 8178 8179 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8180 if (!new_prog) 8181 return -ENOMEM; 8182 8183 delta += cnt - 1; 8184 env->prog = prog = new_prog; 8185 insn = new_prog->insnsi + i + delta; 8186 continue; 8187 } 8188 8189 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8190 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8191 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8192 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8193 struct bpf_insn insn_buf[16]; 8194 struct bpf_insn *patch = &insn_buf[0]; 8195 bool issrc, isneg; 8196 u32 off_reg; 8197 8198 aux = &env->insn_aux_data[i + delta]; 8199 if (!aux->alu_state || 8200 aux->alu_state == BPF_ALU_NON_POINTER) 8201 continue; 8202 8203 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8204 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8205 BPF_ALU_SANITIZE_SRC; 8206 8207 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8208 if (isneg) 8209 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8210 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8211 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8212 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8213 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8214 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8215 if (issrc) { 8216 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8217 off_reg); 8218 insn->src_reg = BPF_REG_AX; 8219 } else { 8220 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8221 BPF_REG_AX); 8222 } 8223 if (isneg) 8224 insn->code = insn->code == code_add ? 8225 code_sub : code_add; 8226 *patch++ = *insn; 8227 if (issrc && isneg) 8228 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8229 cnt = patch - insn_buf; 8230 8231 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8232 if (!new_prog) 8233 return -ENOMEM; 8234 8235 delta += cnt - 1; 8236 env->prog = prog = new_prog; 8237 insn = new_prog->insnsi + i + delta; 8238 continue; 8239 } 8240 8241 if (insn->code != (BPF_JMP | BPF_CALL)) 8242 continue; 8243 if (insn->src_reg == BPF_PSEUDO_CALL) 8244 continue; 8245 8246 if (insn->imm == BPF_FUNC_get_route_realm) 8247 prog->dst_needed = 1; 8248 if (insn->imm == BPF_FUNC_get_prandom_u32) 8249 bpf_user_rnd_init_once(); 8250 if (insn->imm == BPF_FUNC_override_return) 8251 prog->kprobe_override = 1; 8252 if (insn->imm == BPF_FUNC_tail_call) { 8253 /* If we tail call into other programs, we 8254 * cannot make any assumptions since they can 8255 * be replaced dynamically during runtime in 8256 * the program array. 8257 */ 8258 prog->cb_access = 1; 8259 env->prog->aux->stack_depth = MAX_BPF_STACK; 8260 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 8261 8262 /* mark bpf_tail_call as different opcode to avoid 8263 * conditional branch in the interpeter for every normal 8264 * call and to prevent accidental JITing by JIT compiler 8265 * that doesn't support bpf_tail_call yet 8266 */ 8267 insn->imm = 0; 8268 insn->code = BPF_JMP | BPF_TAIL_CALL; 8269 8270 aux = &env->insn_aux_data[i + delta]; 8271 if (!bpf_map_ptr_unpriv(aux)) 8272 continue; 8273 8274 /* instead of changing every JIT dealing with tail_call 8275 * emit two extra insns: 8276 * if (index >= max_entries) goto out; 8277 * index &= array->index_mask; 8278 * to avoid out-of-bounds cpu speculation 8279 */ 8280 if (bpf_map_ptr_poisoned(aux)) { 8281 verbose(env, "tail_call abusing map_ptr\n"); 8282 return -EINVAL; 8283 } 8284 8285 map_ptr = BPF_MAP_PTR(aux->map_state); 8286 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 8287 map_ptr->max_entries, 2); 8288 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 8289 container_of(map_ptr, 8290 struct bpf_array, 8291 map)->index_mask); 8292 insn_buf[2] = *insn; 8293 cnt = 3; 8294 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8295 if (!new_prog) 8296 return -ENOMEM; 8297 8298 delta += cnt - 1; 8299 env->prog = prog = new_prog; 8300 insn = new_prog->insnsi + i + delta; 8301 continue; 8302 } 8303 8304 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 8305 * and other inlining handlers are currently limited to 64 bit 8306 * only. 8307 */ 8308 if (prog->jit_requested && BITS_PER_LONG == 64 && 8309 (insn->imm == BPF_FUNC_map_lookup_elem || 8310 insn->imm == BPF_FUNC_map_update_elem || 8311 insn->imm == BPF_FUNC_map_delete_elem || 8312 insn->imm == BPF_FUNC_map_push_elem || 8313 insn->imm == BPF_FUNC_map_pop_elem || 8314 insn->imm == BPF_FUNC_map_peek_elem)) { 8315 aux = &env->insn_aux_data[i + delta]; 8316 if (bpf_map_ptr_poisoned(aux)) 8317 goto patch_call_imm; 8318 8319 map_ptr = BPF_MAP_PTR(aux->map_state); 8320 ops = map_ptr->ops; 8321 if (insn->imm == BPF_FUNC_map_lookup_elem && 8322 ops->map_gen_lookup) { 8323 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 8324 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8325 verbose(env, "bpf verifier is misconfigured\n"); 8326 return -EINVAL; 8327 } 8328 8329 new_prog = bpf_patch_insn_data(env, i + delta, 8330 insn_buf, cnt); 8331 if (!new_prog) 8332 return -ENOMEM; 8333 8334 delta += cnt - 1; 8335 env->prog = prog = new_prog; 8336 insn = new_prog->insnsi + i + delta; 8337 continue; 8338 } 8339 8340 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 8341 (void *(*)(struct bpf_map *map, void *key))NULL)); 8342 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 8343 (int (*)(struct bpf_map *map, void *key))NULL)); 8344 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 8345 (int (*)(struct bpf_map *map, void *key, void *value, 8346 u64 flags))NULL)); 8347 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 8348 (int (*)(struct bpf_map *map, void *value, 8349 u64 flags))NULL)); 8350 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 8351 (int (*)(struct bpf_map *map, void *value))NULL)); 8352 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 8353 (int (*)(struct bpf_map *map, void *value))NULL)); 8354 8355 switch (insn->imm) { 8356 case BPF_FUNC_map_lookup_elem: 8357 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 8358 __bpf_call_base; 8359 continue; 8360 case BPF_FUNC_map_update_elem: 8361 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 8362 __bpf_call_base; 8363 continue; 8364 case BPF_FUNC_map_delete_elem: 8365 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 8366 __bpf_call_base; 8367 continue; 8368 case BPF_FUNC_map_push_elem: 8369 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 8370 __bpf_call_base; 8371 continue; 8372 case BPF_FUNC_map_pop_elem: 8373 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 8374 __bpf_call_base; 8375 continue; 8376 case BPF_FUNC_map_peek_elem: 8377 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 8378 __bpf_call_base; 8379 continue; 8380 } 8381 8382 goto patch_call_imm; 8383 } 8384 8385 patch_call_imm: 8386 fn = env->ops->get_func_proto(insn->imm, env->prog); 8387 /* all functions that have prototype and verifier allowed 8388 * programs to call them, must be real in-kernel functions 8389 */ 8390 if (!fn->func) { 8391 verbose(env, 8392 "kernel subsystem misconfigured func %s#%d\n", 8393 func_id_name(insn->imm), insn->imm); 8394 return -EFAULT; 8395 } 8396 insn->imm = fn->func - __bpf_call_base; 8397 } 8398 8399 return 0; 8400 } 8401 8402 static void free_states(struct bpf_verifier_env *env) 8403 { 8404 struct bpf_verifier_state_list *sl, *sln; 8405 int i; 8406 8407 sl = env->free_list; 8408 while (sl) { 8409 sln = sl->next; 8410 free_verifier_state(&sl->state, false); 8411 kfree(sl); 8412 sl = sln; 8413 } 8414 8415 if (!env->explored_states) 8416 return; 8417 8418 for (i = 0; i < state_htab_size(env); i++) { 8419 sl = env->explored_states[i]; 8420 8421 while (sl) { 8422 sln = sl->next; 8423 free_verifier_state(&sl->state, false); 8424 kfree(sl); 8425 sl = sln; 8426 } 8427 } 8428 8429 kvfree(env->explored_states); 8430 } 8431 8432 static void print_verification_stats(struct bpf_verifier_env *env) 8433 { 8434 int i; 8435 8436 if (env->log.level & BPF_LOG_STATS) { 8437 verbose(env, "verification time %lld usec\n", 8438 div_u64(env->verification_time, 1000)); 8439 verbose(env, "stack depth "); 8440 for (i = 0; i < env->subprog_cnt; i++) { 8441 u32 depth = env->subprog_info[i].stack_depth; 8442 8443 verbose(env, "%d", depth); 8444 if (i + 1 < env->subprog_cnt) 8445 verbose(env, "+"); 8446 } 8447 verbose(env, "\n"); 8448 } 8449 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 8450 "total_states %d peak_states %d mark_read %d\n", 8451 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 8452 env->max_states_per_insn, env->total_states, 8453 env->peak_states, env->longest_mark_read_walk); 8454 } 8455 8456 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 8457 union bpf_attr __user *uattr) 8458 { 8459 u64 start_time = ktime_get_ns(); 8460 struct bpf_verifier_env *env; 8461 struct bpf_verifier_log *log; 8462 int i, len, ret = -EINVAL; 8463 bool is_priv; 8464 8465 /* no program is valid */ 8466 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 8467 return -EINVAL; 8468 8469 /* 'struct bpf_verifier_env' can be global, but since it's not small, 8470 * allocate/free it every time bpf_check() is called 8471 */ 8472 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 8473 if (!env) 8474 return -ENOMEM; 8475 log = &env->log; 8476 8477 len = (*prog)->len; 8478 env->insn_aux_data = 8479 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 8480 ret = -ENOMEM; 8481 if (!env->insn_aux_data) 8482 goto err_free_env; 8483 for (i = 0; i < len; i++) 8484 env->insn_aux_data[i].orig_idx = i; 8485 env->prog = *prog; 8486 env->ops = bpf_verifier_ops[env->prog->type]; 8487 is_priv = capable(CAP_SYS_ADMIN); 8488 8489 /* grab the mutex to protect few globals used by verifier */ 8490 if (!is_priv) 8491 mutex_lock(&bpf_verifier_lock); 8492 8493 if (attr->log_level || attr->log_buf || attr->log_size) { 8494 /* user requested verbose verifier output 8495 * and supplied buffer to store the verification trace 8496 */ 8497 log->level = attr->log_level; 8498 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 8499 log->len_total = attr->log_size; 8500 8501 ret = -EINVAL; 8502 /* log attributes have to be sane */ 8503 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 8504 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 8505 goto err_unlock; 8506 } 8507 8508 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 8509 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 8510 env->strict_alignment = true; 8511 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 8512 env->strict_alignment = false; 8513 8514 env->allow_ptr_leaks = is_priv; 8515 8516 ret = replace_map_fd_with_map_ptr(env); 8517 if (ret < 0) 8518 goto skip_full_check; 8519 8520 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8521 ret = bpf_prog_offload_verifier_prep(env->prog); 8522 if (ret) 8523 goto skip_full_check; 8524 } 8525 8526 env->explored_states = kvcalloc(state_htab_size(env), 8527 sizeof(struct bpf_verifier_state_list *), 8528 GFP_USER); 8529 ret = -ENOMEM; 8530 if (!env->explored_states) 8531 goto skip_full_check; 8532 8533 ret = check_subprogs(env); 8534 if (ret < 0) 8535 goto skip_full_check; 8536 8537 ret = check_btf_info(env, attr, uattr); 8538 if (ret < 0) 8539 goto skip_full_check; 8540 8541 ret = check_cfg(env); 8542 if (ret < 0) 8543 goto skip_full_check; 8544 8545 ret = do_check(env); 8546 if (env->cur_state) { 8547 free_verifier_state(env->cur_state, true); 8548 env->cur_state = NULL; 8549 } 8550 8551 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 8552 ret = bpf_prog_offload_finalize(env); 8553 8554 skip_full_check: 8555 while (!pop_stack(env, NULL, NULL)); 8556 free_states(env); 8557 8558 if (ret == 0) 8559 ret = check_max_stack_depth(env); 8560 8561 /* instruction rewrites happen after this point */ 8562 if (is_priv) { 8563 if (ret == 0) 8564 opt_hard_wire_dead_code_branches(env); 8565 if (ret == 0) 8566 ret = opt_remove_dead_code(env); 8567 if (ret == 0) 8568 ret = opt_remove_nops(env); 8569 } else { 8570 if (ret == 0) 8571 sanitize_dead_code(env); 8572 } 8573 8574 if (ret == 0) 8575 /* program is valid, convert *(u32*)(ctx + off) accesses */ 8576 ret = convert_ctx_accesses(env); 8577 8578 if (ret == 0) 8579 ret = fixup_bpf_calls(env); 8580 8581 /* do 32-bit optimization after insn patching has done so those patched 8582 * insns could be handled correctly. 8583 */ 8584 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 8585 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 8586 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 8587 : false; 8588 } 8589 8590 if (ret == 0) 8591 ret = fixup_call_args(env); 8592 8593 env->verification_time = ktime_get_ns() - start_time; 8594 print_verification_stats(env); 8595 8596 if (log->level && bpf_verifier_log_full(log)) 8597 ret = -ENOSPC; 8598 if (log->level && !log->ubuf) { 8599 ret = -EFAULT; 8600 goto err_release_maps; 8601 } 8602 8603 if (ret == 0 && env->used_map_cnt) { 8604 /* if program passed verifier, update used_maps in bpf_prog_info */ 8605 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 8606 sizeof(env->used_maps[0]), 8607 GFP_KERNEL); 8608 8609 if (!env->prog->aux->used_maps) { 8610 ret = -ENOMEM; 8611 goto err_release_maps; 8612 } 8613 8614 memcpy(env->prog->aux->used_maps, env->used_maps, 8615 sizeof(env->used_maps[0]) * env->used_map_cnt); 8616 env->prog->aux->used_map_cnt = env->used_map_cnt; 8617 8618 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 8619 * bpf_ld_imm64 instructions 8620 */ 8621 convert_pseudo_ld_imm64(env); 8622 } 8623 8624 if (ret == 0) 8625 adjust_btf_func(env); 8626 8627 err_release_maps: 8628 if (!env->prog->aux->used_maps) 8629 /* if we didn't copy map pointers into bpf_prog_info, release 8630 * them now. Otherwise free_used_maps() will release them. 8631 */ 8632 release_maps(env); 8633 *prog = env->prog; 8634 err_unlock: 8635 if (!is_priv) 8636 mutex_unlock(&bpf_verifier_lock); 8637 vfree(env->insn_aux_data); 8638 err_free_env: 8639 kfree(env); 8640 return ret; 8641 } 8642