xref: /linux/kernel/bpf/verifier.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_PTR_UNPRIV	1UL
183 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
184 					  POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186 
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191 
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196 
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 			      const struct bpf_map *map, bool unpriv)
199 {
200 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 	unpriv |= bpf_map_ptr_unpriv(aux);
202 	aux->map_state = (unsigned long)map |
203 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205 
206 struct bpf_call_arg_meta {
207 	struct bpf_map *map_ptr;
208 	bool raw_mode;
209 	bool pkt_access;
210 	int regno;
211 	int access_size;
212 	s64 msize_smax_value;
213 	u64 msize_umax_value;
214 	int ref_obj_id;
215 	int func_id;
216 };
217 
218 static DEFINE_MUTEX(bpf_verifier_lock);
219 
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 	const struct bpf_line_info *linfo;
224 	const struct bpf_prog *prog;
225 	u32 i, nr_linfo;
226 
227 	prog = env->prog;
228 	nr_linfo = prog->aux->nr_linfo;
229 
230 	if (!nr_linfo || insn_off >= prog->len)
231 		return NULL;
232 
233 	linfo = prog->aux->linfo;
234 	for (i = 1; i < nr_linfo; i++)
235 		if (insn_off < linfo[i].insn_off)
236 			break;
237 
238 	return &linfo[i - 1];
239 }
240 
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 		       va_list args)
243 {
244 	unsigned int n;
245 
246 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247 
248 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 		  "verifier log line truncated - local buffer too short\n");
250 
251 	n = min(log->len_total - log->len_used - 1, n);
252 	log->kbuf[n] = '\0';
253 
254 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 		log->len_used += n;
256 	else
257 		log->ubuf = NULL;
258 }
259 
260 /* log_level controls verbosity level of eBPF verifier.
261  * bpf_verifier_log_write() is used to dump the verification trace to the log,
262  * so the user can figure out what's wrong with the program
263  */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 					   const char *fmt, ...)
266 {
267 	va_list args;
268 
269 	if (!bpf_verifier_log_needed(&env->log))
270 		return;
271 
272 	va_start(args, fmt);
273 	bpf_verifier_vlog(&env->log, fmt, args);
274 	va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277 
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 	struct bpf_verifier_env *env = private_data;
281 	va_list args;
282 
283 	if (!bpf_verifier_log_needed(&env->log))
284 		return;
285 
286 	va_start(args, fmt);
287 	bpf_verifier_vlog(&env->log, fmt, args);
288 	va_end(args);
289 }
290 
291 static const char *ltrim(const char *s)
292 {
293 	while (isspace(*s))
294 		s++;
295 
296 	return s;
297 }
298 
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 					 u32 insn_off,
301 					 const char *prefix_fmt, ...)
302 {
303 	const struct bpf_line_info *linfo;
304 
305 	if (!bpf_verifier_log_needed(&env->log))
306 		return;
307 
308 	linfo = find_linfo(env, insn_off);
309 	if (!linfo || linfo == env->prev_linfo)
310 		return;
311 
312 	if (prefix_fmt) {
313 		va_list args;
314 
315 		va_start(args, prefix_fmt);
316 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 		va_end(args);
318 	}
319 
320 	verbose(env, "%s\n",
321 		ltrim(btf_name_by_offset(env->prog->aux->btf,
322 					 linfo->line_off)));
323 
324 	env->prev_linfo = linfo;
325 }
326 
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 	return type == PTR_TO_PACKET ||
330 	       type == PTR_TO_PACKET_META;
331 }
332 
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_SOCKET ||
336 		type == PTR_TO_SOCK_COMMON ||
337 		type == PTR_TO_TCP_SOCK;
338 }
339 
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 	       type == PTR_TO_SOCKET_OR_NULL ||
344 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 	       type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347 
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 	return reg->type == PTR_TO_MAP_VALUE &&
351 		map_value_has_spin_lock(reg->map_ptr);
352 }
353 
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 	return type == PTR_TO_SOCKET ||
357 		type == PTR_TO_SOCKET_OR_NULL ||
358 		type == PTR_TO_TCP_SOCK ||
359 		type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361 
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 	return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366 
367 /* Determine whether the function releases some resources allocated by another
368  * function call. The first reference type argument will be assumed to be
369  * released by release_reference().
370  */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 	return func_id == BPF_FUNC_sk_release;
374 }
375 
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_sk_lookup_tcp ||
379 		func_id == BPF_FUNC_sk_lookup_udp ||
380 		func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
409 };
410 
411 static char slot_type_char[] = {
412 	[STACK_INVALID]	= '?',
413 	[STACK_SPILL]	= 'r',
414 	[STACK_MISC]	= 'm',
415 	[STACK_ZERO]	= '0',
416 };
417 
418 static void print_liveness(struct bpf_verifier_env *env,
419 			   enum bpf_reg_liveness live)
420 {
421 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
422 	    verbose(env, "_");
423 	if (live & REG_LIVE_READ)
424 		verbose(env, "r");
425 	if (live & REG_LIVE_WRITTEN)
426 		verbose(env, "w");
427 	if (live & REG_LIVE_DONE)
428 		verbose(env, "D");
429 }
430 
431 static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 				   const struct bpf_reg_state *reg)
433 {
434 	struct bpf_verifier_state *cur = env->cur_state;
435 
436 	return cur->frame[reg->frameno];
437 }
438 
439 static void print_verifier_state(struct bpf_verifier_env *env,
440 				 const struct bpf_func_state *state)
441 {
442 	const struct bpf_reg_state *reg;
443 	enum bpf_reg_type t;
444 	int i;
445 
446 	if (state->frameno)
447 		verbose(env, " frame%d:", state->frameno);
448 	for (i = 0; i < MAX_BPF_REG; i++) {
449 		reg = &state->regs[i];
450 		t = reg->type;
451 		if (t == NOT_INIT)
452 			continue;
453 		verbose(env, " R%d", i);
454 		print_liveness(env, reg->live);
455 		verbose(env, "=%s", reg_type_str[t]);
456 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 		    tnum_is_const(reg->var_off)) {
458 			/* reg->off should be 0 for SCALAR_VALUE */
459 			verbose(env, "%lld", reg->var_off.value + reg->off);
460 			if (t == PTR_TO_STACK)
461 				verbose(env, ",call_%d", func(env, reg)->callsite);
462 		} else {
463 			verbose(env, "(id=%d", reg->id);
464 			if (reg_type_may_be_refcounted_or_null(t))
465 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
466 			if (t != SCALAR_VALUE)
467 				verbose(env, ",off=%d", reg->off);
468 			if (type_is_pkt_pointer(t))
469 				verbose(env, ",r=%d", reg->range);
470 			else if (t == CONST_PTR_TO_MAP ||
471 				 t == PTR_TO_MAP_VALUE ||
472 				 t == PTR_TO_MAP_VALUE_OR_NULL)
473 				verbose(env, ",ks=%d,vs=%d",
474 					reg->map_ptr->key_size,
475 					reg->map_ptr->value_size);
476 			if (tnum_is_const(reg->var_off)) {
477 				/* Typically an immediate SCALAR_VALUE, but
478 				 * could be a pointer whose offset is too big
479 				 * for reg->off
480 				 */
481 				verbose(env, ",imm=%llx", reg->var_off.value);
482 			} else {
483 				if (reg->smin_value != reg->umin_value &&
484 				    reg->smin_value != S64_MIN)
485 					verbose(env, ",smin_value=%lld",
486 						(long long)reg->smin_value);
487 				if (reg->smax_value != reg->umax_value &&
488 				    reg->smax_value != S64_MAX)
489 					verbose(env, ",smax_value=%lld",
490 						(long long)reg->smax_value);
491 				if (reg->umin_value != 0)
492 					verbose(env, ",umin_value=%llu",
493 						(unsigned long long)reg->umin_value);
494 				if (reg->umax_value != U64_MAX)
495 					verbose(env, ",umax_value=%llu",
496 						(unsigned long long)reg->umax_value);
497 				if (!tnum_is_unknown(reg->var_off)) {
498 					char tn_buf[48];
499 
500 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
501 					verbose(env, ",var_off=%s", tn_buf);
502 				}
503 			}
504 			verbose(env, ")");
505 		}
506 	}
507 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
508 		char types_buf[BPF_REG_SIZE + 1];
509 		bool valid = false;
510 		int j;
511 
512 		for (j = 0; j < BPF_REG_SIZE; j++) {
513 			if (state->stack[i].slot_type[j] != STACK_INVALID)
514 				valid = true;
515 			types_buf[j] = slot_type_char[
516 					state->stack[i].slot_type[j]];
517 		}
518 		types_buf[BPF_REG_SIZE] = 0;
519 		if (!valid)
520 			continue;
521 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 		print_liveness(env, state->stack[i].spilled_ptr.live);
523 		if (state->stack[i].slot_type[0] == STACK_SPILL)
524 			verbose(env, "=%s",
525 				reg_type_str[state->stack[i].spilled_ptr.type]);
526 		else
527 			verbose(env, "=%s", types_buf);
528 	}
529 	if (state->acquired_refs && state->refs[0].id) {
530 		verbose(env, " refs=%d", state->refs[0].id);
531 		for (i = 1; i < state->acquired_refs; i++)
532 			if (state->refs[i].id)
533 				verbose(env, ",%d", state->refs[i].id);
534 	}
535 	verbose(env, "\n");
536 }
537 
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
539 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
540 			       const struct bpf_func_state *src)	\
541 {									\
542 	if (!src->FIELD)						\
543 		return 0;						\
544 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
545 		/* internal bug, make state invalid to reject the program */ \
546 		memset(dst, 0, sizeof(*dst));				\
547 		return -EFAULT;						\
548 	}								\
549 	memcpy(dst->FIELD, src->FIELD,					\
550 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
551 	return 0;							\
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558 
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 				  bool copy_old)			\
562 {									\
563 	u32 old_size = state->COUNT;					\
564 	struct bpf_##NAME##_state *new_##FIELD;				\
565 	int slot = size / SIZE;						\
566 									\
567 	if (size <= old_size || !size) {				\
568 		if (copy_old)						\
569 			return 0;					\
570 		state->COUNT = slot * SIZE;				\
571 		if (!size && old_size) {				\
572 			kfree(state->FIELD);				\
573 			state->FIELD = NULL;				\
574 		}							\
575 		return 0;						\
576 	}								\
577 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 				    GFP_KERNEL);			\
579 	if (!new_##FIELD)						\
580 		return -ENOMEM;						\
581 	if (copy_old) {							\
582 		if (state->FIELD)					\
583 			memcpy(new_##FIELD, state->FIELD,		\
584 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 		memset(new_##FIELD + old_size / SIZE, 0,		\
586 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 	}								\
588 	state->COUNT = slot * SIZE;					\
589 	kfree(state->FIELD);						\
590 	state->FIELD = new_##FIELD;					\
591 	return 0;							\
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598 
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600  * make it consume minimal amount of memory. check_stack_write() access from
601  * the program calls into realloc_func_state() to grow the stack size.
602  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603  * which realloc_stack_state() copies over. It points to previous
604  * bpf_verifier_state which is never reallocated.
605  */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 			      int refs_size, bool copy_old)
608 {
609 	int err = realloc_reference_state(state, refs_size, copy_old);
610 	if (err)
611 		return err;
612 	return realloc_stack_state(state, stack_size, copy_old);
613 }
614 
615 /* Acquire a pointer id from the env and update the state->refs to include
616  * this new pointer reference.
617  * On success, returns a valid pointer id to associate with the register
618  * On failure, returns a negative errno.
619  */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 	struct bpf_func_state *state = cur_func(env);
623 	int new_ofs = state->acquired_refs;
624 	int id, err;
625 
626 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 	if (err)
628 		return err;
629 	id = ++env->id_gen;
630 	state->refs[new_ofs].id = id;
631 	state->refs[new_ofs].insn_idx = insn_idx;
632 
633 	return id;
634 }
635 
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 	int i, last_idx;
640 
641 	last_idx = state->acquired_refs - 1;
642 	for (i = 0; i < state->acquired_refs; i++) {
643 		if (state->refs[i].id == ptr_id) {
644 			if (last_idx && i != last_idx)
645 				memcpy(&state->refs[i], &state->refs[last_idx],
646 				       sizeof(*state->refs));
647 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 			state->acquired_refs--;
649 			return 0;
650 		}
651 	}
652 	return -EINVAL;
653 }
654 
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 				    struct bpf_func_state *src)
657 {
658 	int err = realloc_reference_state(dst, src->acquired_refs, false);
659 	if (err)
660 		return err;
661 	err = copy_reference_state(dst, src);
662 	if (err)
663 		return err;
664 	return 0;
665 }
666 
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 	if (!state)
670 		return;
671 	kfree(state->refs);
672 	kfree(state->stack);
673 	kfree(state);
674 }
675 
676 static void free_verifier_state(struct bpf_verifier_state *state,
677 				bool free_self)
678 {
679 	int i;
680 
681 	for (i = 0; i <= state->curframe; i++) {
682 		free_func_state(state->frame[i]);
683 		state->frame[i] = NULL;
684 	}
685 	if (free_self)
686 		kfree(state);
687 }
688 
689 /* copy verifier state from src to dst growing dst stack space
690  * when necessary to accommodate larger src stack
691  */
692 static int copy_func_state(struct bpf_func_state *dst,
693 			   const struct bpf_func_state *src)
694 {
695 	int err;
696 
697 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
698 				 false);
699 	if (err)
700 		return err;
701 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 	err = copy_reference_state(dst, src);
703 	if (err)
704 		return err;
705 	return copy_stack_state(dst, src);
706 }
707 
708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 			       const struct bpf_verifier_state *src)
710 {
711 	struct bpf_func_state *dst;
712 	int i, err;
713 
714 	/* if dst has more stack frames then src frame, free them */
715 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 		free_func_state(dst_state->frame[i]);
717 		dst_state->frame[i] = NULL;
718 	}
719 	dst_state->speculative = src->speculative;
720 	dst_state->curframe = src->curframe;
721 	dst_state->active_spin_lock = src->active_spin_lock;
722 	for (i = 0; i <= src->curframe; i++) {
723 		dst = dst_state->frame[i];
724 		if (!dst) {
725 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
726 			if (!dst)
727 				return -ENOMEM;
728 			dst_state->frame[i] = dst;
729 		}
730 		err = copy_func_state(dst, src->frame[i]);
731 		if (err)
732 			return err;
733 	}
734 	return 0;
735 }
736 
737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
738 		     int *insn_idx)
739 {
740 	struct bpf_verifier_state *cur = env->cur_state;
741 	struct bpf_verifier_stack_elem *elem, *head = env->head;
742 	int err;
743 
744 	if (env->head == NULL)
745 		return -ENOENT;
746 
747 	if (cur) {
748 		err = copy_verifier_state(cur, &head->st);
749 		if (err)
750 			return err;
751 	}
752 	if (insn_idx)
753 		*insn_idx = head->insn_idx;
754 	if (prev_insn_idx)
755 		*prev_insn_idx = head->prev_insn_idx;
756 	elem = head->next;
757 	free_verifier_state(&head->st, false);
758 	kfree(head);
759 	env->head = elem;
760 	env->stack_size--;
761 	return 0;
762 }
763 
764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
765 					     int insn_idx, int prev_insn_idx,
766 					     bool speculative)
767 {
768 	struct bpf_verifier_state *cur = env->cur_state;
769 	struct bpf_verifier_stack_elem *elem;
770 	int err;
771 
772 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
773 	if (!elem)
774 		goto err;
775 
776 	elem->insn_idx = insn_idx;
777 	elem->prev_insn_idx = prev_insn_idx;
778 	elem->next = env->head;
779 	env->head = elem;
780 	env->stack_size++;
781 	err = copy_verifier_state(&elem->st, cur);
782 	if (err)
783 		goto err;
784 	elem->st.speculative |= speculative;
785 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
786 		verbose(env, "The sequence of %d jumps is too complex.\n",
787 			env->stack_size);
788 		goto err;
789 	}
790 	return &elem->st;
791 err:
792 	free_verifier_state(env->cur_state, true);
793 	env->cur_state = NULL;
794 	/* pop all elements and return */
795 	while (!pop_stack(env, NULL, NULL));
796 	return NULL;
797 }
798 
799 #define CALLER_SAVED_REGS 6
800 static const int caller_saved[CALLER_SAVED_REGS] = {
801 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
802 };
803 
804 static void __mark_reg_not_init(struct bpf_reg_state *reg);
805 
806 /* Mark the unknown part of a register (variable offset or scalar value) as
807  * known to have the value @imm.
808  */
809 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
810 {
811 	/* Clear id, off, and union(map_ptr, range) */
812 	memset(((u8 *)reg) + sizeof(reg->type), 0,
813 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
814 	reg->var_off = tnum_const(imm);
815 	reg->smin_value = (s64)imm;
816 	reg->smax_value = (s64)imm;
817 	reg->umin_value = imm;
818 	reg->umax_value = imm;
819 }
820 
821 /* Mark the 'variable offset' part of a register as zero.  This should be
822  * used only on registers holding a pointer type.
823  */
824 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
825 {
826 	__mark_reg_known(reg, 0);
827 }
828 
829 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
830 {
831 	__mark_reg_known(reg, 0);
832 	reg->type = SCALAR_VALUE;
833 }
834 
835 static void mark_reg_known_zero(struct bpf_verifier_env *env,
836 				struct bpf_reg_state *regs, u32 regno)
837 {
838 	if (WARN_ON(regno >= MAX_BPF_REG)) {
839 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
840 		/* Something bad happened, let's kill all regs */
841 		for (regno = 0; regno < MAX_BPF_REG; regno++)
842 			__mark_reg_not_init(regs + regno);
843 		return;
844 	}
845 	__mark_reg_known_zero(regs + regno);
846 }
847 
848 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
849 {
850 	return type_is_pkt_pointer(reg->type);
851 }
852 
853 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
854 {
855 	return reg_is_pkt_pointer(reg) ||
856 	       reg->type == PTR_TO_PACKET_END;
857 }
858 
859 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
860 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
861 				    enum bpf_reg_type which)
862 {
863 	/* The register can already have a range from prior markings.
864 	 * This is fine as long as it hasn't been advanced from its
865 	 * origin.
866 	 */
867 	return reg->type == which &&
868 	       reg->id == 0 &&
869 	       reg->off == 0 &&
870 	       tnum_equals_const(reg->var_off, 0);
871 }
872 
873 /* Attempts to improve min/max values based on var_off information */
874 static void __update_reg_bounds(struct bpf_reg_state *reg)
875 {
876 	/* min signed is max(sign bit) | min(other bits) */
877 	reg->smin_value = max_t(s64, reg->smin_value,
878 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
879 	/* max signed is min(sign bit) | max(other bits) */
880 	reg->smax_value = min_t(s64, reg->smax_value,
881 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
882 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
883 	reg->umax_value = min(reg->umax_value,
884 			      reg->var_off.value | reg->var_off.mask);
885 }
886 
887 /* Uses signed min/max values to inform unsigned, and vice-versa */
888 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
889 {
890 	/* Learn sign from signed bounds.
891 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
892 	 * are the same, so combine.  This works even in the negative case, e.g.
893 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
894 	 */
895 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
896 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
897 							  reg->umin_value);
898 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
899 							  reg->umax_value);
900 		return;
901 	}
902 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
903 	 * boundary, so we must be careful.
904 	 */
905 	if ((s64)reg->umax_value >= 0) {
906 		/* Positive.  We can't learn anything from the smin, but smax
907 		 * is positive, hence safe.
908 		 */
909 		reg->smin_value = reg->umin_value;
910 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
911 							  reg->umax_value);
912 	} else if ((s64)reg->umin_value < 0) {
913 		/* Negative.  We can't learn anything from the smax, but smin
914 		 * is negative, hence safe.
915 		 */
916 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
917 							  reg->umin_value);
918 		reg->smax_value = reg->umax_value;
919 	}
920 }
921 
922 /* Attempts to improve var_off based on unsigned min/max information */
923 static void __reg_bound_offset(struct bpf_reg_state *reg)
924 {
925 	reg->var_off = tnum_intersect(reg->var_off,
926 				      tnum_range(reg->umin_value,
927 						 reg->umax_value));
928 }
929 
930 /* Reset the min/max bounds of a register */
931 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
932 {
933 	reg->smin_value = S64_MIN;
934 	reg->smax_value = S64_MAX;
935 	reg->umin_value = 0;
936 	reg->umax_value = U64_MAX;
937 }
938 
939 /* Mark a register as having a completely unknown (scalar) value. */
940 static void __mark_reg_unknown(struct bpf_reg_state *reg)
941 {
942 	/*
943 	 * Clear type, id, off, and union(map_ptr, range) and
944 	 * padding between 'type' and union
945 	 */
946 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
947 	reg->type = SCALAR_VALUE;
948 	reg->var_off = tnum_unknown;
949 	reg->frameno = 0;
950 	__mark_reg_unbounded(reg);
951 }
952 
953 static void mark_reg_unknown(struct bpf_verifier_env *env,
954 			     struct bpf_reg_state *regs, u32 regno)
955 {
956 	if (WARN_ON(regno >= MAX_BPF_REG)) {
957 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
958 		/* Something bad happened, let's kill all regs except FP */
959 		for (regno = 0; regno < BPF_REG_FP; regno++)
960 			__mark_reg_not_init(regs + regno);
961 		return;
962 	}
963 	__mark_reg_unknown(regs + regno);
964 }
965 
966 static void __mark_reg_not_init(struct bpf_reg_state *reg)
967 {
968 	__mark_reg_unknown(reg);
969 	reg->type = NOT_INIT;
970 }
971 
972 static void mark_reg_not_init(struct bpf_verifier_env *env,
973 			      struct bpf_reg_state *regs, u32 regno)
974 {
975 	if (WARN_ON(regno >= MAX_BPF_REG)) {
976 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
977 		/* Something bad happened, let's kill all regs except FP */
978 		for (regno = 0; regno < BPF_REG_FP; regno++)
979 			__mark_reg_not_init(regs + regno);
980 		return;
981 	}
982 	__mark_reg_not_init(regs + regno);
983 }
984 
985 #define DEF_NOT_SUBREG	(0)
986 static void init_reg_state(struct bpf_verifier_env *env,
987 			   struct bpf_func_state *state)
988 {
989 	struct bpf_reg_state *regs = state->regs;
990 	int i;
991 
992 	for (i = 0; i < MAX_BPF_REG; i++) {
993 		mark_reg_not_init(env, regs, i);
994 		regs[i].live = REG_LIVE_NONE;
995 		regs[i].parent = NULL;
996 		regs[i].subreg_def = DEF_NOT_SUBREG;
997 	}
998 
999 	/* frame pointer */
1000 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1001 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1002 	regs[BPF_REG_FP].frameno = state->frameno;
1003 
1004 	/* 1st arg to a function */
1005 	regs[BPF_REG_1].type = PTR_TO_CTX;
1006 	mark_reg_known_zero(env, regs, BPF_REG_1);
1007 }
1008 
1009 #define BPF_MAIN_FUNC (-1)
1010 static void init_func_state(struct bpf_verifier_env *env,
1011 			    struct bpf_func_state *state,
1012 			    int callsite, int frameno, int subprogno)
1013 {
1014 	state->callsite = callsite;
1015 	state->frameno = frameno;
1016 	state->subprogno = subprogno;
1017 	init_reg_state(env, state);
1018 }
1019 
1020 enum reg_arg_type {
1021 	SRC_OP,		/* register is used as source operand */
1022 	DST_OP,		/* register is used as destination operand */
1023 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1024 };
1025 
1026 static int cmp_subprogs(const void *a, const void *b)
1027 {
1028 	return ((struct bpf_subprog_info *)a)->start -
1029 	       ((struct bpf_subprog_info *)b)->start;
1030 }
1031 
1032 static int find_subprog(struct bpf_verifier_env *env, int off)
1033 {
1034 	struct bpf_subprog_info *p;
1035 
1036 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1037 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1038 	if (!p)
1039 		return -ENOENT;
1040 	return p - env->subprog_info;
1041 
1042 }
1043 
1044 static int add_subprog(struct bpf_verifier_env *env, int off)
1045 {
1046 	int insn_cnt = env->prog->len;
1047 	int ret;
1048 
1049 	if (off >= insn_cnt || off < 0) {
1050 		verbose(env, "call to invalid destination\n");
1051 		return -EINVAL;
1052 	}
1053 	ret = find_subprog(env, off);
1054 	if (ret >= 0)
1055 		return 0;
1056 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1057 		verbose(env, "too many subprograms\n");
1058 		return -E2BIG;
1059 	}
1060 	env->subprog_info[env->subprog_cnt++].start = off;
1061 	sort(env->subprog_info, env->subprog_cnt,
1062 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1063 	return 0;
1064 }
1065 
1066 static int check_subprogs(struct bpf_verifier_env *env)
1067 {
1068 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1069 	struct bpf_subprog_info *subprog = env->subprog_info;
1070 	struct bpf_insn *insn = env->prog->insnsi;
1071 	int insn_cnt = env->prog->len;
1072 
1073 	/* Add entry function. */
1074 	ret = add_subprog(env, 0);
1075 	if (ret < 0)
1076 		return ret;
1077 
1078 	/* determine subprog starts. The end is one before the next starts */
1079 	for (i = 0; i < insn_cnt; i++) {
1080 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1081 			continue;
1082 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1083 			continue;
1084 		if (!env->allow_ptr_leaks) {
1085 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1086 			return -EPERM;
1087 		}
1088 		ret = add_subprog(env, i + insn[i].imm + 1);
1089 		if (ret < 0)
1090 			return ret;
1091 	}
1092 
1093 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1094 	 * logic. 'subprog_cnt' should not be increased.
1095 	 */
1096 	subprog[env->subprog_cnt].start = insn_cnt;
1097 
1098 	if (env->log.level & BPF_LOG_LEVEL2)
1099 		for (i = 0; i < env->subprog_cnt; i++)
1100 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1101 
1102 	/* now check that all jumps are within the same subprog */
1103 	subprog_start = subprog[cur_subprog].start;
1104 	subprog_end = subprog[cur_subprog + 1].start;
1105 	for (i = 0; i < insn_cnt; i++) {
1106 		u8 code = insn[i].code;
1107 
1108 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1109 			goto next;
1110 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1111 			goto next;
1112 		off = i + insn[i].off + 1;
1113 		if (off < subprog_start || off >= subprog_end) {
1114 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1115 			return -EINVAL;
1116 		}
1117 next:
1118 		if (i == subprog_end - 1) {
1119 			/* to avoid fall-through from one subprog into another
1120 			 * the last insn of the subprog should be either exit
1121 			 * or unconditional jump back
1122 			 */
1123 			if (code != (BPF_JMP | BPF_EXIT) &&
1124 			    code != (BPF_JMP | BPF_JA)) {
1125 				verbose(env, "last insn is not an exit or jmp\n");
1126 				return -EINVAL;
1127 			}
1128 			subprog_start = subprog_end;
1129 			cur_subprog++;
1130 			if (cur_subprog < env->subprog_cnt)
1131 				subprog_end = subprog[cur_subprog + 1].start;
1132 		}
1133 	}
1134 	return 0;
1135 }
1136 
1137 /* Parentage chain of this register (or stack slot) should take care of all
1138  * issues like callee-saved registers, stack slot allocation time, etc.
1139  */
1140 static int mark_reg_read(struct bpf_verifier_env *env,
1141 			 const struct bpf_reg_state *state,
1142 			 struct bpf_reg_state *parent, u8 flag)
1143 {
1144 	bool writes = parent == state->parent; /* Observe write marks */
1145 	int cnt = 0;
1146 
1147 	while (parent) {
1148 		/* if read wasn't screened by an earlier write ... */
1149 		if (writes && state->live & REG_LIVE_WRITTEN)
1150 			break;
1151 		if (parent->live & REG_LIVE_DONE) {
1152 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1153 				reg_type_str[parent->type],
1154 				parent->var_off.value, parent->off);
1155 			return -EFAULT;
1156 		}
1157 		/* The first condition is more likely to be true than the
1158 		 * second, checked it first.
1159 		 */
1160 		if ((parent->live & REG_LIVE_READ) == flag ||
1161 		    parent->live & REG_LIVE_READ64)
1162 			/* The parentage chain never changes and
1163 			 * this parent was already marked as LIVE_READ.
1164 			 * There is no need to keep walking the chain again and
1165 			 * keep re-marking all parents as LIVE_READ.
1166 			 * This case happens when the same register is read
1167 			 * multiple times without writes into it in-between.
1168 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1169 			 * then no need to set the weak REG_LIVE_READ32.
1170 			 */
1171 			break;
1172 		/* ... then we depend on parent's value */
1173 		parent->live |= flag;
1174 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1175 		if (flag == REG_LIVE_READ64)
1176 			parent->live &= ~REG_LIVE_READ32;
1177 		state = parent;
1178 		parent = state->parent;
1179 		writes = true;
1180 		cnt++;
1181 	}
1182 
1183 	if (env->longest_mark_read_walk < cnt)
1184 		env->longest_mark_read_walk = cnt;
1185 	return 0;
1186 }
1187 
1188 /* This function is supposed to be used by the following 32-bit optimization
1189  * code only. It returns TRUE if the source or destination register operates
1190  * on 64-bit, otherwise return FALSE.
1191  */
1192 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1193 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1194 {
1195 	u8 code, class, op;
1196 
1197 	code = insn->code;
1198 	class = BPF_CLASS(code);
1199 	op = BPF_OP(code);
1200 	if (class == BPF_JMP) {
1201 		/* BPF_EXIT for "main" will reach here. Return TRUE
1202 		 * conservatively.
1203 		 */
1204 		if (op == BPF_EXIT)
1205 			return true;
1206 		if (op == BPF_CALL) {
1207 			/* BPF to BPF call will reach here because of marking
1208 			 * caller saved clobber with DST_OP_NO_MARK for which we
1209 			 * don't care the register def because they are anyway
1210 			 * marked as NOT_INIT already.
1211 			 */
1212 			if (insn->src_reg == BPF_PSEUDO_CALL)
1213 				return false;
1214 			/* Helper call will reach here because of arg type
1215 			 * check, conservatively return TRUE.
1216 			 */
1217 			if (t == SRC_OP)
1218 				return true;
1219 
1220 			return false;
1221 		}
1222 	}
1223 
1224 	if (class == BPF_ALU64 || class == BPF_JMP ||
1225 	    /* BPF_END always use BPF_ALU class. */
1226 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1227 		return true;
1228 
1229 	if (class == BPF_ALU || class == BPF_JMP32)
1230 		return false;
1231 
1232 	if (class == BPF_LDX) {
1233 		if (t != SRC_OP)
1234 			return BPF_SIZE(code) == BPF_DW;
1235 		/* LDX source must be ptr. */
1236 		return true;
1237 	}
1238 
1239 	if (class == BPF_STX) {
1240 		if (reg->type != SCALAR_VALUE)
1241 			return true;
1242 		return BPF_SIZE(code) == BPF_DW;
1243 	}
1244 
1245 	if (class == BPF_LD) {
1246 		u8 mode = BPF_MODE(code);
1247 
1248 		/* LD_IMM64 */
1249 		if (mode == BPF_IMM)
1250 			return true;
1251 
1252 		/* Both LD_IND and LD_ABS return 32-bit data. */
1253 		if (t != SRC_OP)
1254 			return  false;
1255 
1256 		/* Implicit ctx ptr. */
1257 		if (regno == BPF_REG_6)
1258 			return true;
1259 
1260 		/* Explicit source could be any width. */
1261 		return true;
1262 	}
1263 
1264 	if (class == BPF_ST)
1265 		/* The only source register for BPF_ST is a ptr. */
1266 		return true;
1267 
1268 	/* Conservatively return true at default. */
1269 	return true;
1270 }
1271 
1272 /* Return TRUE if INSN doesn't have explicit value define. */
1273 static bool insn_no_def(struct bpf_insn *insn)
1274 {
1275 	u8 class = BPF_CLASS(insn->code);
1276 
1277 	return (class == BPF_JMP || class == BPF_JMP32 ||
1278 		class == BPF_STX || class == BPF_ST);
1279 }
1280 
1281 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1282 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1283 {
1284 	if (insn_no_def(insn))
1285 		return false;
1286 
1287 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1288 }
1289 
1290 static void mark_insn_zext(struct bpf_verifier_env *env,
1291 			   struct bpf_reg_state *reg)
1292 {
1293 	s32 def_idx = reg->subreg_def;
1294 
1295 	if (def_idx == DEF_NOT_SUBREG)
1296 		return;
1297 
1298 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1299 	/* The dst will be zero extended, so won't be sub-register anymore. */
1300 	reg->subreg_def = DEF_NOT_SUBREG;
1301 }
1302 
1303 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1304 			 enum reg_arg_type t)
1305 {
1306 	struct bpf_verifier_state *vstate = env->cur_state;
1307 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1308 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1309 	struct bpf_reg_state *reg, *regs = state->regs;
1310 	bool rw64;
1311 
1312 	if (regno >= MAX_BPF_REG) {
1313 		verbose(env, "R%d is invalid\n", regno);
1314 		return -EINVAL;
1315 	}
1316 
1317 	reg = &regs[regno];
1318 	rw64 = is_reg64(env, insn, regno, reg, t);
1319 	if (t == SRC_OP) {
1320 		/* check whether register used as source operand can be read */
1321 		if (reg->type == NOT_INIT) {
1322 			verbose(env, "R%d !read_ok\n", regno);
1323 			return -EACCES;
1324 		}
1325 		/* We don't need to worry about FP liveness because it's read-only */
1326 		if (regno == BPF_REG_FP)
1327 			return 0;
1328 
1329 		if (rw64)
1330 			mark_insn_zext(env, reg);
1331 
1332 		return mark_reg_read(env, reg, reg->parent,
1333 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1334 	} else {
1335 		/* check whether register used as dest operand can be written to */
1336 		if (regno == BPF_REG_FP) {
1337 			verbose(env, "frame pointer is read only\n");
1338 			return -EACCES;
1339 		}
1340 		reg->live |= REG_LIVE_WRITTEN;
1341 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1342 		if (t == DST_OP)
1343 			mark_reg_unknown(env, regs, regno);
1344 	}
1345 	return 0;
1346 }
1347 
1348 static bool is_spillable_regtype(enum bpf_reg_type type)
1349 {
1350 	switch (type) {
1351 	case PTR_TO_MAP_VALUE:
1352 	case PTR_TO_MAP_VALUE_OR_NULL:
1353 	case PTR_TO_STACK:
1354 	case PTR_TO_CTX:
1355 	case PTR_TO_PACKET:
1356 	case PTR_TO_PACKET_META:
1357 	case PTR_TO_PACKET_END:
1358 	case PTR_TO_FLOW_KEYS:
1359 	case CONST_PTR_TO_MAP:
1360 	case PTR_TO_SOCKET:
1361 	case PTR_TO_SOCKET_OR_NULL:
1362 	case PTR_TO_SOCK_COMMON:
1363 	case PTR_TO_SOCK_COMMON_OR_NULL:
1364 	case PTR_TO_TCP_SOCK:
1365 	case PTR_TO_TCP_SOCK_OR_NULL:
1366 		return true;
1367 	default:
1368 		return false;
1369 	}
1370 }
1371 
1372 /* Does this register contain a constant zero? */
1373 static bool register_is_null(struct bpf_reg_state *reg)
1374 {
1375 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1376 }
1377 
1378 /* check_stack_read/write functions track spill/fill of registers,
1379  * stack boundary and alignment are checked in check_mem_access()
1380  */
1381 static int check_stack_write(struct bpf_verifier_env *env,
1382 			     struct bpf_func_state *state, /* func where register points to */
1383 			     int off, int size, int value_regno, int insn_idx)
1384 {
1385 	struct bpf_func_state *cur; /* state of the current function */
1386 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1387 	enum bpf_reg_type type;
1388 
1389 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1390 				 state->acquired_refs, true);
1391 	if (err)
1392 		return err;
1393 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1394 	 * so it's aligned access and [off, off + size) are within stack limits
1395 	 */
1396 	if (!env->allow_ptr_leaks &&
1397 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1398 	    size != BPF_REG_SIZE) {
1399 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1400 		return -EACCES;
1401 	}
1402 
1403 	cur = env->cur_state->frame[env->cur_state->curframe];
1404 	if (value_regno >= 0 &&
1405 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1406 
1407 		/* register containing pointer is being spilled into stack */
1408 		if (size != BPF_REG_SIZE) {
1409 			verbose(env, "invalid size of register spill\n");
1410 			return -EACCES;
1411 		}
1412 
1413 		if (state != cur && type == PTR_TO_STACK) {
1414 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1415 			return -EINVAL;
1416 		}
1417 
1418 		/* save register state */
1419 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1420 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1421 
1422 		for (i = 0; i < BPF_REG_SIZE; i++) {
1423 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1424 			    !env->allow_ptr_leaks) {
1425 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1426 				int soff = (-spi - 1) * BPF_REG_SIZE;
1427 
1428 				/* detected reuse of integer stack slot with a pointer
1429 				 * which means either llvm is reusing stack slot or
1430 				 * an attacker is trying to exploit CVE-2018-3639
1431 				 * (speculative store bypass)
1432 				 * Have to sanitize that slot with preemptive
1433 				 * store of zero.
1434 				 */
1435 				if (*poff && *poff != soff) {
1436 					/* disallow programs where single insn stores
1437 					 * into two different stack slots, since verifier
1438 					 * cannot sanitize them
1439 					 */
1440 					verbose(env,
1441 						"insn %d cannot access two stack slots fp%d and fp%d",
1442 						insn_idx, *poff, soff);
1443 					return -EINVAL;
1444 				}
1445 				*poff = soff;
1446 			}
1447 			state->stack[spi].slot_type[i] = STACK_SPILL;
1448 		}
1449 	} else {
1450 		u8 type = STACK_MISC;
1451 
1452 		/* regular write of data into stack destroys any spilled ptr */
1453 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1454 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1455 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1456 			for (i = 0; i < BPF_REG_SIZE; i++)
1457 				state->stack[spi].slot_type[i] = STACK_MISC;
1458 
1459 		/* only mark the slot as written if all 8 bytes were written
1460 		 * otherwise read propagation may incorrectly stop too soon
1461 		 * when stack slots are partially written.
1462 		 * This heuristic means that read propagation will be
1463 		 * conservative, since it will add reg_live_read marks
1464 		 * to stack slots all the way to first state when programs
1465 		 * writes+reads less than 8 bytes
1466 		 */
1467 		if (size == BPF_REG_SIZE)
1468 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1469 
1470 		/* when we zero initialize stack slots mark them as such */
1471 		if (value_regno >= 0 &&
1472 		    register_is_null(&cur->regs[value_regno]))
1473 			type = STACK_ZERO;
1474 
1475 		/* Mark slots affected by this stack write. */
1476 		for (i = 0; i < size; i++)
1477 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1478 				type;
1479 	}
1480 	return 0;
1481 }
1482 
1483 static int check_stack_read(struct bpf_verifier_env *env,
1484 			    struct bpf_func_state *reg_state /* func where register points to */,
1485 			    int off, int size, int value_regno)
1486 {
1487 	struct bpf_verifier_state *vstate = env->cur_state;
1488 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1489 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1490 	u8 *stype;
1491 
1492 	if (reg_state->allocated_stack <= slot) {
1493 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1494 			off, size);
1495 		return -EACCES;
1496 	}
1497 	stype = reg_state->stack[spi].slot_type;
1498 
1499 	if (stype[0] == STACK_SPILL) {
1500 		if (size != BPF_REG_SIZE) {
1501 			verbose(env, "invalid size of register spill\n");
1502 			return -EACCES;
1503 		}
1504 		for (i = 1; i < BPF_REG_SIZE; i++) {
1505 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1506 				verbose(env, "corrupted spill memory\n");
1507 				return -EACCES;
1508 			}
1509 		}
1510 
1511 		if (value_regno >= 0) {
1512 			/* restore register state from stack */
1513 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1514 			/* mark reg as written since spilled pointer state likely
1515 			 * has its liveness marks cleared by is_state_visited()
1516 			 * which resets stack/reg liveness for state transitions
1517 			 */
1518 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1519 		}
1520 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1521 			      reg_state->stack[spi].spilled_ptr.parent,
1522 			      REG_LIVE_READ64);
1523 		return 0;
1524 	} else {
1525 		int zeros = 0;
1526 
1527 		for (i = 0; i < size; i++) {
1528 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1529 				continue;
1530 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1531 				zeros++;
1532 				continue;
1533 			}
1534 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1535 				off, i, size);
1536 			return -EACCES;
1537 		}
1538 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1539 			      reg_state->stack[spi].spilled_ptr.parent,
1540 			      REG_LIVE_READ64);
1541 		if (value_regno >= 0) {
1542 			if (zeros == size) {
1543 				/* any size read into register is zero extended,
1544 				 * so the whole register == const_zero
1545 				 */
1546 				__mark_reg_const_zero(&state->regs[value_regno]);
1547 			} else {
1548 				/* have read misc data from the stack */
1549 				mark_reg_unknown(env, state->regs, value_regno);
1550 			}
1551 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1552 		}
1553 		return 0;
1554 	}
1555 }
1556 
1557 static int check_stack_access(struct bpf_verifier_env *env,
1558 			      const struct bpf_reg_state *reg,
1559 			      int off, int size)
1560 {
1561 	/* Stack accesses must be at a fixed offset, so that we
1562 	 * can determine what type of data were returned. See
1563 	 * check_stack_read().
1564 	 */
1565 	if (!tnum_is_const(reg->var_off)) {
1566 		char tn_buf[48];
1567 
1568 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1569 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1570 			tn_buf, off, size);
1571 		return -EACCES;
1572 	}
1573 
1574 	if (off >= 0 || off < -MAX_BPF_STACK) {
1575 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1576 		return -EACCES;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1583 				 int off, int size, enum bpf_access_type type)
1584 {
1585 	struct bpf_reg_state *regs = cur_regs(env);
1586 	struct bpf_map *map = regs[regno].map_ptr;
1587 	u32 cap = bpf_map_flags_to_cap(map);
1588 
1589 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1590 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1591 			map->value_size, off, size);
1592 		return -EACCES;
1593 	}
1594 
1595 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1596 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1597 			map->value_size, off, size);
1598 		return -EACCES;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /* check read/write into map element returned by bpf_map_lookup_elem() */
1605 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1606 			      int size, bool zero_size_allowed)
1607 {
1608 	struct bpf_reg_state *regs = cur_regs(env);
1609 	struct bpf_map *map = regs[regno].map_ptr;
1610 
1611 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1612 	    off + size > map->value_size) {
1613 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1614 			map->value_size, off, size);
1615 		return -EACCES;
1616 	}
1617 	return 0;
1618 }
1619 
1620 /* check read/write into a map element with possible variable offset */
1621 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1622 			    int off, int size, bool zero_size_allowed)
1623 {
1624 	struct bpf_verifier_state *vstate = env->cur_state;
1625 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1626 	struct bpf_reg_state *reg = &state->regs[regno];
1627 	int err;
1628 
1629 	/* We may have adjusted the register to this map value, so we
1630 	 * need to try adding each of min_value and max_value to off
1631 	 * to make sure our theoretical access will be safe.
1632 	 */
1633 	if (env->log.level & BPF_LOG_LEVEL)
1634 		print_verifier_state(env, state);
1635 
1636 	/* The minimum value is only important with signed
1637 	 * comparisons where we can't assume the floor of a
1638 	 * value is 0.  If we are using signed variables for our
1639 	 * index'es we need to make sure that whatever we use
1640 	 * will have a set floor within our range.
1641 	 */
1642 	if (reg->smin_value < 0 &&
1643 	    (reg->smin_value == S64_MIN ||
1644 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1645 	      reg->smin_value + off < 0)) {
1646 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1647 			regno);
1648 		return -EACCES;
1649 	}
1650 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1651 				 zero_size_allowed);
1652 	if (err) {
1653 		verbose(env, "R%d min value is outside of the array range\n",
1654 			regno);
1655 		return err;
1656 	}
1657 
1658 	/* If we haven't set a max value then we need to bail since we can't be
1659 	 * sure we won't do bad things.
1660 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1661 	 */
1662 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1663 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1664 			regno);
1665 		return -EACCES;
1666 	}
1667 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1668 				 zero_size_allowed);
1669 	if (err)
1670 		verbose(env, "R%d max value is outside of the array range\n",
1671 			regno);
1672 
1673 	if (map_value_has_spin_lock(reg->map_ptr)) {
1674 		u32 lock = reg->map_ptr->spin_lock_off;
1675 
1676 		/* if any part of struct bpf_spin_lock can be touched by
1677 		 * load/store reject this program.
1678 		 * To check that [x1, x2) overlaps with [y1, y2)
1679 		 * it is sufficient to check x1 < y2 && y1 < x2.
1680 		 */
1681 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1682 		     lock < reg->umax_value + off + size) {
1683 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1684 			return -EACCES;
1685 		}
1686 	}
1687 	return err;
1688 }
1689 
1690 #define MAX_PACKET_OFF 0xffff
1691 
1692 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1693 				       const struct bpf_call_arg_meta *meta,
1694 				       enum bpf_access_type t)
1695 {
1696 	switch (env->prog->type) {
1697 	/* Program types only with direct read access go here! */
1698 	case BPF_PROG_TYPE_LWT_IN:
1699 	case BPF_PROG_TYPE_LWT_OUT:
1700 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1701 	case BPF_PROG_TYPE_SK_REUSEPORT:
1702 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1703 	case BPF_PROG_TYPE_CGROUP_SKB:
1704 		if (t == BPF_WRITE)
1705 			return false;
1706 		/* fallthrough */
1707 
1708 	/* Program types with direct read + write access go here! */
1709 	case BPF_PROG_TYPE_SCHED_CLS:
1710 	case BPF_PROG_TYPE_SCHED_ACT:
1711 	case BPF_PROG_TYPE_XDP:
1712 	case BPF_PROG_TYPE_LWT_XMIT:
1713 	case BPF_PROG_TYPE_SK_SKB:
1714 	case BPF_PROG_TYPE_SK_MSG:
1715 		if (meta)
1716 			return meta->pkt_access;
1717 
1718 		env->seen_direct_write = true;
1719 		return true;
1720 	default:
1721 		return false;
1722 	}
1723 }
1724 
1725 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1726 				 int off, int size, bool zero_size_allowed)
1727 {
1728 	struct bpf_reg_state *regs = cur_regs(env);
1729 	struct bpf_reg_state *reg = &regs[regno];
1730 
1731 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1732 	    (u64)off + size > reg->range) {
1733 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1734 			off, size, regno, reg->id, reg->off, reg->range);
1735 		return -EACCES;
1736 	}
1737 	return 0;
1738 }
1739 
1740 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1741 			       int size, bool zero_size_allowed)
1742 {
1743 	struct bpf_reg_state *regs = cur_regs(env);
1744 	struct bpf_reg_state *reg = &regs[regno];
1745 	int err;
1746 
1747 	/* We may have added a variable offset to the packet pointer; but any
1748 	 * reg->range we have comes after that.  We are only checking the fixed
1749 	 * offset.
1750 	 */
1751 
1752 	/* We don't allow negative numbers, because we aren't tracking enough
1753 	 * detail to prove they're safe.
1754 	 */
1755 	if (reg->smin_value < 0) {
1756 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1757 			regno);
1758 		return -EACCES;
1759 	}
1760 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1761 	if (err) {
1762 		verbose(env, "R%d offset is outside of the packet\n", regno);
1763 		return err;
1764 	}
1765 
1766 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1767 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1768 	 * otherwise find_good_pkt_pointers would have refused to set range info
1769 	 * that __check_packet_access would have rejected this pkt access.
1770 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1771 	 */
1772 	env->prog->aux->max_pkt_offset =
1773 		max_t(u32, env->prog->aux->max_pkt_offset,
1774 		      off + reg->umax_value + size - 1);
1775 
1776 	return err;
1777 }
1778 
1779 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1780 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1781 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1782 {
1783 	struct bpf_insn_access_aux info = {
1784 		.reg_type = *reg_type,
1785 	};
1786 
1787 	if (env->ops->is_valid_access &&
1788 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1789 		/* A non zero info.ctx_field_size indicates that this field is a
1790 		 * candidate for later verifier transformation to load the whole
1791 		 * field and then apply a mask when accessed with a narrower
1792 		 * access than actual ctx access size. A zero info.ctx_field_size
1793 		 * will only allow for whole field access and rejects any other
1794 		 * type of narrower access.
1795 		 */
1796 		*reg_type = info.reg_type;
1797 
1798 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1799 		/* remember the offset of last byte accessed in ctx */
1800 		if (env->prog->aux->max_ctx_offset < off + size)
1801 			env->prog->aux->max_ctx_offset = off + size;
1802 		return 0;
1803 	}
1804 
1805 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1806 	return -EACCES;
1807 }
1808 
1809 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1810 				  int size)
1811 {
1812 	if (size < 0 || off < 0 ||
1813 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1814 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1815 			off, size);
1816 		return -EACCES;
1817 	}
1818 	return 0;
1819 }
1820 
1821 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1822 			     u32 regno, int off, int size,
1823 			     enum bpf_access_type t)
1824 {
1825 	struct bpf_reg_state *regs = cur_regs(env);
1826 	struct bpf_reg_state *reg = &regs[regno];
1827 	struct bpf_insn_access_aux info = {};
1828 	bool valid;
1829 
1830 	if (reg->smin_value < 0) {
1831 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1832 			regno);
1833 		return -EACCES;
1834 	}
1835 
1836 	switch (reg->type) {
1837 	case PTR_TO_SOCK_COMMON:
1838 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1839 		break;
1840 	case PTR_TO_SOCKET:
1841 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1842 		break;
1843 	case PTR_TO_TCP_SOCK:
1844 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1845 		break;
1846 	default:
1847 		valid = false;
1848 	}
1849 
1850 
1851 	if (valid) {
1852 		env->insn_aux_data[insn_idx].ctx_field_size =
1853 			info.ctx_field_size;
1854 		return 0;
1855 	}
1856 
1857 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1858 		regno, reg_type_str[reg->type], off, size);
1859 
1860 	return -EACCES;
1861 }
1862 
1863 static bool __is_pointer_value(bool allow_ptr_leaks,
1864 			       const struct bpf_reg_state *reg)
1865 {
1866 	if (allow_ptr_leaks)
1867 		return false;
1868 
1869 	return reg->type != SCALAR_VALUE;
1870 }
1871 
1872 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1873 {
1874 	return cur_regs(env) + regno;
1875 }
1876 
1877 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1878 {
1879 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1880 }
1881 
1882 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1883 {
1884 	const struct bpf_reg_state *reg = reg_state(env, regno);
1885 
1886 	return reg->type == PTR_TO_CTX;
1887 }
1888 
1889 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1890 {
1891 	const struct bpf_reg_state *reg = reg_state(env, regno);
1892 
1893 	return type_is_sk_pointer(reg->type);
1894 }
1895 
1896 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1897 {
1898 	const struct bpf_reg_state *reg = reg_state(env, regno);
1899 
1900 	return type_is_pkt_pointer(reg->type);
1901 }
1902 
1903 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1904 {
1905 	const struct bpf_reg_state *reg = reg_state(env, regno);
1906 
1907 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1908 	return reg->type == PTR_TO_FLOW_KEYS;
1909 }
1910 
1911 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1912 				   const struct bpf_reg_state *reg,
1913 				   int off, int size, bool strict)
1914 {
1915 	struct tnum reg_off;
1916 	int ip_align;
1917 
1918 	/* Byte size accesses are always allowed. */
1919 	if (!strict || size == 1)
1920 		return 0;
1921 
1922 	/* For platforms that do not have a Kconfig enabling
1923 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1924 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1925 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1926 	 * to this code only in strict mode where we want to emulate
1927 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1928 	 * unconditional IP align value of '2'.
1929 	 */
1930 	ip_align = 2;
1931 
1932 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1933 	if (!tnum_is_aligned(reg_off, size)) {
1934 		char tn_buf[48];
1935 
1936 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1937 		verbose(env,
1938 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1939 			ip_align, tn_buf, reg->off, off, size);
1940 		return -EACCES;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1947 				       const struct bpf_reg_state *reg,
1948 				       const char *pointer_desc,
1949 				       int off, int size, bool strict)
1950 {
1951 	struct tnum reg_off;
1952 
1953 	/* Byte size accesses are always allowed. */
1954 	if (!strict || size == 1)
1955 		return 0;
1956 
1957 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1958 	if (!tnum_is_aligned(reg_off, size)) {
1959 		char tn_buf[48];
1960 
1961 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1962 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1963 			pointer_desc, tn_buf, reg->off, off, size);
1964 		return -EACCES;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int check_ptr_alignment(struct bpf_verifier_env *env,
1971 			       const struct bpf_reg_state *reg, int off,
1972 			       int size, bool strict_alignment_once)
1973 {
1974 	bool strict = env->strict_alignment || strict_alignment_once;
1975 	const char *pointer_desc = "";
1976 
1977 	switch (reg->type) {
1978 	case PTR_TO_PACKET:
1979 	case PTR_TO_PACKET_META:
1980 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1981 		 * right in front, treat it the very same way.
1982 		 */
1983 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1984 	case PTR_TO_FLOW_KEYS:
1985 		pointer_desc = "flow keys ";
1986 		break;
1987 	case PTR_TO_MAP_VALUE:
1988 		pointer_desc = "value ";
1989 		break;
1990 	case PTR_TO_CTX:
1991 		pointer_desc = "context ";
1992 		break;
1993 	case PTR_TO_STACK:
1994 		pointer_desc = "stack ";
1995 		/* The stack spill tracking logic in check_stack_write()
1996 		 * and check_stack_read() relies on stack accesses being
1997 		 * aligned.
1998 		 */
1999 		strict = true;
2000 		break;
2001 	case PTR_TO_SOCKET:
2002 		pointer_desc = "sock ";
2003 		break;
2004 	case PTR_TO_SOCK_COMMON:
2005 		pointer_desc = "sock_common ";
2006 		break;
2007 	case PTR_TO_TCP_SOCK:
2008 		pointer_desc = "tcp_sock ";
2009 		break;
2010 	default:
2011 		break;
2012 	}
2013 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2014 					   strict);
2015 }
2016 
2017 static int update_stack_depth(struct bpf_verifier_env *env,
2018 			      const struct bpf_func_state *func,
2019 			      int off)
2020 {
2021 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2022 
2023 	if (stack >= -off)
2024 		return 0;
2025 
2026 	/* update known max for given subprogram */
2027 	env->subprog_info[func->subprogno].stack_depth = -off;
2028 	return 0;
2029 }
2030 
2031 /* starting from main bpf function walk all instructions of the function
2032  * and recursively walk all callees that given function can call.
2033  * Ignore jump and exit insns.
2034  * Since recursion is prevented by check_cfg() this algorithm
2035  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2036  */
2037 static int check_max_stack_depth(struct bpf_verifier_env *env)
2038 {
2039 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2040 	struct bpf_subprog_info *subprog = env->subprog_info;
2041 	struct bpf_insn *insn = env->prog->insnsi;
2042 	int ret_insn[MAX_CALL_FRAMES];
2043 	int ret_prog[MAX_CALL_FRAMES];
2044 
2045 process_func:
2046 	/* round up to 32-bytes, since this is granularity
2047 	 * of interpreter stack size
2048 	 */
2049 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2050 	if (depth > MAX_BPF_STACK) {
2051 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2052 			frame + 1, depth);
2053 		return -EACCES;
2054 	}
2055 continue_func:
2056 	subprog_end = subprog[idx + 1].start;
2057 	for (; i < subprog_end; i++) {
2058 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2059 			continue;
2060 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2061 			continue;
2062 		/* remember insn and function to return to */
2063 		ret_insn[frame] = i + 1;
2064 		ret_prog[frame] = idx;
2065 
2066 		/* find the callee */
2067 		i = i + insn[i].imm + 1;
2068 		idx = find_subprog(env, i);
2069 		if (idx < 0) {
2070 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2071 				  i);
2072 			return -EFAULT;
2073 		}
2074 		frame++;
2075 		if (frame >= MAX_CALL_FRAMES) {
2076 			verbose(env, "the call stack of %d frames is too deep !\n",
2077 				frame);
2078 			return -E2BIG;
2079 		}
2080 		goto process_func;
2081 	}
2082 	/* end of for() loop means the last insn of the 'subprog'
2083 	 * was reached. Doesn't matter whether it was JA or EXIT
2084 	 */
2085 	if (frame == 0)
2086 		return 0;
2087 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2088 	frame--;
2089 	i = ret_insn[frame];
2090 	idx = ret_prog[frame];
2091 	goto continue_func;
2092 }
2093 
2094 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2095 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2096 				  const struct bpf_insn *insn, int idx)
2097 {
2098 	int start = idx + insn->imm + 1, subprog;
2099 
2100 	subprog = find_subprog(env, start);
2101 	if (subprog < 0) {
2102 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2103 			  start);
2104 		return -EFAULT;
2105 	}
2106 	return env->subprog_info[subprog].stack_depth;
2107 }
2108 #endif
2109 
2110 static int check_ctx_reg(struct bpf_verifier_env *env,
2111 			 const struct bpf_reg_state *reg, int regno)
2112 {
2113 	/* Access to ctx or passing it to a helper is only allowed in
2114 	 * its original, unmodified form.
2115 	 */
2116 
2117 	if (reg->off) {
2118 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2119 			regno, reg->off);
2120 		return -EACCES;
2121 	}
2122 
2123 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2124 		char tn_buf[48];
2125 
2126 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2127 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2128 		return -EACCES;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2135 				  const struct bpf_reg_state *reg,
2136 				  int regno, int off, int size)
2137 {
2138 	if (off < 0) {
2139 		verbose(env,
2140 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2141 			regno, off, size);
2142 		return -EACCES;
2143 	}
2144 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2145 		char tn_buf[48];
2146 
2147 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2148 		verbose(env,
2149 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2150 			regno, off, tn_buf);
2151 		return -EACCES;
2152 	}
2153 	if (off + size > env->prog->aux->max_tp_access)
2154 		env->prog->aux->max_tp_access = off + size;
2155 
2156 	return 0;
2157 }
2158 
2159 
2160 /* truncate register to smaller size (in bytes)
2161  * must be called with size < BPF_REG_SIZE
2162  */
2163 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2164 {
2165 	u64 mask;
2166 
2167 	/* clear high bits in bit representation */
2168 	reg->var_off = tnum_cast(reg->var_off, size);
2169 
2170 	/* fix arithmetic bounds */
2171 	mask = ((u64)1 << (size * 8)) - 1;
2172 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2173 		reg->umin_value &= mask;
2174 		reg->umax_value &= mask;
2175 	} else {
2176 		reg->umin_value = 0;
2177 		reg->umax_value = mask;
2178 	}
2179 	reg->smin_value = reg->umin_value;
2180 	reg->smax_value = reg->umax_value;
2181 }
2182 
2183 /* check whether memory at (regno + off) is accessible for t = (read | write)
2184  * if t==write, value_regno is a register which value is stored into memory
2185  * if t==read, value_regno is a register which will receive the value from memory
2186  * if t==write && value_regno==-1, some unknown value is stored into memory
2187  * if t==read && value_regno==-1, don't care what we read from memory
2188  */
2189 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2190 			    int off, int bpf_size, enum bpf_access_type t,
2191 			    int value_regno, bool strict_alignment_once)
2192 {
2193 	struct bpf_reg_state *regs = cur_regs(env);
2194 	struct bpf_reg_state *reg = regs + regno;
2195 	struct bpf_func_state *state;
2196 	int size, err = 0;
2197 
2198 	size = bpf_size_to_bytes(bpf_size);
2199 	if (size < 0)
2200 		return size;
2201 
2202 	/* alignment checks will add in reg->off themselves */
2203 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2204 	if (err)
2205 		return err;
2206 
2207 	/* for access checks, reg->off is just part of off */
2208 	off += reg->off;
2209 
2210 	if (reg->type == PTR_TO_MAP_VALUE) {
2211 		if (t == BPF_WRITE && value_regno >= 0 &&
2212 		    is_pointer_value(env, value_regno)) {
2213 			verbose(env, "R%d leaks addr into map\n", value_regno);
2214 			return -EACCES;
2215 		}
2216 		err = check_map_access_type(env, regno, off, size, t);
2217 		if (err)
2218 			return err;
2219 		err = check_map_access(env, regno, off, size, false);
2220 		if (!err && t == BPF_READ && value_regno >= 0)
2221 			mark_reg_unknown(env, regs, value_regno);
2222 
2223 	} else if (reg->type == PTR_TO_CTX) {
2224 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2225 
2226 		if (t == BPF_WRITE && value_regno >= 0 &&
2227 		    is_pointer_value(env, value_regno)) {
2228 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2229 			return -EACCES;
2230 		}
2231 
2232 		err = check_ctx_reg(env, reg, regno);
2233 		if (err < 0)
2234 			return err;
2235 
2236 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2237 		if (!err && t == BPF_READ && value_regno >= 0) {
2238 			/* ctx access returns either a scalar, or a
2239 			 * PTR_TO_PACKET[_META,_END]. In the latter
2240 			 * case, we know the offset is zero.
2241 			 */
2242 			if (reg_type == SCALAR_VALUE) {
2243 				mark_reg_unknown(env, regs, value_regno);
2244 			} else {
2245 				mark_reg_known_zero(env, regs,
2246 						    value_regno);
2247 				if (reg_type_may_be_null(reg_type))
2248 					regs[value_regno].id = ++env->id_gen;
2249 				/* A load of ctx field could have different
2250 				 * actual load size with the one encoded in the
2251 				 * insn. When the dst is PTR, it is for sure not
2252 				 * a sub-register.
2253 				 */
2254 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2255 			}
2256 			regs[value_regno].type = reg_type;
2257 		}
2258 
2259 	} else if (reg->type == PTR_TO_STACK) {
2260 		off += reg->var_off.value;
2261 		err = check_stack_access(env, reg, off, size);
2262 		if (err)
2263 			return err;
2264 
2265 		state = func(env, reg);
2266 		err = update_stack_depth(env, state, off);
2267 		if (err)
2268 			return err;
2269 
2270 		if (t == BPF_WRITE)
2271 			err = check_stack_write(env, state, off, size,
2272 						value_regno, insn_idx);
2273 		else
2274 			err = check_stack_read(env, state, off, size,
2275 					       value_regno);
2276 	} else if (reg_is_pkt_pointer(reg)) {
2277 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2278 			verbose(env, "cannot write into packet\n");
2279 			return -EACCES;
2280 		}
2281 		if (t == BPF_WRITE && value_regno >= 0 &&
2282 		    is_pointer_value(env, value_regno)) {
2283 			verbose(env, "R%d leaks addr into packet\n",
2284 				value_regno);
2285 			return -EACCES;
2286 		}
2287 		err = check_packet_access(env, regno, off, size, false);
2288 		if (!err && t == BPF_READ && value_regno >= 0)
2289 			mark_reg_unknown(env, regs, value_regno);
2290 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2291 		if (t == BPF_WRITE && value_regno >= 0 &&
2292 		    is_pointer_value(env, value_regno)) {
2293 			verbose(env, "R%d leaks addr into flow keys\n",
2294 				value_regno);
2295 			return -EACCES;
2296 		}
2297 
2298 		err = check_flow_keys_access(env, off, size);
2299 		if (!err && t == BPF_READ && value_regno >= 0)
2300 			mark_reg_unknown(env, regs, value_regno);
2301 	} else if (type_is_sk_pointer(reg->type)) {
2302 		if (t == BPF_WRITE) {
2303 			verbose(env, "R%d cannot write into %s\n",
2304 				regno, reg_type_str[reg->type]);
2305 			return -EACCES;
2306 		}
2307 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2308 		if (!err && value_regno >= 0)
2309 			mark_reg_unknown(env, regs, value_regno);
2310 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2311 		err = check_tp_buffer_access(env, reg, regno, off, size);
2312 		if (!err && t == BPF_READ && value_regno >= 0)
2313 			mark_reg_unknown(env, regs, value_regno);
2314 	} else {
2315 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2316 			reg_type_str[reg->type]);
2317 		return -EACCES;
2318 	}
2319 
2320 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2321 	    regs[value_regno].type == SCALAR_VALUE) {
2322 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2323 		coerce_reg_to_size(&regs[value_regno], size);
2324 	}
2325 	return err;
2326 }
2327 
2328 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2329 {
2330 	int err;
2331 
2332 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2333 	    insn->imm != 0) {
2334 		verbose(env, "BPF_XADD uses reserved fields\n");
2335 		return -EINVAL;
2336 	}
2337 
2338 	/* check src1 operand */
2339 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2340 	if (err)
2341 		return err;
2342 
2343 	/* check src2 operand */
2344 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2345 	if (err)
2346 		return err;
2347 
2348 	if (is_pointer_value(env, insn->src_reg)) {
2349 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2350 		return -EACCES;
2351 	}
2352 
2353 	if (is_ctx_reg(env, insn->dst_reg) ||
2354 	    is_pkt_reg(env, insn->dst_reg) ||
2355 	    is_flow_key_reg(env, insn->dst_reg) ||
2356 	    is_sk_reg(env, insn->dst_reg)) {
2357 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2358 			insn->dst_reg,
2359 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2360 		return -EACCES;
2361 	}
2362 
2363 	/* check whether atomic_add can read the memory */
2364 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2365 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2366 	if (err)
2367 		return err;
2368 
2369 	/* check whether atomic_add can write into the same memory */
2370 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2371 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2372 }
2373 
2374 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2375 				  int off, int access_size,
2376 				  bool zero_size_allowed)
2377 {
2378 	struct bpf_reg_state *reg = reg_state(env, regno);
2379 
2380 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2381 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2382 		if (tnum_is_const(reg->var_off)) {
2383 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2384 				regno, off, access_size);
2385 		} else {
2386 			char tn_buf[48];
2387 
2388 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2389 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2390 				regno, tn_buf, access_size);
2391 		}
2392 		return -EACCES;
2393 	}
2394 	return 0;
2395 }
2396 
2397 /* when register 'regno' is passed into function that will read 'access_size'
2398  * bytes from that pointer, make sure that it's within stack boundary
2399  * and all elements of stack are initialized.
2400  * Unlike most pointer bounds-checking functions, this one doesn't take an
2401  * 'off' argument, so it has to add in reg->off itself.
2402  */
2403 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2404 				int access_size, bool zero_size_allowed,
2405 				struct bpf_call_arg_meta *meta)
2406 {
2407 	struct bpf_reg_state *reg = reg_state(env, regno);
2408 	struct bpf_func_state *state = func(env, reg);
2409 	int err, min_off, max_off, i, slot, spi;
2410 
2411 	if (reg->type != PTR_TO_STACK) {
2412 		/* Allow zero-byte read from NULL, regardless of pointer type */
2413 		if (zero_size_allowed && access_size == 0 &&
2414 		    register_is_null(reg))
2415 			return 0;
2416 
2417 		verbose(env, "R%d type=%s expected=%s\n", regno,
2418 			reg_type_str[reg->type],
2419 			reg_type_str[PTR_TO_STACK]);
2420 		return -EACCES;
2421 	}
2422 
2423 	if (tnum_is_const(reg->var_off)) {
2424 		min_off = max_off = reg->var_off.value + reg->off;
2425 		err = __check_stack_boundary(env, regno, min_off, access_size,
2426 					     zero_size_allowed);
2427 		if (err)
2428 			return err;
2429 	} else {
2430 		/* Variable offset is prohibited for unprivileged mode for
2431 		 * simplicity since it requires corresponding support in
2432 		 * Spectre masking for stack ALU.
2433 		 * See also retrieve_ptr_limit().
2434 		 */
2435 		if (!env->allow_ptr_leaks) {
2436 			char tn_buf[48];
2437 
2438 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2439 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2440 				regno, tn_buf);
2441 			return -EACCES;
2442 		}
2443 		/* Only initialized buffer on stack is allowed to be accessed
2444 		 * with variable offset. With uninitialized buffer it's hard to
2445 		 * guarantee that whole memory is marked as initialized on
2446 		 * helper return since specific bounds are unknown what may
2447 		 * cause uninitialized stack leaking.
2448 		 */
2449 		if (meta && meta->raw_mode)
2450 			meta = NULL;
2451 
2452 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2453 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
2454 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
2455 				regno);
2456 			return -EACCES;
2457 		}
2458 		min_off = reg->smin_value + reg->off;
2459 		max_off = reg->smax_value + reg->off;
2460 		err = __check_stack_boundary(env, regno, min_off, access_size,
2461 					     zero_size_allowed);
2462 		if (err) {
2463 			verbose(env, "R%d min value is outside of stack bound\n",
2464 				regno);
2465 			return err;
2466 		}
2467 		err = __check_stack_boundary(env, regno, max_off, access_size,
2468 					     zero_size_allowed);
2469 		if (err) {
2470 			verbose(env, "R%d max value is outside of stack bound\n",
2471 				regno);
2472 			return err;
2473 		}
2474 	}
2475 
2476 	if (meta && meta->raw_mode) {
2477 		meta->access_size = access_size;
2478 		meta->regno = regno;
2479 		return 0;
2480 	}
2481 
2482 	for (i = min_off; i < max_off + access_size; i++) {
2483 		u8 *stype;
2484 
2485 		slot = -i - 1;
2486 		spi = slot / BPF_REG_SIZE;
2487 		if (state->allocated_stack <= slot)
2488 			goto err;
2489 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2490 		if (*stype == STACK_MISC)
2491 			goto mark;
2492 		if (*stype == STACK_ZERO) {
2493 			/* helper can write anything into the stack */
2494 			*stype = STACK_MISC;
2495 			goto mark;
2496 		}
2497 err:
2498 		if (tnum_is_const(reg->var_off)) {
2499 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2500 				min_off, i - min_off, access_size);
2501 		} else {
2502 			char tn_buf[48];
2503 
2504 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2505 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2506 				tn_buf, i - min_off, access_size);
2507 		}
2508 		return -EACCES;
2509 mark:
2510 		/* reading any byte out of 8-byte 'spill_slot' will cause
2511 		 * the whole slot to be marked as 'read'
2512 		 */
2513 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2514 			      state->stack[spi].spilled_ptr.parent,
2515 			      REG_LIVE_READ64);
2516 	}
2517 	return update_stack_depth(env, state, min_off);
2518 }
2519 
2520 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2521 				   int access_size, bool zero_size_allowed,
2522 				   struct bpf_call_arg_meta *meta)
2523 {
2524 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2525 
2526 	switch (reg->type) {
2527 	case PTR_TO_PACKET:
2528 	case PTR_TO_PACKET_META:
2529 		return check_packet_access(env, regno, reg->off, access_size,
2530 					   zero_size_allowed);
2531 	case PTR_TO_MAP_VALUE:
2532 		if (check_map_access_type(env, regno, reg->off, access_size,
2533 					  meta && meta->raw_mode ? BPF_WRITE :
2534 					  BPF_READ))
2535 			return -EACCES;
2536 		return check_map_access(env, regno, reg->off, access_size,
2537 					zero_size_allowed);
2538 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2539 		return check_stack_boundary(env, regno, access_size,
2540 					    zero_size_allowed, meta);
2541 	}
2542 }
2543 
2544 /* Implementation details:
2545  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2546  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2547  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2548  * value_or_null->value transition, since the verifier only cares about
2549  * the range of access to valid map value pointer and doesn't care about actual
2550  * address of the map element.
2551  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2552  * reg->id > 0 after value_or_null->value transition. By doing so
2553  * two bpf_map_lookups will be considered two different pointers that
2554  * point to different bpf_spin_locks.
2555  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2556  * dead-locks.
2557  * Since only one bpf_spin_lock is allowed the checks are simpler than
2558  * reg_is_refcounted() logic. The verifier needs to remember only
2559  * one spin_lock instead of array of acquired_refs.
2560  * cur_state->active_spin_lock remembers which map value element got locked
2561  * and clears it after bpf_spin_unlock.
2562  */
2563 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2564 			     bool is_lock)
2565 {
2566 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2567 	struct bpf_verifier_state *cur = env->cur_state;
2568 	bool is_const = tnum_is_const(reg->var_off);
2569 	struct bpf_map *map = reg->map_ptr;
2570 	u64 val = reg->var_off.value;
2571 
2572 	if (reg->type != PTR_TO_MAP_VALUE) {
2573 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2574 		return -EINVAL;
2575 	}
2576 	if (!is_const) {
2577 		verbose(env,
2578 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2579 			regno);
2580 		return -EINVAL;
2581 	}
2582 	if (!map->btf) {
2583 		verbose(env,
2584 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2585 			map->name);
2586 		return -EINVAL;
2587 	}
2588 	if (!map_value_has_spin_lock(map)) {
2589 		if (map->spin_lock_off == -E2BIG)
2590 			verbose(env,
2591 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2592 				map->name);
2593 		else if (map->spin_lock_off == -ENOENT)
2594 			verbose(env,
2595 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2596 				map->name);
2597 		else
2598 			verbose(env,
2599 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2600 				map->name);
2601 		return -EINVAL;
2602 	}
2603 	if (map->spin_lock_off != val + reg->off) {
2604 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2605 			val + reg->off);
2606 		return -EINVAL;
2607 	}
2608 	if (is_lock) {
2609 		if (cur->active_spin_lock) {
2610 			verbose(env,
2611 				"Locking two bpf_spin_locks are not allowed\n");
2612 			return -EINVAL;
2613 		}
2614 		cur->active_spin_lock = reg->id;
2615 	} else {
2616 		if (!cur->active_spin_lock) {
2617 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2618 			return -EINVAL;
2619 		}
2620 		if (cur->active_spin_lock != reg->id) {
2621 			verbose(env, "bpf_spin_unlock of different lock\n");
2622 			return -EINVAL;
2623 		}
2624 		cur->active_spin_lock = 0;
2625 	}
2626 	return 0;
2627 }
2628 
2629 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2630 {
2631 	return type == ARG_PTR_TO_MEM ||
2632 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2633 	       type == ARG_PTR_TO_UNINIT_MEM;
2634 }
2635 
2636 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2637 {
2638 	return type == ARG_CONST_SIZE ||
2639 	       type == ARG_CONST_SIZE_OR_ZERO;
2640 }
2641 
2642 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2643 {
2644 	return type == ARG_PTR_TO_INT ||
2645 	       type == ARG_PTR_TO_LONG;
2646 }
2647 
2648 static int int_ptr_type_to_size(enum bpf_arg_type type)
2649 {
2650 	if (type == ARG_PTR_TO_INT)
2651 		return sizeof(u32);
2652 	else if (type == ARG_PTR_TO_LONG)
2653 		return sizeof(u64);
2654 
2655 	return -EINVAL;
2656 }
2657 
2658 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2659 			  enum bpf_arg_type arg_type,
2660 			  struct bpf_call_arg_meta *meta)
2661 {
2662 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2663 	enum bpf_reg_type expected_type, type = reg->type;
2664 	int err = 0;
2665 
2666 	if (arg_type == ARG_DONTCARE)
2667 		return 0;
2668 
2669 	err = check_reg_arg(env, regno, SRC_OP);
2670 	if (err)
2671 		return err;
2672 
2673 	if (arg_type == ARG_ANYTHING) {
2674 		if (is_pointer_value(env, regno)) {
2675 			verbose(env, "R%d leaks addr into helper function\n",
2676 				regno);
2677 			return -EACCES;
2678 		}
2679 		return 0;
2680 	}
2681 
2682 	if (type_is_pkt_pointer(type) &&
2683 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2684 		verbose(env, "helper access to the packet is not allowed\n");
2685 		return -EACCES;
2686 	}
2687 
2688 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2689 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2690 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2691 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2692 		expected_type = PTR_TO_STACK;
2693 		if (register_is_null(reg) &&
2694 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2695 			/* final test in check_stack_boundary() */;
2696 		else if (!type_is_pkt_pointer(type) &&
2697 			 type != PTR_TO_MAP_VALUE &&
2698 			 type != expected_type)
2699 			goto err_type;
2700 	} else if (arg_type == ARG_CONST_SIZE ||
2701 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2702 		expected_type = SCALAR_VALUE;
2703 		if (type != expected_type)
2704 			goto err_type;
2705 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2706 		expected_type = CONST_PTR_TO_MAP;
2707 		if (type != expected_type)
2708 			goto err_type;
2709 	} else if (arg_type == ARG_PTR_TO_CTX) {
2710 		expected_type = PTR_TO_CTX;
2711 		if (type != expected_type)
2712 			goto err_type;
2713 		err = check_ctx_reg(env, reg, regno);
2714 		if (err < 0)
2715 			return err;
2716 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2717 		expected_type = PTR_TO_SOCK_COMMON;
2718 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2719 		if (!type_is_sk_pointer(type))
2720 			goto err_type;
2721 		if (reg->ref_obj_id) {
2722 			if (meta->ref_obj_id) {
2723 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2724 					regno, reg->ref_obj_id,
2725 					meta->ref_obj_id);
2726 				return -EFAULT;
2727 			}
2728 			meta->ref_obj_id = reg->ref_obj_id;
2729 		}
2730 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2731 		expected_type = PTR_TO_SOCKET;
2732 		if (type != expected_type)
2733 			goto err_type;
2734 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2735 		if (meta->func_id == BPF_FUNC_spin_lock) {
2736 			if (process_spin_lock(env, regno, true))
2737 				return -EACCES;
2738 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2739 			if (process_spin_lock(env, regno, false))
2740 				return -EACCES;
2741 		} else {
2742 			verbose(env, "verifier internal error\n");
2743 			return -EFAULT;
2744 		}
2745 	} else if (arg_type_is_mem_ptr(arg_type)) {
2746 		expected_type = PTR_TO_STACK;
2747 		/* One exception here. In case function allows for NULL to be
2748 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2749 		 * happens during stack boundary checking.
2750 		 */
2751 		if (register_is_null(reg) &&
2752 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2753 			/* final test in check_stack_boundary() */;
2754 		else if (!type_is_pkt_pointer(type) &&
2755 			 type != PTR_TO_MAP_VALUE &&
2756 			 type != expected_type)
2757 			goto err_type;
2758 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2759 	} else if (arg_type_is_int_ptr(arg_type)) {
2760 		expected_type = PTR_TO_STACK;
2761 		if (!type_is_pkt_pointer(type) &&
2762 		    type != PTR_TO_MAP_VALUE &&
2763 		    type != expected_type)
2764 			goto err_type;
2765 	} else {
2766 		verbose(env, "unsupported arg_type %d\n", arg_type);
2767 		return -EFAULT;
2768 	}
2769 
2770 	if (arg_type == ARG_CONST_MAP_PTR) {
2771 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2772 		meta->map_ptr = reg->map_ptr;
2773 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2774 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2775 		 * check that [key, key + map->key_size) are within
2776 		 * stack limits and initialized
2777 		 */
2778 		if (!meta->map_ptr) {
2779 			/* in function declaration map_ptr must come before
2780 			 * map_key, so that it's verified and known before
2781 			 * we have to check map_key here. Otherwise it means
2782 			 * that kernel subsystem misconfigured verifier
2783 			 */
2784 			verbose(env, "invalid map_ptr to access map->key\n");
2785 			return -EACCES;
2786 		}
2787 		err = check_helper_mem_access(env, regno,
2788 					      meta->map_ptr->key_size, false,
2789 					      NULL);
2790 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2791 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2792 		    !register_is_null(reg)) ||
2793 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2794 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2795 		 * check [value, value + map->value_size) validity
2796 		 */
2797 		if (!meta->map_ptr) {
2798 			/* kernel subsystem misconfigured verifier */
2799 			verbose(env, "invalid map_ptr to access map->value\n");
2800 			return -EACCES;
2801 		}
2802 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2803 		err = check_helper_mem_access(env, regno,
2804 					      meta->map_ptr->value_size, false,
2805 					      meta);
2806 	} else if (arg_type_is_mem_size(arg_type)) {
2807 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2808 
2809 		/* remember the mem_size which may be used later
2810 		 * to refine return values.
2811 		 */
2812 		meta->msize_smax_value = reg->smax_value;
2813 		meta->msize_umax_value = reg->umax_value;
2814 
2815 		/* The register is SCALAR_VALUE; the access check
2816 		 * happens using its boundaries.
2817 		 */
2818 		if (!tnum_is_const(reg->var_off))
2819 			/* For unprivileged variable accesses, disable raw
2820 			 * mode so that the program is required to
2821 			 * initialize all the memory that the helper could
2822 			 * just partially fill up.
2823 			 */
2824 			meta = NULL;
2825 
2826 		if (reg->smin_value < 0) {
2827 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2828 				regno);
2829 			return -EACCES;
2830 		}
2831 
2832 		if (reg->umin_value == 0) {
2833 			err = check_helper_mem_access(env, regno - 1, 0,
2834 						      zero_size_allowed,
2835 						      meta);
2836 			if (err)
2837 				return err;
2838 		}
2839 
2840 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2841 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2842 				regno);
2843 			return -EACCES;
2844 		}
2845 		err = check_helper_mem_access(env, regno - 1,
2846 					      reg->umax_value,
2847 					      zero_size_allowed, meta);
2848 	} else if (arg_type_is_int_ptr(arg_type)) {
2849 		int size = int_ptr_type_to_size(arg_type);
2850 
2851 		err = check_helper_mem_access(env, regno, size, false, meta);
2852 		if (err)
2853 			return err;
2854 		err = check_ptr_alignment(env, reg, 0, size, true);
2855 	}
2856 
2857 	return err;
2858 err_type:
2859 	verbose(env, "R%d type=%s expected=%s\n", regno,
2860 		reg_type_str[type], reg_type_str[expected_type]);
2861 	return -EACCES;
2862 }
2863 
2864 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2865 					struct bpf_map *map, int func_id)
2866 {
2867 	if (!map)
2868 		return 0;
2869 
2870 	/* We need a two way check, first is from map perspective ... */
2871 	switch (map->map_type) {
2872 	case BPF_MAP_TYPE_PROG_ARRAY:
2873 		if (func_id != BPF_FUNC_tail_call)
2874 			goto error;
2875 		break;
2876 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2877 		if (func_id != BPF_FUNC_perf_event_read &&
2878 		    func_id != BPF_FUNC_perf_event_output &&
2879 		    func_id != BPF_FUNC_perf_event_read_value)
2880 			goto error;
2881 		break;
2882 	case BPF_MAP_TYPE_STACK_TRACE:
2883 		if (func_id != BPF_FUNC_get_stackid)
2884 			goto error;
2885 		break;
2886 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2887 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2888 		    func_id != BPF_FUNC_current_task_under_cgroup)
2889 			goto error;
2890 		break;
2891 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2892 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2893 		if (func_id != BPF_FUNC_get_local_storage)
2894 			goto error;
2895 		break;
2896 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2897 	 * allow to be modified from bpf side. So do not allow lookup elements
2898 	 * for now.
2899 	 */
2900 	case BPF_MAP_TYPE_DEVMAP:
2901 		if (func_id != BPF_FUNC_redirect_map)
2902 			goto error;
2903 		break;
2904 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2905 	 * appear.
2906 	 */
2907 	case BPF_MAP_TYPE_CPUMAP:
2908 	case BPF_MAP_TYPE_XSKMAP:
2909 		if (func_id != BPF_FUNC_redirect_map)
2910 			goto error;
2911 		break;
2912 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2913 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2914 		if (func_id != BPF_FUNC_map_lookup_elem)
2915 			goto error;
2916 		break;
2917 	case BPF_MAP_TYPE_SOCKMAP:
2918 		if (func_id != BPF_FUNC_sk_redirect_map &&
2919 		    func_id != BPF_FUNC_sock_map_update &&
2920 		    func_id != BPF_FUNC_map_delete_elem &&
2921 		    func_id != BPF_FUNC_msg_redirect_map)
2922 			goto error;
2923 		break;
2924 	case BPF_MAP_TYPE_SOCKHASH:
2925 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2926 		    func_id != BPF_FUNC_sock_hash_update &&
2927 		    func_id != BPF_FUNC_map_delete_elem &&
2928 		    func_id != BPF_FUNC_msg_redirect_hash)
2929 			goto error;
2930 		break;
2931 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2932 		if (func_id != BPF_FUNC_sk_select_reuseport)
2933 			goto error;
2934 		break;
2935 	case BPF_MAP_TYPE_QUEUE:
2936 	case BPF_MAP_TYPE_STACK:
2937 		if (func_id != BPF_FUNC_map_peek_elem &&
2938 		    func_id != BPF_FUNC_map_pop_elem &&
2939 		    func_id != BPF_FUNC_map_push_elem)
2940 			goto error;
2941 		break;
2942 	case BPF_MAP_TYPE_SK_STORAGE:
2943 		if (func_id != BPF_FUNC_sk_storage_get &&
2944 		    func_id != BPF_FUNC_sk_storage_delete)
2945 			goto error;
2946 		break;
2947 	default:
2948 		break;
2949 	}
2950 
2951 	/* ... and second from the function itself. */
2952 	switch (func_id) {
2953 	case BPF_FUNC_tail_call:
2954 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2955 			goto error;
2956 		if (env->subprog_cnt > 1) {
2957 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2958 			return -EINVAL;
2959 		}
2960 		break;
2961 	case BPF_FUNC_perf_event_read:
2962 	case BPF_FUNC_perf_event_output:
2963 	case BPF_FUNC_perf_event_read_value:
2964 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2965 			goto error;
2966 		break;
2967 	case BPF_FUNC_get_stackid:
2968 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2969 			goto error;
2970 		break;
2971 	case BPF_FUNC_current_task_under_cgroup:
2972 	case BPF_FUNC_skb_under_cgroup:
2973 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2974 			goto error;
2975 		break;
2976 	case BPF_FUNC_redirect_map:
2977 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2978 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2979 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2980 			goto error;
2981 		break;
2982 	case BPF_FUNC_sk_redirect_map:
2983 	case BPF_FUNC_msg_redirect_map:
2984 	case BPF_FUNC_sock_map_update:
2985 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2986 			goto error;
2987 		break;
2988 	case BPF_FUNC_sk_redirect_hash:
2989 	case BPF_FUNC_msg_redirect_hash:
2990 	case BPF_FUNC_sock_hash_update:
2991 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2992 			goto error;
2993 		break;
2994 	case BPF_FUNC_get_local_storage:
2995 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2996 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2997 			goto error;
2998 		break;
2999 	case BPF_FUNC_sk_select_reuseport:
3000 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3001 			goto error;
3002 		break;
3003 	case BPF_FUNC_map_peek_elem:
3004 	case BPF_FUNC_map_pop_elem:
3005 	case BPF_FUNC_map_push_elem:
3006 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3007 		    map->map_type != BPF_MAP_TYPE_STACK)
3008 			goto error;
3009 		break;
3010 	case BPF_FUNC_sk_storage_get:
3011 	case BPF_FUNC_sk_storage_delete:
3012 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3013 			goto error;
3014 		break;
3015 	default:
3016 		break;
3017 	}
3018 
3019 	return 0;
3020 error:
3021 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3022 		map->map_type, func_id_name(func_id), func_id);
3023 	return -EINVAL;
3024 }
3025 
3026 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3027 {
3028 	int count = 0;
3029 
3030 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3031 		count++;
3032 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3033 		count++;
3034 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3035 		count++;
3036 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3037 		count++;
3038 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3039 		count++;
3040 
3041 	/* We only support one arg being in raw mode at the moment,
3042 	 * which is sufficient for the helper functions we have
3043 	 * right now.
3044 	 */
3045 	return count <= 1;
3046 }
3047 
3048 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3049 				    enum bpf_arg_type arg_next)
3050 {
3051 	return (arg_type_is_mem_ptr(arg_curr) &&
3052 	        !arg_type_is_mem_size(arg_next)) ||
3053 	       (!arg_type_is_mem_ptr(arg_curr) &&
3054 		arg_type_is_mem_size(arg_next));
3055 }
3056 
3057 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3058 {
3059 	/* bpf_xxx(..., buf, len) call will access 'len'
3060 	 * bytes from memory 'buf'. Both arg types need
3061 	 * to be paired, so make sure there's no buggy
3062 	 * helper function specification.
3063 	 */
3064 	if (arg_type_is_mem_size(fn->arg1_type) ||
3065 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3066 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3067 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3068 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3069 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3070 		return false;
3071 
3072 	return true;
3073 }
3074 
3075 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3076 {
3077 	int count = 0;
3078 
3079 	if (arg_type_may_be_refcounted(fn->arg1_type))
3080 		count++;
3081 	if (arg_type_may_be_refcounted(fn->arg2_type))
3082 		count++;
3083 	if (arg_type_may_be_refcounted(fn->arg3_type))
3084 		count++;
3085 	if (arg_type_may_be_refcounted(fn->arg4_type))
3086 		count++;
3087 	if (arg_type_may_be_refcounted(fn->arg5_type))
3088 		count++;
3089 
3090 	/* A reference acquiring function cannot acquire
3091 	 * another refcounted ptr.
3092 	 */
3093 	if (is_acquire_function(func_id) && count)
3094 		return false;
3095 
3096 	/* We only support one arg being unreferenced at the moment,
3097 	 * which is sufficient for the helper functions we have right now.
3098 	 */
3099 	return count <= 1;
3100 }
3101 
3102 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3103 {
3104 	return check_raw_mode_ok(fn) &&
3105 	       check_arg_pair_ok(fn) &&
3106 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3107 }
3108 
3109 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3110  * are now invalid, so turn them into unknown SCALAR_VALUE.
3111  */
3112 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3113 				     struct bpf_func_state *state)
3114 {
3115 	struct bpf_reg_state *regs = state->regs, *reg;
3116 	int i;
3117 
3118 	for (i = 0; i < MAX_BPF_REG; i++)
3119 		if (reg_is_pkt_pointer_any(&regs[i]))
3120 			mark_reg_unknown(env, regs, i);
3121 
3122 	bpf_for_each_spilled_reg(i, state, reg) {
3123 		if (!reg)
3124 			continue;
3125 		if (reg_is_pkt_pointer_any(reg))
3126 			__mark_reg_unknown(reg);
3127 	}
3128 }
3129 
3130 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3131 {
3132 	struct bpf_verifier_state *vstate = env->cur_state;
3133 	int i;
3134 
3135 	for (i = 0; i <= vstate->curframe; i++)
3136 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3137 }
3138 
3139 static void release_reg_references(struct bpf_verifier_env *env,
3140 				   struct bpf_func_state *state,
3141 				   int ref_obj_id)
3142 {
3143 	struct bpf_reg_state *regs = state->regs, *reg;
3144 	int i;
3145 
3146 	for (i = 0; i < MAX_BPF_REG; i++)
3147 		if (regs[i].ref_obj_id == ref_obj_id)
3148 			mark_reg_unknown(env, regs, i);
3149 
3150 	bpf_for_each_spilled_reg(i, state, reg) {
3151 		if (!reg)
3152 			continue;
3153 		if (reg->ref_obj_id == ref_obj_id)
3154 			__mark_reg_unknown(reg);
3155 	}
3156 }
3157 
3158 /* The pointer with the specified id has released its reference to kernel
3159  * resources. Identify all copies of the same pointer and clear the reference.
3160  */
3161 static int release_reference(struct bpf_verifier_env *env,
3162 			     int ref_obj_id)
3163 {
3164 	struct bpf_verifier_state *vstate = env->cur_state;
3165 	int err;
3166 	int i;
3167 
3168 	err = release_reference_state(cur_func(env), ref_obj_id);
3169 	if (err)
3170 		return err;
3171 
3172 	for (i = 0; i <= vstate->curframe; i++)
3173 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3174 
3175 	return 0;
3176 }
3177 
3178 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3179 			   int *insn_idx)
3180 {
3181 	struct bpf_verifier_state *state = env->cur_state;
3182 	struct bpf_func_state *caller, *callee;
3183 	int i, err, subprog, target_insn;
3184 
3185 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3186 		verbose(env, "the call stack of %d frames is too deep\n",
3187 			state->curframe + 2);
3188 		return -E2BIG;
3189 	}
3190 
3191 	target_insn = *insn_idx + insn->imm;
3192 	subprog = find_subprog(env, target_insn + 1);
3193 	if (subprog < 0) {
3194 		verbose(env, "verifier bug. No program starts at insn %d\n",
3195 			target_insn + 1);
3196 		return -EFAULT;
3197 	}
3198 
3199 	caller = state->frame[state->curframe];
3200 	if (state->frame[state->curframe + 1]) {
3201 		verbose(env, "verifier bug. Frame %d already allocated\n",
3202 			state->curframe + 1);
3203 		return -EFAULT;
3204 	}
3205 
3206 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3207 	if (!callee)
3208 		return -ENOMEM;
3209 	state->frame[state->curframe + 1] = callee;
3210 
3211 	/* callee cannot access r0, r6 - r9 for reading and has to write
3212 	 * into its own stack before reading from it.
3213 	 * callee can read/write into caller's stack
3214 	 */
3215 	init_func_state(env, callee,
3216 			/* remember the callsite, it will be used by bpf_exit */
3217 			*insn_idx /* callsite */,
3218 			state->curframe + 1 /* frameno within this callchain */,
3219 			subprog /* subprog number within this prog */);
3220 
3221 	/* Transfer references to the callee */
3222 	err = transfer_reference_state(callee, caller);
3223 	if (err)
3224 		return err;
3225 
3226 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3227 	 * pointers, which connects us up to the liveness chain
3228 	 */
3229 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3230 		callee->regs[i] = caller->regs[i];
3231 
3232 	/* after the call registers r0 - r5 were scratched */
3233 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3234 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3235 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3236 	}
3237 
3238 	/* only increment it after check_reg_arg() finished */
3239 	state->curframe++;
3240 
3241 	/* and go analyze first insn of the callee */
3242 	*insn_idx = target_insn;
3243 
3244 	if (env->log.level & BPF_LOG_LEVEL) {
3245 		verbose(env, "caller:\n");
3246 		print_verifier_state(env, caller);
3247 		verbose(env, "callee:\n");
3248 		print_verifier_state(env, callee);
3249 	}
3250 	return 0;
3251 }
3252 
3253 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3254 {
3255 	struct bpf_verifier_state *state = env->cur_state;
3256 	struct bpf_func_state *caller, *callee;
3257 	struct bpf_reg_state *r0;
3258 	int err;
3259 
3260 	callee = state->frame[state->curframe];
3261 	r0 = &callee->regs[BPF_REG_0];
3262 	if (r0->type == PTR_TO_STACK) {
3263 		/* technically it's ok to return caller's stack pointer
3264 		 * (or caller's caller's pointer) back to the caller,
3265 		 * since these pointers are valid. Only current stack
3266 		 * pointer will be invalid as soon as function exits,
3267 		 * but let's be conservative
3268 		 */
3269 		verbose(env, "cannot return stack pointer to the caller\n");
3270 		return -EINVAL;
3271 	}
3272 
3273 	state->curframe--;
3274 	caller = state->frame[state->curframe];
3275 	/* return to the caller whatever r0 had in the callee */
3276 	caller->regs[BPF_REG_0] = *r0;
3277 
3278 	/* Transfer references to the caller */
3279 	err = transfer_reference_state(caller, callee);
3280 	if (err)
3281 		return err;
3282 
3283 	*insn_idx = callee->callsite + 1;
3284 	if (env->log.level & BPF_LOG_LEVEL) {
3285 		verbose(env, "returning from callee:\n");
3286 		print_verifier_state(env, callee);
3287 		verbose(env, "to caller at %d:\n", *insn_idx);
3288 		print_verifier_state(env, caller);
3289 	}
3290 	/* clear everything in the callee */
3291 	free_func_state(callee);
3292 	state->frame[state->curframe + 1] = NULL;
3293 	return 0;
3294 }
3295 
3296 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3297 				   int func_id,
3298 				   struct bpf_call_arg_meta *meta)
3299 {
3300 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3301 
3302 	if (ret_type != RET_INTEGER ||
3303 	    (func_id != BPF_FUNC_get_stack &&
3304 	     func_id != BPF_FUNC_probe_read_str))
3305 		return;
3306 
3307 	ret_reg->smax_value = meta->msize_smax_value;
3308 	ret_reg->umax_value = meta->msize_umax_value;
3309 	__reg_deduce_bounds(ret_reg);
3310 	__reg_bound_offset(ret_reg);
3311 }
3312 
3313 static int
3314 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3315 		int func_id, int insn_idx)
3316 {
3317 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3318 	struct bpf_map *map = meta->map_ptr;
3319 
3320 	if (func_id != BPF_FUNC_tail_call &&
3321 	    func_id != BPF_FUNC_map_lookup_elem &&
3322 	    func_id != BPF_FUNC_map_update_elem &&
3323 	    func_id != BPF_FUNC_map_delete_elem &&
3324 	    func_id != BPF_FUNC_map_push_elem &&
3325 	    func_id != BPF_FUNC_map_pop_elem &&
3326 	    func_id != BPF_FUNC_map_peek_elem)
3327 		return 0;
3328 
3329 	if (map == NULL) {
3330 		verbose(env, "kernel subsystem misconfigured verifier\n");
3331 		return -EINVAL;
3332 	}
3333 
3334 	/* In case of read-only, some additional restrictions
3335 	 * need to be applied in order to prevent altering the
3336 	 * state of the map from program side.
3337 	 */
3338 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3339 	    (func_id == BPF_FUNC_map_delete_elem ||
3340 	     func_id == BPF_FUNC_map_update_elem ||
3341 	     func_id == BPF_FUNC_map_push_elem ||
3342 	     func_id == BPF_FUNC_map_pop_elem)) {
3343 		verbose(env, "write into map forbidden\n");
3344 		return -EACCES;
3345 	}
3346 
3347 	if (!BPF_MAP_PTR(aux->map_state))
3348 		bpf_map_ptr_store(aux, meta->map_ptr,
3349 				  meta->map_ptr->unpriv_array);
3350 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3351 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3352 				  meta->map_ptr->unpriv_array);
3353 	return 0;
3354 }
3355 
3356 static int check_reference_leak(struct bpf_verifier_env *env)
3357 {
3358 	struct bpf_func_state *state = cur_func(env);
3359 	int i;
3360 
3361 	for (i = 0; i < state->acquired_refs; i++) {
3362 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3363 			state->refs[i].id, state->refs[i].insn_idx);
3364 	}
3365 	return state->acquired_refs ? -EINVAL : 0;
3366 }
3367 
3368 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3369 {
3370 	const struct bpf_func_proto *fn = NULL;
3371 	struct bpf_reg_state *regs;
3372 	struct bpf_call_arg_meta meta;
3373 	bool changes_data;
3374 	int i, err;
3375 
3376 	/* find function prototype */
3377 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3378 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3379 			func_id);
3380 		return -EINVAL;
3381 	}
3382 
3383 	if (env->ops->get_func_proto)
3384 		fn = env->ops->get_func_proto(func_id, env->prog);
3385 	if (!fn) {
3386 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3387 			func_id);
3388 		return -EINVAL;
3389 	}
3390 
3391 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3392 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3393 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3394 		return -EINVAL;
3395 	}
3396 
3397 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3398 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3399 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3400 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3401 			func_id_name(func_id), func_id);
3402 		return -EINVAL;
3403 	}
3404 
3405 	memset(&meta, 0, sizeof(meta));
3406 	meta.pkt_access = fn->pkt_access;
3407 
3408 	err = check_func_proto(fn, func_id);
3409 	if (err) {
3410 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3411 			func_id_name(func_id), func_id);
3412 		return err;
3413 	}
3414 
3415 	meta.func_id = func_id;
3416 	/* check args */
3417 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3418 	if (err)
3419 		return err;
3420 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3421 	if (err)
3422 		return err;
3423 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3424 	if (err)
3425 		return err;
3426 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3427 	if (err)
3428 		return err;
3429 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3430 	if (err)
3431 		return err;
3432 
3433 	err = record_func_map(env, &meta, func_id, insn_idx);
3434 	if (err)
3435 		return err;
3436 
3437 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3438 	 * is inferred from register state.
3439 	 */
3440 	for (i = 0; i < meta.access_size; i++) {
3441 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3442 				       BPF_WRITE, -1, false);
3443 		if (err)
3444 			return err;
3445 	}
3446 
3447 	if (func_id == BPF_FUNC_tail_call) {
3448 		err = check_reference_leak(env);
3449 		if (err) {
3450 			verbose(env, "tail_call would lead to reference leak\n");
3451 			return err;
3452 		}
3453 	} else if (is_release_function(func_id)) {
3454 		err = release_reference(env, meta.ref_obj_id);
3455 		if (err) {
3456 			verbose(env, "func %s#%d reference has not been acquired before\n",
3457 				func_id_name(func_id), func_id);
3458 			return err;
3459 		}
3460 	}
3461 
3462 	regs = cur_regs(env);
3463 
3464 	/* check that flags argument in get_local_storage(map, flags) is 0,
3465 	 * this is required because get_local_storage() can't return an error.
3466 	 */
3467 	if (func_id == BPF_FUNC_get_local_storage &&
3468 	    !register_is_null(&regs[BPF_REG_2])) {
3469 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3470 		return -EINVAL;
3471 	}
3472 
3473 	/* reset caller saved regs */
3474 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3475 		mark_reg_not_init(env, regs, caller_saved[i]);
3476 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3477 	}
3478 
3479 	/* helper call returns 64-bit value. */
3480 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
3481 
3482 	/* update return register (already marked as written above) */
3483 	if (fn->ret_type == RET_INTEGER) {
3484 		/* sets type to SCALAR_VALUE */
3485 		mark_reg_unknown(env, regs, BPF_REG_0);
3486 	} else if (fn->ret_type == RET_VOID) {
3487 		regs[BPF_REG_0].type = NOT_INIT;
3488 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3489 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3490 		/* There is no offset yet applied, variable or fixed */
3491 		mark_reg_known_zero(env, regs, BPF_REG_0);
3492 		/* remember map_ptr, so that check_map_access()
3493 		 * can check 'value_size' boundary of memory access
3494 		 * to map element returned from bpf_map_lookup_elem()
3495 		 */
3496 		if (meta.map_ptr == NULL) {
3497 			verbose(env,
3498 				"kernel subsystem misconfigured verifier\n");
3499 			return -EINVAL;
3500 		}
3501 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3502 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3503 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3504 			if (map_value_has_spin_lock(meta.map_ptr))
3505 				regs[BPF_REG_0].id = ++env->id_gen;
3506 		} else {
3507 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3508 			regs[BPF_REG_0].id = ++env->id_gen;
3509 		}
3510 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3511 		mark_reg_known_zero(env, regs, BPF_REG_0);
3512 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3513 		regs[BPF_REG_0].id = ++env->id_gen;
3514 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3515 		mark_reg_known_zero(env, regs, BPF_REG_0);
3516 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3517 		regs[BPF_REG_0].id = ++env->id_gen;
3518 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3519 		mark_reg_known_zero(env, regs, BPF_REG_0);
3520 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3521 		regs[BPF_REG_0].id = ++env->id_gen;
3522 	} else {
3523 		verbose(env, "unknown return type %d of func %s#%d\n",
3524 			fn->ret_type, func_id_name(func_id), func_id);
3525 		return -EINVAL;
3526 	}
3527 
3528 	if (is_ptr_cast_function(func_id)) {
3529 		/* For release_reference() */
3530 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3531 	} else if (is_acquire_function(func_id)) {
3532 		int id = acquire_reference_state(env, insn_idx);
3533 
3534 		if (id < 0)
3535 			return id;
3536 		/* For mark_ptr_or_null_reg() */
3537 		regs[BPF_REG_0].id = id;
3538 		/* For release_reference() */
3539 		regs[BPF_REG_0].ref_obj_id = id;
3540 	}
3541 
3542 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3543 
3544 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3545 	if (err)
3546 		return err;
3547 
3548 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3549 		const char *err_str;
3550 
3551 #ifdef CONFIG_PERF_EVENTS
3552 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3553 		err_str = "cannot get callchain buffer for func %s#%d\n";
3554 #else
3555 		err = -ENOTSUPP;
3556 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3557 #endif
3558 		if (err) {
3559 			verbose(env, err_str, func_id_name(func_id), func_id);
3560 			return err;
3561 		}
3562 
3563 		env->prog->has_callchain_buf = true;
3564 	}
3565 
3566 	if (changes_data)
3567 		clear_all_pkt_pointers(env);
3568 	return 0;
3569 }
3570 
3571 static bool signed_add_overflows(s64 a, s64 b)
3572 {
3573 	/* Do the add in u64, where overflow is well-defined */
3574 	s64 res = (s64)((u64)a + (u64)b);
3575 
3576 	if (b < 0)
3577 		return res > a;
3578 	return res < a;
3579 }
3580 
3581 static bool signed_sub_overflows(s64 a, s64 b)
3582 {
3583 	/* Do the sub in u64, where overflow is well-defined */
3584 	s64 res = (s64)((u64)a - (u64)b);
3585 
3586 	if (b < 0)
3587 		return res < a;
3588 	return res > a;
3589 }
3590 
3591 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3592 				  const struct bpf_reg_state *reg,
3593 				  enum bpf_reg_type type)
3594 {
3595 	bool known = tnum_is_const(reg->var_off);
3596 	s64 val = reg->var_off.value;
3597 	s64 smin = reg->smin_value;
3598 
3599 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3600 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3601 			reg_type_str[type], val);
3602 		return false;
3603 	}
3604 
3605 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3606 		verbose(env, "%s pointer offset %d is not allowed\n",
3607 			reg_type_str[type], reg->off);
3608 		return false;
3609 	}
3610 
3611 	if (smin == S64_MIN) {
3612 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3613 			reg_type_str[type]);
3614 		return false;
3615 	}
3616 
3617 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3618 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3619 			smin, reg_type_str[type]);
3620 		return false;
3621 	}
3622 
3623 	return true;
3624 }
3625 
3626 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3627 {
3628 	return &env->insn_aux_data[env->insn_idx];
3629 }
3630 
3631 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3632 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3633 {
3634 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3635 			    (opcode == BPF_SUB && !off_is_neg);
3636 	u32 off;
3637 
3638 	switch (ptr_reg->type) {
3639 	case PTR_TO_STACK:
3640 		/* Indirect variable offset stack access is prohibited in
3641 		 * unprivileged mode so it's not handled here.
3642 		 */
3643 		off = ptr_reg->off + ptr_reg->var_off.value;
3644 		if (mask_to_left)
3645 			*ptr_limit = MAX_BPF_STACK + off;
3646 		else
3647 			*ptr_limit = -off;
3648 		return 0;
3649 	case PTR_TO_MAP_VALUE:
3650 		if (mask_to_left) {
3651 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3652 		} else {
3653 			off = ptr_reg->smin_value + ptr_reg->off;
3654 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3655 		}
3656 		return 0;
3657 	default:
3658 		return -EINVAL;
3659 	}
3660 }
3661 
3662 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3663 				    const struct bpf_insn *insn)
3664 {
3665 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3666 }
3667 
3668 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3669 				       u32 alu_state, u32 alu_limit)
3670 {
3671 	/* If we arrived here from different branches with different
3672 	 * state or limits to sanitize, then this won't work.
3673 	 */
3674 	if (aux->alu_state &&
3675 	    (aux->alu_state != alu_state ||
3676 	     aux->alu_limit != alu_limit))
3677 		return -EACCES;
3678 
3679 	/* Corresponding fixup done in fixup_bpf_calls(). */
3680 	aux->alu_state = alu_state;
3681 	aux->alu_limit = alu_limit;
3682 	return 0;
3683 }
3684 
3685 static int sanitize_val_alu(struct bpf_verifier_env *env,
3686 			    struct bpf_insn *insn)
3687 {
3688 	struct bpf_insn_aux_data *aux = cur_aux(env);
3689 
3690 	if (can_skip_alu_sanitation(env, insn))
3691 		return 0;
3692 
3693 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3694 }
3695 
3696 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3697 			    struct bpf_insn *insn,
3698 			    const struct bpf_reg_state *ptr_reg,
3699 			    struct bpf_reg_state *dst_reg,
3700 			    bool off_is_neg)
3701 {
3702 	struct bpf_verifier_state *vstate = env->cur_state;
3703 	struct bpf_insn_aux_data *aux = cur_aux(env);
3704 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3705 	u8 opcode = BPF_OP(insn->code);
3706 	u32 alu_state, alu_limit;
3707 	struct bpf_reg_state tmp;
3708 	bool ret;
3709 
3710 	if (can_skip_alu_sanitation(env, insn))
3711 		return 0;
3712 
3713 	/* We already marked aux for masking from non-speculative
3714 	 * paths, thus we got here in the first place. We only care
3715 	 * to explore bad access from here.
3716 	 */
3717 	if (vstate->speculative)
3718 		goto do_sim;
3719 
3720 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3721 	alu_state |= ptr_is_dst_reg ?
3722 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3723 
3724 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3725 		return 0;
3726 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3727 		return -EACCES;
3728 do_sim:
3729 	/* Simulate and find potential out-of-bounds access under
3730 	 * speculative execution from truncation as a result of
3731 	 * masking when off was not within expected range. If off
3732 	 * sits in dst, then we temporarily need to move ptr there
3733 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3734 	 * for cases where we use K-based arithmetic in one direction
3735 	 * and truncated reg-based in the other in order to explore
3736 	 * bad access.
3737 	 */
3738 	if (!ptr_is_dst_reg) {
3739 		tmp = *dst_reg;
3740 		*dst_reg = *ptr_reg;
3741 	}
3742 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3743 	if (!ptr_is_dst_reg && ret)
3744 		*dst_reg = tmp;
3745 	return !ret ? -EFAULT : 0;
3746 }
3747 
3748 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3749  * Caller should also handle BPF_MOV case separately.
3750  * If we return -EACCES, caller may want to try again treating pointer as a
3751  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3752  */
3753 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3754 				   struct bpf_insn *insn,
3755 				   const struct bpf_reg_state *ptr_reg,
3756 				   const struct bpf_reg_state *off_reg)
3757 {
3758 	struct bpf_verifier_state *vstate = env->cur_state;
3759 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3760 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3761 	bool known = tnum_is_const(off_reg->var_off);
3762 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3763 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3764 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3765 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3766 	u32 dst = insn->dst_reg, src = insn->src_reg;
3767 	u8 opcode = BPF_OP(insn->code);
3768 	int ret;
3769 
3770 	dst_reg = &regs[dst];
3771 
3772 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3773 	    smin_val > smax_val || umin_val > umax_val) {
3774 		/* Taint dst register if offset had invalid bounds derived from
3775 		 * e.g. dead branches.
3776 		 */
3777 		__mark_reg_unknown(dst_reg);
3778 		return 0;
3779 	}
3780 
3781 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3782 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3783 		verbose(env,
3784 			"R%d 32-bit pointer arithmetic prohibited\n",
3785 			dst);
3786 		return -EACCES;
3787 	}
3788 
3789 	switch (ptr_reg->type) {
3790 	case PTR_TO_MAP_VALUE_OR_NULL:
3791 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3792 			dst, reg_type_str[ptr_reg->type]);
3793 		return -EACCES;
3794 	case CONST_PTR_TO_MAP:
3795 	case PTR_TO_PACKET_END:
3796 	case PTR_TO_SOCKET:
3797 	case PTR_TO_SOCKET_OR_NULL:
3798 	case PTR_TO_SOCK_COMMON:
3799 	case PTR_TO_SOCK_COMMON_OR_NULL:
3800 	case PTR_TO_TCP_SOCK:
3801 	case PTR_TO_TCP_SOCK_OR_NULL:
3802 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3803 			dst, reg_type_str[ptr_reg->type]);
3804 		return -EACCES;
3805 	case PTR_TO_MAP_VALUE:
3806 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3807 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3808 				off_reg == dst_reg ? dst : src);
3809 			return -EACCES;
3810 		}
3811 		/* fall-through */
3812 	default:
3813 		break;
3814 	}
3815 
3816 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3817 	 * The id may be overwritten later if we create a new variable offset.
3818 	 */
3819 	dst_reg->type = ptr_reg->type;
3820 	dst_reg->id = ptr_reg->id;
3821 
3822 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3823 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3824 		return -EINVAL;
3825 
3826 	switch (opcode) {
3827 	case BPF_ADD:
3828 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3829 		if (ret < 0) {
3830 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3831 			return ret;
3832 		}
3833 		/* We can take a fixed offset as long as it doesn't overflow
3834 		 * the s32 'off' field
3835 		 */
3836 		if (known && (ptr_reg->off + smin_val ==
3837 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3838 			/* pointer += K.  Accumulate it into fixed offset */
3839 			dst_reg->smin_value = smin_ptr;
3840 			dst_reg->smax_value = smax_ptr;
3841 			dst_reg->umin_value = umin_ptr;
3842 			dst_reg->umax_value = umax_ptr;
3843 			dst_reg->var_off = ptr_reg->var_off;
3844 			dst_reg->off = ptr_reg->off + smin_val;
3845 			dst_reg->raw = ptr_reg->raw;
3846 			break;
3847 		}
3848 		/* A new variable offset is created.  Note that off_reg->off
3849 		 * == 0, since it's a scalar.
3850 		 * dst_reg gets the pointer type and since some positive
3851 		 * integer value was added to the pointer, give it a new 'id'
3852 		 * if it's a PTR_TO_PACKET.
3853 		 * this creates a new 'base' pointer, off_reg (variable) gets
3854 		 * added into the variable offset, and we copy the fixed offset
3855 		 * from ptr_reg.
3856 		 */
3857 		if (signed_add_overflows(smin_ptr, smin_val) ||
3858 		    signed_add_overflows(smax_ptr, smax_val)) {
3859 			dst_reg->smin_value = S64_MIN;
3860 			dst_reg->smax_value = S64_MAX;
3861 		} else {
3862 			dst_reg->smin_value = smin_ptr + smin_val;
3863 			dst_reg->smax_value = smax_ptr + smax_val;
3864 		}
3865 		if (umin_ptr + umin_val < umin_ptr ||
3866 		    umax_ptr + umax_val < umax_ptr) {
3867 			dst_reg->umin_value = 0;
3868 			dst_reg->umax_value = U64_MAX;
3869 		} else {
3870 			dst_reg->umin_value = umin_ptr + umin_val;
3871 			dst_reg->umax_value = umax_ptr + umax_val;
3872 		}
3873 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3874 		dst_reg->off = ptr_reg->off;
3875 		dst_reg->raw = ptr_reg->raw;
3876 		if (reg_is_pkt_pointer(ptr_reg)) {
3877 			dst_reg->id = ++env->id_gen;
3878 			/* something was added to pkt_ptr, set range to zero */
3879 			dst_reg->raw = 0;
3880 		}
3881 		break;
3882 	case BPF_SUB:
3883 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3884 		if (ret < 0) {
3885 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3886 			return ret;
3887 		}
3888 		if (dst_reg == off_reg) {
3889 			/* scalar -= pointer.  Creates an unknown scalar */
3890 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3891 				dst);
3892 			return -EACCES;
3893 		}
3894 		/* We don't allow subtraction from FP, because (according to
3895 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3896 		 * be able to deal with it.
3897 		 */
3898 		if (ptr_reg->type == PTR_TO_STACK) {
3899 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3900 				dst);
3901 			return -EACCES;
3902 		}
3903 		if (known && (ptr_reg->off - smin_val ==
3904 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3905 			/* pointer -= K.  Subtract it from fixed offset */
3906 			dst_reg->smin_value = smin_ptr;
3907 			dst_reg->smax_value = smax_ptr;
3908 			dst_reg->umin_value = umin_ptr;
3909 			dst_reg->umax_value = umax_ptr;
3910 			dst_reg->var_off = ptr_reg->var_off;
3911 			dst_reg->id = ptr_reg->id;
3912 			dst_reg->off = ptr_reg->off - smin_val;
3913 			dst_reg->raw = ptr_reg->raw;
3914 			break;
3915 		}
3916 		/* A new variable offset is created.  If the subtrahend is known
3917 		 * nonnegative, then any reg->range we had before is still good.
3918 		 */
3919 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3920 		    signed_sub_overflows(smax_ptr, smin_val)) {
3921 			/* Overflow possible, we know nothing */
3922 			dst_reg->smin_value = S64_MIN;
3923 			dst_reg->smax_value = S64_MAX;
3924 		} else {
3925 			dst_reg->smin_value = smin_ptr - smax_val;
3926 			dst_reg->smax_value = smax_ptr - smin_val;
3927 		}
3928 		if (umin_ptr < umax_val) {
3929 			/* Overflow possible, we know nothing */
3930 			dst_reg->umin_value = 0;
3931 			dst_reg->umax_value = U64_MAX;
3932 		} else {
3933 			/* Cannot overflow (as long as bounds are consistent) */
3934 			dst_reg->umin_value = umin_ptr - umax_val;
3935 			dst_reg->umax_value = umax_ptr - umin_val;
3936 		}
3937 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3938 		dst_reg->off = ptr_reg->off;
3939 		dst_reg->raw = ptr_reg->raw;
3940 		if (reg_is_pkt_pointer(ptr_reg)) {
3941 			dst_reg->id = ++env->id_gen;
3942 			/* something was added to pkt_ptr, set range to zero */
3943 			if (smin_val < 0)
3944 				dst_reg->raw = 0;
3945 		}
3946 		break;
3947 	case BPF_AND:
3948 	case BPF_OR:
3949 	case BPF_XOR:
3950 		/* bitwise ops on pointers are troublesome, prohibit. */
3951 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3952 			dst, bpf_alu_string[opcode >> 4]);
3953 		return -EACCES;
3954 	default:
3955 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3956 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3957 			dst, bpf_alu_string[opcode >> 4]);
3958 		return -EACCES;
3959 	}
3960 
3961 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3962 		return -EINVAL;
3963 
3964 	__update_reg_bounds(dst_reg);
3965 	__reg_deduce_bounds(dst_reg);
3966 	__reg_bound_offset(dst_reg);
3967 
3968 	/* For unprivileged we require that resulting offset must be in bounds
3969 	 * in order to be able to sanitize access later on.
3970 	 */
3971 	if (!env->allow_ptr_leaks) {
3972 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3973 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3974 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3975 				"prohibited for !root\n", dst);
3976 			return -EACCES;
3977 		} else if (dst_reg->type == PTR_TO_STACK &&
3978 			   check_stack_access(env, dst_reg, dst_reg->off +
3979 					      dst_reg->var_off.value, 1)) {
3980 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3981 				"prohibited for !root\n", dst);
3982 			return -EACCES;
3983 		}
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 /* WARNING: This function does calculations on 64-bit values, but the actual
3990  * execution may occur on 32-bit values. Therefore, things like bitshifts
3991  * need extra checks in the 32-bit case.
3992  */
3993 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3994 				      struct bpf_insn *insn,
3995 				      struct bpf_reg_state *dst_reg,
3996 				      struct bpf_reg_state src_reg)
3997 {
3998 	struct bpf_reg_state *regs = cur_regs(env);
3999 	u8 opcode = BPF_OP(insn->code);
4000 	bool src_known, dst_known;
4001 	s64 smin_val, smax_val;
4002 	u64 umin_val, umax_val;
4003 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4004 	u32 dst = insn->dst_reg;
4005 	int ret;
4006 
4007 	if (insn_bitness == 32) {
4008 		/* Relevant for 32-bit RSH: Information can propagate towards
4009 		 * LSB, so it isn't sufficient to only truncate the output to
4010 		 * 32 bits.
4011 		 */
4012 		coerce_reg_to_size(dst_reg, 4);
4013 		coerce_reg_to_size(&src_reg, 4);
4014 	}
4015 
4016 	smin_val = src_reg.smin_value;
4017 	smax_val = src_reg.smax_value;
4018 	umin_val = src_reg.umin_value;
4019 	umax_val = src_reg.umax_value;
4020 	src_known = tnum_is_const(src_reg.var_off);
4021 	dst_known = tnum_is_const(dst_reg->var_off);
4022 
4023 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4024 	    smin_val > smax_val || umin_val > umax_val) {
4025 		/* Taint dst register if offset had invalid bounds derived from
4026 		 * e.g. dead branches.
4027 		 */
4028 		__mark_reg_unknown(dst_reg);
4029 		return 0;
4030 	}
4031 
4032 	if (!src_known &&
4033 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4034 		__mark_reg_unknown(dst_reg);
4035 		return 0;
4036 	}
4037 
4038 	switch (opcode) {
4039 	case BPF_ADD:
4040 		ret = sanitize_val_alu(env, insn);
4041 		if (ret < 0) {
4042 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4043 			return ret;
4044 		}
4045 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4046 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4047 			dst_reg->smin_value = S64_MIN;
4048 			dst_reg->smax_value = S64_MAX;
4049 		} else {
4050 			dst_reg->smin_value += smin_val;
4051 			dst_reg->smax_value += smax_val;
4052 		}
4053 		if (dst_reg->umin_value + umin_val < umin_val ||
4054 		    dst_reg->umax_value + umax_val < umax_val) {
4055 			dst_reg->umin_value = 0;
4056 			dst_reg->umax_value = U64_MAX;
4057 		} else {
4058 			dst_reg->umin_value += umin_val;
4059 			dst_reg->umax_value += umax_val;
4060 		}
4061 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4062 		break;
4063 	case BPF_SUB:
4064 		ret = sanitize_val_alu(env, insn);
4065 		if (ret < 0) {
4066 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4067 			return ret;
4068 		}
4069 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4070 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4071 			/* Overflow possible, we know nothing */
4072 			dst_reg->smin_value = S64_MIN;
4073 			dst_reg->smax_value = S64_MAX;
4074 		} else {
4075 			dst_reg->smin_value -= smax_val;
4076 			dst_reg->smax_value -= smin_val;
4077 		}
4078 		if (dst_reg->umin_value < umax_val) {
4079 			/* Overflow possible, we know nothing */
4080 			dst_reg->umin_value = 0;
4081 			dst_reg->umax_value = U64_MAX;
4082 		} else {
4083 			/* Cannot overflow (as long as bounds are consistent) */
4084 			dst_reg->umin_value -= umax_val;
4085 			dst_reg->umax_value -= umin_val;
4086 		}
4087 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4088 		break;
4089 	case BPF_MUL:
4090 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4091 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4092 			/* Ain't nobody got time to multiply that sign */
4093 			__mark_reg_unbounded(dst_reg);
4094 			__update_reg_bounds(dst_reg);
4095 			break;
4096 		}
4097 		/* Both values are positive, so we can work with unsigned and
4098 		 * copy the result to signed (unless it exceeds S64_MAX).
4099 		 */
4100 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4101 			/* Potential overflow, we know nothing */
4102 			__mark_reg_unbounded(dst_reg);
4103 			/* (except what we can learn from the var_off) */
4104 			__update_reg_bounds(dst_reg);
4105 			break;
4106 		}
4107 		dst_reg->umin_value *= umin_val;
4108 		dst_reg->umax_value *= umax_val;
4109 		if (dst_reg->umax_value > S64_MAX) {
4110 			/* Overflow possible, we know nothing */
4111 			dst_reg->smin_value = S64_MIN;
4112 			dst_reg->smax_value = S64_MAX;
4113 		} else {
4114 			dst_reg->smin_value = dst_reg->umin_value;
4115 			dst_reg->smax_value = dst_reg->umax_value;
4116 		}
4117 		break;
4118 	case BPF_AND:
4119 		if (src_known && dst_known) {
4120 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4121 						  src_reg.var_off.value);
4122 			break;
4123 		}
4124 		/* We get our minimum from the var_off, since that's inherently
4125 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4126 		 */
4127 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4128 		dst_reg->umin_value = dst_reg->var_off.value;
4129 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4130 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4131 			/* Lose signed bounds when ANDing negative numbers,
4132 			 * ain't nobody got time for that.
4133 			 */
4134 			dst_reg->smin_value = S64_MIN;
4135 			dst_reg->smax_value = S64_MAX;
4136 		} else {
4137 			/* ANDing two positives gives a positive, so safe to
4138 			 * cast result into s64.
4139 			 */
4140 			dst_reg->smin_value = dst_reg->umin_value;
4141 			dst_reg->smax_value = dst_reg->umax_value;
4142 		}
4143 		/* We may learn something more from the var_off */
4144 		__update_reg_bounds(dst_reg);
4145 		break;
4146 	case BPF_OR:
4147 		if (src_known && dst_known) {
4148 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4149 						  src_reg.var_off.value);
4150 			break;
4151 		}
4152 		/* We get our maximum from the var_off, and our minimum is the
4153 		 * maximum of the operands' minima
4154 		 */
4155 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4156 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4157 		dst_reg->umax_value = dst_reg->var_off.value |
4158 				      dst_reg->var_off.mask;
4159 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4160 			/* Lose signed bounds when ORing negative numbers,
4161 			 * ain't nobody got time for that.
4162 			 */
4163 			dst_reg->smin_value = S64_MIN;
4164 			dst_reg->smax_value = S64_MAX;
4165 		} else {
4166 			/* ORing two positives gives a positive, so safe to
4167 			 * cast result into s64.
4168 			 */
4169 			dst_reg->smin_value = dst_reg->umin_value;
4170 			dst_reg->smax_value = dst_reg->umax_value;
4171 		}
4172 		/* We may learn something more from the var_off */
4173 		__update_reg_bounds(dst_reg);
4174 		break;
4175 	case BPF_LSH:
4176 		if (umax_val >= insn_bitness) {
4177 			/* Shifts greater than 31 or 63 are undefined.
4178 			 * This includes shifts by a negative number.
4179 			 */
4180 			mark_reg_unknown(env, regs, insn->dst_reg);
4181 			break;
4182 		}
4183 		/* We lose all sign bit information (except what we can pick
4184 		 * up from var_off)
4185 		 */
4186 		dst_reg->smin_value = S64_MIN;
4187 		dst_reg->smax_value = S64_MAX;
4188 		/* If we might shift our top bit out, then we know nothing */
4189 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4190 			dst_reg->umin_value = 0;
4191 			dst_reg->umax_value = U64_MAX;
4192 		} else {
4193 			dst_reg->umin_value <<= umin_val;
4194 			dst_reg->umax_value <<= umax_val;
4195 		}
4196 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4197 		/* We may learn something more from the var_off */
4198 		__update_reg_bounds(dst_reg);
4199 		break;
4200 	case BPF_RSH:
4201 		if (umax_val >= insn_bitness) {
4202 			/* Shifts greater than 31 or 63 are undefined.
4203 			 * This includes shifts by a negative number.
4204 			 */
4205 			mark_reg_unknown(env, regs, insn->dst_reg);
4206 			break;
4207 		}
4208 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4209 		 * be negative, then either:
4210 		 * 1) src_reg might be zero, so the sign bit of the result is
4211 		 *    unknown, so we lose our signed bounds
4212 		 * 2) it's known negative, thus the unsigned bounds capture the
4213 		 *    signed bounds
4214 		 * 3) the signed bounds cross zero, so they tell us nothing
4215 		 *    about the result
4216 		 * If the value in dst_reg is known nonnegative, then again the
4217 		 * unsigned bounts capture the signed bounds.
4218 		 * Thus, in all cases it suffices to blow away our signed bounds
4219 		 * and rely on inferring new ones from the unsigned bounds and
4220 		 * var_off of the result.
4221 		 */
4222 		dst_reg->smin_value = S64_MIN;
4223 		dst_reg->smax_value = S64_MAX;
4224 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4225 		dst_reg->umin_value >>= umax_val;
4226 		dst_reg->umax_value >>= umin_val;
4227 		/* We may learn something more from the var_off */
4228 		__update_reg_bounds(dst_reg);
4229 		break;
4230 	case BPF_ARSH:
4231 		if (umax_val >= insn_bitness) {
4232 			/* Shifts greater than 31 or 63 are undefined.
4233 			 * This includes shifts by a negative number.
4234 			 */
4235 			mark_reg_unknown(env, regs, insn->dst_reg);
4236 			break;
4237 		}
4238 
4239 		/* Upon reaching here, src_known is true and
4240 		 * umax_val is equal to umin_val.
4241 		 */
4242 		dst_reg->smin_value >>= umin_val;
4243 		dst_reg->smax_value >>= umin_val;
4244 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4245 
4246 		/* blow away the dst_reg umin_value/umax_value and rely on
4247 		 * dst_reg var_off to refine the result.
4248 		 */
4249 		dst_reg->umin_value = 0;
4250 		dst_reg->umax_value = U64_MAX;
4251 		__update_reg_bounds(dst_reg);
4252 		break;
4253 	default:
4254 		mark_reg_unknown(env, regs, insn->dst_reg);
4255 		break;
4256 	}
4257 
4258 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4259 		/* 32-bit ALU ops are (32,32)->32 */
4260 		coerce_reg_to_size(dst_reg, 4);
4261 	}
4262 
4263 	__reg_deduce_bounds(dst_reg);
4264 	__reg_bound_offset(dst_reg);
4265 	return 0;
4266 }
4267 
4268 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4269  * and var_off.
4270  */
4271 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4272 				   struct bpf_insn *insn)
4273 {
4274 	struct bpf_verifier_state *vstate = env->cur_state;
4275 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4276 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4277 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4278 	u8 opcode = BPF_OP(insn->code);
4279 
4280 	dst_reg = &regs[insn->dst_reg];
4281 	src_reg = NULL;
4282 	if (dst_reg->type != SCALAR_VALUE)
4283 		ptr_reg = dst_reg;
4284 	if (BPF_SRC(insn->code) == BPF_X) {
4285 		src_reg = &regs[insn->src_reg];
4286 		if (src_reg->type != SCALAR_VALUE) {
4287 			if (dst_reg->type != SCALAR_VALUE) {
4288 				/* Combining two pointers by any ALU op yields
4289 				 * an arbitrary scalar. Disallow all math except
4290 				 * pointer subtraction
4291 				 */
4292 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4293 					mark_reg_unknown(env, regs, insn->dst_reg);
4294 					return 0;
4295 				}
4296 				verbose(env, "R%d pointer %s pointer prohibited\n",
4297 					insn->dst_reg,
4298 					bpf_alu_string[opcode >> 4]);
4299 				return -EACCES;
4300 			} else {
4301 				/* scalar += pointer
4302 				 * This is legal, but we have to reverse our
4303 				 * src/dest handling in computing the range
4304 				 */
4305 				return adjust_ptr_min_max_vals(env, insn,
4306 							       src_reg, dst_reg);
4307 			}
4308 		} else if (ptr_reg) {
4309 			/* pointer += scalar */
4310 			return adjust_ptr_min_max_vals(env, insn,
4311 						       dst_reg, src_reg);
4312 		}
4313 	} else {
4314 		/* Pretend the src is a reg with a known value, since we only
4315 		 * need to be able to read from this state.
4316 		 */
4317 		off_reg.type = SCALAR_VALUE;
4318 		__mark_reg_known(&off_reg, insn->imm);
4319 		src_reg = &off_reg;
4320 		if (ptr_reg) /* pointer += K */
4321 			return adjust_ptr_min_max_vals(env, insn,
4322 						       ptr_reg, src_reg);
4323 	}
4324 
4325 	/* Got here implies adding two SCALAR_VALUEs */
4326 	if (WARN_ON_ONCE(ptr_reg)) {
4327 		print_verifier_state(env, state);
4328 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4329 		return -EINVAL;
4330 	}
4331 	if (WARN_ON(!src_reg)) {
4332 		print_verifier_state(env, state);
4333 		verbose(env, "verifier internal error: no src_reg\n");
4334 		return -EINVAL;
4335 	}
4336 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4337 }
4338 
4339 /* check validity of 32-bit and 64-bit arithmetic operations */
4340 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4341 {
4342 	struct bpf_reg_state *regs = cur_regs(env);
4343 	u8 opcode = BPF_OP(insn->code);
4344 	int err;
4345 
4346 	if (opcode == BPF_END || opcode == BPF_NEG) {
4347 		if (opcode == BPF_NEG) {
4348 			if (BPF_SRC(insn->code) != 0 ||
4349 			    insn->src_reg != BPF_REG_0 ||
4350 			    insn->off != 0 || insn->imm != 0) {
4351 				verbose(env, "BPF_NEG uses reserved fields\n");
4352 				return -EINVAL;
4353 			}
4354 		} else {
4355 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4356 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4357 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4358 				verbose(env, "BPF_END uses reserved fields\n");
4359 				return -EINVAL;
4360 			}
4361 		}
4362 
4363 		/* check src operand */
4364 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4365 		if (err)
4366 			return err;
4367 
4368 		if (is_pointer_value(env, insn->dst_reg)) {
4369 			verbose(env, "R%d pointer arithmetic prohibited\n",
4370 				insn->dst_reg);
4371 			return -EACCES;
4372 		}
4373 
4374 		/* check dest operand */
4375 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4376 		if (err)
4377 			return err;
4378 
4379 	} else if (opcode == BPF_MOV) {
4380 
4381 		if (BPF_SRC(insn->code) == BPF_X) {
4382 			if (insn->imm != 0 || insn->off != 0) {
4383 				verbose(env, "BPF_MOV uses reserved fields\n");
4384 				return -EINVAL;
4385 			}
4386 
4387 			/* check src operand */
4388 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4389 			if (err)
4390 				return err;
4391 		} else {
4392 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4393 				verbose(env, "BPF_MOV uses reserved fields\n");
4394 				return -EINVAL;
4395 			}
4396 		}
4397 
4398 		/* check dest operand, mark as required later */
4399 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4400 		if (err)
4401 			return err;
4402 
4403 		if (BPF_SRC(insn->code) == BPF_X) {
4404 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4405 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4406 
4407 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4408 				/* case: R1 = R2
4409 				 * copy register state to dest reg
4410 				 */
4411 				*dst_reg = *src_reg;
4412 				dst_reg->live |= REG_LIVE_WRITTEN;
4413 				dst_reg->subreg_def = DEF_NOT_SUBREG;
4414 			} else {
4415 				/* R1 = (u32) R2 */
4416 				if (is_pointer_value(env, insn->src_reg)) {
4417 					verbose(env,
4418 						"R%d partial copy of pointer\n",
4419 						insn->src_reg);
4420 					return -EACCES;
4421 				} else if (src_reg->type == SCALAR_VALUE) {
4422 					*dst_reg = *src_reg;
4423 					dst_reg->live |= REG_LIVE_WRITTEN;
4424 					dst_reg->subreg_def = env->insn_idx + 1;
4425 				} else {
4426 					mark_reg_unknown(env, regs,
4427 							 insn->dst_reg);
4428 				}
4429 				coerce_reg_to_size(dst_reg, 4);
4430 			}
4431 		} else {
4432 			/* case: R = imm
4433 			 * remember the value we stored into this reg
4434 			 */
4435 			/* clear any state __mark_reg_known doesn't set */
4436 			mark_reg_unknown(env, regs, insn->dst_reg);
4437 			regs[insn->dst_reg].type = SCALAR_VALUE;
4438 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4439 				__mark_reg_known(regs + insn->dst_reg,
4440 						 insn->imm);
4441 			} else {
4442 				__mark_reg_known(regs + insn->dst_reg,
4443 						 (u32)insn->imm);
4444 			}
4445 		}
4446 
4447 	} else if (opcode > BPF_END) {
4448 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4449 		return -EINVAL;
4450 
4451 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4452 
4453 		if (BPF_SRC(insn->code) == BPF_X) {
4454 			if (insn->imm != 0 || insn->off != 0) {
4455 				verbose(env, "BPF_ALU uses reserved fields\n");
4456 				return -EINVAL;
4457 			}
4458 			/* check src1 operand */
4459 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4460 			if (err)
4461 				return err;
4462 		} else {
4463 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4464 				verbose(env, "BPF_ALU uses reserved fields\n");
4465 				return -EINVAL;
4466 			}
4467 		}
4468 
4469 		/* check src2 operand */
4470 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4471 		if (err)
4472 			return err;
4473 
4474 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4475 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4476 			verbose(env, "div by zero\n");
4477 			return -EINVAL;
4478 		}
4479 
4480 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4481 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4482 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4483 
4484 			if (insn->imm < 0 || insn->imm >= size) {
4485 				verbose(env, "invalid shift %d\n", insn->imm);
4486 				return -EINVAL;
4487 			}
4488 		}
4489 
4490 		/* check dest operand */
4491 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4492 		if (err)
4493 			return err;
4494 
4495 		return adjust_reg_min_max_vals(env, insn);
4496 	}
4497 
4498 	return 0;
4499 }
4500 
4501 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4502 				     struct bpf_reg_state *dst_reg,
4503 				     enum bpf_reg_type type, u16 new_range)
4504 {
4505 	struct bpf_reg_state *reg;
4506 	int i;
4507 
4508 	for (i = 0; i < MAX_BPF_REG; i++) {
4509 		reg = &state->regs[i];
4510 		if (reg->type == type && reg->id == dst_reg->id)
4511 			/* keep the maximum range already checked */
4512 			reg->range = max(reg->range, new_range);
4513 	}
4514 
4515 	bpf_for_each_spilled_reg(i, state, reg) {
4516 		if (!reg)
4517 			continue;
4518 		if (reg->type == type && reg->id == dst_reg->id)
4519 			reg->range = max(reg->range, new_range);
4520 	}
4521 }
4522 
4523 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4524 				   struct bpf_reg_state *dst_reg,
4525 				   enum bpf_reg_type type,
4526 				   bool range_right_open)
4527 {
4528 	u16 new_range;
4529 	int i;
4530 
4531 	if (dst_reg->off < 0 ||
4532 	    (dst_reg->off == 0 && range_right_open))
4533 		/* This doesn't give us any range */
4534 		return;
4535 
4536 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4537 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4538 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4539 		 * than pkt_end, but that's because it's also less than pkt.
4540 		 */
4541 		return;
4542 
4543 	new_range = dst_reg->off;
4544 	if (range_right_open)
4545 		new_range--;
4546 
4547 	/* Examples for register markings:
4548 	 *
4549 	 * pkt_data in dst register:
4550 	 *
4551 	 *   r2 = r3;
4552 	 *   r2 += 8;
4553 	 *   if (r2 > pkt_end) goto <handle exception>
4554 	 *   <access okay>
4555 	 *
4556 	 *   r2 = r3;
4557 	 *   r2 += 8;
4558 	 *   if (r2 < pkt_end) goto <access okay>
4559 	 *   <handle exception>
4560 	 *
4561 	 *   Where:
4562 	 *     r2 == dst_reg, pkt_end == src_reg
4563 	 *     r2=pkt(id=n,off=8,r=0)
4564 	 *     r3=pkt(id=n,off=0,r=0)
4565 	 *
4566 	 * pkt_data in src register:
4567 	 *
4568 	 *   r2 = r3;
4569 	 *   r2 += 8;
4570 	 *   if (pkt_end >= r2) goto <access okay>
4571 	 *   <handle exception>
4572 	 *
4573 	 *   r2 = r3;
4574 	 *   r2 += 8;
4575 	 *   if (pkt_end <= r2) goto <handle exception>
4576 	 *   <access okay>
4577 	 *
4578 	 *   Where:
4579 	 *     pkt_end == dst_reg, r2 == src_reg
4580 	 *     r2=pkt(id=n,off=8,r=0)
4581 	 *     r3=pkt(id=n,off=0,r=0)
4582 	 *
4583 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4584 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4585 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4586 	 * the check.
4587 	 */
4588 
4589 	/* If our ids match, then we must have the same max_value.  And we
4590 	 * don't care about the other reg's fixed offset, since if it's too big
4591 	 * the range won't allow anything.
4592 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4593 	 */
4594 	for (i = 0; i <= vstate->curframe; i++)
4595 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4596 					 new_range);
4597 }
4598 
4599 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4600  * and return:
4601  *  1 - branch will be taken and "goto target" will be executed
4602  *  0 - branch will not be taken and fall-through to next insn
4603  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4604  */
4605 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4606 			   bool is_jmp32)
4607 {
4608 	struct bpf_reg_state reg_lo;
4609 	s64 sval;
4610 
4611 	if (__is_pointer_value(false, reg))
4612 		return -1;
4613 
4614 	if (is_jmp32) {
4615 		reg_lo = *reg;
4616 		reg = &reg_lo;
4617 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4618 		 * could truncate high bits and update umin/umax according to
4619 		 * information of low bits.
4620 		 */
4621 		coerce_reg_to_size(reg, 4);
4622 		/* smin/smax need special handling. For example, after coerce,
4623 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4624 		 * used as operand to JMP32. It is a negative number from s32's
4625 		 * point of view, while it is a positive number when seen as
4626 		 * s64. The smin/smax are kept as s64, therefore, when used with
4627 		 * JMP32, they need to be transformed into s32, then sign
4628 		 * extended back to s64.
4629 		 *
4630 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4631 		 * different sign bit, then min/max relationship doesn't
4632 		 * maintain after casting into s32, for this case, set smin/smax
4633 		 * to safest range.
4634 		 */
4635 		if ((reg->umax_value ^ reg->umin_value) &
4636 		    (1ULL << 31)) {
4637 			reg->smin_value = S32_MIN;
4638 			reg->smax_value = S32_MAX;
4639 		}
4640 		reg->smin_value = (s64)(s32)reg->smin_value;
4641 		reg->smax_value = (s64)(s32)reg->smax_value;
4642 
4643 		val = (u32)val;
4644 		sval = (s64)(s32)val;
4645 	} else {
4646 		sval = (s64)val;
4647 	}
4648 
4649 	switch (opcode) {
4650 	case BPF_JEQ:
4651 		if (tnum_is_const(reg->var_off))
4652 			return !!tnum_equals_const(reg->var_off, val);
4653 		break;
4654 	case BPF_JNE:
4655 		if (tnum_is_const(reg->var_off))
4656 			return !tnum_equals_const(reg->var_off, val);
4657 		break;
4658 	case BPF_JSET:
4659 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4660 			return 1;
4661 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4662 			return 0;
4663 		break;
4664 	case BPF_JGT:
4665 		if (reg->umin_value > val)
4666 			return 1;
4667 		else if (reg->umax_value <= val)
4668 			return 0;
4669 		break;
4670 	case BPF_JSGT:
4671 		if (reg->smin_value > sval)
4672 			return 1;
4673 		else if (reg->smax_value < sval)
4674 			return 0;
4675 		break;
4676 	case BPF_JLT:
4677 		if (reg->umax_value < val)
4678 			return 1;
4679 		else if (reg->umin_value >= val)
4680 			return 0;
4681 		break;
4682 	case BPF_JSLT:
4683 		if (reg->smax_value < sval)
4684 			return 1;
4685 		else if (reg->smin_value >= sval)
4686 			return 0;
4687 		break;
4688 	case BPF_JGE:
4689 		if (reg->umin_value >= val)
4690 			return 1;
4691 		else if (reg->umax_value < val)
4692 			return 0;
4693 		break;
4694 	case BPF_JSGE:
4695 		if (reg->smin_value >= sval)
4696 			return 1;
4697 		else if (reg->smax_value < sval)
4698 			return 0;
4699 		break;
4700 	case BPF_JLE:
4701 		if (reg->umax_value <= val)
4702 			return 1;
4703 		else if (reg->umin_value > val)
4704 			return 0;
4705 		break;
4706 	case BPF_JSLE:
4707 		if (reg->smax_value <= sval)
4708 			return 1;
4709 		else if (reg->smin_value > sval)
4710 			return 0;
4711 		break;
4712 	}
4713 
4714 	return -1;
4715 }
4716 
4717 /* Generate min value of the high 32-bit from TNUM info. */
4718 static u64 gen_hi_min(struct tnum var)
4719 {
4720 	return var.value & ~0xffffffffULL;
4721 }
4722 
4723 /* Generate max value of the high 32-bit from TNUM info. */
4724 static u64 gen_hi_max(struct tnum var)
4725 {
4726 	return (var.value | var.mask) & ~0xffffffffULL;
4727 }
4728 
4729 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4730  * are with the same signedness.
4731  */
4732 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4733 {
4734 	return ((s32)sval >= 0 &&
4735 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4736 	       ((s32)sval < 0 &&
4737 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4738 }
4739 
4740 /* Adjusts the register min/max values in the case that the dst_reg is the
4741  * variable register that we are working on, and src_reg is a constant or we're
4742  * simply doing a BPF_K check.
4743  * In JEQ/JNE cases we also adjust the var_off values.
4744  */
4745 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4746 			    struct bpf_reg_state *false_reg, u64 val,
4747 			    u8 opcode, bool is_jmp32)
4748 {
4749 	s64 sval;
4750 
4751 	/* If the dst_reg is a pointer, we can't learn anything about its
4752 	 * variable offset from the compare (unless src_reg were a pointer into
4753 	 * the same object, but we don't bother with that.
4754 	 * Since false_reg and true_reg have the same type by construction, we
4755 	 * only need to check one of them for pointerness.
4756 	 */
4757 	if (__is_pointer_value(false, false_reg))
4758 		return;
4759 
4760 	val = is_jmp32 ? (u32)val : val;
4761 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4762 
4763 	switch (opcode) {
4764 	case BPF_JEQ:
4765 	case BPF_JNE:
4766 	{
4767 		struct bpf_reg_state *reg =
4768 			opcode == BPF_JEQ ? true_reg : false_reg;
4769 
4770 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4771 		 * if it is true we know the value for sure. Likewise for
4772 		 * BPF_JNE.
4773 		 */
4774 		if (is_jmp32) {
4775 			u64 old_v = reg->var_off.value;
4776 			u64 hi_mask = ~0xffffffffULL;
4777 
4778 			reg->var_off.value = (old_v & hi_mask) | val;
4779 			reg->var_off.mask &= hi_mask;
4780 		} else {
4781 			__mark_reg_known(reg, val);
4782 		}
4783 		break;
4784 	}
4785 	case BPF_JSET:
4786 		false_reg->var_off = tnum_and(false_reg->var_off,
4787 					      tnum_const(~val));
4788 		if (is_power_of_2(val))
4789 			true_reg->var_off = tnum_or(true_reg->var_off,
4790 						    tnum_const(val));
4791 		break;
4792 	case BPF_JGE:
4793 	case BPF_JGT:
4794 	{
4795 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4796 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4797 
4798 		if (is_jmp32) {
4799 			false_umax += gen_hi_max(false_reg->var_off);
4800 			true_umin += gen_hi_min(true_reg->var_off);
4801 		}
4802 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4803 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4804 		break;
4805 	}
4806 	case BPF_JSGE:
4807 	case BPF_JSGT:
4808 	{
4809 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4810 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4811 
4812 		/* If the full s64 was not sign-extended from s32 then don't
4813 		 * deduct further info.
4814 		 */
4815 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4816 			break;
4817 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4818 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4819 		break;
4820 	}
4821 	case BPF_JLE:
4822 	case BPF_JLT:
4823 	{
4824 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4825 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4826 
4827 		if (is_jmp32) {
4828 			false_umin += gen_hi_min(false_reg->var_off);
4829 			true_umax += gen_hi_max(true_reg->var_off);
4830 		}
4831 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4832 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4833 		break;
4834 	}
4835 	case BPF_JSLE:
4836 	case BPF_JSLT:
4837 	{
4838 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4839 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4840 
4841 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4842 			break;
4843 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4844 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4845 		break;
4846 	}
4847 	default:
4848 		break;
4849 	}
4850 
4851 	__reg_deduce_bounds(false_reg);
4852 	__reg_deduce_bounds(true_reg);
4853 	/* We might have learned some bits from the bounds. */
4854 	__reg_bound_offset(false_reg);
4855 	__reg_bound_offset(true_reg);
4856 	/* Intersecting with the old var_off might have improved our bounds
4857 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4858 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4859 	 */
4860 	__update_reg_bounds(false_reg);
4861 	__update_reg_bounds(true_reg);
4862 }
4863 
4864 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4865  * the variable reg.
4866  */
4867 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4868 				struct bpf_reg_state *false_reg, u64 val,
4869 				u8 opcode, bool is_jmp32)
4870 {
4871 	s64 sval;
4872 
4873 	if (__is_pointer_value(false, false_reg))
4874 		return;
4875 
4876 	val = is_jmp32 ? (u32)val : val;
4877 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4878 
4879 	switch (opcode) {
4880 	case BPF_JEQ:
4881 	case BPF_JNE:
4882 	{
4883 		struct bpf_reg_state *reg =
4884 			opcode == BPF_JEQ ? true_reg : false_reg;
4885 
4886 		if (is_jmp32) {
4887 			u64 old_v = reg->var_off.value;
4888 			u64 hi_mask = ~0xffffffffULL;
4889 
4890 			reg->var_off.value = (old_v & hi_mask) | val;
4891 			reg->var_off.mask &= hi_mask;
4892 		} else {
4893 			__mark_reg_known(reg, val);
4894 		}
4895 		break;
4896 	}
4897 	case BPF_JSET:
4898 		false_reg->var_off = tnum_and(false_reg->var_off,
4899 					      tnum_const(~val));
4900 		if (is_power_of_2(val))
4901 			true_reg->var_off = tnum_or(true_reg->var_off,
4902 						    tnum_const(val));
4903 		break;
4904 	case BPF_JGE:
4905 	case BPF_JGT:
4906 	{
4907 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4908 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4909 
4910 		if (is_jmp32) {
4911 			false_umin += gen_hi_min(false_reg->var_off);
4912 			true_umax += gen_hi_max(true_reg->var_off);
4913 		}
4914 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4915 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4916 		break;
4917 	}
4918 	case BPF_JSGE:
4919 	case BPF_JSGT:
4920 	{
4921 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4922 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4923 
4924 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4925 			break;
4926 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4927 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4928 		break;
4929 	}
4930 	case BPF_JLE:
4931 	case BPF_JLT:
4932 	{
4933 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4934 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4935 
4936 		if (is_jmp32) {
4937 			false_umax += gen_hi_max(false_reg->var_off);
4938 			true_umin += gen_hi_min(true_reg->var_off);
4939 		}
4940 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4941 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4942 		break;
4943 	}
4944 	case BPF_JSLE:
4945 	case BPF_JSLT:
4946 	{
4947 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4948 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4949 
4950 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4951 			break;
4952 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4953 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4954 		break;
4955 	}
4956 	default:
4957 		break;
4958 	}
4959 
4960 	__reg_deduce_bounds(false_reg);
4961 	__reg_deduce_bounds(true_reg);
4962 	/* We might have learned some bits from the bounds. */
4963 	__reg_bound_offset(false_reg);
4964 	__reg_bound_offset(true_reg);
4965 	/* Intersecting with the old var_off might have improved our bounds
4966 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4967 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4968 	 */
4969 	__update_reg_bounds(false_reg);
4970 	__update_reg_bounds(true_reg);
4971 }
4972 
4973 /* Regs are known to be equal, so intersect their min/max/var_off */
4974 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4975 				  struct bpf_reg_state *dst_reg)
4976 {
4977 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4978 							dst_reg->umin_value);
4979 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4980 							dst_reg->umax_value);
4981 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4982 							dst_reg->smin_value);
4983 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4984 							dst_reg->smax_value);
4985 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4986 							     dst_reg->var_off);
4987 	/* We might have learned new bounds from the var_off. */
4988 	__update_reg_bounds(src_reg);
4989 	__update_reg_bounds(dst_reg);
4990 	/* We might have learned something about the sign bit. */
4991 	__reg_deduce_bounds(src_reg);
4992 	__reg_deduce_bounds(dst_reg);
4993 	/* We might have learned some bits from the bounds. */
4994 	__reg_bound_offset(src_reg);
4995 	__reg_bound_offset(dst_reg);
4996 	/* Intersecting with the old var_off might have improved our bounds
4997 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4998 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4999 	 */
5000 	__update_reg_bounds(src_reg);
5001 	__update_reg_bounds(dst_reg);
5002 }
5003 
5004 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5005 				struct bpf_reg_state *true_dst,
5006 				struct bpf_reg_state *false_src,
5007 				struct bpf_reg_state *false_dst,
5008 				u8 opcode)
5009 {
5010 	switch (opcode) {
5011 	case BPF_JEQ:
5012 		__reg_combine_min_max(true_src, true_dst);
5013 		break;
5014 	case BPF_JNE:
5015 		__reg_combine_min_max(false_src, false_dst);
5016 		break;
5017 	}
5018 }
5019 
5020 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5021 				 struct bpf_reg_state *reg, u32 id,
5022 				 bool is_null)
5023 {
5024 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5025 		/* Old offset (both fixed and variable parts) should
5026 		 * have been known-zero, because we don't allow pointer
5027 		 * arithmetic on pointers that might be NULL.
5028 		 */
5029 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5030 				 !tnum_equals_const(reg->var_off, 0) ||
5031 				 reg->off)) {
5032 			__mark_reg_known_zero(reg);
5033 			reg->off = 0;
5034 		}
5035 		if (is_null) {
5036 			reg->type = SCALAR_VALUE;
5037 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5038 			if (reg->map_ptr->inner_map_meta) {
5039 				reg->type = CONST_PTR_TO_MAP;
5040 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5041 			} else {
5042 				reg->type = PTR_TO_MAP_VALUE;
5043 			}
5044 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5045 			reg->type = PTR_TO_SOCKET;
5046 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5047 			reg->type = PTR_TO_SOCK_COMMON;
5048 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5049 			reg->type = PTR_TO_TCP_SOCK;
5050 		}
5051 		if (is_null) {
5052 			/* We don't need id and ref_obj_id from this point
5053 			 * onwards anymore, thus we should better reset it,
5054 			 * so that state pruning has chances to take effect.
5055 			 */
5056 			reg->id = 0;
5057 			reg->ref_obj_id = 0;
5058 		} else if (!reg_may_point_to_spin_lock(reg)) {
5059 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5060 			 * in release_reg_references().
5061 			 *
5062 			 * reg->id is still used by spin_lock ptr. Other
5063 			 * than spin_lock ptr type, reg->id can be reset.
5064 			 */
5065 			reg->id = 0;
5066 		}
5067 	}
5068 }
5069 
5070 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5071 				    bool is_null)
5072 {
5073 	struct bpf_reg_state *reg;
5074 	int i;
5075 
5076 	for (i = 0; i < MAX_BPF_REG; i++)
5077 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5078 
5079 	bpf_for_each_spilled_reg(i, state, reg) {
5080 		if (!reg)
5081 			continue;
5082 		mark_ptr_or_null_reg(state, reg, id, is_null);
5083 	}
5084 }
5085 
5086 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5087  * be folded together at some point.
5088  */
5089 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5090 				  bool is_null)
5091 {
5092 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5093 	struct bpf_reg_state *regs = state->regs;
5094 	u32 ref_obj_id = regs[regno].ref_obj_id;
5095 	u32 id = regs[regno].id;
5096 	int i;
5097 
5098 	if (ref_obj_id && ref_obj_id == id && is_null)
5099 		/* regs[regno] is in the " == NULL" branch.
5100 		 * No one could have freed the reference state before
5101 		 * doing the NULL check.
5102 		 */
5103 		WARN_ON_ONCE(release_reference_state(state, id));
5104 
5105 	for (i = 0; i <= vstate->curframe; i++)
5106 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5107 }
5108 
5109 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5110 				   struct bpf_reg_state *dst_reg,
5111 				   struct bpf_reg_state *src_reg,
5112 				   struct bpf_verifier_state *this_branch,
5113 				   struct bpf_verifier_state *other_branch)
5114 {
5115 	if (BPF_SRC(insn->code) != BPF_X)
5116 		return false;
5117 
5118 	/* Pointers are always 64-bit. */
5119 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5120 		return false;
5121 
5122 	switch (BPF_OP(insn->code)) {
5123 	case BPF_JGT:
5124 		if ((dst_reg->type == PTR_TO_PACKET &&
5125 		     src_reg->type == PTR_TO_PACKET_END) ||
5126 		    (dst_reg->type == PTR_TO_PACKET_META &&
5127 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5128 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5129 			find_good_pkt_pointers(this_branch, dst_reg,
5130 					       dst_reg->type, false);
5131 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5132 			    src_reg->type == PTR_TO_PACKET) ||
5133 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5134 			    src_reg->type == PTR_TO_PACKET_META)) {
5135 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
5136 			find_good_pkt_pointers(other_branch, src_reg,
5137 					       src_reg->type, true);
5138 		} else {
5139 			return false;
5140 		}
5141 		break;
5142 	case BPF_JLT:
5143 		if ((dst_reg->type == PTR_TO_PACKET &&
5144 		     src_reg->type == PTR_TO_PACKET_END) ||
5145 		    (dst_reg->type == PTR_TO_PACKET_META &&
5146 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5147 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5148 			find_good_pkt_pointers(other_branch, dst_reg,
5149 					       dst_reg->type, true);
5150 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5151 			    src_reg->type == PTR_TO_PACKET) ||
5152 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5153 			    src_reg->type == PTR_TO_PACKET_META)) {
5154 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5155 			find_good_pkt_pointers(this_branch, src_reg,
5156 					       src_reg->type, false);
5157 		} else {
5158 			return false;
5159 		}
5160 		break;
5161 	case BPF_JGE:
5162 		if ((dst_reg->type == PTR_TO_PACKET &&
5163 		     src_reg->type == PTR_TO_PACKET_END) ||
5164 		    (dst_reg->type == PTR_TO_PACKET_META &&
5165 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5166 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5167 			find_good_pkt_pointers(this_branch, dst_reg,
5168 					       dst_reg->type, true);
5169 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5170 			    src_reg->type == PTR_TO_PACKET) ||
5171 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5172 			    src_reg->type == PTR_TO_PACKET_META)) {
5173 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5174 			find_good_pkt_pointers(other_branch, src_reg,
5175 					       src_reg->type, false);
5176 		} else {
5177 			return false;
5178 		}
5179 		break;
5180 	case BPF_JLE:
5181 		if ((dst_reg->type == PTR_TO_PACKET &&
5182 		     src_reg->type == PTR_TO_PACKET_END) ||
5183 		    (dst_reg->type == PTR_TO_PACKET_META &&
5184 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5185 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5186 			find_good_pkt_pointers(other_branch, dst_reg,
5187 					       dst_reg->type, false);
5188 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5189 			    src_reg->type == PTR_TO_PACKET) ||
5190 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5191 			    src_reg->type == PTR_TO_PACKET_META)) {
5192 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5193 			find_good_pkt_pointers(this_branch, src_reg,
5194 					       src_reg->type, true);
5195 		} else {
5196 			return false;
5197 		}
5198 		break;
5199 	default:
5200 		return false;
5201 	}
5202 
5203 	return true;
5204 }
5205 
5206 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5207 			     struct bpf_insn *insn, int *insn_idx)
5208 {
5209 	struct bpf_verifier_state *this_branch = env->cur_state;
5210 	struct bpf_verifier_state *other_branch;
5211 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5212 	struct bpf_reg_state *dst_reg, *other_branch_regs;
5213 	u8 opcode = BPF_OP(insn->code);
5214 	bool is_jmp32;
5215 	int err;
5216 
5217 	/* Only conditional jumps are expected to reach here. */
5218 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5219 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5220 		return -EINVAL;
5221 	}
5222 
5223 	if (BPF_SRC(insn->code) == BPF_X) {
5224 		if (insn->imm != 0) {
5225 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5226 			return -EINVAL;
5227 		}
5228 
5229 		/* check src1 operand */
5230 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5231 		if (err)
5232 			return err;
5233 
5234 		if (is_pointer_value(env, insn->src_reg)) {
5235 			verbose(env, "R%d pointer comparison prohibited\n",
5236 				insn->src_reg);
5237 			return -EACCES;
5238 		}
5239 	} else {
5240 		if (insn->src_reg != BPF_REG_0) {
5241 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5242 			return -EINVAL;
5243 		}
5244 	}
5245 
5246 	/* check src2 operand */
5247 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5248 	if (err)
5249 		return err;
5250 
5251 	dst_reg = &regs[insn->dst_reg];
5252 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5253 
5254 	if (BPF_SRC(insn->code) == BPF_K) {
5255 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5256 					   is_jmp32);
5257 
5258 		if (pred == 1) {
5259 			 /* only follow the goto, ignore fall-through */
5260 			*insn_idx += insn->off;
5261 			return 0;
5262 		} else if (pred == 0) {
5263 			/* only follow fall-through branch, since
5264 			 * that's where the program will go
5265 			 */
5266 			return 0;
5267 		}
5268 	}
5269 
5270 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5271 				  false);
5272 	if (!other_branch)
5273 		return -EFAULT;
5274 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5275 
5276 	/* detect if we are comparing against a constant value so we can adjust
5277 	 * our min/max values for our dst register.
5278 	 * this is only legit if both are scalars (or pointers to the same
5279 	 * object, I suppose, but we don't support that right now), because
5280 	 * otherwise the different base pointers mean the offsets aren't
5281 	 * comparable.
5282 	 */
5283 	if (BPF_SRC(insn->code) == BPF_X) {
5284 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5285 		struct bpf_reg_state lo_reg0 = *dst_reg;
5286 		struct bpf_reg_state lo_reg1 = *src_reg;
5287 		struct bpf_reg_state *src_lo, *dst_lo;
5288 
5289 		dst_lo = &lo_reg0;
5290 		src_lo = &lo_reg1;
5291 		coerce_reg_to_size(dst_lo, 4);
5292 		coerce_reg_to_size(src_lo, 4);
5293 
5294 		if (dst_reg->type == SCALAR_VALUE &&
5295 		    src_reg->type == SCALAR_VALUE) {
5296 			if (tnum_is_const(src_reg->var_off) ||
5297 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5298 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5299 						dst_reg,
5300 						is_jmp32
5301 						? src_lo->var_off.value
5302 						: src_reg->var_off.value,
5303 						opcode, is_jmp32);
5304 			else if (tnum_is_const(dst_reg->var_off) ||
5305 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5306 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5307 						    src_reg,
5308 						    is_jmp32
5309 						    ? dst_lo->var_off.value
5310 						    : dst_reg->var_off.value,
5311 						    opcode, is_jmp32);
5312 			else if (!is_jmp32 &&
5313 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5314 				/* Comparing for equality, we can combine knowledge */
5315 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5316 						    &other_branch_regs[insn->dst_reg],
5317 						    src_reg, dst_reg, opcode);
5318 		}
5319 	} else if (dst_reg->type == SCALAR_VALUE) {
5320 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5321 					dst_reg, insn->imm, opcode, is_jmp32);
5322 	}
5323 
5324 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5325 	 * NOTE: these optimizations below are related with pointer comparison
5326 	 *       which will never be JMP32.
5327 	 */
5328 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5329 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5330 	    reg_type_may_be_null(dst_reg->type)) {
5331 		/* Mark all identical registers in each branch as either
5332 		 * safe or unknown depending R == 0 or R != 0 conditional.
5333 		 */
5334 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5335 				      opcode == BPF_JNE);
5336 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5337 				      opcode == BPF_JEQ);
5338 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5339 					   this_branch, other_branch) &&
5340 		   is_pointer_value(env, insn->dst_reg)) {
5341 		verbose(env, "R%d pointer comparison prohibited\n",
5342 			insn->dst_reg);
5343 		return -EACCES;
5344 	}
5345 	if (env->log.level & BPF_LOG_LEVEL)
5346 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5347 	return 0;
5348 }
5349 
5350 /* verify BPF_LD_IMM64 instruction */
5351 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5352 {
5353 	struct bpf_insn_aux_data *aux = cur_aux(env);
5354 	struct bpf_reg_state *regs = cur_regs(env);
5355 	struct bpf_map *map;
5356 	int err;
5357 
5358 	if (BPF_SIZE(insn->code) != BPF_DW) {
5359 		verbose(env, "invalid BPF_LD_IMM insn\n");
5360 		return -EINVAL;
5361 	}
5362 	if (insn->off != 0) {
5363 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5364 		return -EINVAL;
5365 	}
5366 
5367 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5368 	if (err)
5369 		return err;
5370 
5371 	if (insn->src_reg == 0) {
5372 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5373 
5374 		regs[insn->dst_reg].type = SCALAR_VALUE;
5375 		__mark_reg_known(&regs[insn->dst_reg], imm);
5376 		return 0;
5377 	}
5378 
5379 	map = env->used_maps[aux->map_index];
5380 	mark_reg_known_zero(env, regs, insn->dst_reg);
5381 	regs[insn->dst_reg].map_ptr = map;
5382 
5383 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5384 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5385 		regs[insn->dst_reg].off = aux->map_off;
5386 		if (map_value_has_spin_lock(map))
5387 			regs[insn->dst_reg].id = ++env->id_gen;
5388 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5389 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5390 	} else {
5391 		verbose(env, "bpf verifier is misconfigured\n");
5392 		return -EINVAL;
5393 	}
5394 
5395 	return 0;
5396 }
5397 
5398 static bool may_access_skb(enum bpf_prog_type type)
5399 {
5400 	switch (type) {
5401 	case BPF_PROG_TYPE_SOCKET_FILTER:
5402 	case BPF_PROG_TYPE_SCHED_CLS:
5403 	case BPF_PROG_TYPE_SCHED_ACT:
5404 		return true;
5405 	default:
5406 		return false;
5407 	}
5408 }
5409 
5410 /* verify safety of LD_ABS|LD_IND instructions:
5411  * - they can only appear in the programs where ctx == skb
5412  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5413  *   preserve R6-R9, and store return value into R0
5414  *
5415  * Implicit input:
5416  *   ctx == skb == R6 == CTX
5417  *
5418  * Explicit input:
5419  *   SRC == any register
5420  *   IMM == 32-bit immediate
5421  *
5422  * Output:
5423  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5424  */
5425 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5426 {
5427 	struct bpf_reg_state *regs = cur_regs(env);
5428 	u8 mode = BPF_MODE(insn->code);
5429 	int i, err;
5430 
5431 	if (!may_access_skb(env->prog->type)) {
5432 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5433 		return -EINVAL;
5434 	}
5435 
5436 	if (!env->ops->gen_ld_abs) {
5437 		verbose(env, "bpf verifier is misconfigured\n");
5438 		return -EINVAL;
5439 	}
5440 
5441 	if (env->subprog_cnt > 1) {
5442 		/* when program has LD_ABS insn JITs and interpreter assume
5443 		 * that r1 == ctx == skb which is not the case for callees
5444 		 * that can have arbitrary arguments. It's problematic
5445 		 * for main prog as well since JITs would need to analyze
5446 		 * all functions in order to make proper register save/restore
5447 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5448 		 */
5449 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5450 		return -EINVAL;
5451 	}
5452 
5453 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5454 	    BPF_SIZE(insn->code) == BPF_DW ||
5455 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5456 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5457 		return -EINVAL;
5458 	}
5459 
5460 	/* check whether implicit source operand (register R6) is readable */
5461 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5462 	if (err)
5463 		return err;
5464 
5465 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5466 	 * gen_ld_abs() may terminate the program at runtime, leading to
5467 	 * reference leak.
5468 	 */
5469 	err = check_reference_leak(env);
5470 	if (err) {
5471 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5472 		return err;
5473 	}
5474 
5475 	if (env->cur_state->active_spin_lock) {
5476 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5477 		return -EINVAL;
5478 	}
5479 
5480 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5481 		verbose(env,
5482 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5483 		return -EINVAL;
5484 	}
5485 
5486 	if (mode == BPF_IND) {
5487 		/* check explicit source operand */
5488 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5489 		if (err)
5490 			return err;
5491 	}
5492 
5493 	/* reset caller saved regs to unreadable */
5494 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5495 		mark_reg_not_init(env, regs, caller_saved[i]);
5496 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5497 	}
5498 
5499 	/* mark destination R0 register as readable, since it contains
5500 	 * the value fetched from the packet.
5501 	 * Already marked as written above.
5502 	 */
5503 	mark_reg_unknown(env, regs, BPF_REG_0);
5504 	/* ld_abs load up to 32-bit skb data. */
5505 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
5506 	return 0;
5507 }
5508 
5509 static int check_return_code(struct bpf_verifier_env *env)
5510 {
5511 	struct tnum enforce_attach_type_range = tnum_unknown;
5512 	struct bpf_reg_state *reg;
5513 	struct tnum range = tnum_range(0, 1);
5514 
5515 	switch (env->prog->type) {
5516 	case BPF_PROG_TYPE_CGROUP_SKB:
5517 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
5518 			range = tnum_range(0, 3);
5519 			enforce_attach_type_range = tnum_range(2, 3);
5520 		}
5521 	case BPF_PROG_TYPE_CGROUP_SOCK:
5522 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5523 	case BPF_PROG_TYPE_SOCK_OPS:
5524 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5525 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
5526 		break;
5527 	default:
5528 		return 0;
5529 	}
5530 
5531 	reg = cur_regs(env) + BPF_REG_0;
5532 	if (reg->type != SCALAR_VALUE) {
5533 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5534 			reg_type_str[reg->type]);
5535 		return -EINVAL;
5536 	}
5537 
5538 	if (!tnum_in(range, reg->var_off)) {
5539 		char tn_buf[48];
5540 
5541 		verbose(env, "At program exit the register R0 ");
5542 		if (!tnum_is_unknown(reg->var_off)) {
5543 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5544 			verbose(env, "has value %s", tn_buf);
5545 		} else {
5546 			verbose(env, "has unknown scalar value");
5547 		}
5548 		tnum_strn(tn_buf, sizeof(tn_buf), range);
5549 		verbose(env, " should have been %s\n", tn_buf);
5550 		return -EINVAL;
5551 	}
5552 
5553 	if (!tnum_is_unknown(enforce_attach_type_range) &&
5554 	    tnum_in(enforce_attach_type_range, reg->var_off))
5555 		env->prog->enforce_expected_attach_type = 1;
5556 	return 0;
5557 }
5558 
5559 /* non-recursive DFS pseudo code
5560  * 1  procedure DFS-iterative(G,v):
5561  * 2      label v as discovered
5562  * 3      let S be a stack
5563  * 4      S.push(v)
5564  * 5      while S is not empty
5565  * 6            t <- S.pop()
5566  * 7            if t is what we're looking for:
5567  * 8                return t
5568  * 9            for all edges e in G.adjacentEdges(t) do
5569  * 10               if edge e is already labelled
5570  * 11                   continue with the next edge
5571  * 12               w <- G.adjacentVertex(t,e)
5572  * 13               if vertex w is not discovered and not explored
5573  * 14                   label e as tree-edge
5574  * 15                   label w as discovered
5575  * 16                   S.push(w)
5576  * 17                   continue at 5
5577  * 18               else if vertex w is discovered
5578  * 19                   label e as back-edge
5579  * 20               else
5580  * 21                   // vertex w is explored
5581  * 22                   label e as forward- or cross-edge
5582  * 23           label t as explored
5583  * 24           S.pop()
5584  *
5585  * convention:
5586  * 0x10 - discovered
5587  * 0x11 - discovered and fall-through edge labelled
5588  * 0x12 - discovered and fall-through and branch edges labelled
5589  * 0x20 - explored
5590  */
5591 
5592 enum {
5593 	DISCOVERED = 0x10,
5594 	EXPLORED = 0x20,
5595 	FALLTHROUGH = 1,
5596 	BRANCH = 2,
5597 };
5598 
5599 static u32 state_htab_size(struct bpf_verifier_env *env)
5600 {
5601 	return env->prog->len;
5602 }
5603 
5604 static struct bpf_verifier_state_list **explored_state(
5605 					struct bpf_verifier_env *env,
5606 					int idx)
5607 {
5608 	struct bpf_verifier_state *cur = env->cur_state;
5609 	struct bpf_func_state *state = cur->frame[cur->curframe];
5610 
5611 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5612 }
5613 
5614 static void init_explored_state(struct bpf_verifier_env *env, int idx)
5615 {
5616 	env->insn_aux_data[idx].prune_point = true;
5617 }
5618 
5619 /* t, w, e - match pseudo-code above:
5620  * t - index of current instruction
5621  * w - next instruction
5622  * e - edge
5623  */
5624 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5625 {
5626 	int *insn_stack = env->cfg.insn_stack;
5627 	int *insn_state = env->cfg.insn_state;
5628 
5629 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5630 		return 0;
5631 
5632 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5633 		return 0;
5634 
5635 	if (w < 0 || w >= env->prog->len) {
5636 		verbose_linfo(env, t, "%d: ", t);
5637 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5638 		return -EINVAL;
5639 	}
5640 
5641 	if (e == BRANCH)
5642 		/* mark branch target for state pruning */
5643 		init_explored_state(env, w);
5644 
5645 	if (insn_state[w] == 0) {
5646 		/* tree-edge */
5647 		insn_state[t] = DISCOVERED | e;
5648 		insn_state[w] = DISCOVERED;
5649 		if (env->cfg.cur_stack >= env->prog->len)
5650 			return -E2BIG;
5651 		insn_stack[env->cfg.cur_stack++] = w;
5652 		return 1;
5653 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5654 		verbose_linfo(env, t, "%d: ", t);
5655 		verbose_linfo(env, w, "%d: ", w);
5656 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5657 		return -EINVAL;
5658 	} else if (insn_state[w] == EXPLORED) {
5659 		/* forward- or cross-edge */
5660 		insn_state[t] = DISCOVERED | e;
5661 	} else {
5662 		verbose(env, "insn state internal bug\n");
5663 		return -EFAULT;
5664 	}
5665 	return 0;
5666 }
5667 
5668 /* non-recursive depth-first-search to detect loops in BPF program
5669  * loop == back-edge in directed graph
5670  */
5671 static int check_cfg(struct bpf_verifier_env *env)
5672 {
5673 	struct bpf_insn *insns = env->prog->insnsi;
5674 	int insn_cnt = env->prog->len;
5675 	int *insn_stack, *insn_state;
5676 	int ret = 0;
5677 	int i, t;
5678 
5679 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5680 	if (!insn_state)
5681 		return -ENOMEM;
5682 
5683 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5684 	if (!insn_stack) {
5685 		kvfree(insn_state);
5686 		return -ENOMEM;
5687 	}
5688 
5689 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5690 	insn_stack[0] = 0; /* 0 is the first instruction */
5691 	env->cfg.cur_stack = 1;
5692 
5693 peek_stack:
5694 	if (env->cfg.cur_stack == 0)
5695 		goto check_state;
5696 	t = insn_stack[env->cfg.cur_stack - 1];
5697 
5698 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5699 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5700 		u8 opcode = BPF_OP(insns[t].code);
5701 
5702 		if (opcode == BPF_EXIT) {
5703 			goto mark_explored;
5704 		} else if (opcode == BPF_CALL) {
5705 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5706 			if (ret == 1)
5707 				goto peek_stack;
5708 			else if (ret < 0)
5709 				goto err_free;
5710 			if (t + 1 < insn_cnt)
5711 				init_explored_state(env, t + 1);
5712 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5713 				init_explored_state(env, t);
5714 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5715 				if (ret == 1)
5716 					goto peek_stack;
5717 				else if (ret < 0)
5718 					goto err_free;
5719 			}
5720 		} else if (opcode == BPF_JA) {
5721 			if (BPF_SRC(insns[t].code) != BPF_K) {
5722 				ret = -EINVAL;
5723 				goto err_free;
5724 			}
5725 			/* unconditional jump with single edge */
5726 			ret = push_insn(t, t + insns[t].off + 1,
5727 					FALLTHROUGH, env);
5728 			if (ret == 1)
5729 				goto peek_stack;
5730 			else if (ret < 0)
5731 				goto err_free;
5732 			/* tell verifier to check for equivalent states
5733 			 * after every call and jump
5734 			 */
5735 			if (t + 1 < insn_cnt)
5736 				init_explored_state(env, t + 1);
5737 		} else {
5738 			/* conditional jump with two edges */
5739 			init_explored_state(env, t);
5740 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5741 			if (ret == 1)
5742 				goto peek_stack;
5743 			else if (ret < 0)
5744 				goto err_free;
5745 
5746 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5747 			if (ret == 1)
5748 				goto peek_stack;
5749 			else if (ret < 0)
5750 				goto err_free;
5751 		}
5752 	} else {
5753 		/* all other non-branch instructions with single
5754 		 * fall-through edge
5755 		 */
5756 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5757 		if (ret == 1)
5758 			goto peek_stack;
5759 		else if (ret < 0)
5760 			goto err_free;
5761 	}
5762 
5763 mark_explored:
5764 	insn_state[t] = EXPLORED;
5765 	if (env->cfg.cur_stack-- <= 0) {
5766 		verbose(env, "pop stack internal bug\n");
5767 		ret = -EFAULT;
5768 		goto err_free;
5769 	}
5770 	goto peek_stack;
5771 
5772 check_state:
5773 	for (i = 0; i < insn_cnt; i++) {
5774 		if (insn_state[i] != EXPLORED) {
5775 			verbose(env, "unreachable insn %d\n", i);
5776 			ret = -EINVAL;
5777 			goto err_free;
5778 		}
5779 	}
5780 	ret = 0; /* cfg looks good */
5781 
5782 err_free:
5783 	kvfree(insn_state);
5784 	kvfree(insn_stack);
5785 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
5786 	return ret;
5787 }
5788 
5789 /* The minimum supported BTF func info size */
5790 #define MIN_BPF_FUNCINFO_SIZE	8
5791 #define MAX_FUNCINFO_REC_SIZE	252
5792 
5793 static int check_btf_func(struct bpf_verifier_env *env,
5794 			  const union bpf_attr *attr,
5795 			  union bpf_attr __user *uattr)
5796 {
5797 	u32 i, nfuncs, urec_size, min_size;
5798 	u32 krec_size = sizeof(struct bpf_func_info);
5799 	struct bpf_func_info *krecord;
5800 	const struct btf_type *type;
5801 	struct bpf_prog *prog;
5802 	const struct btf *btf;
5803 	void __user *urecord;
5804 	u32 prev_offset = 0;
5805 	int ret = 0;
5806 
5807 	nfuncs = attr->func_info_cnt;
5808 	if (!nfuncs)
5809 		return 0;
5810 
5811 	if (nfuncs != env->subprog_cnt) {
5812 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5813 		return -EINVAL;
5814 	}
5815 
5816 	urec_size = attr->func_info_rec_size;
5817 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5818 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5819 	    urec_size % sizeof(u32)) {
5820 		verbose(env, "invalid func info rec size %u\n", urec_size);
5821 		return -EINVAL;
5822 	}
5823 
5824 	prog = env->prog;
5825 	btf = prog->aux->btf;
5826 
5827 	urecord = u64_to_user_ptr(attr->func_info);
5828 	min_size = min_t(u32, krec_size, urec_size);
5829 
5830 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5831 	if (!krecord)
5832 		return -ENOMEM;
5833 
5834 	for (i = 0; i < nfuncs; i++) {
5835 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5836 		if (ret) {
5837 			if (ret == -E2BIG) {
5838 				verbose(env, "nonzero tailing record in func info");
5839 				/* set the size kernel expects so loader can zero
5840 				 * out the rest of the record.
5841 				 */
5842 				if (put_user(min_size, &uattr->func_info_rec_size))
5843 					ret = -EFAULT;
5844 			}
5845 			goto err_free;
5846 		}
5847 
5848 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5849 			ret = -EFAULT;
5850 			goto err_free;
5851 		}
5852 
5853 		/* check insn_off */
5854 		if (i == 0) {
5855 			if (krecord[i].insn_off) {
5856 				verbose(env,
5857 					"nonzero insn_off %u for the first func info record",
5858 					krecord[i].insn_off);
5859 				ret = -EINVAL;
5860 				goto err_free;
5861 			}
5862 		} else if (krecord[i].insn_off <= prev_offset) {
5863 			verbose(env,
5864 				"same or smaller insn offset (%u) than previous func info record (%u)",
5865 				krecord[i].insn_off, prev_offset);
5866 			ret = -EINVAL;
5867 			goto err_free;
5868 		}
5869 
5870 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5871 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5872 			ret = -EINVAL;
5873 			goto err_free;
5874 		}
5875 
5876 		/* check type_id */
5877 		type = btf_type_by_id(btf, krecord[i].type_id);
5878 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5879 			verbose(env, "invalid type id %d in func info",
5880 				krecord[i].type_id);
5881 			ret = -EINVAL;
5882 			goto err_free;
5883 		}
5884 
5885 		prev_offset = krecord[i].insn_off;
5886 		urecord += urec_size;
5887 	}
5888 
5889 	prog->aux->func_info = krecord;
5890 	prog->aux->func_info_cnt = nfuncs;
5891 	return 0;
5892 
5893 err_free:
5894 	kvfree(krecord);
5895 	return ret;
5896 }
5897 
5898 static void adjust_btf_func(struct bpf_verifier_env *env)
5899 {
5900 	int i;
5901 
5902 	if (!env->prog->aux->func_info)
5903 		return;
5904 
5905 	for (i = 0; i < env->subprog_cnt; i++)
5906 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5907 }
5908 
5909 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5910 		sizeof(((struct bpf_line_info *)(0))->line_col))
5911 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5912 
5913 static int check_btf_line(struct bpf_verifier_env *env,
5914 			  const union bpf_attr *attr,
5915 			  union bpf_attr __user *uattr)
5916 {
5917 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5918 	struct bpf_subprog_info *sub;
5919 	struct bpf_line_info *linfo;
5920 	struct bpf_prog *prog;
5921 	const struct btf *btf;
5922 	void __user *ulinfo;
5923 	int err;
5924 
5925 	nr_linfo = attr->line_info_cnt;
5926 	if (!nr_linfo)
5927 		return 0;
5928 
5929 	rec_size = attr->line_info_rec_size;
5930 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5931 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5932 	    rec_size & (sizeof(u32) - 1))
5933 		return -EINVAL;
5934 
5935 	/* Need to zero it in case the userspace may
5936 	 * pass in a smaller bpf_line_info object.
5937 	 */
5938 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5939 			 GFP_KERNEL | __GFP_NOWARN);
5940 	if (!linfo)
5941 		return -ENOMEM;
5942 
5943 	prog = env->prog;
5944 	btf = prog->aux->btf;
5945 
5946 	s = 0;
5947 	sub = env->subprog_info;
5948 	ulinfo = u64_to_user_ptr(attr->line_info);
5949 	expected_size = sizeof(struct bpf_line_info);
5950 	ncopy = min_t(u32, expected_size, rec_size);
5951 	for (i = 0; i < nr_linfo; i++) {
5952 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5953 		if (err) {
5954 			if (err == -E2BIG) {
5955 				verbose(env, "nonzero tailing record in line_info");
5956 				if (put_user(expected_size,
5957 					     &uattr->line_info_rec_size))
5958 					err = -EFAULT;
5959 			}
5960 			goto err_free;
5961 		}
5962 
5963 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5964 			err = -EFAULT;
5965 			goto err_free;
5966 		}
5967 
5968 		/*
5969 		 * Check insn_off to ensure
5970 		 * 1) strictly increasing AND
5971 		 * 2) bounded by prog->len
5972 		 *
5973 		 * The linfo[0].insn_off == 0 check logically falls into
5974 		 * the later "missing bpf_line_info for func..." case
5975 		 * because the first linfo[0].insn_off must be the
5976 		 * first sub also and the first sub must have
5977 		 * subprog_info[0].start == 0.
5978 		 */
5979 		if ((i && linfo[i].insn_off <= prev_offset) ||
5980 		    linfo[i].insn_off >= prog->len) {
5981 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5982 				i, linfo[i].insn_off, prev_offset,
5983 				prog->len);
5984 			err = -EINVAL;
5985 			goto err_free;
5986 		}
5987 
5988 		if (!prog->insnsi[linfo[i].insn_off].code) {
5989 			verbose(env,
5990 				"Invalid insn code at line_info[%u].insn_off\n",
5991 				i);
5992 			err = -EINVAL;
5993 			goto err_free;
5994 		}
5995 
5996 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5997 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5998 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5999 			err = -EINVAL;
6000 			goto err_free;
6001 		}
6002 
6003 		if (s != env->subprog_cnt) {
6004 			if (linfo[i].insn_off == sub[s].start) {
6005 				sub[s].linfo_idx = i;
6006 				s++;
6007 			} else if (sub[s].start < linfo[i].insn_off) {
6008 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6009 				err = -EINVAL;
6010 				goto err_free;
6011 			}
6012 		}
6013 
6014 		prev_offset = linfo[i].insn_off;
6015 		ulinfo += rec_size;
6016 	}
6017 
6018 	if (s != env->subprog_cnt) {
6019 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6020 			env->subprog_cnt - s, s);
6021 		err = -EINVAL;
6022 		goto err_free;
6023 	}
6024 
6025 	prog->aux->linfo = linfo;
6026 	prog->aux->nr_linfo = nr_linfo;
6027 
6028 	return 0;
6029 
6030 err_free:
6031 	kvfree(linfo);
6032 	return err;
6033 }
6034 
6035 static int check_btf_info(struct bpf_verifier_env *env,
6036 			  const union bpf_attr *attr,
6037 			  union bpf_attr __user *uattr)
6038 {
6039 	struct btf *btf;
6040 	int err;
6041 
6042 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6043 		return 0;
6044 
6045 	btf = btf_get_by_fd(attr->prog_btf_fd);
6046 	if (IS_ERR(btf))
6047 		return PTR_ERR(btf);
6048 	env->prog->aux->btf = btf;
6049 
6050 	err = check_btf_func(env, attr, uattr);
6051 	if (err)
6052 		return err;
6053 
6054 	err = check_btf_line(env, attr, uattr);
6055 	if (err)
6056 		return err;
6057 
6058 	return 0;
6059 }
6060 
6061 /* check %cur's range satisfies %old's */
6062 static bool range_within(struct bpf_reg_state *old,
6063 			 struct bpf_reg_state *cur)
6064 {
6065 	return old->umin_value <= cur->umin_value &&
6066 	       old->umax_value >= cur->umax_value &&
6067 	       old->smin_value <= cur->smin_value &&
6068 	       old->smax_value >= cur->smax_value;
6069 }
6070 
6071 /* Maximum number of register states that can exist at once */
6072 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6073 struct idpair {
6074 	u32 old;
6075 	u32 cur;
6076 };
6077 
6078 /* If in the old state two registers had the same id, then they need to have
6079  * the same id in the new state as well.  But that id could be different from
6080  * the old state, so we need to track the mapping from old to new ids.
6081  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6082  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6083  * regs with a different old id could still have new id 9, we don't care about
6084  * that.
6085  * So we look through our idmap to see if this old id has been seen before.  If
6086  * so, we require the new id to match; otherwise, we add the id pair to the map.
6087  */
6088 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6089 {
6090 	unsigned int i;
6091 
6092 	for (i = 0; i < ID_MAP_SIZE; i++) {
6093 		if (!idmap[i].old) {
6094 			/* Reached an empty slot; haven't seen this id before */
6095 			idmap[i].old = old_id;
6096 			idmap[i].cur = cur_id;
6097 			return true;
6098 		}
6099 		if (idmap[i].old == old_id)
6100 			return idmap[i].cur == cur_id;
6101 	}
6102 	/* We ran out of idmap slots, which should be impossible */
6103 	WARN_ON_ONCE(1);
6104 	return false;
6105 }
6106 
6107 static void clean_func_state(struct bpf_verifier_env *env,
6108 			     struct bpf_func_state *st)
6109 {
6110 	enum bpf_reg_liveness live;
6111 	int i, j;
6112 
6113 	for (i = 0; i < BPF_REG_FP; i++) {
6114 		live = st->regs[i].live;
6115 		/* liveness must not touch this register anymore */
6116 		st->regs[i].live |= REG_LIVE_DONE;
6117 		if (!(live & REG_LIVE_READ))
6118 			/* since the register is unused, clear its state
6119 			 * to make further comparison simpler
6120 			 */
6121 			__mark_reg_not_init(&st->regs[i]);
6122 	}
6123 
6124 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6125 		live = st->stack[i].spilled_ptr.live;
6126 		/* liveness must not touch this stack slot anymore */
6127 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6128 		if (!(live & REG_LIVE_READ)) {
6129 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
6130 			for (j = 0; j < BPF_REG_SIZE; j++)
6131 				st->stack[i].slot_type[j] = STACK_INVALID;
6132 		}
6133 	}
6134 }
6135 
6136 static void clean_verifier_state(struct bpf_verifier_env *env,
6137 				 struct bpf_verifier_state *st)
6138 {
6139 	int i;
6140 
6141 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6142 		/* all regs in this state in all frames were already marked */
6143 		return;
6144 
6145 	for (i = 0; i <= st->curframe; i++)
6146 		clean_func_state(env, st->frame[i]);
6147 }
6148 
6149 /* the parentage chains form a tree.
6150  * the verifier states are added to state lists at given insn and
6151  * pushed into state stack for future exploration.
6152  * when the verifier reaches bpf_exit insn some of the verifer states
6153  * stored in the state lists have their final liveness state already,
6154  * but a lot of states will get revised from liveness point of view when
6155  * the verifier explores other branches.
6156  * Example:
6157  * 1: r0 = 1
6158  * 2: if r1 == 100 goto pc+1
6159  * 3: r0 = 2
6160  * 4: exit
6161  * when the verifier reaches exit insn the register r0 in the state list of
6162  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6163  * of insn 2 and goes exploring further. At the insn 4 it will walk the
6164  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6165  *
6166  * Since the verifier pushes the branch states as it sees them while exploring
6167  * the program the condition of walking the branch instruction for the second
6168  * time means that all states below this branch were already explored and
6169  * their final liveness markes are already propagated.
6170  * Hence when the verifier completes the search of state list in is_state_visited()
6171  * we can call this clean_live_states() function to mark all liveness states
6172  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6173  * will not be used.
6174  * This function also clears the registers and stack for states that !READ
6175  * to simplify state merging.
6176  *
6177  * Important note here that walking the same branch instruction in the callee
6178  * doesn't meant that the states are DONE. The verifier has to compare
6179  * the callsites
6180  */
6181 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6182 			      struct bpf_verifier_state *cur)
6183 {
6184 	struct bpf_verifier_state_list *sl;
6185 	int i;
6186 
6187 	sl = *explored_state(env, insn);
6188 	while (sl) {
6189 		if (sl->state.insn_idx != insn ||
6190 		    sl->state.curframe != cur->curframe)
6191 			goto next;
6192 		for (i = 0; i <= cur->curframe; i++)
6193 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6194 				goto next;
6195 		clean_verifier_state(env, &sl->state);
6196 next:
6197 		sl = sl->next;
6198 	}
6199 }
6200 
6201 /* Returns true if (rold safe implies rcur safe) */
6202 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6203 		    struct idpair *idmap)
6204 {
6205 	bool equal;
6206 
6207 	if (!(rold->live & REG_LIVE_READ))
6208 		/* explored state didn't use this */
6209 		return true;
6210 
6211 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6212 
6213 	if (rold->type == PTR_TO_STACK)
6214 		/* two stack pointers are equal only if they're pointing to
6215 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6216 		 */
6217 		return equal && rold->frameno == rcur->frameno;
6218 
6219 	if (equal)
6220 		return true;
6221 
6222 	if (rold->type == NOT_INIT)
6223 		/* explored state can't have used this */
6224 		return true;
6225 	if (rcur->type == NOT_INIT)
6226 		return false;
6227 	switch (rold->type) {
6228 	case SCALAR_VALUE:
6229 		if (rcur->type == SCALAR_VALUE) {
6230 			/* new val must satisfy old val knowledge */
6231 			return range_within(rold, rcur) &&
6232 			       tnum_in(rold->var_off, rcur->var_off);
6233 		} else {
6234 			/* We're trying to use a pointer in place of a scalar.
6235 			 * Even if the scalar was unbounded, this could lead to
6236 			 * pointer leaks because scalars are allowed to leak
6237 			 * while pointers are not. We could make this safe in
6238 			 * special cases if root is calling us, but it's
6239 			 * probably not worth the hassle.
6240 			 */
6241 			return false;
6242 		}
6243 	case PTR_TO_MAP_VALUE:
6244 		/* If the new min/max/var_off satisfy the old ones and
6245 		 * everything else matches, we are OK.
6246 		 * 'id' is not compared, since it's only used for maps with
6247 		 * bpf_spin_lock inside map element and in such cases if
6248 		 * the rest of the prog is valid for one map element then
6249 		 * it's valid for all map elements regardless of the key
6250 		 * used in bpf_map_lookup()
6251 		 */
6252 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6253 		       range_within(rold, rcur) &&
6254 		       tnum_in(rold->var_off, rcur->var_off);
6255 	case PTR_TO_MAP_VALUE_OR_NULL:
6256 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6257 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6258 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6259 		 * checked, doing so could have affected others with the same
6260 		 * id, and we can't check for that because we lost the id when
6261 		 * we converted to a PTR_TO_MAP_VALUE.
6262 		 */
6263 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6264 			return false;
6265 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6266 			return false;
6267 		/* Check our ids match any regs they're supposed to */
6268 		return check_ids(rold->id, rcur->id, idmap);
6269 	case PTR_TO_PACKET_META:
6270 	case PTR_TO_PACKET:
6271 		if (rcur->type != rold->type)
6272 			return false;
6273 		/* We must have at least as much range as the old ptr
6274 		 * did, so that any accesses which were safe before are
6275 		 * still safe.  This is true even if old range < old off,
6276 		 * since someone could have accessed through (ptr - k), or
6277 		 * even done ptr -= k in a register, to get a safe access.
6278 		 */
6279 		if (rold->range > rcur->range)
6280 			return false;
6281 		/* If the offsets don't match, we can't trust our alignment;
6282 		 * nor can we be sure that we won't fall out of range.
6283 		 */
6284 		if (rold->off != rcur->off)
6285 			return false;
6286 		/* id relations must be preserved */
6287 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6288 			return false;
6289 		/* new val must satisfy old val knowledge */
6290 		return range_within(rold, rcur) &&
6291 		       tnum_in(rold->var_off, rcur->var_off);
6292 	case PTR_TO_CTX:
6293 	case CONST_PTR_TO_MAP:
6294 	case PTR_TO_PACKET_END:
6295 	case PTR_TO_FLOW_KEYS:
6296 	case PTR_TO_SOCKET:
6297 	case PTR_TO_SOCKET_OR_NULL:
6298 	case PTR_TO_SOCK_COMMON:
6299 	case PTR_TO_SOCK_COMMON_OR_NULL:
6300 	case PTR_TO_TCP_SOCK:
6301 	case PTR_TO_TCP_SOCK_OR_NULL:
6302 		/* Only valid matches are exact, which memcmp() above
6303 		 * would have accepted
6304 		 */
6305 	default:
6306 		/* Don't know what's going on, just say it's not safe */
6307 		return false;
6308 	}
6309 
6310 	/* Shouldn't get here; if we do, say it's not safe */
6311 	WARN_ON_ONCE(1);
6312 	return false;
6313 }
6314 
6315 static bool stacksafe(struct bpf_func_state *old,
6316 		      struct bpf_func_state *cur,
6317 		      struct idpair *idmap)
6318 {
6319 	int i, spi;
6320 
6321 	/* walk slots of the explored stack and ignore any additional
6322 	 * slots in the current stack, since explored(safe) state
6323 	 * didn't use them
6324 	 */
6325 	for (i = 0; i < old->allocated_stack; i++) {
6326 		spi = i / BPF_REG_SIZE;
6327 
6328 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6329 			i += BPF_REG_SIZE - 1;
6330 			/* explored state didn't use this */
6331 			continue;
6332 		}
6333 
6334 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6335 			continue;
6336 
6337 		/* explored stack has more populated slots than current stack
6338 		 * and these slots were used
6339 		 */
6340 		if (i >= cur->allocated_stack)
6341 			return false;
6342 
6343 		/* if old state was safe with misc data in the stack
6344 		 * it will be safe with zero-initialized stack.
6345 		 * The opposite is not true
6346 		 */
6347 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6348 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6349 			continue;
6350 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6351 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6352 			/* Ex: old explored (safe) state has STACK_SPILL in
6353 			 * this stack slot, but current has has STACK_MISC ->
6354 			 * this verifier states are not equivalent,
6355 			 * return false to continue verification of this path
6356 			 */
6357 			return false;
6358 		if (i % BPF_REG_SIZE)
6359 			continue;
6360 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6361 			continue;
6362 		if (!regsafe(&old->stack[spi].spilled_ptr,
6363 			     &cur->stack[spi].spilled_ptr,
6364 			     idmap))
6365 			/* when explored and current stack slot are both storing
6366 			 * spilled registers, check that stored pointers types
6367 			 * are the same as well.
6368 			 * Ex: explored safe path could have stored
6369 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6370 			 * but current path has stored:
6371 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6372 			 * such verifier states are not equivalent.
6373 			 * return false to continue verification of this path
6374 			 */
6375 			return false;
6376 	}
6377 	return true;
6378 }
6379 
6380 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6381 {
6382 	if (old->acquired_refs != cur->acquired_refs)
6383 		return false;
6384 	return !memcmp(old->refs, cur->refs,
6385 		       sizeof(*old->refs) * old->acquired_refs);
6386 }
6387 
6388 /* compare two verifier states
6389  *
6390  * all states stored in state_list are known to be valid, since
6391  * verifier reached 'bpf_exit' instruction through them
6392  *
6393  * this function is called when verifier exploring different branches of
6394  * execution popped from the state stack. If it sees an old state that has
6395  * more strict register state and more strict stack state then this execution
6396  * branch doesn't need to be explored further, since verifier already
6397  * concluded that more strict state leads to valid finish.
6398  *
6399  * Therefore two states are equivalent if register state is more conservative
6400  * and explored stack state is more conservative than the current one.
6401  * Example:
6402  *       explored                   current
6403  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6404  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6405  *
6406  * In other words if current stack state (one being explored) has more
6407  * valid slots than old one that already passed validation, it means
6408  * the verifier can stop exploring and conclude that current state is valid too
6409  *
6410  * Similarly with registers. If explored state has register type as invalid
6411  * whereas register type in current state is meaningful, it means that
6412  * the current state will reach 'bpf_exit' instruction safely
6413  */
6414 static bool func_states_equal(struct bpf_func_state *old,
6415 			      struct bpf_func_state *cur)
6416 {
6417 	struct idpair *idmap;
6418 	bool ret = false;
6419 	int i;
6420 
6421 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6422 	/* If we failed to allocate the idmap, just say it's not safe */
6423 	if (!idmap)
6424 		return false;
6425 
6426 	for (i = 0; i < MAX_BPF_REG; i++) {
6427 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6428 			goto out_free;
6429 	}
6430 
6431 	if (!stacksafe(old, cur, idmap))
6432 		goto out_free;
6433 
6434 	if (!refsafe(old, cur))
6435 		goto out_free;
6436 	ret = true;
6437 out_free:
6438 	kfree(idmap);
6439 	return ret;
6440 }
6441 
6442 static bool states_equal(struct bpf_verifier_env *env,
6443 			 struct bpf_verifier_state *old,
6444 			 struct bpf_verifier_state *cur)
6445 {
6446 	int i;
6447 
6448 	if (old->curframe != cur->curframe)
6449 		return false;
6450 
6451 	/* Verification state from speculative execution simulation
6452 	 * must never prune a non-speculative execution one.
6453 	 */
6454 	if (old->speculative && !cur->speculative)
6455 		return false;
6456 
6457 	if (old->active_spin_lock != cur->active_spin_lock)
6458 		return false;
6459 
6460 	/* for states to be equal callsites have to be the same
6461 	 * and all frame states need to be equivalent
6462 	 */
6463 	for (i = 0; i <= old->curframe; i++) {
6464 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6465 			return false;
6466 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6467 			return false;
6468 	}
6469 	return true;
6470 }
6471 
6472 /* Return 0 if no propagation happened. Return negative error code if error
6473  * happened. Otherwise, return the propagated bit.
6474  */
6475 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6476 				  struct bpf_reg_state *reg,
6477 				  struct bpf_reg_state *parent_reg)
6478 {
6479 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
6480 	u8 flag = reg->live & REG_LIVE_READ;
6481 	int err;
6482 
6483 	/* When comes here, read flags of PARENT_REG or REG could be any of
6484 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
6485 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
6486 	 */
6487 	if (parent_flag == REG_LIVE_READ64 ||
6488 	    /* Or if there is no read flag from REG. */
6489 	    !flag ||
6490 	    /* Or if the read flag from REG is the same as PARENT_REG. */
6491 	    parent_flag == flag)
6492 		return 0;
6493 
6494 	err = mark_reg_read(env, reg, parent_reg, flag);
6495 	if (err)
6496 		return err;
6497 
6498 	return flag;
6499 }
6500 
6501 /* A write screens off any subsequent reads; but write marks come from the
6502  * straight-line code between a state and its parent.  When we arrive at an
6503  * equivalent state (jump target or such) we didn't arrive by the straight-line
6504  * code, so read marks in the state must propagate to the parent regardless
6505  * of the state's write marks. That's what 'parent == state->parent' comparison
6506  * in mark_reg_read() is for.
6507  */
6508 static int propagate_liveness(struct bpf_verifier_env *env,
6509 			      const struct bpf_verifier_state *vstate,
6510 			      struct bpf_verifier_state *vparent)
6511 {
6512 	struct bpf_reg_state *state_reg, *parent_reg;
6513 	struct bpf_func_state *state, *parent;
6514 	int i, frame, err = 0;
6515 
6516 	if (vparent->curframe != vstate->curframe) {
6517 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6518 		     vparent->curframe, vstate->curframe);
6519 		return -EFAULT;
6520 	}
6521 	/* Propagate read liveness of registers... */
6522 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6523 	for (frame = 0; frame <= vstate->curframe; frame++) {
6524 		parent = vparent->frame[frame];
6525 		state = vstate->frame[frame];
6526 		parent_reg = parent->regs;
6527 		state_reg = state->regs;
6528 		/* We don't need to worry about FP liveness, it's read-only */
6529 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6530 			err = propagate_liveness_reg(env, &state_reg[i],
6531 						     &parent_reg[i]);
6532 			if (err < 0)
6533 				return err;
6534 			if (err == REG_LIVE_READ64)
6535 				mark_insn_zext(env, &parent_reg[i]);
6536 		}
6537 
6538 		/* Propagate stack slots. */
6539 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6540 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6541 			parent_reg = &parent->stack[i].spilled_ptr;
6542 			state_reg = &state->stack[i].spilled_ptr;
6543 			err = propagate_liveness_reg(env, state_reg,
6544 						     parent_reg);
6545 			if (err < 0)
6546 				return err;
6547 		}
6548 	}
6549 	return 0;
6550 }
6551 
6552 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6553 {
6554 	struct bpf_verifier_state_list *new_sl;
6555 	struct bpf_verifier_state_list *sl, **pprev;
6556 	struct bpf_verifier_state *cur = env->cur_state, *new;
6557 	int i, j, err, states_cnt = 0;
6558 
6559 	if (!env->insn_aux_data[insn_idx].prune_point)
6560 		/* this 'insn_idx' instruction wasn't marked, so we will not
6561 		 * be doing state search here
6562 		 */
6563 		return 0;
6564 
6565 	pprev = explored_state(env, insn_idx);
6566 	sl = *pprev;
6567 
6568 	clean_live_states(env, insn_idx, cur);
6569 
6570 	while (sl) {
6571 		states_cnt++;
6572 		if (sl->state.insn_idx != insn_idx)
6573 			goto next;
6574 		if (states_equal(env, &sl->state, cur)) {
6575 			sl->hit_cnt++;
6576 			/* reached equivalent register/stack state,
6577 			 * prune the search.
6578 			 * Registers read by the continuation are read by us.
6579 			 * If we have any write marks in env->cur_state, they
6580 			 * will prevent corresponding reads in the continuation
6581 			 * from reaching our parent (an explored_state).  Our
6582 			 * own state will get the read marks recorded, but
6583 			 * they'll be immediately forgotten as we're pruning
6584 			 * this state and will pop a new one.
6585 			 */
6586 			err = propagate_liveness(env, &sl->state, cur);
6587 			if (err)
6588 				return err;
6589 			return 1;
6590 		}
6591 		sl->miss_cnt++;
6592 		/* heuristic to determine whether this state is beneficial
6593 		 * to keep checking from state equivalence point of view.
6594 		 * Higher numbers increase max_states_per_insn and verification time,
6595 		 * but do not meaningfully decrease insn_processed.
6596 		 */
6597 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6598 			/* the state is unlikely to be useful. Remove it to
6599 			 * speed up verification
6600 			 */
6601 			*pprev = sl->next;
6602 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6603 				free_verifier_state(&sl->state, false);
6604 				kfree(sl);
6605 				env->peak_states--;
6606 			} else {
6607 				/* cannot free this state, since parentage chain may
6608 				 * walk it later. Add it for free_list instead to
6609 				 * be freed at the end of verification
6610 				 */
6611 				sl->next = env->free_list;
6612 				env->free_list = sl;
6613 			}
6614 			sl = *pprev;
6615 			continue;
6616 		}
6617 next:
6618 		pprev = &sl->next;
6619 		sl = *pprev;
6620 	}
6621 
6622 	if (env->max_states_per_insn < states_cnt)
6623 		env->max_states_per_insn = states_cnt;
6624 
6625 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6626 		return 0;
6627 
6628 	/* there were no equivalent states, remember current one.
6629 	 * technically the current state is not proven to be safe yet,
6630 	 * but it will either reach outer most bpf_exit (which means it's safe)
6631 	 * or it will be rejected. Since there are no loops, we won't be
6632 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6633 	 * again on the way to bpf_exit
6634 	 */
6635 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6636 	if (!new_sl)
6637 		return -ENOMEM;
6638 	env->total_states++;
6639 	env->peak_states++;
6640 
6641 	/* add new state to the head of linked list */
6642 	new = &new_sl->state;
6643 	err = copy_verifier_state(new, cur);
6644 	if (err) {
6645 		free_verifier_state(new, false);
6646 		kfree(new_sl);
6647 		return err;
6648 	}
6649 	new->insn_idx = insn_idx;
6650 	new_sl->next = *explored_state(env, insn_idx);
6651 	*explored_state(env, insn_idx) = new_sl;
6652 	/* connect new state to parentage chain. Current frame needs all
6653 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6654 	 * to the stack implicitly by JITs) so in callers' frames connect just
6655 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6656 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6657 	 * from callee with its full parentage chain, anyway.
6658 	 */
6659 	for (j = 0; j <= cur->curframe; j++)
6660 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6661 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6662 	/* clear write marks in current state: the writes we did are not writes
6663 	 * our child did, so they don't screen off its reads from us.
6664 	 * (There are no read marks in current state, because reads always mark
6665 	 * their parent and current state never has children yet.  Only
6666 	 * explored_states can get read marks.)
6667 	 */
6668 	for (i = 0; i < BPF_REG_FP; i++)
6669 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6670 
6671 	/* all stack frames are accessible from callee, clear them all */
6672 	for (j = 0; j <= cur->curframe; j++) {
6673 		struct bpf_func_state *frame = cur->frame[j];
6674 		struct bpf_func_state *newframe = new->frame[j];
6675 
6676 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6677 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6678 			frame->stack[i].spilled_ptr.parent =
6679 						&newframe->stack[i].spilled_ptr;
6680 		}
6681 	}
6682 	return 0;
6683 }
6684 
6685 /* Return true if it's OK to have the same insn return a different type. */
6686 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6687 {
6688 	switch (type) {
6689 	case PTR_TO_CTX:
6690 	case PTR_TO_SOCKET:
6691 	case PTR_TO_SOCKET_OR_NULL:
6692 	case PTR_TO_SOCK_COMMON:
6693 	case PTR_TO_SOCK_COMMON_OR_NULL:
6694 	case PTR_TO_TCP_SOCK:
6695 	case PTR_TO_TCP_SOCK_OR_NULL:
6696 		return false;
6697 	default:
6698 		return true;
6699 	}
6700 }
6701 
6702 /* If an instruction was previously used with particular pointer types, then we
6703  * need to be careful to avoid cases such as the below, where it may be ok
6704  * for one branch accessing the pointer, but not ok for the other branch:
6705  *
6706  * R1 = sock_ptr
6707  * goto X;
6708  * ...
6709  * R1 = some_other_valid_ptr;
6710  * goto X;
6711  * ...
6712  * R2 = *(u32 *)(R1 + 0);
6713  */
6714 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6715 {
6716 	return src != prev && (!reg_type_mismatch_ok(src) ||
6717 			       !reg_type_mismatch_ok(prev));
6718 }
6719 
6720 static int do_check(struct bpf_verifier_env *env)
6721 {
6722 	struct bpf_verifier_state *state;
6723 	struct bpf_insn *insns = env->prog->insnsi;
6724 	struct bpf_reg_state *regs;
6725 	int insn_cnt = env->prog->len;
6726 	bool do_print_state = false;
6727 
6728 	env->prev_linfo = NULL;
6729 
6730 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6731 	if (!state)
6732 		return -ENOMEM;
6733 	state->curframe = 0;
6734 	state->speculative = false;
6735 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6736 	if (!state->frame[0]) {
6737 		kfree(state);
6738 		return -ENOMEM;
6739 	}
6740 	env->cur_state = state;
6741 	init_func_state(env, state->frame[0],
6742 			BPF_MAIN_FUNC /* callsite */,
6743 			0 /* frameno */,
6744 			0 /* subprogno, zero == main subprog */);
6745 
6746 	for (;;) {
6747 		struct bpf_insn *insn;
6748 		u8 class;
6749 		int err;
6750 
6751 		if (env->insn_idx >= insn_cnt) {
6752 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6753 				env->insn_idx, insn_cnt);
6754 			return -EFAULT;
6755 		}
6756 
6757 		insn = &insns[env->insn_idx];
6758 		class = BPF_CLASS(insn->code);
6759 
6760 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6761 			verbose(env,
6762 				"BPF program is too large. Processed %d insn\n",
6763 				env->insn_processed);
6764 			return -E2BIG;
6765 		}
6766 
6767 		err = is_state_visited(env, env->insn_idx);
6768 		if (err < 0)
6769 			return err;
6770 		if (err == 1) {
6771 			/* found equivalent state, can prune the search */
6772 			if (env->log.level & BPF_LOG_LEVEL) {
6773 				if (do_print_state)
6774 					verbose(env, "\nfrom %d to %d%s: safe\n",
6775 						env->prev_insn_idx, env->insn_idx,
6776 						env->cur_state->speculative ?
6777 						" (speculative execution)" : "");
6778 				else
6779 					verbose(env, "%d: safe\n", env->insn_idx);
6780 			}
6781 			goto process_bpf_exit;
6782 		}
6783 
6784 		if (signal_pending(current))
6785 			return -EAGAIN;
6786 
6787 		if (need_resched())
6788 			cond_resched();
6789 
6790 		if (env->log.level & BPF_LOG_LEVEL2 ||
6791 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6792 			if (env->log.level & BPF_LOG_LEVEL2)
6793 				verbose(env, "%d:", env->insn_idx);
6794 			else
6795 				verbose(env, "\nfrom %d to %d%s:",
6796 					env->prev_insn_idx, env->insn_idx,
6797 					env->cur_state->speculative ?
6798 					" (speculative execution)" : "");
6799 			print_verifier_state(env, state->frame[state->curframe]);
6800 			do_print_state = false;
6801 		}
6802 
6803 		if (env->log.level & BPF_LOG_LEVEL) {
6804 			const struct bpf_insn_cbs cbs = {
6805 				.cb_print	= verbose,
6806 				.private_data	= env,
6807 			};
6808 
6809 			verbose_linfo(env, env->insn_idx, "; ");
6810 			verbose(env, "%d: ", env->insn_idx);
6811 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6812 		}
6813 
6814 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6815 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6816 							   env->prev_insn_idx);
6817 			if (err)
6818 				return err;
6819 		}
6820 
6821 		regs = cur_regs(env);
6822 		env->insn_aux_data[env->insn_idx].seen = true;
6823 
6824 		if (class == BPF_ALU || class == BPF_ALU64) {
6825 			err = check_alu_op(env, insn);
6826 			if (err)
6827 				return err;
6828 
6829 		} else if (class == BPF_LDX) {
6830 			enum bpf_reg_type *prev_src_type, src_reg_type;
6831 
6832 			/* check for reserved fields is already done */
6833 
6834 			/* check src operand */
6835 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6836 			if (err)
6837 				return err;
6838 
6839 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6840 			if (err)
6841 				return err;
6842 
6843 			src_reg_type = regs[insn->src_reg].type;
6844 
6845 			/* check that memory (src_reg + off) is readable,
6846 			 * the state of dst_reg will be updated by this func
6847 			 */
6848 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6849 					       insn->off, BPF_SIZE(insn->code),
6850 					       BPF_READ, insn->dst_reg, false);
6851 			if (err)
6852 				return err;
6853 
6854 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6855 
6856 			if (*prev_src_type == NOT_INIT) {
6857 				/* saw a valid insn
6858 				 * dst_reg = *(u32 *)(src_reg + off)
6859 				 * save type to validate intersecting paths
6860 				 */
6861 				*prev_src_type = src_reg_type;
6862 
6863 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6864 				/* ABuser program is trying to use the same insn
6865 				 * dst_reg = *(u32*) (src_reg + off)
6866 				 * with different pointer types:
6867 				 * src_reg == ctx in one branch and
6868 				 * src_reg == stack|map in some other branch.
6869 				 * Reject it.
6870 				 */
6871 				verbose(env, "same insn cannot be used with different pointers\n");
6872 				return -EINVAL;
6873 			}
6874 
6875 		} else if (class == BPF_STX) {
6876 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6877 
6878 			if (BPF_MODE(insn->code) == BPF_XADD) {
6879 				err = check_xadd(env, env->insn_idx, insn);
6880 				if (err)
6881 					return err;
6882 				env->insn_idx++;
6883 				continue;
6884 			}
6885 
6886 			/* check src1 operand */
6887 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6888 			if (err)
6889 				return err;
6890 			/* check src2 operand */
6891 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6892 			if (err)
6893 				return err;
6894 
6895 			dst_reg_type = regs[insn->dst_reg].type;
6896 
6897 			/* check that memory (dst_reg + off) is writeable */
6898 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6899 					       insn->off, BPF_SIZE(insn->code),
6900 					       BPF_WRITE, insn->src_reg, false);
6901 			if (err)
6902 				return err;
6903 
6904 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6905 
6906 			if (*prev_dst_type == NOT_INIT) {
6907 				*prev_dst_type = dst_reg_type;
6908 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6909 				verbose(env, "same insn cannot be used with different pointers\n");
6910 				return -EINVAL;
6911 			}
6912 
6913 		} else if (class == BPF_ST) {
6914 			if (BPF_MODE(insn->code) != BPF_MEM ||
6915 			    insn->src_reg != BPF_REG_0) {
6916 				verbose(env, "BPF_ST uses reserved fields\n");
6917 				return -EINVAL;
6918 			}
6919 			/* check src operand */
6920 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6921 			if (err)
6922 				return err;
6923 
6924 			if (is_ctx_reg(env, insn->dst_reg)) {
6925 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6926 					insn->dst_reg,
6927 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6928 				return -EACCES;
6929 			}
6930 
6931 			/* check that memory (dst_reg + off) is writeable */
6932 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6933 					       insn->off, BPF_SIZE(insn->code),
6934 					       BPF_WRITE, -1, false);
6935 			if (err)
6936 				return err;
6937 
6938 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6939 			u8 opcode = BPF_OP(insn->code);
6940 
6941 			if (opcode == BPF_CALL) {
6942 				if (BPF_SRC(insn->code) != BPF_K ||
6943 				    insn->off != 0 ||
6944 				    (insn->src_reg != BPF_REG_0 &&
6945 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6946 				    insn->dst_reg != BPF_REG_0 ||
6947 				    class == BPF_JMP32) {
6948 					verbose(env, "BPF_CALL uses reserved fields\n");
6949 					return -EINVAL;
6950 				}
6951 
6952 				if (env->cur_state->active_spin_lock &&
6953 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6954 				     insn->imm != BPF_FUNC_spin_unlock)) {
6955 					verbose(env, "function calls are not allowed while holding a lock\n");
6956 					return -EINVAL;
6957 				}
6958 				if (insn->src_reg == BPF_PSEUDO_CALL)
6959 					err = check_func_call(env, insn, &env->insn_idx);
6960 				else
6961 					err = check_helper_call(env, insn->imm, env->insn_idx);
6962 				if (err)
6963 					return err;
6964 
6965 			} else if (opcode == BPF_JA) {
6966 				if (BPF_SRC(insn->code) != BPF_K ||
6967 				    insn->imm != 0 ||
6968 				    insn->src_reg != BPF_REG_0 ||
6969 				    insn->dst_reg != BPF_REG_0 ||
6970 				    class == BPF_JMP32) {
6971 					verbose(env, "BPF_JA uses reserved fields\n");
6972 					return -EINVAL;
6973 				}
6974 
6975 				env->insn_idx += insn->off + 1;
6976 				continue;
6977 
6978 			} else if (opcode == BPF_EXIT) {
6979 				if (BPF_SRC(insn->code) != BPF_K ||
6980 				    insn->imm != 0 ||
6981 				    insn->src_reg != BPF_REG_0 ||
6982 				    insn->dst_reg != BPF_REG_0 ||
6983 				    class == BPF_JMP32) {
6984 					verbose(env, "BPF_EXIT uses reserved fields\n");
6985 					return -EINVAL;
6986 				}
6987 
6988 				if (env->cur_state->active_spin_lock) {
6989 					verbose(env, "bpf_spin_unlock is missing\n");
6990 					return -EINVAL;
6991 				}
6992 
6993 				if (state->curframe) {
6994 					/* exit from nested function */
6995 					env->prev_insn_idx = env->insn_idx;
6996 					err = prepare_func_exit(env, &env->insn_idx);
6997 					if (err)
6998 						return err;
6999 					do_print_state = true;
7000 					continue;
7001 				}
7002 
7003 				err = check_reference_leak(env);
7004 				if (err)
7005 					return err;
7006 
7007 				/* eBPF calling convetion is such that R0 is used
7008 				 * to return the value from eBPF program.
7009 				 * Make sure that it's readable at this time
7010 				 * of bpf_exit, which means that program wrote
7011 				 * something into it earlier
7012 				 */
7013 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7014 				if (err)
7015 					return err;
7016 
7017 				if (is_pointer_value(env, BPF_REG_0)) {
7018 					verbose(env, "R0 leaks addr as return value\n");
7019 					return -EACCES;
7020 				}
7021 
7022 				err = check_return_code(env);
7023 				if (err)
7024 					return err;
7025 process_bpf_exit:
7026 				err = pop_stack(env, &env->prev_insn_idx,
7027 						&env->insn_idx);
7028 				if (err < 0) {
7029 					if (err != -ENOENT)
7030 						return err;
7031 					break;
7032 				} else {
7033 					do_print_state = true;
7034 					continue;
7035 				}
7036 			} else {
7037 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
7038 				if (err)
7039 					return err;
7040 			}
7041 		} else if (class == BPF_LD) {
7042 			u8 mode = BPF_MODE(insn->code);
7043 
7044 			if (mode == BPF_ABS || mode == BPF_IND) {
7045 				err = check_ld_abs(env, insn);
7046 				if (err)
7047 					return err;
7048 
7049 			} else if (mode == BPF_IMM) {
7050 				err = check_ld_imm(env, insn);
7051 				if (err)
7052 					return err;
7053 
7054 				env->insn_idx++;
7055 				env->insn_aux_data[env->insn_idx].seen = true;
7056 			} else {
7057 				verbose(env, "invalid BPF_LD mode\n");
7058 				return -EINVAL;
7059 			}
7060 		} else {
7061 			verbose(env, "unknown insn class %d\n", class);
7062 			return -EINVAL;
7063 		}
7064 
7065 		env->insn_idx++;
7066 	}
7067 
7068 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
7069 	return 0;
7070 }
7071 
7072 static int check_map_prealloc(struct bpf_map *map)
7073 {
7074 	return (map->map_type != BPF_MAP_TYPE_HASH &&
7075 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7076 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
7077 		!(map->map_flags & BPF_F_NO_PREALLOC);
7078 }
7079 
7080 static bool is_tracing_prog_type(enum bpf_prog_type type)
7081 {
7082 	switch (type) {
7083 	case BPF_PROG_TYPE_KPROBE:
7084 	case BPF_PROG_TYPE_TRACEPOINT:
7085 	case BPF_PROG_TYPE_PERF_EVENT:
7086 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7087 		return true;
7088 	default:
7089 		return false;
7090 	}
7091 }
7092 
7093 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7094 					struct bpf_map *map,
7095 					struct bpf_prog *prog)
7096 
7097 {
7098 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7099 	 * preallocated hash maps, since doing memory allocation
7100 	 * in overflow_handler can crash depending on where nmi got
7101 	 * triggered.
7102 	 */
7103 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7104 		if (!check_map_prealloc(map)) {
7105 			verbose(env, "perf_event programs can only use preallocated hash map\n");
7106 			return -EINVAL;
7107 		}
7108 		if (map->inner_map_meta &&
7109 		    !check_map_prealloc(map->inner_map_meta)) {
7110 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
7111 			return -EINVAL;
7112 		}
7113 	}
7114 
7115 	if ((is_tracing_prog_type(prog->type) ||
7116 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7117 	    map_value_has_spin_lock(map)) {
7118 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7119 		return -EINVAL;
7120 	}
7121 
7122 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
7123 	    !bpf_offload_prog_map_match(prog, map)) {
7124 		verbose(env, "offload device mismatch between prog and map\n");
7125 		return -EINVAL;
7126 	}
7127 
7128 	return 0;
7129 }
7130 
7131 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7132 {
7133 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7134 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7135 }
7136 
7137 /* look for pseudo eBPF instructions that access map FDs and
7138  * replace them with actual map pointers
7139  */
7140 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
7141 {
7142 	struct bpf_insn *insn = env->prog->insnsi;
7143 	int insn_cnt = env->prog->len;
7144 	int i, j, err;
7145 
7146 	err = bpf_prog_calc_tag(env->prog);
7147 	if (err)
7148 		return err;
7149 
7150 	for (i = 0; i < insn_cnt; i++, insn++) {
7151 		if (BPF_CLASS(insn->code) == BPF_LDX &&
7152 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
7153 			verbose(env, "BPF_LDX uses reserved fields\n");
7154 			return -EINVAL;
7155 		}
7156 
7157 		if (BPF_CLASS(insn->code) == BPF_STX &&
7158 		    ((BPF_MODE(insn->code) != BPF_MEM &&
7159 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
7160 			verbose(env, "BPF_STX uses reserved fields\n");
7161 			return -EINVAL;
7162 		}
7163 
7164 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
7165 			struct bpf_insn_aux_data *aux;
7166 			struct bpf_map *map;
7167 			struct fd f;
7168 			u64 addr;
7169 
7170 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
7171 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7172 			    insn[1].off != 0) {
7173 				verbose(env, "invalid bpf_ld_imm64 insn\n");
7174 				return -EINVAL;
7175 			}
7176 
7177 			if (insn[0].src_reg == 0)
7178 				/* valid generic load 64-bit imm */
7179 				goto next_insn;
7180 
7181 			/* In final convert_pseudo_ld_imm64() step, this is
7182 			 * converted into regular 64-bit imm load insn.
7183 			 */
7184 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7185 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7186 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7187 			     insn[1].imm != 0)) {
7188 				verbose(env,
7189 					"unrecognized bpf_ld_imm64 insn\n");
7190 				return -EINVAL;
7191 			}
7192 
7193 			f = fdget(insn[0].imm);
7194 			map = __bpf_map_get(f);
7195 			if (IS_ERR(map)) {
7196 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
7197 					insn[0].imm);
7198 				return PTR_ERR(map);
7199 			}
7200 
7201 			err = check_map_prog_compatibility(env, map, env->prog);
7202 			if (err) {
7203 				fdput(f);
7204 				return err;
7205 			}
7206 
7207 			aux = &env->insn_aux_data[i];
7208 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7209 				addr = (unsigned long)map;
7210 			} else {
7211 				u32 off = insn[1].imm;
7212 
7213 				if (off >= BPF_MAX_VAR_OFF) {
7214 					verbose(env, "direct value offset of %u is not allowed\n", off);
7215 					fdput(f);
7216 					return -EINVAL;
7217 				}
7218 
7219 				if (!map->ops->map_direct_value_addr) {
7220 					verbose(env, "no direct value access support for this map type\n");
7221 					fdput(f);
7222 					return -EINVAL;
7223 				}
7224 
7225 				err = map->ops->map_direct_value_addr(map, &addr, off);
7226 				if (err) {
7227 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7228 						map->value_size, off);
7229 					fdput(f);
7230 					return err;
7231 				}
7232 
7233 				aux->map_off = off;
7234 				addr += off;
7235 			}
7236 
7237 			insn[0].imm = (u32)addr;
7238 			insn[1].imm = addr >> 32;
7239 
7240 			/* check whether we recorded this map already */
7241 			for (j = 0; j < env->used_map_cnt; j++) {
7242 				if (env->used_maps[j] == map) {
7243 					aux->map_index = j;
7244 					fdput(f);
7245 					goto next_insn;
7246 				}
7247 			}
7248 
7249 			if (env->used_map_cnt >= MAX_USED_MAPS) {
7250 				fdput(f);
7251 				return -E2BIG;
7252 			}
7253 
7254 			/* hold the map. If the program is rejected by verifier,
7255 			 * the map will be released by release_maps() or it
7256 			 * will be used by the valid program until it's unloaded
7257 			 * and all maps are released in free_used_maps()
7258 			 */
7259 			map = bpf_map_inc(map, false);
7260 			if (IS_ERR(map)) {
7261 				fdput(f);
7262 				return PTR_ERR(map);
7263 			}
7264 
7265 			aux->map_index = env->used_map_cnt;
7266 			env->used_maps[env->used_map_cnt++] = map;
7267 
7268 			if (bpf_map_is_cgroup_storage(map) &&
7269 			    bpf_cgroup_storage_assign(env->prog, map)) {
7270 				verbose(env, "only one cgroup storage of each type is allowed\n");
7271 				fdput(f);
7272 				return -EBUSY;
7273 			}
7274 
7275 			fdput(f);
7276 next_insn:
7277 			insn++;
7278 			i++;
7279 			continue;
7280 		}
7281 
7282 		/* Basic sanity check before we invest more work here. */
7283 		if (!bpf_opcode_in_insntable(insn->code)) {
7284 			verbose(env, "unknown opcode %02x\n", insn->code);
7285 			return -EINVAL;
7286 		}
7287 	}
7288 
7289 	/* now all pseudo BPF_LD_IMM64 instructions load valid
7290 	 * 'struct bpf_map *' into a register instead of user map_fd.
7291 	 * These pointers will be used later by verifier to validate map access.
7292 	 */
7293 	return 0;
7294 }
7295 
7296 /* drop refcnt of maps used by the rejected program */
7297 static void release_maps(struct bpf_verifier_env *env)
7298 {
7299 	enum bpf_cgroup_storage_type stype;
7300 	int i;
7301 
7302 	for_each_cgroup_storage_type(stype) {
7303 		if (!env->prog->aux->cgroup_storage[stype])
7304 			continue;
7305 		bpf_cgroup_storage_release(env->prog,
7306 			env->prog->aux->cgroup_storage[stype]);
7307 	}
7308 
7309 	for (i = 0; i < env->used_map_cnt; i++)
7310 		bpf_map_put(env->used_maps[i]);
7311 }
7312 
7313 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7314 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7315 {
7316 	struct bpf_insn *insn = env->prog->insnsi;
7317 	int insn_cnt = env->prog->len;
7318 	int i;
7319 
7320 	for (i = 0; i < insn_cnt; i++, insn++)
7321 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7322 			insn->src_reg = 0;
7323 }
7324 
7325 /* single env->prog->insni[off] instruction was replaced with the range
7326  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
7327  * [0, off) and [off, end) to new locations, so the patched range stays zero
7328  */
7329 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
7330 				struct bpf_prog *new_prog, u32 off, u32 cnt)
7331 {
7332 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7333 	struct bpf_insn *insn = new_prog->insnsi;
7334 	u32 prog_len;
7335 	int i;
7336 
7337 	/* aux info at OFF always needs adjustment, no matter fast path
7338 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
7339 	 * original insn at old prog.
7340 	 */
7341 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
7342 
7343 	if (cnt == 1)
7344 		return 0;
7345 	prog_len = new_prog->len;
7346 	new_data = vzalloc(array_size(prog_len,
7347 				      sizeof(struct bpf_insn_aux_data)));
7348 	if (!new_data)
7349 		return -ENOMEM;
7350 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7351 	memcpy(new_data + off + cnt - 1, old_data + off,
7352 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7353 	for (i = off; i < off + cnt - 1; i++) {
7354 		new_data[i].seen = true;
7355 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
7356 	}
7357 	env->insn_aux_data = new_data;
7358 	vfree(old_data);
7359 	return 0;
7360 }
7361 
7362 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7363 {
7364 	int i;
7365 
7366 	if (len == 1)
7367 		return;
7368 	/* NOTE: fake 'exit' subprog should be updated as well. */
7369 	for (i = 0; i <= env->subprog_cnt; i++) {
7370 		if (env->subprog_info[i].start <= off)
7371 			continue;
7372 		env->subprog_info[i].start += len - 1;
7373 	}
7374 }
7375 
7376 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7377 					    const struct bpf_insn *patch, u32 len)
7378 {
7379 	struct bpf_prog *new_prog;
7380 
7381 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7382 	if (IS_ERR(new_prog)) {
7383 		if (PTR_ERR(new_prog) == -ERANGE)
7384 			verbose(env,
7385 				"insn %d cannot be patched due to 16-bit range\n",
7386 				env->insn_aux_data[off].orig_idx);
7387 		return NULL;
7388 	}
7389 	if (adjust_insn_aux_data(env, new_prog, off, len))
7390 		return NULL;
7391 	adjust_subprog_starts(env, off, len);
7392 	return new_prog;
7393 }
7394 
7395 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7396 					      u32 off, u32 cnt)
7397 {
7398 	int i, j;
7399 
7400 	/* find first prog starting at or after off (first to remove) */
7401 	for (i = 0; i < env->subprog_cnt; i++)
7402 		if (env->subprog_info[i].start >= off)
7403 			break;
7404 	/* find first prog starting at or after off + cnt (first to stay) */
7405 	for (j = i; j < env->subprog_cnt; j++)
7406 		if (env->subprog_info[j].start >= off + cnt)
7407 			break;
7408 	/* if j doesn't start exactly at off + cnt, we are just removing
7409 	 * the front of previous prog
7410 	 */
7411 	if (env->subprog_info[j].start != off + cnt)
7412 		j--;
7413 
7414 	if (j > i) {
7415 		struct bpf_prog_aux *aux = env->prog->aux;
7416 		int move;
7417 
7418 		/* move fake 'exit' subprog as well */
7419 		move = env->subprog_cnt + 1 - j;
7420 
7421 		memmove(env->subprog_info + i,
7422 			env->subprog_info + j,
7423 			sizeof(*env->subprog_info) * move);
7424 		env->subprog_cnt -= j - i;
7425 
7426 		/* remove func_info */
7427 		if (aux->func_info) {
7428 			move = aux->func_info_cnt - j;
7429 
7430 			memmove(aux->func_info + i,
7431 				aux->func_info + j,
7432 				sizeof(*aux->func_info) * move);
7433 			aux->func_info_cnt -= j - i;
7434 			/* func_info->insn_off is set after all code rewrites,
7435 			 * in adjust_btf_func() - no need to adjust
7436 			 */
7437 		}
7438 	} else {
7439 		/* convert i from "first prog to remove" to "first to adjust" */
7440 		if (env->subprog_info[i].start == off)
7441 			i++;
7442 	}
7443 
7444 	/* update fake 'exit' subprog as well */
7445 	for (; i <= env->subprog_cnt; i++)
7446 		env->subprog_info[i].start -= cnt;
7447 
7448 	return 0;
7449 }
7450 
7451 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7452 				      u32 cnt)
7453 {
7454 	struct bpf_prog *prog = env->prog;
7455 	u32 i, l_off, l_cnt, nr_linfo;
7456 	struct bpf_line_info *linfo;
7457 
7458 	nr_linfo = prog->aux->nr_linfo;
7459 	if (!nr_linfo)
7460 		return 0;
7461 
7462 	linfo = prog->aux->linfo;
7463 
7464 	/* find first line info to remove, count lines to be removed */
7465 	for (i = 0; i < nr_linfo; i++)
7466 		if (linfo[i].insn_off >= off)
7467 			break;
7468 
7469 	l_off = i;
7470 	l_cnt = 0;
7471 	for (; i < nr_linfo; i++)
7472 		if (linfo[i].insn_off < off + cnt)
7473 			l_cnt++;
7474 		else
7475 			break;
7476 
7477 	/* First live insn doesn't match first live linfo, it needs to "inherit"
7478 	 * last removed linfo.  prog is already modified, so prog->len == off
7479 	 * means no live instructions after (tail of the program was removed).
7480 	 */
7481 	if (prog->len != off && l_cnt &&
7482 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7483 		l_cnt--;
7484 		linfo[--i].insn_off = off + cnt;
7485 	}
7486 
7487 	/* remove the line info which refer to the removed instructions */
7488 	if (l_cnt) {
7489 		memmove(linfo + l_off, linfo + i,
7490 			sizeof(*linfo) * (nr_linfo - i));
7491 
7492 		prog->aux->nr_linfo -= l_cnt;
7493 		nr_linfo = prog->aux->nr_linfo;
7494 	}
7495 
7496 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
7497 	for (i = l_off; i < nr_linfo; i++)
7498 		linfo[i].insn_off -= cnt;
7499 
7500 	/* fix up all subprogs (incl. 'exit') which start >= off */
7501 	for (i = 0; i <= env->subprog_cnt; i++)
7502 		if (env->subprog_info[i].linfo_idx > l_off) {
7503 			/* program may have started in the removed region but
7504 			 * may not be fully removed
7505 			 */
7506 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7507 				env->subprog_info[i].linfo_idx -= l_cnt;
7508 			else
7509 				env->subprog_info[i].linfo_idx = l_off;
7510 		}
7511 
7512 	return 0;
7513 }
7514 
7515 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7516 {
7517 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7518 	unsigned int orig_prog_len = env->prog->len;
7519 	int err;
7520 
7521 	if (bpf_prog_is_dev_bound(env->prog->aux))
7522 		bpf_prog_offload_remove_insns(env, off, cnt);
7523 
7524 	err = bpf_remove_insns(env->prog, off, cnt);
7525 	if (err)
7526 		return err;
7527 
7528 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7529 	if (err)
7530 		return err;
7531 
7532 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7533 	if (err)
7534 		return err;
7535 
7536 	memmove(aux_data + off,	aux_data + off + cnt,
7537 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7538 
7539 	return 0;
7540 }
7541 
7542 /* The verifier does more data flow analysis than llvm and will not
7543  * explore branches that are dead at run time. Malicious programs can
7544  * have dead code too. Therefore replace all dead at-run-time code
7545  * with 'ja -1'.
7546  *
7547  * Just nops are not optimal, e.g. if they would sit at the end of the
7548  * program and through another bug we would manage to jump there, then
7549  * we'd execute beyond program memory otherwise. Returning exception
7550  * code also wouldn't work since we can have subprogs where the dead
7551  * code could be located.
7552  */
7553 static void sanitize_dead_code(struct bpf_verifier_env *env)
7554 {
7555 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7556 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7557 	struct bpf_insn *insn = env->prog->insnsi;
7558 	const int insn_cnt = env->prog->len;
7559 	int i;
7560 
7561 	for (i = 0; i < insn_cnt; i++) {
7562 		if (aux_data[i].seen)
7563 			continue;
7564 		memcpy(insn + i, &trap, sizeof(trap));
7565 	}
7566 }
7567 
7568 static bool insn_is_cond_jump(u8 code)
7569 {
7570 	u8 op;
7571 
7572 	if (BPF_CLASS(code) == BPF_JMP32)
7573 		return true;
7574 
7575 	if (BPF_CLASS(code) != BPF_JMP)
7576 		return false;
7577 
7578 	op = BPF_OP(code);
7579 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7580 }
7581 
7582 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7583 {
7584 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7585 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7586 	struct bpf_insn *insn = env->prog->insnsi;
7587 	const int insn_cnt = env->prog->len;
7588 	int i;
7589 
7590 	for (i = 0; i < insn_cnt; i++, insn++) {
7591 		if (!insn_is_cond_jump(insn->code))
7592 			continue;
7593 
7594 		if (!aux_data[i + 1].seen)
7595 			ja.off = insn->off;
7596 		else if (!aux_data[i + 1 + insn->off].seen)
7597 			ja.off = 0;
7598 		else
7599 			continue;
7600 
7601 		if (bpf_prog_is_dev_bound(env->prog->aux))
7602 			bpf_prog_offload_replace_insn(env, i, &ja);
7603 
7604 		memcpy(insn, &ja, sizeof(ja));
7605 	}
7606 }
7607 
7608 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7609 {
7610 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7611 	int insn_cnt = env->prog->len;
7612 	int i, err;
7613 
7614 	for (i = 0; i < insn_cnt; i++) {
7615 		int j;
7616 
7617 		j = 0;
7618 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7619 			j++;
7620 		if (!j)
7621 			continue;
7622 
7623 		err = verifier_remove_insns(env, i, j);
7624 		if (err)
7625 			return err;
7626 		insn_cnt = env->prog->len;
7627 	}
7628 
7629 	return 0;
7630 }
7631 
7632 static int opt_remove_nops(struct bpf_verifier_env *env)
7633 {
7634 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7635 	struct bpf_insn *insn = env->prog->insnsi;
7636 	int insn_cnt = env->prog->len;
7637 	int i, err;
7638 
7639 	for (i = 0; i < insn_cnt; i++) {
7640 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7641 			continue;
7642 
7643 		err = verifier_remove_insns(env, i, 1);
7644 		if (err)
7645 			return err;
7646 		insn_cnt--;
7647 		i--;
7648 	}
7649 
7650 	return 0;
7651 }
7652 
7653 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
7654 					 const union bpf_attr *attr)
7655 {
7656 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
7657 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
7658 	int i, patch_len, delta = 0, len = env->prog->len;
7659 	struct bpf_insn *insns = env->prog->insnsi;
7660 	struct bpf_prog *new_prog;
7661 	bool rnd_hi32;
7662 
7663 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
7664 	zext_patch[1] = BPF_ZEXT_REG(0);
7665 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
7666 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
7667 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
7668 	for (i = 0; i < len; i++) {
7669 		int adj_idx = i + delta;
7670 		struct bpf_insn insn;
7671 
7672 		insn = insns[adj_idx];
7673 		if (!aux[adj_idx].zext_dst) {
7674 			u8 code, class;
7675 			u32 imm_rnd;
7676 
7677 			if (!rnd_hi32)
7678 				continue;
7679 
7680 			code = insn.code;
7681 			class = BPF_CLASS(code);
7682 			if (insn_no_def(&insn))
7683 				continue;
7684 
7685 			/* NOTE: arg "reg" (the fourth one) is only used for
7686 			 *       BPF_STX which has been ruled out in above
7687 			 *       check, it is safe to pass NULL here.
7688 			 */
7689 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
7690 				if (class == BPF_LD &&
7691 				    BPF_MODE(code) == BPF_IMM)
7692 					i++;
7693 				continue;
7694 			}
7695 
7696 			/* ctx load could be transformed into wider load. */
7697 			if (class == BPF_LDX &&
7698 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
7699 				continue;
7700 
7701 			imm_rnd = get_random_int();
7702 			rnd_hi32_patch[0] = insn;
7703 			rnd_hi32_patch[1].imm = imm_rnd;
7704 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
7705 			patch = rnd_hi32_patch;
7706 			patch_len = 4;
7707 			goto apply_patch_buffer;
7708 		}
7709 
7710 		if (!bpf_jit_needs_zext())
7711 			continue;
7712 
7713 		zext_patch[0] = insn;
7714 		zext_patch[1].dst_reg = insn.dst_reg;
7715 		zext_patch[1].src_reg = insn.dst_reg;
7716 		patch = zext_patch;
7717 		patch_len = 2;
7718 apply_patch_buffer:
7719 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
7720 		if (!new_prog)
7721 			return -ENOMEM;
7722 		env->prog = new_prog;
7723 		insns = new_prog->insnsi;
7724 		aux = env->insn_aux_data;
7725 		delta += patch_len - 1;
7726 	}
7727 
7728 	return 0;
7729 }
7730 
7731 /* convert load instructions that access fields of a context type into a
7732  * sequence of instructions that access fields of the underlying structure:
7733  *     struct __sk_buff    -> struct sk_buff
7734  *     struct bpf_sock_ops -> struct sock
7735  */
7736 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7737 {
7738 	const struct bpf_verifier_ops *ops = env->ops;
7739 	int i, cnt, size, ctx_field_size, delta = 0;
7740 	const int insn_cnt = env->prog->len;
7741 	struct bpf_insn insn_buf[16], *insn;
7742 	u32 target_size, size_default, off;
7743 	struct bpf_prog *new_prog;
7744 	enum bpf_access_type type;
7745 	bool is_narrower_load;
7746 
7747 	if (ops->gen_prologue || env->seen_direct_write) {
7748 		if (!ops->gen_prologue) {
7749 			verbose(env, "bpf verifier is misconfigured\n");
7750 			return -EINVAL;
7751 		}
7752 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7753 					env->prog);
7754 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7755 			verbose(env, "bpf verifier is misconfigured\n");
7756 			return -EINVAL;
7757 		} else if (cnt) {
7758 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7759 			if (!new_prog)
7760 				return -ENOMEM;
7761 
7762 			env->prog = new_prog;
7763 			delta += cnt - 1;
7764 		}
7765 	}
7766 
7767 	if (bpf_prog_is_dev_bound(env->prog->aux))
7768 		return 0;
7769 
7770 	insn = env->prog->insnsi + delta;
7771 
7772 	for (i = 0; i < insn_cnt; i++, insn++) {
7773 		bpf_convert_ctx_access_t convert_ctx_access;
7774 
7775 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7776 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7777 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7778 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7779 			type = BPF_READ;
7780 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7781 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7782 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7783 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7784 			type = BPF_WRITE;
7785 		else
7786 			continue;
7787 
7788 		if (type == BPF_WRITE &&
7789 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7790 			struct bpf_insn patch[] = {
7791 				/* Sanitize suspicious stack slot with zero.
7792 				 * There are no memory dependencies for this store,
7793 				 * since it's only using frame pointer and immediate
7794 				 * constant of zero
7795 				 */
7796 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7797 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7798 					   0),
7799 				/* the original STX instruction will immediately
7800 				 * overwrite the same stack slot with appropriate value
7801 				 */
7802 				*insn,
7803 			};
7804 
7805 			cnt = ARRAY_SIZE(patch);
7806 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7807 			if (!new_prog)
7808 				return -ENOMEM;
7809 
7810 			delta    += cnt - 1;
7811 			env->prog = new_prog;
7812 			insn      = new_prog->insnsi + i + delta;
7813 			continue;
7814 		}
7815 
7816 		switch (env->insn_aux_data[i + delta].ptr_type) {
7817 		case PTR_TO_CTX:
7818 			if (!ops->convert_ctx_access)
7819 				continue;
7820 			convert_ctx_access = ops->convert_ctx_access;
7821 			break;
7822 		case PTR_TO_SOCKET:
7823 		case PTR_TO_SOCK_COMMON:
7824 			convert_ctx_access = bpf_sock_convert_ctx_access;
7825 			break;
7826 		case PTR_TO_TCP_SOCK:
7827 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7828 			break;
7829 		default:
7830 			continue;
7831 		}
7832 
7833 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7834 		size = BPF_LDST_BYTES(insn);
7835 
7836 		/* If the read access is a narrower load of the field,
7837 		 * convert to a 4/8-byte load, to minimum program type specific
7838 		 * convert_ctx_access changes. If conversion is successful,
7839 		 * we will apply proper mask to the result.
7840 		 */
7841 		is_narrower_load = size < ctx_field_size;
7842 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7843 		off = insn->off;
7844 		if (is_narrower_load) {
7845 			u8 size_code;
7846 
7847 			if (type == BPF_WRITE) {
7848 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7849 				return -EINVAL;
7850 			}
7851 
7852 			size_code = BPF_H;
7853 			if (ctx_field_size == 4)
7854 				size_code = BPF_W;
7855 			else if (ctx_field_size == 8)
7856 				size_code = BPF_DW;
7857 
7858 			insn->off = off & ~(size_default - 1);
7859 			insn->code = BPF_LDX | BPF_MEM | size_code;
7860 		}
7861 
7862 		target_size = 0;
7863 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7864 					 &target_size);
7865 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7866 		    (ctx_field_size && !target_size)) {
7867 			verbose(env, "bpf verifier is misconfigured\n");
7868 			return -EINVAL;
7869 		}
7870 
7871 		if (is_narrower_load && size < target_size) {
7872 			u8 shift = (off & (size_default - 1)) * 8;
7873 
7874 			if (ctx_field_size <= 4) {
7875 				if (shift)
7876 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7877 									insn->dst_reg,
7878 									shift);
7879 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7880 								(1 << size * 8) - 1);
7881 			} else {
7882 				if (shift)
7883 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7884 									insn->dst_reg,
7885 									shift);
7886 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7887 								(1ULL << size * 8) - 1);
7888 			}
7889 		}
7890 
7891 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7892 		if (!new_prog)
7893 			return -ENOMEM;
7894 
7895 		delta += cnt - 1;
7896 
7897 		/* keep walking new program and skip insns we just inserted */
7898 		env->prog = new_prog;
7899 		insn      = new_prog->insnsi + i + delta;
7900 	}
7901 
7902 	return 0;
7903 }
7904 
7905 static int jit_subprogs(struct bpf_verifier_env *env)
7906 {
7907 	struct bpf_prog *prog = env->prog, **func, *tmp;
7908 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7909 	struct bpf_insn *insn;
7910 	void *old_bpf_func;
7911 	int err;
7912 
7913 	if (env->subprog_cnt <= 1)
7914 		return 0;
7915 
7916 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7917 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7918 		    insn->src_reg != BPF_PSEUDO_CALL)
7919 			continue;
7920 		/* Upon error here we cannot fall back to interpreter but
7921 		 * need a hard reject of the program. Thus -EFAULT is
7922 		 * propagated in any case.
7923 		 */
7924 		subprog = find_subprog(env, i + insn->imm + 1);
7925 		if (subprog < 0) {
7926 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7927 				  i + insn->imm + 1);
7928 			return -EFAULT;
7929 		}
7930 		/* temporarily remember subprog id inside insn instead of
7931 		 * aux_data, since next loop will split up all insns into funcs
7932 		 */
7933 		insn->off = subprog;
7934 		/* remember original imm in case JIT fails and fallback
7935 		 * to interpreter will be needed
7936 		 */
7937 		env->insn_aux_data[i].call_imm = insn->imm;
7938 		/* point imm to __bpf_call_base+1 from JITs point of view */
7939 		insn->imm = 1;
7940 	}
7941 
7942 	err = bpf_prog_alloc_jited_linfo(prog);
7943 	if (err)
7944 		goto out_undo_insn;
7945 
7946 	err = -ENOMEM;
7947 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7948 	if (!func)
7949 		goto out_undo_insn;
7950 
7951 	for (i = 0; i < env->subprog_cnt; i++) {
7952 		subprog_start = subprog_end;
7953 		subprog_end = env->subprog_info[i + 1].start;
7954 
7955 		len = subprog_end - subprog_start;
7956 		/* BPF_PROG_RUN doesn't call subprogs directly,
7957 		 * hence main prog stats include the runtime of subprogs.
7958 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7959 		 * func[i]->aux->stats will never be accessed and stays NULL
7960 		 */
7961 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7962 		if (!func[i])
7963 			goto out_free;
7964 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7965 		       len * sizeof(struct bpf_insn));
7966 		func[i]->type = prog->type;
7967 		func[i]->len = len;
7968 		if (bpf_prog_calc_tag(func[i]))
7969 			goto out_free;
7970 		func[i]->is_func = 1;
7971 		func[i]->aux->func_idx = i;
7972 		/* the btf and func_info will be freed only at prog->aux */
7973 		func[i]->aux->btf = prog->aux->btf;
7974 		func[i]->aux->func_info = prog->aux->func_info;
7975 
7976 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7977 		 * Long term would need debug info to populate names
7978 		 */
7979 		func[i]->aux->name[0] = 'F';
7980 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7981 		func[i]->jit_requested = 1;
7982 		func[i]->aux->linfo = prog->aux->linfo;
7983 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7984 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7985 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7986 		func[i] = bpf_int_jit_compile(func[i]);
7987 		if (!func[i]->jited) {
7988 			err = -ENOTSUPP;
7989 			goto out_free;
7990 		}
7991 		cond_resched();
7992 	}
7993 	/* at this point all bpf functions were successfully JITed
7994 	 * now populate all bpf_calls with correct addresses and
7995 	 * run last pass of JIT
7996 	 */
7997 	for (i = 0; i < env->subprog_cnt; i++) {
7998 		insn = func[i]->insnsi;
7999 		for (j = 0; j < func[i]->len; j++, insn++) {
8000 			if (insn->code != (BPF_JMP | BPF_CALL) ||
8001 			    insn->src_reg != BPF_PSEUDO_CALL)
8002 				continue;
8003 			subprog = insn->off;
8004 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8005 				    __bpf_call_base;
8006 		}
8007 
8008 		/* we use the aux data to keep a list of the start addresses
8009 		 * of the JITed images for each function in the program
8010 		 *
8011 		 * for some architectures, such as powerpc64, the imm field
8012 		 * might not be large enough to hold the offset of the start
8013 		 * address of the callee's JITed image from __bpf_call_base
8014 		 *
8015 		 * in such cases, we can lookup the start address of a callee
8016 		 * by using its subprog id, available from the off field of
8017 		 * the call instruction, as an index for this list
8018 		 */
8019 		func[i]->aux->func = func;
8020 		func[i]->aux->func_cnt = env->subprog_cnt;
8021 	}
8022 	for (i = 0; i < env->subprog_cnt; i++) {
8023 		old_bpf_func = func[i]->bpf_func;
8024 		tmp = bpf_int_jit_compile(func[i]);
8025 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8026 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
8027 			err = -ENOTSUPP;
8028 			goto out_free;
8029 		}
8030 		cond_resched();
8031 	}
8032 
8033 	/* finally lock prog and jit images for all functions and
8034 	 * populate kallsysm
8035 	 */
8036 	for (i = 0; i < env->subprog_cnt; i++) {
8037 		bpf_prog_lock_ro(func[i]);
8038 		bpf_prog_kallsyms_add(func[i]);
8039 	}
8040 
8041 	/* Last step: make now unused interpreter insns from main
8042 	 * prog consistent for later dump requests, so they can
8043 	 * later look the same as if they were interpreted only.
8044 	 */
8045 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8046 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8047 		    insn->src_reg != BPF_PSEUDO_CALL)
8048 			continue;
8049 		insn->off = env->insn_aux_data[i].call_imm;
8050 		subprog = find_subprog(env, i + insn->off + 1);
8051 		insn->imm = subprog;
8052 	}
8053 
8054 	prog->jited = 1;
8055 	prog->bpf_func = func[0]->bpf_func;
8056 	prog->aux->func = func;
8057 	prog->aux->func_cnt = env->subprog_cnt;
8058 	bpf_prog_free_unused_jited_linfo(prog);
8059 	return 0;
8060 out_free:
8061 	for (i = 0; i < env->subprog_cnt; i++)
8062 		if (func[i])
8063 			bpf_jit_free(func[i]);
8064 	kfree(func);
8065 out_undo_insn:
8066 	/* cleanup main prog to be interpreted */
8067 	prog->jit_requested = 0;
8068 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8069 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8070 		    insn->src_reg != BPF_PSEUDO_CALL)
8071 			continue;
8072 		insn->off = 0;
8073 		insn->imm = env->insn_aux_data[i].call_imm;
8074 	}
8075 	bpf_prog_free_jited_linfo(prog);
8076 	return err;
8077 }
8078 
8079 static int fixup_call_args(struct bpf_verifier_env *env)
8080 {
8081 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8082 	struct bpf_prog *prog = env->prog;
8083 	struct bpf_insn *insn = prog->insnsi;
8084 	int i, depth;
8085 #endif
8086 	int err = 0;
8087 
8088 	if (env->prog->jit_requested &&
8089 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
8090 		err = jit_subprogs(env);
8091 		if (err == 0)
8092 			return 0;
8093 		if (err == -EFAULT)
8094 			return err;
8095 	}
8096 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8097 	for (i = 0; i < prog->len; i++, insn++) {
8098 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8099 		    insn->src_reg != BPF_PSEUDO_CALL)
8100 			continue;
8101 		depth = get_callee_stack_depth(env, insn, i);
8102 		if (depth < 0)
8103 			return depth;
8104 		bpf_patch_call_args(insn, depth);
8105 	}
8106 	err = 0;
8107 #endif
8108 	return err;
8109 }
8110 
8111 /* fixup insn->imm field of bpf_call instructions
8112  * and inline eligible helpers as explicit sequence of BPF instructions
8113  *
8114  * this function is called after eBPF program passed verification
8115  */
8116 static int fixup_bpf_calls(struct bpf_verifier_env *env)
8117 {
8118 	struct bpf_prog *prog = env->prog;
8119 	struct bpf_insn *insn = prog->insnsi;
8120 	const struct bpf_func_proto *fn;
8121 	const int insn_cnt = prog->len;
8122 	const struct bpf_map_ops *ops;
8123 	struct bpf_insn_aux_data *aux;
8124 	struct bpf_insn insn_buf[16];
8125 	struct bpf_prog *new_prog;
8126 	struct bpf_map *map_ptr;
8127 	int i, cnt, delta = 0;
8128 
8129 	for (i = 0; i < insn_cnt; i++, insn++) {
8130 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8131 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8132 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
8133 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8134 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8135 			struct bpf_insn mask_and_div[] = {
8136 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8137 				/* Rx div 0 -> 0 */
8138 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8139 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8140 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8141 				*insn,
8142 			};
8143 			struct bpf_insn mask_and_mod[] = {
8144 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8145 				/* Rx mod 0 -> Rx */
8146 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8147 				*insn,
8148 			};
8149 			struct bpf_insn *patchlet;
8150 
8151 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8152 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8153 				patchlet = mask_and_div + (is64 ? 1 : 0);
8154 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8155 			} else {
8156 				patchlet = mask_and_mod + (is64 ? 1 : 0);
8157 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8158 			}
8159 
8160 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
8161 			if (!new_prog)
8162 				return -ENOMEM;
8163 
8164 			delta    += cnt - 1;
8165 			env->prog = prog = new_prog;
8166 			insn      = new_prog->insnsi + i + delta;
8167 			continue;
8168 		}
8169 
8170 		if (BPF_CLASS(insn->code) == BPF_LD &&
8171 		    (BPF_MODE(insn->code) == BPF_ABS ||
8172 		     BPF_MODE(insn->code) == BPF_IND)) {
8173 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
8174 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8175 				verbose(env, "bpf verifier is misconfigured\n");
8176 				return -EINVAL;
8177 			}
8178 
8179 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8180 			if (!new_prog)
8181 				return -ENOMEM;
8182 
8183 			delta    += cnt - 1;
8184 			env->prog = prog = new_prog;
8185 			insn      = new_prog->insnsi + i + delta;
8186 			continue;
8187 		}
8188 
8189 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8190 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8191 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8192 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8193 			struct bpf_insn insn_buf[16];
8194 			struct bpf_insn *patch = &insn_buf[0];
8195 			bool issrc, isneg;
8196 			u32 off_reg;
8197 
8198 			aux = &env->insn_aux_data[i + delta];
8199 			if (!aux->alu_state ||
8200 			    aux->alu_state == BPF_ALU_NON_POINTER)
8201 				continue;
8202 
8203 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8204 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8205 				BPF_ALU_SANITIZE_SRC;
8206 
8207 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
8208 			if (isneg)
8209 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8210 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8211 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8212 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8213 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8214 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8215 			if (issrc) {
8216 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8217 							 off_reg);
8218 				insn->src_reg = BPF_REG_AX;
8219 			} else {
8220 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8221 							 BPF_REG_AX);
8222 			}
8223 			if (isneg)
8224 				insn->code = insn->code == code_add ?
8225 					     code_sub : code_add;
8226 			*patch++ = *insn;
8227 			if (issrc && isneg)
8228 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8229 			cnt = patch - insn_buf;
8230 
8231 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8232 			if (!new_prog)
8233 				return -ENOMEM;
8234 
8235 			delta    += cnt - 1;
8236 			env->prog = prog = new_prog;
8237 			insn      = new_prog->insnsi + i + delta;
8238 			continue;
8239 		}
8240 
8241 		if (insn->code != (BPF_JMP | BPF_CALL))
8242 			continue;
8243 		if (insn->src_reg == BPF_PSEUDO_CALL)
8244 			continue;
8245 
8246 		if (insn->imm == BPF_FUNC_get_route_realm)
8247 			prog->dst_needed = 1;
8248 		if (insn->imm == BPF_FUNC_get_prandom_u32)
8249 			bpf_user_rnd_init_once();
8250 		if (insn->imm == BPF_FUNC_override_return)
8251 			prog->kprobe_override = 1;
8252 		if (insn->imm == BPF_FUNC_tail_call) {
8253 			/* If we tail call into other programs, we
8254 			 * cannot make any assumptions since they can
8255 			 * be replaced dynamically during runtime in
8256 			 * the program array.
8257 			 */
8258 			prog->cb_access = 1;
8259 			env->prog->aux->stack_depth = MAX_BPF_STACK;
8260 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
8261 
8262 			/* mark bpf_tail_call as different opcode to avoid
8263 			 * conditional branch in the interpeter for every normal
8264 			 * call and to prevent accidental JITing by JIT compiler
8265 			 * that doesn't support bpf_tail_call yet
8266 			 */
8267 			insn->imm = 0;
8268 			insn->code = BPF_JMP | BPF_TAIL_CALL;
8269 
8270 			aux = &env->insn_aux_data[i + delta];
8271 			if (!bpf_map_ptr_unpriv(aux))
8272 				continue;
8273 
8274 			/* instead of changing every JIT dealing with tail_call
8275 			 * emit two extra insns:
8276 			 * if (index >= max_entries) goto out;
8277 			 * index &= array->index_mask;
8278 			 * to avoid out-of-bounds cpu speculation
8279 			 */
8280 			if (bpf_map_ptr_poisoned(aux)) {
8281 				verbose(env, "tail_call abusing map_ptr\n");
8282 				return -EINVAL;
8283 			}
8284 
8285 			map_ptr = BPF_MAP_PTR(aux->map_state);
8286 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8287 						  map_ptr->max_entries, 2);
8288 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8289 						    container_of(map_ptr,
8290 								 struct bpf_array,
8291 								 map)->index_mask);
8292 			insn_buf[2] = *insn;
8293 			cnt = 3;
8294 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8295 			if (!new_prog)
8296 				return -ENOMEM;
8297 
8298 			delta    += cnt - 1;
8299 			env->prog = prog = new_prog;
8300 			insn      = new_prog->insnsi + i + delta;
8301 			continue;
8302 		}
8303 
8304 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8305 		 * and other inlining handlers are currently limited to 64 bit
8306 		 * only.
8307 		 */
8308 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
8309 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
8310 		     insn->imm == BPF_FUNC_map_update_elem ||
8311 		     insn->imm == BPF_FUNC_map_delete_elem ||
8312 		     insn->imm == BPF_FUNC_map_push_elem   ||
8313 		     insn->imm == BPF_FUNC_map_pop_elem    ||
8314 		     insn->imm == BPF_FUNC_map_peek_elem)) {
8315 			aux = &env->insn_aux_data[i + delta];
8316 			if (bpf_map_ptr_poisoned(aux))
8317 				goto patch_call_imm;
8318 
8319 			map_ptr = BPF_MAP_PTR(aux->map_state);
8320 			ops = map_ptr->ops;
8321 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
8322 			    ops->map_gen_lookup) {
8323 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8324 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8325 					verbose(env, "bpf verifier is misconfigured\n");
8326 					return -EINVAL;
8327 				}
8328 
8329 				new_prog = bpf_patch_insn_data(env, i + delta,
8330 							       insn_buf, cnt);
8331 				if (!new_prog)
8332 					return -ENOMEM;
8333 
8334 				delta    += cnt - 1;
8335 				env->prog = prog = new_prog;
8336 				insn      = new_prog->insnsi + i + delta;
8337 				continue;
8338 			}
8339 
8340 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8341 				     (void *(*)(struct bpf_map *map, void *key))NULL));
8342 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8343 				     (int (*)(struct bpf_map *map, void *key))NULL));
8344 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8345 				     (int (*)(struct bpf_map *map, void *key, void *value,
8346 					      u64 flags))NULL));
8347 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8348 				     (int (*)(struct bpf_map *map, void *value,
8349 					      u64 flags))NULL));
8350 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8351 				     (int (*)(struct bpf_map *map, void *value))NULL));
8352 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8353 				     (int (*)(struct bpf_map *map, void *value))NULL));
8354 
8355 			switch (insn->imm) {
8356 			case BPF_FUNC_map_lookup_elem:
8357 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8358 					    __bpf_call_base;
8359 				continue;
8360 			case BPF_FUNC_map_update_elem:
8361 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8362 					    __bpf_call_base;
8363 				continue;
8364 			case BPF_FUNC_map_delete_elem:
8365 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8366 					    __bpf_call_base;
8367 				continue;
8368 			case BPF_FUNC_map_push_elem:
8369 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8370 					    __bpf_call_base;
8371 				continue;
8372 			case BPF_FUNC_map_pop_elem:
8373 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8374 					    __bpf_call_base;
8375 				continue;
8376 			case BPF_FUNC_map_peek_elem:
8377 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8378 					    __bpf_call_base;
8379 				continue;
8380 			}
8381 
8382 			goto patch_call_imm;
8383 		}
8384 
8385 patch_call_imm:
8386 		fn = env->ops->get_func_proto(insn->imm, env->prog);
8387 		/* all functions that have prototype and verifier allowed
8388 		 * programs to call them, must be real in-kernel functions
8389 		 */
8390 		if (!fn->func) {
8391 			verbose(env,
8392 				"kernel subsystem misconfigured func %s#%d\n",
8393 				func_id_name(insn->imm), insn->imm);
8394 			return -EFAULT;
8395 		}
8396 		insn->imm = fn->func - __bpf_call_base;
8397 	}
8398 
8399 	return 0;
8400 }
8401 
8402 static void free_states(struct bpf_verifier_env *env)
8403 {
8404 	struct bpf_verifier_state_list *sl, *sln;
8405 	int i;
8406 
8407 	sl = env->free_list;
8408 	while (sl) {
8409 		sln = sl->next;
8410 		free_verifier_state(&sl->state, false);
8411 		kfree(sl);
8412 		sl = sln;
8413 	}
8414 
8415 	if (!env->explored_states)
8416 		return;
8417 
8418 	for (i = 0; i < state_htab_size(env); i++) {
8419 		sl = env->explored_states[i];
8420 
8421 		while (sl) {
8422 			sln = sl->next;
8423 			free_verifier_state(&sl->state, false);
8424 			kfree(sl);
8425 			sl = sln;
8426 		}
8427 	}
8428 
8429 	kvfree(env->explored_states);
8430 }
8431 
8432 static void print_verification_stats(struct bpf_verifier_env *env)
8433 {
8434 	int i;
8435 
8436 	if (env->log.level & BPF_LOG_STATS) {
8437 		verbose(env, "verification time %lld usec\n",
8438 			div_u64(env->verification_time, 1000));
8439 		verbose(env, "stack depth ");
8440 		for (i = 0; i < env->subprog_cnt; i++) {
8441 			u32 depth = env->subprog_info[i].stack_depth;
8442 
8443 			verbose(env, "%d", depth);
8444 			if (i + 1 < env->subprog_cnt)
8445 				verbose(env, "+");
8446 		}
8447 		verbose(env, "\n");
8448 	}
8449 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8450 		"total_states %d peak_states %d mark_read %d\n",
8451 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8452 		env->max_states_per_insn, env->total_states,
8453 		env->peak_states, env->longest_mark_read_walk);
8454 }
8455 
8456 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8457 	      union bpf_attr __user *uattr)
8458 {
8459 	u64 start_time = ktime_get_ns();
8460 	struct bpf_verifier_env *env;
8461 	struct bpf_verifier_log *log;
8462 	int i, len, ret = -EINVAL;
8463 	bool is_priv;
8464 
8465 	/* no program is valid */
8466 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8467 		return -EINVAL;
8468 
8469 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
8470 	 * allocate/free it every time bpf_check() is called
8471 	 */
8472 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8473 	if (!env)
8474 		return -ENOMEM;
8475 	log = &env->log;
8476 
8477 	len = (*prog)->len;
8478 	env->insn_aux_data =
8479 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8480 	ret = -ENOMEM;
8481 	if (!env->insn_aux_data)
8482 		goto err_free_env;
8483 	for (i = 0; i < len; i++)
8484 		env->insn_aux_data[i].orig_idx = i;
8485 	env->prog = *prog;
8486 	env->ops = bpf_verifier_ops[env->prog->type];
8487 	is_priv = capable(CAP_SYS_ADMIN);
8488 
8489 	/* grab the mutex to protect few globals used by verifier */
8490 	if (!is_priv)
8491 		mutex_lock(&bpf_verifier_lock);
8492 
8493 	if (attr->log_level || attr->log_buf || attr->log_size) {
8494 		/* user requested verbose verifier output
8495 		 * and supplied buffer to store the verification trace
8496 		 */
8497 		log->level = attr->log_level;
8498 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8499 		log->len_total = attr->log_size;
8500 
8501 		ret = -EINVAL;
8502 		/* log attributes have to be sane */
8503 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8504 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8505 			goto err_unlock;
8506 	}
8507 
8508 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8509 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8510 		env->strict_alignment = true;
8511 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8512 		env->strict_alignment = false;
8513 
8514 	env->allow_ptr_leaks = is_priv;
8515 
8516 	ret = replace_map_fd_with_map_ptr(env);
8517 	if (ret < 0)
8518 		goto skip_full_check;
8519 
8520 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
8521 		ret = bpf_prog_offload_verifier_prep(env->prog);
8522 		if (ret)
8523 			goto skip_full_check;
8524 	}
8525 
8526 	env->explored_states = kvcalloc(state_htab_size(env),
8527 				       sizeof(struct bpf_verifier_state_list *),
8528 				       GFP_USER);
8529 	ret = -ENOMEM;
8530 	if (!env->explored_states)
8531 		goto skip_full_check;
8532 
8533 	ret = check_subprogs(env);
8534 	if (ret < 0)
8535 		goto skip_full_check;
8536 
8537 	ret = check_btf_info(env, attr, uattr);
8538 	if (ret < 0)
8539 		goto skip_full_check;
8540 
8541 	ret = check_cfg(env);
8542 	if (ret < 0)
8543 		goto skip_full_check;
8544 
8545 	ret = do_check(env);
8546 	if (env->cur_state) {
8547 		free_verifier_state(env->cur_state, true);
8548 		env->cur_state = NULL;
8549 	}
8550 
8551 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8552 		ret = bpf_prog_offload_finalize(env);
8553 
8554 skip_full_check:
8555 	while (!pop_stack(env, NULL, NULL));
8556 	free_states(env);
8557 
8558 	if (ret == 0)
8559 		ret = check_max_stack_depth(env);
8560 
8561 	/* instruction rewrites happen after this point */
8562 	if (is_priv) {
8563 		if (ret == 0)
8564 			opt_hard_wire_dead_code_branches(env);
8565 		if (ret == 0)
8566 			ret = opt_remove_dead_code(env);
8567 		if (ret == 0)
8568 			ret = opt_remove_nops(env);
8569 	} else {
8570 		if (ret == 0)
8571 			sanitize_dead_code(env);
8572 	}
8573 
8574 	if (ret == 0)
8575 		/* program is valid, convert *(u32*)(ctx + off) accesses */
8576 		ret = convert_ctx_accesses(env);
8577 
8578 	if (ret == 0)
8579 		ret = fixup_bpf_calls(env);
8580 
8581 	/* do 32-bit optimization after insn patching has done so those patched
8582 	 * insns could be handled correctly.
8583 	 */
8584 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
8585 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
8586 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
8587 								     : false;
8588 	}
8589 
8590 	if (ret == 0)
8591 		ret = fixup_call_args(env);
8592 
8593 	env->verification_time = ktime_get_ns() - start_time;
8594 	print_verification_stats(env);
8595 
8596 	if (log->level && bpf_verifier_log_full(log))
8597 		ret = -ENOSPC;
8598 	if (log->level && !log->ubuf) {
8599 		ret = -EFAULT;
8600 		goto err_release_maps;
8601 	}
8602 
8603 	if (ret == 0 && env->used_map_cnt) {
8604 		/* if program passed verifier, update used_maps in bpf_prog_info */
8605 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8606 							  sizeof(env->used_maps[0]),
8607 							  GFP_KERNEL);
8608 
8609 		if (!env->prog->aux->used_maps) {
8610 			ret = -ENOMEM;
8611 			goto err_release_maps;
8612 		}
8613 
8614 		memcpy(env->prog->aux->used_maps, env->used_maps,
8615 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
8616 		env->prog->aux->used_map_cnt = env->used_map_cnt;
8617 
8618 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
8619 		 * bpf_ld_imm64 instructions
8620 		 */
8621 		convert_pseudo_ld_imm64(env);
8622 	}
8623 
8624 	if (ret == 0)
8625 		adjust_btf_func(env);
8626 
8627 err_release_maps:
8628 	if (!env->prog->aux->used_maps)
8629 		/* if we didn't copy map pointers into bpf_prog_info, release
8630 		 * them now. Otherwise free_used_maps() will release them.
8631 		 */
8632 		release_maps(env);
8633 	*prog = env->prog;
8634 err_unlock:
8635 	if (!is_priv)
8636 		mutex_unlock(&bpf_verifier_lock);
8637 	vfree(env->insn_aux_data);
8638 err_free_env:
8639 	kfree(env);
8640 	return ret;
8641 }
8642